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1. Introduction

In [1], G. Birkhoff exhibited the subdirect product of algebraic structures as a
universal tool, which since has been extensively used in the study of algebraic
theories. Although a subdirect product is not uniquely determined by its factors,
there are useful construction methods based on subdirect products (cf. Wille [8],
[9], [10]). The aim of this paper is to make these methods available for handling
the “Determination Problem” of concept lattices as it is exposed in Wille [11]. In
particular, a useful method for determining concept lattices via its scaffoldings will
be developed under some finiteness condition.

2. Concept lattices

‘First we recall some notions from Wille {11]. A context is defined as a triple
(G, M, I) where G and M are sets, and I is a binary relation between G and M;
the elements of G and M are called objects and attributes, respectively. If gIm for
ge G and meM we say: the object g has the attribute m. The relation I
establishes a Galois connection between the power sets of G and M (cf. Birkhoff
[2]) which is expressed by the definition

A''={meM|glm forall geA} for AcG,
B':={geG|glm forall meB} for BcM.
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Following traditional philosophy, a concept of a context (G, M, I) is defined as a
pair (A, B) where Ac G, B&€ M, A'=B, and B'=A; A and B are called the
extent and the intent of the concept (A, B), respectively. The relation
“subconcept—superconcept” is captured by the definition

(A1, B))=(A,, B,):© A S Ay B, 2B))

for concepts (A;, B;) and (A,, B,) of (G, M, I). B(G, M, I) denotes the set of all
concepts of the context (G, M, I) and B(G, M, I):= (B(G, M, I), =). A subset D
of a complete lattice L is called infimum-dense (supremum-dense) if L=
{AX|XeD} (L={VX|XcDj}). Now, we are able to formulate the basic
theorem of “concept lattices” (cf. Wille [11]).

THEOREM 1. Let (G, M, I) be a context. Then B(G,M,I) is a complete
lattice, called the concept lattice of (G, M, I), in which infima and suprema can be
described as follows:

AaBy=(na(na)).

jeJ jet jet

V (4, B)= ( ( n B).0B)

jeJ

Conversely, if L is a complete lattice then L= B(G, M, I) if and only if there are
mappings v: G — L and p:M — L such that yG is supremum-dense in L, uM is
infimum-dense in L, and gIm is equivalent to yg=<um for all g€ G and me M; in
particular, L= B(L, L, =).

For the complete lattice L:= B(G, M, I) the mappings y:G—L and u:M—L
in Theorem 1 are naturally defined by

vg:={g}.{g}) for geG,
pm:={m},{m}) for meM.

An important problem is: How can one determine the concept lattice of a given
context? One way to approach this problem is based on the idea to construct the
concept lattice of a context by the concept lattices of some suitable subcontexts.
Here a subcontext of a context (G, M, I) is understood as a triple (H, N, IN
(Hx N)) with Hc G and Ngc M; we often write (H, N) instead of (H, N,IN
(Hx N)). In Wille [11], it has been shown that for a partition {N; | je J} of M an
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isomorphism of the \/-semilattice B(G, M, I) onto a subdirect product of the
V-semilattices B(H, N, IN(GxN)))(jeJ) is given by (A, B)—=(BNN,),
BN N));c; Since the construction methods are more powerful if they are based on
subdirect products of complete lattices instead of subdirect products of v-
semilattices, we analyse in the following subdirect decompositions of B(G, M, I)
as a complete lattice. A main purpose is to obtain for contexts satisfying the
“chain condition” a method for determining the scaffolding of B(G, M, I) directly
from the context (G, M, I). Then the concept lattice can be constructed as an
isomorphic copy of the ideal lattice of its scaffolding (see Wille [9]).

3. Complete congruence relations

Throughout this section (G, M, I) will be a context and (H, N) a subcontext of
(G, M, I). (H, N) is said to be compatible if (A'NNYNHc A" for all Ac G and
(BBNHYNNgB" forall Bc M. By «(H, N)(A, B):=(ANH, BN N) we define
a map w(H, N) from B(G, M, I) into P(H)x P(N) where, in general, P(S) is
the complete lattice of all subsets of a set S.

PROPOSITION 2. (H, N) is compatible if and only if w(H, N) is a complete
lattice homomorphism from B(G, M, I) onto B(H, N, IN(H X N)).

Proof. Let (H, N) be compatible. If (A, B)e B(G, M, I) then (ANH)NN=
(BNHNN=B"NN=BNN and (BNNYNH=(A'NNYNH=A"NH=
ANH  wherefore (ANHBNH)eBH,N,IN(HXN)). I (CD)e
BH, N, IN(HXN)) then C'"NH=(C'N'NYNH=D'NH=C and CNN=D.
Hence w(H, N) is a surjective map from B(G, M, I) onto B(H, N, IN(HX N)).
By Theorem 1, #(H, N) preserves arbitrary infima and suprema. Conversely, let
m(H,N) be a complete lattice homomorphism from B(G,M,I) onto B
(H, N, IN(HX N)). Then, in particular, (A"NH, A’'NN)e B(H, N, IN(H X N))
for A= G;hence (A'NNYNH=A"NHgc A". This shows together with the dual
argument that (H, N) is compatible.

The kernel of #(H,N) is denoted by @(H,N), if (H,N) is compatible
Proposition 2 yields that @(H, N) is complete congruence relation of B(G, M, I)
and that B(H, N, IN(Hx N))=B(G, M, I}/B(H, N) (we recall that an equival-
ence relation @ on a complete lattice L is a complete congruence relation if
x;0y;(je J) always imply

(J_/e\] x,.) @<J_(€\J yf) and (]_\E/] x;-) @(j\e/, )’f))-
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For the rest of this section we assume that the context (G, M, I) satisfies the
following chain condition: there is no infinite descending chain {g,}" >{g,}"=>
{gs}'>--- with g;,8;,8s... in G and there is no infinite ascending chain
{mY<{m} c{ms} < - - with my, my, ms,...In M.

For a complete congruence relation @ of B(G, M, I) we define

G(0):={ge G| yg is the smallest element of a @-class}
M(O):={meM|um is the greatest element of a @-class}.

PROPOSITION 3. If © is a complete congruence relation of B(G, M, I) then
(G(0@), M(@)) is a compatible subcontext of (G, M, I) and © = 0 (G(0), M(O)).

Proof. Suppose ge(A'NM(@))NG(O) but g¢ A" for some A< G. Then
there is an m € A’ such that {m}’ is maximal in {{n} | n€ M and (g, n) ¢ I}. Since
vg=A{un|neM and um <pun}, pm is A-irreducible and ygv um covers pm.
Hence ge G(0) implies that um is a greatest element of a @-class wherefore
me A NM(@®). This contradicts ge(A'NM(O)) and (g m)¢l Hence
(A'NM(0))NG(O)= A" for all A < G and dually (B'N G(O)) N M(O)< B" for
all Be M, ie. (G(0), M(®)) is compatible. Let (A, B)e B(G, M, I), and let
(A, B) and (A, B) be the smallest and the greatest concept in the @-class
containing (A, B). Then yg=(A, B) for ge G(0) implies yg=(A, B). Therefore
ANG(®)=ANG(O) and dually BN M(0)=BNM(6). Hence (A, B)®(C, D)
implies AN G(@)=CNG(O) and BNM(O)=DNM(O), ie. (A, B)@(G(O),
M(®))(C, D). The converse implication follows from (A4, B)=V y(AN G(®))
and (A, B)= A p(B N M(@)). This proves 0 = @(G(0), M(0)).

For a characterization of the subcontexts (G(®), M(@)) we introduce the
following notion: (H, N) is said to be saturated if {g} = ({g}" N H)' implies ge H
for all g€ G and if {m} = {m}' N N)' implies m € N for all me M. Since V yA is
the smallest element of a @-class for each A < G(®) and since A uB is the
greatest element of a @-class for each A < G(@) and since A\ uB is the greatest
element of a @-class for each B = M(®), the subcontext (G(0), M(®)) is satu-
rated for all complete congruence relations @ of B(G, M, I).

PROPOSITION 4. If (H,N) is saturated and compatible then H=
G(@(H, N)) and N=M(@(H, N)).

Proof. For he H and (A, B)e B(G, M, I), {h}'NH=ANH implies {h}"c A;
hence vh € G(@(H, N)). If yg is the smallest element of a @(H, N)-class for g€ G
then {g}" = ({g}" N H)" wherefore ge H as (H, N) is saturated. This and the dual
argument proves the assertion.
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Proposition 3 and 4 yield a one-to-one correspondence between the complete
congruence relations of B(G, M, I) and the saturated compatible subcontexts of
(G, M, I). This correspondence is closely related to the duality elaborated in
Urquhart [7].

4. Weak perspectivity

For the determination of subdirect decompositions of a concrete concept
lattice it is commendable to reduce (if possible) the given context (G, M, ) to a
minimal compatible subcontext (H, N) for which #(H, N) is an isomorphism. Let
us call a context reduced if w(H,N) is not injective for each of its proper
compatible subcontexts (H, N). Throughout this section we assume that (G, M, I)
is a reduced context satisfying the chain condition (in Section 3). With Theorem 1
we conclude that v is a bijective map from G onto the set of all \/-irreducible
elements of B(G, M, I) and p is a bijective map from M onto the set of all
A-trreducible elements of B(G, M, I).

Congruence relations of lattices are successfully studied via the notions of
weak perspectivity and weak projectivity (cf. Crawley and Dilworth [4], Gritzer
[5)). These notions can be carried over to contexts. For ge G and me M, g is
weakly perspective to m, in symbols g 7 m, if {m}’ is maximal in {{n}' | ne M and
(g n) € I}; dually, m is weakly perspective to g, in symbols m \s g, if {g}" is minimal
in {{h}"|he G and (h, m)éI}. If g/ m and m \ g, we call g and m perspective
and write g~m or m~g In GUM an element x is weakly projective to an
element y, in symbols x =y, if x =y or if there are elements x = x4, X;, ..., x;, =
y in GUM such that x;_, is weakly perspective to x; for i=1,...,k If x=_y
and y=,x, we call x and y projective and write x=y. For X< GUM we define
the weakly projective closure by (X):={ye GUM |x~=y for some x& X}.

PROPOSITION 5. A subcontext (H, N) of (G, M, I) is compatible if and only
if (HUN)=HUN.

Proof. Let (H, N) be compatible. Suppose g€ H, g.” m, but mé&N. Then
ge({m}'"NNYNH={m}"NH={myNH what contradicts (g, m)¢ L Therefore
g€H and g/ m imply me N and dually me N and m \« g imply g€ H. Hence
(HUN)=HUN. Conversely, let us assume (HUN)=HUN, Suppose g€
(A'NN)'NH but g¢ A" for some A < G. Then there is an me A’ such that {m}
is maximal in {{n}'|neM and (g n)¢I}. It follows that g ”m and hence
me ANN what contradicts ge(A’'NN) and (g, m)¢ L Therefore (A'AN)'N
Hgc A" for all A< G and dually (BPNHY NNc B” for all B& M, i.e. (H, N) is
compatible.
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COROLLARY. The compatible subcontexts of (G, M,I) form a complete
sublattice (G, M, I) of the complete lattice P(G)x P(M).

THEOREM 6. Let (G, M, I) be a reduced context satisfying the chain condi-
tion. Then O — (G(0), M(®)) describes an antiisomorphism from the complete
lattice of all complete congruence relations of B(G, M, I) onto the complete
sublattice of P(G)x P(M) consisting of all compatible subcontexts of (G, M, I).

Proof. For g G and H< G, {g}' =({g}"N H)' implies yg= v({g}"N H) and
hence g H as v is a bijection from G onto the set of all \/-irreducible elements
of B(G, M, I). This shows together with the dual argument that every subcontext
of (G, M, I) is saturated. Therefore, the described mapping is a bijection from the
set of all complete congruence relation of B(G, M, I) onto D(G, M, I) by
Proposition 3 and 4. The preceding corollary states that (G, M, I) is a complete
sublattice of P(G)x P(M). Obviously, @, =0, is equivalent to G(O,) =2 G(0,)
and M(6,) 2 M(0,) for complete congruence relations of B(G, M, I). Hence the
described mapping is an antiisomorphism.

COROLLARY. Let =, be the (partial) order induced by =, on GUM]/=~,
Then (GUM]/=, <,,) is isomorphic to the ordered set of all \-irreducible complete
congruence relations of B(G, M, I), and D(G, M, I) is isomorphic to the complete
lattice of all order filters of (G U M/=, =<,,).

The results of this section show how we may study complete congruence relations
of B(G, M, I) via the digraph (GU M, 7 U \y) which can be easily derived from
the context (G, M, I). The digraph (GUM, /U \) and the ordered set (GU
Mj=, =) are closely related to the double digraph considered in Urquhart [7].
The connection to the digraph (J(L), C) in J6nsson, Nation [6] should also be
mentioned.

5. Subdirect product constructions

In this section we elaborate for concept lattices the construction methods
developed for subdirect products of complete lattices in Wille [9]. By Theorem 6,
the subdirect decompositions of a reduced context satisfying the chain condition
are in one-to-one correspondence to the families of compatible subcontexts of
which the join is the whole context. In general, for compatible subcontexts
(H;, N;)(je J) of a context (G, M, I), (A, B)~ (AN H;, BAN,);; is an isomorph-
ism from B(G, M, I) onto a subdirect product of the B(H, N, IN(H,;xN,)) if
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and only if @(\J;c;H, Uy N;) is the identity on B(G, M, I); the subcon-
text (Ujes H;; Ujes N;) is again compatible as ge(A'NU;e; N))' NUjes H; for
AcG implies ge(A'NN)YNH,cA” for some keJ and hence
(A'NUjes N NUjes Hie A”

Now, let (G, M, I) be an arbitrary context and let (H;, N;)(je J) be compat-
ible subcontexts of (G, M, I) such that @(U;c; H;, U;cs N;) is the identity on
B(G, M, I). We define a map

oy - B(Hy, Ny IN (H, X N,)) = B(H, N, IN(H;xN)) G, keJ)
by
(A Be):=(ALNH, A{NN,) forall (A, B,)eB(H,, N, IN(H,x N)).
PROPOSITION 7. ay is the greatest of the \/-preserving maps
a: B(Hy, N, IN(H, X N,)) = B(H;, N;, IN(H; x N;))
satisfying

a({g}"NH,{g}' "N)=({g}"NH,{g} NN,) for all g G.

Proof. By Proposition 2, a; is a map into B(H,, N, IN(H, X N;)). Using the
general formulas (V,er Xi=(Nier X" = Uer X)) and (X"N(XUY)) =X and
the assumption that (H, N) is compatible, for (A, B,)e
B(H,, N, IN(H, x N,)) (teT) we obtain

((,DT B‘>'m H)'= ((,DT (AN M)' n H) = ((DTA’,)” N N)' NnH'

(o ~((y ) - () -

Therefore
Qi V (An Bt)=ajk(( Bt) NH, ﬂ B:)
teT

() oo (g s )

teT

(
= (<,ETA:>' NH, N AN N,-) = t\e/T o (A, B);

teT
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hence ay is \/-preserving. For an arbitrary \/-preserving map « specified in
Proposition 7 we have

a(A, B)=a V ({g}"ﬂ H,, {g} N N,)

geAx

=V a(gl"NH,{gfNN)= X ({e}"'NH;, {gf' N N,)

gEAL

=((ArN Nj)’: AN N]) = ajk(Ak’ B,);
hence a = ay.

Now, we are ready to apply Konstruktion I in Wille [9]. This leads to the
following theorem:.

THEOREM 8. Let (G, M, I) be a context and let (H;, N;)(jeJ) be compat-
ible subcontexts of (G, M, I) such that @(U;c; H, U;es N;) is the identity on
B(G, M, I). Then (A, B)—(ANH, BNN,),.; describes an isomorphism from
B(G, M, I) onto a subdirect product of the B(H;, N, IN(H;xN;))(jeJ) which
has  Glay |j, kel):={ay(A Bojes | ke] and (A, By)e B(H,, N, IN
(H, x NW\{(N.N Hy, NV as a supremum-dense subset.

If Glog |j, ked)is considered as a partial \/-semilattice (induced by the join
in the direct product) then B(G, M, I) is isomorphic to the complete lattice of all
complete ideals of G(ay |j, keJ) (we recall that a subset A of a partial V-
semilattice is a complete ideal if x=a and a € A imply x€ A and if X< A implies
VX e A whenever \/X exists). An isomorphic copy of the partial \/-semilattice
Glay | j, keJ) is its inverse image in B(G, M, I) under the isomorphism of
Theorem 8 which can be described by

G(H, N)|je )=
{yA;lieJ and (A, B))e B(H, N, IN(Hx N)\{(N;n Hj, N)}}

COROLLARY. $B(G, M, I) is isomorphic to the complete lattice of all complete
ideals of G((H; N;) | jeJ).

6. Scaffoldings

The construction of the concept lattice B(G, M, I) via G((H;, N;)|jeJ) or
Glay. | j, keJ) is usually more economical if the compatible subcontexts
(H;, N)){(je J) are smaller. The extreme case is present if all @(H,, N;)(jeJ) are
A-irreducible. If (G, M, I) is a reduced context satisfying the chain condition then,
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by Theorem 6, @(H, N) is A-irreducible for a compatible subcontext (H, N) of
(G, M, ]) if and only if HU N ={{g}) for some g€ G (notice that for every me M
there is a ge G with g~ m and dually). This together with Theorem 8 yields the
following theorem.

THEOREM 9. Let (G, M, I) be a reduced context satisfying the chain condi-
tion. Then (A, B)—(AN{(Z), BN{(g))zcc/~ describes an isomorphism from B
(G, M, I) onto a subdirect product of the completely subdirect irreducible concept
lattices B(EYN G, <g)NM, IN(E)*) (g€ G/=) which has G(ag, | & he G/=) as a
supremum-dense subset.

The partial V-semilattice G({(§)NG,{(gyNM|geG/=~) isomorphic to
Glogr | & h € G/=) is called the scaffolding of B(G, M, I) (see Wille [9], [10]) and
denoted by 9(G, M, I). We recall that B(G, M, I) is isomorphic to the complete
lattice of all complete ideals of its scaffolding 4(G, M, I). How a concept lattice
may be constructed via its scaffolding shall be demonstrated by an example. We
choose the following reduced finite context which occurs in the analysis of
homomorphisms of partial algebras (see Burmeister and Wojdyto [3]).

i a o f s f ¢ i, P, P

1[x x x

21x x X X X

3{x X X X X X

4 |x X X X X X X

51 X X X X X X

6| x X X X X X X X

7 X X X X X

8 X X X X X X X

9 X X X X X X X X
10 X X X X X X X X X

The set G:={1,2,...10} of objects consists of names for concrete
homomorphisms. The attributes in the set M:={j, a,0,f,s,f, C, i,, P,, P} are
explained by i: injective, a: almost onto, o: onto, f: full, s: strong, f;: final, c,:
relatively closed, i,: initial, P,: relatively P-closed, P: P-closed. The crosses of the
table indicate the relation I First we determine the digraph (GUM, .,/ U \).
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The scaffolding of B(G, M, I) is already determined by the maximal subcontexts
of the form ({{ghN G, ({g}) N M) with g G; these subcontexts are given by the
following tables (the generator is encircled).

i a o f s P P a o f s f i f ¢
1T[x X X 2 [ x X 2| X
2x x X X X 4 1 x X X
®ix x X X ® X X - 1o X X
4 ix X X X X 6 X X X bl f o,
6 | x X X X X 21X
7 X X X X © X
10 X X X X X ﬂ 10 X X

The concept lattices of the four subcontexts are described by the following Hasse
diagrams. For the objects g (attributes m) labels indicate the smallest (greatest)
concept of which the extent (intent) contains g (m).

The \/-preserving maps ag;(g, h€{3,5, 8,9}) are fixed by their images of the
\/-irreducible elements. Therefore, because of aﬁg({k}”ﬂ(ﬁ), (kY N(h) =
#(8)N G,{(g)N M)({k}",{k}) for all ke(h)N G, we can read the ag from the
following table which describes the maps 7({g) N G, {g) N M) restricted to yG.

Gl1 2 3 4 5 6 7 & 9 10
311 2 3 4 6 6 7 10 10 10
512 2 4 4 5 6 0 0 0 0
8/2 2 0 0 0 0O 8 8 10 10
512 2 0 0 0 0 9 9 10 10
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By Theorem 9, an isomorphic copy of B(G, M, I) can.be obtained by forming all
joins in II{LUHNG,{(ENM IN{g1*) |gei{3,5,8,9}) of the ten elements de-
scribed by the columns of the table. For another construction of B(G, M, I) we
first determine the scaffolding 9(G, M, I). For this we draw the disjoint union of
the Hasse Diagrams above without the least elements. The drawing has to be
completed to a diagram of the quasi-order Q defined by (A, B;)Q(A;, By): &
oz (AR, Bp)=(Ag B); the equivalence relation QN Q™' may be indicated by
encircling. The resulting diagram describes the scaffolding %(G, M, I) because
(VyADV(V YAy is in 4(G,M,I) for (A, B)eB(h)NG,(h)NM,IN(k))
(i=1,2) if and only if there is a ge{3,5,8,9} such that
(A B;)Qaygir,(Ay, By)V agia(As, B,) for i=1,2 (cf. Wille [10]. Construction II).

Forming the lattice of all (complete) ideals of %(G, M, I) leads to the
following Hasse diagram of B(G, M, I).
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