
On Knowledge Spaces and Item Testing

Immanuel Albrecht and Hermann Körndle

Institute of Educational and Developmental Psychology,
Technische Universität Dresden, Dresden, Germany

{immanuel.albrecht,hermann.koerndle}@tu-dresden.de

Abstract. First, we briefly introduce some of the fundamental notions
of knowledge space theory and how they relate to formal concept analysis.
Knowledge space theory has a probabilistic extension which allows it to
be utilized in order to assess knowledge states by looking at responses to
a variety of test items, which are designed to demand performing different
sets of cognitive operations. Second, we introduce an easy extension to
lambda calculus in order to incorporate extra-logical operations. Further
we define a weight function on term reductions, which is to be used
as a model to calculate item response probabilities for test items after
task analysis. We use the new model in order to review the probabilistic
extension of knowledge space theory.

Keywords: knowledge spaces, lambda calculus, item testing.

1 Knowledge Spaces

1.1 Introduction to Knowledge Space Theory

The notion of knowledge spaces was first introduced by Doignon and Falmange
in 1985 as follows:

« The information regarding a particular field of knowledge is concep-
tualized as a large, specified set of questions (or problems). The knowl-
edge state of an individual with respect to that domain is formalized as
the subset of all the questions that this individual is capable of solving.
A particularly appealing postulate on the family of all possible knowl-
edge states is that it is closed under arbitrary unions. A family of sets
satisfying this condition is called a knowledge space. » [2].

Furthermore, there is a tightly connected notion of learning spaces, which are
knowledge spaces with two additional properties: First, one can achieve every
higher level of knowledge relative to one’s knowledge state by learning one item at
a time in a finite number of steps, and second, having a higher level of knowledge
does not prevent learning another item, which could have been learned from a
subordinate knowledge state. For the formal definition, see [4] 2.2.1.

Also, there is a probabilistic theory of knowledge spaces, which allows for
assessment of a subject’s knowledge state by evaluating realistic test item re-
sponses, which are prone to measurement errors – so called careless errors and
lucky guesses.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 141–156, 2014.
c© Springer International Publishing Switzerland 2014

142 I. Albrecht and H. Körndle

1.2 Definitions and Relation to Formal Concept Analysis

Definition 1. (See [4], 2.1.2 and 2.2.2) A pair (Q,K) is called a knowledge
structure, whenever Q is a set, and K is a family of subsets of Q, i.e. K ⊆ 2Q,
such that ∅ ∈ K and Q ∈ K. Furthermore such (Q,K) is called a knowledge
space, if K is also closed under

⋃
, i.e. if for all families with F ⊆ K,

⋃
F ∈ K.

Clearly, if (Q,K) is a knowledge structure, then K together with the set inclusion
form a complete lattice: Let F ⊆ K, then define the lattice join by

∨
F :=

⋃
F ,

which yields an element of K because K is closed under arbitrary unions. In
order to calculate the lattice meet, we may use the canonical equivalence

∧
F =

∨
{K ∈ K | ∀F ∈ F : K ⊆ F}

The most obvious interpretation of knowledge spaces in terms of formal con-
texts would be (K,K,⊆), but it hides some of the structure of (Q,K) in the
sense that you have to look at the elements of the objects (or attributes) in or-
der to reconstruct Q. – Yet this operation is outside the scope of formal concept
analysis.

Another obvious link between knowledge structures and formal contexts is a
knowledge context1 (A,Q, I) where an individual a ∈ A incides with an item
q ∈ Q if the individual a is not capable of solving the item q [3, p.161].

For knowledge spaces (Q,K), it is possible to look at the context (K, Q, ��):
“The intents of the concepts induced by this knowledge context are the comple-
ments of the states in K with respect to Q.” [3, p.163]

Last, there is another obvious link that might seem odd at first, but resembles
some nice connection between features of knowledge space theory and features
of formal concept analysis.

Definition 2. (See [4], 3.7.1) Let (Q,K) be a knowledge structure. The prece-
dence relation � wrt. (Q,K) is defined as the binary relation on Q where for
q, r ∈ Q

q � r :⇐⇒ ∀K ∈ K : r ∈ K ⇒ q ∈ K

The precedence relation offers another way to think about the knowledge space
(Q,K) in terms of formal concept analysis. The defining equivalence for q � r
may be read as attribute implication: if the concept related to q is a subconcept
of the concept related to r, clearly all attributes of the latter are supposed
attributes of the former, too. This yields the formal context (Q,K, ε) where

ε := {(q,K) ∈ Q×K | q ∈ K}

Let (Q,K) be some knowledge space. Then for q ∈ Q, wrt. (Q,K, ε), we get

{q}′ = Kq := {K ∈ K | q ∈ K}
1 The term knowledge context is used for various notions that involve formal concept

analysis and knowledge spaces, though.

On Knowledge Spaces and Item Testing 143

Thus for q, r ∈ Q, if {q}′ ⊇ {r}′, then Kr ⊆ Kq, which means that for all K ∈ K,
r ∈ K ⇒ q ∈ K, and so

{r}′ ⊇ {q}′ ⇔ r � q

and it is easy to see that the single item extents for two indiscernible elements
q1, q2 ∈ Q – i.e. for all K ∈ K, q1 ∈ K ⇔ q2 ∈ K – are the same.

Furthermore, for X ∈ K, since X ⊆ Q, we see that the intent of a knowledge
state viewed as a set of objects is the principal filter of that state wrt. (K,⊆):

X ′ = {K ∈ K | ∀r ∈ X : r ∈ K} = {K ∈ K | X ⊆ K} = ↑(K,⊆) X

And we see further, that X ∈ K is a concept extent, i.e. X = X ′′:

X ′′ = {q ∈ Q | ∀K ∈ X ′ : q ∈ K} =
⋂

↑(K,⊆) X = X

So we see that knowledge states X ∈ K correspond to concepts (X,X ′) of
B(Q,K, ε).

Now, consider any extent X ⊆ Q, i.e. X ′′ = X . In this case, we know by
analogous arguments, that for K ∈ X ′, also ↑(K,⊆) K ⊆ X ′, but we cannot infer
that X ′ is a principal filter wrt. (K,⊆), as this short example demonstrates:

Example 1. Let Q = {a, b, c} and K = {∅, {a}, {c}, {a, b}, {a, c}, {b, c}, Q}. Since
K is closed under union, (Q,K) is a knowledge space.

{b}′′ = {{a, b}, {b, c}, Q}′ = {b} �∈ K

We see that {b}′ is not a principal filter wrt. (K,⊆), because the meet of K
viewed as complete lattice is incompatible with the set meet that is involved in
the attribute derivation operator of (Q,K, ε).

This situation usually arises, when performing a task requires the ability to
perform at least one of several distinct subtasks: For instance, if a means that a
student knows how to draw a circle with a pen using the left hand, and c means
that a student knows how to draw a circle using the right hand, then b could be
the ability to write the letter “o” in cursive. In this case, you cannot say that b
requires a, or that b requires c; and thus there is an abstract concept ({b}, {b}′)
in the concept lattice B(Q,K, ε), which does not correspond to a measurable
knowledge state with regard to the test items.

To sum it up, we may view K as a complete sub join-semi-lattice of B(Q,K, ε)
with the possibility that in some cases K may or may not be a complete sub
lattice of B(Q,K, ε).

1.3 Probabilistic Extension

First, we want introduce the general framework which is needed to establish
probabilistic methods for knowledge space theory.

Definition 3. (See [4], 11.1.2) A triple (Q,K, p) is called probabilistic knowl-
edge structure, if (Q,K) is a partial knowledge structure, where Q and K are fi-
nite, and if p : K → [0, 1] is a probability distribution on K, i.e.

∑
K∈K p(K) = 1.

144 I. Albrecht and H. Körndle

Definition 4. (See [4], 11.1.2) A quadruple (Q,K, p, r) is called basic proba-
bilistic model, if (Q,K, p) is a probabilistic knowledge structure, and if r is a
map r : 2Q×K → [0, 1] – called the response function – such that for all K ∈ K,
r(·,K) is a probability distribution on 2Q, i.e.

∑
R⊆Q r(R,K) = 1.

Local Independence The measurement of a test subject’s knowledge state is
most easy, if the probability that the test item response does not correctly reflect
the subjects knowledge state was only dependent on the item q ∈ Q and whether
the subjects state K contains q or not.

Definition 5. (See [4], 11.1.2) Let (Q,K, p, r) be a basic probabilistic model.
This model satisfies local independence, if there are vectors β, η ∈ R

Q, such that
for all R ⊆ Q,

r(R,K) =

⎛

⎝
∏

R ��q∈K

β(q)

⎞

⎠·

⎛

⎝
∏

R�q∈K

(1− β(q))

⎞

⎠·

⎛

⎝
∏

R�q/∈K

η(q)

⎞

⎠·

⎛

⎝
∏

R ��q �∈K

(1− η(q))

⎞

⎠

Clearly, local independence means that careless error probability β(q) wrt. to a
test item q is the same even for two subjects with huge differences between their
respective knowledge states, which may not be appropriate in all situations, yet
it dramatically reduces the amount of parameters involved and seems reasonable
if both error probabilities are always small. The fact that the lucky guess prob-
ability η(q) is the same for these two subjects is even less of a problem, since
guessing probabilities usually can be reduced to negligibility by appropriate test
item design ([4], Remark 11.1.3 (b)). With local independence, one can easily
employ a standard χ2 test on the ratio of the maximum likelihood estimations
in order to verify, whether the negligibility of guessing is achieved. If this is the
case, the number of free parameters to deal with effectively halves in turn.

Learning Spaces

Definition 6. Let (Q,K) be a knowledge space. (Q,K) is called a learning space,
if for all K,L ∈ K with K ⊆ L, there are n ∈ N, and q1, . . . , qn ∈ Q, such
that for all i ∈ {1, . . . , n} there is a state K ∪ {q1, . . . , qi} ∈ K; and such that
K ∪ {q1, . . . , qn} = L. In this case we know that Q and K are finite.

The basic principle of the probabilistic extensions of learning in knowledge struc-
tures is stated as follows:

« The probability that, at the time of the test, a subject is in a state
K of the structure is expressed as the probability that this subject (i)
has successively mastered all the items in the state K, and (ii) has failed
to master any item immediately accessible from K. » [4, p.198]

This principle may be employed for assessing the knowledge state of some test
subject by looking at the subject’s responses to a series of test items. The details

On Knowledge Spaces and Item Testing 145

of such a procedure are given in Knowledge Spaces: Applications in Education [3,
pp.140-145] and another procedure involving Markov chains is given in Learning
Spaces [4]. For the sake of brevity we will give only a quick informal description
of the assessment algorithm found in [3]:

The assessment algorithm is based on a stochastic process defined by a se-
quence of random probability distributions Ln of the subject being in a certain
state K ∈ K, a sequence of random variables Qn that designate which test item
q ∈ Q is asked in the corresponding trial, and a sequence of random variables Rn

that yield 1, if the subject’s response in the trial was correct and 0 otherwise.
The process starts with some initial distribution L1, the probability of a certain
test item being asked in a trial depends on the history of the previous trials and
the probability distribution of that trial. The probability of the correct response
in a trial depends on the question q ∈ Q asked, the history of the previous
trials and the knowledge state distribution for that trial. The correct response
probability is deemed to be 1 − βq if the test item is mastered in the subject’s
latent state. This fact may be used to construct the assessed knowledge state of
the student, as the process “Ln(K0) almost surely converges to 1” for the latent
state K0 of the subject [3, p.143].

2 λ-μ-Calculus

Knowledge and learning space theory defines knowledge states such that they
are determined by the ability of a test subject to solve a test item. Therefore
we need to investigate how subjects solve test items, or how solution candidates
for test items may be constructed. This investigation benefits from a formal
apparatus of constructions and operations that is as general as possible. In Item
Construction and Psychometric Models [9] Tatsuoka argues that according to
Glaser [5] achievement tests must reflect the underlying cognitive processes of
problem solving, dynamic changes in strategies, and the structure of knowledge
and cognitive skills:

« The correct response to the item is determined by whether all cog-
nitive tasks involved in the item can be answered correctly. Therefore
the hypothesis would be that if any of the tasks would be wrong, then
there would be a high probability that the final answer would also be
wrong. » [9, p.108]

Tatsuoka suggests further, that properties and relations among microlevel and
invisible tasks should be explored and predicted [9], which “involves a painstaking
and detailed task analysis in which goals, subgoals, and various solution paths are
identified in a procedural network (or a flow chart). This process of uncovering
all possible combinations of subtasks at the microlevel is essential for making a
tutoring system perform the role of the master teacher [...]” [9].

« Identifying subcomponents of tasks in a given problem-solving do-
main and abstracting their attributes is still an art. It is necessary that

146 I. Albrecht and H. Körndle

the process can be made automatic and objective. However, we here as-
sume [...] that any task in the domain can be expressed by a combination
of cognitively relevant prime subcomponents. » [9, p.110]

We conclude that the formal apparatus for problem solving must have some way
to express extra-logical operations – which may be interpreted as the cognitively
relevant prime subcomponents of tasks in a given domain – and it must have
some way to express composed tasks and combinations of subtasks in great
generality. Our choice of the following extra-logically extended typed lambda
calculus as the formalization framework for test item analysis is motived as
follows: First, typed lambda calculus typically comes with an algorithm that
allows to check whether a given (untyped) lambda term is typable or not, which
may be seen as a very rough plausibility test of solution path candidates. Second,
types gracefully govern the input and output domains of prime and compound
operations. Third, complex task solutions do not have a strict order in which
subtasks have to be carried out, this corresponds to different reductions starting
from the same term. And last, a formal notion of extra-logical reductions may be
interpreted multifariously, for instance as invoking a random process that leads
to either a correct or an incorrect solution, as a skill requirement for a given
solution path, or as a step-by-step instruction, guideline, hint, etc.

2.1 λ-Calculus

First, we want to fix some definitions regarding the lambda calculus in order
to have something precise to refer to, but at the same time we want to point
out that our extension of the lambda calculus is quite natural and does not
depend on a specific way of formalization. As a general framework for different
possible lambda calculi, we use Pure Type Systems in a presentation found in
Kamareddine, Laan, and Nederpelt [7], which originates from Berardi [1] and
Terlouw [10].

Definition 7. (See [7], 4.16) Let V and C be disjoint sets, that do not contain
any of these symbols: “λ”, “Π”, “(”, “)”, “.”, and “:”. The set of terms wrt.
V and C is denoted by T (V,C). It is defined to be the smallest subset of the
support set |〈V ∪C ∪ {λ,Π, (,), ., : }〉| of the free monoid2 generated by V ∪C ∪
{λ,Π, (,), ., : }, such that V ∪ C ⊆ T (V,C) and for all A,B ∈ T (V,C) and all
x ∈ V:

((A)(B)) ∈ T (V,C), (λv : A.B) ∈ T (V,C), and (Πv : A.B) ∈ T (V,C)

As a notational convention, we may drop parentheses, if they can be restored by
successively adding parentheses, where the “(”-parentheses are added at the left-
most possible positions, and “)”-parentheses are added at the right-most possible
positions for λ and Π terms, and at the left-most possible position for application
2 The operation of the free monoid is denoted by juxtaposition, and the neutral element

is denoted by ε.

On Knowledge Spaces and Item Testing 147

terms: For instance, we may write λx : A.λy : B.C to denote the term (λx :
A.(λy : B.C)), and we may write xyz to denote ((((x)(y)))(z)), where A,B,C ∈
T (V,C) and x, y, z ∈ V.

Definition 8. Let V and C be sets that satisfy the conditions in Def. 7, and
let A,X ∈ T (V,C) and x ∈ V. The substitution of x in A by X is denoted
by A[x := X]. A formal definition can be found in [6] 1A7 on page 3.3 Since
the concept of variable substitution is quite natural to any mathematics, here we
give only an informal definition: in A, we replace every occurrence of x with the
word X, unless it is part of B of a term sub word4 of the form (λx : A.B) or
(Πx : A.B), i.e. “λ” and “Π” bind variables right of “.”. For instance

((x)((λx : x.x)))[x := ((y)(z))] = ((((y)(z)))((λx : ((y)(z)).x)))

Definition 9. (See [7], 4.13) Let V and C be sets that satisfy the conditions in
Def. 7, and let →⊆ T (V,C) × T (V,C) a binary relation on terms. → is called
compatibility, if for all A,A′, B ∈ T (V,C) with A → A′, also the following holds:
(A)B → (A′)B, (B)A → (B)A′, λx : A.B → λx : A′.B, λx : B.A → λx : B.A′,
Πx : A.B → Πx : A′.B, and Πx : B.A → Πx : B.A′.

Definition 10. (See [7], 4.13) Let V and C be sets that satisfy the conditions
in Def. 7. The β-reduction relation wrt. (V,C) is the smallest compatibility on
T (V,C), denoted by →β, such that �β⊆→β; where �β⊆ T (V,C)×T (V,C) such
that for all A,B,C ∈ T (V,C) and x ∈ V

(((λx : A.B))(C)) �β B[x := C]

The reflexive and transitive closure of →β is denoted by �β, the reflexive,
transitive and symmetric closure of →β is denoted by =β.

Remark 1. The notion of β-reduction (see Definition 11) is closely related to
the notion of α-conversion, which is a compatibility and equivalence relation on
T (V,C), such that

(λx : A.B) ≡α (λy : A.B[x := y]) and (Πx : A.B) ≡α (Πy : A.B[x := y])

if the variable y is not free in the left-hand term. This means that you may
rename bound variables, unless you would capture a free variable with the new
name. You may read the rest of this paper either by thinking of terms as terms
or as ≡α-equivalence classes. This is a standard feature of lambda calculus.

Definition 11. Let V and C be sets that satisfy the conditions in Def. 7, let
�x be a binary relation on T (V,C) and →x be the smallest compatibility with
�x⊆→x; further let n = {1, . . . , n} ⊆ N. A map r : n → T (V,C) is a finite
3 Or see [7] 4.12, but beware of missing x �≡ y and typos in 4.8 (swap A1 and A2 on

one side).
4 A term sub word of a term A is a term B, such that there are elements of the free

monoid C,D ∈ |〈V ∪ C ∪ {λ,Π, (,), ., : }〉| with CBD = A.

148 I. Albrecht and H. Körndle

�x-reduction, if for all i ∈ n− 1 = n\{n}, r(i) →x r(i + 1); and if there are
maps

pre, post : n− 1 → |〈V ∪ C ∪ {λ,Π, (,), ., : }〉| , redex: n− 1 → T (V,C)

such that for all i ∈ n− 1 :

pre(i)redex(i)post(i) = r(i) and

∃ti ∈ T (V,C) : redex(i) �x ti such that pre(i)tipost(i) = r(i + 1)

The set of all finite �x-reductions is denoted by ∇x, its subset of all finite
�x-reductions with r(1) = t for t ∈ T (V,C) is denoted by ∇t

x.

Definition 12. (See [7], 4.18) A tuple (V,C,S,A,R) is called pure type system
specification, if V and C are sets that satisfy the conditions in Def. 7; and if
S ⊆ C, A ⊆ S × S, and R ⊆ S × S × S. In this context, we call S the set of
sorts, A the set of axioms, and R the set of Π-formation rules.

These definitions are sufficient for our purposes. For a complete introduction to
lambda calculus and pure type systems, we refer you to [7], sections 4a through
4c.

2.2 μ-Extension

In this section, we want to define a generic extension of lambda calculus that
allows to deal with extra-logical operations. Since these operations are not part
of the lambda calculus, we need to specify a set of symbols which are regarded
as new constants from the point of some given lambda calculus, and we need
to specify a set of new derivation rules for typed terms that govern the correct
formal types of these symbols. Part of this work can be done by altering the
pure type system specification of the underlying lambda calculus, part of this
work has to be done by hand.

Definition 13. The μ-extension alphabet is defined to be the set M that con-
tains the distinct symbols “[”, “]”, “;”, “μi”, “νi”, and “mi” for all i ∈ N;5 i.e.

M = {[, ; ,]} ∪ {μi, νi,mi | i ∈ N}

The set of ν-constants Mν is defined to be the smallest subset of |〈M〉|, that
has the following properties: For all i ∈ N, mi ∈ Mν ; and for all i, k ∈ N, if
x1, . . . , xk ∈ Mν , then νi[x1; . . . ;xk] ∈ Mν .

The set of μ-constants M is defined as M := {μi | i ∈ N} ∪Mν .

Definition 14. A pair (S, S0,M, a, p, v) is called μ-specification, if S0 ∈ S,
and if M , a, p, and v are maps, such that M : N → S, a : N → N, p : N → S(N),
v : N → S, and such that for all i ∈ N, p(i) ∈ Sa(i). Here, M(i) specifies the type
of the constant mi; a(i) specifies the arity of the symbol μi, whereas p(i) specifies
the parameter types of μi and v(i) specifies the value type of μi.
5 Of course you could use a finite subset of N as well.

On Knowledge Spaces and Item Testing 149

For instance, each of the symbols μi may encode one of the operations listed in
Table 1 in [8] with appropriate a(i) and p(i).

Definition 15. Let (V,C,S,A,R) be a pure type system specification, such that
M∩T (V,C) = ∅; and let (S′, S0,M, a, p, v) be a μ-specification, such that S′ ⊆
C. The μ-extension of (V,C,S,A,R) wrt. (S′, S0,M, a, p, v) is defined to be the
tuple (V,Cμ,Sμ,Aμ,R, S0, a, p, v), where Cμ := M∪C,6 Sμ := S ∪ S′ and

Aμ := A ∪ {(mi,M(i)), (M(i), S0), (v(i), S0) | i ∈ N}

A tuple (V,Cμ,Sμ,Aμ,R, S0, a, p, v) that is a μ-extension of a pure type sys-
tem specification wrt. some μ-specification is called λ-μ-specification from here
on.

For technical reasons, we cannot express the axioms for the correct function type
of μi (i ∈ N) by elements of the set Aμ, since μi may have a compound type7
that is represented by a term from the set T (V,Cμ)\Cμ. Furthermore, νi involves
a different derivation rule that takes care of the input and output types of the
μi operation. Therefore we need to define three and a half additional derivation
rule schemes for the λ-μ-calculus.

Definition 16. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification.
The derivation rules of the corresponding λ-μ-calculus are the derivation rules

of the pure type system corresponding to (V,Cμ,Sμ,Aμ,R) plus the following
additional rules for all i ∈ N, x ∈ V, x1, . . . , xa(i) ∈ Mν :

(axiomμi) 〈〉 � μi : Πx : p(i)1. . . . Πx : p(i)a(i).v(i)

(axiomμi’) 〈〉 � Πx : p(i)1. . . . Πx : p(i)a(i).v(i) : S0

(applμi)
〈〉 � x1 : p(i)1 . . . 〈〉 � xa(i) : p(i)a(i)

〈〉 � μix1 . . . xa(i) : v(i)

(applνi)
〈〉 � x1 : p(i)1 . . . 〈〉 � xa(i) : p(i)a(i)

〈〉 � νi[x1; . . . ;xa(i)] : v(i)

A term t ∈ T (V,Cμ) that may be derived using the above derivation rules is
called typable wrt. the λ-μ-specification.

Remark 2. The derivation rule (applμi) is unnecessary from a purist point of
view, since it may be expressed using a(i) subsequent application rules (appl).
Yet this does not treat μi as function with multiple parameters which are applied
at once, but as a Curry-transformed version that maps its single parameter to
another single parameter function, to which then the next parameter is applied
6 If C was finite or countably infinite, Cμ is also countably infinite; thus we do not

break any countable infinity assumptions on V and C, as made on p.112 in [7].
7 This is the case, whenever a(i) �= 0.

150 I. Albrecht and H. Körndle

and so on. Since prime subcomponents of tasks should be indivisible into sub-
tasks, the partial applications of formal operations appear to be purely logic. In
order to reflect the intuition of prime formal operations with multiple param-
eters, we introduce a rule scheme that allows application of all parameters of
formal operations in one step.

For instance, a μ-reduction steps may correspond to performance of operations
as given by a line in Table 4 [8].

Definition 17. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification. The μ-
reduction relation wrt. that λ-μ-specification is the smallest compatibility on
T (V,Cμ) – denoted by →μ – with �μ⊆→μ, where �μ⊆ T (V,Cμ) × T (V,Cμ)
such that for all i ∈ N, x1, . . . , xa(i) ∈ Mν ,

(. . . (
︸ ︷︷ ︸

μi)(x1))

2·a(i) × “(”

. . .︸︷︷︸)(xa(i)))

“)(xi))” for
1<i<a(i)

�μ νi[x1; . . . ;xa(i)]

This defines the notion of finite �μ-reductions (see Definition 11), that reduce
the formal operations μi (i ∈ N), which are applied to the extra-logical value
constants x1, . . . , xa(i) ∈ Mν , to their canonical result νi[x1; . . . ;xa(i)] ∈ Mν .

We now have to check that this reduction works in a way, such that if a
term T ∈ T (V,Cμ) is well-typed wrt. the λ-μ-specification, then also all terms
R ∈ T (V,Cμ) with T →μ R are well-typed wrt. that λ-μ-specification. Since μi

has the type Πx : p(i)1. . . . Πx : p(i)a(i).v(i), and if xi, . . . , xa(i) are terms such
that xj has the type p(i)j for j ∈ {1, . . . , a(i)}, the term μix1 . . . xa(i) is well-
typed and has the type v(i). This means, that if we have a derivation for the type
of some term T ∈ T (V,Cμ), i.e. if T is well-typed, we can obtain a derivation
for every term R ∈ T (V,Cμ) with T →μ R by replacing the appropriate μi-
subterms with the appropriate νi[. . .]-subterms, and then using the derivation
rule (applνi) as a replacement for (applμi)8.

2.3 Stateful μ-Actions

In this section, we give the common abstraction that will help interpreting finite
�μ-reductions as operations performed one after another.

Definition 18. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification. A triple
(X,A,A) is called stateful μ-action, if X is a set – called the set of subject
states; A is a set – called the set of auxiliary states, and if

A : X × N → (X ×A)
A(N)×Mν

is a map, such that for all i ∈ N and x ∈ X; the map A(x, i) – called the μi-action
for x – has the following signature:

A(x, i) : Aa(i) ×Mν → X ×A

8 or the a(i) usages of (appl).

On Knowledge Spaces and Item Testing 151

Definition 19. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, and A =
(X,A,A) be a stateful μ-action. Furthermore, let n ∈ N, r ∈ ∇μ be a finite �μ-
reduction,

redex: n− 1 → T (V,Cμ)

and
pre: n− 1 → |〈V ∪Cμ ∪ {λ,Π, (,), ., : }〉|

be the corresponding functions as in Definition 11. The triple (r, redex, pre) is
a solution strategy, if the last term is a constant symbol, i.e. r(n) ∈ Mν ; and
if the first term r(1) is typable wrt. the λ-μ-specification and consists only of
symbols from {μi,mi | i ∈ N} ∪ {(,)}, i.e.

r(1) ∈ |〈{μi,mi | i ∈ N} ∪ {(,)}〉|

Since redex and pre are canonical for r, we may denote the solution strategy just
by r. The set of all solution strategies is denoted by ♦μ.

Definition 20. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, and A =
(X,A,A) be a stateful μ-action and (r, redex, pre) be a solution strategy. Then
the performance map of r wrt. A and the λ-μ-specification

rA :X ×AN → X ×A,

(x, (αi)i∈N) �→
(
rAX(x, (αi)i∈N), r

A
A (x, (αi)i∈N)

)

is defined by the sequence of �μ-reduction steps of r:
Let x ∈ X and (αi)i∈N ∈ AN, and let i ∈ {1, . . . , n} be the running index for

the rest of this definition. We define the map

r̄i : {1, . . . , ki} → V ∪ Cμ ∪ {λ,Π, (,), ., : }

to be the map such that ki ∈ N and r̄i(1)r̄i(2) . . . r̄i(ki) = r(i) wrt. the freely
generated monoid 〈V ∪ Cμ ∪ {λ,Π, (,), ., : }〉, i.e. r̄i is the symbol-at-index map
of the term r(i) viewed as a word. Further let li ∈ N be the length of the word
pre(i), i.e. the number such that there are σ1, . . . , σli ∈ V ∪Cμ ∪ {λ,Π, (,), ., : }
with pre(i) = σ1σ2 . . . σli . We define the auxiliary maps X̄ : n → X and, for
i ∈ {1, . . . , n}, Ai : {1, . . . , ki} → A: We set X̄(1) = x, and

A1(j) =

{
αh if r̄i(j) = mh for h ∈ N

α0 else

and for g ∈ n− 1:

Ag+1(j) =

⎧
⎪⎨

⎪⎩

Ag(j) if j ≤ lg

πA(A(X̄(g), fg)((Ag(eg,1), . . . , Ag(eg,a(i))), r̄g+1(lg + 1))) if j = lg + 1

Ag(j + kg − 1) if lg + 1 < j

and

X̄(g + 1) = πX(A(X̄(g), fg)((Ag(eg,1), . . . , Ag(eg,a(i))), r̄g+1(lg + 1)))

152 I. Albrecht and H. Körndle

where eg,dg = 5 · dg + 2 · a(fg) − 1 for dg ∈ {1, . . . , a(fg)}, and where fg ∈ N

such that r̄g(lg + 1) = μfg , whereas πX and πA denote the respective coordinate
projections of X ×A.

Finally, we set
rA(x, (αi)i∈N) = (X̄(n), An(1))

It is obvious that the above definition requires explanation: Given is a finite
�μ-reduction r that ends in some result r(n) ∈ Mν of extra-logical operations,
which is a single constant symbol term in T (V,Cμ). Furthermore, the given
reduction starts with a well-typed term r(1) that consists only of μi and mi

symbols, and the symbols for their respective applications.
We are interested in the state transition corresponding to the operation se-

quence of r, which is a simultaneous transition of an input subject state and a
vector of auxiliary states associated with the extra-logical constants mi into an
output subject state and a single output auxiliary state associated with the re-
sult r(n). The reduction r induces an order in which different actions are carried
out, and the map X̄ represents the state of the subject between the actions. Fur-
thermore the maps Ag represent the auxiliary states of the intermediate results
associated with the symbols from Mν .9

Here, the subject state may be a representation of the current knowledge,
skills, short and long term memory, motivation and fatigue of a subject, whereas
the auxiliary state may measure the correctness of the intermediate results,
partial response times and the amount of effort that was put into solving the
subtask. Or the subject state may be a distribution of knowledge states and
the auxiliary state may be a distribution of the correctness of the intermediate
results; or – slightly abusing the original idea – the subject state may keep track
of the required skills, whereas the auxiliary state may keep track of the required
effort.

Last, we want to point out, that when given a λ-μ-term that contains no νi[. . .]
symbols, and if that term has a finite �β,μ = �β∪�μ-reduction r with r(n) ∈ Mν ,
we may postpone all �μ-reduction steps to the end, since neither μ-redexes nor
μ-reducts have any ‘λ’ symbol, which is part of the β-redex – roughly speaking:
a �μ-reduction step cannot create new or remove old work for the �β-reduction.
This means, that if we have some typable term t ∈ T (V,Cμ), we may calculate
its β-normal form before invoking the extra-logical μ-machinery.

2.4 Solution Probabilities for Test Items Formalized by
λ-μ-Specifications

Definition 21. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification. A pair
(mq, Sq) is called test item wrt. the λ-μ-specification, if mq is a μ-constant
symbol mi, i.e. mq ∈ {mi | i ∈ N} ⊆ Mν , and if Sq is the type of the solution,
i.e. Sq ∈ Sμ.

The correct type corresponding to (mq, Sq) is the type of functions from M(i)
to Sq, i.e. Πx : M(i).Sq where i ∈ N such that mq = mi.
9 Partial maps Ag fit the situation better, but require more technical details.

On Knowledge Spaces and Item Testing 153

Definition 22. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, and let
t ∈ T (V,Cμ) be a term. We call t a solution candidate, if t is typable wrt. the
λ-μ-specification. In this case, tβ denotes the �β-normal form of t, which then
exists (see [7], Theorem 4.40: Strong Normalization Theorem for ECC).

Definition 23. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, let t be
a solution candidate, and q = (mi, Sq) be a test item wrt. the λ-μ-specification,
where i ∈ N and mi ∈ M. Then t is a solution procedure for q, if t does not
contain any symbols from Mν and has the correct type corresponding to q, i.e.
if there is a valid derivation tree with the root judgement

〈〉 � t : Πx : M(i).Sq

We denote the set of all solution procedures for q by Ξq.

For instance, every method listed in Table 1 [8] corresponds to such a solution
procedure.

Remark 3. Clearly, if q = (mi, Sq) and r = (mj , Sr) are test items such that
Sq = Sr and M(i) = M(j), then every solution procedure for q is a solution
procedure for r and vice versa.

Now consider a test item q = (mq, Sq) that is given to some test subject. There
are two cases: (i) the subject does not find a solution procedure for q, or (ii)
we may view the solution procedure as a discrete random variable ξ which may
take values from Ξq. In the first case, the probability of giving a correct response
equals the probability of a correct guess. In the second case, we may determine
the probability of a correct response under the condition, that ξ = t for t ∈ Ξq

by utilizing a stateful μ-action:

Definition 24. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, Q is a
set, such that all its elements q ∈ Q are test items wrt. the λ-μ-specification. A
tuple (x0, α, γ, β, η, η̄,≡ν , δ) is called formal test subject wrt. Q, if

1. α = (αi)i∈N ∈ [0, 1]N – the probabilities for correctly understanding mi,
2. γ = (γq)q∈Q ∈ [0, 1]Q – the prob. for discovery of a correct solution procedure,
3. η̄ = (η̄q)q∈Q ∈ [0, 1]Q – the prob. for guessing if no procedures was discovered,
4. β = (βi)i∈N ∈ [0, 1]N – the probabilities for failing to perform μi,
5. η = (ηi)i∈N ∈ [0, 1]N – the prob. for guessing the correct results for μi,
6. ≡ν⊆ Mν × Mν is an equivalence relation identifying results obtained in

different ways10,
7. δ = (δx)x∈Mν/≡ν

∈ [0, 1]Mν/≡ν – the prob. for keeping the result x in memory,
8. x0 : Mν/≡ν → [0, 1] × [0, 1] – x0(x) = (p1, p2) means that x is taken from

memory with prob. p1, and p2 is the prob. that the retrieved result is correct.

10 A nice property for ≡ν would be that it only identifies results with that have the
same type, but this is not necessary from a formal point of view.

154 I. Albrecht and H. Körndle

Definition 25. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, and s =
(x0, α, γ, β, η, η̄,≡ν , δ) be a formal test subject. The stateful μ-action associated
with s is defined to be the triple As = (Xs, [0, 1],As) where

Xs = ([0, 1]× [0, 1])
Mν/≡ν

and where
As : Xs × N → (Xs × [0, 1])

[0,1](N)×Mν

such that for all x ∈ Xs and i ∈ N;

As(x, i) : [0, 1]a(i) ×Mν → Xs × [0, 1],
((
p1, . . . , pa(i)

)
, r
)
�→ (y, pc + pg + pm)

Where:

pc =

⎛

⎝
a(i)∏

i=0

pi

⎞

⎠ · (1− βi) ·
(
1− π1

(
x
(
[r]≡ν

)))

pg = ηi · βi ·
(
1− π1

(
x
(
[r]≡ν

)))

pm = π1

(
x
(
[r]≡ν

))
· π2

(
x
(
[r]≡ν

))

and

y : Mν/≡ν → [0, 1]× [0, 1],

t �→

⎧
⎪⎨

⎪⎩

x(t) if t �= [r]≡ν

(π1(x(t)) + (1− π1(x(t))) · δi,
pc + pg + pm) if t = [r]≡ν

Here, π1 and π2 denote the respective coordinate projections of [0, 1]× [0, 1]; and
[r]≡ν

denotes the equivalence class of r wrt. ≡ν .

The above definitions interact in the following way: We assume, that we have a
μ-specification (S′, S0,M, a, p, v) which models the domain of knowledge we are
investigating. Each S ∈ S′ stands for a certain way of purposeful information
representation. The symbols mi ∈ Mν stand for some information represented
in the way of M(i). The symbols μi stand for operations that process a(i) pieces
of information represented in the ways of p(i)1, . . . p(i)a(i) to some piece of in-
formation represented in the way of v(i).

A test item is then formalized as some given problem represented by the sym-
bol mq and a task objective Sq ∈ S′, where we view the task as re-representing
the given information in a certain way that elucidates the answer. In order to
solve that item, a test subject has to find a series of μi operations that turn
Mq-representations into Sq-representations, where mq : Mq. In general, the sub-
ject will have to perform general logic operations in order to create a solution
strategy, such as using the given information mq in different ways to perform
different operations – and this is where λ-calculus is needed.

On Knowledge Spaces and Item Testing 155

Consider that you want solve the question 1+5 =?, and that your operation at
hand is ‘add two single digit decimal numbers’. Then you would have to extract
two different pieces of information: the left and right operands, and your solution
candidate for that kind of tasks could be

λx : SeasyAddition.μ1 (μ2 x) (μ3 x) : Πx : SeasyAddition.SintegerNumber

where μ1 represents the addition operation, and where μ2 and μ3 represent the
operand extraction. Please note that there is no need for logic decisions based
on the results of the μi operations, since the correct decisions may be encoded
by S′: carrying information about two easy numbers together with the purpose
‘addition’ means inhabiting the type SeasyAddition. This way, it is possible to
decide whether a solution strategy may work or not based on the type of the
representing term alone.

After choosing a solution strategy, the test subject has to perform the opera-
tions accordingly. The various sources of errors and lucky guesses – which may
be due to actual operation or due to remembering correct or wrong (intermedi-
ate) results – give rise to a formal test subject, which corresponds to the test
subject and the particular time of testing.

The stateful μ-action that is associated with the formal test subject then
acts in the following way: The operations are carried out according to the finite
μ-reduction in a probabilistic manner, such that if the result is available from
memory, then that result is used, otherwise the result is derived from the input,
and in case that the input is correct, there is a probability of introducing a
new error, and a probability of guessing the correct result. Then the memory is
updated with the new derived result.

We sketch a patch of the assessment algorithm [3, pp.140-145], which may
lead to a reduction in free parameters for knowledge domains, if there are less
operations than test items – which may be achieved by appropriate design. We
give a definition that replaces the response rule axiom [R]:

Definition 26. Let Q be a set of test items wrt. a λ-μ-specification, Q � q =
(mq, Sq), s = (x0, α, γ, β, η, η̄,≡ν , δ) a formal test subject wrt. Q; let R be a
random variable with outcomes {0, 1}, and ξ be a random variable with outcomes
Ξq ∪ {⊥}.

The pair (R, ξ) is called formal response of the subject s to the test item
q, if the following equations are satisfied for all t ∈ Ξq: P(ξ = ⊥) = γq and
P(R = 1|ξ = ⊥) = η̄q and for Υ := {(r, redex, pre) ∈ ♦μ | r ∈ ∇(t mq)β

μ };

P(R = 1|ξ = t) =
1

#Υ

∑

r∈Υ

rAs (x0, α)

where (tmq)β denotes the �β-normal form of the application term (tmq), and
As the stateful μ-action associated with s.

3 Discussion

Although the assessment algorithm of knowledge space theory may be utilized

156 I. Albrecht and H. Körndle

to uncover the latent knowledge state of a test subject, it is merely blind to any
learning process involved during the trials. The careless error and lucky guess
parameters do not allow to investigate relations between the underlying cognitive
processes of different test items. We want to investigate those relations, and thus
we cannot assume that the process of solving a test item does not involve any
state changes – as it is implausible that the same cognitive operation with the
same input parameters is repeated within the short timespan of a few solution
steps.

The model we introduced implies that expertise available to the test subject
may grow steadily just by solving test items, which means that the careless error
probabilities for items that belong to basic knowledge states should in fact sink
as the subject reaches a higher knowledge state – the probability of careless
errors when doing single digit additions should be less for students in senior
class compared to when they newly learned it.

In future work, the described models may be adapted to assess a concept as-
sociated with some measurement, where the different trials would be the objects
of the context and the interdependencies between attributes would be modeled
using λ-μ-calculus, leading to a stochastic assessment procedure.

References

1. Berardi, S.: Towards a mathematical analysis of the coquand-huet calculus of con-
structions and the other systems in barendregt’s cube. Tech. rep., Dept. of Com-
puter Science, Carnegie-Mellon University and Dipartimento Matematico, Univer-
sita di Torino (1988)

2. Doignon, J.P., Falmagne, J.C.: Spaces for the assessment of knowledge. Interna-
tional Journal of Man-Machine Studies 23(2), 175–196 (1985)

3. Falmagne, J., Doble, C., Albert, D., Eppstein, D., Hu, X.: Knowledge Spaces:
Applications in Education. Springer-Verlag New York Incorporated (2013)

4. Falmagne, J.C., Doignon, J.P.: Learning Spaces. Springer (2010)
5. Glaser, R.: The integration of instruction and testing. In: Freeman, E. (ed.) The

Redesign of Testing in the 21st Century: Proceedings of the 1985 ETS Invitational
Conference, pp. 45–58. Educational Testing Service, Princeton (1985)

6. Hindley, J.R.: Basic simple type theory. Cambridge University Press (1997)
7. Kamareddine, F., Laan, T., Nederpelt, R.: A Modern Perspective on Type Theory:

From its Origins until Today. Applied logic series. Kluwer Academic Publishers
(2006)

8. Korossy, K.: Modeling Knowledge as Competence and Performance. In: Albert,
D., Lukas, J. (eds.) Knowledge Spaces: Theories, Empirical Research, and Appli-
cations, Mahwah, NJ, pp. 103–132 (1999)

9. Tatsuoka, K.K.: Item Construction and Psychometric Models Appropriate for Con-
structed Responses. In: Bennett, R., Ward, W. (eds.) Construction Versus Choice
in Cognitive Measurement: Issues in Constructed Response, Performance Testing,
and Portfolio Assessment, ch. 6, pp. 107–133. Routledge, New York (2009)

10. Terlouw, J.: Een nadere bewijstheoretische analyse von gstt’s. Tech. rep., Depart-
ment of Computer Science, University of Nijmegen (1989)

	On Knowledge Spaces and Item Testing
	1 Knowledge Spaces
	1.1 Introduction to Knowledge Space Theory
	1.2 Definitions and Relation to Formal Concept Analysis
	1.3 Probabilistic Extension

	2 λ-μ-Calculus

	2.1 λ-Calculus

	2.2 μ-Extension

	2.3 Stateful μ-Actions

	2.4 Solution Probabilities for Test Items Formalized by
λ-μ-Specifications

	3 Discussion
	References

