
Building Games to Learn from Their Players:

Generating Hints in a Serious Game

Andrew Hicks, Barry Peddycord III, and Tiffany Barnes

North Carolina State University,
Raleigh, NC

{aghicks3,bwpeddyc,tmbarnes}@ncsu.edu

Abstract. This paper presents a method for generating hints based on
observed world states in a serious game. BOTS is an educational puz-
zle game designed to teach programming fundamentals. To incorporate
intelligent feedback in the form of personalized hints, we apply data-
driven hint-generation methods. This is especially challenging for games
like BOTS because of the open-ended nature of the problems. By us-
ing a modified representation of player data focused on outputs rather
than actions, we are able to generate hints for players who are in similar
(rather than identical) states, creating hints for multiple cases without
requiring expert knowledge. Our contributions in this work are twofold.
Firstly, we generalize techniques from the ITS community in hint genera-
tion to an educational game. Secondly, we introduce a novel approach to
modeling student states for open-ended problems, like programming in
BOTS. These techniques are potentially generalizable to programming
tutors for mainstream languages.

Keywords: Serious Games, Hint Generation, Data-Driven Methods.

1 Introduction

BOTS is a serious game designed to teach basic programming concepts to novice
computer users and programmers [6]. BOTS, in its current state, contains no
mechanisms for personalized feedback or problem ordering. One method of pro-
viding such feedback is to have experts create it for each problem. However,
BOTS features open-ended problems with many possible solutions, as well as
user-generated problems, making such expert annotation difficult. In this paper,
we describe an effort to incorporate ITS-like personalization through data-driven
hint generation.

Our contributions in this work are twofold. We generalize ITS hint-generation
techniques to an educational game, and introduce a novel approach to modeling
student states for open-ended programming problems. It is our hope that these
techniques can be further generalized to programming tutors for mainstream
languages in future work.

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 312–317, 2014.
c© Springer International Publishing Switzerland 2014



Building Games to Learn from their Players 313

2 Prior Work

Intelligent Tutoring Systems (ITS) have been shown to be effective at improving
student performance [1,8]. ITS originally relied heavily on subject matter ex-
perts to anticipate common mistakes and misconceptions, but in spite of subject
matter knowledge, experts are not always able to detect difficulties or miscon-
ceptions (the “expert blind spot”) [10]. Additionally, such content is very costly,
with Murray [9] estimating a cost of around 300 expert hours to create one hour
of content in an ITS. Data-driven methods are proposed as a way of combating
these effects, and can provide students individualized help based on previous
observations.

The developers of Deep Thought (a propositional logic tutor) employed a
method called Hint Factory [12]. As users work on problems, their actions are
used to build a Markov Decision Process (MDP). This was later generalized by
Eagle, et al, defining an Interaction Network as a complex network containing
data about student-tutor interactions. [4] Hints can be generated from this data
by searching the Interaction Network for users with the same solution path.
Based on the previous users’ actions, a potential next step can be suggested. If
no user has succeeded on that path before, wec an suggest the current user try
a different approach.

Systems such as the Lisp Tutor [1] and ACT Programming Tutor[3] were
developed using knowledge engineering. Recent attempts to automate program-
ming tutors have started with hint generation; however, when compared with
domains like Propositional Logic, representing programming using state-action
pairs poses many more challenges. For example, equivalent solutions to a prob-
lem can be expressed in many different ways. Directly applying Stamper’s Hint
Factory could result in a sparse state space, and we would need many more
records in order to provide hints to most students. Some approaches have at-
tempted to condense these similar solutions. One approach converts solutions
into a canonical form by strictly ordering the dependencies of statements in a
program [11]. Another approach compares linkage graphs modelling how a pro-
gram creates and modifies variables, with nested states created when a loop or
branch appears in the code [7].

3 Context

In BOTS [6], the goal of each puzzle is to program a robot to move blocks into
specific ‘goal’ positions on the map. The player controls a robot by writing a
program in a graphical, drag-and-drop programming language, as shown in Fig-
ure 1. The language supports basic robot operations (move, turn, pick up block)
and flow control constructs (variables, loops, and functions). Once the puzzle
is completed and the solution terminates without an error, the player is given
a score based on the number of instructions they have used. After completing
the puzzle, the player is encouraged to make modifications to their program and
complete the level again using fewer instructions.



314 A. Hicks, B. Peddycord III, and T. Barnes

Fig. 1. In the game, players direct a robot to solve puzzles using a simple drag-and-
drop programming language. Here we see three different programs which result in the
same final state: The robot has moved a block from one side of the room to the other.

4 Methods

The intelligent tutoring system literature agrees on the definition of interactions
as the low-level, click-by-click behavior of a student in a tutor [13]. This low-level
representation is not ideal for our context, as the state space in BOTS is large
and sparsely populated when compared to other tutors which have used Hint
Factory. Instead, we will use the output of programs that players have written.
For example, in Figure 1, the screenshot depicts the initial configuration on the
left, and three distinct programs that each result in the output on the right. In
our representation, one “World State” would encompass all three programs. We
will show that this representation substantially reduces the state space and also
facilitates the generation of meaningful hints.

To develop our alternative model, we first looked to other tutors that use
data-driven hint generation, such as Deep Thought, a tutor for propositional
logic used in introductory discrete math courses [2,4], and iList, a tutor that
teaches the concepts of linked lists [5]. Both of these tutors use Hint Factory
[12] to generate hints, but do so with different underlying models of the student
states.

An interaction in Deep Thought is a single user input such as selecting a rule
to apply. These states are represented as vertices of a graph, with edges between
vertices being labelled with the logical rule (modus ponens, modus tollens) that
was used to derive the most recently added state. The developers of iList also use
Hint Factory, but their underlying model is based on snapshots of the tutor’s
internal state rather than the sequences of user interactions [5]. The authors
look at the results of the student actions rather than at the actions themselves,



Building Games to Learn from their Players 315

automatically resolving the situation in which multiple unique sequences result
in an identical state. In order to find similar states, the authors compute which
internal states are isomorphic to each other. For this work, we represent the
output of a student’s program as a grid representing the size of the stage, with
unique markers for boxes, switches, and robots, as well as a height map of the
stage. An example can be seen in Figure 2. This way, regardless of the contents of
their programs, students who are performing the same actions (such as putting
a particular block on a particular switch) will be grouped into the same state.

5 Analysis

To test the practical applicability of this state representation for analysing stu-
dent solutions and providing hints, we used a corpus of past data collected from
middle school aged players in classes and STEM-related afterschool programs.

Table 1. Results of our method for 24 puzzles. Rows indicate the Puzzle ID, number of
students who attempted the puzzle, number of individual attempts, number of unique
programs, number of ”hintable” output states, and number of unique output states.

Unique Hint-Generating Unique
Puzzle Students Attempts Programs States States

1 60 95 9 3 5
2 57 284 234 41 65
3 50 189 121 15 21
4 43 77 39 9 9
5 42 181 193 22 24
6 42 84 26 5 7
7 40 127 182 31 41
8 35 50 16 8 10
9 35 89 81 25 29
10 33 227 325 79 130
11 31 53 77 20 25
12 28 79 41 3 4
13 27 145 187 50 75
14 22 40 57 19 23
15 21 76 119 16 18
16 19 40 96 33 39
17 18 76 103 26 32
18 15 44 59 4 35
19 15 34 64 16 38
20 14 56 43 5 25
21 13 33 34 15 20
22 10 67 71 18 23
23 8 30 25 13 16
24 8 13 32 0 22



316 A. Hicks, B. Peddycord III, and T. Barnes

Fig. 2. Two of the generated hints for a simple puzzle. The blue icon represents the
robot. The ’X’ icon represents a goal. Shaded boxes are boxes placed on goals, while
unshaded boxes are not on goals.

5.1 Hint Generation and State Space Coverage

To evalute how much our method was able to improve hint coverage, we com-
pared the number of unique programs written to the number of unique output
states. We then considered the number of those states for which a hint was
available as shown in Figure 1. For the problems analyzed, our approach was
consistently able to reduce the state space. For puzzle 10, a puzzle with a rich
data set of solutions, we were able to reduce the state space from 325 unique
programs to 130 unique output states. However, this reduction is meaningless
unless we are able to provide useful hints from the created states. Out of 130
unique observed states, 79 states had potential to generate hints (that is, a stu-
dent was in that state and then correctly solved the puzzle). 33 of these hints led
to Error nodes, in cases where the Error was the only observed next-step. Of the
remaining 45 hints, we found 42 to be meaningful. It is important to note that
while this problem contained more records and students than other problems in
our data set, the number of records was still quite small. Despite the lack of data
we were able to provide hints more than half of the time, and able to provide
hints for every state reached by multiple users.

6 Conclusions and Future Work

We have developed an approach to modeling student interaction with a serious
game. This approach can be used to automatically generate hints with the Hint
Factory algorithm. Rather than attempting to encode the programs or step-by-
step interactions of the user, we instead use the resulting configuration of the
world after each compilation of the student’s code. Doing so, we are able to
cover all of the unique code submissions with only a fraction of the states in
the graph. While we use a naive implementation of Hint Factory, the hints that
are generated are still useful and interesting, particularly those that lead out of
error states. This work demonstrates that even with a small number of records,
useful hints can be generated by grouping user actions according to their results.
A similar system could be used in real-time games, generating hints based on
important results or milestones rather than from low-level interaction data.



Building Games to Learn from their Players 317

Acknowledgements. Thanks to the additional developers who have worked on
this project or helped with our outreach activities so far, including Aaron Qui-
dley, Veronica Catete, Trevor Brennan, Irena Rindos, Vincent Bugica, Victoria
Cooper, Dustin Culler, Shaun Pickford, Antoine Campbell, and Javier Olaya.
This material is based upon work supported by the National Science Founda-
tion Graduate Research Fellowship under Grant No. 0900860 and Grant No.
1252376.

References

1. Anderson, J.R., Reiser, B.J.: The lisp tutor. Byte 10(4), 159–175 (1985)
2. Barnes, T., Stamper, J.C.: Automatic hint generation for logic proof tutoring using

historical data. Educational Technology & Society 13(1), 3–12 (2010)
3. Corbett, A.T., Anderson, J.R.: Student modeling and mastery learning in a

computer-based programming tutor. In: Frasson, C., McCalla, G.I., Gauthier, G.
(eds.) ITS 1992. LNCS, vol. 608, pp. 413–420. Springer, Heidelberg (1992)

4. Eagle, M., Johnson, M., Barnes, T.: Interaction networks: Generating high level
hints based on network community clusterings. In: EDM, pp. 164–167 (2012)

5. Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C.W., Chen, L., Cosejo, D.G.:
I learn from you, you learn from me: How to make iList learn from students. In:
AIED, pp. 491–498 (2009)

6. Hicks, A.: Creation, evaluation, and presentation of user-generated content in com-
munity game-based tutors. In: Proceedings of the International Conference on the
Foundations of Digital Games, FDG 2012, pp. 276–278. ACM, New York (2012)

7. Jin, W., Barnes, T., Stamper, J., Eagle, M.J., Johnson, M.W., Lehmann, L.: Pro-
gram representation for automatic hint generation for a data-driven novice pro-
gramming tutor. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K.
(eds.) ITS 2012. LNCS, vol. 7315, pp. 304–309. Springer, Heidelberg (2012)

8. Koedinger, K.R., Anderson, J.R., Hadley, W.H., Mark, M.A., et al.: Intelligent
tutoring goes to school in the big city. International Journal of Artificial Intelligence
in Education (IJAIED) 8, 30–43 (1997)

9. Murray, T.: An overview of intelligent tutoring system authoring tools: Updated
analysis of the state of the art. In: Authoring Tools for Advanced Technology
Learning Environments, pp. 491–544. Springer (2003)

10. Nathan, M.J., Koedinger, K.R., Alibali, M.W.: Expert blind spot: When content
knowledge eclipses pedagogical content knowledge. In: Proceedings of the Third
International Conference on Cognitive Science, pp. 644–648 (2001)

11. Rivers, K., Koedinger, K.R.: Automatic generation of programming feedback: A
data-driven approach. In: The First Workshop on AI-supported Education for
Computer Science (AIEDCS 2013), p. 50 (2013)

12. Stamper, J., Barnes, T., Lehmann, L., Croy, M.: The hint factory: Automatic
generation of contextualized help for existing computer aided instruction. In: Pro-
ceedings of the 9th International Conference on Intelligent Tutoring Systems Young
Researchers Track, pp. 71–78 (2008)

13. Stamper, J., Koedinger, K., Baker, R.S.J.d., Skogsholm, A., Leber, B., Rankin, J.,
Demi, S.: PSLC datashop: A data analysis service for the learning science commu-
nity. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part II. LNCS, vol. 6095,
pp. 455–455. Springer, Heidelberg (2010)


	Building Games to Learn from Their Players:Generating Hints in a Serious Game
	1 Introduction
	2 Prior Work
	3 Context
	4 Methods
	5 Analysis
	5.1 Hint Generation and State Space Coverage

	6 Conclusions and Future Work
	References




