
M. Kurosu (Ed.): Human-Computer Interaction, Part I, HCII 2014, LNCS 8510, pp. 331–339, 2014.
© Springer International Publishing Switzerland 2014

IntNovate a Toolkit to Ease the Implementation
of Every Interaction Paradigm on Every Device

Bruno Merlin

Universidade Federal do Pará, FACE, Cametá, Brazil
brunomerlin@ufpa.br

Abstract. With the evolution and diversification of devices and platforms, we
observed an evolution of the interaction paradigm usage, but also the emer-
gence of several specific SDKs and toolkits. We present a toolkit, IntNovate,
aiming at facilitating every interaction techniques and every interface para-
digms in a large set of devices. The toolkit enables to create traditional widget
applications, but also incorporates gaming techniques to turn easy animation in-
tegration, see-through interactions and direct manipulations. It is compatible
with J2SE, J2EE, J2ME and android environments. A first evaluation compared
an HMI development using both J2SE and IntNovate none form based applica-
tion development and illustrated the IntNovate advantages in this context.

Keywords: Toolkit, graphic, direct interaction, multiple devices, multiple plat-
forms.

1 Introduction

During the last decade, the graphic design became a major factor to improve software
usability so as to increase software commercial impact. Consequently, the HMI de-
sign of commercial software turned to a multidisciplinary task involving HMI devel-
opers, ergonomists and graphic designers. In the same time, the number and kind of
new devices grew significantly thanks to the evolution of mobile devices and to the
integration of computation skills into the traditional appliances (household devices,
car dashboard, electronic cash, etc.). At last, the device diversification increased the
user’s number and amplified their heterogeneity.

The diversity of devices and the evolution of operating systems, the intervention of
new actors into the design process, the requirement to turn the software graphically
attractive, and the needs to lead with heterogeneous users, changed the way to design
graphic interfaces. We observed two mains evolution axes: a convergence between
mobile and desktop interaction paradigms and operating systems [14, 15]; and the use
of gaming interaction techniques into standard applications. It increased the use of
direct interaction [13, 4], animations, gestural interaction [5], marking menu [8], see-
through interfaces [3], etc. Graphic interfaces tend to leave their standard rectangular
layout and interactive components are frequently integrated into a scene.

332 B. Merlin

In spite of these convergences, the HCI development toolkits remain specific for
desktop, web or mobile environment, and do not ease the incorporation of gaming
techniques into standard applications.

In this article, we present a HCI toolkit, IntNovate (www.intnovate.org), respond-
ing to these problems. The Toolkit is developed in Java and offered an implementa-
tion for J2SE, J2EE, J2ME and Android enabling to attend the majority of web,
desktop and mobile platforms. The toolkit proposes several predefined behaviors,
animation motor and skinable widgets that enable to create a compact and high ex-
pressive code such as actionscript, whereas beneficing of the java inter-operability.
IntNovate also aims at easing the cooperation between developers and graphic de-
signers by loading the graphic scene from vector graphic files generated by drawing
and design tools.

In the next chapters, we detail the characteristics of the toolkit, the design process
using IntNovate and present a first evaluation of the toolkit aiming at demonstrating
its usability.

2 The Toolkit

2.1 Graphical Properties

Such as the majority of drawing toolkits, IntNovate is based on a 2D canvas managing
RGB colors, opacity, textures and clipping. The graphical objects composing the ap-
plication are organized into a single tree. The leafs represented the rendered primitive
graphical objects (such as path with one or several contours, ellipses, texts, etc.). The
branch nodes manage default properties values for the sub-tree nodes (such as fill and
stroke brush, etc.). A local transformation matrix, an opacity coefficient, and a clip
may be applied to every node. The tree is rendered by a depth-first traversal from the
interface root node. Local node transformation, clip and color opacity are composed
with the transformation, clip and opacity of parent nodes.

In fact, displaying a graphical component of the interface consists implicitly in graft-
ing a sub-tree to a main tree branch. Thus, branches are dynamically grafted, cut or just
temporarily inactivated to represent the different graphical states of the interface.

Like with scalar graphic drawing tools, the different layers of the interface depend
on the graphical position into the tree toward the depth-first traversal order (cf. Fig.
1). The first graphical objects, in depth-first traversal order are painted first, designing
the “background” of the application. The last ones are painted in front of every other.
This order can be altered.

Fig. 1. Layers organization

Orange Yellow square

Blue

Object tree Representation order

 IntNovate a Toolkit to Ease the Implementation of Every Interaction Paradigm 333

Simple or complex clips are specified by additional trees. Thus, clips may contain
a simple primitive shape so as to a shape composition base (cf. fig. 2). In the same
way, texture pattern can be generated from a tree representing the texture pattern
(they also can be loaded from an image file).

Fig. 2. Using graphic sub-tree as pattern or clip

2.2 Basic Interactions

Tree nodes can handle single and multiple pointer interactions. When e pointer inte-
raction occurred, the toolkit checks if the interaction was performed into the shapes
represented by the sub-tree of the handling node (the process consider the specific –
and sometime complex – geometry of the shape). Naturally, the evaluation of handled
nodes is performed in the inverse depth-first traversal order, corresponding to the
order of graphical objects visualized by the user. The events intercepted by a node are
propagated to the node ancestors.

Tree node can also handle key events. As standard toolkits, IntNovate manages a
focused node, implicitly auto-determined by the last performed click and eventually
altered by an explicit request.

At last, tree nodes can handle java and node drag and drop events.

2.3 Graphic Integration

The global structure of IntNovate application, such as the other graphical characteris-
tics (like strokes properties or gradients), is very closed to the SVG and other scalar
graphic format definitions.

Because graphic is easier elaborated and altered using drawing tools (graphic de-
signer tools) than described by geometric path or painting directives, IntNovate
enables to load graphical sub-trees from scalar graphic files. SVG tree or sub-trees
(identified by a node path or node name) are parsed and mapped into IntNovate
nodes.

The use of external scalar graphic files enables to ease the interaction between
graphic designers and developers. Alterations done by graphic designers are automat-
ically incorporated into the application. Moreover, at the differences with simple

Pattern tree

Clip tree Rectangle filled with the pattern

Rectangle clipped s

334 B. Merlin

images, the loaded graphic objects may be dynamically altered (for instance: colors,
transformation and position, or text values, cf. Fig.3).

Fig. 3. Dynamic alteration of “images”

In order to increase the loading performances, for every loaded SVG tree or sub-
tree IntNovate generates a java object. The object constructor instances the sub-tree
nodes. The java class is dynamically compiled and loaded. If the object has ever been
created and the graphical files is unchanged, IntNovate reuse the compiled object.

The process enables to speed-up the graphical component loading by skipping the
parsing step when the graphical file is unchanged (what is the normal software exploi-
tation situation). But, it also enables to protect the graphic designer work. Thus, at the
end the development, the graphic source files may be removed from the project. The
graphic design is delivered as java compiled classes.

2.4 Cache

Some branches of the tree may contain several and complex graphical objects. The
sub-tree rendering time may be long, prejudicing the number of frames rendered per
second. To improve the rendering of these sub-trees, IntNovate enables to create im-
age cache for them. When the application tree is redrawn, if a node of a cached
sub-tree has been changes, the cache image is rebuilt; else, the cached image is only
rendered.

The cached nodes can be specified by the developers. But, IntNovate can also auto-
determines the candidate branches. To evaluate the candidate branches, the toolkit
measure the sub-trees drawing time, but also use heuristic such as interaction handled
by the nodes, animated nodes, user class of components and sub-trees loaded from sca-
lar graphic files. The aim of this evaluation is to detect the sub-trees that are complex to
draw, but also the group of graphical object that make part of the same semantic group
of object and which shape and mutual position remain unchanged the most part of the
time (for instance background, items of a list, animated object, etc. cf. Fig. 4).

IGroup strip=instance

(“strip.svg#strip”);

((IText)strip.find

(“callsign”))

 .setText (“AFR6128”);

((IText)strip.find

a) SVG Model

c) Instance

b) The model is loaded and graphic
characteristic dynamically altered

 IntNovate a Toolkit to Ease the Implementation of Every Interaction Paradigm 335

Fig. 4. Principal of cache images

2.5 Widgets

Even if the toolkit is not specifically designed to create form based applications, it
proposes a set of skinable widgets containing the principal widgets such as simple,
multiline and masked edits, toggle and buttons, radio-buttons, checkboxes, combo-
boxes, spinner, list, tables, trees, scrollbar, scroll-panes and split-panes. The widgets
have a default skin, whereas the skin can also be specified in SVG.

2.6 Control of Object Transformation: Resizing Specified by Example

Designing widgets with a graphical object tree instead of painting directives introduc-
es a problem in widget resizing. Widgets are normally designed to be represented at
different sizes. But, for instance, increasing the size of 25% for a button does not
necessarily mean that we are going to increase the size of the border of 25%, neither
the size of the font.

In IntNovate, the shapes and their properties are specified with an initial size. A
simple way to transform the shapes to make them fit with the other sizes would be to
scale them. However, a simple scaling transforms whole graphic without discriminat-
ing the semantic aspects of each shape property. Then, it resizes proportionally every
graphical property of every shape (the shape but also the borders, text fonts, relative
position between shapes, etc.). Consequently, using a simple scale to increase a button
size of 25% would also increase of 25% the border, the font size, the text padding, etc
(cf. fig. 5).

Example: application for

air traffic control

a) no frequent changes

between objects (lines, levels,

etc.) at the background  group

b) Flight comets:

frequent changes between

object position group not

c) Frequent changes in the right

branch  group not cached

a) The background

contains several graphical

objects that may be configured

by the user in function of the

context. The most part of the

time they remain unchanged.

The background may be cached.

b) The flight comets seam

to be integrated to the

background (at the front),

whereas their position change

all the time. So they won’t be

336 B. Merlin

Fig. 5. A simple scale of th

In order to specify how t
the shape properties, IntN
shapes. The technique is in
sists in specifying the comp
When the component is resi
tion between the property v
size (cf. fig. 6).

2.7 Animation

The toolkit enables to cont
fined animations such as sc
tion motor enabling the use
fade-out, oscillations, etc.) e

Animations may be sequ
describing: when the differe
animations of the scenario)
may also be specified by ex

2.8 Predefined Behavio

Out of the animation, sever
behaviors, such, as hover-f
trol active sub-trees toward

Motion and inertia enabl
ic anchor and space constra

Other behaviors enable
recognition gesture system
objects scriptable.

The key representations il

of the objects are transformed t

he image transforms every aspect of the image proportionally

to resize the shapes respecting the semantic information
ovate enables to describe by example how to resize
spired by Flash animations and Artistic Resizing []. It c
ponent appearance at different sizes (key representatio
ized, the value of every property is calculated by interpo

value of key representations with an inferior and a supe

Fig. 6. Transformation by example

trol animations performed on sub-trees. It proposed pre
cale, translate, opacity animations, and proposes an anim
er to specify his proper animations. Pacers (such as fade
enable to control the animation rhythmic.
uenced and combined through animation scenario mod
ent animations should start and end (relatively to the oth
). The transformations performed during scale animati

xample (cf. 2.6).

ors

ral predefined behaviors may be applied to sub-trees. So
feedbacks, selection feedbacks, or blinking, enable to c

interactions.
le to move an object into a spaced with or without magn
aints.

to control gesture inputs. The toolkit mainly provide
m based on a neuronal network and electronic ink turn

llustrate how every characteristic

toward width and height changes

Every characteristics of an
instance of the object are
calculated by interpolation
between the key representation

n of
the

con-
ns).
ola-
rior

ede-
ma-

e-in,

dels
hers
ions

ome
con-

net-

es a
ning

n
e
n

 IntNovate a Toolkit to Ease the Implementation of Every Interaction Paradigm 337

At last, some behaviors (such as lasso selection, anti-covering) enable to manage
interaction between object groups.

2.9 Synthesis

The toolkit is inspired by the Zinc [12] canvas, IntuiKit [1, 2] graphic cooperation
design process between designers and programmers, MTools [10] and Flash [17]
behaviors, and power-point [16] and Flash animation design. It regroups those differ-
ent characteristics into a Java environment. J2SE/J2EE, J2ME and Android wrappers
enable to reach the different platforms and devices (web, desktop, mobile platforms
and windows, linux and Mac OS operational systems).

3 Evaluation

3.1 Design

To evaluate the toolkit usability, 4 J2SE developers compared the development of the
same simple application using both IntNovate and only the J2SE JDK.

The subjects were preliminary trained during 4 hours to use IntNovate. The train-
ing consists in reproducing short examples illustrating the main skills of the toolkit:
graphic integration, layers organizations, animations, and predefined behaviors
integration.

The application to develop consisted in (i) dispatching randomly instances of 3
kinds of shapes into the canvas; (ii) provide an interaction to select the same shapes;
(iii) create an animation to group the selected shapes; (iv) provide an interaction to
input textual information to the group; (v) provide an interaction to organize the
groups into a grid. A demonstration of the required application where presented to the
subjects.

Graphic design was not the purpose of the evaluation so graphics were provided
both as SVG files and as shape paths and text span descriptions. Thus, the resources
were prepared to be directly integrated into IntNovate or J2SE. Algorithms required to
implement the different behaviors was also provided.

The evaluation was performed during one day. The morning, 2 developers started
the development using only the J2SE JDK and the 2 others started using IntNovate.
Then, the afternoon, they switched technology.

3.2 Results

The subjects concluded the application development in less than 2 hours and a half
the morning and less than 2 hours the afternoon using the IntNovate, and about 4
hours and a half the morning and 3 hour and a half the afternoon using only J2SE
paradigms. So, whatever the order of the technology used, the developers reduced
significantly the development time using IntNovate.

338 B. Merlin

The written code was about 2 times shorter using the toolkit due to externalization
of graphics and to the use of pre-defined behaviors. The 2D scene resulting of the
code developed with IntNovate was drawn 15% faster (in frame/s).

The code developed using IntNovate was compatible with a large set of mobile de-
vices, the code develop with J2SE was not because it was depending on J2SE Graph-
ics2D functions different with J2ME Graphic ones and Android ones.

The user developers expressed that the toolkit was easy to use and powerful.

4 Conclusion

We proposed a toolkit, IntNovate, enabling to create rich graphic and interactive ap-
plications. The toolkit developed in Java ensure the compatibility with a large set of
devices and platforms (mobile, web and desktop). The graphic integration eases the
cooperation between graphic designer and developers. The toolkit also aggregates
several predefined algorithm for HMI and behaviors turning the development rapid
and simple.

A first evaluation illustrates the toolkit efficiency. It is the same for its usage in re-
search projects.

References

1. Chatty, S., Sire, S., Vinot, J.L., Lecoanet, P., Lemort, A., Mertz, C.: Revisiting visual in-
terface programming: creating GUI tools for designers and programmers. In: Proceedings
of the 17th Annual ACM Symposium on User Interface Software and Technology, UIST
2004, Santa Fe, NM, USA, October 24-27 (2004)

2. Chatty, S., Sire, S., Lemort, A.: Vers des outils pour les équipes de conception d’interfaces
post-WIMP. In: Proceedings of IHM 2004, Namur, Belgium, pp. 45–52. ACM Press
(2004)

3. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., Derose, T.D.: Toolglass and magic lenses:
the see through interface. In: Proc. ACM SIGGRAPH 1993, pp. 73–80. ACM Press (1993)

4. Raisamo, R., Räihä, K.: A new direct manipulation technique for aligning objects in draw-
ing programs. In: Proc. ACM Symposium on User interface Software and Technology,
UIST 1996, pp. 157–164. ACM Press (1996)

5. Rubine, D.: Specifying gestures by example. In: Proc. ACM Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1991, pp. 329–337. ACM Press (1991)

6. Dragicevic, P.: Combining Crossing-Based and Paper-Based Interaction Paradigms for
Dragging and Dropping Between Overlapping Windows. In: Proceedings of the 17th An-
nual ACM Symposium on User Interface Software and Technology (UIST 2004), pp. 193–
196. ACM Press (2004)

7. Dragicevic, P., Chatty, S., Thevenin, D., Vinot, J.L.: Artistic resizing: a technique for rich
scale-sensitive vector graphics. In: Proceedings of the 18th Annual ACM Symposium on
User Interface Software and Technology, Seattle, WA, USA (2005)

8. Kurtenbach, G., Buxton, W.: Issues in combining marking and direct manipulation tech-
niques. In: Proceedings of the 4th Annual ACM Symposium on User Interface Software
and Technology, UIST 1991, Hilton Head, South Carolina, United States, November 11-
13, pp. 137–144. ACM, New York (1991)

 IntNovate a Toolkit to Ease the Implementation of Every Interaction Paradigm 339

9. Merlin, B., Hurter, C., Benhacène, R.: A solution to interface evolution issues: the multi-
layer interface. In: Proceeding of CHI 2008, Florence, Italie (2008)

10. Merlin, B., Hurter, C., Raynal, M.: Bridging software evolution’s gap: The multilayer con-
cept. In: Kurosu, M. (ed.) HCD 2009. LNCS, vol. 5619, pp. 266–275. Springer, Heidel-
berg (2009)

11. Merlin, B.: Conception et évaluation des claviers logiciels, Méthodologie et instrumentali-
sation, Éditions Universitaires Européennes, Berlin (2012)

12. Mertz, C., Chatty, S., Vinot, J.L.: The influence of design techniques on user interfaces:
the DigiStrips experiment for air traffic control. In: HCI Aero (September 2000)

13. Shneiderman, B.: The future of interactive systems and the emergence of direct manipula-
tion. In: Proceedings of the NYU Symposium on User Interfaces on Human Factors and
Interactive Computer Systems, Norwood, NJ, USA, pp. 1–28. Ablex Publishing Corp.
(1984)

14. http://www.itproportal.com/2012/07/10/one-size-fits-all-
convergence-desktop-and-mobile-operating-systems/

15. http://www.pcworld.com/article/2047067/how-windows-os-x-and-
ubuntu-are-slowly-turning-your-pc-into-a-smartphone.html

16. http://office.microsoft.com/pt-br/powerpoint/
17. http://www.adobe.com/devnet/actionscript.html

	IntNovate a Toolkit to Ease the Implementation of Every Interaction Paradigm on Every Device
	1 Introduction
	2 The Toolkit
	2.1 Graphical Properties
	2.2 Basic Interactions
	2.3 Graphic Integration
	2.4 Cache
	2.5 Widgets
	2.6 Control of Object Transformation: Resizing Specified by Example
	2.7 Animation
	2.8 Predefined Behaviors

	2.9 Synthesis

	3 Evaluation
	3.1 Design
	3.2 Results

	4 Conclusion
	References

