
Chapter 4
Coupling of Numeric/Symbolic Reduction
Methods for Generating Parametrized Models
of Nanoelectronic Systems

Oliver Schmidt, Matthias Hauser, and Patrick Lang

Abstract This chapter presents new strategies for the analysis and model order
reduction of systems of ever-growing size and complexity by exploiting the
hierarchical structure of analog electronical circuits. Thereby, the entire circuit is
considered as a system of interconnected subcircuits. Given a prescribed error-
bound for the reduction process, a newly developed algorithm tries to achieve a
maximal reduction degree for the overall system by choosing the reduction degrees
of the subcircuits in a convenient way. The individual subsystem reductions with
respect to their prescribed error-bound are then performed using different reduction
techniques. Combining the reduced subsystems a reduced model of the overall
system results. Finally, the usability of the new techniques is demonstrated on two
circuit examples typically used in industrial applications.

4.1 Introduction

In order to avoid immense time and financial effort for the production of deficiently
designed prototypes of integrated circuits (ICs), industrial circuit design uses
mathematical models and simulations for predicting and analysing the physical
behavior of electronical systems. Hence, redesigns and modifications of the systems
can easily be carried out on a computer screen and tested by subsequent simulation
runs. Thereby, analog circuits in general are modelled by systems of differential-
algebraic equations (DAEs), which are composed of component characteristics and
Kirchhoff laws.

The development in fabrication technology of ICs during the last years led to
an unprecedented increase of functionality of systems on a single chip. Nowadays,
ICs have hundreds of millions of semiconductor devices arranged in several layers
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and low-level physical effects such as thermal interactions or electromagnetic
radiation cannot be neglected anymore in order to guarantee a non-defective
signal propagation. Mathematical models based on DAEs, however, have almost
reached their limit and cannot model these effects accurately enough. Consequently,
distributed elements for critical components such as semiconductor devices and
transmission lines are used which yield supplementary model descriptions based
on partial differential equations (PDEs), where also the spatial dependencies are
taken into account. The coupling with DAEs modelling the remaining parts of the
circuit then leads to systems of partial differential-algebraic equations (PDAEs).
A spatial semidiscretization finally results in very high-dimensional systems of
DAEs, thus rendering analysis and simulation tasks unacceptably expensive and
time consuming.

Since design verification requires a large number of simulation runs with
different input excitations, for the reasons mentioned above, model order reduction
(MOR) becomes inevitable. Dedicated techniques in various areas of research have
been developed among which the most popular ones are numerical methods taylored
for linear systems. Besides these, there also exist symbolic methods [8, 10, 15, 19,
20], where symbolic means that besides the system’s variables also its parameters
are given as symbols instead of numerical values (see Sect. 4.1.1). They indeed are
costly to compute, but allow deeper analytical insights into functional dependences
of the system’s linear and nonlinear behavior on its parameters by maintaining the
dominant ones in their symbolic form. The basic idea behind these methods is a
stepwise reduction of the original system by comparing its reference solution to the
solution of the so far reduced system by using error functions which measure the
difference between the two solutions. Since the resulting reduced system contains
its parameters and variables in symbolic form, these methods can be seen as a kind
of parametric model order reduction (pMOR). Compared to the standard parametric
model order reduction techniques [4, 12], the symbolic ones can be additionally
applied to nonlinear systems.

In order to avoid infeasibility of analysis and reduction of systems of ever-
growing size and complexity, new strategies exploiting their hierarchical structure
have been developed in the current research project. They further allow for a
coupling of distinct reduction techniques for different parts of the entire circuits.

The corresponding algorithms have been implemented in Analog Insydes [1],
the software tool for symbolic modeling and analysis of analog circuits, that is
developed and distributed by the Fraunhofer ITWMin Kaiserslautern, Germany. It
is based on the computer algebra system Mathematica [21].

The new approach has been successfully applied with significant savings in
computation time to both a differential and an operational amplifier typically used in
industry. The reduced models also proved to be very robust with regard to different
inputs such as highly non-smooth pulse excitations. Thus, the aptitude of the new
hierarchical model reduction algorithm to circuits of industrial size has been shown.
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4.1.1 Symbolic Modeling of Analog Circuits

In the field of analog electronic circuits, there are different ways of modeling of
the devices’ behaviors. The approach Analog Insydes uses is the combination of
Kirchhoff laws with symbolic device models to generate a symbolic system of
differential-algebraic equations. As mentioned before, symbolic means here that
besides the system’s variables also its parameters are given as symbols instead of
numerical values.

For a better understanding, consider the following circuit consisting of a voltage
source V , a resistor R and a diode D.
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The resulting system of equations contains the following equations modeling the
current of the circuit by using the resistor’s and diode’s model equations. Additional
to the system variables, like V1,VD and I, the parameters R, AREA, IS, k, q and GMIN

are also given as symbols. This allows, besides the simulation after inserting the
symbol’s values, to analyse this system symbolically. That means in this case, that
we could just solve symbolically the system for the voltage in node 1 with respect
to the parameters and the voltage at the diode:

V1 D R �
�
AREA � IS

�
e

3:33167�10�3VD �q
k � 1

�
C GMIN � VD

�
C VD

The next section follows the notes of [16–18].

4.2 Hierarchical Modelling and Model Reduction

In general, electronic circuits consist of a coupling of blocks such as amplifiers, cur-
rent mirrors, or polarization circuits. Each block itself might have such a structure or
is at least a network of interconnected components like diodes, resistors, transistors,
etc. Consequently, the entire circuit is a hierarchical network of interconnected
subcircuits, where each of these subcircuits may be modelled differently, e.g. based
on netlists, PDEs, or DAEs.
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The main idea behind the new algorithm for hierarchical reduction developed is
the exploitation of the circuit’s hierarchical structure in order to perform different
reduction techniques on the distinct subcircuits. Besides a suitable choice of the
methods according to the modelling of the corresponding subcircuits, this further
allows for a faster processing of smaller subproblems if the administrative cost does
not get out of hand. Furthermore, particularly in the case of symbolic model order
reduction methods, like used in Analog Insydes, larger circuits become manageable
at all.

Standard graph theoretical methods such as the modified nodal analysis (MNA)
for transforming a circuit into a system of describing equations, however, lose the
structural information available at circuit level. Therefore, we developed a new
workflow for separate reductions of single subcircuits in the entire system, which
uses information obtained from a previous simulation run. Since, in general, there
is no relation between the errors of single nonlinear subsystems and the entire
system available, we further introduced a new concept of subsystem sensitivities. By
keeping track of the error on the output, which is resulting from the simplification
of the subsystem, the sensitivities are used to measure the influence of single
subsystems on the behavior of the entire circuit. Finally, these sensitivities are used
to compute a ranking of subsystem reductions. In order to obtain a high degree of
reduction for the entire system, it allows to replace the subcircuits by appropriate
reduced models in an heuristically reasonable order. The details are explained in the
following sections.

4.2.1 Workflow for Subsystem Reductions

Assume an electronic circuit ˙ to be already hierarchically segmented into a set of
m subcircuits Ti and an interconnecting structure S:

˙ D . f Ti j i D 1; : : : ;m g; S / : (4.1)

As already mentioned, each Ti itself might be recursively segmented into a set of
subcircuits and a coupling structure. However, here we only consider a segmentation
on the topmost “level 0”. If one simply applies methods such as MNA to the circuit
˙ in order to set up a set of describing equations, the resulting equations generally
involve mixed terms from different subcircuits. In order to maintain the hierarchy
information available on circuit level, in a first step the subcircuits are cut out from
their connecting structure (cf. Fig. 4.1). Each subcircuit T is then connected to a
test bench (a), i.e. a simulation test environment, where the voltage potentials at
its terminals are recorded during a simulation run. For example, by simulating the
original entire circuit, for each subcircuit T the interconnection of the remaining
ones act as a test bench for T.

Note that the reducedmodel generated by the described method depends strongly
on the input signals used. Thus, the input signal of the circuit has to cover the
technical requirements of the later usage.
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Fig. 4.1 Subsystem reduction via test bench approach

In a second step, the terminals of T are connected to voltage sources that generate
exactly the recorded voltage potentials1 (b). Hence, one has a closed circuit CT with
a defined input-output behavior at the terminals of T. A method such as MNA is
used to set up a describing system FT of equations2 for CT . Next, FT can be reduced
using arbitrary appropriate symbolic or numeric reduction techniques (c).

In a last step, the voltage sources at the terminals of the reduced model eFT are
removed (d). Since the terminals of the subsystem are preserved during the reduction
process, the original subcircuit T in ˙ can easily be replaced by the reduced modeleFT of FT , thus using the same interconnecting structure S as introduced in (4.1). The
entire procedure is repeated several times for each subcircuit Ti in ˙ , thus yielding
collections of reduced models for each Ti. The whole workflow is summarized in
Algorithm 4.1.

It should further be mentioned here that this approach only controls the errors
at the terminals of the single subcircuits. A priori, one cannot guarantee a certain
global error, i.e. the error on the output of the entire circuit ˙ , when replacing the
original subcircuits Ti by reduced models eFTi . Thus the following algorithms were
introduced to control the global error during the process.

1For doing it best, we first have to determine the voltage and current sources of the circuit that
can act as inputs. Thus, the corresponding independent value of each port has to be considered as
output. If you connect a voltage source at a port p this would be the current through port p, and
vice versa.

For simplicity, we use here voltage sources as inputs and the currents as outputs. Besides of
that, it turns out that residual based solvers simulate analog circuits containing transistors faster
and more accurate if the voltages are given at the circuit’s ports instead of the currents.
2Assume we are dealing with systems of DAEs. If PDEs are involved, apply a semidiscretization
w.r.t. the spatial coordinates.
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Algorithm 4.1 Reduction of subcircuits
Let T D Ti be a subcircuit in an electronic circuit ˙ D . fTi j i D 1; : : : ;m g; S /.

a. Connect T to a test bench and record the voltage potentials at its terminals during a simulation
run applying a suitable input.

b. Remove the test bench and connect grounded voltage sources to the terminals of T that generate
exactly the recorded voltage potentials, thus having T isolated as a closed circuit CT ; further,
set up a describing system of equations FT for CT .

c. Reduce FT by using appropriate symbolic or numerical reduction techniques, where the voltages
at all terminals of CT are the inputs and the currents (flowing inwards) are the outputs. Here a
family of reduced subsystems with different size and approximation quality is generated.

d. Remove the voltage sources at the terminals after the reduction and finally obtain a family of
reduced subsystems, where each reduced subsystemeFT serves as a behavioral model of T.

4.2.2 Subsystem Sensitivities

In general, there is no relation between the error of the entire system and those
of its nonlinear subsystems known. Therefore, in order to use reduced models of
appropriate degree for the subsystems, in this section, we investigate the influence
of single subcircuits Ti on the behavior of the entire circuit ˙ given by (4.1). This
offers a high degree of reduction also for ˙ .

The goal here is to have an estimate of a subcircuit’s sensitivity, i.e. the sensitivity
of ˙ with respect to changes in the corresponding subcircuit’s behavior. Our
novel approach measures the sensitivity by observing the influence of subcircuit
reductions on the output of ˙ and finally leads to a ranking of subcircuit reductions,
i.e. an heuristically optimized order of subcircuit reductions.

Usually, the term sensitivity analysis in the background of electronic circuits
means the influences of single components or system parameters on certain circuit or
network variables. In that case, the absolute sensitivity of a variable z w.r.t. changes
in a network parameter p is defined by

sa.z; p/ D @z

@p

ˇ̌̌
ˇ
pDp0

; (4.2)

whereas

sr.z; p/ D p
@z

@p

ˇ̌
ˇ̌
pDp0

D p � sa.z; p/ (4.3)
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is the relative sensitivity of z w.r.t. p. In the two equations above, p0 is the nominal
value of p. Note that

sa.z; p/ � �z

�p

ˇ̌
ˇ̌
pDp0

D z �ez
p0 �ep (4.4)

is an approximation of sa using perturbed valuesez D z.ep / andep of z D z.p/ and
p D p0. While z D z.p0/ corresponds to a simulation of ˙ using the parameter
p D p0,ez is obtained by using the perturbed parameter p D ep during the simulation
run.

Since we cannot derive the output y of ˙ w.r.t. one of its subcircuits, we imitate
the meaning of Eq. (4.4) by replacing a single subcircuit T in (4.1) by a perturbed
versioneT , i.e. by a reducedmodeleFT of its describing system of equations. Note that
any other subsystem in ˙ remains original, only T is replaced by one of its reduced
models. We then simulate the configuration of ˙ at hand and compare the original
output y, i.e. the reference solution, to the perturbed entire system’s outputey.

By Definition 4.2.1, the sensitivity of the subcircuit T in ˙ is defined as the
vector of tuples containing the reduced models and the resulting error on the
perturbed entire system. For simplicity, we will not distinguish between subcircuits
and the corresponding describing subsystems based on equations and denote both of
them simply by T.

Definition 4.2.1 Let ˙ D . f Ti j i D 1; : : : ;m g; S / be an electronic circuit of
interconnected subcircuits Ti connected by a structure S. Let further T D Ti be
one of the subcircuits in ˙ . The sensitivity of T in ˙ is the vector

sT D �
.eT .1/;E.y; yeT.1/ //; : : : ; .eT .mT /;E.y; yeT.mT / //

�
(4.5)

that contains tuples of reduced models eT. j/ for T and the resulting error E.y; yeT. j/ /

on the original output y of˙ . In this notation, yeT. j/ is the output of the corresponding
system

ėT. j/ D � feT. j/ g [ f Ti j i D 1; : : : ;m g n f T g; S �
; (4.6)

where T in comparison to the original circuit ˙ is replaced by its jth reduced modeleT. j/.

In this definition, eT . j/ denotes the jth reduced model of T which could be obtained
by nonlinear symbolic model order reduction and an accepted error of 10% or by
Arnoldi method and k iteration steps for example.

Note that the sensitivity of T involves systems ėT. j/ which are the same as ˙

itself except for exactly one subsystem, namely T, that is replaced by a reduced
version eT. j/. Note further that these sensitivities depend again on the chosen input
signals, as for the method introduced in Sect. 4.2.1.
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Remarks 4.2.2 The sensitivity notion in Definition 4.2.1 can be further augmented
by replacing the corresponding error E.y; yeT. j/ / by a more general ranking expres-
sion that takes also additional subsystem criteria, like system size and sparsity, into
account [9].

The next section describes how to use these sensitivities in order to obtain an
heuristically reasonable order of subsystem reductions for the derivation of a system,
that consists of reduced subsystems. Basically, the entries of the sensitivity vector
of each subsystem are ordered increasingly with respect to the error on y. Then,
following this order, the corresponding reduced models are used to replace the
subsystems in ˙ .

4.2.3 Subsystem Ranking

In this section, we present a strategy that allows an appropriate replacement of the
subsystems of ˙ by their reduced models in a reasonable order. The new algorithm
presented here uses a ranking for deriving a hierarchically reduced model of the
entire system ˙ .

The basic idea behind the algorithm is ordering the reduced models of each
subsystem increasingly w.r.t. the error3 on the output y of ˙ and subsequently
performing the subsystem replacements according to this order. After each replace-
ment, the accumulated error of the current subsystem configuration is checked by
a simulation. If the user-given error bound " for the error of the entire system ˙ is
exceeded, the current replacement is undone and the tested reducedmodel is deleted.
Otherwise, the next replacement is performed and the procedure is repeated.

Let eT. j/
i denote the jth reduced model of the subsystem Ti. For each Ti in ˙ we

define a vector Li which contains the entries of sTi and is increasingly ordered with
respect to the error E.y; yeT. j/

i
/. The original subsystems Ti of ˙ are then initialized

by eT .0/
i . In each iteration of the hierarchical reduction algorithm, the subsystemeT.q/

p that corresponds to the minimum entry4 of the vectors Li replaces the current
(reduced) modeleT.q0/

p that is used for Tp in ˙ . If the resulting accumulated error on
the output y of ˙ exceeds the user-specified error bound ", the corresponding latest
subsystem replacement is undone, i.e. eT.q/

p is reset to eT .q0/
p in ˙ . Furthermore, all

reduced subsystems of subsystem Tp are deleted, since we assume that worse rated
subsystems would also exceed the error bound. Otherwise only the corresponding
sensitivity value .eTp.q/;E.y; y eTp.q/ // of the tested reduced subsystem eT .q/

p is deleted
from the vector Lp. This procedure is repeated until all the vectors Li are empty. For
a better overview of this approach see Algorithm 4.2.

3See Remarks 4.2.2.
4Minimal with respect to the corresponding error E.y; yeT . j/

i
/.
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Algorithm 4.2 Heuristically reasonable order of subsystem replacements

Input: segmented electronic circuit ˙ D � fTi j i D 1; : : : ;m g; S
�
, input u, error bound "

Output: reduced entire system ė D � feT . j�/
i j i D 1; : : : ;m g; S

�
, where eT. j�/

i are suitably
reduced subsystems, E.y; yė/ � ", and where yė is the output of ė

1: for all subsystems Ti do
2: Li WD order.sTi / w.r.t. E.y; yeT . j/

i
/

3: eT.0/
i WD Ti

4: end for

5: L WD .L1; : : : ; Lm/ F set starting point
6: ė WD ˙

7: y WD solve.˙; u/ F calculate reference

8: while L D ; do
9: compute .eT .q/

p ;E.y; yeT .q/
p

// WD min
i;Li2L.min.Li// w.r.t. E.y; yeT . j/

i
/ F choose reduced

subsystem
10: replace currenteT .q0/

p byeT.q/
p

11: update.ė/ F update and solve new reduced overall system
12: yė WD solve.ė; u/

13: "out WD E.y; yė/

14: delete5entry .eT .q/
p ;E.y; yeT .q/

p
// in Lp

15: if "out � " then F check resulting error
16: if dimension.Lp/ D 0 then
17: delete5 entry Lp in L
18: end if
19: else
20: reseteT .q/

p toeT .q0/
p F undo reduction if error exceeds error bound

21: update.ė/

22: delete5 entry Lp in L
23: end if

24: end while

Remarks 4.2.3 Note that Algorithm 4.2 can further be improved, e.g. by a clustering
of subsystem replacements, where reducedmodels that cause a similar error on y are
bundled in a cluster. Thus, costly multiple simulations for computing the solution
ey of the so far reduced entire system ė are avoided, since they are performed only
once after a whole cluster of subsystem replacements is executed. In case the error
bound is still not violated, we can continue with the next cluster of subsystem

5 For a vector X D .x1; : : : ; xn/, deleting the entry xi in X means, that a vector QX D
.x1; : : : ; xi�1; xiC1; : : : ; xn/ of dimension n � 1 results.
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replacements. Otherwise, however, all replacements in the current cluster have to
be rejected and it has to be subdivided for further processing.

Another idea for further improvements is the use of approximate simulations
such as k-step solvers which quit the Newton iteration for computing the system’s
solution after k steps. Thus, one obtains an approximate solutionby �ey for the output
of the so far reduced system ė which can be used for the error check E.y;by/ � "

instead ofey.

4.2.4 Algorithm for Hierarchical Model Reduction

To combine all the considerations of the preceding sections, the algorithm for
hierarchical model reduction exploiting the hierarchical structure of electronic
circuits is set up. It is schematically shown in Fig. 4.2.

Remarks 4.2.4 Since electronic circuits even nowadays are designed in a modular
way using building blocks of network devices and substructures such as current
mirrors and amplifying stages, the hierarchical segmentation of an electronic circuit
is given in a more or less natural way. Otherwise, the segmentation has to be
made manually or by using pattern matching approaches[13] in order to detect
substructures in the entire circuit.

Note that the presented algorithm (cf. Fig. 4.2) can be applied recursively to the
subcircuit levels such that a hierarchically model order reduction results.

4.3 Implementations

The algorithms of the preceding sections have been completely implemented in
Analog Insydes [1] and the approach for hierarchical model reduction was fully
automated. It is divided into three main procedures

• ReduceSubcircuits,
• SensitivityAnalysis, and
• HierarchicalReduction

that have to be executed sequentially. Each of the above procedures takes several
arguments among which there are some optional ones.

ReduceSubcircuits is called with the specification of an already segmented
netlist of the circuit which is to be hierarchically reduced, the specification of the
reduction method for each subcircuit, the simulation time interval necessary for
recording the voltage potentials at the ports of the subcircuits, and several optional
parameters. In accordance with the provided data, the procedure then computes the
reduced models for all the specified subcircuits and appends them to the original
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circuit netlist

hierarchical netlist

choose reduction methods
for subsystems

reduce subsystems
separately

sensitivity analysis

subsystem ranking

replace subsystem in circuit
by reduced model according

to subsystem ranking

error analysis

reduced
entire system

delete  entry in subsystem list

error okay?

higher degree 
of reduction?

delete list
of subsystem

reset

no

yes

no

yes

Fig. 4.2 Schematic illustration of the full algorithm for hierarchical model reduction using
subsystem sensitivities.

circuit object. This offers an easy switching among the respectivemodels for a single
subcircuit.

The return value of ReduceSubcircuits, i.e. the hierarchically segmented
circuit object together with the reduced models of each subcircuit, is then used as
parameter of the functionSensitivityAnalysis. In addition, the names of the
reduced models, a specification of the output variables, the simulation time interval
for the error check, and the error function itself to measure the error on the reference
solution y are provided. The procedure computes the sensitivity vectors of each
subcircuit and returns them ordered increasingly w.r.t. the error on y.

Finally, HierarchicalReduction needs a specification of the entire circuit
and its reduced subcircuit models, the global error bound, the output variables, the
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sensitivities returned by SensitivityAnalysis, the simulation time interval
necessary for the error check, and several optional arguments. Then the subsystem
replacements are performed according to the sensitivities and the accumulated error
is checked after each replacement (Algorithm 4.2). The procedure terminates when
all sensitivity lists have been processed and deleted.

In addition to the above, there have been implemented several data structures and
operators for their manipulation, as well as some well-known reduction algorithms,
transmission line models—based on a discretization of a PDE model—and further
components based on general state space systems. We further implemented some
environments to test the above procedures and functionalities. However, we will not
go into detail here, for an overview we refer to [16].

4.4 Applications

In order to demonstrate the large potential of the new hierarchical reduction
approach, it is applied in time domain to two analog circuit examples that are typical
representants of components used in industrial circuit design. The results of the
hierarchical reduction of the two circuits are compared to the direct non-hierarchical
approach. Furthermore, some additional input excitations are applied to the circuits
in order to show the robustness of the derived reduced models.

Note that we present here the application of the introduced methods on circuits
containing strongly nonlinear devices to demonstrate the ability of the approach in
the field of nonlinear analog circuits.

4.4.1 Differential Amplifier

The differential-amplifier circuit shown in Fig. 4.3 consists of five subcircuits
DUT, DUT2, L1, L8, and L9, where the latter three ones are transmission lines
connecting the supply voltage sources VCC and VEE and the input voltage source
V1 with the remaining parts of the circuit. For the modelling of the transmission
lines, we take a discretized PDE model, namely, the telegrapher’s equations (cf.,
e.g., [5–7, 11]), with 20 line segments each. While VCC and VEE generate constant
voltage potentials of 12V and �12V, respectively, the input voltage generated by
V1 is a sine wave excitation with an amplitude of 2V and a frequency of 100 kHz.
Finally, the computations are performed on a time interval I D Œ0: s; 10�5 s�.

Using MNA to set up a system of describing DAEs yields 167 equations
containing 645 terms (on “level 0”). A non-hierarchical symbolic reduction of the
entire system then needs approximately 2 h and 11min,6 where most of that time

6The computations are performed on a Dual Quad Xeon E5420 with 2.5MHz and 16 GB RAM.
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L 9

L 8

Fig. 4.3 Differential amplifier with its intuitive hierarchical segmentation into five subcircuits
DUT, DUT2, L1, L8, and L9.

(�95%) is needed for the computation of the transient term ranking.7 Due to this,
the computational costs are approximately the same for all choices of the error
bound ". The error function used first discretizes the time interval I to a uniform grid
of 100 points and then takes the maximum absolute difference of the two solutions
on this grid as a measure for the error.

With " equal to 3% the system is reduced to 124 equations and 416 terms, while a
permitted error of 10% narrows these numbers down to 44 equations and 284 terms.
The results are shown in Fig. 4.4. Note also that the error bound of 10% is fully
exploited.

In contrast to the immense time costs of the non-hierarchical approach, the new
algorithm for hierarchical reduction reduces the entire system in only 4min and
50 s. The subcircuits DUT and DUT2 are reduced symbolically by using a sweep
of error bounds

sw D f1%; 10%; 50%; 90%; 100%g; (4.7)

such that each subsystem yields 5 reduced subsystems. The three transmission lines
L1, L8, and L9 are reduced numerically by applying Arnoldi’s algorithm [2, 3].

7A term ranking is a trade-off between accuracy and efficiency in computation time that estimates
the influence of a term in a system of equations on its solution. Here, however, we use full
simulations instead of low-accuracy estimates. For more details see [20].
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Fig. 4.4 Solution of the original (solid) and the non-hierarchically reduced system (dotted)
allowing 3% (left) and 10% (right) maximum error, respectively. The input V1 is 2 � Sin.2�105t/
Volts

2.5 10 6 5. 10 6 7.5 10 6 1. 10 5
t s

2

4

6

8

10

voltage V

2.5 10 6 5. 10 6 7.5 10 6 1. 10 5
t s

0.2

0.1

0.1

0.2

0.3

voltage V

2.5 10 6 5. 10 6 7.5 10 6 1. 10 5
t s

2

4

6

8

10

voltage V

2.5 10 6 5. 10 6 7.5 10 6 1. 10 5
t s

0.4

0.2

0.2

0.4

0.6

0.8

voltage V

Fig. 4.5 Left: Solution of the original (solid) and the reduced system (dotted) allowing 3% (first
row) and 10% (second row) maximum error, respectively. Right: The corresponding error plots.
The input V1 is 2 � Sin.2�105t/ Volts

For L1 there are five reduced models computed by performing the Arnoldi iteration
for up to 5 steps, and for L8 and L9 there are made only up to 3 steps, thus yielding
three reduced models each for L8, and L9.

For " D 3% the resulting reduced overall system contains 62 equations with 315

terms, and " D 10% leads to a reduced overall system with 60 equations and 249

terms. The solutions of the original and the respective reduced systems are shown
in Fig. 4.5 together with the corresponding error plots.

In this case we conclude that the hierarchical reduction approach is more than
26 times faster than the non-hierarchical one. Also the number of equations of the
reduced model in the 3% error case could be halved. Moreover, by applying further
input excitations to both the original and the hierarchically reduced system with
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Fig. 4.6 Left: Solution of the original (solid) and the reduced system (dotted, " D 3%) together
with the input excitation (dashed). Right: The corresponding error plots

" D 3%, it turns out that the derived model is very robust, even w.r.t. highly non-
smooth pulse excitations (cf. Fig. 4.6). Note further that the simulation is accelerated
approximately by a factor of 5.

4.4.2 Reduction of the Transmission Line L1 by Using an
Adapted PABTEC Algorithm

The tool PABTEC [14] uses the Balanced Truncation reduction technique to reduce
the linear parts of an analog circuit. Please refer to Chap. 2.6 for further informations
about this software.

To demonstrate the coupling of the introduced algorithm with a numeric model
order reduction method, we use PABTEC to reduce the linear transmission line L1.
The remaining subcircuits DUT, DUT2, L8, and L9 have been reduced by the
same methods shown in the example before. In doing so, the original entire system
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Fig. 4.7 Left: Solution of the original (solid) and the reduced system (dotted) together with the
input excitation (dashed). Right: The corresponding error plots. The first row corresponds to the
reduced system obtained by allowing an error of " D 3%, while the second row shows the results
for " D 10%. The input V1 is 2 � Sin.2�105t/ Volts

consists of 191 equations containing 695 terms. Applying the hierarchical reduction
algorithm with error bounds " D 3% and " D 10% then needs about 8min and
20 s and yields systems with 96 equations and 2114 terms and 84 equations and
1190 terms, respectively. The results of their simulation (speed-up by a factor of
approximately 5) are shown in Fig. 4.7.

4.4.3 Operational Amplifier

The second circuit example to which we apply the new algorithms is the operational
amplifier op741 shown in Fig. 4.8. It contains 26 bipolar junction transistors (BJT)
besides several linear components and is hierarchically segmented into seven
subcircuits CM1–3, DP, DAR, LS, and PP. For a detailed description of their
functionality in the interconnecting structure we refer to [16, Appendix C].

The goal is a symbolic reduction of the entire circuit in time domain with an
overall error bound of " D 10%.While the input voltage source Vid provides a sine
wave excitation of 0:8V and 1 kHz frequency on a time interval I D Œ0 s; 0:002 s� to
the system, its output is specified by the voltage potential of node 26. The input
together with the corresponding output, i.e. the reference solution, is shown in
Fig. 4.9. Note that the reference solution is pulse-shaped and, thus, the standard
error function used for the differential amplifier in the preceding sections may
lead to large errors for small delays in jumps of the solution. Hence, even with a
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Fig. 4.8 Operational amplifier op741 composed of seven subcircuits CM1–3, DP, DAR, LS, PP

Fig. 4.9 Input voltage excitation (left) and the corresponding reference solution (right) of the
operational amplifier op741

prescribed error bound of 10%, the system might not be reduced at all. In order to
cope with these problems, here we use theL 2-norm as error function.

Using MNA to set up a system of describing DAEs for the entire system yields
215 equations and 1050 terms. The direct non-hierarchical symbolic reduction
method needs more than 10:5 h and yields a system containing 97 equations and
593 terms. At the same time, providing a sweep of error bounds

sw D f2%; 10%; 20%; 30%; 50%; 70%; 90%; 100%g (4.8)

for the separate symbolic reduction of all seven subcircuits and applying the
hierarchical reduction algorithm needs only 2 h and 22min. The resulting system,
however, consists of 153 equations and 464 terms, which can be narrowed down to
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Fig. 4.10 Output of the
original (solid) and the hybrid
reduced entire system
(dotted)

Table 4.1 Overview of the results of the reduction of the operational amplifier op741

Original system: 215 equations, 1050 terms, 26:0 s simulation time

Error fct. Non-hierarchical Hierarchical Hybrid

L 2-norm Time costs 10:5 h 2:5 h <4 h

Equations/terms 97=593 139=362 34=92

Error 2:51% 7:16% 5:68%

Simulation time 16:0 s 11:4 s 2:2 s

E� Time costs >12 h 2:5 h <4 h

Equations/terms 80=405 132=336 34=93

Error 0:37% 0:08% 5:32%

Simulation time 9:5 s 13:1 s 2:0 s

The computations were performed on a machine with 8 Quad-core AMDOpteron 8384 “Shanghai”
(32 cores in total) with 2:7GHz and 512GB RAM on a SuSE Linux 10:1 system

139 equations and 362 terms by slight manual improvements8 of the hierarchical
reduction algorithm.

Considering the obtained systems as interim solutions and applying a second
non-hierarchical symbolic reduction then reduces the size drastically and leads to
a model with only 34 equations and 92 terms. Simultaneously, there are almost
no further changes for the non-hierarchically reduced system with 97 equations.
Note that the additional time cost is less then 1:5 h, while the simulation time of the
“hybrid” reduced model is significantly decreased.

Figure 4.10 offers a qualitative impression of the results obtained by the hybrid
approach. Furthermore, earlier results involved a newly designed alternative error
function E� which is less sensitive with respect to small delays in jumps of the
system’s solution.

Table 4.1 provides an overview of the best results obtained by the three different
approaches. See also Fig. 4.11 which offers some details about the accuracy, time

8Due to the structure preserving reduction method, the resulting reduced model contains equations
connecting the models of the subcircuits, that can be avoided, like: Voltage of node 24 of
subcircuit LS is equal to the voltage of node 24 of subcircuit PP.

Unifying the corresponding variables (i.e. V$24$LS and V$24$PP) yields a decrease of the
number of equations.



4 Coupling of Numeric/Symbolic Reduction Methods 153

215 / 1050

~26.0 s

 97 / 593

  ~16.0 s

   2.51%

 80 / 405

   ~9.5 s

   0.37%

lacihcrarei h- non
l aci hcr ar ei h

byh
dir

L²-norm error function new error function

   132 / 336

  ~13.1 s

   0.08%

   159 / 560

     ~23.7 s

   0.03%

  139 / 362

 ~11.4 s

  7.16%

  166 / 565

 ~20.3 s

  6.86%

 34 / 108

   ~0.8 s

 15.65%

  34 / 93

   ~2.0 s

   5.32%

  34 / 92

   ~2.2 s

   5.68%

 68 / 317

   ~2.5 s

   5.26%

several minutes up to 1.5 h

   using  information
about number of

 terms and equations

~10 h  25 m
in > 12 h

~2 h  27 m
in

~2
 h

  2
4 

m
in

Fig. 4.11 Summary of the reduced models of the op741 amplifier obtained by the three different
reduction approaches. The boxes contain the number of equations/terms of the reduced models,
the time costs of a simulation using the original sine wave excitation, and the error on the output
V$26 of the original amplifier
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costs for simulation, and number of equations and terms of the different reduced
models. We will not go into detail here, for further information we refer to [16]
instead.

With a view towards the robustness of the derived models, we apply some
further input excitations, namely, a sine wave with 3 kHz frequency, a sum of sine
waves of 250, 500, and 2000Hz, and a pulse excitation of 250Hz. In addition to
almost perfectly coinciding output curves of the corresponding reduced models
(cf. Fig. 4.12), the speed-up in simulation time is up to a factor of 19, see Table 4.2.
The presented systems are identified by their number of equations and terms.

Fig. 4.12 Three different input excitations (left) and the resulting outputs of both the original
(solid) and the hybrid reduced system (dashed). (a) A voltage pulse. (b) Output results for the
voltage pulse. (c) A sine wave with frequency 3000Hz. (d) Outputs applying the input in (c).
(e) A sum of sine waves. (f) The outputs for the sum of sine waves
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Table 4.2 Speed-up of simulation of a hybrid reduced entire system w.r.t. the original one

System Voltage pulse 3 kHz Sine wave Sum of sine waves

215 D 1050 106 s 273 s 104 s

34 D 92 6 W 6 s 14 W 1 s 10 W 5 s

4.5 Conclusions

To conclude this chapter, we briefly summarize the results: The new hierarchical
reduction approach offers enormous savings in computation time, a significant
speed-up in system simulations, and yields good reduced models w.r.t. the error,
the number of equations and terms of the original system. Moreover, even for
highly non-smooth pulse excitations, the reduced models turn out to be very robust.
The developed methods were applied to two model classes, circuits consisting of
nonlinear subcircuits and circuits containing subcircuits modelled by PDEs, that
demonstrated the large potential of the new algorithms.
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