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Preface

The ongoing miniaturization of devices like transistors used in integrated circuits
(ICs) has led to feature sizes on the nanoscale. The Intel Core 2 (Yorkfield), first
presented in 2007, was produced using 45 nm technology. Recently, production has
reached 14 nm processes, e.g., in the Intel Broadwell, Skylake, and Kaby Lake
microprocessors. Although the main principles in IC design and production are
those of microelectronics, nowadays, one therefore speaks of nanoelectronics.

With miniaturization now reaching double-digit nanometer length scales and the
huge number of semiconductor devices employed, which result in a correspondingly
significant rise in integration density, the influence of the wiring and supply
networks (interconnect and power grids) on the physical behavior of an IC can
no longer be neglected and must be modeled with the help of dedicated network
equations in the case of computer simulations. Furthermore, critical semiconductor
devices can often no longer be modeled by substitute schematics as done in the
past, using, e.g., the Partial Element Equivalent Circuit (PEEC) method. Instead,
complex mathematical models are used, e.g., the drift-diffusion model. In addition
to shortened production cycles, these developments in the design of new nano-
electronic ICs now increasingly pose challenges in computer simulations regarding
the optimization and verification of layouts. Even in the development stage, it has
become indispensable to test all crucial circuit properties numerically. Thus, the
field of computational nanoelectronics has emerged.

The complexity of the mathematical models investigated in computational
nanoelectronics is enormous: small parts of an IC design alone may require millions
of linear and nonlinear differential-algebraic equations for accurate modeling,
allowing the prediction of its behavior in practice. Thus, the full simulation of an IC
design requires tremendous computational resources, which are often unavailable to
microprocessor designers. In short, one could justifiably claim that the performance
of today’s computers is too low to simulate their successors!—a statement that
has been true for the last few decades and is debatably still valid today. Thus,
the dimension reduction of the mathematical systems involved has become crucial
over the past two decades and is one of the key technologies in computational
nanoelectronics.
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vi Preface

The dimension or model reduction at the system level, or system reduction for
short, is mostly done by mathematical algorithms, which produce a much smaller
(often by factors of 100 up to 10,000) model that reproduces the system’s response
to a signal up to a prescribed level of accuracy. The topic of system reduction
in computational nanoelectronics is the focus of this book. The articles gathered
here are based on the final reports for the network System Reduction in Nanoscale
IC Design (SyreNe), supported by Germany’s Federal Ministry of Education and
Research (BMBF) as part of its Mathematics for Innovations in Industry and
Services program. It was funded between July 1, 2007, and December 31, 2010
(see syrene.org for a detailed description) and continued under the name Model
Reduction for Fast Simulation of new Semiconductor Structures for Nanotechnology
and Microsystems Technology (MoreSim4Nano) within the same BMBF funding
scheme from October 1, 2010, until March 31, 2014 (see moresim4nano.org).

The goal of both research networks was to develop and compare methods for
system reduction in the design of high-dimensional nanoelectronic ICs and to test
the resulting mathematical algorithms in the process chain of actual semiconduc-
tor development at industrial partners. Generally speaking, two complementary
approaches were pursued: the reduction of the nanoelectronic system as a whole
(subcircuit model coupled to device equation) by means of a global method and the
creation of reduced order models for individual devices and large linear subcircuits
which are linked to a single reduced system. New methods for nonlinear model
reduction and for the reduction of power grid models were developed to achieve
this.

The book consists of five chapters, introducing novel concepts for the different
aspects of model reduction of circuit and device models. These include:

• Model reduction for device models coupled to circuit equations in Chap. 1 by
Hinze, Kunkel, Matthes, and Vierling

• Structure-exploiting model reduction for linear and nonlinear differential-
algebraic equations arising in circuit simulation in Chap. 2 by Stykel and
Steinbrecher

• The reduced representation of power grid models in Chap. 3 by Benner and
Schneider

• Numeric-symbolic reduction methods for generating parameterized models of
nanoelectronic systems in Chap. 4 by Schmidt, Hauser, and Lang

• Dedicated solvers for the generalized Lyapunov equations arising in balanced
truncation based model reduction methods for circuit equations in Chap. 5 by
Bollhöfer and Eppler

The individual chapters describe the new algorithmic developments in the respec-
tive research areas over the course of the project. They can be read independently
of each other and provide a tutorial perspective on the respective aspects of System
Reduction in Nanoscale IC Design related to the sub-projects within SyreNe. The
aim is to comprehensively summarize the latest research results, mostly published
in dedicated journal articles, and to present a number of new aspects never before
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published. The chapters can serve as reference works, but should also inspire future
research in computational nanoelectronics.

I would like to take this opportunity to express my gratitude to the project part-
ners Matthias Bollhöfer and Heike Faßbender (both from the TU Braunschweig),
Michael Hinze (University of Hamburg), Patrick Lang (formerly the Fraunhofer-
Institut für Techno- und Wirtschaftsmathematik (ITWM), Kaiserslautern), Tatjana
Stykel (at the TU Berlin during the project and now at the University of Augsburg),
Carsten Neff (NEC Europe Ltd. back then), Carsten Hammer (formerly Qimonda
AG and then Infineon Technologies AG), and Peter Rotter (Infineon Technologies
AG back then). Only their cooperation within SyreNe and their valued work in the
various projects made this book possible.

Furthermore, I would like to particularly thank André Schneider, who helped in
countless ways during the preparation of this book. This includes the LATEX setup
as well as indexing and resolving many conflicts in the bibliographies. Without his
help, I most likely never would have finished this project. My thanks also go to
Ruth Allewelt and Martin Peters of Springer-Verlag, who were very supportive and
encouraging throughout this project. Their endless patience throughout the many
delays in the final phases of preparing the book is greatly appreciated!

Magdeburg, Germany Peter Benner
December 2016
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Chapter 1
Model Order Reduction of Integrated Circuits
in Electrical Networks

Michael Hinze, Martin Kunkel, Ulrich Matthes, and Morten Vierling

Abstract We consider integrated circuits with semiconductors modeled by mod-
ified nodal analysis and drift-diffusion equations. The drift-diffusion equations
are discretized in space using mixed finite element method. This discretization
yields a high-dimensional differential-algebraic equation. Balancing-related model
reduction is used to reduce the dimension of the decoupled linear network equa-
tions, while the semidiscretized semiconductor models are reduced using proper
orthogonal decomposition. We among other things show that this approach delivers
reduced-order models which depend on the location of the semiconductor in the
network. Since the computational complexity of the reduced-order models through
the nonlinearity of the drift-diffusion equations still depend on the number of
variables of the full model, we apply the discrete empirical interpolation method
to further reduce the computational complexity. We provide numerical comparisons
which demonstrate the performance of the presented model reduction approach. We
compare reduced and fine models and give numerical results for a basic network
with one diode. Furthermore we discuss residual based sampling to construct POD
models which are valid over certain parameter ranges.

1.1 Introduction

Computer simulations play a significant role in design and production of very large
integrated circuits or chips that have nowadays hundreds of millions of semicon-
ductor devices placed on several layers and interconnected by wires. Decreasing
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physical size, increasing packing density, and increasing operating frequencies
necessitate the development of new models reflecting the complex continuous
processes in semiconductors and the high-frequency electromagnetic coupling in
more detail. Such models include complex coupled partial differential equation
(PDE) systems where spatial discretization leads to high-dimensional ordinary
differential equation (ODE) or differential-algebraic equation (DAE) systems which
require unacceptably high simulation times. In this context model order reduction
(MOR) is of great importance. In the present work we as a first step towards
model order reduction of complex coupled systems consider electrical circuits
with semiconductors modeled by drift-diffusion (DD) equations as proposed in
e.g. [46, 52]. Our general idea of model reduction of this system consists in
approximating this system by a much smaller model that captures the input-output
behavior of the original system to a required accuracy and also preserves essential
physical properties. For circuit equations, passivity is the most important property
to be preserved in the reduced-order model.

For linear dynamical systems, many different model reduction approaches have
been developed over the last 30 years, see [6, 42] for recent collection books on this
topic. Krylov subspace based methods such as PRIMA [32] and SPRIM [15, 16] are
the most used passivity-preserving model reduction techniques in circuit simulation.
A drawback of these methods is the ad hoc choice of interpolation points that
strongly influence the approximation quality. Recently, an optimal point selection
strategy based on tangential interpolation has been proposed in [3, 20] that provides
an optimal H2-approximation.

An alternative approach for model reduction of linear systems is balanced
truncation. In order to capture specific system properties, different balancing
techniques have been developed for standard and generalized state space systems,
see, e.g., [19, 31, 35, 37, 49]. In particular, passivity-preserving balanced truncation
methods for electrical circuits (PABTEC) have been proposed in [38, 39, 51] that
heavily exploit the topological structure of circuit equations. These methods are
based on balancing the solution of projected Lyapunov or Riccati equations and
provide computable error bounds.

Model reduction of nonlinear equation systems may be performed by a trajectory
piece-wise linear approach [40] based on linearization, or proper orthogonal
decomposition (POD) (see, e.g., [45]), which relies on snapshot calculations and
is successfully applied in many different engineering fields including computational
fluid dynamics and electronics [23, 29, 45, 48, 53]. A connection of POD to balanced
truncation was established in [41, 54].

A POD-based model reduction approach for the nonlinear drift-diffusion equa-
tions has been presented in [25], and then extended in [23] to parameterized
electrical networks using the greedy sampling proposed in [33]. An advantage of
the POD approach is its high accuracy with only few model parameters. However,
for its application to the drift-diffusion equations it was observed that the reduction
of the problem dimension not necessarily implies the reduction of the simulation
time. Therefore, several adaption techniques such as missing point estimation [4]



1 MOR of Integrated Circuits in Electrical Networks 3

and discrete empirical interpolation method (DEIM) [10, 11] have been developed
to reduce the simulation cost for the reduced-order model.

In this paper, we review results of [23–27] related to model order reduction
of coupled circuit-device systems consisting of the differential-algebraic equations
modeling an electrical circuit and the nonlinear drift-diffusion equations describ-
ing the semiconductor devices. In a first step we show how proper orthogonal
decomposition (POD) can be used to reduce the dimension of the semiconductor
models. It among other things turns out, that the reduced model for a semiconductor
depends on the position of the semiconductor in the network. We present numerical
investigations from [25] for the reduction of a 4-diode rectifier network, which
clearly indicate this fact. Furthermore, we apply the Discrete Empirical Interpolation
Method (DEIM) of [10] for a further reduction of the nonlinearity, yielding a
further reduction of the overall computational complexity. Moreover, we adapt to
the present situation the Greedy sampling approach of [33] to construct POD models
which are valid over certain parameter ranges. In a next step we combine the
passivity-preserving balanced truncation method for electrical circuits (PABTEC)
[38, 51] to reduce the dimension of the decoupled linear network equations with
POD MOR for the semiconductor model. Finally, we present several numerical
examples which demonstrate the performance of our approach.

1.2 Basic Models

In this section we combine mathematical models for electrical networks with math-
ematical models for semiconductors. Electrical networks can be efficiently modeled
by a differential-algebraic equation (DAE) which is obtained from modified nodal
analysis (MNA). Denoting by e the node potentials and by jL and jV the currents of
inductive and voltage source branches, the DAE reads (see [18, 28, 52])

AC
d

dt
qC.A

>
C e; t/C ARg.A>R e; t/C ALjL C AVjV D �AIis.t/; (1.1)

d

dt
�L. jL; t/ � A>L e D 0; (1.2)

A>V e D vs.t/: (1.3)

Here, the incidence matrix A D ŒAR;AC;AL;AV ;AI � D .aij/ represents the network
topology, e.g. at each non mass node i, aij D 1 if the branch j leaves node
i and aij D �1 if the branch j enters node i and aij D 0 elsewhere. The
indices R;C;L;V; I denote the capacitive, resistive, inductive, voltage source, and
current source branches, respectively. The functions qC, g and �L are continuously
differentiable defining the voltage-current relations of the network components. The
continuous functions vs and is are the voltage and current sources.
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Under the assumption that the Jacobians

DC.e; t/ WD @qC

@e
.e; t/; DG.e; t/ WD @g

@e
.e; t/; DL. j; t/ WD @�L

@j
. j; t/

are positive definite, analytical properties (e.g. the index) of DAE (1.1)–(1.3)
are investigated in [14] and [13]. In linear networks, the matrices DC, DG and
DL are positive definite diagonal matrices with capacitances, conductivities and
inductances on the diagonal.

Often semiconductors themselves are modeled by electrical networks. These
models are stored in a library and are stamped into the surrounding network
in order to create a complete model of the integrated circuit. Here we use a
different approach which uses the transient drift-diffusion equations as a continuous
model for semiconductors. Advantages are the higher accuracy of the model and
fewer model parameters. On the other hand, numerical simulations are more
expensive. For a comprehensive overview of the drift-diffusion equations we refer to
[1, 2, 8, 30, 43]. Using the notation introduced there, we have the following system of
partial differential equations for the electrostatic potential  .t; x/, the electron and
hole concentrations n.t; x/ and p.t; x/ and the current densities Jn.t; x/ and Jp.t; x/:

div." grad / D q.n � p � C/;

�q@tn C div Jn D qR.n; p; Jn; Jp/;

q@tp C div Jp D �qR.n; p; Jn; Jp/;

Jn D �nq.UT grad n � n grad /;

Jp D �pq.�UT grad p � p grad /;

with .t; x/ 2 Œ0;T� � ˝ and ˝ � R
d.d D 1; : : : ; 3/. The nonlinear function R

describes the rate of electron/hole recombination, q is the elementary charge, " the
dielectricity, �n and �p are the mobilities of electrons and holes. The temperature is
assumed to be constant which leads to a constant thermal voltage UT . The function
C is the time independent doping profile. Note that we do not formulate into quasi-
Fermi potentials since the additional non-linearities would imply higher simulation
time for the reduced model. Further details are given in [23]. The analytical and
numerical analysis of systems of this form is subject to current research, see [7, 17,
46, 52].

1.2.1 Coupling

In the present section we develop the complete coupled system for a network with
ns semiconductors. We will not specify an extra index for semiconductors, but we
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keep in mind that all semiconductor equations and coupling conditions need to be
introduced for each semiconductor.

For the sake of simplicity we assume that to a semiconductor m semiconductor
interfaces �O;k � � � @˝ , k D 1; : : : ;m are associated, which are all Ohmic
contacts, compare Fig. 1.2. The dielectricity " shall be constant over the whole
domain˝ . We focus on the Shockley-Read-Hall recombination

R.n; p/ WD np � n2i
�p.n C ni/C �n. p C ni/

which does not depend on the current densities. Herein, �n and �p are the average
lifetimes of electrons and holes, and ni is the constant intrinsic concentration which
satisfy n2i D np if the semiconductor is in thermal equilibrium.

The scaled complete coupled system is constructed as follows. (We neglect
the tilde-sign over the scaled variables.) The current through the diodes must be
considered in Kirchhoff’s current law. Consequently, the term ASjS is added to
Eq. (1.1), e.g.

AC
d

dt
qC.A

>
C e; t/C ARg.A>R e; t/C ALjL C AVjV C ASjS D �AIis.t/; (1.4)

d

dt
�L. jL; t/ � A>L e D 0; (1.5)

A>V e D vs.t/: (1.6)

In particular the matrix AS denotes the semiconductor incidence matrix. Here,

jS;k D
Z
�O;k

.Jn C Jp � "@tr / � � d�: (1.7)

I.e. the current is the integral over the current density Jn C Jp plus the displacement
current in normal direction �. Furthermore, the potentials of nodes which are
connected to a semiconductor interface are introduced in the boundary conditions
of the drift-diffusion equations (see also Fig. 1.2):

 .t; x/ D  bi.x/C .A>S e.t//k D UT log

0
B@
q

C.x/2 C 4n2i C C.x/

2ni

1
CAC .A>S e.t//k;

(1.8)

n.t; x/ D 1

2

�q
C.x/2 C 4n2i C C.x/

�
; (1.9)

p.t; x/ D 1

2

�q
C.x/2 C 4n2i � C.x/

�
; (1.10)
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Fig. 1.1 Basic test circuit
with one diode

for .t; x/ 2 Œ0;T� � �O;k. Here,  bi.x/ denotes the build-in potential and ni

the constant intrinsic concentration. All other parts of the boundary are isolation
boundaries �I WD � n �O, where r � � D 0, Jn � � D 0 and Jp � � D 0 holds. For a
basic example consider the network in Fig. 1.1 where the network is described by

AV D �
1; 0

�>
; AS D ��1; 1�> ; AR D �

0; 1
�>
; and g.A>R e; t/ D 1

R
e2.t/:

The complete model forms a partial differential-algebraic equation (PDAE). The
analytical and numerical analysis of such systems is subject to current research,
see [7, 17, 46, 52]. The simulation of the complete coupled system is expensive
and numerically difficult due to bad scaling of the drift-diffusion equations.
The numerical issues can be significantly reduced by the unit scaling procedure
discussed in [43]. That means we substitute

x D LQx;  D UT Q ; n D kCk1 Qn; p D kCk1 Qp; C D kCk1 QC;

Jn D qUTkCk1
L

�n QJn; Jp D qUTkCk1
L

�p QJp; ni D QnikCk1;

where L denotes a specific length of the semiconductor (Fig. 1.2). The scaled drift-
diffusion equations then read

	
 D n � p � C; (1.11)

�@tn C �n div Jn D R.n; p/; (1.12)

@tp C �p div Jp D �R.n; p/; (1.13)

Jn D rn � nr ; (1.14)

Jp D �rp � pr ; (1.15)

where we omit the tilde for the scaled variables. The constants are given by 	 WD
"UT

L2qkCk1 , �n WD UT�n

L2
and �p WD UT�p

L2
, see e.g. [43].
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Fig. 1.2 Sketch of a coupled
system with one
semiconductor. Here
 .t; x/ D ei.t/C  bi.x/; for
all .t; x/ 2 Œ0; T� � �O;1

1.3 Simulation of the Full System

Classical approaches for the simulation of drift-diffusion equations (e.g. Gummel
iterations [21]) approximate Jn and Jp by piecewise constant functions and then
solve Eqs. (1.12) and (1.13) with respect to n and p explicitly. This helps reducing
the computational effort and increases the numerical stability. For the model order
reduction approach proposed in the present work this method has the disadvantage
of introducing additional non-linearities, arising from the exponential structure of
the Slotboom variables, see [46]. Subsequently we propose two finite element
discretizations for the drift-diffusion system which with regard to coping with
nonlinearities are advantageous from the MOR reduction point of view, and which
together with the equations for the electrical network finally lead to large-scale
nonlinear DAE model for the fully coupled system.

1.3.1 Standard Galerkin Finite Element Approach

Let T denote a regular triangulation of the domain ˝ with gridwidth h, whose
simplexes are denoted by T. In the classical Galerkin finite element method the
functions  , n and p are approximated by piecewise linear and globally continuous
functions, while Jn and Jp are approximated by patchwise-piecewise constant
functions, e.g.

 .t; x/ WD
NX

iD1
 i.t/�i.x/; n.t; x/ WD

NX
iD1

ni.t/�i.x/; p.t; x/ WD
NX

iD1
pi.t/�i.x/;

Jn.t; x/ WD
NX

iD1
Jn;i.t/'i.x/; Jp.t; x/ WD

NX
iD1

Jp;i.t/'i.x/;
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where the functions f�ig and f'ig are the corresponding ansatz functions, and
N denotes the number of degrees of freedom. For  , n and p the coefficients
corresponding to the boundary elements are prescribed using the Dirichlet boundary
conditions. Note that the time is not discretized at this point which refers to the so-
called method of lines. The finite element method leads to the following DAE for
the unknown vector-valued functions of time  , n, p, Jn, Jp for each semiconductor:

0 D 	S .t/C Mn.t/ � Mp.t/ � Ch C b .A
T
S e.t//;

�M Pn.t/ D ��nD>Jn.t/C hR.n.t/; p.t//;

M Pp.t/ D ��pD>Jp.t/ � hR.n.t/; p.t//;

0 D hJn.t/C Dn.t/� diag
�
Bn.t/C Qbn

�
D .t/C bn;

0 D hJp.t/ � Dp.t/ � diag
�
Bp.t/C Qbp

�
D .t/C bp;

(1.16)

where S;M and D;B are assembled finite element matrices. The matrix diag.v/ is
diagonal with vector v forming the diagonal. The vectors b .AT

S e.t//, bn, Qbn, bp and
Qbp implement the boundary conditions imposed on  , n and p through (1.8)–(1.10).

Discretization of the coupling condition for the current (1.7) completes the
discretized system. In one spatial dimension we use

jS;k.t/ D aqUTkCk1
L

�
�nJn;N.t/C �pJp;N.t/

� � a"UT

Lh

� P N.t/� P N�1.t/
�
;

1.3.2 Mixed Finite Element Approach

Since the electrical field represented by the (negative) gradient of the electrical
potential plays a dominant role in (1.11)–(1.15) and is present also in the coupling
condition (1.7), we provide for it the additional variable g D r leading to the
following mixed formulation of the DD equations:

	 div g D n � p � C; (1.17)

�@tn C �n div Jn D R.n; p/; (1.18)

@tp C �p div Jp D �R.n; p/; (1.19)

g D r ; (1.20)

Jn D rn � ng ; (1.21)

Jp D �rp � pg : (1.22)
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The weak formulation of (1.17)–(1.22) then reads: Find  ; n; p 2 Œ0;T� � L2.˝/
and g ; Jn; Jp 2 Œ0;T� � H0;N.div;˝/ such that

	

Z
˝

div g ' D
Z
˝

.n � p/ ' �
Z
˝

C '; (1.23)

�
Z
˝

@tn ' C �n

Z
˝

div Jn ' D
Z
˝

R.n; p/ '; (1.24)

Z
˝

@tp ' C �p

Z
˝

div Jp ' D �
Z
˝

R.n; p/ '; (1.25)

Z
˝

g � � D �
Z
˝

 div� C
Z
�

 � � �; (1.26)

Z
˝

Jn � � D �
Z
˝

n div� C
Z
�

n � � � �
Z
˝

n g � �;
(1.27)Z

˝

Jp � � D
Z
˝

p div� �
Z
�

p � � � �
Z
˝

p g � �;
(1.28)

are satisfied for all ' 2 L2.˝/ and � 2 H0;N.div;˝/ where the space H0;N.div;˝/
is defined by

H.div;˝/ WD fy 2 L2.˝/d W div y 2 L2.˝/g;
H0;N.div;˝/ WD fy 2 H.div;˝/ W y � � D 0 on �Ig :

Consequently, the boundary integrals on the right hand sides in Eqs. (1.26)–(1.28)
reduce to integrals over the interfaces �O;k, where the values of  , n and p are
determined by the Dirichlet boundary conditions (1.8)–(1.10). We note that, in
contrast to the standard weak form associated with (1.11)–(1.15), the Dirichlet
boundary values are naturally included in the weak formulation (1.23)–(1.28) and
the Neumann boundary conditions have to be included in the space definitions.
This is advantageous in the context of POD model order reduction since the
non-homogeneous boundary conditions (1.8)–(1.10) are not present in the space
definitions.

Here, Eqs. (1.23)–(1.28) are discretized in space with Raviart-Thomas finite
elements of degree 0 (RT0), alternative discretization schemes for the mixed problem
are presented in [8]. To describe the RT0-approach for d D 2 spatial dimensions, let
T be a triangulation of˝ and let E be the set of all edges. Let EI WD fE 2 E W E �
N�Ig be the set of edges at the isolation (Neumann) boundaries. The potential and the

concentrations are approximated in space by piecewise constant functions

 h.t/; nh.t/; ph.t/ 2 Lh WD fy 2 L2.˝/ W yjT.x/ D cT ; 8T 2 T g;
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with ansatz functions f'igiD1;:::;N and the discrete fluxes gh
 .t/, Jh

n.t/ and Jh
p.t/ are

elements of the space

RT0 WD fy W ˝ ! R
d W yjT.x/ D aT C bTx; aT 2 R

d; bT 2 R; Œy�E � �E D 0;

for all inner edges Eg:

Here, Œy�E denotes the jump yjTC
� yjT�

over a shared edge E of the elements TC
and T�. The continuity assumption yields RT0 � H.div;˝/. We set

Hh;0;N.div;˝/ WD .RT0 \ H0;N.div;˝// � H0;N.div;˝/:

Then it can be shown, that Hh;0;N posses an edge-oriented basis f�jgjD1;:::;M . We use
the following finite element ansatz in (1.23)–(1.28)

 h.t; x/ D
NX

iD1
 i.t/'i.x/; gh

 .t; x/ D
MX

jD1
g ;j.t/�j.x/;

nh.t; x/ D
NX

iD1
ni.t/'i.x/; Jh

n.t; x/ D
MX

jD1
Jn;j.t/�j.x/;

ph.t; x/ D
NX

iD1
pi.t/'i.x/; Jh

p.t; x/ D
MX

jD1
Jp;j.t/�j.x/;

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(1.29)

where N WD jT j, i.e. the number of elements of T , and M WD jE j � jEN j, i.e. the
number of inner and Dirichlet boundary edges.

This in (1.23)–(1.28) yields

	

MX
jD1

g ;j.t/
Z
˝

div�j 'k �
NX

iD1
.ni.t/ � pi.t//

Z
˝

'i 'k D �
Z
˝

C 'k;

�
NX

iD1
Pni.t/

Z
˝

'i 'k C �n

MX
jD1

Jn;j.t/
Z
˝

div�j 'k �
Z
˝

R.nh; ph/ 'k D 0;

NX
iD1

Ppi.t/
Z
˝

'i 'k C �p

MX
jD1

Jp;j.t/
Z
˝

div�j 'k C
Z
˝

R.nh; ph/ 'k D 0;

MX
jD1

g ;j.t/
Z
˝

�j � �l C
NX

iD1
 i.t/

Z
˝

'i div�l D
Z
�

 h �l � �;
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MX
jD1

Jn;j.t/
Z
˝

�j � �l C
NX

iD1
ni.t/

Z
˝

'i div�l C
Z
˝

nhgh
 � �l D

Z
�

nh �l � �;

MX
jD1

Jp;j.t/
Z
˝

�j � �l �
NX

iD1
pi.t/

Z
˝

'i div�l C
Z
˝

phgh
 � �l D �

Z
�

ph �l � �;

which represents a nonlinear, large and sparse DAE for the approximation of the
functions  , n, p, g , Jn, and Jp. In matrix notation it reads

0
BBBBBBB@

0

�ML Pn.t/
ML Pp.t/
0

0

0

1
CCCCCCCA

C

0
BBBBBBB@

�ML ML 	D
�nD

�pD
D> MH

D> MH

�D> MH

1
CCCCCCCA

„ ƒ‚ …
AFEM

0
BBBBBBB@

 .t/
n.t/
p.t/

g .t/
Jn.t/
Jp.t/

1
CCCCCCCA

CF .nh; ph; gh
 / D b.AT

S e.t//;

with

F .nh; ph; gh
 / WD

0
BBBBBBB@

0

� R
˝

R.nh; ph/ 'R
˝

R.nh; ph/ '

0R
˝

nhgh
 � �R

˝
phgh

 � �

1
CCCCCCCA
; b WD

0
BBBBBBB@

� R
˝

C '
0

0R
�
 h.AT

S e.t// � � �R
� nh � � �

� R
�

ph � � �

1
CCCCCCCA
;

(1.30)

and

Z
˝

R.nh; ph/' WD

0
B@
R
˝

R.nh; ph/'1
:::R

˝
R.nh; ph/'N

1
CA :

All other integrals in F and b are defined analogously. The matrices ML 2 R
N�N

and MH 2 R
M�M are mass matrices in the spaces Lh and Hh;0;N , respectively, and

D 2 R
N�M . The final DAE for the mixed finite element discretization now takes the

form
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Problem 1.3.1 (Full Model)

AC
d

dt
qC.A

>
C e.t/; t/C ARg.A>R e.t/; t/C ALjL.t/C AVjV.t/

CASjS.t/C AIis.t/ D 0; (1.31)

d

dt
�L. jL.t/; t/ � A>L e.t/ D 0; (1.32)

A>V e.t/ � vs.t/ D 0; (1.33)

jS.t/ � C1Jn.t/ � C2Jp.t/ � C3 Pg .t/ D 0; (1.34)
0
BBBBBBB@

0

�ML Pn.t/
ML Pp.t/
0

0

0

1
CCCCCCCA

C AFEM

0
BBBBBBB@

 .t/
n.t/
p.t/

g .t/
Jn.t/
Jp.t/

1
CCCCCCCA

C F .nh; ph; gh
 /� b.AT

S e.t// D 0; (1.35)

where (1.34) represents the discretized linear coupling condition (1.7).

We present numerical computations for the basic test circuit with one diode
depicted in Fig. 1.1, where the model parameters are presented in Table 1.1. The
input vs.t/ is chosen to be sinusoidal with amplitude 5 V. The numerical results in
Fig. 1.3 show the capacitive effect of the diode for high input frequencies. Similar
results are obtained in [44] using the simulator MECS.

The discretized equations are implemented in MATLAB, and the DASPK
software package [34] is used to integrate the high-dimensional DAE. Initial values
are stationary states obtained by setting all time derivatives to 0. In order to solve
the Newton systems which arise from the BDF method efficiently, one may reorder
the variables of the sparse system with respect to minimal bandwidth. Then, one can
use the internal DASPK routines for the solution of the linear systems. Alternatively
one can implement the preconditioning subroutine of DASPK using a direct sparse
solver. Note that for both strategies we only need to calculate the reordering matrices
once, since the sparsity structure remains constant.

Table 1.1 Diode model parameters

Parameter Value Parameter Value

L 10�4 cm " 1:03545 � 10�12 F/cm

UT 0:0259V ni 1:4 � 1010 1/cm3

�n 1350 cm2/(V s) �n 330 � 10�9 s

�p 480 cm2/(V s) �p 33 � 10�9 s

a 10�5 cm2 C.x/; x < L=2 �9:94 � 1015 1/cm3

C.x/; x � L=2 4:06 � 1018 1/cm3
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Fig. 1.3 Current jV through the basic network for input frequencies 1 MHz, 1 GHz and 5 GHz.
The capacitive effect is clearly demonstrated

1.4 Model Order Reduction Using POD

We now use proper orthogonal decomposition (POD) to construct low-dimensional
surrogate models for the drift-diffusion equations. The idea consists in replacing the
large number of local model-independent ansatz and test functions f�ig; f'jg in the
finite element approximation of the drift-diffusion systems by only a few nonlocal
model-dependent ansatz functions for the respective variables.

The snapshot variant of POD introduced in [45] works as follows. We run
a simulation of the unreduced system and collect l snapshots  h.tk; �/, nh.tk; �/,
ph.tk; �/, gh

 .tk; �/, Jh
n.tk; �/, Jh

p.tk; �/ at time instances tk 2 ft1; : : : ; tlg � Œ0;T�. The
optimal selection of the time instances is not considered here. We use the time
instances delivered by the DAE integrator.

Since every component of the state vector y WD . ; n; p; g ; Jn; Jp/ has its own
physical meaning we apply POD MOR to each component separately. Among other
things this approach has the advantage of yielding a block-dense model and the
approximation quality of each component is adapted individually.

Let X denote a Hilbert space and let yh W Œ0;T� � X ! R
r with some r 2 N.

The Galerkin formulation (1.29) yields yh.t; �/ 2 Xh WD spanf�X
1 ; : : : ; �

X
n g, where

f�X
j g1�j�n denote n linearly independent elements of X. The idea of POD consists

in finding a basis fu1; : : : ; umg of the span of the snapshots

span

(
yh.tk; �/ D

nX
iD1

yh;k
i �

X
i .�/; with k D 1; : : : ; l

)

satisfying

fu1; : : : ; usg D arg min
fv1;:::;vsg�X

lX
kD1

���yh.tk; �/�
sX

iD1
hyh.tk; �/; vi.�/iXv

i.�/
���2

X
;
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for 1 � s � m, where 1 � m � l. The functions fuig1�i�s are orthonormal in X and
can be obtained with the help of the singular value decomposition (SVD) as follows.

Let the matrix Y WD .yh;1; : : : ; yh;l/ 2 R
n�l contain as columns the coefficient

vectors of the snapshots. Furthermore, let M WD .h�X
i ; �

X
j iX/1�i;j�n be the positive

definite mass matrix with its Cholesky factorization M D LL>. Let . QU; ˙; QV/ denote
the SVD of QY WD L>Y, i.e. QY D QU˙ QV> with QU 2 R

n�n, QV 2 R
l�l, and a matrix

˙ 2 R
n�l containing the singular values �1 � �2 � : : : � �m > �mC1 D : : : D

�l D 0. We set U WD L�> QU.W; 1Ws/. Then, the s-dimensional POD basis is given by

span

8<
:ui.�/ D

nX
jD1

Uji�
X
j .�/; i D 1; : : : ; s

9=
; :

The information content of fu1; : : : ; usg with respect to the scalar product h�; �iX with

0 � 
.s/ D
sPm

iDsC1 �2iPm
iD1 �2i

� 1; (1.36)

is given by 1 � 
.s/. Here 
.s/ measures the lack of information of fu1; : : : ; usg
with respect to spanfyh.t1; �/; : : : ; yh.tl; �/g. An extended introduction to POD can be
found in [36].

The POD basis functions are now used as trial and test functions in the Galerkin
method.

If the snapshots satisfy inhomogeneous Dirichlet boundary conditions, as
in (1.16), POD is performed for

Q .t/ D  .t/ �  r.t/; Qn.t/ D n.t/ � nr.t/; Qp.t/ D p.t/� pr.t/;

with  r, nr, pr denoting reference functions satisfying the Dirichlet boundary
conditions required for  , n and p. This guarantees that the POD basis admits
homogeneous boundary conditions on the Dirichlet boundary.

In the case of the mixed finite element approach the introduction of a reference
state is not necessary, since the boundary values are included more naturally
through the variational formulation. The time-snapshot POD procedure then delivers
Galerkin ansatz spaces for  , n, p, g , Jn and Jp. This leads to the ansatz

 POD.t/ D U � .t/; gPOD
 .t/ D Ug �g .t/;

nPOD.t/ D Un�n.t/; JPOD
n .t/ D UJn�Jn.t/;

pPOD.t/ D Up�p.t/; JPOD
p .t/ D UJp�Jp.t/:

9>>=
>>;

(1.37)
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The injection matrices

U 2 R
N�s ; Un 2 R

N�sn ; Up 2 R
N�sp ;

Ug 2 R
M�sg ; UJn 2 R

M�sJn ; UJp 2 R
M�sJp ;

contain the (time independent) POD basis functions, the vectors �.�/ the correspond-
ing time-variant coefficients. The numbers s.�/ are the respective number of POD
basis functions included. Assembling the POD system yields the DAE

0
BBBBBBB@

0

� P�n.t/
P�p.t/
0

0

0

1
CCCCCCCA

C APOD

0
BBBBBBB@

� .t/
�n.t/
�p.t/
�g .t/
�Jn.t/
�Jp.t/

1
CCCCCCCA

C U>F .nPOD; pPOD; gPOD
 / D U>b.AT

S e.t//;

with

APOD D U>AFEMU

D

0
BBBBBBB@

�U> MLUn U> MLUp 	U> DUg 

�nU>n DUJn

�pU>p DUJp

U>g D>U I

U>Jn
D>Un I

�U>Jp
D>Up I

1
CCCCCCCA

and U D diag.U ;Un;Up;Ug ;UJn ;UJp/. Note that we exploit the orthogonality of
the POD basis functions, e.g. U>n MLUn D U>p MLUp D IN�N and U>g MHUg D
U>Jn

MHUJn D U>Jp
MHUJp D IM�M . The arguments of the nonlinear functional have

to be interpreted as functions in space.
All matrix-matrix multiplications are calculated in an offline phase. The nonlin-

ear functional F has to be evaluated online. The reduced model for the network
now reads

Problem 1.4.1 (POD MOR Surrogate)

AC
d

dt
qC.A

>
C e.t/; t/C ARg.A>R e.t/; t/C ALjL.t/C AVjV.t/

CASjS.t/C AIis.t/ D 0;

(1.38)
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d

dt
�L. jL.t/; t/ � A>L e.t/ D 0;

(1.39)

A>V e.t/ � vs.t/ D 0;

(1.40)

jS.t/ � C1UJn�Jn.t/� C2UJp�Jp.t/ � C3Ug P�g .t/ D 0;

(1.41)
0
BBBBBBB@

0

� P�n.t/
P�p.t/
0

0

0

1
CCCCCCCA

C APOD

0
BBBBBBB@

� .t/
�n.t/
�p.t/
�g .t/
�Jn.t/
�Jp.t/

1
CCCCCCCA

C U>F .nPOD; pPOD; gPOD
 /� U>b.AT

S e.t// D 0:

(1.42)

1.4.1 Numerical Investigation

We now present numerical examples for POD MOR of the basic test circuit in
Fig. 1.1 and validate the reduced model at a fixed reference frequency of 1010 Hz.
Figure 1.4 (left) shows the development of the error between the reduced and the
unreduced numerical solutions, plotted over the neglected information
, see (1.36),
which is measured by the relative error between the non-reduced states , n, p, Jn, Jp

and their projections onto the respective reduced state space. The number of POD
basis functions for each variable is chosen such that the indicated approximation
quality is reached, i.e. 
 WD 
 ' 
n ' 
p ' 
g ' 
Jn ' 
Jp : Since
we compute all POD basis functions anyway, this procedure does not involve any
additional costs.

In Fig. 1.4 (right) the simulation times are plotted versus the neglected informa-
tion 
. As one also can see, the simulation based on standard finite elements takes
twice as long as if based on RT elements. However, this difference is not observed
for the simulation of the corresponding reduced models.

Figure 1.5 shows the total number of singular vectors k D k Ckn Ckp CkJn CkJp

required in the POD model to guarantee a given state space cut-off error 
. While
the number of singular vectors included increases only linearly, the cut-off error
tends to zero exponentially.



1 MOR of Integrated Circuits in Electrical Networks 17

Fig. 1.4 Left: L2 error of jV between reduced and unreduced problem, both for standard and
Raviart-Thomas FEM. Right: Time consumption for simulation runs for left figure. The fine lines
indicate the time consumption for the simulation of the original full system

Fig. 1.5 The number of required singular values grows only logarithmically with the requested
accuracy

1.4.2 Numerical Investigation, Position of the Semiconductor
in the Network

Finally we note that the presented reduction method accounts for the position of
the semiconductors in a given network in that it provides reduced-order models
which for identical semiconductors may be different depending on the location of
the semiconductors in the network. The POD basis functions of two identical semi-
conductors may be different due to their different operating states. To demonstrate
this fact, we consider the rectifier network in Fig. 1.6 (left). Simulation results are
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Fig. 1.6 Left: Rectifier network. Right: Simulation results for the rectifier network. The input vs

is sinusoidal with frequency 1 GHz and offsetC1:5V

Table 1.2 Distances
between reduced models in
the rectifier network


 d.U1;U2/ d.U1;U3/

10�4 0.61288 5:373 � 10�8

10�5 0.50766 4:712 � 10�8

10�6 0.45492 2:767 � 10�7

10�7 0.54834 1:211 � 10�6

plotted in Fig. 1.6 (right). The distance between the spaces U1 and U2 which are
spanned, e.g., by the POD-functions U1

 of the diode S1 and U2
 of the diode S2

respectively, is measured by

d.U1;U2/ WD max
u2U1

kuk2D1
min
v2U2

kvk2D1
ku � vk2:

Exploiting the orthonormality of the bases U1
 and U2

 and using a Lagrange
framework, we find

d.U1;U2/ D
q
2 � 2

p
	;

where 	 is the smallest eigenvalue of the positive definite matrix SS> with Sij D
hu1 ;i; u

2
 ;ji2. The distances for the rectifier network are given in Table 1.2. While the

reduced model for the diodes S1 and S3 are almost equal, the models for the diodes
S1 and S2 are significantly different. Similar results are obtained for the reduction of
n, p, etc.
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1.4.3 MOR for the Nonlinearity with DEIM

The nonlinear function F in (1.42) has to be evaluated online which means that the
computational complexity of the reduced-order model still depends on the number
of unknowns of the unreduced model. A reduction method for the nonlinearity is
given by Discrete Empirical Interpolation (DEIM) [10]. This method is motivated
by the following observation. The nonlinearity in (1.42), see also (1.30), is given by

U>F .U�.t// D

0
BBBBBBB@

0

U>n Fn.Un�n.t/;Up�p.t//
U>p Fp.Un�n.t/;Up�p.t//

0

U>Jn
FJn.Un�n.t/;Ug �g .t//

U>Jp
FJp.Un�p.t/;Ug �g .t//

1
CCCCCCCA
;

see e.g. [23]. The subsequent considerations apply for each block component of F .
For the sake of presentation we only consider the second block

U>n„ƒ‚…
size sn�N

Fn„ƒ‚…
N evaluations

. Un„ƒ‚…
size N�sn

�n.t/; Up„ƒ‚…
size N�sp

�p.t/ /; (1.43)

and its derivative with respect to �p,

U>n„ƒ‚…
size sn�N

@Fn

@p
.Un�n.t/;Up�p.t//

„ ƒ‚ …
size N�N, sparse

Up„ƒ‚…
size N�sp

:

Here, the matrices U.�/ are dense and the Jacobian of Fn is sparse. The evaluation
of (1.43) is of computational complexity O.N/. Furthermore, we need to multiply
large dense matrices in the evaluation of the Jacobian. Thus, the POD model order
reduction may become inefficient.

To overcome this problem, we apply Discrete Empirical Interpolation Method
(DEIM) proposed in [10], which we now describe briefly. The snapshots  h.tk; �/,
nh.tk; �/, ph.tk; �/, gh

 .tk; �/, Jh
n.tk; �/, Jh

p.tk; �/ are collected at time instances tk 2
ft1; : : : ; tlg � Œ0;T� as before. Additionally, we collect snapshots fFn.n.tk/; p.tk//g
of the nonlinearity. DEIM approximates the projected function (1.43) such that

U>n Fn.Un�n.t/;Up�p.t// 	 .U>n Vn.P
>
n Vn/

�1/P>n Fn.Un�n.t/;Up�p.t//;

where Vn 2 R
N��n contains the first �n POD basis functions of the space spanned

by the snapshots fFn.n.tk/; p.tk//g associated with the largest singular values. The
selection matrix Pn D �

e�1 ; : : : ; e��n
� 2 R

N��n selects the rows of Fn corresponding
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to the so-called DEIM indices �1; : : : ; ��n which are chosen such that the growth of
a global error bound is limited and P>n Vn is regular, see [10] for details.

The matrix Wn WD .U>n Vn.P>n Vn/
�1/ 2 R

sn��n as well as the whole interpolation
method is calculated in an offline phase. In the simulation of the reduced-order
model we instead of (1.43) evaluate:

Wn„ƒ‚…
size sn��n

P>n Fn„ƒ‚…
�n evaluations

. Un„ƒ‚…
size N�sn

�n.t/; Up„ƒ‚…
size N�sp

�p.t/ /; (1.44)

with derivative

W>n„ƒ‚…
size sn��n

@P>n Fn

@p
.Un�n.t/;Up�p.t//

„ ƒ‚ …
size �n�N, sparse

Up„ƒ‚…
size N�sp

:

In the applied finite element method a single functional component of Fn only
depends on a small constant number c 2 N components of Un�n.t/. Thus, the
matrix-matrix multiplication in the derivative does not really depend on N since
the number of entries per row in the Jacobian is at most c.

But there is still a dependence on N, namely the calculation of Un�n.t/. To
overcome this dependency we identify the required components of the vector
Un�n.t/ for the evaluation of P>n Fn. This is done by defining selection matrices
Qn;n 2 R

c�n�sn , Qn;p 2 R
c�p�sp such that

P>n Fn.Un�n.t/;Up�p.t// D OFn.Qn;nUn�n.t/;Qn;pUp�p.t//;

where OFn denotes the functional components of Fn selected by Pn restricted to the
arguments selected by Qn;n and Qn;p.

Supposed that �n 	 sn 
 N we obtain a reduced-order model which does not
depend on N any more.

1.4.4 Numerical Implementation and Results with DEIM

We again use the basic test circuit with a single 1-dimensional diode depicted in
Fig. 1.1. The parameters of the diode are summarized in [23]. The input vs.t/ is
chosen to be sinusoidal with amplitude 5 V. In the sequel the frequency of the
voltage source will be considered as a model parameter.

We first validate the reduced model at a fixed reference frequency of 5 � 109 Hz.
Figure 1.7 shows the development of the relative error between the POD reduced,
the POD-DEIM reduced and the unreduced numerical solutions, plotted over the
lack of information
 of the POD basis functions with respect to the space spanned
by the snapshots. The figure shows that the approximation quality of the POD-DEIM



1 MOR of Integrated Circuits in Electrical Networks 21

10−7 10−6 10−5 10−4 10−3

10−5

100

lack of information Δ(s)

re
l. 

L2 −e
rro

r o
f o

ut
pu

t j
V

POD
DEIM

Fig. 1.7 Relative error between DEIM-reduced and unreduced nonlinearity at the fixed frequency
5 � 109 Hz
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Fig. 1.8 Time consumption for simulation runs of Fig. 1.7. The horizontal line indicates the time
consumption for the simulation of the original full system

reduced model is comparable with the more expensive POD reduced model. The
number of POD basis functions s.�/ for each variable is chosen such that the indicated
approximation quality is reached, i.e.
 WD 
 ' 
n ' 
p ' 
g ' 
Jn ' 
Jp :

The numbers �.�/ of POD-DEIM basis functions are chosen likewise.
In Fig. 1.8 the simulation times are plotted versus the lack of information 
.

The POD reduced-order model does not reduce the simulation times significantly
for the chosen parameters. The reason for this is its dependency on the number of
variables of the unreduced system. Here, the unreduced system contains 1000 finite
elements which yields 12,012 unknowns. The POD-DEIM reduced-order model
behaves very well and leads to a reduction in simulation time of about 90% without
reducing the accuracy of the reduced model. However, we have to report a minor
drawback; not all tested reduced models converge for large
.s/ � 3 � 10�5. This is
indicated in the figures by missing squares. This effect is even more pronounced for
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Fig. 1.9 The number of required POD basis function and DEIM interpolation indices grows only
logarithmically with the requested information content
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Fig. 1.10 Computation times of the unreduced and the reduced-order models plotted versus the
number of finite elements

spatially two-dimensional semiconductors. It seems to be caused by the fact, that
only a sufficiently large POD basis captured the physics of the semiconductors well
enough.

In Fig. 1.9 we plot the corresponding total number of required POD basis
functions. It can be seen that with the number of POD basis functions increasing
linearly, the lack of information tends to zero exponentially. Furthermore, the
number of DEIM interpolation indices behaves in the same way.

In Fig. 1.10 we investigate the dependence of the reduced models on the number
of finite elements N. One sees that the simulation times of the unreduced model
depends linearly on N. The POD reduced-order model still depends on N linearly
with a smaller constant. The dependence on N of our POD-DEIM implementation
is negligible.
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Fig. 1.11 The reduced models are compared with the unreduced model at various input frequen-
cies

Finally, we analyze in Fig. 1.11 the behaviour of the models with respect to
parameter changes. We consider the frequency of the sinusoidal input voltage
as model parameter. The reduced-order models are created based on snapshots
gathered in a full simulation at a frequency of 5 � 109 Hz. We see that the POD
model and the POD-DEIM model behave very similarly. The adaptive enlargement
of the POD basis using the residual greedy approach of [33] is discussed in the next
section based on the results presented in [23].

Summarizing all numerical results we conclude that the significantly faster POD-
DEIM reduction method yields a reduced-order model with the same qualitative
behaviour as the reduced model obtained by classical POD MOR.

1.5 Residual-Based Sampling

Although POD model order reduction often works well, one has to keep in mind
that the reduced system depends on the specific inputs and parameters used to
generate the snapshots. A possible remedy consists in performing simulations over a
certain input and/or parameter sample and then to collect all simulations in a global
snapshot matrix Y WD ŒY1;Y2; : : :�. Here, each Yi represents the snapshots taken for
a certain input resp. parameter.

In this section we propose a strategy to choose inputs/parameters in order to
obtain a reduced model, which is valid over the whole input/parameter range.
Possible parameters are physical constants of the semiconductors (e.g. length,
permeability, doping) and parameters of the network elements (e.g. frequency of
sinusoidal voltage sources, value of resistances). We do not distinguish between
inputs and parameters of the model.
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Let there be r 2 N parameters and let the space of considered parameters be given
as a bounded set P � R

r. We construct the reduced model based on snapshots from
a simulation at a reference parameter !1 2 P . One expects that the reduced model
approximates the unreduced model well in a small neighborhood of !1, but one
cannot expect that the reduced model is valid over the complete parameter set P .
In order to create a suitable reduced-order model we consider additional snapshots
which are obtained from simulations at parameters !2; !3; : : : 2 P . The iterative
selection of !kC1 at a step k is called parameter sampling. Let Pk denote the set of
selected reference parameters, Pk WD f!1; !2; : : : ; !kg � P .

We neglect the discretization error of the finite element method and its influence
on the coupled network and define the error of the reduced model as

E .!I P/ WD zh.!/� zPOD.!I P/; (1.45)

where zh.!/ WD .eh.!/; jhV.!/; j
h
L.!/; y

h.!//> is the solution of Prob-
lem 1.3.1 at the parameter ! with discretized semiconductor variables yh WD
. h; nh; ph; gh

 ; J
h
n ; J

h
p/
>. zPOD.!I P/ denotes the solution of the coupled system in

Problem 1.4.1 with reduced semiconductors, where the reduced model is created
based on simulations at the reference parameters P � P . The error is considered
in the space X with norm

kzkX WD
���
�
kek2; kjVk2; kjLk2;
k kL2.Œ0;T�;L2 .˝//; knkL2.Œ0;T�;L2.˝//; kpkL2.Œ0;T�;L2 .˝//;

kg kL2.Œ0;T�;H0;N .div;˝//;

kJnkL2.Œ0;T�;H0;N .div;˝//; kJpkL2.Œ0;T�;H0;N .div;˝//

����:
Obvious extensions apply when there is more than one semiconductor present.

Furthermore we define the residual R by evaluation of the unreduced model
(1.31)–(1.35) at the solution of the reduced model zPOD.!I P/, i.e.

R.zPOD.!I P// WD

0
BBBBBBB@

0

�ML PnPOD.t/
ML PpPOD.t/

0

0

0

1
CCCCCCCA

C AFEM

0
BBBBBBB@

 POD.t/
nPOD.t/
pPOD.t/
gPOD
 .t/

JPOD
n .t/

JPOD
p .t/

1
CCCCCCCA

C F .nPOD; pPOD; gPOD
 / � b.AT

S ePOD.t//: (1.46)

Note that the residual of Eqs. (1.31)–(1.34) vanishes.
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We note that the same definitions are used in [22] for linear descriptor systems.
In [22] an error estimate is obtained by deriving a linear ODE for the error and
exploiting explicit solution formulas. Here we have a nonlinear DAE and at the
present state we are not able to provide an upper bound for the error kE .!I P/kX

which would yield a rigorous sampling method using for example the Greedy
algorithm of [33].

We propose to consider the residual as an estimate for the error. The evaluation
of the residual is cheap since it only requires the solution of the reduced system and
its evaluation in the unreduced DAE. It is therefore possible to evaluate the residual
at a large set of test parameters Ptest � P . Similar to the Greedy algorithm of [33],
we add to the set of reference parameters the parameter where the residual becomes
maximal.

The magnitude of the components in error and residual may be large and a proper
scaling should be applied. For the error we consider the component-wise relative
error, i.e.

k h.!/ �  POD.!I P/kL2.Œ0;T�;L2 .˝//

k h.!/kL2.Œ0;T�;L2.˝//
;

knh.!/ � nPOD.!I P/kL2.Œ0;T�;L2 .˝//

knh.!/kL2.Œ0;T�;L2.˝//
; : : : ;

and the residual is scaled by a block-diagonal matrix containing the weights

D.!/R.zPOD.!I P// D

0
BBBBBBB@

d .!/I
dn.!/I

dp.!/I
dg .!/I

dJn.!/I
dJp.!/I

1
CCCCCCCA

�R.zPOD.!I P//:

The weights d.�/.!/ > 0 may be parameter-dependent. These weights are chosen
in a way that the norm of the residual and the relative error are component-wise
equal at the reference frequencies !k where we know zh.!k/ from simulation of the
unreduced model, i.e.

d .!k/ WD k h.!k/�  POD.!kI P/kL2.Œ0;T�;L2.˝//

k h.!k/kL2.Œ0;T�;L2.˝// � kR1.zPOD.!kI P//kL2.Œ0;T�;L2.˝//
; (1.47)

and similarly for the other components. If kR1.zPOD.!kI P//kL2.Œ0;T�;L2 .˝// D 0 holds
we chose d .!k/ WD 1.

In one dimensional parameter sampling with P WD Œp; p�, we approximate
d.�/.!/ by piecewise linear interpolation of the weights d.�/.!1/, : : :, d.�/.!k/.
Extrapolation is done by nearest-neighbor interpolation to ensure the positivity of
the weights.
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Algorithm 1.1 Sampling
1. Select !1 2P , Ptest �P , tol > 0, and set k WD 1, P1 WD f!1g.
2. Simulate the unreduced model at !1 and calculate the reduced model with POD basis functions

U1.
3. Calculate weight functions d.�/.!/ > 0 according to (1.47) for all !k 2 Pk.
4. Calculate the scaled residual kD.!/R.zPOD.!;Pk//k for all ! 2 Ptest.
5. Check termination conditions, e.g.

• max!2Ptest kD.!/R.zPOD.!;Pk//k < tol,
• no progress in weighted residual.

6. Calculate !kC1 WD arg max!2Ptest
kD.!/R.zPOD.!;Pk//k.

7. Simulate the unreduced model at !kC1 and create a new reduced model with POD basis UkC1

using also the already available information at !1, : : :, !k .
8. Set PkC1 WD Pk [ f!kC1g, k WD kC 1 and goto 3.

We summarize our ideas in the sampling Algorithm 1.1. The step 7 in this
algorithm can be executed in different ways. If offline time and offline memory
requirements are not critical one may combine snapshots from all simulations of
the full model and redo the model order reduction on the large snapshot ensemble.
Otherwise we can create a new reduced model at reference frequency !kC1 with
POD-basis NU and then perform an additional POD step on .Uk; NU/.

1.5.1 Numerical Investigation for Residual Based Sampling

We now apply Algorithm 1.1 to provide a reduced-order model of the basic
circuit and we choose the frequency of the input voltage vs as model parameter.
As parameter space we chose the interval P WD Œ108; 1012�Hz. We start the
investigation with a reduced model which is created from the simulation of the
full model at the reference frequency !1 WD 1010 Hz. The number of POD basis
functions s is chosen such that the lack of information
.s/ is approximately 10�7.
The relative error and the weighted residual are plotted in Fig. 1.12 (left). We
observe that the weighted residual is a rough estimate for the relative approximation
error. Using Algorithm 1.1 the next additional reference frequency is !2 WD 108 Hz
since it maximizes the weighted residual. The second reduced model is constructed
on the same lack of information 
 WD 10�7. Here we note that in practical
applications, the error is not known over the whole parameter space.

The next two iterations of the sampling algorithm are also depicted in Fig. 1.12.
Based on the residual in step 2, one selects !3 WD 1:0608 � 109 Hz as the next
reference frequency. Since no further progress of the weighted residual is achieved
in step 3, the algorithm terminates. The maximal errors and residuals are given in
Table 1.3.
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Fig. 1.12 Left: Relative reduction error (solid line) and weighted residual (dashed line) plotted
over the frequency parameter space. The reduced model is created based on simulations at the
reference frequency !1 WD 1010 Hz, which is marked by vertical dotted line. Middle: Relative
reduction error (solid line) and weighted residual (dashed line) plotted over the frequency
parameter space. The reduced model is created based on simulations at the reference frequencies
!1 WD 1010 Hz and !2 WD 108 Hz. The reference frequencies are marked by vertical dotted lines.
Right: Relative reduction error (solid line) and weighted residual (dashed line) plotted over the
frequency parameter space. The reduced model is created based on simulations at the reference
frequency !1 WD 1010 Hz, !2 WD 108 Hz, and !3 WD 1:0608 � 109 Hz. The reference frequencies
are marked by vertical dotted lines

Table 1.3 Progress of refinement method

Max. scaled residual Max. relative error
Step k Reference parameters Pk (at frequency) (at frequency)

1 f1:0000 � 1010g 9:9864 � 102 3:2189 � 100
.1:0000 � 108/ .1:0000 � 108/

2 f1:0000 � 108; 1:5982 � 10�2 4:3567 � 10�2

1:0000 � 1010g .1:0608 � 109/ .3:4551 � 109/
3 f1:0000 � 108; 2:2829 � 10�2 1:6225 � 10�2

1:0608 � 109; .2:7283 � 109/ .1:8047 � 1010/
1:0000 � 1010g

1.6 PABTEC Combined with POD MOR

In the current section, we combine the PABTEC approach of Chap. 2 and simulation
based POD model order reduction techniques to determine reduced-order models for
coupled circuit-device systems. While the PABTEC method preserves the passivity
and reciprocity in the reduced linear circuit model, the POD approach delivers high-
fidelity reduced-order models for the semiconductor devices. Details of the approach
are given in [27].

Now we return to the network equations (1.31)–(1.35). The coupling
relation (1.34) can shortly be written as jS.t/ D #.xS.t//, where xS.t/ Dh
 T .t/; nT.t/; pT.t/; gT

 .t/; JT
n .t/; JT

p .t/
iT

is the state vector of the semidiscretized

drift-diffusion equations (1.35). Determining the state xS.t/ from Eq. (1.35) for
a given voltage AT

S e.t/, say xS.t/ D .AT
S e.t//, and substituting it into (1.34), we
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obtain the relationship

jS.t/ D g.AT
S e.t//; (1.48)

where g.AT
S e.t// WD #..AT

S e.t/// describes the voltage-current relation for the
semidiscretized semiconductors. This relation can be considered as an input-to-
output map, where the input is the voltage vector AT

S e.t/ at the contacts of the
semiconductors and the output is the approximate semiconductor current jS.t/.

Electrical networks usually contains very large linear subnetworks modeling
interconnects. In POD MOR we need to simulate the coupled DAE system (1.31)–
(1.35) in order to determine the snapshots. To reduce the simulation time, we can
first to separate the linear subsystem and approximate it by a reduced-order linear
model of lower dimension using the PABTEC algorithm [38, 51], see also Chap. 2
in this book. The decoupled device equations are then reduced using the POD
method presented in Sect. 1.4. Combining these reduced-order linear and nonlinear
models, we obtain a nonlinear reduced-order model that approximates the coupled
system (1.31)–(1.35).

1.6.1 Decoupling

For the extraction of a linear subcircuit, we use a decoupling procedure from [47]
that consists in the replacement of the nonlinear inductors and nonlinear capacitors
by controlled current sources and controlled voltage sources, respectively. The
nonlinear resistors and semiconductor devices are replaced by an equivalent circuit
consisting of two serial linear resistors and one controlled current source connected
parallel to one of the resistors. Such replacements introduce additional nodes and
state variables, but neither additional loops consisting of capacitors and voltage
sources (CV-loops) nor cutsets consisting of inductors and current sources (LI-
cutsets) occur in the decoupled linear subcircuit meaning that its index coincides
with the index of the original circuit, see [13] for the index analysis of the circuit
equations. An advantage of the suggested replacement strategy is demonstrated in
the following example.

Example 1.6.1 Consider a circuit with a semiconductor diode as in Fig. 1.13. We
suggest to replace the diode by an equivalent circuit shown in Fig. 1.14. If we would
replace the diode by a current source, then a decoupled linear circuit would have
I-cutset and, hence, lack well-posedness. Moreover, if we would replace the diode
by a voltage source, then the resulting linear circuit would have CV-loop, i.e., it
would be of index two, although the original circuit is of index one. Note that model
reduction of index two problems is more involved than of index one problems [50].

For simplicity, we assume that the circuit does not contain nonlinear devices other
than semiconductors. Then after the replacements described above, the extracted
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Fig. 1.13 RC chain with a diode

Fig. 1.14 Decoupled linear RC chain with a circuit replacing the diode

linear subcircuit can be modeled by the linear DAE system in the MNA form

EPx.t/ D Ax.t/C Bul.t/; (1.49a)

yl.t/ D BTx.t/; (1.49b)

with x.t/ D 	
eT.t/ eT

z .t/ jTL.t/ jTV.t/


, uT

l .t/ D 	
iTs .t/ jTz .t/ vT

s .t/



and

E D

2
64

AC;lCAT
C;l 0 0

0 L 0

0 0 0

3
75; A D

2
64

�AR;lGlA
T
R;l �AL;l �AV;l

AT
L;l 0 0

AT
V;l 0 0

3
75;

B D

2
64

�AI;l 0

0 0

0 �I

3
75; (1.49c)

where the incidence and element matrices are given by

AC;l D
�

AC

0

�
; AL;l D

�
AL

0

�
; AV;l D

�
AV

0

�
; AI;l D

�
AI A2S
0 I

�
; (1.49d)

AR;l D
�

AR A1S A2S
0 �I I

�
; Gl D

2
4G 0 0

0 G1 0

0 0 G2

3
5 : (1.49e)
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Here, C, L and G are the capacitance, inductance and conductance matrices, A1S
and A2S have entries in f0; 1g and f�1; 0g, respectively, and satisfy A1S C A2S D AS.
Moreover, ez.t/ is the potential of the introduced nodes, and the new input variable
jz.t/ is given by

jz.t/ D .G1 C G2/G
�1
1 g.AT

S e.t// � G2A
T
S e.t/; (1.50)

where the matrices G1 and G2 are diagonal with conductances of the introduced
linear resistors in the replacement circuits on the diagonal. One can show that the
linear system (1.49) together with the decoupled nonlinear equations (1.35), (1.48)
is state equivalent to the coupled system (1.31)–(1.35) together with the equation

ez.t/ D .G1 C G2/
�1�G1.A1eR /Te.t/ � G2.A2eR /Te.t/ � jz.t/

�
(1.51)

in the sense that these both systems have the same state vectors up to a permutation,
see [47] for detail.

1.6.2 Model Reduction Approach

Applying the PABTEC method to the linear DAE system (1.49), we obtain
a reduced-order model

OE d

dt
Ox.t/ D OAOx.t/C 	 OB1 OB2 OB3



2
4 is.t/

jz.t/
vs.t/

3
5 ;

2
64

Oyl;1.t/

Oyl;2.t/

Oyl;3.t/

3
75 D

2
4

OC1
OC2
OC3

3
5 Ox.t/;

(1.52)

where Oyl;j D OCj Ox.t/, j D 1; 2; 3, approximate the corresponding components of the
output yl in (1.49b). Combining this reduced model with the semidiscretized drift-
diffusion equations (1.35) via (1.48), we can determine the approximate snapshots
which can then be used to compute the POD-reduced model as in (1.42). The
coupling relation (1.41) can then be approximated by

OjS.t/ D C1UJn�Jn.t/C C2UJp�Jp.t/C C3Ug P�g .t/: (1.53)

As for the original system (1.34) and (1.35), we denote the relation between AT
S e.t/

and OjS.t/ by

OjS.t/ D Og.AT
S e.t//: (1.54)

Using (1.50) and (1.51), we have �.A2S/Te.t/ � ez.t/ D �AT
S e.t/C G1g.AT

S e.t//.
Then it follows from �.A2S/Te.t/ � ez.t/ 	 OC2 Ox.t/ that the semiconductor voltage
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vector uS.t/ D AT
S e.t/ can be approximated by OuS.t/ satisfying �G1

OC2 Ox.t/ �
G1 OuS.t/ C Og.OuS.t// D 0. Thus, combining the reduced linear system (1.52) with
the reduced semiconductor model (1.42), we obtain a reduced-order coupled DAE
system

OE d

dt
Ox.t/ � . OA C OB2.G1 C G2/ OC2/Ox.t/ � OB2G1 OuS.t/� OB1is.t/ � OB3vs.t/ D 0;

(1.55)

�G1
OC2 Ox.t/ � G1 OuS.t/C Og.OuS.t// D 0;

(1.56)

OjS.t/ � C1UJn�Jn.t/ � C2UJp�Jp.t/ � C3Ug P�g .t/ D 0;

(1.57)0
BBBBBBB@

0

� P�n.t/
P�p.t/
0

0

0

1
CCCCCCCA

C APOD

0
BBBBBBB@

� .t/
�n.t/
�p.t/
�g .t/
�Jn.t/
�Jp.t/

1
CCCCCCCA

C U>F .nPOD; pPOD; gPOD
 / � U>b.OuS.t// D 0:

(1.58)

Note that model reduction of the linear subsystem and the semiconductor model can
be executed independently.

1.6.3 Numerical Experiments

In this section, we present some results of numerical experiments to demonstrate the
applicability of the presented model reduction approaches for coupled circuit-device
systems.

For model reduction of linear circuit equations, we use the MATLAB Toolbox
PABTEC, see Chap. 2. The POD method is implemented in C++ based on the
FEM library deal.II [5] for discretizing the drift-diffusion equations. The obtained
large and sparse nonlinear DAE system (1.31)–(1.35) as well as the small and
dense reduced-order model (1.55)–(1.58) are integrated using the DASPK software
package [9] based on a BDF method, where the nonlinear equations are solved using
Newton’s method. Furthermore, the direct sparse solver SuperLU [12] is employed
for solving linear systems.
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Fig. 1.15 Input voltage and output currents for the basic diode with the voltage-current rela-
tion (1.59)

Consider again an RC circuit with one diode as shown in Fig. 1.13. The input is
given by

vs.t/ D uV .t/ D10 sin.2�f0t/
4

with the frequency f0 D 104 Hz, see Fig. 1.15. The output of the system is y.t/ D
�jV.t/. We simulate the models over the fixed time horizon Œ0; 2:5f0

�. The linear
resistors have the same resistance R D 2 k� and the linear capacitors have the
same capacitance C D 0:02 �F.

First, we describe the diode by the voltage-current relation

g.uS/ D 10�14 .exp.40uS/ � 1/ ; (1.59)

and apply only the PABTEC method to the decoupled linear system (1.49) that
models the linear circuit given in Fig. 1.14. System (1.49) with nl D 1503 variables
was approximated by a reduced model (1.52) of dimension 24. The outputs y and
Oy of the original nonlinear system (1.31)–(1.33), (1.48), (1.59) and the reduced-
order nonlinear model (1.55), (1.56) with Og replaced by g are plotted in Fig. 1.15.
Simulation time and the absolute and relative L2-norm errors in the output are
presented in Table 1.4. One can see that the simulation time is reduced by a factor
of 10, while the relative error is below 2%.

As the next step, we introduce the drift-diffusion model (1.17)–(1.22) for the
diode. The parameters of the diode are summarized in Table 1.5. Note that we do not
expect to obtain the same output y as in the previous experiment. To achieve this, one
would need to perform a parameter identification for the drift-diffusion model which
is not done in this paper. In Table 1.6, we collect the numerical results for different
model reduction strategies. The outputs of the systems with the reduced network
and/or POD-reduced diode are compared to the full semidiscretized model (1.31)–
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Table 1.4 Simulation time and approximation errors for the nonlinear RC circuit with the basic
diode described by the voltage-current relation (1.59)

Simulation Absolute error Relative error
System Dimension time (s) ky� OykL2 ky� OykL2 =kykL2

Unreduced 1503 0.584

Reduced 24 0.054 5:441 � 10�7 1:760 � 10�2

Table 1.5 Diode model
parameters

Parameter Value

" 1:03545 � 10�12 F/cm

UT 0:0259V

n0 1:4 � 1010 1/cm3

�n 1350 cm2/(V s)

�n 330 � 10�9 s

�p 480 cm2/(V s)

�p 33 � 10�9 s

˝ Œ0; l1�� Œ0; l2� � Œ0; l3�
l1 (length) 10�4 cm

l2 (width) 10�5 cm

l3 (depth) 10�5 cm

N.�/; �1 < l1=2 �9:94 � 1015 1/cm3

N.�/; �1 � l1=2 4:06 � 1018 1/cm3

FEM-mesh 500 elements, refined at �1 D l1=2

Table 1.6 Statistics for model reduction of the coupled circuit-device system

Network Diode Absolute Relative
(MNA (DD Simul. Jacobian error error
equations) equations) Dim. time (s) evaluations ky� OykL2 ky� OykL2 =kykL2

Unreduced Unreduced 7510 23.37 20

Reduced Unreduced 6031 16.90 17 2:165 � 10�8 7:335 � 10�4

Unreduced Reduced 1609 1.51 16 2:952 � 10�6 1:000 � 10�1

Reduced Reduced 130 1.19 11 2:954 � 10�6 1:000 � 10�1

(1.35) with 7510 variables. First, we reduce the extracted linear network and do
not modify the diode. This reduces the number of variables by about 20%, and
the simulation time is reduced by 27%. It should also be noted that the reduced
network is not only smaller but it is also easier to integrate for the DAE solver. An
indicator for the computational complexity is the number of Jacobian evaluations
or, equivalently, the number of LU decompositions required during integration.

Finally, we create a POD-reduced model (1.42) for the diode. The number of
columns s� of the projection matrices U� is determined from the condition 
� �
tolPOD with
� defined in (1.36) and a tolerance tolPOD D 10�6 for each component.
We also apply the DEIM method for the reduction of nonlinearity evaluations in
the drift-diffusion model. The resulting reduced-order model (1.42) for the diode is
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Fig. 1.16 Input voltage and output currents for the four model reduction setups

a dense DAE of dimension 105 while the original model (1.35) has dimension 6006,
for the diode only. Coupling it with the unreduced and reduced linear networks, we
obtain the results in Table 1.6 (last two rows). The simulation results for the different
model reduction setups are also illustrated in Fig. 1.16.

The presented numerical results demonstrate that the recoupling of the respective
reduced-order models delivers an overall reduced-order model for the circuit-device
system which allows significantly faster simulations (speedup-factor is about 20)
while keeping the relative errors below 10%.

Finally, we note that the model reduction concept developed in this section
is not restricted to the reduction of electrical networks containing semiconductor
devices. It can also be extended to the reduction of networks modeling e.g. nonlinear
multibody systems containing many simple mass-spring-damper components and
only a few high-fidelity components described by PDE systems.
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Chapter 2
Element-Based Model Reduction in Circuit
Simulation

Andreas Steinbrecher and Tatjana Stykel

Abstract In this paper, we consider model reduction of linear and nonlinear
differential-algebraic equations arising in circuit simulation. Circuit equations
obtained using modified nodal or loop analysis have a special structure that can
be exploited to construct efficient model reduction algorithms. For linear systems,
we review passivity-preserving balanced truncation model reduction methods that
are based on solving projected Lur’e or Lyapunov matrix equations. Furthermore,
a topology-based index-preserving procedure for extracting large linear subnet-
works from nonlinear circuits is given. Finally, we describe a new MATLAB
Toolbox PABTEC for model reduction of circuit equations and present some results
of numerical experiments.

2.1 Introduction

As integrated circuits get more complex and different physical effects have to be
taken into account, the development of efficient modeling and simulation tools
for very large networks is highly required. In this context, model order reduction
is of crucial importance, especially if simulation of large-scale systems has to be
done in a short time or it has to be repeated for different input signals. A general
idea of model order reduction is to approximate a large-scale dynamical system by
a reduced-order model that preserves essential properties like stability and passivity.
It is also required that the approximation error is small.

Many different model reduction approaches have been developed in computa-
tional fluid dynamics, control design and electrical and mechanical engineering,
see [3, 13, 61, 64] for books on this topic. One of the most used model reduction
techniques in circuit simulation is moment matching approximation based on Krylov
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subspace methods, e.g., [6, 25, 30]. Although these methods are efficient for
very large sparse problems, the resulting reduced-order systems have only locally
good approximation properties, and stability and passivity are not necessarily
preserved. Furthermore, passivity-preserving model reduction methods based on
Krylov subspaces have been developed for structured systems arising in circuit
simulation [26, 27, 42, 48] and also for general systems [4, 38, 66]. However, none
of these methods provides computable global error bounds. Another drawback of
Krylov subspace methods is the ad hoc choice of interpolation points that strongly
influence the approximation quality. An optimal point selection strategy based on
tangential interpolation has been presented in [5, 32] that provides an optimal H2-
approximation.

In this paper, we present a survey on passivity-preserving balanced truncation
model reduction methods for linear circuit equations developed in [54, 56, 72]. They
involve computing the spectral projectors onto the left and right deflating subspaces
corresponding to the finite and infinite eigenvalues of an underlying pencil and
solving projected matrix equations. An important property of these methods is the
existence of computable error bounds that allow an adaptive choice of the order of
the approximate model.

Furthermore, we consider model reduction of nonlinear circuits based on decou-
pling linear and nonlinear subcircuits followed by reduction of the linear part [68].
This model reduction approach can also be combined with the POD-based reduction
technique for semiconductor devices, see Chap. 1, and further with hierarchical
reduction methods studied in Chap. 4. The developed model reduction algorithms
for circuit equations were implemented as MATLAB toolbox PABTEC and tested
on practical problems.

Notation Throughout the paper, R
n;m and C

n;m denote the spaces of n � m
real and complex matrices, respectively. The open left and right half-planes are
denoted by C� and CC, respectively, and i D p�1. The matrices AT and A�
denote, respectively, the transpose and the conjugate transpose of A 2 C

n;m, and
A�T D .A�1/T . An identity matrix of order n is denoted by In or simply by I. We use
rank.A/, im.A/ and ker.A/ for the rank, the range and the kernel of A, respectively.
A matrix A 2 C

n;n is positive definite (semidefinite), if v�Av > 0 (v�Av � 0) for
all non-zero v 2 C

n. Note that positive (semi)definiteness of A does not require A to
be Hermitian. For A;B 2 C

n;n, we write A > B (A � B) if A � B is positive definite
(semidefinite). Furthermore, diag.A1; : : : ;As/ denotes a block diagonal matrix with
block entries Aj, j D 1; : : : ; s, on the diagonal.

2.2 Circuit Equations

In this section, we briefly describe the modeling of electrical circuits via differential-
algebraic equations (DAEs) and discuss their properties. For more details on graph
theory and network analysis, we refer to [1, 20, 22, 40, 75].
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2.2.1 Graph-Theoretic Concepts

A general circuit can be modeled as a directed graph G whose vertices (nodes) nk

correspond to the nodes of the circuit and whose branches (edges) bk1;k2 D hnk1 ; nk2i
correspond to the circuit elements like capacitors, inductors and resistors. For
the ordered pair bk1;k2 D hnk1 ; nk2i, we say that bk1;k2 leaves nk1 and enters nk2 .
In this case, bk1;k2 is called incident with nk1 and nk2 . An alternating sequence
.nk1 ; bk1;k2 ; nk2 ; : : : ; nks�1 ; bks�1;ks ; nks/ of vertices and branches in G is called a path
connecting nk1 and nks if the branches bkj�1;kj are incident with the vertices nkj�1 and
nkj for 2 � j � s. A path is closed if nk1 D nks . A closed path is called a loop if
nki ¤ nkj for 1 � i < j � s except for nk1 and nks . A graph G is called connected
if for every two vertices there exists a path connecting them. A cutset is a set of
branches of a connected graph whose removal disconnects the graph, and this set is
minimal with this property. A subgraph of the graph G is called a tree if it has all
nodes of G, is connected and does not contain loops.

A directed graph G with nv vertices, nb branches and nl loops can be described
by an incidence matrix A0 D Œapq� 2 R

nv;nb with

apq D
8<
:

1 if branch q leaves vertex p;
�1 if branch q enters vertex p;
0 otherwise;

or by a loop matrix B0 D Œbpq� 2 R
nl;nb with

bpq D
8<
:

1 if branch q belongs to loop p and has the same orientation,
�1 if branch q belongs to loop p and has the contrary orientation,
0 otherwise:

For a connected graph, the matrices A0 and B0 satisfy the following relations

ker.B0/ D im.AT
0 /; rank.A0/ D nv � 1; rank.B0/ D nb � nv C 1;

see [22, p. 213]. Removing linear dependent rows from A0 and B0, we obtain the
full rank matrices A 2 R

nv�1;nb and B 2 R
nb�nvC1;nb which are called the reduced

incidence matrix and the reduced loop matrix, respectively.

2.2.2 Modified Nodal Analysis and Modified Loop Analysis

We now consider a general nonlinear RLC circuit that contains nR resistors, nL
inductors, nC capacitors, nV independent voltage sources and nI independent cur-
rent sources. Such circuits are completely described by the graph-theoretic relations
like Kirchhoff’s current and voltage laws together with the branch constitutive
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relations that characterize the circuit elements. Kirchhoff’s current law states that
the sum of the currents along all branches leaving and entering a circuit node is
zero. Kirchhoff’s voltage law states that the sum of the voltages along the branches
of any loop is zero. Let

j D Œ jTR ; jTC ; jTL ; jTV ; jTI �
T 2 R

nb ; v D Œ vT
R ; v

T
C ; v

T
L ; v

T
V ; v

T
I �

T 2 R
nb

denote the vectors of branch currents and branch voltages, respectively, and let the
reduced incidence and loop matrices

A D Œ AR ; AC ; AL ; AV ; AI �; B D Œ BR ; BC ; BL ; BV ; BI �

be partitioned accordingly, where the subscripts R ; C ; L; V and I stand for resistors,
capacitors, inductors, voltage sources and current sources, respectively. Then
Kirchhoff’s current and voltage laws can be expressed in the compact form as

A j D 0; B v D 0;

respectively, or, equivalently,

BT � D j; AT� D v;

where � 2 R
nb�nvC1 and � 2 R

nv�1 denote the vectors of loop currents and node
potentials.

The branch constitutive relations for nonlinear capacitors, inductors and resistors
are given by

d
dt�. jL/ D vL ; jC D d

dt qC .vC /; jR D g.vR /; (2.1)

where the functions � W RnL ! R
nL , qC W RnC ! R

nC and g W RnR ! R
nR describe

electromagnetic fluxes in the inductors, capacitor charges and resistor voltage-
current characteristics, respectively. For current-controlled resistors, we have also
the relation vR D %. jR /, where % W R

nR ! R
nR is the resistor current-voltage

characteristic function. We assume that

(A1) the functions �, qC and g are continuously differentiable and their Jacobians

@�. jL /

@jL
D L. jL/;

@qC .vC /

@vC
D C .vC /;

@g.vR /

@vR
D G.vR /;

are positive definite for all jL , vC and vR , respectively.

This assumption guarantees that inductors, capacitors and resistors are locally
passive, see [19] for details.
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Using Kirchhoff’s laws and the branch constitutive relations, the dynamical
behaviour of a nonlinear circuit can be described using modified nodal analysis
(MNA) [37] by the following system of DAEs

E .x/ d
dt x D A x C f .x/C B u;

y D BT x;
(2.2)

where

E .x/ D

2
64

ACC .AT
C�/A

T
C 0 0

0 L. jL / 0

0 0 0

3
75; A D

2
64
0 �AL �AV

AT
L 0 0

AT
V 0 0

3
75 ;

f .x/ D

2
64

�AR g.AT
R �/

0

0

3
75 ; B D

2
4�AI 0

0 0

0 �I

3
5 ; x D

2
4 �

jL
jV

3
5 ;

(2.3)

and the input u and the output y have the form

u D
�

jI
vV

�
; y D

� �vI
�jV

�
; (2.4)

respectively. Another approach for modeling electrical circuits is based on modified
loop analysis (MLA), see [79]. In this case, the circuit equations take the form (2.2)
with

E .x/ D

2
64

BLL.BT
L �/B

T
L 0 0

0 C .vC / 0

0 0 0

3
75 ; A D

2
64
0 �BC �BI

BT
C 0 0

BT
I 0 0

3
75 ;

f .x/ D

2
64

�BR %.BT
R �/

0

0

3
75 ; B D

2
64

0 �BV

0 0

�I 0

3
75 ; x D

2
4 �

vC
vI

3
5 ;

(2.5)

and the input and the output are as in (2.4).
We assume that the circuit is well-posed in the sense that

(A2) the circuit does not contain cutsets consisting of current sources (I-cutsets),
(A3) the circuit does not contain loops consisting of voltage sources (V-loops).

These assumptions avoid open-circuit current sources and short-circuit voltage
sources, respectively. Assumption (A2) is equivalent to

rank.ŒAC ; AL ; AR ; AV �/ D nv � 1;
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which is, on the other hand, equivalent to rank.BI/ D nI. In terms of rank conditions,
(A3) means that rank.AV / D nV or, equivalently, rank.ŒBC ; BL ; BR ; BI �/ D nb �
nv C 1.

The index concept plays an important role in the analysis of DAEs. To charac-
terize different analytical and numerical properties of DAE systems, several index
notations have been introduced in the literature, e.g., [17, 29, 33, 43]. For example,
the differentiation index is roughly defined as the minimum of times that all or part
of a DAE system must be differentiated with respect to t in order to determine the
derivative of x as a continuous function of t and x. In the sequel, we will use the
shorter term “index” instead of “differentiation index”. The following proposition
characterizes the index of the MNA system (2.2), (2.3).

Proposition 2.2.1 ([24, 68]) Consider a circuit satisfying assumptions (A1)–(A3).

1. The index of the MNA system (2.2), (2.3) is at most two.
2. The index of the MNA system (2.2), (2.3) is equal to zero if and only if

nV D 0 and rank.AC / D nv � 1: (2.6)

3. The index of the MNA system (2.2), (2.3) is equal to one if and only if

rank.ŒAC ; AV �/ D rank.AC /C nV and rank.ŒAC ; AR ; AV �/ D nv � 1:
(2.7)

Similar, rank conditions can also be formulated for the MLA system (2.2), (2.5).
Considering the topological structure of the circuit, the conditions (2.6) imply
that the circuit does not contain voltage sources and the circuit graph contains
a capacitive tree, respectively. Furthermore, the first condition in (2.7) implies that
the circuit does not contain loops consisting of capacitors and/or voltage sources
(CV-loops) except for loops consisting of capacitors only (C-loops), whereas the
second condition in (2.7) means that the circuit does not contain cutsets consisting
of inductors and/or current sources (LI-cutsets).

In the following, we will distinguish between nonlinear circuits, which contain
nonlinear elements, and linear circuits consisting exclusively of linear capacitors,
inductors and resistors. A circuit element is called linear if the current-voltage
relation for this element is linear. Otherwise, the circuit element is called nonlinear.
Without loss of generality we may assume that the circuit elements are ordered such
that the incidence matrices are partitioned as

AC D 	
A NC ; A QC



; AL D 	

A NL ; A QL


; AR D

h
A NR ; A QR

i
; (2.8)

where the incidence matrices A NC , A NL and A NR correspond to the linear circuit
components, and A QC , A QL and A QR are the incidence matrices for the nonlinear
devices. We also assume that the linear and nonlinear elements are not mutually
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connected, i.e.,

C .AT
C�/ D

2
4
NC 0

0 eC .AT
QC
�/

3
5 ; L. jL / D

2
4 NL 0

0 eL. j QL /

3
5 ; g.AT

R �/D
2
4
NGAT

NR �

eg.AT
QR
�/

3
5 ;

where NC 2 R
n NC ;n NC , NL 2 R

n NL ;n NL and NG 2 R
n NR ;n NR are the capacitance, inductance and

conductance matrices for the corresponding linear elements, whereas

eC W Rn
QC ! R

n
QC ;n QC ; eL W Rn

QL ! R
n

QL ;n QL ; eg W Rn
QR ! R

n
QR

describe the corresponding nonlinear components, and j QL is the current vector
through the nonlinear inductors.

2.2.3 Linear RLC Circuits

For simplification of notation, a linear RLC circuit containing nR linear resistors, nL

linear inductors, nC linear capacitors, nI current sources and nV voltage sources will
be described by the linear DAE system

E d
dt x D Ax C Bu;

y D BTx;
(2.9)

with the MNA matrices

E D

2
64

ACCAT
C 0 0

0 L 0

0 0 0

3
75 ; A D

2
64

�ARGAT
R �AL �AV

AT
L 0 0

AT
V 0 0

3
75 ; B D

2
64

�AI 0

0 0

0 �I

3
75 ;

(2.10)

or the MLA matrices

E D

2
64

BLLBT
L 0 0

0 C 0

0 0 0

3
75 ; A D

2
64

�BRRBT
R �BC �BI

BT
C 0 0

BT
I 0 0

3
75 ; B D

2
64

0 �BV

0 0

�I 0

3
75 :

(2.11)

Here, the subscripts R; C; L; V and I stand for linear resistors, linear capacitors,
linear inductors, voltage sources and current sources, respectively, and L 2 R

nL;nL ,
C 2 R

nC;nC , R 2 R
nR;nR and G D R�1 are the inductance, capacitance, resistance

and conductance matrices, respectively. Linear circuits are often used to model
interconnects, transmission lines and pin packages in VLSI networks. They arise
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also in the linearization of nonlinear circuit equations around DC operating points.
According to (A1), we assume that

(A1́ ) the matrices L, C and G are symmetric and positive definite.

This condition together with (A2) and (A3) guarantees that the pencil 	E � A is
regular, i.e., det.	E�A/¤ 0 for some 	 2 C, see [27]. In this case, we can define
a transfer function

G.s/ D BT.sE � A/�1B

of the DAE system (2.9). Applying the Laplace transform to (2.9) with an initial
condition x.0/ D x0 satisfying Ex0 D 0, we obtain y.s/ D G.s/u.s/, where
u.s/ and y.s/ are the Laplace transformations of the input u.t/ and the output y.t/,
respectively. Thus, the transfer function G.s/ describes the input-output relation
of (2.9) in the frequency domain. Note that the MNA system (2.9), (2.10) and the
MLA system (2.9), (2.11) have the same transfer function.

For any rational matrix-valued function G.s/, there exist matrices E, A, Bin and
Bout such that G.s/ D Bout.sE � A/�1Bin, see [21]. Then the DAE system

E d
dt x D Ax C Binu;

y D Boutx;

is said to form a realization of G.s/. We will also denote a realization of G.s/ by
G D .E; A; Bin; Bout/.

The transfer function G.s/ is called proper if lim
s!1G.s/ < 1, and improper,

otherwise. If G.s/ is proper and analytic in CC, then the H1-norm of G.s/ is
defined as

kGkH1
D sup

s2CC

kG.s/k D lim
� ! 0

� > 0

sup
!2R

kG.� C i!/k;

where k � k denotes the spectral matrix norm.

2.2.3.1 Passivity

Passivity is the most important property of circuit equations. System (2.9) with
x.0/ D 0 is passive if

Z t

0

u.�/Ty.�/ d� � 0 (2.12)
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for all t � 0 and all admissible u such that uTy is locally integrable. Passive elements
can store and dissipate energy, but they do not generate energy. Thus, capacitors,
resistors and inductors are passive, while current and voltage sources are not.

It is well known in linear network theory [1] that the DAE system (2.9) is passive
if and only if its transfer function G.s/ D BT.sE � A/�1B is positive real, i.e., G
is analytic in CC and G.s/C G.s/� � 0 for all s 2 CC. Since the system matrices
in (2.10) satisfy E D ET � 0 and A C AT � 0, the transfer function of (2.9), (2.10)
is positive real, and, hence, this system is passive.

2.2.3.2 Stability

Stability is a qualitative property of dynamical systems which describes the
behaviour of their solutions under small perturbations in the initial data. For the
linear DAE system (2.9), stability can be characterized in terms of the finite
eigenvalues of the pencil 	E � A, e.g., [21]. System (2.9) is stable if all the
finite eigenvalues of 	E � A lie in the closed left half-plane and the eigenvalues
on the imaginary axis are semi-simple, i.e., they have the same algebraic and
geometric multiplicity. System (2.9) is asymptotically stable if the pencil 	E � A
is c-stable, i.e., all its finite eigenvalues lie in the open left half-plane. Note that
passivity of the MNA system (2.9), (2.10) implies that this system is stable [1,
Theorem 2.7.2]. Topological conditions for the asymptotic stability of the MNA
equations (2.9), (2.10) can be found in [58, 59].

2.2.3.3 Reciprocity

Another relevant property of circuit equations is reciprocity. We call a matrix S 2
R

m;m a signature if S is diagonal and S2 D Im. System (2.9) is reciprocal with
an external signature Sext 2 R

m;m if its transfer function satisfies

G.s/ D SextG.s/TSext

for all s 2 C. Obviously, the MNA system (2.9), (2.10) with symmetric L, C and G
is reciprocal with the external signature Sext D diag.InI ;�InV /.

2.3 Model Reduction of Linear Circuits

Consider the linear MNA system (2.9), (2.10) with E;A 2 R
n;n and B 2 R

n;m. We
aim to approximate this system by a reduced-order model

OE d
dt Ox D OA Ox C OB u;

Oy D OC Ox; (2.13)
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where OE, OA 2 R
nr ;nr , OB 2 R

nr ;m, OC 2 R
m;nr and nr 
 n. It is required that the

approximate system (2.13) has a small approximation error y � Oy and also preserves
passivity and reciprocity. In the frequency domain, the error can be measured via
G � OG in an appropriate system norm, where OG.s/ D OC.s OE � OA/�1 OB is the transfer
function of system (2.13).

A classical approach for computing the reduced-order model (2.13) is based on
the projection of system (2.9) onto lower dimensional subspaces. In this case, the
system matrices in (2.13) have the form

OE D WTE T; OA D WTA T; OB D WTB; OC D BT T; (2.14)

where the projection matrices W, T 2 R
n;nr determine the subspaces of interest.

In interpolation-based passivity-preserving model reduction methods like PRIMA
[48], SPRIM [26, 27] and spectral zero interpolation [38, 66], the columns of these
matrices span certain (rational) Krylov subspaces associated with (2.9).

Balanced truncation also belongs to the projection-based model reduction tech-
niques. This method consists in transforming the dynamical system into a balanced
form whose appropriately chosen controllability and observability Gramians are
both equal to a diagonal matrix. Then a reduced-order model (2.13), (2.14) is
obtained by projecting (2.9) onto the subspaces corresponding to the dominant
diagonal elements of the balanced Gramians. In order to capture specific system
properties, different balancing techniques have been developed in the last 30 years
[31, 46, 47, 52, 55, 69]. An important property of these techniques is the existence of
computable error bounds that allow us to approximate (2.9) to a prescribed accuracy.

In Sect. 2.3.1, we consider a passivity-preserving model reduction method for
general RLC circuits developed in [54, 72]. This method is based on balancing
the Gramians that satisfy the projected Lur’e matrix equations. For RC circuits
consisting only of resistors, capacitors, current sources and/or voltage sources,
this method can significantly be simplified. In Sect. 2.3.2, we present passivity-
preserving model reduction methods for RC circuits developed in [56] that rely
on balancing the solutions of the projected Lyapunov equations. Thereby, we will
distinguish three cases: RC circuits with current sources (RCI circuits), RC circuits
with voltage sources (RCV circuits) and RC circuits with both current and voltage
sources (RCIV circuits). Finally, in Sect. 2.3.3, we discuss the numerical aspects of
the presented balancing-related model reduction algorithms.

2.3.1 Balanced Truncation for RLC Circuits

First, we consider model reduction of general RLC circuits. Note that passivity of
the MNA system (2.9), (2.10) can be characterized via the projected Lur’e equations

E X .A � BBT/T C .A � BBT/XET C 2PlBBTPT
l D �2KcKT

c ;

EXB � PlBMT
0 D �KcJT

c ; I � M0M
T
0 D JcJT

c ; X D PrXPT
r � 0;

(2.15)
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and

ETY.A � BBT/C .A � BBT/TYE C 2PT
rBBTPr D �2KT

o Ko;

�ETYB C PT
rBM0 D �KT

o Jo; I � MT
0M0 D JT

o Jo Y D PT
l YPl � 0

(2.16)

with unknowns X 2 R
n;n, Kc 2 R

n;m, Jc 2 R
m;m and Y 2 R

n;n, Ko 2 R
m;n, Jo 2 R

m;m,
respectively. Here, Pr and Pl are the spectral projectors onto the right and left defla-
ting subspaces of the pencil 	E � .A � BBT/ corresponding to the finite eigenvalues
along the right and left deflating subspaces corresponding to the eigenvalue at infi-
nity, and

M0 D I � 2 lim
s!1BT.sE � A C BBT/�1B: (2.17)

In general, the solvability of the projected Lur’e equations (2.15) and (2.16) requires
that system (2.9) is passive and R-minimal, i.e.,

rank.Œ 	E � A ; B �/ D rank.Œ 	ET � AT ; B �/ D n

for all 	 2 C. For the circuit equations (2.9), (2.10), however, the R-minimality
condition can be removed.

Theorem 2.3.1 ([54]) Consider an MNA system (2.9), (2.10) satisfying (A1́ ), (A2)
and (A3). Then the projected Lur’e equations (2.15) and (2.16) are solvable.

Note that the solutions X and Y of (2.15) and (2.16) are not unique. However,
there exist unique minimal solutions Xmin and Ymin that satisfy 0 � Xmin � X and
0 � Ymin � Y for all symmetric solutions X and Y of (2.15) and (2.16), respectively.
These minimal solutions Xmin and Ymin of (2.15) and (2.16), respectively, are called
the controllability and observability Gramians of system (2.9). This system is
called balanced if Xmin D Ymin D diag.�; 0/, where � D diag.�1; : : : ; �nf / with
�1 � : : : � �nf � 0 and nf D rank.Pr/. The values �j are called the characteristic
values of (2.9). Based on the energy interpretation of the Gramians Xmin and
Ymin, see [55], one can conclude that the truncation of the states of a balanced
system corresponding to the small characteristic values does not change the system
properties significantly. The characteristic values and balancing transformation
matrices can be determined from the singular value decomposition of the matrix
QYTE QX, where QX and QY are the Cholesky factors of the Gramians Xmin D QX QXT and
Ymin D QY QYT . Taking into account the block structure of the MNA matrices in (2.10),
we have ET D SintESint and AT D SintASint with

Sint D diag.Inv�1;�InL ;�InV /: (2.18)

This implies that Ymin D SintXminSint. Then instead of the more expensive singular
value decomposition of QYT E QX, we can compute the eigenvalue decomposition of the
symmetric matrix QXTSintE QX. In this case, the numerical solution of only one Lur’e
equation is required. If 	j are eigenvalues of QXTSintE QX, then �j D j	jj. Thus, the
reduced-order model (2.13), (2.14) can be determined by projecting (2.9) onto the
subspaces corresponding to the dominant eigenvalues of QXTSintE QX.
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One can also truncate the states that are uncontrollable and unobservable at
infinity. Such states do not contribute to the energy transfer from the input to the
output, and, therefore, they can be removed from the system without changing
the input-output relation [69, 71]. For general DAE systems, such states can be
determined from the solution of certain projected discrete-time Lyapunov equations
[69]. Exploiting again the structure of the MNA equations (2.9), (2.10), the required
states can be determined from the eigenvalue decomposition of the symmetric
matrix .I � M0/Sext with

Sext D diag.InI ;�InV /: (2.19)

We summarize the resulting model reduction method for RLC circuits in Algo-
rithm 2.1.

Algorithm 2.1 Passivity-preserving balanced truncation for RLC circuits
Given a passive MNA system (2.9) with E, A, B as in (2.10), compute a reduced-order
model (2.13).

1. Compute the full-rank Cholesky factor QX of the minimal solution Xmin D QX QXT of the projected
Lur’e equation (2.15).

2. Compute the eigenvalue decomposition

QXT SintE QX D ŒU1; U2 �

�
�1 0

0 �2

�
ŒU1; U2 �

T ;

where Sint is as in (2.18), the matrix ŒU1; U2 � is orthogonal, �1 D diag.	1; : : : ; 	r/ and
�2 D diag.	rC1; : : : ; 	q/.

3. Compute the eigenvalue decomposition

.I �M0/Sext D U0�0U
T
0 ;

where M0 is as in (2.17), Sext is as in (2.19), U0 is orthogonal and �0 D diag.O	1; : : : ; O	m/.
4. Compute the reduced-order system (2.13) with

OE D
�

I 0

0 0

�
; OA D

"
WT A T WT BC1=

p
2

�B1BT T=
p
2 I � B1C1=2

#
;

OBD
�

WT B
�B1=

p
2

�
; OC D

h
BT T; C1=

p
2
i
;

where

B1 D S0j�0j1=2UT
0 Sext; C1 D U0j�0j1=2;

W D Sint QXU1j�1j�1=2; T D QXU1S1j�1j�1=2;

S0 D diag.sign.O	1/; : : : ; sign.O	m//; j�0j D diag.jO	1j; : : : ; jO	mj/;
S1 D diag.sign.	1/; : : : ; sign.	r//; j�1j D diag.j	1j; : : : ; j	rj/:
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One can show that the reduced-order model computed by Algorithm 2.1 pre-
serves not only passivity but also reciprocity. Moreover, we have the following error
bound

k OG � GkH1
� kI C Gk2H1

.�rC1 C : : :C �q/

1 � kI C GkH1
.�rC1 C : : :C �q/

;

provided kI C GkH1
.�rC1 C : : : C �q/ < 1, see [54] for details. Note that this

error bound requires the computation of the H1-norm of G, which is expensive for
large-scale systems. If r is chosen in Algorithm 2.1 such that

kI C OGkH1
.�rC1 C : : :C �q/ < 1;

then we can estimate

k OG � GkH1
� kI C OGk2H1

.�rC1 C : : :C �q/

1 � kI C OGkH1
.�rC1 C : : :C �q/

; (2.20)

where only the evaluation of the H1-norm of the reduced-order system OG is
required.

If the matrix I � M0M
T
0 is nonsingular, then the projected Lur’e equation (2.15)

can be written as the projected Riccati equation

EXFT C FXET C EXBT
cBcXET C PlBoBT

oP
T
l D 0; X D PrXPT

r ; (2.21)

where

F D A � BBT � 2PlBMT
0 .I � M0M

T
0 /
�1BTPr;

Bc D p
2 J�1c BTPr; Bo D �p

2BJ�1o ;

JcJT
c D I � M0M

T
0 ; JT

o Jo D I � MT
0 M0:

(2.22)

Note that the invertibility of I � M0M
T
0 depends on the topological structure of the

circuit.

Theorem 2.3.2 Consider an MNA system (2.9), (2.10). Let the matrix M0 be as
in (2.17). Then I � M0M

T
0 is nonsingular if and only if

rank.ZT
CŒAI ; AV �/ D nI C nV ; ZT

RCŒAI ; AV � D 0; (2.23)

where ZC and ZRC are the basis matrices for ker.AT
C/ and ker.ŒAR; AC �

T/, respec-
tively.

Proof The result immediately follows from [54, Theorem 7].

The first condition in (2.23) is equivalent to the absence of loops of capacitors,
voltage sources and current sources (CVI-loops) except for loops consisting of
capacitive branches (C-loops). The second condition in (2.23) means that the circuit
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does not contain cutsets consisting of branches of inductors, voltage sources and
current sources (LVI-cutsets) except for cutsets consisting of inductive branches
(L-cutsets).

2.3.2 Balanced Truncation for RC Circuits

We now present a Lyapunov-based balanced truncation model reduction approach
for RC circuits. In this approach, the Gramians of system (2.9) are defined as
unique symmetric, positive semidefinite solutions of the projected continuous-time
Lyapunov equations

EXAT C AXET D �PlBBTPT
l ; X D PrXPT

r ;

ETYA C ATYE D �PT
r BBTPr; Y D PT

l YPl:

The numerical solution of such equations is much less exhausting than of the
projected Lur’e or Riccati equations. For a balanced system, these Gramians are
both equal to a diagonal matrix

X D Y D diag.˙; 0/;

where ˙ D diag.�1; : : : ; �nf /. The values �j are called the proper Hankel singular
values of system G D .E;A;B;BT/. They determine which states are important and
which states can be removed from the system.

Note that Lyapunov-based balanced truncation does not, in general, guarantee
the preservation of passivity in the reduced-order model. However, the RC circuit
equations either have a symmetric structure

E D ET � 0; A D AT � 0; (2.24)

or they can be transformed under preservation of passivity into a symmetric form.
Then Lyapunov-based balanced truncation applied to symmetric systems is known
to be structure-preserving [45] and, hence, also passivity-preserving. All model
reduction algorithms presented in this section have been developed in [56].

2.3.2.1 RCI Circuits

First, we consider RCI circuits consisting of resistors, capacitors and current sources
only. The MNA matrices are then given by

E D ACCAT
C; A D �ARGAT

R; B D �AI: (2.25)
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Algorithm 2.2 Passivity-preserving balanced truncation for RCI circuits

Given a passive MNA system (2.9) with E, A, B as in (2.25), compute a reduced-order
model (2.13).

1. Compute the full column rank matrices ZC and ZR such that

im.ZC/ D ker.AT
C/; im.ZR/ D ker.AT

R/:

2. Compute a full-rank Cholesky factor QX of the solution X D QX QXT of the projected Lyapunov
equation

EXAC EXA D �PBBT P; X D PXP;

where

P D I � ZR.Z
T
R EZR/

�1ZT
R E � ZC.Z

T
CAZC/

�1ZT
CA

is the spectral projector onto the right deflating subspace of 	E � A corresponding to the finite
eigenvalues with negative real part.

3. Compute the eigenvalue decomposition

QXT E QX D ŒU1; U2 �

�
˙1 0

0 ˙2

�
ŒU1; U2 �

T ; (2.26)

where ŒU1; U2 � is orthogonal, ˙1 D diag.�1; : : : ; �r/ and ˙2 D diag.�rC1; : : : ; �q/.
4. Compute the full-rank Cholesky factors B0 2 R

r0;m and B1 2 R
r1 ;m of the matrices

R0 D BT
0B0 and R1 D BT

1
B

1
given by

R0 D BT ZR.Z
T
R EZR/

�1ZT
R B; R1 D �BT ZC.Z

T
CAZC/

�1ZT
CB: (2.27)

5. Compute the reduced-order system (2.13) with

OE D
2
4 Ir 0 0

0 Ir0 0

0 0 0

3
5 ; OAD

2
4As 0 0

0 0 0

0 0 �Ir1

3
5 ; OBD OCT D

2
4 Bs

B0
B1

3
5 ; (2.28)

where

As D ˙
�1=2
1 UT

1
QXT AQXU1˙

�1=2
1 and Bs D ˙

�1=2
1 UT

1
QXT B: (2.29)

Obviously, the symmetry condition (2.24) is fulfilled. In this case, the reduced-order
system (2.13) can be computed by Algorithm 2.2.

One can show that the reduced-order system (2.13), (2.28) has the transfer
function

OG.s/ D OC.s OE � OA/�1 OB D BT
s .sI � As/

�1Bs C 1

s
R0 C R1;
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where the matrices R0 and R1 are as in (2.27), and As and Bs are given in (2.29).
Furthermore, we have the following H1-norm error bound.

Theorem 2.3.3 ([56]) Let an RCI circuit (2.9), (2.25) fulfill (A1́ ) and (A2). Then
a reduced-order model (2.13), (2.28) obtained by Algorithm 2.2 is passive and
reciprocal with an external signature Sext D InI . Moreover, for the transfer
functions G and OG of the original system (2.9), (2.25) and the reduced-order
model (2.13), (2.28), we have the H1-norm error bound

kG � OGkH1
� 2.�rC1 C : : :C �q/;

where �j are the proper Hankel singular values of G D .E;A;B;BT/ obtained
in (2.26).

2.3.2.2 RCV Circuits

We now consider RCV circuits consisting of resistors, capacitors and voltage
sources. Unfortunately, the MNA equations for such circuits do not satisfy the
symmetry conditions (2.24). We can, however, transform the MLA equations with
the system matrices

E D
"
0 0

0 C

#
; A D

"
�BRRBT

R �BC

BT
C 0

#
; B D

"
�BV

0

#
(2.30)

into a symmetric system. Such a transformation is the frequency inversion

G?.s/ D G.s�1/:

The transfer function of the transformed system can be realized as

G?.s/ D BT
?.sE? � A?/

�1B?;

where

E? D BCC�1BT
C; A? D �BRRBT

R; B? D �BV : (2.31)

Reducing this system and applying the back transformation, we obtain a reduced-
order model. The resulting model reduction method is given in Algorithm 2.3.

The following theorem provides the error bound for the reduced model (2.13),
(2.33).
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Algorithm 2.3 Passivity-preserving balanced truncation for RCV circuits

Given a passive MLA system (2.9) with E, A, B as in (2.30), compute a reduced-order
model (2.13).

1. Compute the full column rank matrices YC and YR such that im.YC/ D ker.BT
C/ and

im.YR/D ker.BT
R/.

2. Compute a full-rank Cholesky factor QX of the solution X D QX QXT of the projected Lyapunov
equation

E?XA? C E?XA? D �PB?BT
?P; X D PXP;

where E?, A?, B? are as in (2.31) and

P D I � YR.Y
T
R E?YR/

�1YT
R E? � YC.Y

T
C A?YC/

�1YT
C A?:

is the projector onto the right deflating subspace of 	E? � A? corresponding to the finite
eigenvalues with negative real part.

3. Compute the eigenvalue decomposition

QXT E? QX D ŒU1; U2 �

�
˙1 0

0 ˙2

�
ŒU1; U2 �

T ; (2.32)

where ŒU1; U2 � is orthogonal, ˙1 D diag.�1; : : : ; �r/ and ˙2 D diag.�rC1; : : : ; �q/.
4. Compute the matrices

As D ˙
�1=2
1 UT

1
QXT A? QXU1˙

�1=2
1 ; Bs D ˙

�1=2
1 UT

1
QXT B?;

R0 D BT
?YR.Y

T
R E?YR/

�1YT
R B?; R1 D �BT

?YC.Y
T
C A?YC/

�1YT
C B?;

QR1 D R1 � BT
s A�1

s Bs:

5. Compute the eigenvalue decomposition

� QR1 R0
R0 0

�
D ŒV1; V2 �

�
�0 0

0 0

�
ŒV1; V2 �

T ;

where ŒV1; V2 � is orthogonal and �0 is nonsingular.
6. Compute the reduced-order system (2.13) with

OE D
�

I 0

0 OE1

�
; OAD

" OA1 0

0 OA1

#
; OB D �OCT D

" OB1
OB1

#
; (2.33)

where OA1 D A�1
s , OB1 D A�1

s Bs and

OE1 D VT
1

�
R0 0
0 0

�
V1; OA1 D VT

1

� QR1 R0
R0 0

�
V1; OB1 D VT

1

� QR1

R0

�
:
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Theorem 2.3.4 ([56]) Let an RCV circuit fulfill assumptions (A1́ ) and (A3). Then
a reduced-order model (2.13), (2.33) obtained by Algorithm 2.3 is passive and
reciprocal with an external signature Sext D InV . Moreover, for the transfer
functions G and OG of the original system (2.9), (2.10) and the reduced-order
model (2.13), (2.33), we have the H1-norm error bound

kG � OGkH1
� 2.�rC1 C : : :C �q/;

where �j are the proper Hankel singular values of G? D .E?;A?;B?;B
T
?/ obtained

in (2.32).

2.3.2.3 RCIV Circuits

Finally, we consider RCIV circuits that contain resistors, capacitors and both current
as well as voltage sources. Such circuits are modeled by the linear system (2.9) with
the MNA matrices

E D
"

ACCAT
C 0

0 0

#
; A D

"
�ARGAT

R �AV

AT
V 0

#
; B D

"
�AI 0

0 �I

#
(2.34)

or the MLA matrices

E D

2
64
0 0 0

0 C 0

0 0 0

3
75; A D

2
64

�BRRBT
R �BC �BI

BT
C 0 0

BT
I 0 0

3
75; B D

2
64
0 �BV

0 0

�I 0

3
75 : (2.35)

Due to the reciprocity, the transfer function of this system can be partitioned in
blocks as

G.s/ D
"

GII.s/ GIV.s/

�GT
IV.s/ GVV.s/

#
;

see [56]. Assume that

(A4) the circuit does not contain cutsets of current and voltage sources.

Then GVV.s/ is invertible and G.s/ has a (2,2) partial inverse defined as

G.2;2/.s/ D
"

GII.s/C GIV.s/G�1VV.s/GT
IV.s/ �GIV.s/G�1VV.s/

�G�1VV.s/GT
IV .s/ G�1VV.s/

#
:
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Algorithm 2.4 Passivity-preserving balanced truncation for RCIV circuits—I
Given a passive MNA system (2.9) with E, A, B as in (2.34), compute a reduced-order
model (2.13).

1. Compute a reduced-order model OG.2;2/ D . OE2;2; OA2;2; OB2;2; OC2;2/ by applying Algorithm 2.2 to
the system G.2;2/ D .E2;2;A2;2;B2;2;B

T
2;2/ as in (2.36).

2. Compute the reduced-order system (2.13) with

OE D
� OE2;2 0

0 0

�
; OA D

" OA2;2 OB2
�OBT

2 0

#
; OB D OCT D

� OB1 0

0 �InV

�
: (2.37)

where OB1 D OB2;2ŒInI ; 0�
T and OB2 D OB2;2Œ0; InV �

T .

This rational function can be realized as G.2;2/.s/ D BT
2;2.sE2;2 � A2;2/

�1B2;2 with

E2;2 D ACCAT
C; A2;2 D �ARGAT

R; B2;2 D Œ�AI ; �AV �: (2.36)

Note that the (2,2) partial inversion can interpreted as the replacements of all voltage
sources by current sources. The system G.2;2/ D .E2;2;A2;2;B2;2;B

T
2;2/ is symmetric

and passive. Then applying balanced truncation to this system and reversing the
voltage replacement, we obtain a required reduced-order model, see Algorithm 2.4.

The following theorem establishes the properties of the reduced-order
model (2.13), (2.37) and gives an error bound.

Theorem 2.3.5 ([56]) Consider an RCIV circuit fulfilling assumptions (A1́ ),
(A3) and (A4). Let ZR an ZC be the basis matrices for ker.AT

R/ and
ker.AT

C/, respectively, and let Z0R be the basis matrix for im.AR/. Assume that
AT

I ZR.Z
T
R ACCAT

CZR/
�1ZT

R AV D 0 and ZT
CAV has full column rank. Then the reduced-

order model (2.13), (2.37) obtained by Algorithm 2.4 is passive and reciprocal
with the external signature Sext D diag.InI ;�InV /. Moreover, for the transfer
functions G and OG of the original system (2.9), (2.34) and the reduced-order
model (2.13), (2.37), we have the error bound

kG � OGkH1
� 2 .1C c21 C c21 c22/.�rC1 C : : :C �q/;

where �j are the proper Hankel singular values of the (2,2) partially inverted system
G.2;2/,

c1 D k.AT
VZC.Z

T
CARGAT

RZC/
�1ZT

CAV/
�1k;

c2 D kAT
VHAVk1=2kAT

I HAIk1=2
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with

H D QZ0R
�
.Z0R/TARGAT

RZ0R
��1
.Z0R/TQT and Q D I�ZR.Z

T
R ACCAT

CZR/
�1ZT

R ACCAT
C:

An alternative approach for model reduction of RCIV circuits is based on
considering the frequency-inverted MLA system

G?.s/ D G.s�1/ D BT
?.sE? � A?/

�1B?

with the matrices

E? D
"

BC C�1BT
C 0

0 0

#
; A? D

"
�BRRBT

R �BI

BT
I 0

#
; B? D

"
0 �BV

�I 0

#
:

Let G?.s/ be partitioned in blocks as

G?.s/ D
"

G11.s/ G12.s/

�GT
12.s/ G22.s/

#
:

Assume that

(A5) the circuit does not contain loops of current and voltage sources.

Then G11.s/ is invertible and G?.s/ has an (1,1) partial inverse defined as

.G?/.1;1/.s/ D
"

G�111 .s/ G�111 .s/G12.s/

GT
12.s/G�111 .s/ G22.s/C GT

12.s/G�111 .s/G12.s/

#

D BT
1;1.s E1;1 � A1;1/

�1B1;1;

where

E1;1 D BCC�1BT
C; A1;1 D �BRRBT

R; B1;1 D Œ�BI; �BV �: (2.38)

Reducing this symmetric system and reversing the initial transformation, we obtain
a required reduced-order model. This model reduction method is presented in
Algorithm 2.5.

The following theorem establishes the properties of the reduced-order
model (2.13), (2.39) and gives an error bound.

Theorem 2.3.6 ([56]) Consider an RCIV circuit fulfilling assumptions (A1́ ),
(A2) and (A5). Let YR and YC be the basis matrices for ker.BT

R/ and
ker.BT

C/, respectively, and let Y 0R be the basis matrix for im.BR/. Assume that
BT

VYR.Y
T
R BCC�1BT

CYR/
�1YT

R BI D 0 and YT
C BI has full column rank. Then the

reduced-order model (2.13), (2.39) obtained by Algorithm 2.5 is passive and
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Algorithm 2.5 Passivity-preserving balanced truncation for RCIV circuits—II

Given a passive MLA system (2.9) with E, A, B as in (2.35), compute a reduced-order
model (2.13).

1. Compute a reduced-order model OG1 D . OE1; OA1; OB1; OC1/ using Algorithm 2.3, where E?, A?
and B? are replaced, respectively, by E1;1, A1;1 and B1;1 as in (2.38).

2. Compute the reduced-order system (2.13) with

OE D
� OE1 0

0 0

�
; OA D

" OA1 OB11
OC11 0

#
; OBD

�
0 OB12

InI 0

�
; OC D

�
0 �InIOC21 0

�
; (2.39)

where OB11 D OB1ŒInI ; 0�
T , OB12 D OB1Œ0; InV �

T , OC11 D ŒInI ; 0� OC1 and OC21 D Œ0; InV � OC1.

reciprocal with the external signature Sext D diag.InI ;�InV /. Moreover, for the
transfer functions G and OG of the original system (2.9), (2.35) and the reduced-
order model (2.13), (2.39), we have the error bound

kG � OGkH1
� 2.1C Qc21 C Qc21Qc22/.�rC1 C : : :C �q/;

where �j are the proper Hankel singular values of the system .G?/.1;1/,

Qc1 D k.BT
I YC.Y

T
CBRRBT

RYC/
�1YT

CBI/
�1k;

Qc2 D kBT
V

QHBVk1=2kBT
I

QHBIk1=2

with

QH D QQY 0R
�
.Y 0R/TBRRBT

RY 0R
��1

.Y 0R/T QQT ; QQ D I�YR.Y
T
R BCC�1BT

CYR/
�1YT

R BCC�1BT
C:

Remark 2.3.7 Model reduction methods for RC circuits can also be extended to
RL circuits which contain resistors, inductors, voltage and/or current sources.
Observing that the frequency-inverted MNA equations for RLI circuits as well as the
MLA equations for RLV circuits yield symmetric systems, we can design balanced
truncation model reduction methods for RL circuits similar to Algorithms 2.2–2.5.

2.3.3 Numerical Aspects

The most expensive step in the presented model reduction algorithms is solving
matrix equations. The numerical solution of the projected Lyapunov and Riccati
equations will be discussed in Sects. 2.5.1 and 2.5.2, respectively. Here, we consider
the computation of the matrix M0 and the projectors Pr and Pl required in
Algorithm 2.1 as well as the basis matrices required in Algorithms 2.2–2.5.
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Fortunately, using the MNA structure of the system matrices in (2.10), the matrix
M0 and the projectors Pr and Pl can be computed in explicit form

M0 D
"

I � 2AT
I ZH�10 ZTAI 2AT

I ZH�10 ZTAV

�2AT
VZH�10 ZTAI �IC2AT

VZH�10 ZTAV

#
; (2.40)

Pr D
2
4 H5.H4H2 � I/ H5H4ALH6 0

0 H6 0

�AT
V.H4H2 � I/ �AT

V H4ALH6 0

3
5D SintP

T
l Sint; (2.41)

where Sint is given in (2.18), and

H0 D ZT .ARGAT
R C AIA

T
I C AVAT

V/Z;

H1 D ZT
CRIVALL�1AT

LZCRIV ;

H2 D ARGAT
R C AIA

T
I C AVAT

V C ALL�1AT
LZCRIVH�11 ZT

CRIVALL�1AT
L ;

H3 D ZT
CH2ZC;

H4 D ZCH�13 ZT
C;

H5 D ZCRIVH�11 ZT
CRIVALL�1AT

L � I;

H6 D I � L�1AT
LZCRIVH�11 ZT

CRIVAL;

Z D ZCZ0RIV�C;

ZC is a basis matrix for ker.AT
C/;

Z0RIV�C is a basis matrix for im.ZT
CŒAR; AI; AV �/;

ZCRIV is a basis matrix for ker.ŒAC; AR; AI; AV �
T /;

see [54, 72] for details. The basis matrices ZC and ZCRIV can be computed by
analyzing the corresponding subgraphs of the given network graph as described in
[23]. For example, the matrix ZC can be constructed in the form

ZC D …C

2
6664

1k1
: : :

1ks

0

3
7775

by searching the components of connectivity in the C-subgraph consisting of the
capacitive branches only. Here, 1ki D Œ1; : : : ; 1�T 2 R

ki , i D 1; : : : ; s, and …C is
a permutation matrix. For this purpose, we can use graph search algorithms like
breadth-first-search [40]. As a consequence, the nonzero columns of

ARIV�C D ZT
C ŒAR; AI ; AV �
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form again an incidence matrix. In order to compute the basis matrix Z0RIV�C, we
first determine the basis matrix

ZRIV�C D …RIV�C

2
6664

1l1
: : :

1lt

0

3
7775

for ker.AT
RIV�C/ from the associated graph. Then the complementary matrix Z0RIV�C

can be determined as

Z0RIV�C D …RIV�CSRIV�C;

where SRIV�C is a selector matrix constructed from the identity matrix by removing
1-st, .l1C1/-st, : : :, .l1C: : :Clt C1/-st columns. One can see that the resulting basis
matrices and also the matrices H0, H1, H2, H3, H5 and H6 are sparse. Of course, the
projector Pr will never be constructed explicitly. Instead, we use projector-vector
products required in the numerical solution of the Riccati equation.

Algorithms 2.3 and 2.5 require the knowledge of the reduced loop matrix B that
can be obtained by the search for a loop basis in the circuit graph [2, 22, 39, 40].
Since the efficiency in the numerical solution of the projected Lyapunov equations
can be improved if the matrix coefficients are sparse, it is preferable to choose a basis
of loops with length as small as possible. This kind of problem was treated in [49].

The basis matrices ZR, Z0R and ZC required in Algorithms 2.2 and 2.4 can be
computed using graph search algorithms as described above. The basis matrices
YR and YC required in Algorithms 2.3 and 2.5 can be determined by searching
for dependent loops in the graphs GR and GC consisting of the resistive and
capacitive branches, respectively. Furthermore, the basis matrix Y 0R can be obtained
by removing the linear dependent columns of BR. Such columns can be determined
by searching for cutsets in the graph GR, e.g., [2]. For the analysis of loop
dependency and the search for cutsets in a graph, there exist a variety of efficient
algorithms, see [40] and the references therein.

2.4 Model Reduction of Nonlinear Circuits

In this section, we present a model reduction approach for nonlinear circuits
containing large linear subnetworks. This approach is based on decoupling the
nonlinear circuit equations (2.2) into linear and nonlinear subsystems in an appro-
priate way. The linear part is then approximated by a reduced-order model using
one of the model reduction algorithms from Sect. 2.3 depending on the topological
structure of the linear subcircuit. The nonlinear part either remains unchanged or
is approximated by a trajectory piece-wise linear (TPWL) approach [57] based on
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Decoupling

TPWL, POD PABTEC

Recoupling

Fig. 2.1 A model reduction approach for nonlinear circuits

linearization, or proper orthogonal decomposition (POD), e.g., [65], which relies
on snapshot calculations. If the circuit contains semiconductor devices modeled by
instationary nonlinear partial differential equations [67, 73], these equations can
first be discretized in space and then reduced using the POD method as described in
[35, 36], see also Chap. 1 in this book. Finally, combining the reduced-order linear
and nonlinear models, we obtain a reduced-order nonlinear model that approximates
the MNA system (2.2). The concept of this model reduction approach is illustrated
in Fig. 2.1. We now describe this approach in more detail.

First, we consider the decoupling procedure developed in [68] that allows us
to extract a linear subcircuit from a nonlinear circuit. This procedure is based
on the formal replacement of nonlinear inductors by controlled current sources,
nonlinear capacitors by controlled voltage sources and nonlinear resistors by
equivalent circuits consisting of two serial linear resistors and one controlled
current source connected parallel to one of the introduced linear resistors. Such
replacements are demonstrated in Fig. 2.2, where we present two circuits before and
after replacements. It should be noted that the suggested replacements introduce
additional nodes and state variables, but neither additional CV-loops nor LI-cutsets
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Fig. 2.2 Replacements of nonlinear circuit elements

occur in the decoupled linear subcircuit meaning that its index does not exceed the
index of the original system (2.2). The following theorem establishes the decoupling
on the equation level.

Theorem 2.4.1 [68] Let A1QR 2 f0; 1gnv�1;n QR and A2QR 2 f�1; 0gnv�1;n QR satisfy the

relation A1QR CA2QR D A QR , and let G1;G2 2 R
n

QR ;n QR be symmetric, positive definite.

Assume that v QC 2 R
n

QC and jz 2 R
n

QR satisfy

v QC D AT
QC �;

jz D .G1 C G2/G
�1
1 eg.AT

QR �/ � G2A
T
QR �: (2.42)

Then system (2.2) together with the relations

j QC D eC .v QC / d
dtv QC ; (2.43)

�z D .G1 C G2/
�1.G1.A

1
QR /

T� � G2.A
2
QR /

T� � jz/ (2.44)

for the additional unknowns �z 2 R
n

QR and j QC 2 R
n

QC has the same components �, �z,
j NL , j QL , jV and j QC in the state vector as the system

eL. j QL/
d
dt j QL D AT

QL � (2.45)
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coupled with the linear DAE system

E d
dt x` D Ax` C Bu`;

y` D BTx`;
(2.46)

where x` D
h
�T �T

z jTNL jTV jTQC
iT

, u` D
h

jTI jTz jTQL vT
V vT

QC
iT

,

E D

2
64

ACCAT
C 0 0

0 L 0

0 0 0

3
75 ; A D

2
64

�ARGAT
R �AL �AV

AT
L 0 0

AT
V 0 0

3
75 ; B D

2
64

�AI 0

0 0

0 �I

3
75 ;

(2.47)

and the incidence and element matrices are given by

AC D
"

A NC
0

#
; AR D

"
A NR A1QR A2QR
0 �I I

#
; AL D

�
A NL
0

�
; AV D

"
AV A QC
0 0

#
;

AI D
"

AI A2QR A QL
0 I 0

#
; G D

2
4

NG 0 0

0 G1 0

0 0 G2

3
5 ; C D NC ; L D NL :

(2.48)

Note that the system matrices in the decoupled linear system (2.46)–(2.48) are in
the MNA form. This system has the state space dimension

n` D .nv � 1/C n QR C n NL C nV C n QC

and the input space dimension m` D nI C n QR C n QL C nV C n QC . It should also be
noted that the state equivalence in Theorem 2.4.1 is independent of the choice of the
matrices G1 and G2 satisfying the assumptions in the theorem. The substitution of
nonlinear resistors with equivalent circuits as described above implies that G1 and
G2 are both diagonal and their diagonal elements are conductances of the first and
the second linear resistors, respectively, in the replacement circuits.

The following theorem establishes the well-posedness of the decoupled system
(2.46)–(2.48).

Theorem 2.4.2 ([68]) Let a nonlinear circuit satisfy assumptions (A1)–(A3).
Assume that it contains neither loops consisting of nonlinear capacitors and voltage
sources (eCV-loops) nor cutsets of nonlinear inductors and/or current sources
(eCV-loops). Then the decoupled linear DAE system (2.46)–(2.48) modeling the
linear subcircuit is well-posed in the sense that

1. the matrices C, L and G are symmetric and positive definite,
2. the matrix AV has full column rank,
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3. the matrix ŒAC; AL; AR; AV � has full row rank.

Note that the presence of eCV-loops and eLI-cutsets in the original circuit would
lead after the replacement of the nonlinear capacitors and nonlinear inductors by
voltage sources and current sources, respectively, to V-loops and I-cutsets in the
decoupled circuit that would violate its well-posedness.

The next theorem shows that slightly stronger conditions for the original
nonlinear circuit guarantee that the decoupled linear DAE system (2.46)–(2.48) is
well-posed and, in addition, has index at most one.

Theorem 2.4.3 ([68]) Let a nonlinear circuit satisfy assumptions (A1)–(A3). If
this circuit contains neither CV-loops except for NC-loops with linear capacitors
nor LI-cutsets, then the linear system (2.46)–(2.48) modeling the extracted linear
subcircuit is well-posed and is of index at most one.

The index one condition for system (2.46)–(2.48) implies that its transfer
function is proper. The approximation of such systems is much easier than that of
systems with an improper transfer function [71].

Depending on the topology of the extracted linear subcircuit, we can now
apply one of the model reduction algorithms presented in Sect. 2.3 to the linear
system (2.46)–(2.48). As a result, we obtain a reduced-order model (2.13) which can
be combined with the nonlinear subsystem in order to get a reduced-order nonlinear
model.

According to the block structure of the input and output vectors of the extracted
linear DAE system (2.46)–(2.48), the reduced-order model (2.13) can be written in
the form

OE d
dt Ox` D OAOx` C Œ OB1; OB2; OB3; OB4; OB5 �

2
666664

jI
jz
j QL
vV
v QC

3
777775
;

2
666664

Oy`1
Oy`2
Oy`3
Oy`4
Oy`5

3
777775

D

2
666664

OC1
OC2
OC3
OC4
OC5

3
777775

Ox`;

(2.49)

where Oy`j D OCj Ox`, j D 1; : : : ; 5, approximate the corresponding components of
the output of (2.46). Taking into account that �AT

QL �	 OC3 Ox` and �j QC 	 OC5 Ox`,
Eqs. (2.43) and (2.45) are approximated by

eC . Ov QC / d
dt Ov QC D � OC5 Ox`; eL. Oj QL / d

dt
Oj QL D � OC3 Ox`; (2.50)

respectively, where Oj QL and Ov QC are approximations to j QL and v QC , respectively.
Furthermore, for jz and �z defined in (2.42) and (2.44), respectively, we have

�.A2QR /
T� � �z D �AT

QR �C G�11 eg.AT
QR �/ D �v QR C G�11 eg.v QR /:
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Since �.A2QR /
T�� �z 	 OC2 Ox`, this equation is approximated by

0 D �G1
OC2 Ox` � G1 Ov QR Ceg. Ov QR /; (2.51)

where Ov QR approximates v QR . Combining (2.45), (2.49), (2.50) and (2.51), we obtain
the reduced-order nonlinear model

OE .Ox/ d
dt Ox D OA Ox C Of .Ox/C OB u;

Oy D OC Ox; (2.52)

where Ox D
h

OxT
` ;

OjTL ; OvT
C ; OvT

QR
iT

, u D
h

jTI ; v
T
V

iT
and

OE .Ox/ D

2
664

OE 0 0 0

0 eL. Oj QL / 0 0

0 0 eC . Ov QC / 0

0 0 0 0

3
775 ; Of .Ox/ D

2
6664

0

0

0

eg. Ov QR /

3
7775 ; OB D

2
664

OB1 OB4
0 0

0 0

0 0

3
775 ; (2.53)

OA D

2
664

OA C OB2.G1 C G2/ OC2 OB3 OB5 OB2G1

� OC3 0 0 0

� OC5 0 0 0

�G1
OC2 0 0 �G1

3
775 ; OC D

� OC1 0 0 0
OC4 0 0 0

�
: (2.54)

This model can now be used for further investigations in steady-state analysis,
transient analysis or sensitivity analysis of electrical circuits. Note that the error
bounds for the reduced-order linear subsystem (2.49) presented in Sect. 2.3 can be
used to estimate the error in the output of the reduced-order nonlinear system (2.52)–
(2.54), see [34] for such estimates for a special class of nonlinear circuits.

2.5 Solving Matrix Equations

In this section, we consider numerical algorithms for solving the projected Lya-
punov and Riccati equations developed in [55, 70, 71]. In practice, the numerical
rank of the solutions of these equations is often much smaller than the dimension of
the problem. Then such solutions can be well approximated by low-rank matrices.
Moreover, these low-rank approximations can be determined directly in factored
form. Replacing the Cholesky factors of the Gramians in Algorithms 2.1–2.5
by their low-rank factors reduces significantly the computational complexity and
storage requirements in the balancing-related model reduction methods and makes
these methods very suitable for large-scale circuit equations.
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2.5.1 ADI Method for Projected Lyapunov Equations

We focus first on solving the projected Lyapunov equation

E X AT C A X ET D �PlBBTPT
l ; X D PrX PT

r (2.55)

using the alternating direction implicit (ADI) method. Such an equation has to be
solved in Algorithms 2.2–2.5. The ADI method has been first proposed for standard
Lyapunov equations [14, 44, 50, 76] and then extended in [70] to projected Lyapunov
equations. The generalized ADI iteration for the projected Lyapunov equation (2.55)
is given by

.E C �kA/Xk�1=2AT C AXk�1.E � �kA/T D �PlBBTPT
l ;

.E C � kA/XT
k AT C AXT

k�1=2.E � � kA/T D �PlBBTPT
l

(2.56)

with an initial matrix X0 D 0 and shift parameters �1; : : : ; �k 2 C�. Here, � k

denotes the complex conjugate of �k. If the pencil 	E � A is c-stable, then Xk

converges towards the solution of the projected Lyapunov equation (2.55). The rate
of convergence depends strongly on the choice of the shift parameters. The optimal
shift parameters providing the superlinear convergence satisfy the generalized ADI
minimax problem

f�1; : : : ; �qg D arg min
f�1;:::;�qg2C�

max
t2Spf .E;A/

j.1 � �1t/ � : : : � .1� �q t/j
j.1C �1t/ � : : : � .1C �q t/j ;

where Spf .E;A/ denotes the finite spectrum of the pencil 	E � A. If the matrices
E and A satisfy the symmetry condition (2.24), then 	E � A has real non-positive
eigenvalues. In this case, the optimal real shift parameters can be determined by the
selection procedure proposed in [78] once the spectral bounds

a D minf	k W 	k 2 Sp�.E;A/ g; b D maxf	k W 	k 2 Sp�.E;A/ g

are available. Here Sp�.E;A/ denotes the set of finite eigenvalues of
	E � A with negative real part. In general case, the suboptimal ADI parameters
can be obtained from a set of largest and smallest in modulus approximate finite
eigenvalues of 	E � A computed by an Arnoldi procedure [50, 70]. Other parameter
selection techniques developed for standard Lyapunov equations [15, 63, 77] can
also be used for the projected Lyapunov equation (2.55).

A low-rank approximation to the solution of the projected Lyapunov equa-
tion (2.55) can be computed in factored form X 	 ZkZT

k using a low-rank version of
the ADI method (LR-ADI) as presented in Algorithm 2.6.

In order to guarantee for the factors Zk to be real in case of complex shift pa-
rameters, we take these parameters in complex conjugate pairs f�k; �kC1 D � kg.
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Algorithm 2.6 The LR-ADI method for the projected Lyapunov equation
Given E, A 2 R

n;n, B 2 R
n;m, projector Pl and shift parameters �1; : : : ; �q 2 C�, compute a low-

rank approximation X 	 ZkZT
k to the solution of the projected Lyapunov equation (2.55).

1. Z.1/ D p�2Re.�1/ .EC �1A/�1PlB, Z1 D Z.1/;
2. FOR k D 2; 3; : : :

Z.k/ D
s

Re.�k/

Re.�k�1/

�
I � .� k�1 C �k/.EC �kA/�1A

�
Z.k�1/;

Zk D Œ Zk�1; Z.k/ �I
END FOR

Then a novel approach for efficient handling of complex shift parameters in the
LR-ADI method developed in [16] can also be extended to the projected Lyapunov
equation (2.55). At each ADI iteration we have Zk D ŒZ.1/; : : : ;Z.k/ � 2 R

n;mk. To
keep the low-rank structure in Zk for large mk, we can compress the columns of Zk

using the rank-revealing QR factorization [18] as described in [9].
Finally, note that the matrices .E C �kA/�1 in Algorithm 2.6 do not have to be

computed explicitly. Instead, we solve linear systems of the form .E C �kA/x D Plb
either by computing (sparse) LU factorizations and forward/backward substitutions
or by using iterative Krylov subspace methods [62].

2.5.2 Newton’s Method for Projected Riccati Equations

We consider now the numerical solution of the projected Riccati equation

EXFT C FXET C EXBT
cBcXET C PlBoBT

oP
T
l D 0; X D PrXPT

r (2.57)

with F, Bc and Bo as in (2.22). Such an equation has to be solved in Algorithm 2.1.
The minimal solution Xmin of (2.57) is at least semi-stabilizing in the sense that all
the finite eigenvalues of 	E � F � EXminBT

c Bc are in the closed left half-plane.
Consider the spaces

SPr D f X 2 R
n;n W X D XT ; X D PrXPT

r g;
SPl D f X 2 R

n;n W X D XT ; X D PlXPT
l g:

Since X D PrXPT
r , EPr D PlE and FPr D PlF, the Riccati operator given by

R.X/ D EXFT C FXET C EXBT
cBcXET C PlBoBT

oP
T
l
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maps SPr into SPl . Then the Frechét derivative of R at X 2 SPr is a linear operator
R 0X W SPr ! SPl defined as

R 0X.N/ D lim
ı!0

1

ı

�
R.X C ıN/ � R.X/

�

for N 2 SPr . Taking into account that N D PrN D NPT
r , we have

R 0X.N/ D .F C EXBT
cBc/NET C EN.F C EXBT

cBc/
T :

Then Newton’s method for the projected Riccati equation (2.57) can be written as

Nj D �.R 0Xj
/�1.R.Xj//;

XjC1 D Xj C Nj:

The standard formulation of this method is given in Algorithm 2.7.
As in the standard case [41], we can combine the second and third steps

in Algorithm 2.7 and compute the new iterate XjC1 directly from the projected
Lyapunov equation as presented in Algorithm 2.8.

Algorithm 2.7 Newton’s method for the projected Riccati equation

Given E, F 2 R
n;n, Bc 2 R

m;n, Bo 2 R
n;m, projectors Pr , Pl and a stabilizing initial guess X0,

compute an approximate solution of the projected Riccati equation (2.57).

FOR j D 0; 1; 2; : : :

1. Compute Fj D FC EXjBT
cBc.

2. Solve the projected Lyapunov equation

FjNjE
T C ENjF

T
j D �PlR.Xj/P

T
l ; Nj D PrNjP

T
r :

3. Compute XjC1 D Xj C Nj.

END FOR

Algorithm 2.8 The Newton-Kleinman method for the projected Riccati equation

Given E, F 2 R
n;n, Bc 2 R

m;n, Bo 2 R
n;m, projectors Pr , Pl and a stabilizing initial guess X0,

compute an approximate solution of the projected Riccati equation (2.57).

FOR j D 1; 2; : : :

1. Compute Kj D EXj�1BT
c and Fj D FC KjBc.

2. Solve the projected Lyapunov equation

EXj FT
j C FjXj ET D �Pl.BoBT

o � KjK
T
j /P

T
l ; Xj D PrXjP

T
r :

END FOR
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Although Algorithms 2.7 and 2.8 are equivalent, they behave different in finite
precision arithmetic and there are significant differences in their implementation
especially for large-scale problems.

Similarly to the standard state space case [8, 74], one can show that if 	E � F is
c-stable, then for X0 D 0, all 	E � Fj are also c-stable and lim

j!1Xj D Xmin, see [10].

The convergence is quadratic if the pencil 	E � F � EXminBT
c Bc is c-stable. Some

difficulties may occur if the pencil 	E � F has eigenvalues on the imaginary axis.
For circuit equations, these eigenvalues are uncontrollable and unobservable [54].
In that case, similarly to [12], one could choose a special stabilizing initial guess
X0 that ensures the convergence of the Newton-Kleinman iteration. However, the
computation of such a guess for large-scale problems remains an open problem.

A low-rank approximation to the minimal solution of the projected Riccati
equation (2.57) can be computed in factored form Xmin 	 QR QRT with QR 2 R

n;k, k 
 n
using the same approach as in [11]. Starting with K1 D EX0BT

c and F1 D F C K1Bc,
we solve in each Newton-Kleinman iteration two projected Lyapunov equations

EX1;j FT
j C FjX1;j ET D �PlBoBT

o PT
l ; X1;j D PrX1;j PT

r ; (2.58)

EX2;j FT
j C FjX2;j ET D �PlKjK

T
j PT

l ; X2;j D PrX2;j PT
r ; (2.59)

for the low-rank approximations X1;j 	 R1;jR
T
1;j and X2;j 	 R2;jR

T
2;j, respectively,

and then compute KjC1 D E.R1;jR
T
1;j � R2;jR

T
2;j/B

T
c and FjC1 D F C KjC1Bc.

If the convergence is observed after jmax iterations, then an approximate solution
Xmin 	 QR QRT of the projected Riccati equation (2.57) can be computed in factored
form by solving the projected Lyapunov equation

EXFT C FXET D �PlQQTPT
l ; X D PrXPT

r (2.60)

with Q D ŒBo; E.X1;jmax � X2;jmax/B
T
c � provided 	E � F is c-stable. For computing

low-rank factors of the solutions of the projected Lyapunov equations (2.58)–(2.60),
we can use the generalized LR-ADI method presented in Sect. 2.5.1. Note that in
this method we need to compute the products .E C �Fj/

�1w, where w 2 R
n and

E C �Fj D E C �.A � BBT/ � � OKjBc with the low-rank matrices Bc 2 R
m;n and

OKj D p
2PlBMT

0 J�T
c � Kj 2 R

n;m. One can use the Sherman-Morrison-Woodbury
formula [28, Sect. 2.1.3] to compute these products as

.E C �Fj/
�1w D w1 C M OKj

�
.Im � BcM OKj

/�1Bcw1
�
;

where w1 D .E C �.A � BBT//�1w and M OKj
D �.E C �.A � BBT//�1 OKj can be

determined by solving linear systems with the sparse matrix E C �.A � BBT/ either
by computing sparse LU factorization or by using Krylov subspace methods [62].
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2.6 MATLAB Toolbox PABTEC

In this section, we briefly describe the MATLAB toolbox PABTEC which provides
some functions for analysis, model reduction, simulation and visualization of
circuit equations. PABTEC stays for PAssivity-preserving Balanced Truncation for
Electrical Circuits.

Figure 2.3 shows the main strategy of PABTEC. First, the user has to specify
the electrical circuit under consideration. The input data for the main routine
pabtec.m are incidence matrices describing the topological structure of the cir-
cuit, element matrices for linear circuit components, element relations for nonlinear
circuit components and some parameters that can be initialized and verified in the
routine inipar.m.

Once the circuit is specified, it can be analyzed with the PABTEC routine
sysana.m which delivers the information on the topology structure of the circuit,
well-posedness and index. If the circuit contains nonlinear elements, it will be
decoupled into linear and nonlinear parts as described in Sect. 2.4. Model reduction
of the linear (sub)circuit is implemented in the routine pabtecl.m. Linear circuits
that contain neither inductors nor capacitors and circuits without resistors cannot
be reduced with PABTEC. For model reduction of large resistive network, one

Topology

recoupling of the subcircuits

Postprocessing

(not reducible)

[Erl,Arl,Brl,Crl, ... ] = PABTECL(E,A,B,C, ... )

[Er,Ar,Br,Cr, ... ] = PABTEC(incidence matrices, element matrices, parameters, ... )

decoupling of linear subcircuits

(no dynamics)

Solving Lyapunov equations

Preprocessing (Projectors)

(ADI method)

Model reduction

Postprocessing

(Newton method)

Model reduction

Lur’e

Model reduction

Preprocessing (Projectors)

Solving Lur’e equations
(Newton method)

Postprocessing

Solving Riccati equations

Preprocessing (Projectors)

itacciRvonupayL

linear

nonlinear

linear

nonlinear

no L and C no R

elseno CVI−loops
no LVI−cutsetsno L or C

Fig. 2.3 MATLAB toolbox PABTEC



72 A. Steinbrecher and T. Stykel

can use a graph-based algorithm presented in [60], which is not yet included in
PABTEC. For other network structures, an appropriate model reduction method will
be chosen automatically. RC and RL circuits are reduced by the Lyapunov-based
balanced truncation algorithms presented in Sect. 2.3.2, while for model reduction
of general RLC circuit, Algorithm 2.1 is applied. If the circuit does not contain
CVI-loops and LIV-cutsets, then the Gramian in this algorithm is determined by
solving the projected Riccati equation (2.57). Otherwise, we have to solve the
projected Lur’e equation (2.15). Independent of the topological structure of the
circuit, the model reduction algorithms include the following steps: preprocessing,
solving matrix equations, model reduction and postprocessing. In the preprocessing
step, the basis matrices required in the projector Pr or P are computed using graph-
theoretical algorithms. If necessary, also the auxiliary matrices Hk and the matrix
M0 are computed. The projected Lyapunov equations are solved by the LR-ADI
method described in Sect. 2.5.1, while the projected Riccati equation is solved by
the Newton or Newton-Kleinman method presented in Sect. 2.5.2. The numerical
methods for large-scale projected Lur’e equations proposed in [53] will be included
in a future release of PABTEC. Note that the matrix equation solvers in PABTEC
can be seen as extension of the corresponding functions in the MATLAB toolbox
LyaPACK1[51] and its successor MESS.2 Postprocessing involves the computation
of error bounds and reduced-order initial vectors required for simulation.

The last step in PABTEC is combination of the reduced-order linear model with
unchanged nonlinear part. PABTEC includes also the routines simorih.m and
simredh.m for simulation of the original and reduced-order models, respectively.

PABTEC provides the following routines:

• main routines listed in Table 2.1, which can be called by the user in the main
program;

• supplementary routines listed in Table 2.2, which are used in the main routines;
• auxiliary routines listed in Table 2.3 which are used in the main and supplemen-

tary routines;
• user supplied routines listed in Table 2.4, which provide the information on the

circuit.

The MATLAB toolbox PABTEC can be used by a line command or via a graphical
user interface (GUI). PABTEC-GUI contains four tab panels shown in Figs. 2.4 and
2.5 that enable the user to upload the circuit, set up all required parameters, perform
model reduction, simulate the original and reduced-order systems and save these
systems and simulation data.

1http://www.netlib.org/lyapack/.
2https://www.mpi-magdeburg.mpg.de/projects/mess

http://www.netlib.org/lyapack/
https://www.mpi-magdeburg.mpg.de/projects/mess
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Table 2.1 Main subroutines in PABTECg

Subroutines Description

System analysis and parameter initialization

inipar Initialization of the parameters for other main subroutines

sysana Analyzing the topological structure, well-posedness, index of the MNA
system

Model order reduction

pabtec Model reduction of nonlinear circuit equations via decoupling linear and
nonlinear parts and reduction the linear subsystem, see Sect. 2.4

pabtecl Model reduction of linear circuit equations using the
passivity-preserving balanced truncation methods presented in Sect. 2.3

pabtecgui Graphical user interface for PABTEC

Simulation

simorih Simulation of the original nonlinear system using the BDF method with
h-scaling of the algebraic equations

simredh Simulation of the reduced-order nonlinear system using the BDF
method with h-scaling of the algebraic equations

Visualization

plotgraph Plot a circuit graph

Table 2.2 Supplementary subroutines in PABTEC

Subroutines Description

Model reduction

bt_rcl Balanced truncation for RLC circuits, see Algorithm 2.1

bt_rci Balanced truncation for RCI circuits, see Algorithm 2.2

bt_rcv Balanced truncation for RCV circuits, see Algorithm 2.3

bt_rciv Balanced truncation for RCIV circuits, see Algorithm 2.4

bt_rcvi Balanced truncation for RCIV circuits, see Algorithm 2.5

bt_rli Balanced truncation for RLI circuits

bt_rlv Balanced truncation for RLV circuits

bt_rliv Balanced truncation for RLIV circuits

bt_rlvi Balanced truncation for RLIV circuits

Lyapunov equations

glradi LR-ADI method for the projected Lyapunov equation, see Algorithm 2.6

glradis LR-ADI method for the projected symmetric Lyapunov equation

gpar Computing the suboptimal ADI parameters

gparsym Computing the suboptimal ADI parameters for symmetric problem

gpar_wach Computing the optimal ADI shift parameters for symmetric problem

Riccati equations

glrnw Low-rank Newton method for the projected Riccati equation, see
Algorithm 2.7

glrnwkl Low-rank Newton-Kleinman method for the projected Riccati equation,
see Algorithm 2.8
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Table 2.3 Auxiliary subroutines in PABTEC

Subroutines Description

Graph-theoretical algorithms

fastlists Forming a node-branch-list from an incidence matrix

forest Computing a forest in the graph

inc_bas Computing the basis matrices for the left null and range spaces

of an incidence matrix

inc_rank Computing the rank of an incidence matrix

loopmatr Computing a reduced loop matrix from a reduced incidence matrix

Numerical linear algebra

garn Arnoldi method for computing the largest and smallest finite
eigenvalues of a pencil

garnsym Arnoldi method for computing the largest and smallest finite
eigenvalues of a symmetric pencil

nresl Computing the residual norms for the projected Lyapunov equation
using updated QR factorizations

nresr Computing the residual norm for the projected Riccati equation using
QR factorization

prodinvsym Computing the matrix-vector product E�v, where E� is a reflexive
inverse of symmetric E w.r.t. to a projector P

prodp Computing the matrix-vector product E�v, where E� is a reflexive
inverse of E w.r.t. to the projectors Pr and Pl

prodpsym Computing the projector-vector product Pv

prodpl Computing the projector-vector product Plv or PT
l v

prodpr Computing the projector-vector product Prv or PT
r v

Miscellaneous

hmatr Computing the matrices Hk required for the projectors Pr and Pl

incmat Determination of the incidence matrices

ininet Initialization of the network topology

matr2ascii Export the matrix in ASCII-format

m0m Computing the matrix M0 as in (2.40)

mnadae Construction of E;A;B from incidence and element matrices

Table 2.4 User supplied subroutines for PABTEC

Subroutines Description

netlist Incidence and element matrices for linear circuit components

PCN Matrix valued function for nonlinear capacitors

PLN Matrix valued function for nonlinear inductors

gN Nonlinear current-voltage relation for nonlinear resistors

uV Voltages of voltage sources

iI Currents of current sources
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Fig. 2.4 PABTEC-GUI: general panel

2.7 Numerical Examples

In this section, we present some results of numerical experiments to demonstrate
the properties of the presented model reduction methods for linear and nonlinear
circuits. The computations were done on IBM RS 6000 44P Model 270 with
machine precision " D 2:22 � 10�16 using MATLAB 7.0.4.
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Fig. 2.5 PABTEC-GUI: simulation panel

Example 2.7.1 The first example is a transmission line model from [7] consisting of
a scalable number of RLC ladders. We have a single-input-single-output reciprocal
passive DAE system (2.9), (2.10) of order n D 60; 000. The minimal solution
of the projected Riccati equation (2.21) was approximated by a low-rank matrix
Xmin 	eReRT witheR 2 R

n;58 using Newton’s method as presented in Algorithm 2.7.
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Fig. 2.6 Transmission line: the frequency responses of the original system and the reduced-order
models computed by the PABTEC, PRIMA and SPRIM methods

The original system was approximated by a reduced model of order nr D 16

using Algorithm 2.1 with the error bound � D 2:72 � 10�5, where

� D kI C OGk2H1

.�rC1 C : : :C �q/

1 � kI C OGkH1
.�rC1 C : : :C �q/

; r D 15:

For comparison, we have also computed the reduced models of order nr D 117 using
the PRIMA and SPRIM algorithms [26, 48]. This order was chosen as a smallest
integer such that the absolute error j OG. j!/ � G. j!/j for the SPRIM model is
below � on the frequency interval Œ10�5; 1010�. In Fig. 2.6, we display the magnitude
of the frequency responses G. j!/ and OG. j!/ of the original and reduced-order
models. Figure 2.7 shows the absolute errors j OG. j!/ � G. j!/j and also the error
bound � . One can see that PABTEC provides a much smaller system with keeping
the better global approximation properties. It should also be noted that the result
for SPRIM is presented here for the best choice of the expansion point that was
found after several runs of this algorithm. Taking this into account, the reduction
time for the PABTEC method becomes comparable to the actual reduction time for
SPRIM. G
Example 2.7.2 Next we consider a nonlinear circuit shown in Fig. 2.8. It contains
1501 linear capacitors, 1500 linear resistors, 1 voltage source and 1 diode. Such
a circuit is described by the DAE system (2.2), (2.3) of the state space dimension
n D 1503. We simulate this system on the time interval I D Œ0 s; 0:07 s� with a fixed
stepsize 10�5 s using the BDF method of order 2. The voltage source is given by
vV .t/ D 10 sin.100�t/4 V, see Fig. 2.9. The linear resistors have the same resistance
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Fig. 2.7 Transmission line: the absolute errors and the error bound (2.20)

Fig. 2.8 Nonlinear RC circuit
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Fig. 2.9 Voltage source for the RC circuit

R D 2 k�, the linear capacitors have the same capacitance C D 0:02 �F and the
diode has a characteristic curve g.v QR / D 10�14.exp.40 1Vv QR /� 1/A.

The diode was replaced by an equivalent linear circuit as described in Sect. 2.4.
The resulting linear system of order n` D 1504 was approximated by a reduced
model of order nr D r C r0, where r0 D rank.I � M0/ and r satisfies the condition
.�rC1 C : : : C �q/ < tol with a prescribed tolerance tol. For comparison, we
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Fig. 2.10 Outputs of the original and the reduced-order nonlinear systems and the errors in the
output for the different tolerances (a) 10�2, (b) 10�3, (c) 10�4, (d) 10�5

compute the reduced-order linear models for the different tolerances tol D 10�2,
10�3; 10�4; 10�5. The numerical results are given in Fig. 2.10. In the upper plot of
each subfigure, we present the computed outputs y.t/ D �jV .t/ and Oy.t/ of the
original and reduced-order nonlinear systems, respectively, whereas the lower plot
shows the error jOy.t/ � y.t/j.

Table 2.5 demonstrates the efficiency of the proposed model reduction method.
One can see that for the decreasing tolerance, the dimension of the reduced-order
system increases while the error in the output decreases. The speedup is defined as
the simulation time for the original system divided by the simulation time for the
reduced-order model. For example, a speedup of 219 in simulation of the reduced-
order nonlinear model of dimension On D 13 with the error kOy � ykL2.I/ D 6:2 � 10�7
was achieved compared to the simulation of the original system. G

Example 2.7.3 We consider now the nonlinear circuit shown in Fig. 2.11. It contains
1000 repetitions of subcircuits consisting of one inductor, two capacitors and two
resistors. Furthermore, at the beginning and at the end of the chain, we have
a voltage source with vV .t/ D sin.100�t/10 V as in Fig. 2.12 and an additional
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Table 2.5 Statistics for the RC circuit

Dimension of the original nonlinear system, n 1503 1503 1503 1503

Simulation time for the original system, tsim 24,012 s 24,012 s 24,012 s 24,012 s

Tolerance for model reduction of the linear
subsystem, tol

1e-02 1e-03 1e-04 1e-05

Time for model reduction, tmor 15 s 24 s 42 s 61 s

Dimension of the reduced nonlinear system, On 10 13 16 19

Simulation time for the reduced system, Otsim 82 s 110 s 122 s 155 s

Error in the output, kOy� ykL2.I/ 7.0e-06 6.2e-07 2.0e-07 4.2e-07

Speedup, tsim=Otsim 294.0 219.0 197.4 155.0

Fig. 2.11 Nonlinear RLC circuit
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Fig. 2.12 Voltage source for RLC circuit

linear inductor, respectively. In the 1st, 101st, 201st, etc., subcircuits, a linear
resistor is replaced by a diode, and in the 100th, 200th, 300th, etc., subcircuits,
a linear inductor is replaced by a nonlinear inductor. The resulting nonlinear circuit
contains one voltage source, 1990 linear resistors with R1 D 20� and R2 D 1�,
991 linear inductors with L D 0:01H, 2000 linear capacitors with C D 1�F,
ten diodes witheg.v QR / D 10�14.exp.40 1Vv QR / � 1/A, and ten nonlinear inductors
with

eL. j QL/ D Lmin C .Lmax � Lmin/ exp.�j2QLLscl/;
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Fig. 2.13 The outputs of the original and the reduced-order nonlinear systems and the errors in
the output for the different tolerances (a) 10�2, (b) 10�3 , (c) 10�4, (d) 10�5

where Lmin D 0:001H, Lmax D 0:002H and Lscl D 104 1A . The state space dimension
of the resulting DAE system is n D 4003.

The numerical simulation is done on the time interval I D Œ0 s; 0:05 s� using the
BDF method of order 2 with a fixed stepsize of length 5 � 10�5 s. In Fig. 2.13, we
again present the outputs y.t/ D �jV .t/ and Oy.t/ of the original and reduced-order
nonlinear systems, respectively, as well as the error jOy.t/ � y.t/j for the different
tolerances tol D 10�2, 10�3, 10�4, 10�5 for model reduction of the decoupled linear
subcircuit. Table 2.6 demonstrates the efficiency of the model reduction method.
As in the example above, also here one can see that if the tolerance decreases,
the dimension of the reduced-order system increases while the error in the output
becomes smaller. In particular, for the approximate nonlinear model of dimension
On D 189 with the error jjOy � yjjL2.I/ D 4:10 � 10�5, the simulation time is only 57 s
instead of 1 h and 13 min for the original system that implies a speedup of 76.8.

Other results of numerical experiments with PABTEC can be found in Chaps. 1, 4
and 5 in this book.

G
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Table 2.6 Statistics for the RLC circuit

Dimension of the original nonlinear system, n 4003 4003 4003 4003

Simulation time for the original system tsim 4390 s 4390 s 4390 s 4390 s

Tolerance for model reduction of the linear
subsystem, tol

1e-02 1e-03 1e-04 1e-05

Time for the model reduction, tmor 2574 s 2598 s 2655 s 2668 s

Dimension of the reduced nonlinear system, On 127 152 189 218

Simulation time for the reduced system, Otsim 33 s 42 s 57 s 74 s

Error in the output, kOy� ykL2.I/ 2.73e-03 1.67e-04 4.10e-05 4.09e-05

Speedup, tsim=Otsim 132.0 104.1 76.8 59.1
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Chapter 3
Reduced Representation of Power Grid Models

Peter Benner and André Schneider

Abstract We discuss the reduction of large-scale circuit equations with many
terminals. Usual model order reduction (MOR) methods assume a small number
of inputs and outputs. This is no longer the case, e.g., for the power supply network
for the functional circuit elements on a chip. Here, the order of inputs/outputs,
or terminals, is often of the same order as the number of equations. In order
to apply classical MOR techniques to these power grids, it is therefore manda-
tory to first perform a terminal reduction. In this survey, we discuss several
techniques suggested for this task, and develop an efficient numerical imple-
mentation of the extended SVD MOR approach for large-scale problems. For
the latter, we suggest to use a truncated SVD computed either by the implic-
itly restarted Arnoldi method or the Jacobi-Davidson algorithm. We analyze
this approach regarding stability, passivity, and reciprocity preservation, derive
error bounds, and discuss issues arising in the numerical implementation of this
method.

3.1 Introduction

As already discussed and motivated in the previous chapters, it is indisputable
that model order reduction (MOR) in circuit simulation is absolutely necessary.
This chapter treats the reduction of linear subcircuits. MOR of these (parasitic)
subsystems is part of the research focus since decades. A lot of approaches
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are available (see, e.g., Chap. 2 or [11, 47]), but recently a structural change
handicaps the explored algorithms, even makes them inapplicable in some cases.
The established approaches assume a relatively small number of input and output
connections of these parasitic systems, which is no longer true for some situations
nowadays. In these cases, a simulation of the full unreduced model might be
much faster than the model reduction step itself such that MOR is not reasonable
anymore.

It becomes increasingly important also to model the power supply of the
electronic devices such that a significant class of applications in circuit simula-
tion, which violates the assumption above, are power grid networks. In modern
multi-layer integrated circuits (ICs) these power grids are own layers, which are
responsible for the power supply of functional circuit elements, e.g., transistors.
As a consequence, there is a need for high connectivity, which leads to math-
ematical models with a lot of inputs and outputs, i.e., one I/O-terminal (also
called pin) for each supplied element. The development of new MOR methods
being applicable to such challenging LTI systems is subject matter of this chap-
ter.

Our goal is therefore to find a concept to compress the input/output matrices
in such a way that we get a terminal reduced system with similar behavior. This
system realization enables then the use of classical MOR methods as described,
e.g., in the previous chapter. Fundamentally, there are two popular types of MOR
methods: either we use modal based methods and Krylov subspace (KROM)
methods [2, 10, 11, 15, 19, 39] or Hankel norm approximations and balanced
truncation (BT) methods [2, 9–11, 38]. No matter which MOR method we use,
with the help of the approach to first reduce the terminals and then to reduce the
order of the system, it is possible to apply the original I/O-data to a reduced-
order model. The detailed procedure is described in this chapter. We illustrate
numerical results obtained for the performance of this approach using exam-
ples.

In Sect. 3.2 we lay the foundations for the approach. We introduce basic defini-
tions and explain the mathematical systems appearing in this chapter. We highlight
different notations and special emphasis is given to the concept of the moments
of the transfer function of a system. Additionally, the numerical examples, which
play a role throughout the whole chapter, are introduced. In Sect. 3.3 we attend
to different approaches tackling MOR of linear systems with a lot of terminals.
In [17], a modified conjugate gradient algorithm is suggested to analyze power
grids. Also [16, 27] propose rather theoretical ideas, especially in [16] a method
for terminal compression is introduced, called SVDMOR, and is the starting point
of our work. In [33], an extended version, the ESVDMOR approach, is published,
which we explain in detail. Additionally, we analyze the very similar algorithm
TermMerg [32], which compresses the terminals by merging them together in a
special manner. We also comment on two approaches based on very different ideas.
The first approach, SparseRC [25, 26], is based on considering the network as a
graph. This opens the door to graph theoretical ideas, such as partitioning and
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node elimination, which leads to a MOR of the system. The second approach is
based on interpolation of measurements [3, 29]. With the help of the Loewner
matrix concept we show how to obtain the minimal realization of a reduced
model.

As our focus is on ESVDMOR, Sect. 3.4 deals with the characteristics of this
approach. Essential properties of the original system, such as stability, passivity, and
reciprocity should not be destroyed during the reduction process. The preservation
of these properties is an important task in circuit simulation. We introduce basic
definitions and prove that the ESVDMOR approach is stability, passivity, and
reciprocity preserving under certain conditions following [7]. Also, the analysis of
the approximation error derived in [8] is reviewed. We also point out the numerical
bottlenecks and explain how to avoid them. Here, the truncated singular value
decomposition (SVD) plays an important role. We will basically introduce two
approaches to perform a truncated SVD efficiently, building upon [6]. In Sect. 3.5,
we conclude this chapter by assessing the theoretical results and the numerical
experiments. We give an outlook to problems of interest for future research in the
area of MOR for power grids.

3.2 System Description

3.2.1 Basic Definitions

Modeling in the area of circuit simulation, and also in areas such as mechanical,
physical, biological and chemical applications, often leads to linear time-invariant
(LTI) continuous-time systems of the form

EPx.t/ D Ax.t/C Bu.t/; Ex.0/ D Ex0;
y.t/ D Cx.t/C Du.t/:

(3.1)

With reference to circuit simulation we have the following definitions:

• A 2 R
n�n is the resistance matrix,

• E 2 R
n�n is the conductance matrix,

• B 2 R
n�m is the input matrix,

• C 2 R
p�n is the output matrix, and

• D 2 R
p�m is the feed-through term, which in many practical applications is equal

to zero.

Furthermore,

• x.t/ 2 R
n contains internal state variables, e.g., currents or voltages,

• u.t/ 2 R
m is the vector of input variables, and

• y.t/ 2 R
p is the output vector.
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To ensure a unique solution we also need the initial value x0 2 R
n. The number

of state variables n is also called the order of the system. The number of inputs m
and the number of outputs p are not necessarily equal. Unless otherwise noted, we
assume the matrix pencil .	E � A/ to be regular, i.e., det.	E � A/ ¤ 0 for at least
one 	 2 C. The matrix E is allowed to be singular. In this case, the system (3.1)
consists of a differential-algebraic equation (DAE) in semi-explicit form combined
with an output term. Together, the equations in (3.1) form a descriptor system. In
this chapter, we will use the notation explained above, but other notations are also
commonly found in the literature, e.g.,

CPx.t/ D �Gx.t/C Bu.t/; Cx.0/ D Cx0;
y.t/ D Lx.t/C Eu.t/:

(3.2)

Applying the Laplace transform to (3.1) leads to

.sEQx.s/ � Ex.0// D AQx.s/C BQu.s/;
Qy.s/ D CQx.s/C DQu.s/:

After rearranging the DAE and using the initial condition Ex.0/ D Ex0, we get

.sE � A/Qx.s/ D Ex0 C BQu.s/; or

Qx.s/ D .sE � A/�1Ex0 C .sE � A/�1BQu.s/;

which we plug into the output term. Assuming Ex0 D 0, this term leads to a direct
linear input-output mapping in frequency domain, Qy.s/ D �

C.sE � A/�1BCD
� Qu.s/:

Definition 3.2.1 (The Transfer Function) The rational matrix-valued function

G.s/ D C.sE � A/�1B C D; (3.3)

with s 2 C is called the transfer function of the continuous-time descriptor
system (3.1). If s D i!, then ! 2 R is called the (radial) frequency.

Note that, for simplicity, we denote Qy.s/ � y.s/ and Qx.s/ � x.s/. The distinction
between the variables x.t/ and x.s/ should be clear from the context and the differing
arguments (t indicating time, s frequency domain). Using the notation (3.2), the
transfer function is sometimes described by

H.s/ D L.sC C G/�1B C E:

Modified nodal analysis (MNA) modeling of current driven (impedance form)
RLC power grid circuits, i.e. the inputs are currents from current sources injected
into the external nodes or terminals of the circuit, leads to systems with the following
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block structure [20]:

�
E1 0
0 E2

�
Px D

�
A1 A2

�AT
2 0

�
x C

�
B1
0

�
u;

y D 	
BT
1 0



x;

(3.4)

where A1, E1, E2 are symmetric, A1 is negative semidefinite, E1 is positive
semidefinite, E2 is positive definite, and B1 is an incidence matrix defining
the terminals. The impedance modeling of RC circuits (i.e., in the absence of
inductances) yields systems of DAE index 1 consisting of the upper left blocks
of (3.4). If a system is voltage driven (admittance form), i.e., the inputs are
terminal voltages provided by voltage sources and the outputs are terminal currents,
it is possible to rewrite the system in impedance form [25]. Please note that
RLC circuits of the form above are always passive. More details about this
characteristic, about the system structure of MNA modeled RLC circuits, and about
projection type reduction techniques for such current and voltage driven circuits
are available, e.g., in [22]. The corresponding transfer function of system (3.4) is

G.s/ D BT.sE � A/�1B: (3.5)

So far, MOR methods, i.e., the approximation of the system’s transfer
function (3.3), concentrate on reducing the order n of the system to a
smaller order nr. Under the assumption that the dimensions of the input and
output vectors are much smaller than the order of the system itself, i.e.,

m; p 
 n; (3.6)

the important information is identified within the reduced model. Only the states
containing this input-output information are preserved. A schematic overview of
this conventional MOR approach is given in Fig. 3.1.

For the moment, we assume the reduced-order system OGr.s/ to have a fixed order
nr. The goal is to find OGr.s/ 	 G.s/ such that kG. : / � OGr. : /k� in minimized in
some appropriate norm k � k�. This will yield a small output error ky. : /� Oy. : /k� in
frequency domain, and, ideally, after applying the inverse Laplace transform, also
in time domain. The smaller nr, the larger is the error, such that it is an additional
challenge to find the smallest possible nr for a given tolerance.

As already mentioned in Sect. 3.1, the assumption (3.6) is often violated due to
new tasks in applications. The circuit simulation of power grids as part of an IC is
one of the most common examples for these kinds of systems. Before we present
different methods to handle MOR including, at least transitional, terminal reduction,
we need a few more basic definitions.
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Fig. 3.1 Schematic overview of conventional MOR

Definition 3.2.2 (The i-th Block Moment) We define the matrix m0
i 2 C

p�m as

m0
i D

2
66664

m0
i 1;1 m0

i 1;2 : : : m0
i 1;m

m0
i 2;1 m0

i 2;2 : : : m0
i 2;m

:::
:::

: : :
:::

m0
i p;1 m0

i p;2 : : : m0
i p;m

3
77775 D C.A�1E/i.�A/�1B; i D 0; 1; : : :

as the i-th block moment of (3.3).

The matrices m0
i are equal to the coefficients of the Taylor series expansion of (3.3)

about s0 D 0,

G.s/ D C.sE � A/�1B D C.In C .s � 0/K /�1L D
1X

iD0
.�1/iCK iL .s � 0/i;

with K WD .�A/�1E and L WD .�A/�1B.
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Definition 3.2.3 (The i-th s0 Frequency-Shifted Block Moment) We define the
matrix ms0

i 2 C
p�m as

ms0
i D

2
66664

ms0
i 1;1 ms0

i 1;2 : : : ms0
i 1;m

ms0
i 2;1 ms0

i 2;2 : : : ms0
i 2;m

:::
:::

: : :
:::

ms0
i p;1 ms0

i p;2 : : : ms0
i p;m

3
77775 D C.�.s0E � A/�1E/i.s0E � A/�1B; i D 0; 1; : : :

as the i-th s0 frequency-shifted block moment of (3.3).

The matrices ms0
i are equal to the coefficients of the Taylor series expansion of (3.3)

about s0 ¤ 0

G.s/ D C.sE � A/�1B D C.In C .s � s0/K /�1L (3.7)

D
1X

iD0
.�1/iCK iL .s � s0/

i; (3.8)

with K WD .s0E � A/�1E and L WD .s0E � A/�1B.
The known moment matching methods [20, 21] make use of the fact that for

s 	 s0, the leading moments carry sufficient information about the dynamics of the
system to approximate its input-output behavior. A detailed inspection of the block
moments reveals that the j-th row, j D 1; : : : ; p, of ms0

i , where mi is one of the i-th (s0
frequency-shifted) block moments, contains information how the output terminal j
is influenced by all inputs. Analogously, the k-th column of ms0

i , k D 1; : : : ;m,
provides information about the impact of the input signal at terminal k to all outputs.
Inspired by this observation, we define two moment matrices formed by � different
matrices ms0

i .

Definition 3.2.4 (The Input Response Moment Matrix MI) The matrix MI 2
C
�p�m composed of � different block moment matrices mi

MI D 	
m0

T ;m1
T ; : : : ;mT

��1


T
(3.9)

is called the input response moment matrix MI of order � of (3.3).

Definition 3.2.5 (The Output Response Moment Matrix MO) The matrix MO 2
C
�m�p composed of � different block moment matrices mi

MO D Œm0;m1; : : : ;m��1�
T (3.10)

is called the output response moment matrix MO of order � of (3.3).
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Remark 3.2.6 The choice of mi to create MI and MO, i.e., whether to use m0
i or

ms0
i , and of which order �, is free. However, the following facts give hints. The

calculation of the moments requires computational effort of iterative character. In
addition, lower order moments often contain basic information and the computation
of higher order moments might be numerically unstable. Therefore, it is recom-
mended to use all moments mi up to a certain order �. Frequency shifted block
moments ms0

i are even more expensive to compute. Consequently, making use of
them is only recommended if a certain frequency is of special interest or there
is a large approximation error at this frequency. The order � of MI and MO does
not need to be equal, but since the information resulting from the most expensive
computational steps can be shared, it is obviously beneficial to use the same �. In
the symmetric case, only the computation of one of the response moment matrices
is necessary. For more information. please see Sect. 3.4.3.

3.2.2 Benchmark Systems

In the following, we introduce two examples which accompany this chapter. If
numerical experiments and results are shown they are with reference to one of the
following systems.

3.2.2.1 A Test Circuit Example

The first numerical example was provided by the former Qimonda AG, Munich,
Germany. It is a very simple parasitic RC test circuit called RC549, which is a linear
subcircuit of a much larger nonlinear circuit. The model consists of one hundred and
forty-one nodes, such that we get n D 141 generalized states in the corresponding
descriptor system equations. Nearly half of these nodes, more precisely 49:65%, are
terminals. As these terminals are the interconnects to the full circuit, it follows that
m D p D 70.

Circuit RC549 is a very useful test example because although half of the states
are terminals, computations do not need a long time, such that a lot of tests can be
performed in short time. Therefore, this test example was investigated beforehand
also in [6, 7, 30].

3.2.2.2 Linear Subdomain for Non-linear Electro-Quasistatic Field
Simulations

This example shows that the introduced methods are also applicable to problems
which are not results of circuit simulation modeling. It also shows that the
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algorithms are applicable to large-scale systems. The simulation of high voltage
models often includes nonlinear field grading materials, typically as thin layers.
They allow higher voltage levels for the modeled devices. These materials have
a highly nonlinear conductivity, leading to nonlinear resistive effects. A common
way to describe such models is the electro-quasistatic (EQS) approximation. A
standard finite element method (FEM) discretization results in a stiff system of
ordinary differential equations (ODEs). To avoid the evaluation of all system
equations during the integration, MOR is applied to a subdomain, e.g., proper
orthogonal decomposition (POD), see [42]. Since most of the domain has con-
stant material parameters (nonlinear field grading materials are used as thin
layers), the decoupling of the system in a large linear part (upper left block)
and a small conductive part (lower right block) including nonlinearities, such
that

�
M11 M12

M21 M22

� �Px1.t/
Px2.t/

�
C
�

K11 K12
K21 K22

� �
x1.t/
x2.t/

�
D
�

b1.t/
b2.t/

�
;

is possible. For details, see [42]. The matrices M and K denote the discrete
div-grad operators with respect to permittivity and conductivity. The state vector
x.t/ contains the nodes potentials. The vector b.t/ contains boundary condi-
tion information, but only the components of b.t/ with real input are nonzero.
Therefor, b.t/ can be seen as the vector of inputs mapped to the system by
an incidence matrix, such that b.t/ D OBu.t/, resulting in the system equa-
tions

�
M11 M12

M21 M22

� �Px1.t/
Px2.t/

�
C
�

K11 K12
K21 K22

� �
x1.t/
x2.t/

�
D
� OB1

OB2
� �

u1.t/
u2.t/

�
:

Having a look at the second row, we get

M22 Px2.t/C K22x2.t/ D OB2u.t/ � M21 Px1.t/ � K21x1.t/; (3.11)

which represents only the linear part, input information u and intercon-
nect information to the conductive subdomain variables Px1.t/ and x1.t/. A
reformulation of this equation leads to a system equivalent to system (3.1),
i.e.,

M22„ƒ‚…
WDE

Px2.t/ D �K22„ƒ‚…
WDA

x2.t/C 	 OB2 �K21 �M21



„ ƒ‚ …

WDB

2
4 u.t/

x1.t/
Px1.t/

3
5 : (3.12)

W.l.o.g., we assume C D BT . The system, called eqs_lin in this work, is of order
n D 14;261 with m D p D 2943 terminals (20:6%).
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3.3 Terminal Reduction Approaches

In this section we will provide an overview about some existing methods which
tackle the problem of MOR for systems with a high number of terminals
(inputs/outputs). In general, we assume that the original system has too many
input and/or output terminals to use conventional MOR approaches, so that the
extra step of terminal reduction is necessary.

3.3.1 (E)SVDMOR

Having a closer look at (3.1), we recognize that the matrices C and B carry the
input and output information. Trying to approximate (3.3) considering that (3.6) is
violated motivates the idea to modify these input/output matrices. For this purpose,
we try to find a projection of the . p � m/-transfer function G.s/ onto a .ro � ri/-
transfer function Gr.s/ such that ro 
 p and ri 
 m. To achieve this, we look for a
decomposition of the transfer function such that

bG.s/ 	 VC
	
WT

CC.sE � A/�1BVB



„ ƒ‚ …
WDGr.s/

WT
B (3.13)

with VC;WC 2 R
p�ro and VB;WB 2 R

m�ri . Of course, the projector properties
WT

CVC D Iro and WT
B VB D Iri should hold. The so-obtained internal transfer

function Gr.s/ can be interpreted as a transfer function of a dynamical system with
fewer virtual input and output terminals. This system can be further reduced with
any method for model reduction of linear descriptor systems. Again, a schematic
overview of this approach is shown in Fig. 3.2.

In what follows, we try to make use of the intimate correlations between the
input and the output terminals. ESVDMOR [32, 33, 35, 47], an extended version
of SVDMOR [16, 47], is a method which is based on the SVD of the input
and the output response moment matrices MI and MO, see Definitions 3.2.4 and
3.2.5. Note that we assume the number of rows in each of both matrices to be
larger than the number of columns. If this is not the case, the order � has to be
increased.

Applying the SVD, we get a low rank approximation of the form

MI D UI˙IV
�
I 	 UIri

˙Iri
V�Iri
; MO D UO˙OV�O 	 UOro

˙Oro
V�Oro

; (3.14)

where

• for any matrix Z, Z� is its conjugate transpose—in case s0 D 0, the SVD is real
and we can work with just the transpose ZT , but for complex s0, the moment
matrices are in general complex, too;
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Fig. 3.2 Schematic overview of terminal and model order reduction

• ˙Iri
is an ri � ri diagonal matrix and ˙Oro

is an ro � ro diagonal matrix;
• VIri

and VOro
are m � ri and p � ro isometries (i.e., matrices having orthog-

onal/unitary columns) containing the dominant row subspaces of MI and MO,
respectively;

• UIri
and UOro

are �p � ri and �m � ro isometries that are not used any further,
• ri and ro are in each case the numbers of significant singular values. At the same

time they are the numbers of the reduced virtual input and output terminals.

For ease of notation, we furthermore assume that a real expansion point s0 was
chosen, so that the SVDs (3.14) are real and we can work with transposes in the
following.

The important information about the input and output correlations is now
contained in VT

Iri
and VT

Oro
. Our goal is to decompose C and B. Combining this
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information leads to

C 	 VOro
Cr and B 	 BrV

T
Iri
: (3.15)

The matrices Cr 2 R
ro�n and Br 2 R

n�ri are consequences of applying the
Moore-Penrose pseudoinverse of VOro

and VT
Iri

to C and B, respectively. The Moore-

Penrose pseudoinverse is denoted by .�/C. Equation (3.15), solved for Cr and Br and
modified by the definition of the Moore-Penrose pseudoinverse, leads to

Cr D VCOro
C D .VT

Oro
VOro

/�1VT
Oro

C D VT
Oro

C (3.16)

and

Br D B
�

VT
Iri

�C D BVIri
.VT

Iri
VIri
/�1 D BVIri

: (3.17)

Hence, we get a new internal transfer function Gr.s/

G.s/ 	 bG.s/ D VOro
Cr.sE � A/�1Br„ ƒ‚ …

WDGr.s/

VT
Iri
;

which is equivalent to (3.13). The terminal reduced transfer function Gr.s/ is
reduced to

Gr.s/ 	 QGr.s/ D QCr.s QE � QA/�1 QBr (3.18)

by any conventional MOR method. The result is a very compact terminal and order
reduced model QGr.s/. The complete approximation procedure is

G.s/ 	 bG.s/ D VOro
Gr.s/V

T
Iri

	 bGr.s/ D VOro
QGr.s/V

T
Iri
: (3.19)

Remark 3.3.1 SVDMOR can be considered as a special case of ESVDMOR
setting (3.9) and (3.10) up with � D 1 and m0

0. Furthermore, in [16] a recursive
decomposition of the matrix-transfer function and an application of SVDMOR to
each block, the so called RecMOR approach, is suggested.

Figures 3.3, 3.4, 3.5 and 3.6 show the reduction of RC549 to 5 generalized states
via one virtual terminal by ESVDMOR. The reduction step in (3.18) is performed
by balanced truncation, in particular, using the implementation called “generalized
square root method” [38]. In Fig. 3.3 it is clearly identifiable that one singular value
of MI D m0

0, and therefore also of MO D �
m0
0

�T
, dominates. Consequently, the

system can be reduced to one virtual terminal. The calculation of frequency-shifted
or higher order moments is more costly and in this example not necessary. For
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Fig. 3.5 Absolute and relative error of RC549 reduced to 5 states via 1 virtual terminal

now, we follow the approach to explicitly calculate the matrices MI and MO and
perform a full SVD in (3.14), see Full matrices (svd) in the legends. In contrast to
the TermMerg approach, see the next subsection, the ESVDMOR approach does
not allow to directly identify which state represents the dominant behavior of the
terminals best. Since the spectral norm plot of the transfer function, see Fig. 3.4,
and the magnitude plot of node one of the system, see Fig. 3.6, are quite similar, we
can conclude that node one is representative for all terminals. This is expectable for
all terminal nodes because of the one dominant singular value. The phase plot makes
clear that the approximation within the frequency range of importance between
103 and 109 Hz is sufficient. Outside of this range, the phase approximation is not
accurate. Figure 3.5 shows the overall approximation error of the reduced system.
Although the absolute errors seems to be very large, the relative errors show that
the approximation in spectral norm is acceptable, at least in the frequency range of
interest.



3 Reduced Representation of Power Grid Models 101

10−4 10−3 10−2 10−1 100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016

−1.5

−1

−0.5

0

Frequency ω in Hz

P
h
as

e
in

ra
d

Original

Full matrices (svd)

10−4 10−3 10−2 10−1 100 101 102 103 104 105 106 107 108 109 1010 1011 1012 1013 1014 1015 1016

0

100

200

300

M
a
g
n
it
u
d
e

in
d
b

Original

Full matrices (svd)

PhaseandmagnitudeplotofRC549,node1,

original(blue,n=141)andreducedsystem

(green,r=5via1virtualterminal).

Fig. 3.6 Bode plot of node 1 of RC549 reduced to 5 states via 1 virtual terminal

3.3.2 TermMerg

Based on a similar idea as ESVDMOR, the TermMerg approach was introduced
in [34]. As can be suspected by its name, the approach merges terminals. If some
terminals are similar in terms of performance metrics (timing, delays), those are
identified and grouped as one terminal. TermMerg is, as well as ESVDMOR,
based on the higher order moment responses. It additionally takes time delays into
account while clustering the terminals. The input and output terminals are clustered
separately. Terminals with similar timing responses are merged to one representative
terminal. The number of clusters for the grouping is calculated by an SVD low rank
approximation of the input and output response moment matrices MI and MO. The
k-means clustering algorithm is used to group the column vectors of these matrices
to different clusters. For each of them, one terminal is selected to represent all other
terminals of this cluster. Adaptation of the input and output position matrices B and
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C with respect to the representing vector of each cluster leads to a reduction in the
number of terminals.

3.3.2.1 The k-Means Clustering Algorithm

The k-means clustering is a cluster analysis method to partition n observations into k
clusters Cli, i D 1; 2; : : : ; k. Each observation belongs to the cluster with the nearest
mean. We take a set of observations .x1; x2; : : : ; xn/, with xj 2 R

` for j D 1; : : : ; n,
for granted. The k-means clustering aims to partition the n observations such as to
minimize the within-cluster sum of squares

S D
kX

iD1

X
xj2Cli

kxj � �ijj2: (3.20)

The vector�i represents the geometric centroids of the data in Cli. The final result is
a set of k disjoint subsets Cli containing Ni data points each and n D Pk

iD1 Ni. One
of the most commonly used k-means algorithms is the Lloyd algorithm [36] which
gives the global minimum of S in (3.20). The three main steps of the algorithm
are:

• Initialization: Set k initial means �11; : : : ; �k
1.

• Assignment: Each observation is assigned to the cluster with the closest mean,

Cli
t D .xj W jjxj � �i

tjj � jjxj � �i�
tjj/;

for j D 1; : : : ; n, i� D 1; : : : ; k, and t denotes the iteration number, and
• Update: The new center vectors of each cluster are calculated by,

�tC1
i D 1

Ni
t

X
xj2Clit

xj:

The algorithm is repeated until there is no more change in the assignment step. The
structure of this algorithm is responsible for the sensitivity to the initial choice of the
number of clusters and their cluster centers. Fortunately, we calculate the number
of clusters beforehand by using the truncated SVD in (3.14). Note that the number
of reduced inputs ri and ro is equivalent to the number of input and output clusters,
respectively.

Assume xj; j D 1; : : : ;m, to be a column vector of MI containing the moments
w.r.t. to one input node (node j) and all output nodes such that

MI D Œx1; x2; : : : ; xm�:
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Following the Lloyd algorithm, we pick k different vectors out of the xj’s as
initial means, perform the steps described above, and save the resulting clusters
Cl1; : : : ;Clri as well as the corresponding centers�1; : : : ; �ri . Within TermMerg, we
select one representative terminal for each cluster. For each Cli we find the element
xj for which the distance from �i is the minimum among all elements in Cli.

Example 3.3.2 We consider a very simple matrix A defined as follows:

A D
�
1 3 5 7

2 4 6 8

�
:

Suppose we group the four columns into two clusters Cl1 and Cl2. We choose the
initial centroids randomly as �11 D .3; 4/T and �21 D .5; 6/T . We compute a
distance matrix containing the squared Euclidean distances of each element (column
index) to each cluster (row index). For the first element a1 D .1; 2/T , the distance
from the first centroid is given by .1�3/2C .2�4/2 D 8. We construct the distance
matrix as

D D
�
8 0 8 32

32 8 0 8

�
:

The first set of clusters is Cl11 D fa1; a2g and Cl21fa3; a4g. The new centroids are
�1

2 D .2; 3/T and �22 D .6; 7/T . We repeat the process, and the second set of
clusters turns out to be the same as the first one. Consequently, the centroids stay
the same. Since there is no further change in the centroids, the four columns can be
clustered into Cl12 and Cl22.

3.3.2.2 The Reduction Step

Once we know the number of clusters for inputs and outputs, we perform k-means
to cluster the terminals. We find the representative terminal for each cluster and
accordingly replace columns of the input position matrix B and the rows of the
output position matrix C. We include only the representative terminals.

3.3.3 SparseRC

In this subsection we comment on an approach based on a completely different idea
from the one used in the approaches we introduced up to now. Indeed, SparseRC,
which is introduced in [25, 26], also performs MOR although the number of
terminals may be very large. A specialty is that the approach is considerably more
user-oriented. Its application is the reduction of parasitic RC circuits in simulation,
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e.g. power grids. In [26], the following five basic objectives for successful model
reduction are mentioned:

• the approximation error kG. : / � OG. : /k is small in an appropriate norm,
• stability and passivity are preserved,
• an efficient computation is possible,
• for reconnection, the incidence input/output matrix B is preserved in some sense,

i.e., OB is a sub-matrix of B, and
• the reduced system matrices OE and OA are sparse.

While the first three items can be nearly taken for granted in MOR, the last two items
are user-oriented specifications which are hard to meet. Even if the last item may be
satisfied by some approaches, the next-to-last item is in general not satisfied as in
most conventional MOR methods, the reduced model is not sparse. The SparseRC
approach promises to fulfill these five items. The basic idea is to apply extended
moment matching projection (EMMP), see next section, to disjoint parts of the
original system.

3.3.3.1 MOR via Graph Partitioning and EMMP

Following [26], the EMMP (derived from an algorithm based on pole analysis via
congruence transformations called PACT [28] and from sparse implicit projection
(SIP), see [48]) is a moment matching type reduction approach suitable for multi-
terminal systems with only a few terminals. Within SparseRC, this projection
method is applied to subsystems connected via so called separator nodes. Each
subsystem has just a few terminals and the connection of all reduced subsystems
leads to a reduced-order version of the original system.

Assume such a subsystem is given as an LTI system obtained from modeling an
RC circuit. In this situation, system (3.4), re-arranged and in frequency domain, can
be written as

.sE � A/x.s/ D Bu.s/; (3.21)

when ignoring the output term. Now we do a simple block separation into selected
nodes xs (terminals and separator nodes) and internal nodes xi. This leads to

�
s

�
Ei Ec

ET
c Es

�
�
�

Ai Ac

AT
c As

���
xi

xs

�
D
�
0

Bs

�
u;

where Ai;Ei 2 R
.n�s/�.n�s/, Bs 2 R

s�s with s � m being the number of selected
nodes, i.e. the number of terminals m plus the separator nodes which are preserved
because of the coupling within SparseRC. Applying a congruence transform with
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W WD �A�1i Ac and

X D
�

In�s W
0 Is

�
; Nx D XTx

such that .A;E;B/ are mapped to .XTAX;XTEX;XTB/, yields

�
s

�
Ei NEc
NET

c
NEs

�
�
�

Ai 0

0 NAs

���
xi

Nxs

�
D
�
0

Bs

�
u; (3.22)

with

NEc D Ec C EiW;

NEs D Es C WTEiW C WT Ec C ET
c W; (3.23)

NAs D As C AT
c W: (3.24)

Solving the first row in (3.22) for xi and plugging the result into the equation of the
second row of (3.22) leads to

.s NEs � NAs/Nxs � s2 NET.sEi � Ai/
�1 NEc Nxs D Bsu:

Following [26] further on, the first two moments of system (3.21) at s D 0 are given
by NEs and NAs in (3.23) and (3.24). Consequently, a reduced-order model OA; OE 2 R

k�k,
k � s, which preserves the first two admittance moments of (3.21) can be computed

via a moment matching projection V D 	
WT Is


T
given by

OA D VTAV; OB D VTB;

OE D VTEV; and Ox D VTx D Nxs:

The question remains how to partition the original RC system with many terminals
in an appropriate way such that we can apply EMMP to the subsystems. There
are two goals during this process, which depend on each other. One is to find a
partitioning and the second is to avoid fill-in such that the reduced model is still
sparse. Usually, fill-in minimizing matrix reordering techniques similar to those
used to compute an efficient Cholesky factorization can identify nodes causing
fill-in. SparseRC avoids these techniques due to circuit size or topology. Instead,
graph decomposition based on the non-zero pattern (nzp) of E � A is used due to
the analogy between circuit models and graphs. The fill-creating nodes, i.e., the
separation nodes, are identified and the circuit matrices are reordered in a so-called
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bordered block diagonal (BBD) form [49]. In this form, the individual blocks
form the subsystems to be reduced and the border blocks contain the separator
nodes, which are preserved during the EMMP. Both goals are achieved and the
five objectives for MOR above are fulfilled. For a detailed discussion, e.g., about
the matrix properties such as the singularity of Ai or implementation details, see
[25, 26]. The approach is generalized to RLC networks in [25].

3.3.4 MOR for Many Terminals via Interpolation

This section deals with the modeling of RLC systems of the form (3.1) by means
of S-parameters (scattering parameters), i.e., measurements of frequency domain
response data [29]. A typical application would be a black box problem. Given
is an electrical device, but the knowledge about the circuit inside the device is
unidentified. With the help of, e.g., a Vector Network Analyzer (VNA), it is
possible to measure amplitude and phase properties. We get P samples at different
frequencies fj, j D 1; : : : ;P, of the device with m inputs and p outputs as

S. j/ WD

2
664

S. j/
11 � � � S. j/

1m
:::

:::
:::

S. j/
p1 � � � S. j/

pm

3
775 : (3.25)

The goal is to find the associated transfer function G.s/ such that its values at s D i!
with ! D 2�fj are close to the scattering matrix. If kG.i 2�fj/ � S. j/k is small in
some norm, the computed representation matrices belong to an accurate model. The
approach uses tangential interpolation and the Loewner matrix concept to find a
model, even a reduced-order model, of this multiport device.

3.3.4.1 Tangential Interpolation and the Loewner Concept

Tangential interpolation is a form of the standard interpolation problem along a
tangential direction. Consider k different sampling points 	i 2 C, the tangential
directions ri 2 C

m�1, and the tangential data wi 2 C
p�1, such that

� D f	1; : : : ; 	kg � C
k;

R D Œr1; : : : ; rk� 2 C
m�k; and

W D Œw1; : : : ;wk� 2 C
p�k
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is called the right interpolation data. Analogously, we define the left interpolation
data �j 2 C, lj 2 C

1�p and vj 2 C
1�m at another h sampling points as

� D f�1; : : : ; �kg � C
h;

L D 	
lT1 ; : : : ; l

T
h


T 2 C
h�p; and

V D 	
vT
1 ; : : : ; v

T
h


T 2 C
h�m:

The rational interpolation problem aims at finding a set of system matrices, such
that the right and left interpolation constrains

G.	i/ri D wi; i D 1; : : : ; k; (3.26)

and ljG.�j/ D vj; j D 1; : : : ; h; (3.27)

are fulfilled by the associated transfer function G.s/.

Definition 3.3.3 (The Loewner and the Shifted Loewner Matrix) Given are a
set of P D kCh sampling points f	1; : : : ; 	k; �1; : : : ; �hg and the values of a rational
matrix function G.	i/ and G.�j/ evaluated at these points. By defining tangential
directions ri and lj we are able to compute the tangential data wi and vj. The matrix

L D

2
664
v1r1�l1w1
�1�	1 � � � v1rk�l1wk

�1�	k
:::

:::
:::

vhr1�lhw1
�h�	1 � � � vhrk�lhwk

�h�	k

3
775

is called the Loewner matrix. The shifted Loewner matrix is defined as

�L D

2
664
�1v1r1�	1l1w1

�1�	1 � � � �1v1rk�	k l1wk
�1�	k

:::
:::

:::
�hvhr1�	1lhw1

�h�	1 � � � �hvhrk�	k lhwk
�h�	k

3
775 :

By means of the matrices of Definition 3.3.3 and their properties, e.g., they
satisfy certain Sylvester equations and turn out to reveal some kind of tangential
controllability and observability Gramians, we can solve the modeling problem for
the given data.

Lemma 3.3.4 Assume k D h (half of P, if impossible ignore one sampling point)
and det.zL � �L/ ¤ 0 for all z 2 f	ig [ f�jg. Then E D �L, A D ��L, B D V,
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C D W, and D D 0 is a minimal realization1 of the system whose transfer function

G.s/ D W.�L � sL/�1V

interpolates the given data such that (3.26) and (3.27) are satisfied.

Note that we assume exact data and the needed number of samples. For a proof and
more details we again point to [29]. There, it is also explained how to reveal the
order of the underlying system, how to handle different scenarios of measurements,
and how to get reduced-order models. This kind of approach can be extended to
parametric systems, see [3].

Another important information is how to get the tangential data from (3.25). Note
that, like in the scattering matrix, for real passive RC circuits the number of inputs
is equal to the number of outputs m D p. In [29], it is proposed to define ri and lj as
rows and columns of the identity matrix Im to be linearly independent. Consequently,
for j D 1; : : : ; k, the right interpolation data can be constructed as

	j D i!j; rj D eq; and wj D S. j/rj;

where eq 2 R
m�1 (an m-dimensional unit vector with entry 1 in its q-th position)

with j � q mod m. If q D 0 we set q D m, i.e., if the division of k and m is without
residual, we take the last row of Im as rj. Analogously, for j D 1; : : : ; h we get the
left interpolation data as

�j D �i!j; lj D rT
j ; and vj D ljS. j/:

3.4 ESVDMOR in Detail

3.4.1 Stability, Passivity, Reciprocity

The preservation of properties is an important topic in MOR. Besides the essential
information encoded in the equations of the original system (3.1), e.g., resistance
values or capacities, other information, e.g., structural characteristics (block struc-
ture, sparsity) or physical qualities, can be of interest. The preservation of such
properties is of prime importance in a lot of applications. Typically in circuit
simulation, three basic properties to preserve are stability, passivity, and reciprocity;
see also Sect. 2.2.3. For this reason, in the following section we give some basic
definitions and lemmas to establish facts on the preservation of these three properties
in reduced-order models generated by ESVDMOR [7].

1Loosely speaking, a minimal realization of a descriptor system is a set of matrices .A;B;C;E/ of
minimal order yielding the transfer function G.s/ of the system.
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3.4.1.1 Stability

In the analysis of dynamical systems it is important to study the dynamics if the
considered time horizon goes to infinity. The reduced system is intended to show
the same behavior as the original one. The following basic definition and lemma
can be found, e.g., in [10, 14].

Definition 3.4.1 (Asymptotic Stability, c-Stability) The descriptor system (3.1)
is asymptotically stable if all solutions x.t/ of EPx.t/� Ax.t/ D 0 converge to zero at
infinity, i.e.,

lim
t!1 x.t/ D 0:

The matrix pencil 	E � A, 	 2 C, is called c-stable if it is regular and the
corresponding system (3.1) is asymptotically stable.

Lemma 3.4.2 Consider a descriptor system (3.1) with a regular matrix pencil
	E � A. The following statements are equivalent:

1. System (3.1) is asymptotically stable.
2. The finite eigenvalues of the pencil 	E � A, 	i 2 �.A;E/, lie in the open left

complex half-plane, i.e., 	i 2 C� D f	 2 Cj Re.	/ < 0g.
3. Consider the spectral projections Pr and Pl, respectively, onto the right and the

left deflating subspace of the pencil corresponding to the finite eigenvalues. The
projected generalized continuous-time Lyapunov equation

ETXA C ATXE C PT
r QPr D 0; X D PT

l XPl

has a unique Hermitian, positive semidefinite (psd) solution X for every Hermi-
tian, psd right hand side matrix Q.

Remark 3.4.3 The infinite eigenvalues of the pencil do not affect the behavior of the
homogeneous system in Definition 3.4.1. Consequently they do not affect stability.
A very useful observation of Lemma 3.4.2 is the connection between the stability
of the system and the finite eigenvalues of the pencil. We use this fact to prove the
following theorem.

Theorem 3.4.4 Assume the descriptor system (3.1) with its transfer function (3.3)
to be asymptotically stable. The ESVDMOR reduced-order system corresponding to
OGr.s/ of (3.19) is asymptotically stable if the inner reduction to QGr.s/ of (3.18) is
stability preserving.

Proof According to Lemma 3.4.2, we know that in the continuous-time case
stability is preserved if the pencil of the reduced system is c-stable. Besides
regularity this means Re. Q	/ < 0 for all Q	 2 �. QA; QE/ (the spectrum of the matrix
pencil 	 QE � QA). Remembering that the original system G.s/ is asymptotically stable,
i.e., .	E � A/ is c-stable, the following implication is obvious:
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The inner reduction Gr.s/ 	 QGr.s/ in (3.18) is stability preserving
H) .	 QE � QA/ is c-stable
H) the reduction G.s/ 	 OGr.s/ in (3.19) is stability preserving.

Remark 3.4.5 Many established MOR methods for regular descriptor systems are
stability preserving and can be applied along the lines of Theorem 3.4.4. Due to their
computable error bounds we prefer the use of balanced truncation based approaches,
see [5, 10], and in particular the specialized versions described in Chap. 2 dedicated
to circuit equations.

3.4.1.2 Passivity

One of the most common definitions of passivity of a circuit is the property that
its elements consume (or at least do not produce) energy. Thus, if the original
system is passive, also the reduced model should be passive in order to remain
physically meaningful. In other words, passivity preservation is important for
stable, accurate, and interpretable simulation results, see also Chap. 2. A more
mathematical definition of passivity is the following one, taken from [40].

Definition 3.4.6 (Passivity) A descriptor system (3.1) is called passive (or input-
output-passive) if m D p and the system output y W R ! R

m satisfies

Z T

t0

u.t/Ty.t/dt � 0; (3.28)

for all possible inputs u W R ! R
m, where x.t0/ D 0, the functions u and y are

square integrable, and Œ0 � t0I T� � R is the time period of interest.

Since for linear systems a shifting of the time horizon is not a problem, we can
assume t0 D 0. Passivity, such as in the previous definition, is hard to show.
Therefore, we use another concept, discussed, e.g., in [20], for constructive passivity
testing.

Definition 3.4.7 (Positive Real Transfer Function) The transfer function (3.3) is
positive real iff the following three assumptions hold:

(i) G.s/ has no poles in CC D fs 2 Cj Re.s/ > 0g, and additionally there are no
multiple poles of G.s/ on the imaginary axis iR,

(ii) G.Ns/ D G.s/ for all s 2 C;

(iii) Re.x�G.s/x/ � 0 for all s 2 CC and x 2 C
m, i.e. G.s/� C G.s/ � 0 for all

s 2 CC.

To show some results about passivity preservation of ESVDMOR, we need to know
the connection between passivity and positive realness.
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Lemma 3.4.8 A descriptor system (3.1) is passive if, and only if, its transfer
function (3.3) is positive real.

Remark 3.4.9 The original proof can be found in [1]. In [1, 37, 41] another proof
of this lemma shows the equivalence of passivity and the bounded realness of the
scattering matrix function, which is nothing else than a Moebius transformation
of G.s/. Subsequently, the equivalence of the bounded realness of this scattering
matrix function and the positive realness of the transfer function is shown. Hence
the lemma is proven.

As already mentioned in Definition 3.4.6, for passive systems we assume that the
number of inputs is equal to the number of outputs: m D p. We furthermore
assume (3.4) and (3.5). As before, the matrix pencil 	E�A is assumed to be regular.

Theorem 3.4.10 Consider a passive system of the form (3.4) with its transfer func-
tion (3.5). The ESVDMOR reduced-order system corresponding to OGr.s/ of (3.19)
is passive if the inner reduction to QGr.s/ of (3.18) is passivity preserving.

Proof Following Lemma 3.4.8, we show thatbGr.s/ in (3.19) is positive real. Hence,
we show that the reduced system is passive. The i-th s0 frequency-shifted block
moments of (3.5) are

ms0
i D BT.�.s0E � A/�1E/i.s0E � A/�1B;

with det.s0E �A/ 6D 0. Following the technique used in [21], we define J D
�

I 0

0 �I

�

with appropriate block structure. The properties of A1, E1, and E2 as well as the fact
that J D JT and J2 D I lead to the following rules:

R1: J D J�1,
R2: JE D EJ, hence JEJ D E,
R3: .s0E � A/T D s0E � JAJ D s0JEJ � JAJ, hence .s0E � A/�T D .s0JEJ �
JAJ/�1 D J�1.s0E � A/�1J�1 D J.s0E � A/�1J,
R4: B D JB, and
R5: for every matrix X, Y and i 2 N, .�X�1Y/i D X�1.Y.�X/�1/iX holds.

A straightforward calculation employing these rules shows that

ms0
i

T D .BT .�.s0E � A/�1E/i.s0E � A/�1B/T

D BT .s0E � A/�T f.�.s0E � A/�1„ ƒ‚ …
�X�1

E„ƒ‚…
Y

/igTB

.R5/D BT .s0E � A/�T f.s0E � A/�1.E.�.s0E � A/�1//i.s0E � A/gT B

D BT .s0E � A/�T .s0E � A/Tf.E.�.s0E � A/�1//igT.s0E � A/�T B

D BT f.E.�.s0E � A/�1//igT.s0E � A/�T B
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.EDET /D BT ..�.s0E � A//�T E/i.s0E � A/�T B

.R3/D BT .�J.s0E � A/�1JE/i.J.s0E � A/�1J/B

.R5/D BT J.s0E � A/�1.JE.�J.s0E � A/�1//i.s0E � A/J.J.s0E � A/�1J/B

.R1;R2/D BT J.s0E � A/�1.E.�.s0E � A/�1//i.s0E � A/.s0E � A/�1JB

D BT J.s0E � A/�1.E.�.s0E � A/�1//iJB

.R4/D BT .s0E � A/�1.E.�.s0E � A/�1//iB

.R5 backwards/D BT .�.s0E � A/�1E/i.s0E � A/�1B

D ms0
i :

By means of (3.14) it follows from (3.9) and (3.10) that MI D MO, such that VT
Iri

D
VT

Oro
D VT

r . Hence

bG.s/ D VrB
T
r .sE � A/�1BrV

T
r ; (3.29)

with Br analogous to (3.17). If the MOR method used in (3.18) leads to a positive
real transfer function, passivity is preserved.

In Definition 3.4.7 and Lemma 3.4.8 it is shown that the system (3.4) is passive
if the Hermitian part of the transfer function along the imaginary axis is positive
semidefinite, i. e., GH D 1

2
.G. j!/ C G. j!// � 0. As an illustration, in Fig. 3.7

we show the smallest nonzero eigenvalue of the Hermitian part of the original
transfer function GH. j!/ and of the terminal, not yet order reduced transfer function
OGH. j!/. In every case the systems are positive semidefinite. Figure 3.8 shows the
relative difference of these smallest eigenvalues to those of the original system. As
we only add zero eigenvalues in (3.19) by multiplying VOro

D Vr and VT
Iri

D VT
r

from the left and the right to the positive real transfer function QGr.s/, positive
semidefiniteness is preserved.

As inner reduction method, again the passivity-preserving balanced truncation
approaches described in Chap. 2 can be employed.

3.4.1.3 Reciprocity

Another important property of MOR methods is reciprocity preservation, which is
a requirement for the synthesis of the reduced-order model as a circuit. We assume
the setting given in (3.4). An appropriate definition can be found, e.g., in [40].
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Definition 3.4.11 A transfer function (3.3) is reciprocal if there exist m1;m2 2 N

with m1 C m2 D m, such that for ˙e D diag.Im1 ;�Im2/ and all s 2 C being not a
pole of G.s/, it holds

G.s/˙e D ˙eGT.s/:

The matrix ˙e is called external signature of the system. A descriptor system is
called reciprocal if its transfer function is reciprocal.

As a consequence, a transfer function of a reciprocal system is a matrix of the form

G.s/ D
�

G11.s/ G12.s/
�GT

12.s/ G22.s/

�
; (3.30)

where G11.s/ D GT
11.s/ 2 R

m1;m1 and G22.s/ D GT
22.s/ 2 R

m2;m2 . That is,

G.s/

�
0 I

�I 0

�
is a Hamiltonian matrix.

Theorem 3.4.12 Consider a reciprocal system of the form (3.4). The ESVDMOR
reduced-order system corresponding to OGr.s/ of (3.19) is reciprocal if the inner
reduction to QGr.s/ of (3.18) is reciprocity preserving.

Proof Due to the reciprocity of the original system, the corresponding transfer
function (3.5) has the structure given in (3.30). Equation (3.29) shows that none
of the steps in ESVDMOR destroy this symmetric structure if (3.18) preserves
reciprocity.

3.4.2 Error Analysis

Knowledge about the approximation error is motivated by the desire to meet
the (industrial) requirements placed on the reduced-order model and, at the
same time, to get a reduced model, which is as small as possible and as good
as necessary. Because approximation errors are, of course, caused at different
steps of the algorithm, an analysis of these particular errors is an important
basis to estimate the total approximation error. Most of the particular single
errors are well studied. In the following section, we describe the results about
a priori error estimation of the ESVDMOR approximation in [8]. Based on
the known approximation errors, e.g. those of truncated SVD or balanced
truncation, we combine all errors, firstly with many assumptions and later
for more general models, to derive a global error bound of the ESVDMOR
approach.
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Since the difference between the original transfer function and the one given
by the reduced-order model is still a matrix-valued function of s, matrix norms
are needed to define the kind of error measurement. In the following, the two
most important norms regarding MOR, the spectral norm and the H1-norm, are
defined.

Definition 3.4.13 (Spectral Norm) The spectral norm of a matrix H 2 C
k�` is

induced by the Euclidean vector norm and defined as

jjHjj2 D
p
	max.H�H/ D �max.H/;

where H� denotes the conjugate transpose of H, 	max.�/ the largest eigenvalue, and
�max.�/ the largest singular value.

The second useful and important norm is based on the Hardy Space theory, see, e.g.,
[18].

Definition 3.4.14 (H1-Norm) The H1-norm of an asymptotically stable transfer
function (3.3) is defined as

jjGjjH1
D sup

s2CC

�max.G.s// D sup
s2CC

jjG.s/jj2: (3.31)

Due to the maximum modulus theorem, we can express (3.31) as jjGjjH1
D

sup
!2R

�max.G.i!//.

For unstable systems, the H1-norm is not defined. In this case, G.s/ is not
holomorphic in the open right half plane, i.e., it is not an element of the Hardy
space H1 of interest.

3.4.2.1 Particular Error Bounds

Equation (3.14) describes a truncated SVD. We know the error caused by an SVD
approximation, e.g. of MI , is given by

eMI D
���MI.�/ � UIri

˙ I
ri

VT
Iri

���
2

D � I
riC1;

where

˙ I D diag.� I
1; : : : ; �

I
ri
; � I

riC1
; : : : ; � I

min
� 0/; ˙ I

ri
D diag.� I

1; : : : ; �
I
ri
/;

and � I
j � � I

jC1 for j D 1; : : : ;min � 1. The same applies to MO. The notation MI.�/

expresses the dependency on the number � of used block moments mi.
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Fig. 3.9 Hankel singular value decay of RC549 via one virtual terminal. The red lines show the
BT error bounds, computed by the truncated HSVs for the three different methods

Provided the use of a suitable MOR method which provides an error bound,
e.g., the balanced truncation (BT) methods for RC circuits as discussed in Chap. 2,
we know the error caused in (3.18). BT methods perform a reduction based on
the truncation of the so-called proper Hankel singular values (HSVs) O�1; : : : ; O�q

of the system (where q � n), see Sect. 2.3.2 for details. The error for balanced
truncation using any of the variants discussed in the previous chapter is bounded
by

��Gr � QGr

��
H1

� const: �
qX

kDnrC1
O�k D ı; (3.32)

in case we reduce the proper part of the system to order nr.
Figure 3.9 shows the HSVs of RC549, for which the terminal reduced original

system Gr.s/ is a single-input single-output (SISO) system, computed several
methods (the Arnoldi and Jacobi-Davidson based methods are explained in the
following section). We see that the decay of the HSVs is fairly slow. Additionally,
the beforehand applied terminal reduction corrupts the computation, which explains
the differences according to the decomposition approaches. Nevertheless, the strong
decay of the HSVs and a relative tolerance of O.10�15/ leads to only 5 (in JDSVD
case to 6) reduced generalized states. Similarly, Fig. 3.10 shows the HSVs of eqs_lin
with 573, respectively 520, virtual terminals. It is remarkable that the cut off in this
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Fig. 3.10 Hankel singular value decay of eqs_lin via 573 (Arnoldi and full SVD) and 520

(JDSVD) virtual terminals

case was not induced by reaching the given relative tolerance but by accomplishing
the predefined maximum order of the reduced system nr D 300. As a result, we may
expect a relative error of O.10�5/, which is confirmed in Fig. 3.11.

3.4.2.2 Total ESVDMOR Error Bound

The error analysis discussed here follows in large parts [8]. Due to (3.19) and the
triangle inequality, the total ESVDMOR error in the spectral norm on the imaginary
axis can locally be expressed as

etot D
���G.i!/� OGr.i!/

���
2

�
���G.i!/ � OG.i!/

���
2„ ƒ‚ …

Deout

C
��� OG.i!/� OGr.i!/

���
2„ ƒ‚ …

ein

:

(3.33)

The spectral norm is invariant under orthogonal transformations. Consequently,
the balanced truncation part (the error caused by the inner reduction ein) follows
from (3.19), (3.32), (3.33)

ein D
���VOro

Gr.s/V
T
Iri

� VOro
QGr.s/V

T
Iri

���
2

D ��Gr.s/ � QGr.s/
��
2

� ı:
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(Ĝ

(j
ω
))

Relative balanced truncation model reduction error.

Arnoldi (svds/eigs)

Jacobi Davidson (jdsvd)

Full matrices (svd)

Fig. 3.11 Absolute and relative error of eqs_lin, n D 14; 261, r D 300 via 573 (Arnoldi and full
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To analyze the terminal reduction part, also called outer reduction error eout, we
start by considering RLC circuits only, i.e., p D m denoted by m, L D BT , and, if
s0E � A � 0, consequently G.s/ D G.s/T . Due to symmetry, MI D MO D U˙VT ,
and also VI D VO D V . Moreover U D V holds in the SVDMOR case, which
means that there is only one i-th s0 frequency-shifted block moment in the ansatz
matrices (� D 1), e.g. m0

0 2 R
m�m, such that

MI D MT
O D m0

0 D BT.s0E � A/�1B D U˙VT D U˙UT 	 Ur˙rU
T
r :

The local terminal reduction error eout at s0 then is

eout D
���G.s0/ � OG.s0/

���
2

D ��BT.s0E � A/�1B � UrB
T
r .s0E � A/�1BrV

T
r

��
2

(U=V)D ��BT.s0E � A/�1B � UrU
T
r BT.s0E � A/�1BUrU

T
r

��
2

D ��U˙UT � UrU
T
r U˙UTUrU

T
r

��
2

D ��U˙UT � Ur˙rU
T
r

��
2

(SVD)D �
I=O
rC1;
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if we keep r singular values or terminals. Applying balanced truncation, the total
error at s0 in the SVDMOR case in the spectral norm is then given by

etot � �
I=O
rC1 C 2

nX
jDnrC1

O�j: (3.34)

Hence, at least in the neighborhood of the expansion point chosen for the terminal
reduction, we can expect an error of the same order of magnitude.

In the ESVDMOR case we allow � � 1 (� different m0
i within the ansatz

matrices). For simplicity let us assume � D 3 (ms0
0 , ms0

1 , and ms0
2 ) and s0 2 R.

Thus,

MI D
0
@ms0

0
ms0

1

ms0
2

1
A D

0
@U.1/

U.2/

U.3/

1
A˙V D

0
B@

U.1/
1 U.1/

2

U.2/
1 U.2/

2

U.3/
1 U.3/

2

1
CA
�
˙1 0

0 ˙2

��
VT
1

VT
2

�

DW �U1 U2

� �˙1 0

0 ˙2

��
VT
1

VT
2

�
;

where the row partitioning in U is as in MI;MO and the column partitioning refers
to the number of kept singular values, which we denote by the number r. We get
m0

j D U. j/˙VT , j D 1; 2; 3, (which is not an SVD as U. j/ is not orthogonal, but

kU. j/k2 � 1 holds). Thus we can write

G.s/ � OG.s/ D
1X

jD0

.ms0
j � Oms0

j /.s � s0/
j

D .ms0
0 � Oms0

0 /C .ms0
1 � Oms0

1 /.s � s0/C .ms0
2 � Oms0

2 /.s � s0/
2 C O.s � s0/

3:

Defining P1 WD V1VT
1 , and consequently I � P1 D V2VT

2 , we can bound the first
expressions thus as follows:

ms0
j � Oms0

j D ms0
j � P1m

s0
j P1 D U. j/˙VT � P1U

. j/˙VTV1V
T
1

D U. j/

�
˙1 0

0 ˙2

��
VT
1

VT
2

�
� P1U

. j/

�
˙1 0

0 ˙2

��
Ik

0

�
VT
1

D U. j/

�
˙1 0

0 0

��
VT
1

VT
2

�
C

C U. j/

�
0 0

0 ˙2

��
VT
1

VT
2

�
� P1U

. j/

�
˙1

0

�
VT
1

„ ƒ‚ …
D
0
@˙1 0

0 0

1
A
0
@VT

1

VT
2

1
A
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D U. j/

�
0 0

0 ˙2

�
VT C .I � P1/U

. j/

�
˙1

0

�
VT
1

D U. j/

�
0 0

0 ˙2

�
VT C V2V

T
2 U. j/

�
˙1

0

�
VT
1 DW ej;1 C ej;2:

We can now express the error as follows:

G.s/ � OG.s/ D e0;1 C e1;1.s � s0/C e2;1.s � s0/
2

Ce0;2 C e1;2.s � s0/C e2;2.s � s0/
2 C O.s � so/

3;

where, when taking norms, and using kU. j/k2 � 1, kVTk2 D 1,

kej;1k2 � �rC1:

The terms kej;2k2 cannot be bounded in a meaningful way. If �rC1 is zero, then V2VT
2

projects onto the nullspace of MI , such that if �rC1 is small enough, V2VT
2 is still an

orthoprojector onto the joint approximate nullspace of the first � moments. That is,
the error, up to order � � 1, is essentially contained in the nullspace of the first �
moments. Future investigations may focus on exploiting this fact to get a general
error bound.

3.4.3 Implementation Details

An efficient implementation is very important, especially if large scale systems
are taken into account. Usually, within ESVDMOR we perform a full SVD and
then set all singular values smaller than a threshold value equal to zero. This
threshold value depends on the error we allow for ESVDMOR, see Sect. 3.4.2.
The most obvious idea to increase the efficiency of the ESVDMOR approach
is to avoid this full SVD in (3.14) because the ensuing step in the algorithm
is to discard the expensively computed information. The numerical costs for
an SVD of MI can grow up to O.�pm2/ flops. In case of MO, these costs
may be of order O.�mp2/ flops. This is not appropriate for large-scale circuit
systems. The computation of the reduced-order model only needs the leading
block-columns VIri

and VOro
of the orthogonal matrices computed with the SVD.

Consequently, we apply a truncated SVD, which can be computed cheaply
employing sparsity of the involved matrices. There are a couple of truncated
SVD approaches available, e.g., [12, 13, 46]. Efficient algorithms based on
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the Arnoldi method [31, 44] or the Lanczos method [4] as representatives of
Krylov subspace methods are suggested in [6, 43]. A Jacobi-Davidson SVD
approach is explained in [24]. Both possibilities will be explained in the
following.

We start by having a look at joint features. Both methods are based on iterative
computation of eigenvalues. Without loss of generality, we have a look at the input
response moment matrix MI . The same observations also hold for MO. It is known
that the computation of the eigenpairs of the m�m matrix MT

I MI leads to the singular
values of MI [23]. But as forming the product should be avoided for reasons of
numerical stability and efficiency (we even do not form MI , see Sect. 3.4.3.3), both
methods work with the augmented matrix

AI D
�
0 MI

MT
I 0

�
: (3.35)

It is shown, e.g. in [45], that the eigenvalues of AI are of the form

�.AI/ D f��m; : : : ;��1; �1; : : : ; �mg

and the positive eigenvalues are the singular values of MI .

3.4.3.1 The Implicitly Restarted Arnoldi Method

One way to compute a TSVD is based on the implicitly restarted Arnoldi method
[31, 44]. This approach exploits the symmetry of the matrix AI . Hence, it becomes
equivalent to the symmetric Lanczos algorithm without taking advantage of the
special block structure of AI . The Arnoldi method computes an orthonormal basis
of a Krylov subspace and approximates eigenpairs for the projection of AI onto the
Krylov subspace. This iterative method becomes more expensive the more iterations
it needs until convergence. This motivates the use of the restarted version, which
is explained briefly in the following. A restart means that we delete parts of the
calculated Krylov basis after a certain number of steps. Unfortunately, this also
means a loss of information. In detail, the Arnoldi method after j D k C l steps
without restart gives

AIQj D QjHj C qjC1
	
0; : : : ; 0; hjC1;j



;

D QjHj C hjC1;jqjC1eT
j ;

where Qj is an orthogonal matrix and Hj 2 C
j�j is an upper Hessenberg matrix. The

number of eigenvalues we are interested in is k D 2ri and l is the number of Krylov
vectors we want to discard. Applying l QR steps with shifts �1; : : : ; �l, which are
often chosen to be the l eigenvalues of Hj corresponding to the unwanted part of the
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spectrum, we get a matrix U such that

OHj D U�HjU:

So we also have

OQj WD QjU; uT
j D eT

j U:

With fjC1 D hjC1;jqjC1 we get

AI OQj D OQj OHj C fjC1uT
j :

Now we split the components in

OQj D 	 OQk QQl



; OHj D

� OHk �
ˇe1eT

k
QHk

�
; uT

j D Œ0; : : : ; 0; ˛;�; : : : ;��:

After removing the last l columns we end up with

AI OQk D OQk OHk C ˇ QQle1e
T
k C fmC1Œ0; : : : ; 0; ˛�;

D OQk OHk C .ˇ QQle1 C ˛fmC1/eT
k ;

D OQk OHk C OfmC1eT
k :

We get again an Arnoldi recursion equivalent to the one we would get after k steps
with starting vector Oq1. Until we reach an appropriate stopping criterion, see, e.g.,
[31], we perform l steps again and restart until the eigenvalues of OHk have converged
to the largest singular values of MI .

3.4.3.2 The Jacobi-Davidson SVD Method

A Jacobi-Davidson variant for singular value computation based on the augmented
matrix AI in (3.35) is proposed in [24]. The given block structure is exploited by
the usage of two search spaces U � R

�p; V � R
m and respectively two test spaces

X � R
�p; Y � R

m, where � is still the number of moment matrices of G.s/
of which the matrix MI is constructed. We introduce matrices U 2 R

�p�k; V 2
R

m�k;X 2 R
�p�k; Y 2 R

m�k whose columns are equal to the basis vectors of the
four subspaces mentioned above.

For approximations to the singular values, that we call � here, we use an auxiliary
real number � and vectors u 2 U ; v 2 V . Further, we employ the fact that for a
singular triple .�i; ui; vi/ of MI 2 R

�p�m the following equations

MIvi D �iui; MT
I ui D �ivi (3.36)

hold for i D 1; : : : ; rank.MI/.
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Definition 3.4.15 For vectors x 2 R
m; y 2 R

n and subspaces X � R
m; Y � R

n,

we say that the composed vector

�
x
y

�
2 R

mCn is double orthogonal to

�
X

Y

�
if

both x ? X and y ? Y . We denote this by

�
x
y

�
??

�
X

Y

�
:

Similar to the orthogonal complement of a single vector we denote the subspace˚
u; v 2 R

m � R
n W xTu D yTv D 0


as .x; y/??.

We impose a double Galerkin condition for the residual res D res.�; �/ defined as

res.�; �/ WD
�

MIv � �u
MT

I u � �v

�
??

�
X

Y

�
: (3.37)

Introducing c; d 2 R
k, such that u D Uc; v D Vd, (3.37) is equivalent to

(
XTMIVd D �XTUc;

YT MT
I Uc D �YT Vd:

(3.38)

The assumption xTu ¤ 0; yTv ¤ 0 for test vectors x 2 X ; y 2 Y leads to

approximations � D xT MIv

xT u
and � D yT MT

I u
yTv

for the singular values, that do not
necessarily need to be equal. This depends on the choices for the test spaces X ; Y ,
which is examined later. Suppose we already have approximations .�; �; u; v/ and
look for new singular vector approximations .eu;ev/ D .u C s; v C t/, which fulfill a
double orthogonal correction .s; t/??.u; v/, such that

MI.v C t/ D �.u C s/; (3.39)

MT
I .u C s/ D �.v C t/:

Equation (3.39) can be rearranged to

���I�p MI

MT
I ��Im

� �
s
t

�
D �res C

�
.� � �/u
.� � �/v

�
: (3.40)

Since we are searching in .x; y/?? we consider the projection P onto .x; y/?? along
.u; v/, which expands (3.40) to

"
I�p � 1

xT u
uxT 0

0 Im � 1
yTv
vyT

#

„ ƒ‚ …
projection P

���I�p MI

MT
I ��Im

� �
s
t

�
D �res: (3.41)
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We also replace the unknown �; � by the known approximation �; � in (3.41). Since
8ex 2 R

�p;8ey 2 R
m with uTex ¤ 0; vTey ¤ 0,

"
I�p � 1

u TexexuT 0

0 Im � 1

v TeyeyvT

#�
s
t

�
D
�

s
t

�

holds, we can expand (3.41) to the JDSVD correction equation.

"
I�p� 1

xT u
uxT 0

0 Im� 1
yTv
vyT

#���I�p MI

MT
I ��Im

�"I�p� 1

u TexexuT 0

0 Im� 1

v TeyeyvT

#�
s
t

�
D �res;

(3.42)

with .s; t/??.u; v/. Ifex; ey are nonzero multiples of x; y, the operator in (3.42) is
symmetric and maps .u; v/?? to .x; y/??.

At this point, the Galerkin choice of the test spaces needs to be explained. If we
choose X D U and Y D V , with dimU D dimV D k, we get

UTMIVd D �c; VT MT
I Uc D �d

for (3.38). Again, we have approximations u D Uc and v D Vd. With test vectors
x D u; y D v, and with kuk D kvk D 1, we have singular value approximations
� D � D uTAv which are equal. Furthermore, forex D u; ey D v the correction
equation (3.42) becomes

�
I�p�uuT 0

0 Im�vvT

����I�p MI

MT
I ��Im

��
I�p�uuT 0

0 Im�vvT

��
s
t

�
D�res; (3.43)

in which the operator is symmetric and maps .u; v/?? to itself. We conclude
the standard variant of the JDSVD in Algorithm 3.1. The orthonormalization is
performed by MGS and RMGS, which stands for the modified Gram- Schmidt- and
the repeated modified Gram- Schmidt- orthonormalization. Due to orthogonality
this Galerkin choice is optimal for computing of the largest singular values which
is the problem we want to solve. Computing the singular values closest to a
target � is equivalent to computing the singular values of largest magnitude of
the shifted and inverted matrix .A � �I/�1, which implies a different correction
equation.

A comparison of the influence of different decomposition methods applied
within the terminal reduction of RC549 to one terminal can be found in Fig. 3.12.
The magnitude approximation is satisfying while the approximation of the phase
becomes even worse by means of Arnoldi or JDSVD. If we keep 66 terminals,
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Algorithm 3.1 JDSVD with standard Galerkin choice for computation of �max.MI/

Input: Initial vectors .s; t/, tolerance �.
Output: Approximate singular triple .�max; u; v/.
1: for k D 1 to . . . do
2: Orthonormalize s; t w.r.t. Uk; Vk.
3: Expand search spaces Uk; Vk with vectors s; t.
4: Compute largest singular triple .�; c; d/ of Hk D UT

k MIVk.
5: Set u D Ukc; v D Vkd.

6: Compute residual res D
�

MIv � �u
MT

I u� �v
�

.

7: if kresk � � then
8: return,
9: else

10: Approximately compute solution of correction equation (3.43) for .s; t/??.u; v/.
11: end if
12: end for
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see Figs. 3.13 and 3.14, we can see a slight improvement. In particular, the
phase approximation of the JDSVD approach becomes reasonable in the important
frequency range. Like mentioned before, in this example the crucial point is the
order reduction by means of BT, such that keeping more terminals does not
significantly improve the overall approximation. Figure 3.15, as well as a zoomed
version of it in Fig. 3.16, show that reducing the number of terminals of eqs_lin
leads to a clear number of virtual terminals. Choosing machine precision as relative
tolerance, the algorithms automatically truncate after 573 virtual terminals. The
fact that JDSVD already stops after 520 virtual terminals is only a question of
internal settings and does not express any disadvantage of the approach. If we need
a very accurate terminal reduction, maybe it is worth the effort of calculating a
whole SVD of the explicitly computed I/O-response moment matrices. If efficiency
plays a role, both methods, Arnoldi and JDSVD, lead much faster to acceptable
results.

3.4.3.3 Efficiency Issues

No matter which method we choose, the explicit computation of the response
moment matrices, see Definitions 3.2.2 and 3.2.3, is too expensive and possibly
numerically unstable. Moreover, using an established algorithm we need to provide
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the information of the matrix AI in (3.35)

AI D
�
0 MI

MT
I 0

�
or AO WD

�
0 MO

MT
O 0

�

applied to a vector x, i.e., AI=Ox DW y, to build up the required subspaces. We use a
function for this purpose. In the following we distinguish the two cases above.

3.4.3.4 Truncated SVD of the Input Response Moment Matrix MI

Consider the augmented matrix AI 2 R
.�pCm/�.�pCm/. The function input arguments

are a vector x 2 R
�pCm and a scalar �, which is equal to the number of used moments

�, see (3.9). Output argument is a vector y 2 R
�pCm. We assume a block structure
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of the vectors x and y corresponding to the block structure of MI in AI , such that

0
BBBBB@

y0

y1
:::

y��1
y�

1
CCCCCA

D

0
BBBBBB@

0

2
6664

m0

m1
:::

m��1

3
7775

	
m0

T m1
T � � � m��1

T



0

1
CCCCCCA

0
BBBBB@

x0

x1
:::

x��1
x�

1
CCCCCA
; (3.44)

where for i D 0; : : : ; � � 1,

yi D

0
BB@

yipC1

:::

y.iC1/p

1
CCA ; y� D

0
BB@

y�pC1

:::

y�pCm

1
CCA ; xi D

0
BB@

xipC1

:::

x.iC1/p

1
CCA ; and x� D

0
BB@

x�pC1

:::

x�pCm

1
CCA :

Performing the matrix-vector multiplication, we get the components yi for i D
0; : : : ; � � 1 as

yi D mix� and y� D m0
Tx0 C m1

Tx1 C � � � C m��1
Tx��1 D

X
i

mi
Txi:

To compute these components efficiently, we replace the block moments by their
factors according to (3.2.2) and (3.2.3). Following Algorithm 3.2, we compute the
parts of y by repeatedly applying the factors to parts of x. We want to emphasize that
we use the same factors each time. Providing this function to the methods described
above enables the efficient computation of the desired singular values and vectors
of MI .

3.4.3.5 Truncated SVD of the Output Response Moment Matrix MO

The computation of the truncated SVD of MO works nearly analogously. Due to the
fact that MO has a different structure, also the structure in (3.44) changes to

0
BBBBB@

y0

y1
:::

y��1
y�

1
CCCCCA

D

0
BBBBBB@

0

2
6664

m0
T

m1
T

:::

m��1
T

3
7775

	
m0 m1 � � � m��1



0

1
CCCCCCA

0
BBBBB@

x0

x1
:::

x��1
x�

1
CCCCCA
; (3.45)
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Algorithm 3.2 Computation of components yi, i D 0; : : : ; � (input response
moment matrix)
Input: System matrices A;E;B;C, vector x, number of moment matrices �, and frequency s0.
Output: Vector y D AIx.
1: Initialize y D 0.
2: Compute the inverse PD .s0E � A/�1, please see Remark 3.4.16.
3: % Prepare for loop
4: a D Bx� ;
5: a D Pa;
6: for i D 0 to .� � 1/ do
7: % Computation of the first � parts
8: yi D Ca;
9: % If necessary set up for the next iteration,

10: if i ¤ .� � 1/ then
11: a D Ea
12: a D Pa
13: end if
14: % Compute factors, partly by embedded loop
15: b D CT xi;
16: for j D 0 to .i� 1/ do
17: b D PT b;
18: b D ET b;
19: end for
20: b D PT b;
21: % Computation of the last part
22: y� D y� C BT b;
23: end for

where also the block structure of x and y changes, such that for i D 0; : : : ; � � 1,

yi D

0
BB@

yimC1

:::

y.iC1/m

1
CCA ; y� D

0
BB@

y�mC1

:::

y�mCp

1
CCA ; xi D

0
BB@

ximC1

:::

x.iC1/m

1
CCA ; and x� D

0
BB@

x�mC1

:::

x�mCp

1
CCA :

Applying matrix vector multiplication, we get again the components yi for i D
0; : : : ; � � 1 as follows, leading to Algorithm 3.3:

yi D mi
Tx� and y� D m0x0 C m1x1 C � � � C m��1x��1 D

X
i

mixi:

Remark 3.4.16 In line 2 of Algorithm 3.2 and of Algorithm 3.3, we require the
computation of an inverse for ease of notation. In later lines it is easy to see that this
inverse is applied in a matrix-vector product. Hence, the application of the inverse
should be achieved by solving the corresponding linear system of equations, using,
e.g., a pre-computed LU decomposition, or iterative methods.
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Algorithm 3.3 Computation of components yi, i D 0; : : : ; � (output response
moment matrix)
Input: System matrices A;E;B;C, vector x, number of moment matrices �, and frequency s0.
Output: Vector y D AOx.
1: Initialize y D 0.
2: Compute the inverse PD .s0E � A/�1, see Remark 3.4.16.
3: % Prepare for loop
4: a D CT x� ;
5: for i D 0 to .� � 1/ do
6: % Computation of the first � parts
7: yi D PT a;
8: yi D BT yi;
9: % If necessary set up for the next iteration,

10: if i ¤ .� � 1/ then
11: a D PT a;
12: a D ET a;
13: end if
14: % Compute factors, partly by embedded loop
15: b D Bxi;
16: b D Pb;
17: for j D 0 to .i� 1/ do
18: b D Eb;
19: b D Pb;
20: end for
21: % Computation of the last part
22: y� D y� C Cb;
23: end for

A few points remain to discuss. Looking at Sect. 3.4.3.2, we see that the information
about y D MIx as well as y D MOx is sufficient within the JDSVD due to exploiting
the block structure of AI . Hence, Algorithms 3.2 and 3.3 simplify accordingly.

For high numbers of � both methods, Arnoldi as well as JDSVD, become
numerically unstable. A reasonable number � depends on the specific system and
fortunately is often small in practice. Moreover, for linear circuits with the same
number of inputs and outputs, mostly one moment of the transfer function, i.e.,
� D 1, is sufficient.

The question how many virtual terminal Gr.s/ should have, i.e. how many
singular values and vectors of MI and MO we need to compute, is partly answered
in Sect. 3.4.2. This information influences the tolerances given to the algorithms for
computing the truncated singular value decomposition explained above.

3.5 Summary and Outlook

Linear descriptor systems with more than just a handful of inputs and outputs
appear in a lot of applications. This work motivates the need of MOR for this
kind of systems within the context of IC design and circuit simulation. Three
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basic, widely different approaches, are presented, i.e., reduction based on SVDs
revealing the I/O-behavior, a graph partitioning approach, and the interpolation-
based construction of a reduced-order model from measurement data. Afterwards, a
concrete method of the first type, the so-called ESVDMOR, is explained in detail.
The preservation of important properties is shown as well as the approximation
error is analyzed. Furthermore, special attention is given to an efficient truncated
SVD implementation in the framework of ESVDMOR. The performance of the
three proposed ESVDMOR implementations is illustrated using two test cases.
In conclusion, one may say that in all three cases, the approximation of the
magnitude of the frequency response can be achieved satisfactorily, while the phase
approximation suffers from the additional truncation error in the truncated SVD
approaches. Hence, if preservation of the phase is of importance, one has to invest
more computational resources and use the full SVD of the generalized moment
matrices.
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Chapter 4
Coupling of Numeric/Symbolic Reduction
Methods for Generating Parametrized Models
of Nanoelectronic Systems

Oliver Schmidt, Matthias Hauser, and Patrick Lang

Abstract This chapter presents new strategies for the analysis and model order
reduction of systems of ever-growing size and complexity by exploiting the
hierarchical structure of analog electronical circuits. Thereby, the entire circuit is
considered as a system of interconnected subcircuits. Given a prescribed error-
bound for the reduction process, a newly developed algorithm tries to achieve a
maximal reduction degree for the overall system by choosing the reduction degrees
of the subcircuits in a convenient way. The individual subsystem reductions with
respect to their prescribed error-bound are then performed using different reduction
techniques. Combining the reduced subsystems a reduced model of the overall
system results. Finally, the usability of the new techniques is demonstrated on two
circuit examples typically used in industrial applications.

4.1 Introduction

In order to avoid immense time and financial effort for the production of deficiently
designed prototypes of integrated circuits (ICs), industrial circuit design uses
mathematical models and simulations for predicting and analysing the physical
behavior of electronical systems. Hence, redesigns and modifications of the systems
can easily be carried out on a computer screen and tested by subsequent simulation
runs. Thereby, analog circuits in general are modelled by systems of differential-
algebraic equations (DAEs), which are composed of component characteristics and
Kirchhoff laws.

The development in fabrication technology of ICs during the last years led to
an unprecedented increase of functionality of systems on a single chip. Nowadays,
ICs have hundreds of millions of semiconductor devices arranged in several layers
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and low-level physical effects such as thermal interactions or electromagnetic
radiation cannot be neglected anymore in order to guarantee a non-defective
signal propagation. Mathematical models based on DAEs, however, have almost
reached their limit and cannot model these effects accurately enough. Consequently,
distributed elements for critical components such as semiconductor devices and
transmission lines are used which yield supplementary model descriptions based
on partial differential equations (PDEs), where also the spatial dependencies are
taken into account. The coupling with DAEs modelling the remaining parts of the
circuit then leads to systems of partial differential-algebraic equations (PDAEs).
A spatial semidiscretization finally results in very high-dimensional systems of
DAEs, thus rendering analysis and simulation tasks unacceptably expensive and
time consuming.

Since design verification requires a large number of simulation runs with
different input excitations, for the reasons mentioned above, model order reduction
(MOR) becomes inevitable. Dedicated techniques in various areas of research have
been developed among which the most popular ones are numerical methods taylored
for linear systems. Besides these, there also exist symbolic methods [8, 10, 15, 19,
20], where symbolic means that besides the system’s variables also its parameters
are given as symbols instead of numerical values (see Sect. 4.1.1). They indeed are
costly to compute, but allow deeper analytical insights into functional dependences
of the system’s linear and nonlinear behavior on its parameters by maintaining the
dominant ones in their symbolic form. The basic idea behind these methods is a
stepwise reduction of the original system by comparing its reference solution to the
solution of the so far reduced system by using error functions which measure the
difference between the two solutions. Since the resulting reduced system contains
its parameters and variables in symbolic form, these methods can be seen as a kind
of parametric model order reduction (pMOR). Compared to the standard parametric
model order reduction techniques [4, 12], the symbolic ones can be additionally
applied to nonlinear systems.

In order to avoid infeasibility of analysis and reduction of systems of ever-
growing size and complexity, new strategies exploiting their hierarchical structure
have been developed in the current research project. They further allow for a
coupling of distinct reduction techniques for different parts of the entire circuits.

The corresponding algorithms have been implemented in Analog Insydes [1],
the software tool for symbolic modeling and analysis of analog circuits, that is
developed and distributed by the Fraunhofer ITWMin Kaiserslautern, Germany. It
is based on the computer algebra system Mathematica [21].

The new approach has been successfully applied with significant savings in
computation time to both a differential and an operational amplifier typically used in
industry. The reduced models also proved to be very robust with regard to different
inputs such as highly non-smooth pulse excitations. Thus, the aptitude of the new
hierarchical model reduction algorithm to circuits of industrial size has been shown.
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4.1.1 Symbolic Modeling of Analog Circuits

In the field of analog electronic circuits, there are different ways of modeling of
the devices’ behaviors. The approach Analog Insydes uses is the combination of
Kirchhoff laws with symbolic device models to generate a symbolic system of
differential-algebraic equations. As mentioned before, symbolic means here that
besides the system’s variables also its parameters are given as symbols instead of
numerical values.

For a better understanding, consider the following circuit consisting of a voltage
source V , a resistor R and a diode D.

+

−
VD

R

V

1

2

I

V1 −VD
R

= I

AREA · IS

(
e

3.33167·10−3VD·q
k − 1

)
+ GMIN ·VD = I

The resulting system of equations contains the following equations modeling the
current of the circuit by using the resistor’s and diode’s model equations. Additional
to the system variables, like V1,VD and I, the parameters R, AREA, IS, k, q and GMIN

are also given as symbols. This allows, besides the simulation after inserting the
symbol’s values, to analyse this system symbolically. That means in this case, that
we could just solve symbolically the system for the voltage in node 1 with respect
to the parameters and the voltage at the diode:

V1 D R �
�

AREA � IS

�
e
3:33167�10�3VD �q

k � 1
�

C GMIN � VD

�
C VD

The next section follows the notes of [16–18].

4.2 Hierarchical Modelling and Model Reduction

In general, electronic circuits consist of a coupling of blocks such as amplifiers, cur-
rent mirrors, or polarization circuits. Each block itself might have such a structure or
is at least a network of interconnected components like diodes, resistors, transistors,
etc. Consequently, the entire circuit is a hierarchical network of interconnected
subcircuits, where each of these subcircuits may be modelled differently, e.g. based
on netlists, PDEs, or DAEs.
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The main idea behind the new algorithm for hierarchical reduction developed is
the exploitation of the circuit’s hierarchical structure in order to perform different
reduction techniques on the distinct subcircuits. Besides a suitable choice of the
methods according to the modelling of the corresponding subcircuits, this further
allows for a faster processing of smaller subproblems if the administrative cost does
not get out of hand. Furthermore, particularly in the case of symbolic model order
reduction methods, like used in Analog Insydes, larger circuits become manageable
at all.

Standard graph theoretical methods such as the modified nodal analysis (MNA)
for transforming a circuit into a system of describing equations, however, lose the
structural information available at circuit level. Therefore, we developed a new
workflow for separate reductions of single subcircuits in the entire system, which
uses information obtained from a previous simulation run. Since, in general, there
is no relation between the errors of single nonlinear subsystems and the entire
system available, we further introduced a new concept of subsystem sensitivities. By
keeping track of the error on the output, which is resulting from the simplification
of the subsystem, the sensitivities are used to measure the influence of single
subsystems on the behavior of the entire circuit. Finally, these sensitivities are used
to compute a ranking of subsystem reductions. In order to obtain a high degree of
reduction for the entire system, it allows to replace the subcircuits by appropriate
reduced models in an heuristically reasonable order. The details are explained in the
following sections.

4.2.1 Workflow for Subsystem Reductions

Assume an electronic circuit ˙ to be already hierarchically segmented into a set of
m subcircuits Ti and an interconnecting structure S:

˙ D . f Ti j i D 1; : : : ;m g; S / : (4.1)

As already mentioned, each Ti itself might be recursively segmented into a set of
subcircuits and a coupling structure. However, here we only consider a segmentation
on the topmost “level 0”. If one simply applies methods such as MNA to the circuit
˙ in order to set up a set of describing equations, the resulting equations generally
involve mixed terms from different subcircuits. In order to maintain the hierarchy
information available on circuit level, in a first step the subcircuits are cut out from
their connecting structure (cf. Fig. 4.1). Each subcircuit T is then connected to a
test bench (a), i.e. a simulation test environment, where the voltage potentials at
its terminals are recorded during a simulation run. For example, by simulating the
original entire circuit, for each subcircuit T the interconnection of the remaining
ones act as a test bench for T.

Note that the reduced model generated by the described method depends strongly
on the input signals used. Thus, the input signal of the circuit has to cover the
technical requirements of the later usage.
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Fig. 4.1 Subsystem reduction via test bench approach

In a second step, the terminals of T are connected to voltage sources that generate
exactly the recorded voltage potentials1 (b). Hence, one has a closed circuit CT with
a defined input-output behavior at the terminals of T. A method such as MNA is
used to set up a describing system FT of equations2 for CT . Next, FT can be reduced
using arbitrary appropriate symbolic or numeric reduction techniques (c).

In a last step, the voltage sources at the terminals of the reduced model eFT are
removed (d). Since the terminals of the subsystem are preserved during the reduction
process, the original subcircuit T in ˙ can easily be replaced by the reduced modeleFT of FT , thus using the same interconnecting structure S as introduced in (4.1). The
entire procedure is repeated several times for each subcircuit Ti in ˙ , thus yielding
collections of reduced models for each Ti. The whole workflow is summarized in
Algorithm 4.1.

It should further be mentioned here that this approach only controls the errors
at the terminals of the single subcircuits. A priori, one cannot guarantee a certain
global error, i.e. the error on the output of the entire circuit ˙ , when replacing the
original subcircuits Ti by reduced modelseFTi . Thus the following algorithms were
introduced to control the global error during the process.

1For doing it best, we first have to determine the voltage and current sources of the circuit that
can act as inputs. Thus, the corresponding independent value of each port has to be considered as
output. If you connect a voltage source at a port p this would be the current through port p, and
vice versa.

For simplicity, we use here voltage sources as inputs and the currents as outputs. Besides of
that, it turns out that residual based solvers simulate analog circuits containing transistors faster
and more accurate if the voltages are given at the circuit’s ports instead of the currents.
2Assume we are dealing with systems of DAEs. If PDEs are involved, apply a semidiscretization
w.r.t. the spatial coordinates.
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Algorithm 4.1 Reduction of subcircuits
Let T D Ti be a subcircuit in an electronic circuit ˙ D . fTi j i D 1; : : : ;m g; S /.
a. Connect T to a test bench and record the voltage potentials at its terminals during a simulation

run applying a suitable input.

b. Remove the test bench and connect grounded voltage sources to the terminals of T that generate
exactly the recorded voltage potentials, thus having T isolated as a closed circuit CT ; further,
set up a describing system of equations FT for CT .

c. Reduce FT by using appropriate symbolic or numerical reduction techniques, where the voltages
at all terminals of CT are the inputs and the currents (flowing inwards) are the outputs. Here a
family of reduced subsystems with different size and approximation quality is generated.

d. Remove the voltage sources at the terminals after the reduction and finally obtain a family of
reduced subsystems, where each reduced subsystemeFT serves as a behavioral model of T.

4.2.2 Subsystem Sensitivities

In general, there is no relation between the error of the entire system and those
of its nonlinear subsystems known. Therefore, in order to use reduced models of
appropriate degree for the subsystems, in this section, we investigate the influence
of single subcircuits Ti on the behavior of the entire circuit ˙ given by (4.1). This
offers a high degree of reduction also for˙ .

The goal here is to have an estimate of a subcircuit’s sensitivity, i.e. the sensitivity
of ˙ with respect to changes in the corresponding subcircuit’s behavior. Our
novel approach measures the sensitivity by observing the influence of subcircuit
reductions on the output of˙ and finally leads to a ranking of subcircuit reductions,
i.e. an heuristically optimized order of subcircuit reductions.

Usually, the term sensitivity analysis in the background of electronic circuits
means the influences of single components or system parameters on certain circuit or
network variables. In that case, the absolute sensitivity of a variable z w.r.t. changes
in a network parameter p is defined by

sa.z; p/ D @z

@p

ˇ̌
ˇ̌
pDp0

; (4.2)

whereas

sr.z; p/ D p
@z

@p

ˇ̌
ˇ̌
pDp0

D p � sa.z; p/ (4.3)
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is the relative sensitivity of z w.r.t. p. In the two equations above, p0 is the nominal
value of p. Note that

sa.z; p/ 	 
z


p

ˇ̌
ˇ̌
pDp0

D z �ez
p0 �ep (4.4)

is an approximation of sa using perturbed valuesez D z.ep / andep of z D z.p/ and
p D p0. While z D z.p0/ corresponds to a simulation of ˙ using the parameter
p D p0,ez is obtained by using the perturbed parameter p Dep during the simulation
run.

Since we cannot derive the output y of ˙ w.r.t. one of its subcircuits, we imitate
the meaning of Eq. (4.4) by replacing a single subcircuit T in (4.1) by a perturbed
versioneT , i.e. by a reduced modeleFT of its describing system of equations. Note that
any other subsystem in˙ remains original, only T is replaced by one of its reduced
models. We then simulate the configuration of ˙ at hand and compare the original
output y, i.e. the reference solution, to the perturbed entire system’s outputey.

By Definition 4.2.1, the sensitivity of the subcircuit T in ˙ is defined as the
vector of tuples containing the reduced models and the resulting error on the
perturbed entire system. For simplicity, we will not distinguish between subcircuits
and the corresponding describing subsystems based on equations and denote both of
them simply by T.

Definition 4.2.1 Let ˙ D . f Ti j i D 1; : : : ;m g; S / be an electronic circuit of
interconnected subcircuits Ti connected by a structure S. Let further T D Ti be
one of the subcircuits in ˙ . The sensitivity of T in ˙ is the vector

sT D �
.eT .1/;E.y; yeT.1/ //; : : : ; .eT .mT /;E.y; yeT.mT / //

�
(4.5)

that contains tuples of reduced modelseT. j/ for T and the resulting error E.y; yeT. j/ /

on the original output y of˙ . In this notation, yeT. j/ is the output of the corresponding
system

ėT. j/ D � feT. j/ g [ f Ti j i D 1; : : : ;m g n f T g; S � ; (4.6)

where T in comparison to the original circuit˙ is replaced by its jth reduced modeleT. j/.

In this definition,eT . j/ denotes the jth reduced model of T which could be obtained
by nonlinear symbolic model order reduction and an accepted error of 10% or by
Arnoldi method and k iteration steps for example.

Note that the sensitivity of T involves systems ėT. j/ which are the same as ˙
itself except for exactly one subsystem, namely T, that is replaced by a reduced
versioneT. j/. Note further that these sensitivities depend again on the chosen input
signals, as for the method introduced in Sect. 4.2.1.
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Remarks 4.2.2 The sensitivity notion in Definition 4.2.1 can be further augmented
by replacing the corresponding error E.y; yeT. j/ / by a more general ranking expres-
sion that takes also additional subsystem criteria, like system size and sparsity, into
account [9].

The next section describes how to use these sensitivities in order to obtain an
heuristically reasonable order of subsystem reductions for the derivation of a system,
that consists of reduced subsystems. Basically, the entries of the sensitivity vector
of each subsystem are ordered increasingly with respect to the error on y. Then,
following this order, the corresponding reduced models are used to replace the
subsystems in ˙ .

4.2.3 Subsystem Ranking

In this section, we present a strategy that allows an appropriate replacement of the
subsystems of˙ by their reduced models in a reasonable order. The new algorithm
presented here uses a ranking for deriving a hierarchically reduced model of the
entire system ˙ .

The basic idea behind the algorithm is ordering the reduced models of each
subsystem increasingly w.r.t. the error3 on the output y of ˙ and subsequently
performing the subsystem replacements according to this order. After each replace-
ment, the accumulated error of the current subsystem configuration is checked by
a simulation. If the user-given error bound " for the error of the entire system ˙ is
exceeded, the current replacement is undone and the tested reduced model is deleted.
Otherwise, the next replacement is performed and the procedure is repeated.

Let eT. j/
i denote the jth reduced model of the subsystem Ti. For each Ti in ˙ we

define a vector Li which contains the entries of sTi and is increasingly ordered with
respect to the error E.y; yeT. j/

i
/. The original subsystems Ti of ˙ are then initialized

by eT .0/i . In each iteration of the hierarchical reduction algorithm, the subsystem
eT.q/p that corresponds to the minimum entry4 of the vectors Li replaces the current
(reduced) modeleT.q0/p that is used for Tp in ˙ . If the resulting accumulated error on
the output y of ˙ exceeds the user-specified error bound ", the corresponding latest
subsystem replacement is undone, i.e. eT.q/p is reset to eT .q0/p in ˙ . Furthermore, all
reduced subsystems of subsystem Tp are deleted, since we assume that worse rated
subsystems would also exceed the error bound. Otherwise only the corresponding
sensitivity value .eTp

.q/;E.y; yeTp
.q/ // of the tested reduced subsystemeT .q/p is deleted

from the vector Lp. This procedure is repeated until all the vectors Li are empty. For
a better overview of this approach see Algorithm 4.2.

3See Remarks 4.2.2.
4Minimal with respect to the corresponding error E.y; yeT . j/

i
/.
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Algorithm 4.2 Heuristically reasonable order of subsystem replacements

Input: segmented electronic circuit ˙ D � fTi j i D 1; : : : ;m g; S �, input u, error bound "

Output: reduced entire system ė D � feT . j�/
i j i D 1; : : : ;m g; S �, where eT. j�/

i are suitably
reduced subsystems, E.y; yė/ � ", and where yė is the output of ė

1: for all subsystems Ti do
2: Li WD order.sTi / w.r.t. E.y; yeT . j/

i
/

3: eT.0/i WD Ti

4: end for

5: L WD .L1; : : : ; Lm/ F set starting point
6: ė WD ˙

7: y WD solve.˙; u/ F calculate reference

8: while L D ; do
9: compute .eT .q/p ;E.y; yeT .q/

p
// WD min

i;Li2L.min.Li// w.r.t. E.y; yeT . j/
i
/ F choose reduced

subsystem
10: replace currenteT .q0/p byeT.q/p

11: update.ė/ F update and solve new reduced overall system
12: yė WD solve.ė; u/
13: "out WD E.y; yė/
14: delete5entry .eT .q/

p ;E.y; yeT .q/
p
// in Lp

15: if "out � " then F check resulting error
16: if dimension.Lp/ D 0 then
17: delete5 entry Lp in L
18: end if
19: else
20: reseteT .q/p toeT .q0/p F undo reduction if error exceeds error bound
21: update.ė/
22: delete5 entry Lp in L
23: end if

24: end while

Remarks 4.2.3 Note that Algorithm 4.2 can further be improved, e.g. by a clustering
of subsystem replacements, where reduced models that cause a similar error on y are
bundled in a cluster. Thus, costly multiple simulations for computing the solution
ey of the so far reduced entire system ė are avoided, since they are performed only
once after a whole cluster of subsystem replacements is executed. In case the error
bound is still not violated, we can continue with the next cluster of subsystem

5 For a vector X D .x1; : : : ; xn/, deleting the entry xi in X means, that a vector QX D
.x1; : : : ; xi�1; xiC1; : : : ; xn/ of dimension n� 1 results.
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replacements. Otherwise, however, all replacements in the current cluster have to
be rejected and it has to be subdivided for further processing.

Another idea for further improvements is the use of approximate simulations
such as k-step solvers which quit the Newton iteration for computing the system’s
solution after k steps. Thus, one obtains an approximate solutionby 	ey for the output
of the so far reduced system ė which can be used for the error check E.y;by/ � "

instead ofey.

4.2.4 Algorithm for Hierarchical Model Reduction

To combine all the considerations of the preceding sections, the algorithm for
hierarchical model reduction exploiting the hierarchical structure of electronic
circuits is set up. It is schematically shown in Fig. 4.2.

Remarks 4.2.4 Since electronic circuits even nowadays are designed in a modular
way using building blocks of network devices and substructures such as current
mirrors and amplifying stages, the hierarchical segmentation of an electronic circuit
is given in a more or less natural way. Otherwise, the segmentation has to be
made manually or by using pattern matching approaches[13] in order to detect
substructures in the entire circuit.

Note that the presented algorithm (cf. Fig. 4.2) can be applied recursively to the
subcircuit levels such that a hierarchically model order reduction results.

4.3 Implementations

The algorithms of the preceding sections have been completely implemented in
Analog Insydes [1] and the approach for hierarchical model reduction was fully
automated. It is divided into three main procedures

• ReduceSubcircuits,
• SensitivityAnalysis, and
• HierarchicalReduction

that have to be executed sequentially. Each of the above procedures takes several
arguments among which there are some optional ones.

ReduceSubcircuits is called with the specification of an already segmented
netlist of the circuit which is to be hierarchically reduced, the specification of the
reduction method for each subcircuit, the simulation time interval necessary for
recording the voltage potentials at the ports of the subcircuits, and several optional
parameters. In accordance with the provided data, the procedure then computes the
reduced models for all the specified subcircuits and appends them to the original
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Fig. 4.2 Schematic illustration of the full algorithm for hierarchical model reduction using
subsystem sensitivities.

circuit object. This offers an easy switching among the respective models for a single
subcircuit.

The return value of ReduceSubcircuits, i.e. the hierarchically segmented
circuit object together with the reduced models of each subcircuit, is then used as
parameter of the functionSensitivityAnalysis. In addition, the names of the
reduced models, a specification of the output variables, the simulation time interval
for the error check, and the error function itself to measure the error on the reference
solution y are provided. The procedure computes the sensitivity vectors of each
subcircuit and returns them ordered increasingly w.r.t. the error on y.

Finally, HierarchicalReduction needs a specification of the entire circuit
and its reduced subcircuit models, the global error bound, the output variables, the
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sensitivities returned by SensitivityAnalysis, the simulation time interval
necessary for the error check, and several optional arguments. Then the subsystem
replacements are performed according to the sensitivities and the accumulated error
is checked after each replacement (Algorithm 4.2). The procedure terminates when
all sensitivity lists have been processed and deleted.

In addition to the above, there have been implemented several data structures and
operators for their manipulation, as well as some well-known reduction algorithms,
transmission line models—based on a discretization of a PDE model—and further
components based on general state space systems. We further implemented some
environments to test the above procedures and functionalities. However, we will not
go into detail here, for an overview we refer to [16].

4.4 Applications

In order to demonstrate the large potential of the new hierarchical reduction
approach, it is applied in time domain to two analog circuit examples that are typical
representants of components used in industrial circuit design. The results of the
hierarchical reduction of the two circuits are compared to the direct non-hierarchical
approach. Furthermore, some additional input excitations are applied to the circuits
in order to show the robustness of the derived reduced models.

Note that we present here the application of the introduced methods on circuits
containing strongly nonlinear devices to demonstrate the ability of the approach in
the field of nonlinear analog circuits.

4.4.1 Differential Amplifier

The differential-amplifier circuit shown in Fig. 4.3 consists of five subcircuits
DUT, DUT2, L1, L8, and L9, where the latter three ones are transmission lines
connecting the supply voltage sources VCC and VEE and the input voltage source
V1 with the remaining parts of the circuit. For the modelling of the transmission
lines, we take a discretized PDE model, namely, the telegrapher’s equations (cf.,
e.g., [5–7, 11]), with 20 line segments each. While VCC and VEE generate constant
voltage potentials of 12V and �12V, respectively, the input voltage generated by
V1 is a sine wave excitation with an amplitude of 2V and a frequency of 100 kHz.
Finally, the computations are performed on a time interval I D Œ0: s; 10�5 s�.

Using MNA to set up a system of describing DAEs yields 167 equations
containing 645 terms (on “level 0”). A non-hierarchical symbolic reduction of the
entire system then needs approximately 2 h and 11min,6 where most of that time

6The computations are performed on a Dual Quad Xeon E5420 with 2.5 MHz and 16 GB RAM.
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Fig. 4.3 Differential amplifier with its intuitive hierarchical segmentation into five subcircuits
DUT, DUT2, L1, L8, and L9.

(	95%) is needed for the computation of the transient term ranking.7 Due to this,
the computational costs are approximately the same for all choices of the error
bound ". The error function used first discretizes the time interval I to a uniform grid
of 100 points and then takes the maximum absolute difference of the two solutions
on this grid as a measure for the error.

With " equal to 3% the system is reduced to 124 equations and 416 terms, while a
permitted error of 10% narrows these numbers down to 44 equations and 284 terms.
The results are shown in Fig. 4.4. Note also that the error bound of 10% is fully
exploited.

In contrast to the immense time costs of the non-hierarchical approach, the new
algorithm for hierarchical reduction reduces the entire system in only 4min and
50 s. The subcircuits DUT and DUT2 are reduced symbolically by using a sweep
of error bounds

sw D f1%; 10%; 50%; 90%; 100%g; (4.7)

such that each subsystem yields 5 reduced subsystems. The three transmission lines
L1, L8, and L9 are reduced numerically by applying Arnoldi’s algorithm [2, 3].

7A term ranking is a trade-off between accuracy and efficiency in computation time that estimates
the influence of a term in a system of equations on its solution. Here, however, we use full
simulations instead of low-accuracy estimates. For more details see [20].
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Fig. 4.4 Solution of the original (solid) and the non-hierarchically reduced system (dotted)
allowing 3% (left) and 10% (right) maximum error, respectively. The input V1 is 2 � Sin.2�105t/
Volts

2.5 10 6 5. 10 6 7.5 10 6 1. 10 5
t s

2

4

6

8

10

voltage V

2.5 10 6 5. 10 6 7.5 10 6 1. 10 5
t s

0.2

0.1

0.1

0.2

0.3

voltage V

2.5 10 6 5. 10 6 7.5 10 6 1. 10 5
t s

2

4

6

8

10

voltage V

2.5 10 6 5. 10 6 7.5 10 6 1. 10 5
t s

0.4

0.2

0.2

0.4

0.6

0.8

voltage V

Fig. 4.5 Left: Solution of the original (solid) and the reduced system (dotted) allowing 3% (first
row) and 10% (second row) maximum error, respectively. Right: The corresponding error plots.
The input V1 is 2 � Sin.2�105t/ Volts

For L1 there are five reduced models computed by performing the Arnoldi iteration
for up to 5 steps, and for L8 and L9 there are made only up to 3 steps, thus yielding
three reduced models each for L8, and L9.

For " D 3% the resulting reduced overall system contains 62 equations with 315
terms, and " D 10% leads to a reduced overall system with 60 equations and 249
terms. The solutions of the original and the respective reduced systems are shown
in Fig. 4.5 together with the corresponding error plots.

In this case we conclude that the hierarchical reduction approach is more than
26 times faster than the non-hierarchical one. Also the number of equations of the
reduced model in the 3% error case could be halved. Moreover, by applying further
input excitations to both the original and the hierarchically reduced system with
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Fig. 4.6 Left: Solution of the original (solid) and the reduced system (dotted, " D 3%) together
with the input excitation (dashed). Right: The corresponding error plots

" D 3%, it turns out that the derived model is very robust, even w.r.t. highly non-
smooth pulse excitations (cf. Fig. 4.6). Note further that the simulation is accelerated
approximately by a factor of 5.

4.4.2 Reduction of the Transmission Line L1 by Using an
Adapted PABTEC Algorithm

The tool PABTEC [14] uses the Balanced Truncation reduction technique to reduce
the linear parts of an analog circuit. Please refer to Chap. 2.6 for further informations
about this software.

To demonstrate the coupling of the introduced algorithm with a numeric model
order reduction method, we use PABTEC to reduce the linear transmission line L1.
The remaining subcircuits DUT, DUT2, L8, and L9 have been reduced by the
same methods shown in the example before. In doing so, the original entire system
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Fig. 4.7 Left: Solution of the original (solid) and the reduced system (dotted) together with the
input excitation (dashed). Right: The corresponding error plots. The first row corresponds to the
reduced system obtained by allowing an error of " D 3%, while the second row shows the results
for "D 10%. The input V1 is 2 � Sin.2�105t/ Volts

consists of 191 equations containing 695 terms. Applying the hierarchical reduction
algorithm with error bounds " D 3% and " D 10% then needs about 8min and
20 s and yields systems with 96 equations and 2114 terms and 84 equations and
1190 terms, respectively. The results of their simulation (speed-up by a factor of
approximately 5) are shown in Fig. 4.7.

4.4.3 Operational Amplifier

The second circuit example to which we apply the new algorithms is the operational
amplifier op741 shown in Fig. 4.8. It contains 26 bipolar junction transistors (BJT)
besides several linear components and is hierarchically segmented into seven
subcircuits CM1–3, DP, DAR, LS, and PP. For a detailed description of their
functionality in the interconnecting structure we refer to [16, Appendix C].

The goal is a symbolic reduction of the entire circuit in time domain with an
overall error bound of " D 10%. While the input voltage source Vid provides a sine
wave excitation of 0:8V and 1 kHz frequency on a time interval I D Œ0 s; 0:002 s� to
the system, its output is specified by the voltage potential of node 26. The input
together with the corresponding output, i.e. the reference solution, is shown in
Fig. 4.9. Note that the reference solution is pulse-shaped and, thus, the standard
error function used for the differential amplifier in the preceding sections may
lead to large errors for small delays in jumps of the solution. Hence, even with a
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Fig. 4.8 Operational amplifier op741 composed of seven subcircuits CM1–3, DP, DAR, LS, PP

Fig. 4.9 Input voltage excitation (left) and the corresponding reference solution (right) of the
operational amplifier op741

prescribed error bound of 10%, the system might not be reduced at all. In order to
cope with these problems, here we use the L 2-norm as error function.

Using MNA to set up a system of describing DAEs for the entire system yields
215 equations and 1050 terms. The direct non-hierarchical symbolic reduction
method needs more than 10:5 h and yields a system containing 97 equations and
593 terms. At the same time, providing a sweep of error bounds

sw D f2%; 10%; 20%; 30%; 50%; 70%; 90%; 100%g (4.8)

for the separate symbolic reduction of all seven subcircuits and applying the
hierarchical reduction algorithm needs only 2 h and 22min. The resulting system,
however, consists of 153 equations and 464 terms, which can be narrowed down to
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Fig. 4.10 Output of the
original (solid) and the hybrid
reduced entire system
(dotted)

Table 4.1 Overview of the results of the reduction of the operational amplifier op741

Original system: 215 equations, 1050 terms, 26:0 s simulation time

Error fct. Non-hierarchical Hierarchical Hybrid

L 2-norm Time costs 10:5 h 2:5 h <4 h

Equations/terms 97=593 139=362 34=92

Error 2:51% 7:16% 5:68%

Simulation time 16:0 s 11:4 s 2:2 s

E� Time costs >12 h 2:5 h <4 h

Equations/terms 80=405 132=336 34=93

Error 0:37% 0:08% 5:32%

Simulation time 9:5 s 13:1 s 2:0 s

The computations were performed on a machine with 8Quad-core AMD Opteron 8384 “Shanghai”
(32 cores in total) with 2:7GHz and 512GB RAM on a SuSE Linux 10:1 system

139 equations and 362 terms by slight manual improvements8 of the hierarchical
reduction algorithm.

Considering the obtained systems as interim solutions and applying a second
non-hierarchical symbolic reduction then reduces the size drastically and leads to
a model with only 34 equations and 92 terms. Simultaneously, there are almost
no further changes for the non-hierarchically reduced system with 97 equations.
Note that the additional time cost is less then 1:5 h, while the simulation time of the
“hybrid” reduced model is significantly decreased.

Figure 4.10 offers a qualitative impression of the results obtained by the hybrid
approach. Furthermore, earlier results involved a newly designed alternative error
function E� which is less sensitive with respect to small delays in jumps of the
system’s solution.

Table 4.1 provides an overview of the best results obtained by the three different
approaches. See also Fig. 4.11 which offers some details about the accuracy, time

8Due to the structure preserving reduction method, the resulting reduced model contains equations
connecting the models of the subcircuits, that can be avoided, like: Voltage of node 24 of
subcircuit LS is equal to the voltage of node 24 of subcircuit PP.

Unifying the corresponding variables (i.e. V$24$LS and V$24$PP) yields a decrease of the
number of equations.
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Fig. 4.11 Summary of the reduced models of the op741 amplifier obtained by the three different
reduction approaches. The boxes contain the number of equations/terms of the reduced models,
the time costs of a simulation using the original sine wave excitation, and the error on the output
V$26 of the original amplifier
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costs for simulation, and number of equations and terms of the different reduced
models. We will not go into detail here, for further information we refer to [16]
instead.

With a view towards the robustness of the derived models, we apply some
further input excitations, namely, a sine wave with 3 kHz frequency, a sum of sine
waves of 250, 500, and 2000Hz, and a pulse excitation of 250Hz. In addition to
almost perfectly coinciding output curves of the corresponding reduced models
(cf. Fig. 4.12), the speed-up in simulation time is up to a factor of 19, see Table 4.2.
The presented systems are identified by their number of equations and terms.

Fig. 4.12 Three different input excitations (left) and the resulting outputs of both the original
(solid) and the hybrid reduced system (dashed). (a) A voltage pulse. (b) Output results for the
voltage pulse. (c) A sine wave with frequency 3000Hz. (d) Outputs applying the input in (c).
(e) A sum of sine waves. (f) The outputs for the sum of sine waves
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Table 4.2 Speed-up of simulation of a hybrid reduced entire system w.r.t. the original one

System Voltage pulse 3 kHz Sine wave Sum of sine waves

215 D 1050 106 s 273 s 104 s

34 D 92 6 W 6 s 14 W 1 s 10 W 5 s

4.5 Conclusions

To conclude this chapter, we briefly summarize the results: The new hierarchical
reduction approach offers enormous savings in computation time, a significant
speed-up in system simulations, and yields good reduced models w.r.t. the error,
the number of equations and terms of the original system. Moreover, even for
highly non-smooth pulse excitations, the reduced models turn out to be very robust.
The developed methods were applied to two model classes, circuits consisting of
nonlinear subcircuits and circuits containing subcircuits modelled by PDEs, that
demonstrated the large potential of the new algorithms.
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Chapter 5
Low-Rank Cholesky Factor Krylov Subspace
Methods for Generalized Projected Lyapunov
Equations

Matthias Bollhöfer and André K. Eppler

Abstract Large-scale descriptor systems arising from circuit simulation often
require model reduction techniques. Among many methods, Balanced Truncation is
a popular method for constructing a reduced order model. In the heart of Balanced
Truncation methods, a sequence of projected generalized Lyapunov equations has to
be solved. In this article we present a general framework for the numerical solution
of projected generalized Lyapunov equations using preconditioned Krylov subspace
methods based on iterates with a low-rank Cholesky factor representation. This
approach can be viewed as alternative to the LRCF-ADI method, a well established
method for solving Lyapunov equations. We will show that many well-known
Krylov subspace methods such as (F)GMRES, QMR, BICGSTAB and CG can be
easily modified to reveal the underlying low-rank structures.

5.1 Introduction

The numerical simulation of large-scale integrated circuits nowadays approaches
system sizes of several hundred million equations. This ever-increasing size has
several sources; one of which is the accelerating scale of miniaturization, another
reason is the increasing density of the integrated devices. The simulation of
the complete system requires many simulation runs with different input signals.
These simulation runs would be impossible to compute in acceptable time using
the original system. Instead it is necessary to replace the original system by a
significantly smaller reduced model which inherits the essential structures and
properties of the original system as, e.g., passivity and stability. To deal with this
problem model order reduction techniques (MOR) have turned out to be a key
technology in order to generate reduced models. Among the most popular methods
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for MOR are those based on Krylov subspace method or Balanced Truncation (BT)
[3, 11, 30]. For problems arising from circuit simulation in particular passivity-
preserving balanced truncation methods [33, 34, 45] are of particular interest, since
beside reducing the circuit to a reduced order model, major important properties
like stability and passivity have to be preserved to obtain a physically correct model
(see also Chaps. 2 and 3). Another frequently used method mainly applied to partial
differential-algebraic equations (PDAE) is the Proper Orthogonal Decomposition
(POD) method, cf. [16, 26], Chap. 1.

This article is organized as follows. In Sect. 5.2 we will give a brief introduction
to balanced truncation which is the motivation for our methods and requires to
solve several sequences of generalized projected Lyapunov equations. This includes
existing numerical methods for solving Lyapunov equations. In Sect. 5.3 we will
present our novel approach for generalized projected Lyapunov equations based
on Krylov subspace methods. Finally we will use several examples from circuit
simulation, as well as other examples, to demonstrate our approach in Sect. 5.4.

5.2 Balanced Truncation

The basis for the numerical methods for generalized projected Lyapunov equations
presented in this paper are those using Balanced Truncation (BT). In particular
passivity-preserving Balanced Truncation methods will be of special interest for
model order reduction techniques applied to circuit simulation problems.

5.2.1 Introduction to Balanced Truncation

To start with the idea of Balanced Truncation we consider a linear time invariant
descriptor system

EPx D Ax C Bu
y D Cx C Du

where A;E 2 R
n;n;B 2 R

n;m;C 2 R
p;n;D 2 R

p;m

such that m; p 
 n. Numerical methods for MOR replace E, A, B, C by smaller
matrices QE, QA, QB, QC such that for all matrices the initial dimension n is replaced by a
suitable l 
 n, i.e., QA; QE 2 R

l;l, QB 2 R
l;m, QC 2 R

p;l.
When using Balanced Truncation the reduction of the model is done by multi-

plying with matrices W 2 R
l;n, T 2 R

n;l in order to obtain the reduced descriptor
system

.E;A;B;C;D/ ! . QE; QA; QB; QC;D/ D .WET;WAT;WB;CT;D/:
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The transformation matrices W and T are constructed using the solutions of
generalized Lyapunov equations, the so-called proper controllability gramian Gpc

and the proper observability gramian Gpo. When E is singular one also has to take
into account the improper controllability gramian and the improper observability
gramian, for details we refer to [34]. For the computation of a reduced model we
have to compute X D Gpc and Y D Gpo by solving the projected generalized
Lyapunov equations

EXAT C AXET C PlBBTPT
l D 0; where X D PrXPT

r ;

ETYA C ATYE C PT
r CTCPr D 0; where Y D PT

l YPl:
(5.1)

Here Pl, Pr are obtained from the Weierstrass canonical form for .E;A/. To do so
we assume that det.A � 	E/ 6� 0. In this case there exist nonsingular V and Z such
that

V�1EZ D
�

I 0
0 N

�
; V�1AZ D

�
J 0
0 I

�
: (5.2)

Here J;N denote matrices in Jordan canonical form where N nilpotent. The left and
right projection of .E;A/ to

.PlEPr;PlAPr/ D
�

V

�
I 0
0 0

�
Z�1; V

�
J 0
0 0

�
Z�1

�
(5.3)

yields the projectors Pl and Pr of the matrix pencil 	E � A with respect to the
subspace of finite eigenvalues. By solving (5.1) we obtain symmetric, positive
semidefinite solutions X D RRT and Y D LLT , provided that the eigenvalues
of J from (5.2) are located in the open left half plane. In many application
problems for MOR in circuit simulation the matrices X, Y are numerically of
approximate low rank. Using the singular value decomposition of LT ER and LTAR
the balanced system is built. This way some general properties such as passivity
are not necessarily preserved. To even preserve passivity it is necessary to solve the
projected Lur’e equations [33], see also Chap. 2. In some special cases these in turn
can be traced back to algebraic Riccati equations of the form

EXAT CAXET C.EXCT �PlB/
TR�1.EXCT �PlB/ D 0; where X D PrXPT

r (5.4)

and

ATYECETYAC.BTYE�CPr/
TR�1.BTYE�CPr/ D 0; where Y D PT

l YPl: (5.5)
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For details we refer to [33, 34]. Solving Riccati equations using Newton’s method
or the Newton-Kleinman method [4, 44] (cf. also Sect. 2.5.2) requires solving a
sequence of projected, generalized Lyapunov equations of the form

EXkAT
k C AkXkET C PlBkBT

k PT
l D 0; where Xk D PrXkPT

r ;

ETYkAk C AT
k YkE C PT

r CT
k CkPr D 0; where Yk D PT

l YkPl:
(5.6)

Compared with the original pencil .E;A/, the matrix Ak in .E;Ak/ is obtained from
a low-rank correction of A. For large-scale sparse systems arising from circuit
simulation this allows for the computation of sparse approximations (resp. sparse
factorizations) of .E;A/ and then to transfer these approximations to the pencil
.E;Ak/ using the Sherman–Morrison–Woodbury formula [14] with respect to Ak.

5.2.2 Numerical Methods for Projected, Generalized Lyapunov
Equations

We will now describe in detail how projected, generalized Lyapunov equations of
type

EXAT C AXET C PlBBTPT
l D 0; where X D PrXPT

r (5.7)

are solved numerically. For simplicity we restrict ourselves to solving a single
equation of this type which is at the heart of Balanced Truncation methods and
in practice such equations have to be solved frequently, e.g. once per iteration in
Algorithm 2.7.

One of the most commonly used methods for solving (projected) generalized
Lyapunov equations is the ADI method [28, 31, 44, 47]. The ADI method for
solving (5.7) consists of a sequence j D 1; 2; 3; : : : of steps, which is decomposed
into two half-steps

.E C �jA/Xj� 12 AT D �PlBBTPT
l � AXj�1.E � �jA/

T ;

AXj.E C �jA/
T D �PlBBTPT

l � .E � �jA/Xj� 12 AT :

From these two coupled equations we successively compute
�
Xj
�

j
. Here

�1; �2; �3; : : : refer to shift parameters that have to be chosen appropriately to
achieve convergence, see [32, 47]. Starting with X0 D 0 and using that the right
hand side PlBBTPT

l is symmetric and positive semidefinite one can easily verify
that all iterates Xj D RjRT

j are also symmetric and positive semidefinite. This can be
used explicitly in the ADI method to represent the iterates by low rank Cholesky
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Algorithm 5.1 LRCF-ADI for generalized, projected Lyapunov equations (5.7)
1: Compute shift parameters �1; : : : ; �t

2: z1 Dp�2Re.�1/.EC �1A/�1PlB
3: R D Œz1�
4: for i D 2 : : : t : : : do
5: zi D Pi�1 D

p

�2�i
p

�2�i�1

	
zi�1 � .�i C N�i�1/.EC �iA/�1Azi�1



6: Ri D ŒRi�i zi�

7: end for

factors

Rj D
�q

�2Re.�j/f.E C �jA/
�1PlBg; f.E C �jA/

�1.E � N�jA/Rj�1g
�
:

For the generalized case, the projectors Pl and Pr from (5.3) ensure that if Rj�1 D
PrRj�1, then we also obtain Rj D PrRj and thus Xj D PrXjPT

r holds.
The matrices of type .E˙�jA/, .E˙�jA/�1 commute with each other independent

on the choice of �j. This observation has been used in [28] to reduce the numerical
complexity of the computation of Rj by one order of magnitude. This has lead to the
Low-Rank Cholesky Factor-ADI Method (LRCF-ADI) and can be described for the
case of general and projected Lyapunov equations by Algorithm 5.1.

For the convergence of the ADI method the choice of the shift parameters
�1; �2; : : : is essential. For the case where E D I and �A is symmetric and positive
definite optimal shift parameters are known [47]. In general one often has to work
with heuristic parameters as, e.g., in [31, 32] although asymptotically optimal shifts
can be determined by Fejér-Walsh points [43] or Leja-Bagby points [27, 42]. Also,
recent global optimization strategies to approximate optimal shifts have lead to
promising results [38].

5.3 Low-Rank Cholesky Factor Krylov Subspace Methods

The objective of this article is to describe novel numerical solution methods for
projected generalized Lyapunov equations based on low-rank Krylov subspace
methods. These are frequently used as core part of the model order reduction
approach. In principle ADI methods belong to the class of iterative methods for
solving the linear system (5.7). This can be equivalently rewritten as

LX D B;
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where L D E ˝ A C A ˝ E corresponds to the Lyapunov operator in (5.1), X D
vec.X/ and, B D vec.�PlBBTPT

l /. Our goal is to preserve the matrix structure as
well as the low-rank structure of the Lyapunov equation (5.7), while at the same
time the benefits of structure-preserving preconditioned Krylov subspace methods
applied to LX D B will be exploited.

5.3.1 Low-Rank Krylov Subspace Methods

Krylov subspace methods without preconditioning consist of series of matrix-
vector multiplications, scalar products and linear combinations of vectors. The
residuals Rk D B � LXk are located in spanfR0;LR0; : : : ;L

k�1R0g and
the approximate solutions XkC1, respectively, can be represented by elements of
the space X0 C spanfR0;LR0; : : : ;L

k�1R0g. For two-sided Krylov subspace
methods such as BiCG or QMR, multiplications with the transposed matrix also
have be taken into account. Here as part of the solution process, both Riccati
equations (5.4), (5.5) could be treated simultaneously solving both associated linear
equations (5.6) in common. This follows from the property of two-sided Lanczos
methods which require a right initial guess such as PlBkBT

k PT
l and an appropriate left

initial guess which could be chosen as PT
r CT

k CkPr. Yet the two-sided methods have
to be slightly modified to explicitly compute the additional approximate solution.
While the iterates are located in a Krylov subspace on one hand, on the other
hand we have that the right hand side �PlBBTPT

l of the Lyapunov equation, as
well as the approximate solution X D RRT , can be represented as symmetric low-
rank matrices. The obvious approach to migrate both structures for adapted Krylov
subspace methods consists of keeping all iterates of the Krylov subspace method in
symmetric low-rank format. This in turn yields elementary operations for iterates
of type Zi D QiMiQT

i , where Mi D MT
i , i D 1; 2 are also symmetric but of much

smaller size than Zi. We set Zi D vec.Zi/ and note that elementary operations are
translated as follows:

• LZ1 is equivalently written as

EZ1A
T C AZ1E

T D ŒEQ1;AQ1�„ ƒ‚ …
DWQ2

�
0 M1

M1 0

�

„ ƒ‚ …
DWM2

ŒEQ1;AQ1�
T„ ƒ‚ …

DWQT
2

• analogously, L TZ1 is represented by

ETZ1A C ATZ1E D 	
ETQ1;A

TQ1



„ ƒ‚ …

DWQ2

�
0 M1

M1 0

�

„ ƒ‚ …
DWM2

	
ETQ1;A

TQ1


T

„ ƒ‚ …
DWQT

2
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• linear combinations ˛Z1 C ˇZ2 can be traced back to

˛Z1 C ˇZ2 D ŒQ1;Q2�„ ƒ‚ …
DWQ3

�
˛M1 0

0 ˇM2

�

„ ƒ‚ …
DWM3

ŒQ1;Q2�
T„ ƒ‚ …

DWQT
3

• finally, scalar products are easily computed using the trace of matrices by

Z T
1 Z2 D trace.ZT

1 Z2/ D trace.Z1Z2/:

This shows that in principle Krylov subspace methods can be set up such that all
iterates are represented by symmetric low-rank matrices.

5.3.2 Low-Rank Cholesky Factor Preconditioning

If we wish to supplement a Krylov subspace solver with an additional precondi-
tioner, then in the worst case the low-rank structure of the single iterates is lost.
This holds even for the simple example of diagonal preconditioning. Instead the
preconditioner has to be adapted such that the low-rank structure is inherited. The
natural choice for a preconditioner in this case is obtained from the LRCF-ADI
method. Given Z1 D Q1M1QT

1 , we can apply t steps of the LRCF-ADI method from
Sect. 5.2.2 starting with a right hand side Cholesky factor B WD Q1. This way we
obtain the LRCF-ADI factors

�
Rj
�

jD1;:::;t which in turn yield a symmetric low-rank
matrix

Q1M1Q
T
1 �! B WD Q1

LRCF-ADI
�!

for B D Q1

Rt �! Rt .It ˝ M1/ RT
t :

Using ADI we obtain in a canonical way that the composed system

Rt .It ˝ M1/ RT
t � Q2M2Q

T
2 (5.8)

is again a symmetric low-rank matrix. By construction, Q2M2QT
2 could be equiva-

lently computed by applying t steps of the usual ADI method starting with initial
guess X0 D 0 and right hand side �Q1M1QT

1 .
There are several structure-preserving Krylov subspace methods for (gener-

alized) Lyapunov equations which are essentially based on the (block-) Krylov
subspace

spanfB;AB;A2B; : : : ;Ak�1Bg;
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see, e.g. [19–21, 23, 29, 41]. Krylov-subspace methods in conjunction with ADI
preconditioning are frequently used [7, 17, 22], whereas the preservation of the low-
rank structure of the iterates is not employed. Structure preservation of the GMRES
and FGMRES methods [36] with LRCF-ADI preconditioning is further discussed
in [9]. In [24] one can find a generalization of low-rank Krylov subspace methods
for up to d-dimensional tensors.

5.3.3 Low-Rank Pseudo Arithmetic

The elementary matrix and vector operations preserve the symmetric low-rank
format but numerically concatenation of symmetric low-rank matrices such as the
linear combination may significantly increase the numerical rank of the iterates.
To bypass this problem we need to introduce a pseudo arithmetic similar to the
approach that is used for hierarchical matrices [15]. Let Z D WMWT with an
additional inner small symmetric matrix M 2 R

l;l be given. Z may have been
obtained from one of the elementary operations described in Sect. 5.3.1. Then Z
is compressed as follows:

1. We compute W D QR˘T , where Q 2 R
n;r, R 2 R

r;l and ˘ 2 R
l;l using the

QR decomposition with column pivoting [14]. To determine the rank using this
QR decomposition has to be handled with care and should include the recent
modifications suggested in [8], which is the case for LAPACK release 3.2 or
higher. After truncation we obtain W 	 Q1R1˘T .

2. Next we determine the eigenvalue decomposition T D U˙UT of T D
R1˘T M˘RT

1 and reduce U, ˙ to matrices U1, ˙1 of lower rank whenever the
diagonal entries of ˙ are sufficiently small in modulus.

3. This finally yields the truncated W 	 .Q1U1/˙1.Q1U1/
T , which is computed

after each elementary operation, resp. after a sequence of elementary operations.

With respect to Krylov subspace methods we usually apply the iterative solver
for solving LX D B until the norm of the residual kB � LXjk2 6 ". Here "
may be an absolute or relative tolerance and may include contributions from B. For
generalized Lyapunov equations this condition reads as

kEXjA
T C AXjE

T C PlBBTPT
l kF 6 "

and certainly any low-rank decomposition of Rj need not be significantly more
accurate than ". Whenever EXjAT C AXjET C PlBBTPT

l � WjMjWT
j is compressed

to lower rank, it is enough to compute a truncated QR˘ decomposition. To do so
assume that

Wj D QjRj˘
T
j
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such that

Rj D
�

R11 R12
0 R22

�
D

0
BBBBBBBBB@

r11 � � � r1p r1;pC1 � � � r1;l
: : :

:::
:::

:::

0 rpp rp;pC1 � � � rp;l

rpC1;pC1 � � � rpC1;l
0

:::
:::

rn;pC1 � � � rnl

1
CCCCCCCCCA
:

The QR decomposition with column pivoting ensures that

jr11j > � � � > jrppj > k

0
B@

rpC1;i
:::

rn;i

1
CA k2;

for all i D p C 1; : : : ; l. To make sure that the residual is accurate enough we may
use a threshold tolr, which should be chosen one order of magnitude less than " and
terminate the QR˘ decomposition as soon as

max
iDpC1;:::;l k

0
B@

rpC1;i
:::

rn;i

1
CA k2 6 tolr : (5.9)

This requires only a minor change to the QR˘ decomposition which is truncated
as soon as the threshold is reached. Q1;R1 are then obtained by taking the first
p columns of Qj and the leading p � l block .R11;R12/ of Rj multiplied by ˘T

j .
In a similar way all other iterates of the low-rank Krylov subspace solver will be
truncated to lower rank. To summarize our truncation strategy we give a small error
analysis.

Lemma 5.3.1 Let Z D WMWT 2 R
n;n such that W 2 R

n;l, M 2 R
l;l for some

l > 0. Suppose that the truncated QR˘ decomposition of W D QR˘T truncates
the matrix R in (5.9) for some tolr D "jr11j. Discarding R22, the approximate
factorization

QZ D Q

�
R11 R12
0 0

�
˘TM˘

�
R11 R12
0 0

�T

QT

satisfies

kZ � QZk2 6 2
p

l � p "kMk2kWk22 C O."2/:
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Moreover, suppose that

T WD �
R11 R12

�
˘TM˘

�
R11 R12

�T

is decomposed as

T D U˙UT D .U1;U2/

�
˙1 0

0 ˙2

�
.U1;U2/

T

such that U 2 R
p;p is orthogonal,˙1 D diag.�1; : : : ; �r/,˙2 D diag.�rC1; : : : ; �p/,

j�1j > � � � > j�pj and j�ij 6 "j�1j for all i > r, then the approximate low rank
factorization

OZ D .Q

�
Ip

0

�
U1/ ˙1 .Q

�
Ip

0

�
U1/

T

satisfies

kZ � OZk2 6 .2
p

l � p C 1/"kMk2kWk22 C O."2/:

Proof We first note that

jr11j D max
jD1;:::;l kRejj 6 max

kxk2D1
kRxk2 D kRk2 D kWk2:

Conversely, using (5.9) we obtain

kR22k2 D max
kyk2D1

kR22yk2 D max
kyk2D1

k
X
i>p

R22eiyik2

6 max
kyk2D1

l�pX
iD1

kR22eik2 jyij

6 max
kyk2D1

 
l�pX
iD1

kR22eik22
!1=2  l�pX

iD1
jyij2

!1=2

6
�
.l � p/"2jr11j2

�1=2 6p
l � p "kWk2:

It follows that

Z � QZ D Q

�
0 0

0 R22

�
˘TMWT C WM˘

�
0 0

0 R22

�T

QT

CQ

�
0 0

0 R22

�
˘TM˘

�
0 0

0 R22

�T

QT :
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Thus bounding the norm of Z � QZ yields

kZ � QZk2 6 2kR22k2kMk2 kWk2 C kR22k22kMk2 6 2
p

l � p "kMk2kWk22 C O."2/:

Next observe that kTk2 D j�1j and we can bound kTk2 by

kTk2 6 kMk2 k �R11 R12
� k22 6 kMk2 kWk22:

If we now further truncate T, then

kZ � OZk2 6 kZ � QZk2 C kQZ � OZk2

6 2
p

l � p "kMk2kWk22 C O."2/C k.Q
�

Ip

0

�
U2/ ˙2 .Q

�
Ip

0

�
U2/

Tk2

6 2
p

l � p "kMk2kWk22 C k˙2k2 C O."2/

6 2
p

l � p "kMk2kWk22 C "j�1j C O."2/

6 .2
p

l � p C 1/"kMk2kWk22 C O."2/;

which completes the proof.

Although we may have kZk2 < kMk2kWk22 we consider this situation as rare in
practice. Furthermore, the factor

p
l � p is more of technical nature. Therefore using

some Q" of one order of magnitude less than ", we expect the truncation strategy to
be in practice satisfactory in order to obtain kZ � OZk2 � "kZk2. In Sect. 5.4 we will
demonstrate the effectiveness of our approach.

To accommodate the preservation of symmetric low-rank matrices during
elementary operations with the truncation to lower rank, a library LR-BLAS
(Low Rank-Basic Linear Algebra Subroutines) is designed which is summarized in
Table 5.1.

The introduction of low-rank BLAS allows for the easy truncation to lower rank
after an elementary operation is performed. We indicate and control whether only a
concatenation of matrices is built or if rank compression is required. Even when the
rank is to be reduced we can internally distinguish between only using the truncated
QR˘ decomposition or reducing the rank further with the help of an eigenvalue
decomposition. Also, we can handle the case when one of the symmetric low-rank

Table 5.1 Overview
LR-BLAS library

Operation Function reference

Y  Y C ˛X lraxpy

Y  ˛LX C ˇY lrgemv

Y  ˛Y lrscal

˛ kY k lrnorm

˛ .Y ;X / lrdot
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input matrices (X or Y ) already consists of orthonormal factors X D QMQT such
that QTQ D I. In this case one can simplify the amount of work when applying the
QR decomposition. Internally, it is more convenient to represent a low-rank matrix
X D QRMRTQT rather than X D QMQT . For the sequel of this article we will skip
this detail.

The introduction of a low-rank pseudo arithmetic has immediate consequences
when being used for generalized projected Lyapunov equations. While concatena-
tion of symmetric low-rank matrices does not require any additional safe guard
strategy, the situation changes as soon as the rank is compressed. After each rank
compression with thresholds larger than the machine precision, the projectors Pl and
Pr have to be applied again. In particular iterates such as the approximate solution
Xk 	 RkMkRT

k require a projection step Xk ! PrRkMkRT
k PT

r D OXk while iterates like
the residual have to be treated differently. Recall that we have

E OXkAT C A OXkET C PlBBTPT
l D Pl.E OXkAT C A OXkET C BBT/PT

l

	 SkNkST
k ;

thus here we obviously need to project with Pl to ensure that the iterates are mapped
back to the correct invariant subspace associated with the finite eigenvalues of
.E;A/.

5.3.4 Approximate LRCF-ADI Preconditioning

Independent of the use of a low-rank pseudo arithmetic in Sect. 5.3.3, the explicit
projection of the preconditioned iterate Rt from (5.8) gives the opportunity to replace
the explicit inverses .E C �jA/�1 by an approximate inverse, e.g., using incomplete
LU factorizations. Recall that when t steps of LRCF-ADI preconditioning are
applied to a right hand side B D PlB, then each iterate Rj, j D 1; 2; : : : ; t satisfies
Rj D PrRj. This is certainly not longer fulfilled when .E C �jA/�1 is replaced by an
approximation. If in doubt, in any LRCF-ADI preconditioning step substitutes

.E C �jA/
�1 ! Pr.BE C �jA/

�1

and explicitly projects the approximate solution back. In Sect. 5.4 we will demon-
strate the effect of replacing the exact LU factorization of E C �jA by an ILU.
At this point we like to stress that (low-rank) Krylov subspace methods are much
less sensitive to the use of an ILU for E C �jA while the usual ADI method is much
more affected.
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5.3.5 Selected Low-Rank Krylov Subspace Methods

We now give some examples of preconditioned Krylov subspace methods adapted
for generalized, projected Lyapunov equations using CFADI preconditioning. The
most popular method, at least when E and A are symmetric and positive definite,
is the conjugate gradient method. We will demonstrate the changes for this method
first.

Suppose we wish to solve a system LX D B with a symmetric positive definite
matrix L and a symmetric positive definite preconditioner QL 	 L . Then the
preconditioned CG method reads as given in Algorithm 5.2.

Now for symmetric and positive definite E and A we have Pl D Pr and the
generalized projected Lyapunov equation

EXA C AXE C PlBBPT
l D 0 where X D PT

r XPr

induces the following preconditioned low-rank version Algorithm 5.3 with CFADI
preconditioning and given shifts �1; : : : ; �t.

We will formally assume that each iterate Y is represented as Y D QYMYQT
Y for

suitable matrices QY and symmetric MY .
While the LR-BLAS internally apply rank compression and projection with Pl,

for the preconditioning step one has to mention this explicitly to be consistent.
A compression and projection step of P looks as follows.

P D Rt.It ˝ MR/R
T
t � QPMPQT

P

by simple concatenation. Next the rank compression as described in Sect. 5.3.3 is
performed and we obtain

.QP;MP/ ! .Q.new/
P ;M.new/

P /:

Algorithm 5.2 Preconditioned CG method
Let X0 2 R

n be initial guess
R0 D �B �LX0

P D QL �1R0

for k D 1; 2; 3 : : : do
�old D �

Z D LP
˛ D .RTR/=.PTZ /

X DX C ˛P
R D R � ˛Z
Z D QL �1R
� D RTZ
ˇ D �=�old

P D Z C ˇP
end for
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Algorithm 5.3 LR-CG for Lyapunov equations with CFADI preconditioning
X0 D 0, R0 D �.PlB/.PlB/T

Compute P D Rt.It ˝MR0 /R
T
t using t steps of LRCF-ADI applied to BD QR0

Compress and project P
� D trace.RP/ using lrdot
for k D 1; 2; 3 : : : do

�old D �

Z D EPAC APE using lrgemv
˛ D kRkF= trace.PZ/ using lrnorm and lrdot
X D XC ˛P using lraxpy
R D R� ˛Z using lraxpy
Compute Z D Rt.It ˝MR/RT

t using t steps of LRCF-ADI applied to BD QR

Compress and project Z
� D trace.RZ/ using lrdot
ˇ D �=�old

P D ZC ˇP using lrscal and lraxpy
end for

Eventually Pl is applied, which yields

QP ! PlQP � Q.new/
P :

One may or may not add another rank compression step to QP as a result of the
projection. But this would have to be done accurately with respect to the machine
precision.

The conjugate gradient method is designed for symmetric positive definite
problems. This in turn only requires Pl. In general one has to distinguish which
projection has to be applied. We demonstrate that in Algorithm 5.4 for the
preconditioned GMRES method [37].

We point out that the use of LR-BLAS allows to only concatenate matrices or to
compress the rank. Similarly, the projection need not always be applied. We have
formulated the algorithms in this more general form to indicate which projection
Pl or Pr is used. The basic operation V.1/ D R=� usually does neither require
rank compression nor projection. But if B would not have been projected before,
a projection would be required at this point. Similarly, rank compression would
usually not be used as long as B does not have a rank much less than the number of
columns. For the preconditioning step using t steps of LRCF-ADI, formally there is
no need to project W at the end, except if the rank were compressed. Numerically
however, applying the projection may reduce the influence of rounding errors from
previous preconditioning steps j, j D 1; : : : ; t.
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Algorithm 5.4 LR-GMRES for Lyapunov equations with CFADI preconditioning
X0 D 0, R0 D .PlB/.PlB/T

� D kRkF using lrnorm
V.1/ D R=� using lrscal(Pl)
for k D 1; 2; 3 : : : ;m do

Compute W D Rt.It ˝M
.k/
V /RT

t using t steps of LRCF-ADI applied to B D Q
.k/
V

Compress and project W by Pr

Z D EWAT C AWET using lrgemv(Pl )
for l D 1; 2; 3 : : : ; k do

hlk D trace.V.l/Z/ using lrdot
Z D Z C hlkV.l/ using lraxpy(Pl)

end for
hkC1;k D kZkF using lrnorm
V.kC1/ D Z=hkC1;k using lrscal(Pl)

end for
Solve k�e1 � Hmyk2 D minŠ, where Hm D

�
hij

�
iD1;:::;mC1

jD1;:::;m

Z D V.1/y1 C � � � C V.m/ym using lraxpy(Pl )
Compute W D Rt.It ˝MZ/RT

t using t steps of LRCF-ADI applied to BD QZ

Compress and project W by Pr

X D XCW using lraxpy(Pr )

The GMRES method can be slightly modified to obtain the flexible GMRES
method (FGMRES, [35]). In this case, W would be replaced by W.l/ and be kept.
Then X is directly computed from W.1/; : : : ;W.m/ via

X D X C W.1/y1 C � � � C W.m/ym using lraxpy.Pr/:

FGMRES allows for variable preconditioning. This implies that the rank in
W.1/; : : : ;W.m/ can be truncated with a larger tolerance tolp than for the other
iterates.

5.3.6 Reduced Lyapunov Equation

Several Arnoldi- and GMRES-like methods for Lyapunov equations essentially rely
on the (block-) Krylov subspace spanfB;AB;A2B; : : : ;Ak�1Bg (see, e.g., [19–23]).
These methods compute subspaces which replace the generalized Lyapunov equa-
tion (5.7) by a reduced equation

.WET/ QX .WAT/T C .WAT/ QX .WET/T C WPlBBTPT
l WT D 0:

The resulting approximate solution could be obtained from Xk D PrT QXTTPT
r .

A similar approach would be possible as by product of the FGMRES method
in order to obtain an alternative approximate solution. Suppose that the Arnoldi
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method applied to the Lyapunov operator L leads to the following equation

LWm D VmC1H m;

where Vm 2 R
n2;m has orthonormal columns, H m 2 R

mC1;m is upper Hessenberg
and the approximate FGMRES solution is given by Xm D X0 C Wms for
Wm 2 R

n2;m. For the flexible GMRES method the columns of Wm are usually
preconditioned counter parts of Vm, except that the preconditioner may vary from
step to step. Minimizing the norm of the residual B � LXm for the standard
GMRES method is equivalent to the minimization of

kH my � kR0k2 � e1k2 D minŠ (5.10)

Here one uses the property that the first column of Vm is chosen as a scalar multiple
of the initial residual R0 D B � LX0. The Arnoldi vectors Vmek are rewritten
in terms of symmetric low-rank matrices V.k/ D Q.k/

V M.k/
V .Q.k/

V /
T , k D 1; : : : ;m.

Similarly, during the FGMRES method approximations to column k of Wk are
represented by W.k/ D Q.k/

W M.k/
W .Q.k/

W /
T from the CFADI preconditioning step. Then

the numerical solution in low-rank format is a linear combination

Xk D X0 C
mX

kD1
yk Q.k/

W M.k/
W .Q.k/

W /
T ;

where the parameters y D .y1; : : : ; ym/
T are taken from the minimization of the least

squares problem (5.10). Alternatively the computed matrices
�

Q.k/
W

�
k

and
�

Q.k/
V

�
k

could be used to compute an alternative approximate solution OXk.
Suppose that we compute a QR decomposition with column pivoting [14] to

obtain

ŒQ.1/
V ; : : : ;Q.m/

V � D QVRV˘
T
V ; ŒQ

.1/
W ; : : : ;Q.m/

W � D QWRW˘
T
W ;

where rankRV D rV , rankRW D rW . Similar to the compression to lower rank at
other parts of the Krylov subspace method here one could work with lower accuracy
as well. Let r D maxfrV ; rWg, then the numerical solution Xk can be rewritten as

Xk D X0 C QWSQT
W ; where S D RW˘

T
W

0
B@

s1M
.1/
W 0
: : :

0 smM.m/
W

1
CA˘WRT

W :

QV and QW can be alternatively used to construct a reduced r-dimensional Lyapunov
equation. Let

EQ D QT
VEQW ;AQ D QT

VAQW
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and compute S as numerical solution of the reduced equation

EQ S AT
Q C AQ S ET

Q C QT
KR0QK D 0;

where R0 D EX0AT C AX0ET C BBT . For small r this could be computed with
standard methods [2]. We obtain

OXm D X0 C QWSQT
W

as approximate solution of a reduced Lyapunov equation. In Sect. 5.4 we will
demonstrate the effectiveness of this approach.

In summary the low-rank Krylov subspace methods introduced in Sect. 5.3 allow
for structured iterative methods. If .PlEPr;PlAPr/ is already symmetric and PlEPr

positive semidefinite, one could use a low-rank version of the simplified QMR
(SQMR) method [12] for symmetric indefinite problems. If even PlAPr is positive
definite, then the low-rank CG method can be applied. Low-rank CG and low-rank
SQMR can make use of the CFADI preconditioning approach while at the same
time low-rank structures and symmetry of the Lyapunov operator is preserved. In the
general case we could easily introduce low-rank Krylov subspace methods such as
low-rank BiCGStab, low-rank QMR and other methods (cf. [36]).

5.4 Numerical Results

In this section we will demonstrate the effectiveness of our approach. We will
start with the sensitivity of low-rank Krylov subspace methods with respect to the
shifts used for the CFADI preconditioning step and compare them with the usual
LRCF-ADI method. Next we will demonstrate different low-rank Krylov subspace
methods such as (F)GMRES, QMR and BICGSTAB for projected, generalized
Lyapunov equations to evaluate their strengths and their weaknesses. We will further
investigate replacing the direct solver for the single iterates .E C �jA/�1 by an
approximate factorization to compare the sensitivity of ADI and Krylov subspace
methods with respect to incomplete factorizations. Here we use as approximate
factorization the multilevel ILU factorization from the software package1 ILUPACK
which is described in detail in [5]. Further numerical results will discuss the use of
the reduced equation from Sect. 5.3.6 for the numerical solution. We will finally
demonstrate how parallel direct solvers can accelerate the process of solving large-
scale projected Lyapunov equations.

1Matthias Bollhöfer and Yousef Saad. ILUPACK - preconditioning software package. Available
online at http://ilupack.tu-bs.de/.ReleaseV2.4,June2011.

http://ilupack.tu-bs.de/. Release V2.4, June 2011
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Some of our experiments use the software package PABTEC, see [33] and
Sect. 2.6, which has been designed for the model order reduction of descriptor
systems arising from circuit simulation. Here we replaced the default LRCF-ADI
method by preconditioned low-rank Krylov subspace methods such as (F)GMRES,
QMR and BICGSTAB and adapted the interfaces to allow for complete simulation
runs based on Krylov subspace techniques.

5.4.1 Model Problems

In the following part we like to introduce three model problems which we will
use for demonstration. The first two are examples arise from descriptor systems
modeling circuit-equations while the third one is a more academic parabolic partial
differential equation. All these examples illustrate the applicability of low-rank
Krylov subspace methods.

As our first two examples we discuss linear RLC networks of the following type,
modeled using the modified nodal analysis (MNA). Let e be the vector of node
potentials, vV , vI be the voltages of the voltage sources, respectively of the current
sources. Denote by iL; iV ; iI the currents through the inductors, voltage sources and
current sources. We define the state vector x, the vector of inputs u and the output
vector y via

x D
0
@ e

iL
iV

1
A ; u D

�
iI
vV

�
; y D

�
vI

iV

�
:

Then the circuit equations can be written as

EPx D Ax C Bu

y D �BTx;

where E;A and B are given by

E D
0
@ACCAT

C 0 0

0 L 0
0 0 0

1
A ; A D

0
@�ARGAT

R �AL �AV

AT
L 0 0

AT
V 0 0

1
A ; B D

0
@�AI 0

0 0

0 �I

1
A :

Here AC;AR;AL;AV ;AI refer to the incidence matrices with respect to the
capacitors, resistors, inductors, as well as with respect to the voltage sources and
current sources. C, L, G denote the capacitance matrix, the inductance matrix and
the conductivity matrix. The differential-algebraic equations which we discuss here
are of differentiation index 1 (cf. [6]).
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Table 5.2 Large-scale RC circuits

Acronym Capacitors Resistors Voltage sources System size

RC1 2353 1393 109 974

RC2 3065 5892 21 3272

RC3 9999 9999 3 10; 002

RC4 12; 025 53; 285 78 29; 961

Example 5.4.1 As a first example we consider a RC high pass circuit provided by
NEC Laboratories Europe. It consists of 2002 conductors, 2003 resistors and three
voltage sources. Using the MNA this leads to a system of dimension 2007with three
inputs and three outputs.

Example 5.4.2 We consider further test2 examples of several RC circuits. For some
details we refer to [18]. Here we restrict ourselves to examples of following sizes,
reported in Table 5.2.

The circuits in Table 5.2 are of differentiation index 2. Since we like to
demonstrate the applicability of low-rank Krylov subspace methods for index-1
systems we remove several voltage sources which are responsible for the higher
index. After removing these voltage sources we have for circuit RC1, six voltage
sources and for each circuit RC2, RC3 and RC4, one voltage source. Furthermore,
we artificially add resistors with average conductivity to ARGAT

R to make this matrix
positive definite. We are aware of changing the original shape of these circuits.
However, our main goal is the demonstration of low-rank Krylov subspace methods
using the PABTEC software as framework.

For both problem classes of RC circuits in Examples 5.4.1 and 5.4.2 we use the
technology as provided by the software package PABTEC (see Sect. 2.6 and [33])
to demonstrate solving an associated projected algebraic Riccati equation with the
help of Newton’s method. Here in every Newton iteration step (cf. Algorithm 2.7 in
Chap. 2) a projected, generalized Lyapunov equation has to be solved.

Example 5.4.3 The final example we will use in our numerical experiments is the
parabolic partial differential equation

vt D 
v C Bu � vxx C vyy C vzz C Bu;

where v D v.x; y; z; t/, .x; y; z/ 2 ˝ D Œ0; 1�3 and t � 0. We assume that we have
some initial value v.x; y; z; 0/ and homogeneous Dirichlet boundary conditions.
To keep the discussion simple, we consider an academic control B such that after
discretization in space using a seven-point discretization stencil, the control reduces
to the vector with all ones. Suppose that we have an equidistant mesh with mesh
size h D 1

NC1 . This leads to a total system size of n D N3 unknowns. The

2http://sites.google.com/site/rionutiu2/research/software.

http://sites.google.com/site/rionutiu2/research/software
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semi-discretized ordinary differential equation is of type

Pw D �Aw C Bu;

where A is the discretized Laplacian operator in three spatial dimensions. We
apply model order reduction to these semi-discretized equations using balanced
truncation. For symmetry reasons we simply compute the associated Gramian as
the solution of the Lyapunov equation

XA C AX D BBT ;

meaning N6 unknowns for the referring Lyapunov operator. Since A is symmetric
and positive definite, the Lyapunov equation X.�A/C .�A/X C BBT D 0 is stable
and therefore balanced truncation can be applied. We know that the spectrum of A
lies inside the interval .3�2; 12

h2
/. This allows for a simple computation of the optimal

ADI shift-parameters introduced by Wachspress [47].
We use this example in order to illustrate a low-rank version of the conjugate

gradient method. Furthermore, a parallel sparse direct solver for solving the shifted
systems .A C �iI/x D b is used to examine the scalability. Finally, this example
demonstrates the advantages of using multilevel incomplete factorizations rather
than direct solvers within the CFADI method.

In the sequel all computations were conducted on a 64 GB Linux workstation
with four Intel Xeon E7440 Quadcore processors using Matlab Release R2008b.

5.4.2 Different Krylov Subspace Methods and Their Efficiency
with Respect to the Selection of Shifts

In the following experiments we will compare how flexible GMRES [35], GMRES
[37], QMR [13] and BICGSTAB [46] can be used to solve projected generalized
Lyapunov equations. We will describe how different choices of shifts affect the
LRCF-ADI method and low-rank Krylov subspace methods. For this purpose we
consider Examples 5.4.1 and 5.4.2. Here it is necessary to use the heuristic approach
(referred to as “Algorithm 1” in [32]) for calculating the shift parameters. As part
of the passivity-preserving balanced truncation we will solve the projected Riccati
equations from (5.4), (5.5) up to a tolerance of 10�4. The same accuracy is used
for truncating the Hankel singular values for Balanced Truncation. As a heuristic
approach we decided to solve each Lyapunov equation up a relative residual norm
of 10�6. One benefit of our class of Krylov subspace methods is that we can use
the norm provided by our Krylov-subspace method and do not need to explicitly
evaluate the residual-norm within the LRCF-ADI algorithm. We vary the number
t of calculated shift parameters from 4, 5, 10, 20 finally to 30. For the low-rank
Krylov methods we use a tolerance of 10�8 for truncating the ranks which is two
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Fig. 5.1 Number of ADI steps and runtime for Example 5.4.1
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Fig. 5.2 Number of ADI steps and runtime for circuit RC1 from Example 5.4.2

orders of magnitude smaller than the desired residual. The number of ADI steps we
display in Figs. 5.1, 5.2, 5.3, 5.4 and 5.5 refer to the accumulated sum of all shifted
systems that were solved using Newton’s method.

As can be seen from Figs. 5.1, 5.2, 5.3, 5.4, and 5.5, there is neither a method
that is always fastest nor is there a method always requiring the smallest number
of ADI solving steps. Comparing flexible GMRES with standard GMRES, the
difference in the number of ADI iterations can be explained by the different nature of
these approaches. While the number of Krylov subspace iteration steps is the same,
standard GMRES requires one additional solving step at the end of each restart.
In contrast to this, flexible GMRES stores the preconditioned residuals explicitly
and does not require an additional preconditioning step. The slightly improved
computation time of flexible GMRES with respect to GMRES is obtained by using
twice as many vectors in low-rank format. When working with restarts this is an
acceptable tradeoff so we prefer to use flexible GMRES over standard GMRES in
low-rank arithmetic.
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Fig. 5.3 Number of ADI steps and runtime for circuit RC2 from Example 5.4.2
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Fig. 5.4 Number of ADI steps and runtime for circuit RC3 from Example 5.4.2

BICGSTAB and QMR require in each iteration step that either the matrix is
applied twice (BICGSTAB) or the transposed matrix is used in addition (QMR).
The same holds for the application of the preconditioner. Often BICGSTAB is
comparable to GMRES with respect to time while QMR is typically the slowest
method.

We emphasize that the number of inner iteration steps for the projected Lyapunov
equations is small, when a larger number of shifts is used. When using t D 20 or
t D 30 shifts, the number of inner iteration steps is typically less than ten steps.
We illustrate the relation between inner ADI solving steps and outer Newton steps
in Fig. 5.6 for the case of the LRCF-ADI method and LR-FGMRES and different
numbers of shifts for Example 5.4.1.

The two graphics at the top of Fig. 5.6 refer to the use of four shifts while the
two graphics at the bottom of Fig. 5.6 refer to the use of ten shifts. On the left of
Fig. 5.6 we find the LRCF-ADI method, on the right LR-FGMRES is displayed.
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Fig. 5.5 Number of ADI steps and runtime for circuit RC4 from Example 5.4.2

The meaning of the three-coded numbers of type a-b-c in Fig. 5.6 is explained in the
legend just below the graphics.

The solid red line in Fig. 5.6 reveals the norm of the nonlinear residual in
Newton’s method. The other lines display the convergence history of the residuals
during the inner solves. In particular we observe that both methods, LRCF-ADI and
LR-FGMRES reach the threshold 10�4 of the nonlinear residual after four outer
steps. It can also be observed that LRCF-ADI using four shifts exceeds the limit
100 of inner iteration steps for solving the projected Lyapunov equation without
converging. In spite of misconvergence, the outer Newton method in this case still
converged to the desired accuracy.

5.4.3 Truncated QR˘ Decomposition

In this section we will demonstrate the difference in using the regular QR decom-
position with column pivoting as implemented in LAPACK (also used inside
MATLAB) with a truncated version that stops the decomposition as soon as the
desired accuracy for the truncation is reached (for details cf. Sect. 5.3.3).

In Example 5.4.1 the main time for performing the Balanced Truncation algo-
rithm is consumed when solving the Riccati equation. In Table 5.3 the computation
time of the LR-FGMRES method using PABTEC for different numbers of shifts
using the full QR˘ decomposition versus the truncated QR˘ is stated.

As solver for the Lyapunov equation we use LR-FGMRES. As in Sect. 5.4.2
both relative rank tolerances were set to 10�8 whereas we are solving the Lyapunov
equations with accuracy 10�6. The gain observed for using the truncated QR˘ was
approximately in the range of about 5–8% in overall runtime of the LR-FGMRES
method.



180 M. Bollhöfer and A.K. Eppler

0 20 40 60 80 100
10

−6

10
−4

10
−2

N
or

m
al

iz
ed

 r
es

id
ua

l n
or

m

Iteration steps

LRCF−ADI iteration / Newton iteration

1-96-R

2-100-I

3-100-I

4-100-I

1 1
2

2

3

34 4
0 20 40 60

10
−5

10
0

N
or

m
al

iz
ed

 r
es

id
ua

l n
or

m

Iteration steps

LR−FGMRES iteration / Newton iteration

1-60-15

2-52-13

3-44-11

4-28-7

0 10 20 30 40

10
−6

10
−4

10
−2

N
or

m
al

iz
ed

 r
es

id
ua

l n
or

m

Iteration steps

LRCF−ADI iteration / Newton iteration

1-24-R

2-26-R

3-26-R

4-27-R

1
2

3

4

0 10 20 30 40

10
−5

10
0

N
or

m
al

iz
ed

 r
es

id
ua

l n
or

m

Iteration steps

LR−FGMRES iteration / Newton iteration

1-30-3

2-30-3

3-20-2

4-20-2

1
2

3

4

legend for the symbols of type a-b-c

a number of outer Newton steps

b number of inner ADI solving steps

c if c is a number, then c denotes the number of FGMRES steps
if c = I, then the inner solver terminated after the number of iteration steps is exceeded
if c = R, then ADI converged with a sufficiently small residual

Fig. 5.6 Comparison of LRCF-ADI and LR-FGMRES using four (top line) and ten (bottom line)
shifts

Table 5.3 Comparison of
standard QR˘ and truncated
QR˘ within LR-FGMRES,
Example 5.4.1

# Shifts Standard QR˘ (s) Truncated QR˘ (s)

4 19:25 18:43

5 7:33 6:90

10 4:03 3:90

20 3:95 3:79

30 4:24 4:20
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The improvement using the truncated QR˘ decomposition can not only be used
in low-rank Krylov subspace methods, but it can also have a beneficial impact of
the LRCF-ADI method. When solving the projected Riccati equations using LRCF-
ADI, at each Newton step we have to concatenate the current approximate low-
rank solution Z D QZQT

Z of the Riccati equation and the recent low-rank update
P D QPQT

P from solving the projected Lyapunov equation to obtain

Z C P D 	
QZ QP


 	
QZ QP


T
rank
�!

compression
Q.new/

Z .Q.new/
Z /T :

Usually we would apply a slim QR decomposition

	
QZ QP


 ŠD QR

such that Q has as many columns as
	

QZ QP



. After that we would apply a singular

value decomposition

R
ŠD Ur˙rV

T
r

to truncate the rank of R to some r and obtain

Q.new/
Z D QUr˙r:

When we use the truncated QR˘ decomposition instead, we can already
compute approximately

	
QZ QP


 ŠD QsRs˘
T C E

such that kEk is small and Qs and RT
s may already have significantly less columns s

than
	

QZ QP



. Next a singular value decomposition only needs to be applied to the

already reduced system

Rs
ŠD Ur˙rV

T
r :

Thus, the truncated QR˘ decomposition may not only save time during the QR˘
decomposition of

	
QZ QP



, but the singular value decomposition is also applied

to system of smaller size and may lead to additional improvements. To illustrate
this effect we compare the LRCF-ADI method for Examples 5.4.1 and 5.4.2.
Although the total computation time is not drastically improved, at least the time
of the rank compression is moderately improved. In Figs. 5.7 and 5.8 we illustrate
the computation times of both rank compression techniques, accumulated over all
Newton steps.
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Fig. 5.7 Computation time QR plus SVD version truncated QR˘ plus SVD for Example 5.4.1

5 10 20 30
0

0.5

1

1.5

2

2.5

3

3.5

RC1, n=974

# shifts

tim
e 

in
 [s

]

regular QR
truncated QRP

5 10 20 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
RC2, n=3272

# shifts

tim
e 

in
 [s

]

regular QR
truncated QRP

5 10 20 30
0

0.1

0.2

0.3

0.4

0.5

RC3, n=10002

# shifts

tim
e 

in
 [s

]

regular QR
truncated QRP

5 10 20 30
0

1

2

3

4

5

6

7

RC4, n=29961

# shifts

tim
e 

in
 [s

]

regular QR
truncated QRP

Fig. 5.8 Computation time regular QR plus SVD implementation versus truncated QR˘ plus
SVD for Example 5.4.2
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We can observe a moderate to significant gain in particular when using a smaller
number of shifts. When only using a smaller number of shifts, the total number
of ADI steps significantly increases since the LRCF-ADI method needs more
steps to converge. This in turn results in a higher pseudo rank caused by simple
concatenation. Here the gain is most significant.

5.4.4 Evolution of the Rank Representations
in the Low-Rank CG Method

We will now report for the preconditioned LR-CG method from Algorithm 5.3
how ranks of the symmetric low-rank matrices X, R and P behave during the
iterative process. To illustrate their behaviour we select Example 5.4.3 since we
believe that the LR-CG method is the easiest low-rank Krylov subspace method and
this example allows for the use of the preconditioned LR-CG method. We select
as discretization parameter N D 60 which lead to a sparse symmetric positive
definite matrix A of size n D N3 D 216; 000. The associated Lyapunov equation
X.�A/C .�A/X C BBT D 0 is numerically solved to obtain a low-rank symmetric
positive semidefinite solution X 2 R

n;n. In the experiment we use a residual norm
of 10�6 as termination criterion for the preconditioned LR-CG method. Since A is
symmetric and positive definite we are able to use the optimal Wachspress shifts
[47] for CFADI preconditioning. We demonstrate the behaviour of the ranks of X,
R and P when using t D 4; 6; 8 and t D 10 shifts. For any of these shift values the
LR-CG method only requires a few steps to converge (see Table 5.4).

In Fig. 5.9 we illustrate the behaviour of the ranks of X, R and P in the LR-CG
method, when we use a truncation tolerance of 10�8.

The solid lines in Fig. 5.9 refer to the situation where X, R and P are updated and
truncated to lower rank in the LR-CG method, i.e., whenever the operations

X D X C ˛P using lraxpy
R D R � ˛Z using lraxpy
: : :

P D Z C ˇP using lrscal and lraxpy

are completed within Algorithm 5.3. For X the dashed lines indicate the intermediate
rank before the lraxpy routine compresses the rank. Similarly, for R the dashed
line indicates the pseudo rank before and after the rank truncation of Z in the

Table 5.4 Number of shifts and number of preconditioned LR-CG steps for Example 5.4.3 and
N D 60

Number of shifts 4 6 8 10

Number of LR-CG steps 7 5 4 3
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Fig. 5.9 Evolution of ranks for different selected vectors in LR-CG for N D 60

lrgemv routine that computes Z D XA C AX and the situation before and after
lraxpy compresses the rank for R D R � ˛Z. Finally, the dashed line that is used
for P includes the pseudo rank from the CFADI preconditioning step followed by
its rank compression, as well as the additional rank compression, when P D Z CˇP
is computed. We can observe for X;R and P that the intermediate ranks can be
significantly higher than the rank that is obtained when lraxpy is completed.
As we would expect, at the end of each rank compression step, the rank of X
and P tends towards a constant rank, while the R the rank of the residual becomes
small or even 0 when the LR-CG method converges. The general behaviour of the
ranks, in particular that ranks first increase and then decrease again has also been
observed in other low-rank Krylov subspace methods and applications [25]. The
intermediate increase of the rank can be interpreted as another justification for using
the truncated QR˘ decomposition to improve the performance of low-rank Krylov
subspace methods as already illustrated in Sect. 5.4.3.



5 LRCF Krylov Subspace Methods for Lyapunov Equations 185

Fig. 5.10 Norm of the
residuals for LR-FGMRES
using different number of
shift parameters. Comparison
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5.4.5 Numerical Solution Based on Reduced Lyapunov
Equations

The LR-FGMRES method computes orthonormal Arnoldi vectors that can be
used to define a reduced projected Lyapunov equation (see Sect. 5.3.6). However,
although having this reduced Lyapunov equation available, the additional informa-
tion we can extract from solving this reduced equation does not necessarily improve
the low-rank solution computed via LR-GMRES. To illustrate this effect we will
consider Example 5.4.1 using different number of shift parameters. Here we simply
examine solving a simple Lyapunov equation using a tolerance of 10�10 for the
residual and a truncation threshold for the rank of 10�12.

The results are shown in Fig. 5.10, where the norm of the residual at the end of
m steps LR-FGMRES is compared with the version that uses the information of the
reduced system instead.

As we can see from Fig. 5.10 using the approximate solution from the reduced
system does not necessarily improve the residual. Moreover, the computational
overhead should not be overlooked. Solving the reduced system requires to solve a
small projected generalized Lyapunov equation using a method such as the Bartels-
Stewart algorithm. This increases the computational amount of work. For further
details we refer to [9].

5.4.6 Incomplete LU Versus LU

We now examine numerically how replacing the direct solver for .E C �jA/�1 by
the multilevel ILU from ILUPACK influences the LRCF-ADI method and the LR-
FGMRES method with LRCF-ADI preconditioning. First we use Example 5.4.1 to
compare both methods inside the model order reduction software package PABTEC.
Both iterative methods replace the direct solver by the ILU with a default threshold
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Fig. 5.11 Norm of the
residuals for LRCF-ADI and
LR-FGMRES, both using
incomplete CFADI
preconditioning with 15 shifts
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of 10�2 for discarding small entries. In addition, in our experiments the iterative
solver inside ILUPACK [which is by default GMRES(30)] uses as termination
criterion a relative residual of 10�4, 10�8 and 10�12 to illustrate different accuracy
of the multilevel ILU solver.

The results in Fig. 5.11 demonstrate that in principle low-rank Krylov subspace
methods can use approximate factorizations rather than direct factorization methods
while the usual LRCF-ADI method encounters convergence problems which are
caused by solving .E C �iA/x D b with lower relative accuracy.

The convergence for the results in Fig. 5.11 is slightly delayed for LR-FGMRES
while LRCF-ADI does not converge anymore. A drawback of the use of approxi-
mate factorizations that we observed in the numerical experiments is that the rank
of the single iterates significantly increases [10]. This reduces the advantages of
incomplete factorizations at least for these kind of examples where direct solvers are
a natural alternative. The source of this increase will be subject to future research.

As second example we consider Example 5.4.3 where direct solvers quickly
reach their limit because of the complexity and the spatial dimension. Besides,
the Lyapunov equations in this case can be numerically solved using the pre-
conditioned LR-CG method. Firstly we will compare the memory consumption.
For the comparison we will use MATLAB’s chol function that computes a
Cholesky decomposition in combination with symamd which initially reorders the
system using the symmetric approximate minimum degree algorithm [1] in order
to save fill-in. In the sequel we will refer to this version as “MATLAB”. Next
we use for comparison the software package3 PARDISO [39, 40] and its Cholesky
decomposition. For the incomplete factorization we will again use ILUPACK and
its inverse-based multilevel incomplete Cholesky factorization with the additional
option to preserve the vector with all entries equal to 1 exactly. The latter is
recommended since the underlying matrix refers to a discretized elliptic partial
differential equation. Since the matrix is symmetric positive definite we again

3http://www.pardiso-project.org.

http://www.pardiso-project.org
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Table 5.5 Number of ADI shifts depending on N and tolw

N 20 40 60 80 100

tolw 10�1 10�2 10�4 10�1 10�2 10�4 10�1 10�2 10�4 10�1 10�2 10�1

Shifts 3 4 8 3 5 9 4 6 10 4 6 4
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Fig. 5.12 Memory requirement illustrated by the relative fill-in of the Cholesky factor with respect
to the given matrix

use the Wachspress shifts, similar to Sect. 5.4.4. Depending on the discretization
parameter N these shifts are computed with respect to a given tolerance tolw for
the desired accuracy of CFADI approximation (for details we refer to the parameter
"1 in [28]). In Table 5.5 we give the explicit relation between the number of shifts
depending on N and tolw .

In Fig. 5.12 we display how the relative fill-in nnz.LCLT /

nnz.A/ of the nonzero entries of
the Cholesky factor L relative to the nonzero entries of A behaves with respect to the
discretization size N for tolw D 10�1 and tolw D 10�2.

As is well-known for problems in three spatial dimensions, the relative fill-in
of direct solvers drastically increases when the size of the problem increases with
PARDISO being significantly better than MATLAB. In contrast to that ILUPACK
yields an almost constant relative fill-in for each tolw and also only mildly increases
when tolw is decreased (i.e., when the number of shifts is increased). The increase in
the amount of fill-in is significantly sublinear! We illustrate this effect for N D 60.
Since we need to factorize Fi D A C �iI, for i D 1; 2; : : : ; t for each shift �i, the
system Fi is almost equivalent to A, as long as a relatively small shift �i is chosen.
Increasing the shift �i in magnitude, as it is happening in the computation of the
optimal ADI shift parameters, makes Fi more and more diagonal dominant. When
Fi is almost equivalent to A, the multilevel ILU requires more fill-in and more
levels, since in this case a multigrid-like approximation is required. With increasing
diagonal dominance of Fi, the multilevel ILU gets sparser and requires less fill-in,
adapting automatically to the underlying system. This explains why even increasing
the number of shifts does not necessarily result in a linear increase of memory or
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Table 5.6 Performance of
ILUPACK’s multilevel ILU
when four optimal shifts are
prescribed, N D 60,
tolw D 10�1

Shift value tfactor (s) Levels Fill-in tsolve (s) Steps

�26; 999:996 2.0 1 2.2 0.8 8

�3406:818 2.5 2 3.6 1.5 10

�387:730 5.2 3 3.9 1.6 13

�48:923 6.2 5 4.7 2.1 18

computation time. In Table 5.6 we state the computation time for computing the
multilevel ILU for a system of size N3 D 216; 000 depending on the value of the
shift.

We have chosen tolw D 10�1, which gives four shifts �1; : : : ; �4. For a large
absolute value of �1 D �26; 999:996 the system is strictly diagonal dominant. Thus
only 1 level is required, the computation time is small and the relative fill-in is
approximately twice as much as that of the original system. With such a large shift,
solving a single system with the multilevel ILU is not only fast because of the sparse
approximation, but it also requires the fewest number of iteration steps (in this case
8 steps of preconditioned CG for a single right hand side). When the shift decreases
in magnitude, the diagonal dominance becomes less, the number of levels increases
and ILUPACK’s multilevel ILU behaves more and more like an algebraic multilevel
method. This can be verified by the increasing number of levels, the increasing fill-in
and the slightly increasing number of CG steps.

The sublinear behaviour of the multilevel ILU is also a significant advantage with
respect to the computation time when solving the Lyapunov equations using LR-CG
with CFADI preconditioning. We state the computation time in Table 5.7.

As we can see from Table 5.7, the computation time behaves differently for dif-
ferent solvers when increasing the number shifts. Using more shifts result frequently
in working with higher ranks also already seen in Fig. 5.9. This is because increasing
the number of shifts only mildly increases the fill-in while at the same time the
convergence speed is improved. Here ILUPACK is by far the fastest numerical
solver for computing systems with Fi D A C �iI. Looking at Table 5.7 we can also
see that the computation time of the direct solvers scales significantly better than
their memory requirement which is cause by sparse elimination technologies, such
as the elimination tree, super nodes, Level-3-BLAS and cache optimization. These
are techniques that are hardly applicable to incomplete factorization techniques.

5.4.7 Parallel Approach

We finally illustrate how the computation can be reduced for large-scale examples
when the direct solver is replaced by a multi-threaded direct solver which can make
use of several cores during the factorization and the solution phase. Here we use the
direct solver PARDISO [39, 40] and demonstrate the different computation times
when using several threads. For this purpose we again chose Example 5.4.3 since
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Table 5.7 Computation time LR-CG in (s) using CFADI preconditioning with different inner
solvers (MATLAB/PARDISO 1 cpu/ILUPACK)

Dimension N # Shifts MATLAB PARDISO(1) ILUPACK

20 3 8.5 3.5 3:5

4 9.3 3.8 3:1

8 12.8 4.7 2:8

40 3 596.6 144.9 75:8

5 575.1 137.0 59:3

9 673.8 156.6 48:4

60 4 9236.6 1564.4 375:8

6 10,847.2 1717.4 284:3

10 11,273.8 1879.9 271:2

80 4 78,870.4 10,562.7 1312:7

6 – 10,475.9 1137:9

100 4 – 43,255.3 3653:7

100 6 – – 2647:5

120 4 – – 7551:8

120 7 – – 6232:5

140 4 – – 15; 311:4

140 7 – – 10; 201:0

here we are able to adjust/increase the dimension of the equation. As solver we use
the LR-CG method since we know in this case the equivalent linear system would
be symmetric and positive definite. We increase the size of the matrix A from 203 D
8000 to 1003 D 1; 000; 000. Remember that the corresponding Lyapunov equation
would even have squared size. We will solve the Lyapunov equation up to a residual
norm of 10�6. For this example optimal shift parameters can be computed [47].
The number of shifts are computed according to a tolerance tolw which refers to the
convergence speed of the ADI method. Here we choose tolw D 10�1, tolw D 10�2
and tolw D 10�4 as tolerances. The number of shifts can be seen in the second
column of Table 5.8.

The values are always ordered from tolw D 10�1 down to tolw D 10�4 (cf. also
Table 5.5). For N > 80 we skipped tolw D 10�4 and for N > 100 we skipped
tolw D 10�2 additionally for reasons of memory consumption.

Beside the computation time in Table 5.8 we point out that the number of LR-CG
steps only depends on the size of tolw. Numerically it is advantageous to have a
larger value of tolw and to use more LR-CG steps since this significantly saves
memory and occasionally is even the fastest version as can be seen from Table 5.8.

Using the multithreaded parallel solver PARDISO we observe a significant
speedup which is close to linear for larger N. It can also be seen that using 4 threads
or 8 threads leads to an optimal performance on our machine. We observed that
for maximum possible number of 16 threads the amount of computational time
increased drastically. We blame this issue to problems of the dense linear algebra
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Table 5.8 Computation time LR-CG in (s) using CFADI preconditioning with a multithreaded
version of PARDISO

Dimension N # Shifts cpuD 1 cpuD 2 cpuD 4 cpuD 8

20 3 3:5 3:2 3:2 8:9

4 3:8 3:4 3:4 10:2

8 4:7 4:1 4:1 11:8

40 3 144:9 87:5 77:2 124:0

5 137:0 79:4 66:3 118:6

9 156:6 88:0 73:5 131:4

60 4 1564:4 704:2 464:4 983:5

6 1717:4 735:4 504:2 1064:3

10 1879:9 794:8 622:8 1160:1

80 4 10; 562:7 4121:1 2585:0 6448:1

6 10; 475:9 4032:2 2702:0 6432:6

100 4 43; 255:3 15; 363:7 9767:2 24; 577:4
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Fig. 5.13 Computation time LR-CG in (s) versus problem size N for various inner solvers of
shifted linear systems within CFADI preconditioning

kernels with the multicore architecture. In a multicore processor the processes have
to share the cache if more than one thread is assigned to a socket. We believe
that this might be an explanation for the numerical observations. Although the
multithreaded parallel direct solver PARDISO improves the numerical solution of
the LR-CG method with CFADI preconditioning, for larger sizes N the multilevel
ILU is still superior although not yet being parallelized. This can be concluded from
the comparison in Fig. 5.13 for tolw D 10�1 and tolw D 10�2.
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5.5 Conclusions

In this article we have demonstrated the benefits of low-rank Krylov subspace
methods. When computing the approximate solution of generalized, projected
Lyapunov equations, these novel low-rank Krylov subspace comprise the benefits of
Krylov subspace methods and the low-rank Cholesky factor representation similar
to LRCF-ADI methods. While the superiority of low-rank Krylov subspace methods
is not always confirmed in the numerical experiments, their high potential has been
illustrated. We have also shown that techniques of early compressing the rank
to the desired accuracy is beneficial for low-rank Krylov subspace methods. The
results have demonstrated the applicability in model order reduction techniques,
in particular for those problems arising from circuit simulation. We have further
outlined the wide range of their usage for other problems such as parabolic partial
differential equations. We believe that this numerical case study helps understanding
when and how low-rank Krylov subspace methods can be used as a technique for
model order reduction.
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positive real, 47, 110
power grid circuit, 88, 90, 91
preconditioned CG method, 169
projected Lur’e equations, 48
projected Lyapunov equations, 52
projected Riccati equation, 51
proper, 46
proper Hankel singular values, 52
proper orthogonal decomposition, 2, 13–23

R-minimal, 49
rational interpolation, 107
Raviart-Thomas finite elements, 9, 17
RC circuit, 91
realization, 46
reciprocal, 47, 112, 114
reciprocity, 112

preservation, 112
recombination, 4, 5
reduced network, 33, 34
reduced-order model, 2, 13, 15–17, 19, 21–24,

26–28, 30–34
reference frequency, 16, 20, 25, 26
reference parameter, 24, 25
regular pencil, 46
residual, 24–26
residual-based sampling, 23, 26
resistance matrix, 89
RLC circuit, 45, 91, 104

S-parameters, 106
scaled drift-diffusion equation, 6

scaling, 6, 25
semiconductor, 2–7, 17, 24, 27, 28, 31
separator nodes, 104
simulation, 1–4, 6–13, 16, 17, 20, 23–27
simulation time, 2, 4, 16, 21, 22, 28, 32, 34
singular value decomposition, 14, 96
singular values, 14, 17, 19
singular vectors, 16
snapshot, 2, 13–14, 19, 23, 24, 26, 28, 30
SparseRC, 88, 103
spectral norm, 115
stable, 47

asymptotically, 109
c-, 109

structure. See hierarchical structure
subsystem

ranking, 142
reduction, 138
sensitivities, 140

SVD. See singular value decomposition
symbolic equations, 136–137
system

coupled, 30–32
descriptor, 90, 158
linear sub-, 87, 104
linear time invariant, 89

tangential interpolation, 106
Taylor series expansion, 93
terminal reduction, 88, 91, 96, 97
TermMerg, 88, 101
test bench, 138, 140
transfer function, 46, 90, 91, 96

positive real, 110, 112
reciprocal, 114
terminal reduced, 98

truncated QR˘ decomposition, 179
truncated SVD, 115, 120, 127, 129

unreduced problem, 13, 16, 19, 21, 24–26

Vector Network Analyzer, 106
voltage-current relation, 3, 28, 32

weak formulation, 9–10
Weierstraß canonical form, 159
weighted residual, 26
weights, 25
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