

M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2014, LNCS 8511, pp. 48–57, 2014.
© Springer International Publishing Switzerland 2014

Adding Multi-Touch Gesture Interaction in Mobile Web
Applications

Shah Rukh Humayoun1, Franca-Alexandra Rupprecht1,
Steffen Hess2, and Achim Ebert1

1 Computer Graphics and HCI Group
University of Kaiserslautern

Gottlieb-Daimler-Str., 67663, Kaiserslautern, Germany
{humayoun,ebert}@cs.uni-kl.de, frupprec@rhrk.uni-kl.de

2 Fraunhofer IESE
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
steffen.hess@iese.fraunhofer.de

Abstract. This paper describes the MTGest framework, an open library for add-
ing multi-touch gesture interaction to HTML-based mobile web applications.
MTGest was used in a comparative study to evaluate the multi-touch
gesture interaction in a mobile web application in comparison to a native iOS
mobile application. The results indicates that in most cases the web based ges-
tures efficiency is either approximately the same or higher than the iOS-based
app. The study was carried out as an initial experiment using isolated gestures,
targeting the iOS platform only. For generalizing the results there is a need to
perform detailed user evaluation studies with different platforms and for more
complex interaction scenarios.

Keywords: Smart Devices, Smartphones, Tablets, Mobile Apps, Web Apps,
Multi-Touch Gesture, Interaction Design, Mobile Environments.

1 Introduction and Related Work

Due to the popularity of smart devices and mobile applications (also called mobile
apps), companies are offering more and more their product support in them. In
order to reach to a broad pool of potential users, companies need to develop their
applications for many of the existing mobile platforms (e.g., Google Android [2],
Apple iOS [1], Microsoft Windows Phone [5]). Developing mobile apps separately
for each platform is costly and time consuming while keeping focus on just one
platform reduces the number of accessible users. We found in our previous study [3]
that developing mobile apps through cross-platform development frameworks (where
the application is developed once and deployed on the possible target platforms)
still lacks in many aspects such as: few platforms support, only partially support
of the targeted platform’s interaction schema, far behind the native development
environments.

 Adding Multi-Touch Gesture Interaction in Mobile Web Applications 49

Mobile web applications (also called mobile web apps) are based on web technolo-
gies like HTML, CSS, and JavaScript. HTML51 as an upcoming standard by W3C2
provides the possibility of offline browsing as well as accessing many device re-
sources (such as localization services or sensors); hence, HTML5-based web apps can
be used as an alternative to the native mobile apps in many cases. There are many
benefits of this approach such as: requires less efforts and resources for developing,
supports all platforms, provides a consistent user experience and interaction concept
across all platforms. However, HTML5 lacks built-in tags for the functionality of
current multi-touch gesture interaction paradigm, which reduces the web apps’ appli-
cability compared to the native mobile apps. HTML5 provides a set of interfaces for
the basic touch events but does not have built-in functions to support directly most of
the current multi-touch gestures. In this work, we focus on adding the current multi-
touch gesture interaction paradigm support in HTML-based documents in order to
provide the current multi-touch gestures (e.g., double tap, swipe, flick, zooming, rota-
tion) in mobile web apps.

We provide this support through our developed library, called MTGest (Multi-
Touch Gestures) library. This library enables mobile web apps the provision of multi-
touch gesture interaction inside them in order to give the expected user experience
and interaction concept of the current mobile paradigm across all platforms. For
checking the efficiency and user satisfaction with the provided multi-touch interaction
support in mobile web apps by our MTGest library, we conducted a user evaluation
study. In this conducted study, users from different backgrounds and expertise tried
two simple apps, i.e., one mobile web app based on MTGest library and the other one
a iOS-based mobile app based on iOS native gesture support. Users tried each gesture
on both apps one-by-one and gave their feedback using a questionnaire form. Results
show the same level of efficiency and user satisfaction in many cases, as well as bet-
ter in few cases and lower in some other cases. Overall, results indicate that mobile
web apps through MTGest kinds of libraries can be an alternative solution in the fu-
ture.

Some other frameworks for the support of multi-touch gestures are: jQMultiTouch
[7] web tool-kit, inspired by JQuery, for creating multi-touch interfaces; Gesture Cod-
er [6] for generating code to recognize multi-touch gestures. However, we chose
JQuery3 and hammer.js4 as foundations due to their powerful abstraction from low-
level implementation details and their cross-browser compatibility. One way of work-
ing with the MTGest library has already been described in detail in [4], whereas this
paper focuses on the study comparing MTGest with native gestures.

The remainder of the paper is structured as follows: In Section 2, we introduce
our MTGest library. In Section 3, we provide details of the conducted user evalua-
tion study. In Section 4, we present and discuss the results. Finally, we conclude in
Section 5.

1 W3C - HTML5. http://www.w3.org/TR/html5/
2 World Wide Web Consortium. http://www.w3.org/
3 The jQuery Foundation - http://jquery.com/
4 Eight Media - http://eightmedia.github.com/hammer.js/

50 S.R. Humayoun et al.

2 The MTGest Library

HTML5, the new specification of HTML by W3C, is still in working-in-progress
process. HTML5 provides a set of interfaces5 for touch events. However, it lacks
built-in tags for the functionality of multi-touch gestures.

Our MTGest (Multi-Touch Gestures Library) library, based on JavaScript and
JQuery, enables the support of multi-touch gesture interaction in HTML5-based doc-
uments. It is built on top of the hammer.js library, which is also based on JavaScript,
for controlling gestures on touch devices. It supports most of the single and multi-
touch gestures in the current mobile domain. Moreover, it is possible to define own
gestures in which the developer specifies the criteria for such a gesture, e.g., tapping
three fingers together.

The standard gestures supported by our library are: tap, double tap, hold, drag,
swipe, transform (pinch), rotation, flick, zoom and rotation together, and shake. Addi-
tional customized gestures (e.g., three-fingers tapping or multi-fingers swiping) are
also provided for using in some specific interaction context.

The MTGest library works as follows. The provided functions, corresponding to
each gesture, by the library are attached to a container representing a specific area in
the HTML document. The hammer.js is also attached to the same container to get the
touch events happen to this container. It is possible to attach more than one gesture to
the same container. Then the specific area in the HTML document, representing the
container, gives the interaction according to the attached gestures. Figure 1 provides
the overall architecture.

Fig. 1. The overall architecture of the working of MTGest library

5 https://dvcs.w3.org/hg/webevents/raw-file/tip/

touchevents.html

Touch Recognizer Web-App

MTGest Library

single-touch

multi-touch

multi-touch

single-touch

 Adding Multi-Touch Gesture Interaction in Mobile Web Applications 51

3 The User Evaluation Study

We performed a user evaluation study in a controlled environment, where the focus
was on comparing the multi-touch gesture interaction support provided through our
MTGest library and a native mobile platform. This was done through developing two
simple mobile apps, one was a mobile web app that provides the desired multi-touch
gestures through our MTGest library while the other one was a native iOS-based mo-
bile app that provided these gestures’ support through the native iOS library.

In the following, we provide details of the both developed apps (i.e., the mobile
web app and the iOS-based mobile app), the study goal and hypothesis, and the expe-
riment settings.

3.1 The Testing Apps

For testing the multi-touch gesture interaction support through our MTGest library
and a native mobile platform library, we developed two simple apps. The first one
was a mobile web app that used our MTGest library for providing the multi-touch
gesture interaction support, while the second one was an Apple iOS-based native
mobile app that provided the multi-touch gesture interaction support using the iOS
native gestures support. Both apps provided the same level of functionality and there
was no difference in the interface style or layout. This was done in order to avoid any
biasedness in the user evaluation study.

Eight touch- and multi-touch gestures, mostly the standard ones provided by most
of the current platforms, were implemented in both apps. These gestures include: tap,
double tap, hold, drag, swipe, flick, zoom (both zoom-in and zoom-out), and rotation.
In both apps, each gesture was covered up on one page where each page contained
several (up to four) containers having the implementation of the underlying gesture.
These containers were different in size and orientation with the same gesture support
in order to provide a variety of user interaction with the underlying gesture. When a
user interacts correctly with the container through the specified gesture, a feedback is
shown to the user for this correct interaction; otherwise nothing is shown. The user
can go to the next page for interacting with the next gesture any time or after finishing
the interaction with all containers on the current page.

In the cases of tap, double tap, and hold gestures, we implemented four containers
on each page having the underlying gesture support. Figure 2 (a) shows the screen-
shot of the native iOS-based app where the four containers have the double tap ges-
ture interaction. The green correct mark indicates that the user has successfully inte-
racted with this container with the double tap gesture. In the case of drag gesture,
there were two sets of containers. One set was showing a key while the other one was
showing the lock, as shown in Figure 2 (b). The container set showing the key shape
were linked with the drag gesture. When a use drags this key container to a lock con-
tainer, the app indicates a successful execution of the gesture.

In the case of swipe gesture, both apps provided four containers to provide the inte-
raction support in four directions (i.e., left-to-right, right-to-left, up-to-down, and
down-to-up), as shown in Figure 3 (a). The user needs to swipe the finger from the
tail to the head of the arrow in order to execute the swipe gesture interaction correctly.
In the case of flick gesture (here the flick gesture represents same as its representation

52 S.R. Humayoun et al

in iOS), both apps provide
four directions same as with
zoom and rotate gestures w
the case of zoom gesture, b
to play with them for check
of rotate gesture, two figur
so that users can rotate them

(a)

Fig. 2. (a) A screen-shot of th
the page with the drag gesture

(a)

Fig. 3. (a) Four directed arrow
arrows inside the container rep

l.

d one container that had the interaction of flick gesture
h swipe gesture case, as shown in Figure 3 (b). Finally,

were implemented through two containers in both apps
oth containers were different in size and it was up to us
king zoom-in and zoom-out interaction. While in the c
res were given in the containers up-side-down orientat

m in normal orientation.

(b)

he page with the double tap gesture support, (b) A screen-sho
 support

(b)

ws show the swipe gesture interaction in the same direction, (b)
present the flick gesture interaction in the same direction

e in
the

s. In
sers
case
tion

ot of

) the

 Adding Multi-Touch Gesture Interaction in Mobile Web Applications 53

3.2 Study Goal and Hypothesis

The goal of this user study was to analyze whether our developed MTGest library can
provide the touch- and multi-touch gestures interaction support in mobile web apps
compared to native mobile apps (here we target only the Apple iOS platform) from
the perspective of efficiency of such interaction support and user satisfaction level
with the underlying interaction. We compare the results from the following criteria:

• Efficiency: We check whether the underlying gesture worked accurately and the
interaction-response time was appropriate. In this regard, we collect subjects’ feed-
back for both apps and compare them.

• User Satisfaction: We collect subjects’ feedback for both apps and compare them.

Our hypothesis is that in term of efficiency and user satisfaction, our proposed
MTGest library provides approximately the same interaction support for the underly-
ing gestures compared to the native platform (i.e., the iOS platform) support.

3.3 The Experiment Settings

We performed the evaluation study with 12 subjects (3 females and 9 males). We
categorized them according to their experience with smart-devices and mobile plat-
forms. Four subjects were experienced users of Apple iOS platform, three subjects
were experienced of Android platform, while the remaining 6 subjects were without
much expertise in any specific mobile platform. The age of subjects were between 20
and 36 years old with a mean of 27.5.

The test devices for both developed apps (i.e., the mobile web app based on our
MTGest library and the iOS-based native mobile app) were Apple iPad 2 with the
same specifications. We installed the web app on one device while the native app on
the other device. Before start of the experiment, a brief tutorial was given to each
subject about the goal of the experiment. For each tested gesture, subjects were asked
first to try all the containers having the underlying gesture support on both devices.
Then they were asked to fill a closed-ended questionnaire form with a likert scale
from 1 to 5, where 1 meant strongly disagree and 5 meant strongly agree. There were
total four questions in this mode, same for both apps separately. The aim of first two
questions was to get the subjects’ feedback for checking the efficiency of the underly-
ing library (i.e., the MTGest library or the native iOS library) in providing the support
of the tested gesture interaction. The aim of the later two questions was to get the
subjects’ feedback for checking their satisfaction level with the tested gesture for both
apps. These four questions were:

1. The gesture works accurately.
2. The interaction-response time of the gesture was appropriate.
3. Overall, I am satisfied with this gesture facility through the underlying app (i.e.,

the web app or the iOS-based app).
4. In future, I would like to use this gesture through the underlying app (i.e., the web

app or the iOS-based app.

54 S.R. Humayoun et al.

At the end of closed-end questions for each gesture, subjects were also asked that
which mode (i.e., the web app or the native app) for this gesture is preferable by them
for the future usage, with the option of selecting one or both apps. In order to avoid
any biasedness towards the second testing app due to the learning effects, half of the
subjects were asked to test the web app first and then the iOS-based native app, while
the other half were asked to test the iOS-based app first and then the web app.

4 Results and Discussions

In this section, we provide the results of our conducted user evaluation study and
discuss them to check whether they reflect our initial hypothesis. After testing each
gesture on both apps, subjects were asked to answer the set of questions regarding the
tested gesture.

Fig. 4. The subjects’ feedback for questions 1 and 2, collected through the likert-scale

Figure 4 provides the subjects’ feedback with regard to the first two questions for
each of the tested gesture on both apps. For the tap gesture, all subjects strongly
agreed for the accurately work of iOS-based app, while 9 subjects strongly agreed and
2 subjects just agreed for the web app. Regarding the second question, all subjects
strongly agreed for both apps except one that rated agreed for the web app. Results for
the double tap gestures are also nearly the same in both cases for both apps. This indi-
cates that our MTGest library provides the same level of efficiency for these two ges-
tures. The case of hold gesture is interested, as the subjects’ feedback for the web app
is far better than the iOS-based app. We observed that iOS gives a too quick interac-
tion response, which the subjects might not expected from the hold gesture as they
were expecting a little wait for keeping hold the touch. That might be the reason for
this lower ranking by subjects. We also observed that subjects from the Android

0"

2"

4"

6"

8"

10"

12"

14"

Tap" Double"
Tap"

Hold" Drag" Swipe" Flick" Zoom" Rotate"

Strongly"Disagree" Disagree" Neutral" Agree" Strongly"Agree"

(a) MTGest-based web-app – Question 1

0"

2"

4"

6"

8"

10"

12"

Tap" Double"
Tap"

Hold" Drag" Swipe" Flick" Zoom" Rotate"

Strongly"Disagree" Disagree" Neutral" Agree" Strongly"Agree"

0"

2"

4"

6"

8"

10"

12"

14"

Tap" Double"
Tap"

Hold" Drag" Swipe" Flick" Zoom" Rotate"

Strongly"Disagree" Disagree" Neutral" Agree" Strongly"Agree"

0"

2"

4"

6"

8"

10"

12"

14"

Tap" Double"
Tap"

Hold" Drag" Swipe" Flick" Zoom" Rotate"

Strongly"Disagree" Disagree" Neutral" Agree" Strongly"Agree"

(b) MTGest-based web-app – Question 2

(c) iOS-based mobile-app – Question 1 (d) iOS-based mobile-app – Question 2

 Adding Multi-Touch Gesture Interaction in Mobile Web Applications 55

platform or non-experienced background were more reluctant in liking the iOS-based
app response, while they felt happy with the web app response. In the case of drag
gesture, subjects’ feedback was a bit better for the iOS-based app compared to the
web app. However, the difference was not very noticeable.

In the case of swipe gesture, subjects’ feedback about the web app was much high-
er than the iOS-based app. We observed that again this is because the too quick re-
sponse in iOS, as even if the subject swiped just little more than half of the swipe area
length it started working. In the case of web app, it worked only when subjects swiped
the whole length of the swipe area. Due to this, subjects felt more confident in web
app compared to the iOS-based app. This is also indicated in the case of flick gesture,
where subjects’ feedback about the web app was slightly better than the iOS-based
app. In the case of zoom gesture, subjects rated iOS-based app better than the web
app. However, again the difference is not much significant. Finally, in the case of
rotate gesture, subjects rated quite higher the iOS-based app compared to the web
app. We observed that this is because of the image drawing performance issue in the
web app, as the image is drawn on the page each time the user moves the fingers for
the rotation.

Overall, the subjects’ feedback of the first two questions indicates that in most cas-
es the web app efficiency is either approximately same or higher than the iOS-based
app. While in some complex gestures such as zooming and rotation, it is behind the
iOS-based app. However, this can be improved in future. In summary, we can say that
the overall feedback of these two questions confirm our hypothesis regarding the
efficiency of our developed MTGest library.

Fig. 5. The subjects’ feedback for questions 3 and 4, collected through the likert-scale

Figure 5 provides the subjects’ feedback with regard to the later two questions
for each of the tested gesture on both apps. The aim of these two questions was to
check the user satisfaction level with the tested gesture interaction. For the tap

0"

2"

4"

6"

8"

10"

12"

14"

Tap" Double"
Tap"

Hold" Drag" Swipe" Flick" Zoom" Rotate"

Strongly"Disagree" Disagree" Neutral" Agree" Strongly"Agree"

(a) MTGest-based web-app – Question 3

0"

2"

4"

6"

8"

10"

12"

Tap" Double"
Tap"

Hold" Drag" Swipe" Flick" Zoom" Rotate"

Strongly"Disagree" Disagree" Neutral" Agree" Strongly"Agree"

0"

2"

4"

6"

8"

10"

12"

Tap" Double"
Tap"

Hold" Drag" Swipe" Flick" Zoom" Rotate"

Strongly"Disagree" Disagree" Neutral" Agree" Strongly"Agree"

0"

2"

4"

6"

8"

10"

Tap" Double"
Tap"

Hold" Drag" Swipe" Flick" Zoom" Rotate"

Strongly"Disagree" Disagree" Neutral" Agree" Strongly"Agree"

(b) MTGest-based web-app – Question 4

(c) iOS-based mobile-app – Question 3 (d) iOS-based mobile-app – Question 4

56 S.R. Humayoun et al.

gesture, the subjects’ feedback with the iOS-based app was a bit higher than the web
app. Moreover, 11 subjects preferred for using this gesture through iOS-based app
and 9 subjects also went for web app too. It is noted that in the case of future usage of
the tested gesture, subjects were free to choose one or both. In the case of double tap
gestures, subjects’ feedback was approximately the same. Also, 11 subjects choose
the iOS-based app while 10 mentioned the web app for the future usage of this ges-
ture. We observed that subjects’ feedback improved towards positive with the web
app after getting experience. In the case of hold gesture, the subjects’ feedback re-
flects the feedback of question 1 and 2, as their satisfaction trend for the web app was
quite higher than the iOS-based app. They significantly also preferred the web app for
the future usage of this gesture (12 compared to 4). In the case of drag gesture, the
subjects’ feedback was a bit higher for the iOS-based app compared to the web app.
However, 10 subjects choose web app while 9 subjects choose iOS-based app for the
future usage of this gesture.

In the case of swipe gesture, subjects’ feedback about the web app was much high-
er than the iOS-based app. Moreover, 10 subjects preferred web app and 5 preferred
iOS for the future usage of this gesture. We observed that subjects’ feedback for the
web app was increased because the web app provided better the expected interaction
(i.e., working when user swipes through the whole area rather than just a part of it) in
this gesture implementation. The same also went for the flick gesture, where subjects’
feedback again was more towards the web app. However in this case, the subjects’
preference for the future usage of this gesture was nearly the same for both the web
app and the iOS-based app, i.e., 8 and 7. In the case of zoom gesture, subjects were a
bit higher satisfied with the iOS-based app than the web app. However, the difference
is unnoticeable. Finally, in the case of rotate gesture, subjects significantly rated
higher the iOS-based app compared to the web app. Also, only 2 subjects preferred
the usage of this gesture in web app compared to 9 for the iOS-based app.

Overall, the subjects’ feedback of the later two questions reflects their experience
with the tested gesture on both apps and approximately the same as of the previous
two questions. Except in the cases of drag or rotate gestures, the subjects’ feedback
about the later two closed-ended questions for the web app was either approximately
the same as for iOS-based app or higher than it. However, the subjects’ feedback
regarding their satisfaction level has many limitations. There are many factors (e.g.,
users’ expectations, curiosity, their interests in new experiences, their expertise with
gestures, their positive attitude towards Apple, their low expertise with MTGest li-
brary, etc.) that can affect users’ satisfaction level. In spite of this, results of the study
provide an indication that the web apps have the potential of providing an alternative
to the native mobile apps if they get support by multi-touch gestures libraries.
MTGest library is one of the candidate libraries; however, it needs to be improved for
providing better performance in the cases of some complex gestures (e.g., zoom and
rotation). Moreover, as the study targeted only the iOS platform and the tested scena-
rios were quite simple; hence, for generalizing the results there is a need to perform
detailed user evaluation studies with different platforms and with more complex inte-
raction scenarios.

 Adding Multi-Touch Gesture Interaction in Mobile Web Applications 57

5 Conclusion

In this paper, we showed that the MTGest library is feasible to be used for multi-
touch gestures with regard to efficiency and user satisfaction. We performed an initial
evaluation study with 12 subjects comparing the MTGest library with the native iOS
gestures. A main issue of the study was to compare single multi-touch interaction in
an isolated scenario.

The results showed, that MTGest works accurately for tap, double tap, hold, drag,
swipe, flick without showing a significant difference to the native iOS gestures. In-
deed, swipe and flick gestures were rated significantly better. The rotation gesture
worked significantly more accurate on the native iOS implementation. In general, the
study indicates that in most cases the web app efficiency is either approximately same
or higher than the iOS-based app.

With regard to user satisfaction, the results of the study indicated not a clear result.
The subjects’ satisfaction level reflects their experience with the tested gesture on
both apps. In general, there is no significant difference between web based gestures
and native gestures. This leads us to the conclusion, that using MTGest is reasonable
although it needs to be improved for providing better performance in the cases of
some of the more complex gestures.

Future work will deal with the performance of a detailed user evaluation consider-
ing the usage of gestures within a concrete scenario and also do a comparison with
other mobile operating systems, such as Google Android or Microsoft Windows
Phone.

References

1. Apple iOS, http://www.apple.com/uk/ios/
2. Google Android, http://www.android.com/
3. Humayoun, S.R., Ehrhart, S., Ebert, A.: Developing Mobile Apps Using Cross-Platform

Frameworks: A Case Study. In: Kurosu, M. (ed.) HCII/HCI 2013, Part I. LNCS, vol. 8004,
pp. 371–380. Springer, Heidelberg (2013)

4. Humayoun, S.R., Hess, S., Kiefer, F., Ebert, A.: i2ME: A framework for building interactive
mockups. In: MobileHCI 2013, pp. 606–611. ACM, New York (2013)

5. Microsoft Windows Phone, http://www.windowsphone.com/
6. Lü, H., Li, Y.: Gesture coder: A tool for programming multi-touch gestures by demonstra-

tion. In: CHI 2012, pp. 2875–2884. ACM, New York (2012)
7. Nebeling, M., Norrie, M.: 2012: jQMultiTouch: Lightweight toolkit and development

framework for multi-touch/multi-device web interfaces. In: EICS 2012, pp. 61–70. ACM,
New York (2012)

	Adding Multi-Touch Gesture Interaction in Mobile Web Applications
	1 Introduction and Related Work
	2 The MTGest Library
	3 The User Evaluation Study
	3.1 The Testing Apps
	3.2 Study Goal and Hypothesis
	3.3 The Experiment Settings

	4 Results and Discussions
	5 Conclusion
	References

