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Preface

To meet the challenges of the fast development of new technologies, many areas of
contemporary engineering and applied sciences, which were conventionally
divided or loosely coupled in the past, combine their methodologies and merge
together to provide new analytical and computational tools. This is especially
evident in the area of multibody system dynamics, a branch of computational
mechanics dealing with modelling principles and numerical methods for dynamic
analysis, simulation and control of mechanical systems.

Originating in analytical and continuum mechanics, as well as in computer
science and applied mathematics, modelling methodologies and computational
procedures of multibody system dynamics provide a basis for dynamic analysis
and virtual prototyping of innovative applications in many fields of contemporary
engineering. With the utilization of the computational models and algorithms that
classically belonged to different fields of applied science, where, in certain
applications, several physical models co-exist and interact within the same
simulation procedure, multibody system dynamics delivers reliable simulation
platforms for diverse highly-developed industrial products, such as vehicle and
railway systems, aeronautical and space vehicles, robotic and autonomous
platforms, biomechanical applications and nano-technologies.

However, since application-based modelling and successful implementation of
computational methodologies raise many questions in terms of new solutions and
optimal use of specific models and numerical procedures, multibody system
dynamics is a very active research field. To maintain this development and provide
a platform to discuss relevant scientific topics in this rapidly growing discipline,
the 2013 edition of the ECCOMAS Thematic Conference on Multibody Dynamics
was held in Zagreb, Croatia, and organized at the University of Zagreb, Faculty of
Mechanical Engineering and Naval Architecture, from 1 to 4 July 2013. More than
250 participants from 38 countries participated in the event.

This book is based on the revised and extended versions of the papers presented
at the conference, reporting on the state-of-the-art in the advances of computa-
tional multibody dynamics, from the recent theoretical developments to practical
engineering applications. Besides ‘traditional’ multibody topics, such as terrestrial
vehicles dynamics and robotical systems, as well as applications in aerospace and
(today very relevant) wind turbine modelling, certain chapters of the book also
reflect new frontiers in the domain of multibody system dynamics, from coupled
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problems with the fluid domain and biomolecular applications to geometric
integrators and variational formulations. Such a broad spectrum of topics dem-
onstrates the vitality of this branch of computational mechanics, the roots of which
can be traced far back in the history of modern engineering (as it is also docu-
mented in one of the contributions), but today, it plays a central role in the
numerical modelling and optimisation of mechanical systems in a wide range of
areas of scientific and engineering relevance.

The book is primarily intended for experienced researchers and doctoral stu-
dents who are familiar with the fundamentals and wish to study or advance the
state of the art on a particular topic in the field of multibody system dynamics.
Nevertheless, practicing engineers could also benefit from it, as a variety of the
presented applications show strong potential of the multibody modelling concepts,
which can serve as an inspiration for further original contributions in engineering
and related disciplines, such as bioengineering and applied physics. Furthermore,
these pages will inform researchers active in the modern multibody dynamics
about some of the principal research directions and recent achievements, as well as
of the state-of-the-art applications by some of the most active researchers and
prominent experts in the field.

I am grateful to all contributing authors for their active participation and for the
time and effort they devoted to the completion of their contributions. I am also
very much indebted to the members of the Scientific Committee for their valuable
suggestions and support in the organisation of the conference, as this book is its
outgrowth. The event was supported by a number of distinguished international
institutions, such as ASME, IUTAM, IFToMM, and, of course, ECCOMAS, and
the personal involvement of the colleagues who contributed to this support is very
much appreciated.

Last but not least, I would like to thank my collaborators at the University of
Zagreb, Faculty of Mechanical Engineering and Naval Architecture, who have
participated in many activities during the recent years and, directly or indirectly,
contributed to the publication of this book.

Zagreb, March 2014 Zdravko Terze
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Chapter 1
Sensitivity Analysis of Multibody Dynamic
Systems Modeled by ODEs and DAEs

Daniel Dopico, Adrian Sandu, Corina Sandu and Yitao Zhu

Abstract The optimization of the dynamic response of multibody dynamic systems
is a complex and open problem. It relies on using the equations of motion of the
system, which amplifies the level of complexity of the problem substantially, com-
pared to other types of optimization. In the context of this kind of optimization, the
sensitivity analysis of the dynamic response of the system is a key element. Two
main techniques are currently available for the sensitivity analysis of the response
of a dynamical system: the direct differentiation method and the adjoint variable
method. In this work, different formulations of the equations of motion with depen-
dent coordinates are employed and their sensitivity equations obtained. Direct and
adjoint sensitivities are convenient for different types of problems but both methods
require accurate derivatives of the equations of motion considered. Both approaches
are employed in this work; the direct and adjoint sensitivity equations are obtained
for index-3 differential-algebraic equations (DAE), index-1 DAE, and penalty for-
mulations. The adjoint sensitivity for the penalty formulations introduced here is
completely novel.

1.1 Introduction

During the last few decades, the multibody dynamics community dedicated vast
amounts of time and effort to develop accurate, stable, and efficient multibody
dynamics formulations, in order to handle different kind of problems. That work
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led to the development of several different families of methods able to solve the
forward dynamics of multibody systems [12, 15]. Nowadays, more and more types
of problems and phenomena are being taken into account in simulations.

One of the most interesting problems, which brought attraction since the early
developments of the multibody systems techniques, is the optimization of the
dynamic response of mechanical systems [13]. Currently, with the improvement of
computer technology, computational power, as well as various modeling and analy-
sis methods, the possibility of performing the sensitivity analysis and optimization
of complex industrial problems is among the top priorities, and it is still an open
research topic in the multibody dynamics community.

In general, the equations of motion (EOM) of multibody systems constitute an
index-3 system of differential-algebraic equations (index-3 DAE system) which is
usually not solved directly because of the numerical difficulties involved [1, 2].
Alternative formulations of the EOM include one or more of the following tech-
niques: index reduction, stabilization, penalty and augmented Lagrangian techniques,
nullspace or coordinate partitioning methods, and projections onto the constraints
manifolds. There are two main techniques employed to calculate the sensitivity equa-
tions of multibody systems: the direct differentiation method and the adjoint variable
method. Direct and adjoint sensitivity are convenient for different types of problems
and both of them involve similar terms derived from the EOM. Many derivatives
can be obtained analytically and implemented as general sensitivity formulations.
Prior work on DAE adjoints for multibody dynamics [9, 21, 22] has been thoroughly
reviewed at the beginning of this study.

In this work we bring new contributions to the state-of-the-art in sensitivity analy-
sis for multibody dynamic systems by developing the direct and adjoint sensitivity
equations for index-3 differential-algebraic equations (DAE), index-1 DAE, and
penalty formulations.

1.2 Equations of Motion

All the formulations of the equations of motion considered in this work use dependent
coordinates, for sensitivity analysis of formulations using independent coordinates
(degrees of freedom) the reader is referred to [10].

1.2.1 Equations of Motion: Index-3 DAE Formulation

The equations of motion of a multibody system written in dependent coordinates
constitute an index-3 DAE system. Assume that the configuration of a multibody
system is given by a set of n coordinates q ∈ Rn , related by a set of m holonomic
constraint equations

� (t, q,ρ) = 0 ∈ Rm, (1.1)
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where ρ ∈ Rp is a vector of parameters of the system. Some parameter may describe
the geometry of the system and therefore it may affect the constraints (1.1).

The constraint equations (1.1) allow to obtain several kinematic relations. Any
virtual displacements of the system coordinates δq∗, with the time held fixed, have
to satisfy the following equations:

�q δq∗ = 0. (1.2a)

The velocities and accelerations of the system have to fulfill the following equations

�̇ = �qq̇ + �t = 0 ⇒ �qq̇ = −�t = b, (1.2b)

�̈ = �qq̈ + �̇qq̇ + �̇t = 0 ⇒ �qq̈ = −�̇qq̇ − �̇t = c. (1.2c)

The equations of motion constitute an index-3 system of n + m differential-
algebraic equations (DAEs)

Mq̈ + �T
qλ = Q, (1.3a)

� = 0, (1.3b)

where M = M (q,ρ) ∈ Rn×n is the mass matrix, Q = Q (t, q, q̇,ρ) ∈ Rn contains
the generalized forces and may also include the Coriolis and centrifugal effects (if
the formulation needs them), �q ∈ Rm×n is the Jacobian matrix of the constraints
(1.3b), and λ ∈ Rm are the Lagrange multipliers associated with the constraints.

1.2.1.1 Direct Integration of the Index-3 Equations of Motion

The direct numerical integration of the index-3 DAE equations of motion poses a
number of numerical difficulties, including ill-conditioning for small time steps and
instability problems that make the direct solution of the equations not recommendable.

The instability problems come from the fact that only the position level con-
straints are considered in the formulation and this causes an unstable behavior when
integrated with the classical time-stepping schemes. The explanation for it is that
the equations of motion only impose the satisfaction of the constraints themselves,
but no integrator can automatically guarantee that the velocities and the accelera-
tions will remain onto their respective manifolds of the constraints derivatives since
they are weak invariants of the equations of motion [16]. To avoid this problem the
authors recommend to combine the direct integration of Eqs. (1.3a), (1.3b) with the
use of projection techniques like proposed in [7] or to reformulate the problem as an
Augmented Lagrangian approach with projections like in [8], to solve the forward
dynamics.

The ill-conditioning problem was also addressed in the past by several authors and
it will be presented in this section particularized for the single-step implicit trape-
zoidal rule, an integrator belonging to the Newmark family; the extension to other
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implicit integrators (in particular to general Newmark integrators) is straightforward.
The problem posed here will be illustrative later on, since the sensitivity equations
developed later in this work will inherit the same issue. Let

f =
[

Mq̈ + �T
qλ − Q

�

⎧
(1.4)

be the residual of the equations of motion (1.3), meaning that Eq. (1.4) have to be
equal to zero.

Using an implicit integrator (e.g. trapezoidal rule) to integrate the previous equa-
tions as described in [7]

q̇n+1 = 2

h
qn+1 + ˆ̇qn; ˆ̇qn = −

⎪
2

h
qn + q̇n

⎨
(1.5a)

q̈n+1 = 4

h2 qn+1 + ˆ̈qn; ˆ̈qn = −
⎪

4

h2 qn + 4

h
q̇n + q̈n

⎨
(1.5b)

where n is the time step index and h the time step.
Replacing Eqs. (1.5a), (1.5b) in (1.4), a nonlinear system of algebraic equations

in n + 1 is obtained that can be solved using following Newton iteration

[
∂f
∂y

⎧(i)

δy(i+1)
n+1 = −f (i) (1.6a)

[
∂f
∂y

⎧
=

[ 4
h2 M + 2

h C + Mqq̈ + �T
qqλ + K �T

q
�q 0

⎧
(1.6b)

where y = ⎩
q λ

]T.
The solution of Eq. (1.6a) for small time steps poses severe issues: it was reported

in [3] that the propagation of errors in the solution of the Lagrange multipliers is
of order O (

h−2
)

and the condition number of the tangent matrix (1.6b) is of order
O (

h−4
)

(ill conditioned for small time steps). Several authors proposed the scaling
of the equations to alleviate these problems [3, 4, 19].

In [3] a specific scaling for Eq. (1.6a) with Newmark integrators is proposed,
which can be easily particularized for the particular case of the trapezoidal rule by
scaling the first n equations in the residual (1.4) and the Lagrange multipliers by a
factor of h2/4, leading to the following scaled equations and states

[
∂ f̄
∂ȳ

](i)

δȳ(i+1)
n+1 = −f̄ (i) (1.7a)
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f̄ =
⎡
⎣ h2

4

(
Mq̈ + �T

qλ − Q
⎜

�

⎤
⎦ (1.7b)

[
∂ f̄
∂ȳ

]
=

⎡
⎣ M + h

2
C + h2

4

(
Mqq̈ + �T

qqλ + K
⎜

�T
q

�q 0

⎤
⎦ (1.7c)

where ȳ = ⎩
q λ̄

]T
are the scaled states and λ̄ = (

h2/4
)
λ are the scaled Lagrange

multipliers.
The suggested scaling leads both the propagation of errors in the solution of the

Lagrange multipliers and the condition number of the tangent matrix (1.6b) to order
O (

h0
)
.

1.2.2 Equations of Motion: Index-1 DAE Formulation

The difficulties mentioned before to numerically solve Eq. (1.3) make a good case for
reformulating the problem to formulations that are easier to solve. Index reduction is
a common technique [1]. Differentiating (1.3b) twice leads to the following index-1
DAE system:

Mq̈ + �T
qλ = Q, (1.8a)

�qq̈ = −�̇qq̇ − �t = c. (1.8b)

A direct numerical solution of (1.8a), (1.8b) suffers from drift-off [11], meaning that
any small perturbation in the acceleration constraints leads to an error in the position
constraints that grows quadratically with time: �̈ = ε1 ⇒ �̇ = ε1t + ε2 ⇒ � =
ε1t2/2 + ε2t + ε3.

1.2.3 Equations of Motion: Penalty Formulation

In [5] the penalty formulation of multibody dynamics is introduced. The equations
constitute a system of ordinary differential equations (ODEs) of dimension n:

Mq̈ + �T
qα

(
�̈ + 2ξω�̇ + ω2�

⎜
= Q (1.9)

where α is the penalty matrix and ξ, ω are coefficients of the method. An equivalent
formulation is

M̄q̈ = Q̄, (1.10a)

M̄ ≡ M + �T
qα�q, (1.10b)
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Q̄ ≡ Q − �T
qα

(
�̇qq̇ + �̇t + 2ξω�̇ + ω2�

⎜
. (1.10c)

Comparing (1.9) and (1.3a) it can be seen that the penalty equations approximate
the Lagrange multipliers with the following term

λ∗ = α
(
�̈ + 2ξω�̇ + ω2�

⎜
, (1.11)

where the star means approximated or fictitious Lagrange multipliers, as opposed to
the real ones which arise in DAE formulations.

Assuming that α is a diagonal matrix with the penalty factors for each constraint
on the diagonal, each entry of λ∗ in (1.11) is the equation of a one degree of freedom
oscillatory system. The coefficients of the oscillatory system are usually selected as
ω = 10 and ξ = 1, which corresponds to a critically damped system.

The penalty equations (1.9) are equivalent to the original DAE for infinite penalty
factors. In floating point computing, loss-of-significance errors appear in the first
parenthesis of Eq. (1.10a) for large penalties, thus, the selection of the penalty factors
is a sensitive issue that the analyst has to solve. In practice this formulation does
not satisfy exactly either constraint equation (� = 0, �̇ = 0, or �̈ = 0) but it
approximately satisfies the equation �̈ + 2ξω�̇ + ω2� = 0.

1.3 Direct Sensitivity Analysis

In this section the sensitivity equations for the equations of motion presented in
Sect. 1.2 are derived based on the direct sensitivity method.

Consider the case where the equations of motion (EOM) dependent on the vector
of parameters ρ ∈ Rp. The following objective function is defined in terms of the
parameters, on the states q, q̇, q̈ ∈ Rn , and on the Lagrange multipliers λ ∈ Rm

ψ = w
(
qF , q̇F , q̈F ,ρF ,λF

) +
tF⎟

t0

g (q, q̇, q̈,λ,ρ) dt. (1.12)

where the subindex F means evaluation at the final time tF .
The sensitivity analysis techniques discussed herein will evaluate the gradient of

the objective function with respect to parameters:

∇ρψ = (dψ/dρ)T . (1.13)

1.3.1 Direct Sensitivity: Index-3 Formulation

The direct sensitivity method for the sensitivity analysis using the index-3 formu-
lation in Sect. 1.2.1 was developed in [14] for objective functions dependent on
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q, q̇,ρ,λ and variable time limits tF . In this section the results are revisited also for
objective functions depending on q̈ but fixed end time tF .

Differentiating (1.12)

∇ρψT = (
wqqρ + wq̇q̇ρ + wq̈q̈ρ + wλλρ + wρ

)
F

+
tF⎟

t0

(
gqqρ + gq̇q̇ρ + gq̈q̈ρ + gλλρ + gρ

)
dt. (1.14)

In Eq. (1.14) the derivatives of functions w and g are known, since the objective func-
tion has a known expression. The derivatives qρ, q̇ρ, q̈ρ and λρ are the sensitivities
of the solution of the dynamical system. These can be obtained by differentiating
(1.3) with respect to each one of the parameters:

dM
dρk

q̈ + M
∂q̈
∂ρk

+ d�T
q

dρk
λ + �T

q
∂λ

∂ρk
= dQ

dρk
, (1.15)

d�

dρk
= 0, k = 1, . . . , m. (1.16)

Expanding the total derivatives and grouping them together in matrix notation,
leads to the following set of p DAEs, each one of them called a Tangent Linear
Model (TLM):

Mq̈ρ + Cq̇ρ +
(

Mqq̈ + �T
qqλ + K

⎜
qρ + �T

qλρ = Qρ − Mρq̈ − �T
qρλ, (1.17a)

�qqρ = −�ρ, (1.17b)

where K = −Qq, C = −Qq̇, and the following terms are tensor-vector products:
Mqq̈ ≡ Mq ⊗ q̈, �T

qqλ ≡ �T
qq ⊗ λ, Mρq̈ ≡ Mρ ⊗ q̈, �T

qρλ ≡ �T
qρ ⊗ λ.

The TLM (1.17a), (1.17b) needs for the following 2np initial conditions

qρ (t0) = qρ0, (1.18a)

q̇ρ (t0) = q̇ρ0. (1.18b)

The initial conditions (1.18) are not independent, since they have to satisfy the fol-
lowing constraint equations

d� (t0)

dρ
= 0 → ⎩

�qqρ

]
0 = −�ρ0, (1.19a)

d�̇ (t0)

dρ
= 0 → ⎩

�qq̇ρ

]
0 = − ⎩(

�qqq̇ + �tq
)

qρ + �qρq̇ + �tρ
]

0 (1.19b)
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where the sub-index 0 means evaluation at the initial time t0, as indicated in the
Appendix.

Consequently n−rank
(
�q

)
independent sensitivities can be chosen from (1.19a)

and n−rank
(
�q

)
independent “velocity” sensitivities from (1.19b). That means that

the impact of the parameters on the initial configuration of the system, by means of
a subset of degrees of freedom, can be decided as an input to the problem.

1.3.1.1 Direct Integration of the Index-3 TLM

The tangent linear model DAE in Eqs. (1.17a), (1.17b) can be directly integrated
in the same way that the equations of motion in Sect. 1.2.1.1. The trapezoidal rule
equations for the sensitivities

q̇n+1
ρ = 2

h
qn+1

ρ + ˆ̇qn
ρ; ˆ̇qn

ρ = −
⎪

2

h
qn

ρ + q̇n
ρ

⎨
(1.20a)

q̈n+1
ρ = 4

h2 qn+1
ρ + ˆ̈qn

ρ; ˆ̈qn
ρ = −

⎪
4

h2 qn
ρ + 4

h
q̇n

ρ + q̈n
ρ

⎨
(1.20b)

where the superindex n means time step.
Replacing the integrator equations in (1.17a), (1.17b) and solving for qn+1

ρ

and λn+1
ρ

[ 4

h2 M + 2

h
C + Mqq̈ + �T

qqλ + K �T
q

�q 0

] [
qn+1

ρ

λn+1
ρ

⎧

=
[

Qρ − Mρq̈ − �T
qρλ − M ˆ̈qn

ρ − C ˆ̇qn
ρ

−�ρ

⎧
(1.21)

Observe that the leading matrix in Eq. (1.21) is identical to the tangent matrix
(1.6b) and therefore exactly the same scaling applies here

⎡
⎣ M + h

2
C + h2

4

(
Mqq̈ + �T

qqλ + K
⎜

�T
q

�q 0

⎤
⎦

[
qn+1

ρ

λ̄
n+1
ρ

]

=
⎡
⎣ h2

4

(
Qρ − Mρq̈ − �T

qρλ − M ˆ̈qn
ρ − C ˆ̇qn

ρ

⎜
−�ρ

⎤
⎦ (1.22)

where λ̄ρ = (
h2/4

)
λρ are the Lagrange multipliers scaled sensitivities. To initialize

the sensitivities q0
ρ and q̇0

ρ, Eqs. (1.19a), (1.19b) should be used. For the initialization
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of q̈0
ρ the index-1 TLM equations developed in the next section can be solved for q̈0

ρ

and λ0
ρ.

Observe that the systems (1.22) are cheap to solve, since they don’t need to be
iterated and the previous factorization of the leading matrix, from the dynamics, can
be employed to solve.

1.3.2 Direct Sensitivity: Index-1 Formulation

The direct sensitivity method is now applied to the index-1 formulation discussed
in Sect. 1.2. The gradient of the objective function is given again by (1.14) and the
derivatives qρ, q̇ρ, q̈ρ and λρ are the sensitivities of the solution of the dynamical
equations (1.8a), (1.8b). These sensitivities are obtained differentiating (1.8a), (1.8b)
with respect to each one of the parameters as follows:

dM
dρk

q̈ + M
∂q̈
∂ρk

+ d�T
q

dρk
λ + �T

q
∂λ

∂ρk
= dQ

dρk
, (1.23a)

d�̈

dρk
= 0, k = 1, . . . , p. (1.23b)

Expanding the total derivatives and grouping them together in matrix notation,
leads to the following set of p DAEs, each one of them called a Tangent Linear
Model (TLM):

Mq̈ρ + Cq̇ρ +
(

Mqq̈ + �T
qqλ + K

⎜
qρ + �T

qλρ = Qρ − Mρq̈ − �T
qρλ, (1.24a)

�qq̈ρ − cq̇q̇ρ + (
�qqq̈ − cq

)
qρ = cρ − �qρq̈ (1.24b)

where
cq = − (

�̇q
)

q q̇ − (
�̇t

)
q , (1.24c)

cq̇ = − (
�̇q

)
q̇ q̇ − �̇q − (

�̇t
)

q̇ = −�qqq̇ − �̇q − �tq, (1.24d)

cρ = − (
�̇q

)
ρ

q̇ − (
�̇t

)
ρ

. (1.24e)

The identities
(
�̇q

)
q̇ = �qq and

(
�̇t

)
q̇ = �tq were used, and the tensor-vector

product rules, with the operator ⊗, were applied to the terms involving �qq, �qρ,(
�̇q

)
q and

(
�̇q

)
ρ

.
The approach presented for the index-3 TLM can be employed here to obtain

the initial conditions of the index-1 TLM [Eqs. (1.19a), (1.19b)]. On the other
hand the approach presented here, can be employed to initialize the sensitivities q̈ρ
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(if necessary) for both the index-1 and the index-3 TLM. From Eqs. (1.24a), (1.24b),
(1.24c), (1.24d), (1.24e)

[
M �T

q
�q 0

⎧ [
q̈ρ

λρ

⎧
=

[
Qρ − Mρq̈ − �T

qρλ − Cq̇ρ −
(

Mqq̈ + �T
qqλ + K

⎜
qρ

cρ − �qρq̈ + cq̇q̇ρ − (
�qqq̈ + cq

)
qρ

]

(1.25)

1.3.3 Direct Sensitivity: Penalty Formulation

The direct sensitivity method for the sensitivity analysis using the penalty formulation
was initially developed in [17, 18]. We seek to obtain the sensitivities of the objective
function

ψ = w
(
qF , q̇F , q̈F ,ρF ,λ∗

F

) +
tF⎟

t0

g
(
q, q̇, q̈,ρ,λ∗) dt. (1.26)

The Lagrange multipliers λ in (1.12) are replaced by the approximate Lagrange
multipliers λ∗ in (1.26). These variables don’t show up in the penalty equations
of motion (1.9) and they have to be approximated by (1.11). The initial and final
times are considered here independent of the parameters, but more general objective
functions are possible.

The gradient of the objective function (1.26) can be obtained by the following
expressions

∇ρψT = dψ

dρ
=

[
wqqρ + wq̇q̇ρ + wq̈q̈ρ + wρ + wλ∗α

⎪
d�̈

dρ
+ 2ξω

d�̇

dρ
+ ω2 d�

dρ

⎨⎧
F

+
tF⎟

t0

[
gqqρ + gq̇q̇ρ + gq̈q̈ρ + gρ + gλ∗α

⎪
d�̈

dρ
+ 2ξω

d�̇

dρ
+ ω2 d�

dρ

⎨⎧
dt,

(1.27a)

d�̈

dρ
= �qq̈ρ + (

�qqq̇ + �̇q + �tq
)

q̇ρ +
(
�qqq̈ + (

�̇q
)

q q̇ + (
�̇t

)
q

⎜
qρ

+�qρq̈ + (
�̇q

)
ρ

q̇ + (
�̇t

)
ρ

, (1.27b)

d�̇

dρ
= �qq̇ρ + (

�qqq̇ + �tq
)

qρ + �qρq̇ + �tρ, (1.27c)

d�

dρ
= �qqρ + �ρ, (1.27d)
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where the identities
(
�̇q

)
q̇ = �qq and

(
�̇t

)
q̇ = �tq were used, and the tensor-vector

product rules mentioned in the Appendix, with the operator ⊗, were applied to the
terms involving �qq, �qρ,

(
�̇q

)
q and

(
�̇q

)
ρ

.
In Eqs. (1.27a), (1.27b), (1.27c), (1.27d) the derivatives of functions w and g are

known, since the objective function has a known expression. The derivatives qρ, q̇ρ

and q̈ρ are the sensitivities of the solution of the dynamical system, and they are
obtained by differentiating Eq. (1.9) with respect to each one of the parameters :

dM̄
dρk

q̈ + M̄
∂q̈
∂ρk

= dQ̄
dρk

, k = 1, . . . , p. (1.28)

Expanding the total derivatives and grouping them together in matrix notation
leads to the following set of p ODEs, each one of them called a Tangent Linear
Model (TLM):

M̄q̈ρ + C̄q̇ρ + (
K̄ + M̄qq̈

)
qρ = Q̄ρ − M̄ρq̈, (1.29a)

qρ (t0) = qρ0, (1.29b)

q̇ρ (t0) = q̇ρ0. (1.29c)

Observe that each TLM (1.29a), (1.29b), (1.29c) is a system of only n equations,
compared to the n + m equations of the index-3 and index-1 tangent linear DAEs
in Sects. 1.3.1 and 1.3.2 respectively. Equations (1.29b) and (1.29c) are the initial
conditions for the tangent linear ODE and they can be obtained by a similar approach
to the one in Sect. 1.3.1.

The following terms appear in (1.29a):

K̄ = −∂Q̄
∂q

= K + �T
qqα

(
�̇qq̇ + �̇t + 2ξω�̇ + ω2�

⎜

+�T
qα

((
�̇qq̇

)
q + (

�̇t
)

q + 2ξω
(
�qqq̇ + �tq

) + ω2�q

⎜
(1.30a)

C̄ = −∂Q̄
∂q̇

= C + �T
qα

(
�qqq̇ + �̇q + �tq + 2ξω�q

)
(1.30b)

Q̄ρ = ∂Q̄
∂ρ

= Qρ − �T
qρα

(
�̇qq̇ + �̇t + 2ξω�̇ + ω2�

⎜

−�T
qα

((
�̇qq̇

)
ρ

+ �̇tρ + 2ξω�̇ρ + ω2�ρ

⎜
(1.30c)

M̄qq̈ = Mqq̈ + �T
qqα

(
�qq̈

) + �T
qα�qqq̈ (1.30d)
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M̄ρq̈ = Mρq̈ + �T
qρα

(
�qq̈

) + �T
qα�qρq̈ (1.30e)

We have K = −Qq in Eq. (1.30a) and C = −Qq̇ in (1.30b). In Eqs. (1.30d) and
(1.30e) the following tensor-vector products are calculated: Mqq̈ = Mq ⊗ q̈ and
Mρq̈ = Mρ ⊗ q̈.

1.4 Adjoint Sensitivity Analysis

In this section the sensitivity equations for the equations of motion presented in
Sect. 1.2 are derived based on the adjoint variable method.

1.4.1 Adjoint Sensitivity: Index-3 Formulation

The adjoint sensitivity method for the sensitivity analysis using the index-3 formula-
tion in Sect. 1.2 was developed in [14] for objective functions dependent on q, q̇,ρ,λ
and variable time limits tF . In this section the results are revisited also for objective
functions depending on q̈ but fixed end time tF .

Considering the equations of motion (1.3) the gradient (1.13) can be indirectly
obtained via the Lagrangian function

L (ρ) = w
(
qF , q̇F , q̈F ,ρF ,λF

) +
tF⎟

t0

g (q, q̇, q̈,λ,ρ) dt

−
tF⎟

t0

μT
(

Mq̈ + �T
qλ − Q

⎜
dt −

tF⎟
t0

μT
��dt (1.31)

and the following identity which holds along any solution of the equations of motion:

∇ρψ = ∇ρL. (1.32)

Infinitesimal variations of L under infinitesimal variations δρ are as follows (note
that the computation of δμ and δλ is not needed):

δL = ⎩
wqδq + wq̇δq̇ + wq̈δq̈ + wλδλ + wρδρ

]
F (1.33)

+
tF⎟

t0

(
gq − μT

(
Mqq̈ + �T

qqλ − Qq

⎜
− μT

��q

⎜
δqdt

+
tF⎟

t0

(
gq̇ + μTQq̇

)
δq̇dt +

tF⎟
t0

(
gq̈ − μTM

)
δq̈dt +

tF⎟
t0

(
gλ − μT�T

q

⎜
δλdt
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+
tF⎟

t0

(
gρ − μT

(
Mρq̈ + �T

qρλ − Qρ

⎜
− μT

��ρ

⎜
δρdt.

Integrating by parts the integrals involving δq̇, δq̈:

δL = ⎩
wqδq + wq̇δq̇ + wq̈δq̈ + wλδλ + wρδρ

]
F

+
tF⎟

t0

(
gq − μT

(
Mqq̈ + �T

qqλ + K
⎜

− μT
��q

⎜
δqdt + (

gq̇ − μTC
)
δq

∣∣t F
t0

−
tF⎟

t0

⎪
dgq̇

dt
− μ̇TC − μTĊ

⎨
δqdt + (

gq̈ − μTM
)
δq̇

∣∣t F
t0

−
⎪

dgq̈

dt
− μ̇TM − μTṀ

⎨
δq

∣∣∣∣
t F

t0
+

tF⎟
t0

(
d2gq̈

dt2 − μ̈TM − 2μ̇TṀ − μTM̈

)
δqdt

+
tF⎟

t0

(
gλ − μT�T

q

⎜
δλdt +

tF⎟
t0

(
gρ − μT

(
Mρq̈ + �T

qρλ − Qρ

⎜
− μT

��ρ

⎜
δρdt

(1.34)

When the following equations are satisfied all the integral terms that involve δq
and δλ cancel:

gq − μT
(

Mqq̈ + �T
qqλ + K

⎜
− μT

��q − dgq̇

dt
+ μ̇TC + μTĊ + d2gq̈

dt2

− μ̈TM − 2μ̇TṀ − μTM̈ = 0 (1.35a)

�qμ = gT
λ (1.35b)

The initial conditions can be obtained by canceling the additional terms at the final
time appearing in (1.34): δqF , δq̇F , δλF

[
wq + gq̇ − μTC − dgq̈

dt
+ μ̇TM + μTṀ

⎧
F

δqF

+
[
wq̇ + gq̈ − μTM

]
F

δq̇F + ⎩
wq̈δq̈

]
F + [wλδλ]F = 0 (1.35c)

An additional initial condition is given by (1.35b) which holds at any time, in par-
ticular at t = tF .

It can be shown that the resulting adjoint system is an index-3 DAE in μ and μ�:
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MTμ̈ + (
2Ṁ − C

)T
μ̇ +

(
Mqq̈ + �T

qqλ + K + M̈ − Ċ
⎜T

μ

+ �T
qμ� = gT

q − dgq̇

dt

T

+ d2gq̈

dt2

T

(1.36a)

�qμ = gT
λ (1.36b)

and has the following initial conditions

[
MTμ̇ + (

Ṁ − C
)T

μ
]

F
=

[
dgq̈

dt

T

− gT
q̇ − wT

q

]
F

(1.37a)

[
MTμ

]
F

=
[
gT

q̈ + wT
q̇

]
F

(1.37b)

⎩
wq̈

]
F = 0 (1.37c)

[wλ|F = 0 (1.37d)

⎩
�qμ

]
F =

[
gT
λ

]
F

(1.37e)

Equations (1.37c) and (1.37d) express incompatible conditions for the objective
function, meaning that the objective function cannot depend on the acceleration or
Lagrange multipliers in the final time. Moreover, if gq̈, wq̇ or gλ are not equal to
zero, Eqs. (1.37b) and (1.37e) constitute an incompatible system of equations in μ
which can be solved, according to [14], adding the following terms, evaluated at the
final time, to the Lagrangian (1.31).

γT�
(
tF , qF ,ρF

)
(1.38)

ηT�̇
(
tF , qF , q̇F ,ρF

)
(1.39)

where γ ∈ Rm and μ ∈ Rm are new adjoint variables that need to be determined
and the constraint equations are given in Eqs. (1.1) and (1.2b).

The addition of condition (1.38) is convenient, since the constraint equations
are imposed by the index-3 formulation, nevertheless the addition of (1.39) can be
problematic since they are hidden constraints not explicitly imposed by the index-3
formulation unless, for example, projection techniques are employed, as proposed
in [7] and suggested in Sect. 1.2.1.1.

The addition of Eqs. (1.38) and (1.39) to the Lagrangian (1.31), contribute with
the following terms to the variation (1.33)

γT ⎩
�qδq + �ρδρ

]
F (1.40)
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ηT ⎩(
�qqq̇ + �tq

)
δq + �qδq̇ + (

�qρq̇ + �tρ
)
δρ

]
F (1.41)

The final adjoint is not affected by these additions and Eqs. (1.36a), (1.36b)
are still valid, nevertheless the initial conditions (1.37a), (1.37b), (1.37c), (1.37d),
eqrefeq:indexsps3spsICs5 for the adjoint at the final time become the following

[
MTμ̇ + (

Ṁ − C
)T

μ + �T
qγ + (

�qqq̇ + �tq
)T

η
]

F
=

[
dgq̈

dt

T

− gT
q̇ − wT

q

]
F

(1.42a)[
MTμ + �T

qη
]

F
=

[
gT

q̈ + wT
q̇

]
F

(1.42b)

⎩
�qμ

]
F =

[
gT
λ

]
F

(1.42c)

⎩
�qμ̇ + �̇qμ

]
F =

[
dgT

λ

dt

]
F

(1.42d)

where Eq. (1.42d) is the derivative of (1.42c) and it was added to complete a full set
of equations to determine the initial adjoint variables. The process was described by
[14] and consist of solving the two sets of equations formed with (1.42b), (1.42c) to
obtain μF and ηF and (1.42a), (1.42d) to obtain μ̇F and γF .

The gradient of the objective function is obtained with the remaining terms not
canceled out in the variational equation (1.34) and additional terms (1.40), (1.41):

∇ρψT =
[
wρ + γT�ρ + ηT (

�qρq̇ + �tρ
)]

F
+

[⎪
dgq̈

dt
− gq̇ − μ̇TM − μT (

Ṁ − C
)⎨

qρ

⎧
0

−
[(

gq̈ − μTM
⎜

q̇ρ

]
0

+
tF⎟

t0

(
gρ − μT

(
Mρq̈ + �T

qρλ − Qρ

⎜
− μT

��ρ

⎜
dt

(1.43)

The gradient depends on the solution of the EOM and on the adjoint differential
and algebraic variables μ and μ� which are the solution of the adjoint system. The
adjoint system derived from the index-3 equations of motion is an index-3 DAE.

This formulation of the sensitivity equations is not very convenient for the case of
objective functions depending on q̈ or λ due to the difficulty to obtain the derivatives
of these terms, involving higher order derivatives of the states or Lagrange multipliers,
normally not calculated.

1.4.1.1 Direct Integration of the Adjoint DAE

The adjoint index-3 DAE (1.36a), (1.36b) can be directly integrated backward in
time:



16 D. Dopico et al.

MTμ̈ + ATμ̇ + BTμ + �T
qμ� = gT

q − dgq̇

dt

T

+ d2gq̈

dt2

T

(1.44a)

�qμ = gT
λ (1.44b)

where A = 2Ṁ − C and B = Mqq̈ + �T
qqλ + K + M̈ − Ċ.

The implicit trapezoidal rule equations for backward integration can be expressed
as

μ̇n∗ = − 2

h
μn∗ + ˆ̇μn+1

∗ ; ˆ̇μn+1
∗ = 2

h
μn+1∗ − μ̇n+1∗ (1.45a)

μ̈n∗ = − 4

h2 μn∗ + ˆ̈μn+1
∗ ; ˆ̈μn+1

∗ = − 4

h2 μn+1∗ + 4

h
μ̇n+1∗ − μ̈n+1∗ (1.45b)

where the subindex ∗ means that the same equations hold for μ and μ�.
Replacing Eqs. (1.45a), (1.45b) in (1.44a), (1.44b)

[ 4

h2 MT + 2

h
AT + BT �T

q

�q 0

] [
μn

μn
�

⎧
=

[
gT

q − ġT
q̇ + g̈T

q̈ − MTμ̈n+1 − ATμ̇n+1

0

⎧

(1.46)
Observe that the system of equations (1.46) is very similar in its structure to (1.6a),

except by the fact that (1.46) is linear in μn , μn
� and therefore it doesn’t need to be

iterated. This similarity suggests the same scaling proposed before, leading to the
following scaled system

⎡
⎣ MT + h

2
AT + h2

4
BT �T

q

�q 0

⎤
⎦ [

μn

μ̄n
�

⎧
=

⎡
⎣ h2

4

(
gT

q − ġT
q̇ + g̈T

q̈ − MTμ̈n+1 − ATμ̇n+1
⎜

0

⎤
⎦

(1.47)
where μ̄n

� = (
h2/4

)
μn

� are the scaled adjoint variables associated to the constraint
equations.

1.4.2 Adjoint Sensitivity: Index-1 Formulation

1.4.2.1 Approach 1

The adjoint sensitivity for the index-1 formulation was obtained in [6] for the equa-
tions of motion considered as a first order system and objective functions with variable
time limits tF but not dependent either on λ or q̈F . In this section the results are
revisited also for objective functions depending on q̈F and λ but fixed end time tF .

Considering the equations of motion (1.8a), (1.8b), the gradient (1.13) can be
obtained like in Sect. 1.4.1
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L (ρ) = w (q, q̇, q̈,λ,ρ)tF
+

tF⎟
t0

g (q, q̇, q̈,λ,ρ) dt

−
tF⎟

t0

μT
(

Mq̈ + �T
qλ − Q

⎜
dt −

tF⎟
t0

μT
�

(
�qq̈ − c

)
dt (1.48)

Compute infinitesimal variations of L under infinitesimal variations δρ (compu-
tation of δμ and δλ not needed):

δL = ⎩
wqδq + wq̇δq̇ + wq̈δq̈ + wλδλ + wρδρ

]
tF

+
tF⎟

t0

(
gq − μT

(
Mqq̈ + �T

qqλ + K
⎜

− μT
�

(
�qqq̈ − cq

)⎜
δqdt

+
tF⎟

t0

(
gq̇ − μTC + μT

�cq̇

⎜
δq̇dt +

tF⎟
t0

(
gq̈ − μTM − μT

��q

⎜
δq̈dt (1.49)

+
tF⎟

t0

(
gλ − μT�T

q

⎜
δλdt +

tF⎟
t0

(
gρ − μT

(
Mρq̈ + �T

qρλ − Qρ

⎜

−μT
�

(
�qρq̈ − cρ

)⎜
δρdt

Integrating by parts the integrals involving δq̇, δq̈ leads to:

δL = ⎩
wqδq + wq̇δq̇ + wq̈δq̈ + wλδλ + wρδρ

]
tF

+
tF⎟

t0

(
gq − μT

(
Mqq̈ + �T

qqλ + K
⎜

− μT
�

(
�qqq̈ − cq

)⎜
δqdt

+
(
gq̇ − μTC + μT

�cq̇

⎜
δq

∣∣∣t F

t0
−

tF⎟
t0

⎪
dgq̇

dt
− μ̇TC − μTĊ + μ̇T

�cq̇ + μT
�

dcq̇

dt

⎨
δqdt

+
(
gq̈ − μTM − μT

��q

⎜
δq̇

∣∣∣t F

t0
−

⎪
dgq̈

dt
− μ̇TM − μTṀ − μ̇T

��q − μT
��̇q

⎨
δq

∣∣∣∣
t F

t0
(1.50)

+
tF⎟

t0

(
d2gq̈

dt2 − μ̈TM − 2μ̇TṀ − μTM̈ − μ̈T
��q − 2μ̇T

��̇q − μT
��̈q

)
δqdt

+
tF⎟

t0

(
gλ − μT�T

q

⎜
δλdt +

tF⎟
t0

(
gρ − μT

(
Mρq̈ + �T

qρλ − Qρ

⎜
− μT

�

(
�qρq̈ − cρ

)⎜
δρdt



18 D. Dopico et al.

Canceling all the integral terms that involve δq and δλ, the following adjoint DAE
is obtained

MTμ̈ + (
2Ṁ − C

)T
μ̇ +

(
Mqq̈ + �T

qqλ + K − Ċ + M̈
⎜T

μ + �T
q μ̈� + (

cq̇ + 2�̇q
)T

μ̇�

+
⎪

�qqq̈ + �̈q − cq + dcq̇

dt

⎨T
μ� = gT

q −
dgT

q̇

dt
+

d2gT
q̈

dt2 (1.51a)

�qμ = gλ (1.51b)

The adjoint system (1.51a), (1.51b) can be easily proved to be an index-1 DAE
in μ and μ�. The initial conditions for the adjoint DAE are:

[
MTμ̇ + (

Ṁ − C
)T

μ + �T
qμ̇� + (

�̇q + cq̇
)T

μ�

]
F

=
[
−wT

q − gT
q̇ + dgT

q̈

dt

]
F

(1.52a)

[
MTμ + �T

qμ�

]
F

=
[(

wq̇ + gq̈
)T

]
F

(1.52b)

⎩
wq̈

]
F = 0 (1.52c)

[wλ]F = 0 (1.52d)

⎩
�qμ

]
F =

[
gT
λ

]
F

(1.52e)

⎩
�qμ̇ + �̇qμ

]
F =

[
dgT

λ

dt

]
F

(1.52f)

Observe that two incompatibility conditions (1.52c) and (1.52d), arise for the objec-
tive functionals whose final time term cannot depend on q̈ or λ. Moreover, the extra
condition (1.52e) and its derivative (1.52f) were taken from (1.51b) particularized
for the final time to complete a full set of equations, which allow to obtain the initial
values of μ, μ̇, μ� and μ̇� at the final time tF .

The following gradient of the objective function is obtained from the variational
equation (1.50):
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∇ρψ =
[
wT

ρ

∣∣∣
F

−
[

∂q
∂ρ

T
(

gT
q̇ − dgT

q̈

dt
+ (

Ṁ − C
)T

μ + MTμ̇ + (
cq̇ + �̇q

)T
μ� + �T

q μ̇�

)]
0

−
[

∂q̇
∂ρ

T (
gT

q̈ − MTμ − �T
qμ�

⎜]
0

+
tF⎟

t0

⎪
gT
ρ −

(
Mρq̈ + �T

qρλ − Qρ

⎜T
μ

− (
�qρq̈ − cρ

)T
μ�

⎜
dt (1.53)

The gradient depends on the solution of the EOM and on the adjoint differential
and algebraic variables μ and μ� which are the solution of the adjoint system.

1.4.2.2 Approach 2

Equations (1.51a), (1.51b) and (1.53), are of theoretical interest, but of lower practical
value because they can involve higher order derivatives of the state variables, as
pointed out in [20]. A more convenient approach is to use Eqs. (1.8a), (1.8b) to
express the variations δq̈ and δλ in terms of the variations of the states δq and δq̇.
Taking the variation of (1.8a), (1.8b)

[
δq̈
δλ

⎧
=

[
M �T

q
�q 0

⎧−1 ⎪[−K − Mqq̈ − �T
qqλ

cq − �qqq̈

⎧
δq +

[−C
cq̇

⎧
δq̇

+
[

Qρ − Mρq̈ − �T
qρλ

cρ − �qρq̈

⎧
δρ

⎨
(1.54)

δq̈ = q̈qδq + q̈q̇δq̇ + q̈ρδρ, (1.55a)

δλ = λqδq + λq̇δq̇ + λρδρ, (1.55b)

where

[
q̈q
λq

⎧
=

[
M �T

q
�q 0

⎧−1 [−K − Mqq̈ − �T
qqλ

cq − �qqq̈

⎧
, (1.56)

[
q̈q̇
λq̇

⎧
=

[
M �T

q
�q 0

⎧−1 [−C
cq̇

⎧
, (1.57)

[
q̈ρ

λρ

⎧
=

[
M �T

q
�q 0

⎧−1 [
Qρ − Mρq̈ − �T

qρλ

cρ − �qρq̈

⎧
. (1.58)

Replacing Eqs. (1.55a) and (1.55b) in (1.49) yields
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δL = ⎩(
wq + wq̈q̈q + wλλq

)
δq + (

wq̇ + wq̈q̈q̇ + wλλq̇
)
δq̇ + (

wρ + wq̈q̈ρ + wλλρ

)
δρ

]
tF

+
tF⎟

t0

(
gq + gq̈q̈q + gλλq − μT

(
Mqq̈ + �T

qqλ + K
⎜

− μT
�

(
�qqq̈ − cq

)⎜
δqdt

+
tF⎟

t0

(
gq̇ + gq̈q̈q̇ + gλλq̇ − μTC + μT

�cq̇
)
δq̇dt −

tF⎟
t0

(
μTM + μT

��q
)
δq̈dt −

tF⎟
t0

μT�T
qδλdt

(1.59)

+
tF⎟

t0

(
gρ + gq̈q̈ρ + gλλρ − μT

(
Mρq̈ + �T

qρλ − Qρ

⎜
− μT

�

(
�qρq̈ − cρ

)⎜
δρdt

Observe that only the variations δq̈ and δλ associated with the objective function
terms w and g were eliminated in (1.59). Integration by parts can be applied to the
remaining δq̈ and δq̇ terms

δL = ⎩(
wq + wq̈q̈q + wλλq

)
δq + (

wq̇ + wq̈q̈q̇ + wλλq̇
)
δq̇ + (

wρ + wq̈q̈ρ + wλλρ

)
δρ

]
tF

tF⎟
t0

(
gq + gq̈q̈q + gλλq − μT

(
Mqq̈ + �T

qqλ + K
⎜

− μT
�

(
�qqq̈ − cq

)⎜
δqdt

+ (
gq̇ + gq̈q̈q̇ + gλλq̇ − μTC + μT

�cq̇
)
δq

∣∣t F
t0

−
tF⎟

t0

(
d

(
gq̇ + gq̈q̈q̇ + gλλq̇

)
dt

− μ̇TC − μTĊ + μ̇T
�cq̇ + μT

�

dcq̇

dt

)
δqdt (1.60)

− (
μTM + μT

��q
)
δq̇

∣∣t F
t0 + (

μ̇TM + μTṀ + μ̇T
��q + μT

��̇q
)
δq

∣∣t F
t0

−
tF⎟

t0

(
μ̈TM + 2μ̇TṀ + μTM̈ + μ̈T

��q + 2μ̇T
��̇q + μT

��̈q
)
δqdt

−
tF⎟

t0

(
μT�T

q

⎜
δλdt +

tF⎟
t0

(
gρ + gq̈q̈ρ + gλλρ − μT

(
Mρq̈ + �T

qρλ − Qρ

⎜

−μT
�

(
�qρq̈ − cρ

))
δρdt

Canceling all the integral terms that involve δq and δλ leads to the following
adjoint DAE

MTμ̈ + (
2Ṁ − C

)T
μ̇ +

(
Mqq̈ + �T

qqλ + K − Ċ + M̈
⎜T

μ + �T
q μ̈� + (

cq̇ + 2�̇q
)T

μ̇�

+
⎪

�qqq̈ + �̈q − cq + dcq̇

dt

⎨T

μ� = (
gq + gq̈q̈q + gλλq

)T − d
(
gq̇ + gq̈q̈q̇ + gλλq̇

)T

dt
(1.61a)



1 Sensitivity Analysis of Multibody Dynamic Systems Modeled by ODEs and DAEs 21

�qμ = 0. (1.61b)

Observe that the last term in equation (1.61a) can be difficult to obtain, because
the temporal derivatives of a functional which depends on the accelerations and
Lagrange multipliers can involve temporal derivatives of the accelerations and tem-
poral derivatives of the Lagrange multipliers which normally are not calculated by
the integrator.

The initial conditions for the adjoint are the following

[
MTμ̇ + (

Ṁ − C
)T

μ + �T
qμ̇� + (

�̇q + cq̇
)T

μ�

]
F

= −
[(

wq + wq̈q̈q + wλλq + gq̇ + gq̈q̈q̇ + gλλq̇
)T

]
F

(1.62a)

[
MTμ + �T

qμ�

]
F

=
[(

wq̇ + wq̈q̈q̇ + wλλq̇
)T

]
F

(1.62b)

⎩
�qμ

]
F = 0 (1.62c)

⎩
�qμ̇ + �̇qμ

]
F = 0 (1.62d)

Finally, the gradient

∇ρψ =
[(

wρ + wq̈q̈ρ + wλλρ

)T
]

F

−
[

∂q
∂ρ

T ((
gq̇ + gq̈q̈q̇ + gλλq̇

)T + (
Ṁ − C

)T
μ + MTμ̇ + (

cq̇ + �̇q
)T

μ� + �T
q μ̇�

⎜]
0

+
[

∂q̇
∂ρ

T (
MTμ + �T

qμ�

⎜]
0

+
tF⎟

t0

⎪(
gρ + gq̈q̈ρ + gλλρ

)T −
(

Mρq̈ + �T
qρλ − Qρ

⎜T
μ

− (
�qρq̈ − cρ

)T
μ�

⎜
dt (1.63)

1.4.3 Adjoint Sensitivity: Penalty Formulation

Considering the equations of motion (1.10a), the Lagrangian in this case has the
following expression
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L (ρ) = w
(
qF , q̇F , q̈F ,ρF ,λF

) +
tF⎟

t0

g
(
q, q̇, q̈,λ∗,ρ

)
dt

−
tF⎟

t0

μT (
M̄ (q,ρ) q̈ − Q̄ (t, q, q̇,ρ)

)
dt (1.64)

Note that in this case the Lagrange multipliers are not present for the formulation
considered here, but they can be approximated by λ∗ by means of Eq. (1.11), making
possible to consider dependencies of the objective function with the constraint forces.
Note that since λ∗ is not a variable in the equations of motion the dependency of the
cost function on λ∗ is formal and used for convenience. The same final sensitivity
equations are obtained when λ∗ is not included in (1.64) and the derivatives with
respect to λ∗ are obtained from post-processing the adjoint variables.

Applying variational calculus

δL = ⎩
wqδq + wq̇δq̇ + wq̈δq̈ + wλ∗δλ∗ + wρδρ

]
tF

+
tF⎟

t0

(
gq − μT (

M̄qq̈ + K̄
))

δqdt +
tF⎟

t0

(
gq̇ − μTC̄

)
δq̇dt +

tF⎟
t0

(
gq̈ − μTM̄

)
δq̈dt

+
tF⎟

t0

gλ∗δλ∗dt +
tF⎟

t0

(
gρ − μT (

M̄ρq̈ − Q̄ρ

))
δρdt (1.65)

The variation δλ∗ can be removed by expressing it in terms of the variations δq, δq̇
and δq̈. From Eq. (1.11)

δλ∗ = α
(
δ�̈ + 2ξωδ�̇ + ω2δ�

⎜
(1.66)

where

δ�̈ = �qδq̈ + (
�qqq̇ + �̇q + �tq

)
δq̇

+
(
�qqq̈ + (

�̇q
)

q q̇ + (
�̇t

)
q

⎜
δq (1.67)

+
(
�qρq̈ + (

�̇q
)
ρ

q̇ + (
�̇t

)
ρ

⎜
δρ

δ�̇ = �qδq̇ + (
�qqq̇ + �tq

)
δq + (

�qρq̇ + �tρ
)
δρ (1.68)

δ� = �qδq + �ρδρ (1.69)

Grouping together the terms associated to δq̈, δq̇, δq, δρ, Eq. (1.66) becomes

δλ∗ = λ∗̈
qδq̈ + λ∗̇

qδq̇ + λ∗
qδq + λ∗

ρδρ, (1.70)
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Identifying the common terms in (1.66) and (1.70)

λ∗̈
q = α�q (1.71a)

λ∗̇
q = α

⎩
�qqq̇ + �̇q + �tq + 2ξω�q

]
(1.71b)

λ∗
q = α

[
�qqq̈ + (

�̇q
)

q q̇ + (
�̇t

)
q

+2ξω
(
�qqq̇ + �tq

) + ω2�q

]
(1.71c)

λ∗
ρ = α

[
�qρq̈ + (

�̇q
)
ρ

q̇ + (
�̇t

)
ρ

(1.71d)

+2ξω
(
�qρq̇ + �tρ

) + ω2�ρ

]

The variation δq̈ can be removed too, by expressing it in terms of the variations
δq, δq̇ and δq̈. Making use of Eqs. (1.9) and (1.70)

Mδq̈ + Mqq̈δq + �T
qδλ∗ + �T

qqλ∗δq + �T
qρλ∗δρ = Qqδq + Qq̇δq̇ + Qρδρ

(1.72)

M̄δq̈ = −
(

K + Mqq̈ + �T
qλ∗

q + �T
qqλ∗⎜ δq −

(
C + �T

qλ∗̇
q

⎜
δq̇

+
(

Qρ − Mρq̈ − �T
qλ∗

ρ − �T
qρλ∗⎜ δρ (1.73)

Then
δq̈ = q̈qδq + q̈q̇δq̇ + q̈ρδρ (1.74)

where

q̈q = −M̄−1
(

K + Mqq̈ + �T
qλ∗

q + �T
qqλ∗⎜ (1.75)

q̈q̇ = −M̄−1
(

C + �T
qλ∗̇

q

⎜
(1.76)

q̈ρ = M̄−1
(

Qρ − Mρq̈ − �T
qλ∗

ρ − �T
qρλ∗⎜ (1.77)

Replacing Eq. (1.74) back in Eq. (1.70) yields

δλ∗ =
(
λ∗̇

q + λ∗̈
qq̈q̇

⎜
δq̇ +

(
λ∗

q + λ∗̈
qq̈q

⎜
δq +

(
λ∗

ρ + λ∗̈
qq̈ρ

⎜
δρ, (1.78)

After replacing Eqs. (1.74) and (1.78) in (1.65), the variations δq̈ and δλ∗ disappear
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δL =
[(

wq + wq̈q̈q + wλ∗
(
λ∗

q + λ∗̈
qq̈q

⎜⎜
δq +

(
wq̇ + wq̈q̈q̇ + wλ∗

(
λ∗̇

q + λ∗̈
qq̈q̇

⎜⎜
δq̇

+
(
wρ + wq̈q̈ρ + wλ∗

(
λ∗

ρ + λ∗̈
qq̈ρ

⎜⎜
δρ

]
F

+
tF⎟

t0

(
gq + gq̈q̈q + gλ∗

(
λ∗

q + λ∗̈
qq̈q

⎜
− μT (

M̄qq̈ + K̄
)⎜

δqdt

+
tF⎟

t0

(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗̇

q + λ∗̈
qq̈q̇

⎜
− μTC̄

⎜
δq̇dt (1.79)

−
tF⎟

t0

μTM̄δq̈dt +
tF⎟

t0

(
gρ + gq̈q̈ρ + gλ∗

(
λ∗

ρ + λ∗̈
qq̈ρ

⎜
− μT (

M̄ρq̈ − Q̄ρ
)⎜

δρdt

Integrating by parts the integrals involving δq̇, δq̈:

δL =
[(

wq + wq̈q̈q + wλ∗
(
λ∗

q + λ∗̈
qq̈q

⎜⎜
δq +

(
wq̇ + wq̈q̈q̇ + wλ∗

(
λ∗̇

q + λ∗̈
qq̈q̇

⎜⎜
δq̇

+
(
wρ + wq̈q̈ρ + wλ∗

(
λ∗

ρ + λ∗̈
qq̈ρ

⎜⎜
δρ

]
F

+
tF⎟

t0

(
gq + gq̈q̈q + gλ∗

(
λ∗

q + λ∗̈
qq̈q

⎜
− μT (

M̄qq̈ + K̄
)⎜

δqdt

+
(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗̇

q + λ∗̈
qq̈q̇

⎜
− μTC̄

⎜
δq

∣∣∣t F

t0

−
tF⎟

t0

⎛
⎝d

(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗̇

q + λ∗̈
qq̈q̇

⎜⎜
dt

− μ̇TC̄ − μT ˙̄C
⎞
⎠ δqdt

− (
μTM̄

)
δq̇

∣∣t F
t0 +

(
μ̇TM̄ + μT ˙̄M

⎜
δq

∣∣∣t F

t0
−

tF⎟
t0

(
μ̈TM̄ + 2μ̇T ˙̄M + μT ¨̄M

⎜
δqdt

+
tF⎟

t0

(
gρ + gq̈q̈ρ + gλ∗

(
λ∗

ρ + λ∗̈
qq̈ρ

⎜
− μT (

M̄ρq̈ − Q̄ρ

)⎜
δρdt (1.80)

Canceling all the integral terms that involve δq leads to the following adjoint ODE

M̄Tμ̈ +
(

2 ˙̄M − C̄
⎜T

μ̇ +
(

M̄qq̈ + K̄ − ˙̄C + ¨̄M
⎜T

μ =
(
gq + gq̈q̈q + gλ∗

(
λ∗

q + λ∗̈
qq̈q

⎜⎜T

−
d

(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗̇

q + λ∗̈
qq̈q̇

⎜⎜T

dt
(1.81a)
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[
M̄Tμ̇ +

( ˙̄M − C̄
⎜T

μ

⎧
F

= −
[
wq + wq̈q̈q + wλ∗

(
λ∗

q + λ∗̈
qq̈q

⎜
+ gq̇ + gq̈q̈q̇

+gλ∗
(
λ∗̇

q + λ∗̈
qq̈q̇

⎜]T

F
(1.81b)

⎩
M̄Tμ

]
F =

[
wq̇ + wq̈q̈q̇ + wλ∗

(
λ∗̇

q + λ∗̈
qq̈q̇

⎜]T

F
(1.81c)

Finally, the gradient can be obtained from the remaining terms in the variational
equation (1.80)

∇ρψ =
[
wρ + wq̈q̈ρ + wλ∗

(
λ∗

ρ + λ∗̈
qq̈ρ

⎜]
F

−
[

qT
ρ

(
gq̇ + gq̈q̈q̇ + gλ∗

(
λ∗̇

q + λ∗̈
qq̈q̇

⎜
+ μ̇TM̄ + μT

( ˙̄M − C̄
⎜⎜T

⎧
t0

+
[
q̇T

ρ

(
μTM̄

)T
]

t0
+

tF⎟
t0

(
gρ + gq̈q̈ρ + gλ∗

(
λ∗

ρ + λ∗̈
qq̈ρ

⎜
− μT (

M̄ρq̈ − Q̄ρ

)⎜T
dt

(1.82)

Observe that more derivatives than those already obtained for the direct sensitivity
approach are necessary in (1.81a), (1.81b), (1.81c) and (1.82). The additional terms

not obtained before are ˙̄M, ¨̄M and ˙̄C.
From equation (1.10b)

˙̄M = Ṁ + �̇
T
qα�q + �T

qα�̇q, (1.83)

¨̄M = M̈ + �̈
T
qα�q + 2�̇

T
qα�̇q + �T

qα�̈q (1.84)

and from Eq. (1.30b)

˙̄C = Ċ + �̇
T
qα

(
�qqq̇ + �̇q + �tq + 2ξω�q

)
+�T

qα
(
�̇qqq̇ + �qqq̈ + �̈q + �̇tq + 2ξω�̇q

)
(1.85)

1.4.4 Validation of the Computed Sensitivities

The validation of the computed sensitivities is crucial because small errors in individ-
ual terms can result in completely wrong sensitivities and even if wrong sensitivities
can usually solve optimization problems, they are still wrong. The strategies proposed
and employed here to validate sensitivities are the following:

1. Compare the results of direct and adjoint sensitivity approaches: they should be
equal within the truncation error.

2. Compare the results of different formulations of the equations of motion: Index-3,
Index-1 and Penalty sensitivities were compared.
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3. Compute the sensitivities using a third party code: FATODE [23] was used to
double-check the results presented.

4. Use real finite differences to approximate whole sensitivities or individual deriv-
atives: it can be a very inaccurate or even completely useless strategy. Small
truncation errors (small δ) cause important loss-of-significance errors. The first-
order approximation of the derivatives with real perturbations reads

dψ

dρk
= ψ (ρ + δek) − ψ (ρ)

δ
. (1.86)

The truncation error in this case is O(δ) cf. (1.86) and the loss of significance
errors are order O(δ−1), where δ is the perturbation. This fact can make these
derivatives highly inaccurate.

5. Use complex finite differences to approximate whole sensitivities or individ-
ual derivatives: it is a much more reliable approach than the previous one, but
more complex to implement. Since there is not subtraction, there are not loss-
of-significance errors in the imaginary part. The first-order approximation of
derivatives with complex perturbations is the following

dψ

dρk
= 	 (ψ (ρ + iδek))

δ
, (1.87)

where i is the imaginary unit and 	 is the imaginary part of a complex number.
The approach is considerably more accurate than the previous one, because there
are no subtractions in the imaginary parts and therefore the perturbations can
be chosen arbitrarily small without loss-of-significance errors appearing in the
calculation of the approximation. The practical difficulty to apply complex finite
differences is that not all codes can be changed easily to accommodate complex
arithmetic. Special attention should be paid to the third party functions (if any)
involved in the code (transpose functions, norm functions, numerical integrator
chosen, etc).

1.5 Numerical Experiment

The mechanism chosen to test the formulations proposed in the paper is the five bar
mechanism with 2 degrees of freedom shown in Fig. 1.1. The five bars are constrained
by five revolute joints located in points A, 1, 2, 3 and B. The five bars are constrained
by five revolute joints located in points A, 1, 2, 3 and B. The masses of the bars
are m1 = 1 kg, m2 = 1.5 kg, m3 = 1.5 kg, m4 = 1 kg and the polar moments of
inertia are calculated under the assumption of a uniform distribution of mass. The
mechanism is subjected to the action of gravity and two elastic forces coming from
the springs. The stiffness coefficients of the springs are k1 = k2 = 100 N/m and their
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Fig. 1.2 Mechanism response: Top velocity of point 2; Bottom energy of the system

natural lengths are initially chosen L01 = √
22 + 12 m and L02 = √

22 + 0.52 m,
coincident with the initial configuration shown in Fig. 1.1.

The response of the system is shown in Fig. 1.2 for a 5 s simulation. The upper
plot represents the horizontal and vertical velocities of the point 2 while the lower
one represents the energy taking as reference for the potential energy the initial
configuration of the system.

The following objective function was chosen:

ψ =
tF⎟

t0

(r2 − r20)
T (r2 − r20) dt (1.88)
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Table 1.1 Results for the five bar mechanism

Approach Parameters dψ/dL01 dψ/dL02

1: Direct index-3 h = 10−2 s −4.2381 3.2170
2: Adjoint index-3 h = 10−2 s −4.2287 3.2090
3: Direct index-1 h = 10−2 s −4.2383 3.2169
4: Adjoint index-1 h = 10−2 s −4.2294 3.2093
5: Direct penalty h = 10−2 s −4.2305 3.2154
6: Adjoint penalty h = 10−2 s −4.2299 3.2134
7: FATODE T ol = 10−3 −4.2257 3.2077
8: Num. diff. real with penalty δ = 10−7 m −9.7390 −4.0344
9: Num. diff. complex with penalty δ/ i = 10−7 m −4.2288 3.2116

where r2 is the global position of the point 2 and r20 is the initial position (at t = 0)
of the same point. As parameters to obtain the sensitivities, the natural lengths of the
springs were chosen ρT = [L01, L02].

The gradient ∇ρψ = 0 was obtained by the direct and adjoint approaches with all
the formulations of the equations of motion proposed in the chapter. Moreover a third
party code and the numerical sensitivities were obtained to check the correctness of
the results. In sum, the following experiments were carried out:

1. Direct sensitivity with all the formulations proposed.
2. Adjoint sensitivity with all the formulations proposed.
3. Adjoint sensitivity with FATODE .
4. Numerical sensitivity with real perturbations.
5. Numerical sensitivity with complex perturbations.

The results for the sensitivities with the mentioned methods are presented in
Table 1.1. All the approaches, except the numerical sensitivities with real perturba-
tions, offer similar results. The numerical sensitivities with real perturbations are not
reliable if accurate results for the sensitivities are important for the application to
tackle. Given the simplicity of the system proposed, definitive conclusions in terms
of efficiency cannot be stated.

The methods presented to compute sensitivities can be employed for the opti-
mization of the mechanism. The mechanism can be balanced by properly selecting
the two parameters ρT = [L01, L02] in order to keep it in equilibrium. Of course
the problem can be solved by means of the static equations but the aim here is doing
so by dynamical optimization: the objective is to keep the mechanism still in the
initial position, which can be represented mathematically by the minimization of the
objective function (1.88). The condition to obtain the minimum is the following:

∇ρψ = 0 (1.89)

All the methods perform similar to solve the optimization problem. In this case
the simulation time was reduced to 1 s and the results for the objective function,



1 Sensitivity Analysis of Multibody Dynamic Systems Modeled by ODEs and DAEs 29

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
0

0.05

0.1

0.15

0.2
Objective function evolution

Iterations

ψ

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
−1

−0.5

0

0.5
First derivatives of the objective function evolution

dψ/dL
01

dψ/dL
02

1 1.5 2 2.5 3 3.5 4
1.8

2

2.2

2.4

2.6
Parameters evolution

L
01

L
02

Fig. 1.3 Objective function, gradient and parameters evolution

derivatives and parameters are presented in Fig. 1.3 for the adjoint penalty approach.
The plots for the rest of the approaches coincide with the ones presented and they
are not presented for clarity.

The optimization converges in three iterations, but in one is almost done. It is
important to remark that approximate derivatives can be used to calculate the gradient
and the optimization would converge at a lower pace.

Another important remark is that the tolerances in the solution of the forward
dynamics are very important in order to obtain stable solutions for the TLM and
adjoint ODEs, both of them strongly depend on the solution of the dynamics.
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1.6 Conclusions

In this study, the direct and adjoint sensitivities were derived for multibody dynamic
systems modeled using several dependent coordinates formulations: index-3
differential-algebraic formulation, index-1differential algebraic formulation and
penalty formulation. The objective functions considered depend on the parameters
considered, positions, velocities, accelerations and Lagrange multipliers of the sys-
tem, with the final time fixed. The sensitivity analyses discussed in the context of
this work evaluated the gradient of the objective function with respect to the system
parameters. It was noticed that the adjoint formulations of the sensitivity equations
are not very convenient for the case of objective functions depending on the vector
of generalized coordinates or on the Lagrange multipliers, due to the difficulty to
obtain the derivatives of these terms, involving higher order derivatives of the states
or Lagrange multipliers, normally not calculated.

The validation of the methods developed for sensitivity analysis was conducted on
multiple levels: (a) the sensitivities obtained using direct differentiation and adjoint
methods were compared; (b) the results of the sensitivities obtained for the different
formulations of the equations of motion used in the study were compared; (c) the
sensitivities obtained in this study were compared with the results obtained from a
third party code, namely FATODE; (d) real finite differences were used to approxi-
mate whole sensitivities and individual derivatives (It was observed that this method
can be a very inaccurate or even completely useless strategy); (e) complex finite
differences were used to approximate whole sensitivities and individual derivative
(The approach is considerably more accurate than the previous one. The practical
difficulty to apply complex finite differences is that not all codes can be changed
easily to accommodate complex arithmetic).

A numerical experiment was conducted on a five-bar mechanism with two degrees
of freedom. The following approaches were used on this case study: (a) direct differ-
entiation; (b) adjoint sensitivity; (c) adjoint sensitivity with FATODE; (d) numerical
sensitivity with real perturbations; (e) numerical sensitivity with complex perturba-
tions. All the approaches, except the numerical sensitivities with real perturbations,
offer similar results which suggests that the schemes proposed are correct. These
sensitivities were next used to perform an optimization and all methods performed
similarly. It was noticed that approximate derivatives can be used to calculate the
gradient and the optimization would converge at a lower pace. Another important
remark was that the tolerances in the solution of the forward dynamics are very
important in order to obtain stable solutions for the tangent linear models and adjoint
ordinary differential equations; both of them strongly depend on this solution.

Acknowledgments This work was supported in part by award NSF CMMI-1130667 and by the
Computational Science Laboratory at Virginia Tech.
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Appendix: Nomenclature and Differentiation Rules

• (· · · )0: means evaluation at the initial time (· · · ) (t0).
• (· · · )F : means evaluation at the final time (· · · ) (tF ).
• q ∈ Rn : vector of coordinates of the system.
• ρ ∈ Rp: vector of parameters.
• δ (): means variation.

• ()q = ∂ ()

∂q
; ()ρ = ∂ ()

∂ρ

• (̇) = d ()

dt
; (̈) = d2 ()

dt2 ()t = ∂ ()

∂t• M (q,ρ) ∈ Rn×n : generalized mass matrix of the system.
• Q (t, q, q̇,ρ) ∈ Rn : vector of generalized forces of the system.
• � (t, q,ρ) ∈ Rm : vector of constraints that relate the dependent coordinates.

• Ax =
[

∂A
∂x1

. . .
∂A
∂xi

. . .
∂A
∂xs

⎧
∈ Rq×r×s . Third order tensor of derivatives of

matrix A ∈ Rq×r w.r.t. vector x ∈ Rs .

• AT
x =

[
∂AT

∂x1
. . .

∂AT

∂xi
. . .

∂AT

∂xs

⎧
∈ Rr×q×s .

• Axb = Ax ⊗ b =
[

∂A
∂x1

b . . .
∂A
∂xi

b . . .
∂A
∂xs

b
⎧

∈ Rq×s , where b ∈ Rr is a

vector.

• AxB = Ax ⊗ B =
[

∂A
∂x1

B . . .
∂A
∂xi

B . . .
∂A
∂xs

B
⎧

∈ Rq×t×s , where B ∈ Rr×t is

a matrix.

• CAxB = C ⊗ AxB =
[

C
∂A
∂x1

B . . . C
∂A
∂xi

B . . . C
∂A
∂xs

B
⎧

∈ Rr×t×s , where

C ∈ Rr×q is a matrix.

References

1. Ascher UM, Petzold LR (1998) Computer methods for ordinary differential equations and
differential-algebraic equations. Soc Ind Appl Math

2. Brenan KE, Campbell SL, Petzold LR (1989) Numerical solution of initial-value problems
in differential-algebraic equations. North-Holland, New York

3. Bottasso CL, Dopico D, Trainelli L (2008) On the optimal scaling of index three daes in
multibody dynamics. Multibody Sys Dyn 19(1–2):3–20 cited By (since 1996) 7

4. Bauchau OA, Epple A, Bottasso CL (2009) Scaling of constraints and augmented Lagrangian
formulations in multibody dynamics simulations. J Comput Nonlinear Dyn 4, 021007. doi:10.
1115/1.3079826

5. Bayo E, García de Jalon J, Serna MA (1988) A modified lagrangian formulation for the
dynamic analysis of constrained mechanical systems. Comput Methods Appl Mech Eng
71(2):183–195

6. Bestle D, Seybold J (1992) Sensitivity analysis of constrained multibody systems. Arch Appl
Mech 62:181–190

http://dx.doi.org/10.1115/1.3079826
http://dx.doi.org/10.1115/1.3079826


32 D. Dopico et al.

7. Cuadrado J, Cardenal J, Morer P, Bayo E (2000) Intelligent simulation of multibody dynam-
ics: space-state and descriptor methods in sequential and parallel computing environments.
Multibody Sys Dyn 4(1):55–73

8. Cuadrado J, Gutierrez R, Naya MA, Morer P (2001) A comparison in terms of accuracy and
efficiency between a mbs dynamic formulation with stress analysis and a non-linear fea code.
Int J Numer Methods Eng 51(9):1033–1052

9. Ding Jie-Yu, Pan Zhen-Kuan, Chen Li-Qun (2007) Second order adjoint sensitivity analysis of
multibody systems described by differential-algebraic equations. Multibody Sys Dyn 18:599–
617

10. Dopico D, Zhu Y, Sandu A, Sandu C (2014) Direct and adjoint sensitivity analysis of ODE
multibody formulations. J Comput Nonlinear Dyn. doi:10.1115/1.4026492

11. Eich-Soellner E, Führer C (1998) Numerical Methods in Multibody Dynamics. B.G.Teubner,
Stuttgart

12. Garcia de Jalon J, Bayo E (1994) Kinematic and dynamic simulation of multibody systems:
the real-time challenge. Springer, New York

13. Haug EJ, Arora JS (1979) Applied optimal design: mechanical and structura systems. Wiley,
New York

14. Haug E (1987) Design sensitivity analysis of dynamic systems. Number 27 in NATO ASI
series. Series F, computer and systems sciences. In: Computer aided optimal design: structural
and mechanical systems, Springer, Berlin

15. Haug EJ (1989) Computer aided kinematics and dynamics of mechanical systems: basic
methods. Allyn and Bacon. Prentice Hall College Div, Boston

16. Hairer E, Lubich C, Wanner G (2006) Geometric numerical integration. Structure-preserving
algorithms for ordinary differential equations, vol 31, 2nd edn. Springer, Berlin (Springer
Series in Computational Mathematics)

17. Pagalday JM, Avello A (1997) Optimization of multibody dynamics using object oriented
programming and a mixed numerical-symbolic penalty formulation. Mech Mach Theory
32(2):161–174

18. Pagalday JM (1994) Optimizacion del comportamiento dinamico de mecanismos. PhD thesis,
Escuela Superior de Ingenieros Industriales de S. Sebastian

19. Petzold L, Lötstedt P (1986) Numerical solution of nonlinear differential equations with
algebraic constraints ii: practical implications. SIAM J Sci Stat Comput 7(3):720–733

20. Sonneville Valentin, Brüls Olivier (2014) Sensitivity analysis for multibody systems formu-
lated on a lie group. Multibody Sys Dyn 31(1):47–67

21. Schaffer A (2005) Stability of the adjoint differential-algebraic equation of the index-3 multi-
body system equation of motion. SIAM J Sci Comput 26(4):1432–1448

22. Schaffer A (2006) Stabilized index-1 differential-algebraic formulations for sensitivity analy-
sis of multi-body dynamics. Proc Inst Mech Eng Part K J Multibody Dyn 220(3):141–156

23. Zhang H, Sandu A (2012) Fatode: a library for forward, adjoint, and tangent linear integration
of odes. http://people.cs.vt.edu/~asandu/Software/FATODE/index.html

http://dx.doi.org/10.1115/1.4026492
http://people.cs.vt.edu/~asandu/Software/FATODE/index.html


Chapter 2
A Lagrangian–Lagrangian Framework
for the Simulation of Rigid and Deformable
Bodies in Fluid

Arman Pazouki, Radu Serban and Dan Negrut

Abstract We present a Lagrangian–Lagrangian approach for the simulation of fully
resolved Fluid Solid/Structure Interaction (FSI) problems. In the proposed approach,
the method of Smoothed Particle Hydrodynamics (SPH) is used to simulate the fluid
dynamics in a Lagrangian framework. The solid phase is a general multibody dynam-
ics system composed of a collection of interacting rigid and deformable objects.
While the motion of arbitrarily shaped rigid objects is approached in a classical
3D rigid body dynamics framework, the Absolute Nodal Coordinate Formulation
(ANCF) is used to model the deformable components, thus enabling the investiga-
tion of compliant elements that experience large deformations with entangling and
self-contact. The dynamics of the two phases, fluid and solid, are coupled with the
help of Lagrangian markers, referred to as Boundary Condition Enforcing (BCE)
markers which are used to impose no-slip and impenetrability conditions. Such BCE
markers are associated both with the solid suspended particles and with any confin-
ing boundary walls and are distributed in a narrow layer on and below the surface of
solid objects. The ensuing fluid–solid interaction forces are mapped into generalized
forces on the rigid and flexible bodies and subsequently used to update the dynamics
of the solid objects according to rigid body motion or ANCF method. The robust-
ness and performance of the simulation algorithm is demonstrated through several
numerical simulation studies.
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2.1 Introduction

Engineers commonly rely on prototypes and physical testing when performing design
and analysis tasks. Unfortunately, such work can be expensive and time consuming.
Because computational hardware continues to advance in terms of both process-
ing speed and memory size, a trend is growing in which computer simulation is
used to augment and, in some cases, replace large amounts of experimental work.
With increasing computational power, engineers are able to perform faster, larger,
and more accurate simulations. Computer simulation has several advantages over
physical experiments. Through simulation, engineers may study a range of para-
meter values that would prove too costly or too dangerous to study experimentally.
Moreover, computer simulation can produce representative data that experimental
measurements could never achieve. Experimental insights are limited by the posi-
tion, fidelity, and number of sensors, whereas a simulation inherently tracks the state
of every component of the system. For example, simulation can generate, in a non-
intrusive fashion, the set of forces acting between all the individual bodies in a flow
of suspension.

Current simulation capabilities are sometimes inadequate to capture phenomena
of interest. This problem is especially evident when simulating the dynamics of
Fluid–Solid Interaction (FSI) systems, which may contain tens of thousands of rigid
and deformable bodies that interact directly or through the fluid media. The ability
to solve such large problems will require significant improvements in terms of both
algorithms and implementation.

To alleviate computational limitations, numerical simulation approaches devised
for the general category of FSI problems usually suppress some physics depending on
the specific application. For instance, several approaches have been proposed to study
characteristics of the flow of particle suspension. These include Eulerian–Eulerian
(EE) approaches, where the solid phase is considered as a continuum [14, 16, 46];
Lagrangian particle tracking, also known as Lagrangian Numerical Simulation (LNS)
approaches, which either consider a one-way coupling of fluid and solid phase, or
else introduce a collective momentum exchange term to the fluid equation [2, 30];
Eulerian–Lagrangian (EL) approaches, where the Lagrangian solid phase moves
with/within the Eulerian grid used for fluid simulation [17, 21, 25]; and Lagrangian–
Lagrangian (LL) approaches, where both phases are modeled within a Lagrangian
framework [36, 38, 39]. As in EE methodologies, LNS approaches rely on empirical
forms of hydrodynamic fluid–solid forces, determined mostly for dilute conditions
where the particle-particle interaction is neglected.

Similar approaches are also applied to the fluid-structure interaction. In this docu-
ment, the focus is primarily on the LL approaches, particularly those geared towards
large deformation favored by the multibody dynamics community (some studies on
problems involving small structural deformation using a Lagrangian representation
of fluid flow are provided in [1, 4, 28]).

The body of work on FSI problems using Lagrangian fluid representation and
large structural deformation is very limited. Schörgenhumer et al. [42] presented
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a co-simulation approach for the FSI problems. In their approach, they used a
heuristic force field for the coupling of the fluid and flexible objects, modeled via
Smoothed Particle Hydrodynamics (SPH) and Absolute Nodal Coordinate formula-
tion (ANCF), respectively. The suggested force field, which involves some heuristic
parameters to enforce the fluid–solid coupling, cannot approximate the FSI inter-
action at a resolution finer than that of the fluid discretization. In this sense, it is
equivalent to all other approaches proposed for the implementation of wall boundary
condition with the caveats that: (1) the procedure of finding the minimum distance
between fluid markers and solid surfaces can be prohibitively tedious, particularly
for complex shapes; and (2) the wrong choice of heuristic parameters at a certain flow
condition can result in either an inexact coupling or a stiff force model which can
lead to numerical instability. Additionally, little, if any, is said about the performance
of the co-simulation approach. Similarly, Hu et al. [22] approached the FSI problem
using SPH and ANCF; however, they implemented the method of moving boundary
to couple the fluid dynamics to solid objects.

This contribution is a further development to FSI simulation approaches presented
in [22, 38, 39, 42] and also includes a moving boundary approach for two-way
fluid–solid coupling implemented through the use of so-called Boundary Condition
Enforcing (BCE) markers. Neither Schörgenhumer et al. [42] nor Hu et al. [22]
addressed the solid–solid interaction required for many-body FSI problems. In the
present work, support for many-body FSI problems, such as those encountered in
suspension and polymer flow, is provided by incorporating a lubrication force model.
In addition, we have continued our previous validation efforts by benchmarking
the dynamics of flexible bodies against that of rigid objects, a study which links
the validation of flexible bodies to that of rigid bodies presented in [39]. Finally,
we provide a high performance implementation that leverages parallel computing
on Graphical Processing Unit (GPU) cards. A complete scaling and time analysis
performed herein demonstrate a typical ten-fold speedup compared to the results
provided in [22] for problems of comparable size.

The remainder of this document is organized as follows. The various algorithmic
components of the proposed simulation framework are discussed in Sect. 2.2, with
details on their high performance computing implementation provided in Sect. 2.3.
We provide simulation results in Sect. 2.4, including validation and parametric stud-
ies, and conclude with some final remarks in Sect. 2.5.

2.2 Simulation Methodology

The simulation framework developed herein relies on: (i) SPH for the simulation of
fluid flow, (ii) Newton–Euler 3D rigid body equations of motion, and (iii) ANCF to
capture the dynamics of deformable objects. The remainder of this section describes
in more details each of these algorithmic components, including a discussion on the
formulation adopted for fluid–solid interaction through BCE markers in Sect. 2.2.4
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and the methodology used for short range solid–solid interaction through a lubrication
force model in Sect. 2.2.5.

2.2.1 The Smoothed Particle Hydrodynamics Method

SPH Liu and Liu [29], Monaghan [31, 34] is a Lagrangian method that probes
the fluid domain at a set of moving markers. Each marker has an associated kernel
function W (r, h) defined over a support domain S(h), where r is the distance from the
SPH marker and h is a characteristic length that defines the kernel smoothness. The
kernel function should converge to the Dirac delta function as the size of the support
domain tends to zero: lim

h∈0
W (r, h) = δ(r), be symmetric: W (r, h) = W (−r, h),

and normal:
∫

S W (r, h)dV = 1, where dV denote the differential volume. Based
on the aforementioned properties, an SPH spatial discretization results in a second
order numerical method. Kernel functions must satisfy additional properties [29];
most importantly, they should be positive and monotonically decreasing functions
of r. In addition, for computational efficiency, it is advantageous to only consider
kernel functions with compact support. A typical kernel function, used throughout
this work, is the standard cubic spline kernel, defined as:

W (q, h) = 1

4πh3 ×

⎧⎪⎨
⎪⎩

(2 − q)3 − 4(1 − q)3, 0 ∗ q < 1

(2 − q)3, 1 ∗ q < 2,

0, q ⇒ 2

(2.1)

where q = |r| /h. In general, the radius of the support domain, κh (see Fig. 2.1),
is proportional to the characteristic length h, with κ = 2 for the kernel function of
Eq. (2.1).

With ρ and μ denoting the fluid density and viscosity, v and p the flow velocity
and pressure, and m the mass associated with an SPH marker, the continuity equation

dρ

dt
= −ρ≡·v, (2.2)

and the momentum equation

dv
dt

= − 1

ρ
≡ p + μ

ρ
≡2v + f, (2.3)

are discretized within the SPH framework as [35]:

dρa

dt
= ρa

∑
b

mb

ρb
(va − vb) ·≡a Wab, (2.4)



2 A Lagrangian–Lagrangian Framework for the Simulation 37

Fig. 2.1 Illustration of the
kernel, W , and support
domain, S. SPH markers
are shown as black dots. For
2D problems the support
domain is a circle, while for
3D problems it is a sphere

and

dva

dt
= −

∑
b

mb

((
pa

ρa
2 + pb

ρb
2

)
≡a Wab + Πab

)
+ fa . (2.5)

In Eq. (2.5), indices a and b denote the SPH markers, as shown in Fig. 2.1, and

Πab = − (μa + μb)rab·≡a Wab

ρ̄2
ab(r

2
ab + εh̄2

ab)
vab (2.6)

imposes the viscous force based on the discretization of the ≡2 operator, where ε

is a regularization coefficient. Here ≡a indicates the gradient with respect to ra , i.e.
∂/∂ra . Quantities with an over-bar are the average of the corresponding quantities for
markers a and b. Summations in the above equations are over all markers within the
support domain of marker a. We have evaluated several definitions for the viscosity,
as well as different discretizations of ≡2 [34, 35] in conjunction with simulation
of transient Poiseuille flow and concluded that Πab of Eq. (2.6) leads to the most
accurate results for the widest range of Reynolds numbers. It is also worth noting
that Eq. (2.6) makes use of the physical fluid viscosity, unlike the use of tuning
parameters in artificial viscosity formulations [34].

The pressure p is evaluated using an equation of state [34]:

p = c2
s ρ0

γ

{(
ρ

ρ0

)γ

− 1

}
, (2.7)

where ρ0 is the fluid reference density, γ is a parameter controlling the stiffness
of the pressure-density relationship, and cs is the speed of sound. In the weakly
compressible SPH method, cs is adjusted based on the maximum speed of the flow,
Vmax, to keep the flow compressibility below any arbitrary value. We chose γ = 7
and cs = 10 · Vmax, which allows 1 % flow compressibility [34]. The fluid flow
Eqs. (2.4) and (2.5) are solved in conjunction with the kinematic equation

dra

dt
= va (2.8)
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to update the positions of all SPH markers.
Compared to Eq. (2.4), which evaluates the time derivative of the density, the

original SPH summation formula calculates the density according to

ρa =
∑

b

mbWab. (2.9)

Equation (2.4) was preferred to Eq. (2.9) since it produced a smooth density field
and worked well for markers close to the boundaries, namely free surfaces, solid
interfaces, and wall boundaries. However, Eq. (2.4) does not guarantee consistency
between density at a marker and the associated mass and volume [6, 33, 35]. On
the other hand, using Eq. (2.9) has problems of its own, in particular large varia-
tions in the density field, especially close to the boundary. One of the approaches
suggested to resolve this issue is to combine the two methods in a so-called “den-
sity re-initialization technique” [9] in which Eq. (2.4) is enforced at each time step
while Eq. (2.9) is used to correct any mass-density inconsistencies every n time
steps. The results reported herein were obtained with n = 10. The Moving Least
Squares method or a normalized version of Eq. (2.9) are alternative solutions to the
aforementioned issues [9, 11].

Finally, to prevent extensive overlap of marker support domains and enhance
incompressibility of the flow, we employ the extended SPH approach (XSPH) as
described in [32]. The XSPH correction takes into account the velocity of neighboring
markers through a mean velocity evaluated within the support of a nominal marker
a as

∇va⊗ = va + Ψva, (2.10)

where

Ψva = ζ
∑

b

mb

ρ̄ab
(vb − va)Wab (2.11)

and 0 ∗ ζ ∗ 1 adjusts the contribution of velocities of neighboring markers. All
simulations presented in this work were obtained with ζ = 0.5. The modified velocity
calculated from Eq. (2.10) replaces the original velocity in the density and position
update equations, but not in the momentum equation [9].

2.2.2 Rigid Body Dynamics

The dynamics of rigid bodies is fully characterized by the Newton–Euler equations
of motion (EOM), see for instance [18]. For each body i = 1, 2, . . . , nb present in
the system, we have:
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dVi

dt
= Fi

Mi
, (2.12)

dXi

dt
= Vi , (2.13)

dω→
i

dt
= J→

i
−1

⎡
T→

i − ω̃→
i J

→
iω

→
i

⎣
, (2.14)

dqi

dt
= 1

2
GT

i ω→
i , (2.15)

and

qT
i qi − 1 = 0, (2.16)

where Fi and T→
i represent the external forces and torques acting on body i , including

fluid–solid interaction forces obtained as described in Sect. 2.2.4. The quantities
Xi ∈ R

3 and qi ∈ R
4 denote the position vector and rotation quaternion, while Vi ,

ω→
i ∈ R

3 represent the linear and angular body velocities. The mass and moment of
inertia are denoted by Mi and J→

i , respectively. Quantities with a prime symbol are

represented in the rigid body local reference frame. Given a = [
ax , ay, az

⎜T ∈ R
3

and q = [
qx , qy, qz, qw

⎜T ∈ R
4, the auxiliary matrices ã and G are defined as:

ã =
⎤
⎦ 0 −az ay

az 0 −ax

−ay ax 0

⎟
 and G =

⎤
⎦−qy qx qw −qz

−qz −qw qx qy

−qw qz −qy qx

⎟
 . (2.17)

2.2.3 Flexible Body Dynamics

For the simulation of flexible solid bodies suspended in the fluid, we adopt the
ANCF formulation [44] which allows for large deformations and large rigid body
rotations. While extension to other elastic elements is straightforward, in the cur-
rent Chrono::Fluid implementation we only support gradient deficient ANCF beam
elements which are used to model slender flexible bodies composed of ne adjacent
ANCF beam elements. In this approach, we model the flexible bodies using a number
nn = ne + 1 of equally-spaced node beam elements, each represented by 6 coordi-
nates, e j = [rT

j , rT
j,x ]T , j = 0, 1, . . . , ne, representing the three components of the

global position vector of the node and the three components of the position vector
gradient. This is therefore equivalent to a model using ne ANCF beam elements
with 6 × nn continuity constraints, but is more efficient in that it uses a minimal set
of coordinates. We note that formulations using gradient deficient ANCF beam ele-
ments display no shear locking problems [15, 43, 45] and, due to the reduced number
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of nodal coordinates, are more efficient than fully parameterized ANCF elements.
However, gradient deficient ANCF beam elements cannot describe a rotation about
its axis and therefore cannot model torsional effects.

Consider first a single ANCF beam element of length �. The global position
vector of an arbitrary point on the beam centerline, specified through its element
spatial coordinate 0 ∗ x ∗ �, is then obtained as

r(x, e) = S(x)e, (2.18)

where e = [eT
l , eT

r ]T ∈ R
12 is the vector of element nodal coordinates. With I being

the 3×3 identity matrix, the 3×12 shape function matrix S = [S1I S2I S3I S4I]
is defined using the shape functions [44]

S1 = 1 − 3ξ2 + 2ξ3

S2 = �
(
ξ − 2ξ2 + ξ3

)
S3 = 3ξ2 − 2ξ3

S4 = �
(−ξ2 + ξ3

)
,

(2.19)

where ξ = x/� ∈ [0, 1].
The element EOM are then written as

Më + Qe = Qa, (2.20)

where Qe and Qa are the generalized element elastic and applied forces, respectively,
and M ∈ R

12×12 is the symmetric consistent element mass matrix defined as

M =
∫
�

ρs AST S dx . (2.21)

The generalized element elastic forces are obtained from the strain energy expres-
sion [44] as

Qe =
∫
�

E Aε11

(
∂ε11

∂e

)T

dx +
∫
�

E Iκ

(
∂κ

∂e

)T

dx, (2.22)

where ε11 = (
rT

x rx − 1
)
/2 is the axial strain and κ = √rx × rxx√/√rx√3 is the

magnitude of the curvature vector. The required derivatives of the position vector
r can be easily obtained from Eq. (2.18) in terms of the derivatives of the shape
functions as rx (x, e) = Sx (x)e and rxx (x, e) = Sxx (x)e.

External applied forces, in particular the forces due to the interaction with the
fluid (see Sect. 2.2.4), are included as concentrated forces at a BCE marker. The
corresponding generalized forces are obtained from the expression of the virtual
work as
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Qa = ST (xa)F, (2.23)

where F is the external point force and the shape function matrix is evaluated at the
projection onto the element’s centerline of the force application point. If considered,
the generalized gravitational force can be computed as

Qg =
∫
�

ρs AST g dx . (2.24)

In the above expressions, ρs represents the element mass density, A is the cross
section area, E is the modulus of elasticity, and I is the second moment of area.

The EOM for a slender flexible body composed of ne ANCF beam elements
are obtained by assembling the elemental EOMs of Eq. (2.20) and taking into
consideration that adjacent beam elements share 6 nodal coordinates. Let ê =
[eT

0 , eT
1 , . . . eT

ne
]T be the set of independent nodal coordinates; then the nodal coor-

dinates for the j th element can be written using the mapping

[
el

er

⎛
j
= B j ê, with B j =

[
0 0 . . . I3 0 . . . 0
0 0 . . . 0 I3 . . . 0

⎛
(2.25)

and the assembled EOMs are obtained, from the principle of virtual work, as follows.
Denoting by M j be the element mass matrix of Eq. (2.21) for the j th ANCF beam
element, it can be written in block form as

M j =
[

M j,ll M j,lr

M j,rl M j,rr

⎛
, (2.26)

where M j,lr = MT
j,rl and all sub-blocks have dimension 6×6. Here, l denotes the left

end of the beam element, i.e., the node characterized by the nodal coordinates e j−1,
while r corresponds to the node with coordinates e j . With a similar decomposition
of a generalized element force into

Q j =
[

Q j,l

Q j,r

⎛
(2.27)

we obtain

M̂¨̂e = Q̂a − Q̂e (2.28)
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where

M̂ =

⎤
⎝⎝⎝⎝⎝⎦

M1,ll M1,lr

M1,rl M1,rr + M2,ll M2,lr

M2,rl M2,rr + M3,ll
. . .

Mne,rr

⎟
⎞⎞⎞⎞⎞

(2.29)

Q̂a − Q̂e =

⎤
⎝⎝⎝⎝⎝⎦

⎠
Qa

1,l⎠
Qa

1,r + ⎠
Qa

2,l⎠
Qa

2,r + ⎠
Qa

3,l
...⎠

Qa
ne,r

⎟
⎞⎞⎞⎞⎞

−

⎤
⎝⎝⎝⎝⎝⎦

Qe
1,l

Qe
1,r + Qe

2,l
Qe

2,r + Qe
3,l

...

Qe
ne,r

⎟
⎞⎞⎞⎞⎞

. (2.30)

Finally, we note that inclusion of additional constraints (e.g., anchoring the beam
at one end to obtain a flexible cantilever or fixing its position only to obtain a flexible
pendulum) can be done either by formulating the EOM as differential-algebraic equa-
tions or by deriving an underlying ODE after explicitly eliminating the correspond-
ing constrained nodal coordinates. The latter approach was used in all simulations
involving flexible cantilevers that are discussed in Sect. 2.4.

2.2.4 Fluid–Solid Interaction

The two-way fluid–solid coupling was implemented based on a methodology
described in [38]. The state update of any SPH marker relies on the properties of
its neighbors and resolves shear as well as normal inter-marker forces. For the SPH
markers close to solid surfaces, the SPH summations presented in Eqs. (2.4), (2.5),
(2.9), and (2.11) capture the contribution of fluid markers. The contribution of solid
objects is calculated using BCE markers placed on and close to the solid surface as
shown in Fig. 2.2. In the case of flexible beams, the BCE markers are placed on “rigid
disks” that are uniformly-spaced along the beam’s axis and whose normals always
coincide with the local tangent to the beam’s axis. In all cases, the BCE marker loca-
tions are initialized so that the distance between two neighboring BCE markers is
approximately equal to the initial distance between two SPH markers; in particular,
this is also the distance between two adjacent disks of BCE markers in Fig. 2.2b.

The velocity of a BCE marker is obtained from the rigid/deformable body motion
of the solid and as such ensures the no-slip condition on the solid surface. Including
the BCE markers in the SPH summation Eqs. (2.4) and (2.5) thus enforces the solid-
to-fluid coupling. On the other hand, fluid-to-solid coupling is realized by applying
the quantity in the right-hand side of Eq. (2.5), evaluated at each BCE marker, as an
external force on the corresponding rigid or deformable solid body using Eqs. (2.12)
and (2.23), respectively.
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Fig. 2.2 Fluid–solid interaction using BCE markers attached to a body: (a) rigid body; (b) flexible
beam. BCE and fluid markers are represented by black and white circles, respectively. The BCE
markers positioned in the interior of the body should be placed to a depth no larger than the size of
the compact support S of the kernel W

2.2.5 Short Range Interaction

Dry friction models typically used to characterize the dynamics of granular materials
[3, 23, 24] do not resolve the impact of solid surfaces in hydrodynamics media. In
practice, it is unfeasible to resolve the short-range, high-intensity impact forces in
wet media due to the computational limits on space and time resolution. In real-
ity, particle boundaries are not smooth and physical contact can happen [20]. By
assuming smooth surfaces, Davis et al. followed the Hertz contact theory of linear
elasticity to calculate the pressure at the interface of two approaching elastic spheres
in close proximity [10]. Their calculation showed that particles do not rebound at
small Stokes number, St = (2/9)(ρs/ρ)Rep , where ρs and Rep are the solid particle
density and particle Reynolds number, respectively. The minimum St for a rebound
after the hydroelastic impact depends on the spheres’ rigidity. For rigid spheres,
rebound happens at St > 10. An alternative approach to calculate the singular forces
at contact relies on lubrication theory [13]. Ladd [26] proposed a normal lubrication
force between two spheres that increases rapidly as the distance between particles
approaches zero and therefore prevents the actual touching of the spheres:

Flub
i j = min

{
−6πμa2

i j

(
1

s
− 1

Ψc

)
, 0

}
· vni j , where

1

ai j
= 1

ai
+ 1

a j
. (2.31)

Here, ai and a j are the sphere radii, vni j is the normal component of the relative
velocity, and s is the distance between surfaces. For s > Ψc, Flub

i j = 0 and the spheres
are subject only to hydrodynamic forces. Ladd and Verberg [27] demonstrated good
agreement of the proposed lubrication force with Brenner’s exact solution [7].

Equation (2.31) provides a simplistic model for the estimation of the lubri-
cation force in normal direction. Generalization of this model to non-spherical
objects requires the calculation of the minimum distance and curvature of the
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contact surfaces. By adopting the approach proposed in [12] for lubrication force
in lattice Boltzmann method, we calculate the partial lubrication force by modifying
Eq. (2.31) as

Flub
i j =

∑
k

fk
i j , with fk

i j = min

{
−3

2
πμh2

(
1

s≺ − 1

Ψc

)
, 0

}
· v≺

ni j
, (2.32)

where s≺ and v≺
ni j

denote the markers relative distance and velocity, respectively, and
the summation is over all interacting markers of two solid objects.

2.3 GPU-Based Implementation

Chrono::Fluid [8], an open-source simulation framework for fluid–solid interaction,
relies on a second order explicit Runge-Kutta method [5] for time integration of fluid,
rigid, and flexible bodies, and a parallel implementation of the spatial subdivision
method on the GPU for construction of the markers neighbor lists. In what follows,
the computation kernels and their implementations are described with more details.

At the beginning of each time step, a neighbor list is assembled to indicate the set
of markers that fall within the kernel support of each marker; if N markers are used
in the simulation, N lists are generated. The force components appearing on the right
hand side of Eqs. (2.4), (2.5), and (2.31) are subsequently computed based on these
neighbor lists. Two different functions are called to capture the interaction between
markers according to their types; i.e., fluid or solid, via SPH or the short range
interaction model described in Sect. 2.2.5. In the second stage, the state of the fluid
markers, including position, velocity, and density, is updated based on Eqs. (2.4),
(2.5), and (2.8). The state of each rigid body is updated according to Eqs. (2.12)
through (2.15). This is followed by time integration of deformable body motion
according to Eq. (2.28). Since a rigid wall boundary is a particular instance of a rigid
body (with zero or other predefined velocity), it requires no special treatment.

Stable integration of the SPH fluid equations requires step-sizes which are also
appropriate for propagating the dynamics of any rigid solids in the FSI system. How-
ever, integration of the dynamics of deformable bodies, especially as their stiffness
increases, may require smaller time steps. To accommodate this requirement, while
minimizing any adverse effects on the overall simulation efficiency, we have imple-
mented a simple dual-rate integration scheme using intermediate steps for the inte-
gration of the flexible dynamics EOMs (typically ΨtS P H /ΨtANC F = 10, although
stiffer problems may require ratios of up to 50). We note that typical FSI simulation
models involve a number of SPH markers many orders of magnitude larger than that
of ANCF nodal coordinates required for the flexible bodies. As such, the execution
time required for integration of the flexible body dynamics is a negligible fraction of
the computation time for propagating the SPH equations and therefore the dual-rate
integration scheme has no effect on the net overall simulation efficiency.
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The above algorithm was implemented to execute in parallel on GPU cards using
CUDA [37]. The hardware used to run the simulations that produced the results
reported in this contribution, NVIDIA Kepler K20X, has 2688 parallel scalar proces-
sors. At each time step, five different tasks are executed on the GPU to (1) calculate the
inter-marker forces, (2) carry out fluid time integration, (3) carry out rigid body time
integration, (4) carry out deformable body time integration, and (5) enforce bound-
ary conditions. The lists of neighbors needed to evaluate the inter-marker forces are
generated via a proximity computation algorithm based on a decomposition of the
computation domain into cubic bins. The side length of each bin is roughly equal to
the size of the support domain of an SPH marker. A hash table is used to sort the
markers according to their location in the domain. Based on the sorted hash table,
each marker accesses the list of markers intersecting its own and neighboring bins to
calculate the forcing terms. The proximity computation algorithm uses the parallel
sorting and scan algorithms provided by the Thrust library [19].

To improve the code vectorization through coalesced memory access and use
of fast memory (L1/L2 cache, shared memory, and registers), each computation
task was implemented as a sequence of light-weight GPU kernels. For instance,
different computation kernels are implemented to update the attributes of the solid
bodies, including force, moment, rotation, translation, linear and angular velocity,
and location of the BCE markers. A similar coding style was maintained for the
density re-initialization, boundary condition implementation, and mapping of the
markers’ data on an Eulerian grid for post processing.

2.4 Results and Discussion

The robustness and accuracy of the fluid flow and coupled fluid-rigid body simulation
was demonstrated in previous work. See [39] for a comprehensive set of validation
studies of rigid particle migration and suspension distribution in pipe flow. Herein,
we focus on recent extensions to Chrono::Fluid to support fluid-deformable body
interaction and present additional numerical experiments to validate the flexible
body simulation algorithm , as well as several simulation-based studies involving
coupling of fluid flow and deformable bodies.

The simulations presented in this section involve relatively soft beams (with a
modulus of elasticity E ∗ 20 MPa) that are either unconstrained or else anchored
at one end. Since computational efficiency of the FSI code is directly related to the
number of nodal coordinates used to model the flexible beams, we first conducted a
parametric study to identify the minimum number of ANCF beam elements required
to accurately capture the dynamics of interest in the subsequent experiments. In this
set of experiments, we considered a cantilever of length L = 1 m and diameter d =
0.04 m with density ρs = 7,200 kg/m3 and modulus of elasticity E = 20 Mpa under
gravity (g = −9.81 m/s2) in vacuum or immersed in fluid of various viscosities.
Simulation results using different number of ANCF beam elements (ne = 2, 3, 4, 5)
showed acceptable convergence at all discretizations and virtually identical results
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Fig. 2.3 Time snapshots of
a flexible cantilever moving
under the action of gravity (in
vacuum). The darker colors
denote earlier stages of the
motion

for ne ⇒ 4. Figure 2.3 shows a few time snapshots from a dynamic simulation of a
cantilever modeled with ne = 4 ANCF beam elements, the value which was selected
for all subsequent simulations.

2.4.1 Floating Beam in Poiseuille Flow

Ongoing work is aimed at validating the fluid-deformable solid interaction code
against experimental and analytical results [40]. Here we present a comparison
against the already validated fluid-rigid solid simulation code. For this purpose we
conducted a series of numerical experiments involving short stiff deformable beams
and equivalent rigid cylinders free floating in channel Poiseuille flow.

The validation test was performed using a straight beam with L = 0.2 m,
ρs = 7,200 kg/m3, E = 20 MPa, d = 0.04 m and a rigid cylinder with the same
density and geometry. The beam and rigid cylinder were subjected to an accelerating
channel flow aligned with the global x axis with final steady state Reynolds number
Rec = ρVavew/μ = 100, where ρ = 1,000 kg/m3, μ = 1 N s/m2, average velocity
Vave = 0.2 m/s, and channel width w = 1 m. The beam and cylinder were initially
perpendicular to the flow and rotated in the yz plane. Comparisons of the resulting
beam orientation angles, relative to the global x , y, and z axes, and of the time evo-
lution of the velocity in the x direction of the beam center velocity are presented
in Fig. 2.4. The results show good agreement with differences due to the inability
of the gradient deficient ANCF beam element model to capture rotation about the
beam’s axis.
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Fig. 2.4 Comparison of the dynamics of a rigid cylinder and of a corresponding stiff deformable
beam under accelerating channel flow: (a) beam orientation; (b) center velocity

Fig. 2.5 Motion of a cantilever beam in fluid of different viscosities: (a) tip displacement in x
direction; (b) tip displacement in z direction

2.4.2 Flexible Cantilever Immersed in Fluid: Effect of Viscosity

Through a parametric study of the motion of a cantilever moving under the action
of gravity in viscous fluid, we investigated the effect of viscosity on the motion of
the beam’s tip. As shown in Fig. 2.5, the beam motion switches from oscillatory to
critically damped motion as the viscosity increases. For the beam parameters used
in this study, namely L = 1 m, d = 0.04 m, ρs = 7,200 kg/m3, and E = 20 MPa,
the switch between the two behaviors is observed to occur around μ ∀ 10 N s/m2.
It was also noticed that viscosity has little effect on the trajectory of the beam tip
(plots are not provided). Nevertheless, compared to the case of a cantilever moving
in vacuum, when immersed in fluid, the tip moves on a much shorter path. This
deviation, i.e. having the same trajectory regardless of the fluid viscosity, which is
different from that of a cantilever in vacuum, is most probably due to the pressure
drag which is added to the viscous drag considered herein.
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Fig. 2.6 Arrays of flexible cantilever beams in laminar channel flow. The beams, laid out in an
uniform grid, are anchored at an angle of 30◦ in the direction of the flow

Fig. 2.7 Motion of a cantilever beam of different elasticity modulus in laminar channel flow: (a)
tip displacement in x direction; (b) tip displacement in z direction

2.4.3 Impulsively Started Motion of Cantilevers in Channel Flow:
Effect of Elasticity

Vibration behavior of flexible beams in viscous fluid was studied by considering an
array of cantilevers in channel flow. Unlike the test described in Sect. 2.4.2, here the
flexible cantilevers are initially at rest when they are hit by a laminar channel flow.
This model can be used to study the effect of horizontal waves on beams submerged
in a fluid.

The array of flexible cantilevers is laid out in the xy plane, with (Ψx,Ψy) =
(1.2, 0.4) m, as shown in Fig. 2.6, thus allowing interaction of the beams through
the flow. Each beam is anchored in the xz plane with an angle of 30◦ with respect to
the y axis. The fluid, with density ρ = 1,000 kg/m3 and viscosity μ = 1 N s/m2,
flows in the x direction between two planes spaced by H = 1 m vertically.

Figure 2.7 shows the tip deformation of one cantilever beam for different modulus
of elasticity in the range E ∈ (0.25, 20) MPa. All other beam parameters were kept
fixed at L = 0.7 m, d = 0.04 m, and ρs = 7,200 kg/m3.
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Fig. 2.8 FSI problems considered for scalability analysis: (a) flow of a dense suspension of rigid
particles through a step pipe; for clarity, the left half of the image shows the rigid particles only,
while the right half shows both rigid particles and SPH markers at the pipe mid-section; (b) channel
flow over an array of flexible cantilever beams; for visualization purposes only, marker sizes are
artificially changed

Fig. 2.9 Scaling analysis of Chrono::Fluid for fluid-rigid body interaction problems: (a) simulation
time versus number of rigid bodies for a total number of 3 × 106 markers; (b) simulation time as
a function of combined problem size

2.4.4 Scalability Analysis

Scalability of Chrono::Fluid was investigated through simulations of multi-
component problems including the flow of flexible and rigid objects in flow, samples
of which are provided in Fig. 2.8.

As shown in Fig. 2.9a, an increase in the number of rigid bodies present in the
system only marginally affects the total simulation time. This is due to the fact that the
number of BCE markers associated with solid bodies is only a very small fraction of
the number of SPH discretization markers, the latter dictating to a very large extent the
required computation time. We must however mention that, as the concentration of
solid objects increases, smaller time steps are required since the probability of short-
range, high-frequency interactions increases. The same conclusion can be reached
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Fig. 2.10 Scaling analysis
of Chrono::Fluid for fluid-
flexible body interaction
problems: simulation time
versus number of flexible
bodies for a total number of
1.5 × 106 markers

from the results presented in Fig. 2.9b which shows linear growth of the simulation
time with the size of the fluid-rigid body mixture problem (i.e., the combined number
of SPH markers and rigid bodies).

On the other hand, as seen in Fig. 2.10, we observe only linear scalability when
rigid bodies are replaced by flexible beams. This is only a consequence of the current
Chrono::Fluid implementation in which the dynamics update for flexible bodies is
carried out on the CPU, thus dominating the simulation time as the problem size
increases. We expect this will be rectified once this stage of the simulation is also
moved to the GPU.

2.5 Conclusions and Future Work

We describe a Lagrangian–Lagrangian approach for the direct numerical simulation
of two-way coupled fluid–solid interaction. Building up on previous work [39], the
simulation framework Chrono::Fluid was extended beyond fluid-rigid interaction
to include deformable solids. For simulations of solid bodies immersed in fluid,
the proposed method employs a lubrication force model for incorporating solid–
solid interaction and, in the case of deformable bodies, self-contact. We describe
simulation results for free-floating flexible beams in Poiseuille flow and channel
flow over a grid of flexible cantilevers, and provide parametric studies of the effect of
fluid viscosity and material elasticity. These results suggest that the adopted approach
has good predictive capabilities and is able to capture the dynamics of the systems
under consideration. Moreover, the Lagrangian–Lagrangian formulation is amenable
to efficient implementation on GPU cards as indicated by the scalability studies
presented herein.

Current effort is aimed at providing a GPU-only implementation, by also paral-
lelizing the flexible body dynamics calculations and updates, with ongoing work
focused on additional validation studies using both analytical and experimental
data. In addition, we plan on extending the formulation to support 2D and fully-
3D deformable solids modeled with ANCF.
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Finally, we note that additional examples of Chrono::Fluid simulations can be
found at [41]
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Chapter 3
Strategies for Adaptive Model Reduction
with DCA-Based Multibody Modeling
of Biopolymers

Jeremy J. Laflin, Kurt S. Anderson and Imad M. Khan

Abstract This contribution discusses the need for adaptive model reduction when
simulating biopolymeric systems and the issues surrounding the execution of these
model changes in a computationally efficient manner. These systems include nucleic
acids, proteins, and traditional polymers such as polyethylene. Two distinct general
strategies of reducing selected degrees-of-freedom from the model are presented
and the appropriateness of use is discussed. The strategies discussed herein are a
momentum based approach and a velocity based approach. The momentum-based
approach is derived from modeling discontinuous changes in model definition as
instantaneous application (or removal) of constraints. The velocity-based approach
is based on removing a degree-of-freedom when the associated generalized speed is
zero. A Numerical example is included that demonstrates that both methods similarly
characterize long-time conformational motion of a system.

3.1 Introduction

Numerical simulations of biopolymeric systems modeled using a fully atomistic
approach are limited by their inherent size and complexity. With many important bio-
logical processes being relatively slow-acting, taking place on O(10−3)− O(100) s
and a typical time integration step on the order of femtoseconds, a large amount of
computational resources are needed to simulate even simple systems. This coupled
with the size of biomolecular problems, where systems contain 103–107 or more
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atoms, makes fully atomistic simulations of complex systems impractical for scien-
tists without access to premier computing facilities. For these reasons, techniques
that facilitate molecular simulations of biopolymeric systems by improving the com-
putational efficiency are a necessity to simulate systems that are large enough to be
of interest for a sufficiently long time to gain insight into biological processes. Effi-
ciency increases can be realized in two ways: (i) increasing the integration time step,
and (ii) decreasing the amount of computational work done per time step. One method
to increase temporal integration time-step size is to ignore (effectively freeze) high
frequency intramolecular motions, since have been identified as not contributing sig-
nificantly to the system’s conformational motion. This technique can result in orders
of magnitude increases in the time integration step.

Ignoring this motion is accomplished by removing the degrees-of-freedom asso-
ciated with the intramolecular motion, provided their long-time relative average dis-
placement is nearly zero. This is the essence of model reduction (coarsening). There
are two main approaches to model coarsening: bead-based strategies and multibody-
based strategies. In bead-based strategies, intramolecular degrees-of-freedom are
effectively removed by replacing portions of the molecule with a spherical bead
that represents the most essential physical properties of the atoms it replaces. This
bead is then treated like a super-atom (particle) for the duration of the simulation.
Early examples of this technique are demonstrated by Toxvaerd [20] and Padilla and
Toxvaerd [15] and continued interest in coarse-grain molecular models is demon-
strated by Praprotnik [18], Tozzini [21], and Chakrabarty [4]. Alternatively, the same
degrees-of-freedom can be reduced using a multibody approach to model reduction
[3, 5, 8, 14, 16, 17]. The inertia properties of the molecule are computed using the
average atomic positions. The rotational equations of motion for the molecule are
now included, but the motions permitted by these bodies relative to their adjacent
neighbors is kinematically restricted by the nature of the bonds between them. Thus,
the subsystem geometry, inertia properties, and associated forcing terms may be
more accurately described by this articulated multibody model.

The motions associated with these articulated degrees-of-freedom are typically
not high frequency in nature and are less than those in a reduced bead model. If
these degrees-of-freedom are of a high frequency nature, this suggests that further
model reduction should be performed. Including these rotational degrees-of-freedom
has been shown to affect the translational acceleration of the associated regions and
therefore possibly its overall conformational motion [17].

Figure 3.1 illustrates the topological differences resulting from the two approaches
when creating a coarse-grained model of peptide kassinin. It is important to note that
for this particular example both of these systems have the same number of degrees-
of-freedom. However, for the bead-based coarsened model the rotational equations
of motion are unimportant due to the particle nature of each super-atom. Therefore,
the corresponding degrees-of-freedom are neglected.

A multibody coarse-graining strategy is easily implemented by fixing the average
bond-length of stiff bonds. It is also clear that this would be appropriate for interac-
tions where the bond strength is known to be large, such as carbon double-bonded
to oxygen. However, there may be cases where the degrees-of-freedom associated
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Fig. 3.1 Reduced model of kassinin. a Bead-based coarsening. b Multibody-based coarsening

Flexible Body

Aggregate

Rigid Bodies

Fig. 3.2 Further model reduction of kassinin

with medium strength bonds can be removed with no effect on the overall motion
of the system. Knowing when this is appropriate for low to medium strength bonds
is difficult to predict prior to the simulation without considerable prior knowledge
of the system’s behavior. These types of bonds may exist between rigid bodies and
removing the corresponding degrees-of-freedom could be used to further reduce the
number of degrees-of-freedom in a system. Additionally, these bonds may be present
between large numbers of atoms or small molecules where there is no clear rigid body.
In this case, a flexible body may be created by removing those degrees-of-freedom.
Figure 3.2 illustrates a further reduction in the number of degrees-of-freedom used
to model Kassinin resulting in only three bodies, one flexible and two rigid.

Accurately predicting the behavior of many (frequently large) molecular systems
does not require full atomistic resolution. This is because the overall conformational
motion is generally independent of the high frequency intramolecular motion. In
addition, as mentioned previously, it is not practical to perform an all atom simula-
tion for these large systems. However, to study certain physical behavior it may be
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desirable to maintain a high molecular, or even atomistic, resolution model in some
regions of the model.

Due to the nature of large scale molecular simulations, particles must be able
to be exchanged between the regions (computational domains) of different fidelity.
This can create significant difficulty when trying to simulate some coarse-grained
molecular systems. Praprotnik [18] demonstrates that this difficulty can be overcome
by defining a criteria that specifies the resolution of the model instead of attempting
to prescribe a particular resolution to various atoms or molecules. The simulation
then automatically adjusts the model resolution in the appropriate regions based on
this criteria. Poursina [17] demonstrates that reducing degrees-of-freedom in a static
manner prior to the simulation, even for those degrees-of-freedom that are unimpor-
tant in a short simulation, can be significant in longer simulations and therefore can
affect the overall conformational motion in a long-time simulation.

Adjusting the model resolution in various locations of the system as the simulation
proceeds is easily accomplished when using a recursive Divide-and-Conquer (DCA)
method to form and solve the equations of motion. The DCA was first applied to
articulated multibody systems by Featherstone [6, 7]. This technique has been mod-
ified and extended in a number of ways, and has also been applied to other analyses
associated with the design and simulation of multibody systems [1, 2, 10–12, 19].
A DCA-based method is well suited to accommodate adaptive changes in model
fidelity because it recursively assembles and disassembles the inertia properties and
resultant applied forcing terms of adjacent bodies connected by kinematic joints in
a hierarchical manner, see Fig. 3.3. This makes the inertia properties and resultant
forcing term parameterizations of any particular region or sub-domain of the problem
readily available.
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For multibody systems, changes in the number of degrees-of-freedom can be
treated as instantaneous changes to the constraint definitions. With this method, con-
straint forces are impulsively applied or removed depending on the nature of the
model fidelity transition. When performing model reduction with this method, a sys-
tem wide impulse-momentum equation to determine the new generalized speeds and
constraint forces must be performed. This is a straightforward, albeit computationally
expensive, computation. Again, DCA methods can be used to reduce this computa-
tional expense to O(n), where n is the number of bodies in the system, when applied
serially or O(log(n)) when applied in parallel [13]. Adding degrees-of-freedom to
the system is not as simple, and will not be discussed in detail in this chapter. Again,
a system wide impulse-momentum equation must be solved. However, in this case
the solution is non-unique. Optimization can be used to select a solution from those
which satisfy the impulse-momentum equations as shown by Khan et al. [9].

Alternatively, if the degree of freedom is removed when the generalized velocity is
zero, then there is no need to solve a system-wide impulse-momentum equation. This
technique avoids the previously mentioned O(n) or O(log(n)) (at best) computation.
However, it requires that the reduction of a degree of freedom be postponed until the
generalized speed associated with the degree of freedom is sufficiently close to zero.
There can be cases in which postponing this model reduction is not computationally
advantageous or generally appropriate, which will be discussed in further detail in
subsequent sections. Therefore a strategy to perform model reduction should include
both of the methods discussed.

3.2 Adaptive Model Reduction

Various criteria can be used to guide the reduction of degrees-of-freedom in areas
of the model with motion occurring that is considered unimportant to the physical
behavior being studied. These criteria can be derived from a variety of sources such as
knowledge of the system or physical process being observed, physics-based metrics,
chemical processes or reactions, and others. Maintaining a high model resolution at
meaningful locations in a system, such as at a phase boundary or cellular membrane
is an example of using knowledge of the system to create such a criterion. Statistical
properties of the system parameters, such as the standard deviation of the relative
joint displacement, may also guide model reduction. The selection of the criteria
driving the model reduction may also influence the choice of method that is most
appropriate to remove the degree or degrees-of-freedom.

3.2.1 Momentum-Based Model Reduction

As an example of when a momentum-based method would be desirable, con-
sider the case mentioned previously, where the distance from a particular feature
(e.g. cellular membrane) is the criteria for determining model reduction, and that it
is proposed that the reduction of a degree of freedom should be made at the next
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occurrence of its generalized speed reaching zero. In this case the reduction may be
postponed an exceptionally long time or not occur, which may result in a large num-
ber of unnecessary degrees-of-freedom remaining in the simulation. Additionally,
any situation in which it is desired to remove multiple degrees-of-freedom at a single
instant would also require the use of the momentum-based approach.

Modeling changes in the number or location of degrees-of-freedom in a system as
instantaneous application of constraints allows the degree-of-freedom to be removed
at the next time step. However, it requires that an impulse-momentum balance be
performed to determine the new constraint forces and the new generalized speeds
of the post-transition system model. Since the impulse-momentum equation is the
temporal integral of the equations of motion, the time-invariant inertia quantities (for
rigid bodies) that are used to compute the solution to the equations of motion can
also be used in the solution of these equations.

3.2.1.1 Rigid Bodies

Mukherjee and Anderson present a DCA-based method for modeling discontinuous
changes in model definition of multibody systems [13]. Readers familiar with the
use of the divide-and-conquer algorithm to form and solve the equations of motion
will recognize the equations

Δvk
1 = ζ k

11

t+∫
t−

Fk
1c dt + ζ k

12

t+∫
t−

Fk
2c dt + ζ k

13 (3.1)

and

Δvk
2 = ζ k

21

t+∫
t−

Fk
1c dt + ζ k

22

t+∫
t−

Fk
2c dt + ζ k

23 (3.2)

as the impulse-momentum equations for two reference points (handles) on a generic
rigid body (bodyk). These reference points are typically located at the kinematic
joints connecting the bodies. Those not familiar with a DCA-based approach are
referred to the original work of Featherstone [6, 7], Mukherjee and Anderson
who introduced a DCA-based method that uses the orthogonal complement of the
allowable joint space to solve the equations of motion for closed-loop systems
(O-DCA) [11], or Malczyk and Frączek who use the DCA with an augmented
Lagrange multiplier approach [10].

In Eqs. (3.1) and (3.2) the quantities ζ k
i j are the inverse inertial properties of body

k at handle i (reference point i). These quantities are computed during the solution
to the equations of motion (if a DCA-based strategy is being used to form and solve
the equations of motion), and therefore can be re-used in these equations. Thus
using a DCA-based method to solve both the equations of motion and the impulse-
momentum equations increases the efficiency of the simulation. The change in the
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spatial velocity of handle i due to the instantaneous imposition of constraint forces
is represented by Δvk

i .
The technique of Mukherjee and Anderson defines an allowable joint space motion

map of joint j before
⎧

P j
t−

⎪
and after

⎧
P j

t+

⎪
the degree of freedom reduction. For

example, consider removing the degree of freedom associated with a revolute joint
between two bodies. In this case, the joint motion map before the reduction is

P j
t− = ⎨

1 0 0 0 0 0
⎩T

, (3.3)

and the joint motion map after the reduction is

P j
t+ = ⎨

0 0 0 0 0 0
⎩T

. (3.4)

The joint motion map for a completely locked joint should be a column vector of
zeros to facilitate the matrix algebra of assembly and disassembly. The joint motion
map contains the same number of unit spatial column vectors as there are degrees-of-
freedom in the joint. Each of these unit vectors corresponds to a direction of motion
allowed by the joint. Thus, in the example above where a single degree of freedom
revolute joint is removed (locked) the joint motion map is changed from a 6 × 1
vector to the empty set. In general, the joint motion map is 6 × ν, where ν is the
number of degrees-of-freedom allowed by the joint.

The assembly and disassembly procedures integral to the divide-and-conquer
algorithm compute the impulses and changes in the spatial velocities for all handles
in the system. This is possible because the terminal connections of the system are
known and the joint motion maps for all joints are known. Computing the instan-
taneous changes in the generalized speeds (u) is easily done using the kinematic
relation between the spatial velocities at the handles and the generalized speeds. The
kinematic relation between the spatial velocity and the generalized speed is

vk+1
1 − vk

2 = P j u j . (3.5)

The difference in the spatial velocities of the reference points coincident with the
joint connecting adjacent bodies k and k + 1 is the generalized speed projected onto
the joint motion map. Using a similar relation, the change in the generalized speed
is computed from the change in the spatial velocity by

Δvk+1
1 − Δvk

2 = P j
t+u j

t+ − P j
t−u j

t− (3.6)

for joints in which there are changes to the number of degrees-of-freedom, and

Δvk+1
1 − Δvk

2 = P j
⎧

u j
t+ − u j

t−

⎪
(3.7)

for joints that are unmodified. It should be noted that after the assembly and disas-
sembly processes have been completed the only unknown quantity in Eqs. (3.6) and
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(3.7) are the generalized speeds after the model transition
⎧

u j
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⎪
. Finally, the change

in generalized speed can be computed by
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+ u j
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3.2.1.2 Flexible Bodies

Khan et al. [9] details the process of removing or adding degrees-of-freedom to flex-
ible bodies in the DCA-framework. Modeling the change in the degrees-of-freedom
of a flexible body is performed in a similar manner, i.e. the equations of motion for
two reference points on a body are written in terms of the inertial properties and the
instantaneous applied constraints. The impulse-momentum equation for two handles
on a flexible body written using a floating frame of reference approach are
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This method may use modal coordinates and admissible shape functions or element
displacement functions, as done in Finite Element Analysis, to model the flexibility
of the body coupled with the rigid body motion. In Eqs. (3.10) and (3.11) the Γ terms
are the mass and inertial matrices. Vi contains the spatial velocity associated with
reference point i (vi ) as well as the generalized speeds associated with the modal
degrees-of-freedom (q̇),

Vi =
[

vi

q̇

]
. (3.12)

All terms with the superscript c are associated with the coarse model (post-reduction)
and the terms with the superscript f are associated with the fine model (pre-
reduction).

The change in generalized speeds associated with the degrees-of-freedom of the
joint can be computed from Eqs. (3.8) and (3.9). The new mode speeds can be com-
puted by partitioning the matrix equations Eqs. (3.10) and (3.11). To facilitate this,
the inertial matrix Γ is partitioned into its rigid components (ΓR R), flexible compo-
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nents (ΓF F ), and the terms that couple the rigid and flexible motion (ΓRF and ΓF R).
By doing so, the new mode speeds after model reduction can then be computed as
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Γ c

F F
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F Rvc
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⎣
 .

(3.13)

The derivation of these terms is detailed by Mukherjee and Anderson [12].

3.2.2 Zero-Velocity Model Reduction

An alternate strategy for model coarsening in biomolecular systems makes use of
the periodic nature of motion about a varying mean, which is generally present
in biopolymer systems. This strategy simply performs the model transition once the
internal metric has indicated that elimination of the degree of freedom is appropriate.
This strategy proposes that at the target joint the relative motion is locally oscillatory
in nature. Additionally, this method assumes that after a degree of freedom associated
with a particular joint or modal coordinate has been targeted to be ignored (removed),
the model transition can be postponed a short time.

3.2.2.1 Rigid Bodies

With the pre-transition
⎧

u j
t+

⎪
and post-transition

⎧
u j

t+

⎪
generalized speeds both zero,

Eqs. (3.6) and (3.7) both become

Δvk+1
1 − Δvk

2 = 0. (3.14)

This equation is satisfied if the change in spatial velocity at coincident reference
points is zero or the change in spatial velocity of these reference points are equal and
opposite. However, it is known that the latter scenario is not the case. Therefore the
impulse-momentum equations for the reference points becomes
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Since there are no applied external impulses, ζi3 = 0. Also it is known that ζi1 and
ζi2 are both non-zero. Therefore, the impulses at the handles must be zero.

3.2.2.2 Flexible Bodies

Removing the degree of freedom associated with a kinematic joint between flexible
bodies at zero velocity follows similarly. This can be seen by writing the matrix
equation Eq. (3.10) separately as the two submatrix equations
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This is possible because it is known from the rigid body discussion in Sect. 3.2.1.1 that
removing the generalized coordinate associated with the motion of a kinematic joint
at zero generalized speed results in no change of the spatial velocity at the reference
points on the body. Additionally, if there is no change in the spatial velocities the
impulses at the reference points must again be zero because γR and γF are not zero.
Therefore, there will not be any change in the modal speeds. Similarly, by removing
a degree of freedom associated with the modal coordinates at zero modal speed, there
is no effect on the spatial velocities.

3.3 Numerical Example

A simple rigid body system, shown in Fig. 3.4, is used to investigate the differences
between the momentum-based and velocity-based methods for performing model
reduction when the joint relative motion drops below a certain threshold, for a given
window in time. In this problem, a force equivalent to 0.05 g is applied in the −n̂2
direction to create the oscillatory aspects of the local motion, where g = 9.81 N/m2.
The joints are locked when the standard deviation of the generalized coordinate drops
below 1×10−4 for the previous 100 time steps. Model reduction is restricted to after
1 s of time has elapsed. The joints that meet this locking criteria are locked with
both the zero-velocity method and the instantaneous momentum-based method. A
custom fixed time-step fourth order Runge-Kutta integrator was used. This motion
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simulates one end of a chain-type biopolymer docked at one end and oscillating due
to the far field forces.

Figure 3.5 shows the motion of the generalized coordinates throughout the course
of the simulation. The generalized coordinates that are locked by either method are
removed from the plot so that the long term motion of the remaining degrees-of-
freedom can be seen in the case where model reduction is not used. This figure
shows expected behavior of all joints oscillating around zero, the exception is that
the first joint will oscillate at a much lower time scale, so low that it is not seen in
the time scale of the figure.

Figure 3.6 shows the same degrees-of-freedom over time. However, this figure
shows the cases where the zero-velocity (Fig. 3.6a), and the impulse-momentum
(Fig. 3.6b) methods are used for model reduction. The joints that are locked, and
the times at which they are locked are reported in the respective figure. The locked
degrees-of-freedom are represented by solid lines and the time at which they are
locked is marked with the asterisk, both of which are not reported in the figure key.
The difference in times at which the joints are locked in Fig. 3.6a, b is due to the
zero-velocity method of model reduction waiting for the joint velocity to reach near
zero before it is removed from the model. In this numerical example, once a joint has
been identified to be locked, the degree of freedom is removed at the next time step
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Fig. 3.6 Zero velocity model reduction

that it has near zero velocity. The model reduction criteria are not re-evaluated. For
a more robust implementation, if the joint is not locked within a specified window
of time perhaps the locking criteria should be re-evaluated.

Comparing Fig. 3.6a, b it is clear that both methods result in similar overall long-
term motion. Direct comparison of Fig. 3.5 with Fig. 3.6a or b would be inappropriate
since no method of adding fidelity (unlocking a joint) was included in this example,
therefore this is not a truly adaptive example. Figure 3.5 was included to demonstrate
that the unmodified behavior of the system is aligned with its expected behavior.

3.4 Discussion

The advantage of a zero-velocity approach is that there is no impulse-momentum
balance to perform, which will provide a significant computational savings. Fur-
thermore, the energy of the system will not decrease with each model reduction
performed with this approach. The energy of the ignored degrees-of-freedom will be
stored in the potential energy of the system. This will eliminate the “cooling effect”
of many model reductions executed throughout the course of the simulation. This
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effect is the kinetic energy losses manifested by temperature reduction, which is an
important system property in molecular systems.

The zero-velocity method is particularly advantageous if the reverse transition
is performed and the fidelity of the model is increased by adding this degree of
freedom back into the model. In this situation, the frozen degree of freedom is simply
released and the stored potential energy of this mode of motion is permitted to act
on the system. This saves the considerable computational expense associated with
the optimization problem that must be performed to determine a suitable solution
to the impulse-momentum balance of the many possible solutions. This process is
explained in more detail by Khan et al. [9].

In terms of computational cost, this technique becomes particularly advantageous
when the number of degrees-of-freedom that would be reduced is significantly less
than the number of degrees-of-freedom in the entire system. For example, if there
are 103 degrees-of-freedom in the system and it is desired to remove 1 of them,
immediately reducing the joint at non-zero velocity requires an O(103) computation
to perform the system-wide impulse-momentum balance. By postponing this model
reduction until the joint velocity is near zero, no momentum-balance needs to be
performed, therefore there is no cost of reducing this joint.

This issue is particularly relevant when implementing an adaptive model reduction
method. The goal of using adaptive changes in model resolution is that the computing
resources are used where most appropriate. Therefore, model resolution in regions
which are of little interest is reduced. Adaptive model reduction may use a variety
of metrics to determine if a joint should be locked or unlocked. An intuitive method
for biomolecular systems may be to monitor the standard deviation of the relative
joint angle over a given sliding window of time [17]. If a momentum-based method
is naively implemented, and the number of degrees-of-freedom reduced from the
model is not significant enough to result in computational savings over the course of
the simulation, the computational cost of the simulation could increase dramatically,
approaching O(n2) in the worst case, when an O(n) method is used to compute
the impulse-momentum balance and the equations of motion. This places practical
limits on the minimum number of degrees-of-freedom that can be reduced, so that
model reduction does not actually add to the cost of the simulation.

Conversely, if a large number of degrees-of-freedom are targeted for reduction the
most efficient method of model reduction might be the impulse-momentum balance
method which reduces all of these degrees-of-freedom at the next time step. This
depends on the frequency of the periodic nature of the joint relative motion. If the
frequency is relatively low, a significant number of time steps may pass before the
joint velocity falls below the threshold set and is reduced, if at all. If that takes place
for relatively large number of degrees-of-freedom, e.g. O(n), O(n) + δO(n) extra
computations may have taken place before all of these joints are reduced.

Another example in which a momentum-based method must be used is when
transitioning from a certain system subdomain model to a fundamentally different
model type. This could be encountered in a transition from a set of rigid bodies to a
single flexible body, then a momentum-based approach must be used. This is because
this type of transition between such different subdomain model types requires that
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multiple independent degrees-of-freedom be removed simultaneously. As a conse-
quence, not all generalized speed associated with these degrees-of-freedom will be
simultaneously zero.

The momentum-based method avoids a potential disadvantage of the zero-velocity
method. This disadvantage is that the degree of freedom associated with kinematic
joints and deformation of flexible bodies is typically at zero generalized speed when
the associated degree of freedom is at maximum deflection or relative motion. This
may cause unrealistic geometric configurations if care is not used in selection of the
criteria used to ignore a degree of freedom.

This suggests a model reduction strategy that uses both methods where appropriate
is needed. A method of performing impulse-momentum balance, such as [13], would
already be part of the computational machinery to deal with collisions. Therefore,
with little extra effort, a zero-velocity method could be incorporated to provide a
more robust handling of model reduction.

Both methods of model reduction produce comparable results when examining the
long-time macro-scale motion of the system. The notable difference in these methods
is the computational cost. In the above example, 4 degrees-of-freedom are removed,
using the impulse-momentum method this would add O(3n) (because joints 7 and
8 are locked at the same time step) to the computational cost of the simulation. The
method of performing model transition at zero velocity reduces the same degrees-
of-freedom from the model, although at different times, at nearly zero additional
computational cost.

This demonstrates the principle difficulty with adaptive impulse-momentum based
model reduction for biopolymers. If done wisely, this method can realize significant
computational savings over the course of a simulation. As an example, consider a
system where the number of degrees-of-freedom are reduced from 200 to 20 at a
single time step. In such a situation, the impulse-momentum based methods reduce
180 degrees-of-freedom for O(n) computational cost. If this is done early enough in
the simulation, there would be significant overall computational savings.

Alternatively if these degrees-of-freedom are reduced intermittently throughout
the simulation, there would be O(180n) additional computational cost in the worst
case. This would result in an overall O(n2) computational cost. In this situation, the
zero-velocity method may provide significant computational savings. This is however
subject to the frequency of the motion at the joint that is targeted for reduction, as
significant time may elapse before the joint velocity becomes zero.

3.5 Conclusion

An adaptive method of performing model reduction should include both the zero-
velocity method and the momentum-based method, since it would generally not be
known a priori when reductions in the number of degrees-of-freedom would occur.
Some metric of the time remaining in the simulation and number of degrees-of-
freedom that are targeted to be removed could be used to guide the decision of which
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method to use. Using both methods of model reduction should not involve a great
deal of effort since a method that solves the impulse-momentum equations must exist
to handle collisions, and incorporating the zero-velocity method can be done with
minimal programming effort. The way in which these two methods are used may
depend heavily on the metric that is used to guide model reduction.
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Chapter 4
A Mortar Method Combined
with an Augmented Lagrangian
Approach for Treatment of Mechanical
Contact Problems

Federico J. Cavalieri, Olivier Brüls and Alberto Cardona

Abstract This work presents a mixed penalty-duality formulation from an
augmented Lagrangian approach for treating the contact inequality constraints. The
augmented Lagrangian approach allows to regularize the non differentiable contact
terms and gives a C1 differentiable saddle-point functional. The relative displace-
ment of two contacting bodies is described in the framework of the Finite Element
Method (FEM) using the mortar method, which gives a smooth representation of the
contact forces across the bodies interface. To study the robustness and performance
of the proposed algorithm, validation numerical examples with finite deformations
and large slip motion are presented.

4.1 Introduction

Contact mechanics is present in a wide range of mechanical engineering applications,
and numerous works have dealt with the numerical solution of contact problems.
New advances and techniques, including friction, large displacements, plasticity, and
wear, are constantly being introduced. However, there is not yet a completely robust
contact algorithm suitable for a wide range of applications in contact mechanics.
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Mathematically, the contact problem can be interpreted as a physical system defined
by a variational inequality. The solution of frictionless or frictional contact problems
corresponds to minimize the total energy of the system subjected to inequalities
constraints associated to the normal and tangential components of the traction and
distance vectors, respectively.

In the framework of the FEM, the node-to-segment technique is widely used in
many commercial finite element codes for the description of the relative displace-
ment between two contacting bodies. In this case, a node of one body (the slave) is
associated with a segment or a surface of another body (the master). An extensive
list of references with different variants and practical applications for this method
can be found in the books of Wriggers [46] or Laursen [29].

The main drawback of the node-to-segment approach is that it is not able to
transmit a constant stress field from one body to the other when the meshes are non-
conforming, i.e. it does not pass the contact patch test; therefore, it introduces errors
in the solution independently of the mesh discretization of the contacting bodies
[33]. Furthermore, when the slave nodes slide from one to another master segment,
the solution shows jumps in the contact stress field due to the enforcement of the
discrete contact constraints. The double pass node-to-segment approach satisfies
the contact patch test, but it can “lock” due to the over-restriction introduced in
the formulation [38].

Other method introduced to simulate contact mechanics problems is the so-called
segment-to-segment approach, where the segment of one body (the master segment)
is associated with a segment of the other body (the slave segment). Most of the
segment-to-segment methods use some kind of intermediate surface or projection
surface. The surface-to-surface mortar strategy, was originally proposed as a domain
decomposition method and was used to solve finite element problems with non
conforming discretizations. An important characteristic of the mortar method is that it
is only one pass and verifies the contact patch tests. Therefore, a double pass proposal
would be completely unnecessary. Specifically, the first work that has used the mortar
method was published by Bernardi et al. [4], where the authors demonstrated the
stability properties related with the Babuska-Brezzi conditions [5]. The first proposals
of the mortar method used in engineering applications were introduced in the frame
of small deformations [30]. Then, other authors, such as Puso and Laursen [37, 38],
Hüeber and Wohlmuth [19], Hüeber et al. [25], Fischer and Wriggers [14], Hartmann
and Ramm [18], Popp et al. [34, 35], Hesch and Betsch [24], Hüeber and Wohlmuth
[20], Cichosz and Bischoff [11], Hesch and Betsch [23], Cavalieri et al. [9], have
extended the mortar approximation to problems with finite deformations, large sliding
or time dependent problems. The works of Papadopoulos and Solberg [32], Jones
and Papadopoulos [26], Solberg and Papadopoulos [41] and Solberg et al. [40] are
not known as mortar methods; however, they incorporate all the characteristics to
be classificated as mortar [42]. Recently, Temizer [42], De Lorenzis et al. [13], and
Kim and Youn [28] applied the mortar methods using isogeometric analysis.

The treatment of the restrictions in contact problems could be addressed with
different strategies: by using a penalty approach, Lagrange multipliers, augmented
Lagrangian techniques, and others. Several works have proposed friction contact
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algorithms by using the mortar method. For example, Puso and Laursen [39]
proposed a mortar method with a penalty regularization within an augmented
Lagrangian scheme [27]. The works of Yang et al. [47], and Fischer and Wriggers
[15] present a penalty method for the regularization of the variational problem and a
mortar approach to describe the contact kinematics. Heintz and Hansbo [22] proposed
a stabilized Lagrange multiplier method based on a global polynomial multiplier for
the finite element solution of non-linear elastic contact problems with non-matching
grids in 2D. More recently, Gitterle et al. [16] proposed a two-dimensional finite
deformation frictional contact formulation based on a mortar formulation. In this
case, the enforcement of contact constraints is reached with dual Lagrange multi-
pliers. By using the so-called dual mortar method, the Lagrange multipliers can be
eliminated by static condensation from the set of linear algebraic equations [45].
However, the dual method may lack robustness, e.g., when contact surfaces have
large curvatures or when one contacting body slips over an edge of the other con-
tacting body. A more robust version of this method has been presented recently by
Popp et al. [36].

De Lorenzis et al. [12] focused on the application of NURBS-based isogeomet-
ric analysis to Coulomb frictional contact problems between deformable bodies in
the context of large deformations and using the classical return mapping algorithm.
A three-dimensional mortar-based frictional contact treatment in isogeometric analy-
sis with NURBS in the finite deformation regime is presented by Temizer et al.
[43, 44]. In both works, a penalty approach supplemented by Uzawa augmentations
is implemented for the regularization of the contact constraints.

In this work, unlike the above mentioned proposals, the augmented Lagrangian
technique, introduced by Alart and Curnier [1], is combined with a mortar approach to
solve three dimensional frictionless and frictional contact problems. The form of the
augmented Lagrangian approach allows the regularization of non-differentiable con-
tact terms. The resulting equations involving the Lagrange multipliers are linearized
and solved using a standard Newton-Raphson-like method. The mortar method leads
to a correct representation of the stress fields across the contact interface.

To validate the proposed method, firstly a numerical example is presented to
demonstrate that the algorithm satisfies the contact patch test. Then, another exam-
ple including friction is proposed to validate the algorithm with a classical frictional
benchmark problem. Finally, the algorithm is used in the regime of large displace-
ments to demonstrate its applicability and robustness in more general applications. It
is remarkable that in all cases the normal and tangential stress solutions are smooth,
even in non-conforming meshes.

4.2 Problem Description

Figure 4.1 depicts the contact problem. The contacting bodies Bδ , δ = 1, 2, occupy
the open set πδ ∈ R

3 in the reference configuration and πδ
a ∈ R

3 in the current
configuration. In the reference configuration, the external surface κπδ is divided
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Fig. 4.1 Two-body contact problem in the framework of large deformation

into three disjoint boundaries: ρ δ
u where the body is fixed, ρ δ

Π where the surface
traction vector is acting, and ρ δ

c which represents the contact boundary. The same
boundaries in the current configuration are denoted ε δ

u , ε δ
Π and ε δ

c , respectively.
In the reference configuration, the material points for each solid are denoted by

the position vector Xδ ∗ πδ , while in the current configuration they are given by the
vector xδ ∗ πδ

a . Then, the movement of both bodies is described by the displacement
field uδ which is related to the reference and current positions by xδ = Xδ + uδ .
The total potential energy for the contacting bodies Bδ , is given by

∂ = ∂cont + ∂int,ext, (4.1)

where ∂cont is the contact potential energy, and ∂int,ext represents the potential energy
of the external and internal loads. In the framework of finite deformations, ∂int,ext
yields

∂int,ext =
2∑

δ=1

⎧
⎪⎨
⎩

πδ

(
Eδ : Sδ − bδ · uδ

)
dπ −

⎩
ρ δ

N

t̂
δ · uδdρ


 . (4.2)

Here, bδ is the body force vector in πδ , t̂
δ

is the prescribed traction vector, Sδ is
the second Piola-Kirchhoff stress tensor, which is related to the deformations by an
appropriate constitutive law, for example,

Sδ = Cδ : Eδ, (4.3)
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where C is the fourth-order constitutive stress tensor, and E is the Green-Lagrange
deformation tensor defined as

E = 1

2

⎡
FT F − I

⎣
, (4.4)

with F representing the deformation gradient. This work will put emphasis on the
solution of contact equations; then, no details about the modeling of solid deformation
will be presented. The potential energy due exclusively to the contact is given by

∂cont = −
2∑

δ=1

⎩
ε δ

c

t̄c
δ · xδdε, (4.5)

where t̄c
δ is the Cauchy traction vector of the body Bδ in the current configuration.

Assuming lineal momentum balance at the contact surface, t̄c
1dε 1 = −t̄c

2dε 2 the
contact potential energy can be simplified as

∂cont = −
⎩

ε 1
c

t̄c
δ ·

⎡
x1 − x2

⎣
dε, (4.6)

Instead of using the Cauchy traction vector t̄c
1, a Lagrange multiplier λ is introduced

such that λ = −t̄c
1. Then, the contact potential energy in Eq. (4.6) is re-written as

∂cont =
⎩

ε 1
c

λ ·
⎡

x1 − x2
⎣

dε. (4.7)

The finite element method is used to discretize the body domains. The contact surface
of each body and the traction vector are parameterized as follows [37],

xδ =
nδ∑

A=1

Nδ
A(ξδ)xδ

A, δ = 1, 2, λ =
n1∑

A=1

N 1
A(ξ1)λA, (4.8)

where xδ
A ∗ ε δ

c ⇒ R
3 are the nodal coordinates, ξδ are the coordinates of the

Gauss points, nδ is the number of nodes in ε δ
c , and Nδ

A : ε δ
c ⇒ R are the clas-

sical shape functions used in the FEM discretization. As usually mentioned in the
literature, ε 1

c and ε 2
c are the non-mortar and mortar surfaces in the current configu-

ration, respectively. The Lagrange multiplier λA ∗ ε 1
c ⇒ R

3 is discretized with the
same shape functions used to approximate the geometry and the displacements. By
using Eqs. (4.8) and (4.7), the contact potential energy in the framework of FEM is
expressed as
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∂cont =
n1∑

A=1

λA ·

⎜⎤

n1∑
B=1

⎩

ε 1
c

N 1
A(ξ1)N 1

B(ξ1) dε x1
B −

n2∑
C=1

⎩

ε 1
c

N 1
A(ξ1)N 2

C (ξ2) dε x2
C

⎦
⎟ ,

(4.9)
where the term in parenthesis in Eq. (4.9), can be interpreted as a measure of the
interpenetration or average gap corresponding to the node A. Therefore,

∂cont =
n1∑

A=1

λA · gA, (4.10)

with

gA =

⎜⎤

n1∑
B=1

⎩

ε 1
c

n1
AB dε x1

B −
n2∑

C=1

⎩

ε 1
c

n2
AB dε x2

C

⎦
⎟ , (4.11)

namely the gap vector at node A. Here, n1
AB and n2

AB are the weight factors defined
as

n1
AB =

⎩

ε 1
c

N 1
A(ξ1)N 1

B(ξ1) dε, n2
AC =

⎩

ε 1
c

N 1
A(ξ1)N 2

C (ξ2) dε, (4.12)

and computed by an assembly algorithm as presented in [8, 37].

4.3 Augmented Lagrangian Formulation for Frictionless
Contact Problems

Assuming frictionless contact problems, only the normal direction of the traction
vector λ and the gap g at node A are considered:

γN A = ν A · λA, gN A = ν A · gA, (4.13)

with ν A being the inward normal vector to the non-mortar contact interface ε 1
c at

node A. Thus, the contact potential energy ∂cont of Eq. (4.10) is re-written as follows,

∂cont =
n1∑

A=1

γN AgN A. (4.14)

The general solution of the unilateral frictionless contact problem obtained by a
mortar formulation is given by
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Fig. 4.2 Augmented Lagrangian function for the contact problem. The locus of solutions is dis-
played

(U,λ) = arg min
(
∂int,ext + ∂cont

)
such that for A = 1, . . . n1


gN A ≡ 0 Gap equation
γN A ∇ 0 Contact force equation
gN AγN A = 0 Complementarity condition

(4.15)

The set of inequalities in Eq. (4.15) establishes the Karush-Kuhn-Tucker conditions
(KKT) for the unilateral frictionless contact problem. These inequality constraints
can be equivalently written as a sub-differential inclusion as follows:

γN A ∗ κΨR+(gN A), (4.16)

where ΨR+ is the indicator function of the real half line R+ and κΨR+ is the sub-
differential of ΨR+ . Equation (4.16) expresses the unilateral contact conditions, with
a contact pressure field derived from a non-smooth potential ΨR+(gN A) [1, 21]. An
augmented Lagrangian function which replaces the energy of contact is defined by

Lcont(U, λ) =
m1∑

A=1

(
gN AkγN A + r

2
⊗gN A(U)⊗2 − 1

2r
dist2

⎛
kγN A + rgN A(U), R−⎝⎞

,

(4.17)

where dist(x, C) is the distance between x and C , r is a positive penalty parameter and
k is a positive scale factor. This function is a C1 differentiable saddle-point function,
as shown in Fig. 4.2. The solution is obtained as the set of values that renders this
function stationary. The solution does not depend on the value of parameters r, k.
Nevertheless, the convergence rate does depend on these values. The penalty and
scale factors, r and k, are selected in terms of a mean value of the Young modulus
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Emean and a mean value of the elements size hmean as 10Emean/hmean to get optimal
convergence properties [8].

4.3.1 Mortar Contact Element Definition

A contact element is defined for each pair of facets, one on the non-mortar and the
other on the mortar surface. If N1 is the number of facets on the surface ε 1

c , and N2
is the number of facets on the surface ε 2

c , a total of N1 × N2 contact elements are
built. Note, however, that only a few of them are active at a given time (i.e. only those
elements whose facets are mutually seeing each other). At each contact element, the
restrictions to the element facets of the integrals needed for the computation of the
weight factors n1

AB and n2
AB are evaluated. The generalized coordinates of the contact

element are

Φe =
⎠
x1

1
T

x1
2

T
. . . x1

m1
T

x2
1

T
x2

2
T

. . . x2
m2

T
γN1 γN2 . . . γNm1

⎭T
, (4.18)

where m1 and m2 are the number of nodes of the non-mortar facet and the mortar
facet, respectively, x1

I are the nodal coordinates of the non-mortar facet; x2
I are the

nodal coordinates of the mortar facet, and γN I are the contact nodal pressures. The
number of degrees of freedom of the contact element is 4m1 + 3m2.

4.3.2 Internal Force Vector and Hessian Matrix for Frictionless
Contact Problems

The internal forces vector of the contact element is obtained taking variations of
L e

cont, (see Eq. 4.17), with respect to the generalized coordinates ζΦe as follows

ζL e
cont = ζΦe · Fe

cont(Φ
e) =

⎧
⎨ ζx1

B

ζx2
C

ζγN A


 ·

m1∑
A=1

⎧
⎪⎨

n1
AB

⎛
projR−(ΠN A)

⎝
ν A

−n2
AC

⎛
projR−(ΠN A) ν A

⎝
− 1

r

⎛
kγN A − projR−(ΠN A)

⎝

 ,

(4.19)

where ΠN A = kγN A +rgN A is a linear combination of primal and dual variables, and
projR−(x) is the operator projection of x on R−. From the definition of the operator
projR−(x), it is possible to check that the contribution from node A to the internal
force vector of the contact element Fe A

cont is given by,
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ζΦe · Fe A
cont(Φ

e) =
⎧
⎨ ζx1

B

ζx2
C

ζγN A


 ·




⎧
⎪⎨

ΠN A ν A n1
AB

−ΠN A ν A n2
AC

kgN A


 , if ΠN A ∇ 0,

⎧
⎪⎪⎨

0

0

−k2

r
γN A


 , if ΠN A > 0.

(4.20)

Contact status is established depending on the sign of ΠN A. If ΠN A ∇ 0, contact
occurs; otherwise, if ΠN A > 0, the bodies are separated.

Equilibrium is obtained by solving the following system of nonlinear equations

G(U) + Fcont(Φ) = 0, (4.21)

where G(U) is the nonlinear vector of the internal and external structural forces,
and Fcont(Φ) is the set of contact forces at the interface εc, which is obtained by
assembling all the contact element contributions Fe

cont. The system of Eq. (4.21)
does not change during the iterations. This system is solved simultaneously for the
displacement and Lagrange multipliers using a standard Newton-Raphson iterative
monolithic scheme, and it is not necessary to use any special algorithm for activa-
tion/deactivation of the constraints.

The linearization of Eq. (4.20) leads to the contribution of node A to the tangent
Hessian matrix of the contact element, which depends on the contact status :

ζΦe ·∆Fe A
cont =

⎧
⎨ζx1

B
ζx2

C
ζγB


 ·




⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

(k∆γA + r∆gN A)ν A n1
AB

+ ΠN A(ν A ∆n1
AB + n1

AB∆ν A)

−(k∆γA + r∆gN A)ν A n2
AC

− ΠN A(ν A ∆n2
AC + n2

AC∆ν A)

k∆gN AδAB




, ΠN A ∇ 0

⎧
⎪⎪⎨

0
0

−k2

r
∆γAδAB


 , ΠN A > 0.

(4.22)
The explicit expression of the Hessian matrix is obtained by evaluating the first
derivatives of the weight factors nδ

AB , the normal interpenetration gN A, and the
normal vector ν A. A detailed explanation of the linearization of nδ

AB , gN A and ν A

with the explicit expression of Hessian matrix is given elsewhere in [8].
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4.4 Augmented Lagrangian Formulation for Frictional
Contact Problems

When friction is considered, the gap vector gA and the Lagrange multiplier λA
are split into the normal components: gN A and γN A, and the tangential components:
gT A and λT A, respectively. The splitting is carried out using the normal vector ν A
to the surface ε 1

c at the node A. Then, the contact potential energy is divided into a
normal component and a tangential component yielding

∂cont =
n1∑

A=1

[
γN A(tn+1)ν A(tn) ·


⎤ n1∑

B=1

n1
AB (tn+1) x1

B (tn+1) −
n2∑

C=1

n2
AC (tn+1) x2

C (tn+1)

⎦
]

︸ ︷︷ ︸
Normal component

+
n1∑

A=1

λT A(tn+1) [I − ν A(tn) → ν A(tn)] ·

⎤ n1∑

B=1

n1
AB (tn+1) x1

B (tn) −
n2∑

C=1

n2
AC (tn+1) x2

C (tn)

⎦
 .

︸ ︷︷ ︸
Tangencial component

(4.23)

Note that in the term corresponding to the normal component, the weight factors
nδ

AB and the positions xδ
A are evaluated at the current time step tn+1, while in

the term corresponding to the tangential component, the positions are evaluated at
the previous time step tn . In what follows, the time variable t will be omitted in the
equations in order to simplify the notation. This definition of the tangential com-
ponent allows the representation of the incremental tangential movement ensuring
objectivity properties in the formulation, as demonstrated by Puso and Laursen [39].
The normal vector ν A is the average normal to the facets touching node A. In order
to simplify the formulation, ν A is evaluated at the previous time step tn ; thus, it does
not contribute to the Hessian matrix.

The general solution to the unilateral frictional contact problem by a mortar for-
mulation is then given by,

(U,λ) = arg min
(
∂int,ext + ∂cont

)
such that for A = 1, . . . n1


gN A ≡ 0 Gap equation
γN A ∇ 0 Contact force equation
gN AγN A = 0 Complementarity condition


⊗λT A⊗ ∇ −μγN A Friction law
ġT A = ⊗ġT A⊗ λT A/⊗λT A⊗ Slip rule
⊗gT A⊗ (⊗λT A⊗ + μγN A) = 0 Complementarity condition

(4.24)

The second set of equations represents the KKT conditions for the frictional contact
problem, where μ is the friction coefficient and ġT A is the relative velocity vector
between bodies. The last set of constraints in Eq. (4.24) referring to the contact
friction problem, is equivalent to the following sub-differential inclusion,
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Fig. 4.3 Augmented friction
cone C(γN + rgN )

λT A ∗ κΨC (gT A), (4.25)

where κΨC is the indicator function of the convex disc C with radius −μγN A centered
at the origin:

C(γN A) = λT A

⊗λT A⊗ ∇ −μγN A, (4.26)

This set of equations represents the isotropic friction Coulomb law. The problem
stated in Eq. (4.24) can be regularized using a dual-mixed formulation based on an
augmented Lagrangian, as proposed in the work of Alart and Curnier [1],

Lcont(U,λ) =
m1∑

A=1

⎡
gN AγN A + r

2
⊗gN A(U)⊗2 − 1

2r
dist2

⎛
γN A + rgN A(U), R−⎝

gT A · λT A + r

2
⊗gT A(U)⊗2 − 1

2r
dist2

⎛
λT A + rgT A(U), Caug⎝ ⎣.

(4.27)

Here, Caug is the convex set of friction C(γN A +rgN A). The use of C(γN A +rgN A)

corresponds to extending the friction cone defined over the augmented Lagrange mul-
tiplier, to the positive half line; consequently, a Lagrangian function whose stationary
values give the solution to the frictional contact problem, is obtained (Fig. 4.3).
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4.4.1 Mortar Contact Element Definition for Frictional
Contact Problems

The contact force λA acting in the body π1 is referred to a local frame A =
(ν A, tA1, tA2) at a node A, as depicted in Fig. 4.1. Then, the contact force λA is
split into the normal and the tangential components by using the normal vector ν A

of the frame A, yielding

λN A = λA · ν A,

λT A = λA − γN Aν A. (4.28)

Finally, to simplify the notation and the interpretation of the contact status, the
augmented Lagrange multiplier is given by,

σ A = ΠN Aν A + σ T A, (4.29)

where

ΠN A = kγN A + rgN A,

σ T A = kλT A + rgT A. (4.30)

The generalized coordinates of the contact element are

Φe =
⎠
x1

1
T

x1
2

T
. . . x1

m1
T

x2
1

T
x2

2
T

. . . x2
m2

T
λ1 λ2 . . . λm1

⎭T
, (4.31)

where m1 and m2 are the number of nodes of the non-mortar facet and the mortar
facet, respectively; x1

I are the nodal coordinates of the non-mortar facet; x2
I are the

nodal coordinates of the mortar facet; and λI are the contact nodal pressures. The
number of degrees of freedom of the contact element is 6m1 + 3m2. The size of
the system of equations is increased with respect to the frictionless case due to the
consideration of tangential contact pressures.

4.4.2 Internal Force Vector and Hessian Matrix for Frictional
Contact Problems

The internal force vector for a contact element is obtained by taking variations in
Lcont, see Eq. (4.27); thus,

ζLcont =
⎧
⎪⎨

ζx1
B

ζx2
C

ζλA


 ·

m1∑
A=1

⎧
⎪⎨

n1
AB

⎛
projR− (ΠN A) ν A + projCaug (σ T A)

⎝
−n2

AC

⎛
projR− (ΠN A) ν A + projCaug (σ T A)

⎝
− k

r

⎛
kγN A − projR− (ΠN A)

⎝
ν A − k

r

⎛
kλT A − projCaug (σ T A)

⎝

 .

(4.32)
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The projection operator projC (x) is defined as

projC (x) =
{

x, if ⊗x⊗ ∇ ξ,

ϒx/⊗x⊗, if ⊗x⊗ > ξ,
(4.33)

where the scalar value ϒ corresponds to the radius of the disk in the friction Coulomb
cone. The contact status of gap, stick or slip can then be determined:

• The condition ΠN A ≡ 0 is associated to the gap condition, in this case, projR−
(ΠN A) = 0 and projCaug(σ T A) = 0. For this reason, from Eq. (4.32), the contribu-
tion of node A to the internal contact force vector yields,

Fe A
cont =

⎧
⎨ 0

0

− k2

r λA


 . (4.34)

• The stick condition is obtained when ⊗σ T A⊗ < −μΠN A, in this case, projR−(ΠN A)

= ΠN A and projCaug(σ T A) = σ T A. Therefore, from Eq. (4.32), the contribution
of node A to the internal contact force vector yields,

Fe A
cont =

⎧
⎨ n1

ABσ A

−n2
ACσ A

kgA


 . (4.35)

• Finally, the slip condition is ⊗σ T A⊗ ≡ −μΠN A, in this case, projR−(ΠN A) = ΠN A

and projCaug(σ T A) = −μΠN AtA. Thus, from Eq. (4.32), the contribution of node
A to the internal contact force vector yields,

Fe A
cont =

⎧
⎪⎨

n1
AB(ν A − μtAΠN A)

−n2
AC (ν A − μtAΠN A)

kν AgN A − k
r (kλT A + μΠN AtA)


 . (4.36)

Here, tA is calculated from the following definition,

tA = σ T A

⊗σ T A⊗ , (4.37)

which represents the tangential unit vector in the slip direction at node A.

The linearization of Eq. (4.20) leads to the tangent Hessian matrix of the contact
element, which depends on the contact status

• Gap status ΠN A ≡ 0

∆Fe A
cont =

⎧
⎨ 0

0

− k2

r ∆λA


 . (4.38)
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• Stick status ⊗σ T A⊗ < −μΠN A

∆Fe A
cont =

⎧
⎨ ∆n1

ABσ A + n1
AB∆σ A

−∆n2
ACσ A − n2

AC∆σ A

k∆gA


 . (4.39)

• Slip status ⊗σ T A⊗ ≡ −μΠN A

∆Fe A
cont =

⎧
⎪⎨

∆n1
AB (ν A − μtAΠN A) + n1

AB ∆(ν A − μtAΠN A)

−∆n2
AC (ν A − μtAΠN A) − n2

AC ∆(ν A − μtAΠN A)

∆
(
kν AgN A − k

r (kλT A + μΠN AtA)
)


 . (4.40)

The linearization of these quantities can be calculated from the work of Cavalieri and
Cardona [8], except for the linearization of the tangential vector tA which is outlined
in the Appendix. Here, it is important to remark that since ν A is evaluated at the
previous time step, its linearization does not contribute to the Hessian matrix. This
assumption leads to a simple formulation, with good convergence properties of the
nonlinear problem. As it will be shown in the examples, this assumption does not
impose a severe restriction. However, we remark that the linearization of the average
normal ν A at the current time step could have been incorporated without important
modifications to the formulation and to the code.

4.5 Numerical Examples

Three numerical examples including finite deformation and large slip displacement
are presented to evaluate the robustness and accuracy of the proposed contact
algorithm. The examples involve quasi-static simulations and were carried-out in the
research finite element code Oofelie [6], where the contact algorithm is integrated. All
pre- and post-processing tasks where performed using the SAMCEF-Field software.

4.5.1 Validation Example I: The Contact Patch Test

The first example is a contact patch test proposed by Chen and Hisada [10]. The
3D solutions obtained in this work are compared with the 2D solutions of Chen
and Hisada, introducing a plane strain state which reproduces the same boundary
conditions. The material behavior used in this example is linear elastic. The mesh
topology, boundary conditions, dimensions and material properties are shown in
Fig. 4.4a. Figure 4.4b shows that the stress field is transmitted exactly from one
body to the other with non-conforming meshes, concluding that the formulation
verifies the contact patch test to machine accuracy. When using a node-segment
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Fig. 4.4 Contact patch test. a Boundary conditions and mechanical properties. b Stress solution of
the node-segment and mortar algorithms in the contact interface

approach, the stress field is not uniform, and thus, it does not pass the contact patch
test (see Fig. 4.4b). In order to study the influence of the parameters r and k on the
convergence properties, solutions for different values of r and k were computed.
From the geometry and material properties depicted in Fig. 4.4, the recommended
value results:

r = k = 10
E

h
= 10

2.1 × 109

2
= 1.05 × 1010 (4.41)

Table 4.1 gives the residual norm per iteration for the different values of r and
k. Quadratic convergence behavior is displayed in almost all cases. The condition
number of the global tangent matrix is shown in Table 4.1. We see that the minimum
condition number is obtained for values of r and k close to the value suggested by
10Emean/hmean.
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Table 4.1 Residual norm evolution in the contact patch test problem for different values of k and
r (r = k)

Iteration 106 108 1010 1012 1014

1 1.42 × 10−2 3.35 × 10−1 10.2751 84.1781 5.43 × 103

2 3.07 × 10−1 4.84 × 10−2 7.80 × 10−2 6.99 × 10−1 9.14 × 101

3 1.75 × 10−3 7.39 × 10−3 3.89 × 10−6 1.07 × 10−3 3.37 × 103

4 1.24 × 10−4 7.78 × 10−5 1.39 × 10−9 2.77 × 101

5 3.77 × 10−11 2.18 × 10−11 1.93 × 103

6 1.24 × 102

7 8.32 × 102

8 3.84 × 105

9 FAIL

4.5.2 Validation Example II

This test represents an important validation example to study frictional contact
algorithms. The example has been proposed first by Oden and Pire [31] as a 2D
example, whereas more recent solutions can be found in [2, 3, 7] by using a node-
to-segment approach, or in the work of Fischer and Wriggers using a 2D mortar
approach [15]. In this work, three-dimensional solutions have been computed intro-
ducing plane strain boundary conditions to reproduce the same results as in the work
of Armero and Petocz [3]. The mesh topology, boundary conditions and mechanical
properties used in the simulation are shown in Fig. 4.5. The material behavior is
linear elastic. The upper block has a mesh with 462 nodes and 200 hexaedric ele-
ments. The contact zone has a longitudinal distance of 3.6, as shown in Fig. 4.5.
A uniform pressure qz = 200 is applied to the top surface of the upper body, produc-
ing a deformation against the rigid foundation. Then, another pressure field qx = 60
is actuating on one side of the body pushing it in the X direction. Figure 4.6a shows
a numerical comparison of the normal and tangential stress in the contact interface.
Both solutions shows agreement with Armero and Petocz [3]. Figure 4.6b shows a
quadratic residue evolution.

4.5.3 Validation Example III

The test presented in this section, is based on a bidimensional example proposed by
Hammer [17]. The boundary conditions for a 3D version of the Hammer problem are
introduced to represent a plane strain state. The dimensions and mesh topology are
shown in Fig. 4.7. The mesh has 100 nodes and 39 hexahedral linear finite elements
as shown in Fig. 4.7. The material behaviour for both bodies is Neo-Hookean with
the stored energy density expressed as
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Fig. 4.6 Numerical solutions for the validation example II. a Normal and tangential stress variation
at the contact interface. Numerical solutions compared with [3]. b Residue evolution
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Fig. 4.7 Validation example III. a Mechanical properties and boundary conditions. b Imposed
displacements on the top side of the block

W (I, J ) = μ

2
(I − 3 − 2lnJ ) + γ

2
(J − 1)2, (4.42)

where γ and μ are the first and second Lamé parameters, respectively. Figure 4.7a
shows the mechanical properties used in the example. At the beginning of the sim-
ulation, there is an initial gap of 1 mm between the bodies. This gap is introduced
to demonstrate that the implementation is able to capture new contact surfaces, see
Fig. 4.8a. The upper block is moved downwards in the vertical direction with a move-
ment law as shown in Fig. 4.7b. At time 1 s, the vertical displacement uz(t) arrives at
10 mm. At this moment, the deformation state is shown in Fig. 4.8b. After time 1.6 s,
the upper body starts to slip and change of contact status, from stick to slip. Fig. 4.8c
shows the deformation of both blocks due to friction forces. Then, the upper block
is moved in the Y direction with an horizontal displacement uy , until arriving at
50 mm at time step 4 s, see Fig. 4.8d. After time 4 s the movement direction changes
and continues until time 7 s. Here, the upper block starts lifting to the initial position
reached at time 8 s. The total horizontal and vertical reactions forces evaluated on the
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(a) (b) (c)

(d) (e) (f)

Fig. 4.8 Validation example III. Deformation evolution. a Time: 0 s. b Time: 1 s. c Time: 1.7 s. d
Time: 4 s. e Time: 7 s. f Time: 8 s

top side of the upper block is compared with the example proposed by Hammer [17].
Both solutions are presented in Fig. 4.9a showing agreement. Figure 4.9b shows a
quadratic residue evolution.
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Fig. 4.9 Numerical solutions for the validation example III. a Horizontal and vertical reaction
forces evaluated on the top side of the upper block. b Residue evolution

4.6 Conclusions

In this work, a general contact algorithm using an augmented Lagrangian method
is presented. The algorithm has three main features: it allows to solve the equations
using a semismooth Newton method avoiding the programming complications of
algorithms based on activation/deactivation of constraints with a two-leveled iterative
loop; it is applicable to problems with non-conforming meshes; and the user does
not need to define any penalty parameter. The equations for the computation of the
residual forces and tangent matrices were presented. The numerical examples that
have been presented, demonstrated the ability of the scheme to represent frictionless
and frictional contact problems with small and large displacements. Finally, in the
presented examples, quadratic convergence rate with a small number of iterations is
achieved.
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Appendix

The linearization of the tangential vector tA is presented. The tangential vector tA is
used in the slip status, thus

tA = σ T A

⊗ σ T A ⊗ = σ T A

−μΠN A
. (4.43)

The linearization operator ∆ applied to Eq. (4.43), yields

∆tA = [I − tA → tA]∆σ A

⊗ σ T A ⊗ = [I − tA → tA]∆σ A

−μΠN A
. (4.44)

After some algebraic manipulations the linearization of the tangential vector is writ-
ten as

∆tA = − I − tA → tA − ν A → ν A

μΠN A
∆σ A + ν A → σ A + (I − tA → tA)ΠN A

μΠN A
∆ν A.

(4.45)
If the variation of the normal vector ν A is neglected, the final expression is given by

∆tA = − I − tA → tA − ν A → ν A

μΠN A
∆σ A. (4.46)
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Chapter 5
Contact Dynamics Formulation Using Minimal
Coordinates

Abhinandan Jain

Abstract In recent years, complementarity techniques have been developed for
solving non-smooth multibody dynamics involving contact and collision events. The
linear complementarity approach sets up a linear complementarity problem (LCP)
using non-minimal coordinates for the unilateral contact constraints and inter-link
bilateral constraints on the system. In this chapter, we develop a complementarity
formulation that uses minimal coordinates. This results in a much smaller LCP whose
size is independent of the number of bodies and the number of degrees of freedom
in the system. Furthermore, we exploit operational space low-order algorithms to
overcome key computational bottlenecks to obtain over an order of magnitude speed
up in the solution procedure.

5.1 Introduction

For more than a decade, researchers have been developing complementarity based
approaches for formulating and solving the equations of motion of multibody systems
with contact and collision dynamics [1–3]. Examples of such dynamics for robotic
systems include manipulation and grasping tasks such as illustrated in Fig. 5.1, and
legged locomotion. The complementarity approach models bodies as rigid, and uses
impulsive dynamics to handle non-smooth collision and contact interactions. Com-
plementarity methods impulsively “step” over non-smooth events and thus avoid
small integration step sizes encountered with penalty based methods that model sur-
face compliance during contact [4]. In this chapter, we focus on a minimal coordinate
formulation of the complementarity approach for contact and collision dynamics for
multi-link systems. This chapter builds upon the operational space formulation for
contact and collision dynamics described in reference [5] and adopts the linear com-
plementarity based physics models from [2, 3].
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Fig. 5.1 An example
multi-arm robot manipulation
task involving unmounting a
wheel from a hub involving
several contact and collision
dynamics interaction events

Generally, the complementarity based solution consists of a combination of: (a)
setting up a linear complementarity problem (LCP) problem; (b) numerically solv-
ing the LCP; and (c) ancillary dynamics computations. The LCP takes into account
the link mass and inertia properties, contact friction parameters, inter-link bilateral
constraints and contact and collision unilateral constraints. The LCP solution iden-
tifies the unilateral constraints that are active, and solves for the impulsive forces
and velocity changes that are consistent with the constraints on the system. Vari-
ants of the complementarity approach to handle elastic and inelastic collisions have
also been developed [3]. While LCP formulations use discretized approximations for
the friction cones, other researchers have explored non-linear cone complementarity
approaches that avoid such approximations [6, 7].

The typical approach to handling contact and collision dynamics is to work with
non-minimal coordinates, since the LCP is simpler to set up [3]. For a multi-link
system with n links, the LCP involves 6n non-minimal coordinates, together with
the bilateral constraints associated with the inter-link hinges in this approach. The
mass matrix is block diagonal and constant. However, the LCP dimension is large and
computationally expensive to solve. In addition, these formulations require additional
measures for managing error drift in the bilateral constraints when propagating the
system dynamics state.

An alternative approach is to use minimal hinge coordinates [8]. While the under-
lying physics remains unchanged, due to the much smaller number of generalized
coordinates, the size of the dynamics model is much smaller. As a consequence the
size of the LCP problem is reduced. Also, the bilateral constraints for the inter-link
hinges are eliminated along with the need to manage their constraint violation errors.
However, the use of minimal coordinates does lead to dense and configuration depen-
dent mass matrices. Thus while minimal coordinates lead to smaller LCP problems,
they also significantly increase the difficulty and computational cost of setting up the
LCP. This has been a significant hurdle in the use of minimal coordinate approaches.

In this chapter1 we explore a progression of minimal coordinate formulations that
partition the overall solution effort in different ways between setting up the LCP, and

1 This research on minimal coordinate contact dynamics has also been reported in a recent conference
paper [9].
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solving it. Our goal is to reduce the overall computational cost by (a) taking advantage
of the smaller dimension of minimal coordinate models, and (b) exploiting the host
of structure based, and low-order dynamics algorithms that are available for minimal
coordinate dynamics models. Notable examples of such structure based algorithms
include the composite rigid body algorithms for computing the mass matrix [10], the
articulated body inertia forward dynamics algorithm [11] and the spatial operator
based operational space dynamics algorithm [12].

The main contribution of this chapter is in the development of an operational space
based OS formulation, that uses minimal coordinates for the contact and collision
dynamics problem, together with low-order spatial operator algorithms to reduce the
cost of setting up the LCP. This results in a more than an order of magnitude reduc-
tion in computational cost. The size of the resulting LCP problem is independent of
the number of links and generalized coordinates, and only depends on the number of
contact nodes. We also describe extensions of the formulation to handle elastic and
inelastic collision dynamics. The formulation is developed in progressive steps to
clarify the trade offs and relationships among the methods. We use a multi-link pen-
dulum numerical problem to quantitatively measure the performance improvements
from the new OS formulation. A dual-arm robot system is used as a reference system
to compare the LCP sizes for the different formulations discussed in this article.

The organization of this chapter is as follows. Section 5.2 describes the comple-
mentarity conditions associated with modeling a single unilateral contact constraint.
Section 5.3 describes a system-level, multiple contacts NMC LCP formulation based
on non-minimal coordinates. This formulation is easy to set up, but leads to a large
LCP. Section 5.4 develops an alternative MC formulation that uses minimal coordi-
nates. The reduction in the size of the LCP is however accompanied by an increase in
the cost of setting up the LCP. Section 5.5 uses the MC LCP formulation to develop
the RMC formulation that further reduces the size of the LCP problem, but once
again at the cost of a further increase in the LCP setup cost. Section 5.6 finally
develops the OS formulation that is based on an operational space approach. While
this LCP’s size is moderately larger than the RMC LCP, it is able to use low-order
operational space algorithms to significantly reduce the LCP setup cost. Section 5.7
extends the OS formulation contact dynamics model to include elastic and inelastic
collision dynamics. Section 5.8 focuses on computational issues, and describes the
operational space computational algorithms to reduce the cost of setting up the OS
LCP problem. The section also presents numerical simulation results to quantify the
performance improvements for the OS formulation.

5.2 Unilateral Contact Constraints

Unilateral constraints are defined by inequality relationships of the form

d(θ, t) ∈ 0 (5.1)
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for some function d of the configuration coordinates θ and time t . As an example, the
non-penetration condition for rigid bodies can be stated as an inequality relationship
requiring that the distance between the surfaces of rigid bodies be non-negative.
d(θ, t) is generally referred to as the distance or gap function.

Contact occurs at the constraint boundary, i.e., when d(θ, t) = 0. For bodies in
contact, the surface normals at the contact point are parallel. The existence of contact
is typically determined using geometric or collision detection techniques. For a pair
of bodies A and B in contact, we use a convention where the i th contact normal
n̂(i) is defined as pointing from body B towards body A, so that motion of A in the
direction of the normal leads to a separation of the bodies. A unilateral constraint is
said to be in an active state when

d(θ, t) = ḋ(θ, t) = d̈(θ, t) = 0 (5.2)

Thus, a unilateral constraint is active when there is contact, and the contact persists.
Only active constraints generate constraint forces on the system. A constraint that is
not active is said to be inactive. Contact separation occurs when the relative linear
velocity of the contact points along the normal becomes positive and the contact
points drift apart. A separating constraint is in the process of losing contact and
transitioning to an inactive state. At the start of a separation event, we have

d(θ, t) = ḋ(θ, t) = 0 and d̈(θ, t) > 0 (5.3)

5.2.1 Contact Impulse for an Active Contact Constraint

We now describe contact force modeling using the approach in references [2, 3].
The 6-dimensional spatial impulse at the i th active contact constraint node has a zero
angular moment component. Its non-zero linear impulse component Fu(i) ∗ R3 can
be decomposed into normal and tangential (friction impulse) components

Fu(i) = Fn(i)n̂(i) + Ft (i)t̂(i) (5.4)

where t̂(i) denotes a tangent plane vector for the i th contact pair. Assuming that
the friction coefficient is μ(i), the magnitude of the tangential Coulomb frictional
impulse is bounded by the magnitude of the normal component as follows:

⇒Ft (i)⇒ ≡ μ(i)Fn(i) (5.5)

When the bodies have non-zero relative linear velocities at the contact point, the
contact is said to be a sliding contact. Otherwise, when the relative linear velocity is
zero, the contact is said to be a rolling contact. During sliding, the tangential frictional
impulse is in a direction opposing the linear velocity vector (which necessarily lies
in the contact tangent plane) and Eq. 5.5 holds with an equality. Thus, the tangential
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Fig. 5.2 Polyhedral
approximation of the friction
cone

polyhedral
approximation

direction
vectors

friction impulse is on the boundary of the cone defined by Eq. 5.5 when sliding, and
in the interior of the cone when rolling.

For the purpose of numerical computation, the friction cone at the i th contact
is approximated by a friction polyhedron consisting of a finite number, nf , of unit
direction vectors d̂ j (i) in the tangent plane (see Fig. 5.2). It is assumed that for
each direction vector, its opposite direction vector is also in the set. For notational
simplicity, we assume that nf is the same across all contact points. The i th contact
tangential frictional impulse is expressed as the linear combination of these direction
vectors as follows:

Ft (i)t̂(i) =
nf∑
j=1

δ j (i)d̂ j (i) = D(i)δ(i) (5.6)

where

D(i)
∇=
⎧
d̂1(i), · · · , d̂nf (i)

⎪
∗ R3×nf and δ(i)

∇= col
⎨
δ j (i)

⎩nf
j=1 ∗ Rnf

Combining Eqs. 5.4 and 5.6 we have

Fu(i) = D(i)β(i), where β(i)
∇=
[

Fn(i)
δ(i)

]
∗ Rnf +1 (5.7)

and D(i)
∇= [

n̂(i), D(i)
] ∗ R3×(nf +1)

During sliding, the δ j (i) component is non-zero and equal to μ(i)Fn(i) for just the
single direction j that corresponds to the closest direction opposing the (tangential)
relative linear velocity. In other words, with π(i) denoting the magnitude of the
contact relative linear velocity,

δk(i) =
{

μ(i)Fn(i)1[k= j] if π(i) > 0
0 if π(i) = 0

(5.8)
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In the above,1[<cond>] denotes the indicator function whose value is 1 if the condition
is true, and 0 otherwise.

5.2.2 Complementarity Relationship for a Unilateral Contact

We begin by defining complementarity conditions. Let f (z) ∗ Rn denote a function
of a vector z ∗ Rn , whose zi elements have lower and upper bounds li and ui

respectively. The complementarity condition, f (z) ⊗ z, is said to hold when the
following properties apply:

• fi (z) ∈ 0 when zi = li
• fi (z) ≡ 0 when zi = ui

• fi (z) = 0 when li < zi < ui

Typically the bounds are li = 0 and ui = →, and we will assume this to be the
case unless otherwise stated. For these bounds, the elements of f (z) and z are non-
negative, and the complementarity condition requires that for any i , only one of
fi or zi can be positive. A complementarity condition is a linear complementarity
condition when f (z) has the form Mz + q ⊗ z for some matrix M and vector q.
Thus for an LCP

M z + q ⊗ z (5.9)

We have a mixed complementarity condition when one or more of the rows of f (z)
are exactly equal to zero, i.e. the bounds for one or more of the rows are li = −→
and ui = →. Such identically zero rows represent equality conditions while the rest
represent are complementarity (inequality) conditions.

The sliding/rolling contact relationships described above can be rephrased as the
following complementarity conditions2:

n̂∗(i)v+
u (i) ⊗ Fn(i) (separation) (5.10a)

π(i)E(i) + D∗(i)v+
u (i) ⊗ δ(i) ( f r iction f orce direction) (5.10b)

μ(i)Fn(i) − E∗(i)δ(i) ⊗ π(i) ( f r iction f orce magnitude) (5.10c)

where

E(i)
∇= col {1}nf

j=1 ∗ Rnf (5.11)

and v+
u (i) ∗ R3 denotes the relative linear velocity of the contact node on the first

body A with respect to the contact node on the second body B. The component of

2 For a vector/matrix A, the A∗ notation denotes its vector/matrix transpose.
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this relative linear velocity along the contact normal is, n̂∗(i)v+
u (i). A positive value

implies increasing separation between the bodies, while a negative value indicates
that the bodies are approaching each other. Equation 5.10a states that this velocity
component and the normal interaction impulse Fn(i) cannot both be simultaneously
positive. Thus the interaction impulse must be zero when the bodies are separating,
and the impulse can be non-zero only if we have sustained contact. Equation 5.10b
implies that the tangential friction impulse opposes the tangential relative linear
velocity, while Eq. 5.10c states that the magnitude of the tangential impulse is on the
friction cone boundary when the the tangential relative linear velocity is non-zero.

The complementarity conditions in Eq. (5.10a), (5.10b), (5.10c) enforce the no
inter-penetration constraint at the velocity level instead of at the gap level. Hence
they are valid only when the gap is zero, i.e., when contact exists [3]. Using Eqs. 5.7
and (5.10a), (5.10b), (5.10c) can be expressed more compactly as

Ê(i)π (i) + D∗(i)v+
u (i) ⊗ β(i) (5.12)

Ē(i)β(i) ⊗ π(i)

where

Ê(i)
∇=
[

0
E(i)

]
∗ R(nf +1) (5.13)

and Ē(i)
∇= [

μ(i), −E∗(i)
] ∗ R1×(nf +1)

With nu denoting the number of unilateral contact nodes, the component level com-
plementarity conditions in Eq. 5.12 can be aggregated across all the contact con-
straints and expressed at the system level as:

Êσ + D∗v+
u ⊗ β and Ēβ ⊗ σ (5.14)

where

β
∇= col

⎡
β(i)

⎣nu

i=1
∗ Rnu(nf +1)

σ
∇= col {π(i)}nu

i=1 ∗ Rnu

D
∇= diag {D(i)}nu

i=1 ∗ R3nu×nu(nf +1)

Ê
∇= diag

⎡
Ê(i)

⎣nu

i=1
∗ Rnu(nf +1)×nu (5.15)

Ē
∇= diag

⎨
Ē(i)

⎩nu

i=1 ∗ Rnu×nu(nf +1)

v+
u

∇= col
⎨
v+

u (i)
⎩nu

i=1 ∗ R3nu
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Also, Eq. 5.7 can be restated at the system level as

Fu = Dβ where Fu
∇= col {Fu(i)}nu

i=1 ∗ R3nu (5.16)

5.3 Non-minimal Coordinates LCP Formulation

In this section we derive the commonly used non-minimal coordinate LCP formula-
tion for contact dynamics based on the approach in [3]. We refer to this formulation
as the non-minimal coordinates (NMC) formulation.

Contact and collision dynamics models build upon smooth dynamics models. The
smooth dynamics model used by the NMC method treats all the links in the system as
independent bodies, and all coupling hinges as explicit bilateral constraints as illus-
trated in Fig. 5.3. Such a smooth dynamics model utilizes non-minimal coordinates
and is also referred to as a fully augmented (FA) model [13].

Let n denote the number of links in the system, and N the number of system
degrees of freedom in the absence of bilateral constraints. For the FA modelN = 6n.
Let nb denote the dimension of the bilateral constraints arising from inter-link hinges
and loop closure constraints on the system. With x denoting the vector of positional
and attitude coordinates for the links, let V ∗ R6n denote the stacked vector of
spatial velocities of all the links. Then there exists a Gb(x, t) ∗ Rnb×6n matrix and
a U(t) ∗ Rnb vector that defines the following velocity domain constraint equation
for the bilateral constraints on the system:

Gb(x, t)V = U(t) (5.17)

We assume that Gb(x, t) is a full-rank matrix. Observe that Eq. 5.17 is linear in
V . The bilateral constraints effectively reduce the independent degrees of freedom
for the system from N to (N − nb). The bilateral constraints are accounted for via
Lagrange multipliers, κ ∗ Rnb to yield the following smooth equations of motion
for the system

Mρ − G∗
b(x, t)κ = C(x,V) (5.18)

Gb(x, t)V = U(t)

where ρ ∗ R6n denotes the spatial acceleration of the bodies. M ∗ R6n×6n is a
block diagonal matrix with the 6 × 6 spatial inertias of each of the links along the
diagonal. C ∗ R6n is a vector of the velocity dependent Coriolis and external forces
on the system. The −G∗

b(x, t)κ term in the first equation represents the constraint
forces from the bilateral constraints. Differentiating the Eq. 5.17 constraint equation,
Eq. 5.18 can be rearranged into the following descriptor form:
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Fig. 5.3 Fully augmented
model with hinges modeled as
constraints

bilateral
constraints

(M −G∗
b

Gb 0

⎜[
ρ

κ

]
=
[

C
Ū

]
where Ū

∇= U̇ − ĠbV ∗ Rnb (5.19)

An attractive feature of these smooth equations of motion is that theMmatrix is block
diagonal and constant. Using the following discrete time Euler step approximation
over a Πt time interval,3

V+ − V− = ρΠt and pb
∇= κΠt ∗ Rnb (5.20)

the differential form of the equations of motion in Eq. 5.19 can be transformed into
the following discretized version that maps the pb impulse stacked vector at the
bilateral constraint nodes into the resulting change in body spatial velocities.

(M −G∗
b

Gb 0

⎜[V+ − V−
pb

]
=
[

CΠt

ŪΠt

]
(5.21)

5.3.1 Including Contact Impulses

The stacked vector of relative linear velocities across the contact nodes is denoted
vu ∗ R3nu . It is related to the stacked vector of body spatial velocities V via the
following relationship

vu = GuV (5.22)

where the Gu ∗ R3nu×6n matrix contains one block-row per contact node-pair, with
each row mapping the spatial velocities for a node pair into the relative linear velocity
across the contact. The Gu matrix also relates the Fu equal and opposite impulses at
the contact node-pairs to the corresponding spatial impulses on the bodies, pu ∗ R6n

via the following dual mapping

3 The − and + superscripts denote the respective value of a quantity just before and after the
application of an impulse.
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pu = G∗
u Fu (5.23)

The pu contact impulses can be included in the Eq. 5.21 smooth equations of motion
by adding pu to the CΠt term to obtain

(M −G∗
b

Gb 0

⎜[V+ − V−
pb

]
=
[

CΠt + pu

ŪΠt

]
(5.24)

5.3.2 Assembling the System LCP

We now set up an LCP to help solve the equations of motion and the unknown
constraint forces. From Eqs. 5.16 to 5.23 we have

Fu = Dβ √ pu = G∗
u Dβ (5.25)

Thus Eq. 5.24 can be recast as

(M −G∗
b −G∗

u D
Gb 0 0

⎜⎤
⎦V

+ − V−
pb
β

⎟
 =

[
CΠt

ŪΠt

]
(5.26)

Combining this with the complementarity conditions in Eq. 5.14 leads to the follow-
ing NMC formulation of the LCP in Eq. 5.9:

M
∇=




M −G∗
b −G∗

u D 0
Gb 0 0 0

D∗Gu 0 0 Ê
0 0 Ē 0


⎛⎛⎝ , z

∇=

⎤
⎞⎞⎦
V+
pb

β

σ

⎟
⎠⎠ , q

∇=

⎤
⎞⎞⎦

−MV− − CΠt

−GbV− − ŪΠt

0
0

⎟
⎠⎠

(5.27)

This is a mixed LCP problem, where the first two rows are equality conditions, while
the lower two rows are complementarity conditions. This NMC LCP formulation is
essentially the one described in [3]. It makes use of non-minimal coordinates for the
articulated system and is of size (6n + nb + nu(nf + 2)). The constant and block-
diagonal structure of M results in M having a simple and highly sparse structure.
The complexity of assembling M and q for the LCP is just O(n). Reference [3]
derives sufficient conditions for the existence of a solution for the LCP problem.

The solution of the Eq. 5.27 LCP provides newV+ velocity coordinates which can
be numerically integrated to propagate the x configuration coordinates. The solution
values of β indicate which contacts are active or inactive, while the values of σ define
the rolling or sliding state of each of the active contacts. Thus an LCP solution with
Fu(i) positive indicates that the i th contact is active. Furthermore, π(i) = 0 implies
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that the i th contact is a rolling contact while a positive value implies that it is a sliding
contact.

In the NMC formulation, most of the computational effort involves solving the
LCP, while the cost of setting up the LCP is relative low. The main disadvantage of
this formulation is the large size of the LCP and the consequent large cost for solving
it. Moreover, the use of non-minimal coordinates mandates the additional use of
constraint error stabilization schemes to avoid the build up of constraint violation
errors for the bilateral constraints.

We will use the dual-arm robot in Fig. 5.1 to track and compare the LCP size for
this formulation and the ones to follow. This dual-arm platform has a 4 link sensor
head, a pair of 7 link arms, with each arm having a 3 finger hand for an overall system
with 26 links and 26 degrees of freedom. It has no loop closure bilateral constraints.
Thus n = 26, N = 6n = 156, and nb = 5n = 130. For this exercise we assume that
nf = 4, and that there are 4 contact constraints. With these parameters, the size of
the NMC LCP is 310 for the dual-arm system. The statistics for the NMC scheme
are also summarized in the first column of Table 5.1 in Sect. 5.6.

5.4 Minimal Coordinate LCP Formulation

In contrast with the NMC formulation, in the minimal coordinates (MC) formulation,
inter-link hinges are not modeled as bilateral constraints. Instead, minimal hinge
coordinates are used to parameterize the permissible hinge motion. In doing so, the
number of coordinates associated with the hinge match the number of degrees of
freedom for the hinge. This approach is used for all the hinges in a spanning tree for
the system graph, and bilateral constraints are used only for additional loop closures
that may be present in the system topology as illustrated in Fig. 5.4.

Except for the switch from non-minimal to minimal coordinates, the develop-
ment of the MC formulation largely parallels that for the NMC formulation. Hence
wherever possible, we reuse the earlier notation, with the understanding that the
meaning of each symbol depends on the formulation context. Thus once again, we
use N to denote the number of degrees of freedom for the tree sub-system. With
θ ∗ RN denoting the vector of hinge coordinates, the minimal coordinates equa-
tions of motion for the smooth dynamics of just the tree-topology sub-system can be
expressed as

M(θ)θ̈ + C(θ, θ̇) = T (5.28)

where the configuration dependent matrix M(θ) ∗ RN×N is the mass matrix of the
system, C(θ, θ̇) ∗ RN denotes the velocity dependent Coriolis and gyroscopic forces
vector, and T ∗ RN denotes the applied generalized forces. The mass matrix is sym-
metric and positive-definite for tree-topology systems. The configuration dependency
and dense structure of M makes it clearly more complex than the sparse structure
and constant value of the M mass matrix in the NMC formulation. On the other
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Fig. 5.4 Tree augmented
model with only loop
closures modeled as bilateral
constraints

bilateral
constraint

hand, for the dual-arm robot system in Fig. 5.1, M is a compact 26-dimensional
square matrix compared with the 156-dimensional square matrix M.

Let nb denote the dimension of the bilateral constraints on the system arising from
loop closures in the system. Since nb applies only to loop bilateral constraints, it is
much smaller than nb in the NMC formulation. There exists a Gb(θ, t) ∗ Rnb×N
matrix and a U(t) ∗ Rnb vector that defines the velocity domain loop closure con-
straint equation as follows:

Gb(θ, t)θ̇ = U(t) (5.29)

Once again we assume that Gb(θ, t) is a full-rank matrix.
The smooth dynamics of closed-chain systems can be obtained by modifying the

tree system dynamics in Eq. 5.28 to include the effect of the bilateral constraints via
Lagrange multipliers, κ ∗ Rnb , as follows

M(θ)θ̈ + C(θ, θ̇) − G∗
b(θ, t)κ = T (5.30)

Gb(θ, t)θ̇ = U(t)

By differentiating the bilateral constraint equation (Eq. 5.29), and including in the
average force from the pu ∗ RN contact impulse, Eq. 5.30 can be rearranged into
the following descriptor form:

(M −G∗
b

Gb 0

⎜[
θ̈
κ

]
=
[T − C + pu/Πt

Ū

]
where Ū

∇= U̇(t) − Ġbθ̇ ∗ Rnc

(5.31)
Using the discrete Euler step approximation

θ̇
+ − θ̇

− = θ̈Πt (5.32)

the discretized version of Eq. 5.31 takes the form
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(M −G∗
b

Gb 0

⎜[
θ̇
+ − θ̇

−
pb

]
=
[
(T − C)Πt + pu

ŪΠt

]
with pb

∇= κΠt (5.33)

With Gu ∗ R3nu×N such that

vu = Gu θ̇ (5.34)

the dual expression for the contact spatial impulses is given by

pu = G∗
u Fu

5.16= G∗
u Dβ (5.35)

Combining the complementarity conditions in Eqs. 5.14 with 5.33 leads to the MC
formulation version of the Eq. 5.9 LCP with

M
∇=




M −G∗
b −G∗

u D 0
Gb 0 0 0

D∗Gu 0 0 Ê
0 0 Ē 0


⎛⎛⎝ (5.36)

and z
∇=

⎤
⎞⎞⎦

θ̇
+

pb

β

σ

⎟
⎠⎠ , q

∇=

⎤
⎞⎞⎦

−Mθ̇
− − (T − C)Πt

−Gbθ̇
− − ŪΠt

0
0

⎟
⎠⎠

This is a mixed LCP with the top two rows correspond to equality conditions while the
lower two are complementarity conditions. Its structure is very similar to the NMC
formulation LCP in Eq. 5.27 and differs primarily in the use of minimal coordinates.
The size of the MC LCP is (N + nb + nu(nf + 2)). Unlike the NMC formulation,
this dimension does not depend on the number of links n. Since N is much smaller
when using minimal coordinates, the MC LCP size is much smaller than the NMC
LCP size. For the dual arm robot in Fig. 5.1, the dimension of the MC LCP is just 50
compared with 310 for the NCP formulation.

On the other hand, evaluating M for the MC LCP requires the configuration
dependent and dense M mass matrix. While the composite rigid body inertia algo-
rithm provides an efficient way to compute M [10], the computational cost scales as
O(N 2). Thus the decrease in the LCP size and solution cost for the MC formulation
is traded off for an increase in the cost of setting up the LCP. The computational
complexity for the MC formulation is summarized in Table 5.1. The solution of the
MC LCP yields the new θ̇

+ generalized velocity value which can be integrated to
propagate the θ configuration coordinates. As in the case of the NMC formulation,
the bulk of the computational effort in the MC formulation is in setting up and solving
the LCP problem.
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5.5 Reduced Minimal Coordinate LCP Formulation

Continuing with the minimal coordinate approach, we now take further steps to
reduce the size of the LCP problem. The matrix on the left of Eq. 5.31 can be inverted
to yield the following solution for θ̈:

θ̈ f
∇= M−1 [T − C + pu/Πt ] (5.37a)

κ =
⎧
GbM−1G∗

b

⎪−1
(−Gbθ̈ f + Ū) (5.37b)

θ̈ = θ̈ f + M−1G∗
b κ

5.37b=
[

I − M−1G∗
b

⎧
GbM−1G∗

b

⎪−1
Gb

]
θ̈ f

+ M−1G∗
b

⎧
GbM−1G∗

b

⎪−1
Ū (5.37c)

Using Eq. 5.32, we obtain

θ̇
+ 5.32= θ̇

− + θ̈Πt

5.37c= θ̇
− +

[
I − M−1G∗

b

⎧
GbM−1G∗

b

⎪−1
Gb

]
Πt θ̈ f (5.38)

+ M−1G∗
b

⎧
GbM−1G∗

b

⎪−1
Πt Ū

5.37a= Y pu + X

where

Y
∇= M−1 − M−1G∗

b(GbM−1G∗
b)

−1GbM−1 ∗ RN×N (5.39)

and X
∇= θ̇

− + Y (T − C)Πt + M−1G∗
b

⎧
GbM−1G∗

b

⎪−1
ŪΠt ∗ RN

Thus

D∗v+
u

5.34= D∗Gu θ̇
+ 5.35,5.38= D∗GuY G∗

u D β + D∗Gu X (5.40)

Using this allows us to eliminate θ̇
+ and pb from the MC LCP formulation in Eq. 5.36

to obtain the following Reduced Minimal Coordinate (RMC) formulation LCP:

M
∇=
(

D∗GuY G∗
u D Ê

Ē 0

⎜
, z

∇=
[
β

σ

]
, q

∇=
[

D∗Gu X
0

]
(5.41)
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Since there are no equality conditions, this is a standard rather than a mixed LCP.
The size of this RMC LCP is nu(nf + 2). It is notable that the size of the LCP
does not depend on the number of links n, the number of degrees of freedom N ,
nor the nb dimension of the bilateral constraints. It only depends on the number of
contact constraint nodes. Thus the dimension of this LCP is even smaller than that
for the MC formulation. For the dual arm robot system, the dimension of the LCP
is 24. On the other hand, computing M for the RMC LCP requires the Y matrix
in Eq. 5.39, which requires the configuration dependent M−1 matrix and several
expensive matrix/matrix products. These computations are of O(N 3) computational
complexity. Once again, while the RMC formulation successfully reduces the LCP
size and consequently its solution cost, this reduction is accompanied by a significant
increase in the cost of setting up the LCP. The computational complexity for the RMC
formulation is summarized in Table 5.1.

In contrast with the NMC and MC formulations, the solution of the RMC LCP does
not by itself yield the new system velocity or state. Instead the following sequence
of steps is needed to obtain the new state values:

1. Assemble and solve the RMC LCP in Eq. 5.41 to obtain β and σ. Use β in Eq. 5.35
to obtain the pu contact impulse vector.

2. Use pu in Eq. 5.38 to compute the new θ̇
+ system velocity. This can be integrated

to obtain the new system configuration coordinates θ.

Thus, the RMC LCP by itself does not do all the work, and the additional step (2)
is needed to complete the computation of the new θ̇

+ system velocity coordinates.
The formulation developed by Trinkle [2] is a hybrid combination of the NMC

and RMC formulations. Trinkle’s setup allows the use of general coordinates for
describing the smooth equations of motion. However, instead of eliminating the
hinge bilateral constraints by using minimal hinge coordinates a pair of symmetric
(positive and negative) complementarity conditions are added to enforce the equality
condition for each hinge constraint. This inflates the size of the LCP much like the
NMC approach. However, Trinkle;s approach is similar to the RMC in eliminating
the velocity coordinates and the loop closure bilateral constraint Lagrange multipliers
from the LCP problem to obtain an LCP similar in form to Eq. 5.41.

5.6 Operational Space LCP Formulation

So far we have found that the reductions in LCP size have the side-effect of increasing
the LCP setup cost. In this section we look into reducing such setup cost using low-
order structure-based dynamics algorithms. Using

θ̈ f
∇= M−1 [T − C] and ε

f
b

∇= GbM−1(T − C) − Ū = Gbθ̈ f − Ū (5.42)

in Eq. 5.31, we obtain
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0
5.29= Gbθ̈ − Ū

5.31= GbM−1 [T − C + G∗
bκ + pu/Πt

]− Ū

= GbM−1G∗
bκ + GbM−1 pu/Πt + ε

f
b (5.43)

5.35= GbM−1G∗
bκ + GbM−1G∗

u Dβ/Πt + ε
f

b

The above expression characterizes the equality condition on the dynamics from
the bilateral constraints. Observe that θ̈ f represents the generalized acceleration
that would occur in the absence of the bilateral and contact constraints, and can be
regarded as the free generalized acceleration for the system. For this hypothetical
free system, ε f

b represents the time derivative of the velocity residual Gbθ̇−U(t) for
the bilateral constraints. For θ̇ consistent with the constraints, clearly this velocity
residual is instantaneously zero, but it has the ε

f
b non-zero time derivative were

the system dynamics to evolve according to the free dynamics. In reality, the system
dynamics is constrained and this velocity residual and its time derivative remain zero.

The relative linear acceleration of the contact nodes is obtained by differentiating
Eq. 5.34 to obtain

v̇u = Gu θ̈ + Ġu θ̇
5.31= GuM−1 [T − C + G∗

bκ + pu/Πt
]+ Ġu θ̇ (5.44)

With

ε
f

u
∇= GuM−1(T − C) + Ġu θ̇ = Gu θ̈ f + Ġu θ̇ (5.45)

the discretized approximation (v+
u − v−

u ) = v̇uΠt of Eq. 5.44 leads to

v+
u

5.35, 5.44= GuM−1G∗
bκΠt + GuM−1G∗

u D β + v−
u + ε

f
u Πt (5.46)

Physically, ε f
u is the time derivative of the contact relative velocity v−

u were the system
to evolve in accordance with the free dynamics, i.e. in the absence of the bilateral
and contact constraints. Combining the complementarity conditions in Eq. 5.14 with
Eqs. 5.43 and 5.46 yields the following mixed LCP for the system:

M
∇=

 GbM−1G∗

b GbM−1G∗
u D 0

D∗GuM−1G∗
b D∗GuM−1G∗

u D Ê
0 Ē 0


⎝ (5.47)
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and z
∇=
⎤
⎦pb

β

σ

⎟
 , q

∇=
⎤
⎞⎦

ε
f

b Πt

D∗(v−
u + ε

f
u Πt )

0

⎟
⎠

This M matrix still requires the configuration dependent M−1 matrix whose eval-
uation if of O(N 3) computational complexity. We next look more closely at the
structure of the Gu and Gb matrices.

The unilateral and bilateral constraints are associated with nodes on the bodies.
Let us denote the number of this overall set of nodes involved in the unilateral
and bilateral constraints as nc. Denoting the spatial velocities of these nodes by the
stacked vector Vc ∗ R6nc , there exist matrices Qu ∗ R3nu×6nc and Qb ∗ Rnb×6nc

such that the unilateral and bilateral velocity constraint equations can be expressed
as4

vu = QuVc and QbVc = U (5.48)

Let J ∗ R6nc×N denote the Jacobian for the constraint nodes, so that

Vc = J θ̇ (5.49)

It follows from Eqs. 5.29, 5.34, 5.48 and 5.49 that Gu and Gb have the following
form:

Gu = QuJ and Gb = QbJ (5.50)

With
∂

∇= JM−1J ∗ ∗ R6nc×6nc (5.51)

we can use Eq. 5.50 to re-express M in Eq. 5.47 as

M =

 Qb∂Q∗

b Qb∂Q∗
u D 0

D∗Qu∂Q∗
b D∗Qu∂Q∗

u D Ê
0 Ē 0


⎝ =



[ Qb

D∗Qu

]
∂
[Q∗

b, Q∗
u D
] 0

Ê
0 Ē 0


⎝

(5.52)
The ∂ = JM−1J ∗ matrix definition in Eq. 5.51 is precisely the mathematical
expression for the inverse of the operational space inertia matrix that is used in the
operational space approach for robot manipulation and control [14, 15]. Based on this
structural similarity, we borrow and extend the operational space terminology to our
current context with the constraint nodes forming the operational space nodes. Also,
borrowing terminology, we refer to ∂ as the operational space compliance matrix
(OSCM) matrix. The invertibility of ∂ does not depend on J being invertible—only

4 Qu has the same structure as would the Qb constraint mapping matrix corresponding to bilateral
constraints involving three degree of freedom spherical hinges.
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that J have full row-rank. When it exists, the inverse of ∂ is referred to as the
operational space inertia. The properties of the OSCM are discussed in detail in
[12].

The property of the ∂ matrix that is of importance for us is the availability of
algorithms of O(N ) + O(n2

c) computational complexity for evaluating ∂ [12, 16].
The low-order of these algorithms is remarkable given the presence of M−1 in the
expression for ∂, since evaluating M and M−1 individually require O(N 2) and
O(N 3) computations respectively. This algorithm reduces the complexity of evalu-
ating M in Eq. 5.52 from O(N 3) to the much smaller O(N )+ O(n2

c) computational
complexity. The low complexity algorithm for evaluating ∂ is based on an analytical
transformation of Eq. 5.51, followed by a disjoint decomposition of the matrix into
block diagonal, and upper and lower triangular components that can be computed
recursively. A summary of this structure-based analysis and accompanying algo-
rithms using spatial operator techniques is described in the appendix. An alternative
sparsity based technique for evaluating ∂ is described in reference [17].

Using Eq. 5.52 the Eq. 5.47 LCP can be re-expressed as the following Operational
Space (OS) formulation LCP:

M
∇=


[ Qb

D∗Qu

]
∂
[Q∗

b, Q∗
u D
] 0

Ê
0 Ē 0


⎝ (5.53)

and z
∇=
⎤
⎦pb

β

σ

⎟
 , q

∇=
⎤
⎞⎦

ε
f

b Πt

D∗(v−
u + ε

f
u Πt )

0

⎟
⎠

This is a mixed LCP, with the first row corresponding to an equality condition while
the bottom two rows correspond to complementarity conditions. The size of this
LCP is (nb + nu(nf + 2)). Like the RMC formulation, the size of this LCP does not
depend on the number of links n or the number of degrees of freedom N , but it does
depend on the nb dimension of the loop closure bilateral constraints. The dimension
of the OS LCP is moderately larger than the RMC LCP but smaller than the MC
LCP. Typically, Q̇u , Q̇b and U̇ are all zero leading to a simpler q in Eq. 5.53. For the
dual arm robot system, the dimension of the OS LCP is 24.

Computing M for the OS LCP requires the configuration dependent ∂ matrix
Eq. 5.53 whose evaluation is of O(N ) + O(n2

c) computational complexity which is
much smaller than the O(N 3) complexity for evaluating M for the RMC method.
Thus in comparison with the RMC formulation, while the OS formulation increases
the size of the LCP by a modest nb, it drastically reduces the LCP setup complexity.
The result is a significant reduction in the overall complexity of the contact dynamics
computations for the OS formulation.

Like the RMC formulations, the solution of the LCP does not by itself yield the
new system velocity or state. Instead the following sequence of steps is needed to
obtain the new state values:
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Table 5.1 A comparison of the features of the different NMC, MC, RMC and OS formulations for
contact and collision dynamics

Property LCP Formulation
NMC MC RMC OS

Coordinates type Non-minimal Minimal Minimal Minimal
LCP assembly
complexity

O(n) O(N 2) O(N 3) O(N ) +
O(n2

c)

LCP dimension
6n + nb +
nu(nf + 2)

N + nb + nu(nf + 2) nu(nf + 2) nb +
nu(nf + 2)

Dual-arm LCP
dimension

310 50 24 24

Ancillary
dynamics steps

None None Evaluate pu and θ̇
+ Evaluate pu

and θ̇
+

The LCP dimension size is for the reference dual-arm robot problem, while the LCP assembly
complexity highlights just the major contributors

1. Assemble and solve the OS LCP in Eq. 5.53 to obtain pb, β and σ. Use β in
5.35 to obtain the pu contact impulse vector.

2. Use κ = pb/Πt and pu in Eq. 5.31 to obtain and integrate the θ̈ generalized
acceleration over the Πt time interval using any smooth integrator to obtain
the new system state (θ, θ̇).

Like the RMC formulation, the LCP by itself does not do all the work in the OS
formulation, but instead the additional step (2) is needed to complete the computation
of the new θ̇

+ system velocity coordinates.
The LCP formulation developed in references [8, 18] make use of the divide and

conquer algorithm (DCA) [19] techniques and is a special case of the OS formulation.
Our OS formulation is more general since it handles loop closure bilateral constraints,
exploits operational space techniques to reduce computational complexity, and as
described later, handles collision dynamics.

Table 5.1 summarizes the dimensions and computational complexity for all the
formulations discussed so far. The trend across the NMC, MC and RMC formulations
is that the reduction in the size of the LCP shifts costs to the LCP setup process.
While the initial form of the OS formulation LCP in Eq. 5.47 also follows this trend,
the restructured Eq. 5.53 LCP breaks the pattern by restructuring the LCP to take
advantage of low-order, structure-based algorithms for the OSCM.

5.7 Collision Dynamics

In this section we develop extensions to the OS LCP formulation for handling the
dynamics of collision events. During inelastic collisions some of the impact energy
is lost. The coefficient of restitution, γ(i) defines the fraction that remains after a col-
lision. The complementarity approach to modeling collisions breaks up the collision
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event into a pair of instantaneous compression and decompression phases [3]. During
the compression phase, the collision impulse is stored, and during decompression, a
fraction of the collision impulse is recovered. We will make use of time discretized
equations with impulses developed for contact dynamics, but with Πt = 0 since
collision events are assumed to be instantaneous.

5.7.1 Compression

At the i th contact undergoing collision, the compression phase is instantaneous and
impulsively changes the relative linear contact velocity from v−

u (i) to a new v+
c (i)

value with a non-negative normal component. The compression impulse is denoted
pc(i). The mixed LCP problem for the compression phase is obtained by setting
Πt = 0 in Eq. 5.53 to obtain

w = Mz + q ⊗ z with q
∇=


[

0
D∗v−

u

]

0


⎝ (5.54)

The LCP solution is used to instantaneously (i.e. impulsively) propagate the state for
the compression phase as follows:

pc = Q∗
u D β + Q∗

b pb (5.55)

θ̇
c = θ̇

− + M−1J ∗ pc

v+
c = J θ̇

c

5.7.2 Decompression

The decompression phase applies an additional impulse of magnitude
γ(i)[0, n̂∗(i)pc(i)] for the i th contact along the normal from the impulse stored
during the compression phase. The recovered Ψ decompression impulse is

Ψ
∇= col

⎨⎭
γ(i)[0, n̂∗(i)]pc(i)

)
n̂(i)

⎩nu

i=1 ∗ R3nu (5.56)

The decompression LCP is obtained by updating Eqs. 5.43 and 5.44 to include the
additional Ψ impulse. This leads to a decompression LCP problem that is the mixed
LCP in Eq. 5.53 with Πt = 0, the contact linear velocity v−

u replaced with v+
c , and

an additional

[ Qb

D∗Qu

]
∂Q∗

uΨ term for the recovered impulse included in the q LCP

vector term. The resulting decompression phase LCP is
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w = Mz + q ⊗ z with q
∇=


[

0
D∗v+

c

]
+
[ Qb

D∗Qu

]
∂Q∗

uΨ

0


⎝ (5.57)

The LCP solution for the decompression impulse can include additional contact
impulse terms that ensure that the normal component of the relative linear velocity at
the end of the decompression step remains non-negative. The LCP solution is used
to instantaneously propagate the state for the decompression phase as follows:

p = Q∗
u D β + Q∗

bκ + Q∗
uΨ (5.58)

θ̇
+ = θ̇

c + M−1J ∗ p

when γ(i) = 0, the collision is completely inelastic, and there is no decompression
phase. However, in general, each collision event requires the solution of two LCP’s
in this approach.

5.8 Simulation Results

We use a simulation of a multi-link pendulum colliding with itself and the environ-
ment to quantitatively evaluate the performance of the OS formulation. This example
also allows us to parameterically measure the performance improvement as a func-
tion of the problem dimension by varying the number of links in the pendulum. The
environment consists of a floor and a wall located 4 m away. The multi-link pendu-
lum consists of n identical 1 kg mass spherical bodies connected with pin hinges.
The radius of the sphere is scaled based on the number of links to maintain a 12 m
overall length of the pendulum. The pendulum base is located at a height of 10 m.
The open source Bullet software [20] is used for collision detection, and the PATH
software [21] for solving mixed complementarity problems. The simulation uses a
time step of 1 ms, with a 0.5 coefficient of friction and a 0.5 coefficient of restitution
to simulate inelastic collisions. The pendulum starts at an angle of ζ/4 radians with
an initial angular velocity of 1 radian/s and a gravitational acceleration of 9.8 m/s2.

As the pendulum swings from left to right, it collides with the ground, bounces off
of the ground, and eventually collides with the wall on the right. In the course of the
sequence, multiple links are at times in collision with the ground, the wall and with
each other. Figure 5.5 contains a sequence of screen shots from such a simulation for
a 12-link pendulum. We have simulated this contact and collision dynamics scenario
using two different techniques. The first technique is the minimal coordinate OS
formulation described in Sect. 5.6.

The second technique, that we refer to as the NMC/OS formulation, is a non-
minimal coordinate variant of the OS formulation. Similar to the NMC method,
each link is treated as an independent body, and the hinges are handled as bilateral
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Fig. 5.5 Time series capture of swinging pendulum simulation with 12 links

constraints between the neighboring links with nb = 6n−N . The NMC/OS LCP has
the same form as the OS LCP in Eq. 5.53, except that the OSCM is the non-minimal
coordinate ∂ = JM−1J ∗, instead of Eq. 5.51. The NMC/OS ∂ is a much larger
matrix than for the OS formulation, but has a much simpler block diagonal structure.
However, the NMC/OS LCP does not include system velocity coordinates V in z and
thus is smaller than the NMC LCP.

Figure 5.6 shows example plots of the height and normal velocity of the last link of
the 12-body pendulum from the two simulation methods. The simulation results from
the two methods show good agreement through the first few collisions, with some
divergence during the later phases. Reasons for the divergence include the widely
differing choices of coordinates, and more importantly the The vertical spikes in
the velocity plot are discontinuous jumps from collisions involving the pendulum
bodies. The small trajectory differences in the plots decrease further when the time
step size is reduced.

Table 5.2 compares the computational cost of the OS and the NMC/OS formu-
lations for pendulums with the number of links varying between 3 and 30 links.
The table also lists the LCP size for the OS, NMC/OS and the NMC formulations.
The size of the LCP remains a constant value of 24 for the standard OS formulation
even when the number of links and degrees of freedom in the system is increased.
In contrast, the LCP size increases with the increase in the number of links and
degrees of freedom for the NMC/OS and the NMC formulations. We also observe
that the OS method is about 3.5 times faster for the 3 link pendulum case, and over 50
times faster for the 30 link pendulum when compared with the the NMC/OS method.
The performance gap widens substantially as the number of links in the system is
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Fig. 5.6 Comparisons of the height and normal velocity of the last link using the OS (red) and
NMC/OS (blue) formulation based simulations for a 12-body pendulum

Table 5.2 A comparison of the LCP size and computational time for the OS and NMC/OS formu-
lations for the multi-link pendulum example with different number of links

Number of links LCP size Computation time (s)
OS NMC/OS NMC OS NMC/OS Speed up

3 24 39 57 0.63 2.20 3.5
6 24 54 90 1.0 4.44 4.44
12 24 84 156 1.88 15.7 8.36
15 24 99 189 2.91 33.59 11.5
24 24 144 288 4.76 127.94 26.88
30 24 174 354 5.13 257.72 50.28

The LCP size assumes 4 contacts and nf = 4. The three LCP size columns are for the OS, the
NMC/OS and the NMC formulations. The speed up value is the ratio of the NMC/OS to the OS
formulation simulation times

increased. The performance gap between the OS and NMC formulations will be even
greater due to the even larger size of the NMC LCP.

5.9 Conclusions

In this article we have described a progressive series of formulations for solving
the contact and collision dynamics of multi-link articulated systems with the goal
of reducing computational cost. Along the way, we have clarified the relationships
among the different approaches and those in the literature. Our strategy has been
to use minimal coordinates and identify formulations that best exploit the available
low-order structure based dynamics algorithms to reduce the overall computational
cost.

The formulations studied here vary in the size of the LCP, the cost of setting up the
LCP, and the ancillary dynamics steps needed to complete the dynamics solution. The
generally observed trend is that the reduction in the LCP size shifts the computational
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burden from solving the LCP problem, to the setting up of the LCP problem. The
widely used NMC non-minimal coordinate formulation is the simplest and cheapest
to set up, but also the most expensive to solve due to its large dimension. The RMC
minimal coordinate approach on the other hand has the smallest LCP dimension, but
one that is the most expensive to set up. In the RMC approach, the size of the LCP
problem in is just (nu(nf + 2) + nb), which is independent of the number of links,
the number of degrees of freedom and the dimension of the bilateral constraints on
the system. In contrast, the size of the corresponding NMC LCP is larger by 6n −N .
For a 6-link manipulator with 6 degrees of freedom, this amounts to an increase in
dimension of 30.

The OS formulation also has the small LCP dimension property, with dimension
exceeding that of the RMC LCP by just the (typically small) dimension of the loop
closure bilateral constraints, nb. The advantage of the OS formulation is that the
LCP matrix can be expressed in terms of the operational space OSCM matrix for the
constraint nodes. This form allows us to use low-order, structure-based computational
algorithms available for the OSCM to significantly reduce the cost of setting up
the OS LCP. Consequently the OS formulation has the lowest overall cost with a
small LCP as well as low cost algorithms for setting up the LCP. Focusing on this
option, we describe extensions of the contact dynamics formulation to handle elastic
and inelastic collision dynamics. The OS formulation’s use of minimal coordinates
also results in the automatic enforcement of the inter-link hinge bilateral constraints
and avoids the need for additional bilateral constraint error control schemes. The
benchmark simulations using a pendulum system show a widening performance
improvement using the OS formulation as the number of bodies is increased. For
the 30 link pendulum system, the OS formulation is over 50 times faster than the
NMC/OS approach. An area of future work is the extension of the OS formulation
to use the more accurate nonlinear complementarity problem techniques, and time
stepping schemes that are in development for increasing the robustness and accuracy
of contact and collision non-smooth dynamics [22].
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Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics
and Space Administration (©2014 California Institute of Technology. Government sponsorship
acknowledged).

Appendix

The operational space for the multi-link system is defined by the configuration of the
set of constraint nodes on the system. The key implementation and computational
challenge for setting up the OS formulation LCP in Eq. 5.53 is the need for evaluating
the ∂ matrix. As seen in Eq. 5.51, ∂ involves the configuration dependent matrix
products of the Jacobian matrix and the mass matrix inverse. A direct evaluation of
this expression requires O(N 3) computations. However references [12, 16, 23] have
used spatial operators to develop simpler and recursive computational algorithms for
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∂ that are of only O(N ) complexity. We briefly describe the underlying analysis
and structure of this algorithm, and refer the reader to [12, 16, 23] for notation and
derivation details.

Spatial Operator Factorization of M−1

We begin with the following key spatial operator based analytical results that provide
explicit, closed-form expressions for the factorization and inversion of a tree mass
matrix [12, 24]:

M = HφMφ∗ H∗

M = [I + HφK]D [I + HφK]∗

[I + HφK]−1 = [I − HψK] (5.59)

M−1 = [I − HψK]∗ D−1 [I − HψK]

The first expression defines the Newton-Euler operator factorization of the mass
matrix M in terms of the H hinge articulation, the φ rigid body propagation and
the M link spatial inertia operators. While this factorization has non-square factors,
the second expression describes an alternative factorization involving only square
factors with block diagonal D and block lower-triangular [I + HφK] matrices. This
factorization involves new spatial operators that are associated with the articulated
body (AB) forward dynamics algorithm [11, 23] for the system. The next expression
describes an analytical expression for the inverse of the [I + HφK] operator. Using
this leads to the final analytical expression for the inverse of the mass matrix. These
operator expressions hold generally for tree-topology systems irrespective of the
number of bodies, the types of hinges, the specific topological structure, and even
for non-rigid links [12].

The � Extended Operational Space Compliance Matrix

With V ∗ R6n denoting the stacked vector of link spatial velocities, its spatial
operator expression is [12]

V = φ∗H∗
θ̇ (5.60)

Bundling together the rigid body transformations for all nodes we define the B ∗
R6n×6nc pick-off matrix such that the stacked vector of node spatial velocities Vc can
be expressed as

Vc = B∗V 5.60= B∗φ∗H∗
θ̇ √ J 5.49= B∗φ∗ H∗ (5.61)
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This is the spatial operator expression for the J Jacobian matrix. Using this expres-
sion and Eq. 5.59 for the mass matrix inverse within Eq. 5.51 leads to the following
expression for ∂:

∂
5.51= JM−1J ∗ 5.59= B∗φ∗ H∗(I − HψK)∗D−1(I − HψK)HφB (5.62)

Using the spatial operator identity [12, 24]

(I − HψK)Hφ = Hψ (5.63)

in Eq. 5.62 leads to the following simpler expression for ∂:

∂ = B∗�B with �
∇= ψ∗ H∗D−1 Hψ ∗ R6nc×6nc (5.64)

We have arrived at an expression for ∂, that unlike Eq. 5.51, involves neither the
mass matrix inverse nor the node’s Jacobian matrix! We refer to � as the Extended
Operational Space Compliance Matrix. This terminology is based on Eq. 5.64 which
shows that the OSCM, ∂ can be obtained by a reducing transformation of the full,
all body � matrix by the B pick-off operator involving just the matrix sub-blocks
associated with the parent links of the nodes. From its definition, it is clear that �

is a symmetric and positive semi-definite since D−1 is a symmetric positive-definite
matrix.

While the explicit computation of M−1 or J is not needed to obtain ∂, the
direct evaluation of Eq. 5.64 still remains of O(N 3) complexity due to the need
for carrying out the multiple matrix/matrix products. The next section shows that
these matrix/matrix products can be avoided by exploiting a decomposition of the �

matrix.

Decomposition of �

The following lemma describes a decomposition of � into simpler component terms
and an expression for its block elements. The E∗

ψ and ψ() terms used below are
defined in references [12, 23]. Furthermore, ξ(k) denotes the parent link for the kth
link, and i ≺ j notation implies that the j th link is an ancestor of the i th link in the
tree.

Lemma 1 (Decomposition of �) � can be decomposed into the following disjoint
sum:
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� = ϒ + ψ̃
∗
ϒ + ϒψ̃ + R where R

∇=
∑

∀i, j : i⊀� j
k=ξ(i, j)

eiψ
∗(k, i)Y (k)ψ(k, j)e∗

j

(5.65)
ϒ ∗ R6nc×6nc is a block-diagonal operator, referred to as the operational space
compliance kernel, satisfying the following backward Lyapunov equation:

H∗D−1 H = ϒ − diagOf
⎡
E∗

ψϒEψ

⎣
(5.66)

diagOf
⎡
E∗

ψϒEψ

⎣
represents just the block-diagonal part of the (generally non block-

diagonal) E∗
ψϒEψ matrix. The 6 × 6 dimensional, symmetric, positive semi-definite

ϒ(k) diagonal matrices satisfy the following parent/child recursive relationship:

ϒ(k) = ψ∗(ξ (k), k)ϒ(ξ (k))ψ(ξ (k), k) + H∗(k)D−1(k)H(k) (5.67)

This relationship forms the basis for the following O(N ) base-to-tips scatter recur-
sion for computing the ϒ(k) diagonal elements:




for all nodes k (base-to-tips scatter)

ϒ(k) = ψ∗(ξ (k), k)ϒ(ξ (k))ψ(ξ (k), k) + H∗(k)D−1(k)H(k)

end loop

(5.68)

While ϒ defines the block-diagonal elements of �, the following recursive expres-
sions describe its off-diagonal terms:

�(i, j) =




ϒ(i) for i = j
�(i, k)ψ(k, j) for i ◦ k ← j, k = ξ( j)
�∗( j, i) for i ≺ j
�(i, k)ψ(k, j) for i � j, j � i, k = ξ(i, j)

(5.69)

Proof See [12, 23].
Equation 5.65 shows that � can be decomposed into the sum of simpler terms

consisting of the block diagonal ϒ , the upper-triangular ψ̃
∗
ϒ , the lower triangular

ϒψ̃, and the sparse R matrices. Furthermore, Eq. 5.69 reveals that all of the block-
elements of �(i, j) can be obtained from the ϒ(i) elements of the ϒ block-diagonal
operational space compliance kernel.

From the ∂ = B∗�B expression, and the sparse structure of B, it is clear that
only a subset of the elements of � are needed to compute ∂. The B pick-off operator
has one column for each of the nodes, with each such column having only a single
non-zero 6 × 6 matrix entry at the kth parent link slot. Only as many elements of �

as there are elements in ∂ are needed. Thus, just nc × nc number of 6 × 6 sub-block
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matrices of � are required. In view of the symmetry of the matrices, we actually need
just nc(nc + 1)/2 such sub-block matrices. The overall complexity of this algorithm
is linearly proportional to the number of degrees of freedom, and a quadratic function
of the number of nodes. This is much lower than the O(N 3) complexity implied by
Eq. 5.51.
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Chapter 6
Modelling and Integration Concepts
of Multibody Systems on Lie Groups

Andreas Müller and Zdravko Terze

Abstract Lie group integration schemes for multibody systems (MBS) are attractive
as they provide a coordinate-free and thus singularity-free approach to MBS mod-
eling. The Lie group setting also allows for developing integration schemes that
preserve motion integrals and coadjoint orbits. Most of the recently proposed Lie
group integration schemes are based on variants of generalized alpha Newmark
schemes. In this chapter constrained MBS are modeled by a system of differential-
algebraic equations (DAE) on a configuration space being a subvariety of the Lie
group SE(3)n. This is transformed to an index 1 DAE system that is integrated with
Munthe-Kaas (MK) integration scheme. The chapter further addresses geometric
integration schemes that preserve integrals of motion. In this context, a non-canonical
Lie-group Störmer-Verlet integration scheme with direct SO(3) rotational update is
presented. The method is 2nd order accurate and it is angular momentum preserv-
ing for a free-spinning body. Moreover, although being fully explicit, the method
achieves excellent conservation of the angular momentum of a free rotational body
and the motion integrals of the Lagrangian top. A higher-order coadjoint-preserving
integration scheme on SO(3) is also presented. This method exactly preserves spatial
angular momentum of a free body and it is particularly numerically efficient.
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6.1 Introduction

Multibody systems (MBS) are commonly modeled by motion equations evolving
on the parameter manifold corresponding to a specific parameterization in terms of
angles and displacements. Since the motion of rigid bodies, and thus of a MBS,
evolves on a Lie group the kinematics and dynamics of a MBS can be modeled
coordinate-free as a dynamic system on a Lie group, which avoids the well-known
problem of parameterization singularities. This allows for application of Lie group
integration methods that are inherently coordinate-free. The original application of
Lie group integration schemes to rigid body dynamics was the dynamics of a rotating
body. To this end the Munthe-Kaas (MK) method based on a Runge-Kutta scheme
is used [9, 14, 22, 25–27, 29], and later an amended Newmark-Verlet scheme was
applied [15]. In this case the rotation group SO(3) is readily identified as configuration
space (c-space). From a MBS perspective this corresponds to a ‘minimal coordinate’
or ‘relative coordinate’ formulation in the sense that the body is free to move on
SO(3). From a more general point of view, considering the rigid body as being
constrained by a spherical joint to rotate about a fixed point, SO(3) is the isotropy
group of the joint. Hence this is the Lie group of relative motions of two bodies
connected by a spherical joint. This ‘relative coordinate’ approach applies to general
tree-topology MBS where all joints describe motion subgroups of SE(3). Along this
line the MK scheme was applied to the dynamics of unconstrained serial manipulators
in [30]. Instead of resorting to the motion (isotropy) groups of joints, the motion of
individual bodies can be modeled on SE(3) and a general MBS with topological
loops be modeled by imposing corresponding constraints. This is equivalent to the
‘absolute coordinate’ formulation. That is, the configuration of an MBS comprising
n rigid bodies is a subvariety of SE(3)n. Following the common MBS modeling
approach, rigid body configurations are frequently assumed to belong to the Lie
group SO(3) × R3, however. Therewith in [33, 34] the MBS motion equations are
formulated as an index 1 differential-algebraic equations (DAE) and solved with a
MK scheme. In [4, 5, 19] a generalized alpha/Newmark scheme is used to integrate
the motion equations of constrained MBS formulated on SO(3)×R3. Since Lie group
integrators exploit the geometry of the c-space, replacing SE(3) by SO(3) × R3 has
consequences for the performance. This issue is addressed in [23], and it is shown
that in specific cases, SE(3) achieves perfect constraint satisfaction whereas in the
general case both c-spaces lead to equivalent results. In the first part of this chapter
a DAE index 1 MBS model on SE(3) is introduced and its integration with a MK
scheme described.

Besides a coordinate-free description the modeling of MBS on a Lie group pro-
vides a setting for structure preserving integration schemes. A non-canonical Lie-
group Störmer-Verlet integration scheme on SO(3) is presented in the second part
of this chapter. The method is 2nd order accurate, it is angular momentum preserv-
ing, and it does not introduce an energy drift. It is shown that, although being fully
explicit, the method conserves the angular momentum of a freely rotating body and
the motion integrals of the Lagrangian top better than established conserving algo-
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rithms. Finally higher-order integration scheme is presented that preserves coadjoint
orbits. The method exactly preserves spatial angular momentum of a free body and
is numerically efficient since the rotation and momentum update use the same incre-
mental rotation vector.

6.2 Lie Group Integration Schemes for Multibody Systems

6.2.1 Lie Group Modeling of Multibody Systems

The motion equations of a holonomically constrained multibody system (MBS) com-
prising n rigid bodies in terms of non-holonomic velocities attain the form

M(q)V̇ + JT λ = Q (q, V, t) (6.1a)

q̇ = q · V (6.1b)

g(q) = 0. (6.1c)

Adopting the ‘absolute coordinate’ approach the configuration q = (C1, . . . , Cn) ∈
G of a MBS is given in terms of the ‘absolute’ configuration Ci ∈ SE(3) of the n
bodies, where G = SE(3)n is the 6-dimensional Lie group representing the rigid
body configuration. The MBS velocity V = (V1, . . . , Vn) ∈ g consists of the body-
fixed velocities Vi = (ωi, vi) , i = 1, . . . , n, where g = se (3)n is the Lie algebra
of G. The Eqs. (6.1a–6.1c) form a system of differential-algebraic equations (DAE)
on G × g with geometric constraints (6.1c). In the dynamic motion equations (6.1a)
λ are Lagrange multipliers and J is the constraint Jacobian. The system (6.1b),
relating the MBS velocity and motion, is called the kinematic reconstruction equa-
tions. Its solution is the motion q(t) of the MBS. Traditionally, describing the MBS
configuration in terms of position vectors ri and certain rotation parameters θi, the
kinematic reconstruction equations assume the decoupled form ωi = Bi (q) θ̇i and
vi = ṙi, i = 1, . . . , n. In the Lie group approach using SE(3) the geometry of rigid
body motions is respected. This is not the case when rotations and translations are
treated independently. It has been shown [23] that this leads to constraint violations.

Background on the Lie group modeling of rigid body motions can be found in the
books by Selig [31] and Murray et al. [28] for instance.

6.2.2 Configuration Space Lie Group

Body-fixed reference frames attached to the n rigid bodies represent the configuration
of the MBS. The configuration of body i with respect to a world-fixed inertial frame
(IFR) is described by the pair Ci = (Ri, ri), which can be represented as matrix
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Ci =
(

Ri ri

0 1

⎧
(6.2)

where ri ∈ R3 is the position vector of its origin and Ri ∈ SO(3) is the absolute
rotation matrix. Therewith the combination of two successive rigid-body motions is
given by

C2C1 =
(

R2R1 r2 + R2r1
0 1

⎧
. (6.3)

Such rigid body motions constitute the 6-dimensional Lie group SE (3) = SO(3)κR3

of isometric orientation preserving transformations of E3.
The ambient configuration space of an MBS consisting of n rigid bodies is the

6n-dimensional Lie group
G := SE(3)n (6.4)

where q = (C1, . . . , Cn) ∈ G represents the configuration of n bodies in a
coordinate-free way. Multiplication is componentwise q∗ ·q∗∗ = (C∗

1C∗∗
1, . . . , C∗

nC∗∗
n),

inherited from SE(3). The inverse is q−1 = (C−1
1 , . . . , C−1

n ).
The Lie group SE(3) is generated from its Lie algebra se(3) via the exp mapping.

Since any rigid body motion is a screw motion the exp mapping gives a finite screw
motion corresponding to an instantaneous screw motion X (t). Explicitly this is

X = (ξ,η) ⇒−≡ exp ⎪X =
⎨

exp⎪ξ 1
∇ξ∇2

⎩
I − exp⎪ξ)

(ξ × η) + hξ

0 1

)
(6.5)

where

exp⎪ξ = I + sin ∇ξ∇
∇ξ∇

⎪ξ + 1 − cos ∇ξ∇
∇ξ∇

⎪ξ2
(6.6)

is the exponential mapping on SO(3). X = (ξ,η) ∈ R6 is the instantaneous screw
coordinate vector describing the motion of a rigid body. The six components serve
as independent local canonical coordinates on SE(3). It is important to observer
that they are not just the scaled rotation axis and translation vector. ξ is in fact the
Euler-Rodrigues vector but η is not the displacement vector.

Let the bodies of the MBS be subjected to a system of m scleronomic geometric
constraints

g (q) = 0 (6.7)

defined by the constraint mapping g: G ≡ Rm. Then the configuration space
(c-space) of the MBS is the variety

V := {q ∈ G|g (q) = 0}. (6.8)
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6.2.3 State Space Lie Group

A rigid body motion is a curve C (t) in SE (3) The body-fixed velocity of body i,
expressed by the vector Vi = (ωi, vi)

T ∈ R6 where ωi is the body-fixed angular
velocity and vi is the translation velocity vector expressed in the body-fixed RFR, is
defined as

⎪Vi := C−1
i Ċi =

(⎪ωi vi

0 0

⎧
∈ se(3) (6.9)

with se(3) being the Lie algebra of SE(3). ⎪ωi := RT
i Ṙi ∈ so (3) is the skew symmet-

ric (cross product) matrix associated to the vector ω. Hence to any twist coordinate
vector is assigned a se(3)-matrix via the ‘hat’ operator.

The right-translated differential of the exp mapping, dexp : se(3)×se(3) ≡ se(3),

can be introduced as dexp⎪X⎪̇X = ĊC−1, with C = exp ⎪X. Replacing X with −X leads
to the expression for the body-fixed twist:

⎪V = dexp−⎪X⎪̇X. (6.10)

Hence the vector of body-fixed velocity is given in terms of the time derivative of
the screw coordinates X. These are the kinematic reconstruction equations (6.1b)
expressed in terms of screw coordinates, that must be solved in order to recover the
finite motion from the velocity field. They will be the basis for the Munthe-Kaas
method in Sect. 6.2.5.

The inverse of this mapping, which is subsequently needed, is in vector represen-
tation given by [31]

dexp−1⎪X = I − 1

2
adX +

(
2

∇ξ∇2 + ∇ξ∇ + 3 sin ∇ξ∇
4 ∇ξ∇ (cos ∇ξ∇ − 1)

⎧
ad2

X

+
(

1

∇ξ∇4 + ∇ξ∇ + sin ∇ξ∇
4 ∇ξ∇3 (cos ∇ξ∇ − 1)

⎧
ad4

X (6.11)

with X = (ξ,η). An alternative form can be determined, as reported e.g. in [30] , is

dexp−1
X =

⎨
dexp−1

ξ 0
U dexp−1

ξ

)
(6.12)

with

U (X) = 1 − γ

∇ξ∇2

⎩⎪η⎪ξ +⎪ξ⎪η) + hX

∇ξ∇3

(
1

β
+ γ − 2

⎧⎪ξ2 − 1

2
⎪η (6.13)

β := 4
∇ξ∇2 sin2 ∇ξ∇

2 , γ := 2
∇ξ∇ cot ∇ξ∇

2 , and the pitch h = ξ · η/ ∇ξ∇2. Notice that for

pure rotation, i.e. hX = 0, ( 6.13) simplifies. In (6.12) dexp−1
ξ is the inverse of the

differential of the exp mapping (6.6) on SO(3) for R = exp⎪ξ [6]
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dexp−1
ξ = I − 1

2
⎪ξ +

(
1 − ∇ξ∇

2
cot

∇ξ∇
2

⎧ ⎪ξ2

∇ξ∇2 . (6.14)

Notice finally, that therewith the exp mapping (6.5) can be expressed as

X = (ξ,η) ⇒−≡ exp ⎪X=
(

exp⎪ξ dexpξη
0 1

⎧
. (6.15)

The velocities of the bodies of the MBS are collectively represented by V =
(V1, . . . , Vn) ∈ R6n. Making use of the isomorphism of sen(3) and R6n the body-
fixed velocities are determined as ⎪V = q−1q̇, denoting ⎪V = (⎪V1, . . . ,⎪Vn). This
allows to introduce the ambient state space of the MBS as

S := SE(3)n × R6n, (6.16)

which is a 6 · 2 · n-dimensional Lie group. This is the left-trivialized tangent
bundle of G. The state of the MBS is then represented by X = (q, V) =
(C1, . . . , Cn, V1, . . . , Vn) ∈ S. The multiplication is understood componentwise:
X ∗ · X ∗∗ = ⎩

C∗
1C∗∗

1, . . . , C∗
nC∗∗

n, V∗
1 + V∗∗

1, . . . , V∗
n + V∗∗

n

)
.

The Lie algebra of the Lie group S is

s := se(3)n × R6n, (6.17)

with elements x = (V1, . . . , Vn, A1, . . . , An) ∈ s, which is isomorphic to the tangent
space of S via left translation, i.e. Ẋ = X · x. Addition in s is also componentwise:
x∗+x∗∗ = (V∗

1+V∗∗
1, . . . , V∗

n+V∗∗
n, A∗

1+A∗∗
1, . . . , A∗

n+A∗∗
n). The exponential mapping

on the ambient state space Lie group is

exp x = (exp V1, . . . , exp Vn, A1, . . . , An) ∈ S (6.18)

with (6.5). Its right-translated differential dexp : s × s ≡ s is

dexpx∗x∗∗ = (dexpV∗
1
V∗∗

1, . . . , dexpV∗
n
V∗∗

n, A∗∗
1, . . . , A∗∗

n) (6.19)

where for the first n components dexp : se(3)× se(3) ≡ se(3) is the right-translated
differential on SE(3).

Time differentiation of the geometric constraints (6.7) yields the corresponding
velocity constraints

J (q) V = 0 (6.20)

where J(q): R6n ≡ Rm is the Jacobian of g in vector representation. Together with
the geometric constraints they define the MBS state space

S := {X = (q, V) ∈ S|g (q) = 0, J (q) V = 0}. (6.21)

The state space S being a Lie group admits to apply Lie group integration schemes.
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6.2.4 Motion Equations of Constrained MBS in Lie Group
Descriptor Form

The motion equations (6.1a–6.1c) form an index 3 system of differential-algebraic
equations (DAE) on the state space Lie group S. The latter factors into the vector
space R6n and the the Lie group G. In particular the kinematic reconstruction equa-
tions ( 6.1b) form a system on G consisting of the n equations Ċi = Ci⎪Vi. The
dynamic equations (6.1a) evolve on the vector space Rn.

A common approach in MBS modeling is to transform the system (6.1a) together
with (6.1c) to the index 1 system

(
M JT

J 0

⎧(
V̇
λ

⎧
=

(
Q
η

⎧
(6.22)

using the acceleration constraints J (q)·V̇ = η (q, V). For a given state X = (q, V) ∈
S the system (6.22) and thus (6.1a) can be solved for V̇. If V̇ is a solution of (6.22),
then (6.1a, 6.1c) is equivalent to the ODE system

Ẋ = XF (t, X) (6.23)

on the state space S, where the mapping F: R × S ≡ s is introduced as F (t, X) =
(V, V̇) with a solution V̇ of (6.22). The equivalence follows from XF (t, X) = (q ·
V, V̇). Evaluation of XF (t, X) thus amounts to solving (6.22) for V̇ and evaluating
(6.1b).

6.2.5 Munthe-Kaas Method for Constrained MBS Dynamics

As the dynamical system evolves on a Lie group its solution can be expressed in the
form X (t) = X0 exp δ(t). Hence at the integration step i the original system (6.23)
can be replaced by the system

δ̇(i) = dexp−1
−δ(i)F(t, Xi−1 exp δ(i)), t ∈ [ti−1, ti], with δ(i) (ti−1) = 0 (6.24)

with initial condition Xi−1, and be solved with a numerical integration scheme. The
Munthe-Kaas (MK) method [12] uses a Runge-Kutta (RK) scheme to determine
a solution δ(i) (ti) that leads to a numerical solution Xi := Xi−1 exp δ(i) (ti) of
(6.23). The δ(i) constitute local coordinates on the state space that are valid in a
neighborhood of Xi−1. An s-stage MK scheme at time step i follows immediately
from the RK method as
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Xi := Xi−1 exp δ(i), δ(i) := h
s∑

j=1

bjkj (6.25)

kj := dexp−1
−πj

F
⎩
ti−1 + cjh, Xi−1 exp πj

)
, πj := h

j−1∑
l=1

ajlkl, π1 = 0,

where ajl, bj, and cj are the Butcher coefficients of the s -stage RK method, and
kj, πj ∈ s. MK methods can be applied to ODE on Lie groups. Using the formulation
(6.23) the MK can also be applied to the time integration of dynamics equations of
constrained MBS.

Remark 1 While it is clear that SE(3) is the c-space Lie group of a rigid body,
all original MBS formulations implicitly use the Lie group SO(3) × R3 since it is
customary to use rotation angles and displacement vectors as parameters which are
clearly not screw parameters. This leads to an artificial decoupling of rotational and
translational motion. This is reflected by the dexp mapping which for SO(3) × R3 is

dexpX(Y) = (dexpξη, v) (6.26)

for X = (ξ, u) and Y = (η, v). Even more, also the recently proposed Lie group
generalized alpha schemes [4, 5] and Lie group DAE formulation [33] use SO(3)×R3

as c-space. As consequence the configuration update step in (6.25) does not respect
the screw motion that is encoded in the velocity V, which leads in particular to
constraint violations as shown in [23]. However, it is shown in [23] that the difference
of the two c-spaces becomes significant for the satisfaction of joint constraints only
when a rigid body is connected to the ground by lower-pair joints. In this case the
joint constraints are perfectly satisfied independently of the integration accuracy and
step size.

Remark 2 It is well-known that the numerical solution of the index 1 formulation
(6.23) may not stay in V . Nevertheless, the index 1 formulation (6.22) is convenient
for treating the dynamics of constrained MBS. For the classical vector space formu-
lation several constraint stabilization methods have been proposed to cope with the
drift phenomenon (an overview can be found in [2]). Within the Lie group formula-
tion these have to be amended as reported in [24, 34]. In [24] a constraint stabilization
method is presented that uses the local coordinates δ(i) of the MK scheme. In [34]
stabilisation algorithm based on constrained least square minimization algorithm in
Lie groups state space is introduced.
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Fig. 6.1 Rigid body
constrained to rotate about
fixed point subject to an
applied spring force

1

3

2

IFR

Q

P

6.2.6 Examples

6.2.6.1 Heavy Top with External Force

The model of a heavy top (Fig. 6.1) consists of a rigid body pivoted to the ground
at point Q. A spring is attached between its COM and a space-fixed point P. The
spring force is Fs = c(p0 − r) + mg, with 10 N/mm, and gravity vector g =
(0, 0,−9.81)T , with p0 = (1, 0, 0.5)T m being the space-fixed position vector of
the spring suspension point P. The body-fixed force vector (6.30) is F = RT Fs.

The inertia of the body’s COM is �0 = diag (0.36, 0.306, 0.09) kg m2, and its mass
m = 21.6 kg. Denote with r0 = (−0.5, 0, 0)T m the position vector of the pivot point
measured in the body-fixed reference frame. The configuration of the reference frame
is represented by C = (R, r), with rotation matrix R and r denoting the position of
the COM expressed in the spatial inertial frame (IFR).

The geometric constraints imposed by the spherical joint (pivot) are

g(C) = r − Rr0 = 0. (6.27)

Time differentiation, and assuming (6.27), yields the velocity constraints (6.20)

⎩⎪r0 −I
) (

ω
v

⎧
= JV = 0 (6.28)

and the acceleration constraints

⎩⎪r0 −I
) (

ω̇
v̇

⎧
= ⎪ω⎪ωr0 + ⎪ωv (6.29)

where V = (ω, v) is the body-fixed velocity. The body-fixed Newton-Euler equations
w.r.t. to the COM combined with (6.29) yield the overall index 1 DAE system
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Fig. 6.2 Error ε in the position constraints of the top


�0 0 ⎪rT

0
0 mI −I
⎪r0 −I 0

⎡
⎣


 ω̇

v̇
λ

⎡
⎣ =


 ⎪ω�0ω

F − m⎪ωv
⎪ω⎪ωr0 + ⎪ωv

⎡
⎣ . (6.30)

The motion equations (6.30) were integrated with an MK scheme based on RK4
method for 6 s starting from initial configuration C0 = (I, r0) and initial angu-
lar velocity ω0 = (0, 0, 0.5)T rad/s. The integration method shows 4th order con-
vergence as expected. It is further interesting to observe the exact satisfaction of
the position constraints independently of the step size. Figure 6.2 shows the error
of the position constraints ε (q) := ∇g (q)∇ for step sizes κt = 10−2, 10−3, 10−4 s.
The satisfaction of the constraints up to computation precision is due to the use of
the correct c-space Lie group, namely SE(3), that accounts for rigid body motions.
This is discussed in [23].

6.2.6.2 Planar 4-Bar Mechanism

A closed loop planar 4-bar mechanism is considered (Fig. 6.3) comprising three
revolute joints and one spherical joint. The geometry is chosen as indicated in the
Fig. 6.3 with L0 = 0.5 m.

The initial configuration is shown in Fig. 6.3. Initially the input crank (body 1)
rotates with angular velocity ω0 = 10 π rad/s. The motion equations are integrated
numerically with the MK/RK4 method with step sizes κt = 10−2, 10−3, 10−4 s.
Figures 6.4 and 6.5 show the satisfaction of joint position constraints. Apparently they
are satisfied with computation accuracy for the two joints 1 and 4 that are connected
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Fig. 6.3 Planar 4-bar
mechanism: comprising two
revolute joints with parallel
axes and a spherical joint

1

2

3

Ground

⎯⎯

⎯⎯⎯

⎯⎯

to the ground. The orientation constraints of the revolute joints are exactly satisfied.
As mentioned above this phenomenon is due to the use of the correct c-space Lie
group as discussed in [23].

6.3 Geometric Schemes that Preserve Integrals of Motion

6.3.1 Coadjoint Modeling of Rotational Dynamics

In the geometric schemes presented in the previous chapters, the kinematic recon-
struction equations have been solved on the c-space Lie group while the dynamical
equations were discretised via ‘classical’ vector-space-based numerical methods.
Although pursued by several authors [4, 5, 23], this practice does not utilize the
geometrical properties of dynamics on the c-space that gives rise to integration algo-
rithms with additional useful properties, such as the preservation of the integrals of
motion. Therefore, in the sequel we describe the geometric schemes that extend the
coadjoint orbit preserving integration method for SO(3) [8, 16, 18]. Another possi-
bility of constructing the structure-preserving algorithms is to follow the variational
approach, see, for example [20, 36], and references cited there.

We start from the Euler equation of free rigid body rotation given as Lie-Poisson’s
system [21] in the form

ẏ = −ω̂y, (6.31)

where y ∈ R3 represents the angular momentum in the body attached frame and
ω̂ ∈ so(3) is the body angular velocity with so(3) being the Lie algebra of SO(3). By
following [13], y ∈ R3can be identified with y̆ ∈ so⊗(3), where so⊗(3) is the dual
space of the Lie algebra so(3). In a more formal form (6.31) can be expressed as the
coadjoint operator [14, 18] on the dual space of the Lie-algebra so⊗(3) as

ẏ = ad⊗
ω̂y = ŷω(y), (6.32)
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Fig. 6.4 Violation of position constraints of revolute joint 1 (a) and 2 (b)

where ‘ad⊗’ is the dual of the ‘ad’ operator adâb = âb, which is the commutator

adâ(b̂) = âb̂ − b̂â = [â, b̂], for all â, b̂ ∈ so(3), (6.33)

in the Lie algebra so(3) identified here with R3. The solution of the angular momen-
tum equation in the Lie-Poisson form (6.31) can be expressed within each integration
step as an action of SO(3) on R3in the form

yn+1 = QT(t)yn, n = 0, 1, 2, . . . ,

Q ∈ SO(3), t ∈ [
tn, tn+1

⎜
, (6.34)
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Fig. 6.5 Violation of position constraints of revolute joint 3 (a) and spherical joint 4 (b)

which leads to solving of ODE on the Lie-group that reads

Q̇(t) = Q(t)ω̂ (y (t)) , t → tn,

Q(tn) = I. (6.35)

More formally, the update step (6.34) can be written as coadjoint action [13], denoted
‘Ad⊗’, of SO(3) on R3 in the form [8, 18]

yn+1 = Ad⊗
Q(t)y

n, (6.36)
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where the relation Ad⊗
Qy = QTy is valid and the coadjoint orbit is given as [13]

O = {Ad⊗
Qy | Q ∈ SO(3)} ⊂ R3. (6.37)

The motivation of constructing the update of yn ∈ R3 in the form of (6.34)
[or (6.36)] is the exact preservation of the magnitude of free-body angular momentum
in the body attached frame during the step. Indeed, since for the step initial condition
yn the coadjoint orbit OYn is a sphere of radius ∇yn∇, the magnitude of yn will
be exactly preserved, independently of the accuracy of the integration method for
determining Q in (6.35).

However, although coadjoint orbits will be preserved independently of the accu-
racy of determining Q, the rotation matrix Q has to be determined in order to complete
the integration step, i.e. the ODE (6.35) has to be solved. To this end, we will adopt
the Muthe-Kaas approach [12, 14, 25] and we seek a solution of (6.35) in the form

Q(t) = exp(ψ̂(t)), t → tn, (6.38)

where the closed form of the exponential mapping on SO(3) is given by the Euler-
Rodrigues formula, and ψ(t) ∈ R3 is the instantaneous rotation vector. Moreover,
by following Magnus [12], a solution of (6.35) can be written in the form of (6.38)
if ψ̂(t) ∈ so(3) is a solution of the ODE system in the Lie-algebra

˙̂
ψ = dexp−1

−ψ̂
(ω̂(Q(t))), ψ̂0 = 0, (6.39)

and operator dexp−1
−ψ̂

is defined by

dexp−1
−ψ̂

(ω̂) = ω̂+ 1

2

⎤
ψ̂, ω̂

⎦
+ 1

12

⎤
ψ̂,

⎤
ψ̂, ω̂

⎦⎦
+· · · =

√∑
j=0

Bj

j! (−adj

ψ̂
(ω̂)), (6.40)

where the adjoint operator ad
ψ̂

is given as Lie-bracket (6.33), and Bj are Bernoulli
numbers [12].

6.3.2 Modified Störmer-Verlet Integration Scheme on SO(3)

The algorithm for a free-spinning rigid body rotational dynamics with the direct
update on SO(3), inspired by the Störmer-Verlet integration scheme in a linear vector
space [11], can be written in the form [35]
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ωn+ 1
2 = ωn − h

2
(I−1ω̂

nIωn) (6.41a)

Rn+1 = RnQn = Rn exp(hω̂
n+ 1

2 ) (6.41b)

ωn+1 = ωn+ 1
2 − h

2
(I−1ω̂

n+1Iωn+1) (6.41c)

Here, by following [35], the first order approximation ψ̂ = hψ̂
n+ 1

2 = hω̂
n+ 1

2 is used
in (6.38) for the incremental rotation vector and inserted in (6.41b) [while the first
order approximation is also used for the discretisation in (6.39)]. The update expres-
sions in Lie algebra (6.41a) and (6.41c) are constructed on the basis of the velocity
field discretisation pattern of the original Störmer-Verlet algorithm. As discussed in
[35], in order to preserve the system coadjoint orbits, the Eqs. (6.41a) and (6.41c)
can be replaced by the expressions derived on the basis of the Eq. (6.34) [or (6.36)].
To this end, we obtain the modified Lie-Störmer-Verlet integration scheme for the
forced unconstrained rigid body rotation in the form

ωn+ 1
2 = I−1(exp(−h

2
ω̂

n
)(Iωn + h

2
Tn)), (6.42a)

Rn+1 = Rn exp(hω̂
n+ 1

2 ), (6.42b)

ωn+1 = I−1(exp(−h

2
ω̂

n+ 1
2 )(exp(−h

2
ω̂

n+ 1
2 )(Iωn (6.42c)

+ h

2
Tn) + h

2
exp(

h

2
ω̂

n+ 1
2 )Tn+1)),

where the forcing torque term T in (6.42c) is introduced at the both ends of the
integration interval in order to obtain better conservation properties of the algorithm
[35]. By inspection of (6.42), it is clear that for a free spinning body (T = 0)
the relation Rn+1Iωn+1 = RnIωn is valid. That is, the proposed algorithm exactly
preserves spatial angular momentum of a free body. This is confirmed in Fig. 6.6,
where it is visible that preservation of the spatial angular momentum Y = RIω of a
free-spinning body is satisfied and it is independent of the integration step-length.

Technically, Fig. 6.6 shows the convergence of the proposed formulation in the
norm

⎟⎟Y − Yconverged
⎟⎟

2, where the reference value Yconverged = Y(t = 1) has been
computed with a step size of h = 1e − 5. The norms of the error are evaluated at
step sizes 8, 4, 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024,
1/2048 and 1/4096. The other integration algorithms, whose results are presented in
Fig. 6.6, are semi-explicit 2nd order Newmark method written in Lie-group setting
[15] (currently one of the best-performing 2nd order geometric algorithms for rigid
body rotational dynamics) and 4th order Runge-Kutta Munthe-Kaas method for the
ODE integration on Lie groups. The angular velocity initial condition is set to ω0 =[

0.45549 0.82623 0.03476
⎜T and the rigid body inertia tensor is given by matrix

I = diag(0.9144, 1.098, 1.66).
The Fig. 6.7 illustrates the convergence of the Lie-Störmer-Verlet scheme for

Lagrangian top in the norm of the error in the rotation matrix
⎟⎟R − Rconverged

⎟⎟
2
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Fig. 6.6 Convergence in the norm of the error in the spatial angular momentum of a free body
rotational motion
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Fig. 6.7 Convergence in the norm of the error in the rotation matrix (Lagrangian top)

for decreasing values of the integration step h(1/64, 1/128, 1/256, 1/512, 1/1024,
1/2048, 1/4096, 1/8192, 1/16384, 1/32768 and 1/65536). The reference solution
for the rotation matrix Rconverged = R(t = 1) is computed using the step size
h = 1e − 5. In this figure, one can see that the proposed formulation exhibits
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a second-order convergence (graph ‘Lie-Störmer’). Also, the proposed algorithm
clearly outperforms the Lie-Newmark and RATTLE algorithms (RATTLE algorithm
is 2nd order integration method for the rotational dynamics of a rigid body [17],
whose starting point is also Störmer-Verlet scheme), while the RK-MK4 integration
scheme, as a 4th order scheme, yields the best accuracy, as expected.

In this example, the configuration space of heavy top is SO(3) [21] and dynamical
model is formulated in the classical ODE form on the basis of Euler’s rota-
tional equation: dynamical equilibrium of the top rotation around the base point
is expressed in terms of ω̇, rotation tensor and gravity force. In the standard
units, the inertia tensor with respect to the fixed point has been set as IFP =
diag(15.234375, 0.46875, 15.234375), the body mass is set as 15 and the standard
gravity acceleration is applied at the local reference point at unity distance along the
axis. As it is shown in [35], the presented Lie-Störmer-Verlet method also preserves
other integrals of motion of Lagrangian top algorithm in a very satisfactorily manner.

6.3.3 Higher-Order Coadjoint-Preserving Integration Scheme
with the Simultaneous Kinematic Reconstruction on SO(3)

The modified Störmer-Verlet scheme in Lie group setting, described in the previ-
ous chapter, is a 2nd order integration method. In order to construct the coadjoint
orbit preserving integration scheme of a higher order of accuracy, the instantaneous
rotation vector ψ(t) ∈ R3 in (6.38) should be determined by solving ODE in the
Lie algebra (6.39) via higher order integration algorithm. Here, any classical vector
space higher order integration method can be used [8, 14].

Furthermore, in addition to an update step at the dynamical level on the basis of
(6.34) or (6.36), the same instantaneous rotation vector ψ(t) ∈ R3 [that is determined
for the step by solving (6.39)] can be also used for the step kinematic reconstruction
on SO(3). This stems from the fact that the SO(3) kinematic reconstruction equation

Ṙ(t) = R(t)ω̂(t), (6.43)

has the same mathematical structure as Lie-Poisson’s system given by (6.31) or
(6.32), meaning that it’s update can be written in the same form as (6.34) or (6.36).
Indeed, for the n-th step we can write

Rn+1 = RnQ(t) = Rn exp(ψ̂(t)), t → tn, (6.44)

where ψ̂(t) ∈ so(3) is a solution of the ODE system in the Lie-algebra (6.39). This
means that for the n-th step, the ODE system (6.39) has to be solved only ones
and then both updates at the dynamical and kinematical level can be calculated in
a straightforward manner by using (6.34) and (6.44) respectively. This makes the
proposed scheme particularly efficient.
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Fig. 6.8 Convergence in the norm of the error in the spatial angular momentum of a free body
rotational motion

Since the update at the dynamical level is based on the coadjoint orbit preserving
update (6.34), the magnitude of the angular momentum of a free-body in the body-
attached frame will be ‘exactly’ conserved, no matter which integration method is
used for solving (6.39). Moreover, by closer inspection of the algorithm, it is clear
that for a free spinning body the relation Rn+1yn+1 = Rnyn is satisfied. That is,
the proposed algorithm exactly preserves spatial angular momentum of a free body
(similarly as the modified Störmer-Verlet scheme in the previous chapter).

For the integration purposes, in this chapter we have used 4th and 2nd order Runge-
Kutta (RK) method i.e. the whole algorithm is based on the Munthe-Kaas method
[14, 25] that operates on the Lie-group and uses aforementioned RK algorithm for
solving the Lie algebra ODE equation (6.39).

The conservative character of the algorithm is shown in Fig. 6.8, where it is
visible that preservation of the spatial angular momentum of a free-spinning body is
independent of the integration step-length. Also, as it is expected since this integral
of motion is exactly preserved by the proposed method (see above), this is equally
true for the both order of the tested accuracies (RK-MK4 and RK-MK2).

The 4th and 2nd order of accuracy (which is dependent on the RK method that is
used for solving (6.39), which also, in turn, determines how many terms will be used at
RHS in (6.40) for the dexp−1

−ψ̂
operator [12]) of the described algorithm are also visible

in Fig. 6.9. Here, the both versions are compared within the framework of integration
of the free rigid body rotation with the well-known 2nd order geometric algorithms
described in the Refs. [1, 3, 32]. Figures 6.8 and 6.9 show the convergence of the
proposed formulation in the norms

⎟⎟Y − Yconverged
⎟⎟

2, and
⎟⎟R − Rconverged

⎟⎟
2 for the
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Fig. 6.9 Convergence in the norm of the error in the rotation matrix

freely spinning body, where the spatial angular momentum Yconverged = Y(t = 10)

and the rotation matrix Rconverged = R(t = 10) have been computed with a step size
of h = 1e − 3. The norms of the error are evaluated at step sizes 8, 4, 2, 1, 1/2, 1/4,
1/8, 1/16, 1/32, 1/64, 1/128 and 1/256.

6.4 Conclusion

A formulation of the motion equations of the constrained MBS as index 1 DAE
system on a Lie group has been presented. It is shown that this system can be solved
numerically with the Lie group ODE integration methods following the established
MBS methodology. In this chapter, the equations are treated with the MK integration
scheme and the Lie-group integration scheme that is based on the Störmer-Verlet
algorithm with the direct SO(3) upgrade. This gives rise to a coordinate-free, thus
singularity-free, modelling and integration of MBS motion equations.

The Lie-group-setting further provides a framework for the design of geometric
integration schemes that preserve coadjoint orbits and conserve integrals of motion.
To this end, the Lie-Störmer-Verlet integration scheme is presented. The method is
2nd order accurate and it is angular momentum preserving (it exactly preserves spatial
angular momentum of a free body and magnitude of a free-body angular momentum
in the body attached frame). Although the method is fully explicit, it generally out-
performs two of the best-performing integral-conserving schemes of the 2nd order
of accuracy (the semi-explicit Lie-Newmark algorithm and the implicit RATTLE
algorithm). The method also performs better than the 4th order explicit RK-MK4
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integration algorithm in terms of the conservation of the rigid body motion inte-
grals (free body angular momentum and Lagrangian top motion integrals [35]). The
higher-order coadjoint-preserving integration scheme with the simultaneous kine-
matic reconstruction on SO(3) is discussed in the last part of the chapter. Like the
Lie-Störmer-Verlet scheme, this algorithm exactly preserves spatial angular momen-
tum of a free body. It attains a numerically efficient form that makes it easily to be
applied to MBS simulations.

Acknowledgments The authors thank Dario Zlatar, Ph.D. student at University of Zagreb, for
programming part of the numerical experiments presented in the chapter.
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Chapter 7
Solvability of Geometric Integrators
for Multi-body Systems

Marin Kobilarov

Abstract This chapter is concerned with the solvability of implicit time-stepping
methods for simulating the dynamics of multi-body systems. The standard approach
is to select a time-step based on desired level of accuracy and computational effi-
ciency of integration. Implicit methods impose an additional but often overlooked
requirement that the resulting nonlinear root-finding problem is solvable and has a
unique solution. Motivated by empirically observed integrator failures when using
large time-steps this work develops bounds on the chosen time-step which guarantee
convergence of the root-finding problem solved with Newton’s method. Second-order
geometric variational integrators are used as a basis for the numerical scheme due to
their favorable numerical behavior. In addition to developing solvability conditions
for systems described by local coordinates, this work initiates a similar discussion
for Lie group integrators which are a favored choice for floating-base systems such
as robotic vehicles or molecular structures.

7.1 Introduction

This work considers the solvability of implicit low-order numerical integrators for
multi-body systems with respect to the choice of integration time-step. Our main
focus is on geometric variational integrators [1, 15], i.e. integrators which by con-
struction preserve the following physical invariants of the continuous system: sym-
metries due to conservation laws and associated momentum evolution, configuration
space structure such as arising in freely rotating rigid bodies, symplectic phase-
space structure. Integrators that respect such variational properties exhibit improved
numerics and remedy many practical issues in physically based simulation and ani-
mation [2]. In addition, they provide good energy conservation over exponentially
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long simulation times for non-dissipative systems. When non-conservative forces are
present, symplectic structure preservation results in a much-improved treatment of
damping that is essentially independent of time step [3]. Our focus on such integrators
is also motivated by their successful application to multibody systems [4–10].

Variational integrators could therefore be used as a basis for developing com-
putationally efficient algorithms by choosing large time-steps while still retaining
desired accuracy. A standard approach is to select the time-step to achieve a desired
local or global integration error (e.g. see [11–13] in the context of variational inte-
grators and [14] for the general setting of implicit method). But there is also another
key condition that must be satisfied, i.e. the algorithmic solvability of the resulting
integrator. This is a key issue since almost all variational time-stepping methods
for nonlinear systems are implicit and require the solution of potentially complex
nonlinear equations. To the author’s knowledge, the issue of implicit integrator solv-
ability and its connection to time-step selection has not received enough attention
despite the wide use of error-based adaptive time-step selection methods. This turns
out to be in fact a central issue for gaining efficiency since, as we show, the success
of the numerical root-finding method depends on enforcing strict bounds on the cho-
sen time-step. To illustrate this point, consider Fig. 7.1 showing the integration of a
simple three-link multi-body system using a symplectic forward Euler method [15].
Based on this empirical evidence there is a clear threshold of the chosen time-step h
somewhere in the range h ∈ (0.125, 0.5) seconds above which the integrator always
fails due to divergence of the employed Newton’s method. This upper bound could
become much lower and thus impose stricter time-step limits as the system increases
in complexity.

The main goal if this chapter is therefore to obtain formal bounds on the cho-
sen time-steps h to guarantee solvability of the implicit integrator update. Presently,
we obtain such bounds for multi-body systems evolving in a generalized coordinate
space Q = R

n (as described in Sect. 7.4) that are not subject to unilateral con-
straints, e.g. from intermittent contacts or collisions. The second goal of the chapter
is to extend those methods to geometric Lie group integrators for floating-base sys-
tems with configuration space Q = SE(3) × R

m , where m = n − 6 denotes the
number of internal degrees of freedom from movable joints (Sect. 7.5). A number
of methods have been developed to take advantage of the differential-geometric and
Lie group structure naturally present in multi-body dynamics for numerical integra-
tion purposes [16–19]. For our purposes, we are interested in a coordinate-invariant
treatment of evolution in the Euclidean group SE(3) to avoid singularities and asso-
ciated time-step restrictions as well chart switching necessary with coordinates such
as Euler angles. The resulting algorithms exhibit surprisingly accurate numerical
behavior even at large time-steps. The convergence properties developed for coor-
dinate spaces do not directly apply to Lie groups and need to be considered in a
more extensive study. Initial observations for the simplest case of a single rigid body
and encouraging results related to time-step regularity conditions are presented in
Sect. 7.3.
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Fig. 7.1 Simulation of a conservative three-link system at three different time-steps. The simulation
is qualitatively correct for all time steps below h = 0.125 s but suddenly breaks down at higher
time-steps. It turns out that this is caused either by crossing singular points of the implicit integrator
Jacobian or by divergence of the employed Newton’s method. This work seeks a priori conditions
based on the dynamical model to find bounds on h avoiding such problems

7.2 Background on Variational Integrators

A mechanical integrator advances a dynamical system forward in time. Such numeri-
cal algorithms are typically constructed by directly discretizing the differential equa-
tions that describe the trajectory of the system, resulting in an update rule to compute
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the next state in time. In contrast, variational integrators [1] are based on the idea
that the update rule for a discrete mechanical system (i.e., the time stepping scheme)
should be derived directly from a variational principle rather than from the result-
ing differential equations. This concept of using a unifying principle from which
the equations of motion follow (typically through the calculus of variations [20])
has been favored for decades in physics. Chief among the variational principles of
mechanics is Lagrange D’Alembert’s principle which states that the path q(t) (with
endpoint q(t0) and q(t1)) taken by a mechanical system subject to forces f (t) sat-
isfies the virtual work principle δ

∫ t1
t0

L(q, q̇)dt + ∫ t1
t0

f (t)δq(t) = 0, i.e., the state
variables (q, q̇) evolve such that any variation of the time integral of the Lagrangian
L of the system (equal to the kinetic minus potential energy) must result from the
work done by the force f .

Practically speaking, variational integrators based on Lagrange D’Alembert’s
principle first approximate the time integral of the continuous Lagrangian and the
integral of forces by a quadrature rule. This is accomplished using a “discrete
Lagrangian,” which is a function of two consecutive states qk and qk+1 (correspond-
ing to time tk and tk+1, respectively):

Ld(qk, qk+1) ∗
tk+1⎧
tk

L(q(t), q̇(t))dt.

and “discrete forces” fd according to

f −
d (qk, qk+1, uk, uk+1)δqk + f +

d (qk, qk+1, uk, uk+1)δqk+1

∗
tk+1⎧
tk

f (q(t), q̇(t), u(t))δq(t),

where the function f (q, q̇, u) defines generalized forces including control inputs
u acting on the system and the discrete left and right forces f −

d and f +
d , respec-

tively, approximate the virtual work on the left (resp. right) section of the interval
[tk, tk+1]. A discrete variational principle can now be formulated over the whole path
{q0, ..., qN } and control inputs {u0, . . . , uN } defined by the successive position at
times tk = kh. This discrete principle requires that

δ

N−1⎪
k=0

Ld(qk, qk+1) +
N−1⎪
k=0

[ f −
d (qk, qk+1, uk, uk+1)δqk

+ f +
d (qk, qk+1, uk, uk+1)δqk+1] = 0, (7.1)

where variations are taken with respect to each position qk along the path. Thus, if
we use Di to denote the partial derivative w.r.t the i th variable, we must have
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D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f +
d (qk−1, qk, uk−1, uk)

+ f −
d (qk, qk+1, uk, uk+1) = 0 (7.2)

for every three consecutive positions qk−1, qk, qk+1 of the mechanical system. The
relationship (7.2) is known as the discrete Euler-Lagrange (DEL) equation and
defines an integration scheme which computes qk+1 using the two previous posi-
tions qk and qk−1 and given forces uk−1, uk, uk+1.

Simple Example. Consider a system with continuous, typical Lagrangian of the
form L(q, q̇)= 1

2 q̇T Mq̇−V (q) (V being a potential function) and subject to control
forces only, i.e. f (q, q̇, u) = u. Define the discrete Lagrangian using the trapezoidal
rule

Ld(qk, qk+1)= h

2

⎨
L

⎩
qk,

qk+1 − qk

h

)
+ L

⎩
qk+1,

qk+1 − qk

h

)]
.

with discrete forces defined by

f −
d (qk, qk+1, uk, uk+1) = h

2
uk, f +

d (qk, qk+1, uk, uk+1) = h

2
uk+1

The resulting update equation is:

M
qk+1 − 2qk + qk−1

h2 = uk − ⇒V (qk),

which is a discrete analog of Newton’s law Mq̈ = u − ⇒V (q). This example can be
easily generalized to systems with configuration-dependent mass matrix M(q) or to
systems with constraints leading to variants of the update equation.

7.3 Geometric Integrators for the Rigid Body

We first consider geometric integrators for a single rigid body as one of the simplest
mechanical system with nonlinear dynamics. The goal is to illustrate two typical
geometric integrators and discuss regularity conditions required for their solvability.
These results will then be generalized to multi-body systems.

The standard continuous equations of motion of a controlled rigid body is given
by (see e.g. [21])

Ṙ = Rω̂ (7.3)

Jω̇ = Jω × ω + u, (7.4)

where R ∈ SO(3) is the rotation matrix, ω ∈ R
3 is the angular velocity, J is the 3×3

inertia tensor and u are the given control inputs. While it is possible to express the
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body rotation using coordinates such as Euler angles a more numerically convenient
approach is to perform numerical integration on the configuration manifold directly.
For instance, the simplest first-order Euler method on SO(3) would take the form

Rk+1 = Rk exp(hωk+1), (7.5)

ωk+1 = ωk + hJ−1(Jωk × ωk + uk), (7.6)

where exp : R3 ≡ SO(3) is the exponential map defined by

exp(ω) =
{

I, ω = 0
I + sin ∇ω∇

∇ω∇ ω̂ + 1−cos ∇ω∇
∇ω∇2 ω̂2, ω ⊗= 0 , (7.7)

with I denoting the identity matrix and the map ·̂ : R3 ≡ so(3) (with so(3) begin
the space of 3 × 3 skew-symmetric matrices) defined by

ω̂ =

⎡ 0 −w3 w3

w3 0 −w1
−w2 w1 0

⎣
 . (7.8)

The integrator (7.5)–(7.6) explicitly updates the next state (Rk+1,ωk+1) given the
current state (Rk,ωk). The method is more accurate than a coordinate-based Euler
method and does not require coordinate chart switching [22]. Nevertheless, similarly
to any other Euler method it is only first-order accurate and has poor numerical
stability which becomes especially pronounced at large time-steps h.

7.3.1 Implicit Second-Order Methods

A numerically superior integrator results from implicit second-order formulation, for
instance based on trapezoidal or midpoint collocation. As an example, a trapezoidal
collocation of the dynamics (7.4) will result in the semi-explicit integrator

Rk+1 = Rk exp(hωk+1), (7.9)

J(ωk+1 − ωk) = h

2
(Jωk × ωk + Jωk+1 × ωk+1) + huk, (7.10)

known as the trapezoidal Lie-Newmark (TLN) integrator [15, 23]. The dynamics
update (7.10) can be equivalently written as

A(hωk+1)
T
Jωk+1 − A(−hωk)

T
Jωk = huk

where the matrix A(ω) is defined by
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A(ω) = I − 1

2
ω̂,

and is regarded as the truncated (to first-order) right-trivialized derivative inverse
[23, 24] of the exponential map, i.e. dexp(w)−1 = A(ω) + O(∇w∇2). In contrast, a
very similar method employing the untruncated derivative is actually a variational
symplectic integrator obtained using a Lie group version of the discrete variational
principle (7.1) known as the discrete Euler-Poincare principle (see [1, 23, 25–27]).

An example of such a symplectic Lie group integrator known for its efficiency
and ease of implementation [23, 27] is defined by

Rk+1 = Rkcay(hωk+1), (7.11)

[dcay−1
hωk+1

]T
Jωk+1 − [dcay−1

−hωk
]T
Jωk = huk, (7.12)

where the Cayley map cay:R3 ≡ SO(3) approximates the exponential map and is
defined by

cay(ω) = I + 4

4 + ∇ω∇2

⎩
ω̂ + ω̂2

2

)
, (7.13)

while the right-trivialized tangent inverse is defined by

[dcay−1
ω ]= I − ω̂

2
+ ωωT

4
. (7.14)

One of the special properties of the symplectic integrator (7.11)–(7.12) is that it
preserves the spatial momentum Jk ∗ J (kh) given by Jk = Rk[dcay−1

−hωk
]T
Jωk in

the absence of forces, i.e. when uk = 0.

Time-step selection and solvability. The numerical behavior, preservation proper-
ties, and associated backward error analysis of these methods has been established
[2, 15, 22, 23, 28]. The resulting favorable numerical behavior permits the use of
larger time-steps h while maintaining desired accuracy and stability. But how large
can h be? To answer this question we next study regularity conditions of the most
common iterative method, i.e. Newton’s method, which translate to a maximum
time-step selection rule required in order to guarantee solvability of the integrators.

7.3.2 Newton’s Method and Time-Step Bounds

Either the collocation or the symplectic methods require the solution of nonlinear
discrete dynamics equations, in particular Eqs. (7.10) or (7.12), respectively. This
can be formulated as the solution of the nonlinear equations etln(ωk+1) = 0 or
esymp(ωk+1) = 0 given by
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etln(ω) =
⎨

I + h

2
ω̂

]
Jω − ck, (7.15)

where ck ∈ R
3 is given and defined by

ck = A(−hωk)
T
Jωk + huk,

and

esymp(ω) =
⎨

I + h

2
ω̂ + h2

4
ωωT

]
Jω − dk, (7.16)

where dk ∈ R
3 is given and defined by

dk = [dcay−1
−hωk

]T
Jωk + huk .

While it is possible to apply a number of numerical root-finding methods including
polynomial and continuation methods, we focus on Newton-like methods since they
generalize to the more complex multi-body setting. Newton’s method solves the
equation e(ω) = 0 using an initial guess ω which is then iterated according to
w = w − [De(w)]−1e(ω), where De(ω) is the Jacobian of e(ω) which must be
invertible. The Jacobians of the two methods are given by

Detln(ω) = J − h

2
⎜Jω + h

2
ω̂J, (7.17)

and

Desymp(ω) = J − h

2
⎜Jω + h

2
ω̂J + h

4
ωT

Jω I + h

2
ωωT

J, (7.18)

and are positive definite and invertible at h = 0. We next compute the range of time-
steps h for which the Jacobians remain invertible. First note that it is not difficult to
show1 that

ω̂J → 1

2
∇ω∇(σ+ − σ−)I,

where σ− and σ+ are the minimum and maximum eigenvalues of J. Therefore, we
have

Detln(ω) ≥
⎨
σ− − h

4
∇ω∇(σ+ − σ−)

]
I,

or equivalently Detln(ω) will be always positive definite and hence invertible if the
time-step is chosen according to 0 < h < h̄tln(ω) where the upper bound is defined
by

1 A ≥ B for any matrices A, B ∈ R
n×n if and only if xT Ax ≥ xT Bx for all x ∈ R

n .
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h̄tln(ω) =
⎤√ ( i.e. time-step unrestricted) if either κ = 1, or ∇ω∇ = 0

4
(κ−1)∇ω∇ otherwise,

(7.19)

where κ = σ+
σ− ≥ 1 is the condition number of J. When κ = 1 (i.e. a spherical body)

or when ∇ω∇ = 0 we have trivially Detln = J and there are no restrictions on the
time-step.

The symplectic integrator Jacobian Desymp(ω) satisfies

Desymp(ω) ≥
⎨
σ− − h

4
∇ω∇(σ+ − σ−) + h2∇ω∇2

⎩
σ− − 1

4
σ+

)]
I,

and will remain positive definite and invertible all time-steps 0 → h < h̄symp(ω)
where the upper bound is defined by

h̄symp(ω) =
{√ ( i.e. time-step unrestricted) if either κ → 4

≺
7 − 7, or ∇ω∇ = 0

κ−1−≺
κ2+14κ−63

(8−2κ)∇ω∇ otherwise.

(7.20)

Figure 7.2 illustrates these bounds by plotting the dependence of h∇ω∇ on the
condition number κ. The key point is that the lower the condition number and the
lower the velocity magnitude ∇ω∇ the higher time-step can be chosen. Note that
the symplectic integrator appears to have a wider region of convergence and, unlike
collocation, there are no restrictions on the maximum time-step for bodies with
condition number κ ∗ 3.58 or smaller. Furthermore, empirically the number of
failed solutions is a small fraction of the singular cases for the collocation scheme.
In general, though both methods are suitable for very efficient and long-term stable
integration as long as the time-step h is chosen to satisfy the respective bounds (7.19)
or (7.20).

7.4 Variational Integrators for Mechanical Systems
in Generalized Coordinates

We next consider the more general setting of mechanical systems in minimal gener-
alized coordinates, i.e. describing the the system joint angles and pose. The equations
of motion of multi-body systems can be derived using a Lagrangian in the typical
form

L(q, q̇)= 1

2
q̇T M(q)q̇−V (q),

where M(q) is a positive-definite mass matrix and V is a potential function. The
system is also subject to generalized forces f (q, q̇, u) in the form



154 M. Kobilarov

co
llo

ca
tio

n
an

al
yt

ic
al

bo
un

d

sy
m

pl
ec

tic
an

al
yt

ic
al

bo
un

d

co
llo

ca
tio

n
fa

ilu
re

s
sy

m
pl

ec
tic

fa
il

ur
es

h

co
nd

iti
on

 n
um

be
r 
κ

(J
)

1
2

4
8

16
32

10
−

1

10
0

10
1

F
ig

.7
.2

C
om

pa
ri

so
n

of
m

ax
im

um
tim

e-
st

ep
s

h
al

lo
w

ed
by

th
e

tr
ap

ez
oi

da
lc

ol
lo

ca
tio

n
in

te
gr

at
or

an
d

th
e

sy
m

pl
ec

tic
in

te
gr

at
or

.B
ot

h
an

al
yt

ic
al

up
pe

r
bo

un
ds

ar
e

sh
ow

n
as

w
el

la
s

em
pi

ri
ca

lly
co

m
pu

te
d

up
pe

r
bo

un
ds

re
su

lti
ng

in
si

ng
ul

ar
Ja

co
bi

an
s

(a
nd

in
te

gr
at

or
so

lu
tio

n
fa

ilu
re

)
fr

om
50

,0
00

M
on

te
C

ar
lo

ex
pe

ri
m

en
ts

w
ith

va
ry

in
g

in
er

tia
J

an
d

ve
lo

ci
ty

ω



7 Solvability of Geometric Integrators for Multi-body Systems 155

f (q, q̇, u) = f x (q, q̇) + B(q)u,

where f x encodes any internal and external forces e.g. due to damping or friction and
u ∈ R

c are the control forces. Our focus is on second-order variational integrators
obtained using the discrete Lagrangian

Ld(qk, qk+1)= h

2

⎦
L(qk, vk+1) + L(qk+1, vk+1)

⎟
,

where the discrete velocity vk ∈ R
n is defined by

vk � qk − qk−1

h
,

and discrete forces set to

f −
d (qk, qk+1, uk, uk+1) = h

2
f (qk, vk+1, uk),

f +
d (qk, qk+1, uk, uk+1) = h

2
f (qk+1, vk+1, uk+1).

This choice of discretization is based on trapezoidal quadrature approximation and
as we will show results in a simpler integrator amenable to easier analysis compared
to other methods of the same order such as midpoint quadrature (that is not to say
that the midpoint rule is inferior).

Discrete Equations of Motion. The general discrete Euler-Lagrange Eq. (7.2) when
applied to the mechanical systems result in the implicit integrator

1

2
[M(qk) + M(qk+1)]vk+1 − 1

2
[M(qk−1) + M(qk)]vk

− h

4

[
(In ∀ vT

k )⇒M(qk)vk + (In ∀ vT
k+1)⇒M(qk)vk+1

]
+ h⇒V (qk)

= h

2
[ f (qk, vk, uk) + f (qk, vk+1, uk)] (7.21)

where the tensor product notation A ∀ B is defined (see e.g. [29]) according to

A ∀ B =

⎡

a11 B · · · a1n B
...

. . .
...

an1 B · · · ann B

⎣


and the matrix gradient ⇒M and hence the expression (In ∀ vT )⇒M are defined as
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⇒M =


⎡

∂M
∂q1
...

∂M
∂qn

⎣
 , (In ∀ vT )⇒M =


⎡

vT ∂M
∂q1
...

vT ∂M
∂qn

⎣
 .

Equivalently, the matrix (In ∀ vT )⇒M can be expressed in coordinates according to

[(In ∀ vT )⇒M]i j �
n⎪

δ=1

∂Mδj

∂qi
vδ,

where i, j = 1, . . . , n are the matrix row and column indices, respectively. The
relationship (7.21) is expressed more compactly as

1

2
[M(qk) + M(qk + hvk+1)]vk+1 − 1

2
[M(qk−1) + M(qk ]vk + hbk(vk , qk , vk+1)

= h B(qk)uk , (7.22)

where the discrete bias bk is defined by

bk(vk , qk , vk+1) = − 1

4

[
(In ∀ vT

k )⇒M(qk)vk + (In ∀ vT
k+1)⇒M(qk)vk+1

]
+ ⇒V (qk)

− 1

2
[ f x (qk , vk) + f x (qk , vk+1)]. (7.23)

The integrator (7.22) can be regarded as the discrete analog of the continuous
equations of motion in a standard form (e.g. [30, 31])

M(q)q̈ + b(q, q̇) = B(q)u,

where the corresponding continuous bias term b(q, q̇) = C(q, q̇)q̇+g(q)− f x (q, q̇)

encodes Coriolis and centripetal forces defined by the matrix C , gravity forces g,
and other forces f x .

7.4.1 Implicit Time-Stepping Using a Newton Algorithm

The integrator (7.21) is solved in terms of the next velocity vk+1 using a numerical
root-finding procedure, typically a second-order method such as Newton’s method
equipped with regularization and line-search procedures. Our goal is to find the
root of the equation ek(vk+1) = 0 corresponding to the relationship (7.21) with the
mapping ek :Rn ≡ R

n defined by
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ek(v) � 1

2
[M(qk) + M(qk + hv)]v − 1

2
[M(qk−1) + M(qk)]vk

+ h[bk(vk, qk, v) − B(qk)uk]. (7.24)

The Jacobian of ek(v) is

Dek(v) = 1

2
[M(qk) + M(qk +hv)]

+ h

2

[
⇒M(qk +hv)T (I ∀ v) − (I ∀ vT )⇒M(qk) − D2 f x (qk, v)

]
,

(7.25)

where the matrix gradient transpose paired with the tensor product should be under-
stood as

⇒MT (I ∀ v) ◦
[

∂MT

∂q1
v, · · · , ∂MT

∂qn
v

]
.

Note that one of the main practical advantages of using a trapezoidal variational
formulation, in addition to its numerical stability, is the relatively simple expression
for the Jacobian (7.25). This is not the case if the midpoint rule were used which
would involve the unwieldy term ⇒2 M .

Newton’s algorithm starts by setting the unknown v to an initial value and itera-
tively updates it to v + d where the Newton step d is defined by

d = −Dek(v)−1ek(v).

We will restrict our analysis to this “pure” version of the algorithm which also
employs the previous velocity as an initial value, i.e. the first iteration begins with
v = vk . The algorithm is summarized below.

Algorithm 1: vk+1 ← Newton (vk, qk, uk)

v ← vk ;1

choose time-step h ;2

while v has not converged do3

Compute d ∈ R
n such that [Dek(v)]d = −ek(v) using (7.24) and (7.25);

v ← v + d
return v4

We next study the convergence properties of this algorithm. This will be accom-
plished by assuming certain regularity conditions of the dynamical model and deriv-
ing time-step bounds to guarantee convergence.
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7.4.2 Convergence of Newton’s Method

In order to guarantee solvability of the integrator it is critical to ensure that the
time-step h is chosen small enough to ensure convergence of Algorithm 1 or in other
words that the true solution can be traced from the initial guess v = vk . This problem
has been studied previously [32] for implicit time-stepping methods under general
regularity conditions. For mechanical multi-body systems these results need to be
extended since it turns out that the Jacobian Lipschitz “constant” normally employed
in the Kantorovich-type results [32] is actually a function of the time-step and the
current state which requires additional development.

To establish the formal bounds it is necessary to assume the following regularity
conditions of the dynamical model:

Assumption 1 Assume that the dynamical system model satisfies the following
bounds:

m1(q)I → M(q) → I m2(q) (7.26)

∇M(q) − M(q + w)∇ → δ0(q)∇w∇ (7.27)

∇⇒M(q)T (In ∀ v)∇ → δ1(q)∇v∇ (7.28)∥∥∥[⇒M(q + w) − ⇒M(q)]T (In ∀ v)

∥∥∥ → δ2(q)∇v∇∇w∇ (7.29)

∇D2 f x (q, v)∇ → δ3(q)∇v∇ + δ4(q) (7.30)

∇D2 f x (q, v) − D2 f x (q, v + d)∇ → [δ5(q)∇v∇ + δ6(q)]∇d∇ (7.31)

for some known non-negative functions m1, m2, δ0, δ1, . . . , δ6: Q ≡ R≥0 for any
v,w, d ∈ R

n . Furthermore, assume that there is a set U ⊂ Q and constants
m1, m̄2, δ̄0, . . . , δ̄6 ≥ 0 such that for all q ∈ U :

m1 → m1(q), m2(q) → m̄2, δ0(q) → δ̄0 , . . . , δ6(q) → δ̄6.

The bounds defined in (7.26)–(7.31) are used to obtain regularity conditions which
are necessary to guarantee convergence of Newton’s method. In particular, the fol-
lowing quantities will be computed in order to construct a convergence proof:

• bound on time-step h to guarantee non-singular Jacobian Dek(v) for a given v ∈
R

n

• bound on ∇ek(vk)∇ and Jacobian inverse ∇Dek(vk)
−1∇ at first Newton iteration,

i.e. when v = vk

• bound on h so that Dek(v) is invertible for all all Newton iterations staring with
v = vk

• Lipschitz bound on the Jacobian Dek(v)

This list constitute the steps to be taken in order to construct a Kantorovich-type
proof of convergence.
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7.4.2.1 Jacobian Regularity

The most basic requirement for convergence is that the Jacobian Dek defined in (7.25)
is non-singular, a condition established as follows.

Proposition 1 Assume that the conditions (7.26)–(7.31) hold. The Jacobian Dek(v)

is non-singular for every time-step h such that 0 → h < h̄(qk, v) where the upper
bound is defined by

h̄(qk, v) =
⎛[δ3(qk)∇v∇ + δ4(qk)]2 + 8δ2(qk)∇v∇2m1 − δ3(qk)∇v∇ − δ4(qk)

2δ2(qk)∇v∇2

(7.32)

Proof First, note that at h = 0 we have Dek(v) = M(qk) > 0, i.e. the Jacobian
is positive definite.2 Therefore, h can be increased as long as Dek remains positive
definite and hence invertible. Next we add and subtract the term ⇒MT (In ∀ v) to
Dek in (7.25) and since the matrix

⇒MT (In ∀ v) − (In ∀ vT )⇒M

is skew-symmetric it will not affect the Jacobian positivity. Hence we have

Dek(v) ≥ 1

2
[M(qk) + M(qk + hv)]

+ h

2

[
⇒M(q + hv)T (In ∀ v) − ⇒M(q)T (In ∀ v) − D2 f x (qk , v)

]

≥ max

⎨
m1(qk) − h

2
∇v∇δ0(qk), m1

]
− h

2

[
δ2(qk)h∇v∇2 + δ3(qk)∇v∇ + δ4(qk)

]
,

(7.33)

where max(·, ·) takes the maximum of either the local bound at qk or the global
bound m1 of the mass matrix. For simplicity, we will employ the global bound so
that Dek(v) > 0 when h is chosen so that

δ2(qk)∇v∇2h2 + [δ3(qk)∇v∇ + δ4(qk)]h − 2m1 < 0

which is satisfied when h < h̄(qk, v) where h̄ is the quadratic equation root defined
in (7.32). Note that in case when δ2(qk)∇v∇ = 0 we have the simpler form

h̄(qk, v) = 2m1

δ3(qk)∇v∇ + δ4(qk)
.

Finally, whenever the denominator is zero there are no restriction on the time-step,
i.e. h̄(qk, v) = √. �

2 Any matrix (including non-symmetric) A ∈ R
n×n is positive definite if xT Ax > 0 for all x ∈ R

n

such that x ⊗= 0.
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Linear Damping Forces. Note that the Jacobian regularity bound can be improved
when the velocity-dependent terms in the external forces f x (q, v) are the form −Kv

for some matrix K > 0. The quadratic condition would then be

δ2(qk)∇v∇2h2 + [δ4(qk) − k1]h − 2m1 < 0,

where k1 > 0 is such that k1 I → K with respect to the chosen norm ∇ · ∇.

7.4.2.2 Bounding Newton’s Method Iterates

Next, we establish bounds on the error function ek and inverse Jacobian Dek evaluated
at the first Newton iteration, i.e. when v = vk . These bound will then be used in
computing the the region of convergence of Newton’s method determined by the
first search step.

Applying the assumption (7.27) twice the following relationship holds

1

2
[M(qk + hvk) − M(qk − hvk)]vk → hδ0(qk)∇vk∇2,

and a bound on the residual ek evaluated at v = vk can be established according to

∇ek(vk)∇ → hδ0(qk)∇vk∇2 + h∇bk(vk) − B(qk)uk∇ (7.34)

� hL0(qk, vk).

Similarly, the Jacobian satisfies the following bound

∇Dek(vk)∇ → m̄2 + h

⎨
�δ1∇vk∇ + 1

2
∇D2 f (qk, vk)∇

]
(7.35)

� m̄2 + hL1(qk, vk),

while its inverse is bounded according to

∇Dek(vk)
−1∇ → 1

m1 − hL1(qk, vk)
. (7.36)

Note that similarly to (7.33) it is possible to obtain a tighter bound by using
min[m2(qk) + h

2 ∇vk∇δ0(qk), m̄2] in place of �m2 in (7.35) and (7.36) with mini-
mal modification; we employ the simpler m̄2 for clarity.

The first Newton iteration search step d0 ∈ R
n is defined by

d0 � −[Dek(vk)]−1ek(vk).
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A convergent Newton algorithm will then perform iterations in the vicinity of the
starting value v = vk in the sense that all iterates v will be contained in the set
B0 � B(vk +d0, ∇d0∇), i.e. the ball at point vk +d0 with radius ∇d0∇. More formally,
the set B(v, r) ⊂ R

n for a given scalar r > 0 is defined as

B(v, r) = {v + d | ∇d∇ → r}.

The following property related to the magnitude of subsequent iterates can be estab-
lished:

Lemma 7.4.1 Let assumptions (7.26)–(7.31) hold and assume that the time-step h
is such that B0 ⊂ U. All Newton iterates v ∈ R

n are then bounded according to

∇v∇ → ∇vk∇ + 2hL0(qk, vk)

m1 − hL1(qk, vk)
. (7.37)

Proof Assuming the Jacobian Dek(v) is invertible for all v ∈ B0, all consequent
iterates v will remain inside B0 which means that

∇v∇ → ∇vk + d0∇ + ∇d0∇
→ ∇vk∇ + 2∇d0∇
→ ∇vk∇ + 2∇Dek(vk)

−1∇∇ek(vk)∇,

and (7.37) follows from (7.34) and (7.36). �

7.4.2.3 The Newton-Kantorovich Condition

So far we obtained condition (7.32) on h guaranteeing that the Jacobian Dek is
invertible. The computed upper bound �h(qk, v) is a function of v so it is actually not
possible to use this bound to guarantee regularity for all Newton iterations a priori,
i.e. before executing the algorithm, since obviously v will change at each iteration.
But since know that ∇v∇ is bounded such an a-priori condition is obtained using the
upper bound (7.37) by selecting h so that φk(h) < 0 where

φk(h) = δ2

⎨
∇vk∇ + 2hL0

m1 − hL1

]2

h2 +
⎨
δ3 ·

⎩
∇vk∇ + 2hL0

m1 − hL1

)
+ δ4

]
h − m1,

(7.38)

where all functions δi and Li are evaluated at (qk, vk). This is now a fourth-order
polynomial in h and the upper bound denoted by h̄k is set to the smallest positive
root of φk(h).

Next, we establish a Lipschitz condition on the Jacobian. We have, for some
d ∈ R

n :
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∇Dek (v + d) − Dek (v)∇ → 1

2
∇M(qk + h(v + d)) − M(qk + hv)∇

+ h

2

∥∥∥⇒M (qk + h(v + d))T (I ∀ (v + d)) − ⇒M(qk + hv)T (I ∀ v)

− (I ∀ dT )⇒M(qk ) − D2 f x (qk , v + d) + D2 f x (qk , v)

∥∥∥
→ h

2

⎦�δ0 + 2δ̄1 + δ̄2∇v∇ + δ5(qk )∇v∇ + δ6(qk )
⎟ ∇d∇

� h
⎦
L2(qk ) + L3(qk )∇v∇⎟ ∇d∇. (7.39)

In order to obtain a Lipschitz bound independent of the velocity v it is necessary to
employ bound (7.37) on ∇v∇ which leads to

∇Dek(v + d) − Dek(v)∇ → h

⎨
L2(qk) + L3(qk)

⎩
∇vk∇ + 2hL0(qk , vk)

m1 − hL1(qk , vk)

)]
∇d∇

= h[L2m1 + L3∇vk∇m1] + h2 [2L0 L3 − L1 L2 − L1 L3∇vk∇]

m1 − hL1
∇d∇

� hL4 + h2 L5

m1 − hL1
∇d∇, (7.40)

so that the factor in front of ∇d∇ can now be regarded as the required Lipschitz
constant of the Jacobian [32].

Choosing h < h̄k where h̄k is the smallest positive root ofφk(h)guarantees that the
Jacobian is invertible for all Newton iterations assuming the method was initialized
with v = vk . This bound can now be combined with the actual sufficient condition
for convergence. As a result, a stricter bound will be obtained that is sufficient to
guarantee a successful solution.

Proposition 2 Assume that conditions (7.26)–(7.31) hold and that the time-step
h is such that φk(h′) < 0 for all h′ ∈ [0, h] or equivalently assume that h < h̄k .
Furthermore, assume thatB0 ⊂ U for all h → h̄k . Newton’s algorithm then converges
super-linearly to a unique solution inside B0 if the time-step h is chosen so that
ψ(h′) < 0 for all h′ ∈ [0, h] where

ψ(h) = h3(2L0 L5 + L3
1) + h2(2L0 L4 − 3m1L2

1) + h(2m2
1L1) − m3

1. (7.41)

Equivalently, convergence is ensured if the upper bound on h is set to the smallest
positive root of ψ(h) = 0.

Proof To ensure convergence, the Newton-Kantorovich theorem [33] requires that

hL4 + h2L5

m1 − hL1
∇De−1

k (vk)∇∇d0∇ → 1

2
, (7.42)

where the first term corresponds to the Jacobian Lipschitz term (7.40). Note that
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∇De−1
k (vk)∇∇d0∇ → ∇De−1

k (vk)∇2∇ek(vk)∇
→ hL0(qk, vk)

[m1 − hL1(qk, vk)]2 ,

using the computed bounds (7.34) and (7.36), which is then substituted into (7.42)
to obtain ψ(h) < 0. Since this condition is trivially satisfied for h = 0 the upper
bound is the smallest positive h for which ψ(h) = 0. �

7.5 Variational Lie Group Integrators for Multibody Systems

The integrators developed in Sect. 7.4 are based on generalized coordinates q in the
Euclidean space R

n . The configuration space Q is actually only locally isomorphic
to R

n in the sense that any choice of rotational coordinates such as Euler angles
cannot globally cover the space of rotations using a single chart. Most floating-base
multi-body systems have a configuration space Q = SE(3) × R

m with q = (g, r)

where g ∈ SE(3) is the pose of a chosen base body and r ∈ R
m are the joint

angles or shape variables. Such representation is sufficient for tree-topology multi-
body systems with m internal (i.e. from movable joints) degrees of freedom. A more
general graph-topology system with loops is modeled by selecting a spanning tree
and enforcing loop constraints using additional multiplier variables. Our goal is to
develop geometric variational integrators for such systems which evolve intrinsically
on the configuration space Q. These integrators can be regarded as an extension of
the single rigid body integrators described in Sect. 7.3 to general multi-body systems.
We first focus on the standard continuous setting and then develop the corresponding
geometric structure-preserving integrators.

7.5.1 The Continuous Setting

The configuration of a tree-topology multi-body system is defined as q = (g, r) ∈
SE(3) × R

m with velocity given by v = (ξ, ṙ) ∈ R
6+m , where g ∈ SE(3) is the

4 × 4 pose matrix describing the base body orientation R ∈ SO(3) and position
x ∈ R

3 according to

g =
⎨

R x
01×3 1

]
, g−1 =

⎨
RT −RT x
0 1

]
.

and where ξ = (ω, v) ∈ R
6 defines its body-fixed angular velocity ω ∈ R

3 and linear
velocity v ∈ R

3. The body-fixed velocity ξ is related to the configuration using the
relationship [21, 31]

ġ = gξ̂,
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where the operator ·̂:R6 ≡ se(3) turns velocities ξ = (v,ω) into the 4 × 4 matrices

ξ̂ =
⎨

ω̂ v
01×3 0

]
. (7.43)

The Lagrangian of the system is defined by

L(g, r, ξ, ṙ) = 1

2
(ξ, ṙ)TM(r)(ξ, ṙ) − V (g, r), (7.44)

or more compactly as L(q, v) = 1
2vTM(r)v − V (q), where the mass matrix M is

defined by (e.g. see [31, 34])

M(r) =
⎝
I0 +

⎪n

i=1
AT

i Ii Ai
⎞n

i=1 AT
i Ii Ji⎞n

i=1 J T
i Ii Ai

⎞n
i=1 J T

i Ii Ji

⎠
(7.45)

where Ii is the 6 × 6 inertia matrix of body i and the adjoint notation Ai � Adg−1
0i (r)

,

and Jacobian Ji �
⎞n

j=1[g−1
0i (r)∂r j g0i (r)]∨ were employed (the operator ·∨ is

the inverse of the operator ·̂ defined in (7.43)). Here we use the standard notation
g0i :Rm ≡ SE(3) to define the transformation between the base body (with index
#0) and body #i (see e.g. [31]). The adjoint map Adg is defined by the 6 × 6 matrix

Adg =
⎨

R 0
x̂ R R

]
. (7.46)

Various efficient methods exist [30, 34] to compute the Jacobians and the mass matrix
recursively exploiting the tree structure of the multi-body system. Finally, assume
that the system is subject to generalized forces expressed through the known function
f (q, v, u). The variational principle used to obtain the dynamics is

δ

⎧
L(g, r, ξ, ṙ)dt +

⎧
〈 f (g, r, ξ, ṙ , u), (η, δr)〉 = 0, (7.47)

where the left-trivialized variation η ∈ R
6 is defined by η(t) = (g(t)−1δg(t))∨. The

resulting equations of motion are obtained by taking variations (δg, δr) and (δξ, δr)

subject to the constraint (see e.g. [21])

δξ = η̇ + adξ η,

where the adjoint operator adξ is defined by the 6 × 6 matrix

adξ =
⎨

ω̂ 0
v̂ ω̂

]
.
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This variational constraint stems from the kinematic constraints ξ = (g−1ġ)∨
between ξ and g.

Before stating the equations of motion it is necessary to define a procedure for
differentiating functions on the Lie group SE(3). This will be accomplished by
applying a trivialized gradient as opposed to the standard gradient on R

n as follows.

Definition 7.5.1 The left-trivialized gradient g∗⇒gV (g) ∈ R
6 of a function V :

SE(3) ≡ R,

g∗⇒V (g) = ⇒ξ

⎭⎭⎭
ξ=0

V (g exp(ξ))

or in coordinates using the standard basis {e1, . . . , e6} of R6 by

g∗⇒V (g) =
⎨
∂V

∂s

⎭⎭⎭
s=0

(x exp(se1)), · · · ,
∂V

∂s

⎭⎭⎭
s=0

(x exp(se6))

]T

.

Continuous Equations of Motion. Employing the momenta μ = ∂ξ L and p = ∂ṙ L
the resulting dynamics can be expressed as:

⎨
ξ
ṙ

]
= M(r)−1

⎨
μ
p

]
(7.48)

⎨
μ̇
ṗ

]
=

⎨
(adξ)

T μ
1
2 (In ∀ vT )⇒M(r)v

]
−

⎨
g∗⇒gV
⇒r V

]
+ f (q, v, u), (7.49)

The system evolution is then fully determined by adding the reconstruction equations

ġ = gξ̂

which corresponds to setting Ṙ = Rω and ẋ = Rv. Note that Eqs. (7.48) and (7.49)
can be regarded as an extension of the standard Hamiltonian form of the equations of
motion (see e.g. [29]) to floating-base systems. In order to derive the corresponding
geometric integrator we next specify a methodology for performing discrete-time
updates on Lie groups, such as SE(3), without resorting to local coordinates.

7.5.2 Trajectory Discretization on Lie groups

A trajectory is represented numerically using a set of N + 1 equally spaced in time
points denoted g0:N := {g0, ..., gN }, where gk ∗ g(kh) ∈ G and h = T/N denotes
the time-step. The section between each pair of points gk and gk+1 is interpolated by
a short curve that must lie on the manifold (Fig. 7.3). The simplest way to construct
such a curve is through a map τ : g ≡ G and velocity vector ξk ∈ g such that
ξk = τ−1(g−1

k gk+1)/h. Here g ◦ TeG denotes the Lie algebra of G. The map is
defined as follows.
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G

gk−1

gk

gk+1

ξk = τ−1(g−1
k gk+1)/hg

e

ξk

ξk−1

τ

τ

Fig. 7.3 A trajectory (solid) on the Lie group G discretized using a sequence of arcs (dashed)
represented by Lie algebra vectors ξk ∈ g through the retraction map τ [27]

Definition 7.5.2 The retraction map τ : g ≡ G is a C2-diffeomorphism around the
origin such that τ (0) = e. It is used to express small discrete changes in the group
configuration through unique Lie algebra elements. For our purposes, we consider
maps such that τ (ξ) = exp(ξ) + O(∇ξ∇3).

Thus, if ξk were regarded as an average velocity between gk and gk+1 then τ is an
approximation (to at least second-order) to the integral flow of the dynamics. The
important point, from a numerical point of view, is that the difference g−1

k gk+1 ∈ G,
which is an element of a nonlinear space, can now be represented uniquely by the
vector ξk in order to enable unconstrained optimization in the linear space g for
optimal control purposes.

Next, we define the following operators related to τ .

Definition 7.5.3 [23, 28] Given a map τ : g ≡ G, its right-trivialized tangent
d τξ : g ≡ g and its inverse d τ−1

ξ : g ≡ g are such that, for a some g = τ (ξ) ∈ G
and η ∈ g, the following holds

∂ξτ (ξ) · η = d τξ · η · τ (ξ), (7.50)

∂ξτ
−1(g) · η = d τ−1

ξ · (η · τ (−ξ)) . (7.51)

Note that it can be shown by differentiating the expression τ−1(τ (ξ)) = ξ that

dτ−1
ξ · dτξ · η = η,

to confirm that these linear maps are indeed the inverse of each other.
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7.5.3 Retraction Map (τ ) Choices

(a) The exponential map
exp : g ≡ G, defined by exp(ξ) = γ(1), with γ:R ≡ G is the integral curve through
the identity of the vector field associated with ξ ∈ g (hence, with γ̇(0) = ξ). The
right-trivialized derivative of the map exp and its inverse are defined as

dexpx y =
√⎪
j=0

1

( j + 1)! ad j
x y, (7.52a)

dexp−1
x y =

√⎪
j=0

B j

j ! ad j
x y, (7.52b)

where B j are the Bernoulli numbers. Typically, these expressions are truncated in
order to achieve a desired order of accuracy. The first few Bernoulli numbers are
B0 = 1, B1 = −1/2, B2 = 1/6, B3 = 0 (see [15]).

(b) The Cayley map cay : g ≡ G is defined by cay(ξ) = (I −ξ/2)−1(I +ξ/2) and
is valid for a general class for quadratic groups that include the groups of interest in
the chapter. Based on this simple form, the derivative maps become ([15], §IV.8.3)

dcayx y =
(

e − x

2

)−1
y
(

e + x

2

)−1
, (7.53a)

dcay−1
x y =

(
e − x

2

)
y
(

e + x

2

)
. (7.53b)

The third choice is to use canonical coordinates of the second kind (ccsk) [15]
which are based on the exponential map and are not considered in this chapter. In
our implementation we employ the Cayley map the details for which are given next.

7.5.3.1 The Cayley Map for Rigid Body Transformations

The algorithms developed in this chapter are based on the the Cayley map for SE(3)

since it is often a better alternative to the exponential for computational efficiency
and ease of implementation that does not require special numerical handling at the
origin. With a slight abuse of notation, i.e. assuming the identification g ∼ R

6, the
Cayley map τ :R6 ≡ SE(3) is defined as (see [27])

τ (ξ) =
⎝

I3 + 4
4+∇ω∇2

(
ω̂ + ω̂2

2

)
2

4+∇ω∇2 (2I3+ω̂) v

0 1

⎠
, (7.54)

while the matrix representation of the right-trivialized tangent inverse d τ−1
ξ :R6 ≡

R
6 becomes
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[d τ−1
ξ ] =

⎨
I3 − 1

2 ω̂ + 1
4ωωT 03

− 1
2

(
I3 − 1

2 ω̂
)
v̂ I3 − 1

2 ω̂

]
. (7.55)

7.5.4 Discrete Variational Formulation

With a discrete trajectory in place we follow the approach taken in [25, 26, 35] in
order to construct a structure-preserving (i.e. group, momentum, and symplectic)
integrator of the dynamics. We make a simple extension to include potential and
control forces through a trapezoidal quadrature approximation. In particular, the
action in (7.1) is approximated along each discrete segment between points (gk, rk)

and (gk+1, rk+1) through

(k+1)h⎧
kh

L(g, r, ξ, ṙ) dt ∗hLd(gk, gk+1, rk, rk+1), (7.56a)

(k+1)h⎧
kh

〈 f, (η, δr)〉dt ∗ ⎦〈 f −
d (gk, gk+1, rk, rk+1), (ηk, δrk)〉 + 〈 f −

d (gk, gk+1, rk, rk+1),

(ηk+1, δrk+1)〉
⎟
. (7.56b)

where the discrete variation ηk ∈ R
6 is defined by ηk = (g−1

k δgk)
∨. The discrete

Lagrangian and forces are defined by

Ld (gk , gk+1, rk , rk+1)= h

2

⎦
L(gk , rk , ξk+1, πrk+1) + L(gk+1, rk+1, ξk+1, πrk+1)

⎟
,

(7.57)

f −
d (gk , gk+1, rk , rk+1, uk , uk+1) = h

2
S(hξk+1)T f (gk , rk , ξk+1, πrk+1, uk), (7.58)

f +
d (gk , gk+1, rk , rk+1, uk , uk+1) = h

2
S(−hξk+1)T f (gk+1, rk+1, ξk+1, πrk+1, uk+1),

(7.59)

where the discrete velocities ξk ∈ R
6 and πrk ∈ R

m are defined by

ξk � τ−1(g−1
k−1gk)/h, πrk � (rk − rk−1)/h.

The matrix S(ξ) is defined by

S(ξ) =
⎨

dτ−1
ξ 0
0 Im

]
(7.60)
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and is interpreted as a Jacobian (or push-forward) map which transforms average
vectors along a segment generated by ξ to vectors defined at the beginning of the
segment [2, 9]. The map τ and its tangent dτ−1 are defined in (7.54) and (7.55) and
implemented through simple matrix-vector products. Finally, note that we have the
following variational constraint which may be obtained through differentiation and
application of (7.51),

δξk = δτ−1(g−1
k−1gk)/h = [− d τ−1

hξk
ηk−1 + d τ−1

−hξk
ηk]/h, (7.61)

which serves as the basis for applying the variational principle on Lie groups and
also the reason why S(ξ) appears in (7.58) and (7.59).

Discrete Equations of Motion. The resulting geometric integrator from applying
the principle (7.1) using the discrete Lagrangian (7.57) and forces (7.58) and (7.59)
subject to the constraint (7.61) is:

gk+1 = gkτ (hξk+1) (7.62)

rk+1 = rk + hπrk+1 (7.63)

1

2
S(hξk+1)T [M(rk) + M(rk + hπrk+1)]vk+1 − 1

2
S(−hξk)T [M(rk−1) + M(rk)]vk =

h

4

⎨
0

(In ∀ vT
k+1)⇒M(rk)vk+1 + (In ∀ vT

k )⇒M(rk)vk

]
− h

⎨
g∗⇒gV (qk)

⇒r V (qk)

]

+ h

2

[
S(hξk+1)T f (qk , vk+1, uk) + S(−hξk)T f (qk , vk , uk)

]
. (7.64)

Applying Newton’s Algorithm. The discrete equations of motion (7.62)–(7.64) are
used to update the current state (qk, vk) = (gk, rk, ξk,πrk) to obtain the next state
(qk+1, vk+1) = (gk+1, rk+1, ξk+1,πrk+1). This is accomplished by first solving the
dynamics (7.64) using a root-finding algorithm such as Newton’s method in terms of
the unknowns vk+1 = (ξk+1,πrk+1) which are then used in the explicit Eqs. (7.62)–
(7.63) to obtain the next configuration qk+1 = (gk+1, rk+1).

7.5.5 Preservation Properties

One of the main benefits of employing the variational numerical framework lies in
its preservation properties, summarized as follows.

Symplectic structure. The discrete flow (7.64) preserves the discrete symplectic
form, expressed in coordinates as
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ωL = ∂2Ld(qk, qk+1)

∂qi
k∂q j

k+1

dqi
k ∧ dq j

k+1,

where ∧ is the standard wedge product between differential forms [21]. The sym-
plectic form is physically related to the phase space structure. Its preservation during
integration, for instance, signifies that a volume of initial conditions would not be
spuriously inflated or deflated due to numerical approximations. Volume preserva-
tion means that the orbits of the dynamics will have a predictable character and no
artificial damping normally employed by Runge-Kutta methods is needed to stabilize
the system [1].

Momentum Conservation. The discrete dynamics (7.64) also exactly preserves any
Lagrangian symmetries. In particular, assume that there is a group G whose action
on Q leaves the Lagrangian invariant in the sense that

L(q, v) = L(exp(sρ)q, v),

which implies that

Ld(qk, qk+1) = Ld(exp(sρ)qk, exp(sρ)qk+1),

for some ρ ∈ g, where g is the Lie algebra of G, and s is a scalar. In this case the
momentum map J (qk, qk+1) · ρ = D1Ld(qk, qk+1) · ρQ(qk) is preserved [1] where
ρQ is the infinitesimal generator of the group [21]. Practically speaking, whenever
the continuous system preserves momentum, so does the discrete. Any change in the
momentum then exactly reflects the work done by non-conservative forces. Such a
momentum-symplectic scheme also exhibits long-term stable energy behavior close
to the true system energy [1].

For instance, assume that the Lagrangian of a multi-body system is invariant with
respect to spatial rotations and translations and that there are no external or control
forces acting on the base body. In this case we have G = SE(3) and the momentum
map

J (qk, qk+1) =
⎨

AdT
g−1

k
0m

]
1

2
S(hξk+1)

T [M(rk) + M(rk + hπrk+1)]vk+1 (7.65)

is exactly preserved by the integrator.

Order of Accuracy. The order of accuracy of the dynamics update depends on
the accuracy of the Lagrangian approximation. Since the trapezoidal approxima-
tions (7.56a) and (7.56b) are employed then it can be shown (see [1]) that the dis-
crete Eq. (7.64) are at least second order accurate. The trapezoidal rule was chosen
since it provides one of the simplest second-order scheme. Higher-order methods by
proper choice of the Lagrangian, termed symplectic Runge-Kutta (see [15, 23, 26]),
are possible but not considered in this work.
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Group structure. Finally, the group structure is exactly preserved since each con-
figuration gk is reconstructed from the previous pose gk−1 and the discrete velocity
ξk using the map τ which by definition maps to the group SE(3). This avoids issues
with dissipation and numerical drift associated with reprojection used for instance
in explicit methods based on matrix orthogonality constraints or quaternions.

7.5.6 Numerical Example

These numerical properties are illustrated with a simple multibody system consisting
of three bodies in 3-D arranged in a chain connected with hinge joints (Fig. 7.4). The
system is free-floating with the central body taken as the base body with index #0.
No control or external forces are applied in order to verify the integrator momen-
tum conservation properties. Figure 7.5 illustrates the resulting time-histories of the
velocities ω and v, joint angles r , momentum components J (corresponding to the
vector (7.65)) and position x . The true trajectory was constructed using an Euler
step with step-size h = 0.001 s. while the step-size for both the symplectic method
(symp) and Euler method (euler) were h = 0.1 s. The figures show that momentum
is exactly preserved by the symplectic method. The purpose of this study is not to
preform detailed comparisons but only to validate the basic numerical features of the
method. The main point is that these results motivate a further study to extend the
coordinate-based convergence conditions (7.41) to Lie group methods for mechanical
systems.

7.6 Conclusion

This chapter considered numerical properties of geometric integrators for multi-
body systems related to the choice of time-step h. Such methods exhibit favorable
numerical stability and accuracy but require the solution of a potentially complex
system of nonlinear equations. We showed that the solvability of this system can be
guaranteed by ensuring that h is chosen below an upper bound h̄ determined from
the dynamical model parameters and previous state of the system. The availability
of such a bound a priori is important since it could enable predictable computation
times for real-time integration or optimal control purposes. For instance, a number of
previously developed optimal control methods based on geometric integrators [27,
36–39] could benefit from a formal method for establishing the resolution of discrete
trajectories used for optimization.

Further work is necessary to provide guidelines for the practical application of the
proposed bounds. While the derived upper limits for a single rigid body are simple and
straightforward to use (i.e. they depend on the inertia condition number and norm of
velocity), the situation with general multibody systems is more complex. We showed
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Fig. 7.4 A simple three-link chain with hinge joints simulated by the symplectic integrator and
visualized using the robot operating system (ROS) user interface
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Fig. 7.5 The proposed symplectic integrators preserve the momentum map J and remain highly
accurate even at large time-step (in this example h = 0.1 s). The key issue which remains to be
answered is how high can h be chosen while retaining the solvability of the implicit time-stepping

that second-order geometric integrators in either generalized coordinates and or using
SE(3) matrices directly can be used as a basis for provably solvable time-stepping.
Further study is necessary to establish a procedure for computing the dynamical
model functions δ0, . . . , δ6 based on the type of system under consideration.
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While we considered variational integrators the proposed methodology could be
extended to other energy-consistent low-order methods such as the discrete null space
method [40]. A more challenging but equally important direction is to establish time-
stepping bounds for more general systems involving intermittent contacts [41–47].
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Chapter 8
Variational Lie Group Formulation
of Geometrically Exact Beam Dynamics:
Synchronous and Asynchronous Integration

Thomas Leitz, Sina Ober-Blöbaum and Sigrid Leyendecker

Abstract For the elastodynamic simulation of a geometrically exact beam [1], an
asynchronous variational integrator (AVI) [2] is derived from a PDE viewpoint.
Variational integrators are symplectic and conserve discrete momentum maps and
since the presented integrator is derived in the Lie group setting (SO(3) for the
representation of rotational degrees of freedom), it intrinsically preserves the group
structure without the need for constraints [3]. The discrete Euler-Lagrange equations
are derived in a general manner and then applied to the beam. A decrease of com-
putational cost is to be expected in situations, where the time steps have to be very
low in certain parts of the beam but not everywhere, e.g. if some regions of the beam
are moving faster than others. The implementation allows synchronous as well as
asynchronous time stepping and shows very good energy behavior, i.e. there is no
drift of the total energy for conservative systems.

8.1 Introduction

The main subjects covered in this chapter are discrete mechanics and variational
integrators, Lie group methods and beam dynamics. Their most recent developments
are discussed in the following.
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Discrete mechanics and variational integrators During the last years, the use
of discrete mechanics for the construction of numerical discretization schemes has
been of high interest to improve the simulation and optimization of mechanical
systems. Typically, the underlying geometric structure of a mechanical system affects
the qualitative behavior of solutions, and thus, numerical methods that preserve the
geometry of a problem yield simulations that are qualitatively more accurate. Vari-
ational integrators are derived analogously to the equations of motion in continu-
ous Lagrangian mechanics. To this end, principles and concepts from continuous
mechanics are transferred to the discrete setting in such a way that the geometry is
preserved in the discrete system which provides a geometric numerical integration
scheme [4]. Instead of applying the continuous variational principle and discretizing
the equations of motion, a discrete variational principle is used, which directly leads
to the discrete Euler-Lagrange equations to integrate forward in time. As a result
of the discrete variational principle, the symplectic structure of the Euler-Lagrange
equations is carried over to the discrete setting. In consequence, the integrators are
structure preserving, symplectic and a discrete Noether theorem can be proven as
well as a realistic energy behavior, i.e. no numerical dissipation for conservative sys-
tems, is achieved. Variational integrators and their structure preserving properties are
developed and analyzed by Marsden et al. [5] and have been further developed for
many different classes of systems involving classical conservative mechanical sys-
tems (for an overview see [6, 7]), forced and controlled systems [8, 9], constrained
systems (holonomic [10, 11] and nonholonomic systems [12]), nonsmooth systems
[13], stochastic systems [14], multiscale systems [15, 16] and electric systems [17].
Variational integrators for Lagrangian PDE systems have been developed in [18]. In
recent works [19], a variational framework is introduced that is based on generating
functions for the simulation of Lagrangian PDE systems. To improve computational
efficiency, asynchronous variational integrators are developed in [2] which allow
the use of varying time step sizes throughout different elements in space, e.g. for
different beam elements for the simulation of flexible beams. To further improve the
computational efficiency, parallel asynchronous variational integrators are developed
in [20]. Convergence results for the case of linear elastodynamics are shown in [21].
Applications of asynchronous variational integrators include the simulation of non
linear hyperelastic solids in [22], contact mechanics in [23] and simulations using
assumed gradient elements in [24].

Lie group methods For mechanical systems defined on Lie groups, Lie group meth-
ods are developed with the aim to preserve the Lie group structure of the system.
Rather than introducing constraints and projection methods, which may destroy the
good long-time behavior of the method, the corresponding group action is used to
update the group element during the simulation such that the group structure is pre-
served in a natural way. Standard Lie group methods are the Crouch-Grossman (CG)
methods [25] and the Runge-Kutta-Munthe-Kaas (RKMK) methods [26]. For an
overview and a detailed discussion on Lie group methods we refer to [27] and the
references therein.
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The development of Lie group methods in variational integration theory is a recent
research topic and addressed by several authors. Discrete Euler-Lagrange equations
for systems on Lie groups and the associated discrete Lagrangian reductions have
been carried out in [28–30] and further developed in [31–34] and applied to many
examples. These integrators are referred to as Lie group variational integrators. The
essential idea behind such integrators is to discretize Hamilton’s principle by only
allowing group operations when varying the discrete action and updating group ele-
ments using the exponential map of the Lie algebra. Lie group formulations are in
particular appropriate to describe the orientation of rigid bodies or cross sections
of flexible beams which motivates recent works on variational Lie group integra-
tors for the structure-preserving simulation of geometrically exact beams as e.g. in
[35, 36].

Beam dynamics Modeling geometrically exact beams as a special Cosserat contin-
uum (see e.g., [1]) has been the basis for many finite element formulations starting
with [37]. The formulation of beam dynamics as a Lagrangian system requires a
representation of the rotational degrees of freedom and their kinematics, which can,
on the one hand, be treated by a local parametrization of the Lie group SO(3) or,
on the other hand, by using a redundant configuration variable which is subject to
constraints. Many current semi-discrete beam formulations avoid the introduction
of constraints by using rotational degrees of freedom, see, e.g., [38, 39]. However,
it has been shown by Crisfield and Jelenić [40], that the interpolation of non com-
mutative finite rotations may destroy the objectivity of the strain measures in the
semi discrete model. To overcome this problem, a director triad can be introduced,
which is constrained to be orthonormal in each node of the central line of the beam;
thus it forms the columns of the rotational matrix. The spatial interpolation of the
director triad leads to objective strain measures in the spatially discretized config-
uration (even though the interpolated directors might fail to be orthonormal). This
idea is independently developed in [41] and [42]. For an overview on the effects of
different interpolation techniques concerning frame invariance and the appearance of
singularities we refer to [43]. Furthermore, this subject is elaborated in [44–48]. The
constrained formulation is particularly popular when the beam is part of a multibody
system, where further constraints representing the connection to other (rigid or flexi-
ble) components are naturally present. Another common formulation is the so called
absolute nodal coordinates formulation based on works of [49, 50]. Recently, Lie
group formulations are becoming more and more important in multibody and beam
dynamics; see, e.g., [51, 52]. So far, only few works exist on beam dynamics simu-
lation based on Lie group variational integrators (see e.g. [35, 36]). In this work, we
derive a variational Lie group integrator, similar to the procedure described in [36].
However, here the focus is on a formulation that is directly applicable in practical
implementation, thus particular care is given to the formulation of discrete conju-
gate momenta and boundary conditions. The discrete formulation of the Lagrangian
system allows the construction of synchronous as well as asynchronous variational
time stepping schemes.
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Outline In Sect. 8.2, group structure preserving variations on SO(3) are introduced
using a one parameter sub group element and the directional derivative. These
variations are then used to derive the continuous Euler-Lagrange equations for a
Lagrangian of a mechanical system defined on the Lie group SO(3). The conju-
gate momenta in space and time are given and interpreted for classical mechan-
ics. In Sect. 8.3, the synchronous discrete Euler-Lagrange equations are derived
for a discrete Lagrangian defined on a regular space time grid. The discrete con-
jugate momenta are given along with their connection to the continuous conjugate
momenta. Special attention is paid to the correct boundary conditions in space and
time. A method for solving the discrete Euler-Lagrange equations without the need
for orthonormality constraints is presented. Quadrature rules for the evaluation of the
discrete Lagrangian are introduced and later generalized to the asynchronous case.
In Sect. 8.4, the Lagrangian density for the geometrically exact beam dynamics is
discussed and the continuous Euler-Lagrange equations are derived. The boundary
conditions are interpreted and discretizations of the time and space derivatives on
SO(3) and R

3 are given that lead to the discrete Lagrangian for the derivation of the
AVI. As an example, the results of the simulation of a beam are shown in Sect. 8.5,
where the conservation of momentum maps following from the discrete Noether
theorem is illustrated.

8.2 Hamilton’s Principle on SO(3)

In this section, Hamilton’s principle is formulated for a space and time dependent sys-
tem on the Lie group SO(3) to derive the Euler-Lagrange equations. In this case, the
Euler-Lagrange equations are partial differential equations of motion for a dynami-
cal system in which the spatially continuously distributed configurations depend on
translational and rotational degrees of freedom. To this end, variations respecting the
structure of the Lie group are defined in Sect. 8.2.1 before the variational principle
itself is formulated in Sect. 8.2.2.

8.2.1 Group Structure Preserving Variations

When computing the variation of a function f :SO(3) ∈ R in terms of the variation
of the group element, special care has to be taken in order not to violate the group
structure. For example, treating orthonormal matrices δ as elements of the vector
space R

3×3 (where the natural operation is matrix addition) leads to a violation of
the group structure of SO(3). To illustrate this, consider the variation in the linear
space

δ f (δ) = d

d∂

∣∣∣∣
∂=0

f (δ + ∂δδ) = ε f

εδ
: δδ

using the small parameter ∂ ∗ R. Performing the operation δ + ∂δδ is not com-
patible with the group structure of SO(3) (where the natural operation is matrix
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multiplication). This problem can, for instance, be compensated by applying orthornor-
mality constraints or a projection method when solving the equations δ f = 0. In
contrast to that, the group structure is inherently respected by performing variations
in terms of the group operation. Consequently, the variation of δ is given by

δδ = d

d∂

∣∣∣∣
∂=0

δδδ∂

where δδ∂ can be expressed by the exponential map of a skew symmetric matrix ∂ξ̂
in the Lie algebra so (3). The hat map (·)⇒ :R3 ∈ so (3) defined as âik = ωijkaj

and its inverse
⎧
â
⎪≡
j

= 1

2
ωijkâik, where ωijk is the Levi-Civita symbol, serve as the

isomorphism so (3) ∇ R
3. Using Rodrigues’ formula and ξ = πn, where π ∗ R is

the rotation angle and n ∗ R
3 is a three dimensional unit vector, the variation of δ

reads

δδ = d

d∂

∣∣∣∣
∂=0

⎨
δe∂ξ̂

⎩
= d

d∂

∣∣∣∣
∂=0

⎧
δ
⎧
I + n̂ sin (∂π) + (1 − cos (∂π)) n ⊗ n

⎪⎪

= δ
⎧
n̂π cos (∂π) + π sin (∂π) n ⊗ n

⎪∣∣
∂=0

= δ
⎧
πn̂
⎪ = δξ̂.

Using this, the variation of the rotation dependent function is given by

δ f (δ) = d

d∂

∣∣∣∣
∂=0

f
⎨
δe∂ξ̂

⎩
= ε f

εδ
: ⎧δξ̂

⎪ =
(

δT ε f

εδ

)(A)

: ξ̂

= 2

[(
δT ε f

εδ

)(A)
]≡

· ξ.

Here, we use the fact, that double contraction1 of a symmetric matrix with a skew
symmetric matrix is zero, and thus only the skew symmetric part, denoted by the
superscript (A), remains. Using the above, the variation of functions of the angular
velocity ψ̂ = δT δ̇ and the angular strain κ̂ = δT δ→ (to be introduced in Sect. 8.2.2)
can be found as

δ f
⎧
ψ̂
⎪ = d

d∂

∣∣∣∣
∂=0

f

(⎨
δe∂ξ̂

⎩T d

dt

⎨
δe∂ξ̂

⎩)
= ε f

εψ̂
:
⎨
−ξ̂ψ̂ + ψ̂ξ̂ + ˙̂ξ

⎩

and thus

δ f (ψ) = ε f

εψ
· (ψ × ξ + ξ̇) δ f (κ) = ε f

εκ
· ⎧κ × ξ + ξ→⎪ .

1 The symbol ‘:’ represents a scalar matrix-matrix product with the summation over two indices,
i.e. A:B = Aij Bij ∗ R for two matrices of matching dimension.



180 T. Leitz et al.

8.2.2 Continuous Euler-Lagrange Equations

Consider a one dimensional reference configuration space variable s ∗ [0, ρ] ⊂ R,
the time variable t ∗ [0, T ] ⊂ R and the deformation map ρ: (s, t) √∈ (δ,x) ∗
SO(3) × R

3. The Lagrange density L
⎧
δ,ψ,κ,x, ẋ,x→⎪ is a function of the

configuration (δ,x) being composed by orientation and position in the ambient
space, the angular velocity ψ̂ = δT δ̇ ∗ so (3) and bending and torsional strain
κ̂ = δT δ→ ∗ so (3) as well as the translational velocity ẋ and the shear and elon-
gational strain x→, where

˙(·) = d (·)
dt

(·)→ = d (·)
ds

.

The action functional is defined as the integral of the Lagrange density over space
and time

S [ρ] =
T∫

0

ρ∫
0

Ldsdt.

For convenience, we split the variation of the action into two parts δS = δδS + δxS.
Here, δδS represents the variation with respect to orientation and δxS represents the
variation with respect to position. Using integration by parts in space and time and
the variations of orientation δδ = δξ̂, of the angular velocity δψ = ψ×ξ+ ξ̇ and of
the angular strain δκ = κ × ξ + ξ→, respectively, yields the variations of the action

δδS =
T∫

0

ρ∫
0

[
2

⎡⎧
δT εL

εδ

)(A)
]≡

− ψ × εL

εψ
− d

dt

(
εL

εψ

)

− κ × εL

εκ
− d

ds

(
εL

εκ

)⎣
· ξdsdt

+
ρ∫

0

εL

εψ̂
· ξ̂ds

∣∣∣∣∣∣
T

0

+
T∫

0

εL

εκ̂
· ξ̂dt

∣∣∣∣∣∣
ρ

0

δxS =
T∫

0

ρ∫
0

⎡
εL

εx
− d

dt

(
εL

εẋ

)
− d

ds

(
εL

εx→

)⎣
· δxdsdt

+
ρ∫

0

εL

εẋ
· δxds

∣∣∣∣∣∣
T

0

+
T∫

0

εL

εx→ · δxdt

∣∣∣∣∣∣
ρ

0

.
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Following Hamilton’s principle, the action is stationary with respect to all
variations while holding the boundaries of space and time fixed, i.e. δδ = 0, δx = 0
for t = 0, t = T, s = 0 and s = ρ. The resulting Euler-Lagrange equations are


⎜⎜⎜⎜⎜⎜⎤

2

[(
δT εL

εδ

)(A)
]≡

−ψ × εL

εψ
− d

dt

(
εL

εψ

)
−κ × εL

εκ
− d

ds

(
εL

εκ

)

εL

εx
− d

dt

(
εL

εẋ

)
− d

ds

(
εL

εx→

)

⎦
⎟⎟⎟⎟⎟⎟

=


⎜⎜⎜⎜⎜⎜⎤

0
0
0
0
0
0

⎦
⎟⎟⎟⎟⎟⎟

.

(8.1)

This coupled system of partial differential equations represents a local balance of
angular and linear momentum and needs to be solved with appropriate boundary
conditions as will be discussed in later sections. The temporal and spatial Legendre
transforms for the rotational and translational part represent the conjugate momenta
of time and space

Π = εL

εψ
ε = εL

εẋ
∂ = εL

εκ
α = εL

εx→ . (8.2)

In classical mechanics, Π and ε are angular and linear momenta per unit length
while ∂ represents bending and torsional torques and α are normal and shear forces,
see also Sect. 8.4 on geometrically exact beam dynamics.

8.3 Discrete Hamilton’s Principle on SO(3)

The key feature of variational integrators is that they are based on a discrete vari-
ational formulation of the underlying system, e.g. a discrete version of Hamilton’s
principle for conservative mechanical systems, instead of a discretization of the
equations of motion. The variational theory of discrete mechanics provides a theo-
retical framework that parallels continuous variational dynamics. Discrete analogues
to the Euler-Lagrange equations, the symplectic structure and Noether’s theorem are
derived from a discrete Lagrangian by performing similar steps as in the continuous
theory. A detailed introduction and a survey on the history and literature on the vari-
ational view of discrete mechanics is given in [5]. Before deriving discrete analogues
of the partial differential Euler-Lagrange equations (8.1), the concept of variational
integrators is briefly illustrated for a finite dimensional dynamical system.
Discrete variational principle in finite dimensions Let the Lagrangian L(q, q̇)

be defined in terms of the configuration variable q ∗ R
n and its velocity. Let

t0, t0 + γt, . . . , t0 + Nγt = tN denote an equidistant time grid with time step
γt ∗ R. In a time interval [tj, tj+1], the action integral is approximated using the
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discrete Lagrangian Lj ≺ ∫ tj+1

tj L(q, q̇)dt . The quadrature used to approximate
the integral determines the actual time stepping scheme (8.3) and in particular
its order of accuracy. The action integral is approximated by the discrete action
sum Sd = ∑N−1

j=0 Lj . Requiring its stationarity for all variations vanishing on the

boundary, i.e. δq0 = δq N = 0, yields the discrete Euler-Lagrange equations for
j = 1, . . . , N − 1

εSd

εqj
= εLj

εqj
+ εLj−1

εqj
= 0. (8.3)

For a given initial configuration q0 = q(t0) and initial velocity q̇(t0) with corre-
sponding initial conjugate momentum derived via the Legendre transform

p0 = p(t0) = εL(q(t0), q̇(t0))

εq̇

the first discrete configuration q1 can be computed by solving p0 = −εL0

εq0 . Then, for
two given subsequent configurations, (8.3) can be used to integrate forward in time.
More generally, defining the discrete conjugate momenta in time for j = 0, . . . , N

via the discrete Legendre transforms on the future time interval
⎧

pj
⎪− = −εLj

εqj and

on the past time interval
⎧

pj
⎪+ = εLj−1

εqj , the time stepping scheme (8.3) can be

interpreted as a matching of the discrete conjugate momenta
⎧

pj
⎪− = ⎧

pj
⎪+

. See
Refs. [5, 6] for the theory on (discrete) Legendre transforms. The resulting integrators
are symplectic and momentum-preserving and have an excellent long-time energy
behavior for constant time steps, which can be shown by means of backward error
analysis [4].

8.3.1 Discrete Euler-Lagrange Equations

In order to derive a synchronous variational integrator, space time is discretized
on a regular grid as shown in Fig. 8.1. This grid is not necessarily equidistant
in space, though the time step is kept constant in order to allow backward error
analysis [4]. Thus, all spatial elements advance in time synchronously. The discrete
Lagrangian is an approximation of the continuous action for one space time element
K j

a , i.e.

Lj
a ≺

tj+1∫

tj

sa+1∫
sa

Ldsdt (8.4)

and it is generally a function of all four nodes of the space time element K j
a
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Λj+1
a , xj+1

a

) (
Λj+1
a+1, x

j+1
a+1

)

(
Λj
a+1, x

j
a+1

)
Λj
a, x

j
a

)

Kj
a

sAs0

t0

tN

sa

tj

Kj
a

s

t

K0
0

KN−1
A−1

Fig. 8.1 Regular discretization of the space time for synchronous variational integrators

Lj
a = Lj

a

⎨
δj

a,δ
j+1
a ,δ

j
a+1,δ

j+1
a+1,x

j
a,x

j+1
a ,x

j
a+1,x

j+1
a+1

⎩
. (8.5)

Thus, the discrete action sum is the sum over all discrete Lagrangians

Sd =
N−1∑
j=0

A−1∑
a=0

Lj
a. (8.6)

In general, the discrete action is a function of all nodes
⎨
δ

j
a,x

j
a

⎩
in space time, thus

the discrete variation leads to

δSd =
A∑

a=0

N∑
j=0

(
εSd

εδ
j
a

: δδj
a + εSd

εx
j
a

· δxj
a

)

=
A∑

a=0

N∑
j=0

(
2

⎡(⎧
δj

a

⎪T εSd

εδ
j
a

)(A) ⎣≡
· ξj

a + εSd

εx
j
a

· δxj
a

⎛

and the discrete Hamilton’s principle states, that the discrete action is stationary for
all variations vanishing on the boundary of space and time, i.e. ξ

j
a = 0 and δx

j
a = 0

for a = 0, a = A, j = 0, j = N . Thus, discrete Euler-Lagrange equations for
a = 1, . . . , A − 1 and j = 1, . . . , N − 1 are

2

⎡(⎧
δj

a

⎪T εSd

εδ
j
a

)(A) ⎣≡
= 0

εSd

εx
j
a

= 0. (8.7)
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Inserting the specific discrete action composed of the discrete Lagrangians (8.6) leads
to the discrete version of (8.1)


⎜⎜⎜⎜⎜⎜⎤

2


⎜⎤
⎝
⎞⎨δj

a

⎩T εLj
a

εδ
j
a

+
⎨
δ

j
a

⎩T εLj−1
a

εδ
j
a

+
⎨
δ

j
a

⎩T εLj
a−1

εδ
j
a

+
⎨
δ

j
a

⎩T εLj−1
a−1

εδ
j
a

⎠
⎭

(A)
⎦
⎟

≡

εLj
a

εx
j
a

+ εLj−1
a

εx
j
a

+ εLj
a−1

εx
j
a

+ εLj−1
a−1

εx
j
a

⎦
⎟⎟⎟⎟⎟⎟

=


⎜⎜⎜⎜⎜⎜⎤

0
0
0
0
0
0

⎦
⎟⎟⎟⎟⎟⎟

(8.8)
which has to be supplemented by boundary conditions. Let Π,ε,∂ and α denote
conjugate momenta in the time and space continuous setting and define

Πj = Π
⎧
s, tj

⎪
εj = ε

⎧
s, tj

⎪

for s ∗ [0, ρ] and
∂a = ∂ (sa, t) αa = α (sa, t)

for t ∗ [0, T ]. Using

Fδ L̄ = 2

[(⎧
δj

a

⎪T ε

εδ
j
a

⎧
L̄
⎪)(A)

]≡
Fx L̄ = ε

εx
j
a

⎧
L̄
⎪

for a discrete Lagrangian L̄ of the form (8.5), the discrete Legendre transforms
with respect to orientation δ

j
a and position x

j
a are defined as F L̄ = [

Fδ L̄, Fx L̄
]T

.

Note that there exist four index combinations, for which L̄ depends on (δ
j
a,x

j
a).The

discrete Legendre transforms are approximations of the following integrals

F Lj
a−1≺−

sa∫
s
a− 1

2

⎡
Πj

εj

⎣
ds +

tj+
1
2∫

tj

⎡
∂a

αa

⎣
dt F Lj

a ≺ −
s
a+ 1

2∫
sa

⎡
Πj

εj

⎣
ds −

tj+
1
2∫

tj

⎡
∂a

αa

⎣
dt

F Lj−1
a−1≺

sa∫
s
a− 1

2

⎡
Πj

εj

⎣
ds +

tj∫

tj−
1
2

⎡
∂a

αa

⎣
dt F Lj−1

a ≺
s
a+ 1

2∫
sa

⎡
Πj

εj

⎣
ds −

tj∫

tj−
1
2

⎡
∂a

αa

⎣
dt.

For j = 0, . . . , N and a,= 0 . . . , A the discrete conjugate momenta in time are
given by


⎤
⎨
Π

j
a

⎩−
⎨
ε

j
a

⎩−

⎦
 = −

⎨
F Lj

a−1 + F Lj
a

⎩ 
⎤
⎨
Π

j
a

⎩+
⎨
ε

j
a

⎩+

⎦
 = F Lj−1

a−1 + F Lj−1
a (8.9)
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while discrete conjugate momenta in space read


⎤
⎨
∂

j
a

⎩−
⎨
α

j
a

⎩−

⎦
 = −

⎨
F Lj

a + F Lj−1
a

⎩ 
⎤
⎨
∂

j
a

⎩+
⎨
α

j
a

⎩+

⎦
 = F Lj

a−1 + F Lj−1
a−1. (8.10)

The discrete Euler-Lagrange equations (8.8) can now equivalently be written as


⎤
⎨
Π

j
a

⎩−
⎨
ε

j
a

⎩−

⎦
 =


⎤
⎨
Π

j
a

⎩+
⎨
ε

j
a

⎩+

⎦
 (8.11)

or equivalently 
⎤
⎨
∂

j
a

⎩−
⎨
α

j
a

⎩−

⎦
 =


⎤
⎨
∂

j
a

⎩+
⎨
α

j
a

⎩+

⎦
 .

Whenever j = 0, j = N , a = 0 or a = A in (8.9) and (8.10), certain boundary
conditions have to be considered. On the boundary of space, these are the time
integrals over boundary values of the spatial conjugate momenta

F Lj
−1 =

tj+
1
2∫

tj

⎡
∂0
α0

⎣
dt F Lj

A = −
tj+

1
2∫

tj

⎡
∂A

αA

⎣
dt

F Lj−1
−1 =

tj∫

tj−
1
2

⎡
∂0
α0

⎣
dt F Lj−1

A = −
tj∫

tj−
1
2

⎡
∂A

αA

⎣
dt. (8.12)

The temporal boundary conditions are the space integrals over the temporal conjugate
momenta

F L N
a−1 = −

sa∫
s
a− 1

2

⎡
ΠN

εN

⎣
ds F L N

a = −
s
a+ 1

2∫
sa

⎡
ΠN

εN

⎣
ds

F L−1
a−1 =

sa∫
s
a− 1

2

⎡
Π0

ε0

⎣
ds F L−1

a =
s
a+ 1

2∫
sa

⎡
Π0

ε0

⎣
ds (8.13)

as illustrated in Fig. 8.2, where the notation qj
a comprises δ

j
a and x

j
a. The Legendre

transforms on the corners of space time are always zero, i.e.
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Fig. 8.2 Visualization of the general Legendre transforms and boundary conditions. The boundary
conditions are gray and on the corners of space time they are zero (red). The notation qj

a comprises
δ

j
a and x

j
a

F L−1
−1 = F L N−1 = F L−1

A = F L N
A = 0.

The Legendre transform F Lj
a is generally a function of the four nodes in the discrete

Lagrangian from which it is derived, i.e. F Lj
a = F Lj

a

⎨
qj
a, qj+1

a , qj
a+1, qj+1

a+1

⎩
. Since

each node has six degrees of freedom and there are A + 1 spatial nodes in the grid,
to advance one step in time, the integrator (8.11) is a system of coupled non linear
equations for all spatial nodes, i.e. it is of the size 6(A+1) and has to be solved at once
in each time step. However, certain approximations of time and space derivatives and
quadrature rules for the discrete Lagrangian (see Sect. 8.3.3), for which the discrete
Legendre transforms with respect to qj

a are independent of the corner nodes of the
rectangle surrounding qj

a, i.e. for which
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Fig. 8.3 Visualization of the special Legendre transforms, where (8.14) holds true, and boundary
conditions. The boundary conditions are gray and on the corners of space time they are zero (red).
The notation qj

a comprises δ
j
a and x

j
a

εF Lj
a−1

εqj+1
a−1

= εF Lj
a

εqj+1
a+1

= εF Lj−1
a−1

εqj−1
a−1

= εF Lj−1
a

εqj−1
a+1

= 0 (8.14)

holds true,2 lead to A +1 independent non linear systems of equations for each node
of size six that can be solved individually as shown in Fig. 8.3.

2 Note that
ε (·)
εq

denotes
ε (·)
εx

and 2

[(
δT ε (·)

εδ

)(A)
]≡

, respectively.
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8.3.2 Solving the Discrete Euler-Lagrange Equations

The discrete Euler-Lagrange equations for one time step (8.8), or equaivalently
(8.11), are the system of non linear equations

Rδ
⎨
δ

j+1
0 ,x

j+1
0 , . . . , δ

j+1
A ,x

j+1
A

⎩
=

⎜⎤

Rδ
0
...

Rδ
A

⎦
⎟ = 0 ∗ R

6(A+1) (8.15)

with the nodal discrete Euler-Lagrange equations

Rδ
0

⎨
δ

j+1
0 ,x

j+1
0 ,δ

j+1
1 ,x

j+1
1

⎩
= 0

Rδ
a

⎨
δ

j+1
a−1,x

j+1
a−1,δ

j+1
a ,xj+1

a ,δ
j+1
a+1,x

j+1
a+1

⎩
= 0 for 1 ∀ a ∀ A − 1

Rδ
A

⎨
δ

j+1
A−1,x

j+1
A−1,δ

j+1
A ,x

j+1
A

⎩
= 0.

In case that (8.14) holds true, the system decouples to independent sets of six equa-
tions for each node a = 0, . . . , A

Rδ
a

⎨
δj+1

a ,xj+1
a

⎩
= 0 ∗ R

6.

In any case, there are twelve unknowns and only six discrete Euler-Lagrange equa-
tions for each node in the grid, if one regards the orientation naively as a 3 × 3
matrix. In order to avoid orthonormality constraints to ensure that δ

j+1
a ∗ SO(3),

we use the reparametrization δ
j+1
a = δ

j
a Cay ( f̂ j

a ) where Cay is the Cayley map
and f̂ j

a ∗ so (3) is the increment. The singularity of the Cayley map is avoided by the
fact that the rotation increment Cay ( f j

a ) is close to the identity for small time steps
and thus far away from rotation about the angle η. The nodal discrete Euler-Lagrange
equations are transformed to

R f
a

⎨
f j
a ,xj+1

a

⎩
= 0 ∗ R

6

and the same transformation is possible for the fully coupled system (8.15). The
equations can be solved for f j

a and x
j+1
a by a Newton-Raphson scheme and the new

orientation is recovered by δ
j+1
a = δ

j
a Cay( f̂ j

a ). Note that the evaluation of the Cay-
ley map does not involve any transcendental functions. In terms of the components
f1, f2, f3 of f , it can explicitly be written as

Cay
⎨

f̂
⎩

=
⎨

I − f̂
⎩−1 ⎨

I + f̂
⎩
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= 1

f1
2 + f2

2 + f3
2 + 1⎝

⎞ f1
2 − f2

2− f3
2 + 1 −2 (f3 − f1 f2) 2 ( f2 + f1 f3)

2 (f3 + f1 f2) − f1
2 − f2

2 + f3
2 − 1 −2 ( f1 − f2 f3)

−2 ( f2 − f1 f3) 2 ( f1 + f2 f3) − f1
2 + f2

2 − f3
2 − 1

⎠
⎭ .

8.3.3 Quadrature Rules

In order to derive the asynchronous integrator in Sect. 8.3.4, we have to be more spe-
cific about the synchronous integrator in terms of choosing the discrete Lagrangian
(8.5). As introduced at the end of Sect. 8.3.1, the general coordinate q represents

x and δ and the partial derivatives
ε (·)
εq

denote
ε (·)
εx

and 2

[(
δT ε (·)

εδ

)(A)
]≡

,

respectively. Note that with regard to the asynchronous generalization, we denote
the discrete Lagrangian in the element K j

a by Lj
k (instead of Lj

a) from now on. Fur-

thermore, time nodes associated with this element are denoted by tjk . As shown in

(8.4) and (8.5), the discrete Lagrangian Lj
k is an approximation of the action integral

over the space time element, and can generally depend on four nodes. As already
mentioned in the beginning of Sect. 8.3, the specific choice of approximation, i.e. the
quadrature used to approximate the integral of the Lagrangian density, determines
the coupling structure and the properties of the resulting time stepping scheme. For
example, in [18] approximations based on three and four mesh points are introduced,
where the resulting numerical scheme based on four nodes is shown to be more stable
compared to the three node approximation. In the following, we introduce a choice
of approximation based on four nodes which is also particularly well suited for the
generalization to asynchronous integrators. To this end, we partition the space time
element K j

a into four parts denoted by roman numerals as shown in Fig. 8.4. With
γt = tj+1

k − tjk = const. for all j, k and γsk = sa+1 − sa, the time derivatives

ẋ
j
a and space derivatives x→j

a are approximated by a forward difference quotient that
takes the form

ẋj
a = x

j+1
a − x

j
a

γt
x→j

a = x
j
a+1 − x

j
a

γsk
(8.16)

for the translational degrees of freedom. The temporal and spatial derivatives for the
rotational degrees of freedom take a slightly more complicated form. Assuming a

geodesic trajectory of the rotation during one time interval, i.e. δ
j+1
a = δ

j
aeγtψ̂j

a

using the matrix exponential, the angular velocity ψ in this time interval fulfills

ψ̂j
a = 1

γt
log
⎨⎧

δj
a

⎪T
δj+1

a

⎩
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Fig. 8.4 Partitioning of the space time element K j
a for the synchronous integrator and the general

case of L = L
⎧
q, q̇, q →⎪

where the logarithm of an orthonormal matrix with rotation angle ρ
j
a = γt

∥∥∥ψj
a

∥∥∥
can be written as

log
⎨⎧

δj
a

⎪T
δj+1

a

⎩
=




ρ

sin ρ
j
a

⎡⎨
δ

j
a

⎩T
δ

j+1
a

⎣(A)

for ρ
j
a ∗ (−η,η) \ {0}

0̂ for ρ
j
a = 0

.

With lim
ρ

j
a∈0

⎨
ρ

j
a/ sin ρ

j
a

⎩
= 1, for small incremental rotations, the approximate angu-

lar velocity—and with a similar derivation the angular strain—are given by

ψ̂j
a = 1

γt

[⎧
δj

a

⎪T
δj+1

a

](A)

κ̂j
a = 1

γsk

[⎧
δj

a

⎪T
δ

j
a+1

](A)

. (8.17)

The discrete Lagrangian is decomposed into

Lj
k

⎨
qj
a, qj+1

a , qj
a+1, qj+1

a+1

⎩
= I Lj

k + I I Lj
k + I I I Lj

k + I V Lj
k
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where the four parts consist of evaluations of the Lagrangian at different nodes and
difference quotients3

I V Lj
k = γtγsk

4
L
⎨

qj+1
a , q̇j

a, q →j+1
a

⎩
I I I Lj

k = γtγsk

4
L
⎨

qj+1
a+1, q̇j

a+1, q →j+1
a

⎩

I Lj
k = γtγsk

4
L
⎨

qj
a, q̇j

a, q →j
a

⎩
I I Lj

k = γtγsk

4
L
⎨

qj
a+1, q̇j

a+1, q →j
a

⎩
.

The discrete Euler-Lagrange equations (8.7) for this specific quadrature are

εSd

εqj
a

= 1

4

(
ε I Lj

k

εqj
a

+ε I I Lj
k

εqj
a

+ε I V Lj
k

εqj
a

⎛
+ 1

4

(
ε I Lj−1

k

εqj
a

+ ε I I I Lj−1
k

εqj
a

+ ε I V Lj−1
k

εqj
a

⎛

+ 1

4

(
ε I Lj

k−1

εqj
a

+ ε I I Lj
k−1

εqj
a

+ ε I I I Lj
k−1

εqj
a

⎛

+ 1

4

(
ε I I Lj−1

k−1

εqj
a

+ ε I I I Lj−1
k−1

εqj
a

+ ε I V Lj−1
k−1

εqj
a

⎛

= 0. (8.18)

Quadrature rules of this type are visualized in Fig. 8.3. They lead to an integrator
with independent sets of six non linear equations for each spatial node in one time
step, since clearly (8.14) holds true. For the special case of L

⎧
q, q̇, q →⎪ = T (q, q̇)−

V
⎧
q, q →⎪, where T is the kinetic energy density and V is the potential energy density,

the partitioning of the space time element is visualized in Fig. 8.5. The discrete kinetic
energy densities are given by

I I
k T j

a = T
⎨

qj+1
a , q·ja

⎩
I I
k T j

a+1 = T
⎨

qj+1
a+1, q·ja+1

⎩
I
kT j

a = T
⎨

qj
a, q·ja

⎩
I
kT j

a+1 = T
⎨

qj
a+1, q·ja+1

⎩
(8.19)

and the discrete potential energy densities read

I V V j
k = V

⎨
qj+1
a , q →j+1

a

⎩
I I I V j

k = V
⎨

qj+1
a+1, q →j+1

a

⎩
I V j

k = V
⎨

qj
a, q →j

a

⎩
I I V j

k = V
⎨

qj
a+1, q →j

a

⎩
(8.20)

yielding the discrete Lagrangian for this special case

Lj
k = γtγsk

4

⎨
I
kT j

a + I I
k T j

a + I
kT j

a+1 + I I
k T j

a+1 − I V j
k − I I V j

k − I I I V j
k − I V V j

k

⎩

3 Of course, other evaluations of the Lagrangian depending on a different number or combinations
of nodes are possible, as e.g. an evaluation at midpoints of nodes in the first argument of L (cf. [18]).
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Fig. 8.5 Partitioning of the space time element K j
a for the synchronous integrator and the special

case of L
⎧
q, q̇, q →⎪ = T (q, q̇) − V

⎧
q, q →⎪

and the discrete Euler-Lagrange equations are

εSd

εqj
a

= 1

4

(
ε I

kT j
a

εqj
a

+ ε I I
k T j

a

εqj
a

− ε I V j
k

εqj
a

− ε I I V j
k

εqj
a

⎛
γtγsk

+ 1

4

(
ε I

kT j−1
a

εqj
a

+ ε I I
k T j−1

a

εqj
a

− ε I I I V j−1
k

εqj
a

− ε I V V j−1
k

εqj
a

⎛
γtγsk

+ 1

4

(
ε I

k−1T j
a−1

εqj
a

+ ε I I
k−1T j

a−1

εqj
a

− ε I V j
k−1

εqj
a

− ε I I V j
k−1

εqj
a

⎛
γtγsk−1

+ 1

4

(
ε I

k−1T j−1
a−1

εqj
a

+ ε I I
k−1T j−1

a−1

εqj
a

− ε I I I V j−1
k−1

εqj
a

− ε I V V j−1
k−1

εqj
a

⎛
γtγsk−1 = 0.

(8.21)

8.3.4 Asynchronous Generalization

As a generalization of the synchronous time integrator, we choose different time steps
for each element which leads to the asynchronous space time grid shown in Fig. 8.6.
The asynchronous partitioning of one space time element is shown in Fig. 8.7. The
main consequence is, that in addition to elemental time nodes tjk , now there are also
nodal time nodes t i

a, e.g. for the spatial node sa, the nodal time nodes are the union
of the elemental time nodes of the adjacent element sharing the node sa.

In order to define the discrete Lagrangian, we treat the kinetic energy density and
the potential energy density in different ways. Consider a continuous Lagrangian of
the form L

⎧
q, q̇, q →⎪ = T (q, q̇) − V

⎧
q, q →⎪. Space derivatives of the translational
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Fig. 8.6 Asynchronous discretization of space time for the asynchronous integrator
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Fig. 8.7 Partitioning of the space time element K j
a for the asynchronous integrator

and rotational degrees of freedom are approximated as given in (8.16) and (8.17),
respectively. However, time derivatives are approximated by the forward difference
quotient based on the nodal time step γt i

a = t i+1
a − t i

a which has to be used in
(8.16) and (8.17) together with nodal quantities xi

a,x
i+1
a and δi

a,δ
i+1
a . Then, dis-

crete kinetic energy densities are different from (8.19) since they are based on finite
differences on the nodal time grid, namely

I I
k T i

a = T
⎨

qi+1
a , q̇ i

a

⎩
I I
k T i

a+1 = T
⎨

qi+1
a+1, q̇ i

a+1

⎩
I
kT i

a = T
⎨

qi
a, q̇ i

a

⎩
I
kT i

a+1 = T
⎨

qi
a+1, q̇ i

a+1

⎩
(8.22)
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while the discrete potential energy densities are equal to (8.20) defined on the ele-
mental time grid. In terms of the elemental time step γtk = tj+1

k − tjk = const. in j,
the discrete Lagrangian of the element takes the form

Lj
k =

k+1∑
a=k

∑
{

i |tja∀t i
a<tj+1

a

}
γt i

aγsk
4

⎧
I
kT i

a + I I
k T i

a

⎪

−γtkγsk
4

⎨
I V j

k + I I V j
k + I I I V j

k + I V V j
k

⎩
. (8.23)

The discrete Euler-Lagrange equations (8.7) for this specific asynchronous quadra-
ture are
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(8.24)

The expression |
t i
a==tjk

is to be read as a condition, i.e. if the nodal time t i
a is equal

to the elemental time tjk , the element to the right influences the node by contributing

its potential term into the balance of momentum–if t i
a ◦= tjk , the potential term is

zero. Similarly, for |
t i
a==tjk−1

the left element influences the node. The Eq. (8.24) are

a generalization of the synchronous integrator since for γt i
a = γtk = γt = const.

in i = j, k, Eq. (8.21) are recovered.

8.4 Geometrically Exact Beam Dynamics

Modeling geometrically exact beams as a special Cosserat continuum (see e.g., [1])
has been the basis for many discrete formulations starting with [37, 53–55]. Its
Lagrangian dynamics is an example of the formulation described in Sect. 8.2.2.
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8.4.1 Continuous Euler-Lagrange Equations

The beam model consists of a central line x(s, t), a curve in the three dimensional
space, along which rotation matrices δ(s, t) represent the orientations of the local
beam cross sections. Consequently, the cross sections are assumed to stay plane.
Hereby, the curve parameter is s ∗ [0, ρ], where ρdenotes the length of the beam in the
reference configuration. As mentioned in Sect. 8.2.2, in addition to the configuration,
the Lagrange density is a function of the angular velocity ψ̂ = δT δ̇ ∗ so (3) and
bending and torsional strain κ̂ = δT δ→ ∗ so (3) as well as the translational velocity
ẋ and the shear and elongational strain x→

L
⎧
δ,ψ,κ,x, ẋ,x→⎪ = 1

2

⎨
τ ←ẋ←2 + ψT Jψ

⎩

− 1

2

⎡⎨
δT x→ − e3

⎩T
C1

⎨
δT x→ − e3

⎩
+ κT C2κ

⎣

+ τ 〈x, g〉 . (8.25)

Here, the kinetic energy density contains the mass density τ, the mass moment
of inertia density tensor J , while the gravity potential energy density depends on
the gravity constant g. In the potential deformation energy density, the diagonal
matrix C1 = Diag (G A G A E A) contains the shear and elongation stiffness, while
the entries of C2 = Diag (E I1 E I2 G (I1 + I2)) are the bending and torsional
stiffness. Here, A is the cross section area, I1, I2 are the principal area moments of
inertia of the cross section, and the elastic properties are represented by Young’s
modulus E and the shear modulus G. Insertion into (8.1) yields the Euler-Lagrange
equations for the beam

⎨
δT x→⎩×

⎨
C1

⎨
δT x→ − e3

⎩⎩
− ψ × (Jψ) − J ψ̇ + κ × (C2κ) + C2κ

→ = 0

−τg + τẍ + δ
⎨
κ × C1

⎨
δT x→ − e3

⎩⎩
+ δC1

⎨⎧
δ→⎪T x→ + x→→⎩ = 0.

The conjugate momenta (8.2) are given by

Π = εL

εψ
= Jψ ε = εL

εẋ
= τẋ

∂ = εL

εκ
= −C2κ α = εL

εx→ = −δC1

⎨
δT x→ − e3

⎩
.

They can be identified as angular momentum per length Π, linear momentum per
length ε, and ∂ represents the bending and torsional momenta while α comprises
shear and elongation forces.4 In case of the beam, in addition to prescribing the

4 The unit of the Lagrangian density is
J

m
= N , i.e. energy per length. Therefore, the units for the

conjugate momenta are
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Table 8.1 Simulation parameters

Length 2 m
Cross section 0.01 m × 0.01 m
Density 1,000 kg/m3

Young’s modulus 5 × 106 N/m2

Poisson ratio 0.35
Number of elements 11

Spatial discretization γsk = 2

11
m

Time steps sync γt = 4 × 10−4s
Time steps async γtk randomly in [3, 4] × 10−4 s
Simulation time 10 s

0

1

2

3
·10−3

a

ti
m

e 
in

 s

0 2 4 6 8 10 12 0 2 4 6 8 10 12
0

1

2

3
·10−3

a

ti
m

e 
in

 s

Fig. 8.8 Space time grid for the synchronous (left) and asynchronous (right) simulation of the
beam for the first 3 × 10−3s

position or orientation at specific nodes, further boundary conditions in space are the
momenta ∂0, ∂A and forces α0,αA on the end nodes of the beam. Further boundary
conditions in time are the angular momenta Π0,ΠN in the beginning and the end of
time, as well as linear momenta ε0, εN . These can be inserted in (8.12) and (8.13)
to obtain boundary conditions for the discrete Euler-Lagrange equations (8.11).

(Footnote 4 continued)

[Π] = Ns

m
=

kgm2

s
m

[ε] = Ns

m
=

kgm

s
m

[∂] = Nm [α] = N.
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Fig. 8.9 Energy, linear and angular momenta for the synchronous simulation of the beam

8.4.2 Asynchronous Discretization

The approximation of time and space derivatives are performed as described in
Sects. 8.3.3 and 8.3.4. Insertion into the discrete kinetic energy densities (8.22) and
in the discrete potential energy densities (8.20) leads to the discrete Lagrangian
(8.23). Specifically, for the Lagrangian of the beam (8.25), the discrete Lagrangian
is composed by the discrete kinetic energy densities

I
kT i

a = I I
k T i

a = 1

2

(
τk

∥∥∥ẋi
a

∥∥∥2 +
⎨
ψi

a

⎩T
Jψi

a

)

and the discrete potential energy densities
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Fig. 8.10 Energy, linear and angular momenta for the asynchronous simulation of the beam
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Fig. 8.11 Snapshots of the beam configuration (the three directors forming the columns of the
orientation matrix δ

j
a are visualized) at different times

8.5 Numerical Results

The AVI is implemented in Matlab® using the discretization discussed above. The
discrete Euler-Lagrange equations are derived using Matlab®’s symbolic toolbox and
automatic code generation. The derivations of the discrete Euler-Lagrange equations
(8.24) are performed with the specific goal in mind to allow the automatic generation
of AVI code. The procedure also allows the use of automatic differentiation, see
e.g. [56]. This enables very fast prototyping of integration methods based on the
discrete variational principle, e.g. for testing new models.

In order to test the AVI a beam with the physical parameters shown in Table 8.1
is discretized according to Sect. 8.4.2. The first node of the beam is translationally
fixed and the initial configuration consists of the beam hanging downward (in the
negative z-direction). During the first two seconds of the simulation time, a torque
is applied to the first node. During that timeframe, the energy and the linear and
angular momenta of the beam are expected to change, while after two seconds we
expect the total energy to be nearly constant and the e3-component of the angular
momentum Π

j
3 to be exactly preserved, since the Lagrangian is invariant with respect
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Fig. 8.12 Forces and torques as stress resultants at nodes 0, 5 and 11

to time and rotations around the e3-axis. The simulation is done synchronously with
γt = 3 × 10−3s and asynchronously with time steps randomly distributed between
3 × 10−3s and 4 × 10−3s. The space time grids are shown in Fig. 8.8. Figures 8.9
and 8.10 illustrate the expected behavior in the plots for the energy and the linear
and angular momenta, while Fig. 8.11 presents snapshots of the configuration of the
beam at different times. Figure 8.12 shows the evolution of the conjugate momenta
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at the nodes a = 0, a = 5 and a = 11. The torque ∂ at node a = 0 is the actuation
that decays after 2 s. Afterwards, the orientation at this node is free and thus the
reaction momentum is zero. However, the position of node a = 0 is fixed, thus, the
reaction force is non zero. This is in contrast to node a = 11, since at the free end of
the beam, reaction forces and momenta are always zero.

8.6 Conclusions and Outlook

In this work, a variational integrator for Lagrangian PDE systems defined on the
Lie group SO(3) is derived based on a discrete action on a grid in space and time.
By allowing only group operations when varying the discrete action and updat-
ing the group elements, the resulting numerical scheme naturally preserves the Lie
group structure of the Lagrangian system. The discrete formulation of the Lagrangian
system allows the construction of synchronous as well as asynchronous numerical
integration schemes which involves the use of varying time step sizes throughout dif-
ferent elements in space. The presented variational Lie group integrator is applied for
the synchronous and asynchronous simulation for geometrically exact beam dynam-
ics formulated on SO(3) and corresponding numerical results are presented. The
exact preservation of angular and linear momentum is illustrated in the numerical
example. This is due to the symplectic nature of the integrator, which is also respon-
sible for the good energy behavior. In future works, the advantage in computing
times for the asynchronous integrator has to be verified by taking varying material
and geometrical parameters throughout the beam into account. In this case, using an
AVI prevents the stiffer regions from dictating small time steps for the whole beam.
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38. Jelenić G, Crisfield MA (1998) Interpolation of rotational variables in non-linear dynamics of
3d beams. Int J Numer Methods Eng 43:1193–1222
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Chapter 9
On the Use of Geometrically Exact
Shells for Dynamic Tire Simulation

Michael Roller, Peter Betsch, Axel Gallrein and Joachim Linn

Abstract In the present work a tire is modeled by using geometrically exact shells.
The discretization is done with the help of isoparametric quadrilateral finite elements.
The interpolation is performed with linear Lagrangian polynomials for the midsurface
as well as for the director field. As time stepping method for the resulting differential
algebraic equation a modified backward differential formula rule is chosen. To handle
the interaction with a rigid road surface, a one sided normal contact formulation is
introduced. An orthotropic material model for geometrically exact shells derived
from 3D continuum theory is introduced, to describe the anisotropic behavior of the
tire material. Inflation pressure is taken into account with a configuration dependent
force. The interaction between the multibody system of a car and the tire is realized
via co-simulation. Some quasi-static simulations are presented and compared to
measurements on a real tire.

9.1 Introduction

Acting as an interface between car and road, the tire model plays an outstanding
role in dynamic simulations of vehicles. In commercial and scientific application
contexts there exist several different modeling approaches for tires, depending on the
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use case. When the tire model has to be embedded into a multi body system (MBS)
of a car, lumped parameter models of varying complexity consisting of springs and
dampers [14] are used, as well as simple data curve fits [15]. Likewise, very detailed
but computationally demanding three dimensional finite element (FE) models are
used for crash and misuse simulations [16]. However, a coupling of such 3D-FE
tire models to MBS simulations is mostly not feasible—neither directly, nor via
co-simulation—due to the large number of degrees of freedom (DOF).

Nevertheless, it would be highly desirable to have a continuum mechanics based
structural model for tires available as an alternative with a moderate number of DOF,
compatible with a direct usage in MBS simulations, and the essential structural prop-
erties of a tire properly incorporated, in order to be useful for practical applications.
From the viewpoint of structural modeling, geometrically exact shells [17], which
according to our knowledge have not yet been used in tire modeling, are a good
candidate: This approach enables large rigid body motions, because stresses are con-
stitutively related only to frame-indifferent (objective) differential invariants of the
directed shell surface measuring membrane, bending and transverse shear strains on
the deformed structure.

As mentioned above, the tire model should be incorporated into a multibody
system. However, flexible multibody dynamics with geometrically exact shells have
been discussed in a few works [1, 2, 13] only. By modeling the rim as a rigid body
and fixing part of the shell boundary on it, we already obtain a minimal flexible
multibody system, which could be built into a simple MBS model like a quarter
vehicle, or further extended by coupling to a more complex MBS model of e.g. the
axle construction of the car. In principle, four copies of such a shell based tire model
could likewise be coupled to a MBS model of the full car in the same way, with an
obvious approach for a proper parallelization of the resulting complex flexible MBS
model in order to make it computationally feasible.

To model a tire on the basis of a geometrically exact shell structure, a variety of
features of the real physical tire have to be included: The most important task of
a tire is its role as the interface for the dynamic interaction of the vehicle and the
road. Assuming the latter as rigid, the shell model has to be able to handle one-sided
dynamic contact with a rigid road surface. Because of the strong reinforcements
embedded within the rubber matrix, an isotropic material law, as often used within
academic benchmark examples, is obviously not sufficient for realistic tire simula-
tions. For this purpose, at least a more complex orthotropic material model has to be
be chosen and properly transferred to the shell structure. To carry and absorb high
static and dynamic loads, a tire is supported by inflation pressure, which leads to
configuration dependent forces, acting as live loads on the shell structure, and has to
be incorporated properly into our shell based tire model as well.

A brief outline of our article may be given as follows: Sect. 9.2 illustrates the
continuum mechanical theory behind the geometrically exact shell model. Details
on the constitutive model (as mentioned above) are presented in Sect. 9.3. Section 9.4
deals with the spatial and temporal discretization of the shell and the size reduction
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of the resulting system of equations. The coupling between a multibody system and
the discrete shell is topic of Sect. 9.5. Our approach to model the application of tire
specific loads, especially pressure and normal contact, is explained in Sect. 9.6, and
Sect. 9.7 contains some numerical results, with a focus on quasi-static test examples,
including a comparison to experiments with a real tire, where the afore mentioned
effects are acting in combination. In Sect. 9.8, we finish with a conclusion and an
outlook of our further work.

9.2 Continuum Mechanical Formulation of the Shell Structure

Defining the shell continuum and its kinematics are the topics of this section.
To fix ideas and notation, we briefly outline the dimensional reduction of the problem
from the 3D continuum to the 2D shell structure, following the geometrically exact
approach described by Simo and Fox [17].

9.2.1 Basic Definitions and Notation

A shell is a three dimensional continuum, whose extension h in thickness direction is
small compared to its linear dimensions in the two other directions. A first approxi-
mation of the geometry of such a shell continuum is provided by its two dimensional
mid surface, parametrized by the regular, vector valued function [7]

ϕ : ω ∈ R3 ω ∗ R2. (9.1)

The derivatives of this mapping with respect to the variables χα of the parameter
domain ω defines the covariant basis vectors1

aα := ∂

∂χα

ϕ. (9.2)

Due to the assumed regularity of the parametrization, the pair of vectors aα is linearily
independent and spans the tangential plane of the surface in every point. The mid
surface normal a3 := a1×a2⇒a1×a2⇒ completes ai to a three dimensional basis of Euclidian

1 Throughout this article, we follow the frequently used convention of denoting indices taking
integer values 1 and 2 by lower case Greek letters α, β, . . ., while we use lowercase Latin ones
i, j, . . . for integer indices ranging from 1 to 3, and we use Einstein’s summation convention to
abbreviate sums, ranging from 1 to 2 or 1 to 3 respectively, over (product type) terms with the same
indices appearing twice.
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space. The system of equations aα · aβ = δα
β uniquely determines the contravariant

basis vectors aβ , with a3 = a3 being self-dual, and the scalar products

aαβ = aα · aβ and aαβ = aα · aβ (9.3)

yield the co- and contravariant components of the metric of the mid surface, induced
by the scalar product in three-dimensional Euclidian space [7], such that the metric
may be expanded as a = aαβ aα ≡aβ = aαβ aα ≡aβ = aα ≡aα = aα ≡aα w.r.t. the
corresponding basis vectors.

Up to this point, the two-dimensional mid surface merely provides the kinematic
backbone for the approximation of the geometry of the three-dimensional shell con-
tinuum. To recover its extension in the thickness direction, we define a three dimen-
sional vector field d of unit length (⇒d⇒ = 1), called the shell director field, in every
point of the mid surface:

d: ω ∈ S2 with S2 :=
{

x ∇ R3| ⇒x⇒ = 1
⎧

. (9.4)

As the mapping (χ1, χ2) ⊗∈ d(χ1, χ2) takes values in the unit sphere S2,

d · d = 1 → ∂d
χα⎪⎨⎩︸

=: d,α

·d = 0 (9.5)

holds for all χ := (χ1, χ2) ∇ ω. The pair (ϕ, d) of functions defined in (9.1) and (9.4)

together with the thickness variable ζ ∇
[
− h

2 , h
2

]
determine the three-dimensional

configuration of the shell continuum in terms of the vector valued function

φ(χ, ζ ) : = ϕ(χ) + ζ d(χ), (9.6)

which is defined on the three-dimensional parameter domain Ω := ω×
[
− h

2 , h
2

]
and

provides a parametrization of the position vectors of the material points within the
three-dimensional shell configuration φ(Ω) =: S ∗ R3 by curvilinear coordinates.
By differentiating the mapping φ w.r.t. the variables (χα, ζ ) ∇ Ω we obtain the
covariant basis vectors

gα = ∂

∂χα

φ = aα + ζd,α, (9.7)

g3 = ∂

∂ζ
φ = d (9.8)

associated to the parametrization of the three-dimensional shell continuum.
Analogous to the definition of the contravariant base vectors of the mid sur-
face, the system of equations gi · gj = δ

j
i uniquely determines the contravariant
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counterparts, and the scalar products gij := gi · gj and gij := gi · gj yield the
co- and contravariant components of the metric tensor Id = ei ≡ei of R3, which may
be equivalently represented as: Id = gij gi ≡gj = gij gi ≡gj = gj ≡gj = gj ≡gj.

Making use of the parametrization of the three-dimensional shell volume with
curvilinear coordinates as described above, we additionally provide the following
set of three kinematic quantities, which correspond to the covariant components of
two tensor fields and a vector field defined on the shell surface and may be considered
as a complete set of differential invariants2 of the latter:

aαβ = aα · aβ, καβ := 1

2
(d,α · aβ + d,β · aα), γα = aα · d. (9.9)

The first term aαβ corresponds to the already known components of the metric tensor
on the mid surface. The second term καβ can be interpreted as the components of
the generalized curvature tensor3 of the shell surface. The last quantity yields the
components γα of the orthogonal projection (I−a3 ≡a3) d = (aα ≡aα) d = γα aα

of the director onto the tangential plane of the mid surface. Note that γα = 0 holds
if d points along the direction of the normal vector a3 of the shell surface.

With the help of (9.9), we may rewrite the covariant components of the three-
dimensionsal metric tensor of the shell continuum in terms of the following exact
and approximating expressions:

gαβ = aαβ + ζκαβ + O(ζ 2), (9.10)

gα3 = γα, (9.11)

g33 = 1. (9.12)

Furtheron, we will neglect the higher order terms O(ζ 2) in (9.10), in accordance
with the usual assumptions that the principle curvature radii Rα = 1/κα given by
the eigenvalues κα of the tensor καβ aα ≡ aβ are much larger than h, such that the
estimate 0 ≤ h/Rα √ 1 holds allover the shell surface.

2 From the viewpoint of the differential geometry of directed surfaces. in Euclidian space, the
corresponding tensor quantities are differential invariants of the directed surface, which uniquely
determine its geometry in Euclidian space up to rigig body motions, provided that certain integra-
bility conditions are satisfied, generalizing the classical equations of Gauss and Codazzi–Mainardi,
required to be fulfilled in the special case d ≺ a3, to the case of an independent director field d (see
[9] for details and mathematical proofs).
3 The curvature tensor or second fundamental form of the parametrized surface ϕ:ω ∈ R

3 is
given by the derivative da3 (also called Weingarten map) of the Gauss map χ ⊗∈ a3(χ) ∇ S2. The
symmetric tensor καβ aα ≡ aβ = 1

2 (dϕT · dd + ddT · dϕ) generalizes the Weingarten map to the
case of a directed surface given by (ϕ, d) and reduces to da3 in the special case d = a3.
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Table 9.1 Notation for the different configurations

Surface basis Continuum basis Kinematic quantities

Reference configuration Aα, Aβ Gi, Gj Aαβ, Kαβ, Γα

Deformed configuration aα, aβ gi, gj aαβ, καβ, γα

9.2.2 Strains and Stresses

To measure strains, we define a reference configuration S0 ∗ R3 of the shell, which
we assume to be in a natural (stress free) state, by a parametrization over the parameter
domain Ω (following the notational conventions of Sect. 9.2.1) as follows:

φ0(χ, ζ ) := ϕ0(χ) + ζ d0(χ), S0 := φ0(Ω). (9.13)

To distinguish the quantities of the different configurations, capital letters are used
for those of the stress free shell continuum (see Table 9.1).

We assume that in the reference configuration the director equals the unit normal
A3 =: d0 of the mid surface for all χ ∇ ω, such that the kinematic quantity Γα = 0
from (9.9) vanishes. This implies that the components (9.11) of the covariant metric
are eliminated, as well as their contravariant counter parts Gα3 = Gα3 = 0. The
deformed configuration S ∗ R3 of the shell continuum is given by

φ(χ, ζ ) := ϕ(χ) + ζd(χ), S := φ(Ω). (9.14)

Different from the reference configuration, we do not assume that the deformed
director remains normal to the midsurface, so d ∀= a3 in general for deformed
configurations of the shell. Nevertheless, it always remains normalized due to (9.4).

The functions (9.13) and (9.14) map from the same parameter domain Ω onto S
or S0. Therefore, the deformation mapping between the reference and the deformed
configuration is given by the composition

Φ := φ ◦ φ−1
0 (9.15)

Figure 9.1 illustrates the connection of the functions. The derivatives of φ with respect
to the variable X ∇ S0 determines the deformation gradient F := ←XΦ. With some
tensor algebra [20], this tensor transforms to

F = gi ≡ Gi. (9.16)

To detect strains between the two configurations S and S0, we choose the Green-
Lagrange tensor given by
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Fig. 9.1 Configurations of the shell continuum

E = 1

2

(
FT F − Id

)
, (9.17)

= 1

2

⎡
gij − Gij

⎣
⎪ ⎨⎩ ︸

=:Eij

(
Gi ≡ Gj

)
. (9.18)

as a nonlinear objective strain measure, where the second equality is based on (9.16)
and I = Gi ≡ Gi. Equation (9.18) indicates explicitely that differences between the
two metrics measure the strains, such that a non-vanishing tensor E measures the
change of metric caused by deformations of the reference configuration.

In the case of a shell, the components of the Green Lagrange tensor read

Eαβ = ⎡
aαβ − Aαβ

⎣
⎪ ⎨⎩ ︸

=:mαβ

+ζ
⎡
καβ − Kαβ

⎣
⎪ ⎨⎩ ︸

=:bαβ

, (9.19)

Eα3 = γα − Γα⎪ ⎨⎩ ︸
=:sα

, (9.20)

E33 = 0, (9.21)

neglecting higher order terms O(ζ 2) by assuming principle curvature radii much
larger than the shell thickness, and local strains that remain small also in deformed
configurations. Note that (9.21) implies that there is no strain in normal direction of
the reference configuration, due to the unit lengths of d0 and d.
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The 2nd Piola Kirchoff stress tensor S is the work conjugate stress measure
corresponding to the Green-Lagrange strain E [4]. In accordance with the assumption
of locally small strains, one may assume a linear constitutive relation of S and E,
such that stress and strain are connected according to generalized Hooke’s law via a
symmetric fourth order elasticity tensor C as

S = C : E. (9.22)

The various assumptions stated above imply a restriction of the model to small local
deformations. However, large rotations and displacements are still possible, if they
only imply small nonlinear strains Eij. Additionally we suppose that the following
components of the material elasticity tensor C = CijklGi ≡ Gj ≡ Gk ≡ Gl vanish
w.r.t. the covariant basis:

Cα333 = C3α33 = C33α3 = C333α = 0, (9.23)

Cαβι3 = Cαβ3ι = Cα3βι = C3αβι = 0. (9.24)

Physically linear constitutive laws for a geometrically exact shell are discussed in
more detail in Sect. 9.3. With (9.23) and (9.24) the components of the 2nd Piola
Kirchhoff stress tensor w.r.t. the covariant basis Gi ≡ Gj are given by

Sαβ = Cαβιπ Eιπ + Cαβ33E33, (9.25)

Sα3 = Cα3ι3Eι3, (9.26)

S33 = C33ιπ Eιπ + C3333E33. (9.27)

In addition to plain strain (E33 = 0), we assume that there is likewise no stress in
the normal direction of the reference configuration S33 = 0 (plain stress). Therefore
(9.27) may be solved w.r.t. E33, which is then substituted back into (9.25). With the
definitions

Hαβιπ := Cαβιπ + Cαβ33C33ιπ

C3333 , (9.28)

Ĥαβ := Cα3β3, (9.29)

the stress strain relations (9.25)–(9.27) for the shell continuum transform to

Sαβ = Hαβιπ Eιπ , (9.30)

Sα3 = ĤαβEβ3. (9.31)

Altogether membrane and bending strains lead to in-plane stresses, and shear strains
are the cause of transverse stresses within the shell.
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9.2.3 Weak Formulation of Balance of Momentum

Following [21], the weak form of balance of linear momentum for three dimensional
continua is given by

G(φ, δφ) :=
∫
S0

S : δE dX +
∫
S0

ρ0Φ̈ · δΦ dX −
∫
S0

B · δΦ dX = 0. (9.32)

The vector B represents the external loads, and ρ0 denotes the mass density of the
shell with respect to the reference configuration. The variation of the deformation
map is given by δΦ = δφ ◦ φ−1

0 with δφ = δϕ + ζ δd.
The variation of the director δd maps onto TdS2, i.e.: the tangential space of S2

in d, as d · δd = 0 holds for all δd ∇ TdS2. The variation of the kinematic quantities
and strain measures can be calculated in a straightforward manner:

δaαβ = δaα · aβ + aα · δaβ, (9.33)

2δκαβ = δaα · d,β + aα · δd,β + δaβ · d,α + aβ · δd,α, (9.34)

δγα = δaα · d + aα · δd. (9.35)

The part of (9.32) dealing with the internal forces may be rewritten with the help of
integration by substitution as

Gint(φ, δφ) :=
∫
S0

S : δE dX =
∫
Ω

S : δE det(Gij) dζdχ. (9.36)

Now we want to reduce the problem by integrating analytically over the variable ζ .
The integrand of (9.36) decomposes to

S : δE = aαβHαβιπ δaιπ + γαĤαβδγ (9.37)

+ ζ
⎡
aαβHαβιπ δκιπ + καβHαβιπ δaιπ

⎣
(9.38)

+ ζ 2καβHαβιπ δκιπ . (9.39)

Additionally H and Ĥ depend on ζ via Gij (see Sect. 9.3). Next we approximate the
continuum metric by the midsurface metric Gij ≈ Aij, which are equivalent in the
limit h ∈ 0. With this approach the only dependencies on ζ are those explicitly
written in (9.37)–(9.39), and we are able to perform the integration over ζ in closed
form. Due to the symmetry of the integration domain [−h/2, h/2], it holds that

h/2∫
−h/2

ζ
⎡
aαβHαβιπ δκιπ + καβHαβιπ δaιπ

⎣
dζ = 0, (9.40)
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which decouples membrane and bending deformations of the shell surface. Integrat-
ing (9.37) and (9.39) yields

h/2∫
−h/2

aαβHαβιπ δaιπ dζ = h aαβHαβιπ δaιπ , (9.41)

h/2∫
−h/2

γαĤαβδγ dζ = h γαĤαβδγ (9.42)

h/2∫
−h/2

ζ 2καβHαβιπ δκιπ dζ = h3

12
καβHαβιπ δκιπ . (9.43)

Altogether, Eq. (9.36) reduces to a two dimensional integral

Gint(φ, δφ) = h
∫
ω

(
aαβHαβιπ δaιπ + γαĤαβδγ

)
det(Aαβ)dχ (9.44)

+ h3

12

∫
ω

καβHαβιπ δκιπ det(Aαβ)dχ (9.45)

over the shell surface. The two other summands of (9.32) may be integrated over ζ

in a similar way. The dynamical part of (9.32) reduces to the surface integral

Gdyn(φ̈, δφ) :=
∫
S0

ρ0Φ̈ · δΦ dX (9.46)

=
∫
ω

⎡
Aρ0 φ̈ · δφ + Iρ0 d̈ · δd

⎣
det(Aαβ)dχ, (9.47)

with the nominal surface mass density Aρ0(χ) := ⎜
ρ0(χ, ζ ) dζ , and the corre-

sponding rotational inertia Iρ0(χ) = ⎜
ζ 2ρ0(χ, ζ ) dζ . Assuming the density ρ0 of

the reference shell continuum to be homogeneous along the normal direction of
the midsurface (i.e.: independent of ζ ), the inertial parameters simplify to the well
known expressions Aρ0 = hρ0 and Iρ0 = h3

12ρ0, both in general still depending on
the surface parameters χ , or constants if ρ0 is constant. The part of (9.32) dealing
with the external forces may be integrated in the same way, therefore it is skipped
here.
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9.3 Linear Elastic Materials for Geometrically Exact Shells

The main content of this section is the discussion of elastic constitutive equations,
as introduced in (9.22), for geometrically exact shells. We focus on transferring
constitutive laws from the three dimensional theory [12] to the shell continuum and
converting it to a two dimensional material law as in (9.28) and (9.29). As mentioned
in Sect. 9.2.2, we restrict our considerations to a linear relation between stresses and
strains. In the following we present two well known classes of linear materials. First
we deal with the standard isotropic Saint-Vernant-Kirchhoff material, to illustrate
the procedure. Additionally we present a certain type of orthotropic material law,
which later enables us to deal with the material anisotropy encountered within the
reinforced carcass and belt structures of real tires.

9.3.1 Linear Elastic Isotropic Materials

The equivalence of all directions is the basic property of isotropic constitutive
behavior, such that material properties may be expressed independent of any partic-
ular material reference frame.

For the elasticity tensor Ciso corresponding to Hooke’s law for isotropic materials
this implies an additive decomposition into two parts:

• One part is proportional to the tensor Id≡ Id, which acts on arbitrary second order
tensors A according to (Id ≡ Id): A = Tr(A) Id.

• The other part is proportional to the sum I + T of the fourth order identity tensor
I, which maps second order tensors A identically to themselves (i.e.: I: A = A),
and the fourth order transposition tensor T, mapping second order tensors to their
transpose (i.e.: T: A = AT ), such that the symmetric part of A is obtained as
1
2 (A + AT ) = 1

2 (I + T): A.
• The respective proportionality parameters L1 and L2, called Lamé parameters4

correspond to the two independent elastic moduli governing the isotropic material
behaviour for small strains.

Expressing the Lamé parameters by Young’s modulus E and Poisson’s ratio ν, the
isotropic elasticity tensor of the Saint–Venant–Kirchhoff material may be written as

Ciso = Eν

(1 + ν)(1 − 2ν)⎪ ⎨⎩ ︸
=L1

(Id ≡ Id) + E

2(1 + ν)⎪ ⎨⎩ ︸
=L2

(I + T) , (9.48)

4 Usually the Lamé parameters are denoted as λ and μ ≺ G. We follow the notation used in
Sect. 4.2.1 of [6] to avoid notational overlap with Greek indices and improve notational similarity
with the orthotropic case with parameters Lij

α appearing in the material tensor.
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with the corresponding stress-strain relation S = Ciso : E = L1 Tr(E) Id + 2L2 E,
and the components of Ciso w.r.t. the contravariant basis given by:

C
ijkl
iso := ⎡

Gi ≡ Gj
⎣ : Ciso : (Gk ≡ Gl) (9.49)

= L1 GijGkl + L2

(
GikGjl + GilGkj

)
. (9.50)

Obviously (9.23) and (9.24) hold because of Gα3 = 0. Hence, the isotropic material
tensor Ciso transforms under the plain stress assumption to the shell material tensors
H

αβιπ
iso and Ĥ

αβ
iso (see Sect. 9.2.2 and the Appendix for explicit formulas).

9.3.2 Linear Elastic Orthotropic Materials

In contrast to the isotropic case with equal material behaviour in all spatial direc-
tions, an orthotropic material posesses only three orthogonal planes of symmetry,
corresponding to unit vectors Ei along the normal directions of these planes.

The triple (E1, E2, E3)determines a specific orthonormal basis, calles the material
reference frame. To each of these material directions Ei belongs one Young’s modulus
Ei, and to each symmetry plane there is a pair of Poisson ratios νij and νji as well as an
associated shear modulus Gij. Together these nine independent elastic parameters

determine the coefficients Lij
α of the orthotropic material tensor w.r.t. the material

reference frame according to the following relations (see [5, 11]):

L11
1 = −E1

1 − E1ν23ν32

Δ
L22

1 = −E2
1 − E2ν13ν31

Δ
L33

1 = −E3
1 − E3ν12ν21

Δ

L12
1 = −E1

ν12 + ν13ν32

Δ
L13

1 = −E1
ν13 + ν12ν23

Δ
L23

1 = −E2
ν23 + ν13ν21

Δ

L21
1 = −E2

ν21 + ν23ν31

Δ
L31

1 = −E3
ν31 + ν21ν32

Δ
L32

1 = −E3
ν32 + ν13ν31

Δ

(9.51)

with
Δ = ν12ν21 + ν13ν31 + ν23ν32 + ν12ν23ν31 + ν13ν32ν21 (9.52)

and

L12
2 = L21

2 = G12, L13
2 = L31

2 = G13, L23
2 = L31

2 = G23. (9.53)

Due to the symmetry of the material, the relations Gij = Gji and νji = (Ei/Ej)νij

hold (see [12]). Consequently the coefficients Lij
1 = Lji

1 and Lij
2 = Lji

2 are likewise
symmetric. Altogether the orthotropic material tensor may be written as
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Fig. 9.2 Special orthotropy of a tire with condensed reinforcements

Corth =
3⎤

i=1

3⎤
j=1

Lij
1 (Ei ≡ Ei ≡ Ej ≡ Ej) (9.54)

+
3⎤

i=1

3⎤
j=1

Lij
2 (Ei ≡ Ej ≡ Ei ≡ Ej + Ei ≡ Ej ≡ Ej ≡ Ei) (9.55)

w.r.t. the orthonormal material basis. As in the isotropic case (9.49), the coefficients
of the tensor w.r.t. the contravariant basis may be computed from

C
ijkl
orth := ⎡

Gi ≡ Gj
⎣ : Corth : (Gk ≡ Gl) . (9.56)

To transfer the material law to the shell, Eqs. (9.23) and (9.24) must hold. This is
ensured by the assumption that one principal direction of the orthotropic material law
e.g. E3 is parallel to the director d = G3 in every point of the reference configuration,
which holds as a first approximation of the structure of the tire, if one considers the
material properties of the various plys to be condensed to the mid surface. Additionaly
we assume that the reinforcements are mirror-symmetric in longitudinal and lateral
direction of the tire, as illustrated in Fig. 9.2, which is also typically the case in real
passenger car tires.

With these assumptions, the following scalar products vanish:

Eα · G3 = 0 E3 · Gα = 0. (9.57)

This in turn implies that also Cα333
orth = 0 and C

αβι3
orth = 0 hold. To evaluate the

remaining coefficients, one has to compute the scalar products

Bα
ι = Eι · Gα. (9.58)
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Fig. 9.3 Relation of the basis

To simplify this task, we interrelate the material Eα and covariant Gα shell basis as
follows: Both pairs of vectors span the same two dimensional plane, because of the
assumption G3 = G3 = E3. In contrast to Eα , the tangential vectors Gα do not have
to be perpendicular or normalized. Therefore we introduce the pair

Ĝ1 = 1√
G11

G1 Ĝ2 = 1√
G22

G2, (9.59)

of vectors, which together with G3 form an orthonormal basis. As shown in Fig. 9.3,
a rotation around G3 by the angle θ transforms the material basis to Ĝα . Therefore
the principal material directions are given by

E1 = cos(θ)Ĝ1 + sin(θ)Ĝ2 E2 = − sin(θ)Ĝ1 + cos(θ)Ĝ2. (9.60)

Hence, the basis Ei is completely defined by the angle θ , which determines the
relation5 to the covariant basis of the reference shell continuum. Finally Eq. (9.58)
transforms to

B1
1 = cos(θ)√

G11
+ sin(θ)G12

√
G22

, B2
1 = sin(θ)

⎦
G22 (9.61)

B1
2 = cos(θ)G12

√
G22

− sin(θ)√
G11

, B2
2 = cos(θ)

⎦
G22 (9.62)

Explicit expressions for the corresponding coefficients H
αβιπ
orth and Ĥ

αβ
orth are given in

the Appendix.

5 Without loss of generality, we define this angle by the relation α = cos−1(Ĝ1 · E1), which is
always well defined due to the symmetry of the material.
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ϕI

dI

S

Fig. 9.4 Shell discretized by quadrilateral finite elements

9.4 The Discrete Shell Model

To solve the weak balance law developed in Sect. 9.2.3, we discretize the problem
in space and time. For the spatial part finite elements are used, as discussed in the
first section. In the second one we present a suitable time integration scheme. In the
last section we show how the size of the arising system of nonlinear equations can
be reduced.

9.4.1 Spatial Discretization

For the spatial discretization we follow the work from Betsch and Sänger [2], where
bilinear isoparametric elements are used to discretize the shell. This approach yields a
rotation free formulation, with the peculiarity that we obtain an additional constraint
equation for the shell director field. For simplicity we first focus on the static problem,
which is given by

Gstatic(φ, δφ) := Gint(φ, δφ) − Gext(δφ) = 0 ∀δφ. (9.63)

The midsurface and the director are discretized by the same piecewise bilinear
Lagrangian shape function NI with associated nodal values qI = (ϕI , dI ) ∇ R6

ϕh(χ) =
n⎤
I

ϕI NI(χ) dh(χ) =
n⎤
I

dI NI(χ), (9.64)

where n is the number of nodes of the finite element mesh. Figure 9.4 illustrates this
discretization scheme.

All other functions and quantities are discretized in the same way, see Table 9.2.
So the configuration of the shell is fully described by the state vector

q = (q1 . . . qn)
T ∇ R6n. (9.65)
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Table 9.2 Notation for the different configurations

Discretization Discrete variation

aα ah
α = φI NI

,α δah
α = δφI NI

,α

aαβ ah
αβ = φI · φJ NI

,αNJ
,β δah

αβ = (φI · δφJ + δφI · φJ )NI
,αNJ

,β

καβ κh
αβ = (φI · dJ + dI · φJ )NI

,αNJ
,β δκh

αβ = (φI · δdJ + δφI · dJ + dI · δφJ + δdI · φJ )

NI
,αNJ

,β

γα γ h
α = φI · dJ NI

,αNJ δγ h
α = (φI · δdJ + δφI · dJ )NI

,αNJ

By inserting (9.64) into (9.63), we get a discrete version of the static problem

Gstatic(φh, δφ
h) =

(
RJ(q) − Fh

J

)
· δqJ = 0. (9.66)

The nonlinear part of this equation arises from the internal part Gint(φ
h, δφh) of the

static equation

RJ(q) · δqJ =
⎟


⎜
ω

(2Sαβ

h ah
α + 2Sαβ

h dh
,α + S3βdh) NJ

β dχ

⎜
ω

(2Sαβ

h ah
αNJ

,β + S3αah
α) NJ dχ


 ·

⎛
δφJ

δdJ

⎝
(9.67)

Integrating the external force over the shell continuum leads to the discrete external
force Fh

J = ⎜
BNJdχ . Because (9.66) holds for all δqJ ∇ R6, its solution is equivalent

to solving the following nonlinear system of equations:

R(q) − F = 0, (9.68)

with

R(q) = (R1(q) . . . Rn(q))T (9.69)

F = (F1 . . . Fn)
T (9.70)

In contrast to the continuous case discussed in Sect. 9.2, the discrete directors dh have
been considered as arbitrary three-dimensional vectors up to this point. In continuous
configurations of the shell, they are pointwise restricted to positions located on the
unit sphere. In the discrete case, we merely enforce the unit length condition at the
nodes of the finite element mesh. This imposed a set of algebraic constraints on
the discrete configurations of the shell, which we incorporate into the governing
equations with the help of corresponding Lagrangian multipliers added within the
variational formulation. This leads to n additional constraint equations

ΛJ(q) := 1

2
(dJ · dJ − 1) = 0 J = 1, . . . , n. (9.71)
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The product of the matrix

GT := ←qΛ = ⎡←qΛ1, . . . ,←qΛn
⎣ ∇ R6n×n, (9.72)

←qΛI = (0 . . . 0, dT
I , 0 . . . 0)T (9.73)

and the Lagrangian multipliers λ ∇ Rn contribute an additional constraint force to
the system (9.68). Finally, the nonlinear problem

R(q) − F + GT λ = 0 (9.74)

Λ(q) = 0 (9.75)

must be solved w.r.t. q and λ, to obtain a solution of the discrete static problem
(9.66). Resolving this problem is done by Newton’s Method. The stiffness matrix K
is computed by taking the Fréchet derivative of (9.32) and inserting the discretized
linerarization Δφh, which is equivalent to the discrete variation δφh. We refer to
[17, 21] for details of this procedure.

Remark 1 To avoid locking, we us the approach from Bathe and Dvorkin [8] for
the discrete shear strains γ h

α and their variations δγ h
α . Therein the shear strains are

evaluated at the edge midpoints along the edge directions and interpolated linear in
their corresponding directions.

Remark 2 In case of an orthotropic material law, the θ could vary inside the element,
even if the orthonormal frame is constant, because of the change of the discrete tan-
gential vector inside the quadrilateral element. In case of a tire we circumvent the
problem by defining the angle in relation to the two parallel edges arising from the
revolution of the cross section. Therefore θ is constant and the material is homoge-
neous at least inside our elements.

9.4.2 Time Integration

In contrast to the static problem (9.63), in a transient simulation the dynamical
contribution Gdyn(φ̈, δφ) to the weak balance law (9.32) must be considered, too.
By this term a second order derivative of the deformation map is involved. Hence,
we get a second order ordinary differential equation (ODE) w.r.t. the time domain.
We use the vertical method of lines, meaning that we first perform a discretization
in space (see Sect. 9.4.1), and after that the discrete system is integrated in time.
Explicitly, the coefficients of the discrete mappings (9.64) become time dependent:

ϕh(χ, t) =
n⎤
I

ϕI(t) NI(χ) dh(χ, t) =
n⎤
I

dI(t) NI(χ). (9.76)
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Therefore, the state vector of the discrete system as well as the Lagrangian multiplier
λ(t) vary in time q(t) ∇ R6n, too. Inserting the time dependent discrete deformation
mapping into (9.32), we end up with a differential algebraic equation (DAE)

Mq̈ + GT (q)λ + R(q) − Fh = 0
Λ(q) = 0.

(9.77)

The matrix M ∇ R6n×6n arises from the spatial discretization of the dynamic part
(9.47), consisting of the block matrices

MIJ =
⎟


⎜
ω

NI · NJAρ0 dχ 03×3

03×3
⎜
ω

NI · NJ Iρ0 dχ


 . (9.78)

By rewriting (9.77) with the help of the generalized nodal velocity v = q̇ as auxiliary
variable, only first order time derivatives appear in the equivalent system of equations

q̇ = v

Mv̇ = −GT (q)λ − R(q) + Fh (9.79)

0 = Λ(q).

We discretize (9.79) with the help of an implicit time integration scheme, because
of the stiffness of the problem. In contrast to [2], where the focus lies on energy
conservation, we use a backward differential formula (BDF). This family of time
integration schemes are multi step methods, as also results from previous time steps
are used. The BDF method is A-stable up to order two and A(α)-stable up to order
six [19]. To describe the method, we restrict ourselves to the representative time
interval [tk, tk+1], where τ := tk+1−tk denotes the constant6 time step. Furthermore,
(qk, vk, λk) denote the state vector, the velocities and the Lagrangian multiplier at
time tk . To perform the time step tk ∈ tk+1 the following system of equations defines
the states at tk+1

m⎤
i=0

αiqk+1−i = τvk+1, (9.80)

M
m⎤

i=0

αivk+1−i = τ
(
−R

(
qk+1

)
− GT

(
qk+1

)
λk+1 + Fh

)
, (9.81)

0 = Λ(qk+1), (9.82)

6 A variable step size is also possible in BDF. For a simpler notation, we only show the constant
version.
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where m is the order of the BDF method and αi its coefficients, see [19] for more
details. Equation (9.80) relates vk+1 explicitly to qk+1. Therefore the left hand side
of (9.81) gets

M
m⎤

i=0

αi

τ
vk+1−i = M

(α0

τ

)2
qk+1 + M

m−1⎤
i=0

αi+1

(
vk−i + α0

τ
qk−i

)
⎪ ⎨⎩ ︸

=:Rk
dyn

.

(9.83)

The term Rk
dyn only depends on the already calculated states and velocities of the

past time steps tk−i. With (9.83) the system (9.80)–(9.82) reduces to

M
(α0

τ

)2
qk+1 + Rk

dyn = −R(qk+1) − GT (qk+1)λk+1 + Fh, (9.84)

0 = Λ(qk+1). (9.85)

These nonlinear relations are solved with respect to the states qk+1 and the Lagrangian
multiplier λk+1 at the next time step tk+1. Afterwards, the velocities vk+1 are calculate
by (9.80). By introducing the nonlinear function

Rdyn(qk+1) := R(qk+1) +
(α0

τ

)2
M qk+1

and the vector Fh
dyn := Fh − Rk

dyn, which is constant within the time step, the system
of equations

Rdyn(qk+1) + GT (qk+1)λk+1 − Fh
dyn = 0, (9.86)

Λ(qk+1) = 0, (9.87)

which has to be solved to determine the states at tk+1, has precisely the same structure
as Eqs. (9.74)–(9.75) to be solved in the static case. This implies that, in every time
step we have to solve a perturbed static problem. This is done as in the static case with
the help of Newton’s method, using the states of the previous time step qk as start
values for the iteration. Note that the constant vectors of (9.86)–(9.87) are merely
treated as constants within a time step. They depend on the states at past time steps
(9.83) and could also depend on time directly.
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9.4.3 Size Reduction

In the static case (9.74)–(9.75) as well as inside the time step (9.86)–(9.87), the
nonlinear system of equations to be solved have the same structure. Therefore we
examine the size reduction in the static case, keeping in mind that the same is valid
for the dynamical system inside the time step. We achieve size reduction by using
a discrete nullspace matrix combined with a local (re)parametrization of the nodal
values, as suggested in the works [2, 3, 13].

First we get rid of the constraint forces together with the Lagrangian multipliers,
with the help of a discrete null space matrix P(q) ∇ R6n×5n. In our case this matrix
reads

PI =
⎛

Id3×3 03×1 03×1

03×3 d̂1
I d̂2

I

⎝
∇ R6×5 P =

⎟


P1 06×5 · · · 06×5

06×5 P2
. . .

...
...

. . .
. . . 06×5

06×5 · · · 06×5 Pn


 . (9.88)

The unknown vectors are chosen such that d̂α
I · dI = 0 holds for α ∇ {1, 2}. Because

of that and (9.73), the columns of the matrix P span the null space of the constraint
matrix

G(q)P(q) = PT (q)GT (q) = 0. (9.89)

We reduce the dimension of the system to 6n by multiplying (9.74) by PT from
the left:

PT (q) (R(q) − F) = 0, (9.90)

Λ(q) = 0. (9.91)

By eliminating the constraint forces also the Lagrangiang multipliers disappear.
Hence, the degrees of freedom per node reduce to six. To get rid of the constraint
equation (9.91), a local7 parametrization T: R5 ∈ R6 of the state vector q = T(u)

is introduced. This function should guarantee the unit length of the director in every
node of the finite element mesh or more general

Λ(T(u)) = 0 ∀u ∇ R5n. (9.92)

The parametrization depends on the states p of the last time or increment step accord-
ing to weather a dynamic or static problem has to be solved. Restricted to one single
node, the function T is a translation for the midsurface point and a rotation for the
director:

7 It is called local, because the parametrization differs from time step to time step.
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T(u) = ϕq = ϕp + uϕ

dq = exp( ̂ud1 d1
p + ud2 d2

p)dp.
(9.93)

The function exp : so(3) ∈ S0(3) is the classical Rodriguez formula, which can be
found in [17] for example. It generates a matrix, which represents a rotation around
the vector ud1 d1

p+ud2 d2
p about the angle ⇒ud1 d1

p+ud2 d2
p⇒. The vectors dα

p are chosen
such that together with the director dp, they form an orthonormal system. With the
parametrization T, there are only 5n nonlinear equations left

PT (T(u))
(

R
(

T(u)
)

− F
)

= 0. (9.94)

These equations determine the parameters u ∇ R5n, and so the solution of (9.90)–
(9.91), (9.86)–(9.87) or (9.74)–(9.75). For more details and a verification of the
method we refer to [2, 3, 13] and references therein.

Remark 3 Due to the parametrization of the director by a local rotation, the tangential
matrix of the system has eigenvalues close to the imaginary axis. Therefore, the
BDF-method is restricted to order two, if we want to assure the stability of the time
integration scheme.

9.5 Coupling with MBS

To do a vehicle simulation, the discrete shell model representing the tire has to be
coupled to the multibody system in a proper way. One possibility to achieve this
could be a monolithic approach to time integration as introduced in [2]. Here, the
multibody system and the flexible shell are integrated as one fully coupled system
by a single time integration scheme.

As alternative one could choose a co-simulation approach, which often is the
preferred variant within industrial applications [10]. Here, the vehicle and the tire
are integrated as separated systems. At certain times these are synchronized in the
following way: The rigid body defining the rim acts as an interface between the two
systems. The vehicle determines its position, orientation and corresponding velocity
at the synchronization time. With that information the tire is integrated up to this
point and delivers the forces and torques acting on the rim.

With these inputs the multibody system integrates to the next synchronization
time and in this way determines implicitly the new kinematic state of the rim. Then
again the tire integrates afterwards and so on. This leads to three different time step
sizes:

τrigid the step size of the rigid body system,
τshell the step size of the discrete shell,
τsync the step size of the synchronization times.
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Fig. 9.5 Moving Dirichlet boundary

The time step of the discrete shell system is restricted such that an integer multiple
k ∇ N is equal to the time step of the synchronization τsync = kτshell. For simplicity
we assume here that k = 1, which means that only one time step is integrated between
the synchronization.8

Because we are focused on the incorporation of the shell, we are not interested in
the multibody system and its time step size τrigid . The only thing needed from the
multibody is the kinematic state at the old tn and new tn+1 synchronization times.
Through these two quantities we get a displacement Δr and a rotation matrix ΔR
representing the rigid body motion.

To transfer the motion of the rim to the discrete shell representing the tire, we
assume that its boundary ∂B (see Fig. 9.5) is fixed to the rim. Therefore the position
and the director of the nodes are prescribed through the time interval [tn, tn+1].
Therefore the global state vector of the nodes is split into free and predefined part

q =
⎛

qfree

qpre

⎝
λ =

⎛
λfree

0

⎝
, (9.95)

which contain the corresponding states of the nodes.
To do the time step we have to solve the nonlinear problem from (9.80)–(9.82).

For simplicity we omit indexes and look for a solution of the corresponding static

8 If k ∀= 1 the kinematic states must be interpolated in the interval [tn, tn+1].
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Fig. 9.6 Local forces and
torques on a boundary node

problem (9.86)–(9.87) with additional forces due to the dynamics of the system.
Because of the Dirichlet boundary, the variation of the prescribed nodes δqpre = 0
vanishes. Therefore the number of equations reduces to the number of free nodes

Rfree(q, λ) = 0, (9.96)

Λfree(q) = 0. (9.97)

Note that the last equation is solved with respect to qfree and λfree, but the system
also depends on the values qpre. We also get the forces with respect to the vanishing
variations Rpre(q) as by-product of the FE solution process of (9.96)–(9.97). This
vector valued function is the assembly of the local forces RPre

I acting on the boundary
nodes. Again this vector is decomposed in a position and a director force

RPre
I =

⎛
Rpre

ϕI

Rpre
dI

⎝
∇ R6. (9.98)

Figure 9.6 illustrates the two local forces. Calculating the global force acting on the
center of the rim is done by summing up all local position forces

Frim =
⎤

qI∇∂B

Rpre
ϕI

(q). (9.99)

Because dI acts as a lever arm for the local director force, a local torque dI × Rpre
dI

appears. This term together with the torque generated by the position forces and the
distance to the center of the rim summing up to the global torque acting on the rim

Trim =
⎤

qI∇∂B

(
dI × Rpre

dI
+ (φI − r) × Rpre

φI

)
. (9.100)
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9.6 Pressure and Contact

In addition to external loadings B, which are often asssumed to be configuration
independent (like gravity), we have to incorporate specific configuration dependent
loads. If we want to simulate a tire we have to deal with one sided contact with a
road surface and pressure load. In the first section we introduce a penalty method to
handle normal (frictionless) contact with a rigid road surface. In the second one we
follow the work of [18] to incorporate loads due to inflation pressure.

9.6.1 Normal Contact

The tire has to interact with a rigid road, which is given via a height profile p =
(x, y, h(x, y))T . Also its first two derivatives are analytically given. The rigidity of
the road and its explicit description substantially simplifies the problem, compared
to contact problems of two elastic discrete bodies.

The second contact partner is the outer surface of the shell continuum, which
is given by x̄(χ) := ϕ(χ) + h

2 d(χ). For every point in this surface there exists a
associated point in the road which has minimal distance p̂ = argmin⇒p− x̄⇒. Having
these minimal distance point p̂, we define the penetration function by

g(x̄) =
⎞

0, if(x̄ − p̂) · n̂ > 0,

(x̄ − p̂) · n̂, else.
(9.101)

Here, the vector n̂ is the normal of the road surface in p̂. The variation of (9.101) in
case of penetration (g < 0) is given by

δg = (δφ + h

2
δd) · n =

⎛
n

h
2 n

⎝
·
⎛

δϕ

δd

⎝
. (9.102)

With a positive scalar value ε > 0, a penalty term [20] is added to the balance of
linear momentum (9.32)

Gc(φ, δφ) = ε

∫
ω

g(χ)δg(χ)dχ. (9.103)

Inserting the discretization (9.64) into (9.103) yields an additional force

Rc
I (q) · δqI = ε

⎟


⎜
ω

g(χ)NI dχ

h
2

⎜
ω

g(χ)NI dχ


 ·

⎛
δϕI

δdI

⎝
(9.104)



9 On the Use of Geometrically Exact Shells for Dynamic Tire Simulation 229

Fig. 9.7 Contact evaluation
inside the element (STS).
Small cleat is detected

Fig. 9.8 Contact evaluation
at the node of the FE-mesh
(NTS). Small cleat is not
detected

acting on each node of the discrete shell. These local contact forces are assembled to
a global contact force Rc = ⎡

Rc
1, . . . , Rc

n

⎣T . The integrals of (9.104) are evaluated
by numerical integration inside the finite elements. This leads to a surface to surface
(STS) contact, with the road surface given analytically. Therefore we can increase
the resolution of contact independent of the finesse of the FE-mesh.

Instead of evaluating (9.104) inside the elements, the contact force could be com-
puted only in the nodes of the finite element mesh. In the literature, this approach is
often called node to surface (NTS) contact. Here the finesse of the FE mesh deter-
mines the resolution of the contact. The local contact force from (9.104) becomes

Rc
I (q) = ε

⎛
g(x̄I )

h
2 g(x̄I )

⎝
, (9.105)

with x̄I := ϕI + h
2 dI . Because in tire simulation we often deal with small cleats, the

(NTS) method would lead to very fine meshes. This would decrease the computational
speed in an unfavourable way.

Figure 9.7 illustrates the benefit of the STS method: The contact with a cleat
which is smaller than the size of an element is detected. In contrast to that if the NTS
method is used with the same element and cleat, no contact is detected (see Fig. 9.8).

9.6.2 Pressure Load

A tire is inflated with a certain pressure, which is assumed to be spatially constant
within the cavity volume. For this reason, an additional force arises at the surface
pointing into normal direction. The incorporation of a pressure load into a 3D con-
tinuum based FE concept is presented in [18]. This approach is adopted for the
midsurface, which yields a contribution to the weak form
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Fig. 9.9 Deflection of 35 mm
relative to the first contact, no
inflation pressure

Gp(φ, δφ) =
∫
S

pa3 · δϕdx =
∫
ω

p(a1 × a2) · δϕdχ. (9.106)

Note that the integral is taken over the deformed configurationS , to create the correct
force. By inserting the discretization from (9.64) in (9.106), the discrete version of
the pressure term reads

Gp(ϕ
h, δϕh) =

⎤
I

⎤
J

⎤
K

δϕK · (ϕI × ϕJ)

∫
ω

NI
,1NJ

,2NK dx. (9.107)

The resulting force depends on the current discrete configuration ϕI . As a conse-
quence, for the solution procedure the contribution to the tangential matrix

Kp
IJ =

⎟


⎠
K ϕ̂K

⎜
ω

(
NI

,1NJ
,2 − NI

,2NJ
,1

)
dχ 03×3

03×3 03×3


 (9.108)

has to be computed, with a skew symmetric matrix ϕ̂K ∇ R3×3, such that for all
x ∇ R3 the equality ϕ̂K x = ϕK × x holds.

Together with the normal contact formulation from Sect. 9.6.1, a static simulation
is performed as a first test. The discrete model is flattened out against a flat surface. In
Fig. 9.9 no pressure is present inside the wheel, which induces bending in the tread.
The contact region is a small banded ellipse around the ideal contact patch. This
phenomenon is also known in practice in case of under-inflation. In Fig. 9.10, the
same simulation is shown with 2 bar inflation pressure. Hence, the bending vanishes
and the tread is completely in contact with the road around the ideal contact patch.
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Fig. 9.10 Deflection of 35 mm relative to the first contact, 2 bar inflation pressure

Fig. 9.11 Radius, thickness and length of the cylinder

9.7 Numerical Examples

In this section we show some numerical examples. Because we have not included
frictional contact yet, only quasi static simulations are performed. In the first section
we verify the orthotropic material law from Sect. 9.3.2, by testing it against a fully
three dimensional simulation. In the second section the flattening of tire modeled by
a discrete shell is simulated and compared to real measurements.

9.7.1 Bending of an Orthotropic Cylinder

To verify the orthotropic material law developed in Sect. 9.3, we compare our shell
element against an Abaqus orthotropic eight node brick element. As a benchmark
example the bending of a cylinder is chosen, with the geometry given in Fig. 9.11.
The material is assumed as orthotropic and homogeneous along the cylinder, with



232 M. Roller et al.

Table 9.3 Material data of the cylinder in 106 Pa, with E1 pointing into lateral, E2 into circumfer-
ential and E3 in thickness direction

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23

48.4 26.9 26.9 0.26 0.26 0.48 25 25 9.55

Fig. 9.12 At top reference configuration, below the bended deformed configuration

Fig. 9.13 Comparison of the 3D brick element against the discrete shell

its coefficients given in Table 9.3. The shell and the three dimensional model are
discretized with the same number of elements in longitudinal and circumferential
direction. The Abaqus model is additionally discretized in thickness direction. The
simulation is performed quasi static, by fixing both ends of the cylinder to a rigid
body and rotating these step-wise with the angle Θ respectively −Θ (see Fig. 9.12).
Through the imposed motion of the boundary, a reaction torque arises, which is
plotted against Θ in Fig. 9.13. In this plot it can be observed that the results of the
3D brick element and our shell element match quite well. This illustrates that the
transformation of the orthotropic three dimensional material law to a shell material
law as developed in Sect. 9.3.2 works properly.
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Table 9.4 Material data for the simulation

E1 (MPa) E2 (MPa) E3 (MPa) ν12 ν13 ν23 G12 (MPa) G13 (MPa) G23 (MPa)

Tread 150 10 30 0.1 0.4 0.4 36.4 32.1 7.14
Sidewall 17 19 17 0.2 0.4 0.4 7.5 6.07 6.43

N1 points into circumferential, N2 in lateral direction

Fig. 9.14 Results of the simulation plotted against measurements

9.7.2 Flattening Out a Tire

Pressing the inflated tire against a flat rigid ground is the most simple experiment
realized in a real physical test rig. Hereby, the stiffness of the tire is measured, which
relates vertical deflection against the resulting force. The same test is done, with a
cleat mounted on the flat surface, see Fig. 9.15. Because the tire is not rolling, only
normal contact is needed in this case. These two tests are simulated with the discrete
shell model described above.

As comparison a radial passenger car tire with 17 inch.9 rim diameter and 225 mm
width is chosen. The inflation pressure is 2.5 bar for both tests. To built up the FE
mesh, a cross section is discretized with a number of points representing the midsur-
face. By revolving these nodes around the center line of the rim, a 2D quadrilateral
mesh is constructed representing the undeformed mid surface of the tire. The con-
dition of two parallel edges, made in Sect. 9.4.1 to enable a simple representation
(by a single angle quantity) of orthotropic materials at the discrete level, is fulfilled.
In every node of the mesh a unit vector is needed, representing the discrete director.
These are generated heuristically, in a way that they are approximately normal to the
midsurface.

9 The units do not match because of the usual standardization.
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Fig. 9.15 Flattening out against a longitudinal cleat

In Fig. 9.14, a comparison between simulation results and measurements is shown.
The deflection is plotted against the resulting force acting in the rim center. As men-
tioned above, two different simulations are performed. In both cases the orhotropic
material parameters from Table 9.4 are used.

The inhomogeneities are approximated by taking different parameters per element
in the tread and the sidewall. The material data from Table 9.4 are adjusted such that
the simulation results match with the measurements in Fig. 9.14. Note that the discrete
shell parametrized by this approach works for both simulations.

9.8 Conclusions and Outlook

In this work we have developed a tire model based on geometrically exact shells,
which (according to our knowledge) is the first tire model of this kind. With this model
we are able to handle isotropic as well as three dimensional orthotropic material data.
The discrete shell is able to interact with a multibody system via co-simulation. Also
the tire specific loads like normal contact or inflation pressure have been implemented
in our model. We have shown that our tire model can be parametrized such that the
results of a real physical experiment are reproduced by a simulation. However, it
would be desirable to predict the material data from the three-dimensional geometry
of the inner reinforcement structure of the tire and the elastic material data of the
various materials. To compare our tire model against a dynamic simulation, we have
to handle frictional contact with the rigid road surface. These two problems will be
the topics of our further work.
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Appendix: Material Coefficients for the Shell

The isotropic coefficients for the shell material law are given by:

Hαααα
iso = E

1 − ν2 GααGαα, (9.109)

H
ααββ
iso = E

1 − ν2

⎡
(1 − ν)GαβGαβ + νGααGββ

⎣
, (9.110)

H
αβαβ
iso = E

1 − ν2

⎡
(1 + ν)GαβGαβ + (1 − ν)GααGββ

⎣
, (9.111)

H
αααβ
iso = E

1 − ν2 GααGαβ, (9.112)

Ĥ
αβ
iso = E

2(ν + 1)
Gαβ. (9.113)

The coefficients of the orthotropic shell material law are given by:

Hαααα
orth =

2⎤
ι=1

⎭
Lιι

1 − L3ι
1

L33
1

)
(Bα

ι )4 + 2(L12
1 + 2L12

2 )(Bα
1 Bα

2 )2, (9.114)

H
αβαβ
orth =

2⎤
ι=1

⎭
Lιι

1 − L3ι
1

L33
1

)
(Bα

ι Bβ
ι )2 + 4L12

1 Bα
1 Bα

2 Bβ
1 Bβ

2 (9.115)

+ L12
2 ((Bα

1 Bβ
2 )2 + (Bα

2 Bβ
1 )2), (9.116)

H
αβαβ
orth =

2⎤
ι=1

⎭
Lιι

1 − L3ι
1

L33
1

)
(Bα

ι Bβ
ι )2 + 2(L12

1 + L12
2 )(Bα

1 Bα
2 Bβ

1 Bβ
2 ) (9.117)

+ L12
2 ((Bα

1 Bβ
2 )2 + (Bα

2 Bβ
1 )2), (9.118)

Hαααα
orth =

2⎤
ι=1

⎭
Lιι

1 − L3ι
1

L33
1

)
(Bα

ι )3Bβ
ι (9.119)

+ (L12
1 + 2L12

2 )((Bα
1 )2Bα

2 Bβ
2 + (Bα

2 )2Bα
1 Bβ

1 , (9.120)

Ĥ
αβ
orth =

2⎤
ι=1

Lι3
2 2Bα

ι Bβ
ι . (9.121)

Note that we make use of the approximation Gαβ ≈ Aαβ , such that the integration
in the transverse (thickness) direction can be done analytically.
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Chapter 10
Application of a Gyrostatic Rigid Body
Formulation in the Context of a Direct
Transcription Method for Optimal
Control in Multibody Dynamics

Christian Becker and Peter Betsch

Abstract This chapter describes a new rigid body formulation for multibody
dynamics, embedded in a natural coordinate framework, and its application as a con-
trol input interface for optimal control theory within a direct transcription method.
In contrast to the rotationless formulation, see also [3], this scheme exploits the
rotational invariance of certain rigid bodies, i.e. rotors, in regard to their mass distri-
bution. This makes possible a separation of the general rigid body movement in a spin
part and a complementary rotation part. The resulting equations of motion feature a
simple mass matrix with mostly constant entries and without the need of transcen-
dental functions. Furthermore the separated spin coordinate serves as a control input
interface within an optimal control problem.

10.1 Introduction

The present work deals with the optimal control of multibody systems in terms
of natural coordinates (NCs), ultimately leading to equations of motion in form of
differential-algebraic equations (DAEs). This approach enables (i) the systematic
implementation of open-loop and closed-loop multibody systems, (ii) the design of
structure-preserving integrators, and (iii) the direct link to nonlinear finite element
methods. However, the incorporation of necessary control inputs in the context of
the optimal control problem presents a major challenge due to the lack of conju-
gated joint-coordinates. So far, feasible solutions to this task were either the direct
incorporation of joint forces conjugated to NCs, see also [1, 8], or by adjoining
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Fig. 10.1 Two body compound

augmented coordinates via additional constraints, see [4]. A further possibility is the
present approach, namely a gyrostatic formulation, especially suited for rigid bodies
with high rotational spin, such as rotors. Entrenched in the rotational parametriza-
tion of rigid bodies in terms of NCs, this scheme can be briefly described as the NC
complement of the modified dynamical Euler’s equations, to be found in classical
mechanics, see also [6, 10].

The transition to the actual optimal control problem will be accomplished by the
direct transcription of the equations of motion, see [5, 8, 9, 11]. The application of
the proposed scheme will be demonstrated with selected numerical examples, where
the goal is to minimize the overall control effort for a rest-to-rest maneuver.

10.2 Kinematics

For the sake of simplicity we will deal with a two body compound within the proposed
formulation, see Fig. 10.1. Here, we denote the body, providing the translational and
rotational coordinates in terms of NCs, as the master and corresponding quantities
as m•. The rigid body with symmetrical mass distribution and a relative axis of
revolution along the axis of symmetry, i.e. the rotor, will be identified as the slave
with the associated quantities s•.

The spatial position vector for an arbitrary material point of the respective rigid
body α is given by
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αx = αϕ + α R αX (10.1)

with α ∈ {m, s}, where αX denotes the convective position, α R ∈ {SO(3) | α R =
αdi ∗ ei ,

αdi · αd j = δi j } the rotational and αϕ the translational displacement of
the respective material point.

In case of the master, the nine entries of its rotational tensor can be identified as
direction cosines, which play the role of a redundant set of coordinates to describe
the orientation of the associated body-fixed director triad {mdi } in space. Conse-
quently this set of coordinates is subject to independent constraints ω ∈ R

m, m = 6
enforcing the orthonormality of the triad, given by

δi = md j · mdk − δ jk (10.2)

In case of the slave body, the set {mϕ, m R} fulfills the purpose of a subspace of
coordinates to describe the slave’s translational and rotational displacement. The
complete rotational description of the slave is defined by considering a subsequent
follower rotation exp φ̂ ∈ SO(3), where the angular coordinate φ = ||vect(ê1φ)||
can be associated with the admissible relative twist between the slave and the master
body. Thus, in respect to the slave, (10.1) yields

sx = sϕ + s R sX
= mϕ + m Rc + m RC exp φê1

sX (10.3)

here c ∈ R
3 and C ∈ SO(3) denote convective quantities in respect to the master

triad. By collecting all geometrical degrees of freedom in the global configuration
vector q ∈ R

n, n = 13, we can define the feasible configuration manifold Q and the
conjugated tangent space TqQ of the constrained system as follows

Q = {
q ∈ R

n | δi (q) = 0, 1 ⇒ i ⇒ m
⎧

TqQ = {
v ∈ R

n |⎪m
i=1 ≡δi (q) · v = 0

⎧
(10.4)

10.3 Dynamics

10.3.1 Precondition on the Inertial Parametrization

The spatial distribution of mass of a rigid body B w.r.t. an arbitrary body-fixed
director triad {di } is completely parameterized by its mass Mϕ = ⎨

B

ρ0 dV ∈ R,

static moment s = ⎨
B

Xρ0 dV ∈ R
3 and Euler tensor E = ⎨

B

X ∗ Xρ0 dV ∈ R
3×3.

The parameterization of the master body is arbitrary, whereas preconditions need to
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be imposed on the inertial parameters and the associated director triad of the slave
body to avoid transcendental configuration dependency of the resulting mass tensor.

By choice of design we assume the director triad {sdi } to coincide with the prin-
ciple axis frame, i.e. the conjugated Euler tensor features solely entries on the main
diagonal and the conjugated static moment becomes zero. Furthermore, the mass
distribution of the slave body needs to be invariant under arbitrary rotations exp φê1.
This holds for a set of rigid bodies, whose mass distribution features a ∇− fold sym-
metry axis along e1. Symmetrical groups of this type can be defined by their Euler
tensor in spectral decomposed form E = λi ei ∗ ei , where (i) λ1 ⊗= λ2 = λ3 charac-
terize bodies with cylindrical and (ii) λ1 = λ2 = λ3 bodies with spherical symmetry.
As the more general case we choose group (i), hence the inertial parameters of the
slave can be postulated as

s E = E1e1 ∗ e1 + E (I − e1 ∗ e1) (10.5)

together with the rotational invariance along the axis of symmetry

s E = exp φê1
s E exp φê1

T (10.6)

10.3.2 Kinetic Energy

Based on the general formula T = 1
2

⎨
B

ρ0 ẋ · ẋ dV , the kinetic energy of an arbitrary

rigid body yields

αT = 1

2

⎩

B

ρ0
(
ϕ̇ + ṘX ) · (ϕ̇ + ṘX )

dV

= 1

2


ϕ̇ · ϕ̇

⎩

B

ρ0 dV + 2 tr

⎡
⎣Ṙ

⎩

B

Xρ0 dV ∗ ϕ̇

⎜
⎤⎦ + tr

⎡
⎣Ṙ

⎡
⎣
⎩

B

X ∗ Xρ0 dV

⎜
⎤⎦ ṘT

⎜
⎤⎦
⎟


= 1

2

[
Mϕϕ̇ · ϕ̇ + 2 tr

(
Ṙs ∗ ϕ̇

) + tr
(

ṘT ṘE
) ⎛

(10.7)
By inserting the time derivative of (10.3) into (10.7) we obtain the kinetic energy of
the rotor sT . Here, we treat translational, coupling and the spin contribution of the
kinetic energy separately as follows. The translational contribution yields

s Mϕ
sϕ̇ · sϕ̇ = s Mϕ

(
ϕ̇ + Ṙc

) · (ϕ̇ + Ṙc
)

= s Mϕ

[
ϕ̇ · ϕ̇ + 2ϕ̇ · Ṙc + tr

(
Ṙc ∗ cṘ

T
) ⎛ (10.8)

Due to the presumption ss = ⎨
sB

sX dV = 0 the coupling contribution vanishes.

Eventually the spin contribution is given by
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tr
(

s Ṙs Es Ṙ
T
)

= tr
(⎝

ṘC + φ̇RCê1
⎞

exp φê1
s E exp φê1

T
[
CT Ṙ

T + êT
1 CT RT φ̇

⎛)

= tr
(

ṘCs ECT Ṙ
T + φ̇RCê1

s ECT Ṙ
T + ṘCs EêT

1 CT RT φ̇

+ φ̇2 RCê1
s EêT

1 CT RT
)

(10.9)

Here use has been made of the rotational invariance in (10.6). Furthermore we intro-
duce s Ē = Cs ECT for the Euler tensor and Ĉ1 = Cê1CT , C1 = Ce1 w.r.t. the
relative axis of rotation as a transformation of convective quantities from the slave
frame to convective quantities in the master frame. Together with

ê1
s E = ê1

[
E1e1 ∗ e1 + E (I − e1 ∗ e1)

⎛
= E ê1

(10.10)

we eventually obtain the following form of the spin contribution from (10.9)

tr
(

s Ṙs Es Ṙ
T
)

= tr
(

Ṙ
T

Ṙs Ē
)

+ 2φ̇E tr
(

Ṙ
T

ṘĈ1

)
+ 2Eφ̇2 (10.11)

Inserting the separate contributions from (10.8) and (10.10) into (10.7) together
with the kinetic energy of the master body leads to the kinetic energy of the whole
two-body compound, given by

T = sT + mT

= 1

2

(m Mϕ + s Mϕ

)
ϕ̇ · ϕ̇ + ϕ̇ · Ṙ

(ms + s Mϕc
)+ 1

2
tr
(

Ṙ
T

Ṙ
⎝m E + s Ē + s Mϕc ∗ c

⎞)

+ φ̇E tr
(

Ṙ
T

RĈ1

)
+ E φ̇2

(10.12)
Note that the fourth term or coupling term can alternatively be written as

φ̇E tr
(

Ṙ
T

RĈ1

)
= φ̇E tr

(
ν̂

T
Ĉ1

)

= 2Eφ̇ν · C1

(10.13)

with the convective angular velocity of the master body ν ∈ R
3.

10.3.3 Equations of Motion

Within Hamilton’s principle, the action of a constrained mechanical system is defined
by the functional
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S =
tN⎩

t0

[L + ω · λ] dt (10.14)

where we focus on the kinetic energy, i.e. L = T , and λ, ω ∈ R
m denote the

Lagrangian multipliers and conjugated constraints given by (10.2). Next, we apply
a partitioned formulation of the action as follows

S(ϕ(t), R(t),φ(t)) = Sdir(ϕ, R) + Sadd(R,φ) + Scon(R) (10.15)

where Sdir has the structure of the director formulation, see also [3],

Sdir(ϕ, R) =
tN⎩

t0

⎠
1

2
M→

ϕϕ̇ · ϕ̇ + ϕ̇ · Ṙs→ + 1

2
tr
(

Ṙ
T

ṘE→) ⎭ dt (10.16)

Sadd is the additional contribution to the action functional

Sadd(R,φ) = E
tN⎩

t0

[
φ̇ tr

(
Ṙ

T
RĈ1

)
+ φ̇2

⎛
dt (10.17)

and Scon(R) is the constraint contribution

Scon(R) =
tN⎩

t0

ω · λ dt (10.18)

Note that the inertial quantities •→ coincide with those in (10.12) for the two body
compound. By applying the calculus of variation and subsequent integration by parts,
(10.16) yields after a tedious but straightforward calculation

δSdir = −
tN⎩

t0

δϕ ·
(

M→
ϕϕ̈ + R̈s→) dt −

⎩ tN

t0
tr
(
δR

[
s→ ∗ ϕ̈ + E→ R̈

T
⎛)

+ δSb.c.
dir

(10.19)

where the boundary condition δSb.c.
dir =

(
δϕ ·

(
M→

ϕϕ̇ + Ṙs→
)

+ tr
(
δR

⎝
s→ ∗ ϕ̇+

E→ Ṙ
T
⎛))

|tN
t0 vanishes, since the variations at the fixed endpoints vanish, i.e.

δq|t0 = δq|tN
= 0. Similarly the variation of the additional contribution yields
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δSadd = −E
tN⎩

t0

δφ
[
2φ̈ + tr

(
R̈

T
RĈ1

) ⎛
dt + E

tN⎩
t0

tr
(
δRĈ1

(
2φ̇Ṙ

T + φ̈RT
))

dt + δSb.c.
add

(10.20)

here once again the boundary condition δSb.c.
add = E

[
δφ

(
2φ̇ + tr

(
Ṙ

T
RĈ1

))

−φ̇tr
(
δRĈ1 RT

)⎛
|tN
t0 vanishes. Eventually the variation of the constraint contri-

bution yields

δScon(R) =
tN⎩

t0

∂ (ω(R) · λ)

∂ R
: δR dt +

⎩ tN

t0
ω(R) · δλ dt (10.21)

By collecting all terms from (10.19) (10.20) and (10.21) the continuous equations
of motion read

M→
ϕϕ̈ + R̈s→ = 0 ∀ δϕ

R̈E→ + ϕ̈ ∗ s→ + ERĈ1φ̈ + 2E ṘĈ1φ̇ + ∂ (ω(R) · λ)

∂ R
= 0 ∀ δR

RT R̈ : E Ĉ1 + 2Eφ̈ = 0 ∀ δφ

ω(R) = 0 ∀ δλ

(10.22)

For the sake of clarity w.r.t. the subsequent treatment in a discrete setting, we
introduce a compact notation of the differential-algebraic system in (10.22). By
collecting all geometrical degrees of freedom in the global configuration vector
q = {ϕ, vec(R),φ} ∈ R

n , the dynamical system yields

g =

 q̇ − v

M(q)v̇ + b(v) + ≡ωT (q)λ + f (q, u)

ω(q)

⎟
 = 0 (10.23)

where M(q) ∈ R
n×n is the configuration dependent global mass matrix,

M(q) =

 M→

ϕ I3 s→T ∗ I3 0(3,1)

s→ ∗ I3 E→ ∗ I3 (ei ∗ ERĈ1)ei

0(1,3) [(ei ∗ ERĈ1)ei ]T 2E

⎟
 (10.24)

b(v) ∈ R
n denotes the auxiliary coupling terms

b(v) =

 0(3,1)

(ei ∗ 2Eφ̇ṘĈ1)ei

0(1,1)

⎟
 (10.25)

and f (q, u) ∈ R
n accounts for external forces.
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10.4 Optimal Control

We introduce the general augmented cost functional

Ĵ = μ f · Φ(xN )

∣∣∣
t f

+
T⎩

0

⎝
J (u) + μe · g(x, ẋ, u)

⎞
dt (10.26)

where Φ,μ f ∈ R
2n and g(x, u),μe account for the terminal conditions and state

equations together with their respective Lagrangian multipliers and costate variables
μα, α ∈ { f, e}. Here, u denotes the control inputs and x = {q, v,λ} comprises the
configuration on position and velocity level q, v as well as the dynamical Lagrangian
multipliers λ. Note that the subscript notation •|t f

refers to the fact that the terminal
constraints Φ(xN ) apply to the final time node tN = t f .

For simplicity in the present work, the running cost J (u) is assumed to be solely
dependent on the control inputs and accounts for the control effort over the respective
time domain, i.e.

J (u) = 1

2
u · u (10.27)

10.4.1 Direct Collocation

In compliance with the policy “first discretize, then optimize” for general direct
methods, we divide the time domain of interest into smaller intervals

t0 < t1 < . . . < tN = t f (10.28)

where, for the sake of simplicity, all intervals assume the equidistant time step size
h = tk − tk−1. Accordingly the discretization of the augmented cost functional
(10.26) yields

Ĵ =
N∑

k=1

tk⎩
tk−1

Ĵk(x, ẋ, u,μ) dt =
N∑

k=1

tk⎩
tk−1

Ĵk(q, v,λ, q̇, v̇, u,μ) dt

√
N∑

k=1

Ĵ h
k (qk− 1

2
, vk− 1

2
,λk−1,k,

qk − qk−1

h
,
vk − vk−1

h
, uk−1,k,μk) h = Ĵ h

(10.29)

Note, that the terminal constraints are discrete from the outset and thus have been
omitted for the sake of clarity. In the following, use will be made of either the standard
midpoint rule or an energy momentum scheme, when appropriate, as the collocation
scheme of choice for the state equations g, see also [3]. Note, that both the control
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inputs uk−1,k ∈ R
c and the dynamical Lagrangian multipliers λk−1,k ∈ R

m are
assumed to be constant over the respective time domain k. Thus the discrete version
of the augmented cost functional reads

Ĵ h = μ f · Φ(xN )

∣∣∣
f
+

N∑
k=1

{
1

2
uk−1,k · uk−1,k h + μe

k · gh
k

}
(10.30)

where the discrete state equations gh
k ∈ R

(2n+m)N are the discrete counterparts of
(10.23). The assembly of the complete state equations in a simplified notation yields

gh =
N

A
k=1




1
h

(
qk − qk−1

)− vk− 1
2

1
h M1 (vk − vk−1) + f̃ k(xk−1, xk, uk−1,k)

ω(qk)

⎟
 = 0 (10.31)

with

f̃ k = 1

h
M2(qk− 1

2
) (vk − vk−1) + b(vk− 1

2
) + ≡ω(qk− 1

2
)T λk−1,k + f (qk−1,k)

(10.32)

Here, Mβ, β = {1, 2} denotes partitioned matrices of the global mass matrix (10.24)
with either solely constant or configuration dependent inertial entries.

M1 =

 M→

ϕ I3 s→T ∗ I3 0(3,1)

s→ ∗ I3 E→ ∗ I3 0(3,1)

0(1,3) 0(1,3) 2E

⎟
 M2 =


0(3,3) 0(3,9) 0(3,1)

0(9,3) 0(9,9) (ei ∗ ERĈ1)ei

0(1,3) [(ei ∗ ERĈ1)ei ]T 0

⎟


(10.33)

10.4.2 Discrete Necessary Conditions of Optimality
and Treatment of Terminal Conditions

Next, we elaborate on the assembly of the Discrete Necessary Conditions of
Optimality (DNCO), together with the treatment of the terminal conditions within
the Linear Independent Constraint Qualification Test (LICQT), see also [7]. By par-
titioning the costate variables μ = {

μq,μv,μλ
⎧

conjugated to the respective state
equation in (10.31) and applying the calculus of variation to the discrete augmented
cost function, i.e. δ Ĵ h = 0, we obtain the DNCO
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∀ δqk : 1

h
(μ

q
k − μ

q
k+1) + ∂ f̃ k

∂qk

T

μv
k + ∂ f̃ k+1

∂qk

T

μv
k+1 + ∂ω(qk)

∂qk

T

μλ
k = 0

∀ δvk : 1

h
M1

(
μv

k − μv
k+1

)+ ∂ f̃ k

∂vk

T

μv
k + ∂ f̃ k+1

∂vk

T

μv
k+1 − 1

2

(
μ

q
k+1 + μ

q
k

) = 0

∀ δλk−1,k : ∂ f̃ k

∂λk−1,k

T

μv
k + ∂ f̃ k+1

∂λk−1,k

T

μv
k+1 = 0 (10.34)

∀ δμk : gh
k (xk, xk−1) = 0

∀ δμ f : Φ(xN ) = 0

∀ δuk−1,k : ∂ J (uk−1,k)

∂uk−1,k
+ ∂ f̃ k

∂uk−1,k

T

μv
k = 0

Here, (10.34)1−3 contain the discrete versions of the costate equations, (10.34)4 the
state equations, (10.34)5 the terminal conditions and (10.34)6 the control equations
of the optimal control task. For the sake of a compact notation we will treat the
DNCO as a general Nonlinear Programming (NLP) problem, given by

≡ y J h(u) + ≡ ych( y)T μ = 0

ch( y) = 0
(10.35)

Here, all variables represent a finite set of unknowns, in particular the global vec-
tor y = { y1, . . . , yk, . . . , yN } with yk = {

qk, vk,λk−1,k, uk−1,k
⎧

comprises all
unknowns of the optimal control problem except the costate variables μ in a time
node-wise order. Accordingly, the general constraints ch( y) = {

gh( y),Φ(xN )
⎧

account for the discrete state equations and terminal conditions. Thus we can write
for each time node

δ yk ·
[
≡ yk

J (uk−1,k) + ≡ yk
gh

k ( yk−1, yk)
T μk + ≡ yk

gh
k+1( yk , yk+1)

T μk+1

⎛
= 0

δμk · gh
k ( yk−1, yk) = 0

∀ δ yk \ {δ y0, δ yN

⎧

(10.36)

where we treat the initial state of the optimal control problem as a Dirichlet
boundary, i.e. δ y0 = 0. For the LICQT to hold, the assembly of the equations
conjugated to the last time nodes assumes the form

⎠
δ yN−1
δ ỹN

⎭
·
⎠≡ yN−1 J (uN−2,N−1) + ≡ yN−1 g

h
N−1( yN−2, yN−1)

T μN−1 + ≡ yN−1 g̃
h
N ( yN−1, yN )T μ̃N

≡ ỹN
J (uN−1,N ) + ≡ ỹN

g̃h
N ( yN−1, yN )T μ̃N + ≡ ỹN

Φ(xN )T μ f

⎭
= 0

δμ̃N · g̃h
N ( yN−1, yN )

∣∣∣
N

= 0

δμ f · Φ(xN )

∣∣∣
f

= 0

(10.37)
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Here, g̃h
N are a reduced set of discrete state equations, see (10.31) with ω(q N ) ≺

ω̃(q N ), i.e. the constraints ω(xN ), that are linear dependent to the terminal conditions
Φ(xN ), must be discarded. Note, that we assume the constraints ω on the level of the
underlying differential algebraic equations to be linear independent from the outset.

10.5 Numerical Examples

The solution of the DNCO in (10.35) for the respective subsequent optimal control
problem has been calculated by IPOPT, a software library for large scale nonlinear
optimization, based on an interior point method, see also [13].

10.5.1 Spacecraft Maneuver

First, we will deal with the example of a spacecraft, performing rotational maneu-
vers by actuating the three-axis mounted reaction wheels. A similar numerical exam-
ple has been dealt with in [2, 9]. The initial setup of the spacecraft is depicted in
(Fig. 10.2), here the director triad of the base body aligns with the spatially fixed
inertial frame, i.e. I di = ei , together with geometric and inertial parameters, summa-
rized in (Table 10.1). By implementing the rotors of the spacecraft via the proposed
gyrostatic formulation, we employ a total set of n = 15 non-independent coordinates
to describe the configuration of the multibody system at hand, given by

q =
{

I ϕ, I di ,
I I φ, I I I φ, I V φ

}
(10.38)

Here, solely the orthormality of the base frame has to be enforced by m = 6 additional
constraints. Concerning the optimal controlled rest-to-rest maneuver, where the goal
is to minimize the overall control effort, we state the terminal conditions at time
t f = 5 as

π =
⎠

I di,N − I d f
i

I ωN − I ω f

⎭
(10.39)

where the terminal orientation of the base yields I R f = exp b̂ξ ∈ {SO(3) | I R f =
I d f

i ∗ ei } with the axis of rotation and rotation angle for the end configuration, given
by b = 2

3 {1, 1, 0.5} and ξ = 8
9π. Note, that a reduced set of terminal constraints on

velocity level has been applied, where the connection between the angular velocity
and the conjugated director velocities is given by the following formula

I ωα = 1

2
di,α × ḋi,α for α = {N , f } (10.40)

Naturally the terminal angular velocity I ω f is zero from the outset due to the rest-
to-rest maneuver.
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Fig. 10.2 Spacecraft—initial configuration

Table 10.1 Inertial and geometric parameters (Spacecraft)

Body α I [Base] I I, I I I, I V [Wheels]

Mass [α Mϕ] 10 1
Static moment [αs] 0 0
Euler tensor [α E] diag (2.223, 4.408, 7.334) diag (0.003, 0.141, 0.141)
Length [l1, l2, l3] (0.9167, 1.25, 1.5833)

Concerning the results, necessary control inputs conjugated to the angular coor-
dinates αφ, α = {I I, I I I, I V } are depicted in (Fig. 10.3), together with the plot
of kinetic, input and total energy in (Fig. 10.4). The actual trajectory of the space-
craft is depicted in (Fig. 10.5), where the magnitude of the respective control inputs is
highlighted. Note, that the time domainT = [0, 5] has been segmented into N = 160
equidistant intervals.
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Fig. 10.5 Spacecraft—configuration at t = {0.5, 1, . . . , 4.5, 5}
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Fig. 10.6 Overhead crane—setup

Table 10.2 Inertial and geometric parameters (Overhead crane)

Body α I [Trolley] I I [Winch] I I I [Mass]

Mass [α Mϕ] 100 1 9
Static moment [αs] 0 0 0
Euler tensor [α E] diag (1, 0.05, 1) diag (1, 0.05, 1) diag (1, 0.05, 1)
Winch radius R 0.1
Initial rope length 4

10.5.2 Overhead Crane

As a second numerical example, we will deal with the mechanical system of an
overhead crane, see also [11]. The overall topology of the system is depicted in
(Fig. 10.6), together with inertial and geometric parameters given in (Table 10.2).
Here in particular, the modelling of joints is subject to both the coordinate augmen-
tation technique, see also [12], and the proposed gyrostatic formulation. Thus, the
kinematic chain can be described as follows: The spatially fixed cantilever and the
trolley (I ) interact via an augmented prismatic joint, in this regard, the relative dis-
placement between both bodies is given by pγ. The trolley (I ) in turn provides its
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Fig. 10.7 Linear force
—augmented prismatic joint
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director triad as a subset of coordinates to describe the configuration of the winch
(I I ) within the proposed gyrostatic formulation. Eventually the unrolling of the rope
is subject to an augmented distance constraint between the winch (I I ) and the mass
(I I I ), where we make use of the coordinates I I φ and lγ, respectively the winch
rotational angle and unrolled rope length. Thus we employ a total set of n = 27
non-independent coordinates, given by

q =
{

I ϕ, I di ,
I I φ, I I I ϕ, I I I di ,

lγ, pγ
}

(10.41)

Since the trolley is restricted to a movement along the cantilever due to the prismatic
joint, together with the linear dependancy between the winch rotation angle and
unrolled rope length, the rest-to-rest maneuver is defined by the initial and final
configuration q0 = {

I I I ϕ0,
pγ0

⎧ = {0, 0,−4, 0} and q f = {
I I I ϕ f , pγ f

⎧ =
{5, 0,−1, 5}. Eventually, we can state the terminal conditions at time t f = 3

Φ =




I I I ϕN − I I I ϕ f

pγ − pγ f

I I I ϕ̇N − I I I ϕ̇ f

pγ̇ − pγ̇ f

⎟
 (10.42)

As before, the conjugated terminal velocities are enforced to be zero in compliance
with a rest-to-rest trajectory. Concerning the numerical results, the control input up,
conjugated to the augmented prismatic joint, and the control input uφ, conjugated to
the relative twist of the winch, are depicted in (Figs. 10.7 and 10.8). For Snapshots
of the optimal rest-to-rest maneuver see (Fig. 10.9). Note, that the time domain
T = [0, 3] has been segmented into N = 80 equidistant intervals for the present
example.



252 C. Becker and P. Betsch

0 0.5 1 1.5 2 2.5 3
-160

-150

-140

-130

-120

-110

-100

-90

-80

-70

time

u
φ

Fig. 10.8 Torque—winch (slave)

Fig. 10.9 Overhead crane—configuration at t = {0, 0.75, 1.5, 2.25, 2.625, 3} (N = 80)

10.6 Conclusion

In the present work a new formulation based on natural coordinates for rigid bodies
with inertial symmetry, i.e. rotors, has been proposed. The newly developed formu-
lation is used as control input interface for optimal control problems. The equations
of motion pertaining to the new formulation assume the form of DAEs. After the
discretization in time the DAEs give rise to discrete state equations being used as con-
straints in a parameter optimization problem. Thus a direct transcription approach
is applied to solve the optimal control problem. The newly proposed rigid body
formulation is especially-well suited for the description of spinning bodies such as
momentum wheels and winches. Two numerical examples have been presented to
demonstrate the capabilities of the proposed formulation.
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Chapter 11
Development of Tether Space Mobility Device

Shoichiro Takehara, Takahiro Nishizawa, Masaya Kawarada,
Kazunori Hase and Yoshiaki Terumichi

Abstract With the increasing use of the International Space Station, humans have
more opportunities to work in space. In space, a mobility device that operates effi-
ciently is needed. In this research, a mobility system called the “Tether Space Mobility
Device” (hereinafter called TSMD) is proposed. In general, the tether is a cable or
a wire rope. The proposed system has a mechanism that uses the tether for enabling
a human to move to a target point. However, this system has the problem that the
center of mass of the human and that of the TSMD are different from the direct line to
the target point. Then, the human is rotated by the tension of the tether. Thus, to use
this device safely, rotation of the human body must be controlled. For this reason, a
numerical simulation model is proposed. The numerical model is composed of three
rigid bodies and one flexible body that can express motion with large deformation
and large displacement. In this model, winding motion of the tether can be expressed.
An experiment of the TSMD was designed to move under two-dimensional micro-
gravity. The experiment confirmed the validity of the numerical simulation model.
The possibility of the mobility device using the tether and the influence of the control
system are discussed.
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11.1 Introduction

With the increasing use of the International Space Station, humans have more oppor-
tunities to work in space. In this situation, a mobility device that works efficiently
is needed. But some problem must be solved. First, the human body is suspended
without the force of gravity. Second, the air cannot be polluted in the closed space
of the Space Station. Thus, an air-polluting mobility device such as a device using
a gas-fueled thruster is unacceptable. In this research, a mobility system called the
“Tether Space Mobility Device” (hereinafter called TSMD) is proposed. In general,
the tether is a cable or a wire rope. The cable and wire rope have the advantage of
being light weight and compact, and the system using a tether does not require a
thruster that needs fuel for moving. The system using a tether has various possible
applications in extreme environmental conditions, such as in space. The tethers are
expected to shift orbits and to move robots in space [1–5]. As an example of the
interest in tethered systems, a tether rocket experiment was conducted on a sound-
ing rocket launched in 2010 [6]. For the abovementioned applications, practical
experimentation with the actual system or a representative full-scale apparatus is not
practicable. Consequently, accurate models that allow numerical simulation are very
important.

In tethered systems, the tension of the tether has a large influence on the motion of
the system, even if the tension is small, because the gravitational force that acts in a
constant direction in space has little influence on the motion. In such circumstances,
the motion of the tether often has large rotation and deformation. Moreover, it is
assumed that the motion of the tethered system is complex because the coupling
motion between the tether and the attached equipment is excited. Therefore, the
tethered system should be modeled as a flexible body attached to rigid bodies. In
addition it is important for the proposed system to consider the motion of winding the
tether. In this research, the TSMD model is composed of three rigid bodies and one
flexible body that can express motion with large deformation and large displacement.
The flexible body is formulated by absolute nodal coordinate formulation. Winding
motion is also considered in this model. The model that retracts the tether in the
machine is formulated. The tether is wound by the arm contacting the tether and the
rigid body. The interaction between the TSMD and the tether is investigated.

11.2 Concept of the TSMD

The basic concept of the TSMD is shown in Fig. 11.1. This system has a mechanism
that uses the tether for moving. The tether is shot out of the TSMD and the end of
the tether is attached to the target point. Then, the tether is wound by a motor and
the human moves toward the target point. However, this system has the problem that
the center of mass of the human and that of the TSMD are different from the direct
line between the target point and the part held by the human. In this case, the human
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Human
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Tether

TSMD

Fig. 11.1 Concept of the TSMD

Fig. 11.2 Composition of the
TSMD

Arm for control

Attaching part

Part held by human

is rotated by the tension of the tether. The coupling motion between the tether and
the rigid bodies is excited [7]. Therefore, the direction of tension and the velocity
of winding need to be controlled. In Fig. 11.2, an outline of the TSMD is shown.
The TSMD is composed of the part attaching to the target, an arm for controlling the
tether, and the part held by the human.

11.3 Modeling and Formulation of the TSMD

11.3.1 Analytical Model

Figure 11.3 shows the analytical model of the TSMD. The TSMD model is composed
of three rigid bodies and a flexible body, which expresses motion with large defor-
mation and large displacement. The flexible body is formulated by absolute nodal
coordinate formulation (ANCF) [8–10]. In this research, the center of gravity and the
moment of inertia about the human body are considered. The influence of the motion
of the human body is intended to be a future task. That is to say, the angle of rigid
body 2 is locked in the angle of rigid body 3. The main types to treat the motion of
winding are to change length of the elements and to move from unconstraint area into
constraint area [11–14]. In this system later method is adapted because the contact
phenomenon between the arm and the tether is important. In this model, the tether
is wound by the contacting arm. Figure 11.4 shows the modeling of the winding
tether. The interaction between the rigid bodies (TSMD and human) and the flexible
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Fig. 11.3 Modeling of the TSMD
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Rigid body 1 (arm)

Flexible body (tether)

Fig. 11.4 Modeling of the winding

body (tether) can be investigated in this model. The interaction occurs according to
the reaction force and the tether tension. The reaction force is calculated when the
flexible body (tether) contacts the edge and the inner surface of rigid body 1 (arm).
Because the tether is assumed to pass through the inside of rigid body 1, this model
distinguishes the node that contacts rigid body 1. Then, a suitable reaction force can
be defined.

11.3.2 Formulation of the System

In this section the motion of the flexible body is formulated using ANCF which was
proposed by Shabana et al. [9, 10]. In this formulation, it is easy to describe the motion
of the flexible body with large deformation, rotation and translation displacement.
Global coordinates and position vector gradients are used as the nodal coordinates.

First, this formulation is extended to flexible body motion with rigid bodies.We
divide set the tether into n pieces by ANCF. The motion equation of the tether is

Mt ët = Qt (11.1)
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where Mt is the mass matrix, and et ∈ [
e1 e2 . . . e4(n+1)

⎧T is the absolute nodal
coordinate, where e4i+1 and e4i+2 are the position of each nodes, e4i+3 and e4i+4
are the spatial derivatives of each nodes. The coordinates e4n+1 and e4n+2 are the
connecting position between flexible body and rigid bodies, e4n+3 and e4n+4 are the
spatial derivatives of the displacements of the connecting position between flexible
body and rigid bodies (i = 0, 1, . . . , n − 1, n). In this formulation, the following
shape function is used.

S =

⎪
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩

1 − 3δ2 + 2δ3 0
0 1 − 3δ2 + 2δ3

le(δ − 2δ2 + δ3) 0
0 le(δ − 2δ2 + δ3)

3δ2 − 2δ3 0
0 3δ2 − 2δ3

le(δ3 − δ2) 0
0 le(δ3 − δ2)




T

(11.2)

where δ = x/le, x is the coordinate along the body axis in the initial configuration
and le is the length of the element.

Qt ∈ [
Q1 Q2 . . . Q4(n+1)

⎧T consists of the external force and the elastic force.
In this model, the authors suppose that the longitudinal deformation of an ele-
ment is minimal when an element does not rotate at high angular velocity. Thus,
geometrically-approximated elastic force is used [15, 16].

The motion of the equation of the rigid bodies is

Mr q̈r = Qr (11.3)

where Mr = diag
[

mr1 mr1 Ir1 mr2 mr2 Ir2 mr3 mr3 Ir3
⎧T is the mass matrix,

mri is the mass of body m, and Iri is the inertia moment of the rigid bodies,
(i = 1, 2, 3). Moreover, qr = [

xr1 yr1 πr1 xr2 yr2 πr2 xr3 yr3 πr3
⎧T is the gen-

eral coordinates of the rigid bodies. The coordinates xri and yri are the center of
body mri , πri is the rotation of the rigid bodies (i = 1, 2, 3).

Qr = [
Fr1 Fr1 M1 Fr2 Fr2 M2 Fr3 Fr3 M3

⎧T consists of the external force and
the moment of the rigid bodies.

The motion equation of the system is

Mq̈ = Q (11.4)

where q = [
eT

t qT
r

⎧T
, Q = [

QT
t QT

r

⎧T
, M =

[
Mt 0
0 Mr

]
. The differential algebraic

equations are obtained as

[
M κT

q
κq 0

] [
q̈
λ

]
=
[

QA

γ

]
(11.5)
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Fig. 11.5 Constraint of the system. a Overall view of the constraint. b The detail inside of the rigid
bodies

where κq is the Jacobean matrix, λ is Lagrange multipliers, Differentiating the
constraint twice with respect to time, κqq̈ = −(κqq̇)qq̇ − 2κqtq̇ − κtt ∈ γ.

Next, we formulate the constraint of the system. Figure 11.5 shows the modeling
of the constraint. As shown in Fig. 11.5a, the flexible body is connected with point
O by pin joint 1. Rigid body 1 is connected to the rigid body 2 by pin joint 2. Rigid
body 2 is connected to rigid body 3 by pin joint 3. In this report, the angle of rigid
body 2 is locked by the angle of rigid body 3. Furthermore, the nodes of the end of
the flexible body are set at the connecting point between rigid bodies 1 and 2 as an
initial condition. As shown in Fig. 11.5b, the local coordinates of rigid bodies 1 and
2 are defined as O1–X1Y1 and O2–X2Y2 respectively. Then, the end of the flexible
body moves in the X2 direction at speed V when the flexible body is wound. When
the node of the flexible body contacts the inner surface AB, A∗B∗, and the edge of the
rigid body 1, the contact force is caused by a spring-damper. The gap is set in rigid
body 1. The flexible body in rigid body 2 is fixed by a hard spring on the X2 axis.

The 1st node of the flexible body is connected to the origin of the absolute coordi-
nate system by pin joint 1. Rigid body 1 and rigid body 2 are connected. Rigid body
2 and rigid body 3 are connected. Then, the constraint of the system is described as
Eqs. (11.6), (11.7) and (11.8). [

e1
e2

]
= 0 (11.6)
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[
xr2
yr2

]
+ T2

[− lr2
2

0

]
−
[

xr1
yr1

]
− T1

[ lr1
2
0

]
= 0 (11.7)

[
xr3
yr3

]
+ T3

⎡− lr3
2

hr3
2

⎣
−
[

xr2
yr2

]
− T2

⎡ lr2
2

− hr3
2

⎣
= 0 (11.8)

where lri , hri (i = 1, 2, 3) are the length and width of the ith rigid body, respectively.
Ti (i = 1, 2, 3) is transform matrices from local coordinate system to absolute
coordinate system. Then, the constraint considered is when the last node of the
flexible body moves in the X2 direction of the local coordinates of rigid body 2 at
speed V. When the position vector of the n+1th node of the flexible body is expressed
by vector d in the local coordinates of rigid body 2, the constraint is described by
Eq. (11.9).

RA − R2 − T2d = 0 (11.9)

where RA = [e4n+1e4n+2]T is the position vector of the n+1th node of the flexible
body, R2 = [xr2 yr2]T is the position vector of the center of rigid body 2. The position
vector d in the local coordinates of rigid body 2, which moves in the X2 direction at
speed V from initial position d0 = [−lr2/2 0]T , is described as

d = d0 +
⎪
⎩

t∫
0

V dt

0


 (11.10)

Therefore, the constraint equations of the system can be written as

κ =

⎪
⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎨⎩

e1
e2

e4n+1 − xr2 −
⎜
⎤− lr2

2
+

t⎦
0

V dt

⎟
 cos πr2

e4n+2 − yr2 −
⎜
⎤− lr2

2
+

t⎦
0

V dt

⎟
 sin πr2

xr2 − lr2

2
cos πr2 − xr1 − lr1

2
cos πr1

yr2 − lr2

2
sin πr2 − yr1 − lr1

2
sin πr1

xr3 + lr3

2
cos πr3 + hr3

2
sin πr3 −

(
xr2 + lr2

2
cos πr2 + hr2

2
sin πr2

)

yr3 − lr3

2
sin πr3 + hr3

2
cos πr3 −

(
yr2 + lr2

2
sin πr2 − hr2

2
cos πr2

)




= 0

(11.11)
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Fig. 11.6 The element of the flexible body is inhaled inrigid body 1

Next, the contact between the flexible body and the rigid body 1 is considered. The
contact force between the flexible body and the rigid body is calculated by a spring
and a damper element. Figure 11.6 shows the ith flexible body element drawn into
rigid body 1. Here, F1is the reaction force by rigid body 1 in the case that the node
of the element is retracted completely. F2 is the reaction force at the edge of rigid
body 1 when the node of the element is being retracted.

First, the case that the i+1th node contacts the inner surface AB of rigid body
1 is considered. In this case, the position vector [xi+1 yi+1]T of the i+1th node in
absolute coordinates is

[
xi+1
yi+1

]
= R1 + T1

[
x̄1

i+1
ȳ1

i+1

]
(11.12)

where R1 is the position vector of rigid body 1 in absolute coordinates, and[
x̄1

i+1 ȳ1
i+1

⎧T
is the position vector of rigid body 1 in local coordinates.

[
x̄1

i
ȳ1

i

]
= T−1

1

([
xi+1
yi+1

]
− R1

)
(11.13)

Reaction force Fk1 by the spring and damper is described as

F̄1
k1 = −k1

[
0

ȳ1
i+1 − sgn(ȳ1

i+1)
G p
2

]
− c1

[
0

˙̄y1
i+1

] (∣∣ȳ1
i+1

∣∣ ⇒ G p
2

⎛

F̄1
k1 = 0

(∣∣ȳ1
i+1

∣∣ <
G p
2

⎛

⎝⎞⎞⎠
⎞⎞⎭

(11.14)

where F̄1
k1 shows Fk1 in the local coordinate system, Gp is the distance between

inner surface AB and A∗B∗. Frictional force can be written as follows:

F̄1
f 1 =

[−μ1 F̄1
k1y

0

]
(11.15)
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Fig. 11.7 Magnified figure of
edge of rigid body 1 Gp
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where μ1 is the friction coefficient, F̄1
k1y is the component of the y direction, and

F̄1
f 1 is F f in the local coordinate system. Then,as the reaction force from AB, F1 is

F1 = T1

⎪
⎨⎩

−μ1

{
−k1

(
ȳ1

i+1 − sgn(ȳ1
i+1)

G p
2

⎛
− c1 ˙̄y1

i+1

}

−k1

(
ȳ1

i+1 − sgn(ȳ1
i+1)

G p
2

⎛
− c1 ˙̄y1

i+1




(∣∣ȳ1
i+1

∣∣ ⇒ G p
2

⎛

F1 = 0
(∣∣ȳ1

i+1

∣∣ <
G p
2

⎛

⎝⎞⎞⎞⎞⎞⎠
⎞⎞⎞⎞⎞⎭

(11.16)

The force and moment acting on rigid body 1 are resultant forces of the reaction
force of elements in rigid body 1. These forces are described as

[
Fr1
Mr1

]
=
⎪
⎨⎩

∑
(−F1)

∑{[
x̄1

i+1
ȳ1

i+1

]
× (−F1)

}

 (11.17)

In a similar way, the reaction force from A∗B ∗ and the flexible body is obtained.
Substituting the local coordinates of rigid body 1 into those of rigid body 2 and
setting Gp = 0, the reaction force acting from rigid body 2 on the flexible body
can be obtained. However, it is supposed that rigid body 2 gains no reaction force
because the element of the flexible body that is drawn in rigid body 2 is considered
to be stored.

Next, reaction force F2 of the element of the flexible body from the edge of rigid
body 1 is set. Figure 11.7 shows the magnified figure of the edge of rigid body 1.
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The reaction force at point A∗ is considered. For simplicity, it is assumed that this
flexible body element does not deform geometrically. The reaction force at point A∗
is described as

Fk2 = −k2ρr2 − c2ρṙ2 (11.18)

Then, the unit vector of ρr2 is defined as

ir = 1√
(xi+1 − xi )

2 + (yi+1 − yi )
2

[
yi+1 − yi

− (xi+1 − xi )

]
(11.19)

From the geometric relation, the magnitude of ρr2 is described as

|r2| =
{
−ȳ1

i − sgn(ȳ1
i+1)

(
−x̄1

i − lr1

2

)
tan Π − sgn(ȳ1

i+1)
G p

2

}
cos Π (11.20)

where Π is the angle of the ith element on the local coordinates of rigid body 1. Then,
Π is written as

Π =
∣∣∣∣∣arctan

(
ȳ1

i+1 − ȳ1
i

x̄1
i+1 − x̄1

i

)∣∣∣∣∣ (11.21)

Using Eqs. (11.19) and (11.20), ρr2 is obtained as

ρr2 =
{
−ȳ1

i − sgn(ȳ1
i+1)

(
−x̄1

i − lr1
2

⎛
tan Π − sgn(ȳ1

i+1)
G p
2

}
cos Π√

(xi+1 − xi )
2 + (yi+1 − yi )

2

[
yi+1 − yi

− (xi+1 − xi )

]

(11.22)
Substituting Eq. (11.22) into (11.18), Fk2, which is defined by the spring and damping
elements, is obtained. Here, considering the direction of retracting, the unit vector
of the friction force at point A∗ is obtained as

i f = 1√
(xi+1 − xi )

2 + (yi+1 − yi )
2

[− (xi+1 − xi )

− (yi+1 − yi )

]
(11.23)

In the same way, F f 2 is described as

F f 2 = μ1 |Fk2|√
(xi+1 − xi )

2 + (yi+1 − yi )
2

[− (xi+1 − xi )

− (yi+1 − yi )

]
(11.24)

Therefore, letting the force that the ith element gains from point A∗ be F2
(i), F2

(i) is
written as

F(i)
2 = Fk2 + F f 2 (Π < ε)

F(i)
2 = 0 (Π ⇒ ε)

⎝⎠
⎭ (11.25)
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where ε is defined as the angle between the ith nodal in the local coordinates of rigid
body 1 and point A∗. Here, ε is as

Π =
∣∣∣∣∣arctan

(−sgn(ȳ1
i+1)

G p
2 − ȳ1

i

− lr1
2 − x̄1

i

)∣∣∣∣∣ (11.26)

Because F2
(i) that is obtained in Eq. (11.25) acts on the ith element, this force is

divided in Fei that ith element gains and Fei+1 that i+1th element gains. Therefore
each force of nodes can be obtained as
[

Fei

Fei+1

]
=
[

1
2 F (i)

2x
1
2 F (i)

2y
le
12 F (i)

2x
le
12 F (i)

2y
1
2 F (i)

2x
1
2 F (i)

2y − le
12 F (i)

2x − le
12 F (i)

2y

]T
(11.27)

where Fei is the force of the ith node, Fei+1 is the force of the i+1th node, and F (i)
2x

and F (i)
2y are components of the x , y direction. As the reaction force of F(i)

2 that the
flexible body gains from point A’ of rigid body 1, rigid body 1 gains Fr2 from the
flexible body and moment Mr2. This force and moment acting on rigid body 1 can
be written as

[
Fr2

Mr2

]
=

⎪
⎨⎨⎩

−F(i)
2⎪

⎩− lr1
2

− G p
2


×

(
−F(i)

2

⎛

 (11.28)

The constraint between the flexible body and the rigid bodies is expressed by applying
Eqs. (11.17), (11.27) and (11.28) to Eq. (11.5).

11.3.3 Control of the System

As a preliminary step, the attitude control by the angle between the arm and the part
to be held is considered. The purpose of the proposed method is to control the attitude
of the human body by the operating direction of the tether tension by the rotation of
the rigid body 1 so that the human moves safely by using the TSMD. The concept of
control is shown in Fig. 11.8. This figure is explained here. First, tension of the tether
occurs and rotation of the system occurs by the relation between the center of mass
of the system and the point of action due to tension. Next, the moment in the opposite
direction occurs by the controlling arm (rigid body 1). Then, the rotation is controlled
by this moment. In this method, attitude is controlled by feeding the angular velocity
and the angle of rotation of rigid body 2 back into the angle of rigid body 1. To control
the attitude of the part held by human (rigid body 2), proportional control is used:

πarm = kπ̇main (11.29)

where πarm is the angle between body 1 and body 2, π̇main is the angular velocity of
the part to be held and k is the control gain.
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1. Winding starts

Tension

Angular velocity

3. Arm rotates and angular moment against angular velocity occurs

Moment by arm control
Rotation of arm

4. Angular velocity are reduced

2. Angular velocity occurs

Fig. 11.8 Outline of arm control

11.4 Experiment

11.4.1 Experimental Setup

The experimental equipment is described in this section. The top view of the experi-
mental equipment is shown in Fig. 11.9 and the side view is shown in Fig. 11.10. The
experimental equipment has the main unit that is equipped with feature of TSMD,
and the unit imitated human body that duplicates the influence of the weight of the
human body. The main unit has a motor to wind the tether and a motor for the control
arm. The unit imitating the human body has a controller and battery for the motor.
An acceleration sensor and a gyro sensor are added in the main unit to measure
the motion and to control the posture of main part. The unit imitating the human
body has a battery. The mass of the battery shifts the center of gravity of the system.
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Part imitating human body

Main unit
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Fig. 11.9 The experimental setup of the TSMD (top view)

CO2 bottle

Air bearing

Tether
Arm

Motor for winding
Motor for arm

Fig. 11.10 The experimental setup of the TSMD (side view)

Air bearing TSMD

Fig. 11.11 Constitution of two-dimensional microgravity simulator

Therefore, rotation by tension occurs easily. A microcomputer (H8-3052), which is
proven as a controller under microgravity, is loaded and gives instructions based on
the sensor input to each motor loaded in the main unit. In this chapter, the shooting
and attaching actions of the tip of the tether are not considered and are an issue to be
addressed in the future.

As a primary consideration of the TSMD, the situation of two-dimensional zero
gravity is produced experimentally by an air bearing. The air bearing is used in the
experiment using a space robot [17, 18]. In Fig. 11.11, the outline of floating by
the air bearing is shown. The air bearing allows air from the CO2 bomb to enter
the contact surface between the TSMD and the flight table. Therefore, this system
reduces friction force by the floating TSMD. The flight table is covered by smooth
glass with little friction.
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TSMD

Tether

Flight table

Fig. 11.12 Initial condition of the TSMD

Table 11.1 Parameters of the experimental set up

Length of tether (m) 1.35
Diameter of tether (m) 0.00052
Material of tether Nylon
Length of the main unit of TSMD (m) 0.43
Length of arm (m) 0.3
width of the main part of TSMD (m) 0.17
Length of part imitating the human body (m) 0.41
Width of part imitating the human body (m) 0.2
Weight of TSMD (kg) 12.1
Winding speed (m/s) 0.143
Arm control gain 0.36

11.4.2 Experimental Condition

In this experiment, the influence of the proposed control method is investigated. Then,
the angular velocity of the main unit is examined. The grasping part is attached to
the target point. Figure 11.12 shows the initial conditions of the experiment. The
initial conditions of the experiment are as follows: the angles of the tether and the
arm are 0 [rad], the angle of the main unit is 0 [rad]. The initial conditions are set so
that the tether and the arm are straight. The parameters of the TSMD are shown in
Table 11.1.

11.5 Discussion of Motion of the TSMD

First, the experimental result and the numerical result of the angular velocity of the
TSMD without control are compared. Figure 11.13 shows the time history of the
angular velocity of the main unit. In Fig. 11.13, the angular velocity increases in
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Fig. 11.13 Time history of angular velocity of the TSMD
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Fig. 11.14 Time history of angular velocity of the TSMD. a Experimental result. b Numerical
result

the counterclockwise direction first. This phenomenon is caused by the tension of
the tether. The tension of the tether rotates the main unit. Then, the angular velocity
increases in the clockwise direction. This phenomenon is caused by the relationship
between the inertia force of the TSMD and the deflection of the tether by winding.
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Fig. 11.15 Time history
of angle of the TSMD.
a Experimental result.
b Numerical result
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The angular velocity of both results tends to change in a similar manner. It is assumed
that the difference between the numerical result and the experimental result is due
to the friction of the flight table and the gravity on the tether, because the TSMD
rotates smoothly in the numerical result. Furthermore, the start of motion is delayed
in the experimental result.

Next, the influence of the proposed control is investigated. Figure 11.14 shows the
time history of angular velocity with control and without control. Figure 11.15 shows
the time history of the angle with control and without control. In these figures, control
of the arm reduces the peak of the angular velocity. This tendency of the experimental
result corresponds to that of the numerical result. Therefore, it is understood that the
numerical model is valid for the coupling motion between the tether and the main
unit. But, this numerical model has the problem of quantitative correspondence.

Next, the coupling motion of this system is investigated using the result of the
numerical simulation. Figure 11.16 shows the shape of TSMD in 0.5-s intervals of
the numerical simulation. In the initial stage, rigid bodies are rotated when the tether
is winded. At 0.5 s, it is confirmed that the tether is deformed in the case of without
control. This phenomenon is caused by the relationship between the initial tension
of the tether and the direction of the tether. On the other hand, it is confirmed that
the arm rotates and the tether is straight shape under control. From these results, it
is supposed that initial rotation is controlled by the arm. Then, it is found that the
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Tether
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Fig. 11.16 Shape of TSMD at each time a without control, b with control

tether is deformed. Then, it is found that rotation of rigid body 2 continues until 2 s
to that the tether become straight shape. Moreover, it is found that amount of rotation
is small in the result with control.

Next, tension of the tether is investigated. Time histories of tension of the tether
and contact force at the edge of the arm are shown in Figs. 11.17 and 11.18. First,
from the result in Fig. 11.17 it is found that there is difference in amplitude of tension
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Fig. 11.17 Time history of
tension of the tether
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that occurs early. In addition, the variation of tension is confirmed between 2 and
3 s. This is found also from the shape of the tether in Fig. 11.16. It is considered
that the difference of action of tension is caused by rotating the arm. In Fig. 11.18,
contact force acts on the edge of the arm around 0.3 s and the magnitude of contact
force is lager with control. From these results, it is consider that the contact force at
the edge is lager by the influence of rotation of the arm. It is found that the tether
and the arm contacts by the control of the arm because there are many peaks after
2.0 s with control. From these results, it is found that this system can possibly be a
safe mobility device. However, this system needs not only attitude control but also
winding control.

11.6 Conclusion

In this research, modeling and formulation of a proposed mobility system using
a tether, called the “Tether Space Mobility Device” (TSMD), are conducted. The
modeling is formulated by absolute nodal coordinate formulation and the equation of
constraint combining flexible body motion and the rigid body motion. For modeling
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the winding motion, contact force is used. An experiment of the TSMD under two-
dimensional microgravity is conducted.

In the results, it is shown that the angular velocity first increases in the counter-
clockwise direction. Then, the angular velocity increases in the clockwise direction.
The angular velocity of both results tends to change in a similar manner. Further-
more, it is found that the control of the arm reduces the peak of the angular velocity.
This tendency of the experimental result corresponds to that of the numerical result.
Therefore, it is understood that the numerical model is valid for the coupling motion
between the tether and the main unit. However, the numerical model has the prob-
lem of quantitative correspondence. Finally, the coupling motion of this system is
investigated. It is found that this system can possibly be a safe mobility device, even
though it needs not only attitude control but also winding control.
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Design Methodology of a Complex CKC
Mechanical Joint with an Energetic
Representation Tool “Multibond Graph”:
Application to the Helicopter

Benjamin Boudon, François Malburet and Jean-Claude Carmona

Abstract Due to the operation of the rotor, the helicopter is subject to important
vibration levels affecting namely the fatigue of the mechanical parts and the passenger
comfort. Suspensions between the main gear box (MGB) and the fuselage help to filter
theses problematic vibrations. Their design can be difficult since the filtering should
be efficient for different types of external forces (pumping force and roll/pitch torque)
which may appear during the flight. As passive solutions classically show their limits,
intelligent active solutions are proposed so that the filtering can be adjusted according
to the vibration sources. Such studies still suffer from a lack of tools and methods,
firstly, necessary to the design of complex mechanical systems (due to their multi-
phase multi-physics multi-interaction characteristic, …) and secondly, to develop of
an intelligent joint. The main objective of this chapter is to provide a methodology
for designing and analyzing an intelligent joint using an energetic representation
approach: the multibond graph (MBG). This method is applied here to a complex
mechanical system with closed kinematic chains (CKC) which is the joint between
the main gear box (MGB) and the aircraft structure of a helicopter. Firstly, the MBG
method is analyzed. Secondly, after a brief state of art of the MGB-Fuselage joint,
developments focus on the 2D and 3D modeling of the MGB-Fuselage joint with
a MBG approach. The 20-sim software is used to conduct the simulation of bond
graph. Finally, the MBG models results are presented, illustrating the potential of
the MBG tool to predict the dynamic of a complex CKC mechanical system.
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12.1 Introduction

The rotor of a helicopter is a powerful vibration generator that can generate various
vibration phenomena. Let us consider:

• forced vibrations,
• resonances “ground and air”,
• dynamic problems of the power chain.

Blades undergo periodic and alternating aerodynamic forces whose fundamental
frequency is the rotation frequency of the rotor. This result is explained in [1]. These
efforts on the blades cause forces and moments on the hub which then becomes a
mechanical excitation of the fuselage. Therefore, its behavior depends on its dynamic
characteristics and the filtering systems placed between the rotor and the fuselage (as
shown in Fig. 12.1). In this sequel, we will focus on one of these filtering systems:
the Dynamic Anti-Resonant Vibration Absorber system (DAVI) (called Suspension
Antivibratoire à RésonateurIntégré (SARIB) in French).

Figure 12.2 summarizes the main consequences of forced vibrations in a helicopter
as explained above. For simplicity, the various couplings between the rotor and the
fuselage, due to the actions of the fuselage on the dynamics of the blades, are not
taken into account.

The MGB-Fuselage joint must ensure several important functions. Firstly, the
joint allows the transmission of the static force necessary to the sustentation of the
helicopter with a limited required static displacement. Moreover, the joint helps to
reduce the mechanical vibrations transmitted to the fuselage according to the force
and displacement aspects. Classically, the MGB-Fuselage joint is composed of four
MGB bars and a main membrane as shown in Fig. 12.3.

Different technical solutions exist for the realization of this joint. In this chapter,
the SARIB system is particularly studied. The architecture of this system is detailed
in Sect. 12.3.

The design and the analyze of such complex mechanical systems are usually con-
ducted with analytical methods based on physical equations or signal-flow method
based on transfer functions written on a block diagrams form. Unfortunately, these
two classical approaches may cause a loss of the physical sense and the visibility of
the modeling assumptions [2]. Moreover, taking account of increasing complexity
requires partially to resume a part of the modeling phase.

The “complex mechanical system dynamics” project, funded by European
Aeronautic Defense and Space foundation (EADS), focuses on helicopter dynamics
and has as main objective the development of an analysis methodology together with
the related tools in order to support design and control of such systems. The present
chapter presents an energetic representation tool for modeling: multibond graph
(MBG). The MBG is applied to model the dynamic of a classical helicopter sub-
system: the main gear box MGB-Fuselage joint. This approach enables to represent
mechatronics systems in a graphical form describing the exchange of power between
basic elements like inertia, compliance, dissipation, conservative power transforma-
tion, gyrator actions and sources. The bond graph approach used for multibody system
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Fig. 12.1 Helicopter suspension between the MGB and the aircraft structure

Hub

MGB

Fuselage

Blades

Spherical joint

Revolute joint

Filtering at the MGB-
Fuselage joint level

Effects
Variable aerodynamic forces 
(variable velocity and pitch)

Stresses

Joints forces and torques

Stresses

Stresses
High vibrations levels

Fig. 12.2 Consequences of the forced vibrations on the helicopter

called multibond graph (MBG) has been introduced by Tiernego and Bos [3], Bos
[4]. Library models for a rigid body and for various types of joints have been provided
and bond graph models of rigid multibody systems can be assembled in a systematic
manner. Further, Marquis-Favre and Scavarda [5] proposed a method dedicated to
systematic generation of bond graph models for multibody systems with kinematic
loops. Nevertheless, few complex multibody systems with kinematic closed loops
have been simulated on dedicated softwares such as 20-sim software [6] (simula-
tion package for dynamic systems using physical components, block diagrams, bond
graphs and equations of motion).

The SARIB system here studied is a complex mechanical closed kinematic chain
(CKC) system. The dynamics equations of such a CKC system are a differential-
algebraic equations system (DAE) which are difficult to treat and which require
specific solving methods. It will be shown that the multibond graph method together
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Focol point

Engine

MGB Bars

Main membraneFuselage

MGB

Fig. 12.3 MGB-Fuselage description

with the method of singular perturbations appears to be an elegant and easy solution
to derive the simulation of CKC system.

The main objective of this chapter is to present a design methodology based
on an energetic representation tool: multibond graph and to show its benefits as a
systemic approach. This method will be applied to model a joint between the main
gear box (MGB) and the aircraft fuselage which is a complex multi-body system
because of the numerous bodies and joints and the mechanical forces applied on
the MGB. The chapter is organized as follows. In Sect. 12.2, we shall explain the
main advantages of the energetic representation tool chosen: the multibond graph
compared to other more classical methods. Section 12.3 describes the kinematic
structure and the operation of the MGB-Fuselage joint. The construction of the
multibond graph of the joint desired is then detailed in Sect. 12.4. Simulation results
will be presented in Sect. 12.5. Finally, conclusions and perspectives will be given
in the last Section.

12.2 Energetic Tool: MBG for Complex Mechatronic
System Modeling

12.2.1 Characterization of Complex Mechatronic System

The design of the MGB-Fuselage joint studied is within the scope of the design of
mechatronic systems. Many definitions of mechatronic systems exist. For example,
French standard NF E 01-010 [7] gives the following definition: “approach aiming
at the synergistic integration of mechanics, electronics, control theory, and computer
science within product design and manufacturing, in order to improve and/or optimize
its functionality”.
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We shall not detail more the concept of mechatronic systems thereafter. This
standard and the chapter [8] have dealt with the issue sufficiently so as to define
the perimeter of the mechatronics system studied. However, what we consider as a
complex system is going to be defined in a more detailed way in the sequel. The goal
is to facilitating a better understanding of the energetic representation tool chosen to
describe complex multiphysic systems.

Let us remember that a multiphysic system is a multitechnology system which
involves a multidisciplinary approach: mechanics, electronics and control. For the
MGB-Fuselage joint equipped with adjustable SARIB system, the presence of control
systems and possible electronics devices to achieve energy harvesting widely justify
this multiphysic characteristic.

Moreover, a multiphase system is characterized by different operating phases
during its life cycle. For example, the joint is built into a helicopter system with
many operating phases: on the ground, parking flight, in forward flight.

A multiscale system is characterized by the physical laws of different scales: dis-
tributed/lumped parameters and microscopic/macroscopic scale. The MGB-Fuselage
joint connection equipped with adjustable SARIB system was modeled as a multi-
body lumped parameter model in this chapter. Taking into account the nature of
certain deformable bodies (as the fuselage) may require additional models with dis-
tributed parameters.

A multi interaction system includes a large number of elements in relation to each
other and whose interactions can make emerge new properties. This characteristic of
complex systems emphasizes their holistic character based on the principle that “the
whole is greater than the sum of its parts”. The MGB-Fuselage joint equipped with
adjustable SARIB system is a system with many bodies constrained by kinematic
links. Moreover, this joint is itself embedded in a larger system: the helicopter with
which it has many interactions (the fuselage, the rotor, or the command chain …).

Such systems present complex multibehavior (nonlinearity, friction, gap …). In
effect, in the case of the MGB-Fuselage joint equipped with adjustable SARIB sys-
tem, there are primarily geometric nonlinearities and friction in the equations.

12.2.2 Interest of Using a System Approach

Given the multidisciplinary aspects and complexity of mechatronic systems we have
stated in the previous paragraph, the design tools must have some essential features
to enable their efficient modeling (Table 12.1).

First, the design tool should be based on a unique and unified language for different
fields of physics in order to enable a common modeling early in the design phase of
multiphysic systems.

Then, the design tool should lead to models describing the physics of the model
regardless the purpose of modeling. Such a model having a structure independent
of its inputs and its outputs is called acausal. This acausal type of model is partic-
ularly interesting to model multiphase systems since the model structure remains
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Table 12.1 Complexity of studied system

Design tool characteristics Complex system characteristics 

Unique and unified representation Multiphysic 

Acausal model Multiphase 

Multilevel representation Multiscale 

Modular Multi-interaction 

 Multibehavior 

independent of the type of inputs (related to the operating conditions considered)
applied to the system.

Then, the design tool should allow a multilevel approach like an object-oriented
language. This object-oriented approach facilitates the decomposition of a system
into subsystems with the encapsulation of these approaches property. This multilevel
approach then permits a better management of two characteristics of complex systems
studied. Firstly, it allows a simplification of the presentation of systems with multiple
interactions almost essential for their analyses. Indeed, the decomposition of the
system into subsystems helps to hide the internal interactions of each subsystem
and, therefore, to distinguish the interactions between major subsystems and the
internal interactions of these subsystems. Secondly, it facilitates the inclusion of the
multiscale aspect since it allows one to encapsulate a distributed parameter model in
a lumped parameters model with higher level parameters. However, this last point
discussed in [9] remains still under study and has not been validated in this chapter.

Finally, the design tool should provide a modular aspect to the system model as
presented in [10]. Indeed, the model must evolve to meet the levels of complexity
required for each design problem by the addition or modification of new components
and subsystems and by replacing behavior laws. This is intended to deal with all
aspects multi-interaction and multibehavior of a mechatronic system.

12.2.3 MBG Modeling

12.2.3.1 Overview

The concept of energy is fundamental in the description of the evolution of techno-
logical systems. Energy is present in all areas of physics and is the link between them.
From this observation, a number of tools with energetic representation for modeling
complex systems have been defined. One of the main tools is the bond graph (BG).

The bond graph was created by Paynter [11] in 1959 and developed by Karnopp
et al. [12] at MIT Boston in the United States.

The bond graph is based on a study of the transfer of power in a system modeled
by lumped parameters. The bond graph is a graphical modeling tool that covers all
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physical systems (mechanical, hydraulic, electronic, thermal …) regardless of their
condition (linear, nonlinear, continuous …).

It is represented as an oriented graph showing dynamic variables and power bonds
between these variables. The bond graph systematically associate two different vari-
ables for each bond: a generalized effort variable (which is a force or a torque
in mechanics) and generalized flow variable (which is a translational or rotational
velocity in mechanics) on each side of the half-arrow link. Each bond has therefore
power information, obtained by the product of these two variables, and allows direct
access to the energy transferred by simple integration of power. The bond graph is
based on three fundamental types of elements: active element, passive element and
junction element. The active elements noted Se and Sf respectively represent sources
of effort and flow. These are the power inputs of the system. The fundamental prop-
erty that defines a source is that the variable effort (Se) or flow (Sf) provided by
a source to a model is assumed to be independent of the complementary variable
flow (Sf) or effort (Se) which depends on the characteristics of the system and the
variable applied. Passive elements I, C and R are the three main components of a
bond graph. The first two represent energy storage elements, respectively in kinetic
and potential form, while the latter represents a dissipative element. In a bond graph
representation of a complete system, these previous elements can be interconnected
by connecting elements in common effort (0 junction) or common flow (junction 1),
or processors elements (TF) or gyrators (GY) (Table 12.1).

More details on bond graph can be found [13] detailing its construction and
operation that we can do.

The bond graph has been extended in the 90s to the study of the multibody
systems with three dimensions thanks to the multibond graph formalism. Here, the
scalar power bonds become vectors bonds and the elements multiports.

12.2.3.2 Brief Review of MBG

A brief review of multibond graph used for multibody systems is now presented.
Readers wishing more details can refer to the multibond graph state of the art directed
by Borutzky [14] which is quite exhaustive.

The first works were developed by Tiernego and Bos [3] to model robots.
Then Zeid and Chung [15] developed libraries of multibond graph model of three-
dimensional kinematic joints. Then Marquis-Favre’s [16] contains a large contri-
butions of multibond graph applied to multibody system. The multibond graph is
used to model both systems: serial systems and systems with kinematic loops. The
concept of word bond graph (WBG) well illustrated in [17, 18] enables to have a
more concise and simplified representation. The contributions of Rideout [19] and
Rayman et al. [20] present the simulation of multibody system with kinematic loops
with multibond graph and 20-sim software. In their work, the method of singular per-
turbations from the work of Zeid and Chung [15] is applied to allow the simulation
of multibody system.
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12.2.3.3 Benefits of MBG as a Structural Representation

In the modeling phase, over the last 20 years, new tools based on structural approach
have emerged in comparison with the classic functional approach. We can mention
monophysic tools such as SPICE for electrical field, ADAMS or LMS for multibod-
ies field and multiphysics tools such as MapleSim software, Modelica or multibond
graph. The definition of the scope of structural and functional models can be found
in [21]. The MBG approach belongs to this category of the tools enabling the con-
struction of structural models as mentioned in Fig. 12.4. Consequently, it benefits
from the same advantages.

This new structural approach as the multibond graph facilitates the systemic
approach necessary to design a mechatronics system.

Firstly, the complexity of the system is taken into account more progressively
than with conventional analytical techniques since the possible modular approach
[10] makes it easier modeling a complex system subsystem by subsystem. Indeed,
the modularity allowed by the MBG method enables to make the model evolve to
meet the levels of complexity required for each design problem by the addition or
modification of new components and subsystems and by replacing behavior laws.
As a consequence, the global representation of the system built from subsystems
facilitates the management of interactions and/or couplings.

Secondly, the multilevel representation of the system realized thanks to the use of
word bond graph (WBG) allows to concatenate the bond graphs of bodies and joints.
This technique makes possible to “zoom in/out” on different parts of the system as
it can be done in a Simulink model [22].

Consequently, the modular and multilevel aspects of this tool, essential for a sys-
temic approach, help to simplify the representation and analysis of complex systems.

Moreover, the structural approach generally enables the generation of acausal
model which makes its structure independent of its inputs and outputs as we mention
in Sect. 12.2.2.

12.2.3.4 Methods Comparison: MBG Versus Others Structural Approach

In comparison with others structural tools, new interesting features naturally appears
as mentioned in Fig. 12.4.

Firstly, this tool allows engineers and researchers working in multidisciplinary
fields (especially mechanics and electronics) to have a unified representation showing
power transfer between system’s elements in order to support complex multiphysic
system modeling. Indeed, it should enable to easily introduce an electronic model
of energy harvester or active control system to the mechanical system thanks to the
same modeling representation.

Secondly, the classical functional approach using signal-flow can complete the
structural multibond graph model in the 20-sim software. This hybrid feature is very
useful for performances evaluation and for the determination of a possible control
law.
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Thirdly, this approach allows to describe the exchange of power or energy between
the different components of a mechatronics system. Thanks to multibond graph
representation, this energetic approach should permit to analyze the location where
mechanical energy is optimum for energy harvesting consideration for example.

Fourthly, contrary to dedicated software enabling a structural approach in multi-
body modeling where the multibody elements have finite possibilities of parameter-
ing, the MBG is more completely configurable since the designer uses the multibond
graph of bodies and joint built from the standard elements depicting physic laws and
which can be thus easily modified.

12.3 Study Case: The MGB-Fuselage Joint of an Helicopter

The classical MGB-Fuselage joint is composed of four MGB bars and a main
membrane as we can see in Fig. 12.5. Let us analyze the principle of operation
of this joint. The components of the mechanical actions of the {Rotor + MGB} on
the fuselage are composed by a static part of the effort required to the lift and a
dynamic part from dynamic excitations induced by the rotor on the fuselage due to
its own rotation.

The MGB bars can suspend without flexibility the fuselage to the rotor and thus
transmit the lift from the rotor to the structure. In addition, the MGB bars allow the
MGB to have a rotation around a point called the focal point which is the point of
intersection of the MGB bars.

The membrane is a flexible suspension with some particularities:

• a low stiffness for angular movements on the roll and pitch axes and the linear
vertical pumping displacement,

• a very high stiffness for linear movements perpendicular to the vertical direction
and for the yaw movement.

Thus, the membrane allows the angular movement of the MGB around the pitch
and roll axes. The flexibility of the membrane around these axes allows a strong
filtration of the dynamic moments around these axes. This filtering is achieved by
adjusting the frequency of the pendulum system smaller than the excitation frequency
of the rotor.

In addition, the membrane transmits to the main rotor torque thanks to its very
high stiffness around the yaw axis.

In conclusion, the conventional suspensions allow filtering pitch and roll dynamic
moments without filtering the pumping dynamic efforts.

The purpose of the SARIB suspension is to render possible the filtering of these
pumping dynamic efforts.

The SARIB system is composed of SARIB Bars with a tuning mass on each bar
which are installed between the MGB bars and the fuselage. The SARIB system is
designed so as to create inertial forces on the fuselage opposite to the force of the
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MGB Bars

Main membraneFuselage

MGB

Focal point 

Fig. 12.5 Flexible classical MGB-Fuselage joint

membrane. This system enables to reduce the efforts transmitted to the fuselage for
a frequency called anti-resonance frequency.

To begin with, the analysis based on multibond graph focuses on the kinematic
scheme of the 2D MGB-Fuselage joint. This simplified model is sufficient to identify
physical anti-resonance phenomenon.

The kinematic scheme of the 2D MGB-Fuselage joint is composed of four bodies
(the MGB, a MGB bar, a SARIB bar and the fuselage considered as fixed) and five
joints (three revolute joints and two prismatic joints) as shown in Fig. 12.6. These
bodies are assumed to be rigid. Some local moving reference frames are attached to
these bodies:

RMG B = (OMG B, ∈xMG B , ∈yMG B , ∈zMG B) attached to the MGB,

RBS = (OBS, ∈xBS, ∈yBS, ∈zBS) attached to the SARIB Bar,
RB B = (OB B, ∈xB B, ∈yB B , ∈zB B) attached to the MGB Bar,
RF = (OF , ∈xF , ∈yF , ∈zF ) attached to the fuselage.
The orientation of the SARIB Bar and the MGB bar are described respectively by

angles δ and π . The flexible membrane located between the MGB and the fuselage
is modeled with two prismatic joints in serial. The intermediate part (called Int)
is considered with negligible mass. The position of MGB is described by x and z
coordinates.

Moreover, three springs enable the system to have a good filtration behavior. A
torsional spring leads to the limitation of the high movement of the SARIB bar. A
weak spring along z axis permits the vibrations filtering. A high spring along x axis
prevents from a hyperstatic system.

Next, the simulation of the 3D MGB-Fuselage joint with the same energetic
approach will be done. A kinematic scheme of the complete MGB-Fuselage is shown
in Fig. 12.7. The joint consists of a fuselage considered as fixed, a MGB and four
identical legs and a membrane. Each leg consists of a SARIB Bar and a MGB Bar
connected by a spherical joint. The upper end of these legs are connected to the MGB
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Fig. 12.6 Kinematic scheme of the 2D joint between the main gear box and the fuselage
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Fig. 12.7 Kinematic scheme of the 3D joint between the main gear box and the fuselage

with spherical joints and the lower end of these legs are connected to the fuselage
through revolute joints. The flexible membrane located between the MGB and the
fuselage is now modeled with a prismatic joint and two revolute joints in serial.
The intermediate parts (called Int1 and Int2) are considered with negligible masses.
For simplicity, the orientation and position parameters are not represented in the
kinematic scheme but are described in the joints graph.
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12.4 MBG Modeling

12.4.1 Modeling a Multibody System

Only the theoretical elements essential to the practical realization of the multibody
bond graph representation is developed.

Bond graph construction based on multi-body dynamics equations can be estab-
lished either with the fundamental principle of dynamics (or Newton–Euler equa-
tions) or by using Lagrange equations. Depending on the starting point, several bond
graph construction methods have been developed:

• the “Tiernego and Bos” method from the application of the fundamental principle
of dynamics,

• the “Karnopp and Rosenberg” method from the application of the Lagrange
equations.

The method used in this chapter is the method of “Tiernego and Bos” since it
allows to describe the system as an assembly of subsystems composed of bodies and
joints. This assembly of sub-systems is clearly facilitated by the use of word bond
graph (WBG). In the WBG, the bond graph of solids and joints are encapsulated
in order to focus only on the relationship between solids and joints. Each word
bond graph element (bodies or joints) is linked to another word bond graph element
through two power bonds for the rotational and translational power transmissions.
Each power bond carries a 3D generalized flow vector (rotational or translational
velocity) and the complementary 3D generalized effort vector (torque or force).

Bond graph construction developed with the “Tiernego and Bos” method requires
the knowledge of a number of multibond graph elements, the bond graph modeling
of a rigid body and joints.

The multibond graph elements (multibond or vector bond, junctions, multiport
energy storage elements, multiport transformers and gyrators) are directly used.
Readers can refer to [14] to find the details of the modeling of those elements.

12.4.2 Simulation Difficulties of CKC Systems

The simulation of mechanical system with kinematic loops requires specific methods.
This difficulty does not come from the multibond graph tool but from the applica-
tion of dynamics equations to such systems where some kinematic variables are
linked together. Regardless the analytical method employed (fundamental principle
of dynamics or Lagrange equations with multipliers), the equations obtained are dif-
ferential algebraic equations (DAEs) whose numerical resolution requires specific
numerical integration methods. These difficulties to solve numerically differential
equations are developed, for example, in Marquis-Favre [23]. A recent review of
the methods for solving DAEs can be also found in [24]. To sum up, one can find
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three groups of methods: the direct resolution of the DAE thanks to specific solvers,
the reduction of the DAE in an ODE like the Baumgarte stabilization method or
partitioning method and the conversion to an ODE by modifying the model system.
The singular perturbation method which is used in the chapter belongs to the last
category of these methods that is to say the conversion to an ODE by modifying the
model system.

12.4.3 Use of the Singular Perturbation Method

The multibond graph simulation with the method of the singular perturbation is quite
easy to implement compared to conventional techniques used during an analytical
study. Others techniques based on multibond graph enabling to treat the simulation
of mechanical with kinematic loops exist and are described in Marquis-Favre’s [16].
However, we decided to use the method of singular perturbation which, to our point
of view, keeps a physical insight and is the simplest to apply.

The method of singular perturbation consists in augmenting the multibond graph
of the joints with parasitic elements [19, 20]: stiffness and damping elements cor-
responding to C energy store element and R resistive element. The values of the
compliant elements must be chosen carefully. To our knowledge, two methods for
selecting these elements exist: the eigenvalues decoupling between the parasitic fre-
quency and the system frequency and the use of activity metric [19]. These parameters
can be chosen so as to model the joint compliances which exist in all mechanical
joints. Thus, this point gives to this method a physical significance. The stiffnesses
introduced should be high enough in order not to change the dynamic of the system
but not too high so as to prevent the numerical difficulties of stiff problems (with
high-frequency dynamics). This method leads to a necessary compromise between
the accuracy of the results and the simulation time. Moreover, the stiffer the system
is, the more numerical errors are reduced but the simulation time remains important.
However, the increase of the simulation time can be balanced by parallel process-
ing as the mass matrix in a block-diagonal form can enable to decouple the system
as it is explained in [25]. As T. Rayman recommends, adding a damping element
(R resistive element) in parallel with the stiff spring (C energy store element) enables
to dampen the high eigenfrequency associated with the high stiffness. The exact
influence of these parameters still remains a research work in which the authors are
particularly interested in.

If the kinematic constraints modeled by the multibond graph of the joint are
rigidly imposed, derivative causality appears at the multibonds connected to the
translational inertia elements. The derivative causality due to constraints requires
that the equations derived from the bond graph are differential algebraic equations
(DAEs). The resolution of such equations is quite complex from a computational
point of view as we explained before. The method of singular perturbation enables
to relax the kinematic joint constraints. The dynamic equations are in a ODE form
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with no geometric constraints to deal with. Consequently, it leads to a bond graph
with integral causality which can be simulated easily.

As Rayman explains in [20], Marquis-favre and Scarvada developed the method of
“privileged frame” [5] to facilitate the resolution of multibody system with kinematic
loops. However, it is important to notice that even this method helps to minimize the
number of coordinate transformations required in a multibody model with kinematic
loops, it does not fundamentally permit the simulation of this system.

12.4.4 Construction of the MBG Model
of the MGB-Fuselage Joint

In this section, the bond graph modeling of the rigid body is first recalled. The bond
graph modeling of joints is described since they are modeled with some particularities
compared to the classical way of modeling that we can find enabling to simulating
serial mechanical system. Indeed, as already explained, the kinematic joints have
compliant elements so as to enable the simulation of this system with kinematic
closed loops.

12.4.4.1 Rigid Body Modeling

Let us remember (Fig. 12.8) the architecture of a rigid body multibond graph model
based on [5, 14, 16, 18].

This bond graph architecture is based on the Newton–Euler equations with respec-
tively the inertia matrix (modeled with a multiport energy store element

[
ISi ,Gi

]
i in

the upper part) associated with gyroscopic terms (modeled with a multiport gyrator
element also called Eulerian Junction Structure about mass-center of body i expressed
in its frame

[
EJSGi

]
i and the mass matrix modeled with a multiport energy store

element [mi ]0 in the lower part). The upper part of the MBG represents the rotational
dynamic part expressed in the body frame while the lower part is for the translational
dynamic part expressed in a inertial reference frame (or Galilean frame). The two cor-
responding 1-junctions arrays correspond respectively to the angular velocity vector

of body i ∈κ (i/0)i and the translational velocity vector of the center of mass of body
i ∈V (Gi/R0)

0 expressed in these two coordinate frames.
The central part of the MBG describes the kinematic relations between the veloc-

ities of the two points of the body i ( ∈V (
M j/R0

)i and ∈V (Mk/R0)
0) and the velocity

of the center of mass ∈V (Gi/R0)
i resulting from the formula of the rigid body. The

modulated transformation element (MTF) between ∈V (Gi/R0)
i and ∈V (Gi/R0)

0

represents the coordinate transformation between the body frame and the inertial
frame.
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Fig. 12.9 Kinematic scheme and multibond graph of the revolute joint between SARIB bar and
fuselage

12.4.4.2 Kinematic Joints Modeling

For simplicity, only the modeling of the joints necessary for modeling the 2D MGB-
Fuselage are here considered: the joint revolute and prismatic including compliant
elements are described. On this base, the modeling of different joints such as spherical
joint and others needed for the 3D model could be easily derived.

Revolute joint

The kinematic scheme and the multibond graph of the revolute joint between the
SARIB Bar and Fuselage are illustrated in Fig. 12.9. In this multibond graph model,
the variables used are:

• the angular velocity of the fuselage ∈κ (Fus/0)Fus and the SARIB bar ∈κ (BS/0)BS

relative to the inertial reference frame. The subscripts refer to the frames where
these velocities are expressed in,

• the translational velocities of the fuselage ∈V (A ∗ Fus/R0)
Fus and the SARIB

bar ∈V (A ∗ BS/R0)
BS relative to the inertial reference frame at the point A,

• the transformation matrix P BS
F determined thanks to the angular velocity as

explained in [19].

Prismatic joint

The kinematic scheme and the multibond graph of the prismatic joint along z axis
between the MGB and the intermediate body are shown in Fig. 12.10 as follows:

In this multi bond graph model, the variables used are:

• the angular velocity of the MGB ∈κ (MG B/0)MG B and the intermediate
∈κ (I N T/0)MG B relative to the inertial reference frame,
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Fig. 12.10 Kinematic scheme and multibond graph of the prismatic joint between MGB and inter-
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• the translational velocities of the MGB ∈V (OMG B ∗ MG B/R0)
MG B at the point

OMG B and the intermediate body ∈V (OMG B ∗ I N T/R0)
MG B relative to the iner-

tial reference frame.

12.4.4.3 The Complete Model

Individual models of joints and bodies, previously described, are connected together
according to the kinematic scheme as shown in Figs. 12.11, 12.12 and 12.13. The
MGB is excited by a vertical periodic force f (t) = F cos (ρt). In these figures,
three types of multibond graph elements can be thus distinguished:

• the rigid bodies, such as the fuselage, the SARIB Bar, the MGB Bar and the MGB.
• the joints, such as revolute joint used between the SARIB Bar and the fuselage.
• the multibond graphs power bonds (half-arrows).

The simulation of the 2D and 3D MGB-Fuselage multibond graphs is then
possible.

12.5 Results and Comments

Like for all multibody simulation analyses, the evolution of the different movement
parameters of the system may be deduced. For example, the position of MGB gravity
center xG MG B , yG MG B , zG MG B , SARIB Bar 1 gravity center xG BS1 , yG BS1 , zG BS1 , the
angular parameters of the SARIB Bars δ1, δ2, δ3, δ4 and the MGB Bars π1, π2, π3, π4
are shown in Fig. 12.14. In the same way, forces transmitted to the fuselage joint
(revolute joint between SARIB Bar and fuselage) may be deduced immediately.
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Fig. 12.11 Word bond graph built on 20-sim of the 2D MGB-Fuselage

For example, the components f A1x , f A1 y, f A1z of the forces applied by the SARIB
bars to the fuselage at the A1 point expressed in the fuselage frame are shown in
Fig. 12.15. Let us note that, using mechanical analytic methods, some calculations
are needed so as to expressjoint forces.

Thanks to complementary tool proposed in 20-sim software, frequency response
can be determined after having chosen inputs and outputs.
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Fig. 12.14 Movements parameters of the 3D model

First, the transmissibility function between the forces transmitted to the fuselage
and the excitation force has been deduced for the 2D model. As we can see in
Fig. 12.16, the transmissibility presents an anti-resonance frequency. The SARIB
Bar plays his role since the joint enables to isolate the fuselage from the force coming
from MGB at this specific frequency.

Then, the transmissibilities between the joint reaction at the different revolute
joints and the excitation force have been also determined for the 3D model.

Observing the transmissibility curves involving the vertical components of joint
reactions (Fig. 12.17 up), we also find the anti-resonance phenomenon that has
already been described with the 2D model with antiresonance around 18 Hz.
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Fig. 12.15 Excitation force and reaction forces in the revolute joints of the 3D model

The layout of transmissibilities, involving components in the xy plane of joint
reaction (Fig. 12.17 bottom) shows that the anti-resonance phenomenon does not
occur at the same frequency as before. This anti-resonance phenomenon does not
occur at the same frequencies according to the type of stress applied to the MGB.
This variation of the antiresonance frequency explains the interest of designing an
intelligent joint SARIB adapted to external forces applied to the MGB.
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Fig. 12.17 Anti-resonance frequency on transmissibility

This analysis can be also done with an energetic point of view. Indeed, adding
power sensors in all connections in the multibond graph, the flow of power can then
be evaluated. As expected, all the power provided from the excitation of MGB is
sent to the SARIB Bar.
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12.6 Conclusion

In this chapter, it is shown how dynamic simulations of an aeronautic complex
subsystem can be conducted thanks to a relevant multibond graph representation. In
this sense, the proposed contributions consist in providing a relevant methodology
to model a multibody system with closed kinematic chains using the bond graph
formalism and in comparing this method with others classical methods of modeling.

The proposed methodology is based on three steps. In the first step, the modeler
has to build the bond graph of a rigid body. The second step is dedicated to model
the different joints connecting the bodies of the system. A fundamental point of this
step is the use of parasitic compliant elements for the modeling of the kinematic
constraints provided by the joints. The third step treats the assembly of the different
created models (rigid bodies and joints). This step can be easily conducted with the
help of a well-structured library of components.

The simulation results of the MBG model of the studied joint have been pre-
sented. It shows the need to keep a sufficiently complete model so as to predict the
anti-resonance phenomenon which exists in this system. Indeed, the 3D model can
highlight the existence of different values of anti-resonant frequencies following the
direction of efforts observed that had not been visible with the 2D model.

The comparison of multibond graph with others classical methods of modeling
shows that this tool appears to be a useful tool for engineers in the context of multi-
body modeling. The main arguments are now recalled.

Its hierarchical and modular properties enables MBG to be a structural tool.
Therefore, the constructed multi-body dynamic models enable to obtain a quite sim-
ple representation of a complex system since the multibond graph model highlights
the topology of systems. Moreover, the simulation of multibody systems with closed
kinematic chains may appear easier to conduct than the classic analytical method.
The method of singular perturbation employed in this multi bond graph representa-
tion enables to avoid dealing with kinematic constraints equations and consequently
to have only ODE systems to solve instead of DAEs. The use of dedicated software
such as 20-sim may allow to hide this complex step for the modeler. Finally, we
should not forget that the multibond graph is also a unified power based approach
which enables to model many multi domains systems and to analyze the description
of the energy between the components of such systems.

Future works are being conducted so as to exploit multibond graph models for
control design purposes. The investigations will be lead in two directions. The first
exploitation of multibond graph representation shall focus on scalar BG analysis.
The second exploitation of multibond graph shall lead to control architecture by
means of inversion techniques with the help of complementary tool such as energetic
macroscopic representation (EMR) designed for this purpose. It should permit to
design more robust control laws with less energy consumption.
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Chapter 13
Comparison and Field Test Validation
of Various Multibody Codes for Wind
Turbine Modelling

János Zierath, Roman Rachholz and Christoph Woernle

Abstract The decrease of fossil energy sources leads to an increased use of
renewable energy sources like wind energy. The design of the mechanical
components of a wind turbine is considerably governed by their fatigue behaviour
over the product life cycle. Therefore, reliable estimations of the interface loads on
the components, by means of appropriate multibody models, are necessary. While
simplified wind turbine design codes, such as Flex5 or GH Bladed, have been mainly
used for previous wind turbine developments, general purpose multibody simulation
environments like MSC.Adams, SIMPACK, or alaska/Wind in combination with
specific aerodynamic simulation packages are now applied. Here, the components of
a wind turbine, such as the drive train with gear pair contacts, a flexible main frame, or
a lattice tower, can be modelled in much more detail and specific manner compared to
previous simulation models. For example, the geometric nonlinear behaviour of the
blades can be taken into account which is essential for the simulation of long slim
blade designs. In the present contribution, different multibody packages for wind
turbine modelling are compared on the basis of simulation models of an existing
wind turbine. Beside of the special wind turbine design code Flex5, developed at the
Technical University of Denmark Copenhagen (DTU), the commercial multibody
simulation packages MSC.Adams and SIMPACK are used. For the validation of the
simulations, extensive measurements on a wind turbine prototype have been evalu-
ated comprising measurement data over a period of more than 1.5 years. To compare
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measurements and simulations, statistical and dynamical evaluations of the results
have been done.

13.1 Introduction

Load calculation is a very important part in the development of wind turbines.
Prototype testing of loads acting on a wind turbine in the field is not possible because
of its long lifetime. Accurate load calculations are necessary to ensure that the wind
turbine withstands the loads during the expected lifetime. An extensive introduc-
tion into fundamentals, technologies, application, and economics of wind turbines is
provided by [8].

During the past decades Flex5 has been used as a standard tool for load calculation
of wind turbines. Ongoing development in the simulation of wind turbines leads to
the use of general multibody design codes. This chapter describes the development
of a state-of-the-art multibody model of a 2.05 MW wind turbine designed by W2E
Wind to Energy using different multibody codes. The prototype of the wind turbine
erected in Tarnow, Mecklenburg-Western Pommerania, and the corresponding CAD
model are shown in Fig. 13.1.

The general purpose multibody programs MSC.Adams 2012 x64 [12] and SIM-
PACK 9.3 [17] were chosen to build up the wind turbine model. A detailed description
of the drive train model can be found in [14]. The aerodynamic forces are applied to
the multibody model using the AeroDyn source code v13.01 which was developed
by the National Renewable Energy Laboratories (NREL) [9, 11]. Furthermore, a
simplified model using Flex5 was built up for comparison to the general purpose
multibody programs.

13.2 Theoretical Background

A short introduction into theoretical background of flexible multibody systems is
given in this section. A detailed description can be found in [1] and in [16]. Flexible
multibody systems are an extension to classical multibody systems. Classical multi-
body elements are consisting of rigid bodies connected via joints and force elements.
An introduction into classical multibody systems is provided by [15] and [21]. To take
elastic deformations into account, which are neglected by classical multibody sys-
tems, flexible multibody systems are developed. Flexible multibody systems consider
typically mechanical systems with large rigid body motions and small deformations.
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Fig. 13.1 Prototype of the 2.05 MW wind turbine erected in Tarnow, Mecklenburg-Western
Pommerania. a Prototype. b CAD model of the drive train

13.2.1 Kinematics of Flexible Multibody Systems

The motion of rigid bodies in classical multibody systems is described by the trans-
lation and the rotation of the body-fixed reference frame. As it can be seen from
Fig. 13.2, the deformation of a flexible body is described by a vectorial superposi-
tion of rigid body motions and elastic deformations, which is called floating frame
of reference formulation.

HereinK0 with the origin O0 represents a space-fixed reference frame andK1 with
the origin O1 the corresponding body-fixed reference frame. The relative position of
the body-fixed reference frameK1 with respect to the space-fixed reference frameK0
is given by the vector r10(t). The vector r21(t) describes the undeformed position of
an arbitrary point on the flexible body represented by the reference frame K2 relative
to the body-fixed reference frame K1. The elastic deformation is described by the
vector u f (t). The overall position description of the reference frame K3 relative to
the reference frame K0 is obtained by

0r30(t) = 0r10(t) + 01T(t)
(1r21 + 1u f (t)

)
. (13.1)

The upper left index denotes the reference system in which the vectors are
expressed. In general the elastic deformations 1u f (t) have to be reformulated in
order to reduce the degrees of freedom of the multibody system. Instead of a phys-
ical description of the elastic deformation in each point of the discretised body,
global approaches, also called Ritz approaches, are used. Here, the physical defor-
mation is described by a set of linear independent time-invariant global shape func-
tions 1Q

(
1r21

)
and corresponding time-dependent weighting factors representing

the flexible coordinates of the multibody system 1z(t),

1u f (r21, t) = 1Q
(1r21

) 1z(t). (13.2)

The global shape functions in 1Q
(

1r21
)

are obtained from a finite element ana-
lysis with a subsequent coordinate reduction by component mode synthesis. With
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Fig. 13.2 Kinematics of a flexible body

(13.2) the position description of (13.1) can be rewritten as

0r30(t) = 0r10(t) + 01T(t)
(1r21 + 1Q

(1r21
) 1z(t)

)
. (13.3)

Differentiation of (13.3) with respect to time leads to

0ṙ30(t) = 0ṙ10(t) + 01Ṫ(t)
(1r21 + 1Q

(1r21
) 1z(t)

) + 01T(t)
(1Q

(1r21
) 1ż

)
.

(13.4)

Introducing the rotation parameters β, for example Euler angles, Bryan angles,
or Rodrigues parameters, the time derivative of the transformation matrix can be
written as

01Ṫ(t) = ∂01T(t)

∂β
β̇(t). (13.5)

Then (13.4) can be written in matrix form by
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0ṙ30 =
[

E
∂01T(t)

∂β

(
1r21 + 1Q

(
1r21

)
1z(t)

)
01T 1Q

(
1r21

)
⎧ ⎪

⎨⎩
0ṙ10(t)

β̇(t)
1ż(t)


 ,

(13.6)

with the identity matrix E. As seen from (13.6), the motion of a flexible body is
described by a translation and rotation of the body-fixed reference system K1 and
the elastic deformations expressed in K1. The matrix on the right hand side of (13.6)
is also written as

0L = [
E 0B

(
β, 1r21, z

)
01T 1Q

(
1r21

) ]
(13.7)

with the rotation matrix of the flexible body

0B
(
β, 1r21, z

) = ∂01T(t)

∂β

(1r21 + 1Q
(1r21

) 1z(t)
)
. (13.8)

The column vector on the right hand side of (13.6) represents the time derivatives
of the coordinates of the flexible multibody system, which are summarised as

0q̇ =
⎪
⎨⎩

0ṙ10(t)

β̇(t)
1ż(t)


 . (13.9)

Thus, the overall motion is described as superposition of the rigid body translation
and rotation of the body-fixed reference system in addition with the elastic defor-
mations. Here, the rigid body motion is expressed with respect to the space-fixed
reference system K0 whereas the elastic deformations are expressed with respect to
the body-fixed reference system K1.

13.2.2 Equations of Motions of Flexible Multibody Systems

To describe the equations of motion of flexible multibody systems the Lagrange

equations of the second kind are used,

d

dt

(
∂T

(
0q, 0q̇, t

)

∂0q̇T

)

− ∂T
(

0q, 0q̇, t
)

∂0qT
= −∂U

(
0q, t

)

∂0qT
+ 0knk, (13.10)

which are built up with respect to the space fixed reference system K0. Herein T
represents the kinetic energy and U the potential energy of the mechanical system.
The kinetic energy of a single body i is obtained by
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T i = 1

2

⎡

V i

ρ 0ṙT
30

0ṙ30 dV, (13.11)

where 0ṙ30 is the velocity vector of an arbitrary point O3 on the flexible body i with
respect to the space-fixed reference system K0 and ρ is the density. Inserting (13.6)
leads to

T i = 1

2

⎡

V i

ρ 0q̇i T 0Li T 0Li 0q̇i dV = 1

2
0q̇i T

( ⎡

V i

ρ 0Li T 0Li dV

)
0q̇i . (13.12)

The term in the squared brackets represents the mass matrix of body i , which can
be expressed with (13.7) as

0Mi =
⎡

V i

ρ 0Li T 0Li dV =
⎡
V

ρ

⎪
⎩ E

0BT
(

01T 1Q
)T




i [
E 0B 01T 1Q

]i
dV . (13.13)

The evaluation of the matrix product in (13.13) leads to

0Mi =
⎡

V i

ρ

⎪
⎩ E 0B 01T 1Q

0BT0B 0BT 01T 1Q
sym. 1QT 1Q




i

dV =
⎪
⎩

0mR R
0mRβ

01mR f
0mββ

01mβ f

sym. 1m f f




i

,

(13.14)

with the integrals

0mi
R R = ⎣

V i

ρ E dV, 0mi
Rβ = ⎣

V i

ρ 0B dV, 01mR f = ⎣
V

ρ 01T 1Q dV,

0mββ = ⎣
V i

ρ 0BT0B dV, 01mβ f = ⎣
V i

ρ 0BT 01T 1Q dV, 1m f f = ⎣
V i

ρ 1QT 1Q dV .

(13.15)

The overall kinetic energy of the flexible multibody system is obtained by the sum
over the contributions of all bodies i ,

T =
∑

i

T i =
⎜

i

1

2
0q̇i T 0Mi 0q̇i = 1

2
0q̇T 0M 0q̇. (13.16)

The symbol
⎤
i
(. . .) denotes the assembly of the mass matrices and coordinates

over all bodies i of the multibody system. The derivatives of the kinetic energy T
needed in (13.10) are obtained by
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∂T
(

0q, 0q̇, t
)

∂0q̇T
= 0M 0q̇ and

d

dt

(
∂T

(
0q, 0q̇, t

)

∂0q̇T

)

= 0M 0q̈ + 0Ṁ 0q̇,

(13.17)

and

∂T
(

0q, 0q̇, t
)

∂0qT
= ∂

∂0qT

(
1

2
0q̇T0M 0q̇

)
. (13.18)

If bodies are flexible, they store potential energy in addition to the kinetic energy.
The elastic potential energy Ui of a flexible body is equivalent to the deformation
work applied to a flexible body. Hence, the elastic potential energy of single body i
can be written as

Ui = 1

2

⎡

V i

1εT 1σ dV . (13.19)

Here, σ represents the stress tensor and ε the strain tensor. By the use of the kinematic
relationship between strain and displacements and by the use of the global Ritz
approach of (13.2) the component vector of the strain tensor can be rewritten as

1ε = 1Dεu
1u f = 1Dεu

1Q 1z (13.20)

with the strain displacement relation matrix 1Dεu represented in the body-fixed ref-
erence system K1. Assuming linear-elastic material behaviour and using (13.20) the
stress tensor becomes

1σ = 1C 1ε = 1C 1Dεu
1u f = 1C 1Dεu

1Q 1z. (13.21)

Using (13.20) and (13.21) (13.19) can be rewritten as

Ui = 1

2

⎡

V i

1zT
(1Dεu

1Q
)T 1C 1Dεu

1Q 1z dV

= 1

2
1zT

( ⎡

V i

(1Dεu
1Q

)T 1C 1Dεu
1Q dV

)
1z.

(13.22)

Here, the term in the squared brackets represents the stiffness matrix of the flexible
body i , which can be expressed as

1Ki
f f =

⎡

V i

(1Dεu
1Q

)T 1C 1Dεu
1Q dV . (13.23)
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As it can be seen from (13.22), the potential energy depends on the elastic dis-
placements only. Using the coordinate vector of the flexible multibody system

0qi =
⎪
⎨⎩

0r10(t)

β(t)
1z(t)




i

, (13.24)

(13.22) can be rewritten as

Ui = 1

2

[
0r10 β 1z

]i

⎪
⎩ 0 0 0

0 0 0
0 0 1Ki

f f




⎪
⎨⎩

0r10

β
1z




i

. (13.25)

Finally, the overall elastic potential energy of the flexible multibody system is
obtained by

U =
∑

i

U i =
⎜

i

1

2
0qi 0Ki 0qi = 1

2
0q 0K 0q. (13.26)

The general non-conservative forces knk in (13.10) can be expressed as

0knk = 0kr + 0ke = 0GT 0λ + 0ke, (13.27)

where kr and ke represents the general constraint and general applied forces, respec-
tively. Typically the constraint forces are expressed as product of the constraint
matrix G and the constraint force coordinates (Lagrange multipliers) λ. Using
(13.26) the derivative of the elastic potential energy U with respect the coordinates
is obtained by

∂U
(

0q, t
)

∂0qT = 0K 0q. (13.28)

Inserting (13.17), (13.18), (13.27), and (13.28) into (13.10) leads to the equations
of motion of a constrained flexible multibody system,

0M 0q̈ − 0GT 0λ = 0K 0q + 0kc + 0ke (13.29)

with the quadratic velocity term

0kc = −0Ṁ 0q̇ + ∂

∂0qT

(
1

2
0q̇T 0M 0q̇

)
(13.30)
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containing the general Coriolis and gyroscopic forces. The equations of motion of
a classical multibody system built up of rigid bodies can be obtained by assuming
the flexible coordinates z and their time derivatives to be zero.

13.3 Control of Variable Speed-Variable Pitch-Horizontal
Axis Wind Turbines

The scope of this chapter is to give a general introduction into control of horizontal
axis wind turbines. Due to the high dynamics of wind turbines and their nonlinear
behaviour, the control of the mechanical system is a very important aspect for the
multibody simulation. The controller strategies can be divided into collective pitch
control on the one hand and individual pitch control on the other hand. An overview
on collective pitch control for wind turbines, representing classical controller strate-
gies, can be found in [3] and [13]. Besides simple PI (proportional-integral) or PID
(proportional-integral-derivative) controller algorithms, also optimal power track-
ing algorithms are treated. An introduction into individual pitch control for wind
turbines, representing advanced controller schemes, is given by [4]. The advanced
controller strategies mainly focus on load reduction of the wind turbine. An exten-
sive overview of advanced controller schemes including active tower damping pro-
cedures and controller schemes with wind prediction systems such as light detection
and ranging (LIDAR) systems is given within the UPWIND project, see [6]. A field
test validation of the advanced controller schemes on two- and three-bladed wind
turbines is given by [5].

For introduction into control of a horizontal axis wind turbine, a closer look into
the correlation of aerodynamic inflow and mechanical power of the wind turbine
rotor is necessary. According to [8] the power of the aerodynamic inflow is given by

PWind = 1

2
ρ π r2

Rotor u3
Wind, (13.31)

where ρ is the density of air, rRotor is the radius of the wind turbine rotor and uWind

is the velocity of the aerodynamic inflow or short wind speed. The mechanical power
of the rotor is obtained by multiplying (13.31) with a power coefficient cP ,

PRotor = 1

2
ρ π r2

Rotor u3
Wind cP (ϑ, λ), (13.32)

which is a function of the of the pitch angle ϑ and the tip speed ratio λ. The tip speed
ratio λ can be calculated by

λ = ωRotor rRotor

uWind
= ωGen rRotor

iGear uWind
, (13.33)
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Fig. 13.3 Typical cP -λ-curve of a horizontal axis wind turbine

with the angular velocity of the rotor ωRotor, the angular velocity of the generator
ωGen and the gear ratio iGear. The theoretical maximum power which can be gripped
by the rotor from the aerodynamic inflow is given by the Betz limit, see [2], with a
value of cPmax = 16/27 ≈ 0.59. The technical maximum power coefficient cP lies
around 0.5, this means the rotor converts around 50% of the energy of aerodynamic
inflow into mechanical energy. A typical cP -λ-curve of a horizontal axis wind turbine
for pitch angle ϑ = 0◦ is shown in Fig. 13.3.

The optimal tip speed ratio λopt of a horizontal axis wind turbine lies between 7
and 9. The aim of the controller is to keep the wind turbine at an operating state with
maximum earnings. Therefore, the wind turbine operates most time around the point(
cPopt, λopt

)
. Because the inflow velocity varies over the time, the optimal power

output of the wind turbine is ensured by controlling the speed of the wind turbine.
The control principle of a variable speed-variable pitch-horizontal axis wind turbine
is shown in Fig. 13.4.

The blue curves represent the mechanical power achieved at the rotor at certain
wind speeds with a pitch angle ϑ = 0◦. The wind speed uWind is varied from 4 m/s
to 12 m/s in steps of 1 m/s. These curves are calculated by (13.32), where the power
coefficient cP (ϑ, λ) has to be varied over the angular velocity of the generator ωGen
due to its dependence on the tip speed ratio λ according to (13.33). If (13.33) is
resolved with respect to the inflow velocity uWind and inserted into (13.32), the
power at the rotor can be obtained by

PRotor = 1

2
ρ π r5

Rotor
cP (ϑ, λ)

λ3

(
ωGen

iGear

)3

, (13.34)
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Fig. 13.4 Control principle of a horizontal axis wind turbine

Using the optimal power coefficient cPopt and the optimal tip speed ratio λopt from
Fig. 13.3 in (13.34) the optimal power curve, represented by the green curve in
Fig. 13.4, is obtained. The optimal power curve is a function of the angular velocity of
the generator only, Popt ∼ ω3

Gen. The red curve in Fig. 13.4 represents the behaviour
of a wind turbine using classical control schemes. The operating states of a wind
turbine can be divided into the sections I, II and III. Within section I the power
output of the wind turbine is zero, representing the start up of the wind turbine.
At the end of section I the prescribed cut-in generator angular velocity is reached.
The wind turbine operates on the optimal power curve in section II below the rated
angular velocity of the generator ωrated. Within this section the angular velocity of the
wind turbine is variable and controlled by the generator torque. At the end of section
II the wind turbine is controlled off the optimal power curve in order to reduce the
tip speed of the blades for reasons of noise. Within section III the controller keeps
the generator angular velocity at almost constant level around the rated generator
angular velocity ωrated by pitching the blades and thus decreasing the power output
of the rotor. Different generator set points are used at the transition of the sections
II and III to avoid the different controller schemes from interfering each other. At
the transition of the sections I and II the same principle is applied to avoid a choke
off of the wind turbine during start up. This prevents jumps in the generator torque
leading to dynamical impacts in the drive train of the wind turbine.

As mentioned before different control schemes are developed for wind turbines.
PI or PID controller schemes are widely used in wind turbines. These controller
schemes are a good starting point for most horizontal axis wind turbines. A PID
controller can be written as

y =
(

K p + Ki

s
+ Kd s

1 + s τ

)
x, (13.35)
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with the Laplace variable s. Herein, the control error and the actuating signal are
represented by x and y, respectively. K p , Ki , and Kd are the proportional, integral and
differential gains. To avoid the differential term becoming large at high frequencies
the time constant τ is introduced. A PI controller is obtained by setting the differential
gain Kd to zero.

For section II, thus below rated wind speed, the input error signal x in the PID
controller is given by the difference between the actual angular velocity and the
optimal angular velocity of the generator provided by the optimal power curve.
The angular velocity is controlled by the generator torque representing the control
action y. In section III, thus above rated wind speed, the input error signal x is given
by the difference between the actual angular velocity of the generator ωGen and the
rated angular velocity of the generator ωrated. In this case the actuating signal is the
pitch velocity.

13.4 The Multibody Model and its Interaction
with the Aerodynamic Code and the Controller

The aim of this section is to describe the multibody model and its interaction to
other codes which are necessary to simulate an overall wind turbine model. First, the
interaction of the multibody model with the aerodynamic code and the controller is
presented. Then, a general description of the different simulation models follows.

13.4.1 Interaction Scheme of the Multibody Program
with the Aerodynamic Code and the Controller

The simplified interaction scheme of the multibody simulation with the aerodynamic
code and the controller of the wind turbine is shown in Fig. 13.5.

A discrete interface was developed for the interaction of the controller with the
multibody program. The aim of this interface is to integrate the same controller
software into the multibody simulation as implemented on the physical wind tur-
bine. The interaction scheme represents a software-in-the-loop principle and was
developed in analogy to the hardware-in-the-loop principle described in [22]. The
multibody program contacts the controller at discrete time steps and waits until the
controller provides the corresponding output data. Due to the fact that the integrator
of the multibody program generally has a variable step size, the interface has to be
realised in such a way that the controller is contacted only at prescribed constant
time steps. The controller on the physical wind turbine operates with a time step of
10 ms, which is also chosen as prescribed time step for the interface. Between the
discrete time steps the output values of the previous time steps are used and kept
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Fig. 13.5 Simplified interaction scheme of the wind turbine model

constant. This interface scheme does not present any real-time capabilities which is,
however, not necessary and not realisable for large models .

As mentioned before, the wind turbine is pitch-controlled and has a variable speed.
As shown in Fig. 13.5, the main input values of the controller are the generator speed
and the pitch angle of the blades, depending to the operating mode according to
Fig. 13.4. The corresponding actuating signals of the controller are the angular pitch
velocity and the generator torque, which are applied to the multibody model as
imposed motions, represented by consistent positions, velocities and accelerations,
and applied forces, respectively. Indeed, there are several additional values which
are transferred to the controller and given back to the multibody program that are
not described here because of their large number. The aims of these values are, for
example, to ensure electric power quality or decrease vibrations of the drive train. As
the simulation is not limited by any real-time requirements, the in- and output values
of the controller is not limited as long as the programmable logic controller on the
physical wind turbine has enough capabilities to calculate the controller program in
real-time.

The multibody model also interacts with the aerodynamic code. The aerodynamic
code used in Flex5 was developed at Danish Technical University and is integrated
directly into the multibody code. The aerodynamic code used in SIMPACK and
Adams is based on AeroDyn provided by the National Renewable Energy Labora-
tories (NREL). Both aerodynamic codes include a calculation based on the blade
element momentum theory. Therefore, the blade is divided into separate aerody-
namic elements. As shown in Fig. 13.5, the multibody code provides the position
and velocity of the blade elements. The aerodynamic code provides the aerodynamic
forces and moments. In addition, the aerodynamic code from NREL is extended by
the general dynamic wake theory which is based on the acceleration potential theory,
see [18]. Furthermore, SIMPACK provides an interface to the aerodynamic code
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Fig. 13.6 Degrees of freedom of the Flex5 wind turbine model

from ECN based on the lifting line theory, see [20]. For comparison of the results
of the multibody codes used, the blade element momentum theory is applied within
this research work only.

13.4.2 Simple Multibody Model of the Wind Turbine in Flex5

The Flex5 model has a fixed topology comprising overall 28 degrees of freedom as
shown in Fig. 13.6.

Within this given topology, the model of a specific wind turbine is implemented
by defining a fixed set of parameters. A general parameter file contains, above all,
the geometric parameters, the load case parameters, a tower parameter file, and two
parameter files for the blade containing the mechanical and aerodynamic properties.
An implementation of another topology of the model is possible by a modification
of the computer code only.

The elasticity of the blade and the tower is represented by a superposition of
the first two modes in the two independent directions, respectively. The degrees of
freedom can be switched off independently within the general parameter file. Due
to the small number of degrees of freedom, the calculation time is very short. A
typical run of a ten minute time series with turbulent wind conditions on an Intel
Core i7-2600 takes about one minute.
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modal based tower model

detailed drive train model

Fig. 13.7 Multibody model of the wind turbine using MSC.Adams

13.4.3 Parametric Multibody Model of the Wind Turbine
in MSC.Adams

The multibody model in MSC.Adams is parametrically built up. That means, instead
of defining the model within the Adams/View preprocessing environment, the model
is created within the MATLAB environment. The MATLAB code generates an
Adams command file in the ASCII format, which can be imported by Adams/View.
The same principles were also applied for model generation of the high-lift mecha-
nisms of a modern transport aircraft, see [23].

The Adams model comprises a flexible tower model based on a finite element
model, blades built up of discrete beams and a detailed drive train model, see [14].
The discrete beams consist of lumped mass elements and Euler–Bernoulli beams.
Compared to a blade model consisting of flexible bodies, a higher numerical stabil-
ity of discrete beams in MSC.Adams during start-up of the wind turbine could be
achieved. Furthermore, effects like centrifugal stiffness are taken into account, and
the interface loads along the blade can be obtained easily.

As a result, a multibody model with approximately 600 degrees of freedom is
obtained, see Fig. 13.7. The higher model depth of the simulation leads to larger
CPU times compared to Flex5. The simulation of a ten minute time series with
turbulent wind conditions on an Intel Core i7-2600 takes about 20 minutes.

13.4.4 Flexible Multibody Model of the Wind Turbine
in SIMPACK

The detailed multibody model developed in SIMPACK 8.903b is described in [14].
For the results represented within this chapter, a revised model of the 2.05 MW wind
turbine developed in SIMPACK 9.3 is used.
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Fig. 13.8 Multibody model of the wind turbine using SIMPACK

For comparison the tower and the blades are modelled elastically. A detailed drive
train model including two planetary gear stages and a spur gear stage is integrated,
comprising torsional stiffness of shafts and the contact-stiffness of interacting gears.
Blades, tower, and drive train are substructures within the main model and therefore
are easy to exchange in order to simulate different wind turbine designs. In order to
gain comparable results in accordance to measurements at the wind turbine in the
field, the original controller is implemented using an interface. The flexible bodies are
based on a finite element formulation. The tower consists of solids and Timoshenko

beam elements. Additionally lumped masses are used. The blades are modelled by
Timoshenko beam elements. Modal superposition techniques are used to reduce the
number of degrees of freedom of the finite element models and to speed up simulation
time. As a result, the wind turbine model consists of 44 degrees of freedom, see
Fig. 13.8.

For simulating different load cases time efficiently, an open source code script
developed by SIMPACK and refined for the 2.05 MW wind turbine is used. A ten
minute time series with turbulent wind conditions takes approximately 15 minutes
on an Intel Core i5-2320.

13.5 Comparison of Simulations and Measurements

A very important aspect is the experimental validation of the simulations which are
also needed for type certification of the wind turbine. Therefore, the prototype of the
wind turbine is equipped with numerous measurement sensors, e.g. strain gauges at
the blade root, in the tower or at the low speed shaft, see Fig. 13.9a. In addition, a
measurement mast equipped with wind vanes and cup anemometers is built up in
front of the wind turbine, see Fig. 13.9b.
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Fig. 13.9 Measurement setup of the wind turbine. a Strain gauge at the blade root. b Prototype of
the 2.05 MW wind turbine and measurement mast

The aim of this research work is not to establish one of the simulation envi-
ronments as a reference but to compare equivalent models developed by means of
the simulation packages with the measurement results. The objective is to evaluate
the different modelling concepts used in the packages for wind turbine simulation.
In contrast to this method, other research projects validate their program develop-
ment for wind turbine simulation by comparison to generally accepted design codes,
see [19]. The differences in model generation and build-up of the equations of motion
leads to difficulties in the direct comparison of the design codes. In the author’s
opinion, it is more meaningful to evaluate each program by comparing the numerical
results with real measurements. Hence, the scatter plots in the next sections compare
the simulations of Flex5, MSC.Adams and SIMPACK with measurements from the
prototype of the wind turbine.

The continuous time series obtained from the measurements are split up into
ten minute time series in analogy to the simulated time series. The resulting time
series are classified with respect to mean wind speed and the turbulence intensity
of the wind. To compare simulations and measurements, statistical evaluations of
the calculated and measured results are done, as it is difficult to transfer the wind
conditions from the measurement to the simulations. The statistical values used
for comparison are the minimum, maximum, mean value and standard deviation.
All calculations and measurements are done with a turbulence intensity of 10 %.
For statistical confidence, the calculations are done with different wind seeds. A
comparison of all measured interface loads and operating values is not possible
within this chapter. For comparison of the wind turbine behaviour the measured and
calculated electrical power, pitch angle and rotor speed are chosen. To evaluate the
simulated loads the bending moments at blade root and the tilt bending moment
at tower base are compared. The vertical green line within the statistical diagrams
denotes the rated wind speeds. Because the predominant loads are applied on the
blades, the bending moments at the blade root are chosen for a comparison of the
dynamic loads using rainflow counting procedures, see [10]. The load cycles are
estimated for the product life cycle with respect to the wind distribution in the wind
class GL IIa according to the GL guideline [7].
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13.5.1 Electrical Power (Power Curve)

The power curve is important for the economics of a wind turbine. High earnings
especially in the part-load operational range leads to a fast return of invest, which is
requested by the operators of wind farms. The maximum, minimum, mean electrical
power and the corresponding standard deviations of the Flex5, MSC.Adams and
SIMPACK simulations compared to the measurement results are shown in Fig. 13.10.

The diagrams show a very good agreement of simulations with Flex5 and
MSC.Adams compared measurements. The simulation results (maximum, mean
value and standard deviation) using SIMPACK lie below the measured curves, but
show in general a good agreement. The use of the same controller on the prototype
and within the simulations contributes to this result.

13.5.2 Pitch Angle

The pitch angle shows the working principle of the controller, especially of the pitch
controller above rated wind speed. The maximum, minimum, mean pitch angle of
blade 1 and the corresponding standard deviations of the Flex5, MSC.Adams and
SIMPACK simulations compared to the measurement results are shown in Fig. 13.11.

The diagrams show a very good agreement of simulations with Flex5 and SIM-
PACK compared to measurements. The simulation results (maximum and mean
value) using MSC.Adams lie above the measured curves. It can be noticed that the
slope of the simulated mean values is a little bit steeper compared to measurements.
The use of the same controller on the prototype and within the simulations contributes
to the good agreement of simulation and measurements.

13.5.3 Rotor Speed

Another method to check the working principle of the controller is the comparison
of the rotor speed, which can be calculated by nRotor = 30 ωRotor/π . The maximum,
minimum, mean rotor speed and the corresponding standard deviations of the Flex5,
MSC.Adams and SIMPACK simulations compared to the measurement results are
shown in Fig. 13.12.

As can be seen in Fig. 13.12 the mean values of simulation and measurement agree
very well around rated wind speed. Below rated wind speed the simulation results
using SIMPACK lie below the measurements. The same behaviour has already been
noticed for the comparison of simulated and measured electrical power. Further-
more the maximum values around rated wind speed lie above the measured values
using MSC.Adams and SIMPACK. For the rotor speed the best agreement between
simulation and measurement are reached using the Flex5 code.
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Fig. 13.10 Measurement and simulations with Flex5, MSC.Adams and SIMPACK: comparison of
the statistical values (maximum, minimum, mean value, standard deviation) of the electrical power
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Fig. 13.11 Measurement and simulations with Flex5, MSC.Adams and SIMPACK: comparison of
the statistical values (maximum, minimum, mean value, standard deviation) of the pitch angle ϑ1
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Fig. 13.12 Measurement and simulations with Flex5, MSC.Adams and SIMPACK: Comparison
of the statistical values (maximum, minimum, mean value, standard deviation) of the rotor speed
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13.5.4 Flapwise Bending Moment at the Blade Root

The flapwise bending moment at the blade root is caused by the lift of the aerody-
namic profile of the blade. The maximum, minimum, and mean flapwise bending
moment at the blade root as well as the corresponding standard deviation of the Flex5,
MSC.Adams and SIMPACK simulations compared to the measurement results are
shown in Fig. 13.13.

The direction of the moment M f lap and the wind direction in Fig. 13.13 indicates
that the values of the bending moment are negative. The mean values obtained from
the simulations with MSC.Adams und SIMPACK with the measurements show a
better agreement compared to the Flex5 simulations. Especially, this is seen at rated
wind speed, that means around 10–11 m/s. However, the absolute values from the
Flex5 simulations exceed those from the measurements, indicating that the Flex5
simulations lead to conservative load estimations.

Beside the statistical evaluation of flapwise bending moment at the blade root a
dynamic evaluation has been done. Therefore the rainflow matrix is estimated from
the time series of the flapwise bending moment. The flapwise bending moments
are strongly influenced by the turbulence of the wind. The rainflow matrices of the
simulations are presented in Fig. 13.14.

From the rainflow matrix show a large number of load cycles at a small load
range at any mean values. The corresponding rainflow matrix of the measurements
is presented in Fig. 13.15.

Due to the stochastic behaviour of the wind during measurements and the use
of different wind simulators during the simulations a qualitative comparison of the
rainflow matrices is difficult. Also a quantitative comparison is not an appropriate
way of comparison because of the discrete classification during the rainflow counting
procedure. To circumvent these problems the load cycles are summed over each
load range class neglecting their mean values. Subsequently, the load cycles are
accumulated in that way that load cycles with a large load range comprises all load
cycles with smaller load ranges. The corresponding diagrams of the load range vs.
accumulated load cycles are presented in Fig. 13.14. As can be seen the simulations
using Flex5 show a non-conservative behaviour for large load ranges compared to
measurements. In contrast the comparison of simulations using MSC.Adams and
SIMPACK and measurements show a good agreement or conservative behaviour for
dynamic loads over the whole accumulated load cycle range.

13.5.5 Edgewise Bending Moment at the Blade Root

The edgewise bending moment at the blade root is mainly caused by the dead weight
of the blade. Furthermore, the loads of the dead weight of the blade are superposed
by dynamical mass effects and aerodynamic loads due to the lift of the blade. The
maximum, minimum, and mean edgewise bending moment at the blade root and the
corresponding standard deviation of the Flex5, MSC.Adams and SIMPACK simula-
tions compared to measurement results are shown in Fig. 13.16.
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Fig. 13.13 Measurement and simulations with Flex5, MSC.Adams and SIMPACK: comparison of
the statistical values (maximum, minimum, mean value, standard deviation) of the flapwise bending
moment at blade root
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Fig. 13.14 Measurement and simulations with Flex5, MSC.Adams and SIMPACK: comparison
of the dynamic values (rainflow matrix, load range vs. accumulated load cycles) of the flapwise
bending moment at the blade root
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Fig. 13.15 Rainflow matrix
of measurement: flapwise
bending moment at the blade
root

The comparison of simulations and measurement show some differences in the
statistical values. A possible uncertainty is the calibration of the strain gauges at
the blade root. The sensors are calibrated by the dead weight and a slow revolution
of the wind turbine. Typically, the wind turbine coasts freely during calibration.
The comparison of the standard deviation shows the smallest differences between
the simulation of the blade model in MSC.Adams and measurement. The simulation
with SIMPACK shows a good agreement of minimum, maximum and mean value, but
large differences in the standard deviation. Thus, the blade model used in SIMPACK
should be modified to reproduce the characteristics of the real blade.

Due to the strong influence of the dead weight the rainflow matrix has a typical
characteristic. Comparison of the rainflow matrices of the simulations in Fig. 13.17
and the rainflow matrix of the measurement in Fig. 13.18 show three peaks within
all diagrams. The single peak can be approximated by the first order static moment
of the blade and the revolutions of the wind turbine during its life cycle.

However, the comparison of the load range vs. the accumulated load cycles in
Fig. 13.17 show a conservative behaviour of all simulations for edgewise bending
moment compared to measurements. It can be denoted from the step in the diagrams
that large loads acts on the wind turbine with more than 1 · 108 load cycles during
its product life cycle.

13.5.6 Tilt Bending Moment at the Tower Base

The tilt bending moment at the tower base is mainly caused by the thrust of the
rotor. Also some dynamic effects of the mass of the nacelle and the rotor affects
the tilt bending moment at the tower base. The maximum, minimum, and mean tilt
bending moment at the tower base and the corresponding standard deviation of the
Flex5, MSC.Adams and SIMPACK simulations compared to measurement results
are shown in Fig. 13.19.

Due to the fact that the wind turbine almost behaves like a cantilever beam with
a single mass at its end all simulation packages provide a very good agreement
compared to measurement. The large influence of the rotor thrust results in same
characteristics of flapwise bending moment and tilt bending moment at tower base.
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Fig. 13.16 Measurement and simulation with Flex5, MSC.Adams and SIMPACK: comparison
of the statistical values (maximum, minimum, mean value, standard deviation) of the edgewise
bending moment at the blade root
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Fig. 13.17 Measurement and simulations with Flex5, MSC.Adams and SIMPACK: comparison
of the dynamic values (rainflow matrix, load range vs. accumulated load cycles) of the edgewise
bending moment at the blade root
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Fig. 13.18 Rainflow matrix
of measurement: edgewise
bending moment at the blade
root

13.6 Conclusion

The present contribution compares different multibody codes for simulation of a vari-
able speed-variable pitch-horizontal axis wind turbine. The wind turbine simulation
tool Flex5 and the general purpose multibody codes MSC.Adams and SIMPACK are
used for comparison. The same controller schemes as used on the real wind turbine
are implemented into the simulation environments. A prototype of the 2.05 MW wind
turbine were erected and a lot of measurements was done within a period of 1.5 years.
The wind turbine was simulated using turbulent wind models. For statistical confi-
dence, different wind seeds are used in the different simulation environments. For the
predominant loads, the bending moments at the blade root, a dynamical evaluation
of the time series has been done.

The comparison shows that in general all tested simulation tools are suitable for
load calculation of wind turbines. The use of the same controller as on the physical
wind turbine leads to a similar wind turbine behaviour in simulation and field test
as it can be seen in the comparison of the electrical power, the pitch angle, and the
rotor speed. However, the more detailed MSC.Adams and SIMPACK models show
a better agreement of simulation and measurement for the bending moment at blade
root, especially in flapwise direction. A general purpose multibody program enables
to use more degrees of freedom for wind turbine modelling compared to special
wind turbine design codes. However, the more complex models are more prone to
modelling or parameter errors. Especially the model of the blades has to be regarded
carefully. But also the wind turbine simulation code Flex5 has its advantages because
of the short calculation times compared to the general purpose multibody codes. For
example, if a test of different blade designs has been done in the preliminary design
phase, then a qualitative comparison is possible using Flex5.

The simulation models are validated for typical power production load cases.
The validated models can also be used for the calculation of extreme load cases,
for example gust load cases. The use of detailed multibody models could lead to
more lightweight designs of the wind turbines, reducing its costs and increasing its
efficiency. Furthermore, a more detailed multibody model leads to an increase of



13 Comparison and Field Test Validation 329

Flex5

MSC.Adams

SIMPACK

wind direction
tiltM

2 4 6 8 10 12 14 16 18

Wind speed - [m/s]

M
B

T
w

r til
t -

 [k
N

m
]

Scatterplot - Maximum-Minimum-Mean

MAX-Meas
MIN-Meas
MEAN-Meas
MAX-Sim
MIN-Sim
MEAN-Sim

2 4 6 8 10 12 14 16 18

Wind speed - [m/s]

M
B

T
w

r til
t -

 [k
N

m
]

Scatterplot - Standard Deviation

STD-Meas
STD-Sim

2 4 6 8 10 12 14 16 18

Wind speed - [m/s]

M
B

T
w

r til
t -

 [k
N

m
]

Scatterplot - Maximum-Minimum-Mean

MAX-Meas
MIN-Meas
MEAN-Meas
MAX-Sim
MIN-Sim
MEAN-Sim

2 4 6 8 10 12 14 16 18

Wind speed - [m/s]

M
B

T
w

r til
t -

 [k
N

m
]

Scatterplot - Standard Deviation

STD-Meas
STD-Sim

2 4 6 8 10 12 14 16 18

Wind speed - [m/s]

M
B

T
w

r til
t -

 [k
N

m
]

Scatterplot - Maximum-Minimum-Mean

MAX-Meas
MIN-Meas
MEAN-Meas
MAX-Sim
MIN-Sim
MEAN-Sim

2 4 6 8 10 12 14 16 18

Wind speed - [m/s]

M
B

T
w

r til
t -

 [k
N

m
]

Scatterplot - Standard Deviation

STD-Meas
STD-Sim

Fig. 13.19 Measurement and simulation with Flex5, MSC.Adams and SIMPACK: comparison
of the statistical values (maximum, minimum, mean value, standard deviation) of the tilt bending
moment at the tower base
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the understanding of the dynamically behaviour of the wind turbine and provide
the possibility to any arbitrary extension of the wind turbine model such as tower
vibration absorbers.
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Chapter 14
A Real-Time Multibody Dynamics Model
for an Unmanned Robot Vehicle Based
on the Subsystem Synthesis Method

Myoung-Ho Kim, Hee Chan Kang and Sung-Soo Kim

Abstract In this chapter, real-time multibody dynamics models for an unmanned
robot vehicle have been developed. The unmanned robot vehicle consists of six
identical suspension subsystems. The suspension system comprises an MR-rotary
damper and air springs with a double slider-crank mechanism. A 1/6 robot vehicle
model was constructed, and then a full vehicle model was effectively generated by
synthesizing six 1/6 robot vehicle models, using the subsystem synthesis method.
An explicit–implicit integrator has been employed for the stable solutions. In order
to improve efficiency, a model with simplified suspensions was also developed. The
simplified suspension model consists of just a rotational spring-damper. Equiva-
lent spring characteristics were obtained from approximating the characteristics of
the original model. Through the rough terrain run simulations, the computational
efficiency of the subsystem synthesis method was investigated with regard to the
formulations, subsystem model simplification, and different integration methods.

14.1 Introduction

Unmanned robot vehicles have been developed for military applications, including
for surveillance, mine removing, and even assault purposes [6, 21]. Most of the mili-
tary purpose unmanned robot vehicles contain several wheel-suspension subsystems
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Fig. 14.1 Prototype of unmanned robot vehicle

for high-speed operation in off-road situations. Figure 14.1 shows the prototype of
the unmanned robot vehicle developed by the Korean Agency of Defense Devel-
opment. It is equipped with several different types of sensors, such as 3D laser
scanners, vision cameras, and radars, in order to gather information for autonomous
and remote operations. Real-time dynamics models for unmanned robot vehicles
are becoming important for the following applications. The first application is
Hardware-In-the Loop Simulations (HILS) for the controller development of the
suspension subsystems for the robot vehicle. HILS simulations are very effective
at developing and validating the suspension control logics. The real-time dynamics
model is essential for HILS, since the actual suspension control hardware system
is interfaced with the software model of the unmanned robot vehicle system. The
responses of the software model must be computed much faster than the actual hard-
ware controller loop time, considering the overhead from the interfacing between
the hardware system and software model [17]. The second application is associ-
ated with a training simulator for the operators [19]. Most of the unmanned robot
vehicles are not only autonomously operated but also remotely controlled. The
maneuvering of robot vehicles is highly dependent on the skill of the operators.
A training simulator is necessary to improve the operators’ remote control ability.
The training simulator basically consists of the operator’s console with a monitoring
system for displaying the virtual scenes, as well as a force feedback human interface,
a control loading system, a real-time dynamics model, and a virtual reality graphic
display system. In this simulator, depending on the manipulation of the human inter-
face, the response from the dynamics model of the unmanned robot vehicle must
be produced much faster than the real-time response due to the overhead from the
virtual reality graphic computation. The last application for the real-time dynamics
model is on-board simulation to emulate various sensors. As an example of virtual
accelerometer to determine the optimal speed of the unmanned robot vehicle before
actually moving forward, the real-time on-board simulations must be carried out to
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predict vertical accelerations based on the scanned terrain data from the 3D laser
scanners, which are located on the front of the vehicle. Based on the predicted ver-
tical acceleration, the optimal forward speed can be determined [14]. The vertical
acceleration must be computed much faster than the real-time, due to the overhead
from the scanned data processing.

Real-time formulations for the multibody systems were developed in the early
80s in the field of robotics. Walker and Orin [25] developed the efficient Order N3

formula. Featherstone [8, 9] developed a fully recursive Order N formulation for
open chain systems in which the computational amount of the algorithms increases
linearly as the number of bodies increases in the open chain. Bae and Huag [2, 3]
generalized Featherstone’s idea for the tree topology system and also extended the
closed-loop systems. Bae et al. [4] improved the Order N3 formulation when there
was a small number of bodies in the chain. Also, Tsai and Haug [24] applied this
improved algorithm to the vehicle system for real-time application with a driving
simulator. The subsystem synthesis method has been developed by mixing the Order
N3 formulation and the embedded procedure from the Order N formulation by Kim
[15]. This method has proved to be ideally suited for a system with several identical
subsystems attached to the main body.

The subsystem synthesis method has been applied to a vehicle system with several
identical suspension systems in the real-time application. The joint coordinate has
been used in the method with the explicit integrator for the HILS application [17].
For the stiff suspension subsystems, the subsystem synthesis method, based on the
Cartesian coordinate, was developed with the implicit integrator [16]. However, in
this case, it is difficult to achieve real-time simulations without efficient linear equa-
tion solvers. In order to overcome the limitation arising from the Cartesian coordinate
formulation, the joint coordinate subsystem synthesis method was developed with
an explicit–implicit integrator [18].

One of the advantages of the subsystem synthesis method is that it provides
a modular structure for the program, since the equations of motion for each sus-
pension subsystem can be generated separately, while the equations of motion for
the chassis can also be constructed separately. The coupling effects between each of
the subsystems and the chassis are considered by the effective mass matrices and the
effective force vectors. As a result of these characteristics of the subsystem synthe-
sis method, suspension models with different degrees of complexity can be easily
implemented using a library of suspension subsystems. Furthermore, different inte-
gration methods can be applied to the subsystem equations of motion and the chassis
equations of motion. The explicit–implicit integrator with the subsystem synthesis
method was developed by applying an explicit integrator to the chassis’ equations of
motion and by employing an implicit integrator to the subsystem equations of motion
[10, 12, 13, 18].

In this chapter, real-time multibody dynamics models for the unmanned robot
vehicle have been developed by using the above described features of the subsystem
synthesis method. The unmanned robot vehicle consists of six identical suspension
subsystems. Each of the suspension system is composed of an MR-rotary damper and
air springs with a double slider-crank mechanism. The joint coordinate subsystem
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synthesis method has been applied to this model to achieve the real-time simulations.
The performance of the subsystem synthesis method has been compared with that
of the conventional method with joint coordinates. In order to improve efficiency,
a model with simplified suspensions was also developed. The simplified suspen-
sion system consists of a load arm with a rotational spring-damper. The equivalent
spring characteristics were obtained from the original model. Using rough terrain
run simulations, the two different models described previously were compared in
order to investigate the solution accuracy and efficiency. The explicit–implicit inte-
gration method was applied to improve the efficiency with a larger stepsize. Finally,
the performance of the real-time models was investigated with regard to the dif-
ferent formulations, different suspension modeling (i.e., model simplification), and
different integration schemes.

14.2 Real-Time Model Using the Subsystem Synthesis
Method

This section presents the use of the subsystem synthesis method to create equations
of motion for the unmanned robot vehicle. The procedure for how to synthesize the
several subsystem equations of motion to the equations of motion for the chassis body
will be explained without detailed derivations of subsystem equations of motion. The
detailed derivations have been presented in Ref. [15].

14.2.1 A 1/6 Robot Vehicle Model

Figure 14.2 represents a 1/6 robot vehicle model in which the suspension subsystem
consists of an MR-rotary damper and air springs with a double slider-crank mecha-
nism. The figure on the right in Fig. 14.2 shows a schematic diagram of the model.
The edge denotes a joint, and the circle represents a body in the multibody system.
The crank is connected to the chassis with a revolute joint. The crank is also attached
to two pistons through two connecting rods, which are modeled as massless links.
Each piston is connected to the housing with a translational joint.

The system equations of motion for this 1/6 robot vehicle model can be derived
using the recursive kinematics and variational approach [15]. The virtual base body of
the subsystem is introduced as the reference body in the subsystem for the kinematics
with relative joint coordinates. In other words, the virtual base body is the base
reference body in the recursive kinematics [15]. The wheel body is connected to
the housing with a fixed joint, since the simple tire model is used, which does not
consider wheel spin dynamics and only includes vertical stiffness of the tire. The fixed
joint connects the virtual base body and the chassis in order to make a dynamically
equivalent system.
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Fig. 14.2 A 1/6 robot vehicle model

If the conventional joint coordinate formulation [24] is used, the equations of
motion for the suspension subsystems with the virtual base body can be derived as:


⎧ M̄yy M̄yq 0

M̄T
yq M̄qq �T

q̄
0 �q̄ 0

⎪
⎨
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⎨ (14.1)

where ˙̂Y0 is the chassis’ state acceleration vector, ¨̄q is the joint acceleration vector
associated with the suspension subsystem, and λ is the Lagrange multiplier vector
associated with the distance constraints that represent the massless connecting rods
of the double slider-crank mechanism. M̄yy , M̄yq , and M̄qq are the inertia matrices
associated with the suspension subsystem and P̄y and P̄q are the generalized force
vectors. �q̄ is the Jacobian matrix associated with two distance constraints. The state

acceleration vector ˙̂Y0 has dimensions of six, and the joint acceleration vector has
dimensions of three (one for the revolute joint between the chassis and the housing
and two for the two translational joints). The Lagrange multipliers vector λ has
dimensions of two.

From the second and third rows of Eq. (14.1), the equations of motion for the

subsystem can be obtained by treating the state acceleration ˙̂Y0 of the chassis body
as the known value:
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From the 2nd row of Eq. (14.1), the equation of motion can be expressed as:

M̄qq ¨̄q = P̄q − MT
yq

˙̂Y0 − �T
q̄ λ (14.4)

After obtaining the acceleration expression ¨̄q in terms of ˙̂Y0 from Eq. (14.4) and sub-
stituting this expression and the expression of the Lagrange multiplier in Eq. (14.3)
into the first row of Eq. (14.1), the reduced form of the virtual base body equations
of motion can be obtained as

δ

M c ˙̂Y0 = δ

P c (14.5)

where,
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Since the virtual base body and the original chassis body are connected with a fixed
joint, the equations of motion for the chassis body are obtained by simply adding the
effective mass matrix in Eq. (14.6) and the effective force vector in Eq. (14.7) to the
original chassis body equations of motion:

(M̂0 + δ

M c)
˙̂Y0 = (Q̂0 + δ

P c) (14.8)

where M̂0 and Q̂0 are the mass matric and generalized force vector of the chassis.

14.2.2 Full Robot Vehicle Model

The equations of motion for the full robot vehicle model can be easily constructed
by synthesizing six of the 1/6 robot vehicle models using the subsystem synthesis
method as shown in Fig. 14.3.

The chassis body equations of motion for the full robot vehicle model can now
be obtained as shown in Eq. (14.9) by simply adding the effective mass matrices and
the effective force vectors from all six suspension subsystems:

(
M̂0 +

6⎜
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δ
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i

⎤
˙̂Y0 =

(
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6⎜
i=1

δ

P c
i

⎤
(14.9)

As described in the previous section, the suspension subsystem equations of motion
can be in exactly the same form as Eqs. (14.2) and (14.3):
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Fig. 14.3 A full robot vehicle model by synthesizing six 1/6 vehicle models
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λi for i = 1, 2, . . . , 6 (14.11)

In order to see the effectiveness of the subsystem synthesis method, the equations
of motion for the full robot vehicle model using the conventional method [24] with
joint coordinates can be derived:
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The dimensions of the inertia matrix of Eq. (14.12) are 36 by 36 for the full robot
vehicle model. The dimensions of the M̄qq matrix in Eq. (14.11) are three by three,
and the dimensions of the (�qM−1

qq �T
q ) in Eq. (14.10) are two by two. Thus, in

the subsystem synthesis method, it is only necessary to solve linear equations with
dimension 2 and then linear equations with dimension 3 to obtain the Lagrange
multipliers and the joint accelerations, respectively, for each of the suspension sub-
systems. For the acceleration of the chassis body, linear equations with dimension 6
also have to be solved in the subsystem synthesis method. However, in the conven-
tional method, 36 linear equations must be solved for the full robot vehicle model.
Thus, the subsystem synthesis method is more computationally efficiency than the
conventional method.

Another attractive feature of the subsystem synthesis method is the extendibility
from the programming point of view. If one more subsystem is added to the chassis
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body physically, then it is very easy to adopt this in the chassis equations of motion
in Eq. (14.9) by adding the effective mass matrix and the effective force vector
into the program. In contrast, it is difficult to extend within the program using the
conventional method as shown in Eq. (14.12).

14.3 Real-Time Model with Suspension Model
Simplification

Different suspension models can be easily adopted in the subsystem synthesis method
on the condition that the effective mass matrices in Eq. (14.6) and the effective force
vectors in Eq. (14.7) are properly generated. In order to improve the efficiency, the
suspension model can be simplified using a single load arm (the housing) with a
non-linear rotational spring as shown in Fig. 14.4. To obtain the characteristics of the
non-linear rotational spring, a torque-angle curve was first obtained from the original
suspension model described in Sect. 14.2, using the ADAMS program [22]. Then, a
fifth order polynomial function has been introduced to approximate the torque-angle
curve through the curve fitting technique as shown in Fig. 14.5.

If the conventional joint coordinate formulation [24] is used, the equations of
motion for the suspension subsystems with the virtual base body can be derived as:

[ ¯̄Myy
¯̄Myq

¯̄MT

yq
¯̄Mqq

] [ ˙̂Y0¨̄q

]
=

[ ¯̄Py¯̄Pq

]
(14.13)

where ˙̂Y0 is the chassis’ state acceleration vector, ¨̄q is the joint acceleration vector

associated with the suspension subsystem, ¯̄Myy,
¯̄Myq and ¯̄Mqq are inertia matrices,

and ¯̄Py and ¯̄Pq are the generalized force vectors. In this simplified model, ¨̄q is the
revolute joint acceleration and is the scalar variable. From the second row of Eq.
(14.13), the equation of motion for the subsystem is shown as Eq. (14.14);

¯̄Mqq ¨̄q = ¯̄Pq − ¯̄MT

yq
˙̂Y0 (14.14)

After obtaining the acceleration expression ¨̄q in terms of ˙̂Y0 from Eq. (14.14) and
substituting this expression into the first row of Eq. (14.13), the reduced form of the
virtual base body equations of motion is obtained as:

0
c cM Y P=ˆ

(14.15)

where,

–1 Tc
yy yq qq yqM M M M M= − (14.16)
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Fig. 14.4 Suspension model simplification

Fig. 14.5 Simplified suspension model with equivalent rotational stiffness

–1 Tc
y yq qq yqP P M M M= − (14.17)

The expressions of the effective mass cM and the effective force vector cP are much
simpler than those of the original model in Eqs. (14.6) and (14.7). The chassis body
equations of motion for the full robot vehicle model are in exactly the same form as
the one in Eq. (14.9), even though the simplified suspension model is used:

0 0 0
–1–1

ˆ ˆ( ) ( )
nn

cc
ii

ii

M M Y Q PΣ Σ++ = ˆ

(14.18)

Once the acceleration of ˙̂Y0 is obtained by solving Eq. (14.18), then the subsystem
equations of motion can be solved using the following equations.
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¯̄Mqqi
¨̄q

i
= ¯̄Pqi − ¯̄M

T

yqi
˙̂Y0 for i = 1, 2, . . . , 6 (14.19)

The dimensions of qqiM are only one by one. The matrix inversion procedure is
not necessary. Eq. (14.18) has the same form as Eq. (14.9). The only differences
are the expressions of the effective mass matrices and the effective force vectors.
Thus, on the condition that the effective mass matrices and effective force vectors
are correctly computed, the subsystem model can be easily replaced by other types
of subsystem model. Using the simplified model, the computational amount can be
drastically reduced as shown in Eqs. (14.16), (14.17) and (14.19). The efficiency
with numerical simulation will be shown later in Sect. 14.5.

14.4 Subsystem Synthesis Method with Different
Integrators

For a real-time model, it is not only important to have an efficient formulation for gen-
erating equations of motion but also to have a stable numerical integration method.
For real-time integration, an inexpensive, accurate, stable, and fixed integration for-
mula, which has the same amount of computational costs in each integration step,
must be used [5]. Explicit multi-step methods are known to be accurate and inex-
pensive. However, they may not offer good stability. If the equations of motion are
stiff, a very small stepsize must be used due to the narrow stability region of the
explicit multi-step integrator [1]. In contrast, implicit integrators have much better
numerical stability than explicit integrators. However, implicit integrators require an
iterative solution procedure for solving non-linear equations. The iterative solution
procedure with a convergence criterion fails to maintain the same computational cost
for each time step, even though a fixed stepsize is used. Thus, it is also necessary to
fix a number of iterations that is large enough to satisfy the convergence criterion.

In the subsystem synthesis method, different integration formulas can be applied
to the subsystem equations of motion and to the chassis body equations of motion.
Especially for the vehicle system, the suspension subsystem experiences high fre-
quency excitation from rough terrain. However, the excitation to the chassis from
the suspension system is alleviated due to the spring-damper in the suspension. In
this section, a subsystem synthesis method with two different integrators is pre-
sented. The subsystem synthesis method with an explicit integrator is presented first
in Sect. 14.4.1. The subsystem synthesis method with an explicit integrator for the
chassis body equations of motion and an implicit integrator for each of the subsystem
equations of motion is described in Sect. 14.4.2.
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Fig. 14.6 Flow chart of the subsystem synthesis method with an explicit integrator

14.4.1 Explicit Integration Method

In order to apply the explicit integration formula for the subsystem synthesis method,

the chassis’ equations of motion can be solved for the acceleration of the chassis ˙̂Y0
from Eq. (14.9). Then, the explicit integration formula can be applied to predict the
position and the velocity of the chassis for the next time step. Once the acceleration of

chassis ˙̂Y0 is obtained, the Lagrange multiplier vectors and joint acceleration vectors
in each suspension subsystem can be consequently computed from Eqs. (14.10) and
(14.11). Acceleration of the joint coordinates can also now be integrated using an
explicit integration formula for the position and the velocity of the next time step. In
this chapter, the Adams-Bashforth 3rd order explicit formula [1] has been employed
as:

¯̄yt+1 = ¯̄yt+ h
12

(
23 ˙̄̄yt − 16 ˙̄̄yt−1 + 5 ˙̄̄yt−2

)
(14.20)

where ¯̄y is the composite vector that contains the position and the velocity vector of
the system.

Figure 14.6 shows the flow chart of the solution procedure from the subsystem
synthesis method with an explicit integrator. In the Chassis Module A, the positions
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and the velocity of the chassis body are computed. The composite vector Ŷ0 of the
chassis, which contains the position vector and the velocity state vector, is transferred
from Chassis Module A to each of the modules of Subsystem Module A. In Subsystem
Module A, the position vector qi and the velocity vector q̇i of each subsystem are

computed. The effective mass matrix
δ

M c
i in Eq. (14.6) and the effective force vector

δ

P c
i in Eq. (14.7) are also computed for each subsystem. The effective mass matrices

and the effective force vectors from all subsystem modules are transmitted to Chassis
Module B. In Chassis Module B, the chassis’ equations of motion are formed and the

acceleration of chassis ˙̂Y0 is evaluated by solving Eq. (14.9). ˙̂Y0 is then transferred
into the each of the modules of Subsystem Module B. Also, the acceleration of

chassis ˙̂Y0 is moved to the explicit integrator module to predict the position and
velocity of the chassis for the next time step. In Subsystem Module B, the Lagrange
multiplier associated with the subsystem is computed using Eq. (14.10), and the
joint acceleration vector of the subsystem is also obtained by solving Eq. (14.11).
Joint acceleration vectors from each of the modules of Subsystem Module B can be
integrated for the next step using an explicit integrator. Due to the modular structure
of the subsystem synthesis method, it is possible to apply different explicit integrators
to the subsystem modules and the chassis module, as shown in this flow chart:

14.4.2 Explicit–Implicit Integration Method

For vehicle systems, a suspension system is needed to reduce the vertical wheel load
variation and to isolate the road input. The suspension system can experience high
frequency excitation from the road input. In contrast, the chassis frame can have a
reduced frequency due to the suspension spring-dampers. If an explicit integration
is applied especially to the off-road vehicle model, a very small stepsize must be
used due to the high frequency excitation of the wheel and suspension subsystem. To
alleviate this problem, the implicit integration formula, which has better stability than
the explicit one, must be used. Due to the modular feature of the subsystem synthesis
method, it is possible to apply an implicit integrator to the subsystem equations of
motion that contain the stiff element or high frequency content and to impose an
explicit integrator separately on the chassis’ equations of motion [10, 12, 13].

In this chapter, the HHT integration formula [11] is employed as an implicit
integrator. If the HHT-α integration method is applied to the subsystem equations of
motion shown in Eq. (14.11), the complemented equations of motion, considering
the numerical damping effect, are obtained, as shown in Eq. (14.21).

� ∈ (M̄T
yq

˙̂Y0)n+1 + (M̄qq ¨̄q)n+1 + (1 + α)(�T
q̄ λ − P̄q)n+1 − α(�T

q λ − P̄q)n = 0
(14.21)

In the HHT-α method, the Newmark formula is utilized for the joint velocity and the
joint position for the next time step tn+1 as:
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˙̄qn+1 = ˙̄qn + (1 − γ)h ¨̄qn + γh ¨̄qn+1 (14.22)

q̄n+1 = q̄n + h ˙̄qn + h2

2
(1 − 2β) ¨̄qn + βh2 ¨̄qn+1 (14.23)

where, h is a stepsize and the subscripts denote the discrete time steps. In the HHT-α
method, the desirable level of numerical damping in the system can be adjusted with
the integration parameter α.

α ∗ [− 1
3 0

]
,β = (1 − α)2

4
, γ = 1 − 2α

2
(14.24)

An iterative method, such as the Newton-Raphson algorithm, can be applied to solve
the resulting systems of nonlinear equations [23] shown in Eq. (14.21) as:

[
� ¨̄q

1+α �T
q̄

�q̄ 0

][
π ¨̄q(k)

πλ̄
(k)

]
=

[
− �

1+α

− �
βh2

]
(14.25)

with,
¨̄q(k+1) = ¨̄q(k) + π ¨̄q(k)

λ̄
(k+1) = λ̄

(k) + πλ̄
(k)

where, (k) represents the iteration counts for the Newton-Raphson method. In Eq.
(14.25), � ¨̄q is the system Jacobian matrix that can be expressed as the following
equation:

� ¨̄q = M̄qq + βh2(�)q̄ + γh(�) ˙̄q + (�) ¨̄q (14.26)

The computation of the system Jacobian matrix is very complicated. To derive the
system Jacobian expression, MAPLE [20] is used in this chapter.

For the simplified suspension model described in Sect. 14.3, if the HHT–α method
is applied, the complemented equations of motion for the subsystem equations of
motion are as follows:

�̄ ∈ ( ¯̄MT

yq
˙̂Y0)n+1 + ( ¯̄Mqq ¨̄q)n+1 − (1 + α)( ¯̄Pq)n+1 + α( ¯̄Pq)n = 0 (14.27)

An iterative method, such as the Newton-Raphson algorithm, can also be applied to
solve the resulting systems of nonlinear equations for Eq. (14.27):

�̄ ¨̄qπ ¨̄q(k) = −�̄

¨̄q(k+1) = ¨̄q(k) + π ¨̄q(k)
(14.28)
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where (k) represents the iteration counts for the Newton-Raphson method. In Eq.
(14.28), �̄ ¨̄q is the system Jacobian matrix that can be expressed as the following
equation:

�̄ ¨̄q = M̄qq + βh2(�)q̄ + γh(�) ˙̄q + (�) ¨̄q (14.29)

To derive the expression of the system Jacobian matrix effectively, the symbolic code
generator MAPLE is also used [20].

Figure 14.7 shows the flow chart of the solution procedure from the subsystem
synthesis method with an explicit–implicit integrator. In the initial computation box,
acceleration analysis of the full robot vehicle is carried out using Eqs. (14.9) and
(14.11), since the acceleration values are required in Eq. (14.21). The composite

vectors Ŷ0 and ˙̂Y0 and joint position, velocity and acceleration are transferred to
each of the subsystem modules. In the Subsystem Module, the joint positions and
joint velocities for the next time step are estimated using Taylor series expansion.
These estimated values are used for computing mass matrices and force vectors in
Eq. (14.21) in the first iteration of the Newton Raphson. The complemented equation
� shown in Eq. (14.21) is then evaluated. System Jacobian in Eq. (14.26) is also
computed. Afterward, the system equation in Eq. (14.25) is solved to obtain the
joint acceleration. During iterative procedure, joint position and joint velocity are
also updated using the Newmark formulas in Eqs. (14.22) and (14.23). Once the
convergence criterion ⇒�⇒ is satisfied, subsystem analysis is completed for joint
positions, joint velocities and joint accelerations. With these converged variables,
the effective mass matrices in Eq. (14.6) and the effective force vectors in Eq. (14.7)
are computed. The effective mass matrices and the effective force vectors from each
subsystem are then transmitted to Chassis Module B. In Chassis Module B, the

chassis’ equations of motion are formed, and the acceleration of the chassis ˙̂Y0 is

evaluated by solving Eq. (14.9). The acceleration of the chassis ˙̂Y0 is moved to
the explicit integrator module to predict the position and velocity of the chassis for
the next time step. It is noted that although the implicit formula for the subsystem
equations of motion requires the acceleration of the chassis at the current step, the
acceleration from the previous step is used instead by assuming that the acceleration
variation is small.

14.5 Real-Time Simulations of the Unmanned Robot Vehicle
with Rough Terrain

The full robot vehicle model was created and implemented using the C language.
Once the 1/6 robot vehicle model was implemented, then the full robot vehicle model
can be constructed very effectively, since the subsystem synthesis method provides
effective means to expand from the 1/6 robot vehicle model to the full robot vehicle
model as described in Sect. 14.2. Table 14.1 shows the inertia properties of the full
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Fig. 14.7 Flow chart of the subsystem synthesis method with an explicit–implicit integrator

robot vehicle model. Table 14.2 also shows the parameters associated with the force
elements in the suspension subsystem shown in Fig. 14.2.

In order to investigate the efficiency of the subsystem synthesis method relative
to the conventional method, a full robot vehicle model was also created using the
conventional method shown in Eq. (14.12) and implemented using the C language.
Rough terrain simulations have been carried out with the full robot vehicle models
from the two different formulations. The vehicle speed was 10 km/h, and PSD level
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Table 14.1 Inertia properties of the robot vehicle

Inertia properties Mass (kg) Inertia (kg m2)

Ix ≡x ≡ Iy≡y≡ Iz≡z≡
Chassis 440 512.736 460.446 861.830
Housing and wheel 16.78 0.536 0.493 0.067

Table 14.2 Force element
properties of suspension
subsystem

Element properties Values

Air spring stiffness 2 ×
(

π×602

4

)
×

(
0.07589

l

)1.8
Nm/deg

MR damper damping 10.47 Nm s/deg
coefficient

Tire vertical stiffness 200,000 N/m

Fig. 14.8 Vertical positions of the chassis from models with subsystem synthesis method and with
the conventional method

D road roughness was chosen [7]. Figure 14.8 shows the vertical positions of the
chassis with the two different models. Essentially identical results were obtained
from the two different models.

Figure 14.9 shows the CPU time comparison between the subsystem synthesis
method and the conventional method. In this simulation, the Adams-Bashforth 3rd
order explicit integrator was used with a fixed stepsize of 0.8 ms. As a computational
platform, a PC with an Intel CoreTM i5-3,570 K 3.40 GHz CPU, and 3,392 MB RAM
was utilized for a 35-s simulation time. The model with the conventional method
took 9.867 s whereas the model with the subsystem synthesis method took only
4.439 s. Thus, the real-time simulation was achieved with both models. However, the
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Fig. 14.9 CPU time comparison between the subsystem synthesis method and the conventional
method

subsystem synthesis method was about 2.2 times faster than the conventional method
because it solved several small equations of motion rather than a large matrix form
of equations of motion.

In order to examine the efficiency of to the suspension model simplification
described in Sect. 14.3, a full robot vehicle model with a simplified suspension
subsystem was also developed. To develop this model, only the subsystem model
was implemented at first, and then the original subsystem modules were replaced
by the simplified suspension subsystem modules without altering the program struc-
ture. The simulations were carried out with the same conditions as the previous ones.
Figure 14.10 shows the roll angles of the chassis from the model with the original sus-
pension (the complicated model) and from the model with the simplified suspension.
Essentially identical responses were obtained. Thus, the model with the simplified
suspensions has been validated.

Figure 14.11 shows the CPU processing time comparison from the two different
suspension subsystem models. The model with the simplified suspension is about
1.9 times faster than the one with the original suspension. It is noted that the original
suspension model contains multiple closed loops whereas the simplified model has
an open loop system. Thus, computational saving are accomplished, as described in
Sect. 14.3.

In order to investigate the effciency of the different integration methods, a full
robot vehicle model was developed and implemented using the C language based
on the explicit–implicit formulation described in Sect. 14.4.2. The full robot vehicle
model with the simplified suspension was utilized in this comparison study. The
simulation conditions for the rough terrain run were the same as previous ones.
When the explicit integration method is applied to the model, the maximum stepsize
is 0.8 ms. If a larger stepsize than 0.8 ms is used, unstable solutions are obtained. For
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Fig. 14.10 Roll angles of the chassis from complicated and simplified subsystem models

Fig. 14.11 CPU time comparison between models with complicated suspensions and with simpli-
fied suspension

the full robot vehicle model with the simplified suspsensions, the CPU time taken is
only 2.340 s out of the 35-s simulation time.

Figure 14.12 shows the CPU time results according to the various stepsizes of the
explicit–implicit integrator. If the explicit–implicit integrator is employed, a larger
stepsize than 0.8 ms can be used to produce stable results. However, when the larger
stepsize was used, the RMS errors also increased as shown in Fig. 14.13. In the
RMS error computation, the acceleration responses from the model with the explicit
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Fig. 14.12 CPU times with the various stepsizes of the explicit–implicit integrator

Fig. 14.13 RMS errors according to the various stepsizes

integration were treated as the reference solutions. When the stepsize was larger than
5.6 ms, the RMS errors drastically increased. Thus, a stepsize of 4.8 ms was chosen
as the maximum stepsize that produces stable solutions without much loss of accu-
racy for the explicit–implicit integrator. In Table 14.3, the RMS errors for position,
velocity, and acceration variables are also presented for the integration stepsize of
4.8 ms. In the subsystem synthesis method, since the subsystem equations of motion
are solved independently, each subsystem has different convergence characteristics.
Thus, different average Newton Raphson iteration counts are presented as shown
in Table 14.3 for the subsystems (LF, LM, LR, RF, RM, and RR). For real-time



352 M.-H. Kim et al.

Table 14.3 Detailed CPU time results

Full car model Method
Rough terrain
Simulation: 35 s Explicit Ex-implicit

(reference) Ex-implicit (NR count: 5)

Max. stepsize (ms) 0.8 4.8 4.8
Pos. (m) – 4.3833E−05 4.8259E−05

RMS error Vel. (m/s) – 0.0021 0.0021
Acc. (m/s2) – 0.1128 0.1482

RF: 4.57 RF: 5
RM: 2.98 RF: 5

Ave. NR count – RR: 3.51 RR: 5
LF: 3.61 LF: 5
LM: 3.05 LM: 5
LR: 4.24 LR: 5

CPU time (s) 2.340 1.746 1.833
Ratio of CPU time to simulation time (%) 6.69 4.99 5.24
Ratio among three methods 1 0.75 0.65

LF Left front suspension, LM Left middle suspension, LR Left rear suspension
RF Right front suspension, RM Right middle suspension, RR Right rear suspension

Fig. 14.14 CPU time comparison among different models based on formulations, model simplifi-
cation, and integration methods

simulations, a fixed computational cost for each integration time step is required in
the case of HILS. Simulations have been also carried out with a fixed Newton Raph-
son (NR) count of 5 in order to ensure the same computational cost for each time step.
The CPU time results with various integration stepsizes for the model with a fixed
NR count are also shown in Fig. 14.12. The model with a fixed NR count consumed
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lager CPU times than the model without a fixed NR count in the smaller integration
stepsizes. With smaller integration stepsizes, the solutions converged with less than
five iterations. The larger integration stepsizes are used, the more iterations are nec-
essary for convergence. Thus, when the stepsize of 4.8 ms was employed, the similar
CPU times were required for the both models with and without a fixed NR count as
shown in Table 14.3.

As a summary of the performances of the different models, Fig. 14.14 shows
the CPU time comparison among the different models discussed in this chapter;
i.e., the models with different formulations, the models with and without suspension
model simplification, and the models with different integration methods. In the 35-s
simulation, the model using the subsystem synthesis method improved efficiency by
reducing the CPU time from 9.866 to 4.439 s. Using the simplified suspension model
reduced the CPU time from 4.439 to 2.340 s additionally. Finally, if the explicit–
implicit integration method is employed with an integration stepsize of 4.8 ms, we
were able to reduce further the CPU time from 2.340 s to 1.746 s. Thus, if we apply
the subsystem synthesis method to the full robot vehicle model with the simpli-
fied suspension model and also employ the explicit–implicit integrator, then we can
achieve the real-time simulations of in which the CPU time requires only 5.24 % of
the actual time.

14.6 Conclusions

Real-time multibody dynamics models for an unmanned robot vehicle have been
developed. The unmanned robot vehicle consists of six identical suspension subsys-
tems. The subsystem synthesis method, which is ideally suited for a vehicle system
with several identical suspension subsystems, has been applied for real-time simula-
tions. In order to improve the efficiency, the suspension subsystem model has been
simplified. The original suspension model consists of an MR-rotary damper, air
springs with a double slider-crank mechanism. The simplified suspension model has
been created by replacing the air springs with the double slider-crank mechanism to a
non-linear rotational spring. By taking advantage of the subsystem synthesis method,
the full robot vehicle model has been effectively created by replacing the original sus-
pension subsystem model to the simplified subsystem model. For the stable solutions
with a large integration stepsize, the explicit–implicit integrator with the subsystem
synthesis method has been also employed. Using rough terrain simulations, the effi-
ciency of the created model has been investigated. For real-time simulations which
require the same computational cost, a procedure for a fixed number of iterations
in the implicit integration has been demonstrated. The CPU time results show that
the model with the simplified suspension provides the best performance with the
explicit–implicit integrator.
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Chapter 15
History of Benchmark Problems
in Multibody Dynamics

Werner Schiehlen

Abstract In computational mechanics, and in particular in multibody dynamics,
benchmarks are very helpful to identify the strongs and weaks of algorithms, for-
malisms, and computer program packages with respect to applications in science and
engineering. The history of benchmark problems is reviewed, some example includ-
ing gyrodynamics, mechanisms, road and rail vehicles as well as flexible beams are
presented. Future developments will be discussed.

15.1 Introduction

According to Wikipedia [1, 2] a benchmark is the act of running a computer program,
a set of programs, or other operations, in order to assess the relative performance of an
object, normally by running a number of standard tests and trials against it. The term
‘benchmark’ is also utilized for the purposes of elaborately-designed benchmarking
programs themselves. Benchmarking is often associated with assessing performance
characteristics of computer hardware, for example, the floating point operation per-
formance of a CPU. But the technique is also applicable to software. Software bench-
marks are, for example, run against compilers or database management systems.
Benchmarks provide a method of comparing the performance of various subsystems
across different computer architectures. On the other hand test suites are a type of
system intended to assess the correctness of software.

In software development, a test suite or validation suite, respectively, is a col-
lection of test cases or benchmark problems that are intended to be used to test a
software program to show that it has some specified set of behaviour. A test suite
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often contains detailed instructions or goals for each collection of test cases and
information on the system configuration to be used during testing. A group of test
cases may also contain prerequisite states or steps, and descriptions of the following
tests.

In multibody dynamics complete validation suites are not available but benchmark
problems have been defined and successfully used. In this historical review a number
of benchmark problems is presented from various engineering applications. Ideally,
the benchmark problems are solved on the same computer by competitive multibody
simulation software. But this is often not possible due to the availability of hardware
and software resources. Nevertheless, the accuracy of the results and the efficiency of
the computations provide an important information on performance and correctness
for program developers and software users.

15.2 Classes of Benchmarks

There are four classes of benchmarks considered including gyrodynamics, mecha-
nisms, vehicle dynamics and flexible multibody systems.

15.2.1 Gyrodynamics

The first class of benchmarks is related to the fundamentals of multibody systems
originating from gyro dynamics. A gyroscope in Cardanic suspension represents a
three-body system with springs as treated 1942 by Magnus [3], and it is shown in
Fig. 15.1. Magnus presented the completely exact equations of motion shown in
Fig. 15.2 in a compact form. The symbols in the equations of motion are defined as
follows: momentum vector J, relative angular velocity vector u’, torque vector of
the springs M, angles δ and π related to the inner ring and the rotor, respectively,
indices 1, 2, 3 for the rotor, inner ring and outer ring. The indices A, B, C identify
the axes of the outer ring, inner ring and rotor, some of them also known as Prandtl
rotation axes. Furthermore, (*) means time derivative in the body fixed frames.

Later in 1966 Magnus [4, 5] discussed the stability behavior of a force-free asym-
metric gyroscope represented by the Prandtl wheel, Fig. 15.3. The inertia distribution
can be changed by fixing additional weights at the rotor bearings of the inner gim-
bal resulting in an increase κ of the corresponding moments of inertia. Obviously,
the stability behavior of the three-body Prandtl wheel is deviating from a one-body
Eulerian gyro featuring instability only about the axis of the middle moment of iner-
tia. In particular, the domain κ1 < κ < κ2 shows only one stable rotation while in
the domain κ3 < κ < κ4 there isn’t any instability. These results summarized in
Table 15.1 have been experimentally confirmed, and they can been used as reliable
benchmarks in computational multibody dynamics.
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Fig. 15.1 Gyro as three-body system [3]

Fig. 15.2 Equations of motion [3]

15.2.2 Mechanisms

A second class of benchmarks includes Andrew’s seven-body mechanism also known
as Andrew’s squeezer mechanism proposed for early impact printers, Fig. 15.4. This
benchmark was promoted by Giles [6] and Manning [7] in the late 1970s.

The mechanism performs a plan motion. The disassembled system has 7×3 = 21
degrees of freedom. The system is assembled by 10 bearings resulting in 20 con-
straints with 1 degree of freedom left. The mechanism was used 1990 as benchmark
in the Multibody Systems Handbook [8] with a detailed description of all the kine-
matical and dynamical parameters. The angle δ was used as generalized coordinate
and the scalar symbolic equation of motion has been generated with the software
NEWEUL where the other angles, e.g. ρ (δ), serve as auxiliary variable. The time
integration of the scalar ordinary differential equation (ODE) of the angle δ and the
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Fig. 15.3 Prandtl wheel [5]

Table 15.1 Stability domains of the Prandtl wheel: stable (+) and unstable (−)

Prandtl rotation κ < κ1 κ1 < κ < κ2 κ2 < κ < κ3 κ3 < κ < κ4 κ4 < κ

No. 1 + − − + +
No. 2 + + + + −
No. 3 − − + + +

post-processing for ρ (δ) result for a constant drive torque in the motion shown in
Fig. 15.5.

Later on in 1996 Andrew’s seven-body mechanism was widely applied for testing
differential algebraic equation (DAE) solvers by Hairer and Wanner [9]. The mecha-
nism has three closed kinematical loops connecting bearings O, A and B and resulting
in six algebraic closing conditions. Simulation results are shown in Fig. 15.6, in par-
ticular the angle ρ shows the same motion as depicted in Fig. 15.5.

Moreover, Hairer and Wanner [9] compare index 3, 2, and 1 formulations by work-
precision diagrams plotting the computing time over the error of the components at
time t = 0.03 s. It turns out that index 1 formulation with velocity stabilization
provides the best results with respect to the accuracy achieved and the computing
time required.

15.2.3 Vehicle Dynamics

A third class of benchmarks is devoted to vehicle dynamics. Kortuem and Sharp [10]
published 1993 a book comparing vehicle dynamic software, and used the Iltis vehicle
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Fig. 15.4 Mechanism as seven-body system [8]

Fig. 15.5 Simulation of motion of mechanism [8]
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Fig. 15.6 Simulation of motion of mechanism [9]

VAMPIRE GENSYS SIMPACK ADAMS NUCARS

Critical speed /m/s

Vehicle 1 74 77.05 70 72 79

Vehicle 2 58 70.5 80 75 79

Fig. 15.7 Critical speeds [11]

as a benchmark problem. The parameters of the Iltis vehicle made under Volkswagen
licence by Bombardier in Canada are described in detail including geometry and
masses, force elements and a tire model. The vehicle has 4 identical suspensions with
1 degree of freedom each. Thus, the vehicle has 10 degrees of freedom altogether.
Four test cases are identified: static equilibrium, eigenvalues, response to vertical
road profiles and handling performance.

Due to four different codes, FASIM, MEDYNA, NEWEUL and SIMPACK many
useful results are available. A 2 mm steering rack displacement with a ramp-to-
step input results after transition in a steady-state circular cornering. SIMPACK
and NEWEUL simulations coincide very well. For speeds of 10, 20 and 30 m/s
lateral accelerations of 0.5, 1.5 and 2.5 m/s2 are achieved with a maximum of 10 %
overshoot.

Later in 1999 Iwnicki [11] edited the proceedings of the International Workshop
on Computer Simulation of Rail Vehicle Dynamics held at Manchester Metropolitan
University. Two vehicles and four track cases were designed representing typical
modeling and simulation tasks in railway engineering. The results are very well doc-
umented. The benchmark vehicle 1 is a general passenger coach with two bogies,
simple primary suspension and vertical secondary suspension with linear damping.
The benchmark vehicle 2 is a two axle freight car with load depending friction
damping. The benchmark vehicle models run on four different track cases of differ-
ent complexity. The contact between the wheels and the rails is not specified, the
contact modeling is part of the software packages VAMPIRE, GENSYS, SIMPACK,
ADAMS and NUCARS participating in the Manchester Benchmarks. Very important
in railway engineering is the critical speed. Some results are shown in Fig. 15.7.
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Fig. 15.8 Two-axle vehicle as test case [12, 13]

Fig. 15.9 Generalized coordinates of two-axle vehicle [12, 13]

In principle, multibody computer codes for simulations include modeling and
time integration programs which may also considered separately. Rill and Schiehlen
[12] used 2009 the bouncing and pitching motion of a two-axle vehicle for testing
MATLAB time integrators, Fig. 15.8. There were compared nine different codes sub-
ject to bump and random road excitation. The assessment criteria are efficiency and
accuracy.

The benchmark parameters characterizing inertia, geometry, suspension stiffness
and damping as well as the tire for a medium size passenger car are listed in detail
in Rill [13]. Then, the nonlinear equation of motion are generated for the system
with 8 degrees of freedom, Fig. 15.9, and transformed to state equations which
are solved by MATLAB solvers [14], Table 15.2. The excitations by the guideway
z1(t) and z2(t) are assumed to be a deterministic cosine-shaped bump or a completely
random uneven road, respectively. For the validation of the benchmark linear motions
featuring eigenvalue analyses are used where the state equations are linearized with
respect to the equilibrium position. The eigenfrequencies found with the benchmark
parameters are typical for a medium-size passenger car.

Since analytical solutions are not available, for the reference a partially implicit
Euler solver denoted as ode1m is applied to the equations of motion, too. For this
benchmark the vertical vibrations of a planar vehicle model have been used for the



364 W. Schiehlen

Table 15.2 Solvers for ordinary differential equations [14]

Solver Problem type Order of accuracy When to use

ode45 Nonstiff Medium Most of the time. This should be the
first solver you try

ode23 Nonstiff Low For problems with crude error
tolerances or for solving
moderately stiff problems

ode113 Nonstiff Low to high For problems with stringent error
tolerances or for solving
computationally intensive
problems

ode15s Stiff Low to medium If ode45 is slow because the problem
is stiff

ode23s Stiff Low If using crude error tolerances to solve
stiff systems and the mass matrix is
constant

ode23t Moderately Stiff Low For moderately stiff problems if you
need a solution without numerical
damping

ode23tb Stiff Low If using crude error tolerances to solve
stiff systems

assessment. For both excitations, bump and uneven road, the Matlab ode45 solver, a
one-step solver. based on an explicit Runge-Kutta (4,5) formula, was the best one.

15.2.4 Flexible Multibody Systems

Recently a fourth class of benchmarks, flexible multibody systems, is considered
by Bauchau [15]. The benchmarks deal with a four-bar mechanism and the lateral
buckling of a moving beam. Benchmark test cases are available for different types of
structural elements often found in flexible multibody dynamics codes. Each bench-
mark problem is presented using a uniform template that presents the following data:
description of the problem, input file in html format, complete input file containing all
the input data in plain text format, detailed numerical results in plain text format, and
movies. These results can be imported in GNU Octave for plotting and comparison
with other predictions.

Figure 15.10 defines a flexible planar four bar mechanism. In the reference con-
figuration, the bars of this planar mechanism intersect each other at 90◦ angles and
the axes of rotation of the revolute joints at points A, B, and D are normal to the
plane of the mechanism. However, the axis of rotation of the revolute joint at point
C is misaligned at a 5◦ angle with respect to this normal to simulate an initial defect
in the mechanism. The angular velocity at point A of bar 1 is prescribed to be Π =
5 rad/s.
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Fig. 15.10 Flexible
mechanism [15]

Bars 1 and 2 are of square cross-section of size 16 by 16 mm; bar 3 has a square
cross-section of size 8 by 8 mm. The three bars are made of steel, whose mechanical
characteristics are Young’s modulus E = 207 GPa and Poisson’s ratio ε = 0.3.

If the bars were infinitely rigid, no motion would be possible because the mech-
anism locks. For elastic bars, motion becomes possible, but generates large, rapidly
varying internal forces and moments. This problem was simulated for a total of 12 s
using 3,000 time steps of constant size ∂t = 4 ms. If the four revolute joints had their
axes of rotation orthogonal to the plane of the mechanism, the response of the system
would be purely planar, and bars 1 and 3 would rotate at constant angular veloci-
ties around points A and D, respectively. The initial defect in the flexible mechanism
causes a markedly different response. Bar 1 rotates at the constant prescribed angular
velocity, but bar 3 now oscillates back and forth, never completing an entire turn.

15.3 Library of Benchmark Problems

A list of 27 entrees of software for multibody system simulations is provided by
McPhee [16]. Many of them include also problems which may be used as further test
cases. In 2012 the IFToMM Technical Committee for Multibody Dynamics started
a project on multibody benchmarks. In a first step, a double four-bar mechanism
was considered by the research groups of McPhee [16] and Cuadrado [17], see also
Fig. 15.11. In a second step, a special session on benchmark problems was organized
at the ECCOMAS Multibody Dynamics Conference 2013. Four presentations have
been delivered by Bauchau [18], Masoudi et al. [19], Schiehlen [20], and Valasek and
Sika [21]. Furthermore, a more standardized manner for the definition of benchmarks
was discussed providing the following information.

• Description of the benchmark system with respect to the number of degrees of free-
dom, the elements selected (rigid and/or flexible bodies, springs, dampers, force
or position actuators,. . .), and the coordinates chosen (minimal, non-minimal).

• Definitions and numbers of the parameters of the system related to the elements
selected (inertia, spring and damper coefficients, nonlinear characteristics,. . .).

• Initial conditions, force actuation (direct dynamics) and position actuation (indirect
dynamics).

• Time integration methods used and eigenfrequency analysis performed.
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Fig. 15.11 Double four-bar
mechanism

Table 15.3 Double four-bar mechanism submissions

Submitter Accuracy Efficiency Coordinates
(energy drift) (performance)

Javier Cuadrado University of
A Coruña, Spain

0.0917 0.6000 Natural

Alberto Luaces University of A
Coruña, Spain

0.0137 1.7000 Relative

Francisco Gonzalez McGill
University, Canada

0.0917 0.1450 Natural

Markus Burkhardt University
of Stuttgart, Germany

0.0015 0.0568 Minimal

Pierangelo Masarati
Politecnico di Milano, Italy

0.0900 0.3250 Inertial

In the IFToMM Library of Computational Benchmark Problems for Multibody
Dynamics [22] only problems should be published for which at least one group
has submitted some results. However, it is most preferable to have two or more
submissions for each problem. Furthermore, a small committee should be established
to initiate and check the submissions before results are added to the Library.

First results are now available for the double four-bar mechanism, Table 15.3.
From this problem featuring closed kinematical loops can be learnt that the mod-
elling approach characterized by the coordinates chosen has a major influence an the
accuracy and performance of the simulations. More effort with modelling may pay
off even if sophisticated numerical codes like DAE solvers are used.

The biomechanical benchmark of the Library deals with the 2D inverse dynamic
gait analysis of humans, and a 3D rigid slider-crank mechanism has been submitted
to the Library, too.

Benchmarks with different complexity within one area of applications are also
useful for the verification of simulation results as shown for the lateral dynamics of
rail and road vehicles [23]. Using the same assumptions, the more simple models
may serve as reliable benchmarks for the verification of computational results of
higher complexity models.
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15.4 Conclusion

Computational dynamics of multibody systems require the verification by bench-
marks and/or experiments. While experimental research is expensive and time-
consuming, the verification by benchmarks is an attractive alternative. For this
purpose appropriate benchmarks have to be defined and tested. Library of Com-
putational Benchmark Problems presents an open tool to develop and provide
benchmarks. The Library website is intended to be a tool for the international multi-
body dynamics community to propose, solve, and refer to a collection of bench-
mark problems. Members of the community can view the results obtained by other
researchers, submit their own results for others to reference, and even propose new
benchmark problems that can help advance the state-of-the-art in multibody system
dynamics.
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