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Abstract. Inspired by Knowledge and Learning Spaces, we present a
novel framework for explaining the answering patterns of learners through
competences and skills. More precisely, we investigate how a given learner-
question data may be ascribed by a set of competences such that a learner
masters a question if and only if they have a competence that is suffi-
cient for mastering the question. Each competence is some combination
of skills, but there may be restrictions on which skills can be combined.
In general a question does not require a unique competence.
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1 Introduction

The theory of Knowledge Spaces, as it was introduced by Doignon and Fal-
magne [1], is closely related to Formal Concept Analysis. Several extensions
have been studied, among them the “Competence based Knowledge Space The-
ory” (CbKST) [2], and, more recently, the theory of Learning Spaces [3]. Here
we present and extend some ideas from CbKST, using the language of Formal
Concept Analysis. We illustrate the basic definitions and results by a small ex-
ample. Random effects, though important, will not be considered in this basic
version.

2 Competences and Factors

We consider a formal context (L,Q,�) with the following intended interpreta-
tion: The elements of L are called learners, those of Q are the questions, and
l � q expresses that learner l masters question q. In the jargon of Formal Con-
cept Analysis the set of questions mastered by learner l then is denoted by l�,
and q� is a shorthand notation for the set of learners who master question q.

This interpretation should be understood in a very general manner: Q might,
for example, be a set of diseases, L a set of therapies and l � q indicates that
therapy l heals disease q. Or L is a set of customers, Q a set of products and
l � q indicates that product q is a possible choice for customer l, et cetera.

We investigate how (L,Q,�) may be explained by a set C of competences
in such a way that a learner masters a question q if and only if they have a
competence that is sufficient for mastering q.
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This leads to the well known problem of finding Boolean factorisations
[4,5] of (L,Q,�). Required for such a factorisation are formal contexts (L, C, ◦)
and (C, Q, |=) such that

l � q ⇐⇒ ∃C∈C (l ◦ C and C |= q),

which is symbolised by

(L,Q,�) = (L, C, ◦) · (C, Q, |=).

Of course, l ◦C is interpreted as “learner l has competence C ” and C |= q reads
as “competence C suffices for mastering question q ”.

It is well understood how this problem must be attacked. The factorisations
are in 1-1-correspondence with the coverings of the relation � by rectangular
subrelations. Their smallest number equals the so-called 2-dimension (see [6]
for the definition of k-dimension for arbitrary integer k) of the complementary
context (L,Q,L × Q\ �). Determining this dimension is known to be NP-
complete. Alternatively, one can show that the factorisation problem is hard by
reducing the set basis problem to it, see [5].

There is another approach to Boolean factors which is perhaps more intu-
itive. For a given formal context one may ask if its attributes can be interpreted
as disjunctions of attributes of an other, hopefully simpler context. More for-
mally, let us say that a disjunctive attribute representation of (G,M, I)
over (G,N, J) is a mapping δ : M → P(N) such that

g I m ⇐⇒ ∃n∈δ(m) g J n.

The existence of such an attribute representation leads to a factorisation

(G,M, I) = (G,N, J) · (N,M,K) with n K m : ⇐⇒ n ∈ δ(m).

Conversely any such factorisation leads to a disjunctive attribute representation
via δ(m) := mK for all m ∈ M .

Example 1. The data that we use is from Korossy [2]. It describes how eleven
learners performed for a set Q := {a, b, c, d, e, f} of six questions. Only seven
distinct answering patterns occurred. These are given in Figure 1.

The concept lattice of the complementary relation (the diagram on the right
of Figure 1) contains the information about the possible Boolean factorisations.
Its length is five, which gives a lower bound for the 2-dimension (and thereby
for the number of competences). But the dimension cannot be larger since there
are only five join-irreducible elements. Therefore the incidence relation � can
be covered by five “rectangles”, but not by fewer than five. An example of a
covering is
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� a b c d e f

02L × × × × ×
03L × × × × × ×
05L × × × × ×
08L × ×
11L × × × ×
13L × × × ×
20L × × ×

Fig. 1. A formal context of learners and questions, and its concept lattice, and the
concept lattice of its complementary context (unlabeled)

C1 := {02L, 03L, 05L, 08L, 11L, 13L, 20L}× {a, c},
C2 := {02L, 03L, 05L, 11L, 20L}× {a, b, c},
C3 := {03L, 05L}× {a, b, c, d, e},
C4 := {02L, 03L, 05L, 11L}× {a, b, c, e},
C5 := {02L, 03L, 13L}× {a, c, e, f}.

Taking these factors as competences, we get a factorisation of the context in
Figure 1 as shown in Figure 2.

◦ C1 C2 C3 C4 C5

02L × × × ×
03L × × × × ×
05L × × × ×
08L ×
11L × × ×
13L × ×
20L × ×

·

|= a b c d e f

C1 × ×
C2 × × ×
C3 × × × × ×
C4 × × × ×
C5 × × × ×

Fig. 2. A factorisation of the context in Figure 1

The concept lattice of the first factorising context is shown in Figure 3.

In view of a desired interpretation, a result like the one presented in Figure 2
may be somewhat disappointing, because it only produces an (ordered) set of
abstract “competences” without further explanation. Moreover, the covering with
rectangular subrelations is by no means unique. In the above example, we might
take as rectangles the columns of the original context, combining columns a and
c to one rectangle, and obtain a different factorisation.

In a second step therefore one can investigate competences which comply with
a given theoretical competence model.
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08L

20L
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11L
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03L

13L

C2

C5

C3

C4

C1

Fig. 3. The concept lattice of the first factorising context in Figure 2

Such a model can be given as a formal context (S, T, ∗), where S is a set
of competence “states” which a learner may or may not have, T is a set of
competences and s ∗ t indicates that in state s competence t is present.

The basic question then is if the observed learner-question data can be ex-
plained by competences from this abstract model. For this, we must associate
to every question q the set of those competences from T that are sufficient for
mastering the question. Simultaneously, for each learner a suitable competence
state from S has to be found that enables the learner to master the questions as
observed. A more formal version is given in the following theorem.

Theorem 1. Let formal contexts (L,Q,�) and (S, T, ∗) be given. Then for every
mapping α : L → S the following are equivalent:

1. There is a mapping σ : Q → P(T ) such that

l � q ⇐⇒ ∃C∈σ(q) α(l) ∗ C.

2. There is a Boolean factorisation (L,Q,�) = (L, C, ◦) ·(C, Q, |=) together with
a mapping β : C → T such that

l ◦ C ⇐⇒ α(l) ∗ β(C).

Proof. Assuming (1) we let C :=
⋃

q∈Q σ(q) and define for l ∈ L, C ∈ C, and
q ∈ Q

l ◦ C : ⇐⇒ α(l) ∗ C, β := id, and C |= q : ⇐⇒ C ∈ σ(q).

The conditions of (2) are now easily verified. Conversely when starting from (2)
we get (1) by letting

σ(q) := {β(C) | C |= q}.
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3 Skills and Competences

Several authors (e.g. Korossy [2], Doignon [7]) have investigated if such compe-
tences may be explained by a finite set S of skills, which learners may have. For
this they ask for a skill function1, a mapping2

σ : Q → P(P(S))

with the property that σ(q) is an antichain for each q ∈ Q. It is assumed that
the learners have certain skills, as expressed by the skill context (L, S, •). The
elements of

C :=
⋃

q∈Q

σ(q)

then play the role of the competences. They are ordered by set inclusion ⊆. The
interpretation is that a learner masters a question if they have the necessary
skills, more precisely that

l � q ⇐⇒ ∃C∈σ(q) C ⊆ l•.

The context (C, Q, |=) is then given by

C |= q ⇐⇒ ∃D∈σ(q) D ⊆ C.

The above mentioned competence model in this case is (P(S), C,⊆).
Each skill function σ defines a mapping pσ : P(S) → P(Q), called the prob-

lem function, by

pσ(T ) := {q ∈ Q | ∃C∈σ(q) C ⊆ T }, T ⊆ S,

assigning to each set T ⊆ S the set of problems which can be answered with the
skills in T . Equivalent to the above condition is that for each learner l ∈ L it
holds that

l� = pσ(l
•),

meaning that each learner masters exactly those questions for which they have
the necessary skills.

Problem functions are order preserving maps from (P(S),⊆) to (P(Q),⊆), and
indeed, as Düntsch and Gediga [8] have shown, every order preserving function
can be obtained in this way from a unique skill function.

Example 2. Continuing the above example we ask how the context in Figure 1
may be explained by skills. It is easier to tackle this problem with respect to a
given factorisation. Consider the first factorising context (L, C, ◦) in Figure 2.
It displays which competences the individual learners have. In order to express
these competences by subsets of a (yet unknown) set S of “skills” we have to find
mappings

α : L → P(S) and β : C → P(S)

1 Skill multiassignment in [7], skill multimap in [3].
2 We omit some technical conditions which are not necessary for our considerations.
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such that a learner l has a competence C if and only if they have all the skills
contained in β(C), formally

l ◦ C ⇐⇒ α(l) ⊇ β(C).

It is immediate from Proposition 33 in [6] that such mappings can be found if
and only if there is an order embedding of B(L, C, ◦) into (P(S),⊇). This is in
turn equivalent to the condition that the 2-dimension of B(L, C, ◦) is at most
the size of S, i.e., to

fdim2(L, C, ◦) ≤ |S|.
The 2-dimension of the lattice in Figure 3 obviously is four, and Figure 4 shows
an order embedding into the dual of the power set of S := {x, y, z, t}.

∅

{z}

{x}

{x, y}

{x, y, t}

{x, y, z, t}

{x, y, z}

Fig. 4. The concept lattice of the first factorising context in Figure 2, embedded into
(P({x, y, z, t}),⊇)

A comparison of the labellings in Figures 3 and 4 discloses the skills associated
to the learners and to the competences.

• x y z t

02L × × ×
03L × × × ×
05L × × ×
08L

11L × ×
13L ×
20L ×

C1 = ∅

C2 = {x}
C3 = {x, y, t}
C4 = {x, y}
C5 = {z}.

Fig. 5. The learner-skill context and the competences as sets of skills
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The second factorising context in Figure 2 can now be understood as a skill
function (Figure 6), however with a slight modification: The attribute intent
of each question q ∈ {a, . . . , f} consists of all competences which suffice for
mastering the question, not only the minimal ones. We call this an enriched skill
function. Meagering it for each question to the minimal sufficient competences
results in a skill function (Figure 7).

|= a b c d e f

C1 = ∅ × ×
C2 = {x} × × ×
C3 = {x, y, t} × × × × ×
C4 = {x, y} × × × ×
C5 = {z} × × × ×

Fig. 6. The attribute intents define an enriched skill function

q a b c d e f

σ(q) {∅} {{x}} {∅} {{x, y, t}} {{x, y}, {z}} {{z}}

Fig. 7. The derived skill function

It can now easily be verified that the skill function in Figure 7 together with
the learner-skill context in Figure 5 result in the original learner-question data
shown in Figure 1.

We summarise our findings in a theorem. This theorem, as well as the next
one, may look a little technical, but their content is easy. The first one says,
loosely spoken: Given learner-question data, pick a Boolean factorisation and a
representation of the first factorising context by sets. Then a skill function is
obtained representing the given data.

Theorem 2. Let
(L,Q,�) = (L, C, ◦) · (C, Q, |=)

be a Boolean factorisation and let α : L → P(S) and β : C → P(S), where S is
a finite set, be mappings such that

l ◦ C ⇐⇒ α(l) ⊇ β(C) (for all l ∈ L,C ∈ C).
Then the mapping σ : Q → P(P(S)), defined by

σ(q) := {β(C) | β(C) is minimal wrt. C |= q},
is a skill function such that

l � q ⇐⇒ ∃D∈σ(q) D ⊆ α(l).
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Proof. Because of the minimality condition it is clear that σ is a skill function.
Since we have a Boolean factorisation we get for l ∈ L and q ∈ Q

l � q ⇐⇒ ∃C∈C l ◦ C and C |= q

⇐⇒ ∃C∈C α(l) ⊇ β(C) and C |= q

⇐⇒ ∃D∈σ(q) α(l) ⊇ D.

The existence of such a set D follows from the finiteness of S.

4 From Skills to Factors

In the previous section we have demonstrated how a skill function can be con-
structed from learner-question data using a two-stage set representation process.
It is however not yet obvious that this method always works and, if so, that it
leads to a small number of skills.

The latter is indeed not always true. The number of required skills depends
on the choice of the Boolean factorisation. In fact, the data of the example can
be represented by fewer skills, as we shall show.

Nevertheless is the method general enough to cover all possibilities. Each skill
function can be reconstructed, as we shall demonstrate in the next theorem.
Informally, it says that when the construction described in Theorem 2 is applied
to learner-question data which is based on a skill function, the factorisation and
the embedding can be chosen so that this skill function is reconstructed.

Theorem 3. Let finite sets L, Q, and S (of “learners”, “questions”, and “skills”,
respectively) be given together with a mapping σ : Q → P(P(S)) that maps
questions to antichains of skill sets (i.e., a skill function) and a mapping α :
L → P(S) that assigns to each learner a set of skills. Then for the relation
� ⊆ L×Q, defined by

l � q : ⇐⇒ ∃C∈σ(q) C ⊆ α(l)

there is a Boolean factorisation (L,Q,�) = (L, C, ◦) · (C, Q |=) and a bijection
β : C → ⋃

q∈Q σ(q), such that

l ◦ C ⇐⇒ α(l) ⊇ β(C) and C |= q ⇐⇒ ∃D∈σ(q) D ⊆ β(C).

In particular,

σ(q) = {β(C) | β(C) is minimal wrt. C |= q} for each q ∈ Q.

Proof. Let C :=
⋃

q∈Q σ(q) and β := id. Then

l � q ⇐⇒ ∃C∈σ(q) C ⊆ α(l)

⇐⇒ ∃C∈σ(q) ∃D∈C β(D) = C ⊆ α(l)

⇐⇒ ∃C∈σ(q) ∃D∈C C ⊆ β(D) ⊆ α(l)

⇐⇒ ∃D∈C l ◦D and D |= q.
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It remains to show that

σ(q) = {β(C) | β(C) is minimal wrt. C |= q} for each q ∈ Q.

To this end let q ∈ Q and C ∈ C. We show the two inclusions:
“⊇” Let β(C) be minimal in {β(C) | C |= q}. Then, there is D ∈ σ(q) s.t.
D ⊆ β(C). Since β(C) was chosen minimal wrt. C |= q, we have D = β(C) and
thus β(C) ∈ σ(q).
“⊆” Let D ∈ σ(q). There exists C ∈ C s.t. β(C) = D. Hence, C |= q. It remains
to show that β(C) is minimal in {β(E) | E |= q} for β(E) � β(C). Suppose not.
Then, there exists F ∈ σ(q) s.t. F ⊆ β(E) � β(C) ⊆ D. Thus, F � D yielding
a contradiction since σ is a skill function.

Example 3. The learner-question data in Figure 1 can be based on only three
skills, as the following tables show. For the three-element skill set S := {u, v, w}
they define a skill function σ : Q → P(P(S)) and a learner-skill assignment
α : L → P(S).

q a b c d e f

σ(q) {∅} {{v}, {w}} {∅} {{v, w}} {{w}, {u}} {{u}}

l 02L 03L 05L 08L 11L 13L 20L

α(l) {u, v} {u, v, w} {v, w} ∅ {w} {u} {v}

Fig. 8. This skill function leads to the learner-question data in Figure 1 if the learner-
skill assignment is as given in the second table

The competences are C = {∅, {u}, {v}, {w}, {v, w}}, the corresponding factors

Fi := {learners that have Ci} × {questions that are mastered by Ci}
are as follows:

F1 = {02L, 03L, 05L, 08L, 11L, 13L, 20L}× {a, c}
F2 = {02L, 03L, 05L, 20L}× {a, b, c}
F3 = {03L, 05L}× {a, b, c, d, e}
F4 = {03L, 05L, 11L}× {a, b, c, e}
F5 = {02L, 03L, 13L}× {a, c, e, f}.

These rectangular relations indeed cover the “masters”-relation. The correspond-
ing Boolean factorisation of the learner-question context is shown in Figure 9.
It differs only slightly from the one given in Figure 2.

However, the 7-element concept lattice of the first factorising context can
easily embedded into (P({u, v, w}),⊇), as Figure 10 shows.
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◦ C1 C2 C3 C4 C5

02L × × ×
03L × × × × ×
05L × × × ×
08L ×
11L × ×
13L × ×
20L × ×

·

|= a b c d e f

C1 × ×
C2 × × ×
C3 × × × × ×
C4 × × × ×
C5 × × × ×

Fig. 9. Another factorisation of the context in Figure 1. Here the first factorisation
context has 2-dimension three.

03L

02L 05L

C3

13L

C5 C2

20L
11L

C4

C1

08L

↪→

{u, v, w}

{v, w}

{w}

∅

{v}

{u, w}
{u, v}

{u}

Fig. 10. The concept lattice of the first factorising context, embedded into
(P({u, v, w}),⊇)

• u v w

02L × ×
03L × × ×
05L × ×
08L

11L ×
13L ×
20L ×

C1 = ∅

C2 = {v}
C3 = {v, w}
C4 = {w}
C5 = {u}.

Fig. 11. The learner-skill context and the competences as sets of skills, for the modified
set representation
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5 Structured Skill Sets

Our approach admits several variations which may be of practical interest. We
briefly discuss four of them here.

5.1 Graded Skills

The lattice in Figure 4 obviously has an order embedding into a product of
two chains, one of size four, the other of size two. This allows to give a more
structured interpretation of the four necessary skills: they may be chosen as
{x, x+, x++, z}, where x is a prerequisite for x+, and x+ a prerequisite for x++.
The five competences may then be written as

C1 = ∅, C2 = {x}, C3 = {x++}, C4 = {x+}, C5 = {z},

with the tacit convention that x+ includes x etc.
This can widely be generalised. A family of competences can be interpreted

with skills {x1, x
+
1 , x

++
1 , . . . , xk, x

+
k , x

++
k } if and only if the 4-dimension of the

first factor is at most k. But even arbitrarily ordered skill sets can be considered
and respective conditions on the factorisations can be formulated.

5.2 Propositional Formulae

We may even consider “negative skills”. Recall that a skill function encodes that
a question q is mastered if and only if at least one competence, i.e., skill combi-
nation, from a specified list σ(q) is present. So what is required for mastering q is
a disjunction of conjunctions of skills, a monotone Boolean term in the language
of Propositional Logic.

So why not allow for arbitrary propositional formulae? This can easily be done.
Figure 12 shows a representation of our original learner-question data (Figure 1)
by propositional formulae in three variables.

But how can this be interpreted? It seems unrealistic that there may be skills
which hinder a learner mastering a question. However, for other interpretations
this may be meaningful. One such case is that of customers selecting goods
according to their features. E.g., when buying bread, some customers may prefer
one with caraway seeds, while for others this could be a impediment.

5.3 The Dichotomic Scale Dk

In the next example we shall make use of the k-dimensional dichotomic scale
Dk, which is one of the standard scales in Formal Concept Analysis (see [6],
Lex [9]). It is usually introduced as the k-fold semiproduct D

�� D
�� · · · �� D of

the (one dimensional) dichotomic scale

D :=
· ×
× · .
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� ¬(
x
∧
(y

∨
z
))

� ¬y
∧
((
¬x

∧
z
)
∨
(x

∧
¬z

))

¬(
y
∧
(x

∨
¬z

))

¬(
y
∨
(¬

x
∧
z
))

⊥ ⊥ ⊥ × × × × ×
� ⊥ ⊥ × × × × × ×
⊥ ⊥ � × × × × ×
� � � × ×
⊥ � � × × × ×
� ⊥ � × × × ×
⊥ � ⊥ × × ×

Fig. 12. Truth value assignments and propositional formulae for the context of Figure 1

For our purposes it is convenient to give another (yet equivalent) description
based on a set V := {v1, . . . , vk} of symbols3. The scale Dk has 2k objects, 2k
attributes and 3k+1 formal concepts. As objects we may take the set of all maps
from V to {+,−}. The set of attributes is S := {+v1, . . . ,+vk,−v1, . . . ,−vk}.
An object ν : V → {+,−} is incident with an attribute +s (where s ∈ V ) iff
ν(s) = +, and with the “negative” attribute −s iff ν(s) = −.

A subset of S is called feasible if it does not contain a symbol v both in its
positive form +v and in its negative form −v. The only concept intent that is
not feasible is the set S, and the corresponding extent is ∅. Apart from this
exception, the concept intents of the dichotomic scale are exactly the feasible
subsets of S. The concept extent corresponding to a feasible set T ⊆ S consist
of those mappings ν : V → {+,−} that satisfy the condition

if +v ∈ T then ν(v) = +, and if −v ∈ T then ν(v) = −.

The concept extents, apart from the smallest one, therefore can be identified
with the partial mappings ν : V → {⊥,�, ?}.

5.4 Incompatible Skills

The propositional approach in Subsection 5.2 is based on the negation of skills.
In practice however it seems unlikely that a skill is the negation of another one.
A more realistic assumption is that skills may be mutually exclusive, but not
3 We avoid naming the elements of V variables, because −v is not the negation of −v.

As a consequence, we later shall work with a modified notion of disjunction.
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necessarily exhaustive. In other words: such two skills cannot occur together,
but may both be missing. For example, good jockeys usually are not very good
high jumpers, because jockeys need to be small, high jumpers to be tall. But
most people neither are jumpers nor jockeys.

As in Subsection 5.3 we start with a set V := {v1, . . . , vk} of symbols and
define S := {+v1, . . . ,+vk,−v1, . . . ,−vk}. The elements of S will be the skills,
with the intention that for each i the skills +vi and −vi are mutually exclusive.

The competence model in this case is introduced as follows: All feasible sets of
skills are competences, and all mappings from V to {+,−, ?} are possible learner
states. The concept intents of the dichotomic scale then are in 1-1-correspondence
to the competences, with one exception, which we artificially add: We allow for
the set S of all skills, though not admissible, as a competence, the “Chuck Norris
competence”. Similarly, the possible learner states correspond to the concept
extents of the dichotomic scale, when we artificially add the possibility of an
“almighty” learner that has all skills, negative and positive. The incidence relation
in the competence model is the natural one, the one that was discussed in the
previous subsection.

Applying Theorem 1 in the case of this slightly artificial competence model
yields the following:

Corollary 1. A learner-question context can be interpreted using skills

+v1, . . . ,+vk,−v1, . . . ,−vk

(where +v and −v are incompatible), iff there is a Boolean factorisation and
an order embedding of the concept lattice of the first factorising context into the
concept lattice of the k-dimensional dichotomic scale.

Example 4. Again we demonstrate this by an example. The concept lattice
in Figure 10 (left) can also be embedded into the concept lattice of the 2-
dimensional dichotomic scale D2, see Figure 13, in which we use symbols x, y
instead of v1, v2. Actually, there are several embeddings.

According to the corollary, the learner-question data can be interpreted using
two pairs +x,−x,+y,−y of incompatible skills. The competences are mapped
to feasible skill sets as follows:

C1 C2 C3 C4 C5

∅ {+x} {+x,+y} {+y} {−y} .

The observed learner states are the following:

02L 03L 05L 08L 11L 13L 20L
{+x,−y} almighty {+x,+y} ∅ {+y} {−y} {+x} .

We can also give a skill function based on these skills. It is tempting to do
this in propositional form, similar as in Figure 12. However the meaning of
disjunction has to be modified, the expression +v ∨ −v should not evaluate to
�. Instead, we introduce a new symbol depending on v by

δ(v) := +v ∨ −v.
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03L

02L 05L

C3

13L

C5 C2

20L
11L
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−+ −−

+x +y −y

++ +−

Fig. 13. The concept lattice of the learner-competence context in Figure 9 embedded
into B(D2)

�

a
:
�

b
:
+
x
∨
+
y

c
:
�

d
:
+
x
∧
+
y

e
:
δ(
y
)

f
:
−y

02L: {+x,−y} × × × × ×
03L: almighty × × × × × ×
05L: {+x,+y} × × × × ×
08L: ∅ × ×
11L: {+y} × × × ×
13L: {−y} × × × ×
20L: {+x} × × ×

Fig. 14. A representation of the learner-question data in Figure 1 using two pairs of
mutually exclusive skills. δ(y) is an abbreviation for +y ∨ −y

The reason is this: If mastering a problem requires +v or −v, then one of the two
skills +v and −v must be present. This is not necessarily the case, and replacing
+v ∨ −v by � therefore leads to errors.

With this notation we obtain from the second factorising context in Figure 10

σ(a) = C1 ∨ C2 ∨ C3 ∨ C4 ∨C5 = �
σ(b) = C2 ∨ C3 ∨ C4 = +x ∨+y

σ(c) = C1 ∨ C2 ∨ C3 ∨ C4 ∨C5 = �
σ(d) = C3 = +x ∧+y

σ(e) = C3 ∨ C4 ∨ C5 = δ(y)

σ(f) = C5 = −y.
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Figure 14 finally shows that the combination of these findings indeed repre-
sents the learner-question context in Figure 1.

6 Conclusion

The combination of Boolean factorisations and of embeddings into standard
concept lattices gives promising results for the analysis of learner-question data,
in particular for the construction of skill functions according to given competence
models. In our presentation we have worked out a few examples. A more general
and versatile theory seems possible.
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