
Cynthia Vera Glodeanu
Mehdi Kaytoue
Christian Sacarea (Eds.)

 123

LN
AI

 8
47

8

12th International Conference, ICFCA 2014
Cluj-Napoca, Romania, June 10–13, 2014
Proceedings

Formal
Concept Analysis



Lecture Notes in Artificial Intelligence 8478

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



Cynthia Vera Glodeanu Mehdi Kaytoue
Christian Sacarea (Eds.)

Formal
Concept Analysis
12th International Conference, ICFCA 2014
Cluj-Napoca, Romania, June 10-13, 2014
Proceedings

13



Volume Editors

Cynthia Vera Glodeanu
Technische Universität Dresden
01062 Dresden, Germany
E-mail: cynthia-vera.glodeanu@tu-dresden.de

Mehdi Kaytoue
INSA-Lyon, CNRS, LIRIS UMR 5205
69621 Lyon, France
E-mail: mehdi.kaytoue@insa-lyon.fr

Christian Sacarea
Babes-Bolyai University
400084 Cluj, Romania
E-mail: csacarea@math.ubbcluj.ro

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-07247-0 e-ISBN 978-3-319-07248-7
DOI 10.1007/978-3-319-07248-7
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014938711

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Formal Concept Analysis (FCA) is a multi-disciplinary field built on the solid
foundation of lattice and order theory. Besides this, FCA is strongly rooted
in philosophical aspects of the mathematical formalization of concept and con-
cept hierarchy. Since its emergence in the 1980s the field has developed into a
constantly growing research area in its own right, with a thriving theoretical
community further applying and developing this powerful framework of quali-
tative analysis of data. One of the initial goals of FCA was to promote better
communication between lattice theorists and potential users of lattice theory.
The increasing number of applications in diverse areas such as data visualiza-
tion, information retrieval, data mining, and knowledge discovery demonstrates
how that goal is being met.

In order to offer researchers the opportunity to meet and discuss developments
and applications of FCA annually, the International Conference on Formal Con-
cept Analysis (ICFCA) was established and held for the first time in Darmstadt,
Germany in 2003. Since then, the ICFCA has been held in different countries
from Europe, America, Africa, and in Australia.

The 12th ICFCA took place during 10th to 13th June, 2014 at the Babeş-
Bolyai University, Cluj-Napoca, Romania. There were 39 submissions by authors
from 14 different countries. Each paper was reviewed by three members of the
Program Committee (exceptionally four). 16 high-quality papers were chosen for
publication in this volume, amounting to an acceptance rate of 41%. Six other
works in progress were considered valuable for presentation during the conference
and included in a side volume entitled Contributions to ICFCA 2014. For 4
of these papers chosen for publication, the authors accepted the opportunity
to publish their work in the journal Studia Universitatis Babeş-Bolyai, Series
Informatica of the hosting university.

The articles of the present volume cover a rich range of FCA aspects. The
first group of papers tackles mathematical problems related to the number of
concepts in a context (Albano), order theoretic aspects (Kerkhoff and Schnei-
der, Garćıa-Pardo et al.) and lattice theoretic aspects (Chornomaz). The second
group presents recent advances in enhanced FCA: Relational Concept Analysis,
dealing with relational data (Codocedo and Napoli, Dolques et al.) and Formal
Fuzzy Concept Analysis, processing uncertain data (Glodeanu and Konecny).
Five works bridge FCA to other fields: data-mining (Soldano, Bouzmakov et.
al), knowledge spaces in learning theory (Albrecht and Körndle, Ganter and
Glodeanu) and knowledge discovery in algebraic structures (Revenko). Method-
ologies and applications to real world problems are explored in biology (Wollbold
et al., Coste et al.), web media mining (Agrawal et al.), and image analysis (de
Fréin).



VI Preface

In addition to the regular contributions, this volume also contains a historical
paper entitled Subdirect decomposition of concept lattices from Rudolf Wille. It is
our pleasure to make this pioneer work of FCA easily available to the community.

We were also delighted that three prestigious researchers accepted to give an
invited talk, and we also included their corresponding papers:

– Learning Spaces, and How to Build Them by Prof. Jean-Paul Doignon, Uni-
versité Libre de Bruxelles, Belgium;

– On the Succinctness of Closure Operator Representations by Prof. Sebastian
Rudolph, Technische Universität Dresden, Germany;

– MDL for Pattern Mining A Brief Introduction to Krimp by Prof. Arno
Siebes, Universiteit Utrecht, The Netherlands.

Our deepest gratitude goes to all the authors of submitted papers. Choosing
ICFCA 2014 as a forum to publish their research was key to the success of
the conference. Besides the submitted papers, the high quality of this published
volume would not have been possible without the strong commitment of the
authors, the ProgramCommittee and Editorial Board members, and the external
reviewers. Working with the efficient and capable team of local organizers was
a constant pleasure. We are deeply indebted to all of them for making this
conference a successful forum on FCA.

Last, but not least, we are most grateful to Springer for showing, for the
12th consecutive year, their reliance on the International Conference on Formal
Concept Analysis, as well to the organizations that sponsored this event: the
Bitdefender company, the iQuest company, the Babeş-Bolyai University, and the
City of Cluj-Napoca, Romania. Finally, we would like to emphasize the great help
of EasyChair for making the technical duties easier.

June 2014 Cynthia Vera Glodeanu
Mehdi Kaytoue

Christian Sacarea



Organization

Executive Committee

Conference Chair

Christian Sacarea Babeş-Bolyai University, Cluj-Napoca,
Romania

Conference Organizing Committee

Brigitte Breckner Babeş-Bolyai University, Cluj-Napoca,
Romania

Sanda Dragos Babeş-Bolyai University, Cluj-Napoca,
Romania

Diana Halita Babeş-Bolyai University, Cluj-Napoca,
Romania

Diana Troanca Babeş-Bolyai University, Cluj-Napoca,
Romania

Viorica Varga Babeş-Bolyai University, Cluj-Napoca,
Romania

Program and Conference Proceedings

Program Chairs

Cynthia Vera Glodeanu Technische Universität Dresden, Germany
Mehdi Kaytoue Université de Lyon, France

Editorial Board

Peggy Cellier IRISA, INSA Rennes, France
Felix Distel Technische Universität Dresden, Germany
Florent Domenach University of Nicosia, Cyprus
Peter Eklund University of Wollongong, Australia
Sebastien Ferré Université de Rennes 1, France
Bernhard Ganter Technische Universität Dresden, Germany
Robert Godin Université du Québec à Montréal, Canada
Robert Jäschke Leibniz Universität Hannover, Germany
Sergei O. Kuznetsov Higher School of Economics, Russia
Leonard Kwuida Bern University of Applied Sciences,

Switzerland
Rokia Missaoui Université du Québec en Outaouais, Canada
Sergei Obiedkov Higher School of Economics, Russia



VIII Organization

Uta Priss Ostfalia University of Applied Sciences,
Germany

Sebastian Rudolph Technische Universität Dresden, Germany
Stefan E. Schmidt Technische Universität Dresden, Germany
Gerd Stumme University of Kassel, Germany
Petko Valtchev Université du Québec Montréal, Canada
Karl Erich Wolff University of Applied Sciences, Germany

Honorary Member

Rudolf Wille Technische Universität Darmstadt, Germany

Program Committee

Simon Andrews University of Sheffield, UK
Mike Bain University of New South Wales, Australia
Jaume Baixeries Polytechnical University of Catalonia, Spain
Radim Bělohlávek Palacký University, Czech Republic
Karell Bertet L3I Université de La Rochelle, France
François Brucker Centrale Marseille, France
Claudio Carpineto Fondazione Ugo Bordoni, Italy
Stephan Doerfel University of Kassel, Germany
Vincent Duquenne ECP6-CNRS, Université Paris 6, France
Alain Gély Université Paul Verlaine, France
Marianne Huchard LIRMM, Université Montpellier, France
Dmitry Ignatov Higher School of Economics, Russia
Tim Kaiser SAP AG, Germany
Markus Krötzsch Technische Universität Dresden, Germany
Michal Krupka Palacký University, Czech Republic
Marzena Kryszkiewicz Warsaw University of Technology, Poland
Wilfried Lex Universität Clausthal, Germany
Engelbert Mephu Nguifo LIMOS, Université de Clermont Ferrand 2,

France
Amedeo Napoli LORIA, France
Lhouari Nourine Université Blaise Pascal, France
Jan Outrata Palacký University, Czech Republic
Jean-Marc Petit LIRIS, INSA de Lyon, France
Jonas Poelmans Katholieke Universiteit Leuven, Belgium
Sandor Radeleczki University of Miskolc, Hungary
Laszlo Szathmary University of Debrecen, Hungary
Andreja Tepavčević University of Novi Sad, Serbia

External Reviewers

Gabriela Arevalo Universidad Nacional de La Plata, Argentina
Philippe Fournier-Viger Université du Québec à Montreal, Canada
Clément Guérin L3I Université de La Rochelle, France



Organization IX

Mohamed Nader Jelassi Université de Clermont, France
Jan Konecny Palacký University, Czech Republic
Michel Krebs Bern University of Applied Sciences,

Switzerland
Branimir Šešelja University of Novi Sad, Serbia
Romuald Thion Université de Lyon, France

Sponsoring Institutions

The Babeş-Bolyai University Cluj-Napoca, Romania
The City of Cluj-Napoca, Romania
The Bitdefender Company, Romania
iQuest GmbH & Co KG, Germany



Table of Contents

Invited Talks

Learning Spaces, and How to Build Them . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Jean-Paul Doignon

On the Succinctness of Closure Operator Representations . . . . . . . . . . . . . 15
Sebastian Rudolph

MDL in Pattern Mining: A Brief Introduction to Krimp . . . . . . . . . . . . . . 37
Arno Siebes

Theory

Upper Bound for the Number of Concepts of Contranominal-Scale Free
Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Alexandre Albano

Algebraicity and the Tensor Product of Concept Lattices . . . . . . . . . . . . . . 54
Bogdan Chornomaz

On the Existence of Isotone Galois Connections between Preorders . . . . . 67
Francisca Garćıa-Pardo, Inma P. Cabrera, Pablo Cordero,
Manuel Ojeda-Aciego, and Francisco J. Rodŕıguez-Sanchez

Directed Tree Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Sebastian Kerkhoff and Friedrich Martin Schneider

Enhanced FCA

A Proposition for Combining Pattern Structures and Relational
Concept Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Vı́ctor Codocedo and Amedeo Napoli

RCA as a Data Transforming Method: A Comparison with
Propositionalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Xavier Dolques, Kartick Chandra Mondal, Agnès Braud,
Marianne Huchard, and Florence Le Ber

Ordinal Factor Analysis of Graded Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Cynthia Vera Glodeanu and Jan Konecny



XII Table of Contents

Knowledge Discovery and Knowledge Spaces

On Knowledge Spaces and Item Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Immanuel Albrecht and Hermann Körndle

Scalable Estimates of Concept Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Aleksey Buzmakov, Sergei O. Kuznetsov, and Amedeo Napoli

Factors and Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Bernhard Ganter and Cynthia Vera Glodeanu

Automatized Construction of Implicative Theory of Algebraic Identities
of Size Up to 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Artem Revenko

Closed Patterns and Abstraction Beyond Lattices . . . . . . . . . . . . . . . . . . . . 203
Henry Soldano

Methods and Applications

Mining Videos from the Web for Electronic Textbooks . . . . . . . . . . . . . . . . 219
Rakesh Agrawal, Maria Christoforaki, Sreenivas Gollapudi,
Anitha Kannan, Krishnaram Kenthapadi, and Adith Swaminathan

Automated Enzyme Classification by Formal Concept Analysis . . . . . . . . 235
François Coste, Gaëlle Garet, Agnès Groisillier,
Jacques Nicolas, and Thierry Tonon

Multilayered, Blocked Formal Concept Analyses for Adaptive Image
Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Ruaiŕı de Fréin

Attribute Exploration with Proper Premises and Incomplete Knowledge
Applied to the Free Radical Theory of Ageing . . . . . . . . . . . . . . . . . . . . . . . 268

Johannes Wollbold, Rüdiger Köhling, and Daniel Borchmann

History

Subdirect Decomposition of Concept Lattices . . . . . . . . . . . . . . . . . . . . . . . . 284
Rudolf Wille

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



Learning Spaces, and How to Build Them

Jean-Paul Doignon

Université Libre de Bruxelles,
Department of Mathematics c.p. 216,

Bd du Triomphe, 1050 Brussels, Belgium
doignon@ulb.ac.be

Abstract. In Knowledge Space Theory (KST), a knowledge structure
encodes a body of information as a domain, consisting of all the relevant
pieces of information, together with the collection of all possible states
of knowledge, identified with specific subsets of the domain. Knowledge
spaces and learning spaces are defined through pedagogically natural
requirements on the collection of all states. We explain here several ways
of building in practice such structures on a given domain. In passing we
point out some connections linking KST with Formal Concept Analysis
(FCA).

Keywords: knowledge space, learning space, QUERY routine, antima-
troid, convex geometry, closure space, formal concept lattice.

1 Introduction

In Knowledge Space Theory (KST) a ‘knowledge structure’ encodes a body of
information as a ‘domain’ together with ‘states of knowledge’. The domain is the
set of all the relevant, elementary pieces of information. Each knowledge state
is a subset of the domain, which contains all the items mastered at some time
by some (hypothetical) individual. For example, the empty set and the domain
itself represent respectively a completely ignorant and an omniscient students.
We assume here that in any knowledge structure, the empty set is a state1.
In general, there will be many more knowledge states; their collection captures
the overall structure of the body of information. If Q is the domain and K the
collection of states, the knowledge structure is the pair (Q,K). An example with
domain Q = {a, b, c, d} is displayed in Figure 1: the boxes show the nine states
forming K, while the ascending lines indicate the covering relation among states.

Without further restrictions on the collection of states, knowledge structures
are too poorly organized for the development of a useful theory. Fortunately,
pedagogical considerations lead in a natural way to impose restrictions on the
state collection. We now explain two natural requirements by looking at the
knowledge structure (Q,K) from Figure 1. The subset {c, d} is a knowledge
state in K, but there is no way for a student to acquire mastery of items c and d

1 In KST, it is often required that the domain be also a state; we leave out this
assumption here in order to ease in Section 3 the comparison with the closure spaces
of FCA.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 1–14, 2014.
c© Springer International Publishing Switzerland 2014



2 J.-P. Doignon

∅

{a} {b}

{a, b} {b, c} {c, d}

{a, b, d} {b, c, d}

Q

Fig. 1. An example of knowledge structure with domain Q = {a, b, c, d} and nine
knowledge states as shown

one after the other in any order (neither subset {c} nor {d} is a state in K). This
contradicts the (common) view that learning occurs progressively, that is one
item at a time. For another singularity in the same knowledge structure (Q,K),
consider a student in state {b}. She may learn item a to reach state {a, b}. On the
other hand, while in state {b} she may rather learn item c first and reach state
{b, c}; then, strangely enough, item a is not learnable anymore to her (because
the subset {a, b, c} is not a state in K). The definition of a ‘learning space’ as a
particular type of knowledge structure rules out the two strange situations that
we just illustrated on Figure 1. It imposes the following two conditions on the
states of a knowledge structure (Q,K).

[A] Accessibility. Any state K contains an item q such that K \{q} is again
a state.

[LC] Learning consistency. For any state K and items q, r, if K ∪ {q} and
K ∪ {r} are states, then K ∪ {q, r} is also a state.

As we will explain in the next section, “learning space” happens to be just
another name for “∪-stable antimatroids”.

Knowledge Space Theory (KST) is at the basis of the computer-assisted teach-
ing system ALEKS. Developed since around 1995 in a start-up company2 with the
same name in Irvine (California), ALEKS is now quite successful with 1, 300, 000
single users in 2013. A special feature of ALEKS is its assessment module, whose
foundation relies on the concept of a learning space. We will not expose the as-
sessment principles, but rather consider the question of how to build a learning
space for a specific body of information—this enterprise is a preliminary for the
implementation of an efficient assessment module.

To give an example, suppose we have at hand 200 items which represent
the topic of arithmetic at the ages 12–14. How can we build an adequate
collection of knowledge states on these 200 items? The idea is to rely on

2 The company was recently acquired by McGraw-Hill Education.



Learning Spaces, and How to Build Them 3

the advice of experts in the teaching of arithmetic, or as it is done today,
on the huge database of past assessments of student mastery (in kind of a
bootstrapping method, see details below in Section 4). Section 4 explains (at
least the basic principles of) a general routine called QUERY. The QUERY rou-
tine emerges from work by Koppen and Doignon (1990) and Koppen (1993).
Eppstein, Falmagne and Uzun (2009) were the first to apply it to build learning
spaces. Then Falmagne and Doignon (2011) introduces another way of using the
routine for the same goal. We sketch here a third way, maybe a more insightful
one, of taking advantage of the QUERY routine.

In Section 3 we point out some links between KST and Formal Concept
Analysis (FCA), thus complementing the works of Rusch and Wille (1996) and
Spoto, Stefanutti and Vidotto (2010).

2 Learning Spaces and Knowledge Spaces

We first provide the formal definitions of concepts met in the Introduction.

Definition 1. A knowledge structure (Q,K) consists of a finite, nonempty set
Q together with a collection K of subsets of Q. In the present text we make the
only requirement ∅ ∈ K. The elements of the domain Q are items, those of K
(knowledge) states.

The restriction to finite domains Q is made here because of our main goal—
namely, the explanation of the QUERY routine.

Definition 2. A learning space (Q,K) is a knowledge structure (Q,K) in which
the collection K of states satisfies3 two conditions (as in the Introduction):

[A] Accessibility. Any state K contains an item q such that K \{q} is again
a state:

∀K ∈ K, ∃q ∈ K : K \ {q} ∈ K; (1)

[LC] Learning consistency. For any state K and items q, r, if K ∪ {q} and
K ∪ {r} are states, then K ∪ {q, r} is also a state:

∀K ∈ K, ∀q, r ∈ Q : (K ∪ {q},K ∪ {r} ∈ K) =⇒ K ∪ {q, r} ∈ K. (2)

A large collection of learning spaces derives from ordered sets. Let (Q,�) be
a partially ordered set (in other words, � is a reflexive, transitive and antisym-
metric relation, or a partial order, on Q). Define a state of � to be any subset
K of Q such that

∀q, r ∈ Q : (q � r and r ∈ K) =⇒ q ∈ K.

As it is easily checked, the collection L of states of � contains ∅ and Q, and
it satisfies [A] and [LC] in Definition 2. So (Q,L) is a learning space, that we
call the ordinal space (derived from �). Notice that the collection of states of an

3 In an unusual way, we do not require Q ∈ K—see Footnote 1.



4 J.-P. Doignon

ordinal space is stable under both union and intersection, in the sense that any
union and intersection of states are again states.

There are many other characterizations of learning spaces. To state one, we
recourse to the notion of ‘wellgradedness’. In rough terms, a collection of subsets
of a finite domain Q is well-graded when it is possible to move from any of its
members to any other one by ‘elementary’ steps which, moreover, are in number
equal to the ‘distance’ between the two members. Here, the distance means the
‘symmetric-difference distance’, and a step is elementary if it consists in either
adding or deleting a single element.

Definition 3. The (symmetric-difference) distance between two subsets K and
L of a finite domainQ is equal to d(K,L) = |KΔL| (this indeed defines a distance
d on the collection of subsets of Q). A collection K of subsets of a finite domain
Q is well-graded when for any two members K, L of K with d(K,L) = m, there
exist states K1, K2, . . . , Km−1 in K such that, with K0 = K and Km = L, there
holds d(Ki−1,Ki) = 1 for i = 1, 2, . . . , m.

The notion of wellgradedness plays a role also outside KST. For instance,
Doignon and Falmagne (1997) show that the collection of all partial orders (resp.
“interval orders”, “semiorders”) on a finite domain is well-graded. Returning to
our present topic, we notice that the states of a learning space form a well-graded
collection, and even more:

Proposition 1. Let (Q,K) be a knowledge structure. Then the two following
conditions are equivalent:

(i) (Q,K) is a learning space;
(ii) the collection K is well-graded and stable under union.

Stability under union is an important property in KST. For instance, knowl-
edge structures whose collection of states is stable under union are closely related
to “AND/OR graphs”4. They will be central in Section 4.

Definition 4. A knowledge space (Q,K) is a knowledge structure whose collec-
tion K of states is stable under union.

In any knowledge space (Q,K), some states can be written as unions of other
ones, while some states cannot. We now characterize the latter.

Definition 5. In a knowledge structure (Q,K), a clause for an item q is any
state which contains q and is minimal for the latter property. A clause is a state
which is a clause for some item. The set of all clauses is denoted as B.

Proposition 2. In a knowledge space (Q,K), any state is a union of clauses,
but no clause can be written as a union of other states. Moreover, any collection
A of states having the property that any state in K is a union of members of A
must contain all the clauses, that is B ⊆ A.

4 AND/OR graphs generalize partially ordered sets in that each item may have several
set of predecessors; for details, see Doignon and Falmagne (1999), Chapter 3.



Learning Spaces, and How to Build Them 5

Definition 6. In a knowledge space (Q,K), the base is the collection B of all
clauses.

The following two other characterizations of learning spaces are due to Koppen
(1998).

Proposition 3. For a knowledge space (Q,K), the three following assertions
are equivalent:

(i) (Q,K) is a learning space;
(ii) any clause is a clause for only one item;
(iii) for any two distinct items q, r, the set of clauses for q differ from the

set of clauses for r.

The names we introduced in Definitions 1, 2 and 4 reflect the motivation of
KST. We now point out the links with more classical, mathematical structures.
To do so, we associate to any knowledge structure (Q,K) its dual structure
(Q,K), where

K = {Q \K K ∈ K}.
Knowledge structures (Q,K), if we remove the innocuous requirement ∅ ∈ K,

are just “hypergraphs” (Berge, 1989). Knowledge spaces (with the requirement of
stability under union) are exactly the duals of ‘closure spaces’ (see for instance
Birkhoff, 1967; Buekenhout, 1967; van de Vel, 1993). Closure spaces play an
important role in FCA as we will recall in Section 3 (Ganter and Wille, 1996).

Definition 7. A closure space (Q, C) is a finite set Q with a collection C of
subsets of Q which is closed under intersection and contains Q.

A closure space (Q, C) corresponds to exactly one closure operator on Q, that
is a map 2Q → 2Q which is expansive, monotone and idempotent. To be precise,
the closure operator of (Q, C) is 2Q → 2Q : A → A = ∩{C ∈ C A ⊆ C}.

Learning spaces (characterized through well-gradedness and stability
under union as in Proposition 1) are the ∪-stable antimatroids of
Korte, Lovász and Schrader (1991) (except for the missing requirementQ ∈ K—
notice that by Proposition 1 any of our learning space has a maximum state
containing all the other states, but this state may differ from Q). As a matter of
fact, Proposition 1 can be found in Chapter III of the latter reference (see also
Cosyn and Uzun, 2009). Notice that the duals of learning spaces are ‘∩-stable
antimatroids’ in the sense of Edelman and Jamison (1985) (we give a definition
which is different from, but equivalent to, the original one except that we admit
the omission of ∅ from C).

Definition 8. An ∩-stable antimatroid is a closure space (Q, C) in which the
collection C of closed sets satisfies

[E] Extendability. For any closed set C in C, there exists an element p of
Q \C such that C ∪ {q} is again a closed set:

∀C ∈ C, ∃p ∈ Q \ C : C ∪ {q} ∈ C.



6 J.-P. Doignon

Note that in any ∩-stable antimatroid (Q, C), there is a minimum closed set
contained in all closed sets (which may be empty or not). Another characteriza-
tion of ∩-stable antimatroids is as follows, in terms of the closure A → A (this
is the original definition in Jamison, 1980, 1982, however modified here to allow
for the possible omission of ∅ from K).

Proposition 4. A closure space (Q, C) is an ∩-stable antimatroid if and only
if, for any closed set C in C and distinct elements p, q in Q:(

p ∈ C ∪ {q} and q /∈ C
)

=⇒ q /∈ C ∪ {p}.

3 Knowledge Space Theory and Formal Concept Analysis

As is well known, closure spaces are useful in FCA. Given a context (G,M, I)
(thus I is a relation from G to M), define the two mappings

2G → 2M : A → A′ = {m ∈ M ∀a ∈ A : a I m}, (3)

2M → 2G : B → B′ = {g ∈ G ∀b ∈ B : g I b}. (4)

Then

2G → 2G : A → A′′, (5)

2M → 2M : B → B′′ (6)

are both closure operators. Their collections of closed sets,

C = {A ∈ 2G A = A′′}, (7)

D = {B ∈ 2G B = B′′} (8)

produce closure spaces, respectively (G, C) and (M,D). The two collections are
put in one-to-one correspondence by the two mutually reciprocal, bijective map-
pings

C → D : A → A′, (9)

D → C : B → B′. (10)

Moreover, these mappings are inclusion-reversing, so that the two partially or-
dered sets (C,⊆) and (D,⊆) are anti-isomorphic. In FCA, a pair (A,B) with
A ∈ 2G, B ∈ 2M , A′ = B and B′ = A is a concept with extent A and intent B.

In line with Section 2, we may ask under which condition on the context
(G,M, I) the closure spaces (G, C) and/or (M,D) are ∩-stable antimatroids. Al-
though Ganter and Wille (1996) do not mention the word “antimatroid”, precise
answers in lattice-theoretic terms appear in their Theorem 44. Here we directly
derive from Proposition 3 similar answers in set-theoretic terms. Let us first look
at an example.



Learning Spaces, and How to Build Them 7

Example 1. Let G = {a, b}, M = {m,n, p}, and I be the relation described by
the following boolean table:

m n p

a 1 1 0

b 0 0 1

Figure 2 shows the resulting two closure spaces (G, C) and (M,D). Notice that

C

∅

{a} {b}

{a, b} D

∅

{mn} {p}

{m,n, p}

Fig. 2. The two closure spaces for the context in Example 1

(G, C) is an ∩-stable antimatroid, while (M,D) is not because D is not extendible
in view of {p}.
Definition 9. In a context (G,M, I), an attribute m in M is a demarcator at
an object g when m′ does not contain g and is maximal among all the b′, for b
in M , which share this property. A demarcator is a demarcator at some object.

In the notation of Ganter and Wille (1996), the attribute m is a demarcator
at the object g exactly when g ↗ m; also, a demarcator is an attribute m
such that the concept (m′,m′′) is ∧-irreducible. Demarcators are dual to clauses
(Definition 5). We now rephrase Proposition 2 and 3 in their dual versions.

Proposition 5. For a context (G,M, I), any closed set in G is an intersection
of demarcators. Moreover, the collection of demarcators is contained in any sub-
set N of M having the property that any closed set C in G is the intersection of
a subcollection of {n′ n ∈ N}.
Proposition 6. Given a context (G,M, I), the following three assertions are
equivalent:

(i) the closure space (G, C) is an ∩-stable antimatroid;
(ii) any demarcator is a demarcator at only one object;
(iii) for any two distinct objects g, h, the set of demarcators at g differ

from the set of demarcators at h.

There is of course a similar criterion for (M,D) to be an ∩-stable antimatroid.
The demarcators m′, for m ∈ M , are crucial here because any closed set in G is
an intersection of such subsets (Proposition 5). They are also useful in relation
with a quasi order that we now define on the collection of all relations from the
finite set G to the finite set M .



8 J.-P. Doignon

Definition 10. Let I be the collection of all relations from the finite set G to
the finite set M . Define a relation � on I by letting, for I, J∈ I:

I � J when ∀m ∈ M, ∃m1,m2, . . . ,mk ∈ M, ∀g ∈ G : (11)

g I m ⇐⇒ g J m1, g J m2, . . . , g J mk. (12)

In other words, I � J exactly when each attribute extent m′ w.r.t I (for each
m in M) is an intersection of some attribute extents n′ w.r.t. J (where the n’s
are in M); notice that an equivalent definition of � results when “∀m ∈ M”
is replaced with “for any demarcator m w.r.t. I” and “∃m1,m2, . . . ,mk ∈ M”
with “there exist demarcators m1,m2, . . . ,mk w.r.t. J”. It is easily checked that
� is a quasi order on I (that is, � is a reflexive and transitive relation on I).
Moreover, two relations I and J in I are equivalent (I � J and J � I) exactly
if they have the same collection of demarcator extents. The definition of � is
tailored for delivering the following straightforward result.

Proposition 7. For I a relation from G to M (that is, I∈ I), denote by CI the
closed sets in G of the context (G,M, I). Then for I, J in I

I � J ⇐⇒ CI ⊆ CJ .

Thus I and J are equivalent in � exactly if they produce the same concept
lattice.

4 The QUERY Routine to Build a Knowledge Space

Suppose we have all the items in an area of knowledge. How can we then build
an adequate collection of (potential) knowledge states? In the first steps of the
application of KST, relevant information came from experts in the area. A com-
puter routine displays ‘queries’ on the screen, and collects experts’ answers on
the keyboard. A crucial feature of the QUERY routine is its ability to infer addi-
tional information from previous answers (it thus avoids setting forth too many
queries). It is useful as well in current use of KST, where queries are addressed
to a database of past assessment sessions rather than to human experts. There
is a bootstrapping method at work here. The very first stage relies on a very
crude collection K of potential knowledge states (for instance, if the domain Q
is not too large, all of its subsets are in the initial collection K of states). The
database records the assessments based on K. Then a call of the QUERY routine
results (as we explain below) in the deletion of subsets from the collection K.
Next, the database records further assessments based on the new collection of
states. The QUERY routine can then take advantage of the new assessment his-
tory, and again reduce the collection of states. There can be many repetitions of
the assessment/QUERY sequence.

We focus here the exposition on the QUERY routine itself, however we leave
many details aside. For instance, the two-stage process usually first works only
with small subsets of the domain (say, with only 6 items). The information



Learning Spaces, and How to Build Them 9

found about the states within the parallel subdomains delivers an initial list
of (not too many) potential states on the whole domain. Then the two-stage
process works on the full domain (for more about this, see Subsection 0.10.2 of
Doignon and Falmagne, 2015).

In the present section, we explain how the original QUERY routine produces a
knowledge space, that is a collection of states closed under union. In the next
section, we explain how to adapt the routine in order that it produce a learning
space (that is, a ∪-stable antimatroid): there, we want the collection of states to
be not only ∪-closed, but also accessible (Definition 2).

A typical query to an expert or the database takes the following form, for
some subset A of Q and some item q in Q:

Suppose that a student under examination has just provided wrong an-
swers to all the items in A.
Is it practically certain that this student will also fail item q?

(Assume that the conditions are ideal in the sense that in the formulation
of student answers, careless errors and lucky guesses are excluded.)

We denote the above query by (A, q). A positive answer to query (A, q) rules out
subsets from being potential knowledge states. Indeed, if there were a state L
with A ∩L = ∅ and q ∈ L, then the expert answer could not be positive. Thus,
assuming that before query (A, q) the available collection of states is F , upon
a positive answer to query (A, q) we may delete from F all the elements of the
collection

DF(A, q) = {L ∈ F A ∩ L = ∅ and q ∈ L}.
If the goal is to build a knowledge space, the next proposition shows that we
may safely perform the deletion for as many queries as we want—if the initial
collection is itself a knowledge space (it could be for instance (Q, 2Q)).

Proposition 8. For any knowledge space (Q,K) and any query (A, q), the col-
lection K \ DK(A, q) is stable under union, so that (Q,K \ DK(A, q)) is again a
knowledge space.

Now we briefly explain how inferences can be made from collected answers
to past queries. Suppose first that we limit ourselves to queries (A, q) having
|A| = 1. In other words, we try to uncover a (binary) relation R on Q: a positive
answer to query ({q}, r) acknowledges q R r, a negative answer entails (not
q R r). The latent relation R, to be uncovered, captures prerequisites among the
items. To be precise, for items q and r, we have q R r when q is a prerequisite
for r (in the sense that any knowledge state containing r also contains q). This is
reminiscent of the definition of an ordinal space (see after Definition 2): because it
is natural to assume that R is a partial order on Q, all the states compatible with
the answers to queries form the ordinal space derived from R. The transitivity
of the relation R makes it possible to infer additional information from answers
to past queries. Indeed, if queries ({q}, r) and ({r}, s) were positively answered,



10 J.-P. Doignon

then we may infer that query ({q}, s will also be—and we may refrain from asking
the latter query. Another case: if query ({q}, s) receives a negative answer and
query ({q}, r) a positive one, then we may infer that query ({r}, s) will receive
a negative answer—and again we do not need asking the latter query. Similarly,
query ({q}, s) negatively answered, query ({r}, s) positively answered entail that
query ({q}, r) will be negatively answered. There are similar inferences that can
be made when no restriction is made on the size of A in queries (A, q); we refer
the reader to Koppen (1998) for a detailed exposition.

In view of Proposition 8, the application of the QUERY routine, starting from
any knowledge space, results after each query in the production of a knowledge
space. But are we sure that the routine will uncover a latent knowledge space,
if the expert answers are coherent with such a space? The answer is in the
affirmative.

Proposition 9. Suppose the QUERY routine starts with the initial knowledge
space (Q, 2Q), and that the answers of the expert to queries are always com-
patible with a latent knowledge space (Q,L). Then at any step, the knowledge
space (Q,K) built by the routine satisfies K ⊆ L. Moreover, if K ⊂ L, there is
some query (A, q) such that DK(A, q) is nonempty. Hence, after having collected
or inferred the answers to all possible queries, the routine produces the latent
knowledge space (Q,L).

5 Adapting the QUERY Routine to Build a Learning Space

In this section, we assume again that all the items forming the domain
Q are available. Our goal this time is to build a learning space, not
just a knowledge space as in the previous section. A solution proposed by
Eppstein, Falmagne and Uzun (2009) works in two steps: first use the QUERY

routine to build a knowledge space (Q,K), then add states until K becomes a
learning space. Note that the second step involves arbitrariness in the choice
of the additional states. One reason lies in the following observation: given a
knowledge space (Q,K), the collection of all learning spaces (Q,L) such that
K ⊆ L contains in general several minimal elements (w.r.t. inclusion).

Example 2. For Q = {a, b} and K = {∅} (the smallest possible knowledge space
on {a, b}), there are three learning spaces (Q,L) such that K ⊆ L. Their collec-
tions L of states are {∅, {a}, Q}, {∅, {b}, Q} and {∅, {a}, {b}, Q}. Two of them
are minimal.

Here is a fundamental difference between knowledge spaces and learning spaces:
if (Q,K1) and (Q,K2) are knowledge spaces on the same domain, their intersection
(Q,K1 ∩ K2) is again a knowledge space, while the similar assertion for learning
spaces does not hold.

Falmagne and Doignon (2011) describes another solution to the problem of
building a learning space, which adapts the QUERY routine according to the
following general principle. Start from an initial learning space (for instance
(Q, 2Q)) and successively collect responses to queries; when a query receives a



Learning Spaces, and How to Build Them 11

positive answer, delete subsets which cannot be states only if the resulting space
is again a learning space—if it is not, keep the information provided by the
positive answer for possible, later use. The resulting ‘adapted QUERY’ routine
performs well, in particular it uncovers the latent learning space governing the
expert answers—if there is any such latent space (see Proposition 12 below). To
provide more details on the adapted QUERY routine, we need two more notions
from KST.

Definition 11. Let (Q,K) be a knowledge structure, and K be a state in K.
The inner fringe of K is

KI = { q ∈ K K \ {q} ∈ K }.

The outer fringe of K is

KO = { q ∈ Q \K K ∪ {q} ∈ K }.

The outer fringe of the state K contains the items which a student in state
K is ready to learn. In a general knowledge structure, both the inner and outer
fringes can be empty. Accessibility (Definition 2) entails that the inner fringe of
any nonempty state is nonempty, while extendability (Definition 8) entails that
the outer fringe of any state different from the domain is nonempty.

Proposition 10. In a learning space (Q,L), no two states in L have the same
pair of inner and outer fringes.

In other words, a state in a learning space (Q,L) is determined by its two
fringes (and the availability of L).

The design of the adapted QUERY routine relies on the following property.
Remember that DK(A, q) is the collection of subsets ruled out by a positively
answered query (A, q):

DF(A, q) = {L ∈ F A ∩ L = ∅ and q ∈ L}.

Proposition 11. For any learning space (Q,L) and any query (A, q), the col-
lection L \DL(A, q) gives a learning space (Q,L) if and only if there is no state
K in L such that |KI | = 1, A ∩K = KI and q ∈ K.

The adapted QUERY routine relies on Proposition 11 to test whether a positive
answer to the query (A, q) may be safely applied—that is, to test whether the
knowledge space resulting from the deletion of the sets forming DF(A, q) is again
a learning space. We refer the reader to Falmagne and Doignon (2011) for a full
description of the adapted QUERY routine, but state here one of its fundamental
properties.

Proposition 12. If L is a latent learning space and the query answers are truth-
ful with respect to L, then the adapted QUERY routine will ultimately uncover L.



12 J.-P. Doignon

The proof of Proposition 12 relies on results of Edelman and Jamison (1985)
and Caspard and Monjardet (2004) about the collection of all antimatroids on
a given set.

We nowbriefly sketch a third way of using the QUERY routine for building a learn-
ing space. A fundamental property of the collection of all learning spaces on a do-
main Q is that it forms a ∨-semilattice w.r.t. inclusion (Caspard and Monjardet,
2004). Let us denote by L the family of all collections L of subsets of Q such that
(Q,L) is a learning space. If L1 andL2 are inL, then among all the collectionsL in
L such that L1 ⊆ L and L2 ⊆ L, there is smallest one for inclusion, namely their
least upper bound

L1 ∨ L2 = {L1 ∪ L2 L1 ∈ L1, L2 ∈ L2}. (13)

Notice that the partially ordered set (L,⊆) has no minimum element; its minimal
elements are all the full chains, that is the collections {L0, L1, . . . , Lm} of subsets
of Q such that L0 ⊂ L1 ⊂ · · · ⊂ Lm and m = |Q|. We may turn (L,⊆) into
a lattice5 by adding to L a new element ⊥ which becomes the minimum (we
assume ⊥ ⊆ L for any L in L ∪ {⊥}). Then any two elements L1 and L2 in
L ∪ {⊥} have a greatest lower bound

L1 ∧ L2 =
∨{

L ∈ L ∪ {⊥} L ⊆ L1, L ⊆ L2

}
. (14)

Now when the QUERY routine has L as its actual collection of states, with
L ∈ L, and it receives a positive answer to the query (A, q), we know that
only the subsets in L∗ = L \ DF (A, q) should remain in the new collection of
possible states. The latter collection L∗ always provides a knowledge space on
Q (Proposition 8), but in general not a learning space (Proposition 11). There
are two cases which our adjusted QUERY routine must handle:

(i) L∗ contains some element F of L; then, in view of the definition of ∨
above, it contains for sure the learning space∨{

F ∈ L F ⊆ L∗} .
We then instruct the adjusted QUERY routine to replace L with the
latter learning space.

(ii) L∗ does not contain any element from L. We then keep L as the actual
collection of states.

Although the best way to implement Step (i) in the adjusted QUERY routine
is still under investigation, it is clear that the outcome of the adjusted QUERY

routine is always a learning space. We also have a result similar to Proposition 12
(which was about the adapted QUERY routine).

5 This is the usual way of turning a ∨-semilattice into a lattice.



Learning Spaces, and How to Build Them 13

Proposition 13. If L is a latent learning space and the query answers are truth-
ful with respect to L, then the adjusted QUERY routine will ultimately uncover L.

Notice that in the setting of Proposition 13, Case (ii) never occurs in the
execution of the routine. We leave for further work a comparison of the perfor-
mances of the three ways of using the QUERY routine to uncover a latent learning
space.

References

Berge, C.: Hypergraphs. Combinatorics of finite sets, Transl. from the French. North-
Holland, Amsterdam (1989)

Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1967)
Buekenhout, F.: Espaces à fermeture. Bull. Soc. Math. Belg. 19, 147–178 (1967)
Caspard, N., Monjardet, B.: Some lattices of closure systems on a finite set. Discrete

Math. Theor. Comput. Sci. 6(2), 163–190 (electronic) (2004)
Cosyn, E., Uzun, H.B.: Note on two necessary and sufficient axioms for a well-graded

knowledge space. J. Math. Psych. 53, 40–42 (2009)
Doignon, J.-P., Falmagne, J.-C.: Well-graded families of relations. Discrete Math. 173,

35–44 (1997)
Doignon, J.-P., Falmagne, J.-C.: Knowledge Spaces. Springer, Berlin (1999)
Doignon, J.-P., Falmagne, J.-C.: Knowledge Spaces and Learning Spaces. To appear in:

Batchelder, W.H., Colonius, H., Dzhafarov, E.N., Myung, J. (eds.) New Handbook
of Mathematical Psychology (in press)

Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geom. Dedicata 19,
247–270 (1985)

Eppstein, D., Falmagne, J.-C., Uzun, H.B.: On verifying and engineering the wellgrad-
edness of a union-closed family. J. Math. Psych. 53, 34–39 (2009)

Falmagne, J.-C., Doignon, J.-P.: Learning Spaces. Springer, Berlin (2011)
Ganter, B., Wille, R.: Formale Begriffsanalyse: Mathematische Grundlagen. Springer,

Heidelberg (1996); English translation by Franske, C.: Formal Concept Analysis:
Mathematical Foundations

Jamison, R.E.: Copoints in antimatroids. In: Proceedings of the Eleventh Southeast-
ern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic
Univ., Boca Raton, Fla., 1980), vol. II. Congr. Numer., vol. 29, pp. 535–544 (1980)

Jamison, R.E.: A perspective on abstract convexity: classifying alignments by varieties.
In: Convexity and Related Combinatorial Geometry (Norman, Okla., 1980). Lecture
Notes in Pure and Appl. Math., vol. 76, pp. 113–150. Dekker, New York (1982)

Koppen, M.: Extracting human expertise for constructing knowledge spaces: An algo-
rithm. J. Math. Psych. 37, 1–20 (1993)

Koppen, M.: On alternative representations for knowledge spaces. Math. Social Sci. 36,
127–143 (1998)

Koppen, M., Doignon, J.-P.: How to build a knowledge space by querying an expert.
J. Math. Psych. 34, 311–331 (1990)



14 J.-P. Doignon

Korte, B., Lovász, L., Schrader, R.: Greedoids. Algorithms and Combinatorics, vol. 4.
Springer, Berlin (1991)

Rusch, A., Wille, R.: Knowledge spaces and formal concept analysis. In: Bock, H.-H.,
Polasek, W. (eds.) Data Analysis and Information Systems. Studies in Classification,
Data Analysis, and Knowledge Organization. Springer, Heidelberg (1996)

Spoto, A., Stefanutti, L., Vidotto, G.: Knowledge space theory, formal concept analysis,
and computerized psychological assessment. Behavior Res. Meth. 42, 342–350 (2010)

van de Vel, M.L.J.: Theory of convex structures. North-Holland, Amsterdam (1993)



On the Succinctness

of Closure Operator Representations

Sebastian Rudolph

Technische Universität Dresden, Germany
sebastian.rudolph@tu-dresden.de

Abstract. It is widely known that closure operators on finite sets can
be represented by sets of implications (also known as inclusion depen-
dencies) as well as by formal contexts. In this paper, we consider these
two representation types, as well as generalizations of them: extended
implications and context families. We discuss the mutual succinctness of
these four representations and the tractability of certain operations used
to modify closure operators.

1 Introduction

Closure operators and closure systems are a basic notion in algebra and occur
in various computer science scenarios such as logic programming or databases.
One central task when dealing with closure operators is to represent them in a
succinct way while still allowing for their efficient computational usage. Formal
concept analysis (FCA) naturally provides two complementary ways of repre-
senting closure operators: by means of formal contexts on one side and implica-
tion sets on the other. Although being complementary, these two representations
share the property that they allow for tractable closure computation. In fact,
this property is also exhibited by further representation types, which properly
generalize the ones mentioned above: context families consist of several contexts
and the closure is specified as the “simultaneous fixpoint” of all the separate con-
texts’ closures; extended implications are implications where auxiliary elements
are allowed.

For a given closure operator, the space needed to represent it in one or the
other way may differ significantly: it is well known that there are closure op-
erators whose minimal implicational representation is exponentially larger than
their minimal contextual one and vice versa (see Section 3).

Thus, when designing algorithms which store and manipulate closure opera-
tors (as many FCA algorithms do) it is important to know which of the possible
representation types allow for efficient storage and still guarantee fast (that is:
PTime) execution of typical computations.

This paper investigates the four representation types in this respect. To this
end, we will consolidate known results from diverse areas into one framework
and provide some findings which are – to the best of our knowledge – novel
and original to fill the remaining gaps. Our main results can be generalized as
follows:

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 15–36, 2014.
c© Springer International Publishing Switzerland 2014



16 S. Rudolph

– We show that context families allow for succinct representation of both con-
texts and implications, and that extended implication sets can succinctly rep-
resent all the three other representation types. We also show that a succinct
translation (i.e., one where the size of the result is polynomially bounded by
the input) in all other directions is not possible.

– We clarify the complexities for comparing closure operators in different rep-
resentations in terms of whether one is a refinement of the other. Interest-
ingly, some of the investigated comparison tasks are tractable (i.e., time-
polynomial), others are not (assuming P �= NP). We provide algorithms for
the tractable cases and coNP-hardness arguments for the others.

– We go through standard manipulation tasks for closure operators (refinement
by adding a closed set, coarsening through an implication, projection, meet
and join in the lattice of closure operators) and clarify which are tractable
and which are not.

Parts of this paper are based on an earlier publication [20].

2 Preliminaries

We start providing a condensed overview of the notions used in this paper.

2.1 Closure Operators

Definition 1. Let M be an arbitrary set. A function ϕ : 2M → 2M is called a
closure operator on M if it is

1. extensive, i.e., A ⊆ ϕ(A) for all A ⊆ M ,
2. monotone, i.e., A ⊆ B implies ϕ(A) ⊆ ϕ(B) for all A,B ⊆ M , and
3. idempotent, i.e., ϕ(ϕ(A)) = ϕ(A) for all A ⊆ M .

A set A ⊆ M is called closed (or ϕ-closed in case of ambiguity), if ϕ(A) = A.
The set of all closed sets {A | A = ϕ(A) ⊆ M} is called closure system.

It is easy to show that for an arbitrary closure system S, the corresponding
closure operator ϕ can be reconstructed by

ϕ(A) =
⋂

B∈S, A⊆B

B.

Hence, there is a one-to-one correspondence between a closure operator and the
according closure system.

Definition 2. Given two closure operators ϕ and ψ on M , ϕ is called finer
than ψ (written ϕ � ψ, alternatively we also say ψ is coarser than ϕ) if every
ψ-closed set is also ϕ-closed. We call ϕ and ψ equivalent (written ϕ ≡ ψ), if
ϕ(A) = ψ(A) for all A ⊆ M .



On the Succinctness of Closure Operator Representations 17

It is well-known that the set of all closure operators together with the “finer
than” relation constitutes a complete lattice. The lattice operations can be de-
fined as follows: ϕ∧ψ is the closure operator mapping anyX ⊆ M to ϕ(X)∩ψ(X)
whereas ϕ∨ψ is the closure operator that mapsX ⊆ M to the smallest set closed
under ϕ and ψ (which, for finite sets, can be obtained by alternatingly apply-
ing ϕ and ψ to X until a fixpoint is reached). The finest closure operator is the
identity function mapping every set to itself. The coarsest closure operator maps
every input set to M .

The precise numbers of closure operators on a finite sets are known up to
|M | = 7:

|M | number of closure operators on M reference

1 2
2 7
3 61
4 2, 480
5 1, 385, 552 [12]
6 75, 973, 751, 474 [11]
7 14, 087, 648, 235, 707, 352, 472 [3]

Moreover, general lower and upper bounds have been determined [2], accord-
ing to which the number of closure operators an an n-element set is between

2(
n

�n/2�) and 22
√
2( n

�n/2�)(1+o(1)).
The lower bound can be exploited to obtain a first negative result regarding

succinct representability of closure operators in general.

Proposition 1. There is no uniform representation of closure operators that
requires at most polynomial space w.r.t. |M |.

Proof. Suppose the contrary, i.e., that there exists some fixed k such that every
closure operator on M can be expressed by a string of length |M |k over some

alphabet Σ of bounded size, say |Σ| = �. Obviously, there are �(|M|k) such strings
in total. Thus we obtain

�(|M|k) = 2log2(�)(|M|k) < 2(2
�|M|/2�) < 2(

|M|
�|M|/2�)

for sufficiently largeM . Therefore, there are less strings of the required length
than there are distinct closure operators. ��

Finally, we introduce the notion of a projection of a closure operator.

Definition 3. Given a closure operator ϕ on a set M and some set N ⊆ M ,
the projection of ϕ to N , written ϕ|N is a closure operator on N with ϕ|N (X) =
ϕ(X) ∩N for all X ⊆ N .

Next we introduce four ways of representing closure operators. Thereby and
in what follows, we will restrict our considerations to closure operators over
finite sets, which is a reasonable assumption when investigating succinctness
and complexity properties.



18 S. Rudolph

2.2 Contexts and Context Families

Following the normal line of argumentation of FCA [8], we use formal contexts
as data structure to encode closure operators.

Definition 4. A formal context K is a triple (G,M, I) with an arbitrary set G
called objects, an arbitrary set M called attributes, and a relation I ⊆ G ×M
called incidence relation. The size of K (written: #K) is defined as |G| · |M |,
i.e., as the number of bits required to store I.

This basic data structure can then be used to define operations on sets of
objects or attributes, respectively.

Definition 5. Let K = (G,M, I) be a formal context. We define a function
(·)I : 2G → 2M with AI := {m | gIm for all g ∈ A} for A ⊆ G. Furthermore,
we use the same notation to define the function (·)I : 2M → 2G where BI :=
{g | gIm for all m ∈ B} for B ⊆ M . For convenience, we sometimes write gI

instead of {g}I and mI instead of {m}I.

Applied to an object set, this function yields all attributes common to these
objects; by applying it to an attribute set we get the set of all objects having
those attributes. The following facts are consequences of the above definitions:

– (·)II is a closure operator on G as well as on M .
– For A ⊆ G, AI is a (·)II -closed set and dually
– for B ⊆ M , BI is a (·)II -closed set.

In the following, we will focus only on the closure operator on attribute sets
and exploit the fact that this closure operator is independent from the concrete
object set G; it suffices to know the set of the context’s object intents. Thus,
we will directly use intent sets, that is: families F of subsets of M to represent
formal contexts.

Definition 6. Given a family F ⊆ 2M , we let K(F) denote the formal context
(G,M, I) with G = F and, for an A ∈ F , we let AIm exactly if m ∈ A. Given
B ⊆ M , we use the notation BF to denote the attribute closure BII in K(F)
and let #F = #K(F) = |F| · |M |.

For the sake of simplicity we will from now on to refer to F as contexts (on
M). We recall the first basic complexity result:

Proposition 2. For any context F on a set M and any set A ⊆ M , the closure
AF can be computed in O(#F) = O(|F| · |M |) time.

Given an arbitrary contextF representing some closure operator ϕ on some set
M , the question whether there exists another F ′ representing ϕ and satisfying
#F ′ < #F – and if so, how to compute it – is straightforwardly solved by
noting that this coincides with the question if K(F) is row-reduced [8] and how
to row-reduce it. Hence we obtain:



On the Succinctness of Closure Operator Representations 19

Proposition 3. Given a context F onM , a size-minimal context F ′ with (·)F ≡
(·)F ′

can be computed in O(|F| ·#F) = O(|F|2 · |M |) time.

Algorithm 1 displays the according method cast in our representation via set
families.

We note that for a given closure operator ϕ, the minimal F with ϕ ≡ (·)F is
uniquely determined. We will denote it by F(ϕ).

The notion of contexts can be extended to that of context families.

Definition 7. A context family on a set M is a finite set F = {F1, . . .Fn} of
formal contexts on M . The size of F (written: #F) is defined as

∑n
i=1 #F i.

The closure operator (·)F associated with F is defined via its closed sets: X is
(·)F-closed if it is (·)F -closed for every F ∈ {F1, . . .Fn}.

Algorithm 1. minimizeContext

Input: context F on M
Output: size-minimal context F ′

such that (·)F ≡ (·)F′

1. F ′ := F
2. for each A ∈ F ′ do
3. if A = AF′\{A} then
4. F ′ := F ′ \ {A}
5. end if
6. end for
7. output F ′

Note that the provided definition of (·)F can be equivalently expressed by
(·)F :=

∨
F∈F(·)F using the join operation

∨
in the lattice of closure operators.

This kind of data structure has been investigated in another area of computer
science called model-based reasoning [6] and as we will see, it is more succinct
than plain contexts. On the other hand, this seems to comes at a prize: the
obvious upper bound for closure computation is higher than for plain contexts:

Proposition 4. For any context family F on a set M and any set A ⊆ M , the
closure AF can be computed in O(#F · |M |) = O(|F| · |M |2) time.

Proof. Following from the definition, AF must be the smallest simultaneous fix-
point of (·)F1 , . . . , (·)Fn that contains A. Thanks to monotonicity and finiteness
of M , such a fixpoint can be obtained by |M |-fold application of (·)F1···Fn to
A. Exploiting Proposition 2, a one-fold application requires

∑n
i=1O(#F) =

O(
∑n

i=1 #F) = O(#F) time, which leads to the above result for |M |-fold appli-
cation. ��

This finding can be seen as a special case of a more general result [6], according
to which checking if a propositional formula in CNF with m conjuncts is entailed
by the Horn theory represented by a context family is feasible in O(m ·#F) time.



20 S. Rudolph

Unlike for contexts, no canonical minimal representation for context families
is known. We usually assume that each context F ∈ F is minimized, but there
are still several such representations for one closure operator in the general case.

2.3 Implications and Extended Implications

Given a set of attributes, implications on that set are logical expressions that
can be used to describe certain attribute correspondences which are valid for all
objects in a formal context.

Definition 8. Let M be an arbitrary set. An implication on M is a pair (A,B)
with A,B ⊆ M . To support intuition we write A → B instead of (A,B). We say
an implication A → B holds for an attribute set C (also: C respects A → B),
if A �⊆ C or B ⊆ C. Moreover, an implication i holds (or: is valid) in a formal
context K = (G,M, I) if it holds for all sets {g}I with g ∈ G. We then write
K |= i. The size of an implication set I (written: #I) is defined as |I| · |M |.
Given a set A ⊆ M and a set I of implications on M , we write AI for the
smallest set that contains A and respects all implications from I. (Since those
two requirements are preserved under intersection, the existence of a smallest
such set is assured).

It is obvious that for any set I of implications on M , the operation (·)I is a
closure operator on M . Furthermore, it can be easily shown that an implication
A → B is valid in a formal context K = (G,M, I) exactly if B ⊆ AII .

The following result is an often noted and straightforward consequence from
[17].

Proposition 5 (Maier 1983). For any attribute set B ⊆ M and set I of
implications, BI can be computed in O(#I) = O(|I| · |M |) time.

Like in the case of the contextual encoding, also here it is natural to ask for a
size-minimal set of implications that corresponds to a certain closure operator.

Although there is in general no unique minimal implication set for a given
closure operator ϕ, the so-called Duquenne-Guigues base or stem base [10] is
often used as a (minimal) canonical representation. We follow this practice and
denote it by I(ϕ).

Algorithm 2 (cf. [4,23,19]) provides a well-known way to turn an arbitrary
implication set into an equivalent Duquenne-Guigues base. Thus we can note
the following complexity result.

Proposition 6 (Day 1992). Given a set I of implications on M , a size-
minimal I′ with (·)I ≡ (·)I′

can be computed in O(|I| · #I) = O(|I|2 · |M |)
time.

A closer look at the algorithm reveals that the O(|I| · |M |) space bound comes
about by the necessity of a 2-pass processing of the implication set. Note that
both passes can be performed in situ (i.e., by overwriting the input with the
output) which would require only O(|M |) additional memory.



On the Succinctness of Closure Operator Representations 21

Algorithm 2. minimizeImpSet

Input: implication set I on M
Output: size-minimal implication set I′

such that (·)I ≡ (·)I′

1. Ĩ := ∅
2. for each A → B ∈ I do
3. Ĩ := Ĩ ∪ {A → (A ∪ B)I}
4. end for
5. I′ := ∅
6. for each A → B ∈ Ĩ do
7. delete A → B from Ĩ
8. C := AĨ∪I′

9. if C �= B then
10. I′ := I′ ∪ {C → B}
11. end if
12. end for
13. output I′

We will now slightly generalize the notion of implications by allowing for
“auxiliary elements” that do not belong to M .

Definition 9. An extended implication set on M is an implication set over
some set N ⊇ M where the elements of N \M are called auxiliary attributes.
The size of an extended implication set I (written: #I) is defined as |I| · |N |.
Given an extended implication set I over M , we associate with it the closure
operator (·)I|M .

We will see later that allowing for auxiliary attributes enables a more succinct
representation of closure operators. The complexities for closure computation
follow directly from those for plain implication sets.

3 Mutual Succinctness

Given the four encodings of closure operators, a question which arises naturally
is whether one encoding is superior to the other in terms of memory required to
store it. First of all, note that for a given M , we will find a representation of any
of the four types whose size is bounded is bounded by 2|M| · |M |, i.e., at most
exponential in the size of M .

The following proposition shows that for some ϕ, #F(ϕ) is exponentially
larger than #I(ϕ).

Proposition 7. There exists a sequence (ϕn)n∈N of closure operators such that
#F(ϕn) ∈ Θ(2n) whereas #I(ϕn) ∈ Θ(n2).

Proof. We define ϕn as the closure operator on the set Mn = {1, . . . , 2n} that
corresponds to the implication set Ib containing the implication {2i− 1, 2i} →



22 S. Rudolph

1 2 . . . 2n−3 2n−2 2n−1 2n

g1 × . . . × ×
g2 × . . . × ×
g3 × . . . × ×
g4 × . . . × ×
...

...
...

...
...

...
...

...

g2n−1 × . . . × ×
g2n × . . . × ×

Fig. 1. Example for a context that is exponential in the size of its stem base

Mn for every i ∈ {1, . . . , n}. Then, we obtain #I(ϕn) = 2n2. On the other
hand, F(ϕn) = {{2k − ak|1 ≤ k ≤ n} | 〈a1, . . . , an〉 ∈ {0, 1}n} (as schematically
displayed in Fig. 1) whence we obtain #F(ϕn) = 2n · 2n. ��

This shows that plain contexts cannot succinctly (that is: with only polyno-
mial increase in size) represent closure operators defined via implication sets.
However, we will next show that this can be achieved by context families. To
this end we first define the notion of one-implication-context.

Definition 10. For an implication i = A → B on some set M , the one-
implication-context F i is defined by F i = {M \ {m} | m ∈ (M \ B) ∪ A} ∪
{M \ {m,m′} | m ∈ B \A,m′ ∈ A}.

It is not hard to verify that F i is the unique context which is reduced, in
which i holds and that satisfies that every other implication holding therein is a
logical consequence of i. In other words, whenever B \A is nonempty, the stem
base of FA→B will contain exactly the implication A → A∪B. We omit a proof
here as this is a special case of Proposition 22 presented later. Furthermore, we
obtain #F i < |M |3.

Definition 11. For an implication set I = {i1, . . . , in} on some set M , the
associated context family F(I) is defined by F(I) = {Fi1, . . . ,Fin}.

Proposition 8. For any implication set I on some set M holds (·)I ≡ (·)F(I).
Moreover, #F(I) < #I · |M |2.

This shows that for every implication set, there exists a context family that
is only polynomially larger and represents the same closure operator.

We now turn our attention to the other direction, asking if implications allow
for a succinct representation of contextually specified closure operators. It is
known that this is not the case: as a consequence of a result on the number of
pseudo-intents [14,18], we know that for some ϕ, #I(ϕ) is exponentially larger
than #F(ϕ).



On the Succinctness of Closure Operator Representations 23

Proposition 9 (Kuznetsov 2004, Mannila & Räihä 1992). There exists a
sequence (ϕn)n∈N of closure operators such that #F(ϕn) ∈ Θ(n2) but #I(ϕn) ∈
Θ(2n).

This result implies that in general, one cannot avoid the exponential blowup
if a contextually represented closure operator is to be represented by means of
implications on the set M .

However, as the following definition and theorem show, this does not hold
for extended implication sets, i.e., if auxiliary attributes are allowed. In fact we
show that the exponential blowup can then be avoided.

Definition 12. Given a context F on a set M , let M+ denote the set M ex-
tended by a one new attribute mF for each F ∈ F . Then we define IF as
the extended implication set containing for every m ∈ M the two implications
{m} → {mF | F ∈ F ,m �∈ F} and {mF | F ∈ F ,m �∈ F} → {m}.

Theorem 10. Given a context F on a set M , the following hold

1. #IF = 2 · |M | · |M+| = 2 · |M | · (|M |+ |F|) ≤ 4 · (#F)2.
2. (·)F ≡ (·)IF |M , that is, AF = AIF ∩M for all A ⊆ M .

Proof. The first claim is obvious.
For the second claim, we first show that for an arbitrary set A ⊆ M holds

AIF = B ∪C with B = {mF | F ∈ F , A �⊆ F} and C = {m | {mF | F ∈ F ,m �∈
F} ⊆ B}. To show AIF ⊆ B ∪C we note that A ⊆ B ∪C and that B ∪C is IF -
closed: B ∪C satisfies all implications of the type {mF | F ∈ F ,m �∈ F} → {m}
by definition of C. To check implications of the second type, {m} → {mF | F ∈
F ,m �∈ F}, we note that

C = {m | {mF | F ∈ F ,m �∈ F} ⊆ B}
= {m | {mF | F ∈ F ,m �∈ F} ⊆ {mF | F ∈ F , A �⊆ F}}
= {m | ∀F ∈ F : m �∈ F → A �⊆ F}

Now, picking an m ∈ C, we find that every mF for which m �∈ F must also
satisfy A �⊆ F and therefore mF ∈ B so we find all implications of the second
type satisfied.

Further, we show B∪C ⊆ AIF , by proving B ⊆ AIF and C ⊆ AIF separately.
We obtain B = {mF | F ∈ F , A �⊆ F} ⊆ AIF due to the following: given an

F ∈ F with A �⊆ F , we find an m ∈ A with m �∈ F and thus an implication
m → {mF , . . .} contained in IF , therefore AIF must contain mF .

We then also obtain C := {m | {mF | F ∈ F ,m �∈ F} ⊆ B} ⊆ AIF by the
following argument: picking anm ∈ C, we find the implication {mF | F ∈ F ,m �∈
F} → {m} contained in IF . On the other hand, we already know B ⊆ AIF and
B ⊇ {mF | F ∈ F ,m �∈ F}, hence m ∈ AIF .

Finally, we obtain AIF |M = AIF ∩ M = C = {m | ∀F ∈ F : m �∈ F →
A �⊆ F} = {m | ∀F ∈ F : A ⊆ F → m ∈ F} =

⋂
F∈F ,A⊆F F = AF for any

A ⊆ M . ��



24 S. Rudolph

Thus, we obtain a polynomially size-bounded implicational representation of
a context. In our view this is a remarkable – although not too intricate – insight
as it seems to challenge the practical relevance of computationally hard problems
w.r.t. pseudo-intents (recognizing, enumerating, counting), on which theoretical
FCA research has been focusing lately [15,19,16,22,21,5].

What remains to be clarified is the mutual succinctness of context families
vs. extended implication sets. Can they be polynomially transformed into each
other, is one strictly more succinct than the other or are they incomparable in
that respect?

We will first show that extended implication sets can indeed polynomially
express closure operators which are defined via context families.

Definition 13. Given a context family F = {F1, . . . ,Fn}, we obtain the cor-
responding extended implication set IF as the union

⋃n
i=1 rename(IF , i) where

rename is a function replacing all auxiliary attributes m �∈ M occurring in IF
by a fresh attribute denoted by (m, i), thus forcing the auxiliary attribute sets of
IF1 , . . . , IFn to be mutually disjoint.

Proposition 11. Given a context family F, we obtain (·)IF ≡ (·)F. Moreover,
#IF = 2(|M |2 +#F).

The final question, if every extended implication set has a polynomial-sized
context family counterpart, is the last missing piece to the big picture about suc-
cinctness of representation types. The question must be answered negatively and
we do so by providing a sequence of closure operators having a size-polynomial
representation as extended implication set but not as context family.

Proposition 12. There exists a sequence (ϕn)n∈N of closure operators that can
be represented by a sequence (Jn)n∈N of extended implication sets with #Jn ∈
Θ(4n2) but not by a sequence of context families whose size is bounded by a
polynomial in n.

Proof. LetMn = {even}∪{zeroi, onei | 1 ≤ i ≤ n}. Next, for any S ⊆ {1, . . . , n}
we define YS := {onei | i ∈ S} ∪ {zeroi | i �∈ S}. Now, let ϕn(X) = X ∪ {even}
whenever there is some S ⊆ {1, . . . , n} of even cardinality for which YS ⊆ X .
Otherwise, let ϕn(X) = X . It can be easily verified that ϕ is indeed a closure
operator.

We next note that ϕ can be represented by the extended implication set Jn
with auxiliary attributes {eveni, oddi | 1 ≤ i ≤ n} containing the implications

one1 → odd1
zero1 → even1

oddi, onei+1 → eveni+1 for all 1 ≤ i < n
eveni, onei+1 → oddi+1 for all 1 ≤ i < n
oddi, zeroi+1 → oddi+1 for all 1 ≤ i < n
eveni, zeroi+1 → eveni+1 for all 1 ≤ i < n

evenn → even



On the Succinctness of Closure Operator Representations 25

context F

#F

��

2(|M | 2+#F)
����

���
���

���
���

���
���

���
���

���
implication set I

#I

��
|M |2 ·#I

�����
���

���
���

���
���

���
���

���
�

context family F
2(|M |2+#F)

�� extended impli-
cation set J

Fig. 2. Overview about polynomial translatability between the four representation
types. Arrows indicate the existence of a polynomial translation and the arrow labels
indicate the upper bounds for the size of the resulting data structure. If no arrow exists
between two representation types, no polynomial translation exists.

It is rather easy to see that Jn has the given size and implements the wanted
behavior.

For the second part, toward the contrary, assume there were a context family
F of polynomial size with the desired behavior. Then, by definition, for any set
S ⊆ {1, . . . , n} holds even ∈ Y F

S iff1

∨
F∈F

∧
A∈F

even �∈A

∨
m′∈Mn\A

m′ ∈ YS .

Consequently, S contains an even number of elements, iff {pi �→ true | i ∈
S} ∪ {pi �→ false | i �∈ S} is a truth assignment for the propositional formula

∨
F∈F

∧
A∈F

even �∈A

∨
mk∈Mn\A

{
pk if mk = onek
¬pk otherwise

.

Note that this propositional formula has linear size compared to F and, by
definition, it encodes a parity function over p1, . . . , pn. However, this yields a
contradiction with the known result that parity cannot be computed by constant-
depth, polynomial-size Boolean circuits [7]. ��

Figure 3 provides a summary of this section. Note that the non-existence of
polynomial translations from context families to contexts and from extended im-
plication sets to implication sets follows from the existing translations and the
known non-existence of polynomial translations between contexts and implica-
tion sets.

1 Note that in this proof, the symbols
∨

and
∧

stand for logical connectives, whereas
in the rest of the paper, they denote lattice operations.



26 S. Rudolph

4 Algorithms for Managing Closure Operators

4.1 Finer or Coarser?

Depending on how closure operators are represented, there are several ways of
checking if one is finer than the other.

We will start with the two basic representation types, contexts and implication
sets and establish results for the cases where this check is tractable, i.e., can be
done in polynomial time.

Theorem 13. Let ϕ be a closure operator on a set M for which computing of
closures can be performed in tϕ time. Then, the following hold:

– For a context F on M , the problem ϕ � (·)F can be decided in |F| · tϕ time.
– For an implication set I on M , the problem (·)I � ϕ can be decided in |I| · tϕ

time.

Proof. Algorithm 3 provides a solution for the first case. It verifies that every
element (in other words: every object intent) of F is ϕ-closed, this suffices to
guarantee that all F -closed sets are ϕ-closed since every F -closed set is an inter-
section of elements of F and ϕ-closed sets are closed under intersections (since
this holds for every closure operator).

Algorithm 4 provides a solution for the second case. To ensure that every ϕ-
closed set is also (·)I-closed, it suffices to show that every ϕ-closed set respects
all implications from I. If every ϕ-closed set respects an implication A → B ∈ I
can in turn be verified by checking if B ⊆ ϕ(A). ��

The results established in the above theorem give rise to precise polynomial
complexity bounds for seven of the 16 possible comparisons between the different
representation types of closure operators.

Corollary 14. Given contexts F ,F ′, a context family F, implication sets I, I′

and an extended implication set J on some set M , it is possible to check

Algorithm 3. finerThanContext

Input: closure operator ϕ on set M ,
context F

Output: YES if ϕ 	 (·)F , NO otherwise
1. for each A ∈ F do
2. if A �= ϕ(A) then
3. output NO
4. exit
5. end if
6. end for
7. output YES

Algorithm 4. coarserThanImpSet

Input: closure operator ϕ on set M ,
implication set I

Output: YES if (·)I 	 ϕ, NO otherwise
1. for each A → B ∈ I do
2. if B �⊆ ϕ(A) then
3. output NO
4. exit
5. end if
6. end for
7. output YES



On the Succinctness of Closure Operator Representations 27

– (·)F � (·)F ′
in time O(|F| · |F ′| · |M |) = O(#F ·#F ′/|M |),

– (·)I � (·)I′
in time O(|I| · |I′| · |M |) = O(#I ·#I′/|M |),

– (·)I � (·)F in time O(|F| · |I| · |M |) = O(#F ·#I/|M |),
– (·)F � (·)F in time O(

∑
F ′∈F |F ′| · |F| · |M |2) = O(#F ·#F),

– (·)I � (·)J in time O(|I| · |I′| · |N |) = O(#I ·#I′/|M |),
– (·)I � (·)F in time O(

∑
F ′∈F |F ′| · |I| · |M |2) = O(#F ·#I), and

– (·)J � (·)F in time O(|F| · |J| · |N |) = O(#F ·#J/|M |).

Surprisingly, the ensuing question – whether it is possible to establish a poly-
nomial time complexity bound for the missing comparison cases – has to be de-
nied assuming P �= NP. The corresponding findings are based on the following
theorem. This result in a slightly different formulation is already known in other
communities [9], but we give a direct proof for the sake of self-containedness.

Theorem 15. The problem of deciding if (·)F � (·)I for some context F and
an implication set I on some set M is coNP-complete.

Proof. To show coNP membership, we note that (·)F �� (·)I if and only if there
is a set A and which is (·)I-closed but not (·)F -closed. Clearly, we can guess such
a set and check the above properties in polynomial time.

We show coNP hardness by a polynomial reduction of the problem to 3SAT
[13]. Given a set C = {C1, . . . , Ck} of 3-clauses (i.e. |Ci| = 3) over a set of literals
L = {p1,¬p1, . . . p�,¬p�}, we let M = L and define

I :=
{
{pi,¬pi} → M | pi ∈ L

}
as well as

F :=
{
M \ (Ci ∪ {m}) | Ci ∈ C,m ∈ M

}
.

We now show that there is a set A with AI = A but AF �= A if and only if
there is a valuation on {p1, . . . , p�} for which C is satisfied.

For the “if” direction assume val : {p1, . . . , p�} → {true, false} to be that
valuation and define A := {pi | val(pi) = true} ∪ {¬pi | val(pi) = false}.
Obviously,A is (·)I-closed. On the other hand, since by definition Amust contain
one element from each Ci ∈ C, we have that F �⊆ A for all F ∈ F and hence
AF =M �= A.

For the “only if” direction, assume AI = A but AF �= A. By construction
of F , the latter can only be the case if A contains one element of each Ci ∈ C.
Thus, the valuation val : {p1, . . . , p�} → {true, false} with

val(pi) =

{
true if pi ∈ A
false otherwise

witnesses the satisfiability of C. ��

In fact, this negative result allows us to infer equally negative results for all
remaining eight open cases.



28 S. Rudolph

Table 1. Upper bounds for time complexities for checking the 	 relation depending
on the representation types

	 context implications context family extended
implications

context #F ·#F ′/|M | coNP-hard coNP-hard coNP-hard

implications #F ·#I/|M | #I ·#I′/|M | #F ·#I #I ·#J/|M |
context family #F ·#F coNP-hard coNP-hard coNP-hard

extended implications #F ·#J/|M | coNP-hard coNP-hard coNP-hard

Proposition 16. For arbitrary context F , context families F,F′, implication set
I, and extended implication sets J, J′ on some set M , each of the following checks
is coNP-hard: F � F, F � J, F � I, F � I, F � F′, F � J, J � I, J � F, and
J � J′.

Proof. The coNP-hard problem F � I can be polynomially translated in any
of the above problems employing the translations given in Section 3. ��

Table 1 summarizes the situation providing the time complexities for the
tractable cases.

4.2 Adding a Closed Set

We now consider the task of making a closure operator ϕ minimally “finer” by
requiring that a given set A be a closed set.

Definition 14. Given a closure operator ϕ on M and some A ⊆ M , the A-
refinement of ϕ (written ϕ↓A) is defined as the coarsest closure operator ψ with
ψ � ϕ and ψ(A) = A.

It is straightforward to show that B is a ϕ↓A-closed set exactly if it is ϕ-
closed or the intersection of A and a ϕ-closed set. Clearly, if a closure operator
is represented as formal context, refinements can be computed by simply adding
a row, i.e., for any context F on M and set A ⊆ M we have for F ′ := F ∪ {A}
that (·)F↓A ≡ (·)F ′

. Of course, F ′ will in general not be size-minimal even if F
is.

Fact 17. Given a context F on M and some A ∈ M , there is an F ′ with
(·)F ′ ≡ (·)F↓A and #F ′ ≤ #F + |M |.

If the closure operator is represented as a context family, A has to be added
to each of its contexts. This ensures that A is indeed a closed set of the whole
context family.

Fact 18. Given a context family F on M and some A ∈ M , there is a context
family F′ with (·)F′ ≡ (·)F↓A and #F′ ≤ #F+ |F| · |M |



On the Succinctness of Closure Operator Representations 29

Surprisingly, if the closure operator is represented in terms of implications,
adding a closed set may incur exponential blow up as shown in some recent work
on belief revision in propositional Horn logic [1].2

Proposition 19 (Adaricheva et al. 2012). For some natural number n, let
Mn = {w} ∪ {ti, ui, vi | 1 ≤ i ≤ n}, let In = {ti → vi; ui → vi | 1 ≤ i ≤
n}∪{v1, . . . , vn → w} and let An = {w}∪{ti, ui | 1 ≤ i ≤ n}. Then representing
(·)In↓ A requires exponentially many implications.

As it turns out, the situation again changes when auxiliary attributes can be
used. In this case a polynomial size implicational representation can be found.
The intuition behind the encoding presented in the following definition is to
introduce copies of all attributes outside A and to use an implication set in which
all those attributes are renamed into their copies. Moreover, a specific “trigger
attribute” tr is implied by any of the original attributes from M \A. Whenever
tr is activated, all the introduced copies imply their original counterpart.

Definition 15. Let J be an extended implication set on M with the total at-
tribute set N . Let A ⊆ M . Then we define an extended implication set J↓A on
M with total attribute set N ′ := N ∪ {m′ | m ∈ N \A} ∪ {tr} as follows:

J↓A = {m→m′, m→tr, m′, tr→m | m∈N\A}∪
{(B∩A)∪{m′ | m∈B\A} → (C∩A)∪{m′ | m∈C\A} | B→C∈J}

Proposition 20. Given an extended implication set J on M with N the total
attribute set and some A ∈ M , we have (·)J↓A|M ≡ (·)J|M↓A and #(J↓A) ≤
2 ·#J+ 6|N |2 and for the total attribute set N ′ of J↓A holds |N ′| ≤ 2|N |.
Proof. Checking the provided size bounds is straightforward.

We now show the first claim by proving that a subset S ⊆ M is (·)J′ |M -closed
iff it is (·)J|M -closed or the intersection of A and some (·)J|M -closed set.

We start with the “only if” direction, distinguishing two cases. Given some
set S ∈ M with S ⊆ A, we obtain SJ′

= SJ ∩A ∪ {m′ | m ∈ SJ ∩ (N \A)} and,
in particular, SJ′

does not contain tr and hence also no m ∈ N \ A. Therefore
SJ′ |M = SJ|M ∩ A. Next assume S �⊆ A, i.e., there is some m ∈ M with
m ∈ S \A. Then tr ∈ SJ′

and therefore SJ′
= SJ ∩A ∪ {m,m′ | m ∈ SJ ∩ (N \

A)}∪{tr} = SJ∪{m′ | m ∈ SJ∩ (N \A)}∪{tr}. Hence we get SJ′ |M = SJ|M .
For the “if” direction, we distinguish the two cases. First, assume S is (·)J|M -

closed, i.e., SJ ∩M = S. Toward a contradiction, suppose that S is not (·)J′ |M -
closed, hence there is some m ∈ M with m ∈ SJ′ \ S. If m is brought about
by an implication of type tr,m′ → m, we also have tr ∈ SJ′

and therefore
SJ′ |M = SJ|M = S, a contradiction. Otherwise m ∈ A but then we obtain
m ∈ SJ = S another contradiction. Second, assume S is the intersection of A
and some (·)J|M -closed set S′. Then we obtain SJ′

= (A ∩ S′)J
′ ⊆ AJ′ ∩ S′J′

=
A∩S′J′

= A∩S′J = A∩S′ = S, which, together with the trivial S ⊆ SJ′
, shows

SJ′
= S. ��

2 The author is indebted to Kira V. Adaricheva pointing him to a severe flaw in
his earlier publication on the subject [20], where he erroneously claimed that a
polynomial solution exists.



30 S. Rudolph

4.3 Adding an Implication

The task dual to the one from the preceding section is to make a given closure
operator coarser by requiring that all closed sets of the coarsened version respect
a given implication. In other words, all closed sets not respecting the implication
are removed.

Definition 16. Given a closure operator ϕ on M and some implication i =
A → B with A,B ⊆ M , the i-coarsening of ϕ (written ϕ↑i) is defined as the
finest closure operator ψ with ϕ � ψ and B ⊆ ψ(A).

Clearly, if a closure operator is represented as implication set (extended or
not), coarsenings can be computed by simply adding the implication to the set.
Note that I′ := I ∪ {i} will in general not be size-minimal.

Fact 21. Given a (possibly extended) implication set I on M and some impli-
cation i on M , there is an I′ with (·)I′ ≡ (·)I↑i and |I′| ≤ |I|+ 1.

If the closure operator is represented by a context, a little more work is needed
for this task. The idea behind the following definition is as follows: a set is closed
w.r.t. the updated context F ′ iff it is closed w.r.t. the original context F and
respects the new implication i. Thus, all C ∈ F respecting i will be in F ′. For the
other C, we have to add their i-respecting intersections with other sets, which
essentially can only be intersections with sets D that do not contain the premise
of i.

Definition 17. Given a context F on M and some implication i = A → B on
M , we define a new context F↑i as follows

F↑i := {C | C ∈ F and C respects A → B} ∪
{C ∩D | C,D ∈ F , A �⊆ D and C does not respect A → B}

Proposition 22. Given a context F on M and some implication i on M , we
have (·)F↑i ≡ (·)F↑i. Moreover, we have |F↑i| ≤ |F|2 and hence #F↑i ≤
(#F)2/|M |.

Proof. It is easy to check that F↑i satisfies the given size bounds. We show its
correctness by verifying that a set is (·)F↑i-closed if and only if it is (·)F -closed
and respects A → B.

For the “if” direction, let S be an (·)F -closed set that respects A → B. This
means that either B ⊆ S or A �⊆ S. In the first case, note that every C ∈ F with
S ⊆ C respects A → B and thus each such C is contained in F↑i as well. Since
S is the intersection of all these C, it must itself be (·)F↑i-closed. In the second
case, there must be some C ∈ F with S ⊆ C and A �⊆ C. Thus we obtain

S =
⋂

S⊆D∈F F ′

= (
⋂

S⊆D∈F , D respects A→B D) ∩ (
⋂

S⊆D∈F , D violates A→B D) ∩ F

= (
⋂

S⊆D∈F , D respects A→B D) ∩ (
⋂

S⊆D∈F , D violates A→B D ∩ C)



On the Succinctness of Closure Operator Representations 31

and see that S is an intersection of (·)F↑i-closed sets and hence itself (·)F↑i-closed.
For the “only if” direction, consider an arbitrary (·)F↑i-closed set S. It can

be easily checked that all C ∈ F↑i respect A → B, hence also S does. Moreover,
by definition, every C ∈ F↑i is an intersection of elements of F and thus (·)F -
closed. ��

For a context family F, there are two options of computing an implication-
coarsening. One option is to exchange one context F ∈ F by F↑i. We will
present the second option which will lead to a smaller blowup under reasonable
assumptions.

Definition 18. Given a context family F on M and some implication i on M ,
we define a new context F↑i as F ∪ {Fi}.

Proposition 23. Given a context family F on M and some implication i on M ,
we have (·)F↑i ≡ (·)F↑i. Moreover, we have #F↑i = #F+ |M |3.

4.4 Projection

Next, we investigate for all four representation types, if a succinct presentation of
the projection of a closure operator to a subset N ⊆ M of the attributes exists.
The findings are mostly trivial or simple consequences of earlier results. We
start with contexts, where it is straightforward that the result can be obtained
by element-wise projection.

Proposition 24. Given a formal context F on a set M , its projection to some
set N can be expressed by FN = {A∩N | A ∈ F}. Moreover, #FN = |F| · |N | =
#F · |N |/|M | ≤ #F .

Turning to implications, we note that if a polynomial-size representation of
the projection existed, this would imply the existence of a polynomial translation
from extended implication sets into implication sets (by projecting away all the
auxiliary attributes), contradicting our finding in Section 3.

Proposition 25. There is no polynomial-size representation of projections of
closure operators when representing them via implications.

For extended implications, the case is trivial: the attributes which are to be
projected away are simply redefined to be auxiliary attributes.

Fact 26. Given an extended implication set J on a set M , its projection to some
set N can be expressed by itself, i.e., JN = J. We obtain #JN = #J.

Last, we consider the context family representation type. Again we can show
indirectly that no polynomial representation of projections can exist: assum-
ing its existence, we could polynomially translate extended implications on M
with total attribute set M ′ into context families by first using the polynomial
implication-to-context family translation detailed in Section 3 to arrive at a con-
text family on M ′ and then polynomially project away the auxiliary attributes
in M ′. However we know from Section 3 that such a translation cannot exist.



32 S. Rudolph

Proposition 27. There is no polynomial-size representation of projections of
closure operators when representing them via context families.

4.5 Lattice Operations

Last but not least, we will examine succinctness of the diverse representation
types when applying the lattice operations ∨ and ∧ in the lattice of closure
operators described in Section 2. We will distinguish between binary and n-ary
application.

For contexts, ∧ with arbitrary arity is very easy to compute and incurs no
blowup whatsoever: one simply needs to concatenate all input contexts.

Proposition 28. Given n contexts F1, . . . ,Fn, we let F = F1∪ . . .∪Fn. Then,
(·)F1 ∧ . . . ∧ (·)Fn ≡ (·)F and #F = #F1 + . . .+#Fn.

On the other hand already the binary application of ∨ may result in expo-
nential blowup, a result shown in the context of model-based reasoning [6].

Proposition 29 (Eiter et al. 1998). There exist sequences (ϕn)n∈N and
(ψn)n∈N of closure operators such that #F(ϕn∨ψn) ∈ Θ(2n) whereas #F(ϕn) =
#F(ψn) ∈ Θ(n2).

We provide the construction used by [6], but omit the proof. They let M =
{1, . . . , 4n} and define ϕn via the context

Fn =
{
M \

(
{2n+1, . . . , 3n} ∪ {i, (i mod n) + 3n}

)
| i ∈ {1, . . . , 2n}

}
and ψn via the context

F ′
n =

{
M \

(
{3n+1, . . . , 4n} ∪ {i, (i mod n) + 2n}

)
| i ∈ {1, . . . , 2n}

}
.

For implications, conversely, ∨ is very easily computable by just taking the
union of the implication sets.

Proposition 30. Given n implication sets I1, . . . , In, we let I = I1 ∪ . . . ∪ In.
Then, (·)I1 ∨ . . . ∨ (·)In ≡ (·)I and #I = #I1 + . . .+#In.

On the other hand, ∧ may result in exponential blowup even if applied only
binarily:

Proposition 31. There exist sequences (ϕn)n∈N and (ψn)n∈N of closure oper-
ators such that #I(ϕn ∧ ψn) ∈ Θ(2n) whereas #I(ϕn) ∈ Θ(n2) and #I(ψn) ∈
Θ(n).

Proof. Let Mn = {ai, bi | 1 ≤ i ≤ n} ∪ {c, d}, let ϕn be represented by I1
containing the implications

ai → bi 1 ≤ i ≤ n,
b1, . . . , bn → d,



On the Succinctness of Closure Operator Representations 33

and let ψn be represented by I2 = {c → d}. We now show that I(ϕn ∨ ψn)
contains 2n implications by showing that there are 2n pseudo-closed sets. For
every set S ⊆ {1, . . . , n} let AS := {ai | i ∈ S} ∪ {bi | i �∈ S} ∪ {c}. It can be
easily verified that AS is pseudo-closed, since it is not closed (as the closure must
contain d) and it cannot not properly contain pseudo-closed sets since each of
its subsets is closed. Clearly, there are 2n distinct subsets of {1, . . . , n}. On the
other hand, every minimal implicational representation of ϕn ∨ψn must contain
at least as many implications as there are pseudo-closed sets [10,8]. ��

Switching to extended implications improves the situation. Computing ∨ re-
mains easy and can be done by taking the union of the implication sets, one just
has to take care (possibly via a renaming) that the auxiliary attributes of the
separate sets are disjoint. The quadratic blowup comes from the fact that both
the number of implication and the auxiliary attribute sets add up.

Proposition 32. Given n extended implication sets J1, . . . , Jn with total at-
tribute sets M1, . . . ,Mn, we let J =

⋃n
i=1 rename(Ji, i). Then, (·)J1 ∨. . .∨(·)Jn ≡

(·)J and #J = (
∑n

i=1 |Ji|) · (|M |+
∑n

i=1 |M1 \M |).

Computing ∧ for extended implication sets is remarkably easier than for im-
plication sets. The idea here is to introduce disjoint “copies” of all implication
sets such that closure computation is done independently. Finally one has to
add some “confluence rules” which make sure that a proper attribute is added
to the closure if it is contained in each of the separate independently computed
closures.

Definition 19. Let renameall be the function that takes an extended implication
set J and a natural number i as input and returns the implication set with every
(proper or auxiliary) attribute m in J replaced by a new attribute denoted (m, i).

Given n extended implication sets J1, . . . , Jn on M , let∧
{J1, . . . , Jn} := Jin ∪ Jout ∪

⋃
1≤i≤n

renameall(Ji, i),

define a new extended implication set on M where Jin = {m → (m, i) | m ∈
M, 1 ≤ i ≤ n} and Jout = {(m, 1), . . . , (m,n) → m | m ∈ M}.

Proposition 33. Given n extended implication sets J1, . . . , Jn onM , we let J =∧
{J1, . . . , Jn}. Then, (·)J1∧. . .∧(·)Jn ≡ (·)J and #J = (|M |+

∑n
i=1(|Ji|+ |M |)·

(|M |+
∑n

i=1 |M1|)

Finally, we turn to context families. Like for implications, ∨ is very easily
computable by just taking the union of the separate context families.

Proposition 34. Given n context families F1, . . . ,Fn, we let F = F1 ∪ . . .∪Fn.
Then, (·)F1 ∨ . . . ∨ (·)Fn ≡ (·)F and #F = #F1 + . . .+#Fn.

On the other hand, computing ∧ is a bit more intricate. We can ensure poly-
nomial size for the binary version, but not for n-ary application.



34 S. Rudolph

Definition 20. Given context families F1, . . . ,Fn on M , we let∧
{F1, . . . ,Fn} := {F1 ∪ . . . ∪ Fn | (F1, . . . ,Fn) ∈ F1 × . . .× Fn}

Proposition 35. Given n context families F1, . . . ,Fn on M , let F =∧
{F1, . . . ,Fn}. Then, we have (·)F1 ∧ . . . ∧ (·)Fn ≡ (·)F and #F =

∏n
i=1 |Fi| ·∑n

i=1

∑
F∈Fi

#F/|Fi|

Proof. By definition of
∧
{F1, . . . ,Fn}, exploiting Proposition 34 and Propo-

sition 28 and using distributivity of the lattice operations, we obtain

(·)F ≡
∨

(F1,...,Fn)∈F1×...×Fn

(·)F1 ∧ . . . ∧ (·)Fn ≡
n∧

i=1

∨
F∈Fi

(·)F ≡
n∧

i=1

(·)Fi

��

5 Conclusion

In this paper we have investigated two archetypic and two more exotic repre-
sentations of closure operators with respect to their mutual succinctness and
their suitability for performing certain operations in terms of computation time
and output size. The results are summarized in Table 2. Therein, for closure
computation and comparison via �, upper bounds for the computation time are
given in case poly-time algorithms exist, whereas “intractable” indicates cuNP-
hardness. For the other computations, the expressions give an upper bound on
the output size in case a polynomial such bound exists (for all those cases,
the computation time is linearly bounded by the output size), “exponential”
denotes that exponential blow-up can be demonstrated, whereas “superpolyno-
mial” merely means that it is known that a polynomial bound cannot exist. Note
that for computation of n-ary

∧
of context families, n must be considered fixed

to ensure polynomiality.

Table 2. Upper bounds for computations with the four representation types

context F implication set I context family F extended imp-
lication set J

closure #F #I #F · |M | #J

check 	 #F ·#F ′/|M | #I ·#I′/|M | intractable intractable

add implication (#F)2/|M | #I+ |M | #F+ |M |3 #J+ |M |
add closed set #F + |M | exponential #F+ |F| · |M | 2 ·#J+ 6|N |
project #F exponential superpolynomial #J

n-ary
∧ ∑

i #Fi exponential n=2
∏

i |Fi| ·∑i #Fi (
∑

i #Ji)
2

n-ary
∨

exponential n=2
∑

i #Ii

∑
i #Fi (

∑
i #Ji)

2



On the Succinctness of Closure Operator Representations 35

There are many open questions left. On the theoretical side, central open
questions are if – in the cases where an exponential blowup may occur – there
are algorithms transforming one representation into another in output polynomial
time, that is, if the time required for the computation is polynomially bounded
by the size of the output. Note that a negative answer to this question would
also disprove the existence of polynomial-delay algorithms.

On the practical side, coming back to our initial motivation, it should be exper-
imentally investigated if variants of standard FCA algorithms can be improved by
adding the option of working with alternative closure operator representations.

Acknowledgements. The author is thankful to Kira Adaricheva and Mikhail
A. Babin, who gave very valuable hints to existing related work, and to Markus
Krötzsch for his thorough proof-reading.

References

1. Adaricheva, K.V., Sloan, R.H., Szörényi, B., Turán, G.: Horn belief contraction:
Remainders, envelopes and complexity. In: Proceedings of the 13th International
Conference on Principles of Knowledge Representation and Reasoning, KR 2012
(2012)

2. Burosch, G., Demetrovics, J., Katona, G.O.H., Kleitman, D.J., Sapozhenko, A.A.:
On the number of databases and closure operations. Theor. Comput. Sci. 78(2),
377–381 (1991)

3. Colomb, P., Irlande, A., Raynaud, O.: Counting of Moore Families for n=7. In:
Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 72–87. Springer,
Heidelberg (2010)

4. Day, A.: The lattice theory of functional dependencies and normal decompositions.
International Journal of Algebra and Computation 2(4), 409–431 (1992)

5. Distel, F.: Hardness of enumerating pseudo-intents in the lectic order. In: Kwuida,
L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 124–137. Springer, Hei-
delberg (2010)

6. Eiter, T., Ibaraki, T., Makino, K.: Computing intersections of Horn theories for
reasoning with models. Tech. Rep. IFIG research report 9803, Universität Gießen
(1998), http://bibd.uni-giessen.de/ghtm/1998/uni/r980014.htm

7. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-
archy. Mathematical Systems Theory 17(1), 13–27 (1984)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer (1997)

9. Gottlob, G., Libkin, L.: Investigations on Armstrong relations, dependency infer-
ence, and excluded functional dependencies. Acta Cybernetica 9(4), 385–402 (1990)

10. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives re-
sultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)

11. Habib, M., Nourine, L.: The number of Moore families on n=6. Discrete Mathe-
matics 294(3), 291–296 (2005)

12. Higuchi, A.: Lattices of closure operators. Discrete Mathematics 179(1-3), 267–272
(1998)

http://bibd.uni-giessen.de/ghtm/1998/uni/r980014.htm


36 S. Rudolph

13. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

14. Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base.
Journal of Universal Computer Science 10(8), 927–933 (2004)

15. Kuznetsov, S.O., Obiedkov, S.: Counting pseudo-intents and #P-completeness. In:
Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 306–
308. Springer, Heidelberg (2006)

16. Kuznetsov, S.O., Obiedkov, S.A.: Some decision and counting problems of the
Duquenne-Guigues basis of implications. Discrete Applied Mathematics 156(11),
1994–2003 (2008)

17. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
18. Mannila, H., Räihä, K.J.: Design of Relational Databases. Addison-Wesley (1992)
19. Rudolph, S.: Some notes on pseudo-closed sets. In: Kuznetsov, S.O., Schmidt, S.

(eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 151–165. Springer, Heidelberg
(2007)

20. Rudolph, S.: Some notes on managing closure operators. In: Domenach, F., Ignatov,
D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 278–291. Springer,
Heidelberg (2012)

21. Sertkaya, B.: Some computational problems related to pseudo-intents. In: Ferré,
S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 130–145. Springer, Hei-
delberg (2009)

22. Sertkaya, B.: Towards the complexity of recognizing pseudo-intents. In: Rudolph,
S., Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009. LNCS, vol. 5662, pp. 284–292.
Springer, Heidelberg (2009)

23. Wild, M.: Implicational bases for finite closure systems. In: Lex, W. (ed.) Arbeit-
stagung Begriffsanalyse und Künstliche Intelligenz, pp. 147–169. Springer (1991)



MDL in Pattern Mining

A Brief Introduction to Krimp

Arno Siebes

Algorithmic Data Analysis Group
Universiteit Utrecht, The Netherlands

arno@cs.uu.nl

Abstract. In this short paper we sketch a brief introduction to our
Krimp algorithm. Moreover, we briefly discuss some of the large body
of follow up research. Pointers to the relevant papers are provided in the
bibliography.

1 Patterns

Arguably patterns are the most important contribution of the data mining com-
munity to data analysis. On way to define patterns is as partial models, i.e., they
do not necessarily concern all tuples (a.k.a. objects, individuals, ...) nor do they
necessarily comprise all attributes (a.k.a. variables, features, ...). Another way
is to identify patterns with subsets of the data that are for some reason deemed
interesting.

The prototypical pattern mining problem is undoubtedly frequent item set
mining [1], which is usual formulated in the context of transaction data. Each
such transaction is a set of items, e.g., the items a customer buys at a super-
market and a transaction database is simply a bag of transactions.

The patterns are also sets of items called item sets. An item set I occurs in a
transaction t if I ⊆ t. The support of an item set I in a database db, denoted by
suppdb(I) is the number of transactions in db in which I occurs. The frequent
item set problem is then to find all item sets whose support exceeds some user
defined threshold. Because of the apriori property

I ⊆ J ⇒ suppdb(I) ≥ suppdb(J)

all frequent item sets can be found relatively efficiently using level-wise search;
relatively because there may be exponentially many frequent item sets.

In [10] the authors generalize frequent item set mining into a much wider class
of pattern mining problems known as theory mining. To keep our discussion
simple, we stay in the realm of item set mining, but anything we do can be
generalized to this wider context.

Frequent item set mining also illustrates rather well why pattern mining is
important. The set of customers of a supermarket is hardly homogeneous. While
the famous1 frequent item set example {beer, diapers} may be applicable to

1 Famous but highly likely an urban legend.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 37–43, 2014.
c© Springer International Publishing Switzerland 2014



38 A. Siebes

young couples it is probably not relevant to fifty-something couples. While the
discerning palate implicated by the item set {Condrieu, Saint Marcellin} carves
up the customer space in a completely different – and independent – way.

2 The Pattern Explosion

As our example item sets above show patterns can provide useful insight in the
data, but, there is an problem. If the support threshold is set high, a few patterns
will be discovered, but mostly patterns that are already well known to domain
experts. If the support threshold is set low, however, the number of patterns
discovered explodes. It is not uncommon to discover more patterns than one has
transactions in the database!

Given that one of the main goals of pattern mining is to provide insight in
the data, this explosion of the number of patterns is rather embarrassing. So
it is not surprising that this problem received much attention and that a wide
variety of more or less successful solutions have been put forward.

One of the earliest and best-known is actually closely related to Formal Con-
cept Analysis, viz., closed item set mining [11]. Closed item sets are those item
sets for which each superset has a strictly smaller support. In other words, they
are the closure of the obvious Galois connection between transactions and item
sets.

While the number of closed frequent item sets is clearly smaller that the
number of frequent item sets, there is no guarantee that their number is far
smaller – and often it isn’t. The collection of closed frequent item sets has the
property that all frequent item sets can be derived from it. That is, the collection
of closed frequent item sets is a condensed representation of the set of all frequent
item sets.

This observation gave rise to other condensed representations, such as free
item sets [4] and non-derivable item sets [5]; the latter being the smallest con-
densed representation. However, all of these suffer from the fact that they may
still yield very large result sets.

The popular alternative approach is through constraints [8]. Clearly, using
filters a user can – in principle – easily search through the large set of frequent
patterns to find the truly interesting ones. One of the main goals of constraint
based pattern mining is to generate only interesting patterns, e.g., by pushing
the constraints into the discovery process. While it is relatively easy to remove
definitely uninteresting patterns using filters and/or constraints it turns out that
it is hard to define – and thus mine for – the small group of interesting ones only.

3 What Is the Problem?

The reason why it is so hard to delineate the interesting patterns is that with
low(er) support, many patterns describe essentially the same subset of the
database. In more detail,



MDL in Pattern Mining 39

– a database has many small subsets,
– many of these subsets can be described by patterns
– many of the small subsets described by patterns differ in at most a few

objects.

Let both A and A∪{a} be closed item sets. If their difference in support is only
1, it is hard to imagine how both can be interesting to a user.

In other words, to decide whether or not a pattern is interesting we also have
to look at other patterns as well as the subset of the data that is described by
these patterns. That is, we should not be looking for interesting patterns, but
for interesting sets of patterns and to make such a set of patterns interesting, its
members should not describe the same subset of the data over and over again.
To formalize this, we use MDL.

4 MDL for Pattern Sets

TheMDL principle [7] can be paraphrased as: Induction by Compression. Slightly
more formal, it can be described as follows. Given a set of models H, the best
model H ∈ H for data set D is the one that minimises

L(H) + L(D|H)

in which

– L(H) is the length, in bits, of the description of H
– L(D|H) is the length, in bits, of the description of the data when encoded

with H .

In the remainder of this section we briefly describe how we employ MDL to find
small characteristic sets of patterns; see, e.g., [14,22] for more detail.

The key idea of our compression based approach is the code table. A code
table has item sets on the left-hand side and a code for each item set on its
right-hand side. The item sets in the code table are ordered descending on 1)
item set length and 2) support. The actual codes on the right-hand side are of
no importance: their lengths are. To explain how these lengths are computed
we first have to introduce the coding algorithm. A transaction t is encoded by
Krimp by searching for the first item set c in the code table for which c ⊆ t. The
code for c becomes part of the encoding of t. If t\ c �= ∅, the algorithm continues
to encode t\ c. Since we insist that each code table contains at least all singleton
item sets, this algorithm gives a unique encoding to each (possible) transaction.
The set of item sets used to encode a transaction is called its cover. Note that
the coding algorithm implies that a cover consists of non-overlapping item sets.
The length of the code of an item in a code table CT depends on the database
we want to compress; the more often a code is used, the shorter it should be. To
compute this code length, we encode each transaction in the database db. The
frequency of an item set c ∈ CT is the number of transactions t ∈ db which have
c in their cover. The relative frequency of c ∈ CT is the probability that c is used



40 A. Siebes

to encode an arbitrary t ∈ db. For optimal compression of db, the higher P(c),
the shorter its code should be. In fact, from information theory [6], we have the
Shannon code length for c, which is optimal, as:

lCT (c) = − log(P (c|db)) = − log

(
freq(c)∑

d∈CT freq(d)

)
The length of the encoding of a transaction is now simply the sum of the code

lengths of the item sets in its cover. Therefore the encoded size of a transaction
t ∈ db compressed using a specified code table CT is calculated as follows:

LCT (t) =
∑

c∈cover(t,CT )

lCT (c)

The size of the encoded database is the sum of the sizes of the encoded trans-
actions, but can also be computed from the frequencies of each of the elements
in the code table:

LCT (db) =
∑
t∈db

LCT (t) = −
∑
c∈CT

freq(c) log

(
freq(c)∑

d∈CT freq(d)

)
To find the optimal code table using MDL, we need to take into account both
the compressed database size as described above as well as the size of the code
table. For the size of the code table, we only count those item sets that have
a non-zero frequency. The size of the right-hand side column is obvious; it is
simply the sum of all the different code lengths. For the size of the left-hand side
column, note that the simplest valid code table consists only of the singleton
item sets. This is the standard encoding (st) which we use to compute the size
of the item sets in the left-hand side column. Hence, the size of the code table
is given by:

L(CT ) =
∑

c∈CT :freq(c) �=0

lst(c) + lCT (c)

In [14] we defined the optimal set of (frequent) item sets as that one whose
associated code table minimises the total compressed size:

L(CT ) + LCT (db)

Krimp starts with a valid code table (only the collection of singletons) and a
sorted list of candidates. These candidates are assumed to be sorted descending
on 1) support and 2) item set length. Each candidate item set is considered by
inserting it at the right position in CT and calculating the new total compressed
size. A candidate is only kept in the code table iff the resulting total size is
smaller than it was before adding the candidate. If it is kept, we reconsider all
other elements of CT to see if they still contribute to compression. If not, they
are permanently removed. The whole process is illustrated in Figure 1.

In [14,22] it is shown that this simple heuristic algorithm reduces the number
of frequent item sets dramatically – e.g. by retaining only 1 in a million frequent
patterns.



MDL in Pattern Mining 41

Database

Many many patterns

Code table

Empty code table

KRIMP

add to
code table

compress database

accept /
reject

select pattern

MDL

Fig. 1. Krimp in action

Clearly, there are far simpler approaches that can reduce the number of fre-
quent item sets, e.g., by randomly deleting almost all item sets. Hence, in [22,18]
we show that Krimp returns a characteristic set of patterns. This is illustrated
by using code tables for classification. The idea is simply that we learn a code
table for each class separately and assign a new transaction to the class whose
code table compresses the transaction best.

5 There Is More

Krimp is just one algorithm to compute code tables, it is rather wasteful as it
first generates all frequent item sets and only then starts looking for the code
table. Slim [16] is much faster because it generates candidate item sets on the
fly; by taking the current code table into account large parts of the search space
can be ignored.

Krimp (and Slim) searches for one optimal model. Groei [12] aims to find
a collection of good models, each optimal for a given level of complexity.

We specified Krimp in the context of transaction data. Because categorical
data sets are easily transformed to transaction data, it is obvious that Krimp

also works for that type of data. The basic ideas underlying Krimp have also
been applied to different types of data, e.g., relational data [9], streaming data
[17], data from evolutionary biology [2], and recently to seismographic data [3]

Next to classification, code tables can also be used for other kinds of data
mining tasks, such as clustering [19], change detection [17], and outlier detection
[15]. Moreover, they are also useful in traditionally more statistical tasks such
as data generation [21] – which allows for a strong form of privacy protection –
data imputation [20], and data smoothing [13].



42 A. Siebes

And there is more, much more than I can describe here in this brief introduc-
tion; both by the originators of the Krimp algorithm and, more importantly, by
others. The papers referenced here will give the reader at least a start in the fas-
cinating new area at the intersection of data mining and algorithmic information
theory.

Acknowledgements. The author is supported by the Dutch national COM-
MIT project.

References

1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Inkeri Verkamo, A.: Fast
discovery of association rules. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.,
Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp.
307–328. AAAI/MIT Press (1996)

2. Bathoorn, R., Siebes, A.: Constructing (almost) phylogenetic trees from develop-
mental sequences data. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi,
D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 500–502. Springer, Heidelberg
(2004)

3. Bertens, R., Siebes, A.: Characterising seismic data. In: ICDM 2014 Proceedings.
IEEE (2014)

4. Boulicaut, J.-F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of
boolean data for the approximation of frequency queries. Data Mining and Knowl-
edge Discovery 7(1), 5–22 (2003)

5. Calders, T., Goethals, B.: Non-derivable itemset mining. Data Mining and Knowl-
edge Discovery 14(1), 171–206 (2007)

6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley- Interscience,
New York (2006)

7. Grünwald, P.: The Minimum Description Length Principle. MIT Press (2007)
8. Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and

Inductive Databases. LNCS (LNAI), vol. 3848. Springer, Heidelberg (2005)
9. Koopman, A., Siebes, A.: Characteristic relational patterns. In: KDD 2009 Pro-

ceedings, pp. 437–446 (2009)
10. Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Levelwise search and borders of

theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–
258 (1997)

11. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1999)

12. Siebes, A., Kersten, R.: A structure function for transaction data. In: SDM 2011
Proceedings, pp. 558–569. SIAM (2011)

13. Siebes, A., Kersten, R.: Smoothing categorical data. In: Flach, P.A., De Bie, T.,
Cristianini, N. (eds.) ECML PKDD 2012, Part I. LNCS, vol. 7523, pp. 42–57.
Springer, Heidelberg (2012)

14. Siebes, A., Vreeken, J., van Leeuwen, M.: Item sets that compress. In: SDM 2006
Proceedings, pp. 393–404. SIAM (2006)

15. Smets, K., Vreeken, J.: The odd one out: Identifying and characterising anomalies.
In: SDM 2011Proceedings, pp. 804–815 (2011)



MDL in Pattern Mining 43

16. Smets, K., Vreeken, J.: Slim: Directly mining descriptive patterns. In: SDM 2012
Proceedings, pp. 236–247 (2012)

17. van Leeuwen, M., Siebes, A.: Streamkrimp: Detecting change in data streams. In:
Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part I. LNCS
(LNAI), vol. 5211, pp. 672–687. Springer, Heidelberg (2008)

18. van Leeuwen, M., Vreeken, J., Siebes, A.: Compression picks item sets that matter.
In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI),
vol. 4213, pp. 585–592. Springer, Heidelberg (2006)

19. van Leeuwen, M., Vreeken, J., Siebes, A.: Identifying the components. Data Mining
and Knowledge Discovery 19(2), 173–292 (2009)

20. Vreeken, J., Siebes, A.: Filling in the blanks: Krimp minimisation for missing data.
In: ICDM 2008 Proceedings, pp. 1067–1072. IEEE (2008)

21. Vreeken, J., van Leeuwen, M., Siebes, A.: Preserving privacy through data gener-
ation. In: ICDM 2007 Proceedings, pp. 685–690. IEEE (2007)

22. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: Mining itemsets that compress.
Data Mining and Knowledge Discovery 23(1), 169–214 (2011)



Upper Bound for the Number of Concepts

of Contranominal-Scale Free Contexts

Alexandre Albano

Institut für Algebra
Technische Universität Dresden

Abstract. We show an improvement of Prisner’s upper bound for the
number of concepts of a formal context. The improvement factor is of the
order (max{|G|, |M |})c, where c is the size of the biggest contranominal
scale that can be found as a subcontext. We also prove that the c ∈ O(1)
condition is necessary to establish that an arbitrary sequence of contexts
has a polynomial number of concepts, by constructing a lower bound.
Complexity aspects of calculating c are discussed.

Keywords: number of concepts, upper bound, contranominal scale.

1 Introduction

An important question in Formal Concept Analysis is to predict the size of a
concept lattice. The problem of calculating exactly the number of concepts of an
arbitrary context has been proven to be #P-complete by Sergei Kuznetsov in [5].
Therefore, results that limit above the number of concepts (i.e. upper bounds)
are of great importance. In [4], there is a reference to an early result in this
direction which is due to D. Schütt[7]. There exist a few other results of the same
nature, and many of them were obtained using Graph Theory results and were
presented in graph-theoretic language. This is due to the connection between
formal concepts and maximal bicliques (to be shortly explained in Preliminaries).
A short survey of known upper bounds can be seen in [1].

2 Preliminaries

In this paper, all formal contexts and graphs will be finite. Graphs will moreover
be simple (no loops or multiple edges) and undirected. Given a graph G, we
denote its vertex and edge sets by V (G) and E(G), respectively. An arbitrary
edge {u, v} ∈ E(G) will be denoted by uv. Similarly, we will write gIm to denote
an incidence in a formal context (G,M, I). For a vertex v ∈ V (G) of a graph G,
we define N(v) = {w ∈ V (G) | vw ∈ E(G)} and call it the set of neighbors of v.

A path of length k in a graph G = (V,E) is a sequence (v0, v1, . . . , vk) of
distinct elements in V such that vivi+1 ∈ E for each i ∈ {0, . . . , k − 1}. A
circuit is a sequence (v0, v1, . . . , vk) with (v0, v1, . . . , vk−1) is a path, vk = v0
and vk−1vk ∈ E. Its length is defined to be k + 1. A graph is connected if there

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 44–53, 2014.
c© Springer International Publishing Switzerland 2014



Upper Bound for the Number of Concepts 45

exists a path between every pair of vertices; it is acyclic if there are no circuits.
Graphs which are connected and acyclic are called trees. A subgraph H of a graph
G = (V,E) is a pair (W,F ) satisfyingW ⊆ V and F ⊆ E∩{w1w2 | w1, w2 ∈ W};
it is spanning if V = W . Whenever clear that H and G are graphs and H is a
subgraph of G, this will be denoted by H ⊆ G. It is a basic fact from Graph
Theory that every connected graph has a subgraph which is a spanning tree. For
a graph G = (V,E) endowed with a weight function w : E → R, there certainly
exists a spanning tree T ⊆ G which maximizes

∑
e∈E(T ) w(e) (since all graphs

considered here are finite), and a tree in this conditions will be called amaximum
spanning tree.

A formal context (G,M, I) can be thought as a bipartite graph (V,E), simply
by creating one vertex u ∈ U ⊆ V for each object g ∈ G and one vertex
w ∈ W ⊆ V for each attribute m ∈ M (one then has U ∩ W = ∅, even if
G ∩ M �= ∅). For each incidence gIm of the formal context, there exists an
edge g,m ∈ E and all edges of (V,E) are obtained in this way. This association
between formal contexts and bipartite graphs result in a correspondence between
formal concepts and maximal bicliques (maximal complete bipartite subgraphs)
of the associated bipartite graph. Indeed, this can be seen after noting that, for
example, for a set of objects A, the derivation A′ corresponds to the intersection
of all neighbors sets N(v), with v ranging over all vertices associated to objects
in A.

For n ∈ N∗, we denote by [n] the set {1, 2, . . . , n} and define [0] = ∅. Given
i ∈ N, we denote by CN(i) the contranominal scale ([i], [i], �=). The following
Ferrers context will be denoted by F (i): ([i], [i], {(j, k) ∈ [i]× [i] : j < k}). When
a context K1 is a subcontext of a context K2, we shall write K1 ⊆ K2. Given
two sets S and T , we will write their symmetric difference as S�T . If those sets
are incomparable with respect to ⊆, this will be denoted by S||T .

We will need the following easy graph theory lemmas, which proofs will only
be sketched.

Lemma 1. Let G be a connected graph with weights on edges w : E(G) → R
and T a maximum spanning tree of G. If (u, v, x, y) is a four-vertex circuit of G
and uv ∈ E(T ), then w(uv) ≥ min{w(vx), w(xy), w(yu)}.

Proof. Suppose the opposite. Divide in cases, depending on which vertex among
u, v, x is the closest to y in T . Except when u is the closest, it is straightforward
to substitute one edge of T by a heavier one which is not in T , resulting in a
spanning tree with larger maximum weight than T . For the case where u is the
closest, divide in three cases, depending on which vertices the path from y to x
goes through.

Lemma 2. Let G be a connected graph with weights on edges w : E(G) → R
and T a maximum spanning tree of G. If (u, v, x, y) is a four-vertex circuit of G
and uv, xy ∈ E(T ), then max{w(uv), w(xy)} ≥ min{w(uy), w(vx)}.

Proof. By contradiction. Certainly one can obtain a path in T that has uv as
first edge and xy as last edge. It is easy to verify that such path always implies



46 A. Albano

that one edge from {uy, vx} can replace uv or xy in T , resulting in a tree with
larger maximum weight.

3 Improved Bound

We call a formal context (G,M, I) non-trivial if neither G norM are empty sets.
In this section, only non-trivial contexts will be considered. For j ∈ N, we define
a context K to be CN(j)-free if there is no subcontext of K which is isomorphic
to CN(j).

Using graph theory language, Prisner has proved in [6] the following:

Theorem 1. Let K = (G,M, I) be a CN(j)-free context. Then,

|B(K)| ≤ (|G||M |)j−1 + 1.

Since c �→ (|G||M |)c is a non-decreasing function on c, the result above is
equivalent to

Theorem 2. Let K = (G,M, I) be a context and define c to be the largest j ∈ N
such that CN(j) ⊆ K. Then,

|B(K)| ≤ (|G||M |)c + 1.

Our improvement of the result above is the following:

Theorem 3. Let K = (G,M, I) be a context and define c to be the largest j ∈ N
such that CN(j) ⊆ K. Then,

|B(K)| ≤ 3min{|G|, |M |}c − 1.

Proof. We will proceed by induction on c. If c = 0, then I = G × M and,
clearly, |B(K)| = 1 < 3 · 1 − 1. If c = 1, then K is a Ferrers context. Therefore,
{g′ | g ∈ G} as well as {m′ | m ∈ M} are chains. Thus, |B| ≤ min{|G|, |M |}+1 ≤
3min{|G|, |M |} − 1. For the step, let c ∈ N be such that c ≥ 2.

Let us suppose, without loss of generality, that |G| = min{|G|, |M |}. Note
that c ≥ 2 ⇒ |G| ≥ 2. We define Ω to be a graph with vertex set equal to
B(K) and there exists an edge between vertices (A1, B1), (A2, B2) if and only
if |A1 ∩ A2| + |B1 ∩ B2| �= 0. Moreover, every edge of Ω is weighted with the
positive natural number |A1 ∩ A2|+ |B1 ∩B2|. We call w : E → N∗ this weight
function.

If Ω is disconnected, then it cannot be the case that there exists (A,B) ∈ B
satisfying A �= ∅ and B �= ∅, since (G,G′) and (M ′,M) are always concepts.
Indeed, the concept (G,G′) is adjacent to every concept with non-empty extent
and (M ′,M) adjacent to every concept with non-empty intent. Therefore, if Ω
is disconnected, we will have I = ∅ and |B| = 2 ≤ 3|G|c − 1, because |G| ≥ 1.

Therefore, we can assume that Ω is connected and we will take a maximum
spanning tree T of Ω. The rest of the proof consists of two claims, both of



Upper Bound for the Number of Concepts 47

which will make use of the following piece of notation. Given two concepts
(Ai, Bi), (Aj , Bj), we will denote by ei,j the edge of Ω between concepts (Ai, Bi)
and (Aj , Bj), provided these two concepts are adjacent in Ω.

Claim #1: Let (A1, B1) �= (A2, B2) be two distinct concepts of K. There exist
g ∈ A1�A2 andm ∈ B1�B2 with g �I� m. Also, if e1,2 ∈ E(T ), then, for any such
choice of g and m, the pair (A1 ∩ A2, B1 ∩ B2) is a concept of the subcontext
K2 = (m′, g′, I ∩ (m′ × g′)). Moreover, K2 is CN(j − 1)-free whenever K is
CN(j)-free.

The existence of such a pair (g,m) is clear. For the proof that (A1∩A2, B1∩B2)
is indeed a concept, let A3 = A1∩A2, B3 = B1 ∩B2. Suppose, by contradiction,
that (A3, B3) /∈ B(K2). By the definition of (A3, B3) and because of the fact that
(A1, B1), (A2, B2) are concepts, it follows that g

∗Im∗ for every g∗ ∈ A3,m
∗ ∈ B3.

Therefore, we can take a concept of K2, (A4, B4), which satisfies A4 ⊇ A3,
B4 ⊇ B3 but obviously (A4, B4) �= (A3, B3). Now, note that g /∈ A4 and that
gIn for every n ∈ B4. Moreover, m /∈ B4 and hIm for every h ∈ A4. Thus, we
can take (A5, B5) ∈ B(K) satisfying A5 ⊇ A4 ∪ {g} and B5 ⊇ B4. Analogously,
we take (A6, B6) ∈ B(K) with A6 ⊇ A4 and B6 ⊇ B4 ∪ {m}. Since g �I� m, it
follows that (A5, B5) and (A6, B6) are different concepts. Clearly, A5 � A4 and
that B6 � B4.

We calculate:

w(e1,5) = |A1 ∩A5|+ |B1 ∩B5| > |A1 ∩ A4|+ |B1 ∩B4|
> |A1 ∩A3|+ |B1 ∩B3| = |A1 ∩ A2|+ |B1 ∩B2|

w(e2,6) = |A2 ∩A6|+ |B2 ∩B6| > |A2 ∩ A4|+ |B2 ∩B4|
> |A2 ∩A3|+ |B2 ∩B3| = |A1 ∩ A2|+ |B1 ∩B2|

w(e5,6) = |A5 ∩A6|+ |B5 ∩B6| ≥ |A4|+ |B4|
> |A3|+ |B3| = |A1 ∩ A2|+ |B1 ∩B2|.

Therefore, e1,5, e2,6 and e5,6 have heavier edges than e1,2. By Lemma 1, this is
a contradiction.

Lastly, since g �I� m, g and m can be used to extend any CN(j − 1) in K2 to
a CN(j) in K. Therefore, a CN(j − 1) found as a subcontext of K2 implies the
existence of a CN(j) in K. Claim #1 is now proved.

Claim #2: Let {(A1, B1), (A2, B2)} and {(A3, B3), (A4, B4)} be two different
edges of T . Then, at least one of the following holds:

1. (A1�A2) ∩ (A3�A4) = ∅
2. A1 ∩ A2 �= A3 ∩ A4

We will again proceed by contradiction. Suppose that (A1�A2) ∩ (A3�A4)
is a non-empty set and, without loss of generality, that there exists an element
u ∈ A1∩A3\(A2∪A4). Still by contradiction, we assume that A1∩A2 = A3∩A4.
By claim #1, (A1∩A2, B1∩B2) is a concept (of a subcontext of K) and, therefore,
we also have that B1 ∩B2 = B3 ∩B4.

Consider the edges e1,2 and e3,4. It could be the case that they are adjacent
(that is, they share a vertex). This happens precisely when, among the four
concepts involved, only three are distinct. It is clear that



48 A. Albano

w(e1,2) = |A1 ∩ A2|+ |B1 ∩B2| = |A3 ∩A4|+ |B3 ∩B4| = w(e3,4). (1)

It is not hard to verify that, for i, j, k ∈ {1, 2, 3, 4} with i �= j �= k, i �= k:

A1 ∩ A2 = A3 ∩A4 ⇒ Ai ∩ Aj ∩ Ak = A1 ∩A2 = A3 ∩A4. (2)

In the same way,

A1 ∩ A2 ∩A3 ∩ A4 = A3 ∩ A4 = A1 ∩ A2. (3)

For every i, j ∈ {1, 2, 3, 4}, it therefore holds that

Ai ∩ Aj ⊇ A1 ∩ A2 ∩A3 ∩ A4 = A1 ∩ A2 = A3 ∩ A4. (4)

Relations which are dual to (2), (3) and (4) (i.e. relating intersections of
B1, B2, B3, B4) can be analogously derived. They will be referred to as (2)’,
(3)’ and (4)’.

In particular, (4) implies the following. Since A1 ∩ A3 ⊇ A1 ∩ A2, B1 ∩ B3 ⊇
B1 ∩ B2 as well as A2 ∩ A4 ⊇ A1 ∩ A2 and B2 ∩ B4 ⊇ B1 ∩ B2, it follows that
there exist edges e1,3, e2,4 ∈ E(Ω), as long as the vertices involved are distinct.

Note that, when one combines (2) and (3), one has that for any i, j, k ∈
{1, 2, 3, 4} with i �= j �= k, i �= k:

A1 ∩ A2 ∩ A3 ∩A4 = Ai ∩ Aj ∩ Ak. (5)

We shall now divide into cases.

Case 1 (A2, B2) = (A4, B4)
In this case, e1,2, e3,4 and e1,3 form a triangle in Ω and, among these
three edges, only e1,2 and e3,4 belong to T . Since A1 ∩ A3 ⊇ A1 ∩ A2,
B1 ∩ B3 ⊇ B1 ∩ B2 and u ∈ A1 ∩ A3 \ (A2 ∪ A4), it follows that
A1 ∩ A3 � A1 ∩ A2. Thus,

w(e1,3) = |A1 ∩ A3|+ |B1 ∩B3| > |A1 ∩ A2|+ |B1 ∩B2| = w(e1,2).

which is a contradiction,
Case 2 (A2, B2) �= (A4, B4) but A2, A4 are comparable (therefore, B2, B4 are

comparable as well)
Without loss of generality, suppose that A2 � A4. If there exists an
element u∗ ∈ (A2 ∩ A4) \ (A1 ∪ A3) = A4 \ (A1 ∪ A3), then

w(e2,4) = |A2 ∩ A4|+ |B2 ∩B4|
> |A1 ∩ A2|+ |B1 ∩B2| (by (4) and u∗ /∈ A1)

= w(e1,2).

Now, if (A1, B1) = (A3, B3), we will have the same contradiction as in
case 1 (a triangle in Ω having only one edge not in T , and such edge



Upper Bound for the Number of Concepts 49

being heavier than the other two). On the other hand, if (A1, B1) �=
(A3, B3), we will have

w(e1,3) = |A1 ∩ A3|+ |B1 ∩B3|
> |A1 ∩ A2|+ |B1 ∩B2| (by (4) and u /∈ A2)

= w(e1,2),

Therefore, the weights of both edges e1,3 and e2,4 are greater than
w(e1,2) = w(e3,4), which is a contradiction by Lemma 1. Therefore,
we can assume that A4 \ (A1 ∪ A3) = ∅. Thus, every element of A4

belongs to A3 or A1, besides belonging to A2 and A4 itself. By equa-
tion, (5), it follows that A4 ⊆ A1, A2, A3. We assert that A2 and A1

are incomparable. Indeed, if we had A2 ⊆ A1, it would have followed
that A1 ∩ A2 = A2 � A4 = A3 ∩ A4, which contradicts A1 ∩ A2 =
A3 ∩ A4. On the other hand, the containment A1 ⊆ A2 does not hold
since u ∈ (A1 ∩ A3) \ (A2 ∪ A4). The relations A4 ⊆ A1, A2, A3 and
A1||A2 imply that, when one considers the corresponding intents, it
is clear that B4 ⊇ B1, B4 ⊇ B3 and B1||B2. Therefore, there exists
w ∈ B2 ∩B4 \ (B1 ∪B3). We calculate:

w(e2,4) = |A2 ∩A4|+ |B2 ∩B4|
> |A1 ∩A2|+ |B1 ∩B2| (by (4) and w /∈ B1)

= w(e1,2),

Like before, if (A1, B1) �= (A3, B3), we can get a lower bound w(e1,3)
in exactly the same way and arrive at a contradiction with Lemma 1.
On the other hand, if (A1, B1) = (A3, B3), the concepts form a triangle
in Ω and also result in a contradiction.

Case 3 (A2, B2) �= (A4, B4) and A2, A4 are incomparable (therefore, B2, B4 are
incomparable as well)

Case 3.1 (A2, B2) �= (A4, B4), A2, A4 are incomparable and (A1, B1) = (A3, B3)

Note that, in this case, (A1, B1), (A2, B2) and (A4, B4) are three differ-
ent concepts. By equation (4), we have that e2,4 ∈ E(Ω) and, further-
more, w(e2,4) ≥ w(e1,2). Because of e1,2, e1,4 ∈ E(T ), it clearly follows
that e2,4 /∈ E(T ). Therefore, we can assume that w(e2,4) = w(e1,2), be-
cause, otherwise, it would suffice to substitute in T the edge e1,2 with
the edge e2,4 and obtain a contradiction.

Define (A5, B5) = (A2, B2) ∧ (A4, B4) = (A2 ∩ A4, (B2 ∪ B4)
′′).

Observe that u /∈ A5, since u ∈ (A1 ∩ A3) \ (A2 ∪ A4). In particu-
lar, (A5, B5) �= (A1, B1). Since A2 and A4 are incomparable, it fol-
lows that (A5, B5) �= (A2, B2), (A4, B4). Summing up, we have that
(A1, B1), (A2, B2), (A4, B4) and (A5, B5) are four different concepts.



50 A. Albano

We calculate:

w(e2,5) = |A2 ∩ A2 ∩ A4|+ |B2 ∩ (B2 ∪B4)
′′|

= |A2 ∩ A4|+ |B2|
> |A2 ∩ A4|+ |B2 ∩B4| (since B2||B4)

= w(e2,4) = w(e1,2).

In the same way, we obtain that w(e4,5) > w(e1,2).
Let P be the path in T from (A5, B5) to (A2, B2). We distinguish two
cases:
I) The path P goes through (A1, B1): in this case, P goes through
(A1, B1) just before its end-vertex, (A2, B2). Therefore e2,5 /∈ E(T )
and we can substitute e1,2 with e2,5 and obtain a contradiction.
II) The path P does not go through (A1, B1): then, clearly, P does
not go through (A4, B4) as well. Now, we append the length two path
having edges e2,1, e1,4 to P , obtaining a path between (A5, B5) and
(A4, B4). Therefore e4,5 /∈ E(T ) and we can substitute e1,2 with e4,5
and obtain a contradiction.

Case 3.2 (A2, B2) �= (A4, B4), A2, A4 are incomparable and (A1, B1) �= (A3, B3)
Define (A5, B5) = (A2, B2)∧(A4, B4) = (A2∩A4, (B2∪B4)

′′). Since A2

and A4 are incomparable, it follows that (A5, B5) �= (A2, B2), (A4, B4).
Moreover, since it holds that u ∈ (A1 ∩ A3) \ (A2 ∪ A4) and u /∈ A5,
necessarily (A5, B5) �= (A1, B1), (A3, B3) holds also.
We calculate:

w(e2,5) = |A2 ∩ A2 ∩ A4|+ |B2 ∩ (B2 ∪B4)
′′|

= |A2 ∩ A4|+ |B2|
> |A2 ∩ A4|+ |B2 ∩B4| (since B2||B4)

= w(e2,4)

≥ w(e1,2) (by (4)).

Analogously, it holds that w(e4,5) > w(e1,2).
Let P be the path in T from (A5, B5) to (A1, B1). We will divide again
in cases:

I) P does not pass through (A2, B2)
It suffices to append e1,2 to P and substitute edge e1,2 with e2,5,
arriving to a contradiction.

II) P passes through (A2, B2)
II.I) P passes through (A4, B4).

In this case, P passes through the vertex (A4, B4) before the vertex
(A2, B2), since e1,2 ∈ E(T ). Clearly, in this situation, there exists
a path between (A3, B3) and (A1, B1) that passes through (A4, B4)
and (A2, B2), in this order. Then, after using the edge e1,3 to replace
the edge e1,2 we will have a contradiction.

II.II) P does not pass through (A4, B4)



Upper Bound for the Number of Concepts 51

II.II.I) P passes through (A3, B3).
Like in subcase II.I, we have that P passes through (A3, B3) before
the vertex (A2, B2). Therefore, there exists a path between (A5, B5)
and (A4, B4) passing through (A3, B3). Consequently, e4,5 /∈ E(T ),
and using this edge to replace e3,4 gives us a contradiction.

II.II.II) P does not pass through (A3, B3).
Let Q be the path between (A5, B5) and (A3, B3). Note that Q can
not pass through (A1, B1) without passing through (A2, B2), other-
wise there would be a circuit in T (made of subpaths of P and Q).
For this reason, there exist six cases with respect to the property
of Q passing or not through (A1, B1), (A2, B2) or (A4, B4) before it
reaches (A3, B3). In each of the six cases, we will show that at least
one of two things happen: A) there exists a path from (A1, B1) to
(A3, B3) that uses the edge e1,2 or the edge e3,4 or B) there exists a
path from (A5, B5) to (A4, B4) which uses the edge e3,4.

II.II.II.I) Q goes through (A1, B1), (A2, B2) and (A4, B4). In
this case, the order of relevant vertices visited is
(A2, B2), (A1, B1), (A4, B4), (A3, B3). This is clearly an A) case.

II.II.II.II) Q goes through (A1, B1) and (A2, B2) but not through (A4, B4). We
can clearly append the edge e3,4 to Q and get to the B) case.

II.II.II.III) Q goes through (A2, B2) and (A4, B4) but not through (A1, B1). In
this case, we can add the edge e1,2 to the subpath of Q that starts
at (A2, B2) and ends at (A3, B3), leading to the A) case.

II.II.II.IV) Q goes through (A4, B4) but not through (A1, B1) and neither
(A2, B2). The paths P and Q are disjoint in this case and meet
at (A5, B5). Their concatenation is a path described in the A) case.

II.II.II.V) Q goes through (A2, B2) but not through (A1, B1) and neither
(A4, B4). Same as II.II.II.II).

II.II.II.VI) Q does not go through (A1, B1), (A2, B2) and neither (A4, B4). We
can clearly append e3,4 to Q and get to the B) case.
For the A) cases, we can add edge e1,3 to T and remove e1,2 or e3,4,
obtaining a contradiction. For the B) cases, we can add edge e4,5
and remove e3,4 and also obtain a contradiction.

Claim #2 is therefore proved. By Claim #2, each edge of T is injectively
associated with a pair (g,A), where g ∈ G and A is an extent of a CN(c)-free
context (by Claim #1).

Therefore, the number of edges of T must be at most the number of such
pairs. That is:

|E(T )| ≤ |G|(3(|G|)c−1 − 1) = 3|G|c − |G|.

Hence, since every tree has one edge less than its number of vertices:

|B(K)| ≤ 3|G|c − |G|+ 1

≤ 3|G|c − 1 (since |G| ≥ 2).

��



52 A. Albano

4 Lower Bound

In this section we will make use of the commonly used asymptotic notation
symbols O(f), o(f), ω(f) and Θ(f). Their definitions can be seen in [2]. We will,
however, denote membership in those classes using the ∈ symbol instead of the
equal sign. As an application of Prisner’s upper bound, one obtains that, if every
context in a sequence (Ki)i∈N∗ has at most a constant-sized contranominal scale
subcontext, then the associated sequence (|B(Ki)|)i∈N∗ grows polynomially. In
this section, we show that the condition c ∈ O(1) is necessary to establish the
polynomial growth of (|B(Ki)|)i∈N∗ .

Let n, k ∈ N with k ≤ n and let l be the remainder of the division of n by k.
As usual, we will denote by K1 +K2 the direct sum between two contexts and,
more generally, we will use Σ to denote the generalized n-ary sum. We define
the following formal context:

Z(n, k) =
( n

k �∑
i=1

F (k)
)
+ F (l).

Note that Z(n, n) = F (n) and that Z(n, 1) = CN(n). The following proposition
calculates the size of the biggest contranominal scale found as a subcontext in
Z(n, k):

Proposition 1. Let n, k ∈ N with k ≤ n. Then, c(Z(n, k)) = �n/k .

Proof. Consider the complementary context Kc of K = Z(n, k). A subcontext of
K which is a contranominal scale then corresponds to a subcontext of Kc which
is a nominal scale. Note that Kc is the disjoint union of Ferrers contexts, since
the complement of a Ferrers context is again a Ferrers context. Now, consider a
subcontext (H,N, J) of Kc which is a nominal scale. For every attribute m ∈ N ,
at most one object g belonging to the same term as m may belong to H . Indeed,
since, otherwise, the restricted subcontext ({g, h}, N, J ∩ ({g, h}×N)) would be
Ferrers and therefore free of nominal scales of size two. Therefore, the size of
a nominal scale (H,N, J) is upper bounded by �n/k . One can clearly obtain
a nominal scale of size �n/k by choosing one attribute and one corresponding
object from each Ferrers term.

The content of the next theorem is our lower bound relating |B(K)| and c(K).

Theorem 4. For every function f(n) ∈ o(1)∩O(log n), there exists a sequence
of contexts (Ki)i∈N with c(K) ∈ Θ(f) for which the corresponding sequence of
numbers of concepts is not bounded above by any polynomial function.

Proof. By the definition of Z(n, k) and by the property relating concepts lattices
of direct sums [4], we have that |B(Z(n, k))| = (k + 1)n/k� · (l + 1), where l is
the remaining of the division of n by k.

Let f(n) ∈ o(1) ∩ O(log n) and define Kn = Z(n, !n/f(n)"). Note that
n/f(n) ∈ ω(n1−ε) ∩ o(n) for every ε > 0, because of f(n) ∈ O(log n). Applying
Proposition 1, we obtain that c(Kn) = �n/!n/f(n)" ∈ Θ(f).



Upper Bound for the Number of Concepts 53

Substituting:

|B(Kn)| = (!n/f(n)"+ 1)n/n/f(n)�� · (l + 1)

> (!n/f(n)")n/n/f(n)�� ∈ Θ((n/f(n))f(n)),

which is superpolynomial since n/f(n) ∈ ω(n1−ε) and f(n) ∈ o(1). ��

5 Related Work

The problem of calculating c is polynomially equivalent to that of finding the
maximum induced matching (MIM) of a bipartite graph. Indeed, given a context
K, c(K) equals the size of the biggest induced matching of the complementary
contextKc, whenKc is viewed as a bipartite graph. A connection with the largest
independent set problem is provided by the following fact: given a bipartite graph
B, an independent set of L2(B) (that is, the square of its line graph) corresponds
to an induced matching of B.

Stockmeyer and Vazirani introduced in [8] the δ-separated-matching problem.
The particular case δ = 2 is MIM, and the authors call it the “risk-free marriage
problem”. In the same paper, the authors prove that MIM is NP-hard, even
when one restricts its instances to graphs of maximum degree four. In terms
of approximability, Duckworth, Manlove and Zito proved in [3] that, for every
r ≥ 3, the decision version of MIM restricted to r-regular graphs is a problem
that belongs to APX but is also APX-complete.

Acknowledgements. The author is deeply grateful for the valuable and patient
work of the anonymous reviewers.

References

1. Albano, A., do Lago, A.P.: A convexity upper bound for the number of maximal
bicliques of a bipartite graph. Discrete Applied Mathematics 165, 12–24 (2011);
10th Cologne/Twente Workshop on Graphs and Combinatorial Optimization (CTW
2011)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press and McGraw-Hill Book Company (2001)

3. Duckworth, W., Manlove, D., Zito, M.: On the approximability of the maximum
induced matching problem. J. Discrete Algorithms 3(1), 79–91 (2005)

4. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

5. Kuznetsov, S.O.: On computing the size of a lattice and related decision problems.
Order 18(4), 313–321 (2001)

6. Prisner, E.: Bicliques in graphs I: Bounds on their number. Combinatorica 20(1),
109–117 (2000)

7. Schütt, D.: Abschätzungen für die Anzahl der Begriffe von Kontexten. Master’s
thesis, TH Darmstadt (1987)

8. Stockmeyer, L.J., Vazirani, V.V.: NP-completeness of some generalizations of the
maximum matching problem. Inf. Process. Lett. 15(1), 14–19 (1982)



Algebraicity and the Tensor Product

of Concept Lattices

Bogdan Chornomaz

Department of Computer Science
V.N. Karazin Kharkiv National University

Kharkiv, Ukraine
markyz.karabas@gmail.com

Abstract. In this paper we prove that the tensor product of complete
lattices, as it is defined in formal concept analysis, preserves algebraicity.
The proof of this fact is based on the compactness of propositional logic.
We use this property to show that the box product of (0,∨)-semilattices,
introduced by G.Grätzer and F.Wehrung in 1999, can be obtained from
the tensor product of concept lattices in a manner similar to how it is
done in the definition of tensor product in “general” lattice theory.

1 Introduction

Traditionally, the tensor product in lattice theory is defined on (0,∨)-semilattices
as a join-semilattice of compact bi-ideals in the direct product of the corre-
sponding lattices, see [4]. The formal concept analysis provides a different (and
nonequivalent) approach toward the concept of tensor product. Namely, the ten-
sor product of concept lattices is defined as the concept lattice of the direct
product of their formal contexts. Theorem 14 of [3] proves that the resulting
lattice is independent of the choice of formal contexts, thus justifying the def-
inition. However, the concept lattices are exactly the complete lattices, and so
thus defined tensor product has a narrower scope than that from [4].

In Section 2 we argue that we can define a complete tensor product of complete

lattices, denoted
bi
⊗, as a set of complete bi-ideals in their direct product, in

much the same way as it is done for the tensor product from [4], which we call

finite tensor product and denote by
bi

�. It can be easily verified that
bi
⊗ preserves

algebraicity, thus enabling the following construction: for any (0,∨)-semilattices
A and B we take the complete tensor product of complete algebraic lattices IdA

and IdB, and then take the (0,∨)-semilattice of compact elements of IdA
bi
⊗ IdB.

Unsurprisingly, we get

A
bi
�B = Cp

(
IdA

bi
⊗ IdB

)
. (1)

Further on, we will omit the word “complete” whenever the context is clear.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 54–66, 2014.
c© Springer International Publishing Switzerland 2014



Algebraicity and the Tensor Product of Concept Lattices 55

The results of Section 2 are rather trivial and mainly given without the proof.
As suggested by the section title, they serve as a motivation for introducing simi-
lar construction for the tensor product defined via formal contexts, which we call

complete fc-tensor product and denote
fc
⊗. The key property of this construction

is the preservation of algebraicity, which is trivial for
bi
⊗, but takes some effort

to prove in case of
fc
⊗.

As a prerequisite for this proof, in Section 3 we argue that for lattices A and B

the tensor product A
fc
⊗B can be represented as a lattice of closed complete bi-

ideals in A × B, and that it is a complete meet-subsemilattice of A
bi
⊗B. Also,

we give two characterizations of closed bi-ideals.

In Section 4 we prove the key result of the paper that the tensor product
fc
⊗

preserves algebraicity. In fact, we prove that this problem can be reduced to
the compactness of propositional logic, see Corollary 1.2.12 in [1]. Thus, we can

define finite fc-tensor product of (0,∨)-semilattices, denoted
fc
�, by the formula

A
fc

�B = Cp

(
IdA

fc
⊗ IdB

)
. (2)

Notice that while the tensor products
bi
⊗ and

bi

� are defined in their own right,
and (1) simply establishes a relation between them, the alike formula (2) is used

as the definition for
fc

�. Also notice that the “general” tensor product from [4] in
our terminology is called finite tensor product, while the tensor product defined
in the formal concept analysis is the complete fc-tensor product.

Finally, in Section 5 we identify finite fc-tensor product as the lattice tensor
product, introduced by G.Grätzer and F.Wehrung in [5]. The key concept on
which this definition is based is the box product, thus we will call this tensor
product box tensor product. In that paper the authors notice the resemblance
of their construction with Wille’s construction, in particular that this tensor
products coincide in case of finite lattices. Our construction thus can be used to
back this resemblance and establish a parallel between the definition of the box
tensor product and the finite tensor product.

2 Motivational Example

We start with the definition of a tensor product
bi
⊗, almost literally repeating the

definition of
bi

� given in [4].
For a lattice A we call a set X ⊆ L hereditary if x ∈ X and y ≤ x implies

y ∈ X . For complete lattices K and L we define the complete lateral join as a
partial function

∨
CL : 2

K×L → K × L, given by

∨
CL〈xα, yα〉 =

{
〈x,
∨
yα〉, ∀α : xα = x;

〈
∨
xα, y〉, ∀α : yα = y;

.



56 B. Chornomaz

A subset I of K × L is called a complete bi-ideal if it is hereditary, it contains
the set

⊥K,L = ({0K} × L) ∪ (K × {0L})
and it is closed under complete lateral joins. We say that J ⊆ K×L is a complete
dual bi-ideal, if J is a bi-ideal in Kd × Ld.

The complete tensor product ofK and L, denotedK
bi
⊗L, is the set of complete

bi-ideals inK×L ordered by set inclusion. Obviously,K
bi
⊗L is a complete lattice

where the meet coincides with set intersection.
Let A and B be (0,∨)-semilattices, x ∈ A and y ∈ B. We adopt the con-

ventional notation (x] and [x) for the principal ideal and the principal filter of
x in A correspondingly. Also, by (x, y] and [x, y) we denote the principal ideal
and the principal filter of (x, y) in A × B. The same notation is also used for
complete lattices.

We recall that for (0,∨)-semilattices A and B, the complete algebraic lattice
of all bi-ideals in A×B is called in [4] an extended tensor product and is denoted

A⊗B, and A
bi

�B is then defined as the join-semilattice of compact elements of
A⊗B.

Lemma 1. For (0,∨)-semilattices A and B the complete lattices IdA
bi
⊗ IdB

and A ⊗ B are isomorphic, and the isomorphism ε : IdA
bi
⊗ IdB → A ⊗ B is

given by
ε(I) = {(x, y) ∈ A×B |

(
(x], (y]

)
∈ I},

for every complete bi-ideal I in IdA× IdB. The inverse mapping takes form

ε−1(J ) = {(Ix, Iy) ∈ IdA× IdB | Ix × Iy ⊆ J },

for every bi-ideal J in A×B.

Proof. We left to the reader the proof of an easy fact that ε(I) is a bi-ideal and

ε−1(J ) is a complete bi-ideal, for any I ∈ IdA
bi
⊗ IdB and J ∈ A ⊗ B. Let us

now prove that ε ◦ ε−1 and ε−1 ◦ ε are identity mappings.

Indeed, for I ∈ IdA
bi
⊗ IdB we get

(Ix, Iy) ∈ ε−1 ◦ ε(I) ⇔ Ix × Iy ⊆ ε(I)
⇔ ∀x ∈ Ix, y ∈ Iy : (x, y) ∈ ε(I)
⇔ ∀x ∈ Ix, y ∈ Iy :

(
(x], (y]

)
∈ I

⇔ ∀x ∈ Ix :

⎛
⎝(x],

∨
y∈Iy

(y]

⎞
⎠ ∈ I

⇔

⎛
⎝ ∨

x∈Ix

(x],
∨
y∈Iy

(y]

⎞
⎠ = (Ix, Iy) ∈ I.



Algebraicity and the Tensor Product of Concept Lattices 57

And for J ∈ A⊗B we get

(x, y) ∈ ε ◦ ε−1(J ) ⇔
(
(x], (y]

)
∈ ε−1(J )

⇔ (x]× (y] ⊆ J ⇔ (x, y) ∈ J .

�
Let us recall the notions of compactness and algebraicity. An element x in a

complete lattice K is compact if x ≤
∨
S for some S implies x ≤

∨
T for some

finite T ⊆ S. The set C(K) of all compact elements in a complete lattice K is a
(∨, 0)-semilattice of K. A complete lattice A is called algebraic if every element
is the join of compact elements.

The fact that A ⊗ B is an algebraic lattice for any (0,∨)-semilattices A and

B is thus equivalent to the fact that
bi
⊗ preserves algebraicity.

Proposition 1. If K and L are complete algebraic lattices then the lattice K
bi
⊗L

is also algebraic.

Now, using Lemma 1 we get

A
bi
�B = Cp

(
IdA

bi
⊗ IdB

)
,

K
bi
⊗L = Id

(
CpK

bi

�CpL

)
,

for all (0,∨)-semilattices A and B and all complete algebraic lattices K and L.
It is shown in [4] that the bi-ideals can be represented by join-homomorphisms.

Below we introduce similar technique for complete bi-ideals.
For complete lattices K and L let us define K

−→⊗ L as

K
−→⊗ L = Hom

((
K;
∨

; 0
)
,
(
L;
∧

; 1
))

,

that is, K
−→⊗ L is a lattice of complete dual join-homomorphisms from K to L

sending 0 to 1.

Proposition 2. For complete lattices K and L the mapping η : K
−→⊗L → K

bi
⊗L

defined by
η(ϕ) = {(x, y) ∈ K × L | y ≤ ϕ(x)} ,

for any ϕ ∈ K
−→⊗ L, establishes an isomorphism between K

−→⊗ L and K
bi
⊗L. And

the inverse mapping is given by

η−1(H)(a) =
∨

{x ∈ L | (a, x) ∈ H} ,

for any H ∈ K
bi
⊗L and a ∈ L.



58 B. Chornomaz

3 Properties of fc-tensor Product

The definition of the tensor product in formal concept analysis stems from two
papers of R. Wille [9,10]. However, in this paper to introduce this tensor product
we are following the observational paper of B.Ganter and R.Wille [3]; same
results but presented with proofs can be found in sections 4.4 and 5.4 of the
monography by the same authors [2].

In formal concept analysis the tensor product of complete lattices K and L
is defined as the concept lattice

B(K × L,K × L,∇),

where ∇ ⊆ (K × L)× (K × L) is a relation defined by

∇ =
{(

(x1, y1), (x2, y2)
)
| x1 ≤ x2 or y1 ≤ y2

}
,

see [3]. This concept lattice can be represented as a lattice of subsets of K × L,
closed under the closure operator

X �→ X∗+, (3)

where

X∗ := {b ∈ K × L | ∀a ∈ X : a∇b} ,
Y + := {a ∈ K × L | ∀b ∈ Y : a∇b} ,

for all X,Y ⊆ K ×L. We call such sets simply closed when the closure operator
is clear from the context. Note that the mappings X �→ X∗ and Y �→ Y +

are antitone, and thus the mapping X �→ X∗+ is isotone. Also notice that the
mapping X �→ X+∗ is also isotone and is a dual closure in K × L. We will take
the representation by closed sets as a definition for fc-tensor product, which

we denote by
fc
⊗. By the properties of the closure operator, the complete meet

in K
fc
⊗L coincides with set intersection, that is, K

fc
⊗L is a complete meet-

subsemilattice in the powerset of K × L.
The following easily verified proposition gives a necessary condition for a set

to be closed.

Proposition 3. For complete lattices K and L and X ⊆ K×L, the set X∗+ is
a complete bi-ideal, and X∗+ is a complete dual bi-ideal.

Thus, K
fc
⊗L is the lattice of closed complete bi-ideals. Further on, we will

omit the word “complete” and call them simply closed bi-ideals.
Now we will investigate how the closure operator (3) acts on bi-ideals repre-

sented by homomorphisms.
Let P be a poset and X ⊆ P . Then we define a hereditary closure of X

as a smallest hereditary set containing X . One can easily verify that if Y is a
hereditary closure of X then it can be represented as

Y = {y ∈ P | ∃x ∈ X : y ≤ x} .



Algebraicity and the Tensor Product of Concept Lattices 59

Lemma 2. For complete lattices K and L and a set X ⊆ K let Y be a hereditary
closure of X. Then X∗+ = Y ∗+.

Proof. As X ⊆ Y we get X∗+ ⊆ Y ∗+. On the other hand, the set X∗+ is
hereditary and contains X , thus, it contains its hereditary closure, that is, Y ⊆
X∗+. But then Y ∗+ ⊆ X∗+∗+ = X∗+, which proves our claim. �

Lemma 3. For complete lattices K and L let I ⊆ K × L be a set defined as

I = {(x, y) | y ≤ f(x)} ,

for some f : K → L, and let f∗+ = η−1(I∗+). Then

f∗+(x) =
∧

y∈K−[x)

∨
w∈K−(y]

f(w)

Note that, in particular, this lemma is applicable in case when I is a complete
bi-ideal and f = η−1(I)
Proof. Let us define the mapping f∗ : K → L as

f∗(y) =
∨

w∈K−(y]

f(w),

for all y ∈ K.
Let Ib = {(x, f(x)) | x ∈ K}, then I is a hereditary closure of Ib and by

Lemma 2 we get I∗ = I∗b . Now

I∗ = I∗b = {(x, y) | ∀x′ : x′ ≤ x or f(x′) ≤ y}
= {(x, y) | ∀x′ : x′ ∈ K − (x] implies f(x′) ≤ y}

=

⎧⎨
⎩(x, y) |

∨
x′∈K−(x]

f(x′) ≤ y

⎫⎬
⎭

= {(x, y) | f∗(x) ≤ y} .

By Proposition 3, the set I∗ is a complete dual bi-ideal. Taking into account
that the mapping A �→ A+∗ is a dual closure, by the same argument as above
we get I∗+ = I+c where Ic = {(x, f∗(x)) | x ∈ K}. Then

I∗+ = I+c = {(x, y) | ∀x′ : x ≤ x′ or y ≤ f(x′)}
= {(x, y) | ∀x′ : x′ ∈ K − [x) implies y ≤ f∗(x′)}

=

⎧⎨
⎩(x, y) | y ≤

∧
x′∈K−[x)

f∗(x′)

⎫⎬
⎭ .

This easily yields

f∗+(x) =
∧

x′∈K−[x)

f∗(x′),



60 B. Chornomaz

which proves the claim of the theorem. �
For complete lattices K and L let us notice that the set (x, y] ∪⊥ is a closed

bi-ideal, for any x ∈ K and y ∈ L. Following [4], we call it a pure tensor and
denote it by x⊗ y. We also introduce a set [x, y] ⊆ K × L defined by

[x, y] = {(x′, y′) | x′ ≤ x or y′ ≤ y}.

Obviously, [x, y] is also a closed bi-ideal, for every x ∈ K and y ∈ L.
For a set A ⊆ K × L we define the sets A|K ⊆ K and A|L ⊆ L as

A|K = {x | ∃y, (x, y) ∈ A} ,
A|L = {y | ∃x, (x, y) ∈ A} .

We use the symbol
⊔

to denote the disjoint union of sets.
Now we give another characterization of the closure operator and, correspond-

ingly, of closed bi-ideals

Lemma 4. For complete lattices K and L and a set I ⊆ K ×L the closure I∗+

is given by

I∗+ =
⋂

X
⊔

Y =I

[∨
X |K ,

∨
Y |L
]

(4)

Proof.

I∗+ = {(x, y) | ∀(x′, y′) ∈ I∗ : x ≤ x′ or y ≤ y′}

=
⋂

{[x′, y′] | (x′, y′) ∈ I∗}

=
⋂

{[x′, y′] | ∀(x′′, y′′) ∈ I : x′′ ≤ x′ or y′′ ≤ y′}

=
⋂{

[x′, y′] | ∃X ⊆ I :
∨

X |K ≤ x′ and
∨

(I −X)|L ≤ y′
}

=
⋂{[∨

X |K ,
∨

Y |L
]
| X
⊔

Y = I
}
.

�

Corollary 1. The family of closed bi-ideals of K × L is the minimal family of
sets which contains all sets [x, y] and is closed under

⋂
.

4 Algebraicity

For a (0,∨)-semilattices A and B, the extended tensor product A ⊗ B is an

algebraic lattice, see [4]. By Lemma 1 this means that
bi
⊗ preserves algebraicity.

The goal of this section is to prove similar property for
fc
⊗.

Lemma 5. If K and L are complete lattices and x0 ∈ K and y0 ∈ L are compact

elements, then x0 ⊗ y0 is a compact element of K
fc
⊗L.



Algebraicity and the Tensor Product of Concept Lattices 61

Proof. Arguing by contradiction, suppose that x0 ⊗ y0 is not compact. Then

there is an infinite family of closed bi-ideals {Iα}α∈A ⊆ K
fc
⊗L such that

(x0, y0] ≤
∨

{Iα | α ∈ A}

and for every finite subfamily A ⊂ A holds

(x0, y0] �≤
∨
α∈A

Iα.

As every bi-ideal from this family can be represented as an infinite join of pure
tensors, then, without losing generality, we may assume that every bi-ideal Iα is
a pure tensor, that is Iα = xα ⊗ yα, for every α ∈ A.

As
⋃{

(xβ , yβ] | β ∈ B
}
is the hereditary closure of the set

{
(xβ , yβ) | β ∈ B

}
,

by Lemma 2 we infer(⋃{
(xβ , yβ] | β ∈ B

})∗+
=
({

(xβ , yβ) | β ∈ B
})∗+

,

for every B ⊆ A. Then

(x0, y0] ≤
∨
α∈A

(xα, yα] =

(⋃
α∈A

[xα, yα)

)∗+
=
{
(xα, yα) | α ∈ A

}∗+
,

and using (4) we get

(x0, y0] ≤
⋂

B⊆A

⎡
⎣ ∨
β∈B

xβ ,
∨

γ∈A−B

yγ

⎤
⎦ . (5)

And similarly

(x0, y0] �≤
⋂

B⊆A

⎡
⎣ ∨
β∈B

xβ ,
∨

γ∈A−B

yγ

⎤
⎦ , (6)

for every finite A ⊆ A.
Let us define two families X and Y of finite subsets of A by

X =

{
A ⊆ A, |A| < ∞

∣∣∣∣∣x0 ≤
∨
α∈A

xa

}
,

Y =

{
A ⊆ A, |A| < ∞

∣∣∣∣∣y0 ≤
∨
α∈A

ya

}
.

That is, X and Y are the families of all sets of indexes in A, defining the finite
covers of x0 and y0 correspondingly.



62 B. Chornomaz

We now need to use some tools from propositional logic, namely the compact-
ness theorem. We are following the terminology of H.J.Keisler and C.C.Chang,
see Section 1.2 in [1]. Let us consider the set A as the set of simple statements
and build a set Σ of propositional sentences over it

Σ := ΣX

⊔
ΣY,

ΣX :=

{
¬
(∧

α∈A

α

)∣∣∣∣∣A ∈ X

}
,

ΣY :=

{
¬
(∧

α∈A

¬α
)∣∣∣∣∣A ∈ Y

}
.

Notice that the symbol
∧

in the definition above is used not as join, but as a
connective in the propositional language. Its usage is justified by the fact that
all considered “joins” are finite. The models of our language are simply subsets
of A. For a model B ⊆ A a simple statement β is true in B iff β ∈ B.

We claim that (5) is equivalent to the following statement: The set Σ of
sentences is not satisfiable, that is,Σ has no model. Indeed, (5) can be restated as:
For any model B ⊆ A, either x0 ≤

∨
{xβ | β ∈ B} or y0 ≤

∨
{yγ | γ ∈ A−B}.

As x0 is compact, it follows that x0 ≤
∨

{xβ | β ∈ B} iff there is A0 ∈ X such
that A0 ⊆ B, in which case the propositional sentence(

¬
∧

{a | a ∈ A0}
)
∈ ΣX

is not satisfied in B. Similarly, y0 ≤
∨

{yγ | γ ∈ A−B} iff there is a set B0 ∈ Y
such that B0 ⊆ A−B, and consequently the propositional sentence(

¬
∧

{¬a | a ∈ B0}
)
∈ ΣY

is not satisfied in B. Combined together, these observations prove our claim.
Similarly, (6) is equivalent to the statement: The set Σ of sentences is finitely

satisfiable, that is, every finite subset of Σ has a model. However, by the com-
pactness theorem for propositional calculus, see Corollary 1.2.12 in [1], Σ is
satisfiable if it is finitely satisfiable, a contradiction. �

Now as an easy corollary we get

Theorem 1. If K and L are complete algebraic lattices then K
fc
⊗L is algebraic.

Proof. Notice that by Lemma 5, x⊗ y is a compact element of K
fc
⊗L, for any

x ∈ CpK and y ∈ CpL. Any closed bi-ideal I ⊆ K × L can be represented as

I = ⊥ ∪
⋃

{(x, y] | (x, y) ∈ I, x ∈ CpK, y ∈ CpL}

=
∨{

x⊗ y | (x, y) ∈ I, x ∈ CpK, y ∈ CpL
}
.

Thus, every element of K
fc
⊗L can be represented as a join of compact ele-

ments, so K
fc
⊗L is algebraic. �



Algebraicity and the Tensor Product of Concept Lattices 63

Now, using Theorem 1, for (0,∨)-semilattices A and B we can define finite
fc-tensor product as

A
fc
�B = Cp

(
IdA

fc
⊗ IdB

)
.

and observe that, just as for “regular” tensor product, holds

K
fc
⊗L = Id

(
CpK

fc
�CpL

)
,

for all complete algebraic lattices K and L.

5 The Box Tensor Product

Now we are going to show that, thus defined, finite fc-tensor product coincides
with the box tensor product, introduced in [5].

For lattices with zero A and B, a ∈ A and b ∈ B we define the box tensor
product of A and B, denoted A � B, as the set of all finite intersections of the
form

H =
⋂

{[ai, bi] | i < n} , (7)

satisfying ∧
{ai | i < n} = 0A, (8)∧
{bi | i < n} = 0B, (9)

where n > 0, (ai, bi) ∈ A×B, for all i < n.
Let us point out that in making this definition we have skipped few interme-

diate steps as compared to [5]; the definition now corresponds to Lemma 3.8 of
the mentioned paper.

Now, let us identify A and B with the sets of principal ideals in IdA and IdB
correspondingly, using canonical embeddings πA : x �→ (x] and πB : y �→ (y]; and

let us extend this embeddings to the embedding π : A�B → A
fc
⊗B defined by

π :
⋂

{[ai, bi] | i < n} �→
⋂{[

πA(ai), πB(bi)
]
| i < n

}
. (10)

Notice that by Corollary 1, all elements of π[H ] are valid elements of IdA
fc
⊗ IdB,

that is, valid closed bi-ideals in IdA× IdB.
For a lattice C and a set X ⊆ C we denote the lattice generated by X in C

by 〈X〉C , or simply by 〈X〉 if the underlying lattice is clear from the context.

Proposition 4. For lattices with zero C and D, let ci ∈ C and di ∈ D, for
i = 1, . . . , n. Then ⋂

i=1,...,n

[ci, di] = ⊥ci,di ∪
⋃

i=1,...,m

(zi, wi],



64 B. Chornomaz

where
⊥ci,di =

((∧
ci

]
×D

)
∪
(
C ×

(∧
di

])
for some m, and zi ∈ 〈cj | j = 1, . . . , n〉 and wi ∈ 〈dj | j = 1, . . . , n〉, for all i.

Using Proposition 4 we can easily prove the desired result.

Theorem 2. For lattices with zero A and B, the mapping π defined by (10)

establishes an isomorphism between A�B and A
fc

�B, that is

1. for any H ∈ A�B, π(H) is a compact closed bi-ideal in IdA× IdB,
2. any compact compact closed bi-ideal in IdA × IdB can be represented as

π(H), for some H ∈ A�B.

Proof. (1): Let us take H as in (7), then

π(H) =
⋂{[

πA(ai), πB(bi)
]
| i < n

}
,

and, by Proposition 4

π(H) = ⊥πA(ai),πB(bi) ∪
⋃

i=1,...,m

(zi, wi],

where zi ∈ 〈πA(aj) | j = 1, . . . , n〉 ⊆ πA[A] and wi ∈ 〈πB(bj) | i = 1, . . . , n〉 ⊆
πB[B].

Also from (8) and (9) it follows that ⊥πA(ai),πB(bi) = ⊥IdA,IdB, which yields

π(H) =
⋃

i=1,...,m

zi ⊗ wi =
∨

i=1,...,m

zi ⊗ wi,

where zi and wi are compact elements of IdA and IdB correspondingly, for all

i ≤ n. Thus, by Lemma 5 the elements zi⊗wi are compact elements of IdA
fc
⊗ IdB

and π(H) is a finite join of compact elements, thus, it is also compact.
(2): Let H be a closed compact bi-ideal in IdA × IdB. Definitely, H can be

represented as

H =
⋃

{a⊗ b | a ∈ πA[A], b ∈ πB[B], (πA(a), πB(b)) ∈ H}

=
∨

{a⊗ b | a ∈ πA[A], b ∈ πB[B], (πA(a), πB(b)) ∈ H} .

Using compactness of H, we get

H =
∨

{ai ⊗ bi | i < n} =

(⋃
{ai ⊗ bi | i < n}

)∗+
,

for some n > 0 and ai ∈ πA[A] and bi ∈ πB [B] ,for all i < n. By Lemma 2 the
latter gives

H =

(⋃
{(ai, bi) | i < n}

)∗+
,

and the application of Lemma 4 gives us the desired representation of H. �



Algebraicity and the Tensor Product of Concept Lattices 65

6 Conclusion

The paper [5] contains a very profound discussion on the similarities between
various kinds of tensor products and their properties, as well as a list of open
problems. In this list we would like to single out two problems that explicitly deal
with the connection between the tensor box product and finite tensor product.

Problem 1 asks for a characterization of a situation when A � B = A
bi
�B, for

lattices with zero A and B, and Problem 6 seeks for another tensor products

“between” � and
bi

�.
A problem in comparing these tensor products is that the finite tensor product

is defined on (0,∨)-semilattices, while the box tensor product is defined on lat-
tices with zero. This situation is natural in the following sense: for lattices with

zero A and B, A�B is always a lattice, while A
bi
�B in general is only a (0,∨)-

semilattice, see, for example, Corollary 8.2 in [6]. Now, our construction of
fc

�
enables to extend the definition of the box tensor product to (0,∨)-semilattices,
and thus enables to compare these constructions on some “natural” domain.
Again, correspondences (1) and (2) enable to characterize the connection be-

tween
bi

� with
fc

� by comparing
bi
⊗ with

fc
⊗.

The author would also like to draw the parallel to the paper of M. Krötzsch
and G. Malik [8]. For complete lattices K and L, the space of regular Galois

connections described in this paper is F
fc
⊗L; indeed, regular Galois connections

are deliberately defined this way. In the same time one can show, not without

some effort, that the space of all Galois connections will be exactly F
bi
⊗L. The

large part of [8] is dedicated to describing the situation when K and L have only
regular Galois connections between them, and in particular to the case when K
have only regular Galois connections to any complete lattice L.

Regarding the latter case, the author believe that he has the proof that this
holds iff K satisfies complete infinite distributive identity (CIDI). The one direc-
tion of this statement is provided by Theorem 4 of [8]. For the other direction,
when K does not satisfy CIDI, the counterexample is provided by the identity
mapping from K to Kop, which would be an irregular Galois connection. How-
ever, the complete proof of this fact requires efforts which fall beyond the scope
of the present article.

References

1. Chang, C.C., Keisler, H.J.: Model Theory, 3rd edn. North-Holland, Amsterdam
(1990)

2. Ganter, B., Wille, R.: Formal concept analysis - mathematical foundations.
Springer (1999)

3. Ganter, B., Wille, R.: Applied lattice theory: formal concept analysis, Appendix H
in [7], pp. 591–605



66 B. Chornomaz

4. Grätzer, G., Wehrung, F.: A survey of tensor products and related constructions
in two lectures. Algebra Universalis 45, 117–134 (2001)

5. Grätzer, G., Wehrung, F.: A new lattice construction: the box product. J. Alge-
bra 221, 315–344 (1999)

6. Grätzer, G., Wehrung, F.: Tensor products and transferability of semilattices.
Canad. J. Math. 51, 792–815 (1999)

7. Grätzer, G.: General Lattice Theory, 2nd edn. Birkhäuser, Basel (1998)
8. Krötzsch, M., Malik, G.: The Tensor Product as a Lattice of Regular Galois Con-

nections. In: Missaoui, R., Schmidt, J. (eds.) Formal Concept Analysis. LNCS
(LNAI), vol. 3874, pp. 89–104. Springer, Heidelberg (2006)

9. Wille, R.: Tensorial decompositions of concept lattices. Order 2, 81–95 (1985)
10. Wille, R.: Tensor products of complete lattices as closure systems. Contributions

to General Algebra 7, 381–386 (1991)



On the Existence of Isotone Galois Connections

between Preorders

Francisca Garćıa-Pardo, Inma P. Cabrera, Pablo Cordero,
Manuel Ojeda-Aciego, and Francisco J. Rodŕıguez-Sanchez

Universidad de Málaga, Spain�

Abstract. Given a mapping f : A → B from a preordered set A into
an unstructured set B, we study the problem of defining a suitable pre-
ordering relation on B such that there exists a mapping g : B → A such
that the pair (f, g) forms an adjunction between preordered sets.

1 Introduction

Galois connections were introduced by Ore [30] in 1944 as a pair of antitone
mappings aimed at generalizing Birkhoff’s theory of polarities to the framework
of complete lattices. Later, in 1958, Kan [23] introduced the notion of pair of
adjoint functors in a categorical context. It is not surprising to find a plethora
of examples of adjunction in several disparate research areas, ranging from the
most theoretical to the most applied. It is remarkable to note that the impor-
tance of adjunctions quickly increased to an extent that, for instance, the inter-
est of category theorists moved from universal mapping properties and natural
transformations to adjointness.

When instantiating an adjunction to categories of ordered sets, it can be seen
that both constructions, adjunctions and Galois connections, are fairly similar
and, to some extent, are interdefinable: in some sense, an adjunction between A
and B is a Galois connection in which the order relation on B is reversed (this
leads to the use of the term isotone Galois connection which is exactly that of
adjunction between ordered structures).

Nowadays, one can often find publications concerning Galois connections, both
isotone and antitone, focused on either theoretical developments or theoretical
applications [7,9,24]. Another term for adjunction, frequently used in the context
of ordered sets, is that of pair of residuated mappings [5].

Concerning applications to informatics, we can find a first survey [28] on
computer science applications published back in 1986. Of course, a number of
more specific references on certain topics can be found, for instance, to pro-
gramming [29], data analysis [34], logic [12, 21]. It is specially remarkable that
the research topic of approximate reasoning using rough sets has benefitted spe-
cially from the use of the theory of Galois connections [13, 20, 31, 32].

� This work is partially supported by the Spanish research projects TIN2009-14562-
C05-01, TIN2011-28084 and TIN2012-39353-C04-01, and Junta de Andalućıa project
P09-FQM-5233.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 67–79, 2014.
c© Springer International Publishing Switzerland 2014



68 F. Garćıa-Pardo et al.

It is worth to recall that many recent works on Galois connections use them
in the framework of Formal Concept Analysis (FCA), either theoretically or
applicatively.This is not surprising, since the operators used to build concepts
form a Galois connection. In [33] one can find an extension of conceptualization
modes, [1] describes a general approach to fuzzy FCA, [6] studies two previ-
ously existing frameworks and proved them equivalent, [10] use them for solving
multi-adjoint relation equations, [27] provides new generalizations for FCA, [11]
relates FCA and possibility theory, [3] stress on the “duality” between isotone
and antitone Galois connections in showing a case of mutual reducibility of the
concept lattices generated by using each type of connection, etcetera.

Being able to define a Galois connection between two ordered structures is a
matter of major importance, and not only for FCA. For instance, [8] establishes
a Galois connection between valued constraint languages and sets of weighted
polymorphisms in order to develop an algebraic theory of complexity for valued
constraint languages.

Browsing the related literature, one can find several publications concerning
sufficient or necessary conditions for the existence of Galois connections between
ordered structures. The main results of this paper are related to the existence
and construction of the adjoint pair to a given mapping f , but in a more general
framework.

Our initial setting is to consider a mapping f : A → B from a preordered set A
into an unstructured set B, and then characterize those situations in which the
set B can be preordered and an isotone mapping g : B → A can be built such
that the pair (f, g) is an adjunction. (Note that hereafter we will use exclusively
this term since is shorter than isotone Galois connection).

The structure of the paper is as follows: in Section 2, given f : A → B we
introduce the preliminary definitions, and recall the necessary and sufficient
conditions for the existence of a unique partial ordering on B and a mapping g
such that (f, g) is an adjunction; then, in Section 3 we study the existence of
preordering in B and the existence of g such that (f, g) is an adjunction between
preordered structures; at this point, the absence of antisymmetry makes that
both the statements and the proofs of the results to be much more involved.
Finally, in Section 5, we draw some conclusions and discuss future work.

2 Preliminary Definitions and Results

We assume basic knowledge of the properties and constructions related to a
partially ordered and preordered sets. Anyway, for the sake of self-completion,
we include below the formal definitions of the main concepts to be used in this
work.

Definition 1. Given a partially ordered set A = (A,≤A), X ⊆ A, and a ∈ A.

– An element u is said to be an upper bound of X, if x ≤ u for all x ∈ X.
We write UB(X) to refer to the set of upper bounds of X.



On the Existence of Isotone Galois Connections between Preorders 69

– An element a is said to be the maximum of X, denoted maxX, if a ∈ X
and x ≤ a for all x ∈ X.

– The downset a↓ of a is defined as a↓ = {x ∈ A | x ≤A a}.
– The upset a↑ of a is defined as a↑ = {x ∈ A | x ≥A a}.

A mapping f : (A,≤A) → (B,≤B) between partially ordered sets is said to be

– isotone if a1 ≤A a2 implies f(a1) ≤B f(a2), for all a1, a2 ∈ A.
– antitone if a1 ≤A a2 implies f(a2) ≤B f(a1), for all a1, a2 ∈ A.

In the particular case in which A = B,

– f is inflationary (also called extensive) if a ≤A f(a) for all a ∈ A.
– f is deflationary if f(a) ≤A a for all a ∈ A.

As we are including the necessary definitions for the development of the con-
struction of adjunctions, we state below the definition of adjunction we will be
working with.

Definition 2. Let A = (A,≤A) and B = (B,≤B) be posets, f : A → B and
g : B → A be two mappings. The pair (f, g) is said to be an adjunction between
A and B, denoted by (f, g) : A � B, whenever for all a ∈ A and b ∈ B we have
that

f(a) ≤B b if and only if a ≤A g(b)

The mapping f is called left adjoint and g is called right adjoint.

As we will not be working with partially ordered sets but with preordered sets,
some of the previous notions have to be adapted to this more general setting.

The definitions of downset (resp. upset) of an element in a preordered set,
and those of isotone, antitone, inflationary and deflationary mapping between
preordered sets are exactly the same as those given for posets.

The notion of maximum or minimum element of a subset of a preordered set is
defined as usual. Note, however, that due to the absence of antisymmetry, these
elements need not be unique. This is an important difference which justifies the
introduction of special terminology in this context.

Definition 3. Given a preordered set (A,≤A) and a subset X ⊆ A, an element
a ∈ A is said to be a p-maximum (resp., p-minimum ) of X if a ∈ X and x ≤A a
(resp., a ≤A x) for all x ∈ X. The set of p-maxima (resp., p-minima) of X will
be denoted as p-max(X) (resp., p-min(X)).

Notice that p-max(X) (resp., p-min(X)) need not be a singleton. In the event
that, say a, b ∈ p-max(X), then the two relations a ≤ b and b ≤ a hold. As this
situation will repeat several times, we introduce the equivalence relation ≈A in
any preordered set (A,≤A), defined as follows for a1, a2 ∈ A:

a1 ≈A a2 if and only if a1 ≤A a2 and a2 ≤A a1 (1)

The equivalence class of element a wrt an equivalence relation R will be written,
as usual, as [a]R. If there is no risk of ambiguity, the subscript will be omitted.



70 F. Garćıa-Pardo et al.

In this work we will assume a mapping f : A → B such that the original set is
preordered. In order to study the existence of adjoints in this framework, we will
need to use the previously defined relation ≈A, together with the kernel relation
≡f , defined as a ≡f b if and only if f(a) = f(b).

The two relations above are used together in the definition of the p-kernel
relation defined below:

Definition 4. Let A = (A,≤A) be a preordered set, and f : A → B a mapping.
The p-kernel relation ∼=A is the equivalence relation obtained as the transitive
closure of the union of the relations ≈A and ≡f .

It is well-known that the transitive closure in the definition above can be
described as follows: given a1, a2 ∈ A, we have that a1 ∼=A a2 if and only if there
exists a finite chain {xi}i∈{1,...,n} ⊆ A such that x1 = a1, xn = a2 and, for all
i ∈ {1, . . . , n− 1}, either xi ≡f xi+1 or xi ≈A xi+1.

The following theorem [17] states different equivalent characterizations of the
notion of adjunction between preordered sets that will be used in the main con-
struction of the right adjoint. As expected, the general structure of the definitions
is preserved, but those concerning the actual definition of the adjoints have to
be modified by using the notions of p-maximum and p-minimum.

Theorem 1. Let A = (A,≤A),B = (B,≤B) be two preordered sets, and f : A →
B and g : B → A be two mappings. The following statements are equivalent:

1. (f, g) : A � B.
2. f and g are isotone maps, and g ◦f is inflationary map, f ◦g is deflationary

map.
3. f(a)↑ = g−1(a↑) for all a ∈ A.
4. g(b)↓ = f−1(b↓) for all b ∈ B.
5. f is isotone and g(b) ∈ p-max f−1(b↓) for all b ∈ B.
6. g is isotone and f(a) ∈ p-min g−1(a↑) for each a ∈ A.

Once again, the absence of antisymmetry leads to slight modifications of some
well-known properties of adjunctions, as that stated in the result below and its
corollary.

Theorem 2. Let A = (A,≤),B = (B,≤) be two preordered sets, and f : A → B
and g : B → A be two mappings. If (f, g) : A � B then, (f ◦ g ◦ f)(a) ≈B f(a)
for all a ∈ A, and (g ◦ f ◦ g)(b) ≈A g(b) for all b ∈ B.

Corollary 1. Let A = (A,≤A),B = (B,≤B) be two preordered sets, and f : A →
B and g : B → A be two mappings. If (f, g) : A � B then, (g ◦ f ◦ g ◦ f)(a) ≈A

(g ◦ f)(a) for all a ∈ A, and (f ◦ g ◦ f ◦ g)(b) ≈B (f ◦ g)(b) for all b ∈ B.

The following definition recalls the notion of Hoare ordering between subsets of
a preordered set, and then introduces an alternative statement in the subsequent
lemma.



On the Existence of Isotone Galois Connections between Preorders 71

Definition 5. Let (A,≤) be a preordered set, and consider X,Y ⊆ A.

– We will denote by *H the Hoare relation, X *H Y if and only if, for all
x ∈ X, there exists y ∈ Y such that x ≤ y.

– We define X * Y if and only if there exist x ∈ X and y ∈ Y such that
x ≤ y.

Lemma 1. Let (A,≤) be a preordered set, and consider X,Y ⊆ A such that
p-min(X) �= ∅ and p-min(Y ) �= ∅. The following statements are equivalent:

1. p-min(X) *H p-min(Y )
2. p-min(X) * p-min(Y )
3. For all x ∈ p-min(X) and for all y ∈ p-min(Y ), x ≤ y.

Proof. The implications 1) ⇒ 2) and 3) ⇒ 1) are straightforward. Let us prove,
2) ⇒ 3). For this, consider any x ∈ p-min(X) and y ∈ p-min(Y ). Using the
hypothesis and x ∈ p-min(X), we have that, there exists y1 ∈ p-min(Y ) such
that x ≤ y1. Since y1 ∈ p-min(Y ), we have that y1 ≤ y for all y ∈ Y . Therefore,
x ≤ y for all x ∈ p-min(X) and y ∈ p-min(Y ). �

We finish this preliminary section by stating the characterization theorem of
existence of a suitable partial ordering on B so that a right adjoint exists. The
core of this work is to develop a generalized version of the theorem below:

Theorem 3 ( [18]). Given a poset (A,≤A) and a map f : A → B, let ≡f be the
kernel relation. Then, there exists an ordering ≤B in B and a map g : B → A
such that (f, g) : A � B if and only if

1. There exists max([a]) for all a ∈ A.
2. For all a1, a2 ∈ A, a1 ≤A a2 implies max([a1]) ≤A max([a2]).

Roughly speaking, the proof of the previous theorem is done by using the
canonical decomposition theorem via the quotient set Af wrt the kernel relation,
and building right adjoints to any of the arrows in the path.

A B

Af f(A)

f

π

g=max◦ϕ−1◦jm

jmmax

ϕ

ϕ−1

i

The tricky part of the proof was to extend the ordering on f(A) to the whole
setB so that it is still compatible with the existence of right adjoint jm, obviously
when f is not surjective. The underlying idea here is related to the definition of
an order-embedding of the image into the codomain set; more generally, the idea
is to extend a partial ordering defined just on a subset of a set to the whole set.

Definition 6. Given a subset X ⊆ B, and a fixed element m ∈ X, any pre-
ordering ≤X in X can be extended to a preordering ≤m on B, defined as the
reflexive and transitive closure of the relation ≤X ∪{(m, y) | y /∈ X}.



72 F. Garćıa-Pardo et al.

Note that the relation above can be described as, for all x, y ∈ B, x ≤m y if and
only if some of the following holds:

(a) x, y ∈ X and x ≤X y
(b) x ∈ X, y /∈ X and x ≤X m
(c) x, y /∈ X and x = y

3 Building Adjunctions between Preordered Sets

Given a mapping f : A → B from a preordered set A = (A,≤) to an unstructured
set B, our first goal is to find sufficient conditions to define a suitable preordering
on B such that a right adjoint exists. Notice that there is much more than a
mere adaptation of the result for posets.

Lemma 2. Let A = (A,≤A) be a preordered set and f : A → B a surjective
map. Let S ⊆

⋃
a∈A p-max[a]∼=A

such that the following conditions hold:

– p-min(UB[a]∼=A
∩ S) �= ∅, for all a ∈ A.

– If a1 ≤A a2, then p-min(UB[a1]∼=A
∩ S) * p-min(UB[a2]∼=A

∩ S).

Then, there exists a preorder ≤B in B and a map g such that (f, g) : A � B.

Proof. The definition of the preorder ≤B in B, given b1, b2 ∈ B, is as follows:
b1 ≤B b2 if and only if there exist a1 ∈ f−1(b1) and a2 ∈ f−1(b2) such that

p-min(UB[a1]∼=A ∩ S) * p-min(UB[a2]∼=A ∩ S).

Let us prove that it is a preordering:

Reflexivity: By the first hypothesis, we have that p-min(UB[a]∼=A ∩ S) �= ∅.
Now, trivially, p-min(UB[a]∼=A

∩ S) * p-min(UB[a]∼=A
∩ S) holds for any

a ∈ f−1(b). Therefore, b ≤B b for any b ∈ B.
Transitivity: Assume b1 ≤B b2 and b2 ≤B b3.

From b1 ≤B b2, there exist ai ∈ f−1(bi), and ci ∈ p-min(UB[ai]∼=A
∩ S) for

i = 1, 2 such that c1 ≤A c2.
From b2 ≤B b3, there exist a′i ∈ f−1(bi), and c′i ∈ p-min(UB[a′i]∼=A

∩ S) for
i = 2, 3 such that c′2 ≤A c′3.
As a2, a

′
2 ∈ f−1(b2), we have that [a2]∼=A

= [a′2]∼=A
, which implies that

c2 ≈ c′2. Therefore, c1 ≤A c2 ≈A c′2 ≤A c′3 and, as a result, b1 ≤B b3.

In order to define g : B → A, firstly notice that, as f is onto, given b ∈ B there
exists xb ∈ A with f(xb) = b. By hypothesis, p-min(UB[xb]∼=A

∩ S) �= ∅ for all
b ∈ B and, therefore, there exists a choice function. Any of these functions can
be used to define g, in such a manner that g(b) ∈ p-min(UB[xb]∼=A

∩ S).
To finish the proof, we have just to check that (f, g) : (A,≤A) � (B,≤B).
Assume f(a) ≤B b, then there exist a1 ∈ f−1(f(a)), a2 ∈ f−1(b), c1 ∈

p-min(UB[a1]∼=A
∩S) and c2 ∈ p-min(UB[a2]∼=A

∩S) with c1 ≤A c2; as [a1]∼=A
=

[a]∼=A , and c1 ∈ UB[a1], we also have a ≤A c1. By definition, we have that g(b) ∈



On the Existence of Isotone Galois Connections between Preorders 73

p-min(UB[x]∼=A
∩S) for x ∈ f−1(b), then [a2]∼=A

= [x]∼=A
, and p-min(UB[a2]∼=A

∩
S) = p-min(UB[x]∼=A

∩ S). Thus, c2 ≈ g(b) and, as a ≤A c1 ≤A c2, then
a ≤A g(b).

Assuming now that a ≤A g(b), let us prove f(a) ≤B b. For this, consider a ∈
f−1(f(a)) and x ∈ f−1(b) where x is the element in f−1(b) used in the definition
of g(b), and let us prove that p-min(UB[a]∼=A ∩ S) * p-min(UB[x]∼=A ∩ S). For
this, it is enough to see that for all z ∈ p-min(UB[a]∼=A

∩ S) the inequality
z ≤A g(b) holds, since obviously g(b) ∈ p-min(UB[x]∼=A

∩ S).
Fixed z ∈ p-min(UB[a]∼=A

∩ S), firstly consider that from g(b) ∈ S, using
the hypothesis on S, we have that g(b) ∈ p-max[g(b)]∼=A

, which means that
g(b) ∈ UB[g(b)]∼=A

as well; that is, g(b) ∈ (UB[g(b)]∼=A
∩ S). On the other

hand, from a ≤A g(b) and the second hypothesis we have p-min(UB[a]∼=A
∩

S) * p-min(UB[g(b)]∼=A
∩ S). By Lemma 1, we have that z ≤A t for all t ∈

p-min(UB[g(b)]∼=A ∩ S). Since, obviously t ≤A g(b), we obtain z ≤A g(b). �

The following lemma gets rid of the condition of f being surjective, and will
be used in the proof of the main theorem of this work, stated as Theorem 4.

Lemma 3. Consider (A,≤A) a preordered set, B a set, and f : A → B. Then,
there exist both a preorder ≤B and an adjunction (f, g) : (A,≤A) � (B,≤B) if
and only if there exist a preorder ≤f(A) and an adjunction (f, g′) : (A,≤A) �
(f(A),≤f(A)).

Proof. The direct implication is trivial, by considering ≤f(A) and g′ as the re-
strictions to f(A) of ≤B and g, respectively.

Conversely, consider the adjunction (f, g′) : (A,≤A) � (f(A),≤f(A)), fix m ∈
f(A), and choose ≤B to be its associated preorder, as introduced in Definition 6.
It is just a matter of straightforward computation to check that we have an
adjunction (f, g) : (A,≤A) � (B,≤B) where g is the extension of g′ defined as
follows:

g(x) =

{
g′(x) if x ∈ f(A)

g′(m) if x /∈ f(A)

�

The corresponding version of Theorem 3 is a twofold extension of the state-
ment of Lemma 2 in that, firstly, the mapping f need not be onto and, secondly,
gives a necessary and sufficient condition for the existence of adjunction.

Theorem 4. Given any preordered set A = (A,≤A) and a mapping f : A → B,
there exists a preorder B = (B,≤B) and g : B → A such that (f, g) : A � B if

and only if there exists S ⊆
⋃
a∈A

p-max[a]∼=A
such that

1. p-min(UB[a]∼=A
∩ S) �= ∅, for all a ∈ A.

2. If a1 ≤A a2, then p-min(UB[a1]∼=A
∩ S) * p-min(UB[a2]∼=A

∩ S).



74 F. Garćıa-Pardo et al.

Proof. Assume the existence of the preordering in B and the mapping g such
that (f, g) : A � B, and let us prove the three properties in the statement.

Define S = g(f(A)), consider g(f(a)) ∈ S, and let us show that g(f(a)) ∈
p-max[g(f(a))]∼=A

. Consider x ∈ [g(f(a))]∼=A
, by a straightforward induction

argument we obtain f(x) ≈B f(g(f(a))); now, using f(g(f(a))) ≈B f(a) we
have f(x) ≈B f(a). Since f(x) ≤B f(a), by using the adjunction, we obtain
x ≤A g(f(a)), hence g(f(a)) ∈ p-max[g(f(a))]∼=A

.
For property 1, we will check that g(f(a)) ∈ p-min(UB[a]∼=A

∩ S). To begin
with, by definition g(f(a)) ∈ S; then, we will prove that g(f(a)) ∈ UB[a]∼=A

.
Given x ∈ [a]∼=A

we have to prove x ≤A g(f(a)); the argument follows by
induction on the length of the chain connecting x and a

– For n = 0, we have a ≤A g(f(a)) by properties of adjunction.
– Assume the result is true for any chain of length n, and consider a ∼=A a2 ∼=A

. . . an ∼=A x, then, by induction hypothesis, an ≤A g(f(a)). Now, as an ∼=A x,
there are two possibilities:
• an ≈A x and, trivially x ≤A g(f(a)).
• f(an) = f(x), using the properties of adjunction twice we firstly obtain
f(x) ≤A f(g(f(a))) and, then, x ≤A g(f(g(f(a)))) ≈A g(f(a)).

We have just proved that g(f(a)) ∈ UB[a]∼=A
∩S, the remaining point is to prove

that it is a p-minimum element. Consider x ∈ UB[a]∼=A
∩ S; then z ≤A x for all

z ∈ [a]∼=A
and, by definition of S, x = g(f(a1)). Particularly, for z = a we have

that, a ≤A g(f(a1)), by properties of adjunction, g(f(a)) ≤A g(f(g(f(a1)))) ≈A

g(f(a1)) = x, i.e. g(f(a)) ≤A x.
For Property 2, assume a1 ≤A a2, by adjunction, f and g are isotone maps,

then g(f(a1)) ≤A g(f(a2)). From this, we directly obtain p-min(UB[a1]∼=A∩S) *
p-min(UB[a2]∼=A

∩ S) since we just proved above that for all a ∈ A g(f(a)) ∈
p-min(UB[a]∼=A

∩ S).
Conversely, if we assume properties 1 and 2, then by Lemma 2 and Lemma 3,

there exist a preorder B = (B,≤B) and a map g such that (f, g) : A � B. �

4 On the Uniqueness of Right Adjoints and the Inherited
Ordered Structure in the Codomains

The unicity of the right adjoint between posets is well-known. Specifically, given
two posets A = (A,≤A) and B = (B,≤B) and a mapping f : A → B, if there
exists g : B → A such that the pair (f, g) is an adjunction, then it is unique.

This behavior was further analyzed in [18], where the uniqueness property
was extended, in the case of surjective mappings, not only to the right adjoint,
but also to the ordering relation in the codomain: namely, there exists just one
partial ordering on the codomain B such that a right adjoint exists, that is, given
a surjective mapping f from a poset A to an unstructured set B, we introduced



On the Existence of Isotone Galois Connections between Preorders 75

necessary and sufficient conditions to ensure the existence of an ordering ≤B in
B and a mapping g : B → A such that (f, g) is an adjunction. Moreover, both
≤B and g are uniquely determined by ≤A and f .

Contrariwise to the partially ordered case, given two preordered sets A =
(A,≤A) and B = (B,≤B) and a mapping f : A → B, the unicity of the mapping
g : B → A satisfying (f, g) : A � B, when it exists, cannot be guaranteed. How-
ever, it is well known that if g1 and g2 are right adjoints, then g1(b) ≈A g2(b) for
all b ∈ B, and one usually says that the right adjoint is essentially unique. This
scenario is much more similar to what occurs in category theory: if one functor
F has two right adjoints G and G′, then G and G′ are naturally isomorphic.

However, and this is the interesting part, the unicity cannot be extended to
the case in which the codomain is unstructured. In this section we introduce
several examples supporting this statement.

Examples. Let A = {a, b, c, d}, B = {o, p, q} be two sets and f : A → B
defined as f(a) = f(c) = p, f(b) = o and f(d) = q. Consider (A,≤A) ordered by
a ≤A b ≤A c ≤A d. We have [a]∼=A

= [c]∼=A
= {a, c}, [b]∼=A

= {b} and [d]∼=A
= {d}

and
⋃

x∈A p-max[x]∼=A
= {b, c, d}.

a

b

c

d

o

p

q

(A,≤A) B

Notice that f is surjective, and does not fulfill the conditions in Theorem 3,
specifically the second one. Thus, there does not exist any partial ordering re-
lation in B for which some g : B → A would be a right adjoint to f . Notice,
however, that if we relax the requirement to be an adjunction between preordered
sets, then there exist a preordering (actually more than one) which generates a
right adjoint to f . Some examples are worked out below to illustrate the previous
situation.

Example 1. Consider B = (B,≤B) preordered with o ≈B p, o ≤B q and p ≤B q,
and the mapping g : B → A defined as g(o) = g(p) = c and g(q) = d.



76 F. Garćıa-Pardo et al.

a

b

c

d

q

o≈ p

(A,≤A) (B,≤B)

To begin with, we have that S = gf(A) = {c, d} is a subset of
⋃
x∈A

p-max[x]∼=A

and, then, check the two conditions in Theorem 4.
It is not difficult to check that p-min(UB[x]∼=A ∩ S) �= ∅ for all x ∈ A.

Specifically, we have

p-min(UB[a]∼=A
∩ S) = p-min(UB[b]∼=A

∩ S) = p-min(UB[c]∼=A
∩ S) = {c, d}

and

p-min(UB[d]∼=A
∩ S) = {d}

Finally, with the previous computation, it is straightforward to check that if
a1 ≤A a2 then p-min(UB[a1]∼=A

∩ S) * p-min(UB[a2]∼=A
∩ S).

As a result, the pair (f, g) is an adjunction between A and B. �

Example 2. Now, consider B′ = (B,≤′
B) preordered by o ≈′

B p and p ≈′
B q, and

the mapping g′ : B → A defined as g′(o) = g′(p) = g′(q) = d.

a

b

c

d

o≈ p≈ q(A,≤A) (B,≤′
B)

Again we will check the conditions in Theorem 4.
In this case, S = g′f(A) = {d} which is a subset of

⋃
x∈A p-max[x]∼=A

=
{b, c, d}. The first condition holds since p-min(UB[a]∼=A

∩S) = p-min(UB[b]∼=A
∩

S) = p-min(UB[c]∼=A ∩S) = p-min(UB[d]∼=A ∩S) = {d}. As all the previous sets
coincide, the second condition follows trivially.

As a result, the pair (f, g′) is an adjunction between the preorders A and B′.�



On the Existence of Isotone Galois Connections between Preorders 77

5 Conclusions

Given a mapping f : A → B from a preordered set A into an unstructured set B,
we have obtained necessary and sufficient conditions which allow us for defining
a suitable preordering relation on B such that there exists mapping g : B → A
such that the pair of mappings (f, g) forms an adjunction between preordered
sets.

Whereas the results in the partially ordered case followed more or less the
intuition of what should be expected (Theorem 3), the description of the condi-
tions on the preordered case is much more involved (Theorem 4). A first piece
of future work should be to consider alternative approaches to this problem in
order to obtain, if possible, a simpler alternative characterization.

Concerning potential applications of the present work, let us recall that the
Galois connections used in FCA are given between the Boole algebras of the
powersets of objects and the powerset of attributes. There exist several gen-
eralizations in FCA which weaken the structure on which a Galois connection
is defined: for instance, in fuzzy FCA the residuated structure of the powerset
of fuzzy sets is used. In [16], a general approach called pattern structures was
proposed, which allows for extending FCA techniques to arbitrary partially or-
dered data descriptions. Using pattern structures, one can compute taxonomies,
ontologies, implications, implication bases, association rules, concept-based (or
JSM-) hypotheses in the same way it is done with standard concept lattices [26].

In this generalization, instead of associating each object with the set of at-
tributes it satisfies, a pattern is given, which can be either a graph, or a sequence
or an interval, and the semantics of these patterns can be different in each case.
For instance, [15] represents scenarios of conflict between human agents, or [22]
use gene expression data. These sets of patterns are provided with a partial
ordering relation such as “being a subgraph of ” or “being a subchain of ”.

The results obtained in this work are aimed at not only extending these results
to sets in which there is a preordering previously defined but, more specifically,
to the problem of knowledge discovery on the existing structure between the
patterns. The scenario in which this work could be applied is as follows: we
start from a set of objects each one related to the set of patterns it satisfies,
ignoring whether there exists some (pre-)ordering relation between patterns, but
assuming that the semantics of the problem guarantees the existence of a Galois
connection between them, the goal would be to obtain as much information as
possible about the relation existing in the set of patterns.

To finish with the future work, it is remarkable the number of papers on fuzzy
Galois connections have been written since its introduction in [2]; consider for
instance [4, 14, 19, 25] for some recent ones. As future work in the short term,
we would like to extend the results in this work to the fuzzy case, for instance
to the framework of fuzzy posets and fuzzy preorders, and study the potential
relationship to other approaches based on generalized structures.



78 F. Garćıa-Pardo et al.

References

1. Antoni, L., Krajči, S., Kŕıdlo, O., Macek, B., Pisková, L.: On heterogeneous formal
contexts. Fuzzy Sets and Systems 234, 22–33 (2014)

2. Bělohlávek, R.: Fuzzy Galois connections. Mathematical Logic Quarterly 45(4),
497–504 (1999)

3. Bělohlávek, R., Konečný, J.: Concept lattices of isotone vs. antitone Galois con-
nections in graded setting: Mutual reducibility revisited. Information Sciences 199,
133–137 (2012)

4. Bělohlávek, R., Osička, P.: Triadic fuzzy Galois connections as ordinary connec-
tions. In: IEEE Intl Conf. on Fuzzy Systems (2012)

5. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Springer (2005)
6. Butka, P., Pócs, J., Pócsová, J.: On equivalence of conceptual scaling and general-

ized one-sided concept lattices. Information Sciences 259, 57–70 (2014)
7. Castellini, G., Koslowski, J., Strecker, G.: Closure operators and polarities. Annals

of the New York Academy of Sciences 704, 38–52 (1993)
8. Cohen, D.A., Creed, P., Jeavons, P.G., Živný, S.: An algebraic theory of complexity

for valued constraints: Establishing a Galois connection. In: Murlak, F., Sankowski,
P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 231–242. Springer, Heidelberg (2011)

9. Denecke, K., Erné, M., Wismath, S.L.: Galois connections and applications,
vol. 565. Springer (2004)

10. Dı́az, J.C., Medina, J.: Multi-adjoint relation equations: Definition, properties and
solutions using concept lattices. Information Sciences 253, 100–109 (2013)

11. Dubois, D., Prade, H.: Possibility theory and formal concept analysis: Character-
izing independent sub-contexts. Fuzzy Sets and Systems 196, 4–16 (2012)

12. Dzik, W., Järvinen, J., Kondo, M.: Intuitionistic propositional logic with Galois
connections. Logic Journal of the IGPL 18(6), 837–858 (2010)

13. Dzik, W., Järvinen, J., Kondo, M.: Representing expansions of bounded distribu-
tive lattices with Galois connections in terms of rough sets. International Journal
of Approximate Reasoning 55(1), 427–435 (2014)

14. Frascella, A.: Fuzzy Galois connections under weak conditions. Fuzzy Sets and
Systems 172(1), 33–50 (2011)

15. Galitsky, B.A., Kovalerchuk, B., Kuznetsov, S.O.: Learning Common Outcomes of
Communicative Actions Represented by Labeled Graphs. In: Priss, U., Polovina,
S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 387–400. Springer,
Heidelberg (2007)

16. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142.
Springer, Heidelberg (2001)

17. Garćıa-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M.: On Galois Con-
nections and Soft Computing. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN
2013, Part II. LNCS, vol. 7903, pp. 224–235. Springer, Heidelberg (2013)

18. Garćıa-Pardo, F., Cabrera, I.P., Cordero, P., Ojeda-Aciego, M., Rodŕıguez, F.J.:
Generating isotone Galois connections on an unstructured codomain. In: Proc.
of Information Processing and Management of Uncertainty in Knowledge-based
Systems, IPMU (to appear, 2014)

19. Guo, L., Zhang, G.-Q., Li, Q.: Fuzzy closure systems on L-ordered sets. Mathe-
matical Logic Quarterly 57(3), 281–291 (2011)

20. Järvinen, J.: Pawlak’s information systems in terms of Galois connections and
functional dependencies. Fundamenta Informaticae 75, 315–330 (2007)



On the Existence of Isotone Galois Connections between Preorders 79

21. Järvinen, J., Kondo, M., Kortelainen, J.: Logics from Galois connections. Int. J.
Approx. Reasoning 49(3), 595–606 (2008)

22. Kaytoue,M., Kuznetsov, S.O., Napoli, A.,Duplessis, S.:Mining gene expression data
with pattern structures in formal concept analysis. Information Sciences 181(10),
1989–2001 (2011)

23. Kan, D.M.: Adjoint functors. Transactions of the American Mathematical Soci-
ety 87(2), 294–329 (1958)

24. Kerkhoff, S.: A general Galois theory for operations and relations in arbitrary
categories. Algebra Universalis 68(3), 325–352 (2012)

25. Konecny, J.: Isotone fuzzy Galois connections with hedges. Information Sci-
ences 181(10), 1804–1817 (2011)

26. Kuznetsov, S.O.: Fitting Pattern Structures to Knowledge Discovery in Big Data.
In: Cellier, P., Distel, F., Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp.
254–266. Springer, Heidelberg (2013)

27. Medina, J.: Multi-adjoint property-oriented and object-oriented concept lattices.
Information Sciences 190, 95–106 (2012)

28. Melton, A., Schmidt, D.A., Strecker, G.E.: Galois connections and computer science
applications. In: Poigné, A., Pitt, D.H., Rydeheard, D.E., Abramsky, S. (eds.) Cat-
egory Theory and Computer Programming. LNCS, vol. 240, pp. 299–312. Springer,
Heidelberg (1986)

29. Mu, S.-C., Oliveira, J.N.: Programming from Galois connections. The Journal of
Logic and Algebraic Programming 81(6), 680–704 (2012)

30. Ore, Ø.: Galois connections. Transactions of the American Mathematical Soci-
ety 55, 493–513 (1944)

31. Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Fuzzy and rough formal
concept analysis: a survey. Intl Journal of General Systems 43(2), 105–134 (2014)

32. Restrepo, M., Cornelis, C., Gómez, J.: Duality, conjugacy and adjointness of ap-
proximation operators in covering-based rough sets. Intl. Journal of Approximate
Reasoning 55(1), 469–485 (2014)

33. Valverde-Albacete, F.J., Peláez-Moreno, C.: Extending conceptualisation modes for
generalised formal concept analysis. Information Sciences 181, 1888–1909 (2011)

34. Wolski, M.: Galois connections and data analysis. Fundamenta Informaticae 60,
401–415 (2004)



Directed Tree Decompositions

Sebastian Kerkhoff and Friedrich Martin Schneider

Technische Universität Dresden, 01062 Dresden, Germany
{Sebastian.kerkhoff,martin.schneider}@tu-dresden.de

Abstract. In the problem session of the ICFCA 2006, Sándor Rad-
eleczki asked for the meaning of the smallest integer k such that a given
poset can be decomposed as the union of k directed trees. The prob-
lem also asks for the connection of this number to the order dimension.
Since it was left open what kind of decomposition might be used, there is
more than one reading of this problem. In the paper, we discuss different
versions and give some answers to this open problem.

Keywords: directed tree, poset decomposition, order dimension.

1 Introduction

Motivated by research surrounding CD-bases [CHS09, HR12], Sándor Radeleczki
posed the following open problem at the ICFCA 2006 in Dresden1:

A finite poset (P,≤) is a directed tree-order if it has a greatest element
and for all x ∈ P , ↑x is a chain. Each finite poset can be decomposed
as unions of tree-orders. Let k be the minimal number. What is the
mean[ing] of k? What is the relation to the order dimension of (P,≤)?

The term “decomposed as unions” may be interpreted in different ways. For
instance, we may or may not require that the order relation of each of the
directed tree-orders (we will simply call them directed trees from now on) is the
restriction of ≤ to the carrier set of the tree (instead of just having to be a
subset of ≤). Also, it is not specified whether the transitive closure of the union
of the trees’ order relations has to be the entire relation ≤ or just a subset. This
leaves us with (at least) four versions of Radeleczki’s problem. We decided to
write this paper about all four of them. That is, we study the numbers defined
in the next four definitions, discuss their interconnections and their relation to
the order dimension.

Definition 1. For a poset P = (P,≤), denote by κ1(P) the smallest integer k

such that there exist k directed trees (T1,≤1), . . . , (Tk,≤k) with
⋃k

i=1 Ti = P and
≤i being contained in ≤ for all i ∈ {1, . . . , k}.

1 http://www.upriss.org.uk/fca/problems06.pdf

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 80–95, 2014.
c© Springer International Publishing Switzerland 2014

http://www.upriss.org.uk/fca/problems06.pdf


Directed Tree Decompositions 81

Definition 2. For a poset P = (P,≤), denote by κ2(P) the smallest integer k
such that there exist k directed trees (T1,≤1), . . . , (Tk,≤k) such that ≤ is the

transitive closure of
⋃k

i=1 ≤i.

Note that the condition in Definition 2 implies
⋃l

i=1 Ti = P , so we have
κ2(P) ≥ κ1(P). Before we continue, let us clarify that we call a posetQ = (Q,≤Q)
a sub-poset of P = (P,≤P) if Q is a relational substructure of P, that is, we have
Q ⊆ P , and ≤Q=≤P ∩Q2. In this case, we also say that Q induces Q.

Definition 3. For a poset P = (P,≤), denote by κ3(P) the smallest integer k

such that there exist k directed trees (T1,≤1), . . . , (Tk,≤k) with
⋃l

i=1 Ti = P and
(Ti,≤i) being a sub-poset of P for all i ∈ {1, . . . , k}.
Definition 4. For a poset P = (P,≤), denote by κ4(P) the smallest integer k
such that there exist k directed trees (T1,≤1), . . . , (Tk,≤k) with (Ti,≤i) being a

sub-poset of P for all i ∈ {1, . . . , k} and ≤ being the transitive closure of
⋃k

i=1 ≤i.

The paper is structured as follows. After the preliminaries and some basic
examples for the purpose of illustration, the heart of the paper are Sections 4–7,
where we will discuss each version of the problem. That is, for i ∈ {1, . . . , 4},
Section i+3 will discuss the meaning of κi(P), elaborate on some of its properties,
describe its connection to the other three numbers, and study its relation to the
order dimension. The final section summarizes the results.

2 Preliminaries

In this section, we set some notation and introduce the order dimension in the
amount of detail that we need for the results of our study. Throughout the
paper, we denote by N the set of natural numbers not including zero, that is,
N = {1, 2, . . .}. Moreover, all posets in this paper are assumed to be finite, and
if we say that a poset is bounded, then we mean that it has a greatest and a
least element.

Definition 5. The order dimension of a poset P = (P,≤), denoted by dimP, is
the least integer t for which there exists a family of linear orders <1, . . . , <t on
P such that ≤ is the intersection

⋂t
i=1 <i.

The choice of the term “dimension” is justified, because we have dimP = t
if and only if t is the least integer such that P can be embedded into the direct
product of t chains. In particular, a directed tree has order dimension at most 2.
For a detailed study of the order dimension, we refer to the monograph [Tro92]
and the references therein.

Example 6. For k ∈ N, consider the 2k-element poset Hk = (Hk,≤Hk
) defined by

setting Hk := {a1, . . . , ak, b1, . . . , bk} and defining ≤Hk
to be the reflexive closure

of {(ai, bj) | i �= j}.

a1 . . . ak

b1 . . . bk



82 S. Kerkhoff and F.M. Schneider

It is the standard example of the poset with order dimension k.

The example shows that dimP is not bounded by the height of P, which we
denote by heightP and define as the number of points in a maximum chain. It is,
however, known to be bounded by the width of P, which we denote by widthP
and define as the number of points in a maximum antichain.

Definition 7. Let P = (P,≤) be a poset and Q ⊆ P . We define the poset P−Q
as the sub-poset of P that is induced by P \Q.

It is well-known that the order dimension is in a reasonable sense continuous.
For instance, it was shown in [Hir55] that removing a single point from an at least
two-element poset decreases the order dimension by at most 1. The following
theorem can also be found in [Hir55] and is in a similar spirit:

Theorem 8. Let P = (P,≤) be a poset and let C ⊆ P be a chain with P \C �= ∅.
Then dimP ≤ 2 + dim (P− C).

Note that an analogon of this theorem cannot hold for any of the numbers
κ1(P), . . . , κ4(P). For instance if P is the poset obtained by adding a greatest
element 1P to a k-element antichain, then we have κi(P) = 1, but κi(P−{1P}) = k
for all i ∈ {1, . . . , 4}.

Definition 9. Let P and Q be posets with disjoint carrier sets such that P has a
greatest element 1P and Q has a least element 0Q. We denote by P⊕Q the poset
on P ∪Q whose order relation is the transitive closure of ≤P ∪ ≤Q ∪{(1P, 0Q)}.

Observe that we have dim (P ⊕ Q) = max{dimP, dimQ}. The following dia-
gram illustrates the construction of P⊕Q:

0Q
1P

Q

P

Definition 10. For an order relation ≤, we define the relation � by setting
x� y if and only if y is an upper neighbour of x with respect to ≤.

3 Examples

Example 11. For k ≥ 2, let Mk = (Mk,≤Mk
) denote the (k + 2)-element poset

with Mk := {0, a1, . . . , ak, 1} and ≤Mk
being the reflexive closure of the binary

relation ({0} × Mk) ∪ (Mk × {1}). That is, (Mk,≤) is the poset given by the
following diagram:



Directed Tree Decompositions 83

1

0

a1 a2 . . . ak

We have

– κ1(Mk) = 1, where the single directed tree that yields the decomposition
may for instance be given by (T1,≤1) with T1 := Mk and ≤1 being the
reflexive-transitive closure of {(0, a1), (a1, 1), (a2, 1), . . . , (ak, 1)};

– κ2(Mk) = k, because we can clearly decompose Mk into k chains but any two
of the pairs (0, a1), . . . , (0, ak) have to be in the order relation of a different
directed tree;

– κ3(Mk) = 2, where the two directed trees in the decomposition may for
instance be given by the two sub-posets induced by {a1, . . . , ak, 1} and {0};

– κ4(Mk) = k for the same reason as in the second case.

Example 12. For k ∈ N, consider the 2k-element poset Lk = (Lk,≤Lk
) defined

by setting Lk := {1, . . . , k} × {a, b} and

(x1, x2) ≤ (y1, y2) :<=> x1 ≤ y1 ∧ (x2 = y2 ∨ y2 = b).

That is, (Lk,≤Lk
) is the poset given by the following diagram:

(k, a)

(k, b)

(k − 1, a)

(k − 1, b)
...

...

(1, a)

(2, a) (1, b)

(2, b)

We have

– κ1(Lk) = 1, where the single directed tree that yields the decomposition is
given by (T1,≤1) with T1 = Lk and

(x1, x2) ≤1 (y1, y2) :⇐⇒ (x1 ≤ y1 ∧ x2 = y2) ∨ (y1, y2) = (k, b);

– κ2(Lk) = 2, where the two directed trees may for instance be given by the
chain (T1,≤1) induced by T1 := {1, . . . , k}×{a} and (T2,≤2) with T2 := Lk

and

(x1, x2) ≤2 (y1, y2) :⇐⇒ (x1 ≤ y1 ∧ y2 = b) ∨ (x1, x2) = (y1, y2);

– κ3(Lk) = 2, where the two directed trees in the decomposition may for
instance be given by the two chains induced by T1 = {1, . . . , k} × {a} and
T2 = {1, . . . , k} × {b};



84 S. Kerkhoff and F.M. Schneider

– κ4(Lk) = k, because any two of the k pairs ((1, a), (1, b)),. . .,((k, a), (k, b))
must belong to a different directed tree in the decomposition and we can
find a decomposition into k directed trees by defining (T1,≤1), . . . , (Tk,≤k)
to be the induced chains with Ti := {(1, a), . . . , (i, a), (i, b), . . . , (k, b)} for
i ∈ {1, . . . , k}.

4 First Version: κ1

First, let us note the obvious fact that we have κ1(P) ≤ κ2(P), κ3(P), κ4(P) for
each poset P. Moreover, we will see in this section that κ1(P) is not a very
interesting quantity. In fact, it is simply the number of maximal elements in P.

Proposition 13. Let P be a poset. Then κ1(P) is the number of maximal ele-
ments in P.

Proof. It is obvious that κ1(P) is at least the number of maximal elements of
P. Since P is the union of the downsets of all maximal elements, the other
direction follows if we can show that each of these downsets can be covered with
a single directed tree. To this end, let x be a maximal element. Doing essentially
the same thing as in the standard proof of the basic fact that every maximal
(graph theoretic) tree in a connected graph contains all vertices of that graph,
we construct a series of directed trees (T0,≤0), (T1,≤1), (T2,≤2), . . . recursively
as follows:

Recursion start: Set T0 = {x}, ≤0:= {(x, x)}.
Recursive step: Take some y ∈ Ti that has a nonempty set of those lower neigh-

bours y1, . . . , yk in P which are not already in Ti. Set Ti+1 := Ti ∪ {y1, . . . , yk}
and define ≤i as the reflexive-transitive closure of ≤i ∪{(y1, y), . . . , (yk, y)}.

Since P is finite, there is some k ∈ N such that the recursion stops, that
is, we have (Tk,≤k) = (Tk+1,≤k+1). Clearly, Tk contains every element of the
downset of x since there exists a path from x to every element in its downset.
By construction, it is obvious that each (Ti,≤i) is a directed tree and that ≤i is
a subset of ≤. This finishes the proof. ��

Of course, this also means that κ1(P) has virtually no connection to the order
dimension of P.

5 Second Version: κ2

In this section, we discuss the second version of the problem. We give an easy
characterization of the number κ2(P) for the case that P has a greatest element,
and we provide a tight interval for the case that P has multiple maximal elements.
Besides showing some other properties of κ2(P) on the way, we also prove that
κ2(P) is bounded by the width of P and that it bears essentially no relation to
the order dimension of P.

Let us start with the following easy observation (recall that, for a given order
relation ≤, we write x� y if y is an upper neighbour of x, see Definition 10):



Directed Tree Decompositions 85

Lemma 14. Let P = (P,≤) be a poset. Then

κ2(P) ≥ max
x∈P

|{y ∈ P | x� y}|.

In other words, the maximum number of upper neighbours that an element x ∈ P
can have is a lower bound on κ2(P).

Proof. Assume that some x ∈ P has k upper neighbours y1, . . . , yk and that
(T1,≤1), . . . , (Tl,≤l) is a directed tree decomposition of (P,≤) in the sense of
κ2. For i ∈ {1, . . . , k}, each pair (x, yi) must be in at least one of the relations
≤1, . . . ,≤l. However, for i �= j, the tuples (x, yi) and (x, yj) cannot be in the
order relation of the same directed tree. Hence, k ≥ l and thus k ≥ κ2(P). ��

Proposition 15. Let P = (P,≤) be a poset with a greatest element. Then

κ2(P) = max
x∈P

|{y ∈ P | x� y}|

Proof. We need to show “≤”. Set k := maxx∈P |{y ∈ P | x � y}|. We apply
the construction from Proposition 13 and obtain a directed tree (P,≤1) with
≤1 being contained in ≤. Let x1, . . . , xl ∈ P be all elements of P that have
more than one upper neighbour with respect to ≤. By construction of ≤1, there
exists exactly one yi ∈ P for each i ∈ {1, . . . , l} such that xi �1 yi. Define � to
be the reflexive-transitive closure of � \ {(x1, y1), . . . , (xk, yk)} on P . Note that
(P,�) has the same greatest element as P. We repeat the entire procedure, that
is, we apply Proposition 13 to (P,�) to obtain a directed tree (P,≤2) with ≤2

being contained in � and each x ∈ P having at most k − 1 upper neighbours
with respect to �. Applying this technique exactly k times gives us a series of
directed trees (P,≤1), . . . , (P,≤k). By construction, each (x, y) ∈ � is contained
in at least one of the order relations. Hence, the trees cover P in the sense of
κ2. ��

If P contains more than one maximal element, then κ2(P) will also be influ-
enced by how the downsets of the maximal elements intersect. Indeed, in this
case, we can easily prove the following Proposition:

Proposition 16. Let P be a poset with precisely l maximal elements, and let
(P1,≤1),. . .,(Pl,≤l) be the downsets induced by these elements. Set

ki := max
x∈Pi

|{y ∈ Pi | x�i y}|

for all i ∈ {1, . . . , l}. Then, we have

max
i∈{1,...,l}

ki ≤ κ2(P) ≤
l∑

i=1

ki,

where both bounds are tight in the sense that equality occurs for some posets P
with l maximal elements.



86 S. Kerkhoff and F.M. Schneider

Proof. The inequality is obvious by Lemma 14 and Proposition 15. Equality on
the left hand side of the inequality occurs, for instance, if P is chosen to be
Mk ⊕Ml − {1Ml

}. Equality on the right hand side of the inequality occurs, for
instance, if the induced downsets are disjoint. ��

Let us now show that there is another upper bound on κ2(P) that might be
of combinatorial interest.

Proposition 17. For each poset P, we have widthP ≥ κ2(P).

Proof. Let P = (P,≤) and set k := widthP. By Dilworth’s Theorem [Dil50],
this means that the poset P can be covered (in terms of points) by k chains
C1 = (C1,≤C1), . . . ,Ck = (Ck,≤Ck

). Set M := � \
⋃

i ≤Ci . For each
s ∈ {1, . . . , k}, we define a poset Ts = (Ts,≤s) by setting Ts := Cs ∪ {x |
∃y ∈ Cs : (x, y) ∈ M} and defining ≤s to be the reflexive-transitive closure
of ≤Cs ∪{(x, y) ∈ M | y ∈ Cs}. Note that this makes Ts a directed tree: the
greatest element is the maximum from Cs and each upset is a chain, because
our construction ensures that, for each x ∈ Ts, there is at most one y ∈ Ts with
(x, y) ∈ �s. What is more, for each (x, y) ∈ M , there exists some j ∈ {1, . . . , k}
such that y ∈ Cj and hence (x, y) ∈≤j . Therefore, ≤ is the transitive closure of⋃k

i=1 ≤i. Thus, T1, . . . ,Tk decompose P is the sense of κ2. ��

It is easy to see that there is no such result for the height of P, even if P is
assumed to be bounded. Indeed, there exist posets P1,P2 such that κ2(P1) >
heightP1 and κ2(P2) < heightP2 (take, for instance P1 := Mk for any k ≥ 3 and
define P2 to be any chain with at least two elements).

Let us now turn our attention to the relation between κ2(P) and the order
dimension of P. As it turns out, they have virtually no connection, even for
bounded posets (except for the obvious cases in which one of the numbers is 1).

In order to show this, we will need the following lemma.

Lemma 18. Let P = (P,≤P) be a poset. Then there exists a poset Q = (Q,≤Q)
and some embedding ϕ : P → Q such that

max
x∈Q

|{y ∈ Q | x�Q y}| ≤ 2.

Furthermore, if P is bounded, then Q may be chosen to be bounded as well.

Proof. The proof proceeds by induction on the number |P |. Of course, the state-
ment is obvious for |P | ≤ 2. Let us elaborate the inductive step. Suppose the
claim to be true for all posets of cardinality less than |P |. Choose a minimal
element p in P, and define P′ to be the sub-poset of P that is induced by
P ′ := P \ {p}. By induction hypothesis, there is a poset Q′ = (Q′,≤Q′) and
some embedding ϕ′ : P′ → Q′ such that maxx∈Q′ |{y ∈ Q′ | x �Q′ y}| ≤ 2.
Moreover, let N denote the set of all upper neighbours of p in P. Choose a fi-
nite sequence π1, . . . , πn of partitions of N such that πn = {N} and, for every
i ∈ {1, . . . , n− 1}, the following three conditions are met:



Directed Tree Decompositions 87

(1) πi+1 �= πi,
(2) πi+1 coarsens πi, i.e., ∀M ∈ πi ∃M ′ ∈ πi+1 :M ⊆ M ′,
(2) each element of πi+1 is the union of at most two members of πi.

Let us define J :=
⋃
{{i} × πi | i ∈ {1, . . . , n}}. Choose a family (x(i,M))(i,M)∈J

of pairwise distinct elements not occurring in Q′. Define a poset Q := (Q,≤Q),
where Q := Q′ ∪ {x(i,M) | (i,M) ∈ J} and ≤Q is defined to be the reflexive-
transitive closure of

≤Q′ ∪ {(x(i+1,M ′), x(i,M)) | i ∈ {1, . . . , n− 1},M ∈ πi,M
′ ∈ πi+1,M ⊆ M ′}

∪ {(x(1,M), y) | M ∈ π1, y ∈ M}.

Evidently, Q has got the desired property, i.e., maxx∈Q |{y ∈ Q | x �Q y}| ≤ 2.
Moreover, we obtain an embedding ϕ : P → Q by defining ϕ(p) := x(n,N) and
ϕ(z) := ϕ′(z) for all z ∈ P ′. This proves the claim for P. Finally, we observe
that, if P is bounded, then ϕ[P ] is contained in some interval of Q, which clearly
inherits the desired property from Q. ��
Proposition 19. (i) For all k ≥ 2 and l ≥ k, there exists a bounded poset P

such that dimP = k and κ2(P) ≥ l.
(ii) For all k ≥ 2 and l ≥ k, there exists a bounded poset P such that κ2(P) = k

and dimP ≥ l.

Proof. (i) Let k ≥ 2 and l ≥ k. Let Q be the k-dimensional cube and let Ml =
(Ml,≤Ml

) be defined as in Example 11. Set P := Ml ⊕ Q (see Definition 9). We
have dimP = max{dimMl, dimQ} = max{2, k} = k and, by Proposition 15,
κ2(P) = max{l, k} = l.

(ii) Let k ≥ 2 and l ≥ k. By Lemma 18, it is possible to construct a bounded
poset Q = (Q,≤Q) such that the l-dimensional cube can be embedded into Q
and each element x ∈ Q has at most 2 upper neighbours. Define P := Mk ⊕ Q.
By Proposition 15 and k ≥ 2, we have κ2(P) = k, and since the l-dimensional
cube can be embedded into P, we have dimP ≥ l. ��

It remains the question of how the value κ2(P) relates to κ1(P), κ3(P), κ4(P).
For any poset P, it is of course obvious that we have κ1(P) ≤ κ2(P), and it is
an easy consequence of Proposition 13 and Proposition 15 that the difference
between κ2(P) and κ1(P) can be arbitrarily large. Indeed, for all k ∈ N and
l ≥ k, there exists some poset P such that κ1(P) = k and κ2(P) ≥ l. However,
the connection between κ2(P) and κ3(P) is perhaps not entirely obvious, and
while we of course know κ2(P) ≤ κ4(P), one may still ask whether the difference
between κ2(P) and κ4(P) can be arbitrarily high. Among other things, we will
discuss these questions in the next sections.

6 Third Version: κ3

In this section, we will discuss the meaning of the value κ3(P). Among other
things, we will elaborate its relation to the other three quantities, show its con-
nection to the width and the height of P, and show that it has a slight yet
nontrivial connection to the order dimension of P.



88 S. Kerkhoff and F.M. Schneider

In the introductory examples from Section 3, we have only seen posets P with
κ3(P) = 2. Hence, let us start this section by quickly showing that there is
indeed, for each k ∈ N, some nontrivial example of a (bounded) poset P with
κ3(P) = k.

Lemma 20. For each k ∈ N, there exists a bounded poset P with κ3(P) = k.

Proof. Let k ∈ N. We define the (k2 − k + 2)-element poset Dk = (Dk,≤Dk
) by

setting Dk := {0Dk
, 1Dk

}∪ ({1, . . . , k−1}×{1, . . . , k}) and x ≤Dk
y if and only if

x = 0Dk
or y = 1Dk

or there exist x1, y1 ∈ {1, . . . , k − 1} and x2, y2 ∈ {1, . . . , k}
such that x = (x1, x2), y = (y1, y2) and x1 ≤ y1.

1Dk

0Dk

(1, 1) . . . (1, k)

(2, 1) . . . (2, k)

(k − 2, 1) . . . (k − 2, k)

(k − 1, 1) . . . (k − 1, k)

...
...

...

It is obvious that we have κ3(Dk) ≤ k. To prove κ3(Dk) ≥ k, assume for contra-
diction that the directed trees T1 = (T1,≤1), . . . ,Tk−1 = (Tk−1,≤k−1) decom-
pose Dk in the sense of κ3. Evidently, there must exist some i ∈ {1, . . . , k − 1},
such that Ti contains at least two points from {k− 1}×{1, . . . , k}. Without loss
of generality, assume i = k − 1. Since Tk−1 is a sub-poset of Dk, we have

Tk−1 ∩ ({0Dk
} ∪ ({1, . . . , k − 2} × {1, . . . , k})) = ∅.

Thus,
{0Dk

} ∪ ({1, . . . , k − 2} × {1, . . . , k}) ⊆ T1 ∪ . . . ∪ Tk−2.

Proceeding similarly, there must be some i ∈ {1, . . . , k−2}, such that Ti contains
at least two points from {k − 2} × {1, . . . , k}. Assuming this set is Tk−2 and
applying the same arguments as above, we may conclude

{0Dk
} ∪ ({1, . . . , k − 3} × {1, . . . , k}) ⊆ T1 ∪ . . . ∪ Tk−3.

Using this argument k−2 times, we finally obtain {0Dk
}∪({1}×{1, . . . , k}) ⊆ T1,

which clearly contradicts that T1 is a directed tree and a sub-poset of Dk. ��

In Section 5, we have seen that, for any bounded poset P, the integer κ2(P)
is bounded by the width of P but not by the height. Let us now show that, for
κ3(P), both claims are true.

Proposition 21. For any poset P = (P,≤) with a greatest element and |P | ≥ 2,
we have κ3(P) ≤ min{widthP, heightP− 1}.



Directed Tree Decompositions 89

Proof. Let 1P be the greatest element of P. If we have k = widthP, then we
can cover P with k chains by Dilworth’s Theorem [Dil50]. Since every chain
necessarily forms a sub-poset of P, this means κ3(P) ≤ k. If we have k = heightP
(note that this implies k ≥ 2 since P has a maximum and at least two elements),
then we can cover P with k antichains A1, . . . , Ak by Mirsky’s Theorem [Mir71].
One of these antichains must be {1P}, say Ak. Now, define the k − 1 directed
trees T1, . . . ,Tk−1 by setting Ti to be the sub-poset of P that is induced by
Ai ∪ {1P}. Since {1P} ∪ A1 ∪ . . . ∪ Ak−1 = P , this proves κ3(P) ≤ k − 1. ��

While the argument for κ3(P) ≤ widthP holds for any poset, the inequality
κ3(P) ≤ heightP−1 can only be ensured if P has a greatest element. In particular,
requiring a least element is not enough (as a counterexample, take for instance
an antichain with at least two elements and add a least element).

Let us now discuss the connection of the integers κ3(P) and κ2(P) for a given
poset P. It will turn out that these numbers say practically nothing about each
other (except the obvious equivalence between κ2(P) = 1 and κ3(P) = 1). We
start with a small lemma that we will need to show the desired result.

Lemma 22. Let P = (P,≤P) be a sub-poset of Q = (Q,≤Q) and assume that P
has a greatest element. Then we have κ3(Q) ≥ κ3(P).

Proof. Denote the greatest element of P by 1P and let (T1,≤1), . . . , (Tk,≤k) be
a directed tree decomposition of Q in the sense of κ3. For each i ∈ {1, . . . , k},
let (Si,≤Si) be the sub-poset of P with Si := (Ti ∩ P ) ∪ {1P}. We are done if
we can show that each (Si,≤Si) is a directed tree. By definition, each Si has a
greatest element. Take some x ∈ Si and consider its upset in Si. Assuming that
it is not a chain gives us x1, x2 ∈ Si with x1, x2 ≥Si x and x1 and x2 being
incomparable. This implies 1P /∈ {x, x1, x2}. Thus, {x, x1, x2} ⊆ Ti, which yields
a contradiction to (Ti,≤i) being a directed tree. ��

Proposition 23. (i) For all k ≥ 2 and l ≥ k, there exists a bounded poset P
such that κ2(P) = k and κ3(P) ≥ l.

(ii) For all k ≥ 2 and l ≥ k, there exists a bounded poset P such that κ3(P) = k
and κ2(P) ≥ l.

Proof. (i) Let k ≥ 2 and l ≥ k. Let us show that, given a bounded poset P
with κ2(P) ≥ 2, we can construct a bounded poset P′ with κ2(P′) = κ2(P) and
κ3(P′) > κ3(P). Define P′ as indicated by the following diagram.

PP

Written in detail, we define P′ = (P ′,≤′) by setting P ′ := {0P′, 1P′}∪({a, b}×P ),
and

x ≤′ y :⇐⇒ x = 0P′ ∨ y = 1P′ ∨ ∃i ∈ {a, b}, x2 ≤ y2 : x = (i, x2), y = (i, y2).



90 S. Kerkhoff and F.M. Schneider

Evidently, P′ is bounded. By Proposition 15 and κ2(P) ≥ 2, we can infer
κ2(P′) = κ2(P). Assume that we have a decomposition (T1,≤1), . . . , (Tk,≤k) the
sense of κ3. The element 0P′ belongs to at least one of the sets T1, . . . , Tk, say T1.
Since (T1,≤1) is a sub-poset of P′ and contains 0P′ , it must be a chain. But now, a
chain in P′ will be disjoint with at least one sub-poset of P′ that is isomorphic to
P (the left or right side of the diagram given above). Hence, (T2,≤2), . . . , (Tk,≤k)
provide a decomposition (in the sense of κ3) of some poset which has that iso-
morphic copy of P as a sub-poset. Hence, by Lemma 22, k − 1 directed trees
are enough to decompose P in the sense of κ3. Thus, κ3(P′) > κ3(P). Now, take
any bounded poset P0 with κ2(P0) = k (for instance, we may choose P0 := Mk

as defined in Example 11) and construct a series of posets P1, . . . ,Pl by setting
Pi+1 := P′

i for all i ∈ {0, . . . , l − 1}. By the arguments from above, we have
κ2(Pl) = κ2(P0) = k but κ3(Pl) ≥ κ3(P0) + l > l.

(ii) Let k ≥ 2 and l ≥ k. Take some bounded poset Q = (Q,≤Q) with greatest
element 1Q and κ3(Q) = k − 1 (its existence is guaranteed by Lemma 20). Set
P := Q⊕Ml.

0Ml

1Ml

1Q

. . .

Q

By Proposition 15, we have κ2(P) ≥ l. It remains to show κ3(P) = k. First, let
us show κ3(P) ≤ k. By assumption, there exists a directed tree decomposition
(T1,≤1), . . . , (Tk−1,≤k−1) of Q in the sense of κ3. Some set T1, . . . , Tk−1 must
contain 1Q, say T1. Define the tree (T ′

1,≤′
1) by setting T ′

1 := T1 ∪ {0Ml
} and

taking ≤′
1 to be the reflexive-transitive closure of ≤1 ∪{(1Q, 0Ml

)}. Also, define
the directed tree (Tk,≤k) as the sub-poset of P induced by Tk := Ml \ {0Ml

}.
But now, the directed trees (T ′

1,≤′
1), (T2,≤2), . . . , (Tk,≤k) decompose P in the

sense of κ3. Hence, κ3(P) ≤ k. To finish the proof by showing κ3(P) ≥ k,
assume for contradiction that some directed trees (T1,≤1), . . . , (Tk−1,≤k−1) give
a decomposition of P in the sense of κ3. Let a1, . . . , al be the elements from the
l-element antichain in Ml. Since l ≥ k, some set T1, . . . , Tk−1 must contain at
least two elements from this antichain. Assume that T1 is this set. Then we have
T1∩Q = ∅, because T1 must also be a sub-poset of P. But now, this implies that
the directed trees (T2,≤2), . . . , (Tk−1,≤k−1) decompose some poset (in the sense
of κ3) of which Q is a sub-poset. Hence, by Lemma 22, we obtain κ3(Q) ≤ k− 2.
Contradiction. ��

The next few propositions will illustrates that the number κ3(P) has almost
no connection to the order dimension of P, except for one (nontrivial) case.

Proposition 24. (i) For all k ≥ 2 and l ≥ k, there exists a bounded poset P
such that dimP = k and κ3(P) ≥ l.

(ii) For all k ≥ 3 and l ≥ k, there exists a bounded poset P such that κ3(P) = k
and dimP ≥ l.



Directed Tree Decompositions 91

Proof. (i) Assume k ≥ 2 and l ≥ k. Let Q = (Q,≤Q) be any bounded poset with
order dimension k (for instance, take the k-dimensional cube). Set P := Dl ⊕Q,
where Dl is defined as in Lemma 20. By Lemma 22 and Lemma 20, we have
κ3(P) ≥ κ3(Dl) = l. Moreover, it is easy to check that the order dimension of Dl

is 2. Hence, we end up with dimP = max{dimDl, dimQ} = max{2, k} = k.
(ii) Let k ≥ 3 and l ≥ k. Take the poset Hl = (Hl,≤Hl

) as introduced in
Example 6 and define Q as the poset that arises from Hl by adding a greatest
element 1Q and a least element 0Q. That is, the poset Q is illustrated as follows:

1Q

0Q

a1 . . . al

b1 . . . bl

Take the poset Dk as defined in Lemma 20 and set P := Q⊕ Dk. Since we have
dimQ = l, we have dimP ≥ l. Moreover, κ3(P) ≥ k follows immediately from
κ3(Dk) = k and Lemma 22. It remains to show κ3(P) ≤ k. Observe that Dk can
be decomposed (in the sense of κ3) into k chains C1, . . . ,Ck. Moreover, Q can be
decomposed into three directed trees, namely the three sub-posets S1 = (S1,≤1),
S2 = (S2,≤2), S3 = (S3,≤3) with S1 = {1Q, b1, . . . , bl}, S2 = {1Q, a1, . . . , al},
S3 = {1Q, 0Q}. Thus, we obtain the required k-element decomposition of P into
directed trees T1, . . . ,Tk by setting T1 := S1⊕C1, T2 := S2⊕C2, T3 := S3⊕C3,
T4 := C4, . . . ,Tk := Ck. ��

Case (ii) leaves us with two questions:

– If we weaken the condition of P being bounded, does there then, for each
l ≥ 2, exist some poset P such that κ3(P) = 2 and dimP ≥ l?

– If we have κ3(P) = 2 for some bounded poset P, what does this tell us about
the order relation of dimP?

The next two proposition answer both of these questions.

Proposition 25. For all k ≥ 2 and l ≥ k, there exists a poset P with a greatest
element such that κ3(P) = k and dimP ≥ l.

Proof. In view of Proposition 24, we need to show the claim for k = 2. To this
end, let l ≥ k and take Hl as defined in Example 6. Let P = (P,≤) be the poset
that arises by adding a greatest element 1P to Hl.

1P

a1 . . . al

b1 . . . bl

We have dimP = l and it is obvious that we have κ3(P) ≥ 2, because P is
not a tree. Indeed, we have κ3(P) = 2 because the two sub-posets induced by



92 S. Kerkhoff and F.M. Schneider

{1P, a1, . . . , al} and {1P, b1, . . . , bl} are directed trees and decompose P in the
sense of κ3. ��

The next proposition is the first nontrivial connection between our numbers
and the order dimension.

Proposition 26. Let P be a poset with a least element. If κ3(P) = 2, then
dimP ≤ 4.

Proof. By κ3(P) = 2, we can decompose P into two directed trees T1 = (T1,≤1)
and T2 = (T2,≤2). The least element of P has to be contained in at least one of
the two sets T1, T2, say T1. Since T1 is supposed to be a sub-poset of P, this means
that it is a chain. Observe that the sub-poset of T2 that is induced by T2 \ T1
is still a directed tree. Hence, we can decompose P into a chain C = (C,≤C)
and a directed tree T that does not intersect C. By the removal theorem for
the order dimension stated in the preliminaries (see Theorem 8), this establishes
dimP ≤ 2 + dim (P− C) = 2 + dimT ≤ 4. ��

7 Fourth Version: κ4

Finally, let us take a look at the meaning of κ4(P). Of the four quantities we
have defined in Definitions 1–4, it is obviously the greatest integer, and we have
the trivial equivalence κ2(P) = 1 ⇐⇒ κ3(P) = 1 ⇐⇒ κ4(P) = 1. Except that,
however, we will see that knowing the numbers κ1(P), κ2(P) or κ3(P) tells us
nothing about how big κ4(P) can be (observe that this is evident for κ1(P)).
Besides showing this result, we also discuss the relation of κ4(P) with the order
dimension. We will show some partial results, give some nontrivial examples and
state an open problem.

Let us start by showing that κ4(P) can take every value that is greater than
or equal to κ2(P) and κ3(P), even for bounded posets.

Proposition 27.
(i) For all k ≥ 2 and l ≥ k, there exists a bounded poset P such that κ2(P) = k
and κ4(P) = l.
(ii) For all k ≥ 2 and l ≥ k, there exists a bounded poset P such that κ3(P) = k
and κ4(P) = l.

Proof. (i) Let k ≥ 2 and l ≥ k. Take the poset Mk as defined in Example 11,
and the poset Ll as defined in Example 12. Set P := Mk ⊕ Ll.

......

. . . Mk

Ll



Directed Tree Decompositions 93

By Proposition 15 and k ≥ 2, we have κ2(P) = k. Furthermore, κ4(P) ≥ l follows
from κ4(Ll) ≥ l. In order to show κ4(P) ≤ l, let T1, . . . ,Tl be the l chains that
are constructed in Example 12 and decompose Ll in the sense of κ4. Moreover,
let T′

1, . . . ,T
′
k be the obvious choice of k chains decomposing Mk. But now, the l

chains T′
1 ⊕T1, . . . ,T′

k ⊕Tk,Tk+1, . . . ,Tl decompose P in the sense of κ4. Thus,
κ4(P) = l.

(ii) Again, let k ≥ 2 and l ≥ k. This time, we define P = (P,≤ P) by setting
P := {1, . . . , k − 1} ×Ml, with (i, x) ≤P (j, y) :⇐⇒ i < j ∨ (i = j ∧ x ≤Ml

y).

(1, 1)

(1, 0)

(1, a1) . . . (1, al)

(k − 1, 1)

(k − 1, 0)

(k − 1, a1) . . . (k − 1, al)

...

κ4(P) ≥ l follows immediately from κ4(P) ≥ κ2(P) = l, where the latter equal-
ity is given by Proposition 15. In fact, we have κ4(P) = l, because P can
obviously be decomposed into l chains. We have κ3(P) ≤ k, because the k
sub-posets T1, . . . ,Tk that are induced by Ti := {(i, 1), (i, a1), . . . , (i, al)} for
i ∈ {1, . . . , k − 1} and Tk := {(k − 1, 0), (k − 2, 0), . . . , (1, 0)} decompose P in
the sense of κ3. It remains to show κ3(P) ≥ k, which we are going to prove
by a very similar technique as in the proof of Lemma 20. For contradiction, as-
sume that there are directed trees T1 = (T1,≤1), . . . ,Tk−1 = (Tk−1,≤k−1) that
decompose P in the sense of κ3. There must be some i ∈ {1, . . . , k − 1} such
that Ti contains at least two points from {k − 1} × {a1, . . . , al}. Without loss
of generality, assume i = k − 1. Since Tk−1 is a sub-poset of P, this establishes
{1, . . . , k − 2} × Ml ⊆ T1 ∪ . . . ∪ Tk−2. Using this argument k − 2 times, we
eventually obtain {1}×Ml ⊆ T1, which clearly contradicts that T1 is a directed
tree and a sub-poset of P. ��

Also, an analogon of Proposition 21 fails for κ4(P). In fact, κ4(P) is not con-
nected the height or width of P. This is readily demonstrated by Examples 11
and 12.

Finally, let us discuss the connection between κ4(P) and the order dimension
of P. First, note that the following two corollaries are direct consequences of
κ4(P) ≥ κ3(P) and Propositions 24–26:

Corollary 28. For all k ≥ 3 and l ≥ k, there exists a bounded poset P such that
dimP = k and κ4(P) ≥ l.

Corollary 29. Let P be a poset that has a least element. If κ4(P) = 2, then
dimP ≤ 4.



94 S. Kerkhoff and F.M. Schneider

However, we do not know more than that, and the following open problem
remains:

Problem 30. Is there a fixed function ψ : N → N such that κ4(P) ≤ ψ(dimP) for
all (bounded) posets P?

Let us close this section by giving two nontrivial examples that at least con-
tradict the perhaps conceivable claim that we have κ4(P) ≥ dimP for all posets P
(note that all previously appearing posets from this paper meet this condition).

Example 31. This creates space

a b c d

e f

g h i

j k l

m

P1 = (P1,≤1)

1 2

3 4 5 6

7

8

m

P2 = (P2,≤2)

It is straightforward to check that we have dimP1 = 4 and dimP2 = 3. But now,
also we have κ4(P1) = 3 (take the three directed trees given by the sub-posets
induced by {m, j, g, h, e, b, c, d}, {m, l, h, i, f, a, b, c} and {m, k, i, e, f, a, d}) and
κ4(P2) = 2 (take the two directed trees given by the two sub-posets induced by
{8, 3, 5, 1, 2} and {8, 7, 4, 6, 2, 1}).

8 Summary of Results

We have discussed four versions of Radeleczki’s problem by studying the numbers
κ1(P), . . . , κ4(P) for a poset P = (P,≤).

– κ1(P) simply counts the number of maximal elements in P and hence has
almost no connection to the order dimension or the other three numbers
(except that, by definition, it is less than or equal to each of them).

– κ2(P) equals maxx∈P |{y | x� y}| if P has a greatest element. In the general
case, it depends on how the downsets of the maximal elements intersect,
which still provides us with a tight interval for κ2(P). Moreover, κ2(P) is
bounded by the width of P (but not by the height), and has virtually no
connection the order dimension. Indeed, even if we only consider bounded
posets (to avoid trivial examples), then the numbers κ2(P) and dimP say
absolutely nothing about each other, except for the trivial case that one of
them equals 1.

– κ3(P) has no connection to κ2(P) (except that κ2(P) = 1 is equivalent to
κ3(P) = 1). It is bounded by min{widthP, heightP− 1} if P has a greatest
element, but only bounded by widthP if we drop the assumption that there
is a maximum. While the order dimension of a (bounded) poset P does



Directed Tree Decompositions 95

not provide us with any information about κ3(P) (except if it equals 1), the
other direction is only partly true. If P is required to be bounded, then κ3(P)
tells us nothing about the order dimension if it is greater than or equal to
3 (except, of course, that the order dimension cannot be 1 in that case).
However, if κ3(P) is 2 for a bounded poset P (in fact, it is enough to require
that P has a least element), then the order dimension is at most 4. This is
the only nontrivial relation between κ3(P) and dimP, and it becomes false
if we do not require P to have a minimum. Indeed, for each l ∈ N there is
already a connected poset P with κ3(P) = 2 and dimP ≥ l.

– κ4(P) is of course greater than or equal to each of the other three values.
However, this is all that we can say about their relation. In fact, even if we
require P to be bounded, then knowing κ2(P) or κ3(P) tells us absolutely
nothing about κ4(P) beyond the fact that it is at least as large. Moreover,
κ4(P) is neither bounded by the width nor by the height of P. For every k ≥ 2
and l ≥ k there exists some poset (even a bounded one) such that we have
dimP = k and κ4(P) ≥ l. However, we do not know whether the converse
direction is also true or there exists a function ψ such that κ4(P) ≤ ψ(dimP)
for all (bounded) posets P. All we know is that κ4(P) = 2 implies dimP ≤ 4
if it has a least element and that there are nontrivial examples of posets P
with κ4(P) < dimP.

References

[CHS09] Czédli, G., Hartmann, M., Schmidt, E.T.: CD-independent subsets in dis-
tributive lattices. Publ. Math. Debrecen 74(1-2), 127–134 (2009)

[Dil50] Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. of
Math. (2)51, 161–166 (1950)

[Hir55] Hiraguti, T.: On the dimension of orders. Sci. Rep. Kanazawa Univ. 4(1),
1–20 (1955)

[HR12] Horváth, E.K., Radeleczki, S.: Notes on CD-independent subsets. Acta Sci.
Math (Szeged) 78(1-2), 3–24 (2012)

[Mir71] Mirsky, L.: A dual of Dilworth’s decomposition theorem. Amer. Math.
Monthly 78, 876–877 (1971)

[Tro92] Trotter, W.T.: Combinatorics and partially ordered sets, Dimension theory.
Johns Hopkins University Press, Baltimore (1992) (Dimension theory. Johns
Hopkins Series in the Mathematical Sciences)



A Proposition for Combining Pattern Structures
and Relational Concept Analysis

Víctor Codocedo and Amedeo Napoli

LORIA - CNRS - INRIA - Université de Lorraine, BP 239, 54506 Vandœuvre-les-Nancy, France
{victor.codocedo,amedeo.napoli}@loria.fr

Abstract. In this paper we propose an adaptation of the RCA process enabling
the relational scaling of pattern structures. In a nutshell, this adaptation allows
the scenario where RCA needs to be applied in a relational context family com-
posed by pattern structures instead of formal contexts. To achieve this we define
the heterogeneous pattern structures as a model to describe objects in a com-
bination of spaces, namely the original object description space and the set of
relational attributes derived from the RCA scaling process. We frame our ap-
proach in the problem of characterizing latent variables (LV) in a latent variable
model of documents and terms. LVs are used as compact and improved dataset
representations. We approach the problem of LV characterization missing from
the original LV-model, through the application of the adapted RCA process using
pattern structures. Finally, we discuss the implications of our proposition.

1 Introduction

Relational Concept Analysis (RCA) [10] is an extension of Formal Concept Analysis
(FCA) [4] based on a scaling process. RCA enables the application of FCA algorithms
over a relational context family (RCF) which models the situation where different ob-
ject sets, in different formal contexts (K1 and K2) are associated by a binary relation
r ⊆ G1 × G2 (e.g. people and their professions liking movies with different genres). In
this paper we present an adaptation of RCA which enables its application when one of
the object sets cannot be described by set of attributes as usual, but rather by complex
descriptions (and thus calling for pattern structures [3] for taking into account these
complex descriptions). Particularly, we consider the case when the “domain context”
(i.e. the context where the object set is the domain of relation r) is a pattern structure of
the form K1 = (G1, (D,�), δ). To achieve this adaptation, we define the heterogeneous
pattern structures as a mean to provide an object with descriptions in different spaces of
data, to support both, its original pattern structure description and the relational scaling
proposed in RCA.

The inspiration of this problem comes from a model known in information retrieval
as “latent variable models” (LV-models), sometimes called “topic models” [11]. LV-
models are a long used, cutting-edge and useful manner to index, cluster and retrieve
documents [2]. They share the basic notion that the information in a document collec-
tion is “generated” by a reduced set of latent variables (LVs) hidden in data, i.e. terms in
a given document are a manifestation of topics or LVs (e.g. in an article about “formal

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 96–111, 2014.
c© Springer International Publishing Switzerland 2014



A Proposition for Combining Pattern Structures and RCA 97

concept analysis”, the terms “formal context” and “concept lattice” are expected to
be mentioned).

Latent variables, however, are abstractions. While they may represent topics, those
topics lack a proper characterization, which makes difficult their interpretation. For
example, in the case of latent semantic indexing (LSI) [2] (considered to be seminal
work in topic models), LVs are represented by eigenvectors of a document-term matrix.
Nevertheless, eigenvectors or convex regions in the eigenvector space (usually called
“clusters”) can be hardly recognizable as being, for instance, the topic of “formal con-
cept analysis”. Usually, we can try to manually recognize the documents and terms
in a cluster to give it a “label”, however this can be expensive and tedious. Moreover,
LV-models do not allow the incorporation of external knowledge sources which could
aid the “labelling” task.

Given the capabilities of FCA for classification and the extent/intent representation
of concepts, LVs’ characterization can be achieved by constructing a RCF containing
a context of document descriptions in the latent variable space (a pattern structure), a
formal context for terms’ annotations from Wordnet1 (e.g. a “lattice” is a “structure”2),
and a relational context between documents and terms representing the binary relation
document contains term. Accordingly, a key aspect of this work is to address the issue
that relational scaling is not currently supported for pattern structures.

The main contributions of this work are the proposition of a coherent combination
of pattern structures and RCA, the resulting description of heterogeneous pattern struc-
tures and a characterization technique for latent variables in a LV-model. The remain-
der of this paper is as follows. Section 2 provides the theoretical background of this
work by describing the RCA process and the pattern structure framework. In Section
3 we describe the latent variable characterization problem in the context of the LSI
technique and provide the problem statements. Section 4 describes our proposal for a
pattern structures-RCA combination and defines the heterogeneous pattern structures
framework. Finally, Section 5 answers both questions and discusses their implications,
while providing the conclusions for this work.

2 Theoretical Framework

In the following, we define the basic notions which support our approach. The examples
in this section are illustrative for RCA and pattern structures, respectively, however they
do not represent our scenario which is actually introduced in the next section.

2.1 Relational Concept Analysis (RCA)

Hereafter, we briefly introduce the mechanism of RCA as detailed in [9,10]. Different
from standard FCA, RCA considers the scenario where an object has not only attributes,
but also relations with other objects which have attributes of their own. For example,
consider a set of documents with authors as attributes (formal context K1 in Table 1a)

1 http://wordnetweb.princeton.edu - Wordnet is an open lexical hierarchy available
online.

2 Hypernym of “lattice”.

http://wordnetweb.princeton.edu


98 V. Codocedo and A. Napoli

Table 1. Relational context family (RCF) - Table 1a: Formal context K1 of documents and their
authors. Table 1b: Formal context K2 of terms and their Wordnet annotations. Table 1c: Relational
context aw representing document “annotated with” term.

(a)

au
th

or
1

au
th

or
2

au
th

or
3

au
th

or
4

g1 × ×
g2 × ×
g3 × ×
g4 × × ×
g5 ×
g6 ×
g7 × ×
g8 ×
g9 × ×

(b)

Pe
rs

on
Su

rg
er

y
Il

ln
es

s
A

rt
ef

ac
t

E
ve

nt
A

ct
iv

ity

patient ×
laparoscopy × ×
scan ×
user ×
medicine ×
response ×
time ×
MRI ×
practice ×
complication ×
arthroscopy × ×
infection ×

(c)

pa
tie

nt
la

pa
ro

sc
op

y
sc

an
us

er

m
ed

ic
in

e
re

sp
on

se

tim
e

M
R

I
pr

ac
tic

e
co

m
pl

ic
at

io
n

ar
th

ro
sc

op
y

in
fe

ct
io

n

g1 × × × ×
g2 × × × × × ×
g3 × × × ×
g4 × × ×
g5 × × ×
g6 × ×
g7 × ×
g8 × × ×
g9 × ×

and a set of terms with entities extracted from Wordnet (formal context in Table 1b).
Then, we can consider the relation “document annotated with term” (denoted as aw)
which defines a relational context as the one shown in Table 1c. RCA defines a re-
lational context family (RCF) as a set of contexts K = {K1,K2} and a set of binary
relations R = {r}. A relation r ⊆ G1 × G2 connects two object sets, a domain G1,
(dom(r) = G1) and a range G2, (ran(r) = G2). Moreover, a relation r can be seen as a
set-valued function r : G1 → ℘(G2) [9].

Fig. 1. Concept lattice of formal context K2 in Table 1b

For the current example, let G1 be a set of documents and G2 be a set of terms.
Then the corresponding RCF is composed by contexts K1 = (G1, M1, I1) (with M1, I1
as shown in Table 1a), K2 = (G2, M2, I2) (with M2, I2 as shown in Table 1b) and the
relational context aw in Table 1c.

RCA is based on a relational scaling mechanism that transforms a relation r into a
set of relational attributes that are added to complete the “initial context” describing
the object set G1 = dom(r). For each relation r, there is an initial lattice for each object
set, i.e. L1 for G1 and L2 for G2.



A Proposition for Combining Pattern Structures and RCA 99

The RCA mechanism starts from two initial lattices, L1 and L2, and builds a series
of intermediate lattices by gradually completing the initial context K1 with new “rela-
tional attributes”. Relational scaling follows the description logics (DL) semantics of
role restrictions.

A relational attribute ∃r : C, C being a concept and ∃ the existential quantifier, is
associated to an object g ∈ G1 whenever r(g) ∩ extent(C) �= ∅ (other quantifiers are
available, see [9]). The series of intermediate lattices converges toward a “fixpoint” or
“final lattice” and the RCA mechanism is terminated. This is why there is one initial and
one final lattice for each context of the considered RCF. For the running example, the
lattice (in this case initial and final) in Figure 1 for the formal context K2 in Table 1b,
along with the “relational context” in Table 1c, indicates the “relational attributes” that
should be added to the formal context in Table 1a. For instance, using the existential
quantifier, the relational attribute ∃aw : C1 (C1 is the concept with intent “Artefact” in
Figure 1) should be added to all documents gi ∈ G1 in formal context K1 in Table 1a if
gi contains terms “MRI” or “scan” in the relational context of Table 1c. Table 2 shows
formal context K1 after the relational scaling process.

Table 2. Context K1 after rela-
tional scaling using existential
quantifier

au
th

or
1

au
th

or
2

au
th

or
3

au
th

or
4

∃a
w
:
C
1

∃a
w
:
C
2

∃a
w
:
C
3

∃a
w
:
C
4

∃a
w
:
C
5

∃a
w
:
C
6

∃a
w
:
C
7

g1 × × × × × × ×
g2 × × × × × ×
g3 × × × × × ×
g4 × × × × × ×
g5 × × ×
g6 × × × ×
g7 × × × × ×
g8 × × × ×
g9 × × × × ×

Table 3. Many-valued formal context of term fre-
quencies in each document

pa
tie

nt

la
pa

ro
sc

op
y

sc
an

us
er

m
ed

ic
in

e

re
sp

on
se

tim
e

M
R

I

pr
ac

tic
e

co
m

pl
ic

at
io

n

ar
th

ro
sc

op
y

in
fe

ct
io

n

g1 0.25 0.25 0.25 0 0 0 0 0 0 0.25 0 0
g2 0 0 0.16 0.16 0.16 0.16 0.16 0 0.16 0 0 0
g3 0 0.25 0 0.25 0.25 0 0 0.25 0 0 0 0
g4 0.3 0 0 0 0.3 0 0 0.3 0 0 0 0
g5 0 0 0 0.3 0 0.3 0.3 0 0 0 0 0
g6 0 0 0 0 0 0 0 0 0.5 0 0.5 0
g7 0 0 0 0 0 0 0 0 0 0.5 0.5 0
g8 0 0 0 0 0 0 0 0 0 0.3 0.3 0.3
g9 0 0 0 0 0 0 0 0 0 0 0.5 0.5

2.2 Pattern Structure Framework

Pattern structures model a FCA procedure when documents do not have attributes, but
rather complex data descriptions such as numerical values, e.g. terms frequency values
for each given document as shown in Table 3. In the following, we introduce the pat-
tern structure framework firstly described in [3]. A pattern structure (G1, (D,�), δ) is a
generalization of a formal context where G1 is a set of objects, (D,�) is a semi-lattice of
object descriptions and δ : G1 → D is a mapping associating a description to an object.

In the “interval pattern structures” setting (deeply discussed in [6]), an object de-
scriptions g ∈ G1 is a vector of intervals d ∈ D, d = 〈[li, ri]〉i∈{1..|M|} with li, ri ∈ R
and li ≤ ri. For example, from Table 3 we have that the set of objects G1 is com-
posed by documents g1 − g9 (we use this notation for all documents between and in-
cluding g1 and g9). The object description δ(g1) is defined by the vector of intervals
〈[0.25, 0.25], [0.25, 0.25], [0.25, 0.25], [0, 0], ..., [0.25, 0.25], [0, 0], [0, 0]〉. An interval
pattern defines a convex region within the given description space.



100 V. Codocedo and A. Napoli

In (D,�) the similarity operator � applied to two object descriptions d1 = 〈[l1i, r1i]〉
and d2 = 〈[l2i, r2i]〉 with i ∈ {1..|M|} and d1, d2 ∈ D, returns the convex hull described
in Equation 1 while the subsumption order * between them is given by Equation 2.

d1 � d2 = 〈[min(l1i, l2i), max(r1i, r2i)]〉 (1)

d1 * d2 ⇐⇒ d1 � d2 = d1 (2)

A Galois connection between ℘(G1) (powerset of G1) and (D,�) for A ⊆ G1 and
d ∈ D is defined as follows:

A� =
�

g∈A

δ(g) d� = {g ∈ G|d * δ(g)} (3, 4)

Where A� represents the common description to all objects in A while d� represents
the set of objects respecting the description d. A pair (A, d) such as A� = d and d� = A

is called an interval pattern concept (ip-concept) with extent A and pattern intent d.
Interval pattern concepts can be ordered in an interval pattern concept lattice (ip-concept
lattice).

3 Inspiring Problem - Latent Semantic Indexing

3.1 Latent Variables Characterization Problem

As previously discussed, LV-models lack a proper characterization for the LVs found
through its application. For instance, Latent Semantic Indexing (LSI) [2], a technique
commonly used in information retrieval (IR) for indexation, clustering and dimension
reduction purposes, is based on the idea that within a document-term matrix (as the
one shown in Table 3) there is a set of hidden “latent variables” (LVs) that explain the
data which constitutes the matrix. Consequently, LSI describes a technique to uncover
these LVs through a “lower-rank approximation” of the original document-term matrix
using linear algebra methods (specifically, singular value decomposition (SVD) [12]).
Documents can later be described not as vectors of term frequencies, but as vectors
of LV values in a reduced vectorial space. Latent variables are supposed to capture the
“semantics” in the set of documents, nevertheless it is difficult to grasp this notion while
documents are still described by vectors of numeric values. In the following, we provide
a further description of the LSI process as described in [2].

3.2 Latent Semantic Indexing

Let us consider the values in the formal context in Table 3 as a matrix A of dimensions
9 × 12. LSI works through the SVD of matrix A and the consequent calculation of the
reduced space of LVs as follows:



A Proposition for Combining Pattern Structures and RCA 101

A(9×12) = U(9×9) ·Σ(9×12) · V T
(12×12) (5)

Ã(9×12) = U(9×k) ·Σ(k×k) · V T
(k×12) (with k , min(9, 12)) (6)

A ∼ Ã (7)

Ã · ÃT = U(9×k) ·Σ(k×k) · V T
(k×12) · V(12×k) ·ΣT

(k×k) · UT
(k×9) (8)

Ã · ÃT = (U(9×k) ·Σ(k×k)) · (U(9×k) ·Σ(k×k))
T (9)

Where (A)T denotes the “transpose” of matrix A; U, V are orthonormal matrices and
Σ is a diagonal matrix of “singular values”. We have on one side the lower-rank ap-
proximation (Equation 7) to a matrix of rank k which is ensured to be the best k−rank
matrix approximation by the Frobenius norm difference [12]. On the other hand, we
have the dimensional reduction (Equation 9) using matrix U(9×k) ·Σ(k×k) as the space
of documents in k LVs. Table 4 shows this space for matrixA with k = 2. Furthermore,
Figure 2 presents a graphical representation of documents as points in a plane where
we can appreciate the presence of 2 document groups, usually called “clusters”. In this
paper we use the notion of “cluster” as a convex region in the LV space. In fact, one of
the main uses of LSI is to provide a more compact representation of documents so that
clusters are easier to find in the space of LVs. Incidentally, an interval pattern in this
space represents a cluster (rectangles in Figure 2).

3.3 Problem Statement

In Figure 2, while the clusters are easily distinguishable, it is not possible to say why
they exist or what are their features. In order to characterize them we need to rely on
their relations with terms. For example, we know that documents g6 − g9 share the
term “arthroscopy”. While this is not totally clear with documents g1 − g5 which do

Table 4. Docu-
ments in 2 LVs

k1 k2
g1 0.118 -0.238
g2 0.046 -0.271
g3 0.014 -0.413
g4 0.014 -0.368
g5 0.008 -0.277
g6 0.519 0.002
g7 0.603 -0.017
g8 0.469 0.02
g9 0.588 0.092

Fig. 2. Graphical representation of documents
as points in a 2 dimensional LV space



102 V. Codocedo and A. Napoli

not share a common term, we can see that documents g1 − g4 share the term “patient”
and g2, g3 and g5 share the term “user”. Both terms are related through the annotation
“People” extracted from Wordnet (see Table 1b) which lead us to think that LVs can
represent differences in this concern.

One way to automatically make these characterizations is through the use of the RCA
framework where we can model documents and terms as objects, LV values as docu-
ment descriptions, and Wordnet annotations as term attributes, while the document-term
relation is given by aw in Table 1c. Nevertheless, as explained in the previous section,
LSI generates document descriptions in the form of vectors of LV values, while clusters
in the LV-space are better represented by interval pattern structures.

The main problem tackled in this work is how to enable the application of RCA in
these kinds of scenarios. We provide an adaptation of RCA which allows the relational
scaling in pattern structures. We achieve this by the introduction of heterogeneous pat-
tern structures described in the following section. A sub-goal of this work is to find out
if domain knowledge can explain the existence and the “semantics” in LVs. We met this
sub-goal by the characterization of LVs through the proposed combination of RCA and
pattern structures. Given that LVs define a k-dimensional space (k being the number
of LVs) where documents are organized, we formulate the following questions: Is it
possible for us to find sub-regions in the space of LV values related to domain knowl-
edge elements such as Wordnet annotations? And if so, how can we characterize these
sub-regions?.

4 Adapting RCA for Pattern Structures

In this section we firstly describe the formal model description in which pattern struc-
tures are considered into a RCF. We show that the adaptation of the relational scaling
operators induces a new space of heterogeneous object descriptions which we support
in the framework of heterogenous pattern structures. Following, we provide a full de-
scription of this novel pattern structures instance.

4.1 Formal Model

Consider the simple case when we have a single relation between two sets of objects
r ⊆ G1 × G2, the domain of which is an object set in a pattern structure such as
K1 = (G1, (D,�), δ). The range of the relation is an object set inside a binary for-
mal context K2 = (G2, M, I). Let us also define the relation as the set-valued function
r : G1 → ℘(G2) and let L1 = B(K1) and L2 = B(K2) be the pattern concept lattice
and the concept lattice of K1,K2 respectively. Thus, we define the relational context
family (K,R) where K = {K1,K2} and R = {r}. The usual RCA procedure induces
iterations of formal context K1 through a “relational scaling” task using L2 (“target lat-
tice” of r), until the derived concept lattice L1 converges. For this reason, the scaling
operators (universal, existential, etc.) are defined over a space of formal contexts into a
space of formal contexts. This is the first complication in our model. Since in our setting
K1 is a pattern structure and not a formal context, we cannot directly apply the scaling
operators as defined in [9]. Thus, we move forward to redefine relational scaling oper-
ators which support pattern structures. To achieve this, let us define, for a relation r, a



A Proposition for Combining Pattern Structures and RCA 103

function that assigns a set of relational attributes to a given object in the pattern structure
depending on the type of relational scaling applied (universal, existential, etc.).

Definition 1. Let r ⊆ G1 × G2 be a relation between two object sets where L2 is its
target lattice composed by formal concepts C. We define the potential set of all possible
relational attributes Pr scaled from relation r as follows 3:

Pr = {r : C, ∀C ∈Lj} (10)

For g ∈ G1, we also define two functions ρ∃r , ρ
∀∃
r : G1 → ℘(Pr) which assign a set of

relational attributes to a given object using the ‘existential quantifier operator (∃)” and
the “universal-existential quantifier operator (∀∃)” respectively.

ρ∃r (g) = {r : C ∈ Pr | r(g) ∩ extent(C) �= ∅} (11)

ρ∀∃r (g) = {r : C ∈ Pr | r(g) �= ∅, r(g) ⊆ extent(C)} (12)

Hereafter we refer to ρ∃r (g) or ρ∀∃r (g) as the “relations of g”.

Example 1. Let the following scenario be the running example for the remainder of
this article. Consider a relational context family of two contexts K = {K1,K2} where
K1 = (G1, (D,�), δ) is the interval pattern structure of documents and their LV values
shown in Table 4 and K2 is the formal context of terms and their Wordnet annotations
shown in Table 1b. Consider as well the relation “document annotated with term” as
shown in Table 1c such as R = {r}. From the initial lattice shown in Figure 1 we can
construct the set of relational attributes Pr = {aw : Ci} where i ∈ [0, 7] (i.e. each Ci
corresponds to one formal concept shown in the lattice4). Then, we have:

r(g1) = {patient, laparoscopy, scan, complication}
extent(C1) = {MRI, scan}

r(g1) ∩ extent(C1) = {scan} �= ∅ =⇒ aw : C1 ∈ ρ∃r (g1)

ρ∃r (g1) = {aw : C1, aw : C2, aw : C3, aw : C4, aw : C7}

Definition 2. Let (G1, (D,�), δ) be a pattern structure for a set of objects G1 which are
also associated with relational attributes in a set Pr through ρ∃r or ρ∀∃r . We define the
scaled pattern structure (G1, (H,�), Δ) with mappings Δ∃, Δ∀∃ : G1 → H as follows:

H = D× ℘(Pr) (13)

Δ∃(g) = (δ(g), ρ∃r (g)) (14)

Δ∀∃(g) = (δ(g), ρ∀∃r (g)) (15)

Where H contains heterogeneous descriptions of objects in G1 combining both, a pattern
δ(g) ∈ D and a set of relational attributes in Pr.

3 Normally, the relational attributes r : C have the operator ∃ or ∀∃ attached as a prefix indicat-
ing the scaling operation applied. In this work, we omit the prefixes in favour of generality.
Nevertheless, the scaling function will remain indicated at each step.

4 aw stands for “annotated with”. In the remainder of this article we will always work with the
existential quantifier.



104 V. Codocedo and A. Napoli

Definition 3. Let r be a relation between two objects sets, then the existential scaling
operator (sc∃r ) and the universal scaling operator sc∀∃r for a pattern structure K1 are
defined as:

sc∃r (K1) = (G1, (H,�), Δ∃) sc∀∃r (K1) = (G1, (H,�), Δ∀∃) (16, 17)

As shown in Definitions 2 and 3, in order to apply the relational scaling operation to
a pattern structure, it is necessary to define a new different pattern structure in which
we can consider the original object description δ(g) and its relational attributes ρ∃r (g) or
ρ∀∃r (g). This combination of descriptions or “heterogeneous descriptions” H is a Carte-
sian product between the set of object descriptions and the powerset of Pr to which
objects are mapped through Δ∃ : G1 → H. We denominate this new pattern structure
instance “heterogeneous pattern structures”. In the following, we provide a complete
description of its characteristics and capabilities.

Example 2. Table 5 shows a representation of the heterogeneous pattern structure of
documents with LVs and relational attributes, where we can find an object description
such as:

Δ∃(g1) = (δ(g1), ρ
∃
r (g1))

δ(g1) = 〈[0.118, 0.118], [−0.238,−0.238]〉
ρ∃r (g1) = {aw : C1, aw : C2, aw : C3, aw : C4, aw : C7}

Table 5. Result of relational scaling in the example pattern structure represented in a hybrid
formal context. We have removed the relational attribute aw : C0 usually assigned to every object.

D Pr

k1 k2 a
w
:
C
1

a
w
:
C
2

a
w
:
C
3

a
w
:
C
4

a
w
:
C
5

a
w
:
C
6

a
w
:
C
7

g1 0.118 -0.238 × × × × ×
g2 0.046 -0.271 × × × ×
g3 0.014 -0.413 × × × ×
g4 0.014 -0.368 × × ×
g5 0.008 -0.277 × ×
g6 0.519 0.002 × × ×
g7 0.603 -0.017 × × ×
g8 0.469 0.02 × × ×
g9 0.588 0.092 × × ×

4.2 Heterogeneous Pattern Structures

Definition 4. Let H = D× ℘(Pr) be a set of heterogeneous object descriptions, where
h1 = (d1, B1) and h2 = (d2, B2) are two heterogeneous object descriptions with d1,
d2 ∈ D, B1, B2 ⊆ Pr and h1, h2 ∈ H (the elements d and B are referred to as the “com-
ponents” of h). We define the “similarity operator” � between h1 and h2 as:

h1 � h2 = (d1 � d2, B1 ∩ B2) (18)



A Proposition for Combining Pattern Structures and RCA 105

Example 3. The similarity operator applied to the object descriptions of g1 and g2 is:

Δ∃(g1) � Δ∃(g2) = (δ(g1) � δ(g2), ρ
∃
r (g1) ∩ ρ∃r (g2))

δ(g1) � δ(g2) = 〈[0.046, 0.118], [−0.271,−0.238]〉
ρ∃r (g1) ∩ ρ∃r (g2) = {aw : C1, aw : C2, aw : C4}

Proposition 1. (H,*) with � as described in Definition 4 is the direct product of the
ordered sets (D,*) and (℘(Pr),⊆) and thus is an ordered set itself.

Proof. In order to prove that (H,*) is the direct product of (D,*) and (℘(Pr),⊆), we
show that h1 * h2 : ⇐⇒ d1 * d2 and B1 ⊆ B2 (as described in [4]).

h1 * h2 ⇐⇒ h1 � h2 = h1 Equation 2 (19)

⇐⇒ (d1 � d2, B1 ∩ B2) = (d1, B1) Definition 4 (20)

⇐⇒ d1 � d2 = d1 and B1 ∩ B2 = B1 (21)

⇐⇒ d1 * d2 and B1 ⊆ B2 (22)

Because of Proposition 1, we would like to know how the heterogeneous pattern
concept lattice is related to the concept lattices of its components, namely the pattern
concept lattice (G1, (D,�), δ) and the concept lattice of the formal context of objects and
their respective relational attributes (G1, Pr, I) where the incidence relation I is defined
in Equation 23. Regarding this, for the following definitions we introduce an alternative
description for the standard FCA derivation operator (·)′ in Equation 24 for a subset of
objects A ∈ G1 using the function ρ∃r .

I =
⋃
g∈G1

{(g, m), ∀m ∈ ρ∃r (g)} A′ =
⋂
g∈A

ρ∃r (g) (23, 24)

Definition 5. The derivation operators (·)� in (G1, (H,�), Δ∃) for an object set A ∈ G1
and a heterogeneous element h ∈ H are defined as:

A� =
�

g∈A

Δ∃(g) h� = {g ∈ G1 ⇐⇒ h * Δ∃(g)} (25, 26)

A heterogeneous pattern concept (hp-concept) is then defined as the pair (A, h) where
h� = A and A� = h.

Proposition 2. The derivation operator applied to a heterogeneous element h = (d, B)
is equal to the intersection of the derivation operator on its components:

(d, B)� = d� ∩ B′ (27)



106 V. Codocedo and A. Napoli

Table 6. Table showing different object sets under different closures. A1 is a proper extent of
(G1, (H,), Δ∃) because its closed under (·)� while A2 is not. A3 and A4 are examples of “pure
hp-concepts”. A5 is an example of a “mixed hp-concept”.

Extent Ai (Ai)
�� (Ai)

′′ A�� = A�� ∩ A′′ (Ai)
�

A1 = {g1, g3} {g1 − g4} {g1, g3} {g1, g3} -
A2 = {g5, g9} {g1, g2, g5, g6, g8, g9} G1 {g1, g2, g5, g6, g8, g9} -

A3 = {g1, g6 − g9} A3 A3 A3 (A�3 , A
′
3)

A4 = {g6, g7} A4 A3 A4 (A�4 , A
′
4)

A5 = {g1, g3, g7} {g1 − g4, g7} {g1, g3, g6 − g9} A5 (A�5 , A
′
5)

Proof. Let g ∈ h�, with h = (d, B), by Equation 26 we have:

g ∈ h� ⇐⇒ h * Δ∃(g) ⇐⇒ d * δ(g) and B ⊆ ρ∃r (g) Proposition 1

The right side of last formula shows two conditions. Using Equation 4, we have that the
first condition yields d * δ(g) ⇐⇒ g ∈ d�. As for the second condition, in Equation
23, we have that (g, m) ∈ I, ∀m ∈ ρ∃r (g). Then, ∀m ∈ (B ⊆ ρ∃r (g)) we have that
(g, m) ∈ I and thus g ∈ B′. With this we have that:

g ∈ (d, B)� ⇐⇒ g ∈ d� and g ∈ B′

(d, B)� = d� ∩ B′

Proposition 3. The closure of a set of objects A ∈ G1 (an extent) is equal to the inter-
section of its closures in each component.

A�� = A�� ∩ A′′ (28)

Proof.

A�� = (
�

g∈A

Δ∃(g))� = (
�

g∈A

δ(g),
⋂
g∈A

ρ∃r (g))
� = (A�, A′)� = A�� ∩ A′′

From Proposition 3, we can see three different conditions for a heterogeneous extent
A, namely it can be closed in both of its components (A�� = A�� = A′′), in only one
(either A�� ⊆ A′′ or A′′ ⊆ A��), or in none (A�� � A′′ or A′′ � A��). Further in
is this section, we provide a full description for these kinds of extents. Nevertheless,
Proposition 3 provides us with two ways to calculate the set of heterogeneous pattern
concepts. Firstly, Equation 28 is a canonical test which can be used in standard FCA al-
gorithms such as AddIntent [13]. Secondly, we can calculate the complete set of extents
from both, the formal context and the pattern structure separately and intersect them to
calculate each possible heterogeneous extent.

Example 4. Consider the object set A1 in Table 6. The closure in the fifth column shows
that A1 = A��1 and thus it is a proper extent of (G1, (H,�), Δ∃). This is not the case for
A2.



A Proposition for Combining Pattern Structures and RCA 107

Proposition 4. The closure of a heterogeneous description h ∈ H is given by:

h�� = (h��, h�′) (29)

Proposition 4 can be demonstrated analogously to Proposition 3. We are interested
in Proposition 4 because it allows us to easily calculate the heterogeneous intents as we
show next.

Proposition 5. Let A1 be an extent in (G1, (D,�), δ) and A2 be an extent in (G1, Pr, I)
where A1 ⊆ A2 and for any other extent A in (G1, Pr, I) we have A1 ⊆ A ⊆ A2 ⇐⇒
A2 = A, i.e. A2 is the cover of A1. Then for h = (A�1 , A

′
2), h is a heterogeneous intent

and (A1, h) is a hp-concept.

Proof. We show that (A�1 , A
′
2)

�� = (A�1 , A
′
2)

(A�1 , A
′
2)

�� = (A��
1 ∩ A′′2)

� = (A1 ∩ A2)
� = (A1)

�

=
�

G∈A1

Δ∃(g) = (
�

G∈A1

δ(g),
⋂
G∈A1

ρ∃r (G))

= (A�1 , A
′
1) = (A�1 , A

′
2)

The last step can be shown by the restrictions imposed to A1 and A2 as follows:
A1 ⊆ A2 =⇒ A1 ⊆ A′′1 ⊆ A2 =⇒ A′′1 = A2 =⇒ A′1 = A′2

Similarly, it can be shown that when A2 ⊆ A1, the hp-concept (A2, (A�2 , A
′
2)) ex-

ists. Proposition 5 shows that the extents in the pattern structure (G1, (D,�), δ) and in
(G1, Pr, I) will be present in the lattice of hp-concepts. Nevertheless, these do not cover
the whole set of hp-concepts in (G1, (H,�), Δ∃).

As previously discussed, the set of hp-concepts (denoted as B((G1, (H,�), Δ∃))) can
be characterized as containing three types of extents, those that are closed under both
components, those that are closed under one of its components and those that are an
intersection of two different closed extents. We call these types “pure hp-concepts”,
“semi-pure hp-concepts” and “mixed hp-concepts” respectively.

Definition 6. Given a hp-concept (A, h) ∈ (G1, (H,�), Δ∃) we say that:

(A, h) is “pure” iff A�� = A′′ (30)

(A, h) is “semi-pure” iff A�� ⊆ A′′ or A′′ ⊆ A�� (31)

(A, h) is “mixed” iff A�� ∩ A′′ �= ∅ and A�� � A′′ and A′′ � A�� (32)

Example 5. In Table 6, A3 is a pure hp-concept extent since it is closed in both com-
ponents. A4 is a semi-pure hp-concept extent since it is closed in the pattern structure
component but not in the relational attribute component. A5 is a mixed hp-concept as it
is closed in the hp-lattice but not in either of its components.

In order to obtain the whole set of hp-concepts, it is not sufficient to calculate the
sets of pattern concepts and formal concepts from its respective components and match
them using Proposition 5. Doing so only provides us with the set of pure and semi-pure
hp-concepts, while the set of mixed hp-concepts will be missing. In the following, we
describe our method to compute the whole set of hp-concepts.



108 V. Codocedo and A. Napoli

Table 7. Scaled representation context for the running example. Patterns in D are represented by
cardinals from 2 to 33 (number 1 was eliminated as it references the pattern concept �).

D Pr

2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233 aw
:C

0
aw

:C
1

aw
:C

2
aw

:C
3

aw
:C

4
aw

:C
5

aw
:C

7

g1 ××××××× ××××× ×
g2 ×××××××××××× ××× ××
g3 ×× ×× ××× ××× × ×
g4 ×××× ×××× ×××× ××× ×
g5 ××× ××× × ×× × ××
g6 ×××××××× × ×× ×
g7 ×××× ×× × ×× ×
g8 ×× ×× ×× × ×× ×
g9 ×× ×× × ××× ×× ×

4.3 Calculating the hp-lattice

The heterogeneous pattern structure (G1, (H,�), Δ∃) has been defined as a standard pat-
tern structure and thus a standard algorithm to calculate pattern concept lattices can be
used to obtain the hp-lattice. Some of these algorithms have been described and dis-
cussed in [6]. However, a much simpler manner to calculate the hp-lattice is through
the use of a “scaled representation context”.

A “representation context”, as explained in [3], is a mechanism of complex data bi-
narization. The pattern concepts of a pattern structure and the formal concepts of its de-
rived representation context are in 1-1 correspondence and furthermore, their extents are
the same [3,7]. In the particular case of a heterogeneous pattern structure as described in
this work, we use the representation context of the pattern structure component which
is later “relationally scaled” in terms of traditional RCA (see Section 2.1).

Definition 7. Let (G1, (H,�), Δ∃) be a heterogeneous pattern structure with compo-
nents (G1, (D,�), δ) and (G1, Pr, I). The “scaled representation context” is defined as
(G1, D ∪ Pr, J) where the incidence relation is:

(g, x) ∈ J ⇐⇒ x * δ(g) or x ∈ ρ∃r (g); ∀g ∈ G1 and x ∈ (D ∪ Pr)

In other words, (G1, D ∪ Pr, J) is the representation context of the pattern struc-
ture (G1, (D,�), δ) plus the relational scaling of (G1, Pr, I). It can be shown that, in
fact, this “scaled representation context” is isomorphic to the representation context of
(G1, (H,�), Δ∃). For the running example, we constructed the scaled representation con-
text as depicted in Table 7. In this context, patterns and relational attributes are treated
equally, hence the attribute set D ∪ Pr. Patterns in D were filtered using a similarity
threshold as described in [5], since the complete non-restricted pattern lattice contain a
little more than 100 concepts. Incidentally, the filter by similarity applied to the calcu-
lation of D caused the hp-lattice derived from the context in Table 7 to contain only pure
and semi-pure, i.e. their extents are either closed under (·)� or (·)′ or both.

While there are some drawbacks w.r.t. the computational costs associated with the
calculation of the formal concepts of the representation context, in this work we disre-
gard them favouring the simplicity of the combined model.



A Proposition for Combining Pattern Structures and RCA 109

5 Discussion and Conclusions

In Section 3.3 we proposed two questions that we discuss in the following.
Is it possible for us to find sub-regions in the space of LV values related to domain
knowledge elements? Indeed, we can. A hp-concept describes exactly this in its intent
as a relation of an interval pattern and a set of annotations in the Wordnet taxonomy.
Moreover, these relations can be better described in the form of association rules [4].
Particularly, we are searching for those association rules with a premise in the space of
latent variables and a consequence in the space of relational attributes, For example, we
have the rule 6 ↔ aw : C4 which means that the latent variable region in the interval
pattern numbered 6 implies the Wordnet concept “People” as shown in Figure 3. While
all kinds of association rules exist in the lattice of the scaled representation context,
we are only interested in those related to our specific problem. Figure 3 presents a
graphical representation for the association rules extracted on the running example.
The map represents what can be called a “labelled hierarchical document clustering”
[8] over the space of latent variables. In the map, the region marked as “Activity” is
actually a union of two contiguous regions.

How can we characterize the relations among sub-regions in the space of LV val-
ues and domain knowledge elements? We have already described three types of hp-
concepts, namely pure, semi-pure and mixed. In the following, we provide them with a
characterization. Let us first introduce the Jaccard index [8] in terms of the hp-concept’s
extents and the extents of its components as follows (| · | represents set cardinality):

J(A��, A′′) =
|A�� ∩ A′′|
|A�� ∪ A′′| =

|A��|
|A�� ∪ A′′|

Pure hp-concepts are interesting since they represent strong coherent relations between
clusters in different spaces. Moreover, for any given pure hp-concept (A, h), the Jaccard
index J(A��, A′′) = 1. Consider for example, the pure hp-concept with extent g1 − g5
(region 6) which represents a “closed” region in the latent variable space related to the
topic “People”, i.e. outside this region, there are no documents related to “People”. We
can also relate “pure hp-concepts” as describing necessary and sufficient conditions of
a defined concept in the description logics framework (DL) [1]. In this case, documents
in region 6 have the necessary and sufficient condition of being labelled with the anno-
tation “People”.

A semi-pure hp-concept represents a directional coherence, i.e. either A�� ⊆ A′′ or
A′′ ⊆ A��. The Jaccard index is determined by A��/A′′ in the first case or A′′/A��

in the later. For example, the hp-concept with extent g6 − g7 (region 22) contains doc-
uments related to “Illness and “Surgery”, but it does not contain all of them (i.e. g1
is an exception). Thus, we can call a semi-pure hp-concept an “open” region in the la-
tent variable space. In DL terms, semi-pure hp-concepts represent necessary conditions,
i.e. region 22 have the necessary but not sufficient condition of being labelled with the
annotation “Surgery”. Mixed hp-concepts represent a weak coherence of clusters. In
general, their Jaccard index will be lower than the index of semi-pure hp-concepts.

Finally, we can conclude that the technique presented in this paper is able to find use-
ful relations among convex latent variable regions and domain knowledge which allows



110 V. Codocedo and A. Napoli

Table 8. Table showing an imaginary mixed hp-concept

Ai objects (Ai)
�� (Ai)

′′ A��

Aa {g1, g3, g4} {g1, g2, g3, g4} {g1, g3, g4, g5} {g1, g3, g4}
A�a = (〈[0.014, 0.118][−0.413,−0.238]〉, {aw : C4})

g5 

g2 

Fig. 3. Labelled document clusters using association rules from the hp-lattice with magnification
on documents g2 and g5

giving a proper characterization to the latent variable space, and hence, the latent vari-
ables themselves. This is possible due to the simultaneous representation of documents
in the latent variable vectorial space and the set of relational attributes as hp-concepts.

The implications of this work are multiple. In this work we have superficially de-
scribed some connections with descriptions logics. Furthermore, the notion of mixed
hp-concepts, left unexplored in this work, lead us to think that they may be useful for
annotation and data correction purposes. Other application domains seem also to fit as
heterogeneous pattern structures. For example, in image annotation, images are charac-
terized as vectors of features which are then aligned with annotations in the Wordnet
taxonomy.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
Description Logic Handbook: Theory, Implementation, and Applications. Cambridge Uni-
versity Press, New York (2003)

2. Deerwester, S., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.: Indexing by la-
tent semantic analysis. Journal of the American Society for Information Science 41(6) (1990)
1097–4571

3. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S.,
Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg
(2001)



A Proposition for Combining Pattern Structures and RCA 111

4. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (De-
cember 1999)

5. Kaytoue, M., Assaghir, Z., Napoli, A., Kuznetsov, S.O.: Embedding tolerance relations in
formal concept analysis. In: Proceedings of the 19th ACM International Conference on In-
formation and Knowledge Management -CIKM 2010, p. 1689. ACM Press, New York (2010)

6. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal
concept analysis. In: Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, vol. 2, pp. 1342–1347 (November 2011)

7. Kuznetsov, S.O.: Pattern Structures for Analyzing Complex Data. In: Sakai, H., Chakraborty,
M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 33–
44. Springer, Heidelberg (2009)

8. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval (July 2008)
9. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: A proposal for combining Formal

Concept Analysis and description Logics for mining relational data. In: Kuznetsov, S.O.,
Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 51–65. Springer, Heidelberg
(2007)

10. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept analysis: min-
ing concept lattices from multi-relational data. Annals of Mathematics and Artificial Intelli-
gence 67(1), 81–108 (2013)

11. Srivastava, A., Sahami, M.: Text Mining: Classification, Clustering, and Applications, 1st
edn. Chapman & Hall/CRC (2009)

12. Trefethen, L., Bau, D.: Numerical Linear Algebra. Society for Industrial and Applied Math-
ematics, SIAM (1997)

13. van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A New Incremental Algorithm for
Constructing Concept Lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961,
pp. 372–385. Springer, Heidelberg (2004)



RCA as a Data Transforming Method:
A Comparison with Propositionalisation

Xavier Dolques1, Kartick Chandra Mondal2, Agnès Braud2,
Marianne Huchard3, and Florence Le Ber1

1 ICube, University of Strasbourg/ENGEES, CNRS
{xavier.dolques,florence.leber}@engees.unistra.fr

2 ICube, University of Strasbourg, CNRS
{mondal,agnes.braud}@unistra.fr

3 LIRMM, University of Montpellier 2, CNRS
huchard@lirmm.fr

Abstract. This paper aims at comparing transformation-based appro-
aches built to deal with relational data, and in particular two approaches
which have emerged in two different communities: Relational Concept
Analysis (RCA), based on an iterative use of the classical Formal Con-
cept Analysis (FCA) approach, and Propositionalisation coming from
the Inductive Logic Programming community. Both approaches work by
transforming a complex problem into a simpler one, namely transform-
ing a database consisting of several tables into a single table. For this
purpose, a main table is chosen and new attributes capturing the in-
formation from the other tables are built and added to this table. We
show the similarities between those transformations for what concerns
the principles underlying them, the semantics of the built attributes and
the result of a classification performed by FCA on the enriched table.
This is illustrated on a simple dataset and we also present a synthetic
comparison based on a larger dataset from the hydrological domain.

1 Introduction

In several applications, data present various characteristics (e.g. many-valued,
temporal, spatial) which are not easy to take into account. Relational data in
particular are generally transformed into a single table to be processed by data
mining methods. In the field of Inductive Logic Programming, propositionali-
sation approaches (PA) aim at performing such transformations [1]. These ap-
proaches can be divided into database-oriented and logic-oriented such as the
HiFi method [2]. HiFi allows to build features that are first-order logic conjunc-
tions from related tables. In the field of Formal Context Analysis (FCA, [3]),
relational information is addressed by Relational Concept Analysis (RCA, [4]).
It has been designed to handle several formal contexts, corresponding to several
categories of objects, and several relations between these objects, based on an
iterative use of the classical Formal Concept Analysis algorithm. RCA classifies
the objects of the different categories in lattices that are connected via relational

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 112–127, 2014.
c© Springer International Publishing Switzerland 2014



RCA as a Data Transforming Method 113

attributes. The analysis often focuses on a main category of objects, classified in
a lattice which is the central point for analyzing data, while navigating towards
the other, secondary lattices. Both methods enable us to turn the objects linked
to a given object into special attributes, that are propositional features for PA
or relational attributes for RCA.

In this paper we propose to compare the two methods, focusing on the se-
mantics of the built attributes, in the context of acyclic data. FCA was used
as a common classification method: it was applied on the propositional features
obtained by the HiFi method from a given relational dataset and the resulting
lattice was compared to the one obtained by the RCA method on the same re-
lational dataset. We detail our comparison on a simple example about pizzas
and their ingredients. Another comparison is also performed on a larger dataset
from the hydrological domain. The lattices obtained appeared to be isomorphic
and allowed to reveal the links between the propositional features in HiFi and
the concept generators in RCA.

The paper is organized as follows. Section 2 describes a simple example that is
used in Section 3 and 4 to introduce the principles of the RCA and Proposition-
alisation approaches. Section 5 details the results of the comparison performed
both on the simple example and on the real dataset. Related work is described
in Section 6. Section 7 concludes and draws some perspectives of this work.

2 A Motivating Example

The considered objects of our dataset (see Table 1) are people, pizzas, and in-
gredients. People are farmers described by their current production method-
ology (organic versus conventional). Pizzas are described by some typology of
their shape (thin, thick, calzone). Ingredients are described by their category
(fruit/vegetable, meat, fish, dairy). Two relations link these objects: People pre-
fer some pizzas, pizzas have some ingredients.

A group of people (Juliet, Nancy and Alice) likes at least one pizza containing
one dairy ingredient. A subgroup of this group (Nancy and Alice) corresponds
to the conventional farmers and we deduce that in this dataset all conventional
farmers like at least one pizza containing one dairy ingredient.

For extracting this kind of knowledge from the various relations, it is worth
noting that several of them have to be crossed (here the relations Prefers and
HasIngredient). Besides, the group Juliet, Nancy and Alice has initially no
pizza in common and no common production methodology, because Juliet is an
organic farmer, while Nancy and Alice are conventional farmers. Thus there is
no direct reason for grouping these three people. The group Juliet, Nancy and
Alice can be formed after two classification steps: (1) the recognition of pizzas
Arctic, Lorraine, ThreeCheeses, and FourCheeses as belonging to the group D
of pizzas with at least one dairy ingredient; (2) the fact that Juliet, Nancy and
Alice like at least one pizza from the D group.

Such a kind of classification is the objective of the two approaches that we
study in the following of this paper. This simple dataset can thus be used to
exemplify the properties of these two approaches.



114 X. Dolques et al.

Table 1. The dataset

People
Name ProdMethod

Arthur OrganicFarmer
John OrganicFarmer
Alice ConventionalFarmer
Juliet OrganicFarmer
Nancy ConventionalFarmer

Pizza
PizzaName Shape

Forest Thick
Occitane Calzone

ThreeCheeses Thin
FourCheeses Thin

Lorraine Thin
Arctic Thick

Ingredient
IngName Category

TomatoSauce FruitVegetable
Cream Dairy
Onion FruitVegetable
Bacon Meat
Salmon Fish

SoyCream FruitVegetable
Mozza Dairy

GoatCheese Dairy
Emmental Dairy

FourmeAmbert Dairy
EggPlant FruitVegetable
Mushroom FruitVegetable

Prefers
Name PizzaName

Arthur Forest
John Occitane

Alice FourCheeses
Lorraine

Juliet ThreeCheeses
Arctic

Nancy Arctic

HasIngredient
PizzaName IngName

Forest SoyCream
Mushroom

Occitane
TomatoSauce

Onion
EggPlant

ThreeCheeses

TomatoSauce
Mozza

GoatCheese
Emmental

FourCheeses

TomatoSauce
Cream
Mozza

GoatCheese
Emmental

FourmeAmbert

Lorraine
Cream Onion

Bacon
Mozza

Arctic
TomatoSauce
Cream Salmon

Mozza

3 Relational Concept Analysis

In this part, the principles of relational concept analysis are presented based on
the example described in Section 2. For more details about RCA, the reader is
invited to read [5] which refines notations of [4].

The pizza dataset cannot be directly handled by RCA, it must first be trans-
formed. Here, we choose to make a nominal scaling of the three tables People,
Pizza and Ingredient to obtain three object-attribute contexts, respectively
KPeople, KPizza and KIngredient. For example, in KPeople object-attribute con-
text, objects (GPeople) are people and attributes (MPeople) are OrganicFarmer
and ConventionalFarmer. IPeople contains a pair (p,m) if and only if p has
the ProdMethodm in People table of the initial dataset, e.g., the pair (Arthur,
OrganicFarmer) belongs to IPeople. Tables Prefers and HasIngredient give
rise to rPrefers and rHasIngredient object-object relations also using a nominal
scaling, e.g. rPrefers contains (Arthur, Forest). Finally we obtain a set of con-
texts and a set of relations between these contexts: {KPeople,KPizza,KIngredient},
{rPrefers, rHasIngredient}. More generally, such a structure is called a Relational
Context Family and defined as below.

Definition 1 (Relational Context Family (RCF)). A Relational Context
Family (denoted RCF) is a (K,R) pair where:

– K = {Ki}i=1,...,n is a set of Ki = (Gi,Mi, Ii) formal contexts (object-
attribute relations), where Gi is the set of objects, Mi is the set of attributes
and Ii ⊆ Gi ×Mi.

– R = {rj}j=1,...,m is a set of rj object-object relations where rj ⊆ Gi1 ×Gi2

for some i1, i2 ∈ {1, . . . , n}.

The principle of RCA consists in integrating object-object relations as new at-
tributes (called relational attributes) in formal contexts. A naive approach would



RCA as a Data Transforming Method 115

be to directly integrate relations as attributes of the form (relation, targetobject),
e.g. (HasIngredient,Mushroom), an attribute that could be assigned to the
Forest pizza. Such an approach would be able to discover the concept of pizzas
with dairies. But it is limited to this one-step deduction and it cannot go beyond.
The objective of RCA is to infer classifications based on the composition of sev-
eral relations, e.g. RCA will be able to group people preferring pizzas having at
least one dairy product among their ingredients. This is implemented in RCA
via the transformation of the object-object relations into relations between ob-
jects of one category, and concepts formed on objects of another category. Such
a transformation is made thanks to relational attributes and scaling operators.
These relational attributes will have the form q r(C) where q is a quantifier, r is
the relation and C is a concept. Theoretically, quantifiers can be chosen within
the set Q = {∀, ∃, ∀∃,≥,≥q,≤,≤q}. The most used quantifiers are:

– the existential quantifier (∃) which encodes the fact that an object o is in
relation by ∃r with a concept C if r(o) has a non-empty intersection with
Extent(C);

– the strict universal quantifier (∀∃) which encodes the fact that an object o
is in relation by ∀∃r with a concept C if r(o) is non-empty and included in
the extent of C.

Let us now consider the concept lattices given in Fig. 1, built using any
standard algorithm for FCA from the three formal contexts KPeople, KPizza,
and KIngredient. In the following we examine the transformation of the pizza-
ingredient relation rHasIngredient during its integration as new attributes for
describing pizzas. In the lattice of ingredients, Concept_Ingredient_5 repre-
sents the group of dairies. Besides, we observe that all pizzas, except Forest
and Occitane pizzas, contain at least one ingredient which is a dairy. This is
introduced as a relational attribute ∃HasIngredient(Concept_Ingredient_5)
shared by Lorraine, Arctic, ThreeCheeses and FourCheeses pizzas. Now, if
we consider people, Juliet, Nancy and Alice prefer at least one pizza of this
group, and they can be grouped into the concept of people that prefer at least
one pizza that contains a dairy ingredient. Furthermore, to illustrate the uni-
versal scaling operator, let us have a look at Concept_Ingredient_1, grouping
the fruits and vegetables. Forest and Occitane pizzas have all their ingredients
in the extent of this concept. This is introduced as a new relational attribute
∀∃HasIngredient(Concept_Ingredient_1) which can be assigned to Forest
and Occitane pizzas (highlighting the concept of vege pizzas). The pizzas that
are preferred by Arthur and John are all in the group of vege pizzas, an indication
to group these two people.

For defining the scaling operators, a generic function κ is introduced and
instantiated with (1) the existential and (2) the strict universal quantifiers:

κ : Q ×R ×
⋃

i=1,...,n 2
Gi →

⋃
i=1,...,n 2

Gi

(1) ∃ r Extent(C) → {o|r(o) ∩Extent(C) �= ∅}
(2) ∀∃ r Extent(C) → {o|r(o) ⊆ Extent(C) and r(o) �= ∅}

A scaling operator can now be defined as follows.



116 X. Dolques et al.

Fig. 1. Lattices for object-attribute relations Ingredient (L0
Ingredient), People (L0

People)
and Pizza (L0

Pizza) (step 0 of RCA)

Definition 2 (Scaling operator). Let K = (G,M, I) be a context, and r a re-
lation, where G is the domain of r; let Gir be the range of r, Kir = (Gir ,Mir , Iir )
another context, and Lir a lattice built on Kir ; q denotes a scaling quantifier.
The scaling operator S(r,q),Lir

over K yields the derived context (G+,M+, I+) =
S(r,q),Lir

(K), where:

– G+ = G,
– M+ = {′q r(c)′ | c ∈ Lir},
– I+ =

⋃
c∈Lir

κ(q, r, Extent(c))× {′q r(c)′}.
The rHasIngredient transformed by the existential scaling, considering the lat-

tice previously built for ingredients (see Fig. 1), is S(rHasIngredient,∃),L0
Ingredients

(KPizza). It is shown in Table 2 after the vertical triple bar. The original context
KPizza can thus be extended with relational attributes representing the relation
rHasIngredient between pizzas and ingredients.

Then, for each K context of K, the apposition of K (denoted by symbol ’|’)
with the respective results of the scaling upon each rj of R with G as domain
(1 ≤ j ≤ k), is used to build a new set of concepts (notations are taken from
Def. 2). This apposition is the relational extension of the K context considering
a scaling operator mapping ρ and a set of lattices L which is a union of concept
lattices including Lirj

, 1 ≤ j ≤ k:

Eρ,L(K) = K | S(r1,ρ(r1)),Lir1
(K) | . . . | S(rk,ρ(rk)),Lirk

(K)

Table 2 shows this result for KPizza, when considering ρ(rHasIngredient) = ∃
and the lattices of Fig. 1. If an additional relation connecting pizzas to another



RCA as a Data Transforming Method 117

Table 2. KPizza apposed to existential scaling of rHasIngredient. CI stands for ’Con-
cept_Ingredient’.

T
h
ic
k

T
h
in

C
al
zo

n
e

∃
H
as

In
gr

ed
ie
n
t(
C
I_

0)
∃

H
as

In
gr

ed
ie
n
t(
C
I_

1)
∃

H
as

In
gr

ed
ie
n
t(
C
I_

2)
∃

H
as

In
gr

ed
ie
n
t(
C
I_

3)
∃

H
as

In
gr

ed
ie
n
t(
C
I_

4)
∃

H
as

In
gr

ed
ie
n
t(
C
I_

5)

Forest × × ×
Occitane × × ×
ThreeCheeses × × × ×
FourCheeses × × × ×
Lorraine × × × × ×
Arctic × × × × ×

kind of objects, for example, IsAppreciatedBy, connecting pizzas to people had
been present in the dataset, then the relational extension of KPizza would include
the scaling upon IsAppreciatedBy too.

By extension, E∗
ρ,L(K) denotes the relational extension of K, which is com-

posed of all the relational extensions of all Ki in K (and L is a union of concept
lattices associated with all ranges of all relations).

E∗
ρ,L(K) = {Eρ,L(K1), . . . ,Eρ,L(Kn)}

In our example, if we consider only the existential scaling and the lattices of
Fig. 1, the relational extension of K would be composed of the relational exten-
sions of KPeople, KPizza and KIngredient. The relational extension of KIngredient

is simply KIngredient, because there is no outgoing relation. The relational exten-
sion of KPizzas has been shown in Table 2. The relational extension of KPeople

is KPeople apposed to S(rPrefers,∃),L0
Pizza

(KPeople).
Now a whole construction process consists in building a finite sequence of

contexts and concept lattices associated with (K,R) and ρ. The last sequence
is obtained when the fix point is reached. The first set of contexts (step 0) is
K0 = K. The contexts of step p are used to build the associated concept lattices.
The Lp set composed of the lattices at step p is used to calculate the relational
extension. The set of contexts at step p+1 is defined using the relational exten-
sion: Kp+1 = E∗

ρ,Lp
(Kp).

For our example, the fix point is obtained after three steps. The lattice for
ingredients is the same during all the process (see Fig. 1). The lattices for people
and pizzas are shown in Fig. 2 and 3. In L3

Pizza lattice, Concept_Pizza_7
represents the group of pizzas which contain at least one ingredient which is
a dairy. In L3

People lattice, Concept_People_12 represents the group of people
which prefer at least one pizza which contains at least one dairy ingredient.



118 X. Dolques et al.

Fig. 2. Lattice of people (L3
People) (step 3 of RCA)

Figure 4 presents the three concepts involved in these groups of people, pizzas
and ingredients respectively.

4 Propositionalisation: The HiFi Method

Propositionalisation has emerged within the field of Inductive Logic Program-
ming (ILP) [6]. Initially ILP was concerned with learning logic programs, and
ILP techniques have then been applied in relational data mining. In ILP, learning
is performed directly in the first-order logic setting, so that the space to search
is intractable when data are numerous. Propositionalisation [1] was proposed as
a mean to reduce this complexity. The idea is to shift from a representation in
first-order logic to an attribute-value one. This is usually done in two steps: (1)
computation of new attributes, called features, for the attribute-value represen-
tation (2) computation of the extensions (the values in the resulting propositional
table). For some techniques, the two steps are performed at the same time. It
is then possible to apply one of the many efficient propositional systems on the
propositional table. The logic-oriented approach HiFi [2] produces such a propo-
sitional table that can be then processed by FCA. Other logic-based approaches
exist but we have chosen HiFi for its similarities with RCA.

A database can be seen as a couple DB = (R, C), where R is a set of relations
ri(ai1 , ..., ain) and C is a set of reference constraints on some attributes of these
relations (ci : ajk → alm) (foreign keys). The database representation is directly
transformed into first-order logic, each relation becoming a predicate.

In propositionalisation, a main relation, let say r1, is chosen that corresponds
to the description of the object of interest. The other relations are then called
secondary. The aim of propositionalisation is to generate features that capture
the relevant information from the secondary relations to enrich the description



RCA as a Data Transforming Method 119

Fig. 3. Lattice of pizzas (L3
Pizza) (step 3 of RCA)

Fig. 4. Chained concepts for people (from L3
People), pizzas (from L3

Pizza) and ingredi-
ents (from L3

Ingredient) at step 3 of RCA (Objects in the extent that do not belong to
the simplified extent are signaled by �)

of objects from the relation r1. For example, if People is chosen as main table,
People is the object of interest, that is the one on which we focus our study.
Pizza, Ingredient, HasIngredient and Prefers are the secondary tables. Fea-
tures will capture information on objects in those four tables that are linked to
People. The two last relations will allow to work on relations between the differ-
ent objects represented in the database. C gives the links between the relations.

HiFi produces features which are function-free first-order conjunctions. Those
features are based on a template given by the user and belong to a specific class
of features called hierarchical features. A template defines the literals that may
appear in a feature, as well as some constraints on the arguments of a literal.
Let T be a template on the pizzas example:
T = People(−Name), P refers(+Name,−PizzaName), P izza(+PizzaName,
#Shape), P izza(+PizzaName, !Shape), HasIngredient(+PizzaName,−Ing
Name), Ingredient(+IngName,#Category).

In this template, Name, PizzaName, Shape, IngName and Category act
as types and indicate which arguments may share a variable. We can also notice



120 X. Dolques et al.

modes: + (intput), - (output), # (constant) and ! (ignored). The input mode
means that the argument will be a variable and it will be instantiated. The
output mode indicates an argument which is a variable that receives an already
instantiated value. At a position with a # mode, the argument should be a
constant. A feature contains literals of the template, moreover any variable that
appears as an input/output must appear in the feature as an output/input,
except if the variable occurs with a ! mode.

Templates in HiFi are hierarchical. This is obtained by ensuring that: (1)
every literal has at most one input argument, (2) there is a partial irreflexive
order on types implying that type t≺ type t′ whenever t appears as an input
and t′ as an output in some literal. The above template T is hierarchical: we can
check that any literal has at most one input argument and there is no pair of
types (t, t′) such that there exists a literal where t appears as an input argument
and t′ as an output argument, and another literal where it is the contrary.

A hierarchical feature is based on a hierarchical template and has exactly one
root (a literal with only output variables). It can be represented as a tree where
each literal li is a node ni, and an edge between ni and nj indicates that a
variable has an output occurrence in li and an input occurrence in lj .

HiFi avoids generating redundant features. Indeed, we can define equivalence
classes among the set of possible features, which correspond to features having
the same extension (they have the same values for all objects). HiFi generates a
set of features containing one representative feature for each equivalence class,
the one chosen being the smallest in the equivalence class. With template T ,
HiFi outputs the following set of features on the pizzas dataset (the _ notation
comes from the ! mode):

F1 : People(A),Prefers(A,B),HasIngredient(B,C), Ingredient(C,Dairy)
F2 : People(A),Prefers(A,B),HasIngredient(B,C), Ingredient(C,F ish)
F3 : People(A),Prefers(A,B),HasIngredient(B,C), Ingredient(C,Meat)
F4 : People(A),Prefers(A,B),Pizza(B,Calzone)
F5 : People(A),Prefers(A,B),Pizza(B, Thick)
F6 : People(A),Prefers(A,B),Pizza(B, Thick),Prefers(A,C),Pizza(C, Thin)
F7 : People(A),Prefers(A,B),Pizza(B, Thin)
F8 : People(A),Prefers(A,B),Pizza(B,_)

The corresponding propositional table is shown in Table 3. In this table,
ProdMethod is a proper attribute of the object of interest People and Fi are
boolean features generated by HiFi to bring relational information from the sec-
ondary tables, and thus enrich the description of People. For example, F1 is true
for people who prefers at least one pizza with ingredients of the dairy category,
it is false otherwise.



RCA as a Data Transforming Method 121

Table 3. Propositional table

ProdMethod F1 F2 F3 F4 F5 F6 F7 F8

Arthur OrganicFarmer - - - - + - - +
John OrganicFarmer - - - + - - - +
Alice ConventionalFarmer + - + - - - + +
Juliet OrganicFarmer + + - - + + + +
Nancy ConventionalFarmer + + - - + - - +

5 Methods Comparison

5.1 Discussion on the Example

On the one hand, the scope of the propositionalisation approach extends to the
building of features into a propositional table. On the other hand, the RCA
approach goes one step further by building concept lattices from a relational
extension. Figure 5 describes both approaches in parallel and highlights the
comparison points. The left part of the figure stands for the data transformation
part of the processes where relational tables are transformed into single propo-
sitional tables. The right part of the figure stands for a propositional algorithm,
here FCA. To compare both approaches, we find relevant to consider:

– the people relational extension (together with the concept lattices) with the
propositional table;

– the people concept lattice (together with the other concept lattices) with the
concept lattice built from the propositional table.

Relational
Database

Scaling Binary
Database

object-attribute
tables

FCA
Concept
Lattices

Rel.
Scaling

object-attribute
tables

+
rel. attributes

FCA
Concept
Lattices

object-object
tables

Feature Set
Propositional

table
FCA

Concept
Lattices

RCA

PROPOSITIONALISATION

Transformation
Propositional
algorithms

Fig. 5. RCA and propositionalisation processes described in parallel

The propositional table describes a binary relation in the same way as a formal
context. Objects are the same in the context and in the propositional table and
the attributes are the features found by the propositionalisation algorithm and
the initial attributes (here ProdMethod). A pair (o, a) is in the incidence relation
if a is an initial attribute and o owns that initial attribute or if a is a feature and
o is described by it. Thus, it is straightforward to build a concept lattice from a
propositional table. The lattice from Fig. 6 has been built from Table 3.



122 X. Dolques et al.

Fig. 6. The concept lattice Lprop of people described by features and proper attributes

This lattice structure is isomorphic to the one presented in Fig. 2 as they
have the same set of concept extents. Thus it appears relevant to study the
correspondences between concept intents as done below.

By considering concept extents, Concept_prop_0 from lattice Lprop can be
mapped to Concept_People_0 from lattice L3

people . Concept_prop_0 has for
sole feature People(A), P refers(A,B), P izza(B,_) (“people preferring at least
one pizza of any shape”). Concept_People_0 has for sole relational attribute
∃Prefers(Concept_Pizza_0). Concept_Pizza_0 has 2 relational attributes:
∃HasIngredient(Concept_Ingredient_0) (“pizza having at least one ingredi-
ent”) and ∃HasIngredient(Concept_Ingredient_1) (pizza having at least one
ingredient of the category fruit or vegetable). Hence, Concept_People_0 is the
concept of people preferring at least one pizza with at least one fruit or vegetable
(i.e. any pizza in the current dataset). HiFi’s goal is to keep the shortest feature
describing all the objects and that can be written with the chosen template. It is
sufficient to say that “people prefer at least one pizza of any shape” to describe
all the people in the dataset and nothing shorter can be written with the current
template.

Concept_prop_8 from lattice Lprop can be mapped to Concept_People_9.
Concept_prop_8 groups Alice and Juliet that own the following features:

1. People(A), P refers(A,B), P izza(B,Thin) which is in the proper intent
2. People(A), P refers(A,B), HasIngredient(B,C), Ingredient(C,Dairy)
3. People(A), P refers(A,B), P izza(B,_)

Concept_People_9also groups Alice and Juliet and owns the following relational
attributes:

1. ∃Prefers(Concept_Pizza_3) where Concept_Pizza_3 groups “thin piz-
zas”. This attribute is in the proper intent of Concept_People_9



RCA as a Data Transforming Method 123

2. ∃Prefers(Concept_Pizza_7) where Concept_Pizza_7 groups “pizzas
which contain at least one dairy ingredient”

3. ∃Prefers(Concept_Pizza_0) where Concept_Pizza_0 groups “all pizzas
that contain at least one ingredient and at least one fruit or vegetable ingre-
dient”

The mapping between Concept_prop_8 and Concept_people_9 relies on the
mapping between the feature which is the proper intent of Concept_prop_8 and
the relational attribute that generates the construction of Concept_people_9.

Concept_prop_7 describes Juliet and adds to the features inherited from
Concept_prop_8 the attribute OrganicFarmer and the following features:

1. People(A), P refers(A,B), P izza(B, Thick), P refers(A,C), P izza(C,
Thin)

2. People(A), P refers(A,B), HasIngredient(B,C), Ingredient(C,Fish)
3. People(A), P refers(A,B), P izza(B,Thick)

Concept_people_8 owns the attribute OrganicFarmer and the following rela-
tional attributes:

1. ∃Prefers(Concept_Pizza_3)
2. ∃Prefers(Concept_Pizza_7)
3. ∃Prefers(Concept_Pizza_0)
4. ∃Prefers(Concept_Pizza_6)
5. ∃Prefers(Concept_Pizza_1)

The proper intent of Concept_people_8 is empty. The minimal generators
(i.e. the smallest by inclusion subsets of the intent which have the intent as
image by the closure function) [7] of Concept_people_8 are:

– {∃Prefers(Concept_Pizza_6), OrganicFarmer}
– {∃Prefers(Concept_Pizza_7), OrganicFarmer}
– {∃Prefers(Concept_Pizza_3), OrganicFarmer}
– {∃Prefers(Concept_Pizza_3), ∃Prefers(Concept_Pizza_6)}
– {∃Prefers(Concept_Pizza_3), ∃Prefers(Concept_Pizza_1)}

If we discard the first three generators as they contain OrganicFarmer which
is initially present in the main table for HiFi, we find 2 minimal generators. By
replacing the references to other concepts by a generator of these concepts we
obtain respectively {∃Prefers(Thin), ∃Prefers(∃HasIngredient(Fish))} and
{∃Prefers(Thin), ∃Prefers(Thick)}. In Concept_prop_7, the feature of the
proper intent is related to the second expression as it is the shortest one. Both
Concept_pizza_3 and Concept_pizza_1 have a unique generator, respectively
the attributes thick and thin.

The link between a concept cRCA from L3
people and a concept cprop with same

extents appears to reside in the link between a concept generator of cRCA and
the feature from the proper intent of cprop. The goal of both approaches can
be seen as opposite. While HiFi will tend to provide the shortest description
that can discriminate a concept from any other one, RCA will provide the most
complete description of a concept.



124 X. Dolques et al.

5.2 Evaluation on a Real Dataset

We rely on a part of the Fresqueau database, representing data from Alsatian
streams and water areas (North-East of France) [8]. The data are either is-
sued from samples (e.g. biological data collected on stream sites), synthetic data
(e.g. stream typology, land cover) or general information issued from the liter-
ature (e.g. information about the aquatic species living in the streams). More
precisely in this paper we work with three many-valued tables. The first one
describes 20 stream sites. The second table gives the level of population for
65 macro-invertebrates collected on these 20 sites. The third one describes the
macro-invertebrates with 3 different life traits, i.e. their characteristics and func-
tioning (maximal size, aquatic state and reproduction mode), each life trait being
represented by several modalities (e.g. for the life trait maximal size there are 7
possible modalities going from less than 0.25cm to more than 8cm) and affinity
values. The total number of the modalities for all life traits is 19.

This dataset has been processed by HiFi and RCA (with the ∃ scaling quan-
tifier). HiFi template and RCA relational schema define the analysis framework.
The following template is used for HiFi: [Station(-s), presence(#abundance,+s,
-macroInv), presence(#abundance, +s, !macroInv), affinity(#level,+macroInv,
#modality), affinity(#level,+macroInv,!modality)]. Accordingly, the relational
schema for RCA has 3 formal contexts: Station, MacroInv, and Modality and 6
object-object relations: abundance-1, abundance-2, and abundance-3 from Sta-
tion to MacroInv and affinity-1, affinity-2, and affinity-3 from MacroInv to
Modality.

We found respectively 13460 features and 13461 concepts in the Station lattice.
The extent of each feature is the extent of a concept. The additional concept is
the bottom concept of the lattice, with an empty extent. So we verified that for
each feature can be associated a concept and that the lattice obtained from the
propositional table and the Station lattice are isomorphic.

6 Related Work

Data transformation is a main issue for all classification or automatic learning
methods, when dealing with complex or numerous data. Scaling operators are
used in FCA for transforming many-valued contexts into binary ones [3]. Such
an approach was also used to analyze complex data about life traits of aquatic
plants [9]. Statistical metrics can also be used for helping the transformation, e.g.
the χ2 distance was used for selecting the best scaling operator upon a numerical
context [10]. This last idea can be related to the metrics used to design decision
trees. A comparison between decision trees and dichotomic lattices (i.e. lattices
based on complemented contexts) has been presented in [11]. It was proven that
the lattice contained all the trees built on the same context.

In [12], many-valued contexts are transformed into a family of formal contexts
(under the guidance of a user objective) which is called the power context family
(this notion has been introduced in [13]). It represents all the k-ary relations on
the object set. From the concept lattices built on the formal contexts of the power



RCA as a Data Transforming Method 125

context family, concept graphs are extracted which, in turn, are organized into
a lattice. In [14], another approach for obtaining concept graphs is presented,
that relies on temporal concept analysis, where the conceptual scales are used
instead of the concept lattices of the k-ary relations. In these references, there
is no use of different scaling operators and a single-step construction is done
(comparatively to the iterative approach of RCA). In [12], graphs connecting
objects are classified, while in RCA, objects are classified depending on their
relations to other objects.

Relational data have been transformed into logical formulae within the frame-
work of logical concept analysis [15]. Object contexts are combined with rela-
tional contexts and equipped with a combined logic. Relational attributes are
defined as follows: (∃r.f)(x) =def ∃x′.(r(x, x′) ∧ f(x)). The concepts’ intents of
the resulting lattice contain either classical attributes (f) or relational attributes
(∃r.f). Meta-relations are also built for navigating from a concept to another.
Contrarily to RCA, no iteration is performed. In [16], authors propose a method
for computing a basis of general concept inclusions in Description Logics ELgfp

where cyclic concept definition has close connections with RCA.
In [17], authors aim at redesigning a database schema. To this end, the

database schema is encoded in a formal context and a kind of relational scaling
is done in order to represent foreign keys. Here we do not work at the schema
level, but at the object level, and the links between objects, rather than the
relations between the tables are the focus of the transformation.

Boolean Factor Analysis is applied to multi-relational data in [18]. Their rela-
tional factors are tuples of boolean factors extracted independently from the var-
ious data tables. In this approach, several schemas of connection can be applied
that are similar to the scaling operators of RCA (like existential or universal).
Compared to RCA, the boolean factors (that are included in relational factors)
are only a part of the formal concepts that could be built from the object-
attribute tables, while in RCA all such formal concepts are initially considered.
Besides, the process does not iterate.

The authors of [19] address the navigation of SPARQL query answers in con-
cept lattices. They propose a transformation of an RDF graph to a formal context
where relations are encoded as attributes. The concept lattice helps analyzing
the query answers through their classification.

Reference [20] also considers objects connected by relations. It introduces a
Galois connection (and the derived concept lattice) which associates a table
(variables and the corresponding tuples) to a description that takes the form of
a windowed s-structure. Such a windowed s-structure (designed to be a form of
a query) is roughly a graph with edges labelled by the relations and with some
nodes labelled by variables. There are some similarities between the windowed
s-structures, the features and the relational attributes (when they are unfolded).
In RCA, concepts correspond to tables with only one variable and finding the
equivalent of the tables with more than one variable would rely on navigating on
(potentially) several lattices and considering queries like in [21]. Besides, in [20]



126 X. Dolques et al.

only existential queries are expressed and there is no iteration, thus no possibility
to progressively find the concepts.

7 Conclusion

Several approaches exist in the literature to extract knowledge from relational
data, using different data transformation methods. In this paper, we focus on
two approaches, namely Relational Concept Analysis and Propositionalisation,
which we compare on a small example and on a real dataset. We identify simi-
larities in their objectives and between the features of the Propositionalisation
approach and the generators in FCA approach. As future work we would like to
evaluate the two approaches on other datasets to confirm the practical feasibility
and the similar results, using different tunings including step number (for RCA),
frequency or feature literal maximum number (for propositionalisation). We also
plan to continue exploring the links between features and generators and in gen-
eral the theoretical and practical advantages and limits of both approaches. In
particular, we will study how other scaling operators used in the RCA frame-
work (universal or involving cardinality restrictions) and cyclic schemas can be
considered with the propositionalisation approach point of view. From this re-
search, we expect to define a combined methodology that would improve the
efficiency of knowledge extraction in relational data, for example by injecting
HiFi results in RCA, or using relational attributes obtained at a given RCA step
as information for HiFi.

Acknowledgement. This work was funded by ANR11_MONU14 Fresqueau.
We acknowledge Corinne Grac (LIVE) for advices about the hydrological dataset.

References

1. Lachiche, N.: Propositionalization. In: Sammut, C., Webb, G.L. (eds.) Encyclope-
dia of Machine Learning, pp. 812–817. Springer (2010)

2. Kuželka, O., Železný, F.: HiFi: Tractable Propositionalization through Hierarchical
Feature Construction. In: Late Breaking Papers, the 18th Int. Conf. on Inductive
Logic Programming, pp. 1–6 (2008)

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer (1999)

4. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Relational concept
analysis: mining concept lattices from multi-relational data. Ann. Math. Artif.
Intell. 67(1), 81–108 (2013)

5. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: Soundness and com-
pleteness of relational concept analysis. In: Cellier, P., Distel, F., Ganter, B. (eds.)
ICFCA 2013. LNCS, vol. 7880, pp. 228–243. Springer, Heidelberg (2013)

6. Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods.
Journal of Logic Programming 19(20), 629–679 (1994)

7. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD Int. Confer-
ence on Management of Data, pp. 207–216 (1993)



RCA as a Data Transforming Method 127

8. Grac, C., Le Ber, F., Braud, A., Trémolières, M., Bertaux, A., Herrmann, A.,
Manné, S., Lafont, M.: Programme de recherche-développement Indices – rap-
port scienfique final. Contrat pluriannuel 1463 de l’Agence de l’Eau Rhin-Meuse,
LHYGES – LSIIT – ONEMA – CEMAGREF (2011)

9. Bertaux, A., Le Ber, F., Braud, A., Trémolières, M.: Identifying ecological traits:
A concrete FCA-based approach. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009.
LNCS (LNAI), vol. 5548, pp. 224–236. Springer, Heidelberg (2009)

10. Hereth, J., Stumme, G., Wille, R., Wille, U.: Conceptual knowledge discovery and
data analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS (LNAI),
vol. 1867, pp. 421–437. Springer, Heidelberg (2000)

11. Guillas, S., Bertet, K., Ogier, J.M., Girard, N.: Some links between decision tree
and dichotomic lattice. In: 8th Int. Conf. on Concept Lattices and Applications,
CLA 2008, Olomouc, Czech Republic, pp. 193–205 (2008)

12. Prediger, S., Wille, R.: The Lattice of Concept Graphs of a Relationally Scaled
Context. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 401–414.
Springer, Heidelberg (1999)

13. Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Delugach, H.S.,
Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS, vol. 1257,
pp. 290–303. Springer, Heidelberg (1997)

14. Wolff, K.E.: Relational Scaling in Relational Semantic Systems. In: Rudolph, S.,
Dau, F., Kuznetsov, S.O. (eds.) ICCS 2009. LNCS, vol. 5662, pp. 307–320. Springer,
Heidelberg (2009)

15. Ferré, S., Ridoux, O., Sigonneau, B.: Arbitrary Relations in Formal Concept Anal-
ysis and Logical Information Systems. In: Dau, F., Mugnier, M.-L., Stumme, G.
(eds.) ICCS 2005. LNCS (LNAI), vol. 3596, pp. 166–180. Springer, Heidelberg
(2005)

16. Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite
model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933,
pp. 46–61. Springer, Heidelberg (2008)

17. Stanley, R., Astudillo, H., Codocedo, V., Napoli, A.: A Conceptual-KDD Approach
and its Application to Cultural Heritage. In: 10th Int. Conf. on Concept Lattices
and Their Applications, CLA. CEUR Workshop Proceedings, vol. 1062, pp. 163–
174 (2013)

18. Krmelova, M., Trnecka, M.: Boolean Factor Analysis of Multi-Relational Data.
In: 10th Int. Conf. on Concept Lattices and Their Applications, CLA 2013, La
Rochelle, France. CEUR Workshop Proceedings, vol. 1062, pp. 187–198 (2013)

19. Chekol, M.W., Napoli, A.: An FCA Framework for Knowledge Discovery in
SPARQL Query Answers. In: Int. Semantic Web Conference (Posters & Demos),
ISWC 2013, Sydney, Australia. CEUR Workshop Proceedings, vol. 1035, pp. 197–
200 (2013)

20. Kötters, J.: Concept Lattices of a Relational Structure. In: Pfeiffer, H.D., Ignatov,
D.I., Poelmans, J., Gadiraju, N. (eds.) ICCS 2013. LNCS, vol. 7735, pp. 301–310.
Springer, Heidelberg (2013)

21. Azmeh, Z., Huchard, M., Napoli, A., Hacene, M.R., Valtchev, P.: Querying rela-
tional concept lattices. In: 8th Int. Conf. on Concept Lattices and Their Applica-
tions, Nancy, France. CEUR Workshop Proceedings, vol. 959, pp. 377–392 (2011)



Ordinal Factor Analysis of Graded Data

Cynthia Vera Glodeanu1 and Jan Konecny2,


1 Technische Universität Dresden, 01062 Dresden, Germany
2 Department of Computer Science, Palacky University, Olomouc, Czech Republic

Cynthia-Vera.Glodeanu@tu-dresden.de,
jan.konecny@upol.cz

Abstract. In the last few years, concept factor analysis has been an
object of study in the FCA community. Its main idea is to use formal
concepts as factors to explain the data in a more concise way. We study
factorisation of graded tabular data by means of well-structured families
of concepts which have an ordinal character. This method enables us to
obtain a smaller number of items which explain the data while they still
have a clear and comprehensible meaning. We illustrate the method and
its applicability on a sports data set.

Keywords: Factor Analysis, Formal Concept Analysis, Fuzzy data, Or-
dinal factor.

1 Introduction

We present a generalisation of the ordinal factors introduced in [1] to the fuzzy
setting. Unlike the factorisation of graded data by means of L-concepts studied
so far in the literature [2], we propose the usage of well-structured families of
concepts with an ordinal character as factors for this task. The present method
naturally yields fewer factors while the factors still have a clear and comprehen-
sible meaning.

The paper is structured as follows. In Section 2 we recall some basic notions
from fuzzy sets, fuzzy logic and Formal Fuzzy Concept Analysis needed in the
sequel. Subsection 2.2 contains as well our running example. In Section 3 we recall
the factorisation of graded data by means of L-concepts. The main work starts
in Section 4 where we introduce and study ordinal factors for graded data. The
results are illustrated on a factorisation of a sports data set. Concluding remarks
and future work are presented in the last section.

2 Preliminaries

In Subsection 2.1 we briefly recall some notions from fuzzy sets and fuzzy logic
needed in the sequel. Subsection 2.2 contains a short introduction to Formal
Fuzzy Concept Analysis and our running example.

� Supported by the ESF project No. CZ.1.07/2.3.00/20.0059, the project is cofinanced
by the European Social Fund and the state budget of the Czech Republic.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 128–140, 2014.
c© Springer International Publishing Switzerland 2014



Ordinal Factor Analysis of Graded Data 129

2.1 L-Sets

In this section we present some basics about fuzzy sets and fuzzy logic. The
interested reader may find more details for instance in [3,4].

The underlying ideas of fuzzy sets and fuzzy logics were born in 1965, when
Zadeh published [5]. There, he noted that the descriptions used by humans are
neither black nor white and that there is a gradual transition from black to white.
He pointed out that classical mathematics is not able to grasp these unsharp
notions. Contradicting the principle of bivalence, Zadeh stated that there are
different cases of belonging to a fuzzy set besides “fully belonging” and “fully
not belonging”. Hence, being a member of a fuzzy set is a graded matter.

Thus, instead of having just “yes” and “no”, or 1 and 0, we have a potentially
infinite set of truth values. This set is denoted by L and one usually takes for it
the real unit interval [0, 1] with its natural ordering, where 0 denotes (full) falsity
and 1 (full) truth. Now we are looking for operations on L which model the logical
connectives. Since fuzzy theory is a generalisation of classical mathematics, these
operations should coincide with the classical ones if we restrict them to the truth
values 0 and 1, i.e., L = {0, 1}. The algebraic structures that satisfy the desired
properties (see [3]) are named residuated lattices.

Fuzzy theory was successfully used in both theoretical and real-world appli-
cations, extensive references can be found, for instance, in [6].

An algebra L := (L,∧,∨,⊗,→, 0, 1) is a complete residuated lattice if:

1. (L,∧,∨, 0, 1) is a complete lattice;
2. (L,⊗, 1) is a commutative monoid;
3. the adjointness property, i.e., a⊗ b ≤ c ⇔ a ≤ b → c holds for all a, b, c ∈ L.

Elements of L are called truth degrees, ⊗ and → are (truth functions of)
“fuzzy conjunction” and “fuzzy implication” and are called multiplication and
residuum, respectively.

A common choice of L has L = [0, 1], ∧ and ∨ as minimum and maximum,
and ⊗ and → as one of the three most important pairs of adjoint operations
on [0, 1]:

�Lukasiewicz: a⊗ b := max(0, a+ b− 1) and a → b := min(1, 1− a+ b),

Gödel: a⊗ b := min(a, b) and a → b :=

{
1, a ≤ b,

b, otherwise,

Product: a⊗ b := a · b and a → b :=

{
1, a ≤ b,

b/a, otherwise.

An L-set A on a set U is a mapping A : U → L. In an L-set A, A(u)
is interpreted as “the degree to which u belongs to A”. We denote by u ∈ A
the fact that A(u) = 1. If U = {u1, . . . , un}, then A can be denoted by A =
{a1/u1, . . . ,

an/un} meaning that A(ui) equals ai for each i ∈ {1, . . . , n}.
Let LU denote the collection of all L-sets on U . The operations on L-sets are

defined component-wise. For instance, the binary intersection of L-sets A,B ∈



130 C.V. Glodeanu and J. Konecny

LU is the L-set A∩B in U given by (A∩B)(u) = A(u)∧B(u) for each u ∈ U , etc.
The L-subsethood degree of two L-sets A,B ∈ LU is defined as S(A,B) :=∧

u∈U (A(u) → B(u)). Thus, S(A,B) represents the degree to which A is a subset
of B. In particular, we write A ⊆ B if and only if S(A,B) = 1.

For an L-set A ∈ LU and a truth value a ∈ L, the shift of A by a is an L-set
a → A ∈ LU given by (a → A)(u) := a → A(u) for all u ∈ U .

A binary L-relation R between the sets X and Y is an L-set R : X×Y → L.
For binary L-relations R ∈ LX×F , S ∈ LF×Y define composition R ◦ S ∈

LX×Y as follows

(R ◦ S)(x, y) =
∨
f∈F

R(x, f)⊗ S(f, y) for each x ∈ X, y ∈ Y .

2.2 Formal Fuzzy Concept Analysis

There are various approaches to Formal Fuzzy Concept Analysis. A survey can
be found in [7]. The first works connecting Formal Concept Analysis and Fuzzy
theory are [8,9]. In the following we give a brief introduction to Formal Fuzzy
Concept Analysis [9,10,4].

A triple (G,M, I) is called an L-context if I : G×M → L is a binary L-
relation between the sets G and M and L is the support set of some residuated
lattice. Elements from G andM are called objects and attributes, respectively.

The L-relation I assigns to each g ∈ G and each m ∈ M the truth degree
I(g,m) ∈ L to which the object g has the attribute m. The verbal meaning of
I(g,m) = l is “the object g has attribute m with the truth degree l”.

Small L-contexts can be represented by tables, such as the one in Figure 1.
The rows of the table are named after the objects and the columns after the
attributes. A value l in row g and column m means I(g,m) = l.

Given (G,M, I) the derivation operators (−)↑ : LG → LM and (−)↓ :
LM → LG for L-sets A ∈ LG and B ∈ LM are defined by

A↑(m) :=
∧
g∈G

(A(g) → I(g,m)), (1)

B↓(g) :=
∧

m∈M

(B(m) → I(g,m)) (2)

where g ∈ G and m ∈ M . Then, A↑(m) is the truth degree of the statement
“m is shared by all objects from A”, and B↓(g) is the truth degree of “g has all
attributes from B”.

To distinguish between the derivation operators in different L-contexts, we
sometimes use the L-relations of the L-contexts instead of (−)↑ and (−)↓.

An (L)-concept of (G,M, I) is a tuple (A,B) with A ∈ LG, B ∈ LM such
that A↑ = B and B↓ = A. Then, A is called the extent and B the intent
of (A,B). We denote the set of all L-concepts of a given context (G,M, I) by
B(G,M, I). Further, (A,B) is called an (L)-preconcept of (G,M, I) if A ⊆ B↓

and B ⊆ A↑.



Ordinal Factor Analysis of Graded Data 131

Let (A1, B1) and (A2, B2) be two L-concepts of (G,M, I). The L-concept
(A1, B1) is called a subconcept of (A2, B2), written (A1, B1) ≤ (A2, B2), if
and only if A1 ⊆ A2 (or, equivalently, B1 ⊇ B2). Then, we call (A2, B2) a
superconcept of (A1, B1). The set of all L-concepts of (G,M, I) ordered by this
concept order is called the L-concept lattice and is denoted by B(G,M, I) :=
(B(G,M, I),≤). That this name is not misleading is shown by theMain Theorem
on Concept Lattices [10,4] which proves that every concept lattice is a complete
lattice. For a stronger version of this theorem, including completely lattice L-
ordered sets, see [4].

Example 1. The L-context in Figure 1 will serve as our running example. The
data has been taken from [2] and contains the performances of the top 5 athletes
in the 2004 Olympic Decathlon games.

10 lj sp hj 40 hu di pv ja 15

S: Sebrle 0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75
C: Clay 1.00 1.00 0.75 0.75 0.50 1.00 1.00 0.50 1.00 0.50
K: Karpov 1.00 1.00 1.00 0.75 1.00 1.00 1.00 0.25 0.25 0.75
M: Macey 0.50 0.50 0.75 1.00 0.75 0.75 0.75 0.25 0.50 1.00
W: Warners 0.75 0.75 0.50 0.50 0.75 1.00 0.25 0.50 0.25 0.75

Fig. 1. Scores of top 5 athletes in the 2004 Olympic Decathlon scaled into 5-element
chain. Data taken from [2]. The abbreviations of the attributes have the following
meaning: 10 – 100 meters sprint race; lj – long jump; sp – shot put; hj – high jump; 40
– 400 meters sprint race; hu – 110 meters hurdles; di – discus throw; pv – pole vault;
ja – javelin throw; 15 – 1500 meters run.

Using the �Lukasiewicz adjoint pair, we obtain 129 L-concepts. For instance

({S, .75/C, .25/K, .5/M, .25/W}, {.5/10, lj, sp, hj, .75/40, hu, .75/di, .75/pv, ja, .75/15})

is an L-concept. Looking at its intent, we see that it contains the attributes long
jump, shot put, high jump, 110 meters hurdles and javelin with degree 1. Thus,
this concept can be interpreted as the ability to apply very high force in a very
short term, as explosiveness; . From the extent we see that Sebrle is an “explosive
athlete”, Clay fits this description strongly, Macey is partially explosive, whereas
Karpov and Warners are not so explosive athletes.

The initial variant of Formal Concept Analysis [11] was developed for discrete
data. Roughly speaking, by using L = {0, 1} one obtains the crisp setting from
the so-far introduced notions. Double-scaling [10] is a procedure that trans-
forms an L-context into a crisp formal context. The method works as follows: Let
(G,M, I) be an L-context and define for an L-set A ∈ LG the crisp set A� by

A� := {(g, ν) | g ∈ G, ν ∈ L, ν ≤ A(g)}.



132 C.V. Glodeanu and J. Konecny

Hence, A� ⊆ G� := G×L. For the L-relation I between G andM define a crisp
incidence relation I� between G� and M� given by

(g, ν) I� (m,λ) :⇐⇒ ν ⊗ λ ≤ I(g,m),

where ⊗ is the multiplication in the residuated lattice L. We have the following
important result:

Theorem 1 ([10]). Let (G,M, I) be an L-context and (G�,M�, I�) the cor-
responding double-scaled context. Then, B(G,M, I) ∼= B(G�,M�, I�).

3 Conceptual Factorisation

The factorisation of L-contexts was introduced in [2]. In accordance with the
rest of this paper we deviate from the authors’ notations.

Definition 1. A factorisation of an L-context (G,M, I) consists of two L-
contexts (G,F, IGF ) and (F,M, IFM ) such that

I(g,m) =
∨
f∈F

IGF (g, f)⊗ IFM (f,m) for all g ∈ G,m ∈ M.

The set F is called the (L-)factor set, its elements the (L-)factors, and
(G,F, IGF ) and (F,M, IFM ) are said to be the first and second factorisation
contexts. We write

(G,M, I) = (G,F, IGF ) · (F,M, IFM )

to indicate a factorisation.

We may associate to each factorisation a factorising family {(Af , Bf ) | f ∈ F}
given by the L-sets Af ∈ LG and Bf ∈ LM defined as Af (g) := IGF (g, f) and
Bf (m) := IFM (f,m) for all g ∈ G and for all m ∈ M . {(Af , Bf ) | f ∈ F} is a
factorising family of (G,M, I) if and only if

I(g,m) = (
⋃
f∈F

Af ◦Bf )(g,m) :=
∨
f∈F

Af (g)⊗Bf (m) (3)

for each g ∈ G,m ∈ M .
Expressed differently, {(Af , Bf) | f ∈ F} is a factorising family of (G,M, I)

if and only if

I(g,m) = (
⋃
f∈F

f IGF ◦ f IFM )(g,m) :=
∨
f∈F

f IGF (g)⊗ f IFM (m)

for each g ∈ G,m ∈ M .
These factorising families correspond precisely to those families of L-precon-

cepts of (G,M, I) that cover the L-relation I. By enlarging these preconcepts we
obtain a factorising family of L-concepts. Note however that this enlargement is
not unique. The advantage is thus that we are searching in a smaller set for a
covering of the L-relation without increasing the number of factors.



Ordinal Factor Analysis of Graded Data 133

Remark 1. In the following we will only work with factorisations that are concep-
tual, i.e., each (Af , Bf ) of a factorising family of (G,M, I) is also an L-concept
of (G,M, I).

From the definition of the factorisation contexts it is straightforward to see
that the relationship between objects and attributes from (G,M, I) is explained
by the factors of F . Indeed, object g has attribute m if and only if there is a
factor f which applies to g and for which m is one of its manifestations. As we
are dealing with L-sets the notions “applies to” and “is a manifestation of” have
truth values. Thus, for a factor f there is a degree Af (g) to which f applies to
g and a degree Bf (m) to which m is a manifestation of f . To obtain the degree
to which “f applies to g and m is a manifestation of f”, we have to compute
Af (g)⊗Bf (m).

It was shown in [2] that using L-concepts in the factorisation of L-contexts
yields the smallest possible number of factors. It follows trivially from the crisp
case [12] that finding an optimal factorisation is NP-hard. In the light of this
fact, [2] provides us with greedy approximation algorithms.

Example 2. In [13] the authors performed a conceptual factorisation on the de-
cathlon data from Figure 1. The factorisation contexts are displayed in Figure 2.
One can immediately see, that we have a data reduction. Instead of using 10
attributes to describe the athletes we only need 6. Further, the factors have also
a verbal meaning that can be deduced from their intents [13]. For instance, fac-
tor f2 is the L-concept from the previous example and stands for explosiveness,
factor f1 can be interpreted as the ability to run fast for short distances.

The first three factors are the most important ones as they cover 91% of the
L-relation of the L-context (i.e. IGE ◦ IEM (g,m) = I(g,m) in 91% of the pairs
(g,m) ∈ G ×M). To cover the remaining 9% we need the last three factors as
well. Further, by using only the first factor we can cover 56% of the L-relation,
and the first and the second cover 82%. Note that only exact matchings were
counted; for example IGE ◦ IEM (g,m) = 0.5; I(g,m) = 0.75 is not counted
toward the coverage.

f1 f2 f3 f4 f5 f6

S 0.50 1.00 0.75 1.00 0.75 0.75
C 1.00 0.75 0.50 0.75 0.50 1.00
K 1.00 0.25 0.75 0.75 1.00 0.25
M 0.50 0.50 1.00 0.75 0.75 0.50
W 0.75 0.25 0.50 1.00 0.25 0.25

10 lj sp hj 40 hu di pv ja 15

f1 1.00 1.00 0.75 0.75 0.50 1.00 0.50 0.25 0.25 0.50
f2 0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75
f3 0.50 0.50 0.75 1.00 0.75 0.75 0.75 0.25 0.50 1.00
f4 0.50 0.75 0.50 0.50 0.75 1.00 0.25 0.50 .025 0.75
f5 0.75 0.75 1.00 0.75 1.00 1.00 1.00 0.25 0.25 0.75
f6 0.75 1.00 0.75 0.75 0.50 1.00 1.00 0.50 1.00 0.50

Fig. 2. Factorisation contexts of an L-conceptual factorisation of the L-context from
Figure 1



134 C.V. Glodeanu and J. Konecny

In a conceptual factorisation of (G,M, I) the second factorisation context is
determined by the first. Indeed, we get from Bf = AI

f that

IFM (f,m) = l ⇐⇒ l = AI
f (m) = (f IGF )I(m).

Remark 2. It is possible to give necessary and sufficient conditions for L-contexts
(G,F, IGF ) and (F,M, IFM ) such that they are the conceptual factorisation con-
texts of (G,M, I). In the crisp setting this is done via a linkage between each
factorisation context to the complementary of the other. However, in the fuzzy
setting the law of double negation does not hold in general.

In the fuzzy setting, we can use isotone (non-dual) derivation operators [14] to
make such characterisation. However, the presentation of this result goes beyond
the scope of this paper.

4 Ordinal Factors

As we have seen in the previous section, the set F of factors may be large.
However even a large factorisation may be of avail provided the factors can be
divided into conceptually meaningful subsets. An instance of such a structure is
an ordinal factor, which represents a chain of conceptual factors.

Proposition 1. Let (G,F, IGF ) and (F,M, IFM ) be conceptual factorisation con-
texts of an L-context (G,M, I) and let E ⊆ F with IGE := IGF |G×E ∈ LG×E and

IEM := IFM |E×M ∈ LE×M . Then, (G,E, IGE) and (E,M, IEM ) also are concep-
tual factorisation contexts.

Proof. Let

(G,M, IE) := (G,E, IGE) ◦ (E,M, IEM )

and e ∈ E. Since E ⊆ F it follows that (eIGF , eIFM ) is an L-concept of (G,M, I)
and, since IE ⊆ I, also of (G,M, IE). Thus, (G,E, IGE) and (E,M, IEM ) are
conceptual factorisation contexts.

Definition 2. Let (G,M, I) be an L-context. We call I a row-staircase L-
relation if there is a linear order �G on G defined by

g1 �G g2 :⇐⇒ I(g1,m) ≤ I(g2,m) for all m ∈ M.

Similarly, we call I a column-staircase L-relation if there is a linear order
�M on M given by m1 �M m2 :⇐⇒ I(g,m1) ≤ I(g,m2) for all g ∈ G.

Remark 3. 1. Note that I ∈ LG×M is a row-staircase L-relation if and only if
gI1 ⊆ gI2 ⊆ · · · and I is a column-staircase L-relation if and only if mI

1 ⊆
mI

2 ⊆ · · · .



Ordinal Factor Analysis of Graded Data 135

2. Unlike the crisp case, in the fuzzy setting the property row-staircase of a L-
relation does not imply column-staircase and vice versa. Consider therefore
the L-relation I ∈ LG×M given in the left table in Figure 3. Evidently, I is
a row-staircase L-relation since g2 �G g1, i.e., g

I
2 ⊆ gI1 . However, I is not a

column-staircase L-relation since neither mI
1 ⊆ mI

2 nor mI
2 ⊆ mI

1 holds.
Observe that the incidence relation of the double-scaled context, the table
on the right in Figure 3, is neither column-staircase nor row-staircase. Thus
these notions cannot be directly derived from the crisp case.

m1 m2

g1 1 0.5
g2 0 0.5

(m1, 1) (m2, 1) (m1, 0.5) (m2, 0.5)

(g1, 1) 1 0 1 1
(g2, 1) 0 0 0 1
(g1, 0.5) 1 1 1 1
(g2, 0.5) 0 1 1 1

Fig. 3. An L-context and its double-scaled context with the �Lukasiewicz logic

Proposition 2. Let (G,M, I) be an L-context and let (G,F, IGF ), (F,M, IFM )
be its factorisation contexts. If (G,F, IGF ) is a column-staircase relation, then
(F,M, IFM ) is a row-staircase relation and vice versa.

Proof. Let f1, f2 ∈ F with f1 �F f2 in (G,F, IGF ). By Remark 3 we have that
Af1 = f IGF

1 ⊆ f IGF

2 = Af2 and thus Bf1 = AI
f1

⊇ AI
f2

= Bf2 . Hence, we obtain

f IFM
1 ⊇ f IFM

2 , i.e., f2 �F f1 in (F,M, IFM ). The converse is similar.

Definition 3. Let (G,F, IGF ) be the first factorising context of (G,M, I) and
E ⊆ F as in Proposition 1. We call (G,E, IGE) an ordinal factor, if it is a
column-staircase relation. We say that (G,M, I) has an ordinal factorisation,
if its first factorising context can be written as an apposition of ordinal factors.

Proposition 2 has a number of evident consequences that we sum up in the
following corollary:

Corollary 1. 1. An L-context is an ordinal factor of (G,M, I) iff its attribute
extents are a linearly ordered family of concept extents of (G,M, I).

2. For an ordinal factorisation there must be a partition {Fd | d ∈ D} of the
set F of factors such that within each class the attribute order of (G,F, IGF )
is linear.

3. If (G,M, I) has an ordinal factorisation, then (F,M, IFM ) can be written as
the subposition of ordinal factors.

Remark 4. The fuzzy ordinal factorisation can be considered to be a generali-
sation of both L-conceptual factorisation [2] and crisp ordinal factorisation [1].
That is because fuzzy concepts can be considered to be one-element chains and
because the defined notions become identical to those in [1] when {0, 1} is used
as the structure of truth-degrees.



136 C.V. Glodeanu and J. Konecny

Example 3. We have seen in Example 2 that the L-context from Figure 1 can
be factorised using 6 L-conceptual factors. Now, in Figure 4 there is another L-
conceptual factorisation of the same context but with 10 L-conceptual factors.
These however can be grouped into 3 ordinal factors.

f1
1 f1

2 f1
3 f1

4 f1
5 f2

1 f2
2 f2

3 f3
1 f3

2

S 1 .5 .5 .5 .5 1 .75 .75 1 1

C 1 1 1 .75 .5 .75 .5 .5 1 .75

K 1 1 1 1 1 1 .75 .25 .25 .25

M .75 .5 .5 .5 .5 1 1 .25 .5 .5

W 1 .75 .25 .25 .25 1 .5 .5 .25 .25

10 lj sp hj 40 hu di pv ja 15

f1
1 .5 .75 .5 .5 .5 1 .25 .25 .25 .5

f1
2 1 1 .75 .75 .5 1 .5 .25 .25 .5

f1
3 1 1 .75 .75 .5 1 1 .25 .25 .5

f1
4 1 1 1 .75 .75 1 1 .25 .25 .75

f1
5 1 1 1 .75 1 1 1 .25 .25 .75

f2
1 .5 .5 .5 .5 .75 .75 .25 .25 .25 .75

f2
2 .5 .5 .75 1 .75 .75 .75 .25 .5 1

f2
3 .75 1 1 1 1 1 .75 1 .75 1

f3
1 .5 1 .75 .75 .5 1 .75 .5 1 .5

f3
2 .5 1 1 1 .75 1 .75 .75 1 .75

Fig. 4. Ordinal factorisation of the L-context from Figure 1 using 3 ordinal factors

First let us turn our attention to the percentage of covering by the factors of
the L-relation of the context. Afterwards, we will discuss their interpretation.

By using only the first ordinal factor we can cover 60% of the L-relation of
the context and by using the first two ordinal factors 88% of the L-relation is
covered. Three ordinal factors are sufficient for 100%. In Figure 6 the L-relations
induced by the three ordinal factors are displayed.

Also in the case of ordinal factorisations, we have a verbal meaning of the
factors. The first factor f1 corresponds to the ability to run. Its most spe-
cific attributes (that appear in (f1

5 )
IFM ) in degree 1 are 100 and 400 meters

sprint race, 110 meters hurdles, but also long jump, shut put and discus throw
while 1500 meters run is present with degree 0.75. Clearly, Karpov has the best
ability to run, since each step of the factor applies to him with degree 1, i.e.,
(f1

1 )
IFM (S) = (f1

2 )
IFM (S) = · · · = (f1

5 )
IFM (S) = 1. The second athlete with the

best ability to run is Clay, the third one is Sebrle tightly followed by Macey.
Factor f2 can be interpreted as endurance. Among its most specific attributes

are 1500 meters run and 400 meters sprint race. Macey has the first two steps of
the factor with degree one, however the most specific attributes only apply with
0.25 to him. These attributes apply to Sebrle with degree 0.75.

Factor f3 corresponds to explosiveness, since its last step is factor f2 from the
conceptual factorisation from Figure 2.

In Factor Analysis it is popular to have a graphical representation of the
factors. Our attempt to represent the ordinal factors from Figure 4 is shown
in Figure 5. From there one can easily read how high the athletes load on the
different factors, i.e., what is the truth value to which each step of the factor



Ordinal Factor Analysis of Graded Data 137

f1 f2 f3

S

C

K

M

W

f1 f2 f3

10

lj

sp

hj

40

hu

di

pv

ja

15

Fig. 5. Graphical representation of the ordinal factors from Figure 4. For explanations
see Example 3.



138 C.V. Glodeanu and J. Konecny

f1 10 lj sp hj 40 hu di pv ja 15

S .5 1 .5 .75 .5 1 .5 .25 .25 .5

C 1 1 .75 .75 .5 1 1 .25 .25 .5

K 1 1 1 .75 1 1 1 .25 .25 .75

M .5 .5 .5 .25 .5 .75 .5 0 0 .25

W .75 .75 .5 .5 .5 1 .25 0 0 .25

f2 10 lj sp hj 40 hu di pv ja 15

S .5 .75 .5 .5 .75 .75 .25 .5 .25 .75

C .25 .5 .5 .5 .5 .5 .25 .25 .25 .5

K .25 .5 .5 .5 .5 .5 .25 .25 .25 .75

M .5 .5 .75 .75 .75 .75 .5 .25 .5 .1

W .5 .75 .5 .5 .75 .75 .25 .5 .25 .75

f3 10 lj sp hj 40 hu di pv ja 15

S .5 .75 .75 .75 .75 .75 .5 .75 .5 .75

C 0 0 .25 .5 .25 .25 .25 0 0 .25

K .5 .5 .5 .75 .75 .75 .5 .25 .25 .75

M .5 .5 .75 1 .75 .75 .75 .25 .5 1

W .5 .5 .5 .5 .75 .75 .25 .5 .25 .75

Fig. 6. L-contexts induced by the first, second and third L-ordinal factor from Figure 4.
Bold values indicate exact fit with the L-relation of the L-context from Figure 1.

applies to the athletes. The higher the grey rectangle, the larger is the truth
value of the applying. The same holds for the interpretation of the attributes
and factors. In both cases it is easy to compare the different athletes or attributes
with another regarding some ordinal factor.

Although the graphical representation of the factors is different than the visu-
alisations commonly used, it shows that Ordinal Factor Analysis of graded data,
when interpreted correctly, has some expressiveness similar to Factor Analysis
based on metric data.

Remark 5. Note that there is not a 1-1 correspondence between factorisations
in the fuzzy and crisp case. Consider therefore the L-context given in Fig. 7 with
the �Lukasiewicz logic. An L-conceptual factorisation is given by the concepts
({x, .75/y, z}, {a, .5/b, .5/c}) and ({x, .75/y, .5/z}, {a, .75/b, c}). These also form one
ordinal factor. However, for the double-scaled context 5 is the smallest possible
number of formal concepts that cover the crisp incidence relation and 2 crisp
ordinal factors [1] are needed for an ordinal factorisation.

a b c

x 1 0.75 1
y 0.75 0.5 0.75
z 1 0.5 0.5

Fig. 7. Example L-context used in Remark 5

Definition 4. An L-relation R ∈ LG×M is called a Ferrers L-relation iff
there are subsets A1 ⊂ A2 ⊂ A3 . . . ∈ LG and LM / B1 ⊃ B2 ⊃ B3 ⊃ . . .
such that R =

⋃
iAi ◦ Bi. R is called a Ferrers L-relation of L-concepts of

(G,M, I) iff there are L-concepts (A1, B1) ≤ (A2, B2) ≤ (A3, B3) ≤ . . . such
that R =

⋃
iAi ◦Bi.



Ordinal Factor Analysis of Graded Data 139

10 lj sp hj 40 hu di pv ja 15

Sebrle 1 1 3 3 2 1 3 2 3 2
Clay 1 1 1 1 1 1 1 3 3 1
Karpov 1 1 1 1 1 1 1 1 1 1
Macey 1 1 2 2 2 1 2 2 2 2
Warners 1 1 1 1 2 1 1 2 2 2

Fig. 8. Covering of the L-relation of (G,M, I) by three Ferrers L-relations, where the
numbers correspond with the three different L-relations. Note that these L-relations are
not disjoint. “1” means that the context cell is covered by the first Ferrers L-relation;
“2” means that the context cell is covered by the second Ferrers L-relation and not by
the first; “3” means that the context cell is covered by the third Ferrers L-relation and
not by the first two.

Remark 6. Note that unlike the crisp case, the concept lattice B(G,M,R) of a
Ferrers L-relation R ∈ LG×M is not a chain. However, a different result about
Ferrers relation still holds in a fuzzy setting, as shown in Proposition 3.

Proposition 3. Any Ferrers L-relation R ⊆ I is contained in a Ferrers L-
relation of concepts of (G,M, I).

Proof. Similarly to the discrete case. If Ai ◦ Bi ⊆ I, then Ai ◦ Bi ⊆ A↑↓
i ◦ A↑

i .

Thus, if R =
⋃

iAi ◦Bi ⊆ I, then R ⊆ R :=
⋃

iA
↑↓
i ◦A↑

i ⊆ I, and R is a Ferrers
L-relation of concepts.

Definition 5. The width of a factorising family F of L-concepts is the largest
number of pairwise incomparable elements of F . The ordinal factorisation
width of (G,M, I) is the smallest width of a factorising family of L-concepts.

Theorem 2. The following are equivalent:

1. (G,M, I) has ordinal factorisation width ≤ n.
2. (G,M, I) has an ordinal factorisation with ≤ n ordinal factors.
3. I can be written as a union of ≤ n Ferrers L-relations.

Proof. (1) ⇒ (2): The ordinal factorisation width of (G,M, I) is ≤ n if and only
if there is a factorising family F ⊆ B(G,M, I) that as an ordered subset of the
concept lattice has width ≤ n. By Dilworth’s Theorem we have that F can be
covered by ≤ n chains, i.e., linear ordered families of concepts. Thus, the extents
of each such family induces a column-staircase relation and therefore an ordinal
factor.

(2) ⇒ (3): Each ordinal factor is a column-staircase relation, i.e., the attribute
extents form a chain which can be written as a Ferrers L-relation.

(3) ⇒ (1): If I is the union of ≤ n Ferrers L-relations, then it can also be
written as a union of ≤ n Ferrers L-relations of concepts as shown in Proposi-
tion 3. Each Ferrers L-relation of L-concepts contains a chain of L-concepts of
(G,M, I) and hence these concepts form a factorising family of width ≤ n.



140 C.V. Glodeanu and J. Konecny

Example 4. Consider the L-context from Figure 1. Its L-relation can indeed be
covered by three Ferrers L-relations, as shown in Figure 8. So the ordinal width
of the L-context from Figure 1 equals three. This is not surprising since an
ordinal factorisation with three ordinal factors was given in Figure 4.

5 Conclusion

We presented a generalisation of ordinal factorisations [1] to the fuzzy setting.
The main idea is to use chains of concepts in the factorisation of graded data
instead of concepts alone, as it was done so far in the literature [2].

It turned out that the generalisation was not as smooth as expected. However,
this rises many interesting questions for future research. First of all we will
investigate the connection between crisp and fuzzy ordinal factorisations and the
possible linkage between the ordinal dimension and order dimension. Further,
we plan to apply the method on various real world data sets and compare the
results with the ones of well-established methods.

References

1. Ganter, B., Glodeanu, C.V.: Ordinal Factor Analysis. In: Domenach, F., Ignatov,
D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 128–139. Springer,
Heidelberg (2012)

2. Bělohlávek, R., Vychodil, V.: Factor analysis of incidence data via novel decompo-
sition of matrices. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548,
pp. 83–97. Springer, Heidelberg (2009)

3. Hájek, P.: The Metamathematics of Fuzzy Logic. Kluwer (1998)
4. Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. In: Systems

Science and Engineering. Kluwer Academic/Plenum Press (2002)
5. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)
6. Klir, G., Yuan, B.: Fuzzy sets and fuzzy logic - theory and applications. Prentice

Hall P T R, Upper Saddle River (1995)
7. Bělohlávek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Concept Lattices

and Their Applications, Olomouc, vol. 162, pp. 34–45. CEUR-WS.org (2005)
8. Burusco, A., Fuentes-Gonzáles, R.: The study of the L-fuzzy concept lattice ma.

Mathware and Soft Computing 1(3), 209–218 (1994)
9. Umbreit, S.: Formale Begriffsanalyse mit unscharfen Begriffen. PhD thesis, Martin-

Luther-Universitaet Halle-Wittenberg (1994)
10. Pollandt, S.: Fuzzy Begriffe. Springer, Heidelberg (1997)
11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer, Heidelberg (1999)
12. Bělohlávek, R., Vychodil, V.: Formal concepts as optimal factors in boolean factor

analysis: Implications and experiments. In: Eklund, P.W., Diatta, J., Liquiere, M.
(eds.) CLA. CEUR Workshop Proceedings, vol. 331. CEUR-WS.org (2007)

13. Bělohlávek, R., Krmelova, M.: Factor analysis of sports data via decomposition
of matrices with grades. In: Priss, U., Szathmary, L. (eds.) Concept Lattices and
Their Applications. CLA Conference Series, pp. 293–316, Universidad de Malaga
(Dept. Matemática Aplicada), Spain (2012)

14. Georgescu, G., Popescu, A.: Non-dual fuzzy connections. Archive for Mathematical
Logic 43(8), 1009–1039 (2004)



On Knowledge Spaces and Item Testing

Immanuel Albrecht and Hermann Körndle

Institute of Educational and Developmental Psychology,
Technische Universität Dresden, Dresden, Germany

{immanuel.albrecht,hermann.koerndle}@tu-dresden.de

Abstract. First, we briefly introduce some of the fundamental notions
of knowledge space theory and how they relate to formal concept analysis.
Knowledge space theory has a probabilistic extension which allows it to
be utilized in order to assess knowledge states by looking at responses to
a variety of test items, which are designed to demand performing different
sets of cognitive operations. Second, we introduce an easy extension to
lambda calculus in order to incorporate extra-logical operations. Further
we define a weight function on term reductions, which is to be used
as a model to calculate item response probabilities for test items after
task analysis. We use the new model in order to review the probabilistic
extension of knowledge space theory.

Keywords: knowledge spaces, lambda calculus, item testing.

1 Knowledge Spaces

1.1 Introduction to Knowledge Space Theory

The notion of knowledge spaces was first introduced by Doignon and Falmange
in 1985 as follows:

« The information regarding a particular field of knowledge is concep-
tualized as a large, specified set of questions (or problems). The knowl-
edge state of an individual with respect to that domain is formalized as
the subset of all the questions that this individual is capable of solving.
A particularly appealing postulate on the family of all possible knowl-
edge states is that it is closed under arbitrary unions. A family of sets
satisfying this condition is called a knowledge space. » [2].

Furthermore, there is a tightly connected notion of learning spaces, which are
knowledge spaces with two additional properties: First, one can achieve every
higher level of knowledge relative to one’s knowledge state by learning one item at
a time in a finite number of steps, and second, having a higher level of knowledge
does not prevent learning another item, which could have been learned from a
subordinate knowledge state. For the formal definition, see [4] 2.2.1.

Also, there is a probabilistic theory of knowledge spaces, which allows for
assessment of a subject’s knowledge state by evaluating realistic test item re-
sponses, which are prone to measurement errors – so called careless errors and
lucky guesses.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 141–156, 2014.
c© Springer International Publishing Switzerland 2014



142 I. Albrecht and H. Körndle

1.2 Definitions and Relation to Formal Concept Analysis

Definition 1. (See [4], 2.1.2 and 2.2.2) A pair (Q,K) is called a knowledge
structure, whenever Q is a set, and K is a family of subsets of Q, i.e. K ⊆ 2Q,
such that ∅ ∈ K and Q ∈ K. Furthermore such (Q,K) is called a knowledge
space, if K is also closed under

⋃
, i.e. if for all families with F ⊆ K,

⋃
F ∈ K.

Clearly, if (Q,K) is a knowledge structure, then K together with the set inclusion
form a complete lattice: Let F ⊆ K, then define the lattice join by

∨
F :=

⋃
F ,

which yields an element of K because K is closed under arbitrary unions. In
order to calculate the lattice meet, we may use the canonical equivalence∧

F =
∨

{K ∈ K | ∀F ∈ F : K ⊆ F}

The most obvious interpretation of knowledge spaces in terms of formal con-
texts would be (K,K,⊆), but it hides some of the structure of (Q,K) in the
sense that you have to look at the elements of the objects (or attributes) in or-
der to reconstruct Q. – Yet this operation is outside the scope of formal concept
analysis.

Another obvious link between knowledge structures and formal contexts is a
knowledge context1 (A,Q, I) where an individual a ∈ A incides with an item
q ∈ Q if the individual a is not capable of solving the item q [3, p.161].

For knowledge spaces (Q,K), it is possible to look at the context (K, Q, �/):
“The intents of the concepts induced by this knowledge context are the comple-
ments of the states in K with respect to Q.” [3, p.163]

Last, there is another obvious link that might seem odd at first, but resembles
some nice connection between features of knowledge space theory and features
of formal concept analysis.

Definition 2. (See [4], 3.7.1) Let (Q,K) be a knowledge structure. The prece-
dence relation � wrt. (Q,K) is defined as the binary relation on Q where for
q, r ∈ Q

q � r :⇐⇒ ∀K ∈ K : r ∈ K ⇒ q ∈ K

The precedence relation offers another way to think about the knowledge space
(Q,K) in terms of formal concept analysis. The defining equivalence for q � r
may be read as attribute implication: if the concept related to q is a subconcept
of the concept related to r, clearly all attributes of the latter are supposed
attributes of the former, too. This yields the formal context (Q,K, ε) where

ε := {(q,K) ∈ Q× K | q ∈ K}

Let (Q,K) be some knowledge space. Then for q ∈ Q, wrt. (Q,K, ε), we get

{q}′ = Kq := {K ∈ K | q ∈ K}
1 The term knowledge context is used for various notions that involve formal concept

analysis and knowledge spaces, though.



On Knowledge Spaces and Item Testing 143

Thus for q, r ∈ Q, if {q}′ ⊇ {r}′, then Kr ⊆ Kq, which means that for all K ∈ K,
r ∈ K ⇒ q ∈ K, and so

{r}′ ⊇ {q}′ ⇔ r � q

and it is easy to see that the single item extents for two indiscernible elements
q1, q2 ∈ Q – i.e. for all K ∈ K, q1 ∈ K ⇔ q2 ∈ K – are the same.

Furthermore, for X ∈ K, since X ⊆ Q, we see that the intent of a knowledge
state viewed as a set of objects is the principal filter of that state wrt. (K,⊆):

X ′ = {K ∈ K | ∀r ∈ X : r ∈ K} = {K ∈ K | X ⊆ K} = ↑(K,⊆) X

And we see further, that X ∈ K is a concept extent, i.e. X = X ′′:

X ′′ = {q ∈ Q | ∀K ∈ X ′ : q ∈ K} =
⋂

↑(K,⊆) X = X

So we see that knowledge states X ∈ K correspond to concepts (X,X ′) of
B(Q,K, ε).

Now, consider any extent X ⊆ Q, i.e. X ′′ = X . In this case, we know by
analogous arguments, that for K ∈ X ′, also ↑(K,⊆) K ⊆ X ′, but we cannot infer
that X ′ is a principal filter wrt. (K,⊆), as this short example demonstrates:

Example 1. Let Q = {a, b, c} and K = {∅, {a}, {c}, {a, b}, {a, c}, {b, c}, Q}. Since
K is closed under union, (Q,K) is a knowledge space.

{b}′′ = {{a, b}, {b, c}, Q}′ = {b} �∈ K

We see that {b}′ is not a principal filter wrt. (K,⊆), because the meet of K
viewed as complete lattice is incompatible with the set meet that is involved in
the attribute derivation operator of (Q,K, ε).

This situation usually arises, when performing a task requires the ability to
perform at least one of several distinct subtasks: For instance, if a means that a
student knows how to draw a circle with a pen using the left hand, and c means
that a student knows how to draw a circle using the right hand, then b could be
the ability to write the letter “o” in cursive. In this case, you cannot say that b
requires a, or that b requires c; and thus there is an abstract concept ({b}, {b}′)
in the concept lattice B(Q,K, ε), which does not correspond to a measurable
knowledge state with regard to the test items.

To sum it up, we may view K as a complete sub join-semi-lattice of B(Q,K, ε)
with the possibility that in some cases K may or may not be a complete sub
lattice of B(Q,K, ε).

1.3 Probabilistic Extension

First, we want introduce the general framework which is needed to establish
probabilistic methods for knowledge space theory.

Definition 3. (See [4], 11.1.2) A triple (Q,K, p) is called probabilistic knowl-
edge structure, if (Q,K) is a partial knowledge structure, where Q and K are fi-
nite, and if p : K → [0, 1] is a probability distribution on K, i.e.

∑
K∈K p(K) = 1.



144 I. Albrecht and H. Körndle

Definition 4. (See [4], 11.1.2) A quadruple (Q,K, p, r) is called basic proba-
bilistic model, if (Q,K, p) is a probabilistic knowledge structure, and if r is a
map r : 2Q×K → [0, 1] – called the response function – such that for all K ∈ K,
r(·,K) is a probability distribution on 2Q, i.e.

∑
R⊆Q r(R,K) = 1.

Local Independence The measurement of a test subject’s knowledge state is
most easy, if the probability that the test item response does not correctly reflect
the subjects knowledge state was only dependent on the item q ∈ Q and whether
the subjects state K contains q or not.

Definition 5. (See [4], 11.1.2) Let (Q,K, p, r) be a basic probabilistic model.
This model satisfies local independence, if there are vectors β, η ∈ RQ, such that
for all R ⊆ Q,

r(R,K) =

⎛
⎝ ∏

R ��q∈K

β(q)

⎞
⎠·
⎛
⎝ ∏

R�q∈K

(1− β(q))

⎞
⎠·
⎛
⎝ ∏

R�q/∈K

η(q)

⎞
⎠·
⎛
⎝ ∏

R ��q �∈K

(1− η(q))

⎞
⎠

Clearly, local independence means that careless error probability β(q) wrt. to a
test item q is the same even for two subjects with huge differences between their
respective knowledge states, which may not be appropriate in all situations, yet
it dramatically reduces the amount of parameters involved and seems reasonable
if both error probabilities are always small. The fact that the lucky guess prob-
ability η(q) is the same for these two subjects is even less of a problem, since
guessing probabilities usually can be reduced to negligibility by appropriate test
item design ([4], Remark 11.1.3 (b)). With local independence, one can easily
employ a standard χ2 test on the ratio of the maximum likelihood estimations
in order to verify, whether the negligibility of guessing is achieved. If this is the
case, the number of free parameters to deal with effectively halves in turn.

Learning Spaces

Definition 6. Let (Q,K) be a knowledge space. (Q,K) is called a learning space,
if for all K,L ∈ K with K ⊆ L, there are n ∈ N, and q1, . . . , qn ∈ Q, such
that for all i ∈ {1, . . . , n} there is a state K ∪ {q1, . . . , qi} ∈ K; and such that
K ∪ {q1, . . . , qn} = L. In this case we know that Q and K are finite.

The basic principle of the probabilistic extensions of learning in knowledge struc-
tures is stated as follows:

« The probability that, at the time of the test, a subject is in a state
K of the structure is expressed as the probability that this subject (i)
has successively mastered all the items in the state K, and (ii) has failed
to master any item immediately accessible from K. » [4, p.198]

This principle may be employed for assessing the knowledge state of some test
subject by looking at the subject’s responses to a series of test items. The details



On Knowledge Spaces and Item Testing 145

of such a procedure are given in Knowledge Spaces: Applications in Education [3,
pp.140-145] and another procedure involving Markov chains is given in Learning
Spaces [4]. For the sake of brevity we will give only a quick informal description
of the assessment algorithm found in [3]:

The assessment algorithm is based on a stochastic process defined by a se-
quence of random probability distributions Ln of the subject being in a certain
state K ∈ K, a sequence of random variables Qn that designate which test item
q ∈ Q is asked in the corresponding trial, and a sequence of random variables Rn

that yield 1, if the subject’s response in the trial was correct and 0 otherwise.
The process starts with some initial distribution L1, the probability of a certain
test item being asked in a trial depends on the history of the previous trials and
the probability distribution of that trial. The probability of the correct response
in a trial depends on the question q ∈ Q asked, the history of the previous
trials and the knowledge state distribution for that trial. The correct response
probability is deemed to be 1 − βq if the test item is mastered in the subject’s
latent state. This fact may be used to construct the assessed knowledge state of
the student, as the process “Ln(K0) almost surely converges to 1” for the latent
state K0 of the subject [3, p.143].

2 λ-μ-Calculus

Knowledge and learning space theory defines knowledge states such that they
are determined by the ability of a test subject to solve a test item. Therefore
we need to investigate how subjects solve test items, or how solution candidates
for test items may be constructed. This investigation benefits from a formal
apparatus of constructions and operations that is as general as possible. In Item
Construction and Psychometric Models [9] Tatsuoka argues that according to
Glaser [5] achievement tests must reflect the underlying cognitive processes of
problem solving, dynamic changes in strategies, and the structure of knowledge
and cognitive skills:

« The correct response to the item is determined by whether all cog-
nitive tasks involved in the item can be answered correctly. Therefore
the hypothesis would be that if any of the tasks would be wrong, then
there would be a high probability that the final answer would also be
wrong. » [9, p.108]

Tatsuoka suggests further, that properties and relations among microlevel and
invisible tasks should be explored and predicted [9], which “involves a painstaking
and detailed task analysis in which goals, subgoals, and various solution paths are
identified in a procedural network (or a flow chart). This process of uncovering
all possible combinations of subtasks at the microlevel is essential for making a
tutoring system perform the role of the master teacher [...]” [9].

« Identifying subcomponents of tasks in a given problem-solving do-
main and abstracting their attributes is still an art. It is necessary that



146 I. Albrecht and H. Körndle

the process can be made automatic and objective. However, we here as-
sume [...] that any task in the domain can be expressed by a combination
of cognitively relevant prime subcomponents. » [9, p.110]

We conclude that the formal apparatus for problem solving must have some way
to express extra-logical operations – which may be interpreted as the cognitively
relevant prime subcomponents of tasks in a given domain – and it must have
some way to express composed tasks and combinations of subtasks in great
generality. Our choice of the following extra-logically extended typed lambda
calculus as the formalization framework for test item analysis is motived as
follows: First, typed lambda calculus typically comes with an algorithm that
allows to check whether a given (untyped) lambda term is typable or not, which
may be seen as a very rough plausibility test of solution path candidates. Second,
types gracefully govern the input and output domains of prime and compound
operations. Third, complex task solutions do not have a strict order in which
subtasks have to be carried out, this corresponds to different reductions starting
from the same term. And last, a formal notion of extra-logical reductions may be
interpreted multifariously, for instance as invoking a random process that leads
to either a correct or an incorrect solution, as a skill requirement for a given
solution path, or as a step-by-step instruction, guideline, hint, etc.

2.1 λ-Calculus

First, we want to fix some definitions regarding the lambda calculus in order
to have something precise to refer to, but at the same time we want to point
out that our extension of the lambda calculus is quite natural and does not
depend on a specific way of formalization. As a general framework for different
possible lambda calculi, we use Pure Type Systems in a presentation found in
Kamareddine, Laan, and Nederpelt [7], which originates from Berardi [1] and
Terlouw [10].

Definition 7. (See [7], 4.16) Let V and C be disjoint sets, that do not contain
any of these symbols: “λ”, “Π”, “(”, “)”, “.”, and “:”. The set of terms wrt.
V and C is denoted by T (V,C). It is defined to be the smallest subset of the
support set |〈V ∪C ∪ {λ,Π, (, ), ., : }〉| of the free monoid2 generated by V ∪C ∪
{λ,Π, (, ), ., : }, such that V ∪ C ⊆ T (V,C) and for all A,B ∈ T (V,C) and all
x ∈ V:

((A)(B)) ∈ T (V,C), (λv : A.B) ∈ T (V,C), and (Πv : A.B) ∈ T (V,C)

As a notational convention, we may drop parentheses, if they can be restored by
successively adding parentheses, where the “(”-parentheses are added at the left-
most possible positions, and “)”-parentheses are added at the right-most possible
positions for λ and Π terms, and at the left-most possible position for application
2 The operation of the free monoid is denoted by juxtaposition, and the neutral element

is denoted by ε.



On Knowledge Spaces and Item Testing 147

terms: For instance, we may write λx : A.λy : B.C to denote the term (λx :
A.(λy : B.C)), and we may write xyz to denote ((((x)(y)))(z)), where A,B,C ∈
T (V,C) and x, y, z ∈ V.

Definition 8. Let V and C be sets that satisfy the conditions in Def. 7, and
let A,X ∈ T (V,C) and x ∈ V. The substitution of x in A by X is denoted
by A[x := X ]. A formal definition can be found in [6] 1A7 on page 3.3 Since
the concept of variable substitution is quite natural to any mathematics, here we
give only an informal definition: in A, we replace every occurrence of x with the
word X, unless it is part of B of a term sub word4 of the form (λx : A.B) or
(Πx : A.B), i.e. “λ” and “Π” bind variables right of “.”. For instance

((x)((λx : x.x)))[x := ((y)(z))] = ((((y)(z)))((λx : ((y)(z)).x)))

Definition 9. (See [7], 4.13) Let V and C be sets that satisfy the conditions in
Def. 7, and let →⊆ T (V,C) × T (V,C) a binary relation on terms. → is called
compatibility, if for all A,A′, B ∈ T (V,C) with A → A′, also the following holds:
(A)B → (A′)B, (B)A → (B)A′, λx : A.B → λx : A′.B, λx : B.A → λx : B.A′,
Πx : A.B → Πx : A′.B, and Πx : B.A → Πx : B.A′.

Definition 10. (See [7], 4.13) Let V and C be sets that satisfy the conditions
in Def. 7. The β-reduction relation wrt. (V,C) is the smallest compatibility on
T (V,C), denoted by →β, such that �β⊆→β; where �β⊆ T (V,C)×T (V,C) such
that for all A,B,C ∈ T (V,C) and x ∈ V

(((λx : A.B))(C)) �β B[x := C]

The reflexive and transitive closure of →β is denoted by 	β, the reflexive,
transitive and symmetric closure of →β is denoted by =β.

Remark 1. The notion of β-reduction (see Definition 11) is closely related to
the notion of α-conversion, which is a compatibility and equivalence relation on
T (V,C), such that

(λx : A.B) ≡α (λy : A.B[x := y]) and (Πx : A.B) ≡α (Πy : A.B[x := y])

if the variable y is not free in the left-hand term. This means that you may
rename bound variables, unless you would capture a free variable with the new
name. You may read the rest of this paper either by thinking of terms as terms
or as ≡α-equivalence classes. This is a standard feature of lambda calculus.

Definition 11. Let V and C be sets that satisfy the conditions in Def. 7, let
�x be a binary relation on T (V,C) and →x be the smallest compatibility with
�x⊆→x; further let n = {1, . . . , n} ⊆ N. A map r : n → T (V,C) is a finite
3 Or see [7] 4.12, but beware of missing x �≡ y and typos in 4.8 (swap A1 and A2 on

one side).
4 A term sub word of a term A is a term B, such that there are elements of the free

monoid C,D ∈ |〈V ∪ C ∪ {λ,Π, (, ), ., : }〉| with CBD = A.



148 I. Albrecht and H. Körndle

�x-reduction, if for all i ∈ n− 1 = n\{n}, r(i) →x r(i + 1); and if there are
maps

pre, post : n− 1 → |〈V ∪ C ∪ {λ,Π, (, ), ., : }〉| , redex: n− 1 → T (V,C)

such that for all i ∈ n− 1 :

pre(i)redex(i)post(i) = r(i) and

∃ti ∈ T (V,C) : redex(i) �x ti such that pre(i)tipost(i) = r(i + 1)

The set of all finite �x-reductions is denoted by ∇x, its subset of all finite
�x-reductions with r(1) = t for t ∈ T (V,C) is denoted by ∇t

x.

Definition 12. (See [7], 4.18) A tuple (V,C,S,A,R) is called pure type system
specification, if V and C are sets that satisfy the conditions in Def. 7; and if
S ⊆ C, A ⊆ S × S, and R ⊆ S × S × S. In this context, we call S the set of
sorts, A the set of axioms, and R the set of Π-formation rules.

These definitions are sufficient for our purposes. For a complete introduction to
lambda calculus and pure type systems, we refer you to [7], sections 4a through
4c.

2.2 μ-Extension

In this section, we want to define a generic extension of lambda calculus that
allows to deal with extra-logical operations. Since these operations are not part
of the lambda calculus, we need to specify a set of symbols which are regarded
as new constants from the point of some given lambda calculus, and we need
to specify a set of new derivation rules for typed terms that govern the correct
formal types of these symbols. Part of this work can be done by altering the
pure type system specification of the underlying lambda calculus, part of this
work has to be done by hand.

Definition 13. The μ-extension alphabet is defined to be the set M that con-
tains the distinct symbols “[”, “]”, “;”, “μi”, “νi”, and “mi” for all i ∈ N;5 i.e.

M = {[, ; , ]} ∪ {μi, νi,mi | i ∈ N}

The set of ν-constants Mν is defined to be the smallest subset of |〈M〉|, that
has the following properties: For all i ∈ N, mi ∈ Mν ; and for all i, k ∈ N, if
x1, . . . , xk ∈ Mν , then νi[x1; . . . ;xk] ∈ Mν .

The set of μ-constants M is defined as M := {μi | i ∈ N} ∪ Mν .

Definition 14. A pair (S, S0,M, a, p, v) is called μ-specification, if S0 ∈ S,
and if M , a, p, and v are maps, such that M : N → S, a : N → N, p : N → S(N),
v : N → S, and such that for all i ∈ N, p(i) ∈ Sa(i). Here, M(i) specifies the type
of the constant mi; a(i) specifies the arity of the symbol μi, whereas p(i) specifies
the parameter types of μi and v(i) specifies the value type of μi.
5 Of course you could use a finite subset of N as well.



On Knowledge Spaces and Item Testing 149

For instance, each of the symbols μi may encode one of the operations listed in
Table 1 in [8] with appropriate a(i) and p(i).

Definition 15. Let (V,C,S,A,R) be a pure type system specification, such that
M∩T (V,C) = ∅; and let (S′, S0,M, a, p, v) be a μ-specification, such that S′ ⊆
C. The μ-extension of (V,C,S,A,R) wrt. (S′, S0,M, a, p, v) is defined to be the
tuple (V,Cμ,Sμ,Aμ,R, S0, a, p, v), where Cμ := M ∪C,6 Sμ := S ∪ S′ and

Aμ := A ∪ {(mi,M(i)), (M(i), S0), (v(i), S0) | i ∈ N}

A tuple (V,Cμ,Sμ,Aμ,R, S0, a, p, v) that is a μ-extension of a pure type sys-
tem specification wrt. some μ-specification is called λ-μ-specification from here
on.

For technical reasons, we cannot express the axioms for the correct function type
of μi (i ∈ N) by elements of the set Aμ, since μi may have a compound type7
that is represented by a term from the set T (V,Cμ)\Cμ. Furthermore, νi involves
a different derivation rule that takes care of the input and output types of the
μi operation. Therefore we need to define three and a half additional derivation
rule schemes for the λ-μ-calculus.

Definition 16. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification.
The derivation rules of the corresponding λ-μ-calculus are the derivation rules

of the pure type system corresponding to (V,Cμ,Sμ,Aμ,R) plus the following
additional rules for all i ∈ N, x ∈ V, x1, . . . , xa(i) ∈ Mν :

(axiomμi) 〈〉 1 μi : Πx : p(i)1. . . . Πx : p(i)a(i).v(i)

(axiomμi’) 〈〉 1 Πx : p(i)1. . . . Πx : p(i)a(i).v(i) : S0

(applμi)
〈〉 1 x1 : p(i)1 . . . 〈〉 1 xa(i) : p(i)a(i)

〈〉 1 μix1 . . . xa(i) : v(i)

(applνi)
〈〉 1 x1 : p(i)1 . . . 〈〉 1 xa(i) : p(i)a(i)

〈〉 1 νi[x1; . . . ;xa(i)] : v(i)

A term t ∈ T (V,Cμ) that may be derived using the above derivation rules is
called typable wrt. the λ-μ-specification.

Remark 2. The derivation rule (applμi) is unnecessary from a purist point of
view, since it may be expressed using a(i) subsequent application rules (appl).
Yet this does not treat μi as function with multiple parameters which are applied
at once, but as a Curry-transformed version that maps its single parameter to
another single parameter function, to which then the next parameter is applied
6 If C was finite or countably infinite, Cμ is also countably infinite; thus we do not

break any countable infinity assumptions on V and C, as made on p.112 in [7].
7 This is the case, whenever a(i) �= 0.



150 I. Albrecht and H. Körndle

and so on. Since prime subcomponents of tasks should be indivisible into sub-
tasks, the partial applications of formal operations appear to be purely logic. In
order to reflect the intuition of prime formal operations with multiple param-
eters, we introduce a rule scheme that allows application of all parameters of
formal operations in one step.

For instance, a μ-reduction steps may correspond to performance of operations
as given by a line in Table 4 [8].

Definition 17. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification. The μ-
reduction relation wrt. that λ-μ-specification is the smallest compatibility on
T (V,Cμ) – denoted by →μ – with �μ⊆→μ, where �μ⊆ T (V,Cμ) × T (V,Cμ)
such that for all i ∈ N, x1, . . . , xa(i) ∈ Mν ,

(. . . (︸ ︷︷ ︸μi)(x1))

2·a(i) × “(”

. . .︸︷︷︸)(xa(i)))
“)(xi))” for

1<i<a(i)

�μ νi[x1; . . . ;xa(i)]

This defines the notion of finite �μ-reductions (see Definition 11), that reduce
the formal operations μi (i ∈ N), which are applied to the extra-logical value
constants x1, . . . , xa(i) ∈ Mν , to their canonical result νi[x1; . . . ;xa(i)] ∈ Mν .

We now have to check that this reduction works in a way, such that if a
term T ∈ T (V,Cμ) is well-typed wrt. the λ-μ-specification, then also all terms
R ∈ T (V,Cμ) with T →μ R are well-typed wrt. that λ-μ-specification. Since μi

has the type Πx : p(i)1. . . . Πx : p(i)a(i).v(i), and if xi, . . . , xa(i) are terms such
that xj has the type p(i)j for j ∈ {1, . . . , a(i)}, the term μix1 . . . xa(i) is well-
typed and has the type v(i). This means, that if we have a derivation for the type
of some term T ∈ T (V,Cμ), i.e. if T is well-typed, we can obtain a derivation
for every term R ∈ T (V,Cμ) with T →μ R by replacing the appropriate μi-
subterms with the appropriate νi[. . .]-subterms, and then using the derivation
rule (applνi) as a replacement for (applμi)8.

2.3 Stateful μ-Actions

In this section, we give the common abstraction that will help interpreting finite
�μ-reductions as operations performed one after another.

Definition 18. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification. A triple
(X,A,A) is called stateful μ-action, if X is a set – called the set of subject
states; A is a set – called the set of auxiliary states, and if

A : X × N → (X ×A)
A(N)×Mν

is a map, such that for all i ∈ N and x ∈ X; the map A(x, i) – called the μi-action
for x – has the following signature:

A(x, i) : Aa(i) × Mν → X ×A

8 or the a(i) usages of (appl).



On Knowledge Spaces and Item Testing 151

Definition 19. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, and A =
(X,A,A) be a stateful μ-action. Furthermore, let n ∈ N, r ∈ ∇μ be a finite �μ-
reduction,

redex: n− 1 → T (V,Cμ)

and
pre: n− 1 → |〈V ∪Cμ ∪ {λ,Π, (, ), ., : }〉|

be the corresponding functions as in Definition 11. The triple (r, redex, pre) is
a solution strategy, if the last term is a constant symbol, i.e. r(n) ∈ Mν ; and
if the first term r(1) is typable wrt. the λ-μ-specification and consists only of
symbols from {μi,mi | i ∈ N} ∪ {(, )}, i.e.

r(1) ∈ |〈{μi,mi | i ∈ N} ∪ {(, )}〉|

Since redex and pre are canonical for r, we may denote the solution strategy just
by r. The set of all solution strategies is denoted by ♦μ.

Definition 20. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, and A =
(X,A,A) be a stateful μ-action and (r, redex, pre) be a solution strategy. Then
the performance map of r wrt. A and the λ-μ-specification

rA :X ×AN → X ×A,

(x, (αi)i∈N) �→
(
rAX(x, (αi)i∈N), r

A
A (x, (αi)i∈N)

)
is defined by the sequence of �μ-reduction steps of r:

Let x ∈ X and (αi)i∈N ∈ AN, and let i ∈ {1, . . . , n} be the running index for
the rest of this definition. We define the map

r̄i : {1, . . . , ki} → V ∪ Cμ ∪ {λ,Π, (, ), ., : }

to be the map such that ki ∈ N and r̄i(1)r̄i(2) . . . r̄i(ki) = r(i) wrt. the freely
generated monoid 〈V ∪ Cμ ∪ {λ,Π, (, ), ., : }〉, i.e. r̄i is the symbol-at-index map
of the term r(i) viewed as a word. Further let li ∈ N be the length of the word
pre(i), i.e. the number such that there are σ1, . . . , σli ∈ V ∪Cμ ∪ {λ,Π, (, ), ., : }
with pre(i) = σ1σ2 . . . σli . We define the auxiliary maps X̄ : n → X and, for
i ∈ {1, . . . , n}, Ai : {1, . . . , ki} → A: We set X̄(1) = x, and

A1(j) =

{
αh if r̄i(j) = mh for h ∈ N

α0 else

and for g ∈ n− 1:

Ag+1(j) =

⎧⎪⎨⎪⎩
Ag(j) if j ≤ lg

πA(A(X̄(g), fg)((Ag(eg,1), . . . , Ag(eg,a(i))), r̄g+1(lg + 1))) if j = lg + 1

Ag(j + kg − 1) if lg + 1 < j

and

X̄(g + 1) = πX(A(X̄(g), fg)((Ag(eg,1), . . . , Ag(eg,a(i))), r̄g+1(lg + 1)))



152 I. Albrecht and H. Körndle

where eg,dg = 5 · dg + 2 · a(fg) − 1 for dg ∈ {1, . . . , a(fg)}, and where fg ∈ N
such that r̄g(lg + 1) = μfg , whereas πX and πA denote the respective coordinate
projections of X ×A.

Finally, we set
rA(x, (αi)i∈N) = (X̄(n), An(1))

It is obvious that the above definition requires explanation: Given is a finite
�μ-reduction r that ends in some result r(n) ∈ Mν of extra-logical operations,
which is a single constant symbol term in T (V,Cμ). Furthermore, the given
reduction starts with a well-typed term r(1) that consists only of μi and mi

symbols, and the symbols for their respective applications.
We are interested in the state transition corresponding to the operation se-

quence of r, which is a simultaneous transition of an input subject state and a
vector of auxiliary states associated with the extra-logical constants mi into an
output subject state and a single output auxiliary state associated with the re-
sult r(n). The reduction r induces an order in which different actions are carried
out, and the map X̄ represents the state of the subject between the actions. Fur-
thermore the maps Ag represent the auxiliary states of the intermediate results
associated with the symbols from Mν .9

Here, the subject state may be a representation of the current knowledge,
skills, short and long term memory, motivation and fatigue of a subject, whereas
the auxiliary state may measure the correctness of the intermediate results,
partial response times and the amount of effort that was put into solving the
subtask. Or the subject state may be a distribution of knowledge states and
the auxiliary state may be a distribution of the correctness of the intermediate
results; or – slightly abusing the original idea – the subject state may keep track
of the required skills, whereas the auxiliary state may keep track of the required
effort.

Last, we want to point out, that when given a λ-μ-term that contains no νi[. . .]
symbols, and if that term has a finite �β,μ = �β∪�μ-reduction r with r(n) ∈ Mν ,
we may postpone all �μ-reduction steps to the end, since neither μ-redexes nor
μ-reducts have any ‘λ’ symbol, which is part of the β-redex – roughly speaking:
a �μ-reduction step cannot create new or remove old work for the �β-reduction.
This means, that if we have some typable term t ∈ T (V,Cμ), we may calculate
its β-normal form before invoking the extra-logical μ-machinery.

2.4 Solution Probabilities for Test Items Formalized by
λ-μ-Specifications

Definition 21. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification. A pair
(mq, Sq) is called test item wrt. the λ-μ-specification, if mq is a μ-constant
symbol mi, i.e. mq ∈ {mi | i ∈ N} ⊆ Mν , and if Sq is the type of the solution,
i.e. Sq ∈ Sμ.

The correct type corresponding to (mq, Sq) is the type of functions from M(i)
to Sq, i.e. Πx :M(i).Sq where i ∈ N such that mq = mi.
9 Partial maps Ag fit the situation better, but require more technical details.



On Knowledge Spaces and Item Testing 153

Definition 22. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, and let
t ∈ T (V,Cμ) be a term. We call t a solution candidate, if t is typable wrt. the
λ-μ-specification. In this case, tβ denotes the �β-normal form of t, which then
exists (see [7], Theorem 4.40: Strong Normalization Theorem for ECC).

Definition 23. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, let t be
a solution candidate, and q = (mi, Sq) be a test item wrt. the λ-μ-specification,
where i ∈ N and mi ∈ M. Then t is a solution procedure for q, if t does not
contain any symbols from Mν and has the correct type corresponding to q, i.e.
if there is a valid derivation tree with the root judgement

〈〉 1 t : Πx : M(i).Sq

We denote the set of all solution procedures for q by Ξq.

For instance, every method listed in Table 1 [8] corresponds to such a solution
procedure.

Remark 3. Clearly, if q = (mi, Sq) and r = (mj , Sr) are test items such that
Sq = Sr and M(i) = M(j), then every solution procedure for q is a solution
procedure for r and vice versa.

Now consider a test item q = (mq, Sq) that is given to some test subject. There
are two cases: (i) the subject does not find a solution procedure for q, or (ii)
we may view the solution procedure as a discrete random variable ξ which may
take values from Ξq. In the first case, the probability of giving a correct response
equals the probability of a correct guess. In the second case, we may determine
the probability of a correct response under the condition, that ξ = t for t ∈ Ξq

by utilizing a stateful μ-action:

Definition 24. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, Q is a
set, such that all its elements q ∈ Q are test items wrt. the λ-μ-specification. A
tuple (x0, α, γ, β, η, η̄,≡ν , δ) is called formal test subject wrt. Q, if

1. α = (αi)i∈N ∈ [0, 1]N – the probabilities for correctly understanding mi,
2. γ = (γq)q∈Q ∈ [0, 1]Q – the prob. for discovery of a correct solution procedure,
3. η̄ = (η̄q)q∈Q ∈ [0, 1]Q – the prob. for guessing if no procedures was discovered,
4. β = (βi)i∈N ∈ [0, 1]N – the probabilities for failing to perform μi,
5. η = (ηi)i∈N ∈ [0, 1]N – the prob. for guessing the correct results for μi,
6. ≡ν⊆ Mν × Mν is an equivalence relation identifying results obtained in

different ways10,
7. δ = (δx)x∈Mν/≡ν

∈ [0, 1]Mν/≡ν – the prob. for keeping the result x in memory,
8. x0 : Mν/≡ν → [0, 1] × [0, 1] – x0(x) = (p1, p2) means that x is taken from

memory with prob. p1, and p2 is the prob. that the retrieved result is correct.

10 A nice property for ≡ν would be that it only identifies results with that have the
same type, but this is not necessary from a formal point of view.



154 I. Albrecht and H. Körndle

Definition 25. Let (V,Cμ,Sμ,Aμ,R, S0, a, p, v) be a λ-μ-specification, and s =
(x0, α, γ, β, η, η̄,≡ν , δ) be a formal test subject. The stateful μ-action associated
with s is defined to be the triple As = (Xs, [0, 1],As) where

Xs = ([0, 1]× [0, 1])
Mν/≡ν

and where
As : Xs × N → (Xs × [0, 1])

[0,1](N)×Mν

such that for all x ∈ Xs and i ∈ N;

As(x, i) : [0, 1]a(i) × Mν → Xs × [0, 1],((
p1, . . . , pa(i)

)
, r
)
�→ (y, pc + pg + pm)

Where:

pc =

⎛
⎝a(i)∏

i=0

pi

⎞
⎠ · (1− βi) ·

(
1− π1

(
x
(
[r]≡ν

)))
pg = ηi · βi ·

(
1− π1

(
x
(
[r]≡ν

)))
pm = π1

(
x
(
[r]≡ν

))
· π2
(
x
(
[r]≡ν

))
and

y : Mν/≡ν → [0, 1]× [0, 1],

t �→

⎧⎪⎨
⎪⎩
x(t) if t �= [r]≡ν

(π1(x(t)) + (1− π1(x(t))) · δi,
pc + pg + pm) if t = [r]≡ν

Here, π1 and π2 denote the respective coordinate projections of [0, 1]× [0, 1]; and
[r]≡ν

denotes the equivalence class of r wrt. ≡ν .

The above definitions interact in the following way: We assume, that we have a
μ-specification (S′, S0,M, a, p, v) which models the domain of knowledge we are
investigating. Each S ∈ S′ stands for a certain way of purposeful information
representation. The symbols mi ∈ Mν stand for some information represented
in the way of M(i). The symbols μi stand for operations that process a(i) pieces
of information represented in the ways of p(i)1, . . . p(i)a(i) to some piece of in-
formation represented in the way of v(i).

A test item is then formalized as some given problem represented by the sym-
bol mq and a task objective Sq ∈ S′, where we view the task as re-representing
the given information in a certain way that elucidates the answer. In order to
solve that item, a test subject has to find a series of μi operations that turn
Mq-representations into Sq-representations, where mq :Mq. In general, the sub-
ject will have to perform general logic operations in order to create a solution
strategy, such as using the given information mq in different ways to perform
different operations – and this is where λ-calculus is needed.



On Knowledge Spaces and Item Testing 155

Consider that you want solve the question 1+5 =?, and that your operation at
hand is ‘add two single digit decimal numbers’. Then you would have to extract
two different pieces of information: the left and right operands, and your solution
candidate for that kind of tasks could be

λx : SeasyAddition.μ1 (μ2 x) (μ3 x) : Πx : SeasyAddition.SintegerNumber

where μ1 represents the addition operation, and where μ2 and μ3 represent the
operand extraction. Please note that there is no need for logic decisions based
on the results of the μi operations, since the correct decisions may be encoded
by S′: carrying information about two easy numbers together with the purpose
‘addition’ means inhabiting the type SeasyAddition. This way, it is possible to
decide whether a solution strategy may work or not based on the type of the
representing term alone.

After choosing a solution strategy, the test subject has to perform the opera-
tions accordingly. The various sources of errors and lucky guesses – which may
be due to actual operation or due to remembering correct or wrong (intermedi-
ate) results – give rise to a formal test subject, which corresponds to the test
subject and the particular time of testing.

The stateful μ-action that is associated with the formal test subject then
acts in the following way: The operations are carried out according to the finite
μ-reduction in a probabilistic manner, such that if the result is available from
memory, then that result is used, otherwise the result is derived from the input,
and in case that the input is correct, there is a probability of introducing a
new error, and a probability of guessing the correct result. Then the memory is
updated with the new derived result.

We sketch a patch of the assessment algorithm [3, pp.140-145], which may
lead to a reduction in free parameters for knowledge domains, if there are less
operations than test items – which may be achieved by appropriate design. We
give a definition that replaces the response rule axiom [R]:

Definition 26. Let Q be a set of test items wrt. a λ-μ-specification, Q / q =
(mq, Sq), s = (x0, α, γ, β, η, η̄,≡ν , δ) a formal test subject wrt. Q; let R be a
random variable with outcomes {0, 1}, and ξ be a random variable with outcomes
Ξq ∪ {⊥}.

The pair (R, ξ) is called formal response of the subject s to the test item
q, if the following equations are satisfied for all t ∈ Ξq: P(ξ = ⊥) = γq and
P(R = 1|ξ = ⊥) = η̄q and for Υ := {(r, redex, pre) ∈ ♦μ | r ∈ ∇(t mq)β

μ };

P(R = 1|ξ = t) =
1

#Υ

∑
r∈Υ

rAs (x0, α)

where (tmq)β denotes the �β-normal form of the application term (tmq), and
As the stateful μ-action associated with s.

3 Discussion

Although the assessment algorithm of knowledge space theory may be utilized



156 I. Albrecht and H. Körndle

to uncover the latent knowledge state of a test subject, it is merely blind to any
learning process involved during the trials. The careless error and lucky guess
parameters do not allow to investigate relations between the underlying cognitive
processes of different test items. We want to investigate those relations, and thus
we cannot assume that the process of solving a test item does not involve any
state changes – as it is implausible that the same cognitive operation with the
same input parameters is repeated within the short timespan of a few solution
steps.

The model we introduced implies that expertise available to the test subject
may grow steadily just by solving test items, which means that the careless error
probabilities for items that belong to basic knowledge states should in fact sink
as the subject reaches a higher knowledge state – the probability of careless
errors when doing single digit additions should be less for students in senior
class compared to when they newly learned it.

In future work, the described models may be adapted to assess a concept as-
sociated with some measurement, where the different trials would be the objects
of the context and the interdependencies between attributes would be modeled
using λ-μ-calculus, leading to a stochastic assessment procedure.

References

1. Berardi, S.: Towards a mathematical analysis of the coquand-huet calculus of con-
structions and the other systems in barendregt’s cube. Tech. rep., Dept. of Com-
puter Science, Carnegie-Mellon University and Dipartimento Matematico, Univer-
sita di Torino (1988)

2. Doignon, J.P., Falmagne, J.C.: Spaces for the assessment of knowledge. Interna-
tional Journal of Man-Machine Studies 23(2), 175–196 (1985)

3. Falmagne, J., Doble, C., Albert, D., Eppstein, D., Hu, X.: Knowledge Spaces:
Applications in Education. Springer-Verlag New York Incorporated (2013)

4. Falmagne, J.C., Doignon, J.P.: Learning Spaces. Springer (2010)
5. Glaser, R.: The integration of instruction and testing. In: Freeman, E. (ed.) The

Redesign of Testing in the 21st Century: Proceedings of the 1985 ETS Invitational
Conference, pp. 45–58. Educational Testing Service, Princeton (1985)

6. Hindley, J.R.: Basic simple type theory. Cambridge University Press (1997)
7. Kamareddine, F., Laan, T., Nederpelt, R.: A Modern Perspective on Type Theory:

From its Origins until Today. Applied logic series. Kluwer Academic Publishers
(2006)

8. Korossy, K.: Modeling Knowledge as Competence and Performance. In: Albert,
D., Lukas, J. (eds.) Knowledge Spaces: Theories, Empirical Research, and Appli-
cations, Mahwah, NJ, pp. 103–132 (1999)

9. Tatsuoka, K.K.: Item Construction and Psychometric Models Appropriate for Con-
structed Responses. In: Bennett, R., Ward, W. (eds.) Construction Versus Choice
in Cognitive Measurement: Issues in Constructed Response, Performance Testing,
and Portfolio Assessment, ch. 6, pp. 107–133. Routledge, New York (2009)

10. Terlouw, J.: Een nadere bewijstheoretische analyse von gstt’s. Tech. rep., Depart-
ment of Computer Science, University of Nijmegen (1989)



Scalable Estimates of Concept Stability

Aleksey Buzmakov1,2, Sergei O. Kuznetsov2, and Amedeo Napoli1

1 LORIA (CNRS – Inria NGE – U. de Lorraine), Vandœuvre-lès-Nancy, France
2 National Research University Higher School of Economics, Moscow, Russia
aleksey.buzmakov@inria.fr, amedeo.napoli@loria.fr, skuznetsov@hse.ru

Abstract. Data mining aims at finding interesting patterns from
datasets, where “interesting” means reflecting intrinsic dependencies in
the domain of interest rather than just in the dataset. Concept stabil-
ity is a popular relevancy measure in FCA. Experimental results of this
paper show that high stability of a concept for a context derived from
the general population suggests that concepts with the same intent in
other samples drawn from the population have also high stability. A
new estimate of stability is introduced and studied. It is experimentally
shown that the introduced estimate gives a better approximation than
the Monte Carlo approach introduced earlier.

Keywords: formal concept analysis, stability, pattern selection, exper-
iment.

1 Introduction

Given a dataset, data mining methods may reveal a huge number of patterns,
so filtering patterns w.r.t. some relevancy measures can be necessary. The ques-
tion of how much a pattern is interesting arises in many areas of data mining,
including those that employ tools of Formal Concept Analysis (FCA). FCA is a
mathematical formalism having many applications in data analysis [1]. It aims
at computing concepts and their lattices from a formal context, a triple (G,M, I)
where G is a set of objects (experiments or elements of a dataset), M is a set
of attributes used to build the description of every object, and I ⊆ G ×M is
a relation between objects and attributes. The number of concepts for a given
context can be exponential w.r.t. the size of the context, and thus, a special
procedure for selecting the most relevant concepts is needed. Two options can
be distinguished. The first one is to introduce background knowledge into the
procedure for computing concepts [2–6]. Background knowledge allows one to
sort concepts which are likely to be useful for the current goal. In this case,
although the number of concepts can be significantly reduced, the size of the
lattice can still be huge. The second option is to rank concepts in the lattice
using a relevance measure.

The authors of [7] provide several measures for ranking concepts that stem
from human behavior. Stability is another measure for ranking concepts, intro-
duced in [8] and later revised in [9–11]. Several other methods are considered

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 157–172, 2014.
c© Springer International Publishing Switzerland 2014



158 A. Buzmakov, S.O. Kuznetsov, and A. Napoli

Table 1. A toy formal context

m1 m2 m3 m4 m5 m6

g1 x x
g2 x x
g3 x x
g4 x x
g5 x

({g1} ; ∗)[0.5] ({g2} ; ∗)[0.5] ({g3} ; ∗)[0.5] ({g4} ; ∗)[0.5] ({g5} ; ∗)[0.5]

(∅; ∗)[1.0]

( {g1, g2, g3, g4} ; {m6})[0.69]

({g1, g2, g3, g4, g5} ; ∗)[0.47]

Fig. 1. Concept Lattice for Table 1 with corresponding stability indexes

in [12], where it is shown that stability is more reliable for artificially noised data.
Although there is a number of methods for ranking concepts, there is neither a
reliable comparison nor a deep research on relevancy of the selection methods
mentioned above. In this work we focus on the stability measure and its esti-
mates. The intuition behind stability is the probability of preserving the concept
intent when some objects of the context are removed. In this paper we study the
behavior of stability computed in several datasets coming from the same general
population. It is done by spliting given datasets into two disjoint subsets called
reference and test datasets. The stability behaviour is shown to be similar in
reference and test datasets independently of the general population.

Since computing stability is #P-complete [8, 9] one needs to use estimates or
approximations in order to compute stability over large lattices. Correspondingly,
in the second part of our paper we introduce estimates of stability. It is shown
empirically that their performance is better then the performance of the known
Monte Carlo approximation [13].

The rest of the paper is organized as follows. Section 2 introduces the formal
definition of stability, its estimate and Monte Carlo approximation and discusses
their relation. In Section 3 experiments on relevancy of stability are explained
and discussed. Then Section 4 validates the introduced estimate.

2 Stability of a Formal Concept

2.1 The Definition of Stability

Stability is a relevancy measure of a formal concept introduced in [8] and later
revised in [9–11].



Scalable Estimates of Concept Stability 159

Function FindStabilityLimits
Data: A context K = (G,M, I), A concept C.
Result: < Left,Right >, a pair of left and right limits for the stability.
Left ← 1;
Right ← 1;
children ← FindChildren(K, C) ; /* O(|N | · |M |2 */

minDiffSize ← ∞;
foreach ch ∈ children do /* O(|M |) iterations at most */

diffSize ← |Ext(C) \ Ext(ch)|;
minDiffSize ← min(minDiffSize, diffSize);

Left ← Left− 2−diffSize;

Right ← 1− 2−minDiffSize;
return < Left,Right >;

Algorithm 1: An algorithm computing stability bounds according to (2)

Function FindStabilityLimitsPlusMC
Input: Context K = (G,M, I); concept C; precision ε and error rate δ for

Monte-Carlo.
Output: < Left,Right >, a pair of left and right limits for the stability.
< Left, Right >← FindStabilityLimits(K, C);
if Right− Left > 2 · ε then

stabilityMC ← FindStabilityByMonteCarlo(K, C, ε, δ);
Left ← max(Left, stabilityMC − ε);
Right ← min(Right, stabilityMC + ε);

return < Left,Right >;

Algorithm 2: An algorithm based on combination of (2) and Monte-Carlo
approach.

Definition 1. Given a concept c, concept stability Stab(c) is defined as

Stab(c) :=
|{s ∈ ℘(Ext(c)) | s′ = Int(c)}|

2|Ext(c)| (1)

i.e. the relative number of subsets of the concept extent (denoted by Ext(c)),
whose description (i.e. the result of (·)′) is equal to the concept intent (denoted
by Int(c)) where ℘(P ) is the power set of P .

Example 1. Figure 1 shows a lattice for the context in Table 1, for simplicity
some intents are not given. The extent of the highlighted concept c is Ext(c) =
{g1, g2, g3, g4}, thus, its power set contains 24 elements. The descriptions of 5
subsets of Ext(c) ({g1} , . . . , {g4} and ∅) are different from Int(c) = {m6}, while
all other subsets of Ext(c) have a description equal to {m6}. So, Stab(c) =
24−5
24 = 0.69.



160 A. Buzmakov, S.O. Kuznetsov, and A. Napoli

Stability measures the dependence of a concept intent on objects of the con-
cept extent. More precisely this intuition behind stability can be described by
the following proposition originally introduced in [11, 14].

Proposition 1. Let K = (G,M, I) be a formal context and c a formal concept
of K. For a set H ⊆ G, let IH = I ∩H ×M and KH = (H,M, IH). Then,

Stab(c) =
|{KH | H ⊆ G and Int(c) is closed in KH}

2|G|

The proposition says that stability of a concept c is the relative number of
subcontexts where there exists the concept c with intent Int(c). A stable concept
can be found in many such subcontexts, and therefore is likely to be found in
an unrelated context built from the population under study. This “likely” was
never studied and one of the goals of this paper is to check if stability is useful
to find significant patterns within the whole population.

It was shown that, given a context and a concept, the computation of con-
cept stability is #P-complete [8, 9]. One of the fastest algorithm for processing
concept stability using a concept lattice L is proposed in [11], with a worst-case
complexity of O(L2), where L is the size of the concept lattice. This theoretical
complexity bound is significantly higher than that of algorithms computing all
formal concepts and in practice computing stability may take much more time
than lattice building algorithms [15]. Moreover, this algorithm needs the lattice
structure to be computed, requiring additional computations and memory us-
age. Thus, finding a good estimate of concept stability is an important question.
Here we present an efficient way for such an estimate.

2.2 Estimation of Stability

Given a concept c and its descendant d, we have (∀s ⊆ Ext(d))(s′′ ⊆ Ext(d) ∧
s′ ⊇ Int(d) ⊃ Int(c)) i.e. s′ �= Int(c). Thus, we can exclude all subsets of the
extent of a descendant while computing the numerator of stability in (1). On
the other hand only subsets of the extents of descendants should be excluded
from the numerator in (1). Thus, if we exclude the subsets of the extents of
all immediate descendants, we exclude everything that is needed but probably
some subsets can be excluded several times. Hence we obtain a lower bound for
stability:

1−
∑

d∈DD(c)

1

2Δ(c,d)
≤ Stab(c) ≤ 1− max

d∈DD(c)

1

2Δ(c,d)
, (2)

where DD(c) is a set of all direct descendants of c in the lattice and Δ(c, d) is
the size of the set-difference between extent of c and extent of d, i.e. Δ(c, d) =
|Ext(c) \ Ext(d)|. The pseudo-code for computing this estimate is shown in
Algorithm 1. The time complexity of this approach for a concept is equal to the
complexity of finding immediate descendants of the concept, i.e. O(n ·m2).

Example 2. If we want to compute stable concepts (with stability more than
0.97), then according to the upper bound in (2) we should compute for each



Scalable Estimates of Concept Stability 161

concept c in the lattice Δmin(c) = min
d∈DD(c)

Δ(c, d) and select concepts obeying

Δmin(c) ≥ − log(1− 0.97) = 5.06.

The upper bound of the equation can be found in [11], while the lower bound
has not been studied yet. We know that given a context (G,M, I), the number
of children for any concept is limited by cardinality ofM . Every summand in the
lower bound of stability in (2) is smaller than 2−Δmin(c). This gives the following
estimate.

1− |M | · 2−Δmin(c) ≤ 1−
∑

d∈DD(c)

2−Δ(c,d) ≤ Stab(c) (3)

This suggests that stability can have an exponential behavior w.r.t. the size
of the context and, thus, most of the concepts have stability close to 1 when
the size of the context increases. This behavior of stability is also noticed by
authors of [16] for their dataset. So, to use stability for large datasets it is worth
computing logarithmic stability for every concept c:

LStab(c) = − log2(1− Stab(c)) (4)

Taking into account the bounds in (2) and in (3), we have the following:

Δmin(c)− log2(|M |) ≤ − log2(
∑

d∈DD(c)

2−Δ(c,d)) ≤ LStab(c) ≤ Δmin(c) (5)

This approach is referred as the bounding method. It can efficiently bound sta-
bility for any concept of the lattice. However, the tightness of this bound cannot
be ensured.

In [13] the authors suggest a method for approximating concept stability based
on a Monte Carlo approach. Given a concept c, the idea is to randomly count the
number of “good” subsets s ⊆ Ext(c) of the extent of c such that s′ = Int(c).
Then knowing the number of iterations N and the number of “good” subsets
Ngood, stability can be calculated as the relation between them: Stab(c) =

Ngood

N .
In their paper authors provide the following approximation of the number of
iterations:

N >
1

2ε2
ln

2

δ
(6)

where ε is the precision of the approximation and δ is the error rate, i.e. if one
have computed stability approximation s, then the exact value of stability is
within the interval [s− ε; s+ ε] with the probability 1− δ. This method will be
later referred as the Monte Carlo method.

Example 3. In order to approximate stability with precision ε = 0.01 and error
rate δ = 0.01, it is necessary to make at least N = 2.65 · 104 iterations.

Example 3 shows that the number of iterations for one concept can be huge
and, thus, the Monte Carlo method should be less efficient than the bounding
method. Nevertheless the Monte Carlo method can ensure a certain level of
tightness. Consequently the bounding method and the Monte Carlo method



162 A. Buzmakov, S.O. Kuznetsov, and A. Napoli

Table 2. Datasets used in the experiments. Column ‘Shortcut’ refers to the short name
of the dataset used in the rest of the paper; ’Size’ is the number of objects in the dataset;
‘Max. Size’ is the maximal number of objects in a random subset of the dataset the
lattice structure can be computed for; ‘Max. Lat. Size’ is the size of the corresponding
lattice; ‘Lat. Time’ is the time in seconds for computing this lattice; ‘Stab. Time’ is
the time in seconds to compute stability for every concept in the maximal lattice.

Dataset Shortcut Size Max. Size Max. Lat. Size Lat. Time Stab. Time

Mushrooms1 Mush 8124 8124 2.3 · 105 324 57
Plants2 Plants 34781 1000 2 · 106 45 104

Chess3 Chess 3198 100 2 · 106 30 7.4 · 103
Solar Flare (II)4 Flare 1066 1066 2988 0 0

Nursery5 Nurs 12960 12960 1.2 · 105 245 5

can be used in a complementary way as follows. First, the stability bounds are
computed. Second, if the tightness of the bounding method is worse than the
tightness of the Monte Carlo method, the latter should be applied. The pseudo-
code of this approach is shown in Algorithm 2. In this paper it is referred as the
combined method.

Recall that there are three other estimates of stability [8, 9, 11] whose study
is out of the scope of the present paper. Two of these estimates are applicable
incrementally, i.e. when stability is known for a concept from some context and
several objects are added to this context authors estimate the stability of the
corresponding concept in the new lattice. For the third estimate no efficient
computation is known for the moment.

In the next section we present two types of experiments. In Subsection 3.1
an experiment on the predictability of stability is presented. The discussion
continues in Subsection 3.3 with the behaviour of stability thresholds and in
Subsection 3.4 with stability ordering ability.

3 Experiment on Predictability of Stability

The experiments are run on an “Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz”
computer with 8Gb of memory under Ubuntu 12. The algorithms are not paral-
lelized. Public datasets available from the UCI repository [17] are used for the
experimentation. These datasets are shown in Table 2. With their different size
and complexity, these datasets provide a rich experimental basis. Complexity
here stands for the size of the concept lattice given the initial number of objects
in the corresponding context. For example, Chess is the most complex dataset

1 http://archive.ics.uci.edu/ml/datasets/Mushroom
2 http://archive.ics.uci.edu/ml/machine-learning-databases/plants/
3 http://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)
4 http://archive.ics.uci.edu/ml/datasets/Solar+Flare
5 http://archive.ics.uci.edu/ml/datasets/Nursery

http://archive.ics.uci.edu/ml/datasets/Mushroom
http://archive.ics.uci.edu/ml/machine-learning-databases/plants/
http://archive.ics.uci.edu/ml/datasets/Chess+(King-Rook+vs.+King-Pawn)
http://archive.ics.uci.edu/ml/datasets/Solar+Flare
http://archive.ics.uci.edu/ml/datasets/Nursery


Scalable Estimates of Concept Stability 163

(a) Mush120 (b) Mush4000

(c) Mush120 logarihtmic scale (d) Mush4000 logarihtmic scale

Fig. 2. Stability in the test dataset w.r.t the reference one

as for only 100 objects in the context there are already 2 · 106 of concepts in the
concept lattice.

3.1 The Experiment Flow

Recall that the stability of a concept c can be considered as the probability for
the intent of c to be preserved in the lattice when some objects are removed.
However, when computing stability, one wants to know if the intent of a stable
concept is a general characteristic rather than an artefact specific for a dataset.
For that it is necessary to evaluate stability w.r.t. a test dataset different from
the reference one. Reference and test datasets are two names of disjoint datasets
on which the stability behaviour is evaluated. In order to do that the following
scheme of experiment is developed:

1. Given a dataset K of size K objects, experiments are performed on dataset
subsets whose size in terms of number of objects is N . This size is required
to be at least half the size of K. For example, for a dataset of size K = 10
the size of it subset can be N = 4.



164 A. Buzmakov, S.O. Kuznetsov, and A. Napoli

0 10 20 30 40

0
10

20
30

40

Reference Stability Threshold

Te
st

 S
ta

bi
lit

y 
T

hr
es

ho
ld

 fo
r 

99
%

●
●

●

●

●

●

●

●

●
●

●

●

Mush120
Mush4000
Plnt250
Plnt1000
Sflr120
Sflr500
Nurs250
Nurs6480

Fig. 3. Stability threshold in the test dataset ensuring that 99% of concepts corre-
sponding to stable ones in the reference dataset are stable

2. Two disjoint dataset subsets K1 and K2 of size N (in terms of objects) of
dataset K are generated by sampling, e.g. K1 = {g2, g5, g6, g9} and K2 =
{g3, g7, g8, g10}. Later, K1 is used as a reference dataset for computing sta-
bility, while K2 is a test dataset for evaluating stability computed in K1.

3. The corresponding sets of concepts L1 and L2 with their stability are built
for both datasets K1 and K2.

4. The concepts with the same intents in L1 and L2 are declared as correspond-
ing concepts.

5. Based on this list of corresponding concepts, a list of pairs S = {〈X,Y 〉 , . . . }
is built, where X is the stability of the concept in L1 and Y is the stability
of the corresponding concept in L2. If an intent exists only in one dataset,
its stability is set to zero in the other dataset (following the definition of
stability). Finally, the list LS = {〈Xlog, Ylog〉 , . . . } includes the stability
pairs in S in logarithmic scale as stated in formula (4).

6. Then sets of pairs S and LS are further used to study the behaviour of
stability on disjoint (independent) datasets coming from the same general
population.

The idea of evaluating stability computed on a reference dataset w.r.t. a test
dataset comes from the supervised classification methods. Moreover, this idea
is often used to evaluate statistical measures for pattern selection and can be
found as a part of pattern selection algorithms with a good performance [18].



Scalable Estimates of Concept Stability 165

50 100 200 500 1000 2000 5000

5
10

15
20

Dataset size in objects

R
ef

er
en

ce
 S

ta
bi

lit
y 

T
hr

es
ho

ld

●

●

●

●
●

●

1: Mush
1: Plnt
1: Sflr
1: Nurs

5: Mush
5: Plnt
5: Sflr
5: Nurs

Fig. 4. Stability threshold in the reference dataset ensuring that 99% of concepts in
the test dataset corresponding to stable concepts in the reference dataset are stable
with stability thresholds 1 or 5

3.2 The General Behaviour of Stability

Sets of pairs S and LS can be drawn by matching every point 〈X,Y 〉 to a
point in a 2D-plot. The best case is y = x, i.e. stability for a concept in L1

is equal to stability of the corresponding concept in L2, meaning that stability
is not dependant on the dataset. However, this is hardly the case in real-world
experiments. All relevancy measures depend on the dataset, while any measure
should be able to predict its value independently of the dataset. Figures 2a and 2b
show the corresponding diagrams for the datasets Mush120 and Mush4000.6,7

These figures also highlight the fact that many concepts have stability close to
1, and that the larger is the dataset, the larger is the number of concepts with
stability close to 1. It is in accordance with the work [16] where most of the
concepts have the stability close to 1. However, when the logarithmic set LS is
used, a blurred line y = x can be perceived in Figures 2c and 2d. Moreover,
selecting the concepts which are stable w.r.t. a high threshold, say θr, in the
reference dataset K1, the corresponding concepts in K2 are stable w.r.t. a lower
threshold, say θt. Thus, we can conclude that stability is more tractable in the
logarithmic scale, and then we only consider this logarithmic scale in the rest of
the paper.

6 From here, the name of a dataset followed by a number such as ‘NameN ’ refers to
an experiment based on the dataset Name where K1 and K2 are of the size N .

7 See http://www.loria.fr/~abuzmako/stability-meaning/ for other diagrams.

http://www.loria.fr/~abuzmako/stability-meaning/


166 A. Buzmakov, S.O. Kuznetsov, and A. Napoli

0 10 20 30 40

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Reference Stability Threshold

S
or

tin
g 

R
at

e

●

● ●

●
●

●

●

●

●

●
●

Mush120
Mush1000
Mush4000
Plnt250
Plnt1000
Sflr120
Sflr500
Nurs250
Nurs2000
Nurs6480

Fig. 5. Local sorting rate for different datasets. The rate is computed for the test
dataset concepts corresponding to the first 1000 stable concepts in the reference dataset
with stability above a given threshold.

3.3 Setting a Stability Threshold

The dependency between two thresholds θr and θt of stability are shown in Fig-
ure 3. The x-axis corresponds to the stability threshold in the reference dataset
K1, while the y-axis corresponds to the stability threshold in the test dataset
K2. The lines correspond to the 99% level, i.e. given the stability in K1, what
should be the stability threshold in the test dataset K2 such that 99% of stable
concepts in K1 are also stable in K2. In this figure one can see that lines begin
to grow from 5 meaning that given stability threshold less than 5 in K1 no sta-
bility threshold in the test dataset K2 can ensure 99% of stable concepts. We
can also see two types of lines. The lines with stairs correspond to the datasets
with small number of stable concepts, while the others behave nearly the same.
This behavior suggests that in order to ensure that a concept remains stable in
another dataset with threshold θlog, its stability in the reference dataset should
be within [θlog + 5, θlog + 10].

Let us consider the behavior of the stability thresholds w.r.t the size of the
dataset. The dependency between the size of the dataset and the difference
between stability thresholds in the reference (K1) and in the test (K2) datasets
is shown in Figure 4. The x-axis corresponds to the size of the dataset, the y-axis
corresponds to the stability threshold in K1 such that 99% of concepts selected
by this threshold are stable in the test dataset K2 with a certain threshold (1
or 5). For example, the line ‘5: Mush’ corresponds to the stability threshold



Scalable Estimates of Concept Stability 167

0 10 20 30 40

0.
65

0.
75

0.
85

0.
95

Reference Stability Threshold

S
or

tin
g 

R
at

e

● ● ●
● ●

● ●

● ● ●

●

Mush120
Mush4000
Plnt250
Plnt1000
Sflr120
Sflr500
Nurs250
Nurs6480

Fig. 6. Global sorting rate for different datasets

θ ensuring that all concepts having stability more than θ in K1 correspond to
concepts having stability at least 5 in the test dataset K2. We can see that
for large datasets the stability threshold is independent of the dataset, while
for small datasets the diversity is higher. Here for large datasets the stability
threshold should be set to 5–6 in a reference dataset in order to ensure that
99% of stable concepts have corresponding concepts in another dataset. This
threshold should be set to 12 in order to ensure that 99% of stable concepts
correspond to concepts having stability at least 5 in another dataset.

3.4 Stability and Ranking

Stability can be used for ranking concepts by decreasing its value. Thus, it is
useful to study the linear order corresponding to the ranking relation. A way to
study an order of an array ar is to compute its sorting rate r, i.e. the relative num-

ber of pairs in the array sorted in the ascending order: r = 2·{(i,j)|i<j and ari≤arj}
|ar|·(|ar|−1) .

A sorting rate equal to 1 means that the array is in the ascending order, while
0 means that it is in the descending order; the value 0.5 means that there is
no order at all. Figure 5 shows local sorting rate (LSR), i.e. given a threshold
the first 1000 stable concepts in K1 are taken and the sorting rate for the array
of stabilities of the corresponding concepts in K2 is computed. This plot shows
that for large datasets, the LSR is high (around 0.8–0.9) only for high stability
thresholds in K1. For the smaller datasets the local sorting rate is around 0.7–0.8
for all thresholds. It means that stability preserves LSR only for the most stable
concepts where the difference in stability between concepts is high enough, i.e.
an error in order is less likely.

Finally, Figure 6 shows the global sorting rate (GSR) for different datasets,
i.e. the sorting rate of stabilities in K2 for all concepts corresponding to the
concepts selected by a threshold in K1. We can see that the GSR for all datasets
is slowly increasing and for small thresholds it is higher than the LSR. It shows



168 A. Buzmakov, S.O. Kuznetsov, and A. Napoli

Table 3. Execution time for different steps on different datasets. Size is the number of
concepts in the lattice; Lattice is the time for lattice computation with its structure;
Stab. is the time for computing exact stability; FCbO is the time for computing the set
of concepts by FCbO; Freq. is the frequency threshold applied for big datasets; Est.
Method is the execution time for computing the estimate of stability by the estimate
method; Comb. Method is the execution time for computing the estmate of stability be
the combined method; the percentage here means that the program has been stopped
after a certain amount of work; MC calls is the number of calls to the Monte-Carlo
routine. All times are given in seconds.

Dataset Size Lattice Stab. FCbO Freq. Est. Method Comb. Method MC calls

Mush8124 2.3 · 105 324 57 0.7 0 2 · 103 6 · 103 6 · 104
Plnt1000 2 · 106 45 104 78 0 181 446 3 · 103
Chss100 2 · 106 46 104 3.5 0 90 192 2.3 · 103
SFlr1066 2988 0 0 0 0 0.7 11 284
Nurs12960 1.2 · 105 245 5 0.2 0 425 1.2 · 103 4 · 104

Chss3196 4.4 · 106 – – 42 1000 2 · 104 3.5·104
(2%)

?

Plnt34781 5.8 · 106 – – 795 1750 4.1 · 105 4.6·105
(4.7%)

?

that stability gives a global ordering of concepts, while the local ordering is not
reliable for small thresholds.

4 Computing an Estimate of Stability

In this section we study the efficiency of computing various estimates of stabil-
ity. Table 3 shows computation times for different methods and datasets. The
lattice structure is built by our implementation of AddIntent [19] and the set
of concepts is computed by FCbO [20]8. The datasets selected for experiments
are the datasets of maximal tractable size (see Table 2) plus Chess and Plants

with all the objects. For the last two datasets the numbers of concepts is huge.
Such datasets can be analyzed by finding only frequent concepts, i.e. concepts
with significantly large extents. Although an incomplete set of concepts without
lattice structure cannot be processed by the algorithm from [11], stability can be
estimated using formula (5), by Monte Carlo approach or their combination. For
the cases where the estimation of stability takes too much time, the percentage
of the processed concepts before termination is shown in the brackets. For the
sake of efficiency, an estimation or an approximation of stability for a concept
is stopped whenever it is clear that the concept is unstable i.e. stability is less
than 3 in the logarithmic scale.

We can see that even the combined method is significantly slower than the
bounding method and, hence, there is no reason to only work with the Monte
Carlo method as it is slower and does not provide a better precision. Moreover,

8 The implementation is taken from http://icfca2012.markuskirchberg.net.

http://icfca2012.markuskirchberg.net


Scalable Estimates of Concept Stability 169

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Upper Bound Threshold

M
ea

n 
D

iff
er

en
ce

●

● ● ●
●

● ● ●

● ● ●

0 20 40 60 80 100
0.

0
0.

5
1.

0
1.

5
2.

0
2.

5

Upper Bound Threshold

S
ta

nd
ar

d 
D

ev
ia

tio
n 

of
 D

iff
er

en
ce

●

●
● ● ●

●
● ●

● ● ●

●

Mush8124
Plnt1000
Nurs12960
Chss3196
Plnt34781

Fig. 7. The mean and the standard deviation of the stability estimate interval

although the number of calls to Monte Carlo routine is small in the combined
method, the computational efficiency of the stability estimate can dramatically
decrease, making the usage of combined method unfeasible. The estimates are
more efficient in terms of computational time for large lattices, i.e. lattices with a
high number of concepts for one object from the context. We can see that in some
cases the estimates for small lattices take much more time than the estimates for
large lattices. This can be explained by the fact that the corresponding contexts
contain many objects and attributes and that the computational efficiency of
the estimates is highly dependent on the size of the context.

The tightness of the estimates is shown in Figure 7. On the x-axis the val-
ues of the upper bound stability threshold are plotted while on the y-axis the
mean difference in the estimate are plotted. The plots are split in area of [0, 10];
the bottom line corresponds to the improvement achieved by additional use of
Monte Carlo in the combined method. According to formula (5) Monte Carlo
can give any improvements only in the case where stability upper bound is less
than 13 (taking into account that for these datasets there are less than 100 at-
tributes, and Monte Carlo parameters are in accordance with Example 3). In
practice, however, this bound is even smaller (less then 10). These plots show
that generally mean and standard deviation of the estimate difference do not
change w.r.t. the upper bound, however they can significantly depend on the
dataset. In our experiments it appears that the well-structured dataset (Mush,
Nurs) has higher mean value then the unstructured ones, while the big datasets
with only frequent concepts have low mean-values and standard deviations.

If we want to rank concepts w.r.t. stability, how many pairs of concepts become
incomparable when we use the estimates? Figure 8 shows the loss rate of the



170 A. Buzmakov, S.O. Kuznetsov, and A. Napoli

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

Upper Bound Threshold

N
um

be
r 

of
 L

os
t R

el
at

io
ns

●

●

●
●

●

● ●

● ● ●

●

Mush8124
Plnt1000
Nurs12960
Chss3196
Plnt34781

Fig. 8. Losing rate of relations for stability estimate

estimates, i.e. the relative number of concept pairs which cannot be compared
by the estimate. Although the loss rate for the interval [0, 10] can be high, it can
be efficiently reduced by using the combined method.

5 Conclusion

In this paper we study concept stability and its estimates on different datasets.
It is shown that stability computed in the logarithmic scale is more easy to in-
terpret. Our experiments show that stability of a concept is correlated with the
probability that the concept intent occurs in another dataset with high stability,
i.e. it is an efficient measure for ranking patterns. However, independently of a
dataset, as found experimentally, a concept should have a value of logarithmic
stability greater than 5 in order to reflect any property of the population. More-
over, if the stability threshold in a reference dataset is θ, then the stability of
the corresponding concept in another dataset is likely to be higher than θ − 10
or even θ − 5. We also remarked that stability is able to sort concepts in two
independent datasets with nearly the same order by selecting concepts with sta-
bility greater than a certain threshold. However, the sorting rate of the first 1000
concepts from two independent datasets with stability above a certain threshold
is high if the threshold is very high.

In the second part of this paper we showed that the introduced estimate is
an efficient way for ranking concepts w.r.t. stability. It can be applied for an
incomplete set of concepts and, hence, has more potential applications than the
exact methods. The introduced approach can be meaningfully combined with a



Scalable Estimates of Concept Stability 171

Monte Carlo method, providing better precision for weakly stable concepts by
means of additional computational time. The precision and the sorting rate of
the studied approximations are reasonably high and can be efficiently used for
the stability computation.

There are many future research directions. One of them is to study other
approaches for ranking formal concepts with a similar technique. An interesting
question is to adapt the above approach to the comparison of different ranking
methods. Next, the properties of stability suggest that interesting concepts can
be found by resampling, i.e. analyzing many small parts of a large dataset,
thus providing a key to an efficient processing of datasets with Formal Concept
Analysis. Finally, the estimate we have proposed in this paper can be combined
with an efficient realization, e.g., by means of parallel computation.

Acknowledgments. this research was supported by the Basic Research Pro-
gram at the National Research University Higher School of Economics (Moscow,
Russia) and by the BioIntelligence project (France).

References

1. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st
edn. Springer (1999)

2. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142.
Springer, Heidelberg (2001)

3. Bělohlávek, R., Vychodil, V.: Formal Concept Analysis with Constraints by Clo-
sure Operators. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS
(LNAI), vol. 4068, pp. 131–143. Springer, Heidelberg (2006)

4. Belohlavek, R., Vychodil, V.: Formal Concept Analysis With Background Knowl-
edge: Attribute Priorities. IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews) 39(4), 399–409 (2009)

5. Dias, S.M., Vieira, N.J.: Applying the JBOS reduction method for relevant knowl-
edge extraction. Expert Systems with Applications 40(5), 1880–1887 (2013)

6. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Räıssi, C.: On Pro-
jections of Sequential Pattern Structures (with an application on care trajectories).
In: Proc. 10th International Conference on Concept Lattices and Their Applica-
tions, pp. 199–208 (2013)

7. Belohlavek, R., Trnecka, M.: Basic Level in Formal Concept Analysis: Interesting
Concepts and Psychological Ramifications. In: Proceedings of the Twenty-Third
International Joint Conference on Artificial Intelligence, IJCAI 2013, pp. 1233–
1239. AAAI Press (August 2013)

8. Kuznetsov, S.O.: Stability as an Estimate of the Degree of Substantiation of Hy-
potheses on the Basis of Operational Similarity. Automatic Documentation and
Mathematical Linguistics (Nauch. Tekh. Inf. Ser. 2) 24(6), 62–75 (1990)

9. Kuznetsov, S.O.: On stability of a formal concept. Annals of Mathematics and
Artificial Intelligence 49(1-4), 101–115 (2007)

10. Kuznetsov, S.O., Obiedkov, S., Roth, C.: Reducing the Representation Complexity
of Lattice-Based Taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007.
LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007)



172 A. Buzmakov, S.O. Kuznetsov, and A. Napoli

11. Roth, C., Obiedkov, S., Kourie, D.G.: On succinct representation of knowledge
community taxonomies with formal concept analysis A Formal Concept Analy-
sis Approach in Applied Epistemology. International Journal of Foundations of
Computer Science 19(02), 383–404 (2008)

12. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the Selection of Relevant
Concepts in the Case of Noisy Data. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA
2010. LNCS, vol. 5986, pp. 255–266. Springer, Heidelberg (2010)

13. Babin, M.A., Kuznetsov, S.O.: Approximating Concept Stability. In: Domenach,
F., Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 7–15.
Springer, Heidelberg (2012)

14. Roth, C., Obiedkov, S., Kourie, D.: Towards concise representation for taxonomies
of epistemic communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds.) CLA
2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg (2008)

15. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Räıssi, C.: The
representation of sequential patterns and their projections within Formal Concept
Analysis. In: Workshop Notes for LML (PKDD), pp. 65–79 (2013)

16. Jay, N., Kohler, F., Napoli, A.: Analysis of Social Communities with Iceberg and
Stability-Based Concept Lattices. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008.
LNCS (LNAI), vol. 4933, pp. 258–272. Springer, Heidelberg (2008)

17. Frank, A., Asuncion, A.: UCI Machine Learning Repository, University
of California, Irvine, School of Information and Computer Science (2010),
http://archive.ics.uci.edu/ml

18. Webb, G.I.: Discovering Significant Patterns. Machine Learning 68(1), 1–33 (2007)
19. van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A new incremental algo-

rithm for constructing concept lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS
(LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)

20. Krajca, P., Outrata, J., Vychodil, V.: Advances in Algorithms Based on CbO. In:
Proc. of the 8th International Conference on Concept Lattices and Their Applica-
tions (CLA 2010), pp. 325–337 (2010)

http://archive.ics.uci.edu/ml


Factors and Skills

Bernhard Ganter and Cynthia Vera Glodeanu

Technische Universität Dresden,
01062 Dresden, Germany

{Bernhard.Ganter,Cynthia-Vera.Glodeanu}@tu-dresden.de

Abstract. Inspired by Knowledge and Learning Spaces, we present a
novel framework for explaining the answering patterns of learners through
competences and skills. More precisely, we investigate how a given learner-
question data may be ascribed by a set of competences such that a learner
masters a question if and only if they have a competence that is suffi-
cient for mastering the question. Each competence is some combination
of skills, but there may be restrictions on which skills can be combined.
In general a question does not require a unique competence.

Keywords: Skills, Competences, Knowledge Spaces, Formal Concept
Analysis, Learner-question data, Boolean factorisation.

1 Introduction

The theory of Knowledge Spaces, as it was introduced by Doignon and Fal-
magne [1], is closely related to Formal Concept Analysis. Several extensions
have been studied, among them the “Competence based Knowledge Space The-
ory” (CbKST) [2], and, more recently, the theory of Learning Spaces [3]. Here
we present and extend some ideas from CbKST, using the language of Formal
Concept Analysis. We illustrate the basic definitions and results by a small ex-
ample. Random effects, though important, will not be considered in this basic
version.

2 Competences and Factors

We consider a formal context (L,Q,�) with the following intended interpreta-
tion: The elements of L are called learners, those of Q are the questions, and
l � q expresses that learner l masters question q. In the jargon of Formal Con-
cept Analysis the set of questions mastered by learner l then is denoted by l�,
and q� is a shorthand notation for the set of learners who master question q.

This interpretation should be understood in a very general manner: Q might,
for example, be a set of diseases, L a set of therapies and l � q indicates that
therapy l heals disease q. Or L is a set of customers, Q a set of products and
l � q indicates that product q is a possible choice for customer l, et cetera.

We investigate how (L,Q,�) may be explained by a set C of competences
in such a way that a learner masters a question q if and only if they have a
competence that is sufficient for mastering q.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 173–187, 2014.
c© Springer International Publishing Switzerland 2014



174 B. Ganter and C.V. Glodeanu

This leads to the well known problem of finding Boolean factorisations
[4,5] of (L,Q,�). Required for such a factorisation are formal contexts (L, C, ◦)
and (C, Q, |=) such that

l � q ⇐⇒ ∃C∈C (l ◦ C and C |= q),

which is symbolised by

(L,Q,�) = (L, C, ◦) · (C, Q, |=).

Of course, l ◦C is interpreted as “learner l has competence C ” and C |= q reads
as “competence C suffices for mastering question q ”.

It is well understood how this problem must be attacked. The factorisations
are in 1-1-correspondence with the coverings of the relation � by rectangular
subrelations. Their smallest number equals the so-called 2-dimension (see [6]
for the definition of k-dimension for arbitrary integer k) of the complementary
context (L,Q,L × Q\ �). Determining this dimension is known to be NP-
complete. Alternatively, one can show that the factorisation problem is hard by
reducing the set basis problem to it, see [5].

There is another approach to Boolean factors which is perhaps more intu-
itive. For a given formal context one may ask if its attributes can be interpreted
as disjunctions of attributes of an other, hopefully simpler context. More for-
mally, let us say that a disjunctive attribute representation of (G,M, I)
over (G,N, J) is a mapping δ :M → P(N) such that

g I m ⇐⇒ ∃n∈δ(m) g J n.

The existence of such an attribute representation leads to a factorisation

(G,M, I) = (G,N, J) · (N,M,K) with n K m : ⇐⇒ n ∈ δ(m).

Conversely any such factorisation leads to a disjunctive attribute representation
via δ(m) := mK for all m ∈ M .

Example 1. The data that we use is from Korossy [2]. It describes how eleven
learners performed for a set Q := {a, b, c, d, e, f} of six questions. Only seven
distinct answering patterns occurred. These are given in Figure 1.

The concept lattice of the complementary relation (the diagram on the right
of Figure 1) contains the information about the possible Boolean factorisations.
Its length is five, which gives a lower bound for the 2-dimension (and thereby
for the number of competences). But the dimension cannot be larger since there
are only five join-irreducible elements. Therefore the incidence relation � can
be covered by five “rectangles”, but not by fewer than five. An example of a
covering is



Factors and Skills 175

� a b c d e f

02L × × × × ×
03L × × × × × ×
05L × × × × ×
08L × ×
11L × × × ×
13L × × × ×
20L × × ×

Fig. 1. A formal context of learners and questions, and its concept lattice, and the
concept lattice of its complementary context (unlabeled)

C1 := {02L, 03L, 05L, 08L, 11L, 13L, 20L}× {a, c},
C2 := {02L, 03L, 05L, 11L, 20L}× {a, b, c},
C3 := {03L, 05L}× {a, b, c, d, e},
C4 := {02L, 03L, 05L, 11L}× {a, b, c, e},
C5 := {02L, 03L, 13L}× {a, c, e, f}.

Taking these factors as competences, we get a factorisation of the context in
Figure 1 as shown in Figure 2.

◦ C1 C2 C3 C4 C5

02L × × × ×
03L × × × × ×
05L × × × ×
08L ×
11L × × ×
13L × ×
20L × ×

·

|= a b c d e f

C1 × ×
C2 × × ×
C3 × × × × ×
C4 × × × ×
C5 × × × ×

Fig. 2. A factorisation of the context in Figure 1

The concept lattice of the first factorising context is shown in Figure 3.

In view of a desired interpretation, a result like the one presented in Figure 2
may be somewhat disappointing, because it only produces an (ordered) set of
abstract “competences” without further explanation. Moreover, the covering with
rectangular subrelations is by no means unique. In the above example, we might
take as rectangles the columns of the original context, combining columns a and
c to one rectangle, and obtain a different factorisation.

In a second step therefore one can investigate competences which comply with
a given theoretical competence model.



176 B. Ganter and C.V. Glodeanu

08L

20L

02L

11L

05L

03L

13L

C2

C5

C3

C4

C1

Fig. 3. The concept lattice of the first factorising context in Figure 2

Such a model can be given as a formal context (S, T, ∗), where S is a set
of competence “states” which a learner may or may not have, T is a set of
competences and s ∗ t indicates that in state s competence t is present.

The basic question then is if the observed learner-question data can be ex-
plained by competences from this abstract model. For this, we must associate
to every question q the set of those competences from T that are sufficient for
mastering the question. Simultaneously, for each learner a suitable competence
state from S has to be found that enables the learner to master the questions as
observed. A more formal version is given in the following theorem.

Theorem 1. Let formal contexts (L,Q,�) and (S, T, ∗) be given. Then for every
mapping α : L → S the following are equivalent:

1. There is a mapping σ : Q → P(T ) such that

l � q ⇐⇒ ∃C∈σ(q) α(l) ∗ C.

2. There is a Boolean factorisation (L,Q,�) = (L, C, ◦) ·(C, Q, |=) together with
a mapping β : C → T such that

l ◦ C ⇐⇒ α(l) ∗ β(C).

Proof. Assuming (1) we let C :=
⋃

q∈Q σ(q) and define for l ∈ L, C ∈ C, and
q ∈ Q

l ◦ C : ⇐⇒ α(l) ∗ C, β := id, and C |= q : ⇐⇒ C ∈ σ(q).

The conditions of (2) are now easily verified. Conversely when starting from (2)
we get (1) by letting

σ(q) := {β(C) | C |= q}.



Factors and Skills 177

3 Skills and Competences

Several authors (e.g. Korossy [2], Doignon [7]) have investigated if such compe-
tences may be explained by a finite set S of skills, which learners may have. For
this they ask for a skill function1, a mapping2

σ : Q → P(P(S))

with the property that σ(q) is an antichain for each q ∈ Q. It is assumed that
the learners have certain skills, as expressed by the skill context (L, S, •). The
elements of

C :=
⋃
q∈Q

σ(q)

then play the role of the competences. They are ordered by set inclusion ⊆. The
interpretation is that a learner masters a question if they have the necessary
skills, more precisely that

l � q ⇐⇒ ∃C∈σ(q) C ⊆ l•.

The context (C, Q, |=) is then given by

C |= q ⇐⇒ ∃D∈σ(q) D ⊆ C.

The above mentioned competence model in this case is (P(S), C,⊆).
Each skill function σ defines a mapping pσ : P(S) → P(Q), called the prob-

lem function, by

pσ(T ) := {q ∈ Q | ∃C∈σ(q) C ⊆ T }, T ⊆ S,

assigning to each set T ⊆ S the set of problems which can be answered with the
skills in T . Equivalent to the above condition is that for each learner l ∈ L it
holds that

l� = pσ(l
•),

meaning that each learner masters exactly those questions for which they have
the necessary skills.

Problem functions are order preserving maps from (P(S),⊆) to (P(Q),⊆), and
indeed, as Düntsch and Gediga [8] have shown, every order preserving function
can be obtained in this way from a unique skill function.

Example 2. Continuing the above example we ask how the context in Figure 1
may be explained by skills. It is easier to tackle this problem with respect to a
given factorisation. Consider the first factorising context (L, C, ◦) in Figure 2.
It displays which competences the individual learners have. In order to express
these competences by subsets of a (yet unknown) set S of “skills” we have to find
mappings

α : L → P(S) and β : C → P(S)

1 Skill multiassignment in [7], skill multimap in [3].
2 We omit some technical conditions which are not necessary for our considerations.



178 B. Ganter and C.V. Glodeanu

such that a learner l has a competence C if and only if they have all the skills
contained in β(C), formally

l ◦ C ⇐⇒ α(l) ⊇ β(C).

It is immediate from Proposition 33 in [6] that such mappings can be found if
and only if there is an order embedding of B(L, C, ◦) into (P(S),⊇). This is in
turn equivalent to the condition that the 2-dimension of B(L, C, ◦) is at most
the size of S, i.e., to

fdim2(L, C, ◦) ≤ |S|.

The 2-dimension of the lattice in Figure 3 obviously is four, and Figure 4 shows
an order embedding into the dual of the power set of S := {x, y, z, t}.

∅

{z}

{x}

{x, y}

{x, y, t}

{x, y, z, t}

{x, y, z}

Fig. 4. The concept lattice of the first factorising context in Figure 2, embedded into
(P({x, y, z, t}),⊇)

A comparison of the labellings in Figures 3 and 4 discloses the skills associated
to the learners and to the competences.

• x y z t

02L × × ×
03L × × × ×
05L × × ×
08L

11L × ×
13L ×
20L ×

C1 = ∅

C2 = {x}
C3 = {x, y, t}
C4 = {x, y}
C5 = {z}.

Fig. 5. The learner-skill context and the competences as sets of skills



Factors and Skills 179

The second factorising context in Figure 2 can now be understood as a skill
function (Figure 6), however with a slight modification: The attribute intent
of each question q ∈ {a, . . . , f} consists of all competences which suffice for
mastering the question, not only the minimal ones. We call this an enriched skill
function. Meagering it for each question to the minimal sufficient competences
results in a skill function (Figure 7).

|= a b c d e f

C1 = ∅ × ×
C2 = {x} × × ×
C3 = {x, y, t} × × × × ×
C4 = {x, y} × × × ×
C5 = {z} × × × ×

Fig. 6. The attribute intents define an enriched skill function

q a b c d e f

σ(q) {∅} {{x}} {∅} {{x, y, t}} {{x, y}, {z}} {{z}}

Fig. 7. The derived skill function

It can now easily be verified that the skill function in Figure 7 together with
the learner-skill context in Figure 5 result in the original learner-question data
shown in Figure 1.

We summarise our findings in a theorem. This theorem, as well as the next
one, may look a little technical, but their content is easy. The first one says,
loosely spoken: Given learner-question data, pick a Boolean factorisation and a
representation of the first factorising context by sets. Then a skill function is
obtained representing the given data.

Theorem 2. Let
(L,Q,�) = (L, C, ◦) · (C, Q, |=)

be a Boolean factorisation and let α : L → P(S) and β : C → P(S), where S is
a finite set, be mappings such that

l ◦ C ⇐⇒ α(l) ⊇ β(C) (for all l ∈ L,C ∈ C).

Then the mapping σ : Q → P(P(S)), defined by

σ(q) := {β(C) | β(C) is minimal wrt. C |= q},

is a skill function such that

l � q ⇐⇒ ∃D∈σ(q) D ⊆ α(l).



180 B. Ganter and C.V. Glodeanu

Proof. Because of the minimality condition it is clear that σ is a skill function.
Since we have a Boolean factorisation we get for l ∈ L and q ∈ Q

l � q ⇐⇒ ∃C∈C l ◦ C and C |= q

⇐⇒ ∃C∈C α(l) ⊇ β(C) and C |= q

⇐⇒ ∃D∈σ(q) α(l) ⊇ D.

The existence of such a set D follows from the finiteness of S.

4 From Skills to Factors

In the previous section we have demonstrated how a skill function can be con-
structed from learner-question data using a two-stage set representation process.
It is however not yet obvious that this method always works and, if so, that it
leads to a small number of skills.

The latter is indeed not always true. The number of required skills depends
on the choice of the Boolean factorisation. In fact, the data of the example can
be represented by fewer skills, as we shall show.

Nevertheless is the method general enough to cover all possibilities. Each skill
function can be reconstructed, as we shall demonstrate in the next theorem.
Informally, it says that when the construction described in Theorem 2 is applied
to learner-question data which is based on a skill function, the factorisation and
the embedding can be chosen so that this skill function is reconstructed.

Theorem 3. Let finite sets L, Q, and S (of “learners”, “questions”, and “skills”,
respectively) be given together with a mapping σ : Q → P(P(S)) that maps
questions to antichains of skill sets (i.e., a skill function) and a mapping α :
L → P(S) that assigns to each learner a set of skills. Then for the relation
� ⊆ L×Q, defined by

l � q : ⇐⇒ ∃C∈σ(q) C ⊆ α(l)

there is a Boolean factorisation (L,Q,�) = (L, C, ◦) · (C, Q |=) and a bijection
β : C →

⋃
q∈Q σ(q), such that

l ◦ C ⇐⇒ α(l) ⊇ β(C) and C |= q ⇐⇒ ∃D∈σ(q) D ⊆ β(C).

In particular,

σ(q) = {β(C) | β(C) is minimal wrt. C |= q} for each q ∈ Q.

Proof. Let C :=
⋃

q∈Q σ(q) and β := id. Then

l � q ⇐⇒ ∃C∈σ(q) C ⊆ α(l)

⇐⇒ ∃C∈σ(q) ∃D∈C β(D) = C ⊆ α(l)

⇐⇒ ∃C∈σ(q) ∃D∈C C ⊆ β(D) ⊆ α(l)

⇐⇒ ∃D∈C l ◦D and D |= q.



Factors and Skills 181

It remains to show that

σ(q) = {β(C) | β(C) is minimal wrt. C |= q} for each q ∈ Q.

To this end let q ∈ Q and C ∈ C. We show the two inclusions:
“⊇” Let β(C) be minimal in {β(C) | C |= q}. Then, there is D ∈ σ(q) s.t.
D ⊆ β(C). Since β(C) was chosen minimal wrt. C |= q, we have D = β(C) and
thus β(C) ∈ σ(q).
“⊆” Let D ∈ σ(q). There exists C ∈ C s.t. β(C) = D. Hence, C |= q. It remains
to show that β(C) is minimal in {β(E) | E |= q} for β(E) � β(C). Suppose not.
Then, there exists F ∈ σ(q) s.t. F ⊆ β(E) � β(C) ⊆ D. Thus, F � D yielding
a contradiction since σ is a skill function.

Example 3. The learner-question data in Figure 1 can be based on only three
skills, as the following tables show. For the three-element skill set S := {u, v, w}
they define a skill function σ : Q → P(P(S)) and a learner-skill assignment
α : L → P(S).

q a b c d e f

σ(q) {∅} {{v}, {w}} {∅} {{v, w}} {{w}, {u}} {{u}}

l 02L 03L 05L 08L 11L 13L 20L

α(l) {u, v} {u, v, w} {v, w} ∅ {w} {u} {v}

Fig. 8. This skill function leads to the learner-question data in Figure 1 if the learner-
skill assignment is as given in the second table

The competences are C = {∅, {u}, {v}, {w}, {v, w}}, the corresponding factors

Fi := {learners that have Ci} × {questions that are mastered by Ci}

are as follows:

F1 = {02L, 03L, 05L, 08L, 11L, 13L, 20L}× {a, c}
F2 = {02L, 03L, 05L, 20L}× {a, b, c}
F3 = {03L, 05L}× {a, b, c, d, e}
F4 = {03L, 05L, 11L}× {a, b, c, e}
F5 = {02L, 03L, 13L}× {a, c, e, f}.

These rectangular relations indeed cover the “masters”-relation. The correspond-
ing Boolean factorisation of the learner-question context is shown in Figure 9.
It differs only slightly from the one given in Figure 2.

However, the 7-element concept lattice of the first factorising context can
easily embedded into (P({u, v, w}),⊇), as Figure 10 shows.



182 B. Ganter and C.V. Glodeanu

◦ C1 C2 C3 C4 C5

02L × × ×
03L × × × × ×
05L × × × ×
08L ×
11L × ×
13L × ×
20L × ×

·

|= a b c d e f

C1 × ×
C2 × × ×
C3 × × × × ×
C4 × × × ×
C5 × × × ×

Fig. 9. Another factorisation of the context in Figure 1. Here the first factorisation
context has 2-dimension three.

03L

02L 05L

C3

13L

C5 C2

20L
11L

C4

C1

08L

↪→

{u, v, w}

{v, w}

{w}

∅

{v}

{u, w}
{u, v}

{u}

Fig. 10. The concept lattice of the first factorising context, embedded into
(P({u, v, w}),⊇)

• u v w

02L × ×
03L × × ×
05L × ×
08L

11L ×
13L ×
20L ×

C1 = ∅

C2 = {v}
C3 = {v, w}
C4 = {w}
C5 = {u}.

Fig. 11. The learner-skill context and the competences as sets of skills, for the modified
set representation



Factors and Skills 183

5 Structured Skill Sets

Our approach admits several variations which may be of practical interest. We
briefly discuss four of them here.

5.1 Graded Skills

The lattice in Figure 4 obviously has an order embedding into a product of
two chains, one of size four, the other of size two. This allows to give a more
structured interpretation of the four necessary skills: they may be chosen as
{x, x+, x++, z}, where x is a prerequisite for x+, and x+ a prerequisite for x++.
The five competences may then be written as

C1 = ∅, C2 = {x}, C3 = {x++}, C4 = {x+}, C5 = {z},

with the tacit convention that x+ includes x etc.
This can widely be generalised. A family of competences can be interpreted

with skills {x1, x+1 , x++
1 , . . . , xk, x

+
k , x

++
k } if and only if the 4-dimension of the

first factor is at most k. But even arbitrarily ordered skill sets can be considered
and respective conditions on the factorisations can be formulated.

5.2 Propositional Formulae

We may even consider “negative skills”. Recall that a skill function encodes that
a question q is mastered if and only if at least one competence, i.e., skill combi-
nation, from a specified list σ(q) is present. So what is required for mastering q is
a disjunction of conjunctions of skills, a monotone Boolean term in the language
of Propositional Logic.

So why not allow for arbitrary propositional formulae? This can easily be done.
Figure 12 shows a representation of our original learner-question data (Figure 1)
by propositional formulae in three variables.

But how can this be interpreted? It seems unrealistic that there may be skills
which hinder a learner mastering a question. However, for other interpretations
this may be meaningful. One such case is that of customers selecting goods
according to their features. E.g., when buying bread, some customers may prefer
one with caraway seeds, while for others this could be a impediment.

5.3 The Dichotomic Scale Dk

In the next example we shall make use of the k-dimensional dichotomic scale
Dk, which is one of the standard scales in Formal Concept Analysis (see [6],
Lex [9]). It is usually introduced as the k-fold semiproduct D 
� D 
� · · · 
� D of
the (one dimensional) dichotomic scale

D :=
· ×
× · .



184 B. Ganter and C.V. Glodeanu

� ¬(
x
∧
(y

∨
z
))

� ¬y
∧
((
¬x

∧
z
)
∨
(x

∧
¬z

))

¬(
y
∧
(x

∨
¬z

))

¬(
y
∨
(¬

x
∧
z
))

⊥ ⊥ ⊥ × × × × ×
� ⊥ ⊥ × × × × × ×
⊥ ⊥ � × × × × ×
� � � × ×
⊥ � � × × × ×
� ⊥ � × × × ×
⊥ � ⊥ × × ×

Fig. 12. Truth value assignments and propositional formulae for the context of Figure 1

For our purposes it is convenient to give another (yet equivalent) description
based on a set V := {v1, . . . , vk} of symbols3. The scale Dk has 2k objects, 2k
attributes and 3k+1 formal concepts. As objects we may take the set of all maps
from V to {+,−}. The set of attributes is S := {+v1, . . . ,+vk,−v1, . . . ,−vk}.
An object ν : V → {+,−} is incident with an attribute +s (where s ∈ V ) iff
ν(s) = +, and with the “negative” attribute −s iff ν(s) = −.

A subset of S is called feasible if it does not contain a symbol v both in its
positive form +v and in its negative form −v. The only concept intent that is
not feasible is the set S, and the corresponding extent is ∅. Apart from this
exception, the concept intents of the dichotomic scale are exactly the feasible
subsets of S. The concept extent corresponding to a feasible set T ⊆ S consist
of those mappings ν : V → {+,−} that satisfy the condition

if +v ∈ T then ν(v) = +, and if −v ∈ T then ν(v) = −.

The concept extents, apart from the smallest one, therefore can be identified
with the partial mappings ν : V → {⊥,4, ?}.

5.4 Incompatible Skills

The propositional approach in Subsection 5.2 is based on the negation of skills.
In practice however it seems unlikely that a skill is the negation of another one.
A more realistic assumption is that skills may be mutually exclusive, but not
3 We avoid naming the elements of V variables, because −v is not the negation of −v.

As a consequence, we later shall work with a modified notion of disjunction.



Factors and Skills 185

necessarily exhaustive. In other words: such two skills cannot occur together,
but may both be missing. For example, good jockeys usually are not very good
high jumpers, because jockeys need to be small, high jumpers to be tall. But
most people neither are jumpers nor jockeys.

As in Subsection 5.3 we start with a set V := {v1, . . . , vk} of symbols and
define S := {+v1, . . . ,+vk,−v1, . . . ,−vk}. The elements of S will be the skills,
with the intention that for each i the skills +vi and −vi are mutually exclusive.

The competence model in this case is introduced as follows: All feasible sets of
skills are competences, and all mappings from V to {+,−, ?} are possible learner
states. The concept intents of the dichotomic scale then are in 1-1-correspondence
to the competences, with one exception, which we artificially add: We allow for
the set S of all skills, though not admissible, as a competence, the “Chuck Norris
competence”. Similarly, the possible learner states correspond to the concept
extents of the dichotomic scale, when we artificially add the possibility of an
“almighty” learner that has all skills, negative and positive. The incidence relation
in the competence model is the natural one, the one that was discussed in the
previous subsection.

Applying Theorem 1 in the case of this slightly artificial competence model
yields the following:

Corollary 1. A learner-question context can be interpreted using skills

+v1, . . . ,+vk,−v1, . . . ,−vk
(where +v and −v are incompatible), iff there is a Boolean factorisation and
an order embedding of the concept lattice of the first factorising context into the
concept lattice of the k-dimensional dichotomic scale.

Example 4. Again we demonstrate this by an example. The concept lattice
in Figure 10 (left) can also be embedded into the concept lattice of the 2-
dimensional dichotomic scale D2, see Figure 13, in which we use symbols x, y
instead of v1, v2. Actually, there are several embeddings.

According to the corollary, the learner-question data can be interpreted using
two pairs +x,−x,+y,−y of incompatible skills. The competences are mapped
to feasible skill sets as follows:

C1 C2 C3 C4 C5

∅ {+x} {+x,+y} {+y} {−y} .

The observed learner states are the following:

02L 03L 05L 08L 11L 13L 20L
{+x,−y} almighty {+x,+y} ∅ {+y} {−y} {+x} .

We can also give a skill function based on these skills. It is tempting to do
this in propositional form, similar as in Figure 12. However the meaning of
disjunction has to be modified, the expression +v ∨ −v should not evaluate to
4. Instead, we introduce a new symbol depending on v by

δ(v) := +v ∨ −v.



186 B. Ganter and C.V. Glodeanu

03L

02L 05L

C3

13L

C5 C2

20L
11L

C4

C1

08L

↪→

−x

−+ −−

+x +y −y

++ +−

Fig. 13. The concept lattice of the learner-competence context in Figure 9 embedded
into B(D2)

�

a
:
�

b
:
+
x
∨
+
y

c
:
�

d
:
+
x
∧
+
y

e
:
δ(
y
)

f
:
−y

02L: {+x,−y} × × × × ×
03L: almighty × × × × × ×
05L: {+x,+y} × × × × ×
08L: ∅ × ×
11L: {+y} × × × ×
13L: {−y} × × × ×
20L: {+x} × × ×

Fig. 14. A representation of the learner-question data in Figure 1 using two pairs of
mutually exclusive skills. δ(y) is an abbreviation for +y ∨ −y

The reason is this: If mastering a problem requires +v or −v, then one of the two
skills +v and −v must be present. This is not necessarily the case, and replacing
+v ∨ −v by 4 therefore leads to errors.

With this notation we obtain from the second factorising context in Figure 10

σ(a) = C1 ∨ C2 ∨ C3 ∨ C4 ∨C5 = 4
σ(b) = C2 ∨ C3 ∨ C4 = +x ∨+y

σ(c) = C1 ∨ C2 ∨ C3 ∨ C4 ∨C5 = 4
σ(d) = C3 = +x ∧+y

σ(e) = C3 ∨ C4 ∨ C5 = δ(y)

σ(f) = C5 = −y.



Factors and Skills 187

Figure 14 finally shows that the combination of these findings indeed repre-
sents the learner-question context in Figure 1.

6 Conclusion

The combination of Boolean factorisations and of embeddings into standard
concept lattices gives promising results for the analysis of learner-question data,
in particular for the construction of skill functions according to given competence
models. In our presentation we have worked out a few examples. A more general
and versatile theory seems possible.

References

1. Doignon, J.P., Falmagne, J.C.: Spaces for the assessment of knowledge. International
Journal of Man-Machine Studies 23(2), 175–196 (1985)

2. Korossy, K.: Modeling knowledge as competence and performance. In: Albert, D.,
Lukas, J. (eds.) Knowledge Spaces: Theories, Empirical Research, and Applications.
Lawrence Erlbaum Associates (1999)

3. Doignon, J.P., Falmagne, J.C.: Learning Spaces. Springer, Heidelberg (2011)
4. Keprt, A., Snásel, V.: Binary factor analysis with help of formal concepts. In: Snásel,

V., Belohlávek, R. (eds.) CLA. CEUR Workshop Proceedings, vol. 110. CEUR-
WS.org (2004)

5. Belohlávek, R., Vychodil, V.: Formal concepts as optimal factors in boolean factor
analysis: Implications and experiments. In: Eklund, P.W., Diatta, J., Liquiere, M.
(eds.) CLA. CEUR Workshop Proceedings, vol. 331. CEUR-WS.org (2007)

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

7. Doignon, J.P.: Knowledge spaces and skill assignments. In: Fischer, G.H., Laming, D.
(eds.) Contributions to Mathematical Psychology, Psychometrics, and Methodology,
Recent Research in Psychology, pp. 111–121. Springer, New York (1994)

8. Düntsch, I., Gediga, G.: Skills and knowledge structures. British Journal of Mathe-
matical and Statistical Psychology 48, 9–27 (1995)

9. Lex, W.: Eine Darstellung zur maschinellen Behandlung von Begriffen. In: Ganter,
B., Wille, R., Wolff, K.E. (eds.) Beiträge zur Begriffsanalyse, Wissenschaftsverlag,
pp. 141–160 (1986)



Automatized Construction of Implicative Theory

of Algebraic Identities of Size Up to 5

Artem Revenko1,2

1 National Research University Higher School of Economics
Pokrovskiy bd. 11, 109028 Moscow, Russia

2 Technische Universität Dresden
Zellescher Weg 12-14, 01069 Dresden, Germany

artem viktorovich.revenko@mailbox.tu-dresden.de

Abstract. Automation of constructing dependencies between algebraic
identities of size up to 5 is investigated. For this purpose a robust active
learning technique called Attribute Exploration is used. The technique
collects algebra–identity pairs from an expert and builds a concise rep-
resentation of implicative dependencies (implicative theory) between the
identities. It is not possible to accomplish the construction of the im-
plicative theory using only finite algebras and due to this fact heuristics
and an algorithm for finding appropriate algebras over an infinite uni-
verse are introduced. This allowed for accomplishing the constructing
and proving all the obtained implications.

Keywords: equational classes, implicative theory, attribute explo-
ration, equational logic, infinite models.

1 Introduction

Algebraic identities describe different classes of algebraic structures (equational
classes) and therefore play one of the central roles in algebra. Examples include
monoids, groups, rings, lattices, and many others. The field of research that
studies common patterns of algebraic structures is called universal algebra. One
of the main results from which this field of research started – the famous HSP
theorem – states that equational description of a class of algebras is equivalent
to constructive description (that is operations on algebras which do not lead
out of the class) [2]. As noted in [21]: “The role of algebraic equations was
pronounced from the start”. Therefore, the studying of equational classes is
essentially important for mathematics.

A central question one could ask about equational classes is the following: if
the class satisfies a given set of identities which other identities are necessarily
satisfied by all the members of the class? In other words, which identities are de-
ducible from given ones? The strength and importance of equational deduction
can be well appreciated from the words from [5]: “it has even been shown that
every problem concerning the derivability of a mathematical statement from a
given set of axioms can be reduced to the problem of whether an equation is

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 188–202, 2014.
c© Springer International Publishing Switzerland 2014



Automatized Construction of Implicative Theory of Algebraic Identities 189

identically satisfied in every relation algebra. One could thus say that, in princi-
ple, the whole of mathematical research can be carried out by studying identities
in the arithmetic of relation algebras.” It is well known that in general it is not
possible to decide if an identity is deducible from a given set of identities, see
e.g. [20]. Even for a finite set of equations this question can be undecidable [17,
p. 179], [21, p. 28]. However, there are special classes of identities for which the
questions is decidable, for example, groups [8]. The modern field of science called
automated theorem proving has made a big progress in equational deduction (as
a part of deduction in first order logic). To be more precise equational deduction
is semidecidable, meaning that it is not always possible to say if the answer is
negative, i.e. when an identity does not hold. As a counterpart of automatic
theorem provers, automatic model finders are also actively developed. However,
modern tools concentrate on finite models. In this work a pattern and an al-
gorithm for finding infinite models for a particular part of equational logic is
introduced and shown to be enough to find all the counter-examples, therefore,
proving that this part of logic is decidable.

Deductibility is not at all the only question of interest about equational
classes. As pointed out in [4, Recent Developments and Open Problems] find-
ing (finite) bases for equational theories and classification of equational classes
are in scope of current research activities. For the purpose of solving these two
questions in a given set of identities one could find all possible interrelations
between identities inside this set (implicative theory). Up to now no automated
knowledge processing algorithm was offered to automatize the research of the
implicative theory in a given set of identities. In this work this task is addressed
with a robust active learning technique called Attribute Exploration. Attribute
Exploration offers a transparent and useful knowledge acquisition and structur-
ing algorithm. It interactively collects data from an expert and builds a concise
representation of interrelations on the features of the collected data (in the form
of implicative dependencies). A similar investigation was carried out in [13], how-
ever, the procedure was not automated, i.e. finding infinite counter-examples,
checking satisfaction of identities in algebras, finding proofs for identities were
performed by hand, therefore, there was no guarantee that a mistake has not
leaked in during the investigation and there is no way to generalize the used
methods for a more general case. The investigation in [13] took several years
and lead to a PhD thesis.

Automation of usage of Attribute Exploration for the exploration of identi-
ties and making it efficient issues a number of unique challenges. For example,
though only 70 identities of size up to 5 are under investigation, it turns out
that it is not possible to finish the investigation considering only finite counter-
examples. Proposed pattern for building infinite algebras and an algorithm for
constructing these algebras enabled us to overcome the difficulties and finish the
research. The implicative theory was constructed and proved in automatic mode.
The elaborated methods allow one for designing a flexible knowledge processing
system for a more general case.



190 A. Revenko

The paper is organized as follows. In Section 2 an introduction to Attribute
Exploration – the main method used in the current investigation – is given. In the
next Section 3 algebraic identities considered in the current work are presented.
Algebraic identities are particularly suitable for Attribute Exploration, as they
allow a formalization and, therefore, automation of checking their satisfaction in
algebras. It is also possible and almost straightforward to generate all finite alge-
bras of given signature over a given universe. Considering only non-isomorphic
algebras enables a speed-up of up to n! times, where n is the size of the universe.
The set of all finite algebras over a universe of size 2 is the starting point of the
investigation. For the next steps finite and infinite counter-examples are needed.
The finite counter-examples are found with the help of automatic model finder
Mace4 [15]. The existing tools are not suited for finding infinite models, therefore
a pattern and an algorithm for finding algebras over an infinite universe satisfy-
ing given identities and not satisfying one selected identity are introduced. The
question of generating algebras, as well as the proof of the necessity of infinite
algebras, are outlined in Section 4. The constructing of implicative theory was
finished by means of proving all implications from implication basis with the help
of automatic theorem prover Prover9 [15]. Results and conclusion are presented
in Section 5.

Contributions. All possible pairwise not equivalent identities involving one
binary, one unary, and one nullary operations of size up to 5 are considered.
There are 70 such identities [13].

– A pattern and an algorithm for generating infinite algebras satisfying a set
of identities and not satisfying an identity is developed and implemented;

– An algorithm for checking the satisfaction of identites in algebras is devel-
oped and implemented;

– Using only software tools the set of all valid implications between the iden-
tities is constructed and proved.

2 Attribute Exploration

In what follows we keep to standard definitions of FCA [10]. Let G and M be
sets and let I ⊆ G × M be a binary relation between G and M . The triple
K := (G,M, I) is called a (formal) context. The set G is called the set of objects.
The set M is called the set of attributes.

Consider mappings ϕ : 2G → 2M and ψ : 2M → 2G:

ϕ(X) := {m ∈ M | gIm for all g ∈ X},

ψ(A) := {g ∈ G | gIm for all m ∈ A}.

Mappings ϕ and ψ define a Galois connection between (2G,⊆) and (2M ,⊆), i.e.
ϕ(X) ⊆ A ⇔ ψ(A) ⊆ X . Usually, instead of ϕ and ψ a single notation (·)′ is
used. For X ⊆ G the set X ′ is called the intent of X . Similarly, for A ⊆ M the



Automatized Construction of Implicative Theory of Algebraic Identities 191

set A′ is called the extent of A. If A or X consists of only one element we usually
omit the curly brackets.

An object g such that g′ �= ∅ is called reducible in a context K := (G,M, I)
iff ∃X ⊆ G \ g : g′ =

⋂
j∈X

j′.

An implication of K = (G,M, I) is defined as a pair (A,B), where A,B ⊆ M ,
written A → B. A is called the premise, B is called the conclusion of the
implication A → B. The implication A → B is respected by a set of attributes
N if A � N or B ⊆ N . The implication A → B holds (is valid) in K if it is
respected by all g′, g ∈ G, i.e. every object, that has all the attributes from A,
also has all the attributes from B. New valid implications can be obtained using
Armstrong rules :

A → A
,

A → B

A ∪ C → B
,

A → B,B ∪ C → D

A ∪ C → D

A unit implication is defined as an implication with only one attribute in its
conclusion, i.e. A → b, where A ⊆ M, b ∈ M . Every implication A → B can be
regarded as a set of unit implications {A → b | b ∈ B}. One can always consider
only unit implications without loss of generality.

An implication basis of a context K is defined as a set LK of implications of K,
from which any valid implication for K can be deduced by the Armstrong rules
and none of the proper subsets of LK has this property. Reducible objects do
not contribute to any implication basis [10], therefore, if one is only interested
in an implication basis of the context reducible objects can be eliminated. A
context without reducible objects is called reduced, the procedure of eliminating
reducible objects is called reducing.

A minimal in the number of implications basis was defined in [12] and is known
as the canonical implication basis. In paper [9] the premises of implications from
the canonical bases were characterized in terms of pseudo-intents. A subset of
attributes P ⊆ M is called a pseudo-intent, if P �= P ′′ and for every pseudo-
intent Q such that Q ⊂ P , one has Q′′ ⊂ P , where ⊂ is used in the sense of ⊆
and �=. The canonical implication basis looks as follows: {P → (P ′′ \ P ) | P -
pseudo-intent}. The canonical implication basis is used in what follows, however,
the investigation could be performed using another implication basis.

Attribute Exploration consists in iterations of the following steps until stabi-
lization: computing the implication basis of a context, finding counterexamples
to implications, updating the context with counterexamples as new objects, re-
computing the basis. Attribute Exploration has been successfully used for in-
vestigations in many mostly analytical areas of research. For example, in [14]
Attribute Exploration is used for studying Boolean algebras, in [7] lattice prop-
erties are studied, in [18] function properties are studied, and there is even a
research on Attribute Exploration in fuzzy settings [11].

3 Algebraic Identities

In what follows we keep to standard definitions of universal algebra, see e.g. [4].



192 A. Revenko

Definition 1. An algebra A = (A,Φ) consists of a set A, called universe (or
domain, or carrier), and a family of operations Φ over the set A, called signature.
To every operation F ∈ Φ corresponds an arity s(F ) ∈ N0. The family τ of arities
of all operations is called the type of the algebra A.

An algebra A is finite if A is finite, otherwise A is infinite.

Let Fk = {F ∈ Φ|s(F ) = k}, in particular Fk is the set of constants.

Definition 2. Let X be a set of objects called variables and Φ be a set of oper-
ations (a signature of an algebra). The set TΦ(X) of terms of signature Φ over
X is the smallest set such that

1. X ∪ F0 ∈ TΦ(X);

2. If p1, . . . , pn ∈ TΦ(X) and s(f) = n then the term f(p1, . . . , pn) ∈ TΦ(X)).

The size l(p) of a term p ∈ TΦ(X) is the sum of all occurrences of operations
and variables in p.

Definition 3. Given a term p(x1, . . . , xn) ∈ TΦ(X) and given an algebra A of
signature Φ we define a mapping pA : An → A as follows:

1. if p is a variable xi then pA(a1, . . . , an) = ai;

2. if p is of the form f(p1(x1, . . . , xn), . . . , pk(x1, . . . , xn)), where f ∈ Fk, then

pA(a1, . . . , an) = fA(pA1 (a1, . . . , an), . . . , p
A
k (a1, . . . , an)),

where fA is the operation in algebra A.

Definition 4. An identity of signature Φ over X is an expression of the form

p ≡ q

where p, q ∈ TΦ(X). An algebra A satisfies an identity p(x1, . . . , xn) ≡
q(x1, . . . , xn) if for every choice a1, . . . , an ∈ A we have pA(a1, . . . , an) ≡
qA(a1, . . . , an).

The size l(p ≡ q) of an identity p ≡ q is the sum of the sizes of both terms
l(p ≡ q) := l(p) + l(q).

Example 1. Consider the identity (−x)∗y ∗x ≡ y ∗x. The size of the left term is
l((−x) ∗ y ∗ x) = 6, the size of the right term l(y ∗ x) = 3, the size of the identity
l((−x) ∗ y ∗ x ≡ y ∗ x) = 9.

An algorithm of checking the satisfaction of identites in algebras arises from
the definition of identities. However, for the aims of constructing infinite alge-
bras we introduce here a more general algorithm capable of processing partial



Automatized Construction of Implicative Theory of Algebraic Identities 193

algebras, i.e. algebras with not totally defined operations. AX denotes the set of
all possible mappings from X to A (AX := {f |f : X → A}).

Input: A = (A,Φ), p(x1, . . . , xn), q(x1, . . . , xn) ∈ TΦ(X).
Output: Is an identity p ≡ q satisfied in an algebra A?

1 for map in AX do
2 a1, . . . , an = map(x1), . . . ,map(xn)

3 if pA(a1, . . . , an) is not defined then
4 return None, p(a1, . . . , an)

5 if qA(a1, . . . , an) is not defined then
6 return None, q(a1, . . . , an)

7 if not pA(a1, . . . , an) = qA(a1, . . . , an) then
8 return False

9 return True
Algorithm 1: check identity partial

For the signature in the current work we use the notation (∗,−, a), where ∗
is a binary operation, − is a unary operation, and a is a nullary operation. We
call two identities pairwise equivalent if they are satisfied in the same algebras.
Examples of pairwise equivalent identities are: x ∗ y ≡ y ∗ x and y ∗ z ≡ z ∗ y;
x ≡ y and x ≡ a; a ≡ a and x ≡ x. In the current investigation all possible
pairwise nonequivalent identities of signature (∗,−, a) over {x, y, z} of size up
to 5 are considered. There are exactly 70 such identities [13], the set Mid of all
identities is listed below.

Size 2:

x ≡ x; (1.1)

x ≡ y; (1.2)

Size 3:

a ≡ −a; (1.3)

a ≡ −x; (1.4)

x ≡ −x; (1.5)

Size 4:

a ≡ −(−a); (1.6)

a ≡ −(−x); (1.7)

a ≡ a ∗ a; (1.8)

a ≡ a ∗ x; (1.9)

a ≡ x ∗ a; (1.10)

a ≡ x ∗ x; (1.11)

a ≡ x ∗ y; (1.12)

−a ≡ −x; (1.13)

x ≡ −(−x); (1.14)



194 A. Revenko

x ≡ a ∗ x; (1.15)

x ≡ x ∗ a; (1.16)

x ≡ x ∗ x; (1.17)

x ≡ x ∗ y; (1.18)

x ≡ y ∗ x; (1.19)

Size 5:

a ≡ −(−(−a)); (1.20)

a ≡ −(−(−x)); (1.21)

a ≡ a ∗ (−a); (1.22)

a ≡ a ∗ (−x); (1.23)

a ≡ (−a) ∗ a; (1.24)

a ≡ (−a) ∗ x; (1.25)

a ≡ x ∗ (−a); (1.26)

a ≡ x ∗ (−x); (1.27)

a ≡ x ∗ (−y); (1.28)

a ≡ (−x) ∗ a; (1.29)

a ≡ (−x) ∗ x; (1.30)

a ≡ (−x) ∗ y; (1.31)

a ≡ −(a ∗ a); (1.32)

a ≡ −(a ∗ x); (1.33)

a ≡ −(x ∗ a); (1.34)

a ≡ −(x ∗ x); (1.35)

a ≡ −(x ∗ y); (1.36)

−a ≡ −(−a); (1.37)

−a ≡ −(−x); (1.38)

−a ≡ a ∗ a; (1.39)

−a ≡ a ∗ x; (1.40)

−a ≡ x ∗ a; (1.41)

−a ≡ x ∗ x; (1.42)

−a ≡ x ∗ y; (1.43)

x ≡ −(−(−x)); (1.44)

x ≡ a ∗ (−x); (1.45)

x ≡ x ∗ (−a); (1.46)

x ≡ x ∗ (−x); (1.47)

x ≡ x ∗ (−y); (1.48)

x ≡ y ∗ (−x); (1.49)



Automatized Construction of Implicative Theory of Algebraic Identities 195

x ≡ (−a) ∗ x; (1.50)

x ≡ (−x) ∗ a; (1.51)

x ≡ (−x) ∗ x; (1.52)

x ≡ (−x) ∗ y; (1.53)

x ≡ (−y) ∗ x; (1.54)

x ≡ −(a ∗ x); (1.55)

x ≡ −(x ∗ a); (1.56)

x ≡ −(x ∗ x); (1.57)

x ≡ −(x ∗ y); (1.58)

x ≡ −(y ∗ x); (1.59)

−x ≡ −(−x); (1.60)

−x ≡ a ∗ a; (1.61)

−x ≡ a ∗ x; (1.62)

−x ≡ a ∗ y; (1.63)

−x ≡ x ∗ a; (1.64)

−x ≡ x ∗ x; (1.65)

−x ≡ x ∗ y; (1.66)

−x ≡ y ∗ a; (1.67)

−x ≡ y ∗ x; (1.68)

−x ≡ y ∗ y; (1.69)

−x ≡ y ∗ z. (1.70)

In the general case the equational theory involving identities from above is
undecidable, because of, for example, having the identity x∗x ≡ x [3, pp. 34–36].

4 Algebras

Several important classes of algebras can be defined using all or several opera-
tions from chosen signature.

Example 2. A groupoid is an algebra (A, ∗). A groupoid satisfying associativity
(x ∗ y) ∗ z ≡ x ∗ (y ∗ z) is called semigroup. If in a semigroup exists an identity
element a, i. e. a ∗ x ≡ x ∗ a ≡ x the semigroup is called a monoid. A group is
a monoid with inverse elements x ∗ (−x) ≡ (−x) ∗ x ≡ a, where − is a unary
operation on A and a is the identity element of the monoid.

Such classes include finite and infinite algebras. Obviously, it is much easier
to work with finite algebras. For example, it is possible to directly use the algo-
rithm check identity partial and iterate over all possible mappings in order
to check the satisfaction of an identity. However, as was shown in [13], it is not
possible to complete the Attribute Exploration considering only finite algebras,
therefore, it is necessary to find a way to generate infinite counter-examples.



196 A. Revenko

4.1 Generating Finite Algebras

As it is well known that isomorphic algebras satisfy exactly the same identities
(see e.g. [4]) there is no need to generate isomorphic algebras. Isomorphic alge-
bras can be obtained by cyclic permutation of elements. As there exist n! such
permutations, where n is the size of the universe, it is necessary to generate not
more than (1/n!)th part of all possible algebras. In the first step of Attribute
Exploration all possible 64 non-isomorphic algebras over a universe of size 2 were
generated and satisfaction of all chosen identities was directly checked.

An advantage of working with a well developed field of knowledge such as
algebraic identities is the existence of well developed software tools such as model
finders. This advantage was used in the next steps of Attribute Exploration for
the purpose of finding finite counter-examples with the help of Mace4 [15].

4.2 Necessity of Infinite Algebras

The necessity of considering infinite algebras follows from the following state-
ments [13].

Lemma 1. If a finite algebra satisfies the identity x ≡ a ∗ (−x) then “−” is
bijective.

Lemma 2. If a finite algebra satisfies the identity x ≡ a ∗ (−x) then it satisfies
the identity x ≡ −(a ∗ x).

The statements show that for finite algebras the implication

{x ≡ a ∗ (−x)} → x ≡ −(a ∗ x) (2)

is valid.

Example 3. A counter-example to Implication (2) is the infinite algebra A∞ =
(N0, ∗∞,−∞, a∞), defined by (−N0 stands for binary minus in natural numbers)

m ∗∞ n =

⎧⎪⎨
⎪⎩
n, if m = 0 and n ≤ 2;

n−N0 1, if m = 0 and n ≥ 3;

0, if m ≥ 1.

−∞n =

{
n, if n ≤ 2;

n+ 1, if n ≥ 3.

a∞ = 0.

Although A∞ satisfies x ≡ a∗ (−x) the operation “−∞” is surjective, but not
bijective. This is only possible if universe is infinite.

However, modern automatic model finders like Mace4 [15], E-Darwin [1] and
Paradox [6] are only designed for finding finite models. Therefore, we faced
the need to develop an algorithm for finding infinite algebras and checking the
satisfaction of identities in them.



Automatized Construction of Implicative Theory of Algebraic Identities 197

4.3 Generating Infinite Algebras

The task of finding infinite algebras can be stated as follows: given a tuple (a set
of identities Pids ⊆ Mid; an identity Cid ∈ Mid) find an infinite algebra A such
that all the identities from Pids are satisfied and the identity Cid is not satisfied.
In other words, it is necessary to find a counter-example to the implication
Pids → Cid.

For solving this task a pattern of infinite algebra was fixed. The pattern
was found heuristically based on personal experience, examples found in [13],
and multiple unsuccessful runs of the program. The pattern looks as follows
A = (N0, ∗,−, 0). N<k stands for the set of all natural numbers less than k, +
and × are addition and multiplication defined on natural numbers.

m∗n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b00, if m = 0 and n = 0;

b01, if m = 0 and n = 1;

b02, if m = 0 and n = 2;

b03, if m = 0 and n = 3;

b10, if m = 1 and n = 0;

b11, if m = 1 and n = 1;

b12, if m = 1 and n = 2;

b13, if m = 1 and n = 3;

b20, if m = 2 and n = 0;

b21, if m = 2 and n = 1;

b22, if m = 2 and n = 2;

b30, if m = 3 and n = 0;

b31, if m = 3 and n = 1;

c0 ×m+ d0 × n+ e0, if m = 0 and n > 3;

c1 ×m+ d1 × n+ e1, if m = 1 and n > 3;

c2 ×m+ d2 × n+ e2, if m > 3 and n = 0;

c3 ×m+ d3 × n+ e3, if m > 3 and n = 1;

c4 ×m+ d4 × n+ e4, if m > 2 and m = n;

c5 ×m+ d5 × n+ e5, if m > 1 and n = m+ 1;

c6 ×m+ d6 × n+ e6, if m > 2 and n = m−N0 1;

c7 ×m+ d7 × n+ e7, if m > 1 and n = m+ 2;

c8 ×m+ d8 × n+ e8, if m > 3 and n = m−N0 2;

c9×m+d9×n+e9, if m > 1, n > 1, and n �= m,m±N0 1,m±N0 2,

where b00, b01, b10, b11 ∈ N<4,

b02, b03, b12, b13, b20, b21, b30, b31, b22 ∈ N<6,

c0−9, d0−9 ∈ {0, 1}, e0−9 ∈ {0, 1,−1, 2,−2, 3,−3}.



198 A. Revenko

− n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
u0, if n = 0;

u1, if n = 1;

u2, if n = 2;

p× n+ q, if n ≥ 3,

where u0, u1, u2 ∈ N<5, p ∈ N<3, q ∈ {0, 1,−1, 2,−2, 3,−3}.

Proposition 1. To check the satisfaction of an identity of a finite size in an
infinite algebra constructed by the pattern it suffices to make only a finite number
of substitutions.

Proof. The binary and the unary operations are defined as discrete piecewise
linear functions with a finite number of linear regions. Composition of linear
functions is a linear function. To check if linear functions of k variables are
identically equal it suffices to check in k + 1 points. The regions are restricted
linearly, therefore their number is at most the product of number of regions of
composed functions. Hence, the number of regions is finite. As the size of the
identity is finite, the number of variables and the number of composed functions
is finite, therefore, it is only necessary to make a finite number of checks in a
finite number of regions. ��

Therefore, it is only necessary to check an identity over a limited domain. The
exact limit depends on the size of the identity and the pattern of operations.

For finding the needed algebras by the pattern an algorithm with backtracking
was introduced and implemented, Algorithm 2. The algorithm is presented in
Python-like syntax. The keyword break exits the innermost loop, the for-loop
in this example. The clause else after the for-loop is executed only if the loop
ended normally, i.e. without hitting break. The keyword continue enables the
next step of the innermost loop, the while-loop in this example.

The function update(A, term) determines the cause of a term function be-
ing not defined for the given substitution and defines it. Here the possible values
of the corresponding operation are ordered and always the first one is taken.
For example, let operations be totally undefined, then the result of update(A,

(5*(-1))) will be that u1 gets the value 0. Notice, that the result of the whole
term is still not defined. When the function is called with these arguments the
second time the constants c2, d2, e2 receive the values 0. Therefore, when search-
ing for counter-examples operations may be left partially defined. However, for
checking the satisfaction of identities that are not involved in the input im-
plication the found algebra has to be totally defined. The function complete

completes the definition.
Function backtrack(A) updates the latest changed value to the next possible

choice. If possible values for the given operation and arguments are exhausted
the function tracks back to the previously assigned operation and arguments and
changes that value. If the function has tracked back to the very first operation
and arguments then it exists the whole process with failure message. Therefore,
this is the only possible way to exit the process without finding the counter-
example.



Automatized Construction of Implicative Theory of Algebraic Identities 199

Input: Pids → Cid, where Pids ⊆ Mid, Cid ∈ Mid.
Output: Algebra A = (N0, ∗,−, 0) satisfying all Pids and not satisfying Cid.

1 while True do
2 for id in Pids do
3 sat, term = check identity partial(A, id)
4 if sat = False then
5 backtrack(A)
6 break

7 if sat = None then
8 update(A, term)
9 break

10 else
11 sat, term = check identity partial(A, Cid)
12 if sat = True then
13 backtrack(A)
14 continue

15 if sat = None then
16 update(A, term)
17 continue

18 if sat = False then
19 return complete(A)

Algorithm 2: find algebra

Proposition 2. Algorithm 2 is complete, i.e. if there exists a counter-example
that can be constructed by the pattern it will be found by the algorithm, and sound,
i.e. the found counter-example satisfies all the identities from the premise and
does not satisfy the identity in conclusion.

Proof. Let there be a counter-example, but the algorithm has not found it.
There are two possibilities. First possibility is that the algorithm has missed
the needed values of the constants in the definition of operations. However, as
function backtrack first checks through all possible values, this is not possible.
Second possibility is that the algorithm has checked the needed values, but did
not output the counter-example. This is only possible after a call to function
backtrack as it is the only exit point without yielding result. However, this
function is only called if either not all identities from the premise are satisfied
or the conclusion is satisfied, but if so the algebra cannot be a counter-example.
Contradiction reached.

Soundness follows from Proposition 1 if the limits for checking are chosen
appropriately. ��

Example 4. Example of running the algorithm on the input {x ≡ a ∗ (−x)} →
x ≡ −(a ∗ x). The process is presented in Table 1 with current values for opera-
tions and results of checking identities. The limit of checking is set to 9. Many
steps are omitted for the sake of compactness.



200 A. Revenko

Table 1. Finding infinite counter-examples for {x ≡ a ∗ (−x)} → x ≡ −(a ∗ x)
premise
satisfied

conclusion
satisfied

∗ −
None None not defined not defined

None None not defined −0 = 0;

None None 0 ∗ 0 = 0; −0 = 0;

None None

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

−0 = 0;

−1 = 1;

−2 = 2;

None None

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

−0 = 0;

−1 = 1;

−2 = 2;

−n = 3, if n > 2;

False None

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

0 ∗ 3 = 5;

−0 = 0;

−1 = 1;

−2 = 2;

−n = 3, if n > 2;

None None

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

−0 = 0;

−1 = 1;

−2 = 2;

−n = n, if n > 2;

None None

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

0 ∗ 3 = 3;

−0 = 0;

−1 = 1;

−2 = 2;

−n = n, if n > 2;

True True

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

0 ∗ 3 = 3;

m ∗ n = n, if m = 0, n > 2;

−0 = 0;

−1 = 1;

−2 = 2;

−n = n, if n > 2;

False False

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

0 ∗ 3 = 3;

m ∗ n = n+ 3, if m = 0, n > 2;

−0 = 0;

−1 = 1;

−2 = 2;

−n = n, if n > 2;

False None

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

0 ∗ 3 = 5;

−0 = 0;

−1 = 1;

−2 = 2;

−n = n, if n > 2;

None None

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

−0 = 0;

−1 = 1;

−2 = 2;

−n = n+ 1, if n > 2;

True False

0 ∗ 0 = 0;

0 ∗ 1 = 1;

0 ∗ 2 = 2;

m ∗ n = n− 1, if m = 0, n > 2;

−0 = 0;

−1 = 1;

−2 = 2;

−n = n+ 1, if n > 2;



Automatized Construction of Implicative Theory of Algebraic Identities 201

5 Results and Conclusion

Attribute Exploration of the identities was run on computer with Intel Core
i5 1.6GHz×4 processor and 6 Gb of RAM running Linux Ubuntu 12.10 x64.
FCA package for Python was used for implementation [19], which uses op-
timized Next Closure algorithm for computing the canonical basis [16]. As
mentioned above the initial context contained all nonisomorphic algebras over
a universe of size 2, finite counterexamples were found using Mace4, infinite
counter-examples were found using implementation of Algorithm 2, proofs were
found using Prover9. Below the number of steps and the elapsed time are pre-
sented, however, the values may only represent a tentative overall idea as during
the investigation the time limits for finding counter-examples were introduced,
therefore, not all possible counter-examples were found on every step. When
the procedure got stuck the time limits were increased to allow finding new
counter-examples. Attribute Exploration took 44 steps (understanding a step as
the process of finding the implication basis and trying to find counterexample
for each implication from the basis) and approximately 78 hours. After reducing
626 finite algebras and 1529 infinite algebras were left in the context. All 4398
unit implications from the canonical basis were proved. Results of investigation
[13] were repeated using only software tools in less than 3 days of processor time.

Preliminary tests show that the used pattern may be used to find counter-
examples to implications involving identities of bigger size, however, it is now
unclear what the limits for using this pattern are, if the pattern can be extended.
The connections between the size and the form of identities and the structure of
counter-examples are still to be discovered.

From the point of view of the author it would make sense to attempt to use the
elaborated approach for other analytical fields of science where counter-examples
could be constructed from the implications.

Acknowledgements. The author was supported by German Academic Ex-
change Service (DAAD).

The author thanks Bernhard Ganter and Sergei O. Kuznetsov for discussions
and useful remarks.

References

1. Baumgartner, P., Fuchs, A., de Nivelle, H., Tinelli, C.: Computing finite models
by reduction to function-free clause logic. Journal of Applied Logic (2007)

2. Birkhoff, G.: On the structure of abstract algebras. In: Mathematical Proceedings
of the Cambridge Philosophical Society, vol. 31, pp. 433–454. Cambridge Univ.
(1935)

3. Bürckert, H.-J., Herold, A., Schmidt-Schauss, M.: On equational theories, unifica-
tion, and (un) decidability. Journal of Symbolic Computation 8(1), 3–49 (1989)

4. Burris, S., Sankappanavar, H.P.: A course in universal algebra, vol. 78. Springer,
New York (1981)



202 A. Revenko

5. Chin, L.H., Tarski, A.: Distributive and modular laws in the arithmetic of relation
algebras, vol. 1. University of California Press (1951)

6. Claessen, K., Sörensson, N.: Paradox 1.0, http://www.cs.miami.edu/~tptp/
CASC/19/SystemDescriptions.html#Paradox---1.0

7. Dau, F.: Implications of properties concerning complementation in finite lattices.
In: Dorninger, D., et al. (eds.) Contributions to General Algebra 12, Proceedings of
the 58th Workshop on General Algebra “58, Arbeitstagung Allgemeine Algebra”,
Vienna, Austria, June 3-6, 1999, pp. 145–154. Verlag Johannes Heyn, Klagenfurt
(2000)

8. Dehn, M.: Über unendliche diskontinuierliche gruppen. Mathematische An-
nalen 71(1), 116–144 (1911)

9. Ganter, B.: Two basic algorithms in concept analysis. Preprint-Nr. 831 (1984)
10. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer (1999)
11. Glodeanu, C.V.: Attribute exploration in a fuzzy setting. In: ICFCA 2012 Interna-

tional Conference on Formal Concept Analysis, p. 114 (2012)
12. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives

résultant d’un tableau de données binaires. Math. Sci. Hum. 24(95), 5–18 (1986)
13. Kestler, P.: Strukturelle Untersuchungen eines Varietätenverbandes von Grup-

poiden mit unärer Operation und ausgezeichnetem Element. PhD thesis, TU
Bergakademie, Freiberg (2013)

14. Kwuida, L., Pech, C., Reppe, H.: Generalizations of boolean algebras. An attribute
exploration. Mathematica Slovaca 56(2), 145–165 (2006)

15. McCune, W.: Prover9 and mace4 (2005-2010),
http://www.cs.unm.edu/~mccune/prover9/

16. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical
implication basis. Annals of Mathematics and Artificial Intelligence 49(1-4), 77–99
(2007)

17. Perkins, P.: Unsolvable problems for equational theories. Notre Dame Journal of
Formal Logic 8(3), 175–185 (1967)

18. Revenko, A., Kuznetsov, S.O.: Attribute exploration of properties of functions on
sets. Fundamenta Informaticae 115(4), 377–394 (2012)

19. Romashkin, N.: Python package for formal concept analysis,
https://github.com/jupp/fca

20. Tarski, A.: On the calculus of relations. The Journal of Symbolic Logic 6(3), 73–89
(1941)

21. Taylor, W.: Equational logic. University of Houston, Department of Mathematics
(1979)

http://www.cs.miami.edu/~{}tptp/CASC/19/SystemDescriptions.html#Paradox---1.0
http://www.cs.miami.edu/~{}tptp/CASC/19/SystemDescriptions.html#Paradox---1.0
http://www.cs.unm.edu/~mccune/prover9/
https://github.com/jupp/fca


Closed Patterns and Abstraction Beyond Lattices

Henry Soldano

Université Paris 13, Sorbonne Paris Cité, L.I.P.N UMR-CNRS 7030
F-93430, Villetaneuse, France

Abstract. Recently pattern mining has investigated closure operators in families
of subsets of an attribute set that are not lattices. In particular, various authors
have investigated closure operators starting from a context, in the Formal Concept
Analysis (FCA) sense, in which objects are described as usual according to their
relation to attributes, and in which a closed element is a maximal element of the
equivalence class of elements sharing the same support, i.e. occurring in the same
objects. The purpose of this paper is twofold. First we thoroughly investigate this
framework and relate it to FCA, defining in particular a structure called a pre-
confluence, weaker than a lattice, in which we can define a closure operator with
respect to a set of objects. Second, we show that the requirements allowing us
to define abstract concept lattices also allow us to define corresponding abstract
Galois pre-confluences.

1 Introduction

Until recently searching for closed motifs or patterns when exploring data was restricted
to lattices as pattern languages. A pattern in some language L is said closed whenever it
can be obtained by applying a closure operator to some pattern. This subject has been
thoroughly explored both from a mathematical and algorithmical point of view as well
in formal concept analysis, Galois analysis and, more recently, in data mining. Most of
this work considers support-closed patterns. In this case, we also have a set of objects
O and a motif may occur or not in each object. The support of a motif is then the subset
of objects in which the motif occurs. The language is a lattice with respect to a general-
to-specific ordering and each object is described by a motif. A motif then occurs in an
object whenever the motif is more general than the object description. Motifs that can-
not be specialized without losing some object in their support are said support-closed.
Clearly, there is some redundancy in enumerating all motifs when we are concerned
with properties relative to their support, such as frequency, and it is interesting to only
consider support-closed motifs. In a lattice, support-closed motifs may be efficiently
searched for because there exists a closure operator on the lattice that returns as the clo-
sure f(t) of some pattern t the unique support-closed pattern sharing the same support
as t.

The most investigated pattern language is the power set 2X of some attribute set
X , ordered following the set-theoretic inclusion order. Formal Concept Analysis [1] as
well as Galois analysis [2,3] relies on the relation between objects and attributes. In
data mining, these ideas have been investigated under the name of itemsets mining and
rely on the same relation[4].

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 203–218, 2014.
© Springer International Publishing Switzerland 2014



204 H. Soldano

Recently, pattern mining has gone beyond this general framework in two directions.
First, various mining problems have been investigated that come down to searching for
closed motifs which cannot be considered, strictly speaking, as support-closed motifs,
such as convex hulls of subsets of a given set of points, or sequential motifs with wild-
cards. Solving the problem then means defining and building the corresponding closure
operator [5]. To characterize such closure operators, the authors make use of a well-
known theorem stating that in a finite lattice T there is a one-to-one correspondence
between the families closed under the meet operator and the closure operators on T .
Second, various mining problems have been addressed in which the pattern language is
not a lattice, in particular problems where closed motifs are support-closed motifs with
respect to some dataset of objects. A framework has been proposed for that purpose
in which the language is a family F included in a host lattice 2X . The pair (F, 2X)
is denoted as a set system. For instance, consider the set of the subgraphs generated
by a subset of the set X of the edges of a given graph G = (V,X). Such a subgraph
can be represented as a subset of X and therefore searching for support-closed patterns
can be performed as a standard 2X lattice mining problem. However if we want to
consider as a language the family F of connected subgraphs of G, then F is not a
lattice1. Still there is a closure operator that relates a connected subgraph to a support-
closed connected subgraph. This means that we can use the same kind of algorithm
that specializes a closed pattern, computes the support of the new pattern and closes
it in the same way we do in the lattice mining case. In their paper [6] M. Boley and
coauthors state in particular the necessary and sufficient conditions that the family F of
a set system (F,X) has to fulfill in order to guarantee that whatever the dataset O of
objects is2, there exists a closure operator to compute support-closed patterns. These
conditions on set systems defines the property of confluence that requires a kind of local
union closure on F : given three elements t, t1, t2 non empty elements of F , if t1 and
t2 are greater than or equal to t then necessarily t1 ∪ t2 belongs to F . This condition
is clearly satisfied by the connected subgraphs family in the representation mentioned
above: consider two connected subgraphs represented as their edge sets t1 and t2 and
each including an edge set t, then as the subgraph generated by t is connected and non
empty, t1 ∪ t2 also generates a connected subgraph and therefore belongs to F .

Our contribution concerns the two directions mentioned above. First, we state suf-
ficient conditions to obtain closed patterns for structures weaker than lattices. This ex-
tends the theorem on finite lattices mentioned above to finite partial orders in which
there exists a local meet operator and that we call pre-confluences. We obtain then that
the set f [F ] of closed elements of a pre-confluence F also is a pre-confluence. The
main condition requires that given three elements t, t1, t2 of F , if t1 and t2 belongs to
the upset ↑t then there exists a greatest lower bound of t1 and t2 in the upset ↑t of F .
This local meet element is denoted by t1 ∧t t2. In the case of set systems, the family
F = {a, b, abc, abd, abcd} is a pre-confluent family. Here we have that abc∧a abd = a
and abc∧babd = b i.e. there are two maximal lower bounds of abc and abd in F because
ab does not belong to F . The left part of Figure 1, represents a pre-confluent family F
where a, b, c, d are the edges of a graph.

1 The intersection of two such connected subgraphs is not necessarily connected.
2 With some mild restriction we discuss further.



Closed Patterns and Abstraction Beyond Lattices 205

Second, we show that when adding to the pre-confluence property some condition on
the elements of a set of objects O, there exists a closure operator returning the support-
closed elements of F with respect to O. When requiring the existence of such a clo-
sure operator for any database O whose objects are represented as elements of a lattice
T ⊇ F , we need a stronger property denoted by confluence* which is stronger than
confluence on set systems and which scope is extended to any host lattice T . The prop-
erty requires that the local join condition has to be satisfied even when t is the bottom
element of T and belongs to F . The pre-confluence on the left part of Figure 1 is a
confluence* hosted by the whole set of subgraphs generated by subsets of {a, b, c, d}.

o o o
1 2 3

c

ba

d

{o ,o ,o }
1 2 3

a b

c

ba {o ,o }

{o }

2 3

3

a b

ba

d

c

ba

c

ba

d

Fig. 1. The diagram on the left represents a family F of connected subgraphs each generated by
a subset (represented by a word) of the edges {a, b, c, d} of the original graph.The subgraphs
generated by a and by b are the minimal elements. F is a pre-confluent family in which, for
instance, {abc, abd} have two maximal lower bounds, a = abc ∧a abd greater than or equal to
a, and the other, b = abc ∧b abd greater than or equal to b. The diagram on the right represents
the support closed pre-confluence f [F ] (see Section 3.2) with respect to the set of subgraphs
O = {o1, o2, o3} represented on the middle part of the figure. The closed patterns abc and abcd
represent the greatest connected subgraphs whose extensions are respectively {o2, o3} and {o3}.
The thick box around closed patterns a and b indicates that both patterns have the same extension
{o1, o2, o3}. Elements a and b are the closed patterns of the bottom elements of the projected
concept lattices built respectively from (F a, Oa) and (F b, Ob) and represented respectively as
the up sets f [F ]a and f [F ]b.

We can also observe in Figure 1 that for any element x of the pre-confluence F ,
the upset ↑ x is a lattice. This is a general and straightforward result, that allows to
link closure operators on pre-confluences to closure operators on lattices, and therefore
allows to relate FCA to the analysis of support-closed patterns in pre-confluences.

Finally, a last contribution consists in noticing that when F is a pre-confluence, by
applying an interior operator to the extensional space 2O, therefore obtaining abstract
supports, we can build an abstract support closure operator. This means that we extend
abstract Galois lattices, as alpha Galois lattices [7], to abstract Galois pre-confluences.



206 H. Soldano

2 Closure Subsets of a Partial Order

We are interested here in closed elements of an ordered set. When this ordered set refers
to a language for pattern mining, we call patterns the elements of the ordered set.

2.1 Preliminaries

We first recall definitions of closure and dual closure operators:

Definition 1. Let E be an ordered set and f : E → E be an automorphism such that
for any x, y ∈ E, f is monotone, i.e. x ≤ y =⇒ f(x) ≤ f(y) and idempotent, i.e.
f(f(x) = f(x), then:

– if f is extensive, i.e. f(x) ≥ x, f is called a closure operator
– if f is intensive, i.e. f(x) ≤ x, f is called a dual closure operator or an interior

operator, or also a projection.

In the first case, an element such that x = f(x) is called a closed element.

We define hereunder a closure subset of an ordered set E as the range f [E] of a
closure operator on E. We give then a necessary and sufficient condition for a subset of
E to be a closure subset. This condition answers the general question of which subsets
of some pattern language are sets of closed patterns. The set of upper bounds of some
element x in E is denoted as the up set ↑x = {y | y ≥ x} also denoted as Ex when
more than one partial order is concerned. In the same way, the set of lower bounds of x
is denoted as the down set ↓x = {y | y ≤ x} also denoted as Ex.

Definition 2 (T.S. Blyth [8]). A subset C of an ordered set E is called a closure subset
if there is a closure f : E → E such that C = f [E].

Proposition 1 (T.S. Blyth [8]). A subset C of an ordered set E is a closure subset of
E if and only if for every x ∈ E the set ↑x ∩ C has a bottom element x∗. The closure
f : E → E is then unique and defined as f(x) = x∗.

However this property does not give a direct information in which pattern languages
closed patterns are to be found and in which conditions closure operators exist. A di-
rect information is provided by a well known result on closure subsets of complete
∧-semilattices [1]. This result states that in such a pattern language, the closure subsets
are the subsets closed by the meet operator ∧. When the language is the power set of
some set X , the meet operator simply is the intersection operator ∩.

Proposition 2. Let T be a lattice. A subset C of T is a closure subset if and only
if C is closed under meet. The closure f : T → T is then unique and defined as
f(x) = ∧{c∈C∩↑x}c and C is a lattice.

All ordered sets considered here are finite, and as all lattices are finite lattices they
are also complete lattices: any subset of a lattice T is then closed under arbitrary meet
and arbitrary join. Note that when saying that C is closed under meets we intend here
that the meet of ∅ also belongs to C. Therefore 4 = ∧∅c belongs to C.



Closed Patterns and Abstraction Beyond Lattices 207

We will also further need the dual proposition which states that a subset A of T is a
dual closure subset, also denoted as an abstraction, whenever A is closed under joins.
The interior operator p : T → T is then defined as p(x) = ∨{a∈A∩↓x}a, A is a lattice
and ⊥ belongs to A. In particular when T is a powerset 2K , p(x) = ∪{a∈A|a⊆x}a.

We are interested now in pre-confluences which are structures weaker than lattices.

2.2 Closure Subsets in Pre-confluences

Definition 3. Let F be an ordered set such that for any t ∈ F , ↑t is a ∧-semilattice and
has a top element. F is called a pre-confluence, x∧t y is a local infimum or local meet,
and 4t a local top.

Lemma 1. Let F be a pre-confluence, then for any t in F and x, y ∈ F∩ ↑t

1. ↑t is a lattice with as join, denoted as x ∨F y, the least element of ↑x∩ ↑y
2. Let t′ ≥ t then ↑t′ is a sublattice of ↑t.

Proof

1. As F is a pre-confluence, ↑t is a finite ∧-semilattice (with meet x ∧t y) and has a
top element (4t). As a consequence of a well known result on lattice theory, ↑t is
lattice. The join x∨t y is the least upper bound of {x,y} in ↑t, i.e. the least element
of ↑t∩ ↑x∩ ↑y which is also ↑x∩ ↑y, as both x and y are greater than or equal to t.
As it does not depend on t we simply denote it as x ∨F y.

2. For any t′ ≥ t and x, y in ↑t′, x, y also belong to ↑t, As a consequence, x ∧t′ y
is also a lower bound of {x, y} in ↑t, and therefore t′ ≤ x ∧t′ y ≤ x ∧t y. But
this means that x ∧t y belongs to ↑t′ and therefore is also smaller than or equal to
x∧t′ y. As a consequence we have that x∧t′ y = x∧t y. As ↑t′ has same meet and
join as ↑t, it is a sublattice of ↑t.

�

Furthermore we only need minimal elements ofF to check whetherF is a pre conflu-
ence: whenever there is a local meet and a local top on the up set of minimal elements,
there is also a local meet and a top element in the up set of any element of F .

Lemma 2. F is a pre-confluence if and only if for any m ∈ min(F ), ↑m is a ∧-
semilattice and has a top element.

Proof. if F is a pre-confluence, as M ⊆ F obviously all ↑m are ∧-semilattices and
have a Top element. Now suppose that all elements m of M are such that ↑m is a
∧-semilattice and has a Top element, then consider some t ≥ m and two elements
t1, t2 ∈↑t, we have then that t1, t2 ∈↑m. We know that t1 ∧m t2 is the greatest lower
bound of {t1, t2} in ↑m and as t is a lower bound of {t1, t2} and t ∈↑m, we have that
t1∧m t2 ∈↑t. As a consequence t1∧m t2 is also the greatest lower bound of {t1, t2} ∈↑t
and so t1 ∧t t2 exists and this means that ↑t is a ∧-semilattice. Furthermore, 4m also
belongs to ↑t and therefore ↑t also has a greatest element. As for any t ∈ F there exists
some m ∈ M such that t ≥ m, then F is a pre-confluence. �



208 H. Soldano

Definition 4. A subsetC of a pre-confluenceF is called closed under local meet when-
ever for any element t and any C′ ⊆ C∩ ↑t we have∧

t {c∈C′}
c belongs to C.

This means in particular that 4t =
∧

t∅c belongs to any subset which is closed under
local meet and then, by definition, C is also a a pre-confluence. The following theorem
extends Proposition 2 to pre-confluences:

Theorem 1. Let F be a pre-confluence. A subset C of F is a closure subset if and only
if C is closed under local meet. The closure f : F → F is then defined as f(t) =
∧t{c∈C∩↑t}c and C = f [F ] is a pre-confluence.

Proof
We use Proposition 2 and the fact that ↑t in a pre-confluence is a lattice.

– ⇒ C is a closure subset of F means that there exists a closure operator f : F → F
such that f [F ] = C.
As F is a pre-confluence, for any t ∈ F , Ct =↑t∩C is a lattice with meet operator
∧t. Furthermore, for any x ∈↑t, we have that f(x) ∈↑t (extensivity of f ). We can
then define ft :↑t →↑t such that for any x ∈↑t, ft(x) = f(x). It is straightforward
that ft is a closure on ↑t as f is a closure on F .
As a result, from Proposition 2 we have that Ct = ft[↑ t] is closed under the
meet operator ∧t of ↑ t. But, as this is true for any t in F , this also means that
C = ∪t∈FC

t is by definition closed under local meet.
– ⇐ Let C be a subset of F closed under local meet, and let for any t in F , Ct =

↑t ∩ C. By hypothesis, for any x, y ∈↑t, x ∧t y belongs to C, and as x ∧t y is the
greatest lower bound of x and y in ↑ t, we have that x ∧t y belongs to Ct. This
means that Ct is a subset of the lattice ↑t and is closed under the meet operator.
As a result of Proposition 2 we have then that there exists a closure ft :↑t →↑t
which is such that for any x ∈↑t, ft(x) = ∧tc∈↑x∩Ctc. Furthermore, as x ∈↑t, we
have that ↑x ∩ Ct =↑x ∩ C and therefore ft(x) = ∧tc∈↑x∩Cc and also as ↑x is
a sublattice of ↑t, ft(x) = fx(x) = ∧xc∈↑x∩Cc . Let then define f : F → F as
f(x) = fx(x). It is straightforward that f is a closure:
• f(x) = ft(x) for any t ≤ x, therefore as ft is a closure, ft(x) ≥ x. As there

always exists such a t, then f(x) ≥ x
• if x ≥ y we have some t such that x, y ∈↑ t, therefore f(x) = ft(x) and
f(y) = ft(y) and therefore f(x) ≥ f(y).

• We have that f(x) ≥ x and there is some t in F such that f(x), x both belong
to ↑t, therefore f(f(x)) = ft(ft(x)) = ft(x) = f(x).

�

As a summary, we have a generalization of the meet operator which is the basis of
most work on closed patterns in data mining, as well as all work on formal concept
analysis. This generalization, denoted as local meet operator ensures the existence of



Closed Patterns and Abstraction Beyond Lattices 209

closure operators whose ranges are subsets closed with respect to the local meet op-
erator. Whenever we consider a pre-confluence as a subset of a finite powerset 2X we
call F also a pre-confluent family. A typical example of such a structure is the set of
subgraphs generated by the vertices (or edges) of a given graph. We consider here the
family F = {a, b, abc, abd, abcd} which diagram is represented in the leftmost part of
Fgure 1. Here we have that abc ∧a abd = a and abc ∧b abd = b i.e. there are two
maximal lower bounds of abc and abd in F because ab does not belong to F . Note that
the up sets F a and F b are lattices, and share the same join operator, which in this case
is the union operator.

3 Support Closed Patterns with Respect to a Set of Objects

3.1 Support Closures in Lattices

The standard case in which closed patterns are searched for is when the language is a
lattice and that closure of a pattern relies on the occurrences of the pattern in a set of
objects. In data mining the set of occurrences is known as the support of the pattern
whereas in Formal concept analysis the set of occurrences defines the extension of the
pattern and the extent of the corresponding concept.

Definition 5. Let F be a partial order and O a set of objects, a relation of occurrence
on F ×O is such that if t1 ≥ t2 and t1 occurs in o then t2 occurs in o.

The extension of t in O is defined as ext(t) = {o ∈ O | t occurs in o}.
The cover of o is defined as the part of F whose elements occur in the object o, i.e.

S(o) = {t ∈ F | t occurs in o}.
The cover of a subset e of objects is defined as the part of F whose elements occur

in all objects of e, i.e. S(e) =
⋂

{o∈e} S(o).

We will say hereafter indifferently that t belongs to the cover of o, or that t occurs
in o. The intuition here is that the order is a specificity order and whenever a pattern
occurs in some object o then a more general pattern will also occur in o. This rewrites
also as t1 ≥ t2 ⇒ ext(t1) ⊆ ext(t2).

When F is a lattice, the interesting case is the one in which objects can be described
as elements of F :

Proposition 3. Let T be a lattice and O a set of objects, then if for any object o the
cover of o has a greatest element d(o), denoted as the description of o in T , then, for
any subset e of O

int(e) =
∧
o∈e

d(o)

is the greatest element of the cover S(e) of e, denoted as the intension of e, and
(int, ext) is a Galois connection on (2O, T ).

Proposition 4. int ◦ ext and ext ◦ int are closure operators respectively on T and
2O and the corresponding sets of closed elements are anti-isomorphic3lattices whose
related pair (t, e) form a lattice called a Galois lattice.



210 H. Soldano

In FCA, the lattice is a powerset 2X of attributes, the description of an object i is the
subset of attributes in relation with i, the table of this relation is a formal context and
the Galois lattice formed by pairs of corresponding closed elements in 2X and 2O or-
dered following 2O is called a concept lattice. Note that, any Galois connection between
two lattices may be rewritten as the connection between two powersets and therefore
there is no strict gain in expressive power in the more general setting. However, the
direct formulation as sets of closed elements of the lattice T is often useful [9,10,3].
Proposition 3 follows from, for instance, theorem 2 in [3]. Projected or abstract Galois
lattices have been recently defined by noticing that applying an interior (or projection)
operator on T [10,11] or 2O (or both) [11,7] when there exists a Galois connection be-
tween them, we obtain again closure operators and lattices of closure subsets. Because
of the one-to-one correspondence between projections (dual closures) and abstractions
(subsets closed under joins) the corresponding projected Galois lattices are also called
abstract Galois lattices[12].

Proposition 5. Let (int, ext) be a Galois connection on (2O, T ).

– Let p be an interior operator on T , then (p ◦ int, ext) defines a Galois connection
on ((2O, p(T ))

– Let p be an interior operator on 2O, then (int, p ◦ ext) defines a Galois connection
on (p(2O), T )

In both cases the closure subsets are anti-isomorphic and form a Galois lattice, denoted
respectively as intensional and extensional abstract Galois lattices.

In the conditions of Proposition 3 when considering two elements as equivalent
whenever they share the same extension with respect to O, a closed element f(t) =
int ◦ ext(t) is the greatest element of the equivalence class associated to ext(t). More
generally, in data mining extensions are denoted as supports, and an element x of a pat-
tern language is said support closed with respect to O whenever for any element y > x
we have that ext(y) ⊂ ext(x) [6]. In other words, a support-closed element x is a max-
imal element of the equivalence class associated to its support ext(x). The previous
proposition says that when its conditions are satisfied support-closed elements are ob-
tained using a support closure operator and that there is exactly one such support-closed
element in each equivalence class.

3.2 Support Closures in Pre-confluences

We discuss now under which conditions support closures exist in pre-confluences. We
will further denote the up set ↑t as F t. First we benefit from the fact that up sets of a
pre-confluence are lattices in this straigthforward corollary of Proposition 3:

Lemma 3. Let F be a pre-confluence,O be a set of objects, and considerOt = ext(t).
If, for any object o and any element t of F that occurs in o, S(o)∩F t has a greatest

element dt(o), then, for any subset e of Ot,

3 i.e.isomorphic to the dual of f [T ].



Closed Patterns and Abstraction Beyond Lattices 211

intt(e) =
∧
t {o∈e}

dt(o)

is the greatest element of the cover of e in F t, (intt, ext) is a Galois connection on
(2O

t

, F t) and intt ◦ ext is the support closure operator on F t with respect to O.

We will further denote dt(o) as the local description of o with respect to t. We have
then the following proposition:

Theorem 2. Let F be a pre-confluence,O a set of objects, then
If for any object o and any element t of F that occurs in o,o has a local description

dt(o), then for any subset e of O, and any t belonging to the cover S(e),

– intt(e) is the greatest element of S(e) ∩ F t

– f defined by f(t) = intt ◦ ext(t) is a support closure on F with respect to O.

The pairs (f(t), ext(t)) form a pre-confluence isomorphic to f [F ]] called a Galois pre-
confluence.

Proof. For any t in F that occurs in e, we have that the cover of e in F t is S(e) ∩ F t

and as a consequence, intt ◦ ext(t)) is the greatest element of S(e) ∩ F t. Moreover
a consequence of Lemma 3 is that for any t in F , ext ◦ intt(ext(t)) = ext(t). The
closed element f(t) is the greatest element greater than or equal to t and sharing the
same extension as t. This means that the support-closed elements of F form the closure
subset f [F ], f is a support closure operator and by Theorem 1 f [F ] is a pre-confluence.

�

This means that the interesting case regarding pre-confluences is the one in which
each object has a local description with respect to any t that occurs in o. This also means
that the subset F (e) of elements whose extension is some e is partitioned in such a way
that each part has a greatest element tm and contains the elements F (e) smaller than
tm, and that tm = f(t) for all these elements.

The following lemma shows that pre-confluences generalize lattices and Theorem 2
generalizes Proposition 3:

Lemma 4. Whenever a pre-confluence F has a bottom element ⊥F , then

1. F is a lattice
2. If the occurrence relation is such that ⊥F occurs in all objects of O, then if for any

object o and any t ∈ S(o), o has a local description dt(o) with respect to t, then o
has a description d(o).

Proof. This is straightforward regarding (1) as any ↑t is a lattice and therefore, ↑⊥F =
F also is a lattice. Regarding (2), first remark that as ⊥F occurs in any S(o), then S(o)
is non empty, then again as ↑⊥F = F we have ↑⊥F ∩ S(o) = S(o) and therefore S(o)
has a greatest element. �

In the next section we connect these structures to Formal Concept Analysis.



212 H. Soldano

4 Galois Pre-confluences as Union of Galois Lattices

We consider now the standard case of a lattice T in which each object o of O has a
description d(i) in T , and we further consider that any element of T can be such a
description. We are then interested in which subsets F of T have support-closures with
respect to any O. We connect here to the seminal result of M. Boley and co-authors [6]
on confluent systems. To avoid confusion, up sets and down sets of T starting from an
element x will be denoted respectively as T x and Tx wherease the notations F t and Ft

will be used for the up sets and down sets of the subset F .
We will first need a lemma to characterize how an object, as an element x of T , can

be represented in F , then we add a condition to pre-confluences to obtain confluences*
on which support closure operators are defined whatever is the object set O.

Lemma 5. Let F be a subset of a lattice T .
If for any t ∈ F and any x ∈ T t, there exists a greatest element pt(x) in F t ∩ Tx,

then the mapping pt : T t → T t is an interior operator on T t and pt(T t) = F t

Proof

1. pt(x) ≤ x ? The hypothesis ensures that pt(x) belongs to Tx and therefore pt is
intensive.

2. x ≤ y → pt(x) ≤ pt(y)?
We have Tx is included in Ty and therefore F t ∩ Tx is included in F t ∩ Ty and
the greatest element of F t ∩ Ty is greater than or equal to the greatest element of
F t ∩ Tx. Therefore pt(x) ≤ pt(y).

3. dt(dt(x)) = dt(x) ?
First note that pt(x) ∈ F t and therefore in T t. This means that pt(pt(x)) is defined.
Let q = pt(x), then pt(q) = maxF t ∩ Tq. But as q belongs to F t and by definition
q = maxTq, we conclude that q is the greatest element of F t ∩ Tq i.e. pt(q) = q

By definition of pt, pt(T t) ⊆ F t. Furthermore, we have seen that for any q ∈ F t we
have q = pt(q) and therefore pt(T t) ⊇ F t. As a consequence pt(T t) = F t. �

pt(x) is the local description of x in F t.

Proposition 6. Let F be a subset of a lattice T , the following properties are equivalent:

1. For any t ∈ F and any x ∈ T t, there exists a greatest element pt(x) in F t ∩ Tx
2. For any x, y, t in F such that x and y belong to F t, x ∨ y belongs to F
3. F is a pre-confluence with join ∨F = ∨

F is then denoted as a confluence* on T and we have that pt(x) = ∨q∈F t∩Tx
q

Proof
1 implies 2 as T t is a lattice and pt is a projection on T t and therefore F t = pt(T

t)
is closed under join (as projections are dual of closure operators and closure subsets on
lattices are closed under meet). 2 implies 3 as for any t ∈ F we have that F t is closed
under union and has by definition t as its least element, and therefore F t is a lattice and
have a meet operator ∧t. Finally 3 implies 1 as when considering two greatest elements



Closed Patterns and Abstraction Beyond Lattices 213

q and q′ in F t ∩ Tx we have that q ∨ q′ is in F and therefore in F t and is also in Tx,
and as a result we have that q = q′. The definition of the projection pt on the lattice F t

as a join is a consequence of the dual result of Proposition 2. �

Theorem 3. Let F be a confluence* of a lattice T , O be a set of objects described as
elements of T and pt denote the local description operators on F , then we have that:
f(t) = pt◦int◦ext(t) where (int, ext) is a Galois connection on (T,O), is a support

closure operator on F with respect to O.

Proof. As F is a confluence*, from Proposition 6 we deduce that the conditions of
Proposition 2 are satisfied. Furthermore, recall that pt is a projection on T t and by
Lemma 5 that pt(T t) = F t, we have then that following Proposition 5 (pt ◦ int ◦ ext)
is the support closure operator on F t with respect to Ot. �

Conversely, in order to guarantee that such a support closure operator exists for any
set of objects O described in T , a subset of T has to be a confluence*:

Proposition 7. Let F be a subset of the lattice T , then the support closure operator on
F with respect to any set O whose objects are described as elements of T exists if and
only if F is a confluence*.

Proof. We only need here to show that wheneverF is not a confluence*, there is always
an object set O such that the support closure operator does not exist. Recall that F is not
a confluence* means that there is some t in F and some x, y in F t such that x∨ y does
not belong to F (and so x �= y). Consider thenO = {x∨y}, we have that S({x∨y}∩F t

has both x and y has maximal elements as any element that occurs in x ∨ y has to be
smaller than or equal to x∨ y and cannot be greater than both x and y because it would
then be greater than x ∨ y the lowest upper bound of x and y. Now, a support closure
operator f should be such that f(x) = x and f(y) = y has they are both maximal
elements of the cover of x∨y. Furthermore, consider that t is one of the maximal lower
bounds of x and y (if not, we can replace t by one such element, and still have that F is
not a confluence*). Then the support closure of t, f(t) should be be either x or y as t is
not a maximal element of S(x∨ y). But, whatever is the choice f is then not monotone
and therefore f cannot be a closure operator. �

In [6], the lattice T is a powerset 2X and a confluent system S is similar to the
latter definition of confluences* except that ⊥ = ∅ belongs to S but x ∪ y is only
required to belong to F when x ⊇ t and y ⊇ t for any t! = ∅. Proposition 7 is
a straightforward adaptation of the theorem of [6] when T = 2X , confluent systems
replaces confluences*, and which prohibits to have any attribute common to all objects
in O. A useful result is the following:

Proposition 8. If F is a confluence*, then if q ≤ t, and x ∈ T q, then pt(x) = pq(x)

Proof. By definition pt(x) (resp. pq(x)) is the greatest element of F t ∩ Tx (resp. F q ∩
Tx). As F t ⊆ F q, we have also that F t ∩ Tx ⊆ F q ∩ Tx . As both sets have greatest
elements, the greatest element of F t ∩ Tx is also the greatest element of F q ∩ Tx. �



214 H. Soldano

This means that to compute the support closure of some t we only need pm where
m ∈ min(F ). Implicitly this also means that whether t is greater than two minimal
elements m and m′ then pm(t) = p′m(t). For instance, in our example of connected
subgraphs generated by edges of some graph, the minimal elements are the edges. As a
consequence, connected subgraphs under some edge e simply are obtained by project-
ing subgraphs containing e on their connected component containing e.

To summarize, first the support closure set f(F ) of a confluence* F on some lattice
T , forms a pre-confluence of T , and second, we only need the minimal elements of F
and their associated interior operators to characterize the pre-confluence f [F ]. When
considering T = 2X ,T t is 2X\t and pt is an interior operator on 2X\t.

4.1 Implications

Another question regards the definition and construction of an implication basis whose
implications have both left part and right part in F . An implication p → q holds on F
whenever ext(p) ⊆ ext(q) and a basis of such implications is typically made of impli-
cations such that both p and q belong to the same equivalence class i.e. ext(p) = ext(q).
Whenever F is a lattice, the nodes of the concept lattice represents these equivalence
classes and q is a closed pattern i.e. the greatest element of the class, and therefore we
have p ≤ q. As an example the min-max basis is made of the implications p → q where
p �= q and p is a minimal element of the class of q [13]. Whenever F is a confluence*,
we have seen that each such equivalence class is associated to several closed patterns
q1...qm each being the greatest element of a subclass. We have then in the basis both
implications of the form pi → qi where pi ≤ qi and both belong to subclass i to-
gether with implications of the form pj → qi where j �= i and therefore pj and qj are
unordered. We extend the idea of the min-max basis to confluences* as follows:

Definition 6. Let F be a confluence*, and F (e) = {t ∈ F | ext(t) = e}, the min-max
basis B = Bi ∪Be of implications in F is defined as the set

{p → q | ext(p) = ext(q), p �= q, p ∈ min(F (e)), q ∈ f [F (e)] }
The internal sub basis Bi is made of the implications of the form pi → qi where

pi ≤ qi and the external sub basis Be is made of the implications of the form pj → qi
where {pj , qj} are unordered.

There are other implication basis such as the minimal Guigue-Duquenne basis [14]
that can be as well extended to the case of confluences*.

4.2 Example

We consider here the example displayed in Figure 1. We haveF = {a, b, abc, abd, abcd}
and O = {ab, abc, abcd}. To compute the closures in F we take advantage of the fact
that F has two minimal elements a and b and that for any t ≥ a (resp. t ≥ b) we can
write f(t) = pa ◦ int ◦ ext(t) (resp. (f(t) = pb ◦ int ◦ ext(t)). We obtain then:

– f(a) = pa ◦ int({ab, abc, abcd}) = pa(ab) = a
– f(b) = pb ◦ int({ab, abc, abcd}) = pb(ab) = b



Closed Patterns and Abstraction Beyond Lattices 215

– f(abc) = pa ◦ int({abc, abcd}) = pa(abc) = abc (we could have used pb as
abc ∈ T b with the same result abc)

– f(abd) = pa ◦ int({abcd}) = pa(abcd) = abcd (same remark as above)
– f(abcd) = pa ◦ int({abcd}) = pa(abcd) = abcd (same remark as above)

Note that the confluence* F is the union of the two lattices F a = {a, abc, abd, abcd}
and F b = {b, abc, abd, abcd}. Therefore we have f [F ) = {a, b, abc, abcd} which is
a pre-confluence whose minimal elements are f(a) = a and f(b) = b. We have that
f [F ] = f [FA] ∪ f [F b] where f [F a] and f [F b] are the sets of closed patterns from
the concept lattices built respectively from (F a, Oa), and from (F b, Ob). We have here
f [F a] = {a, abc, abcd} and f [F b] = {b, abc, abcd}.

Regarding the min-max implication basis we first consider the set of extensions
ext[F ] = {e1 = {ab, abc, abcd}, e2 = {abc, abcd}, e3 = {abcd}} together with the
corresponding equivalence classes F (e1), F (e2), F (e3). Each each equivalence class is
divided into subclasses each containing one closed element:

– F (e1) = {a}+ {b}
– F (e2) = {abc}
– F (e3) = {abd, abcd}

Figure 1 displays on the left the confluence* F , on the middle we have the object set
O, and on the right is represented the pre-confluence f [F ] of support closed patterns of
F . The min-max implication basis is made of the internal basis Bi = {abc → abcd}
(this implication holds both in (F a, Oa) and in (F b, Ob)) plus the external basis Be =
{a → b, b → a}.

5 Abstract Closed Patterns in Confluences*

In this section we consider abstract closed patterns as those obtained in extensionally
abstract Galois lattices, denoted here as abstract Galois lattices for short, by constrain-
ing the space 2O. The general idea, as proposed in [12] and resulting in Proposition
5 in section 3.1 is that an abstract Galois lattice is obtained by selecting as an exten-
sional space a subset A of 2O closed under union i.e. an abstraction (or dual closure
subset) and therefore such that A = pA(2

O) where pA where pA is an interior operator
on 2O. The intuitive meaning is that the abstract extension extA(t) of some pattern t
will then be the union of the elements of A contained in its (standard) extension, i.e.
extA = pA ◦ ext and the corresponding abstract support closure operator with respect
to A is therefore fA = int ◦ pA ◦ ext. Intuitively, as noticed in [7], this is because the
corresponding abstract Galois lattice is isomorphic, and as same support closure subset
as the Galois lattice associated to the object set O(A) each object a of which is an el-
ement of A and described in T as int(a)4. It is then straighforward that we obtain that
abstract Galois pre-confluences are simply the Galois pre-confluences obtained through
this change on object set.

4 In fact we just need the ∪-irreducible elements of A as objects.



216 H. Soldano

Theorem 4. Let F be a confluence* of a lattice T , O a set whose objects are described
as elements of T , A = pA(O) an abstraction of A, then:

Let pt denote the local description operators on F , we have that
fA(t) = pt ◦ int◦pA ◦ext(t), where (int, pA ◦ext) is a Galois connection on (T,A),

is a support closure operator on F with respect to A and fA[F ] is a pre-confluence.

We continue here the example of section 4.2 by using the abstraction
A = {{o1, o2}, o1, o3}} = {{ab, abc}, {ab, abcd}}.Recall that pA(e) = ∪{a∈A|a⊆e}a.
We obtain then:

– fA(a) = pa ◦ int ◦ pA({o1, o2, o3}) = a as pA({o1, o2, o3}) = {o1, o2, o3} =
{ab, abc, abcd}

– fA(b) = pb ◦ int ◦ pA({o1, o2, o3}) = b (same reason as above)
– fA(abc) = pa◦int◦pA({o2, o3}) = 4a = abcd as pA({o2, o3}) = ∅ and therefore
pa ◦ int(∅) = pa(4a) = 4a

– fA(abd) = pa ◦ int ◦ pA({o3}) = 4a = abcd as pA({o3}) = ∅ (as above)
– fA(abcd) = pa ◦ int ◦ pA({o3}) = abcd (same as above)

F is represented on the left of Figure 2. The corresponding abstract support closure
pre-confluence fA[F ] is displayed on the right of the figure. What happens here, is
that there are only two possible extensions as extA[F ] = {∅, O}. As a result the two
minimal elements of fA[F ] share the same abstract extension O whereas the unique
maximal element 4a = 4b = abcd have an empty abstract extension.

a b

c

ba

d

a b

c

ba

d

1 2 3 1 2 3

ba

d

c

ba A = {{o ,o },{o ,o }}

{o ,o ,o } = p ({o ,o ,o })
A

{} = p ({o })
3

1 2 1 3

Fig. 2. Diagram of the abstract support closed connected subgraphs pre-confluence fA[F ] (on the
left part of the figure) with respect to the abstraction A = {{o1, o2}, {o1, o3}} of O. The support
closed element abc of f [F ] as been projected to the maximal element of F , abcd, because its
extension {abc, abcd} is projected on ∅ as no element of A is included in {abc, abcd}.

6 Algorithmics

An algorithm to build closure support on confluent families on 2X has been proposed
in [6] whenever F is strongly accessible. This restriction5ensures a polynomial delay
in outputting support closed elements. This algorithm has further been implemented

5 For (F,X) to be a strongly accessible set system, it is required that between any pair of
elements t1, t2 with t1 ≤ t2 in F there is a path t1, t1 ∪ {x1}, ..., t1 ∪ {x1, . . . xk} = t2 all
elements of which belong to F .



Closed Patterns and Abstraction Beyond Lattices 217

as a generic tool and in order to be efficient on multicores architectures particular in
PARAMINER [15]. Adapting it to confluences* is straightforward by avoiding com-
puting the support closure of ∅. Basically, the algorithm performs a depth-first search
each step of which consists in adding an attribute x to the current closed pattern t, check-
ing whether the resulting pattern t ∪ {x} is in F , and closing the pattern. A SELECT
function states whether a pattern belongs to F and closure is only computed if it returns
TRUE. The function has an ad hoc implementation according to the problem in hand.
In terms of interior operators, SELECT implicitly tests whether pt(t ∪ {x}) = t ∪ {x}
is true. A CLOSURE function computes the closure of any t ∈ F by implicitly apply-
ing pt to int(ext(t)). Again the implementation is ad hoc, depending of the problem at
hand. An open question is the construction and visualisation of the diagram of the pre-
confluence of support closed elements and of the corresponding min-max implication
basis.

7 Conclusion

Motivated by the problem of finding closed patterns in languages as the set of connected
subgraphs of a graph, we have investigated an extension of FCA where the pattern
language is a pre-confluence, i.e. a partial order defined through the existence of a local
meet operator, and that can be expressed as a constrained union of a set of lattices. We
have first extended the standard property that relates closure subsets and subsets closed
under the meet operator to the case of pre-confluences. Then we have discussed the
existence of support-closure operators in pre-confluences, extending a result of [6] and
we have called a Galois pre-confluence the pre-confluence of support closed patterns.
Related FCA works concern indirect approaches in which a support closure operator is
defined on sets of connected graphs, thus resulting in a standard concept lattice whose
intents contains several support-closed connected graphs[16]. We have also shown that
applying interior operators to the powerset of objects we obtain, as in the lattice case,
abstract support closures. The connection to FCA we have attempted to rises some
technical questions, as the construction of diagrams of closure subsets, as well as more
fundamental questions. For instance, when considering a support closed element as the
intensional part of some concept, i.e. an intent, we may have two different concepts with
the same extent which is somewhat disturbing. On the other hand, we could consider
that the extension defines the concept, i.e. is an extent and in this case, a concept may
have several intents. Finally, regarding applications, its seems worthwhile to consider
such structures, as they are frequent when modeling data using graphs.

Acknowledgements. Many thanks to Bernard Monjardet for his invaluable comments
and to Sylvie Borne and Sophie Toulouse for their help in the preparation of this
manuscript.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1999)
2. Caspard, N., Monjardet, B.: The lattices of closure systems, closure operators, and implica-

tional systems on a finite set: a survey. Discrete Appl. Math. 127(2), 241–269 (2003)



218 H. Soldano

3. Diday, E., Emilion, R.: Maximal and stochastic galois lattices. Discrete Appl. Math. 127(2),
271–284 (2003)

4. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association rules using
closed itemset lattices. Information Systems 24(1), 25–46 (1999)

5. Arimura, H., Uno, T.: Polynomial-delay and polynomial-space algorithms for mining closed
sequences, graphs, and pictures in accessible set systems. In: SDM, pp. 1087–1098. SIAM
(2009)

6. Boley, M., Horváth, T., Poigné, A., Wrobel, S.: Listing closed sets of strongly accessible set
systems with applications to data mining. Theor. Comput. Sci. 411(3), 691–700 (2010)

7. Ventos, V., Soldano, H.: Alpha Galois Lattices: An Overview. In: Ganter, B., Godin, R. (eds.)
ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 299–314. Springer, Heidelberg (2005)

8. Blyth, T.S.: Lattices and Ordered Algebraic Structures. Universitext. Springer (2005)
9. Ferré, S., Ridoux, O.: An introduction to logical information systems. Information Processing

and Management 40(3), 383–419 (2004)
10. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Delugach, H.S.,

Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg
(2001)

11. Pernelle, N., Rousset, M.C., Soldano, H., Ventos, V.: Zoom: a nested Galois lattices-
based system for conceptual clustering. J. of Experimental and Theoretical Artificial Intelli-
gence 2/3(14), 157–187 (2002)

12. Soldano, H., Ventos, V.: Abstract Concept Lattices. In: Valtchev, P., Jäschke, R. (eds.) ICFCA
2011. LNCS (LNAI), vol. 6628, pp. 235–250. Springer, Heidelberg (2011)

13. Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., Lakhal, L.: Generating a condensed repre-
sentation for association rules. Journal Intelligent Information Systems (JIIS) 24(1), 29–60
(2005)

14. Guigues, J., Duquenne, V.: Famille non redondante d’implications informatives résultant
d’un tableau de données binaires. Mathématiques et Sciences Humaines 95, 5–18 (1986)

15. Negrevergne, B., Termier, A., Rousset, M.C., Méhaut, J.F.: Paraminer: a generic pattern min-
ing algorithm for multi-core architectures. Data Mining and Knowledge Discovery, 1–41
(2013)

16. Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for chemical ap-
plications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp.
190–208. Springer, Heidelberg (2005)



Mining Videos from the Web for Electronic Textbooks

Rakesh Agrawal1, Maria Christoforaki2,
, Sreenivas Gollapudi1, Anitha Kannan1,
Krishnaram Kenthapadi1, and Adith Swaminathan3,


1 Microsoft Research
2 Polytechnic Institute of New York University

3 Cornell University

Abstract. We propose a system for mining videos from the web for supplement-
ing the content of electronic textbooks in order to enhance their utility. Textbooks
are generally organized into sections such that each section explains very few
concepts and every concept is primarily explained in one section. Building upon
these principles from the education literature and drawing upon the theory of For-
mal Concept Analysis, we define the focus of a section in terms of a few indicia,
which themselves are combinations of concept phrases uniquely present in the
section. We identify videos relevant for a section by ensuring that at least one
of the indicia for the section is present in the video and measuring the extent to
which the video contains the concept phrases occurring in different indicia for
the section. Our user study employing two corpora of textbooks on different sub-
jects from two countries demonstrate that our system is able to find useful videos,
relevant to individual sections.

1 Introduction

It is inevitable that the traditional paper-based textbook will gradually evolve into elec-
tronic textbooks accessible from computing devices connected to the Internet. To en-
hance the utility of such electronic textbooks, we propose the problem of mining from
the web a few selective videos related to a section in a textbook and present effective
techniques for this purpose. Our techniques can be used to obtain a candidate set of
relevant videos, which can then be used by different stakeholders: by teachers when
preparing lectures on the material, by authors when creating pointers to supplementary
video material for the textbook, and by students for reinforcing their learning from an
alternative exposition.

The problem of finding suitable videos for a textbook section is quite different from
that of finding videos relevant to a stand-alone piece of text. Textbooks are written
following certain organizational principles in order to enable the reader to understand
their content without incurring undue comprehension burden [13, 22]. Two properties
of a well-written textbook of particular relevance to the present work are: (1) focus that
says that each section explains a few concepts, and (2) unity that implies that for each
concept there is a unique section that best explains the concept. In the presence of the
unity property, the focus of a section can be viewed as the the unique contribution of

� Work done at Microsoft Research.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 219–234, 2014.
c© Springer International Publishing Switzerland 2014



220 R. Agrawal et al.

the section to the textbook. The conventional information retrieval methods (e.g., TF-
IDF [32], LSA [18], and LDA [9]) are not adept at representing the focus of a textbook
section (see [3]).

Hence, we take a departure from traditional retrieval methods and present an ap-
proach that first infers the focus of each section, taking into account the content of all
other sections, and then finds videos relevant to that focus. Our representation of the
focus is derived from the theory of Formal Concept Analysis [20]. We represent the
focus using, what we call, indicia. An Indicium for a section is a maximal combination
of concept phrases that occurs frequently in that section but is not present in any other
section. We also associate a score with each Indicium based on the importance of the
underlying concept phrases that captures the significance of the Indicium to the section.
We identify videos relevant for a section by ensuring that at least one of the indicia is
present in the video and measuring the extent to which the video contains the concept
phrases occurring in different indicia, after taking into account their significance. We
study the efficacy of our system using textbooks on different subjects from two different
countries. This extensive user study shows that our system is able to find useful videos
relevant to the individual sections of a textbook.

1.1 Assumptions and Scope of the Paper

Before delving into details, we offer a few clarifications. We are assuming an evolution-
ary transformation of the current textbooks to their electronic versions. Undoubtedly, in
the future, there will be textbooks written in a way to specifically exploit the func-
tionalities provided by the electronic medium, but that will take time. Meanwhile, we
are interested in taking the current books and enhancing the experience of studying
from them. In the same vein, one can even question the continued need for textbooks.
However, years of educational research have shown that the textbooks are the educa-
tional input most consistently associated with improvements in student learning [52].
They serve as the primary conduits for delivering content knowledge to the students
and the teachers base their lesson plans mainly on the material given in textbooks [21].
Pragmatically, their importance in educational instruction is unlikely to diminish in the
foreseeable future.

We should also clarify why enhancing electronic textbooks with videos has a high
payoff. A number of pilot studies have established the importance of using multime-
dia content in educational instruction. In a recent work [36], Miller showed that the
use of multimedia content is “particularly valuable in helping students acquire the ini-
tial mental imagery essential for conceptual understanding”. Tantrarungroj [50] used a
month-long longitudinal study to show that the students have much better content re-
tention when they are presented with multimedia content along with textual material.
The visual modality is particularly strong in many people because a child “sees and
recognizes before speaking” [8]. The educational pedagogy informs us that any supple-
mentary material is most effective when it is presented in close proximity to the main
material [16]. We therefore augment videos at the section level.

We present the technology core for identifying relevant videos, but do not discuss
the mechanisms for integrating them into the textbook. Issues such as implications for
royalty sharing and intellectual property rights are outside the scope of the paper. It



Mining Videos from the Web for Electronic Textbooks 221

is known that learning outcomes depend not only on the availability of educational
materials, but also on how they are used by the teachers and students and how effectively
they have been integrated with other interventions [21, 37]. While such deployment
issues are critically important, they are beyond the scope of this paper.

When proposing a video, there are multiple considerations that must be taken into ac-
count. They can be broadly grouped into aspects related to the video, the viewer, and the
presenter respectively. Video considerations include the relevancy of the content of the
video to the textbook section, duration of the video, and the video quality [41]. Viewer
considerations include the appropriateness of the video to the viewer’s prior knowledge
of the subject matter and preference for the type of video such as lecture, demonstra-
tion, animation, or enactment. Presenter considerations include the presenter speaking
style [33], diction, and accent. In this paper, we address the problem of relevancy: how
do we augment textbook sections with relevant videos available on the web?

1.2 Textbook Corpora

Our study uses publicly available school-level textbooks on different subjects from two
different countries. The first corpus consists of books published by the CK-12 Foun-
dation, U.S.A. that are available online from ck12.org. The second corpus comprises
of books published by the National Council of Educational Research and Training
(NCERT), India. These books are also available online from ncert.nic.in and they have
been used in prior studies related to textbooks [4, 5, 6]. The language of these books is
English. We generate augmentations for every section in every chapter of books in our
corpora.

Respecting the space constraint, we present and discuss in depth the results for two
books. From the CK-12 corpus, we provide results for the middle school Biology text-
book. This book introduces various themes in Biology including Molecular Biology and
Genetics, Cell Biology, Prokaryotes, Animals, Plants, and Human Biology. The book
consists of 26 chapters, spanning 147 sections, and we consider the augmentations for
all the sections in our performance evaluation.

From the NCERT corpus, we present results for the Grade XII Physics textbook.
The broad theme of this book is electricity and magnetism. It covers electric charges
and fields, electrostatic potential and capacitance, current electricity, moving charges
and magnetism, magnetism and matter, electromagnetic induction, alternating current,
and electromagnetic waves. This book consists of 15 chapters, spanning 200 sections,
and again our evaluation considers the results for all the sections.

Hereafter, we refer to these books as Biology and Physics textbooks respectively.

1.3 Organization

The rest of the paper proceeds as follows. We start off by discussing the related work
in §2. We then describe our model for representing the focus of a textbook section in
§3. We describe how we use our representation of the focus of a textbook section for
finding videos relevant to it in §4. We present the results of the user study in §5. We
conclude with a summary and directions for future work in §6.



222 R. Agrawal et al.

2 Related Work

Aboutness: The problem of formally defining the focus of a textbook section is related to
the question of “what a document is about?”. The latter has been been extensively inves-
tigated in the information retrieval literature from both theoretical (e.g., [10, 24, 27]) as
well as pragmatic perspectives (e.g., [28, 32, 39]). However, the conventional informa-
tion retrieval techniques are not adept at capturing the focus of a textbook section [3].
Our proposed representation of the focus is rooted in the theory of Formal Concept
Analysis [20]. It also agrees with the properties of well-written textbooks enunciated in
the education literature [13, 22]. We also validate its efficacy through the application of
finding relevant videos for different textbook sections.

Content-based Video Retrieval: Quite innovative research has been reported in content-
based video retrieval where the emphasis is on retrieving videos based on pre-specified
physical object categories such as cars and people and their instances [40, 45]. There is
also work on recognition and retrieval for certain classes of events for these objects (e.g.,
human actions such as handshakes and answering phones [51], sporting events [57],
or traffic patterns [25]). Retrieval is initiated by providing a textual query, or a repre-
sentative image, or a region of the image depicting the object of interest. The TREC
Video Retrieval Evaluation [38] has played a key role in the development of methods
for content-based exploitation of digital videos. These methods have been designed to
recognize objects that can be represented using visual pixels, and thus are inapplicable
for recognizing abstract concepts such as ‘kinetic energy’ that are common and central
in textbooks.

Video Search Engines: Popular search engines such as Google and Bing include support
for video search. These search engines work by indexing the associated metadata and
matching keyword queries with the stored metadata. The metadata may include textual
description and tags, user comments and ratings, and queries that led to the video. One
might be tempted to provide the text string of a textbook section as query to a video
search engine and obtain the relevant videos. However, it is well known that the cur-
rent search engines do not perform well with long queries [26, 29]. Indeed, when we
ourselves experimented by querying the search engines using the first few lines of a
section, we got none or meaningless results. In one major stream of research on infor-
mation retrieval with long queries, the focus is on selecting a subset of the query, while
in another it is on weighting the terms of the query [55]. This body of research however
is not designed to work for queries consisting of arbitrarily long textbook sections.

Textbook Augmentation: It has been empirically observed that the linking of encyclope-
dic information to educational material can improve both the quality of the knowledge
acquired and the time needed to obtain such knowledge [17]. Motivated by this finding,
techniques for mining the web for augmenting textbooks with selective links to web
articles and images have been presented in [4, 6]. We extend this line of research by
investigating video augmentations. We also introduce new abstractions and techniques.



Mining Videos from the Web for Electronic Textbooks 223

Massive Open Online Courses: Several institutions have made available the videos of
the course lectures, and there are websites (e.g., EducationalVideos.com, VideoLec-
tures.net, WatchKnowLearn.org) that aggregate links to them. Massive open online
courses (MOOCs) are a relatively new phenomenon to enable teachers to reach a global
student population through video-based pedagogy. Coursera, edX, Khan Academy, and
Udacity are examples of platforms that have sprung up to support such courses. We
view these platforms as video sources for textbook augmentation, as well as potential
consumers of our research.

Crowdsourcing: It was proposed in [1] to create an education network to harness the
collective efforts of educators, parents, and students to collaboratively enhance the
quality of educational material. Some websites (e.g., Notemonk.com) allow students
to download textbooks and annotate them. Such annotations can include links found
interesting by the students, which can then be aggregated. Some allow teachers (e.g.,
LessonPlanet.com) to find lesson plans, worksheets, and videos to assist them with their
classroom presentations. Yet others (e.g., Graphite.org) help educators to use and share
apps, games, videos, and websites. One could view the techniques proposed in this
paper as providing an initial consideration set of videos that gets refined using crowd-
sourcing and other manual approaches.

3 Focus of a Textbook Section

Our representation of the focus of a section in a textbook is derived from the Formal
Concept Analysis (FCA) [20]. The theory of FCA has been shown to have connections
to the philosophical logic of human thought [54]. We first provide a brief overview
of FCA and then formally define the focus of a section in terms of indicia. Later, we
evaluate the efficacy of our representation through the application of finding relevant
videos for different textbook sections.

3.1 Formal Concept Analysis: An Overview

FCA postulates that we are given a context K consisting of a set of objects G, a set
of attributes (properties) M , and a relation I ⊆ G ×M specifying which objects have
which attributes. A concept is then a pair (A,B) consisting of: i) its extent A, compris-
ing all objects which belong to the concept, and ii) its intentB, comprising all attributes
which apply to all objects of the extension. A formal concept is defined to be a pair of
maximal subset of objects and maximal subset of attributes such that every object has
every attribute.

The formal concepts are naturally ordered by the subconcept-superconcept relation
as defined by: (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 ⇔ B1 ⊇ B2. The set of all concepts
together with the above partial order constitutes the concept lattice of the given context.
For many applications, it is desirable to limit to the top-most part of a concept lattice
since this region corresponds to concepts with a minimum support which are relatively
stable to small perturbations (noise) in data, and also since the size of a concept lattice
can be exponential in the size of the context in the worst case [30]. In [48], iceberg



224 R. Agrawal et al.

concept lattices, based on frequent itemsets as known from data mining [7], were intro-
duced to address this issue. Let μ ∈ [0, 1] be the minimum support. A concept (A,B)
is said to be frequent if at least μ fraction of objects in G individually have every at-
tribute in B. The set of all frequent concepts of a context K , together with the partial
order between them, is called its iceberg concept lattice. See [42] for a comprehensive
survey of recent advances in FCA and computational techniques. See [11, 14, 43] for
overviews of several applications of FCA in information retrieval.

3.2 Using FCA to Represent Focus

Assume we have a textbook, consisting of n sections, each of which is subdivided into
paragraphs. The sections and paragraphs can be those specified by the author or they
can be determined using techniques such as TextTiling [23]. We will use cphr to denote
a concept phrase present in a text. Let Cbook be the set of all cphrs in the book.1

Since the formal concepts are abstract, we can only observe their manifestations in
the form of underlying cphrs appearing in various paragraphs. Given a textbook section
s, treat different paragraphs of s as objects, different cphrs occurring in s as attributes,
and define the relationship between objects and attributes based on occurrence of a cphr
in a paragraph. Thus, a pair of maximal set of paragraphsPC and maximal combination
of cphrs C such that every cphr in C is present in every paragraph in PC corresponds
to a formal concept of the section.

Observe that the pair representation for a formal concept has redundancy built into
it. Clearly, given a formal concept (A,B), the attribute set B completely determines the
object setA, and vice versa. Thus, the iceberg concept lattice of section s can be thought
of as corresponding to a partial order over sets of cphrs present in s. If B1 < B2 in
this partial order then the set of cphrs corresponding to B1 will be a superset of B2. For
compactness, therefore, we take the leaf nodes of the partial order since they correspond
to the most specific sets of cphrs (or equivalently maximal combinations of cphrs) that
are also frequent in the section.

Finally, since we are interested in concepts that are unique to each section, we add a
uniqueness constraint to define the focus of the section. More precisely, we only include
those leaf nodes that are rare in any other section [49].

Definition 1 (Indicium of a section). A set of cphrs C present in a section s of the
textbook constitutes an Indicium of s if (1) C is frequent in s, (2) C uniquely occurs
in s (i.e., there is no other section of the book in which C is frequent), and (3) C is
maximal (i.e., there is no superset of C in s which is also frequent in s).

1 The identification of cphrs primarily involves detection based on rules or statistical and learn-
ing methods [28, 32]. In the former, the structural properties of phrases form the basis for rule
generation, while the importance of a phrase is computed based on its statistical properties in
the latter. Building upon [19, 34, 47], our implementation defines the initial set of cphrs to
be the phrases that map to Wikipedia article titles. This set is refined by removing malformed
as well as common phrases based on their probability of occurrence on the Web [53]. Our
methodology is oblivious to the specific cphr identification technique used, though the perfor-
mance of the system is dependent on it. Our implementation uses author provided sections and
paragraphs.



Mining Videos from the Web for Electronic Textbooks 225

Table 1. Indicia for consecutive sections in the Biology textbook

(a) Respiratory system

pharynx, cellular respiration, transporting oxygen
cardiac muscle, connective tissue, gas transport

nasal cavity, connective tissue, gas transport

(b) Respiratory diseases

pharynx, respiratory system, epiglottis
emphysema, epiglottis, cigarette

bronchus, cigarette, respiratory system

(c) Digestive system

pharynx, lipid digestion, pepsin
pharynx, large intestine, salivary gland

gall bladder, large intestine, pepsin

Definition 2 (Focus of a section). The set of indicia of a section s constitutes the focus
of s, denoted by Ψs.

We remark that our derivation of the definition of focus of a section agrees with the
properties of well-written textbooks investigated in the education literature [13, 22].
For an author to have introduced a formal concept in a section, the cphrs underlying
the formal concept must occur frequently across many paragraphs in the section. As a
section contributes unique content to the book and introduces very few formal concepts,
their underlying cphr combinations must appear uniquely in the section, and if not,
then infrequently in other sections. We obtain concise representations as a side effect of
the maximality constraint. Our implementation sets μ to require that an Indicium must
appear in at least two paragraphs in the section for it to be considered frequent.

We also remark that our notion of an Indicium is related to the idea of a hypothesis
for a class present in the FCA literature. Note that Indicium C is a maximal frequent
(and hence closed) itemset in class (text section) s, which is not frequent in another
class (section). As defined in [31], a hypothesis for class s is a closed itemset occurring
in s and not occurring in other classes. A minimal hypothesis is an inclusion-minimal
hypothesis. An Indicium is thus a “relaxation” of a minimal hypothesis, allowing it to
occur in another class, but not frequently. Thus, the focus of a section consists of the set
of relaxed minimal hypotheses for the section.

3.3 Illustrative Examples

Biology Textbook: Table 1 shows top indicia for three consecutive sections in the Bi-
ology textbook (wherein the indicia are ordered by their significance score (see §4.1)).
Table 1(a) gives indicia for the section on the anatomy of human respiratory system,
Table 1(b) for the next section that discusses respiratory diseases, and Table 1(c) for the
subsequent section that explains human digestive system.

We see that in each of these sections, there is at least one Indicium that contains the
cphr ‘pharynx’. In human Biology, ‘pharynx’ refers to a part of the throat that partici-
pates in respiration and digestion. Hence, this phrase is discussed in all three sections
and is present in the corresponding indicia. However, other cphrs occurring in these
indicia provide the additional content (respiration or digestion) with which to disam-
biguate and represent the focus of the corresponding sections.



226 R. Agrawal et al.

Table 2. Indicia for adjacent sections in the Physics textbook

(a) Magnetism & Gauss’ Laws

field line, magnetic field, monopole
field line, magnet, charged particle
electrostatics, field line, monopole

(b) Earth’s Magnetism

field line, magnetic field, earth
equator, meridian, southern hemisphere

earth, solar wind, poles

The Indicium 〈pharynx, cellular respiration, transporting oxygen〉 in the first section
captures the working of the respiratory system in which oxygen enters through the
mouth and nose and then travels through the pharynx to reach the lungs. In contrast,
in the second section, the Indicium 〈pharynx, respiratory system, epiglottis〉 captures
how the valve, epiglottis, near the pharynx points upwards during respiration in order
to enable breathing. In the third section on the human digestive system, the Indicium
〈pharynx, lipid digestion, pepsin〉 differentiates the use of ‘pharynx’ by using digestion
related concept phrases.

As another example, consider the Indicium 〈emphysema, epiglottis, cigarette〉 in the
second section. The cphr ‘emphysema’ refers to a progressive disease of the lungs
caused mainly by smoking tobacco. Smoking tobacco also causes inflammation of
epiglottis and hence can cause obstruction of oxygen through the ‘pharynx’. Similarly,
consider the Indicium 〈gall bladder, large intestine, pepsin〉 in the third section. The
cphr ‘pepsin’ refers to an enzyme that aids digestion of protein in the stomach and the
cphr ‘gall bladder’ to the organ that stores bile and then secretes it to aid digestion.

Physics textbook: Table 2 shows top indicia for two adjacent sections in the Physics
textbook. Table 2(a) shows indicia for the section on magnetism & Gauss’ laws, while
Table 2(b) shows them for the section on Earth’s magnetism. The first section discusses
the magnetic field and the physics behind their effects on moving particles. The second
section discusses how Earth acts as a magnet. Consider the first rows of the two tables.
They both contain cphrs ‘field line’ and ‘magnetic field’, but the cphr ‘monopole’ is
unique to the Indicium for the first section. The cphr ‘monopole’ appearing in the first
section distinguishes this section on general magnetism from the section on Earth’s
magnetism: a magnetic monopole is a hypothetical particle in particle physics that is an
isolated magnet with only one magnetic pole, and hence is not discussed in the context
of Earth’s magnetism as Earth has both poles. The cphr ‘earth’ is rather generic, but the
Indicium formed by combining it with ‘field line’ and ‘magnetic field’ is very pertinent
to the section on Earth’s magnetism.

4 Augmenting with Videos

A video might be associated with one or more of the following information: (a) im-
ages from the visual channel, (b) audio from the auditory channel, (c) video metadata
consisting of title, description and any other video related properties such as duration
and format, and (d) textual context (e.g., webpage in which the video may have been
embedded). One could attempt to match the textual content of a textbook section to the



Mining Videos from the Web for Electronic Textbooks 227

images from the visual channel of the video. However, today’s video recognition sys-
tems can effectively recognize only the physical objects that are describable using vi-
sual pixels [38], whereas we need to be able to find videos relevant to textbook sections
containing abstract concepts. Our system, therefore, employs transcript of the spoken
words in the video to infer the relevance of the video to the textbook section. Many
videos have such transcripts associated with them; otherwise, one can generate tran-
scripts using speech recognition [46].

Our problem now reduces to the following: given a textbook section (a query), search
for related documents over the corpus of video transcripts. At a high level, this problem
is similar to the query by document work [56] wherein given a news article (a query),
techniques were proposed for identifying related documents from a corpus of blogs.
However, our approach differs in two respects. We represent the textbook section using
indicia which themselves are founded on formal concept analysis and properties of well-
written textbooks, whereas their approach represents the given document by extracting
key phrases. Our technique for using the representation to query the corpus (see below)
also differs from their approach of issuing a conjunctive query of key phrases to a
specialized blog search engine.

Given a section s and its set of indicia, Ψs, the videos relevant to the section are
obtained using a two-step process. First, a candidate set of videos is selected by only
including videos whose transcripts contain all cphrs from at least one Indicium in Ψs.
For each video in the candidate set, we assign a relevance score by measuring the com-
bined significance of the indicia from the section that are present in the corresponding
transcript. Let Ψs,v ⊆ Ψs be the set of indicia of section s that are found in the transcript
of video v. The relevance score for the video v is given by: relevanceScore(v) :=∑

C∈Ψs,v
f(C), where f(C) is the significance score of Indicium C. The videos are

then ranked using this score, and the top k are chosen for augmenting the section.

4.1 Significance of an Indicium

An Indicium consists of a combination of cphrs that collectively represent the unique
content a section, but many such combinations may exist for the same section. How-
ever, some Indicium may offer a more significant representation than others. Hence, we
associate a score denoting the significance of an Indicium based on the importance of
the underlying cphrs.2 We first enunciate the desirable properties of significance score.

Property 1 (MONOTONICITY). The significance score of an Indicium is a monotoni-
cally increasing function of the importance of its constituent cphrs.

This property is rooted in the intuitive notion that an Indicium made up of more
important cphrs is more significant. In particular, inclusion of an additional cphr to
an Indicium results in a more significant Indicium (the uniqueness requirement is still
preserved).

2 Adopting the “keyphraseness” notion from [34, 35], our implementation defines the impor-
tance φ(c) of a cphr c in terms of the likelihood that the cphr is hyperlinked to the corre-
sponding article in Wikipedia. The intuition is that more important cphrs are more likely to be
hyperlinked in Wikipedia. Formally, φ(c) := nlink(c)/nall(c), where nlink(c) is the num-
ber of Wikipedia articles in which c occurs as a hyperlink and nall(c) is the total number of
articles in which c appears. See [28, 32] for other possibilities.



228 R. Agrawal et al.

Property 2 (CONCENTRATION). The significance score of an Indicium increases as the
importance of its constituent cphrs gets concentrated, that is, the importance is shifted
from less important cphrs to more important cphrs retaining the same total importance.

This property stems from the observation that the more important cphrs tend to have
a broader scope, for example, representing the entire chapter. By themselves, the less
important cphrs may not represent a section and may even be ambiguous, but their com-
bination with more important cphrs helps to narrow down to the focus of the section.
The corresponding Indicium can be thought of as anchoring to more important cphrs,
and then refining their scope using less important cphrs.

For example, all three sections shown in Table 1 discuss the cphr ‘pharynx’. The
additional cphrs in the respective sections help to refine the scope of this cphr to either
respiration or digestion as discussed in §3.3.

4.2 Characterization of Significance Score for an Indicium

We next show that the significance score of an Indicium can be obtained using a broad
category of simple functions that satisfy properties 1 and 2. Let f(C) denote the sig-
nificance score of Indicium C. Let c1, c2, . . . , cl be the cphrs present in C, listed in the
decreasing order of their importance, that is, φ(c1) ≥ . . . ≥ φ(cl).

Claim. Suppose f is defined as the sum of a univariate function of the importance of
constituent cphrs: f(C) :=

∑
c∈C g(φ(c)). Then, f satisfies properties 1 and 2 if g(.)

is a monotonically increasing non-negative convex function.

Proof. See [3].

Our implementation instantiates function g as g(x) := ex. This function satisfies the
requirements in Claim 4.2, and favors indicia for which the importance is concentrated
in a few cphrs.

5 Performance

We now present the results of the user studies we conducted to quantify how well our
approach is able to find videos relevant to the focus of each section. We first describe
the video corpus, and then provide the results.

5.1 Video Corpus

The video corpus consists of education-related, short videos obtained from a focused
web crawl [12, 44]. The crawler is seeded with educational videos from a few reputed
sites. These videos span broad levels of education ranging from school to higher educa-
tion to lifelong learning and originate from a variety of sources. Many of these videos
had accompanying user uploaded transcripts of the video content. In order to remove
variability arising out of the quality of speech recognition of the audio from the audi-
tory channel of the videos, our experiments employed only those videos that contained
author uploaded transcripts. There were nearly 50,000 such videos.



Mining Videos from the Web for Electronic Textbooks 229

5.2 Experiments

We carried out two sets of experiments to assess how well our techniques are able to
find relevant videos. The first experiment evaluates the proposed videos by measuring
the precision of retrieval. The second experiment measures the congruence of the re-
trieval by computing agreement between the section and the retrieved video, in terms
of overlap between concept phrases deemed important for the section and for the video
by a panel of judges. We measure overlap using a number of similarity measures.

Ideally, we would have liked to have as judges those students who had studied from
the textbooks in our test corpus. In the absence of the access to this subject population
to us, we carried out our user study on the Amazon Mechanical Turk platform, taking
care to follow the best practices [2].

5.3 Precision

Setup: Taking cue from the relevance judgment literature [15, 38], we asked the turkers
to read a section, watch a video, and then judge if the video was relevant to the section.
The default choice in the HIT (Human Intelligence Task) was set to ‘not-relevant’ so
that the judges needed to explicitly choose ‘relevant’ if they indeed found the video
to be relevant. Each judge was required to spend a minimum of 30 minutes on a HIT.
We rejected any HIT where the time spent was less than the minimum. Each HIT was
judged by seven judges. In this manner, we computed the relevance of the top three
videos proposed by our system over all sections in four randomly chosen chapters, for
both the textbooks.

Metric: Our first metric is the commonly used precision@k [32] which measures the
fraction of retrieved videos in the top K positions that are judged to be relevant. For a
section s, let vs,j be the retrieved video at position j. Let rel(vs,j) be a binary variable
that takes a value of 1 if the majority of judges voted vs,j to be relevant for s. Then,

precision@k = (
∑
s∈S

k∑
j=1

rel(vs,j)/k) / |S|,

where k is the number of videos retrieved for each section and S is the set of sections.
We also measure whether the judges found at least i of the videos shown in top k

positions for each section to be relevant, and compute the average across all sections:

precision@(i, k) =
∑
s∈S

δ[

k∑
j=1

rel(vs,j ≥ i]) / |S|,

where δ[x] is an indicator variable that evaluates to 1 if x is true, and to 0 otherwise.
This metric is useful if the goal of video augmentation is to find a good candidate set of
videos from which the final selection is made by an expert.

Results: Figure 1a shows the performance of our system under the first metric for k =
1, 2, 3. The results are quite encouraging. In 77% of the sections, the top video retrieved



230 R. Agrawal et al.

(a) precision@k (b) precision@(1, k)

Fig. 1. Retrieval precision

by our system has been judged relevant. The performance is maintained at 73% even
when both first and second videos are required to be judged relevant, and at 63% when
all three videos are required to be judged relevant. We can also see that the performance
is maintained across both the subjects.

Figure 1b shows the results under the second metric for i = 1 and k = 1, 2, 3. For
77% of the sections, judges agree with our top augmentation. This number goes up to
86% if we are willing to consider it a success if one of the first two videos is judged
relevant. It shoots up to 95% if finding at least one out of three videos to be relevant is
treated as success.

5.4 Congruence

This experiment measures the agreement between judges’ collective understanding of
the focus of a section and their collective understanding of the focus of the correspond-
ing video. For this purpose, we designed two HITs, one for the section and the other for
the video.

Setup: In SectionHIT (VideoHIT), the judge was asked to read the section (video) and
provide top five phrases that best describe the section (video). We converted the phrases
from all the judges into unigrams and removed stop words. Let Ys be the set of unigrams
obtained in this manner for section s, and ns[w] be the number of judges that included
unigram w in one of the phrases for s. Similarly, Zv and nv[w] for video v.

In this experiment also, judges were required to spend a minimum of 30 minutes on
a HIT. The same section (and the corresponding video) was judged by five judges. We
selected the judges who took part to be different from those who participated in the
experiment reported in §5.3 to remove any biases.

Metric: We compute congruence using several similarity measures [32]. For a video v
for section s, the congruence is computed on the sets Zv and Ys of unigrams provided
by the judges for video v and section s, respectively. We used two symmetric measures:

the weighted Jaccard
(∑

w∈Zv∩Ys
min(cv [w],cs[w])∑

w∈Zv∪Ys
max(cv[w],cs[w])

)
and Dice

(
2|Zv∩Ys|
|Zv|+|Ys|

)
. We also com-

puted asymmetric measures with respect to the section and the video: |Zv ∩ Ys|/|Zv|
and |Zv ∩ Ys|/|Ys| respectively.



Mining Videos from the Web for Electronic Textbooks 231

(a) Biology textbook (b) Physics textbook

Fig. 2. Congruence between section focus and retrieved video

Results: Figure 2 shows the results. For each section (shown in X-axis), we selected
the top video identified by our approach and computed congruence (shown in Y-axis)
between the section and the corresponding top video. For comparison, we also did the
following computation. For each section, we randomly sampled as many unigrams as
provided by the judges. Similarly, we also randomly sampled unigrams from the match-
ing videos. We used these two sets to compute average congruence over 100 random
runs for each 〈section, video〉 pair. We can see that the congruence obtained using the
unigrams provided by the judges is significantly higher than that of the randomly sam-
pled unigrams under all the measures.

6 Conclusions

Motivated by the importance of textbooks in learning, we studied the feasibility of en-
hancing the predominantly text-oriented textbooks with a few selective videos mined
from the web at the level of individual sections. We took an approach that does not view
textbook sections as stand-alone pieces of text, but rather part of a logically organized
work based on well-founded educational principles in which each textbook section con-
tributes uniquely to the pedagogical objective of the book. Our main contributions are
as follows:

– Inspired by the theory of Formal Concept Analysis, we propose that the focus of
textbook sections can be defined and identified in terms of a small number of in-
dicia, each of which consists of a combination of concept phrases appearing in the
section. Indicia of a textbook section are unique relative to all other sections of the
book and can be computed by considering all the sections jointly.

– On the video side, we propose making use of the transcript of the spoken words in
the audio from the auditory track of the video. However, videos found on the web are
independently produced and without necessarily following the organizational logic
of textbooks. We therefore use indicia from a section to identify candidate videos
and then score them based on the concept phrases present and their importance.

– We evaluated our video augmentation algorithm through extensive user studies of
its performance. The video corpus used in the study consisted of nearly 50,000



232 R. Agrawal et al.

videos crawled from the web. The textbook corpora consisted of publicly avail-
able school textbooks from two different sources, one from U.S.A. and the other
from India. This empirical evaluation confirmed the effectiveness of our algorithm
in finding relevant videos even at the fine granularity of individual sections of a
textbook.

In developing our solution, we built upon work in various disciplines, including ed-
ucational sciences, natural language and speech processing, knowledge representation
and formal concept analysis, information retrieval and extraction, web and data mining,
and crowdsourcing. As such, this work might serve as a bridge for researchers belong-
ing to these communities.

For future, we would like to integrate considerations beyond relevance in our video
mining system. We expect incorporating viewer aspects, especially appropriateness to
viewer’s background and prior knowledge, to be particularly valuable and challenging.
It is possible for a video to contain not only content relevant for a particular textbook
section, but also additional material. In such cases, we would like to be able to pin-
point the subset of the proposed video. The reader would have noticed that the ideas
and techniques we have proposed are quite general and have broader applicability. We
would like to explore their effectiveness in augmenting textbooks with other types of
content that have been investigated in the past [4, 6].

Acknowledgments. We wish to thank Sergei Kuznetsov for introducing us to FCA and
and providing insightful feedback.

References

[1] Improving India’s Education System through Information Technology. IBM (2005)
[2] Amazon Mechanical Turk, Requester Best Practices Guide. Amazon Web Services (June

2011)
[3] Agrawal, R., Christoforaki, M., Gollapudi, S., Kannan, A., Kenthapadi, K., Swaminathan,

A.: Mining videos from the web for electronic textbooks. Technical Report MSR-TR-2014-
5, Microsoft Research (2014)

[4] Agrawal, R., Gollapudi, S., Kannan, A., Kenthapadi, K.: Enriching textbooks with images.
In: CIKM (2011)

[5] Agrawal, R., Gollapudi, S., Kannan, A., Kenthapadi, K.: Identifying enrichment candidates
in textbooks. In: WWW (2011)

[6] Agrawal, R., Gollapudi, S., Kenthapadi, K., Srivastava, N., Velu, R.: Enriching textbooks
through data mining. In: ACM DEV (2010)

[7] Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of asso-
ciation rules. In: Advances in Knowledge Discovery and Data Mining, ch. 12. AAAI/MIT
Press (1996)

[8] Berger, J.: Ways of seeing. Penguin (2008)
[9] Blei, D., Ng, A.Y., Jordani, M.: Latent dirichlet allocation. Journal of Machine Learning

Research 3 (2003)
[10] Bruza, P.D., Song, D.W., Wong, K.-F.: Aboutness from a commonsense perspective. Journal

of the American Society for Information Science 51(12) (2000)



Mining Videos from the Web for Electronic Textbooks 233

[11] Carpineto, C., Romano, G.: Concept data analysis: Theory and applications. John Wiley &
Sons (2004)

[12] Chakrabarti, S., Van den Berg, M., Dom, B.: Focused crawling: A new approach to topic-
specific web resource discovery. Computer Networks 31(11) (1999)

[13] Chambliss, M., Calfee, R.: Textbooks for Learning: Nurturing Children’s Minds. Wiley-
Blackwell (1998)

[14] Cigarrán, J.M., Peñas, A., Gonzalo, J., Verdejo, F.: Automatic selection of noun phrases as
document descriptors in an FCA-based information retrieval system. In: Ganter, B., Godin,
R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 49–63. Springer, Heidelberg (2005)

[15] Clarke, C.L.A., Craswell, N., Soboroff, I., Voorhees, E.M.: Overview of the TREC 2011
web track. Technical report, NIST (2011)

[16] Coiro, J., Knobel, M., Lankshear, C., Leu, D. (eds.): Handbook of research on new literacies.
Lawrence Erlbaum (2008)

[17] Csomai, A., Mihalcea, R.: Linking educational materials to encyclopedic knowledge. In:
AIED (2007)

[18] Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing
by latent semantic analysis. JASIS 41(6) (1990)

[19] Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using Wikipedia-based
explicit semantic analysis. In: IJCAI (2007)

[20] Ganter, B., Wille, R.: Formal concept analysis: Mathematical foundations. Springer (1999)
[21] Gillies, J., Quijada, J.: Opportunity to learn: A high impact strategy for improving educa-

tional outcomes in developing countries. USAID Educational Quality Improvement Pro-
gram, EQUIP2 (2008)

[22] Gray, W., Leary, B.: What makes a book readable. University of Chicago Press (1935)
[23] Hearst, M.A.: TextTiling: Segmenting text into multi-paragraph subtopic passages. Compu-

tational Linguistics 23(1) (1997)
[24] Hjørland, B.: Towards a theory of aboutness, subject, topicality, theme, domain, field, con-

tent ... and relevance. Journal of the American Society for Information Science and Tech-
nology 52(9) (2001)

[25] Hu, W., Xie, D., Fu, Z., Zeng, W., Maybank, S.: Semantic-based surveillance video retrieval.
IEEE Transactions on Image Processing 16(4) (2007)

[26] Huston, S., Croft, W.B.: Evaluating verbose query processing techniques. In: SIGIR (2010)
[27] Hutchins, W.J.: On the problem of aboutness in document analysis. Journal of Informat-

ics 1(1) (1977)
[28] Jurafsky, D., Martin, J.: Speech and language processing. Prentice Hall (2008)
[29] Kumaran, G., Carvalho, V.R.: Reducing long queries using query quality predictors. In:

SIGIR (2009)
[30] Kuznetsov, S.O.: On computing the size of a lattice and related decision problems. Or-

der 18(4) (2001)
[31] Kuznetsov, S.O.: Complexity of learning in concept lattices from positive and negative ex-

amples. Discrete Applied Mathematics 142(1) (2004)
[32] Manning, C., Raghavan, P., Schütze, H.: Introduction to information retrieval. Cambridge

University Press (2008)
[33] Mariooryad, S., Kannan, A., Hakkani-Tur, D., Shriberg, E.: Automatic characterization of

speaking styles in educational videos. In: ICASSP (2014)
[34] Medelyan, O., Milne, D., Legg, C., Witten, I.: Mining meaning from Wikipedia. Interna-

tional Journal of Human-Computer Studies 67(9) (2009)
[35] Mihalcea, R., Csomai, A.: Wikify!: Linking documents to encyclopedic knowledge. In:

CIKM (2007)
[36] Miller, M.: Integrating online multimedia into college course and classroom: With applica-

tion to the social sciences. MERLOT Journal of Online Learning and Teaching 5(2) (2009)



234 R. Agrawal et al.

[37] Moulton, J.: How do teachers use textbooks and other print materials: A review of the
literature. The Improving Educational Quality Project (1994)

[38] Over, P., Awad, G., Fiscus, J., Antonishek, B., Michel, M., Smeaton, A., Kraaij, W., Qunot,
G.: TRECVID 2011 – Goals, tasks, data, evaluation mechanisms and metrics. Technical
report, NIST (2011)

[39] Paranjpe, D.: Learning document aboutness from implicit user feedback and document
structure. In: CIKM (2009)

[40] Patel, B., Meshram, B.: Content based video retrieval. The International Journal of Multi-
media & Its Applications (IJMA) 4(5) (2012)

[41] Pinson, M., Wolf, S.: A new standardized method for objectively measuring video quality.
IEEE Transactions on Broadcasting 50(3) (2004)

[42] Poelmans, J., Ignatov, D.I., Kuznetsov, S.O., Dedene, G.: Formal concept analysis in
knowledge processing: A survey on models and techniques. Expert Systems with Appli-
cations 40(16) (2013)

[43] Priss, U.: Formal concept analysis in information science. Annual Review of Information
Science and Technology 40 (2006)

[44] Shah, C.: TubeKit: A query-based YouTube crawling toolkit. In: JCDL (2008)
[45] Smoliar, S.W., Zhang, H.: Content based video indexing and retrieval. IEEE MultiMe-

dia 1(2) (1994)
[46] Stolcke, A., Chen, B., Franco, H., Gadde, V., Graciarena, M., Hwang, M., Kirchhoff, K.,

Mandal, A., Morgan, N., Lei, X., et al.: Recent innovations in speech-to-text transcription
at SRI-ICSI-UW. IEEE Transactions on Audio, Speech, and Language Processing 14(5)
(2006)

[47] Strube, M., Ponzetto, S.: WikiRelate! Computing semantic relatedness using Wikipedia. In:
AAAI (2006)

[48] Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg concept
lattices with TITANIC. Data and Knowledge Engineering 42(2) (2002)

[49] Szathmary, L., Napoli, A., Valtchev, P.: Towards rare itemset mining. In: ICTAI (2007)
[50] Tantrarungroj, P.: Effect of embedded streaming video strategy in an online learning envi-

ronment on the learning of neuroscience. PhD thesis, Indiana State University (2008)
[51] Tian, Y., Cao, L., Liu, Z., Zhang, Z.: Hierarchical filtered motion for action recognition in

crowded videos. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews 42(3) (2012)

[52] Verspoor, A., Wu, K.B.: Textbooks and educational development. Technical report, World
Bank (1990)

[53] Wang, K., Thrasher, C., Viegas, E., Li, X., Hsu, P.: An overview of Microsoft Web N-gram
corpus and applications. In: NAACL–HLT (2010)

[54] Wille, R.: Formal concept analysis as mathematical theory of concepts and concept hierar-
chies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI),
vol. 3626, pp. 1–33. Springer, Heidelberg (2005)

[55] Xue, X., Huston, S., Croft, W.B.: Improving verbose queries using subset distribution. In:
CIKM (2010)

[56] Yang, Y., Bansal, N., Dakka, W., Ipeirotis, P., Koudas, N., Papadias, D.: Query by document.
In: WSDM (2009)

[57] Zhang, N., Duan, L.-Y., Li, L., Huang, Q., Du, J., Gao, W., Guan, L.: A generic approach for
systematic analysis of sports videos. ACM Transactions on Intelligent Systems and Tech-
nology 3(3) (2012)



Automated Enzyme Classification

by Formal Concept Analysis

François Coste1, Gaëlle Garet1, Agnès Groisillier2,
Jacques Nicolas1, and Thierry Tonon2

1 Irisa / Inria Rennes, Campus de Beaulieu, 35042 Rennes cedex, France
jacques.nicolas@inria.fr

http://www.irisa.fr/dyliss
2 Sorbonne Universités, UPMC Univ Paris 06,

UMR 8227, and CNRS, UMR 8227,
Integrative Biology of Marine Models,

Station Biologique de Roscoff, CS 90074, F-29688, Roscoff cedex, France
http://www.sb-roscoff.fr/umr7139.html

Abstract. Enzymes are macro-molecules (linear sequences of linked
molecules) with a catalytic activity that make them essential for any
biochemical reaction. High throughput genomic techniques give access
to the sequence of new enzymes found in living organisms. Guessing the
enzyme’s functional activity from its sequence is a crucial task that can
be approached by comparing the new sequences with those of already
known enzymes labeled by a family class. This task is difficult because
the activity is based on a combination of small sequence patterns and se-
quences greatly evolved over time. This paper presents a classifier based
on the identification of common subsequence blocks between known and
new enzymes and the search of formal concepts built on the cross product
of blocks and sequences for each class. Since new enzyme families may
emerge, it is important to propose a first classification of enzymes that
cannot be assigned to a known family. FCA offers a nice framework to set
the task as an optimization problem on the set of concepts. The classifier
has been tested with success on a particular set of enzymes present in a
large variety of species, the haloacid dehalogenase superfamily.

Keywords: bioinformatics, protein classification, FCA application.

1 Introduction: Enzyme Classification

This paper presents an application of concept lattices to build a classifier of enzy-
matic sequences. Enzymes are molecules of living cells with a catalytic activity
(they increase reaction rates) that make them essential for biochemical reac-
tions. Enzymes are mainly named and classified according to the reaction they
catalyze. A report of a dedicated Nomenclature Committee 1 assigns each en-
zyme a recommended name and an EC (Enzyme Commission) number made of

1 http://www.iubmb.org/1984

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 235–250, 2014.
c© Springer International Publishing Switzerland 2014

http://www.irisa.fr/dyliss
http://www.iubmb.org/1984


236 F. Coste et al.

four hierarchical levels. The first level (indicated by a number from 1 to 6) divides
enzymes in six main groups, according to the type of chemical reaction catalyzed
(e.g. 3 refers to hydrolases, which involve all reactions decomposing/recomposing
molecules by the addition/suppression of water). The second and third levels pro-
vide increasing refinements on the mechanism of the reaction. The fourth level is
a serial number that is assigned to inform on the specific molecule, the substrate,
upon which the enzyme acts by forming a transitory complex with it.

An enzyme is a particular type of protein, the main active macro-molecule in
cells, which is made of a sequence of linked amino acids. It is now easy to obtain
the protein sequences contained in various organisms but to find experimen-
tally the function of a protein remains a tedious and expensive task. Biologists
are thus interested in automatic approaches that can help them to filter among
the numerous possibilities, the most relevant one with respect to the observed
sequence. Proteins can also be organized and classified into families and su-
perfamilies based on similarities between their sequences and/or their spatial
structures. A number of studies have observed that, whilst relatives within en-
zyme superfamilies may perform different functions or transform substrates in
different ways, they often share some aspects of their chemistry/mechanisms of
reactions. Thus, an important step when making hypotheses on the enzyme func-
tional activity is to determine its membership to a structural superfamily and/or
family. Two classifications of known protein 3D structures have been developed
to capture their evolutionary relationships, CATH [1] and SCOPe [2]. Both of
these classifications use elementary structures called domains, proteins featur-
ing one or several domains organized in various ways, and often with different
functions. There is a relatively small number of superfamilies with respect to the
number of domains (e.g. CATH v3.5 contains 2626 superfamilies for 175536 do-
mains) and the issue of predicting the superfamily of a protein from its sequence
is relatively easy due to the presence of key domains with some characteristic
motifs. In contrast, the family level remains hard to predict from sequences and
requires cross-checking of multiple sources of information on the structure or the
biochemical characterization of particular sites in the protein.

In this study, given a known superfamily, we consider the issue of classifying a
set of new enzyme sequences (the unlabeled set) at the family level with respect
to a set of sequences that have already been classified (the labeled set). We are
looking for an explicit classification, with a clear interpretation in terms of the
presence of characteristic sites in the sequence. We have addressed this problem
in the framework of Formal Concept Analysis and shown it is adapted to the
two subproblems that arise in practice: the classification of unlabeled sequences
in existing classes (supervised classification) and the creation of new classes (un-
supervised classification). The paper is organized as followed: the next section
explains how interesting sites have been selected along the sequences, allowing
to code them at a domain or subdomain level. Section 3 formalizes the issue in
the framework of FCA and gives some account of the literature related to this
issue, both in bioinformatics and in the FCA community. Two subsections detail
the case of supervised (3.2) and unsupervised (3.3) classification. A last section



Automated Enzyme Classification by FCA 237

(section 4), before conclusion, introduces a real case experiment on a particu-
lar enzyme family, which shows the neat interest of the approach in producing
meaningful classifications.

2 Coding Enzymes Using Multiple Partial Local
Alignment

Enzyme functions can be associated to particular positions in their sequences.
The corresponding amino acids contribute to shape a specific spatial structure
that can interact with the substrate or are directly involved in the catalytic ma-
chinery. In practice, short common words extracted from sequences of enzymes
sharing a same known activity - i.e. short lists of successive amino acids - can
help to point out such active sites. However, two important aspects have to be
considered for this task: (1) biochemical knowledge on amino acids, and (2) the
divergence of protein sequences through evolution, including point mutations,
domain rearrangements and insertion/deletions.

When dealing with protein sequences, it is important, first, to take into ac-
count the similarities due to shared physico-chemical properties between letters
in the alphabet of the 20 standard amino acids used in proteins: some amino
acid substitutions have no impact on the function or the structure of the protein
while others have. To consider this knowledge, a standard approach in machine
learning consists in directly recoding the proteins on a smaller property-based
alphabet, such as the hydropathy index or the Dayhoff encoding ([3], [4]). These
coding schemes suffer from being a priori fixed, while the useful properties of a
same amino acid may differ from one position to the other. The work described
in this manuscript is based on a more specific data-driven approach based on
the detection of local conservations shared by labeled and unlabeled sequences.

The second point concerns the identification of putative domains and active
sites in the enzyme sequences that relies on the detection of local similarities in
the labeled set. It can be achieved by looking for optimal multiple alignment of
sequences. In fact, an alignment does not only provide a recoding of sequences,
it also keep track of the chaining of elements since the matching edges between
characters in the alignment are not allowed to cross. We have extended the
standard alignment search by loosening the constraints on admissible alignments
in two ways: the alignment is local (involving only substrings) and it is partial
(involving only sequences subsets instead of the whole set of sequences as in
classical alignment). Altogether, this leads to a partial local multiple alignment
(PLMA) of the sequences. Each short strongly conserved region in the PLMA
(called block in the sequel) will form one of the characters for recoding the
sequences: each sequence is represented by the sequence of blocks it is involved
in. At this stage, it is important to note that the new sequences to be assigned,
the unlabeled sequences, need to be also encoded and are aligned together with
the sequences of known class, the labeled sequences. The computation of PLMA
has been introduced as the first step performed in Protomata-Learner ([5]), a
grammatical inference program aiming at learning finite state automata for the



238 F. Coste et al.

characterization of protein family sequence sets. But even if the choice of the
alignment parameters is important in Protomata-Learner to tune the desired
level of generalization, we have only used default parameters in this study.

3 Class Assignment from Formal Concept Analysis

3.1 Formalization of the Classification Problem

The previous section explains how each protein sequence has been converted in a
Boolean sequence, i.e. a vector of block presences. The classification task consists,
from a set of sequences labeled by a class (a family) and a set of unlabeled
sequences, in guessing a class for each unlabeled sequence. This is either a known
family class or a novel class never observed in the labeled set but that gains some
evidence from the concurrent presence of specific blocks in the unlabeled set.

A natural approach for such an assignment task is to build a classification
of all sequences with respect to attributes and to decide the class of the unla-
beled sequences from their place among the labeled sequences in the concept
tree. This requires to define a similarity measure on the set of attributes, and to
set a threshold to discriminate the meaningful clusters. Problems quickly arise
when trying to follow this approach: the number of attributes may greatly vary
from one superfamily to the other and from one sequence to the other within
a same (super)family. Several standard machine learning techniques have been
tried for the prediction of enzyme classes or more generally of protein families
from sequences. For instance, [6] follows a decision-tree approach (C4.5) to build
the classification at the EC level 1 (6 groups), after having extracted 36 fea-
tures for the description of enzymatic sequences. The same authors have also
trained Support Vector Machines [7] for this task. More recently, Kumar et al.
[8] addressed the issue of enzyme classification in more depth using Random
forest, an approach bagging a number of classification trees (e.g. 200) built on
random subsets of features. They used an extended set of 73 sequence-derived
features and proposed a classification at 3 levels in the EC hierarchy: level 0
(enzyme/non-enzyme), 1 and 2. Finally, a few authors have tried to distinguish
the classification of novel sequences in either known families or in entirely novel
families. A nice study is proposed in [9], which uses both a set of Hidden Markov
Models trained on each known family to decide the most relevant class of a new
sequence and a logistic regression to decide sequences that likely belong to a new
class.

In all cases, a decision taken on statistical arguments is useful but not fully
satisfactory because it is hard to fix universal values for the necessary parameters
and above all, it tends to be a black box. Ultimately a biologist has to check the
assignments on the basis of the argumentation logics, his own knowledge, and
further biochemical characterization of the sequence(s) of interest. Therefore,
it is important to offer an easy access to the way automatic assignments have
been decided. Furthermore, we want to be able to distinguish and characterize
entirely novel sequence families, since it occurs frequently during the analysis of
new organism genomes. Note that we have assumed that all sequences belong to



Automated Enzyme Classification by FCA 239

a same superfamily. This way, some aspects of the structure that can be hardly
captured at the sequence level are supposed to be present. Since the prediction
of the family level is quite good, this is not a hard limitation in practice. Overall,
the challenge is thus to check if a more direct and more exploratory approach is
possible, where the set of assignment possibilities is made clear to the biologist.

We have thus decided to use a FCA approach to solve this issue: given a
relation linking a set of attributes and a set of objects some of which are labeled
using a set of class labels, our problem consists in finding a class assignment for
unlabeled objects on the basis of the associated concept lattice.

Supervised classification is a relatively common application of concept lat-
tices in the literature. It consists in building a classifier from a concept lattice
created with a set of attributes/objects labeled by their classes (learning step)
and then predicting the class of new objects by using the generated classifiers
(classification step). Published algorithms differ on three points:

1. Object and attribute selection for the creation of the lattice: The vast major-
ity of related papers [10, 11, 12] have used concept lattices built on a learning
set of labeled objects to produce a classifier that is used in a second step to
assign new objects with unknown class. On the contrary, [13] considers the
lattice built on both the labeled and the unlabeled set to focus the search on
links between known and unknown objects. Some other papers use a feature
selection step to use only ”interested” objects or attributes [14].

2. Selection of best concepts: Some methods use a concept selection step before
classification, filtering the most relevant ones (for instance in case of miss-
ing/noisy data) [15]. To avoid over-fitting, [14, 16] use only the upper lattice
to produce most general classifications. Some other measure of significance
are used like the coherence or the support of concepts ([11, 12]).

3. Utilization of the lattice as a classifier: After the construction of the lattice
and the selection of relevant concepts, there are different ways to use it to
classify new objects. Most classifiers use directly the lattice to compute a
similarity between objects to be classified and concepts. Various measures
exist, including the number of common attributes and/or the support of a
class in a concept [11, 14]. For instance, Ikeda [13] estimates the plausibility
of each concept to represent a set of objects belonging to a same class. The
class label of objects is thus used for scoring. The method selects first the
most discriminating concepts for each unlabeled object and classify them
with respect to their score. A classifier can also be built by generating rules
from the lattice. Indeed, the concept lattice provides a nice ordering for the
search of rules [10, 12] directly from selected concepts in the lattice. It is
also possible to build a decision tree from the lattice [17], replacing rules by
decision nodes. A more complex procedure is possible via the computation of
concept intersections in the lattice [18]. Other papers use various classifiers
derived from the lattice like nearest neighbors or naive Bayes [16, 19].

In our study, the set of attributes represents the enzyme blocks and there
are at least two kinds of objects, the labeled and unlabeled enzyme sequences.
The issue is then to introduce the class labels in this framework, in order to



240 F. Coste et al.

handle them directly in the formal concepts. This key point can be solved with-
out changing the formalism, by adding the class value as a particular type of
object: each time a block b is observed in a sequence s of class c, the pairs (s, b)
and (c, b) are added to the formal context relation. Including the classes in the
context as objects allows to have the right semantics for the binary relation and
the discrimination task: if attribute b appears in a concept with a class c, it
means that there exists at least one sequence of class c with attribute b. If c is
the unique class in this concept, then b is characteristic of c and can be used
for the classification of unlabeled sequences, otherwise b leads to an ambiguous
classification that is also an interesting result for the biologist. Note that using
classes as attributes instead of objects would not allow to describe ambiguous
classifications. In practice, it is only necessary to produce concepts having at
least one unlabeled sequence in the object set, otherwise it is not useful for se-
quence labeling. The size of the relation remains sufficiently small in this context
to produce the whole lattice of formal concepts for this relation. The assignment
procedure is based on the exploitation of the lattice.

In a general setting, let A be the attribute set, C the class set, L the labeled
set of objects and U the unlabeled set of objects. Let LUC = (L 5 U 5 C) and
let I denote the binary relation over LUC × A and B(LUC,A, I) the concept
lattice. The problem is to find a minimal extension N of C and an argumentation
assigning classes of N ∪ C to elements of U on the basis of B(LUC,A, I) .

For this purpose, we propose an iterative scheme where each unlabeled se-
quence is assigned in turn by looking for its compatible class assignments. A
compatible class assignment is defined as a class that belongs to some concepts
sharing a maximal set of blocks with the unlabeled sequence. Maximality is
defined here with respect to set inclusion.

Definition 1. (compatible class assignment) Let LUC = (L5U5C). Given
a concept lattice B = B(LUC,A, I) and an element u of U , a compatible class
assignment is an element c ∈ C such that there exists a concept ({u, c} ∪X,Y )
in B, X ⊂ LUC, and no Y is larger among the possible concepts.

Another important aspect of the quality of a classification decision is its sup-
port with respect to existing labeled sequences. Each class assignment may be
associated to a concept that we call attribute-compatible concept. This concept
gets a support in terms of its number of blocks. Another measure is the support
in terms of labeled sequences. However, the compatible concept is not the best
one with respect to this measure. It may exist a concept in the lattice, called
object-compatible concept, with a larger sequence support:

Definition 2. (attribute-compatible and object-compatible concept)
Let LUC = (L 5 U 5 C). Given a concept lattice B = B(LUC,A, I), u ∈ U ,
and c ∈ C, the attribute-compatible concept and object-compatible concept are
concepts BC(u, c) = ({u, c} ∪ X,Ymax) and BC(u, c) = ({u, c} ∪ Xmax, Y )
of B, where Ymax = max{Y ⊂ A : ({u, c} ∪ X,Y ) ∈ B,X ⊂ LUC} and
Xmax = max{X ⊂ LUC : ({u, c} ∪X,Y ) ∈ B, Y ⊂ A}.



Automated Enzyme Classification by FCA 241

This way, each class assignment may be scored by the number of blocks of
its attribute-compatible concept and the number of sequences of its object-
compatible concept.

3.2 Supervised Classification

Our method tries to maximize the specificity of the classification decisions and
proposes several quality levels for a class assignment towards this end.

At level 1, it checks if some attributes that are specific of a class (i.e. blocks
present in sequences belonging to a single class) are also present in the cur-
rent unlabeled sequence. These attributes, called characteristic attributes, are
assigned the highest quality value since they do not lead to any ambiguity if
present alone. It corresponds to build a characteristic partition that splits L in
subsets Li, i = 1,m with a common class value for each subset and A in m+ 1
possibly empty subsets Ai, i = 0,m of attributes only present in elements of Li,
with A0 = A \ ∪n

i=1Ai.
If there exists a single compatible class assignment c using only characteristic

blocks, the sequence is classified at level 1, with label c.
If there are several compatible class assignment c using only characteristic

blocks, the sequence has an ambiguous classification and if it cannot be classified
at the next level, it is said ambiguous and all its possible classes are displayed.

For sequences that have not been classified at level 1, the method checks at
level 2 if some concepts are attribute-compatible with respect to the current
unlabeled sequence, irrespective of the specificity of its blocks.

If there exists a single compatible class assignment c, the sequence is classified,
with label c.

If there are several compatible class assignment c , the sequence is said am-
biguous and all its possible classes are displayed.

The remaining cases are when no concept is compatible with the unlabeled
sequence. It means either that the sequence has no block in common with another
sequence and it remains unclassified, or that it is a member of a new family never
observed before that use blocks found only in unlabeled sequences.

For instance, figures 1(a), 1(b) and 1(c) represent partial local multiple align-
ments and in each figure, colored sequences (e.g. s1 and s2) are labeled sequences
while black sequences (e.g. s3) are unlabeled and waiting for class assignment.
On figure 1(a) the unlabeled sequence s3 gets only one compatible class cor-
responding to the orange concept and can thus be unambiguously classified.
However, on figure 1(b) there are two compatible concepts (orange and green),
and the unlabeled sequence class assignment is ambiguous. Figure 1(c), provides
an example of an unlabeled sequence, s3, that remains unclassified because the
multiple alignment has found no common block with another sequence. On the
same picture a new family is formed with a characteristic concept involving only
unlabeled sequences: {s4, s5, s6}×{Block1, Block2, Block3}. The purpose of the
next subsection is to detail the search of such new classes.



242 F. Coste et al.

s1
T W A G S

s2
T Y G G S

s3
G R S S V

s4
Q P S K M

s5
S D E Q I

s6
W E V I M

Block1

Block4

Block2

Block3

(a) s3 is classified

s1
T W A G S

s2
T Y G G S

s3
G R S S V

s4
Q P S K M

s5
S D E Q I

s6
W E V I M

Block1

Block4

Block2

Block3

(b) s3 is ambiguous

s1
T W A G S

s2
T Y G G S

s3
G R S S V

s4
Q P S K M

s5
S D E Q I

s6
W E V I M

Block1

Block4

Block2 Block3

(c) s3 is unclassified and {s4, s5, s6} forms a new family

Fig. 1. Examples of partial local multiple alignments with labeled (colored) and unla-
beled (black) sequences

3.3 Unsupervised Classification

In terms of FCA, a new family can be characterized like for other families by an
associated concept that gathers the sequences of this family and the blocks that
form a signature of this family. These blocks are characteristic of unlabeled se-
quences as is the case for level 1 classification, but this time it is an unsupervised
task since the set of classes N is unknown.

This problem is related to biclustering [20]. However, biclustering looks for
simultaneous partitioning of the set of objects and attributes. In our case, it is
not realistic to expect a partition of both sets. The objects (sequences) share
numerous attributes (blocks) and frequently, it is the way they are combined
which allow to distinguish different clusters. The issue of object clustering from
a formal context is treated in paper [21]. Authors propose a two-step procedures
where formal concepts are enlarged to approximate concepts during the first step
and then merged in a second step when they overlap sufficiently. This approach
draws on the concept lattice as we do in order to find clusters but it shares some
common drawbacks with biclustering in relation with our application domain.
A partition of objects is useful but not necessary in our case and, furthermore,



Automated Enzyme Classification by FCA 243

the method requires careful parameter tuning to get meaningful approximate
concepts. In [22], the idea of using the set of formal concepts is further elabo-
rated and no need for thresholds is longer required. Instead of starting from the
object×attributes concept lattice, the authors propose to consider the lattice
built on the object×concepts context in order to build the object clusters. It
seems an interesting idea that could be experimented on the protein classifica-
tion task. However, the interpretation of clusters becomes more difficult and it
is an important preoccupation for the biologist to master the decision process.
Another related aspect of all these methods is their heuristic nature. Concept
analysis is an exact method and it seems somewhat unfortunate to loose this
property in the classification task.

We decided to keep on the idea of associating a concept to each class. We
also looked for an exact search of the concepts without parameter tuning, a
requirement that implies a neat specification of the target concepts. The issue of
deciding the occurrence of new families in N is not trivial due to the conjunction
of two difficulties that have to be taken into consideration:

– A given set of sequences participates to a number of concepts. A subset of
concepts has to be extracted that covers the set of sequences;

– The set of new families is not necessary a partition: although it should be
avoided as much as possible, a given sequence that has evolved to get a
bifunctional capacity could belong to two different families.

We have set this issue as the following optimization problem: find an optimal
cover of the new family sequences by the set of concepts including characteristic
new blocks -only present in unlabeled sequences-. Optimality depends on three
criteria of decreasing priority:

1. minimize the number of ambiguous sequences in the concepts (i.e. get closer
to a partition);

2. minimize the size ofN (i.e. parsimonious hypothesis with a minimum number
of necessary new families);

3. maximize globally the support of the new families in terms of number of
characteristic blocks.

The two first criteria are the most important but using three criteria ensures to
get a single solution in all practical cases we have checked. It would be possible
to add other criteria on more complex cases for resolving the ties. The number
of sequences of the object-compatible concepts, originally defined as a quality
index, could be used for this purpose. All these criteria are coded within a
set of logical constraints using Answer Set Programming, a form of declarative
programming adapted to combinatorial problems [23]. Once all constraints are
expressed as logical formulas, a grounder transform them in a (large) set of
boolean formulas. A dedicated solver then looks for possible models of this set
(the answers), through a conflict-driven constrained enumeration of admissible
solutions [24]. This way, exact optimal concepts can be produced.



244 F. Coste et al.

4 An Experiment with the HaloAcid Dehalogenase
Enzyme Superfamily (HAD)

The haloacid dehalogenases superfamily (HADs) represent a large superfamily
(120193 sequences reported; http://pfam.sanger.ac.uk/clan/CL0137) of ubiqui-
tous enzymes present in all domains of life. The number of sequences differ be-
tween organisms, from around 20 in the Escherichia coli bacteria [25] to between
150-200 in the eukaryotic biological models such as Arabidopsis thaliana and
Homo sapiens [26]. HADs serve as the predominant catalysts of organophosphate
hydrolysis [27]. Enzymes in this superfamily form covalent enzyme-substrate
complexes via a conserved amino acid. They catalyze the cleavage of carbon-
halogen bonds (C-halogen), and also feature a variety of hydrolytic activities
including phosphatase (CO-P), phosphonatase (C-P) and phosphoglucomutase
(CO-P hydrolysis). HAD superfamily enzymes usually function as homodimers
(i.e., a complex made of two identical proteins). All structurally characterized
superfamily members share a conserved domain, termed the ”HAD-like” fold by
SCOPe. The typical folds of HAD phosphatases contains three additional struc-
tural signatures that contribute to substrate specificity: the ”squiggle”, ”flap”,
and ”cap” domains [28]. HAD have received an increased interest in the last
decade since they have the potential to be used in both industrial and pharma-
ceutical applications, in addition to bioremediation processes [29].

For this experiment, we have worked on the following datasets:

1. 102 sequences from various organisms extracted from the supplementary
data of [28]. This set contains 34 families, 3 sequences in each family;

2. 23 sequences from E. coli extracted from [25]. This set has 9 families in
common with the previous set;

3. 40 sequences from H. sapiens extracted from [26];
4. 153 sequences from A. thaliana extracted from the TAIR database 2 contain-

ing a HAD domain, and additional sequences identified after reviewing the
literature [28]. This set includes 23 sequences for which family is unknown.

The first dataset forms the labeled set in our study. The three remaining
datasets have been used as unlabeled sets. For some of the sequences contained
in these datasets, the real class is known. Indeed, many sequences from E. coli, H.
sapiens and A. thaliana have been biochemically characterized and/or have been
considered by in silico/in vivo structural analysis, and this provides experimental
results on their classification. The sequence family prediction made by FCA can
thus be evaluated on this basis.

For all results, we have used the solver Clasp developed in Potsdam University
[24].

Figure 2 shows the complete lattice obtained on the smallest context corre-
sponding to the E. coli unlabeled dataset. This line diagram has been drawn
using the software erca (Eclipse’s Relational Concept Analysis 3) and a reduced

2 http://www.arabidopsis.org/
3 https://code.google.com/p/erca/

http://www.arabidopsis.org/
https://code.google.com/p/erca/


Automated Enzyme Classification by FCA 245

C
o
n
ce
p
t_
0

C
o
n
ce
p
t_
1

te
st
_
G
p
h

C
o
n
ce
p
t_
2

b
lo
ck
_
2
0
0

C
o
n
ce
p
t_
3

cl
as
s_
n
ag
d

te
st
_
co
li
n
ag
d

le
ar
n
_
7
7

b
lo
ck
_
2
0
1

b
lo
ck
_
2
0
3

b
lo
ck
_
2
0
2

b
lo
ck
_
2
0
4

C
o
n
ce
p
t_
4

C
o
n
ce
p
t_
7

b
lo
ck
_
6
9

C
o
n
ce
p
t_
9

le
ar
n
_
4
8

le
ar
n
_
4
6

le
ar
n
_
7
9

te
st
_
Y
ie
H

b
lo
ck
_
3

C
o
n
ce
p
t_
1
7

le
ar
n
_
9
4

b
lo
ck
_
2
4
8

C
o
n
ce
p
t_
2
9

le
ar
n
_
9
9

le
ar
n
_
9
8

te
st
_
Y
ig
L

le
ar
n
_
4
4

cl
as
s_
at
p
as
e

b
lo
ck
_
9
9

C
o
n
ce
p
t_
3
0

b
lo
ck
_
2
4
2

C
o
n
ce
p
t_
3
2

b
lo
ck
_
5
3

C
o
n
ce
p
t_
3
4

le
ar
n
_
1
8

b
lo
ck
_
4
2

C
o
n
ce
p
t_
4
0

te
st
_
Y
ih
X

b
lo
ck
_
2
3

C
o
n
ce
p
t_
4
4

b
lo
ck
_
5

C
o
n
ce
p
t_
5
0

le
ar
n
_
3
0

le
ar
n
_
2
9

cl
as
s_
cn
i

b
lo
ck
_
6
3

C
o
n
ce
p
t_
5
3

le
ar
n
_
8
7

le
ar
n
_
8
6

le
ar
n
_
8
5

cl
as
s_
sp
p

b
lo
ck
_
2
3
2

C
o
n
ce
p
t_
5
4

le
ar
n
_
2
7

le
ar
n
_
2
6

le
ar
n
_
2
5

cl
as
s_
ac
id
p
h
o
sp
h
at
as
e

b
lo
ck
_
6
1

C
o
n
ce
p
t_
5

le
ar
n
_
3
6

le
ar
n
_
3
5

te
st
_
Y
rb
I

cl
as
s_
k
d
o

b
lo
ck
_
7
7

b
lo
ck
_
7
6

b
lo
ck
_
7
5

b
lo
ck
_
7
3

b
lo
ck
_
7
8

C
o
n
ce
p
t_
6

le
ar
n
_
3
4

b
lo
ck
_
7
1

b
lo
ck
_
7
0

b
lo
ck
_
7
2

C
o
n
ce
p
t_
8

le
ar
n
_
4
7

b
lo
ck
_
7
4

C
o
n
ce
p
t_
1
0

cl
as
s_
v
n
g
2
6
0
8
c

C
o
n
ce
p
t_
1
6

le
ar
n
_
9
6

b
lo
ck
_
2
4
9

C
o
n
ce
p
t_
2
2

b
lo
ck
_
8
2

C
o
n
ce
p
t_
2
4

te
st
_
Y
q
aB

b
lo
ck
_
8
5

C
o
n
ce
p
t_
2
5

le
ar
n
_
9
2

le
ar
n
_
9
1

le
ar
n
_
9
3

cl
as
s_
p
m
m

C
o
n
ce
p
t_
3
7

te
st
_
Y
ig
B

le
ar
n
_
1
5

le
ar
n
_
1
4

cl
as
s_
p
5
n
1

le
ar
n
_
6
0

le
ar
n
_
5
9

le
ar
n
_
5
8

b
lo
ck
_
1
8

C
o
n
ce
p
t_
3
8

le
ar
n
_
1
3

b
lo
ck
_
7

C
o
n
ce
p
t_
4
1

le
ar
n
_
8

le
ar
n
_
7

le
ar
n
_
9

cl
as
s_
s3
8
k

b
lo
ck
_
1
4

C
o
n
ce
p
t_
4
6

le
ar
n
_
2

le
ar
n
_
1

C
o
n
ce
p
t_
4
7

le
ar
n
_
9
0

te
st
_
C
o
f

le
ar
n
_
6
3

cl
as
s_
p
sp

C
o
n
ce
p
t_
1
1

le
ar
n
_
4
3

b
lo
ck
_
9
4

b
lo
ck
_
9
6

C
o
n
ce
p
t_
1
2

cl
as
s_
h
er
a

C
o
n
ce
p
t_
1
3

le
ar
n
_
7
6

le
ar
n
_
7
8

b
lo
ck
_
1
9
9

b
lo
ck
_
1
9
8

C
o
n
ce
p
t_
1
4

le
ar
n
_
9
5

cl
as
s_
tp
p

C
o
n
ce
p
t_
1
5

te
st
_
O
ts
B

C
o
n
ce
p
t_
1
8

te
st
_
Y
cj
U

le
ar
n
_
3
8

cl
as
s_
b
p
g
m

b
lo
ck
_
9
0

b
lo
ck
_
8
9

C
o
n
ce
p
t_
1
9

le
ar
n
_
3
7

b
lo
ck
_
8
4

C
o
n
ce
p
t_
2
0

b
lo
ck
_
7
9

b
lo
ck
_
8
3

b
lo
ck
_
8
0

C
o
n
ce
p
t_
2
1

le
ar
n
_
3
9

b
lo
ck
_
8
8

b
lo
ck
_
8
7

C
o
n
ce
p
t_
2
3

te
st
_
Y
fb
T

b
lo
ck
_
8
6

b
lo
ck
_
8
1

C
o
n
ce
p
t_
2
6

cl
as
s_
h
is
b

le
ar
n
_
7
5

te
st
_
H
is
B

le
ar
n
_
7
4

b
lo
ck
_
1
8
9

b
lo
ck
_
1
9
4

b
lo
ck
_
1
9
1

b
lo
ck
_
1
9
3

b
lo
ck
_
1
9
2

b
lo
ck
_
1
9
7

b
lo
ck
_
1
9
6

b
lo
ck
_
1
9
0

b
lo
ck
_
1
9
5

C
o
n
ce
p
t_
2
7

te
st
_
Y
ae
D

b
lo
ck
_
1
7
8

b
lo
ck
_
1
7
6

b
lo
ck
_
1
8
1

C
o
n
ce
p
t_
2
8

le
ar
n
_
7
3

b
lo
ck
_
1
8
8

b
lo
ck
_
1
7
7

b
lo
ck
_
1
7
5

b
lo
ck
_
1
8
5

b
lo
ck
_
1
8
2

b
lo
ck
_
1
8
3

b
lo
ck
_
1
8
0

b
lo
ck
_
1
8
6

b
lo
ck
_
1
8
4

b
lo
ck
_
1
8
7

b
lo
ck
_
1
7
9

C
o
n
ce
p
t_
3
1

te
st
_
Y
b
iV

C
o
n
ce
p
t_
4
5

te
st
_
Y
b
jI

C
o
n
ce
p
t_
5
1

le
ar
n
_
8
8

b
lo
ck
_
2
0
7

C
o
n
ce
p
t_
3
3

le
ar
n
_
2
0

le
ar
n
_
1
9

cl
as
s_
y
h
r1
0
0
c

b
lo
ck
_
5
4

C
o
n
ce
p
t_
3
5

le
ar
n
_
1
6

le
ar
n
_
1
7

cl
as
s_
p
n
k
p

C
o
n
ce
p
t_
3
6

le
ar
n
_
1
2

le
ar
n
_
1
1

le
ar
n
_
1
0

cl
as
s_
m
d
p
1

C
o
n
ce
p
t_
3
9

cl
as
s_
p
se
t

C
o
n
ce
p
t_
4
3

cl
as
s_
b
cb
f

le
ar
n
_
3

C
o
n
ce
p
t_
4
2

te
st
_
Y
b
h
A

C
o
n
ce
p
t_
4
9

te
st
_
Y
id
A

C
o
n
ce
p
t_
4
8

cl
as
s_
m
p
g
p

te
st
_
Y
ed
P

cl
as
s_
co
f

C
o
n
ce
p
t_
5
2

te
st
_
S
er
B

le
ar
n
_
8
9

le
ar
n
_
8
0

le
ar
n
_
8
1

b
lo
ck
_
2
0
6

b
lo
ck
_
2
0
8

Fig. 2. Hasse diagram from lattice blocks x sequences/classes obtained in the experi-
ment with the E. coli unlabeled dataset.



246 F. Coste et al.

Table 1. Percentage by species of sequences correctly/wrongly assigned

E. coli H. sapiens A. thaliana

Classified (%)
True 61 65 56
False 9 3 6

Ambiguous (%)
True 17 18 18
False 13 3 8

Unclassified (%)
True 0 8 8
False 0 3 5

Total 100 100 100

labeling. The top concept 0 contains all blocks and no sequence or class. The
bottom concept 4 contains all sequences and classes and no block. The edges
going to concept 9 and others were slightly intertwined and we have used a blue
color to better distinguish them. The concepts having at least one unlabeled
sequence in the figure are colored in sea green. These concepts contain the set
of blocks of the unlabeled sequences, a maximal subset of which has to be used
for classification.

Assignment results are summarized in table 1.
The row ”Classified” refers to sequences with only one predicted compatible

class. The row ”Ambiguous” refers to sequences with several compatible classes.
The classification is assumed to be correct (true) if one of these compatible classes
is the good one. The percentage of correctly/wrongly assigned sequences is given.

These first results are encouraging. More than 50% of sequences are correctly
classified into the 34 possible families, new families detected by the method have
been assigned in the literature to families different from the 34 in the labeled
set, and sequences not belonging to the superfamily were unclassified by our
method.

For a fraction of unlabeled sequences, their right classification is actually
unknown (datasets H. sapiens and A. thaliana). Yet, it is possible to look for
possible class assignments. Table 2 give the percentage of such sequences that
could be classified by our method. It shows that most of these unknown sequences
could be assigned to one or several classes.

The percentages of sequences belonging to new families and of unclassified
sequences are also given. Unclassified sequences are sequences that can neither
been assigned to a known class nor be assigned to a new family cluster.

Table 2. Percentages of unknown sequences in datasets assigned to one, several or
none of the classes

H. sapiens A. thaliana

Classified (%) 50 54

Ambiguous (%) 50 21

Unclassified (%) 0 25

Total 100 100



Automated Enzyme Classification by FCA 247

Concept_0

Concept_48

class_mpgp
test_YedP
class_cof

Concept_49

test_YidA

Concept_4

...

(a) YedP and YidA are
ambiguous with two possi-
ble class labels, mpgp and
cof

Concept_0

Concept_4

Concept_9

learn_48
learn_46
learn_79
test_YieH

block_3

Concept_22

block_82

Concept_24

test_YqaB

block_85

Concept_18

test_YcjU
learn_38

class_bpgm

block_90
block_89

Concept_19

learn_37

block_84

Concept_20

block_79
block_83
block_80

Concept_21

learn_39

block_88
block_87

Concept_23

test_YfbT

block_86
block_81

(b) YfbT and YcjU can
be classified and assigned
uniquely with the class
bpgm

Fig. 3. Different kinds of assignment decisions

For the three datasets, E. coli, H. sapiens and A. thaliana, we find 0, 2 and
11 new subfamilies respectively.

For the H. sapiens dataset, sequences predicted to belong to new families are
correct: the corresponding families are described in the papers on human HAD
[26], and these families are not present in E. coli (i.e. the labeled set).

For the A. thaliana dataset, it is difficult to know if predicted new families
are real because it contains numerous uncertain sequences. Our own review of
the literature concludes that 11 unclassified sequences could have been wrongly
assigned to the HAD superfamily in the TAIR database.

The specificity of the detection of new families has been tested too. For each
known family in the labeled set, a new labeled set has been built that contain all
sequences except the sequences belonging to this family. The unlabeled set was
made of the E. coli dataset and the sequences of the selected family (3 sequences).
The selected family should ideally be detected as a new family by our method.
We have computed the percentage of retrieved sequences for all families. The



248 F. Coste et al.

Table 3. Percentage of retrieved sequences within a new family

new family alone % retrieved sequences new family+ E. coli % retrieved sequences

EYA, SPSC, PNKP 100 NagD (+1) 100

SPP, CNII, MDP1 100 HisB (+2) 100

ATPase, deoxy, HerA 0 TPP (+1) 100

PMM, Yhr100c, s38K 100 KDO (+1) 100

CNI 67 MPGP (+1) 67

Enolase, BCBF 100 BPGM (+6) 67

LPIN, PseT, P5N1 100 Sdt1p (+4) 43

AcidPhosphatase 100 Cof (+6) 44

Phosphonatase 100 PSP (+1) 75

VNG2608C, dehr 0

Zr25, CTD 100

results are shown in table 3. Note that some families are not present in E. coli
and this is indicated by the column label ”new family alone”. For the others
(column new family + E. coli), the number of E. coli sequences belonging to the
family is given between brackets. On the 34 subfamilies present in the labeled
set, the decision has been convincing for 27 of them.

5 Conclusion

We have described a classification method based on a concept lattice including
both a set of already classified objects and a set of objects to be classified. It has
been applied to enzyme sequences, a group of key proteins involved in many bio-
chemical processes and with a high potential for the discovery of new functional
molecules. Our results are encouraging and show our classification method to be
sensitive and specific. More than half of the unlabeled sequences are correctly
classified with respect to the current knowledge for 34 subfamilies and ambigu-
ous sequences represent only one third of the tested sequences, two thirds of
them having the correct class assignment. Moreover, each classification decision
may be clearly explained and related to known sequences or particular positions
in the sequence corresponding to blocks. Ambiguity could be even reduced in
practice by looking for sequences that are inherently ambiguous because they are
made for instance of two fragments of two proteins of different class. Such po-
tential proteins, which we call chimera, could be automatically extracted during
classification.

Another aspect of this work is the unsupervised classification problem for
objects with attributes that are characteristic of unlabeled objects. We have
suggested a model for solving this problem as an optimization issue taking into
account ambiguity, parsimony (number of new classes needed) and intent (num-
ber of attributes).

To our knowledge, it is the first time that this issue is properly formalized
in bioinformatics. The next step will consist in testing the robustness of the
method on species that are very evolutionary distant compared to the other



Automated Enzyme Classification by FCA 249

organisms for which test sets were considered. We have selected for this next
study the brown alga Ectocarpus siliculosus, for which the genome sequence has
been recently published [30]. Since attributes describing the sequences have no
reason to be limited to blocks, we will try other global features extracted from
theses sequences such as amino acid content. We will test if the best in silico
assignment within classes correlates with potential substrate specificity. To this
aim, a number of algal sequences will also be biochemically characterized.

References

[1] Sillitoe, I., Cuff, A., Dessailly, B., Dawson, N., Furnham, N., Lee, D., Lees, J.,
Lewis, T., Studer, R., Rentzsch, R., Yeats, C., Thornton, J.M., Orengo, C.A.:
New functional families (funfams) in cath to improve the mapping of conserved
functional sites to 3d structures. Nucleic Acids Res. 41(D1), D490–D498 (2013)

[2] Fox, N.K., Brenner, S.E., Chandonia, J.M.: SCOPe: Structural Classification of
Proteins-extended, integrating SCOP and ASTRAL data and classification of new
structures. Nucleic Acids Res. 42(D1), D304–D309 (2014)

[3] Yokomori, T., Ishida, N., Kobayashi, S.: Learning local languages and its appli-
cation to protein α-chain identification. In: HICSS (5), pp. 113–122 (1994)

[4] Peris, P., López, D., Campos, M.: Igtm: An algorithm to predict transmembrane
domains and topology in proteins. BMC Bioinformatics 9 (2008)

[5] Kerbellec, G.: Apprentissage d’automates modélisant des familles de séquences
protéiques. PhD thesis, Université Rennes 1 (2008)

[6] Lee, B.J., Lee, H.G., Lee, J.Y., Ryu, K.H.: Classification of enzyme function from
protein sequence based on feature representation. In: Proc. of the 7th IEEE Int.
Conf. on Bioinformatics and Bioengineering, BIBE 2007, pp. 741–747 (October
2007)

[7] Lee, B.J., Lee, H.G., Ryu, K.H.: Design of a novel protein feature and enzyme
function classification. In: IEEE 8th Int. Conf. on Computer and Information
Technology Workshops, CIT Workshops 2008, pp. 450–455 (July 2008)

[8] Kumar, C., Choudhary, A.: A top-down approach to classify enzyme functional
classes and sub-classes using random forest. EURASIP Journal on Bioinformatics
and Systems Biology 2012(1), 1 (2012)

[9] Brown, D.P., Krishnamurthy, N., Sjölander, K.: Automated protein subfamily
identification and classification. PLoS Comput. Biol. 3(8), e160 (2007)

[10] Wang, J., Liang, J., Qian, Y.: Closed-label concept lattice based rule extraction
approach. In: Huang, D.-S., Gan, Y., Premaratne, P., Han, K. (eds.) ICIC 2011.
LNCS, vol. 6840, pp. 690–698. Springer, Heidelberg (2012)

[11] Carpineto, C., Romano, G.: Galois: An order-theoretic approach to concep-
tual clustering. In: Proceedings of the 10th International Conference on Machine
Learning (ICML 1990), pp. 33–40 (July 1993)

[12] Sahami, M.: Learning classification rules using lattices. In: Lavrač, N., Wrobel, S.
(eds.) ECML 1995. LNCS, vol. 912, pp. 343–346. Springer, Heidelberg (1995)

[13] Ikeda, M., Yamamoto, A.: Classification by Selecting Plausible Formal Concepts in
a Concept Lattice. In: Workshop on Formal Concept Analysis meets Information
Retrieval (FCAIR 2013), pp. 22–35 (2013)

[14] Mephu Nguifo, E.: Legal-e: une méthode d’apprentissage de concepts à partir
d’exemples, basée sur le treillis de galois. In: Actes du 9ème Congrès Recon. des
Formes en Intell. Artificielle (RFIA), Paris, vol. 2, pp. 35–46 (January 1994)



250 F. Coste et al.

[15] Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the selection of relevant
concepts in the case of noisy data. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA
2010. LNCS, vol. 5986, pp. 255–266. Springer, Heidelberg (2010)

[16] Njiwoua, P.: Améliorer l’apprentissage à partir d’instances grĉce à l’induction de
concepts: le système cible. In: Science, H., (ed.): Revue d’ Intelligence Artificielle,
vol. 13, pp. 413–440 (1999)

[17] Kovacs, L.: Generating decision tree from lattice for classification. In: 7th Inter-
national Conference on Applied Informatics, vol. 2, pp. 377–384 (2007)

[18] Sahami, M.: Learning classification rules using lattices. In: Lavrač, N., Wrobel, S.
(eds.) ECML 1995. LNCS, vol. 912, pp. 343–346. Springer, Heidelberg (1995)

[19] Xie, Z., Hsu, W., Liu, Z., Lee, M.L.: Concept lattice based composite classifiers
for high predictability. J. Exp. Theor. Artif. Intell. 14(2-3), 143–156 (2002)

[20] Busygin, S., Prokopyev, O., Pardalos, P.M.: Biclustering in data mining. Comput.
Oper. Res. 35(9), 2964–2987 (2008)

[21] Gaume, B., Navarro, E., Prade, H.: Clustering bipartite graphs in terms of approx-
imate formal concepts and sub-contexts. International Journal of Computational
Intelligence Systems 6(6), 1125–1142 (2013)

[22] Navarro, E., Prade, H., Gaume, B.: Clustering sets of objects using concepts-
objects bipartite graphs. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.)
SUM 2012. LNCS, vol. 7520, pp. 420–432. Springer, Heidelberg (2012)

[23] Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

[24] Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187, 52–89 (2012)

[25] Kuznetsova, E., Proudfoot, M., Gonzalez, C.F., Brown, G., Omelchenko, M.V.,
Borozan, I., Carmel, L., Wolf, Y.I., Mori, H., Savchenko, A.V., Arrowsmith, C.H.,
Koonin, E.V., Edwards, A.M., Yakunin, A.F.: Genome-wide Analysis of Substrate
Specificities of the Escherichia coli Haloacid Dehalogenase-like Phosphatase Fam-
ily. Journal of Biological Chemistry 281(47), 36149–36161 (2006)

[26] Seifried, A., Schultz, J., Gohla, A.: Human HAD phosphatases: structure, mech-
anism, and roles in health and disease. FEBS Journal 280(2), 549–571 (2013)

[27] Koonin, E.V., Tatusov, R.L.: Computer analysis of bacterial haloacid dehaloge-
nases defines a large superfamily of hydrolases with diverse specificity: Application
of an iterative approach to database search. J. Mol. Bio. 244(1), 125–132 (1994)

[28] Burroughs, A.M., Allen, K.N., Dunaway-Mariano, D., Aravind, L.: Evolutionary
Genomics of the HAD Superfamily: Understanding the Structural Adaptations
and Catalytic Diversity in a Superfamily of Phosphoesterases and Allied Enzymes.
Journal of Molecular Biology 361(5), 1003–1034 (2006)

[29] Janssen, D.B.: Biocatalysis by dehalogenating enzymes. Advances in Applied Mi-
crobiology, vol. 61, pp. 233–252. Academic Press (2007)

[30] Mark Cock, J., Sterck, L., Rouz, P., Scornet, D., Allen, A., Amoutzias, G., An-
thouard, V., Artiguenave, F., Aury, J., Badger, J.: The Ectocarpus genome and
the independent evolution of multicellularity in brown algae. Nature (7298), 617–
621 (2010)



Multilayered, Blocked Formal Concept Analyses

for Adaptive Image Compression

Ruaiŕı de Fréin

Telecommunications Software & Systems Group,
Waterford Institute of Technology, Ireland

rdefrein@gmail.com

Abstract. Formal Concept Analysis (FCA) decomposes a matrix into a
set of sparse matrices capturing its underlying structure. A similar task
for real-valued data, transform coding, arises in image compression. Ex-
isting cosine transform coding for JPEG image compression uses a fixed,
decorrelating transform; however, compression is limited as images rarely
consist of pure cosines. The question remains whether an FCA adaptive
transform can be applied to image compression. We propose a multi-layer
FCA (MFCA) adaptive ordered transform and Sequentially Sifted Lin-
ear Programming (SSLP) encoding pair for adaptive image compression.
Our hypothesis is that MFCA’s sparse linear codes (closures) for natural
scenes, are a complete family of ordered, localized, oriented, bandpass
receptive fields, predicted by models of the primary visual cortex. Re-
sults on real data demonstrate that adaptive compression is feasible.
These initial results may play a role in improving compression rates and
extending the applicability of FCA to real-valued data.

1 Introduction

Sparse Coding (SC) is a class of unsupervised methods for learning overcomplete
bases to represent data efficiently. An overcomplete basis, Φ ∈ RN×K –referred
to as a dictionary from here on– is not necessarily a linearly independent subset
of a vector space V (over a field F ), but it does span V . The vectors in the set Φ,
denoted φk ∈ RN×1, are called atoms. Important examples are wavelet-related
dictionaries (e.g., wavelet packets, stationary wavelets; see Chen, Donoho, and
Saunders [1]; Mallat [2]) and learned dictionaries (Lewicki and Sejnowski, [3];
Lewicki and Olshausen [4]; Olshausen and Field [5,6]). The evolution of dictio-
nary design is mapped out in [7], and points to an increased interest in learned
dictionaries. The present paper proposes the first application of Formal Concept
Analysis (FCA) [8] to SC, specifically, addressing an image compression problem,
by: 1) learning an adaptive binary dictionary Φ ∈ ZN×K , via Multilayer Formal
Concept Analysis (MFCA); and 2) learning compact coefficients a, using Sequen-
tially Sifted Linear Programming on an Ordered Dictionary (SSLPOD), Φ, for
an image x. SC finds a set of atoms φk such that an input vector x is represented
as a linear combination of as few of the atoms as possible –the representation vec-
tor, a, has lower entropy than the input vector x, increasing the compressibility
of the image’s new representation [9], the system, x =

∑K
k=1 akφk.

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 251–267, 2014.
c© Springer International Publishing Switzerland 2014



252 R. de Fréin

(0,0) (0,0) (0,0)

Fig. 1. (LHS coordinate system) The canonical basis functions (arrows), Φ, and three
sets of data points (red, green, blue dots), y, three different image features for example;
(Center) an overcomplete basis/dictionary, which is composed of the canonical basis
and one additional atom [.7071, .7071]; and finally, (RHS) a comparison of the canonical
basis with an overcomplete basis. The additional atom in the center figure captures
the green dots with greater sparsity than the canonical basis. This is emphasized in
the RHS figure by plotting the weighted (by a) sum of the canonical basis functions
required to represent the green dots. Using the overcomplete dictionary gives a more
compact solution for all data points. However there are many possible representations.

Related Work: The advantage of overcompleteness over more traditional anal-
yses for image compression, e.g. Principal Component Analysis (PCA) and the
Discrete Cosine Transform (DCT), is that the atoms are better able to capture
structures and patterns inherent in input data, x, an image. The null space of an
overcomplete Φ introduces extra degrees of freedom in the choice of a, which we
exploit to improve compressibility. For example, JPEG [10] and JPEG2000 [11]
compute compact coefficients a by inverting Φ, which is square and nonsingular,
and then quantizing the coefficients Qo(·): a = Qo(Φ

−1x). The DCT and PCA
are de-correlating transforms; the DCT [12] is intimately related to the (ideal)
Karunen-Loève or Hotelling transform [13]. On the other hand, dictionaries Φ
that are adaptive, or tuned to an image x potentially yield greater compaction
of a over the traditional decorrelated transform coefficients. A dictionary con-
structed using MFCA computes closures [14,15], which are present in the image,
whereas the DCT projects the image onto cosine-like atoms (which are gener-
ally not present); MFCA is tuned to the image. Construction of a transform
dictionary using our variant of FCA (see [14,15] for initial results) presents the
possibility of greater compaction, along with the traditional advantages of FCA:
lectic ordering and completeness of the lattice.

Using a MFCA binary dictionary, Φ ∈ ZN×K , is intuitively correct: sub-
tractive atoms (components) learned by PCA do not sit well with the additive
disjoint building block model, which is popular at present in the computer vision
community [16]. For example, an image of a face is composed of atoms (eyes, a
nose and a mouth, etc.); subtractive eye components have no physical meaning.
A binary representation implies features are present, or not present. Once an
atom’s presence is established, a coefficient a represents how much an atom is
present –its intensity or color. Binary dictionaries are appealing because they
are typically more compactly compressed than a real-valued adaptive dictionary
with the same support: a binary dictionary may be encoded by only listing the
positions of ones, real-valued dictionaries must also encode the magnitudes [17].

The disadvantage of overcompleteness over an invertible transform, e.g. the
DCT [10] or wavelets [11], is that the coefficients, for a given set of atoms φk,



Multilayered FCA 253

are no longer unique. Degeneracy is introduced; however, ambiguity due to non-
uniqueness allows us to select the type of solution that we want, out of the family
of all valid solutions. Sparse solutions generally have appealing properties –they
generally indicate compressibility [9]. It is important to also note the role of
factors other than sparsity (quantization and entropy coding [10,11]).

The sparsity assumption implies that the solution vector, a = [a1, a2, . . . aK ],
has as few non-zero components as possible. In practice we equivocate and we
desire that a has as few as possible components which are far from zero. Fig. 1
illustrates the difference between the coefficients a generated by the canonical
dictionary, and one of the many possible solutions generated by using an over-
complete dictionary. A sparse solution gives a compact representation of the
data points. The choice of sparsity as a desired representation characteristic is
driven by the observation that most sensory data such as natural images may
be described as the superposition of a small number of atomic elements such as
surfaces or edges (See Fig. 2). Other justifications such as comparisons with the
properties of the primary visual cortex have also been advanced [7,6,5]. We draw
on a second related concept that has been advanced by the Signal Processing
community [18,19]: parts-based representations are Disjoint Orthogonal ([18]
discusses the application of disjoint orthogonality in time-frequency analysis),
and are generally found by identifying a sparse representation, a [15,14,19,1].
SSLPOD finds the amount by which these sparse linear codes are present.

Problem 1 MFCA & SSLPOD: The combined MFCA & SSLPOD problem
is solved by minimizing the SC cost function on a set of M input vectors (The
�2-norm is denoted || · ||):

min
a
(j)
k ,φk

M∑
m=1

||x(m) −
K∑

k=1

a
(m)
k φk||2 + λ

K∑
k=1

S(a
(m)
k ) (1)

The function S(a
(m)
k ) is a cost function that penalizes ak for being far away

from zero. The first term is the reconstruction term, which tries to minimize the
error in the representation. The constant λ determines the importance of both
terms. For lossless compression, x(m) is an image, and the �2-norm (squared)
cost is zero. A trade-off between compressibility and error may be introduced by
reformulating (Eqn. 1). Here, ε, is the approximation target.

min
a
(j)
k ,φk

M∑
m=1

K∑
k=1

S(a
(m)
k ) such that ||x(m) −

K∑
k=1

a
(m)
k φk||2 ≤ ε (2)

FCA’s Appeal for SC: Using FCA to generate a dictionary providing com-
paction is novel. We use FCA to provide a binary dictionary for generic com-
pression. Compared to JPEG (where a fixed dictionary is shared by the encoder
and decoder) FCA learns content adaptive dictionaries that must be compressed
and transmitted also; however this dictionary is binary and has few ones.



254 R. de Fréin

The most direct measure of sparsity is the �0-norm. It is non-differentiable.

S(ak) = 1T
K1(|ak| > 0), 1(x) =

⎧⎨
⎩1 if x ≡ true

0 otherwise
(3)

The matrix 1K ∈ RK×1 is a matrix ofK ones. When the �0-norm form of (Eqn. 2)
is used, (Eqn. 2) is called the sparse approximation problem [20]. It is in general
NP-hard. It is this problem we would ideally like to solve. Common choices for
sparsity functions that provide a good approximation for the �0-norm are the
�1-norm S(ak) = |ak|1 =

∑K
k=1 |ak| (See [21,1]). Because MFCA produces binary

dictionaries, the �0-norm may be computed for the dictionary. Depending on the
application, considering a �0-cost on the dictionary S(Φ) may be equivalent to
considering a �0-cost on the coefficients.

Most adaptive compression techniques solve an �1-norm approximation of the
SC problem. It is possible to make the sparsity penalty arbitrarily small by
scaling down ak and scaling φk up by some large constant when the �1-norm is
used. One approach is to constrain each ||φk||2 = 1. Sparse coding solves:

min
a
(m)
k ,φk

M∑
m=1

||x(m) −
K∑

k=1

a
(m)
k φk||2 + λ

K∑
k=1

S(a
(m)
k ) s.t. ||φk||2 = 1, ∀k (4)

This paper is organized as follows: § 2 defines and justifies the MFCA generative
model for 2-D images. § 3 introduces an entropy increasing Binary Layering Tree
for image quantization and the MFCA algorithm that learns an adaptive linear
transform. § 4 introduces the sequentially sifted linear programming encoding
algorithm. The focus of the empirical evaluation is on the new MFCA linear
transform (and not entropy coding and quantization). § 5 evaluates the new
MFCA-SSLPOD transform coding and encoding scheme on three test images
from the USC-SIPI Image Database.

2 FCA Generative Model for Images Analysis

Part-based Assumption and Blocking: We apply FCA to the task of learn-
ing binary dictionary structures for generic content adapted image compression
and justify MFCA’s generative model. A grayscale image, for example the cam-
eraman in Fig. 2 (upper Left Hand Corner Figure), is described by a matrix
I ∈ RR×G, R×G pixels, which records an intensity value in each element I(r, g).
The parts-based assumption implies that each image consists of a number of non-
overlapping edges, ridges, or shapes; parts are expressed as 2-D polygons.

Definition 1. The pth part can be described by the chain of s = 1, . . . , S vertices
(pixel coordinates), vps that trace-out its polygon. The first vertex equals the last
vertex, vp0 = vpS. Pp = {vps} = {{r, g}|{r, g} is a vertex of the part }



Multilayered FCA 255

Fig. 2. The original Cameraman is illustrated in the upper Left Hand Side (LHS).
Binary masks of the layers of the Cameraman are plotted in increasing intensity from
left to right (e.g., {(row, column)} = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}). 7
of 16 layers are illustrated. White denotes a pixel is present in that mask; black denotes
it is not present. The lower pixel intensity values form the cameraman; cameraman
parts are low frequency –the pixels are regionally actived in plot (1, 2) & (1, 3). The
cameraman outline is captured in layer (1, 4), which captures edges. Plot (2, 1) captures
the cameraman’s trousers, which are a low frequency region. The remaining layers
capture high frequency background.

Definition 2. The face of the pth part, Fp, is the set of image pixels in the
part. We express each face set Fp, in matrix form by generating the matrix

F p(r, g) =

⎧⎨
⎩I(r, g) if {r, g} ∈ Fp

0 otherwise.
(5)

Definition 3. Blocking operates on an intensity matrix, I, using the arguments
Nb ∈ Z where Nb ≤ R and Nb ≤ G and coordinates (x, y). These arguments
specify the block-size and the position of the upper-lefthand pixel of the block.

It returns a row-vector
↼
ixy, which is a row-vectorized form of the sub-matrix

supported by the block (cf. the definitions above).

↼
ixy= blk{I,Nb, (x, y)} = [I(x, y), I(x+1, y), . . . , I(x+Nb − 1, y), I(x, y+ 1),

I(x+ 1, y + 1), . . . , I(x+Nb, y + 1), . . .] (6)

We assume that blocks are square in this paper to simplify our notation; rect-
angular blocks are a valid choice too. In addition, blocks may overlap depending
on the application. For notational convenience we may overload blocking by in-

voking
↼

I= blk{I,Nb} and blocking-out an entire image I, producing the matrix
↼

I∈ R R
Nb

� G
Nb

�×N2
b . To give a concrete example, the application of blk{I,Nb} to

the matrix I ∈ R512×512 yields the blocked form of
↼

I∈ R852×36. The number of
blocks is M = ! R

Nb
"! G

Nb
". We deal with the transpose of the blocked matrix.

Remark: Blocking is the appropriate method for partitioning images; each block
captures local correlations in the values of intensities [6]. Naturally the block-size



256 R. de Fréin

Overloaded Blocking
↼
I =

↼
I = blk{I,Nb} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

blk{I,Nb, (1, 1)}
blk{I,Nb, (1, Nb + 1)}

.

.

.

blk{I,Nb, (R − Nb + 1, G − Nb + 1)}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Overloaded Deblocking I = dblk{
↼
I , Nb} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dblk{ ↼
i1,1, Nb} dblk{ ↼

i1,1, Nb} · · · dblk{ ↼
i1,1, Nb}

dblk{ ↼
ixy,Nb} dblk{ ↼

i1,1, Nb} dblk{ ↼
i1,1, Nb}

.

.

.
.
.
.

. . .
.
.
.

dblk{ ↼
ixy,Nb} dblk{ ↼

i1,1, Nb} · · · dblk{ ↼
i1,1, Nb}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Deblocking

⇀
↼
ixy= dblk{ ↼

ixy, Nb} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

I(x, y) I(x, y + 1) . . . I(x, y + Nb)

I(x + 1, y) I(x + 1, y + 1) . . . I(x + 1, y + Nb)

.

.

.
.
.
.

.

.

. . . .

I(x + Nb − 1, y) I(x + Nb, y + 1) . . . I(x + Nb, y + Nb)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Nb influences the performance of subsequent SC. The selection of Nb causes the
size of potential image parts to be less than or equal to, in size, than an Nb×Nb

block; setting Nb to be too large may cause the problem of multiple parts being
learned as one part; setting Nb to be too small, may cause parts to be partitioned
across multiple blocks. The MPEG video codec blocks frames into 8× 8 blocks,
as does JPEG. We define deblocking, the inverse of blocking, to reconstruct I.
The overloaded deblocking operation is also given.

MultiLayering and the Multilayer Generative Model: We formally in-
troduce image layering and parts-based representations.

Property 1 The parts-based assumption implies that an image is a linear com-
bination of its composite parts.

I =
∑P

p=1
F p ≈

∑P

p=1
γp1(F

p > 0). (7)

As the part 1(F p > 0) is a binary matrix, it is scaled by an intensity parameter:
γp. A polygon is considered to be a part because the intensity of all elements in
the polygon is approximately the same, e.g. bt ≤ F p(r, g) < bu. This assump-
tion implies that we may partition images based on ranges of pixel intensity,
and exploit the element-wise disjointness of parts to segment images. We intro-
duce the idea of layers, which are defined by the bounds on the part weights
bt ≤ I(r, g) < bu, because it is unreasonable to assume that each part has ex-
actly uniform intensity. The binary masks associated with the layers plotted
in (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4) in Fig. 2 are good examples of the
localized, oriented, bandpass receptive fields, described by [6,5], as being the
underpinning properties of the primary visual cortex.

Property 2 We define a layer Ll and its associated binary mask M l to be

Ll(r, g) =

⎧⎨⎩I(r, g) if bt ≤ I(r, g) < bu

0 otherwise,
M l(r, g) =

⎧⎨⎩1 if bt ≤ I(r, g) < bu

0 otherwise.
(8)

where bu, bl are the upper and lower bounds on pixel intensities that are in the
mask, and l is the layer index.



Multilayered FCA 257

Property 3 Given the parts-based and the layer property we may now express
the generative multi-layered mixing model as follows:

1. Images are Parts-based: M l=
∑

q 1(F
q > 0),Ll=

∑
q F

q≈
∑

q γq1(F
q >

0) ∀l = 1, . . . L;
2. Images are Element-wise Disjoint: 6L

l=1 M
l = 0,6L

l=1 L
l = 0

and 6P
p=1 F

p = 0;

3. Images are composed of layers: I =
∑L

l=1 L
l.

Element-wise multiplication is denoted by 6. In short, layers are linear combi-
nations of parts (1); all layers, layer masks and parts are element-wise disjoint
(2); images are linear combinations of layers, and therefore parts (3).

Definition 4. MFCA Generative Model: By appealing to blocking, the MFCA
generative model may be formulated as a new form of SC

x(m) =

K∑
k=1

a
(m)
k φk = blk{I,Nb, (x, y)}T =

L∑
l=1

K∑
k=1

a
(m,l)
k φl

k. (9)

The vector x(m) is the mth block which is positioned at coordinates (x, y) of the

image I. The vector φl
k ∈ ZN×1 is the kth atom of the lth layer; it is a segment of

M l, one of the binary masks, present in the block positioned at (x, y). The value

a
(m,l)
k ∈ R is the intensity of the presence of the kth atom, of the lth layer in the

mth block. We re-write this model by re-ordering the summation and blocking to
illustrate how the MFCA SC problem is composed of layer-based sub-problems.

x(m) =

L∑
l=1

blk{Ll, Nb, (x, y)}T =

L∑
l=1

K∑
k=1

a
(m,l)
k φl

k. (10)

Problem 2 The MFCA-SSLPOD problem is defined as:

1. min
a
(m)
k ,φk

∑L
l=1

∑M
m=1 ||blk{L

l, Nb, (x, y)}T −
∑K

k=1 a
(m,l)
k φ̄

l
k||2 +

λ
∑K

k=1 S(a
(m,l)
k )

2. subject to: the atoms are normalized ||φ̄k||2 = 1, ∀k = 1, . . .K;

3. the binary counterparts of each normalized atom 1(φ̄
l
k) are closures of the

formal context
↼

Ll;

4. the closures 1(φ̄
l
k) of the formal context

↼

Ll are lectically ordered;

5. the formal contexts (layers) are ordered
↼

L1≤
↼

L2 . . . ≤
↼

Ll≤ . . .;

and the constraints and properties specified by the generative model are satisfied.

3 MFCA via Image Quantization: Binary Layering Tree

MFCA-SSLPOD uses entropy-increasing, binary tree layering image quantiza-
tion (Alg. 1). The ordering of the quantization and linear transform is swapped



258 R. de Fréin

compared to the traditional DCT approach for JPEG compression [10]. We call
these quantizers the outer Qo(·) and inner Qi(·) quantizers respectively.

DCT: a = Qo(Φ
−1x), vs. MFCA-SSLPOD: al =

(
Φl
)∗

Qi(x)∀l. (11)

(·)∗ denotes the appropriate inverse. The inner quantizer is now described. Alg. 1
first computes a linear fine-grained histogram h ∈ Zβ×1 with β bins of the image
pixel intensities, I, it then computes a coarse histogram with L bins (with non-
uniform decision levels) of the histogram h. The number of elements in each bin
of the coarse histogram is more equal than for the fine-grained histogram h –the
entropy of the histogram is greater; however no quantization error is introduced.

3.1 Binary Layering Tree (BLT) Parametrization

The parametrization of the BLT is explained as follows. The constants Vmin and
Vmax are typically the minimum and maximum image pixel intensity, min{I} and
max{I} respectively. The constant β is the number of bins used to create the fine-
grained histogram, h= hist((I),Vmin,Vmax, β), β is chosen to be the resolution
of the pixel intensities supported by the image file format. Each pixel in the
cameraman is an integer value between 0 and 255. Image layers are generated
using the sequential binary range partitioning algorithm in Alg. 1. The number of
layers L can be expressed as a base-2 number with an integer exponent, L = 16.
The quantization ranges, b, list the indices of the fine-grained histogram h where
layer bounds should start and end.

3.2 MultiLayer Formal Concept Analysis: MFCA

We present a method for constructing a dictionary using FCA for each layer
generated by Alg. 1. MFCA is defined in Alg. 2 and described below in detail.
First, we compute the binary mask for layer l using Alg. 1:

[M l,Ll, b(l)] = Qi(I, log2 L, Vmin, Vmax, β, l), where I ∈ RR×G. (12)

We apply overloaded blocking to M l ∈ ZR×G which yields,
↼

M l∈ ZN2
b ×M . Let

O and P denote a finite set of N2
b rows andM column labels respectively for the

matrix
↼

M l, the blocked binary mask computed for layer l. The set of labels P =
{1 . . .m . . .M} denotes the block index, and the set of labels O = {1 . . . n . . .N2

b }
denotes the elements of each block. The value one is entered in a row-column
position to denote that pixel is in that layer; block index m has that pixel; and
finally, the pixel is present in the block; a zero entry denotes that the pixel is not

present, etc. Therefore, the matrix
↼

M l describes the binary relation between the
label sets O and P (we use binary matrix and binary relation subset notation
interchangeably for convenience even though this is not strictly correct.); FCA
looks to learn structures present in the blocks. We say the row label set X is

associated with the column label set Y if (X,Y ) ∈
↼

M l, X ∈ O and Y ∈ P . The



Multilayered FCA 259

Algorithm 1. BLT: [M l,Ll, b(l)] = Qi(I, log2 L, Vmin, Vmax, β, l)

Input: log2 L,I,Vmin,Vmax, β, l, index of the layer required
Output: b(l),Ll(r, g),M l(r, g).
1. Initialization with fine-scaled histogram: h= hist(vec{I},Vmin,Vmax, β).
2. Compute ĥ(c) =

∑c
i=1 hi, ∀c = 1, . . . β. Initialize the partition bounds b = [].

3. for r = 1 : log2 L do
4. t = [];
5. if ranges==1 then
6. b = 1

2

∑
i hi; {Start with the mid-point.}

7. im = min(find(ĥ > b)); {Find transition index.}
8. b = [1, im, β]; {First set of quantization bounds.}
9. else

10. for p = 1 : length(b)− 1 do
11. Compute valid histogram range and store in v: vj = hi if b(p) ≤ hi <

b(p+ 1),∀i,; compute v̂(c) =
∑c

j=1 vj , ∀c.
12. m = 1

2

∑
j vj ;

13. Find Transition Index: im = b(p) + min(find(vc > m));
14. t = [t, im];
15. end for
16. end if
17. b = [b, t]; Sort in ascending order b = sort(b);
18. end for

19. M l(r, g) =

⎧⎨⎩1 if b(l) ≤ I(r, g) < b(l + 1)

0 otherwise.
, Ll(r, g) = M l(r, g)I(r, g).

triple (O,P,
↼

M l) is called a formal context of the image layer l. Derivation on
X and Y where X ⊆ O, Y ⊆ P is defined as

X ′ = {n ∈ P | ∀m ∈ O : (n,m) ∈
↼

M l), Y ′ = {m ∈ O | ∀n ∈ P : (n,m) ∈
↼

M l). (13)

Therefore X ′ generates the set of columns which are shared by all rows in X .
Similarly, Y ′ generates the set of all rows which are common to all columns in Y .

A pair 〈X,Y 〉 is called a FC of (O,P,
↼

M l) if and only if X ⊆ O, Y ⊆ P , X ′ = Y ,
and Y ′ = X . Given a FC, 〈X,Y 〉, X and Y are called its extent and intent. The
crucial property of a FC is that the mappings X ⊆ X ′′ and Y ⊆ Y ′′, hereafter
known as closures, hold. The closure operator can be used to calculate the extent
and intent that form a FC; building blocks of the formal context are revealed, by
applying the closure mechanism methodically. Establishing a sub/super-concept
hierarchy allows for thorough, systematic FCA [8]. Given X1, X2 ⊆ O and Y1,
Y2 ⊆ P the concepts of a context are ordered as follows:

〈X1, Y1〉 � 〈X2, Y2〉 :⇐⇒ X1 ⊆ X2 ⇐⇒ Y2 ⊆ Y1 (14)

an ordering which is interesting, because it facilitates the iterative formation of
a complete lattice which is called the concept lattice of the context [8]. To define
the dictionary generation process, we appeal to the rank-1 property in [15].



260 R. de Fréin

Algorithm 2. Multi-layer FCA (MFCA)

Input: I, L,Nb: Image, number of layers, and block size.
Output: Φl, ∀l. Ordered dictionaries computed from the closures of each layer
1. for l=1,. . . L do
2. Quanitize I: [M l,Ll, b(l)] = Qi(I, log2 L, Vmin, Vmax, β, l).

3. Apply overloaded blocking to each layer’s mask:
↼

M l= blk{M l, Nb}.
4. Compute all closures in layer: {E} = AllClosure(

↼

M l, O, P ).
5. Generate dictionary for layer: Φl = Φl = [full(E1), full(E2), . . . , full(EK)]
6. end for

Property 4 Closures are rank-1 approximations of the formal context and their
extents may be concatenated to form ordered dictionaries. If X ⊆ O, Y ⊆ P ,
X ′ = Y , and Y ′ = X, we construct vectors by defining the function φl

k = full(X)

φl
k(n) =

{
1, if n ∈ X

0, if n /∈ X,
, y(m) =

{
1, if m ∈ Y

0, if t /∈ Y,
, then, ranky(φl

k)
T = 1. (15)

The Nextclosure function defined in [15] generates the set of all extents for
↼

M l

using RRCFCA: E = AllClosure(
↼

M l, O, P ).

Definition 5. We may construct an ordered dictionary from the set of extents,
E of each ordered closure computed from the binary mask of layer l, M l.

Φl = FullDict(E) = [φl
1,φ

l
2, . . . ,φ

l
k, . . .φ

l
K ] = [full(E1), full(E2), . . . , full(EK)] (16)

We desire that closures are generated iteratively using lectic ordering which is
defined ab initio by the blocking of images. NextClosure, and its parallel variant
RRFCA, generates closures once: a complete exposition of NextClosure is given
in [8,15]. Note that dictionaries may not be overcomplete if the layer is very
sparse; this issue is addressed in the following section.

4 Sequentially Sifted Linear Programming

We introduce a Sequentially Sifted Linear Programming encoder to solve the
lossless form of Problem 1, where S(·) is the �1-norm and the error term is zero.
Recall, the atoms learned by MFCA are ordered lectically; they are generated
by NextClosure. We posit that successive atoms are highly correlated. This idea
is illustrated in Fig. 3: MFCA atoms φk

k are ordered in this toy exemplar by
degree of elevation, e.g. 0◦ increasing to 90◦.

MFCA generates large dictionaries which poses the problem of solving a large
Linear Program. We present SSLP of ordered dictionaries as a good but subop-
timal solution. SSLP runs successive LP on ranges of atoms (smaller problems),
and uses these intermediate solutions to select α atoms of interest via a function
called Φ̂

l
= top(al

opt1, . . . ,a
l
opts, . . . , Φ̂1

l
, . . . , Φ̂s

l
, . . . , α). We then concatenate



Multilayered FCA 261

atoms of interest into a super-dictionary Φ̂
l
and encode the images by solving a

smaller LP where the constraints are expressed in terms of the super-dictionary.
This process is illustrated in Fig. 3 for the case where we have 8 atoms. To
define the SSLP algorithm we consider the LP primitive al

opt,s = L1opt(x,Φl
s),

which is equivalent to solving the following problem where the data x = vec
↼

Ll

is vectorized, and the dictionary is expanded appropriately:

min
a

1Ta, such that a ≥ 0, and Φl
sa = x. (17)

In what follows, each atom is normalized so that scaling does not affect the
selected solution, ||φl

k|| = 1. For each range of atoms, we choose intervals of

1000 atoms and we generate the sth sifting dictionary positioned at k:

Φ̂
l,k

s = [φk, . . . ,φk+1000|IN2
b
], (18)

where IN2
b
is the canonical basis. This dictionary is called a sifted dictionary as

each local dictionary used may not span the positive orthant, and thus the linear

program may not have a feasible solution. If the atoms in Φ̂
l

s do not provide a
sparse solution the coefficient energy is captured by the canonical basis. The
sifted dictionary behaves in a similar manner to the Dirac delta function in
Signal Processing, which serves to sift out components of a signal. The top(·)
function discards atoms based on the indices of the coefficient energy. If the
canonical basis coefficients have the α largest coefficients, the atoms may be
discarded as they do not represent the image more compactly than the identity.

SSLP may be applied hierarchically in a tree like formation –the size of the
super-dictionary depends on α. In this paper, SSLP is applied to generate a dic-
tionary for each layer using the 2-step process illustrated in Fig. 3. Alternatively,
we can run an LP when 1000 atoms have been generated for a layer, by FCA,
and then discard the results so that storage usage during runtime is minimized.
The �1 penalty encourages the solver to only choose a few good atoms ensure
than many atoms are removed and memory is preseved. Note, the SSLP solution
is sub-optimal, but lectic ordering ensures that good local minima are found due
the local correlation in lectically sorted atoms.

5 Empirical Evaluation

We evaluate the MFCA-SSLPOD transform coding and encoding scheme. Sub-
sequent quantization and entropy coding of coefficients is out of the scope. We
describe the indicative performance of the MFCA-SSLPOD transform coding
and encoding method using 512 × 512 pixel images from the USC-SIPI Image
Database: Cameraman, Peppers and Barbara. The block-size is Nb = 8 and the
layer size is L = 16. These images are standard test images used for compression.

BLT Quantization: Fig. 4 illustrates the fine-grained and rough histograms
generated by the BLT layer construction algorithm for the Cameraman. The LHS



262 R. de Fréin

(0,0)

Φ̂
l

1

(0,0)

Φ̂
l

4

(0,0)

Φ̂
l

2

(0,0)

Φ̂
l

3

(0,0)

Φ̂
l

al
opt1,a

l
opt2,a

l
opt3,a

l
opt4 - 1 sifting solvers generate intermediate solutions

Select atoms Φ̂
l ← top(al

opt1,a
l
opt2,a

l
opt3,a

l
opt4, Φ̂

l

1, Φ̂
l

2, Φ̂
l

3, Φ̂
l

4, α)

Encoded Solution

Fig. 3. Illustration of SSLP: An FCA-like routine generates 8 atoms in layer l,
[φl

1, . . . ,φ
l
8]. Sifting dictionaries are generated that contain 2 of these atoms each:

Φ̂s for s = 1, 2, 3, 4, for example Φ̂
l

1 = [e1, e2,φ
l
1,φ

l
2]. These atoms are plotted in black

in the first row of coordinate systems. The Canonical atoms, e1, e2 are plotted as blue

arrows. The test data points
↼

Ll are plotted as red dots in each of the coordinate sys-
tems. We solve the LP associated with each system in row one and identify the top α
coefficients (by magnitude). When α = 1 atoms φl

2,φ
l
4,φ

l
8 are retained in the super-

dictionary. The MFCA transform coefficients are computed solving a Linear Program

using the super-dictionary, Φ̂
l
= [e1, e2,φ

l
2,φ

l
4,φ

l
8] as linear constraints.

is the fine-grained histogram generated from the Cameraman I. The numbers
of pixels present in each layer, once quantization has been performed, is plotted
on the RHS. There is a significant reduction in the dynamic range of the RHS
compared to the LHS. The black vertical lines on the LHS denote the computed
decision boundaries (histogram bin positions). BLT provides no guarantees on
the number of closures (complexity) that are mined from each layer. For example,
Fig. 7 lists the number of closures produced by the layers of the Cameraman.
In many cases the effective size of M l is less than N2

b ×M as layering produces
zero rows and columns (the empty extent is of no interest).

Atoms learned: The atoms learned by MFCA are closures and are more infor-
mative than the DCT atoms; they are adapted to the structures in each of the
layers. Fig. 5 illustrates 5 atoms, which are chosen based on their expressiveness
and stacked, one column per layer (l = 1, . . . , 16 left to right), for each of the
16 layers M l of the Cameraman. Comparison with the original cameraman and
layer binary masks in Fig. 2 demonstrates that, for example, triangular parts of
the cameraman’s coat are captured by some of the closures.

Image Compression: The number of closures generated by MFCA for the
dictionary Φl of each layer is listed for the first three layers in Fig. 7. These
numbers are indicative for all layers. We terminate NextClosure when 9999000
closures have been generated. We posit that the large number of layers that
generate greater than 9999000 closures is caused by the block-size Nb and the



Multilayered FCA 263

Fig. 4. Cameraman layer histogram: The count of the number of active pixels in each
layer’s range is non-uniform. We form 16 layers by attempting to increase the entropy
of this histogram, by smoothing it out.

Fig. 5. Cameraman Atoms: Each column illustrates five of the parts learned for one of
the 16-layers generated for the cameraman. The leftmost column illustrates parts, which
constitute the cameraman’s coat. Rows 1, 4 and 5 of column 1 contribute triangular
parts that represent the outline of the coat.

0
50

100
150
200
250
300
350
400

0 50 100 150 200

SN
R

Number of coefficients

Fig. 6. Rate Distortion of MFCA & SSLPOD: The SNR of each encoding is plotted
against the number of sorted coefficients used to generate the approximation. For ≈
4000 blocks (the 512 × 512 cameraman image), typically less than 10 coefficients are
used per block to achieve a SNR which is greater than 20dB.

(1,4999000) (2,37963) (3,815032) (4,4999000)
(5,4999000) (6,4999000) (7,4999000) (8,2329900)
(9,4999000) (10,4999000) (11,4999000) (12,124886)
(13,4999000) (14,1153000) (15,4999000) (16,4999000)

Layer 1 2 3
Cameraman 1999000 37963 815032
Barbara 9999000 9999000 593000
Peppers 9999000 9999000 9999000

Fig. 7. Number of concepts computed per layer for the Cameraman (LHS table) in
(layer,number of concepts) form. The RHS compares the number of concepts for the
first three layers for the Cameraman, Barbara and Peppers.

image content. If fewer image blocks were used in multiple MFCA routines,
fewer closures would be learned. In general the larger the block and image, the
larger the number of potential closures. In future work we will partition the
image block matrix for each layer and run NextClosure on each partition to
reduce the size of the dictionaries. We posit that partitioning may lead to fewer
closures being generated. In § 4 we introduced SSLP as a method for generating
an small ordered dictionary from the complete MFCA ordered dictionary. The
super-dictionaries generated from each layer have on the order of 100 atoms. The
maximum number of atoms in the super-dictionaries in this paper is 166 atoms.



264 R. de Fréin

These atoms are relatively uncorrelated as they are a selected subset from the
complete set of closures.

Fig. 6 plots the number of coefficients used to represent each of the image’s
blocks in the super-dictionary for that layer. Recall the lossless and lossy formu-
lation of the transform coding problem in Problem. 1. We plot the SNR for the
encoding for each block as the number of sorted coefficients is increased from
1 to K. An SNR of 20dB is good-quality (approximately lossless) compression.
Fig. 6 illustrates that most blocks have an SNR which is greater than 20dB when
they are represented by less than 10 coefficients. This illustrates that the linear
transform compactly represents the image blocks –compression is achieveable.
Outer quantization may now be applied to these coefficients, along with entropy
encoding, to generate the compressed image in its traditional format. In future
work we will consider the role of α, which sets the number of maintained atoms
in the superdictionary. The compression rates in Fig. 6 are adversely affected by
the need for the identity basis to fill-in some troublesome image blocks. We posit
that this is because too few atoms were maintained in the super-dictionaries.

Complexity Reduction and Information Content: BLT is motivated by
the fact that FCA’s computational complexity, and thus its run-time, is a func-
tion of the density of the formal context. Layering reduces the density of the data
passed to FCA. FCA may be computed using Ganter’s algorithm [22], Lindig’s
algorithm [23], CloseByOne [24,25] and their variants [26,27]. The theoretical
and empirical complexity of various approaches, which is an important consid-
eration for MFCA, is compared for FCA by Kuznetsov in [28]. Computational
complexity is the main measure for comparing algorithms: Kuznetsov and Obied-
kov focus on the properties of the data ensemble, namely sparsity, the primary
complexity-inducing characteristic of the decomposition. As the number of lay-
ers L increases the complexity (sparsity) of each FCA reduces; the number of
FCs in each layer reduces, and thus the expressive power of MFCA decreases.
The choice L = 16 is motivated by the resolution of the pixel intensities in our
experiments -8 bits per pixel - increasing L should reduce MFCA complexity.

Aside from sparsity, FCA’s main bottlenecks are memory and processing con-
straints. Ganter’s algorithm computes concepts iteratively based on the previous
concept, without incurring exponential memory requirements, by exploiting lec-
tic ordering. In some preliminary work [14,15] we introduced RRFCA, which
exploits 1) the fact that rank-1 approximations are closures, and 2) the lectic or-
dering of a set of representative closures to sub-divide FCA into a set of parallel
mining tasks (that invoke negligible communication costs). We used RRFCA to
speed-up the mining process in this paper. Alternative methods include: Close-
ByOne produces many concepts in each iteration; Bordat’s algorithm, described
in [29], introduces a data structure to store previously found concepts, which
results in considerable time-savings. This approach is made more efficient in [30]
by removing the need for a structure of exponential size.

Remark: Incremental approaches for FCA have been made popular by Norris in
[31], Dowling in [32], Godin et al. in [33], Carpineto and Romano in [34], Valtchev



Multilayered FCA 265

et al. in [35] and Yu et al. in [36] the authors update the lattice structure when
a new object is added to the database. Note that these methods may have a role
to play in online adaptation of overcomplete dictionaries (in video compression).
To address the memory and computation challenge, we considered using rank
reduction method and disjointness to select good starting-intents for FCA in
[14]. Other approaches that may make MFCA more computationally practical
for image compression include: Krajca et al. proposed a parallel version based
on CloseByOne in [27]; the first distributed algorithm [37] was developed by
Krajca and Vychodil in 2009 using the Map-Reduce framework [38]; and finally,
the authors of [39] proposed an efficient, distributed FCA implementation using
the Twister Map-Reduce framework [40].

Conclusions and Future Directions: We introduced a first FCA-based linear
transform that compactly encodes images by converting an 8-bit representation
into a number of 1-bit layers and learning the closures for each layer. In future
work it would be interesting to assess the effect on dictionary size of taking L-
way factorizations of the multilayer representation using a technique similar to
[41], which exploits latent components across the layers of MFCA. In addition,
we will consider the effect of the parameters Nb, L, α on the compactedness of
the derived coefficients and complexity.

Acknowledgments. This work was supported by grant 08/SRC/I1403 FAME
SRC.

References

1. Chen, S.S., Donoho, D., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM J. Scientific Computing 20, 33–61 (1998)

2. Mallat, S.: A Wavelet Tour of Signal Processing, The Sparse Way, 3rd edn. Aca-
demic Press (2008)

3. Lewicki, M.S., Sejnowski, T.J., Hughes, H.: Learning overcomplete representations.
Neural Computation 12, 337–365 (1998)

4. Lewicki, M.S., Olshausen, B.A.: A probabilistic framework for the adaptation and
comparison of image codes. J. Opt. Soc. Am. A 16, 1587–1601 (1999)

5. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

6. Olshausen, B.O., Fieldt, D.J.: Sparse coding with an overcomplete basis set: a
strategy employed by V1. Vision Research 37, 3311–3325 (1997)

7. Rubinstein, R., Bruckstein, A.M., Elad, M.: Dictionaries for Sparse Representation
Modeling. Proceedings of the IEEE 98(6), 1045–1057 (2010)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

9. Horev, I., Bryt, O., Rubinstein, R.: Adaptive image compression using sparse dic-
tionaries. In: 19th Int. Conf. Sys., Sig. and Im. Process., pp. 592–595 (2012)

10. Pennebacker, W.B., Mitchell, J.L.: JPEG still image data compression standard.
Springer, New York (1993)



266 R. de Fréin

11. Taubman, D.S., Marcellin, M.: JPEG2000: image compression fundamentals, stan-
dards and practice. Kluwer Academic Publishers, Norwell (2001)

12. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete Cosine Transform. IEEE Trans.
Computers C-32, 90–93 (1974)

13. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics
(October 2002)

14. de Fréin, R.: Ghostbusters: A Parts-based NMF Algorithm. In: 24th IET Irish
Signals and Systems Conference, pp. 1–8 (June 2013)

15. de Fréin, R.: Formal concept analysis via atomic priming. In: Cellier, P., Distel, F.,
Ganter, B. (eds.) ICFCA 2013. LNCS, vol. 7880, pp. 92–108. Springer, Heidelberg
(2013)

16. Bryt, O., Elad, M.: Compression of facial images using the K-SVD algorithm.
Journal of Visual Communication and Image Representation 19(4), 270–283 (2008)

17. Howard, P.G., Vitter, J.S.: Arithmetic coding for data compression. Proceedings
of the IEEE 82(6) (June 1994)

18. de Fréin, R., Rickard, S.T.: The synchronized short-time-Fourier-transform: Prop-
erties and definitions for multichannel source separation. IEEE Trans. Sig.
Proc. 59(1), 91–103 (2011)

19. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: NIPS,
pp. 556–562. MIT Press (2000)

20. Elad, M.: Sparse and redundant representations - from theory to applications in
signal and image processing. Springer (2010)

21. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE
Trans. Sig. Proc. 41(12) (1993)

22. Ganter, B.: Two Basic Algorithms in Concept Analysis. In: Kwuida, L., Sertkaya,
B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 312–340. Springer, Heidelberg (2010)

23. Lindig, C.: Fast Concept Analysis. Working with Conceptual Structures-
Contributions to ICCS, pp. 235–248 (2000)

24. Kuznetsov, S.O.: A Fast Algorithm for Computing All Intersections of Objects in
a Finite Semi-Lattice. Auto. Doc. and Math. Linguistics 27(5), 11–21 (1993)

25. Andrews, S.: In-Close, a Fast Algorithm for Computing Formal Concepts. In: The
Seventeenth International Conference on Conceptual Structures (2009)

26. Vychodil, V.: A New Algorithm for Computing Formal Concepts. In: Cybernetics
and Systems, pp. 15–21 (2008)

27. Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In:
CLA 2008, vol. 433, pp. 71–82 (2008)

28. Kuznetsov, S.O., Obiedkov, S.A.: Comparing Performance of Algorithms for Gen-
erating Concept Lattices. J. Exper. & Th. Artif. Intell. 14, 189–216 (2002)

29. Bordat, J.-P.: Calcul pratique du treillis de Galois d’une correspondance.
Mathématiques et Sciences Humaines 96, 31–47 (1986)

30. Berry, A., Bordat, J.-P., Sigayret, A.: A Local Approach to Concept Generation.
Annals of Mathematics and Artificial Intelligence 49(1), 117–136 (2006)

31. Norris, E.M.: An Algorithm for Computing the Maximal Rectangles in a Binary
Relation. Rev. Roum. Math. Pures et Appl. 23(2), 243–250 (1978)

32. Dowling, C.E.: On the Irredundant Generation of Knowledge Spaces. J. Math.
Psychol. 37, 49–62 (1993)

33. Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms
Based on Galois (Concept) Lattices. Computational Intelligence 11, 246–267 (1995)

34. Carpineto, C., Romano, G.: A Lattice Conceptual Clustering System and Its Ap-
plication to Browsing Retrieval. Machine Learning, 95–122 (1996)



Multilayered FCA 267

35. Valtchev, P., Missaoui, R., Lebrun, P.: A Partition-based Approach Towards Con-
structing Galois (concept) Lattices. Discrete Math., 801–829 (2002)

36. Yu, Y., Qian, X., Zhong, F., Li, X.R.: An Improved Incremental Algorithm for
Constructing Concept Lattices. In: Soft. Eng., World Congress, vol. 4, pp. 401–405
(2009)

37. Krajca, P., Vychodil, V.: Distributed Algorithm for Computing Formal Concepts
Using Map-Reduce Framework. In: Adams, N.M., Robardet, C., Siebes, A., Bouli-
caut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg
(2009)

38. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI, p. 13 (2004)

39. Xu, B., de Fréin, R., Robson, E., Ó Foghlú, M.: Distributed Formal Concept Anal-
ysis Algorithms Based on an Iterative MapReduce Framework. In: Domenach, F.,
Ignatov, D.I., Poelmans, J. (eds.) ICFCA 2012. LNCS, vol. 7278, pp. 292–308.
Springer, Heidelberg (2012)

40. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.H., Qiu, J., Fox, G.:
Twister: a Runtime for Iterative MapReduce. In: HPDC 2010, pp. 810–818. ACM
(2010)

41. Belohlavek, R., Glodeanu, C., Vychodil, V.: Optimal factorization of three-way
binary data using triadic concepts. Order 30(2), 437–454 (2013)



Attribute Exploration
with Proper Premises and Incomplete Knowledge
Applied to the Free Radical Theory of Ageing

Johannes Wollbold1,
, Rüdiger Köhling2, and Daniel Borchmann3,



1 University of Rostock, Germany
johannes.wollbold@uni-rostock.de

2 University Medicine, Rostock, Germany
3 Technische Universität Dresden, Germany

borch@tcs.inf.tu-dresden.de

Abstract. The classical free radical theory of ageing assumes that oxida-
tive damage by reactive oxygen species (ROS) accumulates with age in a
self-enhancing process. The theory has been confirmed by many experi-
ments in various species. However, it is seriously challenged since several
years. In this ambiguous situation, we collected and ordered existing knowl-
edge, with a focus on the integration of conflicting findings.

Wedeveloped a specificmethod of knowledge base construction and give
a first example of its application. Data reported in literature or generated
by our experimental partners is formalized as Ripple Down Rules (RDR),
a structure of general rules and exceptions. This rule set is validated and
completed by the attribute exploration algorithm: Several, most specific
RDR are accepted as background implications for an exploration starting
from the examples collected during the RDR knowledge base growth.

The RDR classify biological cases, which are defined by attributes like
organism, cell type or stimulation experiment. The classes are different
and chosen according to leading questions. We focus on low/high ROS
concentration in age and on lifespan. Implications with proper premises
are suited for such disjoint basic sets of premises and conclusions. We im-
plemented an easily understandable exploration algorithm in conexp-clj,
furthermore an extension of this algorithm to incomplete counterexamples.
The correctness and completeness of both algorithms is proven.

Keywords: attribute exploration, proper premises, incomplete knowl-
edge, knowledge base, ripple down rule, free radical theory of ageing.

1 Introduction

The aim of the present work is to provide a specific methodology to structure and
validate knowledge and data. It is applied to a central hypothesis of ageing research
� Supported by the German Federal Ministry of Education and Research (BMBF), FKZ

0315892A (ROSAGE).
�� Supported by DFG Graduiertenkolleg 1763 (QuantLA).

C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 268–283, 2014.
c© Springer International Publishing Switzerland 2014



Attribute Exploration with Proper Premises and Incomplete Knowledge 269

related to free radicals or – more generally – reactive oxygen species (ROS).1 ROS
are mainly produced in the mitochondria of an eucaryotic, e.g. animal cell. Proteins
of the inner mitochondrial membrane build an electrical circuit (electron transport
chain, ETC ) pumping protons out of the inner part of the mitochondrion. Their
reflux drives the motion of a protein complex producing adenosine triphosphate
(ATP), one of the most important energy storing molecules. ROS have a high po-
tential to oxidize other molecules.Therefore, they can damage proteins or the DNA
strain of the mitochondria coding mainly for the proteins of the ETC. [1]

Now, the free radical theory of ageing (FRTA) [11] developed since the 1950s
assumes a positive feedback with negative consequences. Damaged proteins of the
ETC are supposed to produce more ROS, oxidative damage accumulates with age
and progressively disturbs cell and organ functions. Whereas the theory has been
confirmed by manifold experiments in various species, also exceptions were found,
and every part of the sketched argumentative chain is challenged since several
years. Moreover, important physiological roles of ROS are now better understood.
As signaling molecules they trigger, for instance, an immune response or apoptosis
(a controlled form of cell death). Hence, a more realistic picture emerges, and ROS
do not represent the “axis of evil” any more, within the scientific story about social
interactions of an organism.

In order to contribute to this dialectic process, we use a related logical structure
of rules and exceptions, so-called Ripple Down Rules (RDR) [7]. Data reported in
the literature or collected by us and our experimental partners is formalized as a
set of RDR. This rule set and the corresponding examples are further validated
and completed by the attribute exploration algorithm of formal concept analysis
(FCA). Implications proposed by the algorithm are accepted or counterexamples
are given, if necessary after supplementary literature or data queries. Thus, a rule
base is defined systematically. From this rule base, all implications valid according
to the available knowledge can be derived logically.

However, RDR are not implications, but more general clauses. In [8], attribute
exploration has been generalized to the most general case of cumulated clauses.
But then, three comfortable features of the rule base no longer hold without fur-
ther assumptions: its minimality, uniqueness and the decidability in linear time,
if a given implication follows from the rule base – indeed, this inference problem
is NP-complete [8, p. 10].

Therefore, in a first step we adopt here the following strategy: If the RDR
knowledge base is sufficiently developed and approved, the examples correspond-
ing to all RDR are assembled into a formal context, and the implicational logic of
the underlying domain is explored. Secure RDR without exception are entered as
background knowledge.

1 Here, free radicals denote molecules containing oxygen with one unpaired electron
(i.e. the electron at the same energy level, but with inverse spin is missing), e.g. O·−

2

(superoxide) or OH · (hydroxyl radical). They belong to the larger class of reactive
oxygen species (ROS) comprising also H2O2 (hydrogen peroxide), where oxygen is
only partially reduced. Since different ROS can be rapidly converted to each other,
the general term of free radical is often used for all kinds of ROS.



270 J. Wollbold, R. Köhling, and D. Borchmann

It is the purpose of this paper to develop this first step in detail. To this end, we
shall introduce the necessary notions from FCA in the following section. There-
after, we shall develop a modified version of attribute exploration which includes
both proper premises and incomplete counterexamples in Section 3. Thereafter,
we shall apply our algorithm to the FRTA in a small example in Section 4.

2 Methods: Mathematical and Logical Background

2.1 Ripple Down Rules

Table 1. Cornerstone
cases

A
nt

iO
x1

.+
A
nt

iO
x1

.−
A
nt

iO
x2

.+
A
nt

iO
x2

.−
R
O
S
.o
ld
.+

R
O
S
.o
ld
.−

1. ×
1.1 × ×
1.1.1 × × ×

The RDR scheme [7, 14] is a formalism used for the pro-
gressive extension of a knowledge base. A new case – for
instance occurring in medical diagnosis – is classified
following one or more paths in a tree of if-then-rules de-
fined as a pair of formula (α,β). The case is evaluated
according to the most specific rule(s) that is/are appli-
cable to the case (the rule fires). If an expert detects a
wrong classification, the wrongly firing rule can be un-
derstood as a general rule to which an exceptional case
has been detected. Then, a new child rule (α,β) with
supplementary attributes of the premise is defined and
stored in the knowledge base, together with the example
(cornerstone case) that required the exception.

Since RDR are only the motivation for the present work, we give a rather in-
tuitive description starting from an example derived from the rules in Section 4.
Consider the tree with a single branch (brackets for attribute sets are omitted,
then ’,’ signifies ∧):

∅ −→ ROS.old.+ (1)
AntiOx1.+−→ ROS.old.− (1.1)

AntiOx1.+, AntiOx2.− −→ ROS.old.+ (1.1.1)

The root rule (1) represents one of the basic hypothesis of the FRTA, the accumula-
tion of ROS during ageing. If the production of an antioxidant enzyme is increased
permanently, for instance by a mutation, the cellular ROS concentration in age is
reduced (1.1). Other experiments are in conflict with this rule, hence misclassified,
and the exceptional rule (1.1.1) is added to the knowledge base: If the concentra-
tion of a second antioxidant directed against a different type of ROS is too low,
the protective effect of AntiOx1 is minimal. With the rules, the cornerstone cases
of Table 1 are stored.

As an RDR only holds if the conditions of its child rules are not fulfilled, they
meet the following general definition.

Definition 1. Let αi,αj ,β, i ∈ I, j ∈ J be propositional or first-order formula.
Then a ripple down rule is a clause with the following structure:∧

i∈I

αi∧
∧
j∈J

¬αj −→ β.



Attribute Exploration with Proper Premises and Incomplete Knowledge 271

For single classification RDR (SCRDR), the tree of rules and exceptions is
binary. We shall use multiple classification RDR (MCRDR), which allow an ar-
bitrary number of child rules. For further details see [14, Definitions 1, 3, 5 and
8].

2.2 Formal Concept Analysis

Our considerations rely on notions from the mathematical field of formal concept
analysis [10], a subfield of mathematical order theory. We assume a certain famil-
iarity of the reader with fundamental notions such as formal contexts, derivation
operators noted by ′, and implications. Here and throughout the article, we shall
introduce specific notions which are relevant for our purpose, in particular proper
premises and formal contexts expressing incomplete knowledge. Basically, we also
assume that the reader is familiar with attribute exploration, but we give an intu-
itive introductionwith an example, the explorationof the formal context in Table 1.

Attribute Exploration. This algorithm supposes that we are interested in the
implicational dependencies of a certain domain, of which we can think of as a
collection of instances which may or may not have particular attributes. In other
words, we assume that this domain is representable by a formal context (G,M,I),
and we are interested in the implicational theory of that context, and we shall call
this formal context the background context Kback of the domain. We shall further-
more assume that the set of attributes of the background context is finite. The
implicational theory is representable by a rule set from which all valid implications
can be logically derived (completeness). Classical attribute exploration generates
such a rule set, namely implications with pseudo-intents2 as premises. This stem
base is minimal and unique. It is computed in interaction with a domain expert or
a computer program.

Starting, for instance, from the initial working context K⊆Kback of Table 1, the
algorithm first proposes the implication ROS.old.− −→ AntiOx1.+. It is accepted
and added to the still empty stem base, since an elevated antioxidant level is a
necessary condition for a decrease of ROS. However, the subsequent implication

AntiOx2.− −→ AntiOx1.+, ROS.old.+

is rejected. Obviously, not only the case 1.1.1 can occur, but the concentration
of both antioxidants can be low. Therefore, a counterexample is added to the
current working context as a new object (row) with the attributes AntiOx2.−,
AntiOx1.− and ROS.old.+. Then, the algorithm ”defends” the remaining part of
the conclusion, and the expert complies with AntiOx2.− −→ ROS.old.+. With
2 A pseudo-intent P̃ ⊆ M is defined recursively, starting from ∅: It is not closed, but

contains the closure Q′′ (regarding the current working context) of all pseudo-intents
Q� P̃ . Attribute exploration computes sets P̃ which in addition are closed under the
background knowledge. For these sets, P̃ −→ P̃ ′′ does not follow from the currently
known implications, but is also not invalidated by the current working context.



272 J. Wollbold, R. Köhling, and D. Borchmann

termination of the algorithm, the stem base contains 7 implications, and the final
working context one further counterexample.

Note that we have omitted a lot of details here, in particular the method on how
to compute sets pseudo-intents as mentioned above. Moreover, in our algorithms
and the extended example of Section 4.1, the set of already known implications
has not to be empty in the beginning, but background knowledge B can be entered
into the algorithm, expressing, e.g., the exclusion of ROS.old.+ and ROS.old.−.
A more detailed overview can be found in [16]. For an extensive discussion of
attribute exploration we refer to [9, 10].

We finish this section with two technical remarks. First, we assume the expert
to not make errors, i. e. to give correct answers and counterexamples. If an expert
is implemented in terms of an automatic system, then this assumption may be
acceptable, however if the expert is a human expert, then the assumption is quite
naive. There has been some research into this direction [2], but we shall mostly
ignore those issues here due to space restrictions.

Second, we shall make use of a notational idiosyncrasy: If K = (G,M,I) is a
formal context and A⊆M , then we occasionally shall denote the derivations A′

and A′′ of A in K by A′
K and A′′

K. This is due to the fact that we have to deal with
situations where more than one formal context is present, and where we need to
make clear in which formal context the derivations are conducted.

Proper Premises. For our application to the validation of an RDR knowledge
base, it will be necessary to classify objects into certain classes C⊆M which are
described by attributes inM \C. Therefore, we shall make use of implications with
premise in M \C and conclusion in C. It shall turn out in Section 3 that proper
premises are a helpful notion for this.

Definition 2. For a given formal context (G,M,I) and a set of attributes P ⊆M ,
define P • to be the set of those attributes in M \P that follow from P but not from
a strict subset of P , i. e.

P •=P ′′\
(
P∪

⋃
S�P

S′′)
P is called a proper premise if P • is not empty. It is called a proper premise for
m if m∈P •.

The set of implications LP := {P −→ P • | P • �= ∅} is a sound and complete
implicational base for K := (G,M,I) [10]. By definition, a proper premise is ⊆-
minimal regarding the property of implying an attribute m∈M . Pseudo-intents
P̃ ∈M , however, tend to be large, since they are closed by all implications but
P̃ −→ P̃ ′′. For instance, the premise of

AntiOx1.+, AntiOx1.−, AntiOx2.−, ROS.old.+→AntiOx2.+, ROS.old.− (1)

contains the proper premise AntiOx1.+, AntiOx1.−. With ⊥ :=M , the respective
implication AntiOx1.+, AntiOx1.− −→ ⊥ expresses that no cases exist where
both AntiOx1.+ and AntiOx1.− occur together, because M ′=∅. The premise of



Attribute Exploration with Proper Premises and Incomplete Knowledge 273

the implication in (1) contains additional attributes because it is closed under the
valid implication AntiOx1.− −→ AntiOx2.−, ROS.old.+.

On the other hand, the stem base is always minimal regarding the number of
implications,whereasLP is often much larger. In the next section,we shallmention
a further difference. A more elaborated comparison of attribute exploration with
pseudo-intents and proper premises can be found in [16].

3 Attribute Exploration for Implications with Proper
Premises

In our application in Section 4 we want to know all implicational dependencies
between attribute combinations fromM \C and attributes fromC. More precisely,
we are interested in investigating the set

ThC(K) :={A−→B |A⊆M \C,B⊆C,K |=(A −→ B)},

i. e. we want to compute a base for this set, which is a subset of ThC(K) which is
complete for ThC(K).

Because all implications imply elements inC from elements inM \C, every base
of ThC(K) will be iteration-free (or direct), i.e. logical derivations are achieved by
unique application of implications of the base. It is known that, in contrast to the
stem base, the set

L :={(P −→ {m})∈ThC(K) |P proper premise for m in K}

is such a base, and minimal as well [3]. We shall discuss two exploration algorithms
which make use of proper premises, one using completely specified counterexam-
ples, and the other one allowing for incompletely specified counterexamples. Both
algorithms were implemented in conexp-clj [4].

3.1 Complete Counterexamples

To explore all proper premise implications allowing only completely specified coun-
terexamples, we shall use a very simple approach: Given an initial working context
K, wewill consider all proper premisesP ofK for some attributem andask whether
the implication P −→ {m} is true or not. If the expert confirms, we continue with
the next proper premise until no more are left. If the expert rejects, we add a
counterexample to K and start over. A pseudocode-listing of such an algorithm is
given in Listing 1.1.

Since our manually curated contexts are rather small, it is not a performance
problem to recompute all proper premises as soon as a counterexample is added.
Thus, we could keep the algorithms simple, well understandable and could easily
implement the distinction between basic sets C and M \C for conclusions and
premises. However, the computation can be optimized by using ideas from [16]
based on results from the theory of hypergraphs, which allows for computing the
proper premises of an updated context from the proper premises of the original
one.



274 J. Wollbold, R. Köhling, and D. Borchmann

Listing 1.1. Attribute exploration using proper premises with disjoint basic sets for
conclusions and premises

0 define algorithm-1(K=(G,M,I), C�M , B⊆ThC(K))
1 L := B
2 forall m∈C do
3 P := {P ⊆M \C |P is proper premise for m in K}
4 while there exists P ∈P with L �|=(P −→ {m}) do
5 if expert confirms P −→ {m} then
6 L := L∪{P −→ {m}}
7 else
8 augment K by valid counterexample from the expert
9 P := {P ⊆M \C |P is proper premise for m in K}

10 end
11 end
12 end
13 return L\B
14 end

Theorem 3. With termination of algorithm-1, L\B is a sound and complete
implicational base with background knowledge B for ThC(Kback), where Kback =
(Gback,M,Iback) is the background context of the exploration. Furthermore, it is
true that

L\B⊆{P −→ {m}|m∈C, P is proper premise for m in K, P ⊆M \C}.

Note that parts of the proof are already contained in [16], but we shall repeat them
here for the sake of completeness.

Proof. By construction, all implications contained in L\B have been confirmed
by the expert, and all counterexamples contained in K are valid counterexamples
provided by the expert. Therefore, these counterexamples do not invalidate impli-
cations confirmed by the expert, and hence all implications in L\B hold in Kback.

Suppose that L \ B is not complete for Kback with background knowledge B.
Since the set

{P −→ {m}|m∈C, P ⊆M \C proper premise for m in Kback}

is complete for ThC(Kback), there must exist for some attribute m∈C a proper
premise P of m in Kback such that

L �|=(P −→ {m}). (2)

Consider now in algorithm-1 the iteration for the attribute m just after it
has finished the inner while-loop, and denote with L̄ the set of currently known
implications. Then L̄ ⊆ L, and therefore L̄ �|= (P −→ {m}). On the other hand,



Attribute Exploration with Proper Premises and Incomplete Knowledge 275

P −→ {m} is valid in Kback, so it is also valid in the current working context K̄.
Therefore, there exists a proper premise P̄ ⊆P form in K̄. Since L̄ �|=(P −→ {m}),
it is also true that L̄ �|=(P̄ −→ {m}), and thus the implication P̄ −→ {m} must
be asked to the expert, and we could not have reached the end of the while-loop,
a contradiction.

It remains to show that all implications inL\B have proper premises ofKback as
premises. By contradiction assume that this is not the case and let (P −→ {m})∈
L\B such that P is not a proper premise for m in Kback. But this then means that
there exists Q� P such that Q −→ {m} is valid in Kback. As the final working
context of the exploration is a subcontext of Kback, the implication Q −→ {m} is
also valid in the final working context. In particular, P is not a proper premise of
the final working context.

Therefore, to show the claim it is enough to show that all premises in L\B are
proper premises of the final working context. To this end it is enough to show that
for attributes m∈C and proper premises P of m in some formal context K1 stay
proper premises if we add counterexamples which do not invalidate P −→ {m}.
However, this is easy to see: Suppose that P would not be a proper premise for
m in the formal context K2 which originates from K1 by adding new objects.
Since P −→ {m} is still valid in K2, there must be a proper subset S � P such
that m ∈ S′′

K2
. But then m ∈ S′′

K1
, and P is not a proper premise for m in K1, a

contradiction. ��

Obviously, instead of asking implications to the expert which are of the form
P −→ {m}, one can equivalently ask implications like

P −→ P •∩C,

since then P is a proper premise for all attributes in P • ∩C. It may be easier
to judge the dependency of all attributes from P in one step. To this purpose,
we can replace the check L �|= (P −→ {m}) by L �|= (P −→ P • ∩C) in line 4
of algorithm-1.

3.2 Incomplete Counterexamples

For practical applications it may be too much to ask the expert to provide com-
pletely specified counterexamples. Indeed, it should be sufficient to just provide
as much from the counterexamples as is necessary to refute a given implication.

There have been several attempts to include the possibility of allowing in-
completely specified counterexamples into the classical attribute exploration with
pseudo-intents. The first approach is made in [5] and implemented in ConImp [6]
using three-valued Kleene logic. The newer works of [2, 9] introduce the notion of
a partial context. However, while in [2] a partial context is defined as a suitable
generalization of formal contexts, [9] uses two formal contexts, one of which con-
stitutes all certain incidences and the other one all possible ones. We shall follow
the approach of [9] for developing an exploration algorithm with proper premises
that in addition to algorithm-1 from Listing 1.1 allows for incompletely specified



276 J. Wollbold, R. Köhling, and D. Borchmann

counterexamples. They are added to a context as in Table 2, i.e. only the premise
attributes of the refuted implications have to be indicated as certain. Possible
attributes must not include the conclusion m∈M .

Denote withKback=(Gback,M,Iback) the background context of our exploration.
Then, we use two working contexts. The certain context K+ = (G,M,I+) has to
satisfy I+⊆ Iback∩(G×M), i. e. every incidence present in K+ is correct. On the
other hand, the possible context K? = (G,M,I?) satisfies Iback ∩ (G×M) ⊆ I?,
i. e. every possible incidence (and maybe more) are contained in K?. According
to [9] then, we define a partial context as a pair ((G,M, I+), (G,M, I?)) with
I+⊆ I? ⊆G×M . Finally, we shall call a formal context (G,M,I) a realizer of the
partial context ((G,M,I+),(G,M,I?)) if and only if I+⊆I⊆I?.

Partial contexts can be thought of as a compact representation of all of its
realizers, i. e. as a representation of a set of possible contexts, but where it is not
known which context is the correct one. An implication (A −→ B)∈ Imp(M) is
thus refuted by a partial context (K+,K?) if and only if it does not hold in all its
realizers. A counterexample to an implication A −→ B provided by the expert
during the exploration process can then be thought of as consisting of two disjoint
sets N+,N−⊆M such that

A⊆N+ and B∩N− �=∅.
The counterexample is then added to K+ and K? as follows: in K+, a new object
is added that has exactly the attributes from N+; in K?, a new object is added
that has exactly the attributes fromM \N−. After this modification, (K+,K?) will
refute A−→ B.

Recall that the main aspect of proper premises is that these are ⊇-minimal sets
entailing some attributem. To transfer this notion to incomplete counterexamples
we can reason as follows: the partial (K+ = (G,M,I+),K? = (G,M,I?)) actually
represents the set of all its realizers, and each realizer of (K+,K?) is considered to
be equally possible. If now P ⊆M and m∈M , we can say that P possibly entails
m in (K+,K?) if and only if there exists a realizer K=(G,M,I) of (K+,K?) such
thatm∈P ′′

K . If we denote the derivation operator inK+ by ·+ and inK? by ·?, then
we can infer from I+ ⊆ I that P ′

K ⊇ P+, and further from I ⊆ I? that P ′′
K ⊆ P+?.

Therefore, m∈P+?.
On the other hand, ifm∈P+?, then we can find a realizerK of (K+,K?) such that

m∈P ′′
K as follows: for all objects g∈P ′

K we set {g}′K :={g}?, and for g∈G\P ′
K we set

{g}′K := {g}+. Then m∈P ′′
K . Therefore we have shown the following proposition,

which is also contained in [9].

Proposition 4 (Proposition 30 from [9]).A set P ⊆M possibly entailsm∈M
if and only if m∈P+?.

An immediate consequence of this proposition is

P+?=
⋃

K realizer of (K+,K?)

P ′′
K .

With these considerations in mind it is now easy to generalize the definition of
proper premises to the setting of incomplete counterexamples.



Attribute Exploration with Proper Premises and Incomplete Knowledge 277

Definition 5. Let K+ = (G,M,I+) and K? = (G,M,I?) be two formal contexts
with I+ ⊆ I?. Let m∈M . A set P ⊆M is called a possible proper premise for m
in (K+,K?) if and only if P is ⊆-minimal with possibly entailing m. P is called
a possible proper premise if and only if P is a possible proper premise for some
m∈M .

Of course, together with Proposition 4 above, we immediately obtain that P is
a possible proper premise for m in (K+,K?) if and only if P is ⊆-minimal with
m∈P+?.

We are now extending algorithm-1 from Listing 1.1 to also allow the expert to
provide incomplete counterexamples during the exploration. For this we effectively
only have to adapt algorithm-1 to keep two working contexts K+ and K? instead
of only one. However, we shall also include some optimizations introduced in [9] to
adjust these contexts as soon as the expert confirms a new implication P −→ {m}:
we then try to extend K+ by incidences that are entailed by this new implication
and the ones already known. Furthermore, for each g∈G, we delete all attributes
in m∈g? that would result in impossible incidences, i. e. we remove m from g? if

L(g+∪{m}) �⊆g?,

where L denotes the set of all implications accepted so far (including P −→ {m}).
A formulation in pseudo-code of this generalization of algorithm-1 is shown

as algorithm-2 in Listing 1.2. The proof of the following theorem is similar to
Theorem 3.

Theorem 6. Using the same notation as in Listing 1.2, upon termination of
algorithm-2 it is true that the set L\B is a base of ThC(Kback) with background
knowledge B for the background contextKback=(Gback,M,Iback) of the exploration.
Furthermore, all premises of implications in L\B are proper premises in Kback.

For the proof it is helpful to keep in mind that the background context at any point
in a run of algorithm-2 contains a subcontext which is a realizer of the current
partial working context. More precisely, if G denotes the current set of objects,
then the formal context

Kback=(Gback∩G,M,Iback∩G×M)

is a realizer of the current partial working context.

Proof. Seeing that L \ B is sound for Kback can be seen as in Theorem 3: all
implications in L\B have been confirmed by the expert, and thus must be valid
in Kback.

Let us consider the completeness of L\B for Kback with background knowledge
B. To this end, suppose by contradiction that completeness does not hold. Then
there existsA⊆M \C,m∈M \C such that L �|=(A −→ {m}) butA−→ {m} holds
in Kback. Then in the iteration for the attribute m we consider the point where we
reach line 18. If L̄ denotes the current value of L at this point, then we still have
L̄ �|= (A −→ {m}). On the other hand, for the current values K̄+ of the certain



278 J. Wollbold, R. Köhling, and D. Borchmann

Listing 1.2. Attribute exploration using proper premises with incomplete couterexam-
ples

0 define algorithm-2 (K+=(G,M,I+), K?=(G,M,I?), C�M ,
1 B⊆ThC(K+))
2 L := B
3 forall m∈C do
4 P := {P ⊆M \C |P possible proper premise for m in (K+,K?)}
5 while there exists P ∈P with L �|=(P −→ {m}) do
6 if expert confirms P −→ {m} then
7 L := L∪{P −→ {m}}
8 forall g∈G do
9 g+ := L(g+)

10 forall m∈g?\g+ where L(g+∪{m}) �⊆g? do
11 remove m from g?

12 end
13 end
14 else
15 ask expert for valid counterexample and augment K+ and K?

16 P := {P ⊆M \C |P possible proper premise for m in (K+,K?)}
17 end
18 end
19 end
20 return L\B
21 end

context and K̄? of the possible context at the same point in the iteration there
exists a subcontext K̄ of Kback which is a realizer of (K̄+,K̄?), and A −→ {m}
also holds in K̄. Therefore, there exists a possible proper premise P ⊆ A for m
in (K̄+,K̄?). But L̄ �|= (P −→ {m}), so we could not have reached line 18 yet, a
contradiction.

It remains to be shown that all premises in L\B are proper premises in Kback.
To this end, let (P −→ {m}) ∈ L \B, and suppose by contradiction that P is
not a proper premise for m in Kback. Then there exists a subset P̄ �P such that
P̄ −→ {m} is valid in Kback as well. But then P is never a possible proper premise
for m in any partial working context of the exploration, and is never asked to the
expert and thus cannot be an element of L\B, a contradiction. ��

Note that a slight variation of the argument of the proof shows that L is complete
for every realizer of the final partial working context, and in particular for the
final certain context K+. On the other hand, by line 9 of algorithm-2 it is true
that L is sound for K+, and we obtain that L\B is a base of K+ with background
knowledge B. The final possible context K?, however, may still contain incidences
invalidating implications in L, contradicting the soundness of L for K?. Thus, not
all implications valid in Kback and K+ necessarily hold in K?.



Attribute Exploration with Proper Premises and Incomplete Knowledge 279

Recall that we have required our expert to not make errors, i. e. to neither
confirm invalid implications nor to provide false counterexamples. However, as we
have already noted, this assumption may not be practical, and it may be necessary
for applications to help the expert to detect errors. In our particular setting of
algorithm-2 we can use the same idea as in [9] and check in every iteration
whether

∀g∈G : g+⊆g?

is still valid. If at a certain point in the exploration this constraint is not satisfied,
then we have reached an inconsistent state (i. e. (K+,K?) is not a partial context
anymore). We would then have to abort the exploration and have the expert to
find the error in the counterexamples and implications given so far. As soon as
this is done, te exploration can be started anew, using the data from the previous
run as starting partial context and background knowledge, respectively.

We have not yet talked about how to compute possible proper premises, and
indeed we shall not do so in detail. The applications we have in mind for this
work are sufficiently small such that a naive exhaustive search is feasible. On the
other hand, it would be interesting to consider the question whether methods to
compute proper premises in formal contexts can be carried over to yield methods
for the computation of possible proper premises in partial contexts.

4 Main Hypotheses and Exceptions of the Free Radical
Theory of Ageing as RDR

We formalized data reported in the literature or collected by our experimental
collaborators as a set of RDR. Here, we demonstrate the application of the devel-
oped method of knowledge base construction and validation for a small example
(compare Section 2.1), the branch of a larger RDR tree that starts with the general
rule [11, p. 1]:

NoStimulation −→ ROS.old.+, Lifespan.− (1.)

In this branch cases are evaluated with no specific experimental condition like
stimulation of cells with ROS (oxidative stess) or reduced ATP production. The
general rule represents the basic hypothesis of the FRTA: During ageing, ROS
accumulate, and the provoked cell damage reduces the expected lifespan of an
individuum. Increasing ROS levels are also observed in several experiments of our
biomedical partners. But, of course, there are exceptions. We defined the following
cases. Note that classes are defined as sets of attributes, hence a classification by
{ROS.old.+} is different to {ROS.old.+, Lifespan.−}.

NoStimulation, AntiOx1.+−→ ROS.old.−, Lifespan.+ (1.1)
NoStimulation, AntiOx1.+, AntiOx2.− −→ ROS.old.+ (1.1.1)

NoStimulation, Mouse, AntiOx2.− −→ ROS.old.+ (1.2)
NoStimulation, AntiOx2.−, CElegans −→ ROS.old.+ (1.3)

NoStimulation, Mutation-ETC, Mouse −→ ∅ (1.4)



280 J. Wollbold, R. Köhling, and D. Borchmann

Table 2. Examples (cornerstone cases) related to the RDR knowledge base.
Observed cases are described by the certain context K+. Supplementary possible at-
tributes of K? are indicated by ’?’. 1.S1 denotes a specific case confirming rule (1.): In
old rats, enhanced expression of genes associated to the antioxidant glutathione together
with increased oxidation of lipids hints at an increased ROS concentration [19]. The
cornerstone cases corresponding to RDR (1.2) and (1.3) were merged, since the same
case was observed for both species. Rule (1.4) was observed for bone marrow from two
mouse strains with mutations in a gene coding for a protein of the ETC [12, 13]. In the
hippocampus, however, for the same strains a significant increase of ROS over age was
observed [15]. Therefore, RDR (1.4) was not accepted as background knowledge for the
subsequent attribute exploration, and the conflicting cases 1.4a and 1.4b were listed in
the initial context.

A
nt

iO
x1

.+
A
nt

iO
x1

.−
A
nt

iO
x2

.+
A
nt

iO
x2

.−
C
E
le
ga

n
s

M
ou

se
M

u
t-
E
T
C

R
O
S
.o
ld
.+

R
O
S
.o
ld
.−

L
if
es

p
an

.+
L
if
es

p
an

.−

1. ? ? ? ? × × ? × ×
1.S1 × ? ? ? × × ? ?
1.1 × ? ? × × × ×
1.1.1 × × × × × ?
1.2–1.3 ? ? × × × × ? ?
1.4a ? ? ? ? ? × × ? ?
1.4b ? ? ? ? ? × × × ? ?

These rules are taken from [11, p. 2] and [12, 13], respectively. We only considered
experiments for mice and the worm C. elegans often investigated as a model organ-
ism for general ageing. + and − denote significantly enhanced / reduced lifespan
and concentrations of ROS or antioxidants, respectively. For normal conditions,
neither + nor − is attributed. Therefore, the interesting information expressed by
rules (1.2) and (1.3) is that ROS increase, but no reduction of lifespan is observed.
AntiOx.+/− means a permanently high/low antioxidant level, for instance by a
mutation, or a high/low antioxidant concentration during an experiment.

4.1 Attribute Exploration of the Developed RDR Knowledge Base

Examples corresponding to the RDR were collected in the certain and possible con-
texts of Table 2 as initial contexts of an attribute exploration with algorithm-2.
The common attribute NoStimulation is not mentioned explicitly. Cases with
conflicting values for one variable were excluded by the background implications
AntiOx1.+, AntiOx1.− −→ ⊥ and AntiOx2.+, AntiOx2.− −→⊥. Since AntiOx1
and AntiOx2 represent different, but not further specified enzymes, only the at-
tribute set {AntiOx1.+, AntiOx2.−} occurs in observed cases. The symmetric
case was excluded via the background implication AntiOx1.−, AntiOx2.+−→⊥.



Attribute Exploration with Proper Premises and Incomplete Knowledge 281

Rules (1.1.1), (1.2) and (1.3) were combined to AntiOx2.− −→ ROS.old.+, the
single accepted background implication expressing biological knowledge.

Only four implications with proper premises were accepted during the explo-
ration:

AntiOx1.− −→ ROS.old.+ (3)
AntiOx2.+−→ ROS.old.− (4)

AntiOx1.+, AntiOx2.+, CElegans −→ Lifespan.+ (5)
AntiOx1.−, Mouse, Mut-ETC −→ Lifespan.− (6)

Because of the background implication AntiOx1.−, AntiOx2.+−→⊥, rule (3)
implies that AntiOx2.+ does not hold, rule (4) not AntiOx1.−. Thus, the general
ROS defense is disturbed / intact, and we accepted the conclusions ROS.old.+/-.

Together with (4), (5) specifies RDR (1.1) in the sense that exception (1.1.1)
does not apply, since the concentrationof both antioxidants is high. The strong con-
clusion Lifespan.+ can be assumed for the short living worm C. elegans: “Although
experimental augmentations of antioxidant defenses tend to enhance resistance to
induced oxidative stress, such manipulations are generally ineffective in the exten-
sion of lifespan of long-lived strains of animals.” [17, Abstract] Implication (6) is
symmetric: Mutations (deletions) of the mitochondrial DNA can cause lifespan
reducing damage for long-lived animals like mice. [11, p. 6]

Finally, from overall 30 rejected implications we mention AntiOx2.+ −→
Lifespan.+: Following rule (4), ROS are reduced, but this is not sufficient to ex-
tend lifespan, and of course there are other factors like mutations restraining it.
The following proposed implication refers to parallel, comparable observations for
mouse and C. elegans:

AntiOx1.+, Mouse, CElegans, Mut-ETC −→ ROS.old.− (7)

The implication was rejected by a counterexample with the certain attributes of
the premise, additionally AntiOx2.−; ROS.old.− was excluded.

5 Discussion and Conclusions

We developed and proved algorithms for the exploration of implications with
proper premises, requiring complete or incomplete counterexamples. Such implica-
tions have minimal premises and thus highlight necessary conditions. As discussed
in [16], the computation of a base of this kind in several cases is faster than com-
puting the classical stem base with pseudo-intents as premises. Finally, the base
is iteration-free, which allowed a straightforward restriction of the exploration to
implications with conclusions from a basic set C�M .

A further step in algorithmic development could be an exploration aiming at the
generation of a knowledge base consisting only of RDR. For smaller and medium
applications, the complexity of the inference problem is not critical, and the rules
of the base itself provide insight to the explored domain. Possibly, ideas from at-
tribute exploration with incomplete counterexamples could be used, for instance



282 J. Wollbold, R. Köhling, and D. Borchmann

two contexts of positive and related negative examples. Or implications are ex-
plored first, generating the most specific RDR without negated attributes. Then
the attributes of their premises are negated in several iterations. In any case, the
challenge will be to find an algorithm asking a minimal number of questions and
thus alleviating the effects of the inherent combinatorial explosion.

For our small RDR knowledge base, the accepted and the rejected implica-
tions provide a structured overview on existing knowledge and helped to filter
out interesting experiments. The implications (5) and (6) motivated a more de-
tailed literature search and revealed unexpected differences between long- and
short-lived animals. Only five implications were accepted, together with the RDR
AntiOx2.− −→ ROS.old.+. They are a compact representation of generally ac-
cepted facts related to the influence of antioxidants and mutations of the ETC on
ROS production and lifespan.

In nature, there is almost no rule without exception, hence even these implica-
tions can be challenged by rare counterexamples. Following [18], these could be
treated separately by a lattice of exceptions. This could complement our approach
to specify conditions of exceptions starting from RDR. In subsequent work, we in-
vestigate a larger data and literature set and define observed cases by more specific
attributes, in order to obtain more expressive and more reliable rules.

Acknowledgments. Beyond the cited experimental works, we thank many mem-
bers of the ROSAge project groups within the Rostock Departments of Medical
Biochemistry and Molecular Biology, of Gastroenterology and of Biostatistics and
Informatics in Medicine and Ageing, as well as within the Departments of Derma-
tology, Lübeck andLeipzig. Presentations anddiscussions of their data contributed
to the definition of the present pilot study and to the selection of interesting biomed-
ical cases.

Bibliography

[1] Andreyev, A., Kushnareva, Y., Starkov, A.: Mitochondrial metabolism of reactive
oxygen species. Biochemistry (Moscow) 70(2), 200–214 (2005)

[2] Baader, F., Sertkaya, B.: Usability Issues in Description Logic Knowledge Base
Completion. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp.
1–21. Springer, Heidelberg (2009)

[3] Bertet, K., Monjardet, B.: The multiple facets of the canonical direct unit implica-
tional basis. Theoretical Computer Science 411(22-24), 2155–2166 (2010)

[4] Borchmann, D.: conexp-clj – A General-Purpose Tool for Formal Concept Analysis,
http://github.com/exot/conexp-clj

[5] Burmeister, P.: Merkmalimplikationen bei unvollständigem Wissen. In: Proceed-
ings: Arbeitstagung Begriffsanalyse und Künstliche Intelligenz 1988, pp. 15–46.
Technische Universität Clausthal, Clausthal-Zellerfeld (1991)

[6] Burmeister, P.: ConImp,
http://www.mathematik.tu-darmstadt.de/~burmeister/

[7] Compton, P., et al.: Ripple down rules: Turning knowledge acquisition into knowl-
edge maintenance. Artificial Intelligence in Medicine 4(6), 463–475 (1992)

http://github.com/exot/conexp-clj
http://www.mathematik.tu-darmstadt.de/~burmeister/


Attribute Exploration with Proper Premises and Incomplete Knowledge 283

[8] Ganter, B.: Pseudo-models and propositional Horn inference. Preprint (2003)
[9] Ganter, B., Obiedkov, S.: Conceptual Exploration. Preprint, Dresden (2013)

[10] Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations.
Springer, Heidelberg (1999)

[11] Kirkwood, T., Kowald, A.: The free-radical theory of ageing – older, wiser and still
alive. Bioessays (2012)

[12] Kretzschmar, C., et al.: Influence of oxidative stress on hematopoietic cell aging
in a mouse model with mitochondrial DNA mutations during aging. Ann. Hema-
tol. 92(suppl. 1), S22 (2013)

[13] Kretzschmar, C., et al.: Polymorphism nt7778g/t in Mitochondrial Atp8 Gene Pro-
motes Protective Effect on Reactive Oxygen Species Level in Murine Hematopoietic
Cells During Aging. Blood 122(21), 1196–1197 (2013)

[14] Kwok, R.B.H.: Translations of Ripple Down Rules into logic formalisms. In: Dieng,
R., Corby, O. (eds.) EKAW 2000. LNCS (LNAI), vol. 1937, pp. 366–379. Springer,
Heidelberg (2000)

[15] Reichart, G., Mayer, J., Köhling, R.: Measurements of mitochondrial superoxide lev-
els in the mouse brain hippocampus, Unpublished data, Oscar Langendorff Institute
of Physiology, Rostock (2013)

[16] Ryssel, U., Distel, F., Borchmann, D.: Fast algorithms for implication bases and
attribute exploration using proper premises. Annals of Mathematics and Artificial
Intelligence, 1–29 (2013)

[17] Sohal, R., Orr, W.: The redox stress hypothesis of aging. Free Radical Biology and
Medicine 52(3), 539–555 (2012)

[18] Stumme, G.: Attribute Exploration with Background Implications and Exceptions.
In: Bock, H.-H., Polasek, W. (eds.) Data Analysis and Information Systems, pp.
457–469. Springer (1996)

[19] Yang, W., et al.: Age-dependent changes of the antioxidant system in rat liver
are accompanied by altered MAPK activation and a decline in mTOR signaling,
Tübingen (to be published, 2014)



C.V. Glodeanu, M. Kaytoue, and C. Sacarea (Eds.): ICFCA 2014, LNAI 8478, pp. 284–296, 2014. 

Subdirect Decomposition of Concept Lattices*,**
 

Rudolf Wille 

Algebra Universalis 
Technische Hochschule Darmstadt, Darmstadt 

West Germany 

 
 
      Dedicated to Garrett Birkhoff on the occasion of his seventieth birthday 
 

 
 
 

                                                           
* Presented by R. P. Dilworth. Received March 4, 1982. Accepted for publication in final form 

June 8, 1982. 
** This is a reprint of a paper originally published in Algebra Universalis 17, 275-287 (1983). 



 Subdirect Decomposition of Concept Lattices 285 

 
 

 
 



286 R. Wille 

 
 

 
 
 



 Subdirect Decomposition of Concept Lattices 287 

 
 
 

 
 



288 R. Wille 

 
 

 
 
 



 Subdirect Decomposition of Concept Lattices 289 

 
 
 
 

 



290 R. Wille 

 
 
 

 
 



 Subdirect Decomposition of Concept Lattices 291 

 
 
 



292 R. Wille 

 
 
 
 



 Subdirect Decomposition of Concept Lattices 293 

 
 
 



294 R. Wille 

 
 
 
 



 Subdirect Decomposition of Concept Lattices 295 

 

References 

[1] Birkhoff, G.: Subdirect unions in universal algebras. Bull. Amer. Math. Soc. 50, 764–768 
(1944) 

[2] Birkhoff, G.: Lattice theory, 3rd edn. Amer. Math. Soc., Providence (1967) 
[3] Burmeister, P., Wojdyło, B.: Properties of homomorphisms and quomorphisms between 

partial algebras. Preprint 
[4] Crawley, P., Dilworth, R.P.: Algebraic theory of lattices. Prentice Hall, Englewood Cliffs 

(1973) 
[5] Grätzer, G.: General lattice theory. Birkhäuser, Basel (1978) 
[6] Jónsson, B., Nation, J.B.: A report of sublattices of free lattices. In: Csákány, B., 

Schmidt, J. (eds.) Contributions to Universal Algebra, pp. 223–257. North-Holland, 
Amsterdam (1977) 

[7] Urouhart, A.: A topological representation theory for lattices. Alg. Universalis 8, 45–58 
(1978) 
 



296 R. Wille 

[8] Wille, R.: Subdirekte Produkte und konjunkte Summen. J. Reine Angew. Math. 239/240, 
333–338 (1970) 

[9] Wille, R.: Subdirekte Produkte vollständiger Verbände. J. Reine Angew. Math. 283/284, 
53–70 (1976) 

[10] Wille, R.: Aspects of finite lattices. In: Aigner, M. (ed.) Higher Combinatorics, pp. 79–
100. Reidel, Dordrecht (1977) 

[11] Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: 
Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982) 



Author Index

Agrawal, Rakesh 219
Albano, Alexandre 44
Albrecht, Immanuel 141

Borchmann, Daniel 268
Braud, Agnès 112
Buzmakov, Aleksey 157

Cabrera, Inma P. 67
Chandra Mondal, Kartick 112
Chornomaz, Bogdan 54
Christoforaki, Maria 219
Codocedo, Vı́ctor 96
Cordero, Pablo 67
Coste, François 235

de Fréin, Ruaiŕı 251
Doignon, Jean-Paul 1
Dolques, Xavier 112

Ganter, Bernhard 173
Garćıa-Pardo, Francisca 67
Garet, Gaëlle 235
Glodeanu, Cynthia Vera 128, 173
Gollapudi, Sreenivas 219
Groisillier, Agnès 235

Huchard, Marianne 112

Kannan, Anitha 219
Kenthapadi, Krishnaram 219
Kerkhoff, Sebastian 80
Köhling, Rüdiger 268
Konecny, Jan 128
Körndle, Hermann 141
Kuznetsov, Sergei O. 157

Le Ber, Florence 112

Napoli, Amedeo 96, 157
Nicolas, Jacques 235

Ojeda-Aciego, Manuel 67

Revenko, Artem 188
Rodŕıguez-Sanchez, Francisco J. 67
Rudolph, Sebastian 15

Schneider, Friedrich Martin 80
Siebes, Arno 37
Soldano, Henry 203
Swaminathan, Adith 219

Tonon, Thierry 235

Wille, Rudolf 284
Wollbold, Johannes 268


	Preface
	Organization
	Table of Contents
	Invited Talks
	Learning Spaces, and How to Build Them
	1 Introduction
	2 Learning Spaces and Knowledge Spaces
	3 Knowledge Space Theory and Formal Concept Analysis
	4 TheQUERY Routine to Build a Knowledge Space
	5 Adapting the QUERY Routine to Build a Learning Space
	References

	On the Succinctnessof Closure Operator Representations
	1 Introduction
	2 Preliminaries
	2.1 Closure Operators
	2.2 Contexts and Context Families
	2.3 Implications and Extended Implications

	3 Mutual Succinctness
	4 Algorithms for Managing Closure Operators
	4.1 Finer or Coarser?
	4.2 Adding a Closed Set
	4.3 Adding an Implication
	4.4 Projection
	4.5 Lattice Operations

	5 Conclusion
	References

	MDL in Pattern MiningA Brief Introduction to Krimp
	1 Patterns
	2 The Pattern Explosion
	3 What Is the Problem?
	4 MDL for Pattern Sets
	5 There Is More
	References


	Theory
	Upper Bound for the Number of Conceptsof Contranominal-Scale Free Contexts
	1 Introduction
	2 Preliminaries
	3 Improved Bound
	4 Lower Bound
	5 Related Work
	References

	Algebraicity and the Tensor Productof Concept Lattices
	1 Introduction
	2 Motivational Example
	3 Properties of fc-tensor Product
	4 Algebraicity
	5 The Box Tensor Product
	6 Conclusion
	References

	On the Existence of Isotone Galois Connectionsbetween Preorders
	1 Introduction
	2 Preliminary Definitions and Results
	3 Building Adjunctions between Preordered Sets
	4 On the Uniqueness of Right Adjoints and the Inherited Ordered Structure in the Codomains
	5 Conclusions
	References

	Directed Tree Decompositions
	1 Introduction
	2 Preliminaries
	3 Examples
	4 First Version: κ1
	5 Second Version: κ2
	6 Third Version: κ3
	7 Fourth Version: κ4
	8 Summary of Results
	References


	Enhanced FCA
	A Proposition for Combining Pattern Structures and Relational Concept Analysis
	1 Introduction
	2 Theoretical Framework
	2.1 Relational Concept Analysis (RCA)
	2.2 Pattern Structure Framework

	3 Inspiring Problem - Latent Semantic Indexing
	3.1 Latent Variables Characterization Problem
	3.2 Latent Semantic Indexing
	3.3 Problem Statement

	4 Adapting RCA for Pattern Structures
	4.1 FormalModel
	4.2 Heterogeneous Pattern Structures
	4.3 Calculating the hp-lattice

	5 Discussion and Conclusions
	References

	RCA as a Data Transforming Method:A Comparison with Propositionalisation
	1 Introduction
	2 A Motivating Example
	3 Relational Concept Analysis
	4 Propositionalisation: The HiFi Method
	5 Methods Comparison
	5.1 Discussion on the Example
	5.2 Evaluation on a Real Dataset

	6 Related Work
	7 Conclusion
	References

	Ordinal Factor Analysis of Graded Data
	1 Introduction
	2 Preliminaries
	2.1 L-Sets
	2.2 Formal Fuzzy Concept Analysis

	3 Conceptual Factorisation
	4 OrdinalFactors
	5 Conclusion
	References


	Knowledge Discovery and Knowledge Spaces
	On Knowledge Spaces and Item Testing
	1 Knowledge Spaces
	1.1 Introduction to Knowledge Space Theory
	1.2 Definitions and Relation to Formal Concept Analysis
	1.3 Probabilistic Extension

	2
	2 λ-μ-Calculus
	2.1 λ-Calculus
	2.2 μ-Extension
	2.3 Stateful μ-Actions
	2.4 Solution Probabilities for Test Items Formalized byλ-μ-Specifications

	3 Discussion
	References

	Scalable Estimates of Concept Stability
	1 Introduction
	2 Stability of a Formal Concept
	2.1 The Definition of Stability
	2.2 Estimation of Stability

	3 Experiment on Predictability of Stability
	3.1 The Experiment Flow
	3.2 The General Behaviour of Stability
	3.3 Setting a Stability Threshold
	3.4 Stability and Ranking

	4 Computing an Estimate of Stability
	5 Conclusion
	References

	Factors and Skills
	1 Introduction
	2 Competences and Factors
	3 Skills and Competences
	4 From Skills to Factors
	5 Structured Skill Sets
	5.1 Graded Skills
	5.2 Propositional Formulae
	5.3 The Dichotomic Scale Dk
	5.4 Incompatible Skills

	6 Conclusion
	References

	Automatized Construction of Implicative Theoryof Algebraic Identities of Size Up to 5
	1 Introduction
	2 Attribute Exploration
	3 Algebraic Identities
	4 Algebras
	4.1 Generating Finite Algebras
	4.2 Necessity of Infinite Algebras
	4.3 Generating Infinite Algebras

	5 Results and Conclusion
	References

	Closed Patterns and Abstraction Beyond Lattices
	1 Introduction
	2 Closure Subsets of a Partial Order
	2.1 Preliminaries
	2.2 Closure Subsets in Pre-confluences

	3 Support Closed Patterns with Respect to a Set of Objects
	3.1 Support Closures in Lattices
	3.2 Support Closures in Pre-confluences

	4 Galois Pre-confluences as Union of Galois Lattices
	4.1 Implications
	4.2 Example

	5 Abstract Closed Patterns in Confluences*
	6 Algorithmics
	7 Conclusion
	References


	Methods and Applications
	Mining Videos from the Web for Electronic Textbooks
	1 Introduction
	1.1 Assumptions and Scope of the Paper
	1.2 Textbook Corpora
	1.3 Organization

	2 Related Work
	3 Focus of a Textbook Section
	3.1 Formal Concept Analysis: An Overview
	3.2 Using FCA to Represent Focus
	3.3 Illustrative Examples

	4 Augmenting with Videos
	4.1 Significance of an Indicium
	4.2 Characterization of Significance Score for an Indicium

	5 Performance
	5.1 Video Corpus
	5.2 Experiments
	5.3 Precision
	5.4 Congruence

	6 Conclusions
	References

	Automated Enzyme Classificationby Formal Concept Analysis
	1 Introduction: Enzyme Classification
	2 Coding Enzymes Using Multiple Partial Local Alignment
	3 Class Assignment from Formal Concept Analysis
	3.1 Formalization of the Classification Problem
	3.2 Supervised Classification
	3.3 Unsupervised Classification

	4 An Experiment with the HaloAcid Dehalogenase Enzyme Superfamily (HAD)
	5 Conclusion
	References

	Multilayered, Blocked Formal Concept Analysesfor Adaptive Image Compression
	1 Introduction
	2 FCA Generative Model for Images Analysis
	3 MFCA via Image Quantization: Binary Layering Tree
	3.1 Binary Layering Tree (BLT) Parametrization
	3.2 MultiLayer Formal Concept Analysis: MFCA

	4 Sequentially Sifted Linear Programming
	5 Empirical Evaluation
	References

	Attribute Exploration with Proper Premises and Incomplete KnowledgeApplied to the Free Radical Theory of Ageing
	1 Introduction
	2 Methods: Mathematical and Logical Background
	2.1 Ripple Down Rules
	2.2 Formal Concept Analysis

	3 Attribute Exploration for Implications with Proper Premises
	3.1 Complete Counterexamples
	3.2 Incomplete Counterexamples

	4 Main Hypotheses and Exceptions of the Free Radical Theory of Ageing as RDR
	4.1 Attribute Exploration of the Developed RDR Knowledge Base

	5 Discussion and Conclusions
	Bibliography


	History
	Subdirect Decomposition of Concept Lattices
	1.Introduction 
	2.Concept lattics 
	3.Complete congruence relations 
	4.Weak perspectivity 
	5.Subdirect product constructions 
	6. Scaffoldings 
	References 



	Author Index



