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Abstract. Modeling and predicting student knowledge is a fundamen-
tal task of an intelligent tutoring system. A popular approach for student
modeling is Bayesian Knowledge Tracing (BKT). BKT models, however,
lack the ability to describe the hierarchy and relationships between the
different skills of a learning domain. In this work, we therefore aim at
increasing the representational power of the student model by employing
dynamic Bayesian networks that are able to represent such skill topolo-
gies. To ensure model interpretability, we constrain the parameter space.
We evaluate the performance of our models on five large-scale data sets
of different learning domains such as mathematics, spelling learning and
physics, and demonstrate that our approach outperforms BKT in pre-
diction accuracy on unseen data across all learning domains.

Keywords: Bayesian networks, parameter learning, constrained opti-
mization, prediction, Knowledge Tracing.

1 Introduction

Intelligent tutoring systems (ITS) are successfully employed in different fields of
education. A key feature of these systems is the adaptation of the learning con-
tent and the difficulty level to the individual student. The selection of problems
is based on the estimation and prediction of the student’s knowledge by the stu-
dent model. Therefore, modeling and predicting student knowledge accurately
is a fundamental task of an intelligent tutoring system.

Current tutoring systems use different approaches to assess and predict stu-
dent performance. Two of the most popular approaches for estimating student
knowledge are performance factors analysis [20] and Bayesian Knowledge Trac-
ing (BKT) as presented by Corbett and Anderson [4].

As the prediction accuracy of a probabilistic model is dependent on its pa-
rameters, an important task when using BKT is parameter learning. Recently,
the prediction accuracy of BKT models has been improved using clustering ap-
proaches [19] or individualization techniques, such as learning student- and skill-
specific parameters [18,24,25] or modeling the parameters per school class [23].

Exhibiting a tree structure, BKT allows for efficient parameter learning and
accurate inference. However, tree-like models lack the ability to represent the
hierarchy and relationships between the different skills of a learning domain.
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Employing dynamic Bayesian network models (DBN) has the potential to in-
crease the representational power of the student model and hence further im-
prove prediction accuracy. In ITS, DBNs have been used to model and predict
students’ performance [3,17] engagement states [2,9] and goals [3]. DBNs are also
employed in user modelling [8]. In cognitive sciences, DBNs are applied to model
human learning [5] and understanding [1]. Despite their beneficial properties to
represent knowledge, DBNs have received less attention in student modeling as
they impose challenges for learning and inference.

Recently, [12] showed that a constrained latent structured prediction approach
to parameter learning yields accurate and interpretable models. Based on these
findings, this paper proposes the use of DBNs to model skill hierarchies within
a learning domain. Similar to [12], we use a log-linear formulation and apply
a constrained optimization to identify the parameters of the DBN. We define
domain-specific DBN models for five large-scale data sets from different learning
domains, containing up to 7000 students. Students’ age ranges from elementary
school to university level. Our results show that even simple skill hierarchies lead
to significant improvements in prediction accuracy of up to 10% over BKT across
all learning domains. By using the same constraints and parameterizations for
all experiments, we also demonstrate that basic assumptions about learning hold
across different learning domains and thus our approach is easy to use.

2 Methods

Subsequently, we first give an overview of the BKT model before discussing more
complex graphical models that are able to represent skill topologies.

2.1 Bayesian Knowledge Tracing

BKT models are a special case of DBNs [21] or more specifically of Hidden
Markov Models (HMM), consisting of observed and latent variables. Latent vari-
ables represent student knowledge about one specific skill and are assumed to
be binary, i.e., a skill can either be mastered by the student or not. They are
updated based on the correctness of students’ answers to questions that test the
skill under investigation, hence observations are also binary.

There are two types of parameters in an HMM: transition probabilities and
emission probabilities. In BKT, the emission probabilities are defined by the slip
probability pS of making a mistake when applying a known skill and the guess
probability pG of correctly applying an unknown skill. The transition probabili-
ties are described by the probability pL of a skill transitioning from unknown to
known state, while pF is the probability of forgetting a previously known skill.
In BKT, pF is assumed to equal zero. The last parameter required to describe
the BKT model is the initial probability p0 of knowing a skill a-priori.

Employing one BKT model per skill, the learning task amounts to estimating
the parameters given some observations: given a sequence of observations ym =
(ym,1, ..., ym,T ) with ym,t ∈ {0, 1} and time t ∈ {1, . . . , T } for the m-th student
with m ∈ {1, . . . ,M}, what are the parameters θ = {p0, pL, pF , pS , pG} that
maximize the likelihood

∏
m p(ym | θ) of the available data.
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Fig. 1. Structure of the graphical model for a DBN with T time steps. Circular nodes
represent skills, while the rectangles are the tasks associated with those skills.

2.2 Dynamic Bayesian Networks

When employing DBNs, we consider the different skills of a learning domain
jointly within a single model. Student knowledge is again represented using bi-
nary latent variables (one per skill), which are updated based on observations
associated with the skill under investigation. However, we now also model the
dependencies between the different skills, e.g., two skills SA and SB are condi-
tionally dependent if SA is a prerequisite for mastering SB.

Probabilistic Notation. The learning task of a DBN model is described as
follows: let the set of N variables of the model be denoted by X = {Xi | i ∈
{1, . . . , N}}. In addition, let H denote the domain of the unobserved variables,
i.e., missing student answers and the binary skill variables, while Y refers to the
observed space, disjoint from the latent space H. During learning, we are inter-
ested in finding the parameters θ that maximize the likelihood of the observed
data

⋃
m ym with ym = (ym,1, ..., ym,T ) representing a sequence of T binary

answers from the m-th student. The log-likelihood of a DBN [6] is then given by

L(θ) =
∑

m

ln

(
∑

hm

p(ym | hm, θ)

)

, (1)

where we marginalize over the states of the latent variables hm for student m.
The joint probability p(ym | hm, θ) of the model for student m is defined as

p(ym |hm, θ) =
∏

i

p(Xm,i =xm,i |pa(Xm,i) =xm,pa(Xm,i)) =
∏

i

pijm,ikm,i
, (2)

where pa(Xm,i) are the parents of Xm,i, while xm,i and xm,pa(Xm,i) are the re-
alizations of the random variables Xm,i and pa(Xm,i), i.e., the states assigned
to Xm,i and pa(Xm,i) given by (ym,hm). Furthermore, we let ji,m := xm,i and
km,i := xm,pa(Xm,i) to simplify the notation. Therefore, pijm,ikm,i

denotes ex-
actly one entry in the conditional probability table (CPT) of Xm,i.

Log-Linear Models. The log-likelihood of a DBN can alternatively be formu-
lated using a log-linear model. This formulation is flexible and predominantly
used in recent literature [16,22]. Therefore, we reformulate the learning task in
the following. Let φ : Y ×H → R

F denote a mapping from the latent space H
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and the observed space Y to an F -dimensional feature vector. The log likelihood
from Eq. (1) can then be reformulated to

L(w) =
∑

m

ln

(
∑

hm

exp
(
w�φ(ym,hm)− ln(Z)

)
)

, (3)

where Z is a normalizing constant and w denotes the weights of the model. Next,
we show that this log-linear formulation of the log-likelihood is equivalent to the
traditional notation. Comparing Eq. (3) to Eq. (1), it follows that

∏

i

pijm,ikm,i
=

1

Z
expw�φ(ym,hm) =

1

Z
exp

∑

i

w�
i φi(ym,hm), (4)

and therefore

∀i, j,k : pijk =
1

Z
expw�

i φi(x), (5)

where x are the realizations of all random variables in X with j ∈ x and k ⊂
x. A feature vector φ and weights w that fulfill Eq. (5) can be specified as
follows: consider the CPT describing the relationship between a node XA and
its n− 1 parent nodes pa(XA). The CPT for these n nodes contains 2n entries.
Let k ∈ {0, 1}n−1 denote one possible assignment of states to the parent nodes
pa(XA). We can therefore define p(XA = 1 | pa(XA) = k) = 1 − p(XA = 0 |
pa(XA) = k) = 1 − pA,0,k. To continue, let pA,xA,k = 1

Z expwA,k(1 − 2xA) =
expwA,k(1−2xA)/(expwA,k+exp(−wA,k)), which leads to the feature function
φA(x) = 1− 2xA. We therefore obtain the joint distribution as a product of the
exponential terms which translates to a weighted linear combination of feature
vector entries in the exponent and thus fulfills Eq. (5). From this formulation
also follows that we need 2n−1 parameters to specify a CPT including n skills.

Optimization. In contrast to HMMs, the learning task for DBNs is not com-
putationally tractable. However, [22] showed that a convex approximation ad-
mits efficient parameter learning. Note that interpretability of the parameters
is not ensured, since guarantees exist only for converging to a local optimum.
Recently, [12] extended the approach presented by [22] to include constraints on
parameters and demonstrated that the constrained optimization increases pre-
diction accuracy on unseen data while yielding interpretable models. Using the
log-linear formulation, the algorithm presented in [12] can be directly applied to
learn the parameters of a DBN model.

DBN Specification. Next, we illustrate the specification of a simple DBN.
Similarly to BKT, we can interpret the parameters of a DBN in terms of a
learning context. To specify the CPTs of the example DBN in Fig. 1, we employ
F = 22 weights that can be associated with a parameter set θ. We subsequently
use � to denote proportionality in the log domain; i.e., w � p is equivalent to
w ∝ exp p. Let O3 denote the task associated with skill S3. Then the parameters
w20 � p(O3 = 0 | S3 = 0) = 1 − pG and w21 � p(O3 = 0 | S3 = 1) = pS
represent the guess and slip probabilities. Similarly, w18 and w19 are associ-
ated with pG and pS as evident from Fig. 1. Furthermore, parameters w6 � p
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(S1,t = 0 | S1,t−1 = 0) = 1 − pL and w7 � p(S1,t = 0 | S1,t−1 = 1) = pF are
associated with learning and forgetting; the same holds true for w8 and w9.

Skills S1 and S2 are prerequisites for knowing skill S3, i.e., the probability that
skill S3 is mastered in time step t depends not only on the state of skill S3 in the
previous time step, but also on the states of S1 and S2 in the current time step.
Therefore w10 � p(S3,t = 0 | S3,t−1 = 0, S1,t = 0, S2,t = 0) = 1− pL0, where pL0

denotes the probability that the student learns S3 despite not knowing S1 and
S2. Also, w17 � p(S3,t = 0 | S3,t−1 = 1, S1,t = 1, S2,t = 1) = pF1, the probability
of forgetting a previously learnt skill. Furthermore, we set wl � 1 − pLM if
l ∈ {11, 12, 13} and wl � 1 − pFM if l ∈ {14, 15, 16}, where pLM denotes the
probability that the student learns S3 given that he knows at least one of the
precursor skills of S3. Moreover, pFM is the probability that the student forgets
the previously known skill S3, when either S1 or S2 or none of them are known.

Finally, the parameters wl with l ∈ {2, 3, 4, 5} describe the dependencies be-
tween the different skills. We let wl � 1 − pP0, if l ∈ {2, 3, 4} and w5 � pP1,
where pP0 is the probability of knowing a skill despite having mastered only
part of the prerequisite skills and pP1 denotes the probability of failing a skill
given that all precursor skills have been mastered already. Moreover, we refer
to the probability of knowing a skill a-priori via p0. Note that w0 and w1 are
associated with p0. The example DBN can therefore be described by the pa-
rameter set θ = {p0, pG, pL, pF , pL0, pF1, pLM , pFM , pP0, pP1}. Importantly, the
method proposed in this work is independent of the exact parametrization used.
Therefore, the parametrization introduced here could be easily extended.

3 Results and Discussion

We show the benefits of DBN models with higher representational power on
five data sets from various learning domains. The data sets were collected with
different tutoring systems and contain data from elementary school students up
to university students. We compare the prediction accuracy of DBNs modeling
skill topologies with the performance of traditional BKT models.

Fitting the BKTmodels was done using [25], applying skill-specific parameters
and using gradient descent for optimization. As described in [25], we set the
forget probability pF to 0, while pS and pG are bounded by 0.3. In the following,
we will denote this constrained BKT version as BKTC .

We used constrained latent structured prediction [12] to learn the parameters
of the DBNs. All models are parametrized according to Sec. 2.2 and we impose
the constraints described in the following on the parameter set θ of the different
models to ensure interpretable parameters. For our first constraint set C1, we let
pD ≤ 0.3 for D ∈ {G,S, L, F, L0, F1} to ensure that parameters associated with
guessing, slipping, learning and forgetting remain plausible. The constraints on
θ can be directly turned into constraints on w. For the example DBN (Fig. 1),
the constraints translate into the following linear constraints on the weights for
C1: wi ≥ 0.4236, if i ∈ {6, 8, 10, 18, 20} and wi ≤ −0.4236, if i ∈ {7, 9, 17, 19, 21}.
For the second constraint set C2, we augment C1 by limiting pD ≤ 0.3 if D ∈
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{LM,FM,P0, P1}, yielding wi ≥ 0.4236, if i ∈ {2, 3, 4, 11, 12, 13} and wi ≤
−0.4236, if i ∈ {5, 14, 15, 16} for the example DBN (Fig. 1). The additional
constraints ensure that parameters are consistent with the hierarchy assumptions
of the model. The constraint sets C3 and C4 bound the same parameters as C1
and C2, but are more restrictive by replacing 0.3 by 0.2. Note that constraints
were selected according to previous work [4]. The presented work is, however,
independent of the selected constraint sets.

Prediction is performed as follows: we assume the observation at time t = 1
to be given and predict the outcome at time t with t ∈ {2, ..., t} based on
the previous t − 1 observations. The number of observations t for the different
experiments is the minimal number of observations covering all skills of the
according experiment. To assess prediction accuracy, we provide the following
error measures: root mean squared error (RMSE), classification error CE (ratio of
incorrectly predicted student successes and failures based on a threshold of 0.5)
and the area under the roc curve (AUC). All error measures were calculated using
cross-validation. Statistical significance was computed using a two-sided t-test,
correcting for multiple comparisons (Bonferroni-Holm).

Note that we selected skills, where users showed low performance for our
experiments, in order to make learning and prediction more challenging. In the
following, we describe the DBN models for the five data sets and discuss the
prediction accuracy for our models as well as for BKTC .

Number Representation. For the first experiment, we use data collected from
Calcularis, an intelligent tutoring system for elementary school children with
math learning difficulties [10]. The data set contains log files of 1581 children
with at least 5 sessions of 20 minutes per user. Calcularis represents student
knowledge as a DBN consisting of different mathematical skills [11,13].

The graphical model used in this experiment (see Fig. 1) is an excerpt of the
skill model of Calcularis described in [11]. Skill S1 represents knowledge about
the Arabic notation system. Calcularis does not contain any tasks associated
with this skill. The ability to assign a number to an interval is denoted by S2. The
task associated with this skill is to guess a number in as few steps as possible.
Finally, S3 denotes the ability to indicate the position of a number on a number
line. We used a maximum of T = 100 observations per child for learning and
prediction and specified the CPTs of the graphical model with F = 22 weights.

Prediction errors for the constraint sets C1 to C4 as well as BKTC are given
in Tab. 1. The constrained DBN approach yields significant and large improve-
ments in prediction accuracy compared to BKTC . We highlight the improvement
in accuracy by 11.4% (CEBKTC = 0.3141, CEC2 = 0.2783) and the reduction of
the RMSE by 3.8% (RMSEBKTC = 0.4550, RMSEC4 = 0.4378). Also note the
large improvement achieved in AUC (AUCBKTC = 0.5975, AUCC2 = 0.7093).

Subtraction. The second experiment is based on the same data set as the
first experiment. This time, however, we investigate subtraction and number
understanding skills. The graphical model (see Fig. 2(a)) is again an excerpt of
the skill model [11] of Calcularis. Subtraction skills are ordered according to
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(a) (b)

(c) (d)

Fig. 2. Graphical models for the subtraction (a), physics (b), algebra (c) and spelling
learning (d) experiments. Circular nodes represent skills, while the rectangles are the
tasks associated with those skills.

their difficulty, which is determined by the magnitude of involved numbers, task
complexity and the means allowed to solve a task. Skills S1 (e.g., 48-6=?), S2

(e.g., 48-9=?), S3 (e.g., 48-26=?), S4 (e.g., 48-29=?) and S5 denote subtraction
tasks in the number range 0−100. We emphasize that there are no observation
nodes associated with S1 and S5. The number understanding skill S6 represents
knowledge about the relational aspect of number (number as a difference between
other numbers) in the number range 0−1000. Finally, skills S7 (e.g., 158-3=?),
S8 (e.g., 158-3=?) and S9 (e.g., 158-9=?) represent subtraction in the number
range 0−1000. The difference between S7 and S8 lies in the means allowed to
solve the task. A maximum of T = 100 observations per child is used for learning
and prediction. Specification of the CPTs for the model requires F = 86 weights.

The resulting prediction accuracy for this experiment (see Tab. 1) again
demonstrates that the DBN model outperforms BKTC . With a reduction of
the RMSE by 3.5% (RMSEBKTC = 0.4368, RMSEC2 = 0.4215) and an increase
of the accuracy by 8.4% (CEBKTC = 0.2818, CEC4 = 0.2580), improvements
confirm the results observed in the first experiment. Also the growth in AUC
(AUCBKTC = 0.5996, AUCC4 = 0.6916) is again substantial.

Physics. This experiment is based on the ‘USNA Physics Fall 2005’ data set
accessed via DataShop [15]. Data originate from 77 students of the United States
Naval Academy and were collected from Andes2, an intelligent tutoring system
for physics [3]. The tutor uses rule-based algorithms to build solution graphs
that identify all possible solutions to the different tasks. Based on these graphs,
a Bayesian network is constructed to assess the general physics knowledge of the
student as well as the progress for the problem at hand.

We use the different modules of the data set as skills for our experiment.
The graphical model is depicted in Fig. 2(b). Note that we intentionally use a
simplified skill model to avoid introducing incorrect assumptions and to assess
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Table 1. Prediction accuracy of the experiments, comparing BKTC with different con-
straint sets for the DBNs. Numbers in bold denote a significant improvement compared
to BKTC . The best result for each error measure is marked (*).

BKTC C = C1 C = C2 C = C3 C = C4

Number
representation

RMSE 0.4550 0.4469 0.4452 0.4416 0.4378*

CE 0.3141 0.3279 0.2783* 0.3079 0.2831

AUC 0.5975 0.7072 0.7093* 0.7087 0.7049

Subtraction

RMSE 0.4368 0.4417 0.4215* 0.4389 0.4216

CE 0.2818 0.2812 0.2588 0.2757 0.2580*

AUC 0.5996 0.6157 0.6870 0.6332 0.6916*

Physics

RMSE 0.4530 0.4521 0.4272 0.4465 0.4244*

CE 0.2930 0.2893 0.2677 0.2870 0.2616*

AUC 0.5039 0.6511 0.6971 0.6795 0.7007*

Algebra

RMSE 0.3379 0.3335 0.3254* 0.3321 0.3267

CE 0.1461 0.1466 0.1392 0.1466 0.1379*

AUC 0.5991 0.6682 0.7004 0.6718 0.7007*

Spelling

RMSE 0.4504 0.4521 0.4495 0.4492 0.4472*

CE 0.2898 0.2893 0.2914 0.2882* 0.2906

AUC 0.5029 0.5695 0.5771 0.5735 0.5804*

if even non-experts can exploit skill structures using our proposed methods.
The model consists of the following modules: “Vectors” (S1), “Translational
Kinematics” (S2), “Statistics” (S3) and “Dynamics” (S4). These modules consist
of more complex tasks for the given topic, i.e., calculating total forces in a system
(see example in [3]). A maximum of T = 500 observations per child are considered
for learning and prediction and the model is described by F = 33 weights.

In this experiment, the benefits of the DBN model are again high (see Tab. 1):
the accuracy is increased by 10.7% (CEBKTC = 0.2930, CEC4 = 0.2616) while
the RMSE is reduced by 6.3% (RMSEBKTC = 0.4530, RMSEC4 = 0.4244) and
the AUC grows to 0.7007 (AUCBKTC = 0.5039).

Algebra. For this experiment we used data from the KDD Cup 2010 Educa-
tional Data Mining Challenge (http://pslcdatashop.web.cmu.edu/KDDCup). The
data set contains log files of 6043 students that were collected by the Cognitive
Tutor [14], an intelligent tutoring system for mathematics learning. The student
model applied in this system is based on BKT.

We use the units of the ‘Bridge to Algebra’ course as skills for our experiment
and select four units of increasing difficulty, where students have to solve word
problems involving calculations with whole numbers. The graphical model for
this experiment is illustrated in Fig. 2(c). Skill S1 (e.g., 728624 − 701312) de-
notes written addition and subtraction tasks without carrying/borrowing, while
S2 involves carrying/borrowing (e.g., 728624 − 703303). S3 (e.g., 33564 × 18)
and S4 (e.g., 10810÷ 46) represent long multiplications and divisions. Note that
the skill model is again simplified for the reasons explained in the Physics ex-
periment. We use a maximum of T = 500 observations per student for learning
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and prediction and specify the CPTs of the model employing F = 29 weights.
Similarly to the previous experiments, DBN significantly outperforms BKTC

(see Tab. 1). The RMSE is reduced by 3.7% (RMSEBKTC = 0.3379, RMSEC2

= 0.3254), while accuracy is increased by 5.6% (CEBKTC = 0.1461, CEC4 =
0.1379) and the AUC increases to 0.7007 (AUCBKTC = 0.5991). Note that DBN
and BKTC both perform better than in the other experiments as the high per-
formance of students in the involved skills makes learning and prediction easier.

Spelling Learning. The last experiment uses data collected from Dybuster,
an intelligent tutoring system for elementary school children with dyslexia [7].
The data set at hand contains data of 7265 German-speaking children. Dybuster
groups the words of a language into hierarchically ordered modules with respect
to their frequency of occurrence in the language corpus as well as a word diffi-
culty measure. The latter is computed based on the word length, the number of
dyslexic pitfalls and the number of silent letters contained in the word.
We use these modules as skills to build our graphical model (see Fig. 2(d)). Skills
S1, S2 and S3 denote the modules 3, 4 and 5 within Dybuster.Word examples are
“warum” (“why”, S1), “Donnerstag” (“Thursday”, S2) and “Klapperschlange”
(“rattlesnake”, S3). We use a maximum of T = 200 observations per child for the
learning and prediction tasks and parametrize the model using F = 21 weights.
While the DBN model still significantly outperforms BKTC in this experiment
(see Tab. 1), the magnitudes of improvement are small: the RMSE is reduced
by 0.7% (RMSEBKTC = 0.4504, RMSEC4 = 0.4472), the highest AUC amounts
to 0.5804 (AUCBKTC = 0.5029) and there is no significant improvement in CE.

Discussion. The results demonstrate that more complex DBN models outper-
form BKT in prediction accuracy. For hierarchical learning domains, CE can
be reduced by 10%, while improvements of RMSE by 5% are feasible. The
DBN models generally exhibit a significantly higher AUC than BKT, which
indicates that they are better at discriminating failures from successes. As ex-
pected, adding skill topologies has a much smaller benefit for learning domains
that are less hierarchical in nature (such as spelling learning). The results ob-
tained on the physics and algebra data sets show that even simple hierarchical
models improve prediction accuracy significantly. A domain expert employing a
more detailed skill topology and more complex constraint sets could probably
obtain an even higher accuracy on these data sets. The use of the same pa-
rameterization and constraint sets for all experiments demonstrates that basic
assumptions about learning hold across different learning domains and thus the
approach is easy to use.

4 Conclusion

In this work, we showed that prediction accuracy of a student model is increased
by incorporating skill topologies. We evaluated the performance of our mod-
els on five data sets of different learning domains and demonstrated that the
DBN models outperform the traditional BKT approach in prediction accuracy
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on unseen data. To conclude, our results show that modeling skill topologies is
beneficial and easy to use, as even simple hierarchies and parameterizations lead
to significant improvements in prediction accuracy. In the future, we would like
to analyze the influence of the skill hierarchies and the different parameters in
detail. We furthermore plan to apply the individualization techniques used in
BKT [18,24,25] to DBNs. Moreover, we would like to explore further modelling
techniques such as dynamic decision networks.
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tracing. In: Cerri, S.A., Clancey, W.J., Papadourakis, G., Panourgia, K. (eds.) ITS
2012. LNCS, vol. 7315, pp. 405–410. Springer, Heidelberg (2012)

20. Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance Factors Analysis - A New
Alternative to Knowledge Tracing. In: Proc. AIED (2009)

21. Reye, J.: Student Modelling Based on Belief Networks. IJAIED (2004)
22. Schwing, A.G., Hazan, T., Pollefeys, M., Urtasun, R.: Efficient Structured Predic-

tion with Latent Variables for General Graphical Models. In: Proc. ICML (2012)
23. Wang, Y., Beck, J.: Class vs. Student in a Bayesian Network Student Model. In:

Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS, vol. 7926,
pp. 151–160. Springer, Heidelberg (2013)

24. Wang, Y., Heffernan, N.T.: The student skill model. In: Cerri, S.A., Clancey, W.J.,
Papadourakis, G., Panourgia, K. (eds.) ITS 2012. LNCS, vol. 7315, pp. 399–404.
Springer, Heidelberg (2012)

25. Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian Knowl-
edge Tracing Models. In: Proc. AIED (2013)


	Beyond Knowledge Tracing: Modeling SkillTopologies with Bayesian Networks
	1 Introduction
	2 Methods
	2.1 Bayesian Knowledge Tracing
	2.2 Dynamic Bayesian Networks

	3 Results and Discussion
	4 Conclusion
	References




