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Abstract. In this short paper we sketch a brief introduction to our
KRiMP algorithm. Moreover, we briefly discuss some of the large body
of follow up research. Pointers to the relevant papers are provided in the
bibliography.

1 Patterns

Arguably patterns are the most important contribution of the data mining com-
munity to data analysis. On way to define patterns is as partial models, i.e., they
do not necessarily concern all tuples (a.k.a. objects, individuals, ...) nor do they
necessarily comprise all attributes (a.k.a. variables, features, ...). Another way
is to identify patterns with subsets of the data that are for some reason deemed
interesting.

The prototypical pattern mining problem is undoubtedly frequent item set
mining [1], which is usual formulated in the context of transaction data. Each
such transaction is a set of items, e.g., the items a customer buys at a super-
market and a transaction database is simply a bag of transactions.

The patterns are also sets of items called item sets. An item set I occurs in a
transaction ¢ if I C t. The support of an item set I in a database db, denoted by
suppap(I) is the number of transactions in db in which I occurs. The frequent
item set problem is then to find all item sets whose support exceeds some user
defined threshold. Because of the apriori property

I CJ = suppap(I) > suppay(J)

all frequent item sets can be found relatively efficiently using level-wise search;
relatively because there may be exponentially many frequent item sets.

In [10] the authors generalize frequent item set mining into a much wider class
of pattern mining problems known as theory mining. To keep our discussion
simple, we stay in the realm of item set mining, but anything we do can be
generalized to this wider context.

Frequent item set mining also illustrates rather well why pattern mining is
important. The set of customers of a supermarket is hardly homogeneous. While
the famous! frequent item set example {beer, diapers} may be applicable to

! Famous but highly likely an urban legend.
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young couples it is probably not relevant to fifty-something couples. While the
discerning palate implicated by the item set {Condrieu, Saint Marcellin} carves
up the customer space in a completely different — and independent — way.

2 The Pattern Explosion

As our example item sets above show patterns can provide useful insight in the
data, but, there is an problem. If the support threshold is set high, a few patterns
will be discovered, but mostly patterns that are already well known to domain
experts. If the support threshold is set low, however, the number of patterns
discovered explodes. It is not uncommon to discover more patterns than one has
transactions in the database!

Given that one of the main goals of pattern mining is to provide insight in
the data, this explosion of the number of patterns is rather embarrassing. So
it is not surprising that this problem received much attention and that a wide
variety of more or less successful solutions have been put forward.

One of the earliest and best-known is actually closely related to Formal Con-
cept Analysis, viz., closed item set mining [11]. Closed item sets are those item
sets for which each superset has a strictly smaller support. In other words, they
are the closure of the obvious Galois connection between transactions and item
sets.

While the number of closed frequent item sets is clearly smaller that the
number of frequent item sets, there is no guarantee that their number is far
smaller — and often it isn’t. The collection of closed frequent item sets has the
property that all frequent item sets can be derived from it. That is, the collection
of closed frequent item sets is a condensed representation of the set of all frequent
item sets.

This observation gave rise to other condensed representations, such as free
item sets [4] and non-derivable item sets [5]; the latter being the smallest con-
densed representation. However, all of these suffer from the fact that they may
still yield very large result sets.

The popular alternative approach is through constraints [8]. Clearly, using
filters a user can — in principle — easily search through the large set of frequent
patterns to find the truly interesting ones. One of the main goals of constraint
based pattern mining is to generate only interesting patterns, e.g., by pushing
the constraints into the discovery process. While it is relatively easy to remove
definitely uninteresting patterns using filters and/or constraints it turns out that
it is hard to define — and thus mine for — the small group of interesting ones only.

3 What Is the Problem?

The reason why it is so hard to delineate the interesting patterns is that with
low(er) support, many patterns describe essentially the same subset of the
database. In more detail,
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— a database has many small subsets,

— many of these subsets can be described by patterns

— many of the small subsets described by patterns differ in at most a few
objects.

Let both A and AU {a} be closed item sets. If their difference in support is only
1, it is hard to imagine how both can be interesting to a user.

In other words, to decide whether or not a pattern is interesting we also have
to look at other patterns as well as the subset of the data that is described by
these patterns. That is, we should not be looking for interesting patterns, but
for interesting sets of patterns and to make such a set of patterns interesting, its
members should not describe the same subset of the data over and over again.
To formalize this, we use MDL.

4 MDL for Pattern Sets

The MDL principle [7] can be paraphrased as: Induction by Compression. Slightly
more formal, it can be described as follows. Given a set of models H, the best
model H € H for data set D is the one that minimises

L(H)+ L(D|H)
in which

— L(H) is the length, in bits, of the description of H
— L(D|H) is the length, in bits, of the description of the data when encoded
with H.

In the remainder of this section we briefly describe how we employ MDL to find
small characteristic sets of patterns; see, e.g., [14,22] for more detail.

The key idea of our compression based approach is the code table. A code
table has item sets on the left-hand side and a code for each item set on its
right-hand side. The item sets in the code table are ordered descending on 1)
item set length and 2) support. The actual codes on the right-hand side are of
no importance: their lengths are. To explain how these lengths are computed
we first have to introduce the coding algorithm. A transaction ¢ is encoded by
KRIMP by searching for the first item set ¢ in the code table for which ¢ C ¢t. The
code for ¢ becomes part of the encoding of ¢. If ¢\ ¢ # @, the algorithm continues
to encode t\ c. Since we insist that each code table contains at least all singleton
item sets, this algorithm gives a unique encoding to each (possible) transaction.
The set of item sets used to encode a transaction is called its cover. Note that
the coding algorithm implies that a cover consists of non-overlapping item sets.
The length of the code of an item in a code table CT depends on the database
we want to compress; the more often a code is used, the shorter it should be. To
compute this code length, we encode each transaction in the database db. The
frequency of an item set ¢ € C'T is the number of transactions ¢ € db which have
¢ in their cover. The relative frequency of ¢ € CT is the probability that ¢ is used
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to encode an arbitrary ¢ € db. For optimal compression of db, the higher P(c),
the shorter its code should be. In fact, from information theory [6], we have the
Shannon code length for ¢, which is optimal, as:

ler(c) = —log(P(c|db)) = —log ( freg(c) )

ZdeCT freq(d)

The length of the encoding of a transaction is now simply the sum of the code
lengths of the item sets in its cover. Therefore the encoded size of a transaction
t € db compressed using a specified code table CT is calculated as follows:

LCT(t) = Z lCT(C)

cecover(t,CT)

The size of the encoded database is the sum of the sizes of the encoded trans-
actions, but can also be computed from the frequencies of each of the elements
in the code table:

Ler@) = Y- Lor(t) == Y freateyog (2 7750 )

tedb ceCT ZdeCT freq(d)

To find the optimal code table using MDL, we need to take into account both
the compressed database size as described above as well as the size of the code
table. For the size of the code table, we only count those item sets that have
a non-zero frequency. The size of the right-hand side column is obvious; it is
simply the sum of all the different code lengths. For the size of the left-hand side
column, note that the simplest valid code table consists only of the singleton
item sets. This is the standard encoding (st) which we use to compute the size
of the item sets in the left-hand side column. Hence, the size of the code table
is given by:
L(CT) = Z lst(e) +lor(c)
ceCT: freq(c)#0

In [14] we defined the optimal set of (frequent) item sets as that one whose
associated code table minimises the total compressed size:

L(CT) + Loz (db)

KRIMP starts with a valid code table (only the collection of singletons) and a
sorted list of candidates. These candidates are assumed to be sorted descending
on 1) support and 2) item set length. Each candidate item set is considered by
inserting it at the right position in C'T" and calculating the new total compressed
size. A candidate is only kept in the code table iff the resulting total size is
smaller than it was before adding the candidate. If it is kept, we reconsider all
other elements of C'T to see if they still contribute to compression. If not, they
are permanently removed. The whole process is illustrated in Figure 1.

In [14,22] it is shown that this simple heuristic algorithm reduces the number
of frequent item sets dramatically — e.g. by retaining only 1 in a million frequent
patterns.
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Fig. 1. KRIMP in action

Clearly, there are far simpler approaches that can reduce the number of fre-
quent item sets, e.g., by randomly deleting almost all item sets. Hence, in [22,18]
we show that KRIMP returns a characteristic set of patterns. This is illustrated
by using code tables for classification. The idea is simply that we learn a code
table for each class separately and assign a new transaction to the class whose
code table compresses the transaction best.

5 There Is More

KRIMP is just one algorithm to compute code tables, it is rather wasteful as it
first generates all frequent item sets and only then starts looking for the code
table. SLIM [16] is much faster because it generates candidate item sets on the
fly; by taking the current code table into account large parts of the search space
can be ignored.

KrIMP (and SLIM) searches for one optimal model. GROEI [12] aims to find
a collection of good models, each optimal for a given level of complexity.

We specified KRIMP in the context of transaction data. Because categorical
data sets are easily transformed to transaction data, it is obvious that KRIMP
also works for that type of data. The basic ideas underlying KRIMP have also
been applied to different types of data, e.g., relational data [9], streaming data
[17], data from evolutionary biology [2], and recently to seismographic data [3]

Next to classification, code tables can also be used for other kinds of data
mining tasks, such as clustering [19], change detection [17], and outlier detection
[15]. Moreover, they are also useful in traditionally more statistical tasks such
as data generation [21] — which allows for a strong form of privacy protection —
data imputation [20], and data smoothing [13].
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And there is more, much more than I can describe here in this brief introduc-

tion; both by the originators of the KRIMP algorithm and, more importantly, by
others. The papers referenced here will give the reader at least a start in the fas-
cinating new area at the intersection of data mining and algorithmic information
theory.
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