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1 Introduction

It is a great pleasure to present a contribution to this volume dedicated to Ludwig
Streit, on the occasion of his 75th birthday. I have written before in [3] about
Ludwig’s work and the strong influence it had on my own development. In the
present paper I will concentrate on some aspects relating quantum theory with
stochastic analysis and infinite dimensional analysis, stressing interactions between
these areas and mentioning some open problems.

In Sect. 2 I shall briefly describe the relations between oscillatory and probabilis-
tic integrals.

In Sect. 3 I shall describe canonical quantum mechanics from this point of view.
In Sect. 4 I shall discuss the complex relations between canonical quantum fields

and S(P)DEs, and also relate them with Euclidean (and relativistic) quantum fields.
In Sect. 5 I shall provide some remarks on related systems.
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2 Oscillatory and Probabilistic Integrals

Since the work of Feynman (preceded in part by Wentzell and Dirac), see, e.g.,
[2, 107–110], a very fruitful approach to quantum mechanics and quantum field
theory is based on the consideration of heuristic complex-valued measures of the
form

�F.d�/ D “Z�1eiS.�/ d�” (1)

on a “state space” � , hence � 2 � , with an “action functional” S.�/ W � ! R

associated with an underlying “classical system”, d� a “flat measure on �”, i the
imaginary unit and Z a normalization constant.

Physical quantities of interest are then computed as “averages” (linear function-
als, integrals)

Z
�

f .�/�F.d�/ (2)

of suitable “observable functionals” f W � ! C.
For example, to solve the Schrödinger equation for a non relativistic quantum

mechanical particle moving for a time from the interval Œ0; t�, t > 0 on a D-
dimensional manifold M one takes as � a space of paths from Œ0; t� into M.

For a quantum (scalar) field, vibrating for a time from the interval Œ0; t� and in
a spatial .d � 1/-dimensional domain ƒ � R

d�1 (d being then the space-time-
dimension) one takes � as a space of paths from Œ0; t� into a space of real-valued
(generalized) functions depending on a space variable x 2 ƒ.

Analogous choices are made, e.g., for quantum gauge fields (with � a space of
connection 1-forms in a principal fibre bundle over a Lorentzian manifold) and for
quantum gravity (with � a space of locally Lorentzian space-time metrics).

In the case of scalar quantum fields, f could be a product of n 2 N field operatorsQn
iD1 �.ti; xi/, ti 2 R, xi 2 R

d�1, in which case above integrals would yield “correla-
tion functions” (Wightman functions) associated with the quantum field �.t; x/ 2 R,
t 2 R, x 2 R

d�1. Similar choices of relevant observable functions can be given in
the other cases alluded above. See, e.g., [1, 2, 9, 33, 48, 52, 78, 80, 107, 109, 110],
and references therein.

The choice of the action functional S depends on the problem at hand. In above
examples, S has a typical Lagrangian form, e.g., in the case of a non relativistic
particle (of unit mass) moving during the time interval Œ0; t� in the D-dimensional
Euclidean space R

D under the force given by a (continuous) potential (function)
v W RD ! R one has:

S.�/ D SQM.�/ D 1

2

Z t

0

j P�.s/j2 ds �
Z t

0

v.�.s// ds, (3)
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and for scalar quantum fields moving at arbitrary times s 2 R over the space R
d�1

one has

S.�/ D SQF.�/ D 1

2

Z
Rd

P�.s; Ex/2 ds dEx � 1

2

Z
Rd

ˇ̌r�.s; Ex/
ˇ̌2

ds dEx (4)

� m2

2

Z
Rd

ˇ̌
�.s; Ex/

ˇ̌2
ds dEx �

Z
Rd

v.�.s; Ex// ds dEx,

.s; Ex/ 2 R � R
d�1, m � 0.

From the quantum description given in terms of (1), (2), (3), and (4) one obtains
heuristically the classical (particle resp. field) mechanical one by inserting the
(reduced) Planck constant „ at the right place, i.e. replacing S by 1

„ S and making
corresponding changes in the observable f in (2), and considering „ to be small.

Heuristically then from (2) with such replacements one should be able to
derive from Feynman’s heuristic quantum description (1) and (2) the corresponding
classical description in the limit „ # 0, with its corresponding “small „-corrections”.
In the case of relativistic models, the velocity of light c appears as a parameter. Then
one should be able to recover the non relativistic limit of the relativistic quantum
description (1), (2), (3), and (4) by letting the velocity of light c go to C1 (c occurs
implicitly in S and f ). In principle one could proceed in similar ways to describe the
limiting dependence of the quantum averages (2) on other parameters occurring in
the action functionals and observables occurring in the examples mentioned above.

There are well known difficulties in trying to transform this heuristic approach
into a rigorous one. E.g., even in the case v � 0 (the “free field” case), in the
computation of (2), the covariance of the “complex Gaussian measure” given by the
covariance SQF.�/jvD0 appears. It is, for m2 D 1, the fundamental solution .� �
1/�1.s; ExI s0I :Ex0/, which has a singularity on the submanifold .s�s0/2 �.Ex�Ex0/2 D 1,
indicating that it should be interpreted as a generalized function, which then means
that the relevant � ’s in (2) also are generalized functions. This creates difficulties
in giving mathematical meaning to the complex-valued non linear function f .�/

appearing in (2). In the linear case where v � 0, taking e.g. f to be of the Wick
product type, a sense can easily be given to (2). However, for v 6� 0 and neither
linear nor quadratic, v.�/ is ill defined for � which are typical relative to the
complex Gaussian measure �F for the case v � 0.

There is a well known trick (going back to Nagumo, Schwinger, and Symanzik)
of analytically continuing �F to a corresponding “Euclidean” probability measure
(or functional) �E heuristically written as

�E.d�/ D “Z�1e�SE.�/d�” (5)
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with SE.�/ the “Euclidean” action (in contrast to the above relativistic or
“Minkowskian” action (4))

SE.�/ D 1

2

“ �ˇ̌rs;Ex�.s; Ex/
ˇ̌2 C m2

2

“ ˇ̌
�.s; Ex/

ˇ̌2
�

ds dEx C
“

v.�.s; Ex// ds dEx,

(6)

in which case the typical � ’s in (5) become still heuristically generalized random
fields but at least �E would look as a “positive measure”. This however, only really
solves the problem for v � 0 and arbitrary d, or special v 6� 0 when d D 2; 3. In this
case one interprets �E as a probabilistic (�-additive) Gaussian measure, e.g., with
support on the Schwartz tempered distributions space S0.Rd/. For the mentioned
special cases of v 6� 0 and d D 2; 3, one manages, in fact, to “renormalize” the non-
sensical v.�.s; Ex// to give it a sense as a genuine generalized random field, obtaining
non trivial quantum averages (2) (heuristically �F 6D �FjvD0, that is, in particular,
states which are typically with respect to one of the measures are atypical with
respect to the other measure). Moreover from such averages one recovers by “ana-
lytic continuation” in the t variable a solution of the original problem (1) and (2).

This was achieved in connection with the programme of constructive quantum
field theory [9, 71, 76, 78, 98, 106], to which Ludwig Streit contributed substantially
and in various ways, see, e.g., [16–18, 65, 78, 79, 81, 101, 102, 107]. Independently
of the proper methods of constructive quantum field theory, the original programme
of giving directly a meaning to (1) and (2) has also been solved in some cases. E.g.,
�F and �E can be defined for various classes of (regularized) v in low space-time
dimension d. The integral

R
f .�/ d�F.�/ is then realized as

.S/hh f ; ˆ�F ii.S/0 (7)

in the framework of the infinite dimensional distributional setting

.S/ � L2.�G/ � .S/0, (8)

with pairing hh ; ii and .S/; .S/0 infinite dimensional analogues of the test functions
space S.Rd/ resp. tempered distributions space S0.Rd/. �G is the Gaussian white
noise measure on S 0.Rd/, defined by its Fourier transform

O�G.g/ WD
Z
S0.Rd/

eihg;�i d�G.�/ D e
� 1

2 kgk2

L2.Rd / , (9)

with hg; �i the distributional pairing between g 2 S.Rd/ and � 2 S 0.Rd/.
Heuristically thus

�G.d�/ D “Z�1e� 1
2

R
Rd j�.x/j2 dx d�”, (10)
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and, e.g.,

ˆ�F .�/ D eiS.�/e
1
2

R
Rd j�.x/j2 dx�G.d�/. (11)

For d D 1, i.e. for quantum mechanics (anharmonic oscillator for m > 0), the
functional ˆ�F in (7) and (11) is well defined for a large class of continuous v and
works for solving e.g. the problem of the Schrödinger equation with potential v and
with smooth resp. ı-initial conditions (Green’s function) by work by L. Streit and
coworkers, see e.g. [74, 75] and, for a related approach [94].

Another approach to the rigorous construction of (1) and (2) (for d D 1, and also
for d � 2, but the latter with regularized v.�/-term in (4) resp. (6)) is presented in
[26].

In the latter reference also work on the detailed expansion of (2) in fractional
powers of „ around „ D 0 by a rigorous method of stationary phase is described
(for the case d D 1).

The relations between the white noise and other approaches are discussed, e.g.,
in [26, 39, 93, 94].

The analogues of Wightman functions in the Euclidean setting, called Schwinger
functions (they are the moment functions to �E), for d D 1, i.e. related to quantum
mechanics, have also been described in terms of white noise functionals, see [74,
75, 94]. Corresponding results for the case v � 0 and all d, or for some v 6� 0 and
d D 2; 3 will be discussed in the next Sects. 3 and 4.

For characterization of interesting probability measures as white noise function-
als (like �E and related measures) see, e.g., [88, 101, 102].

3 Canonical Quantum Mechanics

In the canonical approach to quantum mechanics (and resp. the theory of quantum
fields) one takes the “Schrödinger representation” of the Hilbert space of states and
operators acting in L2.RD; �/ resp. L2.S0.Rd/; �/, for some probability measures �.

By work of Heisenberg, Coester, Haag, Araki from the early 1960s one uses, e.g.,
for the D-dimensional harmonic oscillators, that L2.RD/ is isomorphic to L2.RD; �/,
where �.dx/ D N.0I�/.dx/ D .

p
2�/�De� 1

2 jxj2 dx is the canonical Gaussian
measure on R

D. E.g., for D D 1 the Hamiltonian H given on smooth functions
by H D � 1

2
� C 1

2
x2 � 1

2
acting in L2.R/ is then unitarily equivalent to the operator

H� D �L� given on smooth functions by H� D � 1
2
� C x � r in L2.R; �/.

L� can be interpreted probabilistically as the restriction to smooth functions
of the Ornstein-Uhlenbeck operator associated with the classical Dirichlet form
1
2

R ru�rv d�, for u; v in a suitable dense subset of L2.R; �/. For classical Dirichlet
forms (on R

D and also on infinite dimensional spaces) see, e.g., [4, 7, 8, 10, 28, 34,
37, 49, 57, 59, 66, 69, 72, 92]. Through the replacement of N.0I�/ by a more general,
not necessarily Gaussian probability measure �, one can set up a corresponding
transformation for the generator L� (called Dirichlet operator) associated with the
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classical Dirichlet form 1
2

R
RD ru � rv d� in L2.RD; �/ to a generator �H, H � 0 in

L2.RD/.
This “ground state transformation” was first studied in details in [27], where

a general and powerful approach to singular interactions in quantum mechanics
on R

D via Dirichlet forms has been initiated. E.g., 3 nucleons interacting via 2-
particle ı-functions in R

3 can be rigorously defined and discussed in this approach.
This Dirichlet form approach yields, more generally, a unified picture of quantum
mechanics suited both for singular interactions and infinite dimensional extensions
(the analogues of above classical Dirichlet forms being naturally also defined on
infinite dimensional spaces; the latter forms describe namely quantum fields, see
Sect. 4).

Remark 3.1 The probabilistic technique of subordination permits to treat quantum
systems with relativistic kinematics in a way similar to those with nonrelativistic
kinematics, see [6, 44–46, 50].

To general classical Dirichlet forms, there are (properly) associated good Markov
processes X D .Xt/, t � 0, see [69]. Intuitively these can be seen as Brownian
motions distorted by a drift term given by the logarithmic derivative of �, � itself
constitutes then an invariant measure for Xt. In particular Xt can be extended to a
�-symmetric process for all t 2 R.

In the quantum mechanical situation corresponding to (4) with d D 1, n D 1,
and D D 1, the path space measure �E for Xt, t 2 R (giving the joint distribution of
.Xt1 ; : : : ; Xtn/, ti 2 R, i D 1; : : : ; n) is heuristically given by �E as specified in (5)

and (6) with a suitable v. If we write S0.�/ WD 1
2

R h
j P� j2 .s/ C j�.s/j2

i
ds, then

�E.d�/ D Z�1e�S0.�/e� R
v.�.s// ds d� . (12)

This can be rigorously defined for suitable v, e.g. as a probability measure on
S 0.Rd/. An analytic continuation in time of the (time ordered) moment functions
given by �E (“Schwinger functions”) permits to go over to the corresponding
quantities in terms of �F (“Wightman functions”), e.g. for v resp. a polynomial
or exponential function. This yields the full information on the dynamical quantum
mechanical “P.'/1” resp. “exp.'/1”-“models”. Such models can also be expressed
conveniently in terms of the white noise functionals mentioned in Section 2 ([74]).

One proves that both quantum mechanical Schwinger and Wightman functions
can be reformulated as limits of quantities defined in the canonical Hilbert space
L2.R; N.0; 1//, since for v D 0 the restriction of �E to the �-algebra generated by
X0 is just � D N.0; 1/ (Xt acts just in the same L2-space L2.R; N.0; 1// where also
H� and the CCR are realized) and the inclusion of the v-term can be handled by
“perturbation and passage to the limit”, see, e.g., [22, 23, 27, 55, 111].

Let us summarize the situation in quantum mechanics for a particle moving in
R

D. As a zero step (“Level 0”) we have a (fixed time) Hilbert space, say L2.RD/,
an Hamiltonian H, as well as position and momentum operators, with the relative
canonical commutation relations (CCR), and a fixed time distribution � on R

D (that
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exists if the lower end of the spectrum of H is an isolated simple eigenvalue) which
yields the natural Hilbert space L2.RD; �/. At a first step (“Level 1”) one has a
Markov process Xt (diffusion) with values in R

D, t being the time parameter, its
path space measure �E (on, say, S 0.RD/), and its moments functions (Schwinger
functions). This process has � as invariant measure. In the case v � 0, m D 1,

the path measure is �E D N
�
0I C�1

�
, with C the operator

�
� d2

dt2
C 1

�
11D (on

S 0.R;RD/), Xt is the R
D-valued Ornstein-Uhlenbeck process satisfying dXt D

�Xt dt C dWt, with Wt a D-dimensional Brownian motion. It is associated with
the classical Dirichlet form 1

2

R
RD ru � rv d�. For D D 1 this coincides with the

measure �E given by (5) and (6), for d D 1 and m D 1. For v � 0 one has
�E D N.0I .�� C 1/�1/ with � the Laplacian on R.

At “Level 2” one has another Markov process (diffusion) Y	 , 	 � 0. For D D 1

this has �E (as just described at level 1 given by the D D 1, m D 1 version of
(5) and (6)), as invariant measure. The Markov process is given by the stationary

solution of the SDE dY	 .t/ D
�

d2

dt2
� 1

�
Y	 .t/ d	 � v0.Y	 .t// d	 C dW	 .t/, 	 � 0,

with dW	 .t/ a .	; t/-Gaussian white noise, 	 2 RC, t 2 R.
	 can be interpreted as a “computer time” (t is the “time” in the Euclidean version

of quantum mechanics; it will be replaced by a space-time variable in R
d, d � 2,

in a quantum field interpretation, see Sect. 4, the quantum (particle) mechanics
corresponding thus to the case d D 1. The equation for Y	 is called “stochastic
quantization equation”. It is a particular case of Parisi-Wu’s approach [100] for
computing invariant measures of the type of �E.

Note that Y	 can be looked upon (as a modification of) the standard diffu-
sion process associated with the classical Dirichlet form 1

2

R
S0.RD/

rurv d�E D
1
2 .S/hhrurv; �Eii.S/0 given by �E.

The determination of the associated generator on smooth cylinder functions has
been given in [31, 32, 87] (based on previous results in [84, 85]).

We shall now briefly go over to describe similar Level 0–2 structures for quantum
fields, i.e. associated with (5) and (6) (with non trivial dependence on the space
variable Ex 2 R

d�1, d � 2).

4 Canonical Quantum Fields and S(P)DEs

We shall only discuss, for simplicity, scalar fields.
At Level 0 we have as the analogue of the position operators resp. momentum

operators in quantum mechanics, the time zero quantum field '.Ex/, Ex 2 R
d�1 resp.

the time zero momentum field ….Ex/, satisfying the canonical commutation relations
(CCR)

Œ….Ey/; '.Ex/� D 1

i
ı.Ex � Ey/, Ex; Ey 2 R

d�1, (13)

on some suitable dense domain in some Hilbert space.
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Since the situation for the case v 6� 0 is quite complicated, because of the well
known problem of divergences, let us first consider the case where v � 0, i.e. the
case of free fields describing first Level 0–2 for this case. If v � 0 in SQF as given by
(4), then the natural Hilbert space for the CCR representation is L2.S 0.Rd�1/; �

0;0
E /,

with �
0;0
E D N.0I .��d�1 C 1/� 1

2 /, the free time zero field measure (of mass 1),
which can be realized on S 0.Rd�1/. One shows that �

0;0
E is the restriction to the �-

algebra generated by the time zero fields of the measure �0
E, described heuristically

as �0
E D Z�1e�S0

E.�/ d� with

S0.�/ WD 1

2

Z
R

Z
Rd�1

�ˇ̌ P�.s; Ex/
ˇ̌2 C ˇ̌r�.s; Ex/

ˇ̌2 C ˇ̌
�.s; Ex/

ˇ̌2
�

ds dEx. (14)

�0
E is realized rigorously as N.0I .��d C1/�1/ on S 0.Rd/. It is called the Euclidean

free field measure, see [98].
The above L2.S 0.Rd�1/; �0;0

E / is naturally isomorphic to the Fock space (“second
quantization”), see [78].

Consider the classical Dirichlet form E.u; v/ D 1
2

R rurv d�0;0
E , so that

E.u; v/ D
�

u; �L
�

0;0
E

v
�

for u; v in the relevant domains, in L2
�
�

0;0
E

�
WD

L2.S 0.Rd�1/; �
0;0
E / with L

�
0;0
E

the associated Dirichlet operator. One has that

H0 WD �L
�

0;0
E

is self-adjoint (on its natural domain) and is a realization of the
Hamiltonian for the free relativistic quantum field. In an analogous way one can
consider the generators of the whole Poincaré group on space-time R � R

d�1.
The generators of the Lorentz group are not positive, but can be shown to be

essentially self-adjoint on smooth cylinder functions (by using the isomorphism of
L2.�

0;0
E / with Fock space, i.e. second quantization).

Then one has a rigorous full implementation of canonical relativistic free
quantum fields in L2.�

0;0
E /, see [48].

Note that L
�

0;0
E

generates a diffusion process Xt.Ex/, t � 0, Ex 2 R
d�1 with state

space S 0.Rd�1/ satisfying the stochastic differential equation

dXt.Ex/ D �
h
.��d�1 C 1/

1
2 Xt.Ex/

i
dt C dwt.Ex/, t � 0, Ex 2 R

d�1. (15)

dwt.Ex/ denotes the Gaussian white noise in the t- and Ex-variables.
This was first discussed in [23] and [81]. Note also that �0;0

E is the unique
stationary measure for Xt.Ex/.

The path space distribution of Xt.Ex/ is the Euclidean free field measure �0
E D

N
�
0I .��Rd C 1/�1

�
on S 0.Rd/, as described above.

This has been discussed originally by K. Symanzik [112] and E. Nelson [98]
(and, in connection with statistics, by L. Pitt, [103]).

That the restriction of �0
E to the �-algebra �.X0/ generated by the time zero fields

X0. � / can be identified with �
0;0
E due to the global Markov property of the Euclidean

free field [29, 38, 98, 104].
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The Level 2 is described by the SDE (SPDE)

dX	 .y/ D .�d � 1/X	 .y/ C dW	 .y/, (16)

y 2 R
d, 	 � 0 (	 is a “computer time”, y the space-time variable). dW	 .y/ denotes

the Gaussian white noise in the 	- and y-variables.
The invariant measure to X	 .y/ is �0

E . The SPDE (16) is called stochastic
quantisation equation (SQE) associated with the Euclidean free field (over Rd).

Already for d D 2, in the case v 6� 0 the construction of Levels 0–2 is much
more complicated.

Levels 0 and 1 have been achieved first in models with exponential interaction
(for which v is of the form v.u/ D e˛u, j˛j < ˛0, for suitable ˛0 > 0, u 2 R) with
renormalization, in [82] resp. [20] (see also [11, 21, 89]).

In the same period the case of v of polynomial type, with renormalization, was
achieved, see [71, 106], and references therein.

The model with v of trigonometric type was first discussed in [19] (with
regularization, see also [14]) and solved (with renormalizations) in [68] (see also
[14, 67]).

All models are covered and unified by the white noise calculus approach [16–18].
Let us give a short summary of these constructions. At Level 0 one constructs a

non Gaussian �v;0 on S 0.Rd�1/. At Level 1 one constructs the analogue of (12) for
quantum fields, i.e.

�v
E.d�/ D “Z�1e�S.�/d� 00, (17)

with S.�/ D S0.�/ C ’
v.�.s; Ex// ds dEx. (Thus �v

E coincides with the expression
given by (5) and (6)). At Level 2 the measure �v

E appears as invariant measure for
the solution of the stochastic quantization equation (also called, in other contexts,
Allen-Cahn equation, see, e.g., [99], also related to the Ginzburg-Landau equation),
associated to Euclidean fields with interaction given by v:

dX	 .y/ D .�d � 1/X	 .y/ d	 � v0.X	 .y// d	 C dw	 .y/, 	 � 0; y 2 R
d. (18)

The associated classical Dirichlet forms given by the restriction �
v;0
E of �v

E to the �-
algebra of the zero fields, which is thus a measure on S0.Rd�1/, (coinciding with the
level 0 measure �v;0) resp. by �v

E itself, yield in turn generators of Markov processes
(diffusions) Xt.Ex/ resp. X	 .y/, t; 	 � 0, Ex 2 R

d�1, y 2 R
d, the latter solving (18).

The generator of Xt.Ex/ is identifiable (via a natural isomorphism) on smooth

cylinder functions with the Hamiltonian acting in L2
�
�

v;0
E

�
, of the interacting

quantum fields, given the global Markov property of the Euclidean fields [29].
The generators of the Poincaré group are also realizable as self-adjoint operators
on L2.�

v;0
E / [21, 47].

Whether all generators are already determined on smooth cylinder functions is
a hard problem, only solved for the case X	 .y/ in a bounded region when d D
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2 [61, 90] (it has been solved in bounded and unbounded regions for d D 1 in
[31, 32, 87]).

For recent work on Level 2 for d D 2 with exponential interaction see [30, 31].

Remark 4.1 The SQE has also been studied intensively with noise regularized in
the y-variable and corresponding modified drift coefficient, so as to heuristically
maintain the same invariant measure.

See [41–43, 56, 60, 61, 64, 70, 83–86, 95–97, 99, 100, 105], and also e.g. [58] for
related problems.

For d D 3 partial results on Level 0–2 have been achieved for v which are of the
form of a 4-th power (with renormalization), see, e.g. the references in [36].

Recently solutions of the SQE of Level 2 has been constructed by different
methods in [77]. However the Markov character of the solutions (a property included
if one uses processes associated with Dirichlet forms) has not yet been discussed.

The difficulties in constructing solutions is related to the expected singularity of
�v

E with respect to �0
E even in bounded regions (this has been proved rigorously in

[35] only for the restriction of these measure to the �-algebra generated by the time
zero fields).

Other types of relativistic models however also exist for all d including d D
4, provided one relaxes the axioms to the ones which have been introduced (by
Strocchi-Wightman and Morchio-Strocchi) for gauge fields, see the work [73] (in
white noise analysis) and [12, 13] (and references therein).

For the construction of gauge fields for d D 2 see [1, 24, 25, 47, 48] (and
references therein).

For d D 3 in the Euclidean case a model of gauge fields has been constructed
using �F (Chern-Simons model) [15, 47, 91], again using methods from white noise
analysis (to which Ludwig has fundamentally contributed).

5 Some Remarks on Related Systems

Methods related to the ones discussed in the preceding Sections can also be used in
other areas.

E.g., in recent years equations for neuronal dynamics of the FitzHugh-Nagumo
type have been discussed in [5, 6].

In the simplest version they describe a signal propagating along a single neuron
under the influence of external noise and of certain salts concentrations. They are of
the form of 2 coupled random variables, the components of a vector X 2 L2.Œ0; 1�/�
L2.Œ0; 1�/ satisfying a SDE of the form dXt D AXt dt C F.Xt/ dt C " dwt, t � 0, with
wt space-time Gaussian white noise and " > 0 a (small diffusion) parameter.

A is a diffusion operator, F.x/ is a non linear term, e.g., of the Fitz-Hugh-Nagumo

type F.x/ D
��x.x � 1/.x � 
/; 0 < 
 < 1

0

	
, x 2 R.
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Using dissipativity, in [5, 54] the existence, uniqueness of solutions and the
uniqueness of the invariant measure have been discussed, as well as the " # 0

behaviour in terms of detailed asymptotic expansions, with Lp-control, 1 � p <

C1, on remainders.
The invariant measure is exhibited, as being of Gibbsian type with a density e�G

with respect to �A, and G0 D �F, where �A is the invariant Gaussian measure
associated to the linear stochastic equation for F � 0.

It is interesting that in the case of Gaussian white noise replaced by Lévy noise
also an invariant measure has been found in [6]. Its character is presently under
discussion.

In the finite dimensional case explicit invariant measures of related systems can
be constructed via an analogue of the general ground state transformation discussed
early in [27], see [6, 50]. Andrisani and Cufaro-Petroni [50] have interesting
applications, e.g. to the study of halo formation in intense beams of charged particles
in accelerators.

Stochastic pde’s of the form of those we have discussed in connection with
quantum field theory and neuronal dynamics also occur in many other areas,
including, e.g., hydrodynamics and polymer physics, to which Ludwig Streit has
given outstanding contributions. Let us mention, in particular, his work on the
Burgers equation [51] and his work on polymer-type measures, a prototype for the
latter being given by the Edwards’ model described heuristically by the invariant
measure

�.d�/ D “Z�1e��
R t

0

R t
0 ı.!.s/�!.s0// ds ds0

�0.d!/” (19)

�0 being Wiener measure for Brownian motion on R
d, ı the Dirac distribution, � a

(positive) constant, t > 0. The Gibbs factor inhibits self-intersection of paths. For
such measures and related ones see, e.g., [9, 40, 62, 63].

Varadhan showed in [113] that setting L" D R t
0

R t
0

ı".!.s/ � !.s0// ds ds0 with ı"

a natural "-regularization of ı one has that L" � E.L"/ converges as " # 0 in L2.�0/

to a limit QL, in such a way that

k QL � ŒL" � E.L"/� kL2.�0/ � C"˛ (20)

for some constant C > 0, for all ˛ < 1
2
.

This implies in particular the existence of the polymer measure �, understood as
weak limit of �" as " # 0 defined by (19) with

L WD
Z t

0

Z t

0

ı.!.s/ � !.s0// ds ds0 (21)

replaced by L" � E.L"/.
The above estimate (20) has been improved to ˛ < 1 in a recent publication by

Ludwig and coworkers [53].
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6 Conclusions

We have just been able to discuss a few of the many important developments
inspired, initiated and rigorously pursued by Ludwig Streit. I am very grateful to
Ludwig for having been a constant source of inspiration for me and many coworkers
since many years. I wish him many more years of good health, happiness, “frohes
Schaffen”.
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