
Chapter 1
Model Order Reduction of Integrated Circuits
in Electrical Networks

Michael Hinze, Martin Kunkel, Ulrich Matthes, and Morten Vierling

Abstract We consider integrated circuits with semiconductors modeled by mod-
ified nodal analysis and drift-diffusion equations. The drift-diffusion equations
are discretized in space using mixed finite element method. This discretization
yields a high-dimensional differential-algebraic equation. Balancing-related model
reduction is used to reduce the dimension of the decoupled linear network equa-
tions, while the semidiscretized semiconductor models are reduced using proper
orthogonal decomposition. We among other things show that this approach delivers
reduced-order models which depend on the location of the semiconductor in the
network. Since the computational complexity of the reduced-order models through
the nonlinearity of the drift-diffusion equations still depend on the number of
variables of the full model, we apply the discrete empirical interpolation method
to further reduce the computational complexity. We provide numerical comparisons
which demonstrate the performance of the presented model reduction approach.We
compare reduced and fine models and give numerical results for a basic network
with one diode. Furthermore we discuss residual based sampling to construct POD
models which are valid over certain parameter ranges.

1.1 Introduction

Computer simulations play a significant role in design and production of very large
integrated circuits or chips that have nowadays hundreds of millions of semicon-
ductor devices placed on several layers and interconnected by wires. Decreasing
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physical size, increasing packing density, and increasing operating frequencies
necessitate the development of new models reflecting the complex continuous
processes in semiconductors and the high-frequency electromagnetic coupling in
more detail. Such models include complex coupled partial differential equation
(PDE) systems where spatial discretization leads to high-dimensional ordinary
differential equation (ODE) or differential-algebraic equation (DAE) systems which
require unacceptably high simulation times. In this context model order reduction
(MOR) is of great importance. In the present work we as a first step towards
model order reduction of complex coupled systems consider electrical circuits
with semiconductors modeled by drift-diffusion (DD) equations as proposed in
e.g. [46, 52]. Our general idea of model reduction of this system consists in
approximating this system by a much smaller model that captures the input-output
behavior of the original system to a required accuracy and also preserves essential
physical properties. For circuit equations, passivity is the most important property
to be preserved in the reduced-order model.

For linear dynamical systems, many different model reduction approaches have
been developed over the last 30 years, see [6, 42] for recent collection books on this
topic. Krylov subspace based methods such as PRIMA [32] and SPRIM [15, 16] are
the most used passivity-preservingmodel reduction techniques in circuit simulation.
A drawback of these methods is the ad hoc choice of interpolation points that
strongly influence the approximation quality. Recently, an optimal point selection
strategy based on tangential interpolation has been proposed in [3, 20] that provides
an optimalH2-approximation.

An alternative approach for model reduction of linear systems is balanced
truncation. In order to capture specific system properties, different balancing
techniques have been developed for standard and generalized state space systems,
see, e.g., [19, 31, 35, 37, 49]. In particular, passivity-preserving balanced truncation
methods for electrical circuits (PABTEC) have been proposed in [38, 39, 51] that
heavily exploit the topological structure of circuit equations. These methods are
based on balancing the solution of projected Lyapunov or Riccati equations and
provide computable error bounds.

Model reduction of nonlinear equation systems may be performed by a trajectory
piece-wise linear approach [40] based on linearization, or proper orthogonal
decomposition (POD) (see, e.g., [45]), which relies on snapshot calculations and
is successfully applied in many different engineering fields including computational
fluid dynamics and electronics [23, 29, 45, 48, 53]. A connection of POD to balanced
truncation was established in [41, 54].

A POD-based model reduction approach for the nonlinear drift-diffusion equa-
tions has been presented in [25], and then extended in [23] to parameterized
electrical networks using the greedy sampling proposed in [33]. An advantage of
the POD approach is its high accuracy with only few model parameters. However,
for its application to the drift-diffusion equations it was observed that the reduction
of the problem dimension not necessarily implies the reduction of the simulation
time. Therefore, several adaption techniques such as missing point estimation [4]
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and discrete empirical interpolation method (DEIM) [10, 11] have been developed
to reduce the simulation cost for the reduced-order model.

In this paper, we review results of [23–27] related to model order reduction
of coupled circuit-device systems consisting of the differential-algebraic equations
modeling an electrical circuit and the nonlinear drift-diffusion equations describ-
ing the semiconductor devices. In a first step we show how proper orthogonal
decomposition (POD) can be used to reduce the dimension of the semiconductor
models. It among other things turns out, that the reduced model for a semiconductor
depends on the position of the semiconductor in the network. We present numerical
investigations from [25] for the reduction of a 4-diode rectifier network, which
clearly indicate this fact. Furthermore,we apply the Discrete Empirical Interpolation
Method (DEIM) of [10] for a further reduction of the nonlinearity, yielding a
further reduction of the overall computational complexity. Moreover, we adapt to
the present situation the Greedy sampling approach of [33] to construct PODmodels
which are valid over certain parameter ranges. In a next step we combine the
passivity-preserving balanced truncation method for electrical circuits (PABTEC)
[38, 51] to reduce the dimension of the decoupled linear network equations with
POD MOR for the semiconductor model. Finally, we present several numerical
examples which demonstrate the performance of our approach.

1.2 Basic Models

In this section we combine mathematical models for electrical networks with math-
ematical models for semiconductors. Electrical networks can be efficiently modeled
by a differential-algebraic equation (DAE) which is obtained from modified nodal
analysis (MNA). Denoting by e the node potentials and by jL and jV the currents of
inductive and voltage source branches, the DAE reads (see [18, 28, 52])

AC
d

dt
qC.A

>
C e; t/C ARg.A

>
R e; t/C ALjL C AVjV D �AIis.t/; (1.1)

d

dt
�L. jL; t/ � A>

L e D 0; (1.2)

A>
V e D vs.t/: (1.3)

Here, the incidence matrix A D ŒAR;AC;AL;AV ;AI � D .aij/ represents the network
topology, e.g. at each non mass node i, aij D 1 if the branch j leaves node
i and aij D �1 if the branch j enters node i and aij D 0 elsewhere. The
indices R;C;L;V; I denote the capacitive, resistive, inductive, voltage source, and
current source branches, respectively. The functions qC, g and �L are continuously
differentiable defining the voltage-current relations of the network components. The
continuous functions vs and is are the voltage and current sources.
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Under the assumption that the Jacobians

DC.e; t/ WD @qC
@e
.e; t/; DG.e; t/ WD @g

@e
.e; t/; DL. j; t/ WD @�L

@j
. j; t/

are positive definite, analytical properties (e.g. the index) of DAE (1.1)–(1.3)
are investigated in [14] and [13]. In linear networks, the matrices DC, DG and
DL are positive definite diagonal matrices with capacitances, conductivities and
inductances on the diagonal.

Often semiconductors themselves are modeled by electrical networks. These
models are stored in a library and are stamped into the surrounding network
in order to create a complete model of the integrated circuit. Here we use a
different approach which uses the transient drift-diffusion equations as a continuous
model for semiconductors. Advantages are the higher accuracy of the model and
fewer model parameters. On the other hand, numerical simulations are more
expensive. For a comprehensive overview of the drift-diffusion equations we refer to
[1, 2, 8, 30, 43]. Using the notation introduced there, we have the following system of
partial differential equations for the electrostatic potential  .t; x/, the electron and
hole concentrations n.t; x/ and p.t; x/ and the current densities Jn.t; x/ and Jp.t; x/:

div." grad / D q.n � p � C/;

�q@tn C div Jn D qR.n; p; Jn; Jp/;

q@tp C div Jp D �qR.n; p; Jn; Jp/;

Jn D �nq.UT grad n � n grad /;

Jp D �pq.�UT grad p � p grad /;

with .t; x/ 2 Œ0;T� � ˝ and ˝ � R
d.d D 1; : : : ; 3/. The nonlinear function R

describes the rate of electron/hole recombination, q is the elementary charge, " the
dielectricity, �n and �p are the mobilities of electrons and holes. The temperature is
assumed to be constant which leads to a constant thermal voltage UT . The function
C is the time independent doping profile. Note that we do not formulate into quasi-
Fermi potentials since the additional non-linearities would imply higher simulation
time for the reduced model. Further details are given in [23]. The analytical and
numerical analysis of systems of this form is subject to current research, see [7, 17,
46, 52].

1.2.1 Coupling

In the present section we develop the complete coupled system for a network with
ns semiconductors. We will not specify an extra index for semiconductors, but we
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keep in mind that all semiconductor equations and coupling conditions need to be
introduced for each semiconductor.

For the sake of simplicity we assume that to a semiconductor m semiconductor
interfaces �O;k � � � @˝ , k D 1; : : : ;m are associated, which are all Ohmic
contacts, compare Fig. 1.2. The dielectricity " shall be constant over the whole
domain˝ . We focus on the Shockley-Read-Hall recombination

R.n; p/ WD np � n2i
�p.n C ni/C �n. p C ni/

which does not depend on the current densities. Herein, �n and �p are the average
lifetimes of electrons and holes, and ni is the constant intrinsic concentration which
satisfy n2i D np if the semiconductor is in thermal equilibrium.

The scaled complete coupled system is constructed as follows. (We neglect
the tilde-sign over the scaled variables.) The current through the diodes must be
considered in Kirchhoff’s current law. Consequently, the term ASjS is added to
Eq. (1.1), e.g.

AC
d

dt
qC.A

>
C e; t/C ARg.A

>
R e; t/C ALjL C AVjV C ASjS D �AIis.t/; (1.4)

d

dt
�L. jL; t/ � A>

L e D 0; (1.5)

A>
V e D vs.t/: (1.6)

In particular the matrix AS denotes the semiconductor incidence matrix. Here,

jS;k D
Z
�O;k

.Jn C Jp � "@tr / � � d�: (1.7)

I.e. the current is the integral over the current density Jn C Jp plus the displacement
current in normal direction �. Furthermore, the potentials of nodes which are
connected to a semiconductor interface are introduced in the boundary conditions
of the drift-diffusion equations (see also Fig. 1.2):

 .t; x/ D  bi.x/C .A>
S e.t//k D UT log

0
B@

q
C.x/2 C 4n2i C C.x/

2ni

1
CA C .A>

S e.t//k;

(1.8)

n.t; x/ D 1

2

�q
C.x/2 C 4n2i C C.x/

�
; (1.9)

p.t; x/ D 1

2

�q
C.x/2 C 4n2i � C.x/

�
; (1.10)
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Fig. 1.1 Basic test circuit
with one diode

for .t; x/ 2 Œ0;T� � �O;k. Here,  bi.x/ denotes the build-in potential and ni
the constant intrinsic concentration. All other parts of the boundary are isolation
boundaries �I WD � n �O, where r � � D 0, Jn � � D 0 and Jp � � D 0 holds. For a
basic example consider the network in Fig. 1.1 where the network is described by

AV D �
1; 0

�>
; AS D ��1; 1�>

; AR D �
0; 1

�>
; and g.A>

R e; t/ D 1

R
e2.t/:

The complete model forms a partial differential-algebraic equation (PDAE). The
analytical and numerical analysis of such systems is subject to current research,
see [7, 17, 46, 52]. The simulation of the complete coupled system is expensive
and numerically difficult due to bad scaling of the drift-diffusion equations.
The numerical issues can be significantly reduced by the unit scaling procedure
discussed in [43]. That means we substitute

x D LQx;  D UT Q ; n D kCk1 Qn; p D kCk1 Qp; C D kCk1 QC;

Jn D qUTkCk1
L

�n QJn; Jp D qUTkCk1
L

�p QJp; ni D QnikCk1;

where L denotes a specific length of the semiconductor (Fig. 1.2). The scaled drift-
diffusion equations then read

	
 D n � p � C; (1.11)

�@tn C �n div Jn D R.n; p/; (1.12)

@tp C �p div Jp D �R.n; p/; (1.13)

Jn D rn � nr ; (1.14)

Jp D �rp � pr ; (1.15)

where we omit the tilde for the scaled variables. The constants are given by 	 WD
"UT

L2qkCk1

, �n WD UT�n

L2
and �p WD UT�p

L2
, see e.g. [43].
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Fig. 1.2 Sketch of a coupled
system with one
semiconductor. Here
 .t; x/ D ei.t/C  bi.x/; for
all .t; x/ 2 Œ0; T� � �O;1

1.3 Simulation of the Full System

Classical approaches for the simulation of drift-diffusion equations (e.g. Gummel
iterations [21]) approximate Jn and Jp by piecewise constant functions and then
solve Eqs. (1.12) and (1.13) with respect to n and p explicitly. This helps reducing
the computational effort and increases the numerical stability. For the model order
reduction approach proposed in the present work this method has the disadvantage
of introducing additional non-linearities, arising from the exponential structure of
the Slotboom variables, see [46]. Subsequently we propose two finite element
discretizations for the drift-diffusion system which with regard to coping with
nonlinearities are advantageous from the MOR reduction point of view, and which
together with the equations for the electrical network finally lead to large-scale
nonlinear DAE model for the fully coupled system.

1.3.1 Standard Galerkin Finite Element Approach

Let T denote a regular triangulation of the domain ˝ with gridwidth h, whose
simplexes are denoted by T. In the classical Galerkin finite element method the
functions  , n and p are approximated by piecewise linear and globally continuous
functions, while Jn and Jp are approximated by patchwise-piecewise constant
functions, e.g.

 .t; x/ WD
NX
iD1

 i.t/�i.x/; n.t; x/ WD
NX
iD1

ni.t/�i.x/; p.t; x/ WD
NX
iD1

pi.t/�i.x/;

Jn.t; x/ WD
NX
iD1

Jn;i.t/'i.x/; Jp.t; x/ WD
NX
iD1

Jp;i.t/'i.x/;
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where the functions f�ig and f'ig are the corresponding ansatz functions, and
N denotes the number of degrees of freedom. For  , n and p the coefficients
corresponding to the boundary elements are prescribed using the Dirichlet boundary
conditions. Note that the time is not discretized at this point which refers to the so-
called method of lines. The finite element method leads to the following DAE for
the unknown vector-valued functions of time  , n, p, Jn, Jp for each semiconductor:

0 D 	S .t/C Mn.t/ � Mp.t/ � Ch C b .A
T
S e.t//;

�M Pn.t/ D ��nD>Jn.t/C hR.n.t/; p.t//;

M Pp.t/ D ��pD>Jp.t/ � hR.n.t/; p.t//;

0 D hJn.t/C Dn.t/� diag
�
Bn.t/C Qbn

�
D .t/C bn;

0 D hJp.t/ � Dp.t/ � diag
�
Bp.t/C Qbp

�
D .t/C bp;

(1.16)

where S;M and D;B are assembled finite element matrices. The matrix diag.v/ is
diagonal with vector v forming the diagonal. The vectors b .AT

S e.t//, bn, Qbn, bp andQbp implement the boundary conditions imposed on  , n and p through (1.8)–(1.10).
Discretization of the coupling condition for the current (1.7) completes the

discretized system. In one spatial dimension we use

jS;k.t/ D aqUTkCk1
L

�
�nJn;N.t/C �pJp;N.t/

� � a"UT

Lh

� P N.t/� P N�1.t/
�
;

1.3.2 Mixed Finite Element Approach

Since the electrical field represented by the (negative) gradient of the electrical
potential plays a dominant role in (1.11)–(1.15) and is present also in the coupling
condition (1.7), we provide for it the additional variable g D r leading to the
following mixed formulation of the DD equations:

	 div g D n � p � C; (1.17)

�@tn C �n div Jn D R.n; p/; (1.18)

@tp C �p div Jp D �R.n; p/; (1.19)

g D r ; (1.20)

Jn D rn � ng ; (1.21)

Jp D �rp � pg : (1.22)
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The weak formulation of (1.17)–(1.22) then reads: Find  ; n; p 2 Œ0;T� � L2.˝/
and g ; Jn; Jp 2 Œ0;T� � H0;N.div;˝/ such that

	

Z
˝

div g ' D
Z
˝

.n � p/ ' �
Z
˝

C '; (1.23)

�
Z
˝

@tn ' C �n

Z
˝

div Jn ' D
Z
˝

R.n; p/ '; (1.24)

Z
˝

@tp ' C �p

Z
˝

div Jp ' D �
Z
˝

R.n; p/ '; (1.25)

Z
˝

g � � D �
Z
˝

 div� C
Z
�

 � � �; (1.26)

Z
˝

Jn � � D �
Z
˝

n div� C
Z
�

n � � � �
Z
˝

n g � �;
(1.27)Z

˝

Jp � � D
Z
˝

p div� �
Z
�

p � � � �
Z
˝

p g � �;
(1.28)

are satisfied for all ' 2 L2.˝/ and � 2 H0;N.div;˝/ where the space H0;N.div;˝/
is defined by

H.div;˝/ WD fy 2 L2.˝/d W div y 2 L2.˝/g;
H0;N.div;˝/ WD fy 2 H.div;˝/ W y � � D 0 on �Ig :

Consequently, the boundary integrals on the right hand sides in Eqs. (1.26)–(1.28)
reduce to integrals over the interfaces �O;k, where the values of  , n and p are
determined by the Dirichlet boundary conditions (1.8)–(1.10). We note that, in
contrast to the standard weak form associated with (1.11)–(1.15), the Dirichlet
boundary values are naturally included in the weak formulation (1.23)–(1.28) and
the Neumann boundary conditions have to be included in the space definitions.
This is advantageous in the context of POD model order reduction since the
non-homogeneous boundary conditions (1.8)–(1.10) are not present in the space
definitions.

Here, Eqs. (1.23)–(1.28) are discretized in space with Raviart-Thomas finite
elements of degree 0 (RT0), alternative discretization schemes for the mixed problem
are presented in [8]. To describe the RT0-approach for d D 2 spatial dimensions, let
T be a triangulation of˝ and let E be the set of all edges. Let EI WD fE 2 E W E �
N�Ig be the set of edges at the isolation (Neumann) boundaries. The potential and the
concentrations are approximated in space by piecewise constant functions

 h.t/; nh.t/; ph.t/ 2 Lh WD fy 2 L2.˝/ W yjT.x/ D cT ; 8T 2 T g;
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with ansatz functions f'igiD1;:::;N and the discrete fluxes gh .t/, J
h
n.t/ and Jhp.t/ are

elements of the space

RT0 WD fy W ˝ ! R
d W yjT.x/ D aT C bTx; aT 2 R

d; bT 2 R; Œy�E � �E D 0;

for all inner edges Eg:

Here, Œy�E denotes the jump yjTC
� yjT�

over a shared edge E of the elements TC
and T�. The continuity assumption yields RT0 � H.div;˝/. We set

Hh;0;N.div;˝/ WD .RT0 \ H0;N.div;˝// � H0;N.div;˝/:

Then it can be shown, that Hh;0;N posses an edge-oriented basis f�jgjD1;:::;M . We use
the following finite element ansatz in (1.23)–(1.28)

 h.t; x/ D
NX
iD1

 i.t/'i.x/; gh .t; x/ D
MX
jD1

g ;j.t/�j.x/;

nh.t; x/ D
NX
iD1

ni.t/'i.x/; Jhn.t; x/ D
MX
jD1

Jn;j.t/�j.x/;

ph.t; x/ D
NX
iD1

pi.t/'i.x/; Jhp.t; x/ D
MX
jD1

Jp;j.t/�j.x/;

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(1.29)

where N WD jT j, i.e. the number of elements of T , and M WD jE j � jEN j, i.e. the
number of inner and Dirichlet boundary edges.

This in (1.23)–(1.28) yields

	

MX
jD1

g ;j.t/
Z
˝

div�j 'k �
NX
iD1
.ni.t/ � pi.t//

Z
˝

'i 'k D �
Z
˝

C 'k;

�
NX
iD1

Pni.t/
Z
˝

'i 'k C �n

MX
jD1

Jn;j.t/
Z
˝

div�j 'k �
Z
˝

R.nh; ph/ 'k D 0;

NX
iD1

Ppi.t/
Z
˝

'i 'k C �p

MX
jD1

Jp;j.t/
Z
˝

div�j 'k C
Z
˝

R.nh; ph/ 'k D 0;

MX
jD1

g ;j.t/
Z
˝

�j � �l C
NX
iD1

 i.t/
Z
˝

'i div�l D
Z
�

 h �l � �;
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MX
jD1

Jn;j.t/
Z
˝

�j � �l C
NX
iD1

ni.t/
Z
˝

'i div�l C
Z
˝

nhgh � �l D
Z
�

nh �l � �;

MX
jD1

Jp;j.t/
Z
˝

�j � �l �
NX
iD1

pi.t/
Z
˝

'i div�l C
Z
˝

phgh � �l D �
Z
�

ph �l � �;

which represents a nonlinear, large and sparse DAE for the approximation of the
functions  , n, p, g , Jn, and Jp. In matrix notation it reads

0
BBBBBBB@

0

�ML Pn.t/
ML Pp.t/
0

0

0

1
CCCCCCCA

C

0
BBBBBBB@

�ML ML 	D
�nD

�pD
D> MH

D> MH

�D> MH

1
CCCCCCCA

„ ƒ‚ …
AFEM

0
BBBBBBB@

 .t/
n.t/
p.t/
g .t/
Jn.t/
Jp.t/

1
CCCCCCCA

CF .nh; ph; gh / D b.AT
S e.t//;

with

F .nh; ph; gh / WD

0
BBBBBBB@

0

� R
˝
R.nh; ph/ 'R

˝
R.nh; ph/ '
0R

˝
nhgh � �R

˝
phgh � �

1
CCCCCCCA
; b WD

0
BBBBBBB@

� R
˝
C '
0

0R
�
 h.AT

S e.t// � � �R
� nh � � �

� R
�
ph � � �

1
CCCCCCCA
;

(1.30)

and

Z
˝

R.nh; ph/' WD

0
B@

R
˝
R.nh; ph/'1

:::R
˝
R.nh; ph/'N

1
CA :

All other integrals in F and b are defined analogously. The matrices ML 2 R
N�N

and MH 2 R
M�M are mass matrices in the spaces Lh and Hh;0;N , respectively, and

D 2 R
N�M . The final DAE for the mixed finite element discretization now takes the

form
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Problem 1.3.1 (Full Model)

AC
d

dt
qC.A

>
C e.t/; t/C ARg.A

>
R e.t/; t/C ALjL.t/C AVjV.t/

CASjS.t/C AIis.t/ D 0; (1.31)

d

dt
�L. jL.t/; t/ � A>

L e.t/ D 0; (1.32)

A>
V e.t/ � vs.t/ D 0; (1.33)

jS.t/ � C1Jn.t/ � C2Jp.t/ � C3 Pg .t/ D 0; (1.34)
0
BBBBBBB@

0

�ML Pn.t/
ML Pp.t/
0

0

0

1
CCCCCCCA

C AFEM

0
BBBBBBB@

 .t/
n.t/
p.t/
g .t/
Jn.t/
Jp.t/

1
CCCCCCCA

C F .nh; ph; gh /� b.AT
S e.t// D 0; (1.35)

where (1.34) represents the discretized linear coupling condition (1.7).

We present numerical computations for the basic test circuit with one diode
depicted in Fig. 1.1, where the model parameters are presented in Table 1.1. The
input vs.t/ is chosen to be sinusoidal with amplitude 5V. The numerical results in
Fig. 1.3 show the capacitive effect of the diode for high input frequencies. Similar
results are obtained in [44] using the simulator MECS.

The discretized equations are implemented in MATLAB, and the DASPK
software package [34] is used to integrate the high-dimensional DAE. Initial values
are stationary states obtained by setting all time derivatives to 0. In order to solve
the Newton systems which arise from the BDF method efficiently, one may reorder
the variables of the sparse system with respect to minimal bandwidth. Then, one can
use the internal DASPK routines for the solution of the linear systems. Alternatively
one can implement the preconditioning subroutine of DASPK using a direct sparse
solver. Note that for both strategies we only need to calculate the reorderingmatrices
once, since the sparsity structure remains constant.

Table 1.1 Diode model parameters

Parameter Value Parameter Value

L 10�4 cm " 1:03545 � 10�12 F/cm

UT 0:0259V ni 1:4 � 1010 1/cm3

�n 1350 cm2/(V s) �n 330 � 10�9 s

�p 480 cm2/(V s) �p 33 � 10�9 s

a 10�5 cm2 C.x/; x < L=2 �9:94 � 1015 1/cm3

C.x/; x � L=2 4:06 � 1018 1/cm3
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Fig. 1.3 Current jV through the basic network for input frequencies 1MHz, 1GHz and 5GHz.
The capacitive effect is clearly demonstrated

1.4 Model Order Reduction Using POD

We now use proper orthogonal decomposition (POD) to construct low-dimensional
surrogate models for the drift-diffusion equations. The idea consists in replacing the
large number of local model-independent ansatz and test functions f�ig; f'jg in the
finite element approximation of the drift-diffusion systems by only a few nonlocal
model-dependent ansatz functions for the respective variables.

The snapshot variant of POD introduced in [45] works as follows. We run
a simulation of the unreduced system and collect l snapshots  h.tk; �/, nh.tk; �/,
ph.tk; �/, gh .tk; �/, Jhn.tk; �/, Jhp.tk; �/ at time instances tk 2 ft1; : : : ; tlg � Œ0;T�. The
optimal selection of the time instances is not considered here. We use the time
instances delivered by the DAE integrator.

Since every component of the state vector y WD . ; n; p; g ; Jn; Jp/ has its own
physical meaning we apply PODMOR to each component separately. Among other
things this approach has the advantage of yielding a block-dense model and the
approximation quality of each component is adapted individually.

Let X denote a Hilbert space and let yh W Œ0;T� � X ! R
r with some r 2 N.

The Galerkin formulation (1.29) yields yh.t; �/ 2 Xh WD spanf�X
1 ; : : : ; �

X
n g, where

f�X
j g1�j�n denote n linearly independent elements of X. The idea of POD consists

in finding a basis fu1; : : : ; umg of the span of the snapshots

span

(
yh.tk; �/ D

nX
iD1

yh;ki �
X
i .�/; with k D 1; : : : ; l

)

satisfying

fu1; : : : ; usg D argmin
fv1;:::;vsg�X

lX
kD1

���yh.tk; �/�
sX

iD1
hyh.tk; �/; vi.�/iXvi.�/

���2
X
;
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for 1 � s � m, where 1 � m � l. The functions fuig1�i�s are orthonormal in X and
can be obtained with the help of the singular value decomposition (SVD) as follows.

Let the matrix Y WD .yh;1; : : : ; yh;l/ 2 R
n�l contain as columns the coefficient

vectors of the snapshots. Furthermore, let M WD .h�X
i ; �

X
j iX/1�i;j�n be the positive

definite mass matrix with its Cholesky factorizationM D LL>. Let . QU; ˙; QV/ denote
the SVD of QY WD L>Y, i.e. QY D QU˙ QV> with QU 2 R

n�n, QV 2 R
l�l, and a matrix

˙ 2 R
n�l containing the singular values �1 � �2 � : : : � �m > �mC1 D : : : D

�l D 0. We set U WD L�> QU.W; 1Ws/. Then, the s-dimensional POD basis is given by

span

8<
:ui.�/ D

nX
jD1

Uji�
X
j .�/; i D 1; : : : ; s

9=
; :

The information content of fu1; : : : ; usg with respect to the scalar product h�; �iX with

0 � 
.s/ D
sPm

iDsC1 �2iPm
iD1 �2i

� 1; (1.36)

is given by 1 � 
.s/. Here 
.s/ measures the lack of information of fu1; : : : ; usg
with respect to spanfyh.t1; �/; : : : ; yh.tl; �/g. An extended introduction to POD can be
found in [36].

The POD basis functions are now used as trial and test functions in the Galerkin
method.

If the snapshots satisfy inhomogeneous Dirichlet boundary conditions, as
in (1.16), POD is performed for

Q .t/ D  .t/ �  r.t/; Qn.t/ D n.t/ � nr.t/; Qp.t/ D p.t/� pr.t/;

with  r, nr, pr denoting reference functions satisfying the Dirichlet boundary
conditions required for  , n and p. This guarantees that the POD basis admits
homogeneous boundary conditions on the Dirichlet boundary.

In the case of the mixed finite element approach the introduction of a reference
state is not necessary, since the boundary values are included more naturally
through the variational formulation. The time-snapshot POD procedure then delivers
Galerkin ansatz spaces for  , n, p, g , Jn and Jp. This leads to the ansatz

 POD.t/ D U � .t/; gPOD .t/ D Ug �g .t/;

nPOD.t/ D Un�n.t/; JPODn .t/ D UJn�Jn.t/;

pPOD.t/ D Up�p.t/; JPODp .t/ D UJp�Jp.t/:

9>>=
>>;

(1.37)
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The injection matrices

U 2 R
N�s ; Un 2 R

N�sn ; Up 2 R
N�sp ;

Ug 2 R
M�sg ; UJn 2 R

M�sJn ; UJp 2 R
M�sJp ;

contain the (time independent) POD basis functions, the vectors �.�/ the correspond-
ing time-variant coefficients. The numbers s.�/ are the respective number of POD
basis functions included. Assembling the POD system yields the DAE

0
BBBBBBB@

0

� P�n.t/
P�p.t/
0

0

0

1
CCCCCCCA

C APOD

0
BBBBBBB@

� .t/
�n.t/
�p.t/
�g .t/
�Jn.t/
�Jp.t/

1
CCCCCCCA

C U>F .nPOD; pPOD; gPOD / D U>b.AT
S e.t//;

with

APOD D U>AFEMU

D

0
BBBBBBB@

�U>
 MLUn U>

 MLUp 	U>
 DUg 

�nU>
n DUJn

�pU>
p DUJp

U>
g D

>U I

U>
Jn
D>Un I

�U>
Jp
D>Up I

1
CCCCCCCA

and U D diag.U ;Un;Up;Ug ;UJn ;UJp/. Note that we exploit the orthogonality of
the POD basis functions, e.g. U>

n MLUn D U>
p MLUp D IN�N and U>

g MHUg D
U>

Jn
MHUJn D U>

Jp
MHUJp D IM�M . The arguments of the nonlinear functional have

to be interpreted as functions in space.
All matrix-matrix multiplications are calculated in an offline phase. The nonlin-

ear functional F has to be evaluated online. The reduced model for the network
now reads

Problem 1.4.1 (PODMOR Surrogate)

AC
d

dt
qC.A

>
C e.t/; t/C ARg.A

>
R e.t/; t/C ALjL.t/C AVjV.t/

CASjS.t/C AIis.t/ D 0;

(1.38)
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d

dt
�L. jL.t/; t/ � A>

L e.t/ D 0;

(1.39)

A>
V e.t/ � vs.t/ D 0;

(1.40)

jS.t/ � C1UJn�Jn.t/� C2UJp�Jp.t/ � C3Ug P�g .t/ D 0;

(1.41)
0
BBBBBBB@

0

� P�n.t/
P�p.t/
0

0

0

1
CCCCCCCA

C APOD

0
BBBBBBB@

� .t/
�n.t/
�p.t/
�g .t/
�Jn.t/
�Jp.t/

1
CCCCCCCA

C U>F .nPOD; pPOD; gPOD /� U>b.AT
S e.t// D 0:

(1.42)

1.4.1 Numerical Investigation

We now present numerical examples for POD MOR of the basic test circuit in
Fig. 1.1 and validate the reduced model at a fixed reference frequency of 1010Hz.
Figure 1.4 (left) shows the development of the error between the reduced and the
unreduced numerical solutions, plotted over the neglected information
, see (1.36),
which is measured by the relative error between the non-reduced states , n, p, Jn, Jp
and their projections onto the respective reduced state space. The number of POD
basis functions for each variable is chosen such that the indicated approximation
quality is reached, i.e. 
 WD 
 ' 
n ' 
p ' 
g ' 
Jn ' 
Jp : Since
we compute all POD basis functions anyway, this procedure does not involve any
additional costs.

In Fig. 1.4 (right) the simulation times are plotted versus the neglected informa-
tion 
. As one also can see, the simulation based on standard finite elements takes
twice as long as if based on RT elements. However, this difference is not observed
for the simulation of the corresponding reduced models.

Figure 1.5 shows the total number of singular vectors k D k CknCkpCkJn CkJp
required in the POD model to guarantee a given state space cut-off error 
. While
the number of singular vectors included increases only linearly, the cut-off error
tends to zero exponentially.
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Fig. 1.4 Left: L2 error of jV between reduced and unreduced problem, both for standard and
Raviart-Thomas FEM. Right: Time consumption for simulation runs for left figure. The fine lines
indicate the time consumption for the simulation of the original full system

Fig. 1.5 The number of required singular values grows only logarithmically with the requested
accuracy

1.4.2 Numerical Investigation, Position of the Semiconductor
in the Network

Finally we note that the presented reduction method accounts for the position of
the semiconductors in a given network in that it provides reduced-order models
which for identical semiconductors may be different depending on the location of
the semiconductors in the network. The POD basis functions of two identical semi-
conductors may be different due to their different operating states. To demonstrate
this fact, we consider the rectifier network in Fig. 1.6 (left). Simulation results are
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Fig. 1.6 Left: Rectifier network. Right: Simulation results for the rectifier network. The input vs
is sinusoidal with frequency 1GHz and offset C1:5V
Table 1.2 Distances
between reduced models in
the rectifier network


 d.U1;U2/ d.U1;U3/

10�4 0.61288 5:373 � 10�8

10�5 0.50766 4:712 � 10�8

10�6 0.45492 2:767 � 10�7

10�7 0.54834 1:211 � 10�6

plotted in Fig. 1.6 (right). The distance between the spaces U1 and U2 which are
spanned, e.g., by the POD-functions U1

 of the diode S1 and U2
 of the diode S2

respectively, is measured by

d.U1;U2/ WD max
u2U1kuk2D1

min
v2U2kvk2D1

ku � vk2:

Exploiting the orthonormality of the bases U1
 and U2

 and using a Lagrange
framework, we find

d.U1;U2/ D
q
2 � 2

p
	;

where 	 is the smallest eigenvalue of the positive definite matrix SS> with Sij D
hu1 ;i; u2 ;ji2. The distances for the rectifier network are given in Table 1.2. While the
reduced model for the diodes S1 and S3 are almost equal, the models for the diodes
S1 and S2 are significantly different. Similar results are obtained for the reduction of
n, p, etc.
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1.4.3 MOR for the Nonlinearity with DEIM

The nonlinear functionF in (1.42) has to be evaluated online which means that the
computational complexity of the reduced-order model still depends on the number
of unknowns of the unreduced model. A reduction method for the nonlinearity is
given by Discrete Empirical Interpolation (DEIM) [10]. This method is motivated
by the following observation. The nonlinearity in (1.42), see also (1.30), is given by

U>F .U�.t// D

0
BBBBBBB@

0

U>
n Fn.Un�n.t/;Up�p.t//

U>
p Fp.Un�n.t/;Up�p.t//

0

U>
Jn
FJn.Un�n.t/;Ug �g .t//

U>
Jp
FJp.Un�p.t/;Ug �g .t//

1
CCCCCCCA
;

see e.g. [23]. The subsequent considerations apply for each block component ofF .
For the sake of presentation we only consider the second block

U>
n„ƒ‚…

size sn�N

Fn„ƒ‚…
N evaluations

. Un„ƒ‚…
size N�sn

�n.t/; Up„ƒ‚…
size N�sp

�p.t/ /; (1.43)

and its derivative with respect to �p,

U>
n„ƒ‚…

size sn�N

@Fn

@p
.Un�n.t/;Up�p.t//

„ ƒ‚ …
size N�N, sparse

Up„ƒ‚…
size N�sp

:

Here, the matrices U.�/ are dense and the Jacobian of Fn is sparse. The evaluation
of (1.43) is of computational complexity O.N/. Furthermore, we need to multiply
large dense matrices in the evaluation of the Jacobian. Thus, the POD model order
reduction may become inefficient.

To overcome this problem, we apply Discrete Empirical Interpolation Method
(DEIM) proposed in [10], which we now describe briefly. The snapshots  h.tk; �/,
nh.tk; �/, ph.tk; �/, gh .tk; �/, Jhn.tk; �/, Jhp.tk; �/ are collected at time instances tk 2
ft1; : : : ; tlg � Œ0;T� as before. Additionally, we collect snapshots fFn.n.tk/; p.tk//g
of the nonlinearity. DEIM approximates the projected function (1.43) such that

U>
n Fn.Un�n.t/;Up�p.t// 	 .U>

n Vn.P
>
n Vn/

�1/P>
n Fn.Un�n.t/;Up�p.t//;

where Vn 2 R
N��n contains the first �n POD basis functions of the space spanned

by the snapshots fFn.n.tk/; p.tk//g associated with the largest singular values. The
selection matrix Pn D �

e�1 ; : : : ; e��n
� 2 R

N��n selects the rows of Fn corresponding
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to the so-called DEIM indices �1; : : : ; ��n which are chosen such that the growth of
a global error bound is limited and P>

n Vn is regular, see [10] for details.
The matrixWn WD .U>

n Vn.P>
n Vn/

�1/ 2 R
sn��n as well as the whole interpolation

method is calculated in an offline phase. In the simulation of the reduced-order
model we instead of (1.43) evaluate:

Wn„ƒ‚…
size sn��n

P>
n Fn„ƒ‚…

�n evaluations

. Un„ƒ‚…
size N�sn

�n.t/; Up„ƒ‚…
size N�sp

�p.t/ /; (1.44)

with derivative

W>
n„ƒ‚…

size sn��n

@P>
n Fn

@p
.Un�n.t/;Up�p.t//

„ ƒ‚ …
size �n�N, sparse

Up„ƒ‚…
size N�sp

:

In the applied finite element method a single functional component of Fn only
depends on a small constant number c 2 N components of Un�n.t/. Thus, the
matrix-matrix multiplication in the derivative does not really depend on N since
the number of entries per row in the Jacobian is at most c.

But there is still a dependence on N, namely the calculation of Un�n.t/. To
overcome this dependency we identify the required components of the vector
Un�n.t/ for the evaluation of P>

n Fn. This is done by defining selection matrices
Qn;n 2 R

c�n�sn , Qn;p 2 R
c�p�sp such that

P>
n Fn.Un�n.t/;Up�p.t// D OFn.Qn;nUn�n.t/;Qn;pUp�p.t//;

where OFn denotes the functional components of Fn selected by Pn restricted to the
arguments selected by Qn;n and Qn;p.

Supposed that �n 	 sn 
 N we obtain a reduced-order model which does not
depend on N any more.

1.4.4 Numerical Implementation and Results with DEIM

We again use the basic test circuit with a single 1-dimensional diode depicted in
Fig. 1.1. The parameters of the diode are summarized in [23]. The input vs.t/ is
chosen to be sinusoidal with amplitude 5V. In the sequel the frequency of the
voltage source will be considered as a model parameter.

We first validate the reduced model at a fixed reference frequency of 5 � 109Hz.
Figure 1.7 shows the development of the relative error between the POD reduced,
the POD-DEIM reduced and the unreduced numerical solutions, plotted over the
lack of information
 of the POD basis functions with respect to the space spanned
by the snapshots. The figure shows that the approximation quality of the POD-DEIM



1 MOR of Integrated Circuits in Electrical Networks 21

10−7 10−6 10−5 10−4 10−3

10−5

100

lack of information Δ(s)

re
l. 

L2 −e
rro

r o
f o

ut
pu

t j
V

POD
DEIM

Fig. 1.7 Relative error between DEIM-reduced and unreduced nonlinearity at the fixed frequency
5 � 109 Hz
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Fig. 1.8 Time consumption for simulation runs of Fig. 1.7. The horizontal line indicates the time
consumption for the simulation of the original full system

reduced model is comparable with the more expensive POD reduced model. The
number of POD basis functions s.�/ for each variable is chosen such that the indicated
approximation quality is reached, i.e.
 WD 
 ' 
n ' 
p ' 
g ' 
Jn ' 
Jp :

The numbers �.�/ of POD-DEIM basis functions are chosen likewise.
In Fig. 1.8 the simulation times are plotted versus the lack of information 
.

The POD reduced-order model does not reduce the simulation times significantly
for the chosen parameters. The reason for this is its dependency on the number of
variables of the unreduced system. Here, the unreduced system contains 1000 finite
elements which yields 12,012 unknowns. The POD-DEIM reduced-order model
behaves very well and leads to a reduction in simulation time of about 90% without
reducing the accuracy of the reduced model. However, we have to report a minor
drawback; not all tested reduced models converge for large
.s/ � 3 � 10�5. This is
indicated in the figures by missing squares. This effect is even more pronounced for
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Fig. 1.9 The number of required POD basis function and DEIM interpolation indices grows only
logarithmically with the requested information content
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Fig. 1.10 Computation times of the unreduced and the reduced-order models plotted versus the
number of finite elements

spatially two-dimensional semiconductors. It seems to be caused by the fact, that
only a sufficiently large POD basis captured the physics of the semiconductors well
enough.

In Fig. 1.9 we plot the corresponding total number of required POD basis
functions. It can be seen that with the number of POD basis functions increasing
linearly, the lack of information tends to zero exponentially. Furthermore, the
number of DEIM interpolation indices behaves in the same way.

In Fig. 1.10 we investigate the dependence of the reduced models on the number
of finite elements N. One sees that the simulation times of the unreduced model
depends linearly on N. The POD reduced-order model still depends on N linearly
with a smaller constant. The dependence on N of our POD-DEIM implementation
is negligible.
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Fig. 1.11 The reduced models are compared with the unreduced model at various input frequen-
cies

Finally, we analyze in Fig. 1.11 the behaviour of the models with respect to
parameter changes. We consider the frequency of the sinusoidal input voltage
as model parameter. The reduced-order models are created based on snapshots
gathered in a full simulation at a frequency of 5 � 109Hz. We see that the POD
model and the POD-DEIM model behave very similarly. The adaptive enlargement
of the POD basis using the residual greedy approach of [33] is discussed in the next
section based on the results presented in [23].

Summarizing all numerical results we conclude that the significantly faster POD-
DEIM reduction method yields a reduced-order model with the same qualitative
behaviour as the reduced model obtained by classical POD MOR.

1.5 Residual-Based Sampling

Although POD model order reduction often works well, one has to keep in mind
that the reduced system depends on the specific inputs and parameters used to
generate the snapshots. A possible remedy consists in performing simulations over a
certain input and/or parameter sample and then to collect all simulations in a global
snapshot matrix Y WD ŒY1;Y2; : : :�. Here, each Yi represents the snapshots taken for
a certain input resp. parameter.

In this section we propose a strategy to choose inputs/parameters in order to
obtain a reduced model, which is valid over the whole input/parameter range.
Possible parameters are physical constants of the semiconductors (e.g. length,
permeability, doping) and parameters of the network elements (e.g. frequency of
sinusoidal voltage sources, value of resistances). We do not distinguish between
inputs and parameters of the model.
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Let there be r 2 N parameters and let the space of considered parameters be given
as a bounded setP � R

r. We construct the reduced model based on snapshots from
a simulation at a reference parameter !1 2 P . One expects that the reduced model
approximates the unreduced model well in a small neighborhood of !1, but one
cannot expect that the reduced model is valid over the complete parameter set P .
In order to create a suitable reduced-order model we consider additional snapshots
which are obtained from simulations at parameters !2; !3; : : : 2 P . The iterative
selection of !kC1 at a step k is called parameter sampling. Let Pk denote the set of
selected reference parameters, Pk WD f!1; !2; : : : ; !kg � P .

We neglect the discretization error of the finite element method and its influence
on the coupled network and define the error of the reduced model as

E .!IP/ WD zh.!/� zPOD.!IP/; (1.45)

where zh.!/ WD .eh.!/; jhV.!/; j
h
L.!/; y

h.!//> is the solution of Prob-
lem 1.3.1 at the parameter ! with discretized semiconductor variables yh WD
. h; nh; ph; gh ; J

h
n ; J

h
p/

>. zPOD.!IP/ denotes the solution of the coupled system in
Problem 1.4.1 with reduced semiconductors, where the reduced model is created
based on simulations at the reference parameters P � P . The error is considered
in the space X with norm

kzkX WD
���
�
kek2; kjVk2; kjLk2;
k kL2.Œ0;T�;L2 .˝//; knkL2.Œ0;T�;L2.˝//; kpkL2.Œ0;T�;L2 .˝//;
kg kL2.Œ0;T�;H0;N .div;˝//;
kJnkL2.Œ0;T�;H0;N .div;˝//; kJpkL2.Œ0;T�;H0;N .div;˝//

����:
Obvious extensions apply when there is more than one semiconductor present.

Furthermore we define the residual R by evaluation of the unreduced model
(1.31)–(1.35) at the solution of the reduced model zPOD.!IP/, i.e.

R.zPOD.!IP// WD

0
BBBBBBB@

0

�ML PnPOD.t/
ML PpPOD.t/

0

0

0

1
CCCCCCCA

C AFEM

0
BBBBBBB@

 POD.t/
nPOD.t/
pPOD.t/
gPOD .t/

JPODn .t/
JPODp .t/

1
CCCCCCCA

C F .nPOD; pPOD; gPOD / � b.AT
S e

POD.t//: (1.46)

Note that the residual of Eqs. (1.31)–(1.34) vanishes.
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We note that the same definitions are used in [22] for linear descriptor systems.
In [22] an error estimate is obtained by deriving a linear ODE for the error and
exploiting explicit solution formulas. Here we have a nonlinear DAE and at the
present state we are not able to provide an upper bound for the error kE .!IP/kX
which would yield a rigorous sampling method using for example the Greedy
algorithm of [33].

We propose to consider the residual as an estimate for the error. The evaluation
of the residual is cheap since it only requires the solution of the reduced system and
its evaluation in the unreduced DAE. It is therefore possible to evaluate the residual
at a large set of test parameters Ptest � P . Similar to the Greedy algorithm of [33],
we add to the set of reference parameters the parameter where the residual becomes
maximal.

The magnitude of the components in error and residual may be large and a proper
scaling should be applied. For the error we consider the component-wise relative
error, i.e.

k h.!/ �  POD.!IP/kL2.Œ0;T�;L2 .˝//
k h.!/kL2.Œ0;T�;L2.˝//

;
knh.!/ � nPOD.!IP/kL2.Œ0;T�;L2 .˝//

knh.!/kL2.Œ0;T�;L2.˝//
; : : : ;

and the residual is scaled by a block-diagonal matrix containing the weights

D.!/R.zPOD.!IP// D

0
BBBBBBB@

d .!/I
dn.!/I

dp.!/I
dg .!/I

dJn.!/I
dJp.!/I

1
CCCCCCCA

�R.zPOD.!IP//:

The weights d.�/.!/ > 0 may be parameter-dependent. These weights are chosen
in a way that the norm of the residual and the relative error are component-wise
equal at the reference frequencies !k where we know zh.!k/ from simulation of the
unreduced model, i.e.

d .!k/ WD k h.!k/�  POD.!kIP/kL2.Œ0;T�;L2.˝//
k h.!k/kL2.Œ0;T�;L2.˝// � kR1.zPOD.!kIP//kL2.Œ0;T�;L2.˝//

; (1.47)

and similarly for the other components. If kR1.zPOD.!kIP//kL2.Œ0;T�;L2 .˝// D 0 holds
we chose d .!k/ WD 1.

In one dimensional parameter sampling with P WD Œp; p�, we approximate
d.�/.!/ by piecewise linear interpolation of the weights d.�/.!1/, : : :, d.�/.!k/.
Extrapolation is done by nearest-neighbor interpolation to ensure the positivity of
the weights.
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Algorithm 1.1 Sampling
1. Select !1 2 P , Ptest � P , tol > 0, and set k WD 1, P1 WD f!1g.
2. Simulate the unreduced model at !1 and calculate the reduced model with POD basis functions

U1.
3. Calculate weight functions d.�/.!/ > 0 according to (1.47) for all !k 2 Pk.
4. Calculate the scaled residual kD.!/R.zPOD.!;Pk//k for all ! 2 Ptest.
5. Check termination conditions, e.g.

• max!2Ptest kD.!/R.zPOD.!;Pk//k < tol,
• no progress in weighted residual.

6. Calculate !kC1 WD argmax!2Ptest kD.!/R.zPOD.!;Pk//k.
7. Simulate the unreduced model at !kC1 and create a new reduced model with POD basis UkC1

using also the already available information at !1, : : :, !k .
8. Set PkC1 WD Pk [ f!kC1g, k WD k C 1 and goto 3.

We summarize our ideas in the sampling Algorithm 1.1. The step 7 in this
algorithm can be executed in different ways. If offline time and offline memory
requirements are not critical one may combine snapshots from all simulations of
the full model and redo the model order reduction on the large snapshot ensemble.
Otherwise we can create a new reduced model at reference frequency !kC1 with
POD-basis NU and then perform an additional POD step on .Uk; NU/.

1.5.1 Numerical Investigation for Residual Based Sampling

We now apply Algorithm 1.1 to provide a reduced-order model of the basic
circuit and we choose the frequency of the input voltage vs as model parameter.
As parameter space we chose the interval P WD Œ108; 1012�Hz. We start the
investigation with a reduced model which is created from the simulation of the
full model at the reference frequency !1 WD 1010Hz. The number of POD basis
functions s is chosen such that the lack of information
.s/ is approximately 10�7.
The relative error and the weighted residual are plotted in Fig. 1.12 (left). We
observe that the weighted residual is a rough estimate for the relative approximation
error. Using Algorithm 1.1 the next additional reference frequency is !2 WD 108Hz
since it maximizes the weighted residual. The second reduced model is constructed
on the same lack of information 
 WD 10�7. Here we note that in practical
applications, the error is not known over the whole parameter space.

The next two iterations of the sampling algorithm are also depicted in Fig. 1.12.
Based on the residual in step 2, one selects !3 WD 1:0608 � 109Hz as the next
reference frequency. Since no further progress of the weighted residual is achieved
in step 3, the algorithm terminates. The maximal errors and residuals are given in
Table 1.3.
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Fig. 1.12 Left: Relative reduction error (solid line) and weighted residual (dashed line) plotted
over the frequency parameter space. The reduced model is created based on simulations at the
reference frequency !1 WD 1010 Hz, which is marked by vertical dotted line. Middle: Relative
reduction error (solid line) and weighted residual (dashed line) plotted over the frequency
parameter space. The reduced model is created based on simulations at the reference frequencies
!1 WD 1010 Hz and !2 WD 108 Hz. The reference frequencies are marked by vertical dotted lines.
Right: Relative reduction error (solid line) and weighted residual (dashed line) plotted over the
frequency parameter space. The reduced model is created based on simulations at the reference
frequency !1 WD 1010 Hz, !2 WD 108 Hz, and !3 WD 1:0608 � 109 Hz. The reference frequencies
are marked by vertical dotted lines

Table 1.3 Progress of refinement method

Max. scaled residual Max. relative error
Step k Reference parameters Pk (at frequency) (at frequency)

1 f1:0000 � 1010g 9:9864 � 102 3:2189 � 100
.1:0000 � 108/ .1:0000 � 108/

2 f1:0000 � 108; 1:5982 � 10�2 4:3567 � 10�2

1:0000 � 1010g .1:0608 � 109/ .3:4551 � 109/
3 f1:0000 � 108; 2:2829 � 10�2 1:6225 � 10�2

1:0608 � 109; .2:7283 � 109/ .1:8047 � 1010/
1:0000 � 1010g

1.6 PABTEC Combined with POD MOR

In the current section, we combine the PABTEC approach of Chap. 2 and simulation
based PODmodel order reduction techniques to determine reduced-ordermodels for
coupled circuit-device systems. While the PABTEC method preserves the passivity
and reciprocity in the reduced linear circuit model, the POD approach delivers high-
fidelity reduced-ordermodels for the semiconductor devices. Details of the approach
are given in [27].

Now we return to the network equations (1.31)–(1.35). The coupling
relation (1.34) can shortly be written as jS.t/ D #.xS.t//, where xS.t/ Dh
 T .t/; nT.t/; pT.t/; gT .t/; J

T
n .t/; J

T
p .t/

iT
is the state vector of the semidiscretized

drift-diffusion equations (1.35). Determining the state xS.t/ from Eq. (1.35) for
a given voltage AT

S e.t/, say xS.t/ D 
.AT
S e.t//, and substituting it into (1.34), we



28 M. Hinze et al.

obtain the relationship

jS.t/ D g.AT
S e.t//; (1.48)

where g.AT
S e.t// WD #.
.AT

S e.t/// describes the voltage-current relation for the
semidiscretized semiconductors. This relation can be considered as an input-to-
output map, where the input is the voltage vector AT

S e.t/ at the contacts of the
semiconductors and the output is the approximate semiconductor current jS.t/.

Electrical networks usually contains very large linear subnetworks modeling
interconnects. In POD MOR we need to simulate the coupled DAE system (1.31)–
(1.35) in order to determine the snapshots. To reduce the simulation time, we can
first to separate the linear subsystem and approximate it by a reduced-order linear
model of lower dimension using the PABTEC algorithm [38, 51], see also Chap. 2
in this book. The decoupled device equations are then reduced using the POD
method presented in Sect. 1.4. Combining these reduced-order linear and nonlinear
models, we obtain a nonlinear reduced-order model that approximates the coupled
system (1.31)–(1.35).

1.6.1 Decoupling

For the extraction of a linear subcircuit, we use a decoupling procedure from [47]
that consists in the replacement of the nonlinear inductors and nonlinear capacitors
by controlled current sources and controlled voltage sources, respectively. The
nonlinear resistors and semiconductor devices are replaced by an equivalent circuit
consisting of two serial linear resistors and one controlled current source connected
parallel to one of the resistors. Such replacements introduce additional nodes and
state variables, but neither additional loops consisting of capacitors and voltage
sources (CV-loops) nor cutsets consisting of inductors and current sources (LI-
cutsets) occur in the decoupled linear subcircuit meaning that its index coincides
with the index of the original circuit, see [13] for the index analysis of the circuit
equations. An advantage of the suggested replacement strategy is demonstrated in
the following example.

Example 1.6.1 Consider a circuit with a semiconductor diode as in Fig. 1.13. We
suggest to replace the diode by an equivalent circuit shown in Fig. 1.14. If we would
replace the diode by a current source, then a decoupled linear circuit would have
I-cutset and, hence, lack well-posedness. Moreover, if we would replace the diode
by a voltage source, then the resulting linear circuit would have CV-loop, i.e., it
would be of index two, although the original circuit is of index one. Note that model
reduction of index two problems is more involved than of index one problems [50].

For simplicity, we assume that the circuit does not contain nonlinear devices other
than semiconductors. Then after the replacements described above, the extracted
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Fig. 1.13 RC chain with a diode

Fig. 1.14 Decoupled linear RC chain with a circuit replacing the diode

linear subcircuit can be modeled by the linear DAE system in the MNA form

EPx.t/ D Ax.t/C Bul.t/; (1.49a)

yl.t/ D BTx.t/; (1.49b)

with x.t/ D 	
eT.t/ eTz .t/ jTL.t/ jTV.t/



, uTl .t/ D 	

iTs .t/ j
T
z .t/ vTs .t/



and

E D

2
64
AC;lCA

T
C;l 0 0

0 L 0

0 0 0

3
75; A D

2
64

�AR;lGlA
T
R;l �AL;l �AV;l

AT
L;l 0 0

AT
V;l 0 0

3
75;

B D

2
64

�AI;l 0

0 0

0 �I

3
75; (1.49c)

where the incidence and element matrices are given by

AC;l D
�
AC

0

�
; AL;l D

�
AL

0

�
; AV;l D

�
AV

0

�
; AI;l D

�
AI A

2
S

0 I

�
; (1.49d)

AR;l D
�
AR A1S A2S
0 �I I

�
; Gl D

2
4G 0 0

0 G1 0

0 0 G2

3
5 : (1.49e)
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Here, C, L and G are the capacitance, inductance and conductance matrices, A1S
and A2S have entries in f0; 1g and f�1; 0g, respectively, and satisfy A1S C A2S D AS.
Moreover, ez.t/ is the potential of the introduced nodes, and the new input variable
jz.t/ is given by

jz.t/ D .G1 C G2/G
�1
1 g.AT

S e.t// � G2A
T
S e.t/; (1.50)

where the matrices G1 and G2 are diagonal with conductances of the introduced
linear resistors in the replacement circuits on the diagonal. One can show that the
linear system (1.49) together with the decoupled nonlinear equations (1.35), (1.48)
is state equivalent to the coupled system (1.31)–(1.35) together with the equation

ez.t/ D .G1 C G2/�1
�
G1.A1eR /Te.t/ � G2.A2eR /Te.t/ � jz.t/

�
(1.51)

in the sense that these both systems have the same state vectors up to a permutation,
see [47] for detail.

1.6.2 Model Reduction Approach

Applying the PABTEC method to the linear DAE system (1.49), we obtain
a reduced-order model

OE d

dt
Ox.t/ D OAOx.t/C 	 OB1 OB2 OB3



2
4 is.t/

jz.t/
vs.t/

3
5 ;

2
64

Oyl;1.t/
Oyl;2.t/
Oyl;3.t/

3
75 D

2
4

OC1
OC2
OC3

3
5 Ox.t/;

(1.52)

where Oyl;j D OCj Ox.t/, j D 1; 2; 3, approximate the corresponding components of the
output yl in (1.49b). Combining this reduced model with the semidiscretized drift-
diffusion equations (1.35) via (1.48), we can determine the approximate snapshots
which can then be used to compute the POD-reduced model as in (1.42). The
coupling relation (1.41) can then be approximated by

OjS.t/ D C1UJn�Jn.t/C C2UJp�Jp.t/C C3Ug P�g .t/: (1.53)

As for the original system (1.34) and (1.35), we denote the relation between AT
S e.t/

and OjS.t/ by
OjS.t/ D Og.AT

S e.t//: (1.54)

Using (1.50) and (1.51), we have �.A2S/Te.t/ � ez.t/ D �AT
S e.t/C G1g.AT

S e.t//.
Then it follows from �.A2S/Te.t/ � ez.t/ 	 OC2 Ox.t/ that the semiconductor voltage
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vector uS.t/ D AT
S e.t/ can be approximated by OuS.t/ satisfying �G1 OC2 Ox.t/ �

G1 OuS.t/ C Og.OuS.t// D 0. Thus, combining the reduced linear system (1.52) with
the reduced semiconductor model (1.42), we obtain a reduced-order coupled DAE
system

OE d

dt
Ox.t/ � . OA C OB2.G1 C G2/ OC2/Ox.t/ � OB2G1 OuS.t/� OB1is.t/ � OB3vs.t/ D 0;

(1.55)

�G1 OC2 Ox.t/ � G1 OuS.t/C Og.OuS.t// D 0;

(1.56)

OjS.t/ � C1UJn�Jn.t/ � C2UJp�Jp.t/ � C3Ug P�g .t/ D 0;

(1.57)0
BBBBBBB@

0

� P�n.t/
P�p.t/
0

0

0

1
CCCCCCCA

C APOD

0
BBBBBBB@

� .t/
�n.t/
�p.t/
�g .t/
�Jn.t/
�Jp.t/

1
CCCCCCCA

C U>F .nPOD; pPOD; gPOD / � U>b.OuS.t// D 0:

(1.58)

Note that model reduction of the linear subsystem and the semiconductor model can
be executed independently.

1.6.3 Numerical Experiments

In this section, we present some results of numerical experiments to demonstrate the
applicability of the presented model reduction approaches for coupled circuit-device
systems.

For model reduction of linear circuit equations, we use the MATLAB Toolbox
PABTEC, see Chap. 2. The POD method is implemented in C++ based on the
FEM library deal.II [5] for discretizing the drift-diffusion equations. The obtained
large and sparse nonlinear DAE system (1.31)–(1.35) as well as the small and
dense reduced-order model (1.55)–(1.58) are integrated using the DASPK software
package [9] based on a BDFmethod, where the nonlinear equations are solved using
Newton’s method. Furthermore, the direct sparse solver SuperLU [12] is employed
for solving linear systems.
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Fig. 1.15 Input voltage and output currents for the basic diode with the voltage-current rela-
tion (1.59)

Consider again an RC circuit with one diode as shown in Fig. 1.13. The input is
given by

vs.t/ D uV .t/ D10 sin.2�f0t/4

with the frequency f0 D 104Hz, see Fig. 1.15. The output of the system is y.t/ D
�jV.t/. We simulate the models over the fixed time horizon Œ0; 2:5f0 �. The linear
resistors have the same resistance R D 2 k� and the linear capacitors have the
same capacitance C D 0:02 �F.

First, we describe the diode by the voltage-current relation

g.uS/ D 10�14 .exp.40uS/ � 1/ ; (1.59)

and apply only the PABTEC method to the decoupled linear system (1.49) that
models the linear circuit given in Fig. 1.14. System (1.49) with nl D 1503 variables
was approximated by a reduced model (1.52) of dimension 24. The outputs y and
Oy of the original nonlinear system (1.31)–(1.33), (1.48), (1.59) and the reduced-
order nonlinear model (1.55), (1.56) with Og replaced by g are plotted in Fig. 1.15.
Simulation time and the absolute and relative L2-norm errors in the output are
presented in Table 1.4. One can see that the simulation time is reduced by a factor
of 10, while the relative error is below 2%.

As the next step, we introduce the drift-diffusion model (1.17)–(1.22) for the
diode. The parameters of the diode are summarized in Table 1.5. Note that we do not
expect to obtain the same output y as in the previous experiment. To achieve this, one
would need to perform a parameter identification for the drift-diffusionmodel which
is not done in this paper. In Table 1.6, we collect the numerical results for different
model reduction strategies. The outputs of the systems with the reduced network
and/or POD-reduced diode are compared to the full semidiscretized model (1.31)–
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Table 1.4 Simulation time and approximation errors for the nonlinear RC circuit with the basic
diode described by the voltage-current relation (1.59)

Simulation Absolute error Relative error
System Dimension time (s) ky � OykL2 ky � OykL2 =kykL2

Unreduced 1503 0.584

Reduced 24 0.054 5:441 � 10�7 1:760 � 10�2

Table 1.5 Diode model
parameters

Parameter Value

" 1:03545 � 10�12 F/cm

UT 0:0259V

n0 1:4 � 1010 1/cm3

�n 1350 cm2/(V s)

�n 330 � 10�9 s

�p 480 cm2/(V s)

�p 33 � 10�9 s

˝ Œ0; l1�� Œ0; l2� � Œ0; l3�

l1 (length) 10�4 cm

l2 (width) 10�5 cm

l3 (depth) 10�5 cm

N.�/; �1 < l1=2 �9:94 � 1015 1/cm3

N.�/; �1 � l1=2 4:06 � 1018 1/cm3

FEM-mesh 500 elements, refined at �1 D l1=2

Table 1.6 Statistics for model reduction of the coupled circuit-device system

Network Diode Absolute Relative
(MNA (DD Simul. Jacobian error error
equations) equations) Dim. time (s) evaluations ky � OykL2 ky � OykL2 =kykL2

Unreduced Unreduced 7510 23.37 20

Reduced Unreduced 6031 16.90 17 2:165 � 10�8 7:335 � 10�4

Unreduced Reduced 1609 1.51 16 2:952 � 10�6 1:000 � 10�1

Reduced Reduced 130 1.19 11 2:954 � 10�6 1:000 � 10�1

(1.35) with 7510 variables. First, we reduce the extracted linear network and do
not modify the diode. This reduces the number of variables by about 20%, and
the simulation time is reduced by 27%. It should also be noted that the reduced
network is not only smaller but it is also easier to integrate for the DAE solver. An
indicator for the computational complexity is the number of Jacobian evaluations
or, equivalently, the number of LU decompositions required during integration.

Finally, we create a POD-reduced model (1.42) for the diode. The number of
columns s� of the projection matrices U� is determined from the condition 
� �
tolPOD with
� defined in (1.36) and a tolerance tolPOD D 10�6 for each component.
We also apply the DEIM method for the reduction of nonlinearity evaluations in
the drift-diffusion model. The resulting reduced-order model (1.42) for the diode is
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Fig. 1.16 Input voltage and output currents for the four model reduction setups

a dense DAE of dimension 105 while the original model (1.35) has dimension 6006,
for the diode only. Coupling it with the unreduced and reduced linear networks, we
obtain the results in Table 1.6 (last two rows). The simulation results for the different
model reduction setups are also illustrated in Fig. 1.16.

The presented numerical results demonstrate that the recoupling of the respective
reduced-ordermodels delivers an overall reduced-ordermodel for the circuit-device
system which allows significantly faster simulations (speedup-factor is about 20)
while keeping the relative errors below 10%.

Finally, we note that the model reduction concept developed in this section
is not restricted to the reduction of electrical networks containing semiconductor
devices. It can also be extended to the reduction of networks modeling e.g. nonlinear
multibody systems containing many simple mass-spring-damper components and
only a few high-fidelity components described by PDE systems.
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