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Abstract. Unintentional lapses of attention, or mind wandering, are ubiquitous
and detrimental during learning. Hence, automated methods that detect and
combat mind wandering might be beneficial to learning. As an initial step in
this direction, we propose to detect mind wandering by monitoring physiologi-
cal measures of skin conductance and skin temperature. We conducted a study
in which student’s physiology signals were measured while they learned topics
in research methods from instructional texts. Momentary self-reports of mind
wandering were collected with standard probe-based methods. We computed
features from the physiological signals in windows leading up to the probes and
trained supervised classification models to detect mind wandering. We obtained
a kappa, a measurement of accuracy corrected for random guessing, of .22, sig-
naling feasibility of detecting MW in a student-independent manner. Though
modest, we consider this result to be an important step towards fully-automated
unobtrusive detection of mind wandering during learning.
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1 Introduction

Almost everyone has had the experience of attempting to concentrate on a learning
task and suddenly realizing that their mind has drifted elsewhere. As a result they may
have missed key pieces of information and are forced to review the missed material.
This phenomenon, called mind wandering (MW), can be described as involuntarily
engaging in conscious off-task thoughts without the metacognitive realization that this
has occurred [1]. MW has been linked to lower performance on a number of tasks
including poor comprehension during reading [2] and low recall during memory en-
coding [3]. Furthermore, MW is difficult to address immediately because people in-
itially lack conscious awareness of that fact that they are MW. Given the ubiquity and
negative consequences of the phenomenon, it might be beneficial for intelligent tutor-
ing systems (ITSs) and other educational technologies to detect when MW occurs and
then intervene to restore attention to the task at hand. As an initial step in this direc-
tion, this paper reports research aimed at developing a fully-automated system to
detect momentary occurrences of MW in a manner that generalizes to new students.
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Related Work. MW detection is a relatively unexplored field. Drummond and Lit-
man (2010) were one of the first to attempt automatic MW detection. They used pro-
sodic and lexical features of student responses to a spoken ITS. Students were probed
at set intervals into if they were MW. Their models were able to discriminate high and
low MW with an accuracy of 64%. However, their models were only applicable to
ITSs with student speech, and their validation method did not ensure generalization to
new students [4].

D’Mello, Cobian, and Hunter (2013) furthered work on MW detection by building
supervised classification models that automatically detected MW during reading from
eye gaze features obtained with commercial eye trackers. Their model obtained a
kappa, a measurement of accuracy corrected for chance, of 0.23 [5]. Though their
validation method ensured generalizability to new students, their approach is limited
to reading tasks. Furthermore, the use of eye tracking has some scalability concerns.

Current Study. The present study focused on detecting MW by monitoring two phy-
siological signals: skin conductance (SC) and skin temperature (ST). These signals
were collected using a wearable sensor at a fraction of the cost of commercial eye
trackers. The use of physiology to track MW is motivated by the relationship between
sympathetic nervous activity (captured by SC and ST) and attentional states [6].

A previous study found a higher rate of MW was related to overall lower levels of
skin conductance (SC) [7]. However, this result was not leveraged to build automated
MW detectors. To our knowledge, no attempt has been made to build models capable
of detecting MW using SC or ST signals, nor has there been research attempting to
link ST and MW. Taking a step in this direction, we collected a large data set where
students were periodically probed to report instances of MW during computerized
learning from instructional texts. These signals were used to create machine learning
models that predicted MW.

2 Methods

Data Collection. Participants were 70 undergraduate students from a medium-sized
private mid-western University in the U.S. Students were seated in front of a comput-
er and an Affectiva Q sensor was strapped to the inside of the student’s non-dominate
wrist, a standard placement to measure SC [8]. The Affectiva Q [9] provides a nonin-
trusive way to measure SC and ST of the student at sampling rates of 8 Hz.

Students were asked to study four texts, each on key research methods topics: ex-
perimenter bias, replication, causality, and dependent variables. On average, each text
contained 1500 words (SD = 10 words) with approximately 60 words per page. Stu-
dents were informed that they would be asked a series of test questions on each text
after reading. Before each text, students were made aware of the point value of test
questions related to the text — “high-value” text questions were worth three times
more than “low-value” text questions. This was the value manipulation. In addition,
there were also difficult vs. easy versions of the texts equated in terms of content and
length (difficulty manipulation). These manipulations were integral to a larger re-
search study, but are not the focus of this research.
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As students progressed through the texts they were instructed to report if they were
MW by responding to auditory probes. Auditory probes occurred at a random point 4
to 12 seconds from the beginning of pseudo randomly chosen probe pages. These
probes are classified as “within-page” probes. If students attempted to advance to the
next page before the probe appeared, they were probed with an “end of page” probe.
Once an auditory probe occurred, students used a keyboard to indicate MW with a
“yes” or normal reading with a “no” by selecting appropriate keys on the keyboard.

Students reported MW to end of page probes 16.9% of the time (N = 108), and
they reported MW to within page probes 26.1% of the time (N = 526).

Model Building. Supervised classification was conducted to detect instances of MW
from physiological signals and contextual features (discussed below). Models were
built using WEKA [10] and were validated at the student-level - data was randomly
split on students, with 67% for training and 33% in the testing set and repeated for 25
iterations. SC and ST signals were z-score standardized at the student level and a low
pass filter was applied to the SC data at 0.3 Hz to reduce noise in the signal.

To account for physiological measurements compromised by abrupt movements,
the average difference between consecutive X, y, and z accelerometer readings for
each student was calculated from an accelerometer in the Affectiva Q. A threshold of
five times the average was used to eliminate compromised data, as has been used in
previous studies [11]. In instances where this threshold was reached, data 5/8ths of a
second before the movement through 5/8ths of a second after the movement was
discarded.

Features were extracted from windows of signal data between the triggering of the
auditory probe and a variable number of seconds before the probe. Separate datasets
were constructed for window lengths of 3, 6, 12, 20, and 30 seconds.

Physiological features were extracted from the SC and ST signals included the
mean, standard deviation, maximum, the ratio of maxima, and ratio of minima [12].
These statistical features were calculated for: the standardized signal; an approxima-
tion of the derivation of the signal (D1) obtained by taking the difference from one
data point to the next; an approximation of D1, or the second derivate (D2) [13]; the
frequency, and magnitude obtained from the Fast Fourier transformation [11]; the
spectral density of the signal with Welch’s method; the autocorrelation of the signal
at lag 10, and, in models where both ST and SC of the same window were used, the
magnitude squared coherence between the signals. Other physiological features in-
cluded slope and y-intercept of the slope coefficient of the linear trend line [13].

In all, 43 features from the SC signal and the same 43 from ST were extracted. A
separate dataset was created for each combination of window sizes of SC and ST data
in order to address different temporal combinations of these signals (e.g. SC data was
extracted for a window size of 3 seconds while ST was extracted for a window size of
30 seconds). Coherence statistics were used if the window sizes matched.

Context features captured the context of the learning task and included features for
text, timing, and difficulty and value. Difficulty and value features included the cur-
rent difficulty and current value of the text and the previous difficulty and previous
value of the previous text. Timing features include total time elapsed since the student
started the reading portion of the experiment, the time since starting the current text,
the average page time, the previous page time, and the ratio of previous page time to
average page time. Text features were the fotal number of pages that the student had
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read since starting the reading portion of the session and the page number of the cur-
rent text. In all, there were 11 context features.

Data treatments were applied in various combinations to determine which combi-
nation of data treatments resulted in the most accurate model. First, tolerance analysis
was used to eliminate features that exhibited multicollinerity. Second, three feature
selection algorithms (Gain-Ratio, Info-Gain, or ReliefF) were used (on training data
only) to rank the contribution of each feature, and either 25%, 50%, 75%, or 90% of
the top features were selected. Third, the data was winsorized by setting outliers
greater than 3 standard deviations from the mean to the corresponding value 3 stan-
dard deviations from the mean. Fourth, downsampling was applied to the training data
to obtain an equal distribution of responses by randomly removing instances of the
more frequent class until the classes were balanced. Fifth, SMOTE (oversampling)
was applied to the training data by adding random synthetic samples of the less fre-
quent class until the classes were balanced. Sixth, when context features were not
used, probes were eliminated if the student spent less than 4 seconds on a probe page,
as the student likely either was not reading or accidently advanced prematurely.

3 Results

Table 1 presents the kappa, a measurement of accuracy which corrects for random
guessing, of the best models (highest kappa). The best models were standardized and
outliers were winsorized. Neither of the best models used tolerance, downsampling,
or oversampling. Within page MW responses were easier to detect (kappa = .22, SD
across iterations = .11) than end of page probes (kappa = .14, SD = .11). As seen from
the confusion matrices in Table 2, although the best models have a high true negative
rate (accurately detecting when not MW), the hit rate (correctly detecting MW) was
low.

Table 1. Models with kappas

Probe Type Features Window No. Feat Classifier Kappa
(SC, ST)

Best WP SC+ST+CF (3, 12) 36 Filtered Classifier 0.22

Best EoP ST 20 34 LADTree 0.14

Alt. WP SC+CF 30 7 LADTree 0.15

Alt. EoP ST+CF 6 23 AdaBoost M1 0.10

Note. WP — within page; EoP = end of page; Alt = Alternative;

To address the low hit rates, we considered alternate models as shown in Table 2.
These models have a lower kappa for within page (kappa = .15, SD = .11) and end of
page probes (kappa = .10, SD = .09), but have higher MW hit rates. Both alternative
models were standardized within subjects, winsorized, used context features, and
were trained with upsampling. Neither model used tolerance analysis. The use of
upsampling in both models may indicate that with more positive MW reports, higher
rates of MW can be detected.
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Table 2. Confusion matricies for models

Best Models Alternative Models
Model Predicted Predicted
Actual Yes No Actual Yes No
Within page Yes (.26) .30 .70 Yes (.26) .57 43
No (.74) A1 .89 No (.74) .38 .62
End of Page Yes (.16) .14 .86 Yes (.17) 41 .59
No (.84) .04 .96 No (.83) 28 72

Note. Prior probabilities (base rates) are in parantheses

4 General Discussion

We investigated the possibility of detecting MW, a frequent and harmful phenome-
non, from two physiological markers and aspects of the interaction context. MW de-
tection is in its infancy; hence our immediate goal was to demonstrate the feasibility
of MW detection. The major finding of this work is that SC and ST both contain in-
formation that can be used to detect MW. We acknowledge that our detection rates
are modest, but consider them to be promising as an initial investigation into the pos-
sibility of unobtrusive detection of momentary instances of MW, an elusive state that
is difficult to study since it is a highly internal unconscious phenomenon. Our detec-
tion is complicated by the relatively low rates of MW (23.9% of probes), which com-
plicates supervised classification. Furthermore, we attempted to detect MW in a
student-independent fashion, which is important for generalizability to new students,
but more challenging due to individual differences in physiological responding [6].

MW detection has a number of possible applications. Interventions could be in-
itiated during moments of MW in learning sessions to increase engagement. For ex-
ample, an ITS that has detected MW could reevaluate the difficulty of the task the
student is undertaking or could attempt to reengage the student’s attention.

There are a few limitations that need to be addressed in future studies. One limita-
tion is the relatively small data set used to train the models, so replicating the study
with a larger sample is warranted. The study was conducted in a lab since we were
interested in a highly controlled environment for this initial investigation. However,
replication in more authentic contexts is warranted. The use of physiological sensors
are also somewhat limited in terms of scalability. All participants were undergraduate
students, and a large proportion (69%) identified as Caucasian — it would be advisable
to retrain the models with a more diverse data set to study generalizability to diverse
student populations.

In summary, although the results detailed are promising as a first start, there are
multiple directions in which this research can be extended. We are working towards
expanding our models to include multimodal data such as eye gaze or facial features.
It is possible that by including additional modalities we will be able to achieve im-
proved detection rates than by using any single modality. This is, of course, an empir-
ical question that awaits further investigation.
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