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Preface

The 12th International Conference on Intelligent Tutoring Systems (ITS 2014)
was held during June 5–9, 2014, in Honolulu, Hawaii, USA. This biennial con-
ference focuses on research that investigates the use of intelligent systems and
advanced computing technologies with close ties to interdisciplinary research for
enabling, supporting, or enhancing human learning. A major direction of the
series of ITS conferences is using Artificial Intelligence technologies for adapt-
ing systems to learners, modeling those learners, and providing the best-suited
learning material based upon both the learner and the context. An important
emphasis within the ITS community is on supporting interaction with adaptive
systems as well as on the social construction of knowledge.

Reflecting the importance of this interactivity, the theme of the ITS 2014
conference was Creating Fertile Soil for Learning Interactions. Much as the vol-
canic islands of Hawaii have, over time, developed fertile ground that supports
iconic biodiversity, the ITS research community is poised to see decades of rich
ITS research come together to produce highly interactive systems that support a
broad diversity of learner needs. With an emphasis not only on developing tech-
nologies to support learning, but on making fundamental discoveries regarding
teaching and learning, ITS 2014 brought together researchers from computer sci-
ence, learning sciences, cognitive and educational psychology, sociology, cognitive
science, artificial intelligence, machine learning, and linguistics.

Submissions were received within three tracks. The Main Scientific Program
Track was chaired by Stefan Trausan-Matu and Kristy Elizabeth Boyer; the
Workshops and Tutorials Track was chaired by Min Chi and Roger Azevedo,
and the Young Researchers’ Track was chaired byWinslow Burleson and Tsukasa
Hirashima. The Young Researchers’ Track papers are included in this volume,
while Workshop proceedings were prepared separately by the workshop chairs
and distributed alongside the electronic proceedings at the conference.

The international response to the call for papers yielded 177 papers to the
main scientific track from 28 different countries. Reviewing these submissions was
a highly diverse Program Committee of 162 members. There were a minimum of
three reviews per submission including at least one senior Program Committee
member. Below is the number of authors and PC members from each coun-
try that participated in this year’s conference by submitting their work or by
reviewing papers.

ITS 2014 followed a triple-blind reviewing process: reviewers did not see au-
thor names, authors did not see reviewer names, and reviewers did not see each
others’ names during the review and discussion process. We worked to ensure
a high quality and fair reviewing process, and we are tremendously grateful for
the senior PC and regular PC members who contributed to reviewing.
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Conflicts of interest were identified so that no paper was assigned to a re-
viewer from the same institution or who was a close collaborator of the papers’
authors. The program chairs made the final decisions for acceptance on the basis
of the reviews, discussions, and meta-reviews. When needed, the program chairs
carefully read the papers and sought additional reviews to resolve inconsistencies.

Country Authors PC
Members

Algeria - 1

Australia 9 1

Austria - 1

Brazil 51 10

Bulgaria - 2

Canada 38 14

China 2 -

Colombia 1 -

Cyprus 2 -

Denmark - 3

Egypt 2 -

France 18 12

Germany 10 8

Greece 3 1

India 5 -

Ireland - 1

Italy 5 5

Japan 32 10

Korea - 2

Country Authors PC
Members

Lebanon 1 -

Mexico 1 2

Netherlands 4 3

New Zealand 2 3

Philippines 7 2

Poland 1 -

Portugal 2 1

Qatar 1 -

Romania 2 2

Saudi Arabia 2 1

Slovakia - 1

Slovenia 7 -

Spain 7 3

Switzerland 4 2

Taiwan 5 4

Turkmenistan - -

United Kingdom 3 13

United States 286 58

Of the 177 submissions to the main scientific track, 31 were accepted as long
papers (17.5%). Additionally, 45 submissions were accepted as short papers,
representing high quality work that was deemed by the reviewers to be perhaps
slightly less mature than the work accepted as long papers. Both long papers
and short papers were presented as oral presentations at the conference. Finally,
42 submissions were accepted as posters which were presented as interactive
poster exhibits at the conference. One special panel, “Grand Challenges for In-
telligent Tutoring Systems in STEM: Progress and Perspectives” was organized
by Xiangen Hu, Benjamin Nye, Art Graesser, Neil Heffernan, Kurt VanLehn,
and Beverly Woolf.

Long papers were provided 10 pages, short papers 6 pages, and poster papers
2 pages in the proceedings. Authors could optionally purchase up to 2 additional
pages for each paper, resulting in long papers occupying up to 12 pages, short
papers up to 8 pages, and poster papers up to 4 pages in this volume.

The papers within the main scientific track span a range of topics, and have
been organized into groups in these proceedings in a necessarily subjective way.
The major topics reflect the sessions in which the conference presentations were
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organized: affect and metacognition; ITS scaling and assessment; collaborative
learning; dialogue and discourse; data mining and student behavior; graphical
representations and learning; game-based learning and simulation; dynamic hints
and scaffolds; student strategies and problem solving.

Topic Sub- Accepted Acceptance PC
missions Rate Members

Privacy and security in e-learning environments - - - 3

Recommender systems for learning 7 3 0.43 32

Co-adaptation between technologies and human
learning

7 3 0.43 20

Informal learning environments, learning as a
side effect of interactions

9 3 0.33 14

Multi-agent and service-oriented architectures for
learning and tutoring environments

9 6 0.67 11

Ontological modeling, Semantic web
technologies and standards for learning

10 6 0.60 26

Non conventional interactions between artificial
intelligence and human learning

10 8 0.80 10

Ubiquitous and mobile learning environments 10 6 0.60 11

Virtual pedagogical agents and learning
companions

18 11 0.61 28

Instructional design principles or design patterns
for educational environments

19 15 0.79 13

Dialogue and discourse during learning interactions 21 15 0.71 26

Simulation-based learning and serious games 22 17 0.77 30

Authoring tools and development methodologies
for advanced learning technologies

22 14 0.64 26

Collaborative and group learning, communities
of practice and social networks

26 15 0.58 39

Empirical studies of learning with technologies,
understanding human learning on the Web

29 22 0.76 32

Modeling of motivation, metacognition, and
affect aspects of learning

30 21 0.70 37

Domain-specific learning technologies, e.g.,
language, mathematics, reading, science,
medicine, military, and industry.

35 23 0.66 18

Educational exploitation of data mining and
machine learning techniques

43 35 0.81 34

Adaptive support for learning, models of
learners, diagnosis and feedback

55 38 0.69 54

Intelligent tutoring 92 68 0.74 62

We wish to thank of all the authors, the members of the Program Committee
and the external reviewers, the Steering Committee and in particular Claude
Frasson and Stefano Cerri for their advice and help, and the Organizing Com-
mittee. Such an event would not have been possible without their commitment,
professional effort and patience. We also wish to thank the creators and main-
tainers of the Easychair online conference management system, without which
the review process and proceedings creation would have been tremendously dif-
ficult. Easychair’s reliable and expansive set of functionality was a great help.
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We hope that you enjoy these proceedings. It has been a great pleasure to
serve the ITS research community by assembling them.

April 2014 Stefan Trausan-Matu
Kristy Elizabeth Boyer

Martha Crosby
Kitty Panourgia

With sincere thanks to the sponsors of the conference, including:

The Association for the Advancement of

Artificial Intelligence (AAAI)
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Tanja Käser, Severin Klingler, Alexander Gerhard Schwing, and
Markus Gross

Dialogue and Discourse

Identifying Effective Moves in Tutoring: On the Refinement of Dialogue
Act Annotation Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Alexandria Katarina Vail and Kristy Elizabeth Boyer

When Is Tutorial Dialogue More Effective Than Step-Based
Tutoring? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Min Chi, Pamela Jordan, and Kurt VanLehn

Predicting Student Learning from Conversational Cues . . . . . . . . . . . . . . . 220
David Adamson, Akash Bharadwaj, Ashudeep Singh, Colin Ashe,
David Yaron, and Carolyn P. Rosé
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Using Log Data to Predict Response Behaviors in Classroom
Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 670

Ruth Wylie, Brandon Helding, Robert Talbot, Michelene T.H. Chi,
Susan Trickett, and Rodney D. Nielsen

A Rule-Based Recommender System to Suggest Learning Tasks . . . . . . . . 672
Hazra Imran, Mohammad Belghis-Zadeh, Ting-Wen Chang,
Kinshuk, and Sabine Graf

Reducing Student Hint Use by Creating Buggy Messages from Machine
Learned Incorrect Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

Douglas Selent and Neil Heffernan

Young Researchers’ Track

Modeling Student Dropout in Tutoring Systems . . . . . . . . . . . . . . . . . . . . . . 676
Michael Eagle and Tiffany Barnes

A Tool for Summarizing Students’ Changes across Drafts . . . . . . . . . . . . . 679
Homa B. Hashemi and Christian D. Schunn

Example-Based Problem Solving Support Using Concept Analysis
of Programming Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 683

Roya Hosseini and Peter Brusilovsky

Clustering Constructed Responses for Formative Assessment
in Comprehension SEEDING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686

Frank Paiva and Rodney D. Nielsen

Negotiation Driven Learning: A New Perspective of Learning Using
Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689

Raja M. Suleman, Riichiro Mizoguchi, and Mitsuru Ikeda



Table of Contents XXIX

Phenomenography of Student Perceptions of an Online Metacognitive
Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 692

Aaron Thomas

Toward Sense Making with Grounded Feedback . . . . . . . . . . . . . . . . . . . . . . 695
Eliane Stampfer Wiese and Kenneth R. Koedinger

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 699



 

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 1–10, 2014. 
© Springer International Publishing Switzerland 2014  

Sensor-Free Affect Detection for a Simulation-Based 
Science Inquiry Learning Environment 

Luc Paquette1, Ryan S.J.D. Baker1,2, Michael A. Sao Pedro2, Janice D. Gobert2,  
Lisa Rossi3, Adam Nakama2, and Zakkai Kauffman-Rogoff2 

1 Teachers College, Columbia University, New York, NY 
2 Worcester Polytechnic Institute, Worcester, MA 

3 Georgia Institute of Technology, Atlanta, GA  
paquette@tc.columbia.edu, baker2@exchange.tc.columbia.edu, 

{mikesp,jgobert,nakama}@wpi.edu, lrossi@gatech.edu, 
zakkai@gmail.com 

Abstract. Recently, there has been considerable interest in understanding the 
relationship between student affect and cognition. This research is facilitated by 
the advent of automated sensor-free detectors that have been designed to “infer” 
affect from the logs of student interactions within a learning environment. Such 
detectors allow for fine-grained analysis of the impact of different affective 
states on a range of learning outcome measures. However, these detectors have 
to date only been developed for a subset of online learning environments, in-
cluding problem-solving tutors, dialogue tutors, and narrative-based virtual en-
vironments. In this paper, we extend sensor-free affect detection to a science 
microworld environment, affording the possibility of more deeply studying and 
responding to student affect in this type of learning environment.  

Keywords: Educational data mining, affect detection, affective computing. 

1 Introduction 

It is well recognized that affect interacts with engagement and learning in complex 
ways [1, 2, 3, 4, 5, 6]. Learning software such as ITSs offer great opportunities  
to study those interactions due to their fine-grained interaction logs and their capacity 
to track students' actions at multiple levels. In recent years, this research has been 
facilitated by the use of sensor-free affect detectors that can automatically infer  
a range of student affective states from student interactions. Sensor-free detectors 
have been developed for three kinds of ITSs to date: problem-solving ITSs where 
answers are straightforward (e.g. [7, 8, 9]), dialogue tutors where the student iterates 
towards an answer (e.g. [10, 11]), and narrative-based virtual environments where the 
student explores a complex environment (e.g. [12]). One key finding is that, though 
the principles of affect detection are largely the same, the student behaviors associated 
with each affect often differ considerably based on the design of the learning envi-
ronment being used. For instance, affect detection in problem-solving tutors tends to 
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focus on timing, pauses, and patterns of errors, and the contexts in which they occur. 
In game-like virtual environments such as Crystal Island, affect detectors have been 
built using counts of how many times the player engaged in meaningful actions such 
as viewing books, and whether the student has completed important milestones [12]. 
In dialogue tutors, affect detection tends to focus on the actual content of student di-
alogue acts and how the content changes over time. Given this coupling between stu-
dent behaviors indicative of affective states and the learning environment in which 
they are demonstrated, it is important to study those behaviors in a broader range of 
learning environments to make sensor-free affect detection more feasible. 

In this paper, we study how to automatically detect student affect in the Inq-ITS 
inquiry learning environment [13] in which students use simulation and support tools 
to engage in inquiry. We do this by using a combination of data mining and ground-
truth labels that were obtained from field observations of affect. When compared with 
other systems, Inq-ITS's simulation microworlds offer a less constrained learning 
environment than problem-solving [7, 8, 9] or dialogue tutors [10, 11], allowing more 
exploratory behaviors. At the same time, simulation microworlds are more con-
strained than virtual environments, such as Crystal Island [12] and EcoMUVE [14], 
where students have a lot of freedom to explore the virtual world which can lead to a 
wider range of ways that affect can manifest in behaviors.  

Prior research on affect in simulation microworlds has provided evidence of a 
range of different affective states associated with learning. For example, relatively 
high amounts of boredom, an undesirable affect associated with both gaming the sys-
tem [1] and off-task behavior [15], has been observed in some simulation micro-
worlds [15]. The availability of sensor-free affect detectors for this type of environ-
ment would enable more in-depth studies of similar relationships, providing a better 
understanding of how affect impacts learning in these rich learning contexts.  

2 Inq-ITS Learning Environment 

The Inq-ITS learning environment (formerly known as Science Assistments [13]) is a 
web-based environment in which students conduct inquiry with interactive simula-
tions aligned to middle school Physical, Life, and Earth Science content described in 
the NGSS standards [16]. Activities have a driving question pertinent to a science 
topic, and require students to address the question by conducting an investigation 
using a simulation and other inquiry support tools.  

For example, a driving question in a Phase Change activity asks students to deter-
mine if one of three factors (size of a container, amount of ice to melt, and amount of 
heat applied to the ice) affects various measurable outcomes (e.g., melting or boiling 
point). Students address this by conducting inquiry, i.e., formulating a hypothesis, 
collecting data to test it with the simulation, analyzing the data, warranting their 
claims, and communicating their findings. Before making a hypothesis, students can 
first explore the simulation. More information about Inq-ITS can be found in [13, 17]. 
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3 Method 

3.1 Data Collection 

Data on student affect was collected from 326 students who conducted inquiry within 
the Inq-ITS system in 2011 in 11 different 8th grade classes from 3 schools in Massa-
chusetts. Students came from a diverse population (Table 1).  

Table 1. Demographic information for the three schools in our data set 

 First school Second school Third school State average 
Hispanic students 3% 6% 40% 10% 

African-American students 0% 2% 17% 8% 
Asian-American students 3% 12% 12% 6% 

Caucasian Students 89% 79% 28% 76% 
Students at or above proficient 
level on the MCAS science test 

53% 63% 10% 39% 

Students receiving reduced or 
free lunch 

5% 16% 83% 34% 

 
Four expert field observers coded student affect and engaged/disengaged behaviors 

while students used the software. Here, we focus on the affect codes. The observers 
based their judgment of a student's affect on the student's work context, actions, utter-
ances, facial expressions, body language, and interactions with teachers or fellow 
students [cf. 18, 19]. Within an observation, each observer coded affect on five cate-
gories [1]: boredom, confusion, frustration, engaged concentration (the affect asso-
ciated with the flow state [cf. 1]) and "?" (an affect different from the coding scheme 
and situations when coding was impossible/irrelevant such as when a student went to 
the bathroom).  

The coders used the HART app for Google Android handheld computers [8], 
which implements the Baker-Rodrigo Observation Method Protocol (BROMP) [1, 
20], a protocol for coding affect and behavior during use of educational software. All 
coding was conducted by the second, fifth, sixth, and seventh authors. These coders 
were previously trained by two expert coders. Pairs of coders achieved inter-rater 
reliability (Kappa) of 0.72 (second and sixth authors, affect), 0.60 (second and se-
venth, affect) and 0.60 (fifth author and additional expert coder, affect). This degree 
of reliability is on par with Kappas reported by past projects that have assessed the 
reliability of detecting naturally occurring emotional expressions [1, 18, 21, 22]. 

As mandated in BROMP [20], students were coded in a pre-chosen order, with 
each observation focusing on a specific student. To obtain the most representative 
indication possible of student affect, only the current student’s affect was coded.  
At the beginning of each class, an ordering of observation was chosen based on the 
class layout and was enforced using the hand-held observation software. A total of 
4155 observations were made across the 326 students. Each observation lasted up to 
twenty seconds, with observation time automatically coded by the handheld software. 
If affect and behavior were determined before twenty seconds elapsed, the coder 
moved to the next observation. If two distinct affective states occurred during a single 
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observation, only the first state observed was coded. Each observation was conducted 
using peripheral vision or side-glances to reduce disruption [cf. 1, 20, 22, 23].  

From the initial 4155 observations, 1214 (from 205 students, with an average of 
5.92 observations per students and a standard deviation of 5.94) were used in the final 
analyses. Of the 2941 discarded observations: 1146 were coded as "?"; 331 were 
made while the student had been inactive for more than 5 minutes; and 1464 were 
made when the student was not currently involved in a science inquiry task (for ex-
ample, when the student was answering other multiple-choice test questions [e.g. 24]). 
Within the 1214 remaining observations, the affective states had the following fre-
quencies: engaged concentration was observed 896 times (82.50%), boredom 109 
times (10.03%), confusion 44 times (4.05%), and frustration 38 times (3.50%).  

3.2 Feature Distillation 

In order to distill a feature set for our affect detectors, student actions within the soft-
ware were synchronized to the field observations. During data collections, both the 
handheld computers and the Inq-ITS server were synchronized to the same internet 
NTP time server. Actions during the 20 seconds prior to data entry by the observer 
were considered as co-occurring with the observation. A total of 127 features were 
developed using the actions that co-occurred with or preceded the observation. 

Our main feature set was based on the 73 features distilled by Sao Pedro et al. in 
[24], which looked at the different types of actions the students can make while they 
use Inq-ITS. Of the action types distilled in [24], we kept those that occurred in our 
data set: hypothesis variable changes, simulation variable changes, simulation pauses, 
incomplete trials run, complete trials run, all trials run and all relevant actions. We 
note that Sao Pedro et al. [24] did not include student interactions during the analysis 
stage of the inquiry process. We included analysis stage interactions to enable affect 
detection in that stage and created 7 new features to summarize those interactions.  

To compute values for the previously described features, we accumulated lists of 
each type of relevant action during the 60 seconds prior to an observation to capture 
the student's behavior immediately before it. For each of those lists, like [24], we 
calculated the minimum, maximum, average, median, standard deviations, and sum of 
the time spent on each action, as well as a count of the number of actions in the list. 
Since some observations were made when the student had been inactive for more than 
60 seconds, we repeated the same process to create a second set of features using lists 
from the 5 actions prior to the observation. This combination accounted for 112 of the 
features distilled from our dataset. 

We created two features related to the time elapsed since the last student action: a 
binary feature indicating whether the student has been inactive for the last 60 seconds, 
a potential indicator of off-task behavior [cf. 8], and the time elapsed between the last 
action of the student and the moment of the observation. 

Bayesian knowledge tracing (BKT) was used to distill features indicating whether 
students knew how to apply two inquiry skills, designing controlled experiments and 
testing stated hypothesis [24]. Three features were computed for each skill: the probabil-
ity that the skill was known before the most recent practice opportunity, the probability 
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the skill was known afterwards, and the probability that the student would correctly 
apply the skill on the most recent practice opportunity. In addition, we computed the 
ratio of positive and negative assessments during the last 5 student actions. 

An additional 3 features were distilled in relation to the different stages of the in-
quiry process: whether the student had explored the microworld before making a hy-
pothesis, whether the student had completed the current stage at least once in a past 
activity and the time elapsed so far during the current inquiry stage. 

Finally, in the version of Inq-ITS (Science Assistments) for which the interaction 
data were collected, each time a student enters a stage for the first time for the current 
activity, the system shows a text box containing orienting instructions for each stage 
of inquiry. We created three features related to this text box: whether it is currently 
open, the time elapsed since it was opened (if it is still opened), and whether the stu-
dent closed it during the 20-seconds of actions co-occurring with the observation.  

3.3 Machine Learning Algorithms 

We built separate detectors for four affective states: boredom, confusion, frustration, 
and engaged concentration for three stages of inquiry: hypothesizing, collecting data, 
and analyzing data. Thus, each affective state was predicted separately – e.g. BORED 
was distinguished from NOT BORED (i.e., all other affective states) within each in-
quiry stage (i.e., BORED/NOT BORED in hypothesizing, BORED/NOT BORED 
while collecting data, etc.). Separate detectors were created for each stage because 
they each have specific actions associated with its user interface. As such, the patterns 
of actions related to each affective state may differ between stages. For the specific 
case of engaged concentration, cases where students were off-task were considered 
NOT ENG. CONC., since this reflects engaged concentration with something other 
than learning or Inq-ITS (e.g. the day’s classroom gossip). Also, no detectors were 
built for the "exploring" stage due to the low number of observations (only 23). Table 
2 shows the frequency of each affective state.  

Each detector was evaluated using leave-one-out student-level cross-validation. In 
this process, for each student, a detector is built using data from every other student 
before being tested on that student. By cross-validating at this level, we increase con-
fidence that detectors we build with a specific feature set will be accurate for new 
students. In addition, re-sampling was used to make the class frequency more equal 
for detector development (e.g. 96.15% of the observations were labeled as “not fru-
strated” during hypothesizing). However, all performance calculations were made 
with reference to the original dataset, as in [12]. 

Table 2. Frequency of the affect observation across the four stages of inquiry 

 Hypothesizing Experimenting Analyzing 
BORED 35 (11.22%) 43 (8.14%) 28 (7.98%) 

CONFUSED 13 (4.17%) 19 (3.60%) 10 (2.85%) 
FRUSTRATED 12 (3.85%) 13 (2.46%) 10 (2.85%) 
ENG. CONC. 220 (70.51%) 390 (73.86%) 271 (77.21%) 

 



6 L. Paquette et al. 

 

We fit sensor-free affect detectors using three common classification algorithms 
that have been successful for building affect detectors in the past [8, 9]: J48 decision 
trees, JRip, and step regression (linear regression with a step function). By fitting the 
detectors using multiple algorithms, we can select the best algorithm for each affec-
tive state, as manifested in the relationship between the distilled features and the af-
fect labels (linear, small clusters, etc.). Detector performance was assessed using two 
metrics: Cohen's Kappa [25] and A' computed as the Wilcoxon statistic [26]. Cohen's 
Kappa assesses the degree to which the detector is better than chance at identifying 
the student's affective state for a specific observation. A Kappa of 0 indicates that the 
detector performs at chance, and a Kappa of 1 indicates that the detector performs 
perfectly. A' is the probability that the algorithm will correctly identify whether an 
observation is an example of a specific affective state. A' is equivalent to the area 
under the ROC curve in signal detection theory, and is approximated by W [26]. A 
model with an A' of 0.5 performs at chance, and a model with an A' of 1.0 performs 
perfectly. A' was computed at the observation-level. 

Feature selection for machine learning was conducted using two semi-automated 
procedures. First, we applied forward selection, a process in which the feature that 
most improves model performance is added repeatedly until adding additional fea-
tures no longer improves performance. During forward selection, cross-validated 
Kappa and A' on the original non-resampled dataset were used. Kappa was used as the 
main performance metric for selecting a feature, but an alternate feature was selected 
when the model's A' was judged to be unusually low when compared to the value of 
Kappa. Then, backward elimination was applied on the sets of features generated by 
the forward selection algorithm to determine whether a simpler model could achieve 
better or equivalent performance, thereby reducing model over-fitting. 

4 Results 

We evaluate the degree to which the detectors for each construct within each inquiry 
stage can identify their respective affect. Detectors’ performance over all four con-
structs and across all inquiry tasks was better than chance (A’ = .50, Kappa = 0.0) and 
comparably well to past sensor-free detectors of affect. Table 3 shows the perfor-
mance of the 12 detectors we built and provides a list of the features used in each 
detector. Descriptions of each feature (from F1 to F47) are provided in Table 4. The 
average student cross-validated Kappa was 0.354 and the average A' was 0.720. This 
is above the average Kappa of 0.296 and A' of 0.682 obtained in a study with similar 
validation [9] within the ASSISTments problem-solving ITS for math. The detectors 
described in [12] for a virtual environment achieved an average accuracy that was 
16% better than the base rate (approximately comparable to a Kappa of 0.16). The 
detectors for Cognitive Tutor Algebra from [8] achieved an average Kappa of 0.30. 

Another positive aspect of our detectors is that they were cross-validated at the 
student-level, and developed using a diverse population (Table 1). As such, it is likely 
that they will generalize to new students across the entire population of Inq-ITS users.  
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Table 3. Each of the models and their student-level cross-validated performances 

 Hypothesizing Experimenting Analyzing 

BORED 

J48 
F2, F7, F31, F38 
Kappa = 0.305 

A' = 0.699 

JRip 
F3, F15, F19, F35, 

F36 
Kappa = 0.252 

A' = 0.704 

J48 
F1, F10, F22, F37, F45, 

F47 
Kappa = 0.438 

A' = 0.767 

CONFUSED 

J48 
F2, F14, F31, F45 

Kappa = 0.327 
A' = 0.704 

JRip 
F2, F3, F9, F16, F20 

Kappa = 0.355 
A' = 0.777 

J48 
F20, F28, F33, F38 

Kappa = 0.319 
A' = 0.724 

FRUSTRATED 

JRip 
F2, F5, F31, F42, F44, 

F46 
Kappa = 0.301 

A' = 0.688 

J48 
F8, F11, F18, F30, 

F34, F39, F46 
Kappa = 0.486 

A' = 0.762 

J48 
F13, F23, F24, F26, F30, 

F32 
Kappa = 0.379 

A' = 0.729 

CONCENTRATED 

Step regression 
F3, F4, F6, F12, F29, 

F36, F43 
Kappa = 0.336 

A' = 0.715 

J48 
F17, F21, F27, F38, 

F41 
Kappa = 0.313 

A' = 0.638 

Step regression 
F17, F23, F25, F34, F40 

Kappa = 0.431 
A' = 0.738 

Table 4. List of all the features used in the final detectors 

F1: The number of hypothesis variables changed in the last 60 seconds. 
F2: The mean of all time taken to change one of the hypothesis variable in the last 60 seconds. 
F3: The sum of all time taken to change one of the hypothesis variable in the last 60 seconds. 
F4: The number of hypothesis variable changed in the last 5 student actions. 
F5: The maximum of all time taken to change one of the hypothesis variable in the last 5 student ac-
tions. 
F6: The median of all time taken to change one of the hypothesis variable in the last 5 student actions. 
F7: The standard deviation of all time taken for hypothesis variable changes in the last 5 student actions. 
F8: The minimum of all time taken to change one of the simulation variable in the last 60 seconds. 
F9: The maximum of all time taken to change one of the simulation variable in the last 60 seconds. 
F10: The median of all the time taken to change the value of a simulation variable in the last 60 
seconds. 
F11: The mean of all time taken to change one of the simulation variable in the last 60 seconds. 
F12: The sum of all time taken changing a simulation variable in the last 60 seconds. 
F13: The mean of all time taken to change one of the simulation variable in the last 5 student actions. 
F14: The sum of all the time spent on completed trials run in the last 60 seconds. 
F15: The minimum of all the time taken executing an incomplete trial in the last 60 seconds. 
F16: The number of incomplete trials run in the last 5 student actions. 
F17: The sum of all time spent executing trials in the last 60 seconds. 
F18: The maximum of all time spent executing a trial in the last 5 student actions. 
F19: The sum of all time taken executing trials in the last 5 student actions. 
F20: The number of simulation pauses in the last 5 student actions. 
F21: The mean of all time spent on simulation pauses in the last 5 student actions. 
F22: The mean of all the time taken to execute one of the analysis action in the last 60 seconds. 
F23: The sum of all time taken to execute any analysis action in the last 60 seconds. 
F24: The number of analysis actions amongst the last 5 student actions. 
F25: The mean of all time taken to execute any analysis action in the last 5 student actions. 
F26: The standard deviation of all time taken to execute any analysis action in the last 5 student actions. 
F27: The number of relevant actions executed in the last 60 seconds. 
F28: The minimum of all time taken to execute any relevant action in the last 60 seconds. 
F29: The median of all time taken to execute any relevant action in the last 60 seconds. 
F30: The standard deviation of all time taken to execute any relevant action in the last 60 seconds. 
F31: The sum of all the time taken to execute any relevant action in the last 60 seconds. 
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F32: The number of relevant actions amongst the last 5 student actions. 
F33: The median of all time taken to execute any relevant action in the last 5 student actions. 
F34: The standard deviation of all time taken to execute any relevant action in the last 5 student actions. 
F35: The probability of knowing how to design controlled exp. before the most recent practice opportu-
nity. 
F36: The probability of knowing how to design controlled exp. after the most recent practice opportuni-
ty. 
F37: The probability of correctly designing a controlled exp. on the most recent practice opportunity. 
F38: The probability of knowing how to test stated hypothesis before the most recent practice opportu-
nity. 
F39: Whether the student was inactive in the software for the last 60 seconds. 
F40: The time elapsed since the last user action at the moment of the observation. 
F41: Whether the student entered the exploration stage during this activity. 
F42: Whether the student has completed the current stage at least once in a previous activity. 
F43: The time elapsed since the start of the current stage. 
F44: Whether the text box is currently opened. 
F45: The time elapsed since the explanation text box was opened, if it is still opened. 
F46: Whether the student closed the text box during the observation. 
F47: The ratio of positive and negative assessments by the system for the last 5 student actions. 

5 Discussion and Conclusion 

In this paper, we presented 12 sensor-free detectors that detect boredom, confusion, 
frustration, and engaged concentration in the different stages of inquiry in the Inq-ITS 
environment [17]. This work represents the first automated sensor-free detectors of 
student affect in simulation microworlds built. Conducting affect detection in a simu-
lation microworld such as Inq-ITS presents different challenges than in other online 
learning environments. The absence of action-by-action assessment of correctness as 
in problem-based tutors (e.g. [8]) and the lack of on-demand help (e.g. [8, 9, 10]) 
hinder the engineering of features similar to those that have proven effective in prob-
lem-solving tutors and dialogue tutors such as Cognitive Tutor [8], ASSISTments [9] 
and AutoTutor [10]. However, other features such as the time spent on different types 
of actions, the probability that the student knew two key skills [24], and whether the 
student was inactive in the last 60 seconds, proved useful for this challenge (Table 4). 

The non-uniform user interface for the different stages of inquiry also proved to be 
an important consideration for the generation of affect detectors. Each stage has spe-
cific types of actions associated with it and thus patterns of actions related to each 
affect differ in each stage. This is a general problem for affect detection in learning 
environments where the student-computer interaction can change considerably from 
moment to moment. An additional challenge comes from having many observations 
that co-occur with actions from two stages. In those situations, the interpretation, as 
an indicator of a specific affect, might differ for the same type of actions depending 
on whether the action occurred shortly before changing stages or right after changing 
stage. For these reasons, we created different detectors for each stage of the inquiry 
process in Inq-ITS. As can be seen in Table 3, few of the best features for individual 
detectors were reused across multiple stages for the same affect. No features were 
reused across the BORED detectors, F2 and F20 were reused for CONFUSED, F30 
and F46 for FRUSTRATED, and F17 for CONCENTRATED.  

The detectors proposed in this paper can be used to study whether specific features of 
the Inq-ITS system have an impact on the occurrence of affective states. For example, a 
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brief analysis indicates that in our dataset (collected on a prior version of Inq-ITS), 23 out 
of the 38 observations of frustration (60.53%) occurred when a text box was open or short-
ly after it was closed. This is more than one would expect as only 36.90% of all the obser-
vations matched this condition, and this feature has subsequently been changed in Inq-ITS.  

By developing automated detectors that can identify boredom, confusion, frustra-
tion, and engaged concentration, we can take a step towards allowing Inq-ITS to ef-
fectively adapt to the full range of student's interaction choices during learning and 
develop interventions that target very specific kinds of disengaged behaviors, as has 
been successfully done to improve learning in other systems [as in 27, 28, and 29] to 
offset negative affect states such as boredom.  
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Abstract. Csikszentmihalyi’s flow theory states the components (e.g., balance 
between skill and challenge) that lead to an optimal state (referred to as flow 
state, or under flow experience) of intrinsic motivation and personal experience. 
Recent research has begun to validate the claims stated by the theory and extend 
the provided statements to the design of pedagogical interactions. To incorpo-
rate the theory in a design, automatic detector of flow is required. However, lit-
tle attention has been drawn to this filed, and the detection of flow is currently 
still dominated by using surveys. Hence, within this paper, we present an auto-
mated detector which is able to identify the students that are in flow. This detec-
tor is developed using a step regression approach, with data collected from  
college students learning linear algebra from a step-based tutoring system. 

Keywords: Student Modeling, Flow Theory, Educational Data Mining, Intelli-
gent Tutoring System. 

1 Introduction 

Personal experiences are essential to pedagogical interactions. Hence, to improve 
personal experience, many studies have strived to increase the sensitivity and respon-
siveness of intelligent tutoring systems (ITSs) to various affects of students. On the 
other hand, Csíkszentmihályi’s flow theory states the components that may lead to an 
optimal state (referred to as flow state, or under flow experience) of intrinsic motiva-
tion and personal experience [7]. When the flow theory is applied to education, nu-
merous empirical studies on teaching, including teaching in high school classrooms 
by using traditional approaches (i.e. not ITS) [18, 19] and also teaching by using tu-
toring systems (TSs) [10, 14, 16], have reported that students engage in learning 
activities the most when they perceive both challenges and their skills as high.  

The learning contents provided to students should be perceived as challenging yet 
not too difficult, for ensuring an optimal experience [18]. But in practice, learning 
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contents are usually non-adaptive, which are likely to fail in producing flow for most 
students [17]. Because these learning contents that maintain at a specific difficulty 
level constantly may be monotonous for students with high skill, and frustrating for 
students with low skills. Fortunately, modern ITSs [20] that are capable of accurately 
identifying student’s condition (e.g., competencies, emotion states, or flow), may be 
able to provide adaptive learning contents by selecting specific problems of appropri-
ate properties to strike a balance between the perceived challenge and a student’s skill 
level [7, 15]. However, despite the recent advances in affect detection and competen-
cies detection, the development of automatic flow detector has been lack of attention. 
Hence, this study presents a flow detector designed to identify learners that are in the 
flow state, when interacting with a step-based TS for linear algebra (LA).  

2 Method 

2.1 Participants 

The dataset was collected over a period of two months. Participants were 78 college 
students required to have a basic understanding of high-school algebra and not have 
taken any college-level linear-algebra courses. Each student took from two to three 
weeks to complete the study over multiple sessions. In total, 55 students completed 
the study.  

2.2 Domain and Procedure 

The step-based TS used in this study is called Tempranillo. Within Tempranillo, stu-
dents complete LA problems and are formatively assessed based on a knowledge com-
ponent (KC) model, providing information about their knowledge to their teachers, 
while being assisted with scaffolding, help, and feedback.  

Our work used the “linear transformations” and the “orthogonality” of LA domain 
as covered in the first-year college LA course. The fifteen primary KCs were: Defini-
tion of Linear Transformation (KC1), Definition of Kernel (KC2), Definition of Im-
age and Range (KC3), Theorem 4.2.1 in [12] (KC4), Theorem 4.2.4 in [12] (KC5), 
Similarity (KC6), Definition of Distance Between X and Y (KC7), Theorem 5.1.1 in 
[12] (KC8), Cauchy-Schwarz Inequality (KC9), Orthogonality (KC10), Scalar and 
Vector Projections (KC11), Orthogonal Complement (KC12), Fundamental Subspac-
es (KC13), Theorem 5.1.1 in [12] (KC14), W = U ⊕ V (KC15). 

All participants experienced an identical procedure and presented with same mate-
rials. The procedure was as following: 1) a background survey; 2) read a textbook 
covering the target domain knowledge; 3) took a pretest; 4) solved the same fifteen 
training problems in the same order on Tempranillo; and 5) took a posttest. The pret-
est and posttest were identical. A KC-based score for each KC application was given 
by identifying all relevant KCs over all test questions. In the following sections, the 
evaluation of the competence of each student is provided based on the sum of all of 
these KC-based scores. The tests contained 36 test questions which cover 41 KC oc-
currences. All test scores were normalized to fall in the range of [0,1] for comparison 
purposes. 
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3.2 Data Features 

This study selects a set of action-level features based on a combination of theory and 
prior work. In particular, prior research on validating flow theory [15] and developing 
automatic affect detectors [9, 21] influenced the design of features in this study. 

The first category of basic features focused on the basic properties of a step, as fol-
lowing: (1) type of the step (providing definition/receiving scaffolding hints/solving 
problem), (2) step result (no response required/correct step/error step), (3) step num-
ber (the number of steps that have been done previously on the current task), (4) the 
proportion of correct steps, (5) the proportion of help requests, and (6) the proportion 
of answers that were incorrect and received bug messages. 

The second category of basic features focused on overall response time and time 
spent processing tutor-provided assistance, as following: (7) average response time, 
(8) the average unitized response time (in the standard deviations above or below the 
mean for students on the current task), (9) the proportion of actions that involved a 
fast response after the student received a bug message (bug messages indicate why the 
system thinks the student made an error), (10) the proportion of slow responses after a 
bug message, (11) the proportion of fast responses after requesting a hint, (12) the 
proportion of slow responses after requesting a hint, (13) the proportion of fast res-
ponses after receiving a hint and entering a correct answer, and (14) the proportion of 
slow responses after receiving a hint and entering a correct answer. 

The third category of basic features focused on the affect information [21] of a stu-
dent, as following: (15) average keystroke duration, (16) average mouse click duration, 
(17) standard deviation of keystroke duration, (18) standard deviation of keystroke 
duration, (19) standard deviation of mouse click duration, (20) average keystroke la-
tency, (21) average mouse click latency, (22) standard deviation of keystroke latency, 
(23) standard deviation of mouse click latency, (24) valence, and (25) arousal. 

To assess the affective state of a student (i.e. (24) and (25)), the Self-Assessment 
Manikin (SAM), an affective rating system devised by Lang [11], was used to acquire 
affective ratings. The SAM is a non-verbal pictorial assessment that is designed to 
assess the two emotional dimensions: valence and arousal directly by means of two 
sets of graphical manikins (the third dimension (i.e. dominance) is typically ignored 
in latest studies). The SAM has been extensively tested and has also been used in 
diverse theoretical studies and applications [3-5]. The SAM takes a very short time to 
complete (5 to 10 seconds), and there is little chance of confusion with terms as in 
verbal assessments. The SAM was also reported to be capable of indexing cross-
cultural results, and the results obtained using a Semantic Differential scale. The 
SAM was presented to the students each time right before the presentation of the 
skills-challenge probes. 

Some of these features relied upon cut-off thresholds. This study chooses an opti-
mized cut-off threshold using a procedure discussed in the next section. 

3.3 Detector Development 

This study develops flow detectors for detecting students that are frustrated, boredom, 
or in flow using 2-class detection models built by using step-regression (not step-wise 
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regression). For building each 2-class detection model, step regression firstly fits a 
linear regression (LR) model to detect the labels of the flow condition (i.e. boredom, 
flow, or frustration) using the features collected from pedagogical interactions during 
the experiment. Then, all students for whom the LR detected values equal to or higher 
than a pre-chosen threshold are assessed to be frustrated, in flow, or bored. For the 
choice of the thresholds, 0.5 is used because it is standard convention for 2-class clas-
sification models (0.5 is halfway between 0 and 1). This study takes numerical detec-
tions of flow conditions and transforms them into a binary detection of whether a 
student is bored, in flow, or frustrated, which can be compared to the labels initially 
derived from the reported challenge and skills. 

The models of detecting flow conditions are validated using 10-Fold CV. In each 
of the 10-Fold CV, the data points are divided into 10 groups. Each of the groups 
serves successively as a test set, whereas the remaining 9 groups serve as a training 
set to build a model. The cross-validated performance assesses the model’s predictive 
performance when applied to new data, which is an indicator of the model’s ability to 
generalize. Two criterion are used to determine goodness for each model: (1) Area 
Under the ROC Curve (AUC), and (2) Cohen’s Kappa (or κ). The AUC and κ are 
used as indicators to access that the possibility that successful classifications are oc-
curred by chance [2].  

This study develops detectors by using all the features discussed above in section 
3.2. Some of the features that are depend on cut-off parameters (e.g., how many 
seconds differentiates a “fast response” from a “slow response”). These parameters 
are optimized by selecting a best cut-off threshold judged by using the AUC values 
achieved by each of the step-regression models of single-feature. To reduce the possi-
bility of over-fitting1, this study reduces the parameter space of models before fitting 
full models by using Akaike criterion [1] for model selection. In addition, all the co-
linear features are also excluded. For attribute selection, this study applies forward 
selection to find the best model. In a forward selection process, the best single-feature 
model is chosen, and then the feature that improves the model most is repeatedly add-
ed into the model until no more features can be added to improve the model.  

4 Results 

The best-fitting models for each feature set are shown in Table 1. The first column in 
Table 1 shows the detection target of the models. The second column in Table 1  
shows the built models. The third and firth columns in Table 1 list the AUC and κ val-
ues of the corresponding models. The model built to detect students that are in flow 
achieves an acceptable cross-validated κ of 0.33 (which is 33% better than the baseline 
performance [6] that is achieved by chance). The AUC value for the model is 0.64, 
which indicates that the model can differentiate a student that is in flow from not being 
in flow, at 64% of the time. This level of performance is significantly better than chance 
(p < .001), and may be considered to be sufficient to enable fail-soft intervention. 

                                                           
1  A set of features that does not generalize well from old data to new data. 
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Table 1. Step regression models with cross-validated AUC and κ (higher values of 
model coefficients correspond to the target of detections) 

Target of 
Detection 

Model AUC κ 

Boredom 
0.0004 * AVG_MouseClickDuration + 0.0439 * Step-

Number - 0.0689 * Valence + 0.0674 * Arousal + 0.0247 
0.86c 0.50c 

In Flow 
-0.0004 * AVG_MouseClickDuration - 0.036 * Step-

Number + 0.048  * Valence + 0.5509 
0.64c 0.33c 

Frustration 0.0252 * Valence - 0.0596 * Arousal + 0.3375 0.91c 0.49c 

a p < .05, b p < .01, c p < .001 on rejecting null hypothesis (i.e. classifier predicting at random) 

 
Table 1 also reveals that the models built to detecting boredom and frustration achieve 
moderately better cross-validated AUC and κ than the model built to detect students 
that are in flow. In that 0.91 and 0.86 of AUC are achieved by the built models for 
detecting frustration and boredom, respectively. Furthermore, 0.49 and 0.50 of κ are 
achieved for detecting frustration and boredom, respectively. 

The features that constitute the three models are similar, and that all of the models 
are quite simple. In all of the models, a common feature is valence. In addition, arous-
al is also a common feature of the models for detecting frustration and boredom. Be-
cause the flow conditions are related to personal experience, it seems reasonable that 
valence and arousal would be associated with these conditions.  A positive coeffi-
cient for valence indicates that students who are in a positive emotion state are more 
likely to be in flow; whereas a negative coefficient for the number of steps shows that 
more steps done by the students,  the less likely the students to be in flow. For the 
coefficients of average mouse click duration in Table 1, although the values are rela-
tively small, exist in the models for detecting flow and boredom. The average mouse 
click duration has been previously shown to predict affective states [21]; as such, it 
makes sense that this feature may be related to the flow conditions. The results indi-
cate that the average mouse click duration is positively correlated to boredom but 
negatively correlated to flow. Furthermore, the positive coefficient for the number of 
steps in the model for detecting boredom indicates that the longer the mouse click 
durations are, the more likely a student is bored. 

5 Discussion and Conclusions 

This study presents models that can distinguish with reasonable accuracy whether a 
student is in flow, boredom, and frustration. The flow conditions are operationally 
defined as the difference between the challenges received in the tutor and the per-
ceived skills level. These models are developed in the context of pedagogical interac-
tions between human students and Tempranillo (i.e. a tutor for LA), and are validated 
based on 10-Fold CVs. The built models can identify a student that is bored 86% of 
the time, performing 50% better than chance; identify a student that is in flow 64% of 
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the time, performing 33% better than chance; and identify a student that is frustrated 
91% of the time, performing 49% better than chance. These models are built based on 
four features, including the two affective dimensions and the two features related to 
the interactions with the learning software. The results are in line with theory [7] that 
suggests the relationship between emotion related constructs and flow conditions, and 
also support the use of affect detectors on detecting flow conditions [15]. The finding 
of the relationship between mouse click duration [21] and flow conditions also sug-
gests that the students’ usage of standard input devices is a feature which may contain 
abundant information for developing future low-cost affect detectors. The flow detec-
tors have considerable potential usefulness for developing ITSs because traditional 
non-adaptive learning contents are likely to fail to promote flow experience of stu-
dents during learning, and that the traditional methods (i.e. surveys) to assess stu-
dents’ flow conditions required the students to be interrupted from the performing 
activities. An ITS with automatic detector of flow condition can identify students’ 
conditions related to flow construct and offer them remediation specific to their needs, 
helping a student to maintain in flow experience to hold the intrinsic motivation that 
is necessary for achieving optimal learning [8]. Furthermore, the improvement of the 
detectors’ performance may lead to flow-path research in ITSs, that is, tracing the 
path of a student when performing a task through process points shown in Fig. 1. The 
exploration of the built models’ generality to other learning domains and types of 
tutors may also be an important area of future work. 
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Abstract. This research predicted behavioral disengagement using quitting be-
haviors while learning from instructional texts. Supervised machine learning al-
gorithms were used to predict if students would quit an upcoming text by ana-
lyzing reading behaviors observed in previous texts. Behavioral disengagement 
(quitting) at any point during the text was predicted with an accuracy of 76.5% 
(48% above chance), before students even began engaging with the text. We al-
so predicted if a student would quit reading on the first page of a text or contin-
ue reading past the first page with an accuracy of 88.5% (29% above chance), 
as well as if students would quit sometime after the first page with an accuracy 
of 81.4% (51% greater than chance). Both actual quits and predicted quits were 
significantly related to learning, which provides some evidence for the predic-
tive validity of our model. Implications and future work related to ITSs are also 
discussed. 

Keywords: engagement, disengagement, affect detection, reading, ITSs. 

1 Introduction 

One of the benefits afforded by intelligent tutoring systems (ITSs) and other advanced 
learning technologies is the students’ ability to move at their own pace through learn-
ing sessions. In many systems, students have choice over the topics and activities they 
engage in. Importantly, they can also choose how long to spend on each one. Howev-
er, one caveat to this type of choice is that disengagement can occur before activities 
or topics are completed, leaving vital information unseen. Therefore, identifying when 
disengagement will occur may help inform timely interventions, such as temporarily 
suppressing choice or providing motivational messages to persist [1], as well as de-
velopment of educational materials that keep students engaged in order to achieve 
learning goals. 

There has been a growing interest in automatically detecting students’ affective 
states and engagement during learning (see [2] for a review). One focus, in particular, 
has been on identifying behaviors associated with engagement/disengagement during 
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learning because of the necessity of engagement for learning [3]. In fact, previous 
research has had success in modeling and detecting various types of disengaged beha-
viors within ITSs [4–9]. For example, an automatic detector for “gaming” the system 
can reliably detect when students exploit the system to get correct answers [4]. 
Another detector also made it possible to recognize if a student is purely off-task or 
engaging in on-task conversation [10]. These types of detectors have led to helpful 
design interventions, as well as more accurate student models of learning [11]. 

Previous work has also been able to classify different levels of engagement using 
log files. Cocea and Weibelzahl [12] classified 10-minute intervals of a learning ses-
sion as one of three levels of engagement: engaged, disengaged, or neutral. Ground 
truth was achieved from labels provided by expert human coders. This study reported 
accuracies 71% greater than baseline (Cohen’s kappa = .713) using features extracted 
from log file information, such as reading behaviors (i.e., average time, number of 
pages) and test information (i.e., average time, number of tests, correct answers). This 
model displayed impressive accuracies for diagnosing students’ current level of en-
gagement during the specified 10-minute intervals and appears to generalize across 
multiple learning environments [13]; however, predictors of future engagement have 
not yet been established. 

All of the detectors mentioned thus far have focused on a specific aspect of en-
gagement (or disengagement), such as behaviors like gaming the system. Indeed, 
engagement has been operationalized in numerous ways due to its multi-faceted na-
ture [14]. Specifically, engagement can be thought of as encompassing three distinct 
components: (a) affect (e.g., positive and negative feelings), (b) behavior (e.g., persis-
tence, effort), and (c) cognition (e.g., goals, self-regulated behaviors) [15]. Typically, 
disengagement detectors target some combination of these three components, initially 
relying on external coders to make some inference about the cognitive/affective com-
ponents based on student behavior or self-report measures. One problem then, as 
noted by Baker and Rossi [14], is that models of engagement are difficult to validate 
beyond face validity because engagement is complex, and ground truth is achieved 
via human judgments, which are inherently subjective.  

The current research focus is on a behavioral indicator of disengagement. Specifi-
cally, we build a predictor of behavioral disengagement, which we operationally  
define as the point at which a student opts to stop interacting with (quits) a given  
activity within a learning session. Importantly, this operationalization of behavioral 
engagement does not require any external human coders to initially establish ground 
truth. A distinguishing aspect of this work is that our model is predictive in that dis-
engagement on the current activity N is predicted from interaction patterns observed 
during the previous N-1 activities instead of diagnostic, where actions in N are used 
to detect disengagement in N after it occurs. A predictive model can ostensibly be 
used to prevent the onset of disengagement, which is advantageous since disengage-
ment and boredom are long-lasting persistent negative states [16]. 

The instructional reading task in the present research is a self-paced learning task 
where students control the pace and time spent on each text. Self-paced reading is  
an important component within a number of interactive learning technologies and 
ITSs, such as in Operation ARA!, iSTART, and ELM-ART [17–19]. For example,  
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in Operation ARA!, students read an electronic textbook before engaging in tutorial 
dialogs. We use sensor-free information from previous activities (i.e., log files of 
reading patterns) to predict quitting before the current text ever begins. The ability to 
unobtrusively predict when quitting behaviors will occur provides the foundation for 
effective design of interventions to keep students engaged. 

2 Methods 

2.1 Data Collection 

Participants. Data was obtained from 173 undergraduate students from a private 
university in the Midwest and a large public Mid-south university in the US who par-
ticipated for course credit.  

Texts. Students spent a total of 30 minutes completing reading from instructional 
texts. The reading task consisted of eight texts on scientific research methods topics 
(disguised measures, gathering data, hypotheses, scientific method, construct validity, 
variables, criterion of precision, expectancy bias) adapted from a popular textbook 
[20]. Texts had an average length of 1068 words (SD = 35.7) with a Flesch-Kincaid 
Grade Level score of about 13.5, which is indicative of some difficulty. Order of top-
ics was counterbalanced across students.  

Procedure. Students completed an informed consent and a short trial to familiarize 
themselves with the interface. Each student was then left alone in a small room for 30 
minutes with the reading interface. No other devices or distractions, such as a watch or 
cell phone were permitted. Students were presented with a blank screen with a button 
labeled READ to begin the reading task. A text was presented once a student selected 
the READ button. Texts were presented one page at a time with 77 words per page. 
Students could use the right and left arrow keys to navigate through the text with the 
ability to move backward to previous pages or forward to the next page. Students had 
the capability of quitting the text at any point in time by pressing the ‘C’ key (“Change 
to a different text”). If students hit the ‘C’ key, a new text would appear. Students 
could press the ‘C’ key up to seven times and receive a new text (eight texts). Only 
data from the first time students viewed each text were analyzed in order to avoid fami-
liarity biases after seeing a text multiple times. In sum, over the course of the 30 mi-
nutes, students were able to read as much or as little of each text as they chose. 

As a learning measure, students completed a posttest involving 48 multiple-choice 
questions (six per text) about the information from the eight texts after the reading 
session. Questions were developed in adherence to the Graesser-Person question-
asking taxonomy [21]. The questions targeted specific sections in the text, such that 
answers were not apparent unless the targeted section of text was read.  

Quitting Behaviors. Students’ reading time information (e.g., how long they spent 
on each page) was collected during the reading task. Every text was classified as Quit, 
Completed, or Timeout based on how the student interacted with the text. Instances 
labeled Quit consisted of texts that students started reading, but hit the ‘C’ key to exit 
the text before reaching the end of the text. Completed instances were texts that were 
read by students in their entirety. Finally, an instance was labeled as Timeout if the 
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learning session was interrupted in the midst of reading due to the 30 minute time 
limit, and therefore could not be classified as Quit or Completed. The instances (texts) 
that were labeled as Timeout were removed from the dataset because we were not 
interested in a forced exit from a text. In total, there were 911 instances used to build 
models, where students either quit (n = 311) or completed (n = 600) a text after be-
ginning to read it for the first time, thereby yielding a 34% rate of quitting. On aver-
age, students quit texts after reading 32.9% of the pages (SD = 28.3%). 

2.2 Model Building 

Feature Engineering and Selection. A total of 18 features were computed from 
reading behaviors and reading times. For each text analyzed (text N), two types of 
features were extracted: previous text information (text N-1) and cumulative previous 
texts information [e.g., features from all previous texts (1 to N-1) averaged]. No fea-
ture used any information from the current text being classified or any text that was 
viewed later, which is essential for predictive modeling. Table 1 contains a list of the 
features that were computed based on the logged reading behaviors (e.g., reading 
times, quit behaviors).  

Using a backward feature selection method, features from the previous text feature 
set were removed one at a time depending on model performance after removing a 
feature1. If model performance declined, the feature was retained for the final model. 
Next, features from the cumulative previous texts feature set were removed in the 
same manner. Finally, backward selection was used on the combined set of remaining 
features from the two feature sets to produce a final set of features for each classifica-
tion task. There were no features that correlated higher than .80 or higher, which was 
used as a threshold to remove correlated features. 

Supervised Classification. We used supervised machine learning to build predic-
tors for three different classification tasks. The first task attempted to classify if a stu-
dent would quit at any point during a particular text vs. completely read the text. The 
second task attempted to classify if a student would quit on the first page of the text vs. 
continue reading past the first page (even if they might eventually quit at some point). 
Finally, the third task aimed to classify if a student would quit at any point past page 
one vs. completely read the text. Six binary classification algorithms provided in Rapid 
Miner were used for each of the models, including Bayes Net, RIPPER (JRip imple-
mentation), C4.5 (J48 implementation), Naïve Bayes, SMO, and VFI.  

Model Validation. All models were evaluated using leave-one-student-out cross-
validation, in which k-1 students are used in the training data set. The model is then 
tested on the student who was not used in the training data. This process is repeated 
until every student has been used as the testing set one time. The average results from 
the k iterations provide an estimation of classification accuracy. Cross-validating at 
the student level increases confidence that models will be more generalizable when 
applied to new students because the testing and training sets are independent.   

                                                           
1  We also tested models using all 18 features, which exhibited worse performance (assessed 

via Cohen’s Kappa) than each of the three final models using the selected features. 
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Table 1. Description of features and indication of which final model(s) each was included (+) 

Features 
 

Quitting on 
Any Page 

vs.  
Completing 
 

Quitting on 
Page 1  

vs.  
Continuing 

Quitting 
After Page 1 

vs.  
Completing 

Previous Text Only    

Page 1 Reading Time (RT)   + + 

Quit On Page 1 (Yes/No)  + + 

Location of Quit (First 3 Pages, After 3 Pages, None)   + + 

Max Page Number Seen    

Median Page Reading Time (RT)     

Minimum Page Reading Time    

Maximum Page Reading Time    

Proportion of Text Seen   + + 

Reading Time 1 Page Before Exit  + +  

Proportion of Pages < 5s Reading Time + + + 

Total Reading Time   + + 

Text Exit (Quit/Completed) +  + 

Cumulative Previous Texts Seen    

Maximum Page Number Seen  + +  

Median Page Reading Time   +  

Minimum Page Reading Time    

Maximum Page Reading Time    

Proportion of Pages < 5s Reading Time  + +  

Total Reading Time    

 
Metrics. Classification accuracy was evaluated using precision, recall [22], and 

Cohen’s kappa [23]. Precision represents the percentage of texts classified as Quit that 
were actually Quit. Recall represents the percentage of texts that were actually Quit 
and also correctly classified as Quit. Cohen’s kappa takes base rates into considera-
tion and indicates the degree to which the model is better than chance (kappa of 0) at 
correctly predicting whether the text will be Quit or Completed. A kappa value of -0.5 
or 0.5 would indicate the model is classifying -50% worse or 50% better than chance, 
respectively. We also report percent correctly classified (accuracy), but caution that 
this should be interpreted cautiously since class imbalance tends to inflate accuracy. 
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3 Results and Discussion 

3.1 Quitting on Any Page vs. Completing the Text 

The first classification was to attempt to predict whether a student would quit a text at 
any point or complete the text. The six classifiers were used to predict quitting based 
on the features extracted from text(s) previously presented to the student (see above). 
The best model for predicting overall quitting behavior used the Bayes Net algorithm. 
The kappa for this model indicates the model’s performance is 48.4% higher than 
chance. Five features were used in this best model (indicated in Table 1). Model fit 
statistics are presented in Table 2.   

Table 2. Performance measures for the three classification tasks  

 
 Quit Class 

Completed/ 
Continued Class 

Precision Recall Precision Recall Kappa Accuracy 

Any Page 64.8% 68.2% 83.1% 80.8% .484 76.5% 

First Page 38.7% 33.0% 92.9% 94.4% .293 88.5% 

Subsequent 
Pages 

67.5% 60.5% 85.9% 89.2% .514 81.4% 

 
We also examined the confusion matrix for this predictor (Table 3). It is notable that 
both true positives and true positives were higher than false positives or false nega-
tives. Given a prediction of Quit, odds were nearly 2:1 (64.8% precision) that the 
prediction is correct (a “hit” rather than a “false alarm”), and so an intervention can be 
given with a good degree of confidence. 

3.2 Quitting on the First Page vs. Continuing 

The next classification task attempted to predict if students would quit on the first 
page vs. continue reading, which occurred 10% of the time. Predicting these instances 
may provide information for more immediate interventions before quitting occurs on 
page one. For this task, Quit labels were restricted to the cases where students quit the 
text on the first page. Any quit past page one is classified as a Continue Past Page 
One. The best classifier was a Bayes Net algorithm using 10 features (see Table 1). 
Performance measures are provided in Tables 2 and 3, respectively.  

This model was able to classify texts where students quit on the first page 29.3% 
higher than chance using information from previous text(s). Although this predictor 
does not perform as well as the previous model, this model provides an important 
classification at a relatively small window size (page level). The confusion matrix for 
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the first page Quit model illustrates the class imbalance well. Due to the large propor-
tion of Continue Past Page One instances (.903), Quit instances were not likely to be 
detected as well as Quit instances on any page. Interventions given based on these 
predictions must be especially cautious, using a “fail soft” approach. The low preci-
sion (38.7%) implies that less than half of the Quit predictions will be correct, due 
largely to the class imbalance. 

Table 3. Confusion matrices for the three classification tasks 

Any Page Predicted Quit Predicted Completed Priors 

Actual Quit 0.68 (hit) 0.32 (miss) 0.34 

Actual Completed 0.19 (false alarm) 0.81 (correct rejection) 0.66 

    

First Page Predicted Quit Predicted Continued  Priors 

Actual Quit 0.33 (hit) 0.67 (miss) 0.10 

Actual Continued 0.06 (false alarm) 0.94 (correct rejection) 0.90 

    

Subsequent Pages Predicted Quit Predicted Completed Priors 

Actual Quit 0.61 (hit) 0.39 (miss) 0.27 

Actual Completed 0.11 (false alarm) 0.89 (correct rejection) 0.73 

3.3 Quitting after the First Page vs. Completing the Text 

The third classification task attempted to predict quitting once students read past the 
first page vs. completing. Since 10% of texts were quit on page one, it is also useful to 
understand when students will quit after reading past the initial first page. Classifying 
quitting once students read past page one will allow interventions to target students 
who are moving through the text (past the initial page), yet decide to stop before 
completing the entire text. 

The cases where students quit on the first page were not included in this task, leav-
ing 223 instances labeled as Quit and 600 labeled as Completed. The best classifier 
was a C4.5 classifier, which was able to perform 51.4% higher than chance (see 
Tables 2 and 3 for performance summary). Interestingly, this model differed from the 
first two classifications tasks, as only the features containing information from the 
previous text were included in the model (see Table 1). Precision for this model was 
67.5% and had a lower proportion of false alarms than in the “Any Page” model, indi-
cating some potential for use with interventions. 

3.4 Predictive Validity 

We also examined the relationship between posttest performance and quitting. First, we 
correlated students’ proportion of correct responses on the posttest (posttest performance) 
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with their proportion of actual quits, Pearson’s r = -.314, p < .001. Indeed, this negative 
correlation provides some validation for the use of quitting as a measure of behavioral 
disengagement, as disengagement is associated with negative learning [5]. 

It is also important to establish whether posttest performance was related to our 
model’s predicted quits. Students’ posttest performance was also correlated with the 
proportion of predicted quits, based on model classification (i.e., Quit vs. Finished 
using the Bayes Net algorithm), r = -.332, p < .001. This correlation gives us some 
confidence in our model’s predictive validity, since our predicted quits are negatively 
related to learning as well.  

Finally, we also investigated the relationship between actual quits and predicted 
quits at the student level. The proportion of students’ actual quits was highly corre-
lated with the proportion of predicted quits (as predicted using the Bayes Net algo-
rithm), r = .934, p < .001. This positive relationship gives us further confidence in our 
predictor, as students’ quitting behavior was closely tied to the model’s predictions. 

4 General Discussion 

We developed three models of quitting by analyzing log files from previous texts: (1) 
any point during a text vs. completing the text (kappa of .484), (2) on the first page vs. 
continuing reading (kappa of .293), and (3) past the first page vs. reading to comple-
tion (kappa of .514). Importantly, we are attempting to predict future behavior before 
the activity is even started from easily available reading measures, so this form of 
modest kappa is expected. Additionally, the kappa values achieved using these predic-
tors are similar to those found in previous disengagement detectors [24, 9], however 
meaningful comparisons of results are complicated by differences in how disengage-
ment is conceptualized.  

The features that were used in the final models reveal that reading times on key 
pages are important for predicting quitting. For example, reading time on the page 
immediately before quitting the previous text was included in two of the final models 
and the proportion of pages with reading time less than five seconds was included as a 
feature in all three final models. Furthermore, the reading time on the first page was 
included in two out of three final models. Previous quitting behavior was also relevant 
in these predictors. In fact, students previously quitting on the first page, as well as 
what section of the text they quit (first three pages, after first three pages, or com-
pleted) were also relevant features in two of the final models. These predictors indi-
cate that past (reading) behavior can be a good indicator of future behavior. 

Predicting quitting behaviors may open up new avenues for interventions and in-
structional designs in order to facilitate better learning. When disengagement beha-
viors, such as gaming the system, are detected, a system can reactively respond by 
reintroducing the content that is missed due to gaming for improved learning [11]. 
The predictors presented in this paper are an initial step for interventions that can 
occur proactively, since the prediction is made before the text is even read. For exam-
ple, the utility of the text can be highlighted as a potential motivator to continue if 
quitting is predicted [25]. Or the system might suggest a change of topics or that the 
student may take a short break. 
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It is important to note that these models are not without limitations. First, these 
models were fit using an instructional reading task, which may not generalize to other 
learning environments. Second, our results cannot be generalized beyond the current 
sample. Third, since this study was conducted in the lab, future work should investi-
gate the effectiveness of similar models using log files from actual ITS learning ses-
sions. Future work should also include attempts to combine these reading behavior 
features with other trait-based features, such as prior knowledge and interest, which 
might further improve prediction rates. This paper provides initial groundwork on 
predicting behavioral disengagement via quitting behaviors, but we believe further 
development of these types of models are promising for adaptive ITSs to intervene 
before the moment of disengagement occurs. 
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Abstract. In this paper we investigate the usefulness of eye tracking data for 
predicting emotions relevant to learning, specifically boredom and curiosity. 
The data was collected during a study with MetaTutor, an intelligent tutoring 
system (ITS) designed to promote the use of self-regulated learning strategies. 
We used a variety of machine learning and feature selection techniques to pre-
dict students’ self-reported emotions from gaze data features. We examined the 
optimal amount of interaction time needed to make predictions, as well as 
which features are most predictive of each emotion. The findings provide in-
sight into how to detect when students disengage from MetaTutor.  

1 Introduction 

Emotions play a critical role in human behavior, thought, motivation, and social inte-
raction [21]. An affect-adaptive interface can react and adapt to clues about the user’s 
emotional state; such systems can increase task success [30], motivation [19], and 
user satisfaction [18]. Affect sensitivity can be especially beneficial in educational 
contexts, where maintaining positive emotions can lead to increased learning [21].  

Our study focuses on predicting feelings of boredom and curiosity experienced 
during learner interactions with MetaTutor, an ITS designed to support effective self-
regulated learning (SRL) [4]. The main contribution of our work is that we explore 
the usefulness of eye tracking data alone in predicting learner affect in MetaTutor via 
machine learning. The only other research that has used eye-tracking data to predict 
emotions has been limited to using hand engineered heuristics to generate gaze-based 
interventions [29], or has focused on non-gaze features such as pupil dilation [20] 
[29]. Unlike pupil dilation, gaze features provide insight into the user’s attention to 
various interface elements, and are not sensitive to changes in luminosity. A second 
contribution is that we investigate curiosity, an emotion not frequently studied in the 
affective computing literature. Curiosity is considered an emotion related to interest [27], 
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and was included based on Pekrun’s research into academic emotions [22].We are aware 
of few other studies that include curiosity [9][11][24].  Finally, by uncovering which 
features are most predictive of each emotion, we gain insights into effective methods 
for constructing an affect-adaptive MetaTutor.  

2 Related Work 

Emotions experienced in an academic setting are related to students’ motivation and 
academic achievement [21]. For example, boredom is linked to decreased task suc-
cess, while engagement is associated with user satisfaction [13]. Further, the presence 
of an empathetic and supportive tutor or pedagogical agent has been shown to en-
hance learning [32], and reduce stress [23]. For these reasons, researchers have begun 
investigating how to detect and respond to learners’ emotional states. Conati and 
Maclaren [7] used information about learners’ personalities and interaction logs to 
model emotions using a Dynamic Bayesian Network (DBN). Forbes-Riley et al. pre-
dicted disengagement from acoustic and dialog features [13].  

Physiological sensors, including wireless skin conductance bracelets, pressure sen-
sitive seat cushions, and accelerometers, have been used to predict affect in an ITS 
context [3]. By combining several data sources, including heart rate, skin conduc-
tance, posture, questionnaires and interaction logs, Sabourin and colleagues achieved 
prediction accuracies of 75% for boredom and 85% for curiosity [24]. Affect can also 
be detected with a single sensor; D’Mello and colleagues. obtained 60%, 64%, and 
70% accuracy in predicting boredom using facial expressions, dialog, and posture, 
respectively [9].  

Eye gaze has been used to detect affect. Findings from psychological research  
have suggested that blinking often or a lack of fixations on interface text may help 
predict boredom [28], and that increased pupil diameter may be indicative of stronger 
emotion [20], [29]. This finding was incorporated in an affect-sensitive ITS that re-
sponded in real time to heuristic signs of boredom, such as decreased pupil size or 
wandering gaze [29]. Gaze Tutor [10] also uses heuristics to respond to gaze, by 
|sending an intervention message if a student does not look at the tutor or the peda-
gogical content for ten seconds. In the broader domain of education, eye gaze has 
been used to predict learning gains [6] [17], problem solving [2], and reading  
performance [26].  

Most closely related to our study is the work by Harley, Bouchet and Azevedo [15] 
on correlating the emotions experienced during interactions with MetaTutor with 
output from FaceReader 5.0 software. Because the FaceReader emotions do not map 
directly to the academic emotions of the study, the authors had to develop their  
own mapping scheme, but still achieved 75.6% agreement. This suggests that the 
emotion self-reports collected during the MetaTutor study closely matched partici-
pants’ actual behavior [15]. Unfortunately, positive emotions (including curiosity) 
declined over the course of the interaction, demonstrating a need for affective  
interventions [15]. 
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3 MetaTutor User Study 

MetaTutor is an adaptive ITS designed to encourage students to employ meta-
cognitive SRL strategies, while teaching concepts about the human circulatory system 
[5]. SRL is the ability to manage learning through monitoring and strategy use, and 
can be a powerful predictor of students’ learning gains and academic success [25]. 
For this reason, the MetaTutor learning environment (Fig. 1) contains an overall 
learning goal (OLG) and subgoal completion bar (at the top of the screen), for setting 
and viewing progress toward learning objectives. There are four pedagogical agents 
(PAs) which appear in turn in the top right corner of the screen. The learning strate-
gies palette (LSP) is located beneath the PAs, and allows the user to initiate interac-
tions such as requesting an evaluation of her current understanding of content [19]. 
Finally, MetaTutor’s text and image contents are displayed in the center of the screen, 
and are organized via the table of contents (TOC) on the far left.  

 

Fig. 1. The MetaTutor Interface 

The data used in this analysis was collected from a study of 67 undergraduate stu-
dents with a variety of academic program concentrations which were not necessarily 
related to MetaTutor’s content. Participants used Meta Tutor for approximately  
90 minutes while they were recorded using a number of sensors, including a Tobii 
T60 eye tracker [15]. Participants also self-reported their concurrent emotions using 
an Emotions-Value questionnaire (EVQ) developed by researchers at McGill Univer-
sity.  The EVQ consists of 19 basic and learning-centered emotion items, and is  
based on a modified subscale of Pekrun’s Academic Emotions Questionnaire [21]. 
Each item consists of a statement about an emotion (e.g., “Right now I feel bored”), 
and was rated on a 5-point Likert scale where 1 indicated “strongly disagree”  
and 5 indicated “strongly agree”. The EVQ was filled out at the beginning, and every 
14 minutes thereafter during the one hour learning session with Meta Tutor, for a  
total of 5 self-reports per student. For the purposes of this study, we will focus on two 
of the most strongly reported emotions (those most frequently rated as 4 or 5 on  
the Likert scale): boredom (M = 2.60, SD = 0.69) and curiosity (M = 2.93, SD =  
0.71) [15].  
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4 Eye Tracking Data Analysis 

The gaze data in this study was collected using a Tobii T60 eye tracker, and takes the 
form of fixations on a single point, and saccades, which are the paths between two 
consecutive fixations. Following the data validation process described in [6], we dis-
carded participants with too few valid gaze samples overall, and were left with a total 
of 51 participants for analysis. The data was then processed into aggregate features 
using EMDAT, an open source package for gaze data analysis1. The extracted features 
include application-independent gaze features related to the number of fixations, fixa-
tion duration, and saccade length, as well as the angle between two consecutive sac-
cades (the relative path angle) and the angle between a saccade and the horizontal 
plane (absolute path angle) [6]. We did not include features related to pupil dilation 
because the data was collected in a room with a window.2 

In addition to application-independent features, we include features related to spe-
cific Areas of Interest (AOIs) within the MetaTutor interface. Following [6], we de-
fined seven AOIs (which are outlined in green boxes in Fig. 1): Text Content, Image 
Content, Overall Learning Goal (OLG), Subgoals, Learning Strategies Palette (LSP), 
Agent, and Table of Contents (TOC).  We include features such as the duration of the 
longest fixation on a given AOI, the proportion of fixations and time spent on an AOI, 
and the number and proportion of gaze transitions between each pair of AOIs. We 
also include time to first fixation on the AOI, time to last fixation, and the total fixa-
tion time. In total, we have 166 features.  

5 Machine Learning Experiments 

We treat predicting boredom and curiosity as two separate binary classification prob-
lems. Although boredom and curiosity could be considered mutually exclusive states, 
the data does not support this approach. While there was a significant negative corre-
lation between the ratings of boredom and curiosity (r = -.333, p < .001), in 18% of 
the self-reports both curiosity and boredom were rated as present simultaneously, and 
in 13% they were both absent. 

Classification labels were based on the EV self-reports. We did not include the first 
round of reports, because they were collected before participants began using the 
learning environment. Ratings of 3 or higher were labeled as Emotion Present (EP), 
and ratings of less than 3 were labeled as Emotion Absent (EA), as in [15]. For classi-
fication, we used 10-fold cross validation (CV), and four algorithms available in  
the Weka data mining toolkit: Random Forests (RF), Naïve Bayes, Logistic Regres-
sion, and Support Vector Machines (SVM), chosen because they showed the most 
promising performance in initial tests. We also use 10-fold CV to tune the parameters 
of the algorithms. Results are reported in terms of both accuracy (percentage of cor-
rectly classified data points), as well as Cohen’s kappa, a measure of classification 

                                                           
1 http://www.cs.ubc.ca/~skardan/EMDAT/index.html 
2 Pupil dilation is more sensitive to luminance than to affect [31]. 
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performance that accounts for correct predictions occurring by chance [8]. Kappa 
scores are 1 when classification labels exactly match the ground truth values, and 0 if 
the predictions were no more accurate than chance. A good kappa score for trained 
human judges rating emotion might be .5 [13] or .6 [8], while a typical score for a 
machine predicting emotion might be .3 [8] [16] [1].  

Due to the small size of our dataset and the large number of features available, our 
classifiers will tend to over-fit the training data without an effective feature reduction 
method. We tested two techniques, Principal Component Analysis (PCA) and Wrap-
per Feature Selection (WFS), using 10-fold CV, and performing feature selection 
using only the training data. PCA reduces the dimension of a feature set by creating 
components based on highly correlated subsets of features [12]. WFS finds useful 
subsets of features by testing them with a specific classifier [16]. In order to obtain 
more robust feature sets with WFS, we performed nested cross validation, by further 
subdividing each training fold into another 10 train/test sets, performing wrapper 
selection on each, and using those features that were selected in more than 10% of the 
sub-folds. We found that WFS achieved better results overall, and that the features 
selected are more interpretable than PCA components. For these reasons, we focus on 
WFS when reporting results in the rest of the paper. 

6 Results 

In this section we present the results of several classification experiments. We begin 
by training classifiers using all available self-reports and gaze features computed us-
ing various time intervals preceding each report. We discuss the features chosen as 
most predictive by WFS, and the effectiveness of predicting reports independently.  

6.1 Predicting Self-reports across the Interaction 

Our first experiment involved training classifiers to predict the affective labels  
derived from any self-report, regardless of when it was generated. We wished to de-
termine the amount of gaze data preceding the self-report that should be used for pre-
diction. Many studies make use of a window of 20 seconds for affect labeling [14]. In 
a study of the same dataset, Harley et al., [15] used a 10 second window. We tested 
window lengths ranging from 100% of the available data (14 minutes) to 1% (8 
seconds), and the results are shown in Fig. 2. 

We used a 4 (classifier) x 6 (window length) General Linear Model (GLM) to ana-
lyze the results, treating the score obtained for one train/test split as a single data 
point. We ran four of these models, one with each of boredom accuracy, boredom 
kappa, curiosity accuracy, and curiosity kappa as the dependent variables, and applied 
Bonferroni corrections to adjust for family-wise error. In cases where the accuracy 
and kappa results are analogous, we present only the accuracy results. We compare 
the results to a majority-class baseline using t-tests with a Bonferroni adjustment. 

The GLM results for both emotions were similar; there were no significant effects 
of classifier or interaction effects, likely because we have already restricted our focus 
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We conducted a similar 4 (classifier) x 4 (report time) General Linear Model on the 
results, which are shown in Fig. 4. For boredom, there were no significant effects, 
although on average the classifiers significantly exceeded the baseline, t(163) = 2.68, 
p < .01, with Logistic Regression achieving the highest average of 66.17% (kappa = 
.306), and peaking at report 1 (68.83%, kappa = .330). For curiosity, we found a main 
effect of report time for both kappa and accuracy, F(3,144) = 5.953, η2 = .110, p < 
.005. This suggests that the time of the self-report, which corresponds to the amount 
of time a student has been interacting with MetaTutor, strongly affects the relation-
ship between gaze and affect. Tukey post-hoc analysis revealed that self-report 3 (M = 
67.96, SD = 15.55) was significantly better than all other reports. It was also the only 
report in which the classifiers significantly surpassed the baseline, t(39) = 5.313, p < 
.001, with Random Forests achieving a peak accuracy of 73.17% (kappa = .416). 

Note that in addition to the effect of report time detected for curiosity, the average 
results obtained for boredom by restricting focus to a single self-report were also 
markedly higher than those obtained when all report times are classified together, as 
in the previous section. Overall, the results of this section seem to indicate that the 
relationship between gaze and affect varies over time. If this were true, we would 
expect that different gaze features would be more informative at different report 
times. Indeed, we examined the features chosen by WFS for each report, and found 
that there was considerable variability. Fig. 5 groups features into categories based on 
their AOI, and shows how the relevant features change along with time spent with 
MetaTutor. For example, the subgoals become highly relevant for predicting curiosity 
at report three, but otherwise are hardly chosen at all. We are not certain of the cause 
of this effect, however the changing importance of the features demonstrates that 
different patterns of behavior are indicative of the emotions over time.  

 

Fig. 5. The features found to be most predictive by wrapper feature selection change, depend-
ing on progress through MetaTutor 

7 Conclusions and Future Work 

The findings from this study demonstrate that eye gaze data alone is a useful tool for 
predicting boredom and curiosity in MetaTutor. The best results obtained, 69% (kap-
pa = .33) for boredom and 73% (kappa = .42) for curiosity, are notable in the field of 
affect prediction, where near-perfect results are not the reality [13], and achieving 
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higher accuracies often requires combining multiple sources of user information [24]. 
We also present empirical evidence to contradict the assumption that a short interval 
of a few seconds is always most appropriate when predicting affect. Finally, we have 
found that temporal information about a students’ progress through MetaTutor can 
lead to increased accuracy, so the relationship between gaze and affect in MetaTutor 
may be dependent on timing.  

In the future we plan to leverage additional data sources collected during the Me-
taTutor study in order to predict affect, such as Electrodermal Activity (EDA), since it 
is related to emotional arousal [3]. Once we are able to reliably detect student affect, 
we can leverage this information in order to develop interventions that will help in-
crease task success, engagement, and user satisfaction.  
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Abstract. We built detectors capable of automatically recognizing affective 
states of novice computer programmers from student-annotated videos of their 
faces recorded during an introductory programming tutoring session. We used 
the Computer Expression Recognition Toolbox (CERT) to track facial features 
based on the Facial Action Coding System, and machine learning techniques to 
build classification models. Confusion/Uncertainty and Frustration were distin-
guished from all other affective states in a student-independent fashion at levels 
above chance (Cohen’s kappa = .22 and .23, respectively), but detection accu-
racies for Boredom, Flow/Engagement, and Neutral were lower (kappas = .04, 
.11, and .07). We discuss the differences between detection of spontaneous ver-
sus fixed (polled) judgments as well as the features used in the models. 

1 Introduction 

Learning computer programming is an early obstacle for students pursuing a comput-
er science (CS) degree [1]. The difficult nature of computer programming and lack of 
prior knowledge of novice students can create a particularly frustrating and confusing 
learning experience. One of the strategies that can be adopted to help with the burden 
of effectively teaching a large number of novice students is the use of intelligent tu-
toring systems (ITSs). As has been seen in other domains like computer literacy [2], it 
is likely that incorporating awareness of student affect into a computer programming 
ITS would lead to increased proficiency, particularly for novice students. Of course, 
an affect-aware ITS can never respond to affect if it cannot detect affect. We demon-
strate a method for detecting the affect of novice programming students in a compute-
rized learning environment using videos of students’ faces. 

Related Work. Affect detection can be done using various types of data sources, such 
as interaction data, speech, and physiology [3]. Facial-feature based affect detection is 
attractive because there is a strong link between facial features and affective states 
[4], it is more independent of learning environment or content (compared to interac-
tion features), and it does not require expensive hardware, as webcams are ubiquitous 
on laptops and mobile devices. 

In previous research on affect detection from facial features, Kapoor et al. [5] used 
multimodal data channels including facial features from video to predict Frustration in 



40 N. Bosch, Y. Chen, and S. D’Mello 

 

an automated learning companion. They were able to predict when a user would self-
report Frustration with 79% accuracy (chance being 58%). Hoque et al. [6] used facial 
features and temporal information in videos to classify smiles as either frustrated or 
delighted. They were able to accurately distinguish between Frustrated and Delighted 
smiles correctly in 92% of cases. They also found differences between posed (acted) 
facial expressions and naturally induced facial expressions. Only 10% of Frustrated 
cases included a smile in acted data, whereas smiles were present in 90% of cases of 
naturally occurring Frustration. 

The Computer Expression Recognition Toolbox (CERT) [7] is a computer vision 
tool used for automatic detection of 19 Action Units (AUs, codes describing specific 
facial muscle activations) as well as head pose and position information. It also sup-
plies measures of three unilateral (one side of the face only) AUs, as well as “Fear 
Brow” and “Distress Brow,” which indicate the presence of combinations of AU1 
(Inner Brow Raiser), AU2 (Outer Brow Raiser), and AU4 (Brow Lowerer). CERT has 
been tested with databases of both posed facial expressions and spontaneous facial 
expressions, achieving accuracies of 90.1% and 79.9% respectively when discriminat-
ing between video frames with the presence vs. absence of particular AUs. 

Whitehill et al. [8] have used CERT to detect engagement in a learning session. 
They obtained fine-grained judgments of engagement from external observers and 
achieved an accuracy of 71.8% when classifying instances of engagement vs. no en-
gagement using AUs detected by CERT. Additionally, they found a correlation (r = 
.42) between fine-grained difficulty self-reports from students and AUs detected by 
CERT. 

Grafsgaard et al. [9] used CERT to detect the overall level of Frustration (self-
reported on a Likert scale) present in a learning session with modest results (R2 = .24). 
Additionally, they have achieved good agreement between the output of CERT AU 
recognition and human-coded ground truth measurements of AUs (Cohen’s kappa >= 
.68 for several key AUs), thereby providing additional evidence of the validity of 
CERT for automated AU detection. 

Current Approach. This paper differs from the previous work in that our detectors 
will be applied at a finer granularity (15-second intervals), recognizing instances of 
affective states within a learning session rather than the level reported for the entire 
session. Additionally, the affective states we track are predominately learning-
centered rather than the more commonly detected basic emotions (e.g. anger, sad-
ness). Confusion is especially unique in that to our knowledge automatic confusion 
detection has not previously been done at a fine-grained level using facial features. 

The facial expressions in the present study are naturalistic expressions, which have 
been shown to be more difficult to detect than posed expressions [10]. Despite the 
difficulty, we propose that facial features can be an effective method of automatically 
distinguishing particular affective states others in the domain of computer program-
ming. To explore this we will answer these research questions: 1) Which affective 
states can be detected? 2) Can detection be improved by considering the type of affect 
judgment that is made? 3) Which features are most useful for detecting affective 
states? 
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2 Method 

Data Collection. The data was collected from 99 computer programming novices 
who used a computerized learning environment designed to teach the basic elements 
of computer programming in the Python language. After the learning session, students 
viewed synchronized videos of their face and on-screen activity that had been record-
ed during the learning session, and retrospectively self-reported affective states at 
fixed points in the learning session. These periods were chosen to correspond with 
interaction events, such as typing code or viewing a new exercise, as well as idle pe-
riods (periods of time with no interaction events for more than 15 seconds). Students 
were also allowed to make spontaneous affect judgments at any point in the retrospec-
tive affect judgment process if they chose to. This retrospective affect judgment pro-
tocol allows for judgments to be made on the basis of a combination of the students’ 
facial expressions, contextual cues (via screen capture), and their memories of the 
learning session [11]. We found that five affective states, namely Boredom (9%), 
Confusion (21%), Flow/Engagement (24%), Frustration (12%), and Neutral (17%), 
formed 83% of the affective states reported, so we focused on detecting these states 
(see [12] for more comprehensive details on data collection methodology used in the 
current study). 

Computing Facial Features. We used CERT to calculate occurrence likelihoods for 
AUs in each video frame. The output of CERT was z-standardized within students 
and temporally aligned with affect judgments, then divided into segments of variable 
length (see below), each leading up to each affect judgment. Features were calculated 
by aggregating frame-level AU likelihoods across each segment using the median, 
maximum, and standard deviation of the 19 AUs provided by CERT. Head orientation 
and nose position were included as well. We also used HAAR cascades to detect the 
size of the face and the visibility of nose, mouth, eyes, and ears to provide additional 
information for situations with unusual pose or occlusion. We eliminated features 
exhibiting multicollinearity (variance inflation factor > 5). 

Supervised Classification. We used the segment-level aggregate features to build 
classification models with the Waikato Environment for Knowledge Analysis 
(WEKA), a popular machine learning tool. Leave several out student-level cross-
validation was used for model validation, with data from 66% of students randomly 
chosen to train classifiers and the remaining data used to test the performance of the 
classifiers. This ensures that the models generalize to new students since training and 
testing data sets are independent. The models were each trained and tested over 50 
iterations with random students chosen each time to amortize random sampling error. 

RELIEF-F feature ranking was used on the training data for each of the 50 itera-
tions in order to identify the most diagnostic features prior to classification. We used 
15 different classifiers and 6 different video segment sizes (2, 3, 6, 9, 12, and 15 
seconds) to determine which segment size was likely to work best for a particular 
classification task. We then attempted to improve each of the best data configurations 
by either oversampling the training data (with SMOTE [13]) or downsampling the 
training data to equal class proportions. 
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3 Results and Discussion 

Question 1: Which affective states can be detected? We attempted to individually 
classify each of the five most common affective states compared to all other affective 
states combined (“Other”, which includes rare affective states). Cohen’s kappa was 
used as the primary measure of performance, because it is more robust to class imbal-
ances. Kappa measures the agreement between predicted and actual labels compared 
to chance (kappa = 0), with 1 reflecting perfect detection. 

Classification of affective states from fixed affect ratings was not very successful. 
Using only fixed affect judgments, we had 6000 instances to be split into training and 
testing sets. Flow/Engagement was classified best (kappa = .112), with Boredom, 
Confusion, Frustration, and Neutral (kappas = .038, .064, .083, .070) classifications 
barely above chance. Classification of these data was expected to be difficult because 
they were selected at fixed points that were mostly independent of any facial activity. 
To improve the efficacy of classifiers we built models made using the spontaneous 
affect judgments, as discussed next. 

Question 2: Can detection be improved by considering the type of affect 
judgment that is made? Because spontaneous affect judgments come from points in 
time of the student’s choice, they may represent noticeable facial features in the video 
streams, as previously documented [14]. These judgments would likely make a more 
viable task for facial-feature based affect detection than the fixed judgments. 

Only Confusion and Frustration had at least 100 spontaneous affect ratings, so we 
only consider those two states for further analysis. For the “Other” affective states, we 
sampled randomly from the fixed affective state judgments (5 times for each of the 50 
iterations). Spontaneous Confusion judgments thus composed 21% of 582 instances 
with the other affective states in the fixed distribution as well, while Frustration com-
posed 12% of 527 instances. 

Using spontaneous judgments in this manner we were able to detect Confusion and 
Frustration much more effectively (kappa = .221 and .232, respectively). A simple 
logistic classifier yielded the best model for detecting Confusion, while an updatable 
naïve Bayes classifier was the most effective for Frustration. The best segment size 
for both of these was short (2 seconds for Confusion, 3 seconds for Frustration). Fea-
ture selection was used to select 50% of features for Confusion and the best 25% for 
Frustration detection. A more detailed look at the performance of these classification 
models can be found by examining the confusion matrices in Table 1. 

Table 1. Confusion matrix for Confusion and Frustration spontaneous judgments 

 Predicted Confusion Predicted Other Priors 

Actual Confusion 0.50 (hit) 0.50 (miss) 0.21 

Actual Other 0.25 (false alarm) 0.75 (correct rejection) 0.79 

    

 Predicted Frustration Predicted Other  

Actual Frustration 0.40 (hit) 0.60 (miss) 0.12 

Actual Other 0.13 (false alarm) 0.87 (correct rejection) 0.88 
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Both models were impressive in terms of the low false alarm rate (i.e., Other affective 
states incorrectly detected as Confusion or Frustration). These models accurately 
detected half of the Confusion instances and nearly half of the Frustration instances, 
while properly rejecting most of the Other affective states, despite class imbalances. 

Question 3: Which features were most useful for detecting affective states? We 
examined the features that were automatically selected for the spontaneous affect 
judgment classifiers. While both classification tasks used AU45 (Blink) features 
frequently, the other features differed between Confusion and Frustration. Particularly 
notable were the presence of unilateral (one side of the face) features for Frustration 
detection as well as head pose features (Yaw). Distress Brow, which appears 
frequently for Confusion detection, indicates evidence for AU1 (Inner brow raiser) or 
a combination of AU1 and AU4 (Brow lowerer). This feature has been found to be 
predictive in prior research involving manual coding of AUs as well [4]. Additionally, 
it appears as though Confusion was manifested more in absolute values of facial 
features, while Frustration was more easily detected from standard deviation features. 

4 General Discussion 

Despite the complexities of affect detection of naturally occurring learning-centered 
states, we were able to achieve some success in building fully-automated facial-
feature based detectors of spontaneous confusion and frustration in a manner that 
generalizes to new students. Our current detection accuracy is modest at best, but 
affect detection is inherently an imperfect science and current detection rates are 
comparable with what is achieved for automatic detection of naturalistic affect from 
alternate modalities in a student-independent fashion [10]. 

Results for spontaneous judgments were much improved over the fixed judgments, 
as was expected. A similar phenomenon occurs when examining the inter-rater 
reliability between human judges manually coding emotions or AUs in video [14]. 
These results suggest that future work collecting video data for building affect detec-
tors might be better served by focusing only on spontaneous affect judgments. 

Some limitations of this study include (1) the relative infrequency of spontaneous 
judgments, (2) the relatively small sample size, and (3) lack of generalizability of 
results beyond the current sample. In future work we plan to train detectors using 
interaction data from the students’ learning sessions, and incorporate those detectors 
with video-based detectors to create a more powerful multimodal affect classifier. We 
hope that accurate affect detection for novice computer programmers will lead to 
more effective computerized learning environments capable of responding to the 
momentary affective episodes of students so they may learn to their fullest potential. 
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Abstract. The presentation of contradictory information to trigger deeper 
processing and increase learning has been investigated in a variety of ways 
(e.g., conversational agents, worked examples). However, the impact of infor-
mation source (e.g., expertise, gender) and the relationship between the contra-
dicting sources (e.g., status level) has not been investigated to the same degree. 
We previously reported that confusion can successfully be induced and learning 
increased when contradictory information was presented by two conversational 
agents (tutor, peer student). In the present experiment we investigated contra-
dictions posed by two peer student agents. Self-reports of confusion and learner 
responses to embedded forced-choice questions revealed that the contradictions 
still successfully induced confusion. There were, however, differences in the 
nature of confusion induction based on the inter-agent relationship (i.e., student-
student vs. tutor-student). Learners performed better on transfer tasks when pre-
sented with contradictions compared to a no-contradiction control, but only 
when they were successfully confused.  

Keywords: confusion, contradiction, affect, tutoring, animated pedagogical 
agents, intelligent tutoring systems, learning. 

1 Introduction 

To understand a concept it is important to learn why a particular strategy or explana-
tion is correct and why alternatives are incorrect. However, it is often difficult for 
learners to understand both aspects. One method to help learners reach this level of 
understanding is the presentation of contradictory information [1-5]. Contradictory 
information has been presented in a variety of contexts, such as conversational agents 
[1,3], sources within a text [6], and worked examples [2,4,5], to create cognitive con-
flict (see Limón [7] for review), cognitive disequilibrium [8-10], and confusion [1,3]. 
In all instances, the contradictory information is expected to increase learning by 
causing learners to stop, think, and deliberate over which alternative is correct in an 
effort to resolve their current cognitive and affective conflict.  

There are two important considerations when presenting contradictions to increase 
learning. First, the contradiction must be highlighted such that learners are aware that 
there is a contradiction and that the two alternatives are not compatible (i.e., cannot 
both be correct) [7]. Unfortunately, learners often dismiss the contradiction and do not 
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engage in the beneficial cognitive activities required to compare the competing alter-
natives and determine which one is correct. Learners can ignore the contradiction, 
reject or deny the validity of one alternative, exclude one alternative from the expla-
nation of a concept, or reinterpret one alternative so that the two alternatives are no 
longer in conflict [11]. Thus, it is important to present contradictions that are salient 
to learners within a context that requires their resolution.  

The second issue to consider when presenting contradictions to increase learning is 
the sources of the contradicting alternatives. Research on the presentation of contra-
dictions within a text has found that contradictions actually draw more attention to the 
source of information [6]. Participants have been found to have more fixations and 
longer gaze times on the sources of information (e.g., person A vs. person B) while 
reading and increased citations of sources when writing summaries compared to when 
sources agreed. Attention to sources can lead to source evaluation, which has been 
found to increase comprehension [12-15]. In fact, learners who performed better on 
comprehension assessments were found to evaluate information sources more while 
reading than those who performed less well [13].   

Contradictions have also been found to be an effective catalyst for deeper reasoning 
when presented by conversational agents. In a series of experiments, conversational 
agents presented contradictions during trialogues (i.e., three-party conversations) to 
induce confusion and promote learning [1,3]. One agent served as a tutor, whereas the 
other agent served as a peer student agent. Learners who were successfully confused 
by the contradictions performed significantly better on measures of learning and trans-
fer tasks compared to when the agents agreed. However, the effectiveness of confusion 
induction was consistently found to differ depending on which agent was correct  
(i.e., tutor vs. student) when the agents disagreed. This finding raises the question as  
to how agent role (e.g., status, status differential, gender, etc.) impacts confusion in-
duction and learning. Baylor and Kim [16] have indeed reported that agent roles in 
learning environments that do not pose contradictions can impact both motivation and 
learning.  

The present research is an initial attempt to determine the impact of agent role 
when contradictions are presented. To completely address this question, research 
should examine confusion induction and learning when agent role differs (tutor, peer 
student) and is the same (peer student, tutor or expert) as well as when agent characte-
ristics (e.g., gender, race, age) are varied. The present research replicates Lehman et 
al. [3], but with two peer student agents instead of a tutor agent and peer student 
agent. Three research questions are investigated in the present research. When contra-
dictions are presented by two peer student agents, will confusion be successfully in-
duced (question 1) and will learning increase (question 2)? Finally, the third research 
question will address the similarities and differences between confusion induction and 
learning outcomes when contradictions are presented by agents of different status 
(tutor, student, [3]) compared to agents of the same status (two students). The  
impact of agent role will be investigated within a learning environment that diagnoses 
flaws in research case studies to help learners better understand research methods 
concepts.  
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2 Methods 

2.1 Manipulation 

We experimentally induced confusion with a contradictory information manipulation 
over the course of learning research methods concepts (e.g., replication, control 
group, validity). This was achieved by having the two student agents (male student 
and female student, see Figure 1) stage a disagreement on an idea and eventually in-
vite the human learner to intervene (note that student agent refers to the animated 
agents, the actual human learner is referred to as learner). This confusion induction 
method has been found to successfully induce confusion when contradictions were 
posed by tutor and student agents in previous experiments [1,3]. 
 

 

Fig. 1. Screenshot of learning environment interface 

Contradictions were introduced during trialgoues (three-party conversations) iden-
tifying flaws in sample research studies. Some studies had subtle flaws while others 
were flawless. There were four contradictory information conditions. In the true-true 
condition, both student agents agreed and presented correct opinions. In the true-false 
condition, the female student agent presented a correct opinion and the male student 
agent disagreed by presenting an incorrect opinion. In contrast, the male agent pre-
sented a correct opinion and it was the female agent that disagreed with an incorrect 
opinion in the false-true condition. Finally, in the false-false condition, both agents 
agreed but the opinions that they presented were incorrect. It should be noted that all 
misleading information was corrected after learners completed all four trialogues and 
posttests and that learners were fully debriefed at the end of the experiment.  

2.2 Participants and Design 

Participants were 32 undergraduate students from a mid-south university in the US 
and participated for course credit. The experiment had a within-subjects design with 
four conditions (true-true, true-false, false-true, false-false). Learners completed one 
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trialogue in each of the four conditions with a different research methods topic in each 
session (4 in all). Order of conditions and topics and assignment of topics to condi-
tions was counterbalanced across learners with a Graeco-Latin Square. 

2.3 Procedure 

The experiment occurred over two phases: (1) knowledge assessments and trialogues 
and (2) a retrospective affect judgment protocol.  

Knowledge Tests. Research methods knowledge was assessed with flaw identifica-
tion tasks before and after trialogues (pretest and posttest, respectively). The flaw 
identification tasks consisted of a description of a previously unseen study and learn-
ers were asked to identify flaw(s) in the study by selecting as many items as they 
wanted from a list of eight research methods topics. The list included four topics that 
could potentially be flawed (discussed in the trialogues) and four distractor topics (not 
discussed in the trialogues). Learners also had the option of selecting that there was 
no flaw, although each study contained one flaw. The pretest involved the presenta-
tion of four case studies that each contained one flaw. The flaw in each case study 
corresponded to one of the topics discussed in the trialogues.  

The posttest consisted of both near and far transfer versions of the studies that were 
presented in the trialogues. The near transfer studies differed from the studies in the 
trialogues on surface features, whereas the far transfer studies differed on both surface 
and structural features. Each topic discussed during the trialogues had one near and 
one far transfer study, resulting in eight transfer studies in all on the posttest.  

Trialogues. First, learners signed an informed consent and then completed the pretest. 
Learners then began the first of four trialogues. A webcam and a commercially avail-
able screen capture program (Camtasia Studio™) recorded learners’ face and screen, 
respectively, during the trialogues. 

Each trialogue began with a description of a study, which learners read and then 
began the discussion with the agents. The excerpt in Table 1 is an example trialogue. 
This is an excerpt from the true-false condition, where the female (Mary) and male 
(Chris) student agents are discussing a flawed study with Bob (learner). The discus-
sion of each study involved five trials. For example, in Table 1 the dialogue turns 2 
through 5 represent one trial. Each trial consisted of the student agents asserting their 
opinions (turns 2 and 3), prompting the learner to intervene with a forced-choice (FC) 
question (turn 4), and obtaining the learner’s response (turn 5).  

This cycle was repeated in each trial, with each trial becoming increasingly more 
specific about the scientific merits of the study. The trialogue in Table 1 discusses a 
study that uses an inappropriate control group. Trial 1 broadly asked if learners would 
change their behavior based on the results of the study (“Would you recommend the diet 
pill to a friend?”), while Trial 2 addressed whether or not there is a problem in the me-
thodology of the study (“Do you think the methodology of the study was good or prob-
lematic?”). Trial 3 began to specifically address the problem in the study (turns 2-5). 
Trial 4 then directly addressed the appropriateness of the control group, (turns 6-9). 
After Trial 4, learners were presented with an explanatory text to potentially alleviate 
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their confusion, which was adapted from the electronic textbook that accompanies the 
Operation ARA! ITS [17]. Finally, Trial 5 repeated the forced-choice question posed to 
learners in Trial 4 without the presentation of the agents’ opinions. For the present paper 
only Trials 1-4 are relevant and will be included in subsequent analyses. Learners then 
completed the posttest after discussing the four studies. 

Table 1. Excerpt of trialogue from true-false condition 

Turn Speaker Dialogue 
Participants took this new diet pill and reported losing 10 pounds in the first month. None of 
the participants exercised or ate super healthy or anything, they just acted normally. The 
researchers even compared the pill to another group who didn’t take it and just acted how 
they normally do. The group that didn't take the pill didn’t lose any weight over a month. So 
the pill works about ten times as well as not doing anything. <Case study> 
1 Mary Chris, are these two groups similar in every way except taking the pill or 

not? <Advance dialogue> 
2 Chris Umm, I think they were the same in every way. <Assert opinion> 
3 Mary Well, the two groups don't seem the same to me. <Disagree with Chris> 
4 Chris Looks like we still disagree. Bob were these two groups exactly the same 

or different? <Contradiction & forced-choice question> 
5 Bob Different <Response> 
6 Chris I don't think they need to make any changes to the control group.      

<Assert opinions> 
7 Mary No, I don't think so, it needs to change. <Disagree with Chris> 
8 Mary It's too bad that we still disagree. Bob, should the control group have 

taken some kind of a pill or should it stay the same?                      
<Contradiction & forced-choice question> 

9 Bob stay same <Response> 

 
Retrospective Affect Judgment Protocol. Learners completed a retrospective affect 
judgment protocol [18] after completing the posttest. Videos of learners’ face and 
screen were synchronized and learners made affect ratings while viewing these  
videos. Learners were provided with a list of affective states (anxiety, boredom,  
confusion, curiosity, delight, engagement/flow, frustration, surprise, and neutral)  
with definitions. Affect judgments occurred at 14 pre-specified points (e.g., after  
contradiction presentation, after forced-choice question, after learner response) in 
each trialogue (56 in all). In addition to these pre-specified points, learners were able 
to manually pause the videos and provide judgments at any time.   

3 Results and Discussion 

The analyses were conducted in three phases: self-report confusion ratings, forced-
choice (FC) question response accuracy, and transfer test performance. We conducted 
these analyses in order to determine the impact of agent role (tutor-student vs. stu-
dent-student) on confusion induction and learning. The results from the current  
experiment were compared to previous findings from an experiment that involved 
trialogues with tutor and student agents (tutor-student experiment) [3]. Mixed-effects 
linear or logistic regression models were constructed for each dependent measure, 
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with one exception, to compare the experimental conditions (true-false, false-true, 
false-false) to the no-contradiction control condition (true-true). 

3.1 Self-report Confusion Ratings 

In the tutor-student experiment confusion was reported more often when learners 
were in the true-false and false-false conditions compared to the true-true condition. 
Confusion self-report ratings for the first four trials of each trialogue were investi-
gated for the present experiment. A mixed-effects logistic regression revealed that in 
the student-student experiment, learners also reported more confusion in the true-false 
and false-false conditions than when in the true-true condition, χ2(3) = 6.90, p = .038. 
Table 2 shows the coefficients for the models along with the mean proportional  
occurrence of confusion. These findings suggest that confusion induction can still be 
successful when contradictions were presented by two peer student agents. It is inter-
esting, however, that the same pattern of findings emerged when both agents had the 
same status level. Ostensibly, the contradiction in the true-false and false-true condi-
tions should evoke the same degree of confusion, but this was not the case. This sug-
gests that other characteristics of the agents may need to be taken into consideration 
(e.g., gender, perceived knowledge). 

Table 2. Proportional occurrence of trialogue dependent measures 

  Induction Condition   Coefficient (B) 
Tr-Tr Tr-Fl Fl-Tr Fl-Fl   Tr-Fl Fl-Tr Fl-Fl 

Confusion Self-Report .113 .159 .118 .150 .490 .221 .421 

FC Question 
Trial 1 .688 .563 .500 .500 -.530 -.795 -.787 
Trial 2 .844 .594 .656 .406 -1.28 -1.05 -2.06 

Trial 3 .750 .563 .656 .406 -.847 -.452 -1.48 
Trial 4 .656 .688 .719 .500 .126 .298 -.667 

Notes. Tr: True; Fl: False; Tr-Tr was the reference group for each model, hence coefficients for this condi-
tion are not shown in the table. Bolded cells refer to significant effects at p < .05. 

3.2 Forced-Choice Question Response Accuracy 

Two analyses were conducted to investigate FC question response accuracy during 
trialogues. First, we constructed four mixed-effects logistic regressions to investigate 
response accuracy in each trial (see Table 2). In the tutor-student experiment, learners 
were less likely to respond correctly when in the experimental conditions as the tri-
alogues became increasingly more specific (i.e., Trials 2-4) compared to the no-
contradiction control condition. This reduction in correct responses is hypothesized to 
display confusion and uncertainty. A similar pattern emerged in the present student-
student experiment with learners being less likely to respond correctly when in the 
experimental conditions compared to the no-contradiction control condition in Trials 
2 (χ2(3) = 13.6, p = .002) and 3 (χ2(3) = 8.66, p = .017). The one exception was  
that the false-true condition did not differ from the true-true condition in Trial 3. Inte-
restingly, when the trialogue specifically addressed the flaw in the study (Trial 4)  
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in the present experiment, the experimental conditions did not differ from the no-
contradiction control condition, χ2(3) = 3.95, p = .134. Performance in Trial 4 was 
then the primary difference between the two experiments. 

Second, we investigated response accuracy compared to random guessing (or 
chance) in each condition with the hypothesis that responses similar to random guess-
ing would display confusion and uncertainty. Since the questions adopted a two-
alternative format, random guessing would yield a score of .5. In the tutor-student 
experiment this analysis revealed the general pattern that true-true performed above 
chance and false-false performed below chance, whereas true-false and false-true 
generally remained at chance level. One-sample t-tests comparing learner responses to 
.5 (chance) revealed the following overall pattern: true-true and false-true were sig-
nificantly greater than chance and true-false and false-false were statistically indistin-
guishable from chance. There were two exceptions to this pattern: (a) true-false was 
greater than chance on Trial 4 and (b) false-true was at chance level in Trial 1.  

There are two overall differences when the patterns from the tutor-student and stu-
dent-student experiments are compared. First, learner responses in the false-false 
condition were found to remain at chance level in the present experiment, suggesting 
that learners may have been more skeptical of incorrect agent opinions, even when the 
agents agreed. Second, learners responded above chance levels in the false-true condi-
tion. This is a somewhat perplexing finding given that responses in the true-false 
condition were generally still at chance level. Even though the agents had the same 
status level, there may have been other agent characteristics (e.g., gender, perceived 
knowledge) or trialogue characteristics (e.g., which agent stated their opinion first) 
that influenced learner responses. 

3.3 Transfer Task Performance 

Learner performance on both transfer tasks was assessed with hits (correctly identify-
ing the presence of a flaw) to investigate learning. In the previous tutor-student expe-
riment, performance on multiple-choice knowledge assessments was used to measure 
learning. The results from that experiment revealed that learners only benefited from 
the presentation of contradictions when they were successfully confused during the 
trialogues. Two analyses were conducted to investigate learning in the present stu-
dent-student experiment.  

First, mixed-effects logistic regressions revealed that there were not significant 
condition differences on either transfer task (Near Transfer: χ2(3) = 4.95, p = .176, 
Far Transfer: χ2(3) = 1.41, p = .703). This finding was consistent with the previous 
tutor-student experiment and is likely due to the fact that confusion induction success 
was not taken into consideration. The second analysis then involved dividing learners 
into low- and high-confusion cases based on a median split of self-report confusion 
ratings. Mixed-effects logistic regression models were constructed to investigate the 
induction condition × confusion (low, high) interaction (see Table 3). A significant 
model was found for the near transfer task (χ2(7) = 11.1, p = .067), but not for the far 
transfer task (χ2(7) = 6.26, p = .255). The main effect for confusion was not signifi-
cant for either model (p’s > .1).  

The interaction was probed by regressing near transfer hits for the low- and high-
confusion cases separately. The model for low-confusion cases was not significant, 
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χ2(3) = .435, p = .467. However, the model for the high-confusion cases was signifi-
cant, χ2(3) = 10.5, p = .008. When learners were in the true-false and false-true condi-
tions, they performed significantly better on the near transfer task than in the true-true 
condition. It is possible that this increased performance was actually due to increased 
guessing. To address this issue, we investigated false alarms (incorrectly identifying 
the presence of a flaw) for the near transfer case studies. The induction condition × 
confusion model for false alarms was not significant, so the learning effect cannot be 
attributed to guessing.  

Despite the fact that different types of assessments were used (multiple-choice 
questions vs. transfer tasks), the findings in the present experiment are very similar to 
those in the tutor-student experiment. It appears to be critical that learners are suc-
cessfully confused to benefit from the presentation of contradictory information.  

Table 3. Proportional occurrence of transfer test performance 

  Induction Condition   Coefficient (B) 
Tr-Tr Tr-Fl Fl-Tr Fl-Fl   Tr-Fl Fl-Tr Fl-Fl 

Near Transfer 
Low Confusion .571 .533 .471 .500 -.168 -.414 -.311 
High Confusion .273 .647 .600 .222 1.84 1.60 -.273 

Far Transfer 
Low Confusion .350 .200 .412 .385 -.800 .433 .092 
High Confusion .455 .500 .214 .500 .171 -.160 .244 

Notes. Tr: True; Fl: False; Tr-Tr was the reference group for each model, hence coefficients for this condi-
tion are not shown in the table. Bolded cells refer to significant effects at p < .05. 

4 Conclusion 

Contradictory information has been used to increase learning with different methods 
of presentation (e.g., [1-5,7]). This strategy is expected to be effective because it 
creates a state of mental discomfort through occurrences of cognitive conflict [7], 
cognitive disequilibrium [8-10], and confusion [1,3], which then trigger learners to 
engage in effortful cognitive activities (e.g., reflection, problem solving) that ulti-
mately bring about deeper comprehension [19-20]. The present experiment continues 
this line of research, but also addresses the less researched issue of the sources of 
contradictions. We have conducted an experiment that, when compared with the find-
ings of a previous experiment [3], allows for the impact of source to be investigated.  

Overall we have found that the presentation of contradictory information by  
two peer student agents can still successfully induce confusion and had a positive 
impact on learning. Findings for self-reported confusion mirrored the pattern when 
contradictions were presented by tutor and student agents [3]. The patterns differed, 
however, when response accuracy was investigated. This more objective measure of 
uncertainty and confusion indicated that learners were influenced by agent role and 
the inter-agent relationship in the trialogue. Although, it was the case that similar 
learning |patterns were found regardless of the inter-agent relationship. In both expe-
riments learners performed better when in the contradictory information conditions  
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(true-false, false-true) when they were successfully confused. This finding across 
both experiments is consistent with impasse-driven theories of learning [20] and also 
cognitive conflict research (e.g., [7,21]) in which learners must be triggered through 
awareness of the conflict to begin engaging in the cognitive activities that benefit 
learning. 

It was not the case, however, that the two conditions in which the agents disagreed 
(true-false, false-true) were identical in all respects in the present experiment. In par-
ticular, the true-false and false-true conditions differed on self-reported confusion and 
forced-choice question response accuracy. Given that the two agents had the same 
status level (peer student), it could be expected that similar patterns would emerge for 
both conditions. The findings for the true-false condition adhere to the expected pat-
tern with increased self-reported confusion and response accuracy at chance level, 
whereas the false-true condition did not differ from the true-true condition on self-
reported confusion and generally responded above chance level. This suggests that 
status level is not the only agent characteristic that should be considered and trialogue 
characteristics (e.g., which agent stated their opinion first) may need to be considered 
as well. For example, in the present experiment the agents differed on gender. When 
there is no clear authority figure or expert learners may align with an agent based on 
other characteristics. Research has suggested that agent gender and ethnicity in 
|relation to learner gender and ethnicity can impact the learning experience (e.g., 
[16,22-23]). There were too few participants in the present sample to investigate these 
differences, but future research will need to investigate additional characteristics and 
how they impact the effectiveness of the presentation of contradictions to trigger  
deeper processing and ultimately have a positive impact on learning.  

Acknowledgements. This research was supported by the National Science Founda-
tion (NSF) (ITR 0325428, HCC 0834847, DRL 1235958). Any opinions, findings and 
conclusions, or recommendations expressed in this paper are those of the authors and 
do not necessarily reflect the views of NSF.   

References 

1. D’Mello, S., Lehman, B., Pekrun, R., Graesser, A.: Confusion can be beneficial for learn-
ing. Learning and Instruction 29, 153–170 (2014) 

2. Grosse, C., Renkl, A.: Finding and fixing errors in worked examples: Can this foster learn-
ing outcomes? Learning and Instruction 17, 612–634 (2007) 

3. Lehman, B., D’Mello, S., Strain, A., Mills, C., Gross, M., Dobbins, A., et al.: Inducting 
and tracking confusion with contradictions during complex learning. International Journal 
of Artificial Intelligence in Education 22, 71–93 (2013) 

4. McLaren, B.M., et al.: To err is human, to explain and correct is divine: A study of interac-
tive erroneous examples with middle school math students. In: Ravenscroft, A., 
Lindstaedt, S., Kloos, C.D., Hernández-Leo, D. (eds.) EC-TEL 2012. LNCS, vol. 7563,  
pp. 222–235. Springer, Heidelberg (2012) 

5. Tsovaltzi, D., Melis, E., McLaren, B.: Erroneous examples: Effects on learning fractions in 
a web-based setting. International Journal of Technology Enhanced Learning 4, 191–230 
(2012) 



54 B. Lehman and A. Graesser 

 

6. Braasch, J., Rouet, J.-F., Vibert, N., Britt, M.: Readers’ use of source information in text 
comprehension. Memory & Cognition 40, 450–465 (2012) 

7. Limón, M.: On the cognitive conflict as an instructional strategy for conceptual change: A 
critical appraisal. Learning and Instruction 11, 357–380 (2001) 

8. Festinger, L.: A theory of cognitive dissonance. Row Peterson, Evanston (1957) 
9. Graesser, A., Lu, S., Olde, B., Cooper-Pye, E., Whitten, S.: Question asking and eye track-

ing during cognitive disequilibrium: Comprehending illustrated texts on devices when de-
vices breakdown. Memory & Cognition 33, 1235–1247 (2005) 

10. Piaget, J.: The origins of intelligence. International University Press, New York (1952) 
11. Chinn, C., Brewer, W.: An empirical test of a taxonomy of responses to anomalous data in 

science. Journal of Research in Science Teaching 35, 623–654 (1998) 
12. Bråten, I., Strømsø, H., Britt, M.: Trust matters: Examining the role of source evaluation in 

students’ construction of meaning within and across multiple texts. Reading Research 
Quarterly 44, 6–28 (2009) 

13. Goldman, S., Braasch, J., Wiley, J., Graesser, A., Brodowinska, K.: Comprehending and 
learning from internet sources: Processing patterns of better and poorer learners. Reading 
Research Quarterly 47, 356–381 (2012) 

14. Strømsø, H., Bråten, I., Britt, M.: Reading multiple texts about climate change: The rela-
tionship between memory for sources and text comprehension. Learning and Instruc-
tion 20, 192–204 (2010) 

15. Wiley, J., Goldman, S., Graesser, A., Sanchez, C., Ash, I., Hemmerich, J.: Source evalua-
tion, comprehension, and learning in internet science inquiry tasks. American Educational 
Research Journal 46, 1060–1106 (2009) 

16. Baylor, A., Kim, Y.: Simulating instructional roles through pedagogical agents. Interna-
tional Journal of Artificial Intelligence in Education 15, 95–115 (2005) 

17. Halpern, D., Millis, K., Graesser, A., Butler, H., Forsyth, C., Cai, Z.: Operation ARA: A 
computerized learning game that teaches critical thinking and scientific reasoning. Think-
ing Skills and Creativity 7, 93–100 (2012) 

18. Graesser, A., D’Mello, S.: Emotions during the learning of difficult material. In: Ross, B. 
(ed.) The Psychology of Learning and Motivation, vol. 57, pp. 183–225. Elsevier (2012) 

19. D’Mello, S., Graesser, A.: Dynamics of affective states during complex learning. Learning 
and Instruction 22, 145–157 (2012) 

20. VanLehn, K., Siler, S., Murray, C., Yamauchi, T., Baggett, W.: Why do only some events 
cause learning during human tutoring? Cognition & Instruction 21, 209–249 (2003) 

21. Chan, C., Burtis, J., Bereiter, C.: Knowledge building as a mediator of conflict in concep-
tual change. Cognition and Instruction 15, 1–40 (1997) 

22. Baylor, A., Kim, Y.: The role of gender and ethnicity in pedagogical agent perception. In: 
Richards, G. (ed.) Proceedings of the World Conference on E-learning in Corporate, Gov-
ernment, Healthcare, and Higher Education, pp. 1503–1506. AACE, Chesapeake (2003) 

23. Moreno, R., Flowerday, T.: Students’ choice of animated pedagogical agents in science 
learning: A test of the similarity-attraction hypothesis on gender and ethnicity. Contempo-
rary Educational Psychology 31, 186–207 (2005) 

 
 



 

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 55–60, 2014. 
© Springer International Publishing Switzerland 2014 

Automated Physiological-Based Detection of Mind 
Wandering during Learning 

Nathaniel Blanchard1, Robert Bixler1, Tera Joyce1, and Sidney D’Mello1,2 

1 Department of Computer Science  
2 Department of Psychology, University of Notre Dame, Notre Dame, IN 46556 

{nblancha,rbixler,tjoyce4,sdmello}@nd.edu 

Abstract. Unintentional lapses of attention, or mind wandering, are ubiquitous 
and detrimental during learning. Hence, automated methods that detect and 
combat mind wandering might be beneficial to learning. As an initial step in 
this direction, we propose to detect mind wandering by monitoring physiologi-
cal measures of skin conductance and skin temperature. We conducted a study 
in which student’s physiology signals were measured while they learned topics 
in research methods from instructional texts. Momentary self-reports of mind 
wandering were collected with standard probe-based methods. We computed 
features from the physiological signals in windows leading up to the probes and 
trained supervised classification models to detect mind wandering. We obtained 
a kappa, a measurement of accuracy corrected for random guessing, of .22, sig-
naling feasibility of detecting MW in a student-independent manner. Though 
modest, we consider this result to be an important step towards fully-automated 
unobtrusive detection of mind wandering during learning. 

Keywords: skin conductance, skin temperature, mind wandering, machine 
learning. 

1 Introduction 

Almost everyone has had the experience of attempting to concentrate on a learning 
task and suddenly realizing that their mind has drifted elsewhere. As a result they may 
have missed key pieces of information and are forced to review the missed material. 
This phenomenon, called mind wandering (MW), can be described as involuntarily 
engaging in conscious off-task thoughts without the metacognitive realization that this 
has occurred [1]. MW has been linked to lower performance on a number of tasks 
including poor comprehension during reading [2] and low recall during memory en-
coding [3]. Furthermore, MW is difficult to address immediately because people in-
itially lack conscious awareness of that fact that they are MW. Given the ubiquity and 
negative consequences of the phenomenon, it might be beneficial for intelligent tutor-
ing systems (ITSs) and other educational technologies to detect when MW occurs and 
then intervene to restore attention to the task at hand. As an initial step in this direc-
tion, this paper reports research aimed at developing a fully-automated system to 
detect momentary occurrences of MW in a manner that generalizes to new students. 
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Related Work. MW detection is a relatively unexplored field. Drummond and Lit-
man (2010) were one of the first to attempt automatic MW detection. They used pro-
sodic and lexical features of student responses to a spoken ITS. Students were probed 
at set intervals into if they were MW. Their models were able to discriminate high and 
low MW with an accuracy of 64%. However, their models were only applicable to 
ITSs with student speech, and their validation method did not ensure generalization to 
new students [4].  

D’Mello, Cobian, and Hunter (2013) furthered work on MW detection by building 
supervised classification models that automatically detected MW during reading from 
eye gaze features obtained with commercial eye trackers. Their model obtained a 
kappa, a measurement of accuracy corrected for chance, of 0.23 [5]. Though their 
validation method ensured generalizability to new students, their approach is limited 
to reading tasks. Furthermore, the use of eye tracking has some scalability concerns. 

Current Study. The present study focused on detecting MW by monitoring two phy-
siological signals: skin conductance (SC) and skin temperature (ST). These signals 
were collected using a wearable sensor at a fraction of the cost of commercial eye 
trackers. The use of physiology to track MW is motivated by the relationship between 
sympathetic nervous activity (captured by SC and ST) and attentional states [6]. 

A previous study found a higher rate of MW was related to overall lower levels of 
skin conductance (SC) [7]. However, this result was not leveraged to build automated 
MW detectors. To our knowledge, no attempt has been made to build models capable 
of detecting MW using SC or ST signals, nor has there been research attempting to 
link ST and MW. Taking a step in this direction, we collected a large data set where 
students were periodically probed to report instances of MW during computerized 
learning from instructional texts. These signals were used to create machine learning 
models that predicted MW. 

2 Methods 

Data Collection. Participants were 70 undergraduate students from a medium-sized 
private mid-western University in the U.S. Students were seated in front of a comput-
er and an Affectiva Q sensor was strapped to the inside of the student’s non-dominate 
wrist, a standard placement to measure SC [8]. The Affectiva Q [9] provides a nonin-
trusive way to measure SC and ST of the student at sampling rates of 8 Hz.  

Students were asked to study four texts, each on key research methods topics: ex-
perimenter bias, replication, causality, and dependent variables. On average, each text 
contained 1500 words (SD = 10 words) with approximately 60 words per page. Stu-
dents were informed that they would be asked a series of test questions on each text 
after reading. Before each text, students were made aware of the point value of test 
questions related to the text – “high-value” text questions were worth three times 
more than “low-value” text questions. This was the value manipulation. In addition, 
there were also difficult vs. easy versions of the texts equated in terms of content and 
length (difficulty manipulation). These manipulations were integral to a larger re-
search study, but are not the focus of this research.  
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As students progressed through the texts they were instructed to report if they were 
MW by responding to auditory probes. Auditory probes occurred at a random point 4 
to 12 seconds from the beginning of pseudo randomly chosen probe pages. These 
probes are classified as “within-page” probes. If students attempted to advance to the 
next page before the probe appeared, they were probed with an “end of page” probe. 
Once an auditory probe occurred, students used a keyboard to indicate MW with a 
“yes” or normal reading with a “no” by selecting appropriate keys on the keyboard.  

Students reported MW to end of page probes 16.9% of the time (N = 108), and 
they reported MW to within page probes 26.1% of the time (N = 526).  

Model Building. Supervised classification was conducted to detect instances of MW 
from physiological signals and contextual features (discussed below). Models were 
built using WEKA [10] and were validated at the student-level - data was randomly 
split on students, with 67% for training and 33% in the testing set and repeated for 25 
iterations. SC and ST signals were z-score standardized at the student level and a low 
pass filter was applied to the SC data at 0.3 Hz to reduce noise in the signal. 

To account for physiological measurements compromised by abrupt movements, 
the average difference between consecutive x, y, and z accelerometer readings for 
each student was calculated from an accelerometer in the Affectiva Q. A threshold of 
five times the average was used to eliminate compromised data, as has been used in 
previous studies [11]. In instances where this threshold was reached, data 5/8ths of a 
second before the movement through 5/8ths of a second after the movement was  
discarded. 

Features were extracted from windows of signal data between the triggering of the 
auditory probe and a variable number of seconds before the probe. Separate datasets 
were constructed for window lengths of 3, 6, 12, 20, and 30 seconds. 

Physiological features were extracted from the SC and ST signals included the 
mean, standard deviation, maximum, the ratio of maxima, and ratio of minima [12]. 
These statistical features were calculated for: the standardized signal; an approxima-
tion of the derivation of the signal (D1) obtained by taking the difference from one 
data point to the next; an approximation of D1, or the second derivate (D2) [13]; the 
frequency, and magnitude obtained from the Fast Fourier transformation [11]; the 
spectral density of the signal with Welch’s method; the autocorrelation of the signal 
at lag 10, and, in models where both ST and SC of the same window were used, the 
magnitude squared coherence between the signals. Other physiological features in-
cluded slope and y-intercept of the slope coefficient of the linear trend line [13]. 

In all, 43 features from the SC signal and the same 43 from ST were extracted. A 
separate dataset was created for each combination of window sizes of SC and ST data 
in order to address different temporal combinations of these signals (e.g. SC data was 
extracted for a window size of 3 seconds while ST was extracted for a window size of 
30 seconds). Coherence statistics were used if the window sizes matched. 

Context features captured the context of the learning task and included features for 
text, timing, and difficulty and value. Difficulty and value features included the cur-
rent difficulty and current value of the text and the previous difficulty and previous 
value of the previous text. Timing features include total time elapsed since the student 
started the reading portion of the experiment, the time since starting the current text, 
the average page time, the previous page time, and the ratio of previous page time to 
average page time. Text features were the total number of pages that the student had 
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read since starting the reading portion of the session and the page number of the cur-
rent text. In all, there were 11 context features. 

Data treatments were applied in various combinations to determine which combi-
nation of data treatments resulted in the most accurate model. First, tolerance analysis 
was used to eliminate features that exhibited multicollinerity. Second, three feature 
selection algorithms (Gain-Ratio, Info-Gain, or ReliefF) were used (on training data 
only) to rank the contribution of each feature, and either 25%, 50%, 75%, or 90% of 
the top features were selected. Third, the data was winsorized by setting outliers 
greater than 3 standard deviations from the mean to the corresponding value 3 stan-
dard deviations from the mean. Fourth, downsampling was applied to the training data 
to obtain an equal distribution of responses by randomly removing instances of the 
more frequent class until the classes were balanced. Fifth, SMOTE (oversampling) 
was applied to the training data by adding random synthetic samples of the less fre-
quent class until the classes were balanced. Sixth, when context features were not 
used, probes were eliminated if the student spent less than 4 seconds on a probe page, 
as the student likely either was not reading or accidently advanced prematurely. 

3 Results 

Table 1 presents the kappa, a measurement of accuracy which corrects for random 
guessing, of the best models (highest kappa). The best models were standardized and 
outliers were winsorized. Neither of the best models used tolerance, downsampling, 
or oversampling. Within page MW responses were easier to detect (kappa = .22, SD 
across iterations = .11) than end of page probes (kappa = .14, SD = .11). As seen from 
the confusion matrices in Table 2, although the best models have a high true negative 
rate (accurately detecting when not MW), the hit rate (correctly detecting MW) was 
low.  

Table 1. Models with kappas 

Probe Type Features Window 
(SC, ST)

No. Feat Classifier Kappa 

Best WP  SC+ST+CF (3, 12) 36 Filtered Classifier 0.22 
Best EoP ST 20 34 LADTree 0.14 
Alt. WP SC+CF 30 7 LADTree 0.15 
Alt. EoP ST+CF 6 23 AdaBoost M1 0.10 
Note. WP – within page; EoP = end of page; Alt = Alternative; 

 
To address the low hit rates, we considered alternate models as shown in Table 2. 

These models have a lower kappa for within page (kappa = .15, SD = .11) and end of 
page probes (kappa = .10, SD = .09), but have higher MW hit rates. Both alternative 
models were standardized within subjects, winsorized, used context features, and 
were trained with upsampling. Neither model used tolerance analysis. The use of 
upsampling in both models may indicate that with more positive MW reports, higher 
rates of MW can be detected. 
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Table 2. Confusion matricies for models 

 Best Models  Alternative Models 

Model Predicted   Predicted 

Actual Yes No  Actual Yes No 
Within page Yes (.26) .30 .70  Yes (.26) .57 .43 

No (.74) .11 .89  No (.74) .38 .62 
End of Page Yes (.16) .14 .86  Yes (.17) .41 .59 
 No (.84) .04 .96  No (.83) .28 .72 

Note. Prior probabilities (base rates) are in parantheses 

4 General Discussion 

We investigated the possibility of detecting MW, a frequent and harmful phenome-
non, from two physiological markers and aspects of the interaction context. MW de-
tection is in its infancy; hence our immediate goal was to demonstrate the feasibility 
of MW detection. The major finding of this work is that SC and ST both contain in-
formation that can be used to detect MW. We acknowledge that our detection rates 
are modest, but consider them to be promising as an initial investigation into the pos-
sibility of unobtrusive detection of momentary instances of MW, an elusive state that 
is difficult to study since it is a highly internal unconscious phenomenon. Our detec-
tion is complicated by the relatively low rates of MW (23.9% of probes), which com-
plicates supervised classification. Furthermore, we attempted to detect MW in a  
student-independent fashion, which is important for generalizability to new students, 
but more challenging due to individual differences in physiological responding [6]. 

MW detection has a number of possible applications. Interventions could be in-
itiated during moments of MW in learning sessions to increase engagement. For ex-
ample, an ITS that has detected MW could reevaluate the difficulty of the task the 
student is undertaking or could attempt to reengage the student’s attention. 

There are a few limitations that need to be addressed in future studies. One limita-
tion is the relatively small data set used to train the models, so replicating the study 
with a larger sample is warranted. The study was conducted in a lab since we were 
interested in a highly controlled environment for this initial investigation. However, 
replication in more authentic contexts is warranted. The use of physiological sensors 
are also somewhat limited in terms of scalability. All participants were undergraduate 
students, and a large proportion (69%) identified as Caucasian – it would be advisable 
to retrain the models with a more diverse data set to study generalizability to diverse 
student populations. 

In summary, although the results detailed are promising as a first start, there are 
multiple directions in which this research can be extended. We are working towards 
expanding our models to include multimodal data such as eye gaze or facial features. 
It is possible that by including additional modalities we will be able to achieve im-
proved detection rates than by using any single modality. This is, of course, an empir-
ical question that awaits further investigation. 
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Abstract. Composing a knowledge map to represent knowledge included in an 
instructional material is an effective way to understand the material. We cur-
rently attempt to utilize tablet media for the knowledge map composition, 
which allows touch operations with fingers. In particular, we address the issues 
of how the touch operations could be accompanied with pseudo-haptic senses 
and whether these senses could produce better cognitive awareness and reten-
tion of knowledge learned from the material. Our approach to these issues is to 
design a model of pseudo-haptic effects that demonstrates what and how cogni-
tive awareness is obtained from pseudo-haptic senses, and to develop a tablet 
tool on iPad presenting the pseudo-haptic senses as modeled. In this paper, we 
discuss knowledge construction with the tablet tool, and report the case study.  

Keywords: pseudo-haptics, knowledge map, tablet media, visual incongruity. 

1 Introduction 

Learning with plural senses would bring about better results than learning with single 
sense. Most of related work on multimedia material and multi-modal user interface 
for learning has focused on accompanying learning process particularly with visual 
and auditory senses [1]. 

The emergence of tablet media such as iPad, on the other hand, brings about the 
possibilities for providing learners with new learning experiences to be obtained from 
touch operations with fingers where learning process could be accompanied not only 
with visual and auditory senses but also with haptic sense. Generating visual represen-
tation of an instructional material such as diagram, chart, map, etc. by means of the 
tablet media, for example, involves touch operations that allow learners to make clear 
various attributes such as relationships among concepts/knowledge embedded in the 
material [2,3]. The touch operations bring with visual sense that could enhance an 
awareness of the embedded attributes to promote understanding of the instructional 
material and retention of knowledge learned [4]. It seems difficult to obtain such cog-
nitive effects from only referring to the material. In addition, the touch operations 
could accompany the process with haptic sense in addition to visual sense. The haptic 
sense is expected to produce better cognitive effects. In particular, we use pseudo-
haptic sense to be obtained from touch operations on iPad.  

This paper discusses knowledge construction with pseudo-haptics. We also demon-
strate a tablet tool that allows learners to compose a knowledge map from an instruc-
tional text with touch operations accompanied with visual and pseudo-haptic senses. 
The haptic sense is expected to allow them to become aware of important attributes in 
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the material and of errors in composing the map, and is expected to enhance the reten-
tion of knowledge learned from the composed map. This paper also reports a case 
study with the table tool. The results suggest the possibility that the pseudo-haptic 
sense produces the cognitive awareness and brings about better effects on the reten-
tion rather than the visual sense.  

2 Learning Experience with Touch Operations 

In the field of CHI and Intelligent UI, there is a lot of work addressing the issue of 
how to accompany touch operations on the user interface with pseudo-haptics [5]. 
Pseudo-haptic sense is a kind of illusion that could occur from visual incongruity felt 
during operating objects [6]. For example, let us consider that a learner moves an 
object with drag operation on the user interface. The object generally follows the 
finger to move. But if the object does not follow the finger and move slowly in com-
parison with the finger movement, he/she would accept the visual incongruity, and 
have a feeling that the object is heavy. Such feeling is called pseudo-haptic sense.  

In applying the pseudo-haptics to the touch operations on the tablet media, we need 
to analyze what kind of cognitive effects could be obtained from it. The pseudo-
haptics has been exhaustively studied in related work on CHI and Intelligent UI where 
the main focus is what kind of pseudo-haptics could be obtained from operations in 
the user interfaces [6]. As far as the authors know, however, there is little work ad-
dressing the issues whether the pseudo-haptics could produce cognitive effects, and 
what kind of cognitive effects could be obtained from it.  

We have accordingly addressed these issues in composing a knowledge map from 
an instructional text with touch operations on iPad. In addition, the visual operations 
for map composition do not always allow the learners to become aware of any 
attributes embedded in the text. For example, it is not easy for the learners to become 
aware of the importance of nodes/links even via the visual operations. The important 
nodes/links could be beforehand distinguished with color from others on the map. In 
this case, however, the learners are given the importance as the distinguished 
nodes/links, and they do not become aware of it by themselves. It is also hard for 
them to become aware of errors in the map composition process.  

In this paper, we focus on cognitive awareness and retention as the cognitive ef-
fects. First, we expect that the pseudo-haptics to be presented could allow learners to 
become aware of important attributes in the instructional text and of errors in compos-
ing the map. Second, it could promote retention of knowledge learned from the com-
posed map.  

3 Knowledge Map Composition with Pseudo-haptics 

Focusing on the cognitive awareness, we have designed the model of pseudo-haptic 
effects, which demonstrates what and how pseudo-haptic sense is presented during 
touch operations and what cognitive awareness is obtained from the presented pseu-
do-haptic senses. We have also developed a tablet tool that presents the pseudo-haptic 
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senses as modeled when the learners operate important nodes/links or make errors in 
composing a knowledge map from an instructional text.  

Following the lessons learned from the previous work [4], we have refined the 
model of pseudo-haptic effects as shown in Table 1. This shows what kind of pseudo-
haptic sense is presented from visual incongruity that is caused by visual movement 
of the node/link during touch operation with the intention of manipulating a node, a 
link, or the map. It also shows what cognitive awareness is brought about by the pre-
sented pseudo-haptic sense.  

Table 1. Model of pseudo-haptics effects 

From the first to fourth rows, the pseudo-haptic effects for node or link operation 
are shown. For example, the first row illustrates the pseudo-haptics presentation and 
cognitive awareness when a learner moves a node with drag operation and accepts the 
incongruity from the visual movement that the node is delayed in comparison with the 
finger movement. He/she is expected to have a feeling that the node is heavy. This 
pseudo-haptic sense is also expected to provide him/her with awareness that the cor-
responding concept/knowledge is important. The fourth row illustrates cognitive 
awareness of incorrect relationship to be brought about when a learner links unrelated 
nodes and accepts the incongruity from the visual movement that the node to which is 
linked keeps away from the link. He/she is expected to feel repulsive force between 
the node and the link. This pseudo-haptic sense will provide him/her with awareness 
that making the relationships between the concepts/knowledge is incorrect. If he/she 
does not fee it, he/she could make the link between the nodes although it is incorrect.  

In the fifth to last rows, the pseudo-haptic effects for map shake operation are 
shown. For example, the fifth row illustrates cognitive awareness of incorrect rela-
tionship when a learner shakes iPad after composing the map including a link between 
unrelated nodes and accepts the incongruity of the visual movement that the link 
comes off.  He/she is expected to feel the loss of tensile strength between the nodes. 
This sense will bring about awareness that the composed relationship is incorrect.  

Fig. 1 shows the user interface of the tablet tool. This tool prepares an instructional 
text and the corresponding correct map. The important nodes/links in the map are 
defined in advance by an instructor. The tool also embeds the visual movements for 
the pseudo-haptic senses in operating the corresponding nodes/links/labels.  
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Node 
movement Drag Delay in node 

movement Node heaviness Important 
knowledge 

Linking Draw Shortening after 
linking Tension between 

nodes 
Important 

relationship Link extension Drag Shortening after 
extension

Linking Drag Away from the link Repulsion between 
node and link

Incorrect 
relationship 

Map shake Shake 

Link coming off Loss of tension Incorrect 
relationship 

Node vibration Unstable force Deficient 
relationship 

Label coming off Loss of sticky force Incorrect label 



64 A. Kashihara and G. 

F

Fig. 2 shows an example
ing impurities from body a
nodes play a crucial role in 
ties collected at lymph ves
map. Since these organs a
other organs, the links repr
ones. The importance of th
operates these important n
strated. When he/she also m
corresponding visual movem

The learners are required
rect map by carefully readi
beforehand presented. They
that are map composition a
learners are expected to lo
nodes. In linking the nodes
by selecting it from the me
position. In addition, the to
the correct map to identify 
firmation phase, the learne
whether there are any error
links. After confirming the
phase by means of the phas
map corresponds to the corr

Shiota 

 

ig. 1. User interface of the tablet tool 

e of instructional text describing the mechanism for rem
and the corresponding correct map. Since lung and lym
removing carbon dioxide (CO2) in blood and other imp

ssel, these two nodes are defined as important ones in 
lso change impure matter into pure matter to transmi
resenting the flows of the matter are defined as import
hese nodes and links is stated in the text. When a lear
nodes/links, the embedded visual movements are dem
makes incorrect links or leaves related nodes unlinked, 
ments are also demonstrated. 
d to complete a knowledge map corresponding to the c
ing the text provided that all nodes in the correct map 
y are expected to compose a map by repeating two pha
and map confirmation. In the map composition phase, 
ocate/relocate the nodes and make the links between 
, they are also required to stick a suitable label on the l

enu including all labels necessary for the correct map co
ool detects the difference between the composed map 

incorrect links/labels and deficient links. In the map c
ers are expected to shack the composed map to conf
rs in the links or labels and whether there are any defici
e map, they are expected to get back to the composit
se transition button in the user interface until the compo
rect one.  

mov-
mph 
uri-
the 

it to 
tant 
rner 

mon-
the 

cor-
are 

ases 
the 
the 

link 
om-
and 

con-
firm 
ient 
tion 

osed 



 Knowledge Construction with Pseudo-haptics 65 

 

Fig. 2. An example of instructional material 

4 Case Study 

4.1 Preparation and Procedure 

We have conducted a case study whose purpose was to ascertain whether the tablet 
tool could provide the pseudo-haptic senses and cognitive awareness as modeled and 
enhance the retention of knowledge compared to knowledge map composition only 
with visual operations. In order to allow the participants to compose the knowledge 
map without pseudo-haptics, we prepared the control tool that removed the function 
of demonstrating the visual movements for the pseudo-haptics from the tablet tool. 
Instead of this function, the control tool visualizes the importance of nodes/links and 
errors by coloring the important nodes/links and by giving alerts in making incorrect 
links, sticking incorrect labels, or leaving deficient links. In this study, we also pre-
pared two instructional texts whose domains were the mechanism for removing im-
purities from body as shown in Fig. 2 and the classification of terrestrial plants, and 
whose correct maps (M-network and M-tree) had network and tree structure. The total 
numbers of nodes/links are 15/20 in M-network and 14/13 in M-tree. Out of these 
nodes/links, the numbers of important nodes/links defined in advance are also 2/5 in 
M-network and 4/3 in M-tree. 

The hypotheses we set up in this study were as follows: 
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• H1: the tablet tool presents the pseudo-haptic senses as modeled, 
• H2: the tablet tool provides the same degree of cognitive awareness as the control 

tool provides, and 
• H3: the tablet tool enhances retention of learned knowledge compared to the con-

trol tool. 

The participants were 16 graduate and undergraduate students in technology who 
belonged to the same university. We set two conditions, which were knowledge map 
composition with pseudo-haptics (With-PH) and with visual sense (With-VI).  

We first prepared knowledge map composition session, in which half of the partic-
ipants composed M-network with the tablet tool (With-PH) and subsequently  
composed M-tree with the control tool (With-VI). The remaining half of them  
first composed M-network with the control tool (With-VI), and subsequently com-
posed M-tree with the tablet tool (With-PH). The time limit given for each map com-
position was 30 minutes. Even if the participants could not compete the knowledge 
map within the time limit, they were not given the correct map. Before the session, 
each participant was given an explanation about how to use the control tool, and was 
not informed beforehand that visual movement of important node/link for pseudo-
haptics was demonstrated, and what the visual movement meant.  

After the session, we next prepared questionnaire session, in which each partici-
pant was requested to first answer the questions for evaluating cognitive awareness to 
be provided with each tool and then to answer the questions for evaluating pseudo-
haptics to be presented under With-PH. Table 2 shows a part of these questions. Each 
participant was allowed to refer to and touch his/her composed map. 

On the next day, we set post-test session, in which each participant was required to 
reproduce the knowledge map for each instructional text within 20 minutes without 
any pseudo-haptic senses, any visualization of important nodes/links, and any alerts 
provided that all nodes in the correct map were given in advance. He/she was accor-
dingly allowed to make the links between the given nodes to reproduce the map. 

Table 2. Questionnaires for evaluating pseudo-haptics and cognitive awareness 

Cognitive
awareness Questions 

Q1 Select the nodes that felt important from the following:
1.Aorta 2.Ascending aorta 3.Abdominal aorta 4.Body 5.Lymph node … 

Q2 Select the links that felt important from the following:
1.Heart->Aorta  2.Aorta->Ascending Aorta   3.Heart->Lung… 

Pseudo-haptic
sense Questions 

Q7 Select the node that felt heavy from the following:
1.Aorta 2.Ascending aorta 3.Abdominal aorta 4.Body 5.Lymph node … 

Q8 Select the links in which you felt tensile strength from the following: 
1. Heart->Aorta   2. Aorta->Ascending Aorta   3. Heart->Lung… 

4.2 Results and Considerations 

Table 3 shows the average data of the map composition and post-test. As for the map 
completion degree, there was no significant difference in completing important links 
between With-PH and With-VI although there was significant difference in complet-
ing the other links (two-sided t-test, t(14)=2.66, p<0.05) in M-network.  
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Regarding the visual movements for important nodes/links, node delay and link 
shortening were frequently demonstrated. Such frequent demonstration allows learn-
ers to have more chances to become aware of important knowledge and errors by 
themselves. As for the visual movements for errors and the alerts given for the corres-
ponding errors in M-network, the total number of the visual movements on With-PH 
was more than the total number of the alerts on With-VI (two-sided Welch’s t-test, 
t(8)=2.05, p<0.10). The average number of phase transitions was also larger on With-
PH (two-sided t-test, t(14)=1.69, p<0.10). These results suggest that the M-network 
composition on With-PH is more complicated than the one on With-VI. 

In order to ascertain the hypothesis H1, let us next examine the average ratios of 
the number of the participants who selected the important nodes/links in Q7/Q8 to the 
number of the participants who were provided with the corresponding visual move-
ments. Each average ratio is calculated per the important node/link. From the results 
of the pseudo-haptics presentation, the pseudo-haptic senses for important nodes/links 
were presented with a very high degree. The pseudo-haptic senses for errors also 
tended to be presented with a higher (lower) degree in M-network (M-tree) since there 
were more (fewer) visual movements for errors in the map composition.  

Table 3. Average data obtained from the knowledge map composition process and post-test 

 
M-network M-tree 

With-PH With-VI With-PH With-VI 
N 8 8 8 8 

Map completion 
Important links 0.95 1.00 1.00 1.00 

Other links 0.84 1.00* 1.00 1.00 

Visual movements
for important 
nodes/links 

Node delay 48.38 -- 46.16 -- 

Link shortening (linking) 1.23 -- 1.17 -- 

Link shortening (extension) 43.05 -- 69.25 -- 
Visual movements 
/ Alerts for errors 

Total 56.25+ 32.5 23.88 22.38 

Phase transition 7.38+ 4.13 1.13 2.25 
Pseudo-
haptics 

presenta-
tion 

Selection of Important nodes 
in Q7: Node heaviness 1.00 -- 1.00 -- 

Selection of Important links 
in Q8: Link tension 0.82 -- 0.83 -- 

Cognitive  
awareness 

Recall of the selected nodes 1.00 1.00 0.78 0.88 
Recall of the selected links 0.43 0.58 0.75 0.67 

Post-test 
Recall of reproduced links 0.81 0.84 0.85 0.87 

Recall of I-links/O-links 0.97/0.74 0.80/0.85 0.96/0.81 1.00/0.83 
t-test, *:p<0.05, +:p<0.10 

As for H2, we calculated the recall of the selected nodes/links in Q1/Q2. The recall 
represents the ratio of the selected important nodes/links to all the important ones the 
participants could make in the map composition session. From the two-sided t-test 
with the recall, there were no significant differences between With-PH and With-VI. 
As for the incorrect relationships/labels and deficient links, there were no significant 
differences between each condition in almost all questions. These results suggest that 
cognitive awareness on With-PH is provided with the same degree as With-VI.  

In order to ascertain H3, we next examine the recall of the reproduced links in the 
post-test. From the one-sided t-test, there was no significant difference between With-
PH and With-VI. We then divided the reproduced links into the links corresponding to 
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the important ones (I-links) and the others (O-links). From the mixed model ANOVA 
with the recall in M-network, there was an interaction between With-PH/With-VI factor 
and I-links/O-links factor (F(1, 31)=3.76, p<0.10). From the simple main effect test, 
there was a tendency toward significant difference between With-PH and With-VI on  
I-links (F(1,14)=3.37, p<0.10). There was also significant difference between I-links 
and O-links on With-PH (F(1,14)=6.50, p<0.05).These indicate that the pseudo-
haptics has more influence on the retention of important knowledge than the visual 
sense, and contributes to retaining important knowledge rather than others.  

From the above results, we consider that cognitive awareness of important know-
ledge to be provided from the pseudo-haptics in more complicated map composition 
promotes the retention. We think the reasons as follows. First, the pseudo-haptics 
allows the learners to find out the important knowledge by themselves. The pseudo-
haptics would also induce the learners to review the instructional text to find out the 
reason why the pseudo-haptic sense occurs. Such review process would contribute to 
retaining the important knowledge.  

5 Conclusion 

This paper has discussed knowledge construction with pseudo-haptics, which includes 
the model of pseudo-haptic effects and the tablet tool for composing a knowledge 
map with touch operations. In the case study, the three hypotheses are confirmed to 
some extent. The pseudo-haptics and cognitive awareness could be provided on iPad, 
and the cognitive awareness of important knowledge could promote the retention 
particularly in the context of more complicated map composition. 

In future, we will conduct more detailed evaluation to refine the tablet tool.  
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Abstract. Analysis of students’ log data to understand their process as they 
solve problems is an essential part of educational technology research. Models 
of correct and buggy student behavior can be generated from this log data and 
used as a basis for intelligent feedback. Another important technique for under-
standing problem-solving process is video protocol analysis, but historically, 
this has not been well integrated with log data. In this paper, we describe a tool 
to 1) facilitate the annotation of log data with information from video data, and 
2) automatically generate models of student problem-solving process that in-
clude both video and log data. We demonstrate the utility of the tool with analy-
sis of student use of a teachable robot system for geometry. 

Keywords: log analysis tool, cognitive modeling, intelligent tutor. 

1 Introduction  

With the advent of the web and the ubiquity of computing, log data from educational 
systems is dramatically increasing [1]. Analysis of log data that contains information 
about interactions with these systems helps researchers create different expert and 
novice models of student behavior [2, 3, 4]. These models allow intelligent systems to 
adapt to the learner’s knowledge, ability and needs [5] by tracking interactions and 
making inferences about what students know or need feedback on [6].  

Some forms of interaction are better captured in video, such as gestures, discussion 
with teachers, or even the use of non-digital materials. Analysis of video can be very 
time-consuming [7], and therefore a number of different tools have been developed, 
mainly to support annotation. AVnnotator [8] facilitates the addition of contextual 
information with a variety of lenses that allows users to document different categories 
of information to any given scene in a video file. Other tools allow exporting annota-
tions so that researchers can manually integrate these with other analysis resources 
[9]. However, none of these tools integrate video and system logs. 

This paper presents a tool that facilitates integrated analysis of data in these two 
formats. Our approach leverages behavior graphs, first proposed by Newel [10]. McLa-
ren et al., in an approach called Bootstrapping Novice Data (BND), demonstrated how 
log data could be used to automatically generate behavior graphs [11]. Like McLaren, 
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our tool supports automatic generation of behavior graphs, but extends it by supporting 
the integration of video code data. This enables users to annotate logs with additional 
information obtained through video analysis and to see their annotations automatically 
represented on the behavior graphs. This approach makes two contributions: 1) We 
incorporate video data in the automatic graph generation, and 2) We provide a visuali-
zation that makes it possible to easily explore relevant expert and novice models from 
the graph characteristics. 

In the remainder of this paper, we describe our tool and then present a proof of 
concept analysis of its efficacy using data collected from student use of our Tangible 
Activities for Geometry (TAG) system. TAG is an embodied environment that sup-
ports middle school students during learning of geometry in a digitally-augmented 
physical space [12]. It uses a teachable agent paradigm, where students are told they 
will tutor a robot named Quinn to solve problems such as “Plot the point (3,1)”. They 
can do so by moving within the physical space to give Quinn commands such as 
Move N units, or Turn M degrees. When students believe they have solved the prob-
lem they can check the correctness of their solution and receive feedback from TAG. 
In theory, students benefit from using TAG by encoding the relevant geometry con-
cepts in an embodied way, and by making their reasoning explicit while instructing 
Quinn on how to solve the problems. Through the models generated by our tool, we 
can explore the strategies, misconceptions, preferences and influence of embodiment 
on student performance. Ultimately, this information can help the system in tailoring 
the feedback given to students during problem-solving. 

2 The Analysis Tool 

In order to understand how a system like TAG can provide better adaptive guidance 
to students, there is a need to identify student strategies and misconceptions, and how 
these interact with students’ embodied behaviors. The analysis tool that we developed 
generates, for both aggregated and individual student log data, a behavior graph (de-
fined below). The tool syncs log data with video data; a researcher can annotate the 
log  data with video information as he or she views a student’s video. The behavior 
graph is updated as annotations are made, giving visual insight on the relationship 
between video data such as gestures and actions performed. Fig. 1 shows the main 
interface of the application, comprised of two main sections: log/video information 
(items A and B) and the behavior graphs (items C and D). 

The behavior graphs consist of states (location and orientation of the teachable 
agent in the coordinate plane; represented by circles) and transitions between states, 
corresponding to actions (e.g., moving from (0,0) to (1,0); represented by lines). Cha-
racteristics of the underlying data are visually encoded as follows. The node size and 
transition thickness are proportional to how many students passed through them, with 
larger nodes or thicker transitions indicating more students. Color is also used: a blue 
node indicates the starting state; green and red indicate correct and incorrect states, 
respectively; and color intensity characterizes the number of students who have 
checked their solution at that state, resulting in a white node if no student checked the 
solution at that particular state. The text inside of the nodes shows the state that it 
represents, using the format x|y|orientation (e.g. 2 | -1 | 90). 
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Fig. 1. The tool’s main interface. (A) Video viewport. (B) Log table. (C) Aggregate behavior 
graph. (D) An individual student behavior graph. 

The tool includes two graphs: the aggregate graph shows information from all stu-
dents for any given problem (Fig. 1C) and the individual graph shows information 
from a single student (Fig. 1D). Given the high amount of data that needs to be 
represented in the graph, users can interact with the graph in several ways. It is possi-
ble to change problems and students, enable or disable labels, pan, zoom, move nodes 
around, and switch between the visualization of different annotations. Clicking on a 
node or transition displays detailed information, such as which students passed 
through it or how many checked for correctness.  

The final aspect of this tool is its support of a seamless two-way navigation be-
tween the video and logs, making it easier to sync actions and to enable annotation of 
the log file based on video information. The tool automatically highlights the current 
action in the imported log file as the user plays the video. Alternatively, the user can 
move through the log file and the video will automatically sync to the log location. 
Users can annotate log entries using free-form text through the table seen in Fig. 1B. 
Each annotation is associated to its respective edge on the graph and receives a 
weight. The graph then encodes these weights visually by coloring its edges, using a 
darker green to denote a higher occurrence of this annotation, and a lighter one to 
denote a lower occurrence. 

3 Using the Tool for Analysis: Proof of Concept 

We used this tool to analyze data from a prior study [13], with the goal of better un-
derstanding student behavior in order to guide future developments of the system.  
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In that study, 19 subjects (8 female, 11 male) spent 45 minutes teaching Quinn how to 
solve point-plotting problems. Interactions were recorded both in the system’s logs 
and in video, which were loaded into the tool. We will now describe the four explora-
tory analyses done using the tool. 
 
Metacognitive Strategies. Through visual inspection of the graphs, we derived a set 
of metacognitive strategies that students used to solve problems. The strategies identi-
fied were: 1) Wandering: the student follows a long path that does not lead to the 
solution (used by 3 participants). 2) Checking and resetting: the student follows a 
path, checks it, and if incorrect, restarts the problem and tries a different approach 
(used by 11 participants). 3) Constant checking: the student checks the answer after 
most actions (used by 3 participants). 4) Intelligent novice: the student takes a slightly 
long path to the correct solution (used by 13 participants). 5) Expert: the student 
moves directly towards the correct solution (used by 12 students). This information 
can aid the system in intervening positively to improve student performance. 

 

 

Fig. 2. Visualization of the metacognitive strategies taken by students while solving problems 
in the TAG system. (1) Wandering (2) Checking and resetting (3) Constant checking (4) Intel-
ligent novice (5) Expert. 

 
Bug Taxonomy. We also used the behavior graph to identify the nodes where stu-
dents submitted an incorrect response, and classified their misconceptions. We identi-
fied several common misconceptions across students. Some examples are: 1) Sum 
coordinates, student summed the two numbers in the coordinate and move that 
amount in one arbitrary axis. 2) Switch x and y: student switched the x-axis with the 
y-axis. 3) Move only in one dimension student moved the correct distance in either x 
or y, but remained in zero for the other dimension. The system could use this informa-
tion to address misconceptions individually. 

 
Multiple Paths to a Solution. The behavior graph enables a visualization of the vari-
ous paths taken by students to get to the answer (both correct and incorrect), with 
thicker edges indicating more students took a given path. Therefore, we could identify 
that most students preferred to move positive distances instead of negative distances 
and generally turned using cardinal points instead of angles. The system could use 
this information to prompt students to consider alternative paths. 
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Fig. 3. Behavior graph with video information. A green edge indicates more embodiment 

Influence of Embodiment. We also used the tool to encode video information into 
the log files. For this analysis, we encoded information from a single problem that 
produced a variety of correct and incorrect solution strategies from participants who 
interacted with the system. Within this problem, we annotated log data with partici-
pants’ levels of embodied movement. Subject movement was coded using a binary 
schema: At each opportunity for physical interaction, a score of either 0 (little/no 
movement) or 1 (purposeful movement) was added as an annotation to the subject’s 
log data. These annotations added a green highlighting to the edges of the behavior 
graph that denoted a higher level of movement. As illustrated in Fig. 3, by looking at 
the subject’s behavior at each step in the problem solving process, we can identify a 
higher average level of embodied movement and behaviors occurring on transitions 
that are part of correct solution paths. This exploratory visualization may indicate an 
interesting relationship between levels of embodiment and problem-solving success. 
We see this analysis as a jumping-off point for quantitative analysis of the relation-
ship between embodiment in our system and problem-solving success. 

4 Conclusion and Discussion 

In this paper, we presented a tool that facilitates analysis by integrating data from logs 
and video into a behavior graph. The features of this tool were demonstrated using 
data from a study that used the TAG System. Using the graph generated by the tool, 
we identified strategies, misconceptions and multiple solution paths. Furthermore, the 
encoded video information provided visual insight on aspects such as the relationship 
between a student’s movements and their efficiency in solving the posed problems.  

Future research could focus on making this tool generalizable, enabling it to work 
on systems that use different log structures. Different forms of data visualization 
could also improve its usefulness, such as making use of the temporal aspect of the 
data, allowing users to see the evolution of the graphs. Lastly, clustering algorithms 
would be a natural step towards automating the analysis of this data, thus improving 
the speed through which conclusions could be drawn from the graph. 
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Abstract. Emotions are an important behaviour of humans and may arise in 
driving situations. Uncontrolled emotions can lead to harmful effects. To con-
trol and reduce the negative impact of emotions, we have built a virtual driving 
environment in which we can capture and analyse emotions felt by the driver 
using EEG systems. By simulating specific emotional situations we can pro-
voke these emotions and detect their types and intensity according to the driver. 
Then, in the environment, we generate corrective actions that are able to reduce 
the emotions. After a training period, the driver is able to correct the emotions 
by himself. 

Keywords: Emotions, Simulation, EEG, Driving, Emotional state. 

1 Introduction  

Emotions play an important role in decision. Emotions can last from a few minutes to 
several days (in this case they are called moods). What is more important is that they 
place the driver into a cerebral state that will allow or disallow him/her to react ade-
quately to a cognitive or a decisive situation. Mental engagement is related to the 
level of mental vigilance and alertness during the task. Sometimes engagement is 
considered as the level of attention and motivation. The loss or diminution of en-
gagement is considered as a distraction [16]. Mental workload can be seen as the 
mental effort and energy invested in terms of human information processing during a 
particular task. If a driver is in a high mental workload he can ignore possible dan-
gers. While driving, these emotions can have very harmful effects on the road, or even 
cause death. For instance, anger can lead to sudden driving reactions, often involving 
collisions. Sadness or an excess of joy can lead to a loss of attention. Generally, emo-
tions that increase the reaction time in driving situations are the most dangerous. Sev-
eral questions arise. How do we measure or estimate the emotion of the driver in 
certain situations? How can the driver act on his emotions to reduce their intensity? 
How can we train the driver to react differently and control his emotions? 

Different technologies can be used to assess emotions. We can use physiological sen-
sors that are able to evaluate seat position, facial recognition, voice recognition, heart 
rate, blood pressure, sweating and the amount of pressure applied on the computer 
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mouse. The galvanic skin conductivity is a good indication of emotional change but its 
evaluation is not precise. The use of Electroencephalograms (EEG) sensors is more 
precise and more recently used [17]. In fact, EEG signals are able to detect emotions 
and cerebral states which, synchronized with the driving scene, can highlight what  
happens in the brain and when. To reduce emotions, most of the systems use a voice to 
interact with the driver. In the present paper we aim to assess emotions felt by a driver 
in specific driving situations. For that, we have built a virtual environment that is able to 
generate these emotions. Then, a virtual agent intervenes to reduce the emotional impact 
so that the driver can return to a neutral emotion. Following this introduction, we first 
comment first on previous works realized in this domain. Then, we present the main 
components of our simulator, a virtual environment that is able to generate emotions 
and an agent in charge of reducing emotions. We describe the experiments realized, 
show the resulting emotions and the measures obtained. Finally, we show how the  
system can reduce emotional reactions and create an impact on reducing road accidents.               

2 Previous Work  

Intuitively emotions play a role in driving, but even if they are not listed as a direct 
factor in road accidents [4, 12], it is reported that 16 million drivers in the United 
States have disabilities road rage [10]. What is the effect on driving when emotions 
such as anger and excitement arise, since they increase the driver reaction time?  

Nass, Jonsson et al. [1, 2] realized a study to determine whether a car equipped 
with the ability to speak may influence the performance of its user. Participants of the 
simulation were invited to converse with the voice of car. Results showed that when 
the voice of the car met the voice of the participant (happy / sad / moderate) he had 
less accidents, paid more attention to the road and was more involved in the conversa-
tion with the voice of car. Jones and Jonsson [14] have presented a method to identify 
five emotional states of the driver during simulations. They used neural networks as 
classifiers, but they have not studied the impact of ambient noise. Schuller et al.  [3] 
also based their experiences on driving simulators recognizing four emotions using 
support vector machines. However, these studies have shown that the performance of 
emotion recognition depends largely on the ratio of noise that they have also ignored.      

Results obtained by Cai et al.  [13] show that anger and excitement, in a scenario 
involving several drivers, cause an increase in heart rate, breathing and skin conduc-
tivity. More specifically, drivers who are not in the neutral state, cross more the lines 
on the road, turn more on the wheel, and are changing lanes much faster when they 
are angry or excited. We can conclude that the emotions of anger and excitement 
negatively affect the control of the vehicle when driving as compared to driving in a 
neutral state. And this control is directly connected to road safety. 

Works undertaken by a team at The Institute Human-Machine Communication in 
Munchen [18] confirm the influence of the affective state on driver performances. 
Again, the study emphasized the importance of developing an intelligent system in-
side the car. To achieve this, emotion plays a significant role in the comfort and safety  
 



 Virtual Environment for Monitoring Emotional Behaviour in Driving 77 

 

of driver’s performance. Facial expressions, voice, physical measurements, driving 
parameters and contextual knowledge of the driver are important and reliable methods 
for recognizing the emotions and state of the driver. A distraction detection system is 
also under way and will assist the driver with a Lane Keeping System and a Head 
Tracking System. Research on emotions detection is being funded by Toyota. Their 
system, which is still in the prototype stage, can identify the emotional state of the 
driver with a camera that stands 238 points on their face. The car can then make sug-
gestions to the driver, or simply adjust the music for relaxation. Everything is still in 
the prototype stage, but Toyota says that their system could be available in their next 
car generation. 

3 The Emotional Car Simulator  

3.1 The Environment 

To generate and assess emotions in a driving situation we have built a Virtual Envi-
ronment able to simulate specific driving situations that could be a source of emo-
tions. The virtual environment takes the form of a game in which the player is a driver 
who is submitted to a variety of realistic situations that everybody could experience 
every day in traffic. Our environment is divided into 6 parts: the profile of the user, 
the quiz (before and after simulation), the simulation, the emotion corrector (an agent 
able to calm the user and reduce his emotions), and the result part. On the right side of 
the interface we have integrated the measures which come in real time from an EEG 
headset: Excitement, Engagement, Boredom, Meditation, and Frustration. First of all, 
the user has to register and provide personal information (profile) in the Virtual Envi-
ronment, then he is submitted to the first quiz in which he has to determine the per-
ception of his own emotions. This quiz is invoked before and after each scenario in 
the simulator. The simulator is the part intended to cause emotional reactions. It is 
based on a video game where a user can experiment nine different driving scenarios 
designed to generate emotions by using stimulating sounds and mobile cars or trucks 
that suddenly arise in the traffic to disrupt the driving behaviour of the user. The emo-
tion corrector module is intended to reduce player’s emotions.  It is represented by a 
virtual emotional agent which is aware of user’s emotion and will try to talk to him 
according to various scenarios, explaining the good behavior to adopt in order to 
reduce his emotions. 

3.2 Collecting the Data 

To collect the data we used the EPOC headset built by Emotiv. EPOC is a high resolu-
tion, multi-channel, wireless neuroheadset which uses a set of 14 sensors plus 2 refer-
ences to tune into electric signals produced by the brain to detect the user’s thoughts, 
feelings and expressions in real time (Figure 1). Using the Affectiv Suite we can monitor 
the player’s emotional states in real-time. This method was used to measure the emotions 
throughout the whole simulation process. Emotions are rated between 0 and 100%, 
where 100% is the value that represents the highest power/probability for this emotion.  
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The fifth scenario is similar to the fourth, this time with a pedestrian crossing the 
street. In the sixth scenario, the participant has to find a place in a public parking. 
There is only one place left and before the participant can reach it, another car takes it. 
The participant has to look around to find another place (Figure 4). In the seventh 
scenario, the car is already on a highway at high speed and the brakes are no more 
working. The participant has to stay calm, verifies if the brakes are working properly 
and tries to stop the car. In the eighth scenario, a fire truck comes from behind and 
starts its siren.  

 

 

Fig. 4. The parking lot (Scenario #6)            Fig.5. The Fire Truck (Scenario #8) 

The participant has to move his car to the right and stay immobilised until the fire 
truck is gone (Figure 5). In the last scenario, the participant is late for work. If the 
participant takes the first turn right he will arrive at work on time but there is an inter-
diction to turn right, he has to take the second right turn. The participant has to respect 
the signalisation and turn where it is permitted, even if he is in a hurry. 

5 Results   

The subjects of this study were 30 college students from Quebec, 6 females and 24 
males aged between 17 and 33. Amongst them, 24 had their driving license. In this 
section, we present the common emotions generated during the scenarios. Participants 
are excited when an event (pedestrian, siren, stop sign, parking, etc.) occurs. They 
become very frustrated and excited when they realized that their brakes did not work 
(41.2% frustrated and 70.6% excited). Participants got bored when they had to wait 
for the pedestrian (23.5%) or when nothing happened (29.4% during the first scena-
rio). Participants became very frustrated when they caused a collision (70.6% in sce-
nario 6) or when they failed a scenario. The following figures show the influence of a 
Fire Truck’siren and a brakes failure. Figure 6 shows the generation of excitement 
when the Fire Truck started its siren. Figure 7 shows the generation of frustration 
when the user noticed that the brakes failed. These data are for a single user. 

We consider a generated emotion by observing the emotions that have increased 
their value by at least 20% in the course of the scenario (Figure 6). A corrected emo-
tion is also defined by observing a decrease of at least 20% between the end of the 
scenario and the end of the correcting agent phase (Figure 7). 
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Abstract. The Affective Meta-Tutoring system is comprised of (1) a tutor that 
teaches system dynamics modeling, (2) a meta-tutor that teaches good strategies 
for learning how to model from the tutor, and (3) an affective learning 
companion that encourages students to use the learning strategy that the meta-
tutor teaches. The affective learning companion’s messages are selected by 
using physiological sensors and log data to determine the student’s affective 
state. Evaluations compared the learning gains of three conditions: the tutor 
alone, the tutor plus meta-tutor and the tutor, meta-tutor and affective learning 
companion. 

Keywords: Tutoring, meta-tutoring, learning strategies, affective learning 
companion, and affective physiological sensors.  

1 Introduction 

A learning strategy is a method used by a student for studying a task domain and 
doing exercises; a good learning strategy tends to increase the learning of students 
who follow it, whereas a poor learning strategy tends to decrease learning.  A learning 
strategy is a kind of meta-strategy or meta-cognition.  That is, it is knowledge about 
knowledge acquisition.  For example, when studying a worked example, a good 
learning strategy is to self-explain every line of the example [1].  When working on a 
tutoring system that gives hints, a good learning strategy is to ask for hints when and 
only when one is unsure about what to do [2].       

A perennial problem is that after students have mastered a learning strategy, they 
may still choose not to use it [3].  The AMT (Affective Meta-Tutoring) project tested 
whether an affective learning companion (ALC) could persuade students who were 
taught a learning strategy to continue using it after instruction in the learning strategy 
had ceased.   The project built a system composed of four modules: 

• An editor, which was used by students to take the steps needed to solve problems. 
• A tutor, which taught students a problem-solving skill by giving hints and 

feedback on each step as the problem is being solved.  
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• A meta-tutor, which taught a learning strategy by giving hints and feedback about 
it as the students’ used the tutor. 

• An affective learning companion, having the goal of persuading students to use the 
learning strategy even after the meta-tutor is turned off. 

The evaluation of the system focused on students’ learning gains.  We 
hypothesized that when ranked by learning gains, the three conditions we studied 
would exhibit this pattern: 

tutor < meta-tutor + tutor < ALC + meta-tutor + tutor 
We also tested whether students instructed with the affective pedagogical agent 
persisted in using the learning strategy when the meta-tutoring ceased.  

This paper summarizes the AMT system and its evaluation, and concludes by 
discussing similar work.  Many details are suppressed in order to keep the paper short, 
but can be found in the project publication referenced herein. 

2 The Task Domain: System Dynamics Modeling 

Recent standards for K-12 science and math education have emphasized the 
importance of teaching students to engage in modeling [4, 5]. Although “modeling” 
can mean many different things [6], we are interested in teaching students to construct 
models of systems that change over time (dynamic systems) where the model is 
expressed in a graphical language that is equivalent to sets of ordinary temporal 
differential equations.  Stella (www.iseesystems.com), Vensim (vensim.com), 
Powersim (hwww.powersim.com) and similar graphical model editors are now widely 
used in education as well as industry and science.  Much is known about students’ 
difficulties with “systems thinking” and how it improves when students learn how to 
construct models [6].  The practical importance and strong research base motivated 
our choice of task domain. 

However, even with kid-friendly editors [7], students still require a long time (tens 
of hours) to acquire even minimal competence in the task.  Most science and math 
classes cannot afford to dedicate this amount of time to learning a modeling tool, so 
this path to deeper understanding of systems, too often, remains closed.  One of the 
long-term practical goals of this work is to reduce the time-to-mastery from tens of 
hours to just an hour or two.  

3 The AMT System 

This section introduces the main parts of the AMT system: the editor, tutor, meta-
tutor and ALC. 

3.1  The Model Editor 

The model editor had two tabs. One presented the problem to be solved, such as:  
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editing a node, the status of their work was visible as colors on the little circles inside 
the node icons (“i” means input; “c” means calculation).   

When the tutor was turned off, its feedback and hints were disabled.  In particular, 
the Solve-it-for-me button was always disabled, and the Check button was disabled on 
all forms except the first one.  The Check button was enabled during the first step 
because the system needed to know which node the student was trying to define so 
that it could associate a correct graph with the node. 

3.3 The Meta-Tutor 

When the meta-tutor was turned off, students tended to first define nodes for all the 
numbers in the problem statement, even if the numbers were irrelevant.  Next, they 
tried to guess definitions of more nodes using keywords such as “initially,” “increase” 
or “altogether.”  Sometimes they used methodical guessing.  Indeed, some students 
seldom looked at the tab containing the text of the problem.  These represent a few of 
the practices called “shallow modeling” in the literature [6].  The purpose of the meta-
tutor is to prevent shallow modelling and encourage deep, thoughtful modeling. 

Inspired by the success of the Pyrenees meta-tutor [8], our meta-tutor explicitly 
taught students a general goal decomposition method.  For the students’ benefit, we 
called it the Target Node Strategy and described it as follows: 

1. Pick the quantity that the problem asks you to graph, create a node for it, and call it 
the target node. 

2. Define the target node completely.  If the node needs some inputs that haven’t been 
defined yet, create those nodes but don’t bother filling them in yet. Return to 
working on the target node, and don’t stop until it’s finished. 

3. When the target node is finished, if there are nodes that have been created but not 
defined, then pick any of them as the new target node, and go to step 2.  If every 
node has been defined, then the model is complete and you can execute it.   

When the meta-tutor was on, it required the student to follow the Target Node 
Strategy.  It also complained if the students overused the Solve-it-for-me or Check 
buttons, just as other meta-tutors do [9].  The meta-tutor also advised students on how 
to debug models (e.g., if several nodes have incorrect graphs, examine first those 
whose input nodes have correct graphs).  We use the term “meta-strategy” to refer to 
this whole collection of strategic advice about how to use the tutor and the editor.   

3.4 The Affective Learning Companion (ALC) 

The main job of the ALC was to persuade students that the meta-strategy was worth 
their time and effort, and thus they should use it frequently not only when the meta-
tutor was nagging them, but also when the meta-tutor and the ALC were turned off.  
To achieve this persuasion, we used both affect-based and motivation-based designs 
for the agent and its behavior.  These designs are discussed in the order in which they 
were encountered by the student. 
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Following Dweck and others [10], all students began their training by reading a 
brief text introducing the “mind is a muscle” paradigm: the more you exercise your 
mind, the more competent you become.  The ALC often referred to this concept, 
whereas the non-ALC interventions never mentioned it again.   

After reading the “mind is a muscle” passage, students in the ALC condition first 
encountered the agent.  The agent’s appearance and initial behavior were designed to 
help establish rapport with the student.  Following Gulz [11], the agent was a cartoon 
of a human.  Following Arroyo et al. [12], its gender matched the gender of the 
student.  Given the mixed results of D’Mello and Graesser [13], the agent display a 
fixed neutral expression.  Following Gulz et al. [14], the agent introduced him/herself, 
and engaged the student in light conversation about the student’s interests.  The 
agent’s dialogue turns were text, and the student’s turns were selected from menus. 

The student’s next activity was to study a series of PowerPoint slides interwoven 
with simple exercises.  These taught the basics of modeling and the user interface. 
This activity was the same for both the ALC intervention and the non-ALC 
intervention, and the agent was absent during it. 

When the student had finished the introduction and was about to begin problem 
solving with the tutor, the ALC appeared and expressed enthusiasm about the 
upcoming challenges.  It also reminded the student that the “mind is a muscle.”  

Once the student began solving a problem, the ALC “spoke” via a pop-up text 
approximately once a minute.  If the student was practicing deep modeling frequently, 
then the agent remained silent. 

When the agent “spoke,” its message was selected based on log data and 
physiological sensor data that were interpreted by machine-learned models.  The 
sensors were a facial expression camera and a posture-sensing chair.  The sensor data 
were cleaned, synched and input to a regression model that predicted the student’s 
emotional state.  The emotional state and the output of the log data detectors drove a 
decision tree that selected one of the following 7 categories, whose message was then 
presented to the student:    

1. Good Modeling: Students exhibit frequent deep modeling behaviors and low 
variation among affective states. ALC: “You really nailed it efficiently!  It seems 
like you are using the strategy and that all your efforts are helping you to make 
strong connections in your brain.  Nice work!” 

2. Engaged: Students make few errors and show high level of excitement and 
confidence.  ALC: “That’s it!  By spending time and effort verifying your answers 
and planning ahead as you use the strategy, your brain is creating more connections 
that will help you in your future modeling.” 

3. New Understanding: Students show some shallow behaviors without making too 
many errors, and some may show some frustration.   ALC: “You’re getting good at 
this.  Planning ahead is the way to go.  I can almost see the connections forming in 
your brain.” 

4. Inconsistent: Students make many shallow behaviors and show high level of 
frustration. ALC: “Remember to stay focused and use the strategy and your plan.  
Your actions seem to be inconsistent with the plan you picked earlier. If you 
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planned on having a <fixed value> node, then why are you trying to create a 
<function>?  It’s OK; sometimes it can be confusing; just remember to always try 
to do your best…” 

5. Guessing: Students enter several answers before getting one correct, perform many 
shallow behaviors, and show low level of excitement: “Sometimes one must guess.  
But even if you’ve been guessing recently, try to figure out why the response that 
got green was correct.  That way you can get there faster next time without 
guessing.” 

6. Fluttering, Confused, Lost: Students make many errors. While the student 
sometimes refers to instructions and the problem, the student only uses these 
features when stuck, not when planning the modeling activity.  ALC: “You seem a 
little lost.  Sometimes these activities can be confusing.  Do you think you can go 
back to the strategy and use it to make a plan about the best way to spend your 
effort?  This will probably help you make progress.” 

7. Boredom: Students make some errors and show consistently low level of interest. 
ALC: “If this activity seems boring, why not turn it into a game to make it more 
fun?  For instance, do you think you can finish a node while getting green on your 
first try at every tab?” 

The ALC messages quoted above were the ones presented initially.  If the same 
message needed to be presented later, one of 10 short versions was presented instead. 

When students finished a problem, a rectangular bar appeared alongside the agent 
in order to reify the student’s meta-cognitive performance, following [15, 16].  The 
bar was divided into three segments that displayed the proportion of student actions 
that were deep (green), shallow (red) or neutral (yellow).  The modeling depth bar 
was intended to shift students’ motivational focus from correctness (the red/green 
coding of the tutor) to effort (the red/green coding of the bar). After the ALC 
explained what the bar meant, it presented a message based on a 6-way categorization 
that took into account the student’s behavior throughout the solving of the problem 
[17].  The student was then prompted to begin the next problem.   

When the training phase was completed, the ALC appeared for the last time and 
encouraged the student to continue to use deep modeling practice in the forthcoming 
transfer phase. 

The ALC’s messages turned out to be mostly motivational and meta-cognitive.  
The messages were designed “bottom up” by experienced human coders who were 
familiar with the affect and motivation literature.  The messages were tailored to fit 
the student’s state as the coders interpreted it rather than to cleave precisely to one 
affect/motivation theory or another.  

However, the ALC did choose which message to present on the basis of the 
student’s affective state, as detected by the sensors.  As advocated by [18], some 
messages probably work best if they were delivered only in some affective states.   
For instance, criticizing the students’ effort when they are frustrated may cause 
disengagement, but the same message delivered to a bored student might have a better 
chance at re-engaging them.  
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4 Evaluation 

 This section reports the outcomes (main results) of our experiments evaluating the 
meta-tutor (studies 3, 4 and 5) and the ALC (studies 6 and 7).  Studies 1 and 2 were 
pilot studies that involved only the editor and the tutor, and will not be discussed here.   

4.1 Methods  

Procedure: All five experiments used the same procedure.  There were two phases:  A 
75 minute training phase and a 30 minute transfer phase.  During the training phase, 
all students studied PowerPoint slides which introduced them to system dynamics 
modeling, the model editor and the Target Node Strategy.  They also engaged in a 
series of training problems of increasing complexity.  The Check and Solve-it-for-me 
buttons were available to give them feedback and demonstrations, respectively, on 
each step in constructing a model.  During the transfer phase, the tutor, meta-tutor and 
ALC were all turned off.  Thus, the transfer phase allowed students to display both 
competence at system dynamics modeling and the Target Node Strategy. 
   
Design: Students were randomly assigned to treatment groups.  The treatment 
manipulation occurred only during the training phase and only while the students 
were solving problems.  There were three treatment conditions: tutor alone; tutor + 
meta-tutor and tutor + meta-tutor + ALC.   
 
Measures: The studies used basically the same measures, although there were 
improvements as the studies progressed.  There were three types of measures, which 
were all calculated from log data: 

• Efficiency:  How much modeling were students able to complete in a fixed period 
of time?   

• Error rate:  How many mistakes did students make when defining a node? How 
often did they get green (correct) the first time they clicked the Check button? 

• Modeling depth:  Did students use deep or shallow modeling practices?   
─ How frequently did students guess or otherwise “game the system?”   
─ How frequently were their actions consistent with the Target Node Strategy?   
─ How frequently did students refer to the problem statement?   
─ How frequently did students refer back to the introductory PowerPoint slides? 
─ How many irrelevant nodes did students create? 
─ How many episodes were classified as deep by the log data detectors? 

Participants:  Because we aimed at evaluating affective interventions, we conducted 
the studies (except 6) in a classroom context, namely ASU summer schools for high 
school students.  ASU summer school classes always had between 40 and 50 students 
each.  Background questionnaires indicated that students varied in their mathematical 
preparation from Algebra I to Calculus.  We attempted to deal with the high incoming 
variance using co-variants (studies 3, 4 and 5) and stratified sampling (studies 6 and 7).  
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Nonetheless, the high variance in incoming attributes and the limited number of 
participants resulted in our studies being underpowered, which partly explains why 
several tests presented below turned out to be statistically unreliable.    

4.2 Results of Comparing Meta-Tutor + Tutor to Tutor Alone 

Studies 3, 4 and 5, which are fully described in [19], evaluate the impact of meta-
tutoring using two treatment groups.  The experimental group had both the meta-tutor 
and tutor turned on, whereas the control group had the meta-tutor turned off leaving 
only the tutor active.   Our three main hypotheses and their evaluations follow. 

During the training phase, meta-tutoring should improve students’ efficiency, error 
rate and depth of modeling.  In all three studies, on almost all measures, the results 
were in the expected direction, but the differences were statistically reliable only 
about half the time.  The results for efficiency were weakest, probably because 
guessing often took less time than thinking hard.   On the whole, we conclude that 
meta-tutoring probably did improve training phase performance. 

During the transfer phase, efficiency and error rate should be better for the meta-
tutored group because they should have acquired more skill in modeling during the 
training phase.  Although there were weak trends in the expected direction, only one 
of the depth measures showed a statistically reliable difference.  We conclude that 
meta-tutoring did not improve transfer phase performance enough to be detectable. 

During the transfer phase, the meta-tutored group should not use deep model 
practices more frequently than the control group because the meta-tutor merely nags; 
it is the job of the ALC to persuade students to keep using deep modeling practices.   
This hypothesis predicts a null result, which was observed with all measures in all 
experiments, but the low power prevents drawing any conclusion from the null 
results.  

4.3 Results of Adding the ALC to the Meta-Tutor + Tutor 

Study 6 evaluated a preliminary version of the ALC that only intervened between 
modeling tasks and was not driven by the physiological sensors.  None of the Study 6 
measures showed benefits for this preliminary ALC compared to using the system 
without the ALC.  Unlike the other studies, this was a lab study with university 
students intended mostly to collect data for calibrating the physiological sensors. 

Study 7 compared the complete system to the same system with the ALC turned 
off.   Our findings were: 

• During the training phase, the ALC group was better than the non-ALC group on 
all measures, although the differences were reliable on only half the measures.   

• During the transfer phase, the two groups tied on all error rate and efficiency 
measures, suggesting that they both learned the same amount during training.   

• Also during the transfer phase, the ALC group was not different from the non-ALC 
group in this use of deep modeling practices.   

Our interpretation of the results of Study 7 is that the ALC probably acted like an 
improved meta-tutor. That is, during training, it caused students to use deeper 
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modeling strategies, which increased their efficiency and decreased their error rates, 
but did not apparently affect their learning very much, because their advantage over 
the comparison group did not persist into the transfer phase.  Although the AMT 
project has made many contributions, this finding is perhaps the main result of the 
project. 

5 Discussion 

While our studies were being conducted, other related studies were being done.  There 
are now 12 studies in the literature besides our own where an ALC acted somewhat 
like ours [20], and only 4 had reliable main effects. Of them, 3 studies used 
memorization tasks, and the fourth study confounded instructional information with 
the affective intervention.  On the other hand, all 8 studies with null effects used 
complex tasks, as did our studies.   It is tempting to hypothesize that ALCs work best 
with simple, short tasks perhaps because there are more frequent opportunities for 
interacting with the ALC between tasks.  

Overall, the good news is that we have discovered improvements to meta-tutoring 
that increase the frequency of deep modeling practices when the meta-tutoring is 
operating.  This is important because modeling is becoming a more central part of the 
math and science standards, and students have strong tendencies to use shallow 
modeling practices.  Unfortunately, we have not yet found a way to get this improved 
performance to persist when the meta-tutoring is turned off.  

Another piece of good news is that students were able to achieve adequate 
competence in constructing system dynamics models with only 75 minutes of 
training.  This is nearly an order of magnitude faster than earlier work with high 
school students [6]. 

In one key respect, the ALC’s intervention could be improved.  Our hypothesis 
was that using the affect sensors and detectors would allow the ALC’s messages to be 
presented at emotionally optimal times.  However, we did not actually vary the time 
of the messages enough.  This would be a good topic for future work.  
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Abstract. The propensity to involuntarily disengage by zoning out or mind 
wandering (MW) is a common phenomenon that has negative effects on 
learning. The ability to stay focused while learning from instructional texts 
involves factors related to the text, to the task, and to the individual. This study 
explored the possibility that learners could be placed in optimal conditions (task 
and text) to reduce MW based on an analysis of individual attributes. Students 
studied four texts which varied along dimensions of value and difficulty while 
reporting instances of MW. Supervised machine learning techniques based on a 
small set of individual difference attributes determined the optimal condition for 
each participant with some success when considering value and difficulty 
separately (kappas of .16 and .24; accuracy of 59% and 64% respectively). 
Results are discussed in terms of creating a learning system that prospectively 
places learners in the optimal condition to increase learning by minimizing MW.  

 

Keywords: engagement, mind wandering, affect, machine learning. 

1 Introduction 

Advances in research on intelligent tutoring systems (ITSs) have recently intertwined 
aspects of the cognitive sciences with the affect sciences [1,2,3,4]. ITSs have evolved 
from systems that emphasize modeling student cognition [5,6] to systems that detect 
and respond to student affect as well [7,8,9]. One related area of interest is learner 
engagement. Engagement has been defined as a state of involvement in some activity 
or task with focused attention and intense concentration [7]. Engagement is a 
necessary condition to learning since learners have to attend to information in order to 
learn. It is not uncommon, however, for students to experience involuntary lapses in 
attention and suddenly realize that they were thinking about things totally unrelated to 
the learning content. Such mind wandering (MW) activities can be detrimental to 
learning [10,11], so it is important to develop systems that can sustain engagement by 
reducing the propensity of MW behaviors. The goal of this paper is to take steps 
towards developing a preventative system with the ability to place students in an 
optimal learning condition that would result in the least amount of MW based on 
measures of individual difference attributes.   
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1.1 Related Works 

Recently, researchers have been interested in the relationship between affect and 
learning. D’Mello [2] conducted a meta-analysis of 24 studies that investigated the 
influence of student affective states on learning. Basic affective states, such as anger, 
fear, happiness, etc. [12], are considered to have specific and culturally unanimous 
qualities to them that make them rather distinguishable and easy to detect. However, it 
is the non-basic affective states (e.g., confusion, boredom and engagement) that were 
more frequent during learning with ITSs. For example, Craig and colleagues [13] 
identified significant and positive relationship between confusion and learning when 
interacting with an ITS.   

Similarly, Baker and colleagues [7] observed the presence of non-basic affective 
states of students while they interacted with various ITSs. One of their main findings 
was that when boredom occurred, it was difficult to get the students to re-engage in 
the learning task. Instead, students experiencing boredom exhibited a propensity to 
engage in behaviors such as “gaming the system.” They also found that confusion and 
engagement were the most prevalent states and better precursors to learning than 
boredom since those who chose to game the system do not learn. 

The studies mentioned above are just a few examples of research identifying 
affective states during interactions with ITSs and the different types of repercussions 
they can have. Research along these lines has led to the development of Reactive 
affect-sensitive ITSs that attempt to sense affective states that could have an effect on 
learning and respond accordingly [1], [14,15]. One of the early examples of this type 
of system is Affective AutoTutor [16] which detects specific emotions (i.e., boredom, 
confusion) based on conversational modeling, facial cues, and body language and 
alters the dynamics of the tutoring session to react to the learner through dialog moves 
designed to address specific affective states.  

With respect to mind wandering, Drummond and Litman [17] attempted to identify 
episodes of “zoning out” while students were engaged in a spoken dialog with an ITS. 
Students were periodically interrupted to complete a short survey to indicate the 
extent to which they were focusing on the task (low zoning out) or on other thoughts 
(high zoning out). J48 decision trees trained on acoustic-prosodic features extracted 
from the students’ utterances yielded 64% accuracy in discriminating high vs. low 
zone-outs. The next step in this line of research would be for the ITS to respond when 
zone-outs are detected. A system called GazeTutor [8] attempted this by using eye 
tracking to assess a lack of attention and responded with interventions to re-engage 
learners. Thus, based on affect detection methodologies, systems are able to identify 
and respond to affective states to increase learning. 

1.2 The Current Project 

An alternative to reacting to affective states as they arise is to implement Proactive 
strategies that attempt to create or foster affective states that would be beneficial for 
learning. Here, we focus on engagement since it is a necessary condition for learning. 
Engagement is considered to have three components: a cognitive, an affective, and a 
behavioral component [18]. The affective and behavioral components have been 
extensively studied in previous ITS research (e.g., [19,20]); hence, our present 
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emphasis is on the cognitive component, specifically momentary lapses of attention or 
MW which has been shown to have a detrimental influence on learning under various 
conditions [10].   

Our approach is motivated by the assumption that engagement emerges from an 
intersection of factors related to the learning task itself (e.g., task difficulty), factors 
related to the perceptions of the learning activity (e.g., task value), and factors related 
to the individual performing the task (e.g., abilities and traits) [21]. The unique 
interaction will differ among individuals depending on their own unique traits. The 
purpose of our overall project is to investigate whether or not we can capitalize on this 
interaction and place students into an ideal learning condition (i.e., influenced by text 
and task factors) based on the factors related to the learner (i.e., abilities and traits) 
that would lead to the least amount of MW.  

As an initial step in this direction, we first considered the possibility of using 
machine learning techniques to predict the learning condition that was optimal in 
terms of minimizing MW for a specific learner based on his or her attributes. To do 
this, we collected a large data set where students were asked to study about scientific 
research methods from instructional texts. During learning, students were asked to 
report incidents of MW using standard probe-based methods [10]. Each student was 
exposed to four conditions that varied in combinations of difficulty (easy or difficult) 
and value (high or low value) of the text. Students also completed multiple measures 
of individual attributes. Ideal conditions were identified for each student as defined by 
the least proportion of MW reports. Supervised machine learning was used to predict 
the ideal condition for each student using their individual attributes as features.  

2 Data Collection 

2.1 Participants 

Undergraduate students (N = 187) from two U.S. universities participated for course 
credit. 105 students were recruited from a medium-sized private mid-western 
university while 82 were from a large public university in the mid-south. The average 
age was 19.7 years (SD = 2.65).  

2.2 Texts and Task Context 

Students learned from four different texts, on a computer screen, on research methods 
topics (i.e., experimenter bias, replication, causality, and dependent variables). The 
texts contained 1500 words on average (SD = 10) and were split into 30-36 pages. 
The difficulty manipulation consisted of presenting either an easy or a difficult 
version of each text. Texts were made more difficult by replacing words and 
sentences with more complex versions while retaining content, length, and semantics. 
The value manipulation was modeled after a common strategy used by instructors 
during review sessions before exams. Specifically, value was manipulated based on 
the weight assigned to each text on a subsequent posttest. Questions corresponding to 
the “high-value” texts counted three times more toward the test score than questions 
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for the “low-value” texts. Students were made aware of this before reading each text. 
Thus students saw all four texts with 1 text in each one of the 4 conditions: 2 
(difficulty: easy vs. difficult) × 2 (value: high vs. low). The success of the 
manipulations was confirmed with self-reports of the perceived difficulty and 
perceived value of the texts (see [22]). 

2.3 Measures 

Mind Wandering was measured through auditory probes, a standard and validated 
method for collecting online MW report [10]. Nine pseudorandom pages in each text 
were identified as “probe pages.” When a student encountered a probe page, an 
auditory probe (i.e., a beep) was triggered at a randomly chosen time interval 4 to 12 
seconds from the time the page appeared. Students were instructed to indicate if they 
were MW or not by pressing keys marked “Yes” or “No,” respectively. The MW rate 
for each text was then obtained by computing the proportion of “Yes” responses to 
probes. 
Individual Attribute measures were collected for use as features in our models. The 
following measures were collected: (a) performance scores of the Nelson Denny self-
paced reading comprehension test [23], (b) median sentence reading time of the 
Nelson Deny test as a measure of reading fluency, (c) performance on the reading 
span test as a measure of working memory ability [24], (d) interest in research 
methods, measured using a Topic Interest Scale adapted from Linnenbrink-Garcia et 
al. [25], (e) the Boredom Proneness scale measured the participant’s trait behavior of 
general boredom [26], (f, g) the Academic Boredom Survey [27] measured traits 
specific to boredom in academic situations when overwhelmed and underwhelmed 
(considered separately), (h) self-reported ACT/SAT scores from each participant as a 
measure of scholastic aptitude, and (i) pretest performance on an assessment of the 
target concepts as prior knowledge. Scores of all measures were standardized by 
school to alleviate any large discrepancies due to population differences between 
schools.  

2.4 Procedure 

First, students filled out a brief demographic survey and completed the Nelson Denny 
test. Second, students completed one of two multiple choice pretests (counterbalanced 
between pre and posttest across all students) comprised of 24 deep-reasoning 
questions. Students were then given the topic interest measure. Students next received 
instruction on the learning task and how to respond to the MW probes based on 
instructions taken from previous studies [28]. All students studied four texts (one at a 
time) for an average of 32.4 mins (SD = 9.09) on a page-by-page basis, using the 
space bar to navigate forward. The name of the topic and the corresponding weight of 
the test questions (value manipulation) were explicitly presented before each text. 
After students studied all four texts, they were presented with the remaining 24 item 
posttest. They then completed several additional measures: the boredom proneness 
scale; the academic boredom survey; and a reading span test. 
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3 Supervised Classification 

Our principal goal was to assess our ability to place a student in a learning condition 
that would result in the least amount of MW reports. Each data point corresponded to 
one participant and was labeled with the conditions (difficulty and value) of the text 
with lowest rate of MW resulting in 187 data points. We then attempted to predict this 
optimal condition using nine measures of individual attributes as features using 
supervised machine learning. 

3.1 Model Building 

The WEKA machine learning software tool’s [29] implementations of 34 machine 
learning algorithms were used to build models predicting which text condition 
(difficulty and value) led to optimal values of MW reports. There were two additional 
parameters for the classification task. The first parameter was a threshold for the 
difference between the standardized MW rate for the best and worst condition. For 
each data point, if this difference was above the threshold the data point was included 
in the data set. This allowed us to consider only those who reported a meaningful 
difference of MW between conditions. Values used for this threshold included 0, 
0.25, and 0.5 standard deviations. The second parameter was the classification task. In 
addition to classifying across all four conditions, we collapsed difficulty across value 
and vice versa, resulting in two additional classification tasks: classifying difficult 
texts from easy texts, and high value texts from low value texts. This resulted in 408 
models (4 classification task × 3 difference threshold × 34 classifiers) and the 
classifier that yielded the best model for each parameter combination was retained for 
analysis.  

3.2 Model Validation 

Models were evaluated using leave-one-student-out cross validation. The model was 
trained on all but one student, which was then used to predict the best text condition 
for the remaining student. This process was repeated until each student had been 
classified in this way. This method ensures generalizability across students because 
each of the training and testing sets are student-independent. The Kappa statistic was 
taken as the measure of classifier accuracy since it is less sensitive to variations in 
data distribution. 

4 Results 

We first assessed any differences to assigned conditions across all three classification 
tasks for the threshold value of 0. When considering all four conditions of difficulty × 
value, 26% of the students reported the least amount of MW in the easy and low value 
condition, 28% reported in the easy and high value condition, 28% reported in the 
difficult and low value, and 18% reported in the difficult and high value condition. 
When considering value and difficulty separately, 53% of the students reported the 
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least amount of MW in the low value condition and 57% in the easy condition when 
considering text difficulty. Thus, these differences indicate that there is not one single, 
optimal condition for all students. 

4.1 Classification Accuracy 

We first analyzed models that were built in an attempt to place individuals into one of 
the four ideal conditions (i.e., easy and low value, easy and high value, difficult and 
low value, difficult and high value) based on the nine individual attribute measures 
(i.e., features). As can be seen in Table 1, the best classification (i.e., highest kappa) 
occurred when we discriminated .25 standard deviations between the highest and least 
amount of MW reports between conditions with a Decision Stump classifier. 

In addition to attempting to classify according to the four conditions, we collapsed 
MW reports across value and then difficulty and assessed each separately. As can be 
seen in Table 1, when collapsing across value conditions, the best classification 
occurred when we discriminated .25 standard deviations between the highest and least 
amount of MW reports between conditions with a Simple Logistic Classifier. 
Similarly, when collapsing across difficulty conditions, the best classification 
occurred when we discriminated .5 standard deviations between the highest and least 
amount of MW reports between conditions with a Decision Stump Classifier. 

Table 1. Classification results 

Classification 
Task

Classifaction 
Threshold

Kappa 
Observed 
Accuracy

Expected 
Accuracy

N 

Difficulty × 
Value 

0 .03 .27 .25 187 
.25 .11 .34 .26 141 
.5 .06 .31 .26 98 

Value 
0 .01 .51 .50 187 

.25 .16 .59 .51 141 
.5 .13 .56 .50 98 

Difficulty 
0 .05 .54 .51 187 

.25 .05 .55 .52 141 
.5 .24 .64 .53 98 

Note: The kappa value is calculated using the formula (Observed Accuracy - Expected Accuracy) / (1 - 

Expected Accuracy), where Observed Accuracy is equivalent to recognition rate and Expected Accuracy is 

estimated from the marginal probabilities in the confusion matrix. 

4.2 Features 

We next considered the correlations between the performance on individual attribute 
measure (i.e., features) and placement in the optimal conditions of the value and 
difficulty classification tasks.  For value, the conditions were dummy coded as low = 
0 and high = 1. For difficulty, easy = 0 and difficult = 1. As can be seen in Table 2, 
there are some similarities and some differences with respect to the features that 
correlate with optimal classification for each classification task. With regard to the 
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highest correlations, for value, for students who have a higher propensity to 
experience boredom during academic situations that are underwhelming, the low 
value condition would be the optimal condition for the least amount of mind 
wandering. On the other hand, for difficulty, students with the propensity to 
experience boredom during overwhelming situations would benefit from having more 
difficult text. Additionally, the topic interest measure shows that a student may 
benefit from a more difficult text if they have a high amount of interest in the topic.   

Table 2. Correlations (pearson r’s) between performance on the individual attribute measures 
(i.e., features) optimal conditions of classification task dummy coded for value (low = 0 and 
high = 1) and difficulty (easy = 0 and difficult = 1) 

Individual Attribute Value (n = 141) Difficulty (n = 98)

Working Memory .10 -.03
Academic Boredom (Overwhelmed) -.03 .20

Academic Boredom (Underwhelmed) -.16 -.04
General Boredom -.05 .09
Prior Knowledge -.03 -.09
Reading Fluency .10 .09
Reading Comprehension .01 .01
Topic Interest (Research Methods) -.05 .18
Scholastic Aptitude -.04 .01
 

5 Discussion 

The negative influence of mind wandering (MW) on learning coupled with the 
frequency of MW suggest that educational technologies could benefit by 
prospectively selecting learning conditions to reduce the incidence of MW. As an 
initial step in this direction, our hypothesis was that it was possible to determine an 
optimal learning condition that would lead to a lowered rate of MW based on a 
relatively modest set of nine individual attributes.  

There was not a single condition that was optimal for all students, which suggests 
that even though on average one condition might yield lower MW rates than others, 
assigning every student to the same condition is not an optimal strategy since 
individual differences matter. We attempted to capitalize on those differences and our 
results show that it is possible to determine the condition that leads to the lowest rate 
of MW for an individual by considering that individual’s trait attributes. Removing 
students with stable MW rates across all conditions improved our kappas from .03, 
.01 and .05 to .11, .16 and .24, for difficulty × value, value, and difficulty, 
respectively. This method of participant removal is justified because a participant 
whose MW rate does not change across condition does not add any meaningful 
variability to model. Furthermore, individuals who do not have different rates of MW 
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across conditions could not possibly have their MW rate lowered by altering 
condition no matter their individual attributes.  

We acknowledge that classification rates were modest, even for the best models. 
However, one needs to consider the difficulty of the task in that we are attempting to 
prospectively predict a task condition that yielded the lowest rates of MW from a set 
of sparse individual difference measures alone, despite the fact that MW is an 
extremely complex and elusive state that is likely influenced by numerous additional 
factors. Furthermore, we have some confidence in the generalizability of our results 
because we employed a leave-one-subject-out validation method and our data 
included students from a medium-sized private mid-western university and a large 
public mid-south university with very different characteristics. 

The usefulness of this research depends on how it can act to influence future 
designs of ITSs that intend to increase learner engagement by minimizing off-task 
thought. It may be of interest for designers of these systems to be able to predict mind 
wandering behaviors from attributes of the learner in order to advance preventative 
technologies.  From our results, it was difficult to accurately predict conditions when 
including students who did not deviate in their MW behaviors across conditions in a 
meaningful way. This work does show, however, that it is possible to predict optimal 
conditions for those who show some contrast of mind wandering behaviors between 
different learning conditions. It may be that ITSs would benefit from initially 
targeting those whose mind wandering behaviors are somewhat different under 
different learning conditions.   

There were some limitations of this work. First, the method of tracking MW 
through auditory probes is subject to students providing an incorrect rate of MW. An 
incorrectly reported rate of MW would result in our models being trained on data 
which was not completely correct. This would ultimately make classification more 
difficult. However, many studies have used this method of measuring MW as there 
are no alternatives to tracking this highly internal phenomenon (see [10] for a review), 
so we are confident that we are adhering to state of the art methods. Second, these 
findings are based on a task that requires studying texts on research methods. Future 
studies may consider incorporating other topics and other modes of information 
delivery to ensure generalizability. Furthermore, the present study was conducted in a 
laboratory context, so replication in more ecological learning situations is warranted. 

This paper reports a first step towards a proactive learning system to reduce the 
rates of MW. The present work demonstrated the ability to select the best condition of 
easy and difficult text or high and low value for a learner to have the lowest rate of 
MW based on the learner’s individual attributes. Our approach generalizes to 
individuals due to the method of validation and the diversity of the students. The next 
step is to use the best models in a personalized learning environment that optimizes 
the potential for the least amount of mind wandering during a learning session by 
personalizing the experience based on the measures of individual differences. For 
example, for each learner, the environment can prescribe conditions that minimize 
MW. MW and learning associated with this personalized environment can then be 
compared to control conditions (e.g., randomly assigning learners to condition or 
assigning all learners to the condition that resulted in the lowest MW overall). 
Whether, the proposed approach outperforms these alternatives awaits further 
research.  
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Abstract. This paper investigates the effect of meta-cognitive help in the con-
text of learning by teaching. Students learned to solve algebraic equations by  
tutoring a teachable agent, called SimStudent, using an online learning envi-
ronment, called APLUS. A version of APLUS was developed to provide meta-
cognitive help on what problems students should teach, as well as when to quiz 
SimStudent. A classroom study comparing APLUS with and without the meta-
cognitive help was conducted with 173 seventh to ninth grade students. The  
data showed that students with the meta-cognitive help showed better problem 
selection and scored higher on the post-test than those who tutored SimStudent 
without the meta-cognitive help. These results suggest that, when carefully de-
signed, learning by teaching can support students to not only learn cognitive 
skills but also employ meta-cognitive skills for effective tutoring.  

Keywords: Learning by teaching, teachable agent, SimStudent, Algebra equa-
tion solving, meta-cognitive help. 

1 Introduction 

The effect of learning by teaching has been well known [1, 2] in many disciplines for 
diverse student populations and skill levels. Many empirical studies observe that 
when students tutor each other, not only tutees but also tutors learn—often called the 
tutor-learning effect. Yet it is only recently that researchers have started to investigate 
why and how students learn by teaching. This scholarly development is largely due to 
the growing maturity of advanced learning technologies that allow students to interac-
tively tutor a synthetic peer, commonly called a teachable agent [3]. The teachable 
agent technology allows researchers to collect detailed interaction data to understand 
the relationship between tutoring activities and the tutor-learning outcome [4, 5]. 

Learning by teaching is a complicated phenomenon that includes many factors to 
be considered, which are often hard to control [2, 6]. Therefore, researchers conduct 
exploratory studies that focus on particular aspects of tutor learning and the functio-
nalities of the learning by teaching environment. The current paper focuses on the 
effect of the meta-cognitive help for learning by teaching.  
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Biswas et al. examined the effect of the meta-cognitive assistance for tutor learning 
[7]. Students taught Betty’s Brain, the teachable agent, about river ecosystems. There 
was a mentor agent who provided both cognitive help (e.g., corrective feedback on 
the errors that Betty’s Brain made on the quiz) and meta-cognitive help (e.g., how to 
gauge what Betty’s Brain knows about the river ecosystems). In the classroom study, 
they found no effect of the mentor agent on tutor learning. In the current study, how-
ever, since students need to learn both procedural skills and conceptual knowledge, 
we might see different effect of the meta-cognitive help.  

Walker et al. [8] compared “adaptive” and “fixed” meta-cognitive help for tutor 
learning in Algebra equations where pairs of students teach each other. The “adap-
tive” help was contextualized, whereas the “fixed” help was provided randomly. The 
results from a classroom study showed that the “adaptive” meta-cognitive help is 
more effective for tutor learning than the “fixed” meta-cognitive help. The current 
study will build on these findings to further investigate the effect of the meta-
cognitive help for tutor learning. 

Our previous studies showed that students often failed to select appropriate prob-
lems to tutor [4]. Therefore, we hypothesized that providing students with scaffolding 
on how to select problems to tutor would facilitate tutor learning. On the other hand, 
to select appropriate problems to tutor, students need to gauge their tutees’ proficien-
cy. Therefore, we further hypothesized that providing students with scaffolding on 
how to gauge tutee’s proficiency would amplify the effect of the meta-cognitive help 
on problem selection, which would result in better tutor learning. To test these hypo-
theses, we used the online learning environment (called APLUS) where students learn 
to solve algebra equations by teaching a teachable agent called SimStudent. 

2 SimStudent and APLUS 

2.1 SimStudent 

SimStudent is a computational model of learning, realized as a machine-learning 
agent, which can be interactively tutored. It is implemented with various AI tech-
niques including programming by demonstration in the form of inductive logic pro-
gramming, version space, and iterative-deepening search [4]. 

SimStudent learns cognitive skills in the form of production rules by generalizing 
positive examples (showing when to apply a particular skill, e.g., adding a constant to 
both sides) and negative examples (showing when not to apply a particular skill).  

When SimStudent is used as a teachable agent, the affirmative feedback from the 
student for steps performed by SimStudent and the steps demonstrated by the student 
as a hint become positive examples, whereas the negative feedback becomes negative 
examples. A hint from the student on how to perform the next step also becomes a 
positive example. The next section provides details about the interaction between the 
student and SimStudent. See [4] for more technical details.  

2.2 APLUS  

Figure 1 shows an example screenshot of APLUS. To teach SimStudent, shown as an 
avatar (g), a student enters an equation in the first row, e.g., 2x+4 = 2 (c). When a 
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student quizzes SimStudent (f), SimStudent attempts to solve quiz problems by apply-
ing learned productions. Mr. Williams, the teacher agent shown in the lower right 
corner (h), then summarizes SimStudent’s performance on the quiz. The student can 
review the exact solutions made by SimStudent one by one in the tutoring interface.  

In the meta-tutor version of APLUS, students can click on Mr. Williams to ask him 
for help. The next section explains details about the meta-cognitive help. 

2.3 Meta-tutor with Meta-cognitive Help 

In a version of APLUS, Mr. Williams performs as a meta-tutor who provides meta-
cognitive help when asked. For the current version, two types of meta-cognitive help 
are available: (1) the quiz help suggests to students when to quiz their SimStudent and 
explains why (e.g., “It's a good strategy to quiz Mandy, because it would help you to 
understand what Mandy already knows. Click the Quiz button.”), and (2) the problem 
help suggests to students what problem should be tutored next and explains why (e.g., 
“Since Mandy was wrong on the quiz, you may want to give 4y-8=10 to Mandy.”).  

Meta-tutor’s help is thus available only when a problem is completed or a quiz is 
done. When the student asks for help by clicking on Mr. Williams, Mr. Williams 
shows only one menu item saying, “What am I supposed to do now?” (Figure 1-h); 
otherwise, Mr. Williams says, “You should complete the problem.” 

We use a model-tracing technique [9] to control the meta-tutor. That is, we have a 
(meta)cognitive model of how to tutor SimStudent, written as a set of production 
rules. Each production has associated hint messages. A student’s tutoring activities 
are model-traced using the (meta)cognitive model so that when the student asks for 
help, the meta-tutor can provide just-in-time suggestions. Currently, there are six 
production rules: three for quiz and three for problem help. 

3 Evaluation Study 

3.1 Research Questions and Hypotheses 

The goal of the evaluation study was to understand the effect of the meta-cognitive 
help provided by the meta-tutor. In particular we address the following two research 
questions: (1) Does the meta-tutor providing the quiz and problem help facilitate tutor 
learning? (2) If so, how does each type of help affect tutor learning? 

We hypothesized that selecting problems based on the quiz results is an effective 
strategy, because it allows students to address specific weaknesses of their SimStu-
dent’s learning. Therefore, providing a meta-cognitive hint on problem selection 
based on quiz results should facilitate tutor learning—the problem hint hypothesis. To 
make the quiz-based problem selection work, students need to quiz SimStudent with 
appropriate timing. Thus, we also hypothesized that a meta-cognitive hint on when to 
quiz, in combination with the problem hint, should further facilitate tutor learning—
the quiz hint hypothesis. 

3.2 Methods 

A classroom (in-vivo) study in the normal Algebra I classes at an urban public middle 
school in Pittsburgh, Pennsylvania was conducted with assistance of Pittsburgh 
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Science of Learning Center. The study was a randomized controlled trial with two 
conditions. The Meta-Tutor condition used the version of APLUS with the meta-tutor 
described in section 2.3. The baseline condition used the basic version of APLUS, 
which also had Mr. Williams but it did not provide the meta-cognitive help. 

The study was five 42 minutes classroom periods over five consecutive days. On 
the first day, all students took an online pre-test (section 3.4) and then watched the 
introduction video available in APLUS. Students were then randomly assigned to a 
study condition. On the second through the fourth day, students used the assigned 
version of APLUS. On the fifth day, students took an online post-test.  

Students were told that their goal was to have SimStudent pass the quiz, and SimS-
tudent must learn how to solve equations with variables on both sides to pass the quiz 
(which is also mentioned in the Unit Overview). We will therefore call equations with 
variables on both sides as the target equation hereafter.  

3.3 Participants 

One hundred seventy-three (173) 7th through 9th grade students in nine Algebra-I 
classes participated in the study. A classroom-level randomization was applied to 
eight classes, and a within-class randomization for the remaining class. Out of those 
173 students, 151 were present in the class on the first day and took the pre-test, 127 
participated all three days for tutoring SimStudent, and 121 took the post-test.  

As the result, 112 out of 173 students took both pre- and post-tests and participated 
in all three days of tutoring sessions. Those 112 students (53 in the Meta-Tutor condi-
tion and 59 in the Baseline condition) are included in the following data analysis. No 
other criteria for inclusion were used. 

3.4 Measure 

The online test consisted of two parts—Procedural Skill Test and Conceptual Know-
ledge Test. The Procedural Skill Test consisted of three sections: (1) The equation 
section had 10 equation problems with four one-step equations, two two-step equa-
tions, and four target equations. (2) The effective next step section had two problems 
each showing an equation with four options for a next step: add or subtract a term 
from both sides, or multiply or divide both sides by a constant. Students were asked to 
indicate whether each option was correct or not. (3) The error detection section had 
three problems each showing an incorrect solution for a given equation with multiple 
intermediate steps that contained one (and only one) incorrect step. Students were 
asked to identify the incorrect step. 53% (8 out of 15) of Procedural Skill Test items 
were about the target type of equation (with variables on both sides). 

The Conceptual Knowledge Test consisted of 24 true/false items with seven items 
asking about variable terms, six items asking about constant terms, six items asking 
about like terms, and five items asking about equivalent terms.  

After the study, the reliability of the test items was evaluated using Cronbach’s al-
pha. For the Procedural Skill Test, the equation section showed α = .87, the effective 
next step section had α = .76, and the error detection section had α = .57. Due to the 
low reliability index, we decided to exclude the error detection section from the anal-
ysis (and refer the average of other two sections as the score for the Procedural Skill 
Test). For the Conceptual Knowledge Test, α = .89.  
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Table 1. Means (and standard deviations) for the Conceptual Knowledge Test (CKT) and the 
Procedural Skill Test (PST) by condition 

 CKT PST 
 Pre-test Post-test Pre-test Post-test 
Baseline .43(.25) .54(.21) .69(.24) .71(.25) 
Meta-tutor .43(.30) .49(.22) .71(.23) .78(.19) 
Total .43(.27) .52(.21) .70(.24) .74(.23) 

 
In the analysis below, we also used the process data in addition to the learning out-

come data (i.e., test scores). APLUS automatically logged detailed interaction be-
tween the student and the system included the problems used for tutoring, frequency 
of quiz, status of the resource and meta-tutor usage, and suggestions from the meta-
tutor, etc. The correctness of steps suggested by SimStudent, and the accuracy of 
feedback and hints that students provided to SimStudent were also logged. Cognitive 
Tutor Algebra-1 [10] was embedded into the system to compute accuracy of feedback 
and hints for the purposes of logging. 

4 Results 

4.1 Test Scores 

Table 1 shows the test scores. For the Procedural Skill Test, there was a reliable con-
dition difference on the post-test scores—a one-way ANCOVA with the pre-test score 
as a covariate revealed a statistically significant difference on the post-test; F(1,110) = 
3.99, p < 0.05. The effect size, Cohen’s d, was 0.30. A post-hoc analysis revealed that 
only the Meta-Tutor condition showed a significant increase from pre- to post-test; 
paired-t(52) = –2.96, p < 0.01. No pre- and post-test difference was observed for the 
Baseline condition; paired-t(58) = –0.68, p = 0.45.  

For the Conceptual Knowledge Test, there was no reliable condition difference ob-
served, but the difference between pre- and post-test scores (when aggregated across 
all students in the two conditions) was statistically significant; Mpre = .43 (SD = 0.27) 
vs. Mpost = .52 (SD = 0.22). A two-way repeated measures ANOVA with test-time 
(pre vs. post) as a within-subject variable and condition as a between-subject variable 
revealed a main effect of test-time; F(1,110) = 18.32, p < 0.001. 

4.2 Meta-tutor Help 

On average, students in the Meta-Tutor condition (N=53) asked Mr. Williams for help 
5.5 times (SD = 7.1). The distribution was very skewed—11 (21%) students did not 
ask Mr. Williams at all, while 24 (45%) of students asked up to three times. Data also 
showed that different students apparently had different biases on the timing of hint 
requests—45% of students did not receive meta-tutor’s message for the problem help 
at all, whereas 49% did not receive the message for the quiz help at all.  

Despite the surprisingly low frequency of meta-tutor use, there was a reliable dif-
ference on the Procedural Skill post-test between conditions. Since the meta-tutor 
only provided quiz help and problem help, we predicted a difference in the way stu-
dents quizzed SimStudent and selected problems to tutor that affected tutor learning. 
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Fig. 2. The transition of 
problem types. The y-axis 
shows the problem “rank.” 
The x-axis shows the num-
ber of problems tutored. On 
the 8th problem, the majori-
ty of the Meta-Tutor stu-
dents had tutored the rank 3 
problems, i.e. the target 
equations. 

 

 
A regression analysis showed the number of help asked was not a reliable predictor 

of the Procedural Skill post-test score; F(1,50) = 0.05, p = 0.82. The probability of 
following meta-tutor’s advice had no correlation with the post-test score either.  

On average, students in each condition tutored 32.9±9.7 (Baseline) and 29.8±7.3 
(Meta-tutor) problems. The number of problems tutored per se was not a reliable pre-
dictor of the Procedural Skill post-test. However, the type of problems (i.e., one- step, 
two-step, and target equations, which are equations with variables on both sides) tu-
tored was a reliable predictor for the Procedural Skill post-test. The percent ratios of 
each problem type to all problems tutored were used as independent variables to pre-
dict the Procedural Skill post-test score. All three independent variables turned out to 
be statistically reliable predictors: PSTpost = –0.48×PONE + 0.99×PTWO + PTGT×0.63 (r2 
= 0.93) where PSTpost means the Procedural Skill post-test score; PONE, PTWO, and 
PTGT show the percent of one-step, two-step, and target equations tutored, respective-
ly; for PONE, F(1,109) = 902.97, p < 0.001; for PTWO, F(1, 109) = 580.20, p < 0.001; 
and for PTGT, F(1,109) = 117.98, p < 0.001.  

We then hypothesized that the meta-tutor’s advice affected the way students se-
lected problems, and in particular, students in the Meta-Tutor condition made quicker 
transitions from one-step equations to more advanced types of equations than  
the Baseline students. The data in Figure 2 support our hypothesis. In the figure, we 
“ranked” the types of problems that students used for tutoring: the rank is “1” for  
one-step equations, “2” for two-step equations, and “3” for target equations. The x-
axis shows the chronological number of problems tutored. The y-axis shows the aver-
age “rank” of the problem tutored aggregated across all students in each condition. As 
we hypothesized, the Meta-Tutor condition showed a steeper slope that reached to 2.5 
on the 8th problem, meaning that the majority of the students started to tutor target 
problems on and then after the 8th problem. On the other hand, it was around the 14th 
problem before the Baseline students started tutoring the target problems.  

A regression analysis confirmed that our hypothesis was supported. Since two con-
ditions did not reach the 2.5 rank-level in the same way, we computed the regression 
slope for the first 8 problems for the Meta-Tutor (MT) condition and the first 15 prob-
lems for the Baseline (BL) condition. The regression analysis revealed a significant 
difference between the slopes for the two conditions: βMT = 0.22 vs. βBL = 0.11,  
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F(1, 1298) = 33.60, p < 0.001. r2 = 0.25. The Meta-Tutor students made a quicker tran-
sition from the entry-level problems to the target problems than the Baseline students. 

We also examined the effect of quiz help. Since the meta-tutor (if asked) suggested 
quizzing SimStudent before tutoring, we hypothesized that the Meta-Tutor (MT) stu-
dents showed a higher probability of starting the tutoring session with quiz than the 
Baseline (BL) students. This hypothesis was not supported. There was no difference 
in the probability of starting with quiz; MMT = .08 (SD = .07) vs. MBL = .07 (SD = 
.06), t(107) = 1.98, p = 0.88. We also computed the probability of “appropriate” tutor-
ing actions, which, by definition, is the ratio of selecting problems based on the quiz 
results and quizzing after tutoring to all tutoring activities (which the meta-tutor also 
suggested upon a request). Again, there was no condition difference in their averages: 
MMT = 0.33 (SD = .16) vs. MBL = 0.33 (SD = .13), t(104) = 0.22, p = 0.83.  

4.3 Accuracy of Tutoring 

On average, 70% (SD = 22%) of Hints and 73% (SD = 10%) of Feedback that stu-
dents provided to SimStudent were correct. To measure the overall accuracy of tutor-
ing, we computed the Response Accuracy as 2×HA×FA/(HA+FA), where HA means 
the accuracy of Hints and FA means the accuracy of Feedback. The overall mean 
Response Accuracy was .70 (SD = .17).  

It turned out that the Response Accuracy (RA) was a reliable predictor of the Pro-
cedural Skill post-test score (PST); F(1,109) = 10.7, p = 0.001; even when the PST 
pre-test score was controlled; F(1,109) = 56.9, p < 0.001; the model equation PSTpost 
= 0.55×PSTpre + 0.34×RA + 0.12 (r2 = 0.56). The Response Accuracy was also a reli-
able predictor of the Conceptual Knowledge post-test score (CKT); F(1,109) = 30.42, 
p < 0.001; even when the CKT pre-test score was controlled; F(1, 109) = 5.55, p < 
0.05; the model equation CKTpost = 0.40×CKTpre + 0.26×RA + 0.16 (r2 = 0.41). 

4.4 Resource Usage 

There was no notable condition difference in the way students used the resources—in 
general, students did not use resources as often as we expected. Table 2 shows aver-
age frequency and duration. Example problems were reviewed 29 times on average 
per student, but the average total duration on examples was only about 10 seconds per 
student. Regression analyses revealed that both frequency and duration of resource 
usage were not reliable predictors of the post-test score for the Procedural Skill and 
Conceptual Knowledge Tests.  

Table 2. Average frequency (top) and duration (bottom) of resource usage 

 Video Unit Overview Examples 
Frequency 2.2 (3.4) 4.1 (8.3) 29.3 (33.6) 
Duration 7.3s (38.2s) 6.6 (11.5s) 10.6s (13.1s) 
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5 Discussion  

The data showed that the ability to tutor the target problems correctly (operationa-
lized as the ratio of target problems tutored and the response accuracy as shown in 
sections 4.2 and 4.3) had a strong predictive power for the Procedural Skill post-test 
score, regardless of the availability of the meta-tutor. This finding is a replication of 
our previous study [4] that used the same version of APLUS that was used in the con-
trol condition of the current study.  

The data also showed that the meta-cognitive help provided by the meta-tutor posi-
tively affected tutor learning. In particular, suggestions provided by the meta-tutor 
allowed students to make appropriate transition in tutoring from entry-level equations 
to the target equations. This finding supports the previous observation that learning by 
teaching is not an automated process, but rather requires careful scaffolding [4]. 

Despite the meta-tutor’s assistance, many Meta-Tutor students failed to tutor a suf-
ficient number of target equations. Ironically, it might be the case that the lack of 
teaching a sufficient number of target equations was due to the advice of the meta-
tutor—since students were not able to manage tutoring the entry-level problems cor-
rectly, their SimStudents did not pass the entry-level quiz sections (i.e., one- and two-
step equations), hence why the meta-tutor kept suggesting to students to continue 
teaching those entry level equations.  

The challenge for the meta-tutor, therefore, is how to encourage students to teach a 
sufficient number of target equations with appropriate accuracy. For those students 
who have trouble teaching entry-level equations, the meta-tutor should provide assis-
tance on skills to solve those equations (which are a prerequisite for learning the tar-
get equations). We have recently started to extend the meta-tutor (for our future stu-
dies) to provide cognitive help on feedback and hints that students provide to their 
SimStudents. With this extension, when students are not sure about the correctness of 
the steps performed by SimStudent, they will be able to ask Mr. Williams if their 
judgments are correct (before providing feedback to SimStudent). Additionally, when 
students do not know how to perform a next step for which SimStudent asks for help, 
students will be able to ask the meta-tutor what they should do next.  

The meta-tutor should also encourage students to use resources more often as 
needed. For example, when students continue to ask for help on what to do next, then 
the meta-tutor might suggest that student should review the unit overview. If students 
repeatedly fail to have their SimStudents pass the quiz, then the meta-tutor might 
suggest that students should review example problems.  

6 Conclusion 

We found that the availability of the meta-tutor facilitated tutor learning on procedur-
al skills for solving algebra equations. The data suggested that the meta-cognitive help 
given by the meta-tutor positively allowed students to select appropriate problems that 
affected both SimStudents’ and hence students’ learning.  

Our data suggest that learning by teaching with meta-cognitive tutoring supports 
students in employing meta-cognitive skills on how to better tutor their peers that may 
not be available in traditional classroom instructions. At the same time, the data also 



Investigating the Effect of Meta-cognitive Scaffolding for Learning by Teaching 113 

 

suggest that to make learning by teaching more effective, the learning environment 
must be carefully designed so that students can tutor their tutees appropriately, which 
involves scaffolding both on how to teach (meta-cognitive help) and what to teach 
(cognitive help).  
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Abstract. This study investigates the design of effective interaction using peda-
gogical conversational agents (PCAs) as companions in collaborative learning 
activities. Specifically, we focus on the use of embodied PCAs that evoke social 
awareness and engagement from human learners. In controlled experiments, 
paired collaborative learners were selectively accompanied by “peer-advisor” 
PCAs in a set of learning activities. Results show that learners who engaged 
with multiple PCAs gained a better understanding of target concepts than those 
using a single PCA. Furthermore, learners who engaged PCAs playing different 
collaborative roles (e.g., “mentor” and “expert”) outperformed those who  
engaged PCAs without distinct roles. The implications of these results are  
explored and directions for future study are discussed. 

Keywords: Pedagogical Conversational Agents; Collaborative Learning; Ex-
planation Activities; Social Facilitation. 

1 Introduction 

As a result of Vygotsky's sociocultural learning theories and Lave's Situated learning 
theories, it is now widely accepted that group-based learning is an effective strategy 
for facilitating learning [1, 2]. Recent studies in CSCL have implemented artificial 
intelligence technologies in tutoring systems and show the benefits of pedagogical 
conversational agents (PCAs) [3, 4, 5, 6, 7, 8, 9]. One of the challenges is to design 
and develop PCAs that can effectively facilitate a learner's cognitive state. To accom-
plish such a goal, it is necessary to use interaction models and theories from cognitive 
and learning sciences [10, 11]. Studies show how effectively collaborative learning 
facilitates the understanding of new concepts depends on how the explanations are 
provided [12]. Based on this theory, the present study focuses on a collaborative 
learning where students attempt to explain a classroom-taught concept. 

1.1 Supporting Learner-Learner Collaborative Learning with PCAs 

Recently, studies have shown that conversational agents acting as educational compa-
nions or tutors can facilitate learning [5, 13]. Many computer-based tutoring systems 
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use conversational agents [4], but it is not fully understood what kinds of support 
from these agents improve learner-learner collaborative learning. There are several 
issues that need to be solved when designing PCAs for this purpose, for instance, (1) 
interface and media design [7], (2) responses and feedback [14, 15], and (3) agents 
roles [6], and the design of the interaction [9].  

Working in groups in a classroom provides an opportunity for learners to re-
construct their knowledge and organize their ideas by themselves [16]. During such 
activities, it is important for learners to adopt a conversational manner known as 
“constructive interaction” [17]. When pair of learners is working on a problem to-
gether, constructive interaction is where one learner works on the problem by externa-
lizing explanations and the other simply observes and questions his/her partner to 
facilitate meta-cognitive perspectives [18]. Despite the idealistic interaction model, 
collaborative activities are somewhat difficult, especially for new learners who are not 
used to expressing their thoughts or understanding other viewpoints. Assuming  
that learners experience high cognitive loads during explanation activities, paying 
attention to both their partners and third parties (e.g., computer agents) could be  
too difficult. It is difficult to make learners continually pay attention to a PCA in a 
human-human based collaborative task [19]. Holmes (2007) indicated that learning 
pairs ignored the presence of an agent and conducted the learning activities on their 
own [9]. Hayashi (2012) showed that some students who did not achieve high learn-
ing scores on a pair explanation activity did not consider the PCA’s suggestions that 
were needed to construct an effective explanation [20].  

There are several methods to make learners pay attention to a PCA’s suggestions. 
For example, Kumar and Rose (2000) designed methodologies such as requiring the 
students to ask the PCA to initiate the learning session or move it forward (ask when 
ready strategy) and/or having the PCA interrupt their conversation (attention grabbing 
strategy) [3]. However, in human-human collaborative learning, it is important not to 
forcibly interrupt or disturb the learners’ natural interaction and compromise their 
self-reliant learning activities. It is important to design the interface such that it natu-
rally attracts the learners’ attentions in a way that is psychologically consistent with 
their internal processes. In the next section, we present our methods for bringing at-
tention to the PCA's suggestions in a psychologically consistent way and thus main-
taining the learners’ natural conversation. 

1.2 Using Multiple Agents to Enhance a Tutor’s Social Presence and Role 

The present study uses the notion of “social facilitation” effects, taken from social 
psychology and dynamics research [21]. Studies in this field have shown that when 
one feels that he/she is engaging in an intellectual task with several members, it moti-
vates him/her to work harder to satisfy other group members [22]. It is also well 
known that a person often feels social pressure from others when he/she is persuaded 
or informed of something by several group members during intellectual tasks. It is 
assumed that if a learner is collaborating with other learners and advised by several 
tutors, he/she may feel more pressure to include their comments into the learning 
activities. This study proposes a new methodology for creating a virtual group-based 
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learning platform that enhances the co-presence of the tutoring agents and uses multi-
agent techniques to facilitate such social presence.  

The first question to answer is whether agents can generate social pressure to make 
learners pay attention to them. A few studies in human-computer interaction have 
investigated the impact of social pressure from embodied agents. For example, Lee 
and Nass [23] examined the impact of visual representations of multiple agents on 
performance in a social dilemma task. Beck, Wintermantel, and Borg [24] investi-
gated how social relationships with multiple agents affect persuasion. These studies 
imply that under some conditions, the use of multiple-agents can motivate and facili-
tate a change in human opinions. Therefore, the use of multiple PCAs may have the 
potential to exaggerate their presence and facilitate social pressures such as the need 
to work harder by causing the learners to consider the PCA’s comments and sugges-
tions. Based on the discussion above, the following hypothesis is presented: 

H1: Multiple PCAs are more effective than a single PCA at facilitating their pres-
ence and motivating learners to engage in explanation activities and thus facilitate 
learning performance. 

The next question that arises is what kind of roles the multiple agents should take 
during those interactions. It may be sufficient to increase the number of PCAs, how-
ever, it may also be necessary to design the character types and roles for each agent to 
provide more social presence. Many studies in collaborative problem solving and 
learning have pointed out the importance of member diversity and the beneficial ef-
fects of members taking different roles during those activities [18]. The diversity of 
tutors with different roles in group-based learning activities may also play an impor-
tant role. If learners engage with multiple tutors that have different roles, it helps them 
to distinguish between the different tutoring content. If learners perceive agents as 
individual actors, this implies to them that there are different ways and viewpoints to 
consider when solving a problem. We may also find synergetic effects with regards to 
social pressure, as multiple members with diverse perspectives may create more im-
pact and direct attention back to the learners than tutors with the same perspectives 
would. Past studies have shown that human learners can correctly understand the 
different roles that an agent may take. For example, Baylor and Kim [5] found that 
learners apply the same social rules and expectations to human-agent interactions as 
they do to human-human interactions. They pointed out that if agents are designed to 
have particular roles, learners could understand those roles as intended. Their results 
showed that when using agents with motivational characteristics and roles (motivator 
and mentor), the agents were more human-like and self-sufficiency was improved. 
They also found that using expertise characteristics (expert and mentor) facilitated 
learning outcomes along with positive feelings towards the agents such as credibility 
and had the best impact on learning and motivation.  

Although this study showed that people can distinguish between an agent’s roles 
and this led to different types of impressions during learning, they did not investigate 
different of combinations of the multi-party situation nor directly compare the effects 
of divisive PCA roles. This study focuses on the use of multiple PCAs with different 
roles versus no roles and investigates whether learners can perceive the variety of 
members in the group. It also looks at the effects of divisive PCA members. 
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H2: By splitting the roles of multiple agents, learners can more sensitively distin-
guish between the types of facilitations provided by the agents and thus can perform 
better interactions. 

1.3 Aim of the Study 

This study investigates the most effective way for PCAs to attract adequate attention 
in learner-leaner explanation activities and thus help them gain a deeper understand-
ing of the problem. Based on the notions of learning science those stress the impor-
tance of learner-centered activities, the study focuses on a situation where a pair of 
learners’ main activity is to collaboratively explain a key conceptual term to each 
other. During such activities, we investigated the use of a PCA that facilitates activi-
ties from a third-person point of view; for instance, providing (1) encouragement and 
(2) meta-cognitive suggestions. In this study, we investigate in particular the use of 
multiple PCAs that produce a social presence that could avoid the misuse of  
the agents and leads to more awareness of and attention to its suggestions and instruc-
tions. In addition, based on the studies of human-human collaborative problem  
solving, we investigate whether dividing the types of PCA facilitation can create a 
diversity of the group members and facilitate more aggressive behaviors to assist the 
explanation activities. 

2 Method 

2.1 Experimental Setting 

To investigate our hypotheses, the present study set up an activity in which a pair of 
participants (called learners) participated. The learners consisted of one 118 students 
taking a psychology course who participated as a part of their coursework and were 
randomly assigned to three conditions that varied according to the PCAs’ types of 
suggestions, number, and roles (see the section below for details). Learners were re-
quired to form explanations for a key term that was introduced in one of their course 
lectures, “figure ground reversal,” and participated in groups of the same gender. 

During the task, they used a desktop computer and a text-based chat application 
developed for this study (see Figure 1). All messages were sent and processed through 
the server. On the server side, all their text messages were analyzed by the PCA (de-
tails of this system are described in the next section). On the screen, there was a text 
area to input messages and a history of the conversation. In addition, a fundamental 
description of the key term was presented on their screen for basic guidance. Learners 
were instructed to explain the key term to each other by inputting text-based messag-
es. As they proceeded with the task, a companion agent appeared on their screen and 
gave them suggestions as how to form a sufficient explanation (e.g., use examples or 
try to take turns), applauded them (e.g., for using important keywords), and/or gave 
back-channel feedback. They were also told that the agents would only participate as 
mentors to guide them and that their main activity was to discuss the key term and 
reach a mutual understanding of the key concept with their partner. 
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Fig. 1. The chat application (top) and experimental situation (bottom) 

To analyze the learners’ performance, they were required to take a pre- and post-
test. In these tests, learners were asked to describe the meaning of the same technical 
words. As in Hayashi [19], the results were then compared to find out how the differ-
ent conditions facilitated learners’ learning of the concepts. In the comparison,  
descriptions were scored in the following way: one point was awarded for a wrong 
description or no description, two points for a nearly correct description, three points 
for a fairly correct description, four points for an excellent description, and five points 
for an excellent description with concrete examples. Two graders (with a correlation 
of 0.74) graded the answers and discussed their results before making any final  
decisions. The pre- and post-test scores were used to assess the degree of learning 
performance. 

2.2 Structure of the PCA 

The application was programmed in Java and designed as a server-client based net-
work application using multi-cast processing methods. The system consisted of three 
sub-systems: (1) a chat interface, (2) server, and (3) agents. For the agent, three com-
ponents comprised the system: (a) the input analyzer, (b) generator, and (c) output 
handler.  

Learner 1

Learner 2

Expressions from the PCA

Response from the agent

PCA’s
ServerClient PC’s

‘Schema’
Schemata influence our attention, as we are more likely to 

notice things that fit into our schema. If something 
contradicts our schema, it may be encoded or interpreted 
as an exception or as unique. Thus, schemata are prone to 
distortion. They influence what we look for in a situation. 
They have a tendency to remain unchanged, even in the 

face of contradictory information. We are inclined to place 
people who do not fit our schema in a "special" or 

"different" category, rather than to consider the possibility 
that our schema may be faulty.

Concepts for 
explanation

Dialogue history 
(inputs and outputs 
from participants)

Explanation input

Brief explanation
(normative description)
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Input Analyzer. Important messages related to the explanation activities are stored in 
the keyword database. These keywords (phrases) were extracted from dialogues in 
Hayashi (2012) and each of their values was weighted by importance [19]. The sys-
tem detects keywords from an inputted sentence and lists the patterns of those key-
words. Next, the detected keywords were sent in an array to the generator along with 
information about the order of turn-taking. If no keywords were detected, a null result 
was returned. 

Generator. The array list of keywords (phrases) transferred from the input analyzer is 
processed in the generator. The generator contains a rule-based system in the IF 
THEN format typically used in artificial intelligence. The system was originally de-
veloped in Java and uses forward chaining methods to constrain the keyword list pat-
terns [15, 19]. When the rule-based matching is complete, one sentence is randomly 
chosen from the database to be the output sentence. The agent was designed to re-
spond based on the related keywords. For example, if the system detects a constant 
rate of some keywords (phrases) related to 'explanations' (e.g., "for example", "this 
means", etc), then the system would generate (1) encouragement suggestions like 
"Yes!! Keep on like that and keep up with explaining. Try to use some original ideas 
too. Good job!!.". If a constant rate of keywords (phrases) related to ‘trouble’ (e.g., 
"don't know", "help", etc) were detected, then the system would generate (2) meta-
cognitive suggestions from the database such as "I know this is a tough one. Why not 
explain it using examples from a daily situation." 

Output Handler. Based on Hayashi (2012), the learners were given positive sugges-
tions that were synchronized with facial expressions of the embodied agent [19]. Out-
put text messages generated by the generator were next sent to the output handler. In 
this module, the system counted the number of words of the output messages and 
calculated the length of time needed to move the agent. Then the agent sent the text 
message along with the required motion time to each chat client system. The messag-
es were given through chat dialogue while the virtual character moved its hands and 
lips. The agent graphics were designed by Poser8 (www.e-fronteir.com) and pre-
sented in frame-by-frame playback. A male or female agent was randomly used. Fur-
thermore, a corresponding a male or female voice was generated using the Microsoft 
speech platform while the agents produced facial expressions. 

2.3 Experimental Conditions 

As explained in the previous section, the PCA used in this experiment produced 
prompts such as encouragement and meta suggestions. In various sessions, these two 
types of prompts were either both presented by one agent or presented separately by 
two PCAs. In the single condition (n = 38), learners engaged in the task using one 
PCA as a mentor. In the double condition (n = 42), learners engaged in the task using 
two PCAs. The PCAs in this condition did not have any distinct roles and both gener-
ated (1) encouragement and (2) meta suggestion prompts. To adjust for the amount of 
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information quantity given the single condition, only one PCA generated a message 
per turn. In the split double condition (n = 38), learners used two PCAs as in the 
double condition, however, each agent had a distinct role. One PCA only generated 
prompts based on (1) encouragement and the other PCA generated messages based on 
(2) meta suggestions. The PCA expressing encouragement was labeled as the “men-
tor” and learners were told that this PCA would give them comments based on their 
conversation. The PCA that gave meta suggestions was labeled as the “expert” and 
learners were told that this PCA would sometimes give directions and comments of a 
more sophisticated nature. 

3 Results 

In this section, we present results from three different dependent variables: (1) length 
of descriptions, (2) pre- and post-test scores, and (3) number of turn-takings. The first 
variable, description length, was measured by the length of the rows of the post-test 
(written on a sheet where one row consists of 20 words). The second variable, pre- 
and post-test scores consist of the graded results of those descriptions. The analysis of 
variables (1) and (2) indicate the performance of the task. The third variable, number 
of turn-taking, is the number of transaction between the learners and focuses on the 
process during the explanation task. 

3.1 Length of Descriptions 

A statistical analysis was performed using a 2 (evaluation test: pre-test vs. post-test) × 
3 (PCA condition: single condition vs. double condition vs. split double condition) 
mixed-factor analysis of variance (ANOVA). There was no significant interaction 
between the two factors (F(2, 115) = 0.18, p = .83) and there were no main effects 
between conditions (F(2, 115) = 0.22, p = .97). However, there were differences be-
tween the pre- and post- test, where learners tended to write longer answers on the 
post-test (F(2, 115) = 101.38, p < .01). However, these performance results only show 
the increase in quantitative outputs of the learners. In the next analysis we see how 
these results change qualitatively (i.e., analysis done by grading). 

3.2 Pre- and Post-Tests 

The gain scores were calculated by subtracting the pre test scores from the posttest 
scores. An analysis was performed using a one-way between-factor analysis of va-
riance (ANOVA). There was a significant interaction (F(2, 115) = 3.254, p < .05). 
Next, analysis from multiple comparisons indicates that the average of test scores of 
the split double condition and double condition was higher than that of the single 
condition (p < .05 for both). There were no differences between the split double con-
dition and double condition (p = .55). These results show that the use of multiple 
PCAs is more effective than using only a single PCA, supports hypothesis H1. 
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3.3 Turn-Taking 

Statistical analysis was performed using a one-way between-factor analysis of va-
riance (ANOVA). There was a significant interaction (F(2, 56) = 6.571, p < .01). 
Next, analysis from multiple comparisons indicates that the average number of turns 
of the split double condition was higher than that of the double condition and the sin-
gle condition (p < .01 for both). Results also show that the number of turns of the split 
double condition was higher than that of the single condition (p < .01). This result 
indicates that using multiple PCAs with different roles may facilitate the turn-taking 
process. This may be due to the effects of the divisiveness of the roles of PCAs, 
which brings better impact on its presence. The results show that using multiple PCAs 
significantly influences turn taking when suggestions are made from various 
roles/viewpoints. This result supports hypothesis H2. 

4 Discussion 

The analysis shows that the use of multiple agents outperforms learning performance 
when using single agents in a learner-leaner centered collaboration task. This shows 
that the methodology of using multiple agents can produce a stronger PCA social 
presence and thus reduce the learners’ tendency to ignore them. Avoiding such a lack 
of attention to or misuse of the PCA has been a big problem when designing these 
systems [3, 14, 15]. It is also difficult not to interrupt the learners’ natural interactions 
and scaffolding should be made in an implicit way. Using multiple agents can afford 
such implicit psychological impact and thus provide more social presence compared 
to the ordinary use of a single agent. Since the number of prompts from the PCA was 
controlled to be the same in all conditions, the only effects on the learner’s experience 
were the presence of the PCAs. However, there are some issues that need to be stu-
died in the future, such as the amount of time learners spent actually paying attention 
to the PCAs. We are now conducting more experiments and collecting eye movement 
data to find how frequently learners look at the PCAs under various conditions. 

The results in the analysis also show that when using multiple PCAs, it is better to 
split their roles rather than mix the roles together. Splitting the roles of the PCA 
brings more variety to the group members and thus provides more PCA social pres-
ence. In addition, it may help the learners distinguish the types of content provided by 
the PCA. In this study, one agent (the mentor) was assigned to generate prompts 
based on keywords to provide learners with reflective thoughts about the keywords 
they were using. On the other hand, one agent (the expert) generated meta-
suggestions and gave directions about how to think or make explanations. Such kinds 
of suggestions are useful when the learner is thinking what to put in a message or how 
to form explanations. Results from the conversational analysis show that learners 
using PCAs with different roles took more turns than PCAs with no distinct roles. 
This indicates that learners may have found it easier to capture the information pro-
vided from the PCA (expert) that gave directions on what to speak. On the other hand, 
where the learners interacted with PCAs with mixed roles, they may have been unable  
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or found it difficult to capture the messages that included directions and meta-
suggestions. This point could also be investigated by further detailed analysis about 
when the learners looked at or responded to each PCA. 

5 Conclusion 

The present study investigated the most effective interaction design to evoke the pres-
ence of an embodied PCA on a multi-agent platform while creating social awareness 
and engagement with the learners. A controlled experiment was conducted to investi-
gate the effects of using such PCAs and their roles during pedagogical activities. In 
the experiment, pairs of students collaboratively formed explanations about a key 
concept taught in the classroom and PCAs joined their activities as peer-advisors. 
Results of the experiment show that learners who engaged with the multiple PCA 
gained a higher understanding of the concept than learners using a single PCA. In 
addition, learners using PCAs with distinct of roles such as the meta-cognitive advisor 
(expert) and the emotional supporter (mentor) enhanced better interactions. The re-
sults lead to implications such as the possibility of using the multi-agent platform to 
facilitate social awareness and help learners gain a better understanding of target con-
cepts. Furthermore, using different PCA roles (e.g., “mentor” and “expert”) outper-
formed those who engaged PCAs having same roles in terms of amount of turn-taking 
activities thus facilitating explanation activities. The present study contributes to the 
knowledge about the design of PCAs that are effective at facilitating human-human 
explanation activities in learning. Future work includes the implementation of these 
findings to tutoring systems for use in classrooms and other learning situations. 
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Abstract. An emerging trend in classrooms is the use of collaborative learning 
environments that promote lively exchanges between learners in order to facili-
tate learning. This paper explored the possibility of using discourse features to 
predict student and group performance during collaborative learning interac-
tions. We investigated the linguistic patterns of group chats, within an online 
collaborative learning exercise, on five discourse dimensions using an auto-
mated linguistic facility, Coh-Metrix. The results indicated that students who 
engaged in deeper cohesive integration and generated more complicated syntac-
tic structures performed significantly better. The overall group level results in-
dicated collaborative groups who engaged in deeper cohesive and expository 
style interactions performed significantly better on posttests.  Although students 
do not directly express knowledge construction and cognitive processes, our re-
sults indicate that these states can be monitored by analyzing language and dis-
course. Implications are discussed regarding computer supported collaborative 
learning and ITS’s to facilitate productive communication in collaborative 
learning environments. 

Keywords: collaborative interactions, learning, computational linguistics,  
Coh-Metrix. 

1 Introduction 

Current educational practices suggest an emerging trend toward collaborative problem 
solving or group learning [1,2]. This is reflected in the more recent upsurge of  
computer-mediated collaborative learning or groupware tools, such as email, chat, 
threaded discussion, massive open online courses (MOOCs), and trialog-based intelli-
gent tutoring systems (ITSs). The growing adoption of collaborative learning  
environments is supported by research that shows that, in general, collaboration can  
increase group performance and individual learning outcomes (see [3] for a review). 
The interest of educational researchers in this topic has motivated a substantial area of 
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research aimed at identifying and improving collaborative knowledge building 
processes using both ITSs and computer-supported collaborative learning (CSCL) 
systems [4]. Previous research in the area of collaborative learning has shown that 
information in the interaction itself can be useful in predicting the cognitive benefits 
that students take away [5,6]. For instance, cognitive elaboration, quality argumenta-
tion, common ground, task difficulty, and cognitive load have been shown to influ-
ence knowledge acquisition of the individual learner and performance of the overall 
group [7,8,9,10]. One factor that sets collaborative learning apart from individual 
learning is the use of collaborative language [11,12,13]. Being the root of all comput-
er-mediated collaboration, language, discourse, and communication are critical for 
organizing a team, establishing a common ground and vision, assigning tasks, track-
ing progress, building consensus, managing conflict, and a host of other activities [1].  

However, previous research in this area has predominantly focused on asynchron-
ous communication, such as email or discussion boards, that require no real-time 
interaction between the users.  In contrast, synchronous communication, such as text-
based IM tools and videoconferencing, involves interactions that are dynamic and 
constantly updated [14]. Additionally, scholars typically rely on human coding, and 
have only recently applied automatic or semi-automatic natural language evaluation 
methods [2], [5], [15,16]. Consequentially, we know little about the actual process of 
knowledge construction in synchronous collaborative learning interactions.  

There are several advantages to utilizing textual features as an independent channel 
for assessing collaborative communication processes. First, in the past, it has been an 
arduous task to assess communication during collaborative learning due to the com-
plex nature of transcribing spoken conversations. However, advances in technology 
have increased the use of computer-mediated collaborative learning (CMCL), which 
allows researchers to track and analyze the language and discourse characteristics in 
group learning environments. Second, linguistic features derived from CMCL are 
contextually constrained in a fashion that provides cues regarding the social dynamics 
and an in-depth understanding of different qualities of interaction [2], [5], [17,18]. 
Third, recent advances in computational linguistics have convincingly demonstrated 
that language and discourse features can predict complex phenomenon such as perso-
nality, deception, emotions, successful group interaction, and even physical and men-
tal health outcomes [19,20,21,22,23,24]. Thus, it is plausible to expect a textual anal-
ysis of symmetrical collaborative learning interactions to provide valuable insights 
into collaborative learning processes and performance. 

A number of psychological models of discourse comprehension and learning, such 
as the construction-integration, constructionist, and indexical-embodiment models, 
lend themselves nicely to the exploration of how knowledge is constructed in colla-
borative learning interactions. These psychological frameworks of comprehension 
have identified the representations, structures, strategies, and processes at multiple 
levels of discourse [7], [25,26]. Computational linguistic tools that analyze discourse 
patterns at these multiple levels, such as Coh-Metrix (described later), can be applied 
in collaborative learning interactions to gain a deeper understanding of the discourse 
patterns useful for individual and group performance [7], [27,28]. This endeavor also 
holds the potential for enabling substantially improved collaborative learning envi-
ronments both by providing real-time detection of students and group performance 
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and by using this information to develop the student model and trigger collaborative 
learning support as needed.  

In the current study, we employ computational linguistic techniques to systemati-
cally explore chat communication during collaborative learning interactions in a large 
undergraduate psychology course. Specifically, we identify the discourse levels and 
linguistic properties of collaborative learning interactions that are predictive of learn-
ing. Further, we examine how these relations may differ for individual students and 
overall group level discourse. A more general overarching goal of this paper is to 
illustrate some of the advantages of automated linguistics tools to identify pedagogi-
cally valuable discourse features that can be applied in collaborative learning ITS and 
CSCL environments.  

1.1 Brief Overview of Coh-Metrix 

Coh-Metrix is a computer program that provides over 100 measures of various types 
of cohesion, including co-reference, referential, causal, spatial, temporal, and struc-
tural cohesion [27,28,29]. Coh-Metrix also has measures of linguistic complexity, 
characteristics of words, and readability scores. Currently, Coh-Metrix is being used 
to analyze texts in K-12 for the Common Core standards and states throughout the 
U.S. More than 50 published studies have demonstrated that Coh-Metrix indices can 
be used to detect subtle differences in text and discourse [28], [30].  

There is a need to reduce the large number of measures provided by Coh-Metrix 
into a more manageable number of measures. This was achieved in a study that ex-
amined 53 Coh-Metrix measures for 37,520 texts in the TASA  (Touchstone Applied 
Science Association) corpus, which represents what typical high school students have 
read throughout their lifetime [29]. A principal components analysis was conducted 
on the corpus, yielding eight components that explained an impressive 67.3% of the 
variability among texts; the top five components explained over 50% of the variance. 
Importantly, the components aligned with the language-discourse levels previously 
proposed in multilevel theoretical frameworks of cognition and comprehension [7], 
[25,26]. These theoretical frameworks identify the representations, structures, strate-
gies, and processes at different levels of language and discourse, and thus are ideal for 
investigating trends in learning-oriented conversations. Below are the five major di-
mensions, or latent components: 

• Narrativity. The extent to which the text is in the narrative genre, which conveys a 
story, a procedure, or a sequence of episodes of actions and events with animate 
beings.  Informational texts on unfamiliar topics are at the opposite end of the con-
tinuum.  

• Deep Cohesion. The extent to which the ideas in the text are cohesively connected 
at a deeper conceptual level that signifies causality or intentionality.   

• Referential Cohesion. The extent to which explicit words and ideas in the text are 
connected with each other as the text unfolds.  
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• Syntactic Simplicity. Sentences with few words and simple, familiar syntactic 
structures. At the opposite pole are structurally embedded sentences that require 
the reader to hold many words and ideas in working memory.  

• Word Concreteness. The extent to which content words that are concrete, mea-
ningful, and evoke mental images as opposed to abstract words. 

2 Methods 

2.1 Participants, Materials, and Procedure 

The participants were 851 undergraduates (62.4% female) in two introductory-level 
psychology courses at a large Midwestern university. Caucasians accounted for 
49.6% of participants while Hispanic/Latino accounted for 22.4%, Asian American 
for 16.1%, African American 4.2% and less than 1% identified as either Native Amer-
ican or Pacific Islander. Twelve participants were discarded as outliers or due to com-
puter failure, resulting in N = 839. 

Students logged into an education platform managed within the University at spe-
cified times to complete the group interaction task. The education platform was an 
online course center where students filled out surveys, took quizzes, completed writ-
ing assignments, and participated in group chat. Prior to logging into the system, stu-
dents were instructed that, in order to complete the assignment, they would need to 
read supplementary material on a few psychological theories (e.g. 10 pages of the 
text-book). 

Once students logged into the educational platform, they were directed to the first 
quiz. The quiz was 10 multiple-choice questions and tested students’ knowledge of 
the reading material. After completing the quiz, they were randomly matched with 
other students currently waiting to engage in the chatroom portion of the task. When 
there were at least 2 students and no more than 5 students (M = 4.59), individuals 
were directed to an instant messaging platform that was built into the educational 
platform. The group chat began as soon as someone typed the first message and lasted 
for 20 minutes. The chat window closed automatically after 20 minutes, at which time 
students took a second 10 multiple-choice question quiz. Each student contributed 
154 words on average (SD = 104.94) in 19.49 sentences (SD = 12.46). As a group, 
discussions were about 714.8 words long (SD = 235.68) and 90.62 sentences long  
(SD = 33.47).  

2.2 Performance 

On average, students scored better on the posttest after the group discussion than on 
the pretest. Pretest and posttest scores, for both the individual and group, were con-
verted to proportions based the number of correct answers. Group performance was 
then operationalized as the average group members’ score on the pretest and posttest.  
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2.3 Data Treatment and Computational Evaluation 

The educational platform logged all of the students’ contributions. Prior to analysis, 
the logs were cleaned and parsed to facilitate two levels of evaluation. First, for the 
individual-level analyses, texts files were created that included all contributions from 
a single student, resulting in 839 text files. Second, we combined all group members’ 
contributions into a text file for group-level analyses. All files were then analyzed 
using Coh-Metrix. Following the Coh-Metrix analysis, the scores were normalized by 
removing any outliers. Specifically, the normalization procedure involved Winsoris-
ing the data based on each variable’s upper and lower percentile.  

3 Results and Discussion 

A mixed-effects modeling approach was adopted for all analyses due to the nested 
structure of the data (e.g., learners embedded within groups). Mixed-effects modeling 
is the recommended analysis method for this type of data [31]. Mixed-effects models 
include a combination of fixed and random effects and can be used to assess the  
influence of the fixed effects on dependent variables after accounting for any extrane-
ous random effects. The lme4 package in R [32] was used to perform the requisite 
computation. 

The primary analyses focused on identifying discourse features (namely, the five 
dimension used to generally describe texts in Coh-Metrix: Narrativity, Deep Cohe-
sion, Referential Cohesion, Syntax Simplicity, and Word Concreteness) of the chat 
data that are predictive of learning. We also tested whether prior knowledge mod-
erated the effect of discourse on learning performance. Separate models were con-
structed to analyze discourse at the individual learner and group levels in order to 
isolate their independent contributions on learning performance. Therefore, there were 
two sets of dependent measures in the present analyses: (1) individual learners’ per-
formance on the multiple-choice posttest and (2) overall groups’ performance on the 
multiple-choice posttest. The independent variables in all models were the 5 discourse 
features of interest, as well as proportional pretest performance scores, which were 
included to control for the effect of prior knowledge. The random effects for the indi-
vidual learner models were participant (839 levels), while the group model used par-
ticipant (839 levels) within group (183 levels) as the random effect.  

Table 1 shows the discourse features that were predictive of learning performance 
for both the individual and group level models. As can be seen from this table, learn-
ers’ deep cohesion and syntax are predictive of individual learning performance.  
Specifically, we see that learners who engaged in deeper cohesive integration and 
generated more complicated syntactic structures were significantly more likely to 
score higher on the posttest than learners who used simpler syntax and less deep co-
hesion. Discourse cohesion, defined as the extent to which the ideas in the text are 
cohesively connected at a deeper conceptual level that signifies causality or intentio-
nality, is a central component in a number of processes that facilitate individual learn-
ing and comprehension [7]. With regard to the findings for deep cohesion, this sug-
gests that students who are learning are engaging in deeper integration of topics with 
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their background knowledge, generating more inferences to address any conceptual 
and structural gaps, and consequentially increasing the probability of knowledge re-
tention. The finding for syntactic structure might provide evidence for the cognitive 
explanation hypothesis [17]. In general, this suggests that students who are producing 
denser sentence compositions are high verbal and/or are engaging in increased effort, 
inferences, and elaboration.  

The analysis of collaborative group interaction discourse revealed that narrativity 
and deep cohesion were predictive of learning performance. In particular, the group-
level results indicated that collaborative groups who engaged in more expository, or 
informational, style interactions significantly outperformed those with more narrative 
discourse. Initially, these findings seem counterintuitive based on previous research 
which found that narrative text is substantially easier to read, comprehend, and recall 
than informational text [7], even when the familiarity of the topics and vocabulary are 
controlled. However, students were instructed to talk about what they read in their 
textbook, which could suggest that groups that learned more were mirroring their 
textbook’s more expository nature. Additionally, [29] noted that informational texts 
tend to have higher cohesion, as compared with narratives, and thus cohesion plays an 
important role in in compensating for the greater difficulty of expository style dis-
course. Deep cohesion was also predictive of learning performance in the group-level 
interaction analysis.  

In addition to the previously mentioned benefits of deep cohesion for learning, co-
hesion also aids processes important for collaboration, including establishing and 
maintaining common ground [33], negotiating references [7], and coordinating group 
members’ mental models [34]. High cohesion dialogue may indicate more thorough 
collaboration and learning in building a shared mental model. This is similar to the 
way high cohesion text can aid learners in building a solid mental model (relative to 
low cohesion text). In the context of group interactions, our findings support research 
showing that collaborative learners may create and preserve shared conceptions of a 
topic, and this social co-construction facilitates optimal collaboration for knowledge 
building [35]. We also tested whether prior knowledge moderated the effect of dis-
course on learning by assessing whether the prior knowledge x discourse feature inte-
raction term significantly predicted posttest scores. However, the interaction term was 
not significant (p > .05) for any of the models. 

Table 1. Descriptive Statistics and Mixed-Effects Model Coefficients 

Measure Learner Model Group Model 

 M SD B SE M SD B SE 

Narrativity  .15 .79 .01 .01 .53 .34  -.04* .02 
Deep Cohesion .87 1.681     .01**   .003 1.291 .75     .03** .01 
Referential Cohesion -.521 1.521  -.003   .005  -1.6411 .42 .01 .02 
Syntax Simplicity  .69 .81  -.01* .01 1.301 .37  -.001 .02 
Word Concreteness  -2.0711 1.071  -.011   .001  -2.6711 .41  -.031 .01 

Note: * p < .05; ** p < .001. Standard error (SE).      
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4 General Discussion 

This paper explored the possibility of using discourse features to predict student and 
group performance during collaborative learning interactions. Although students do 
not directly express knowledge construction and cognitive processes, our results indi-
cate that these states can be monitored by analyzing language and discourse. This 
suggests that it takes a more systematic and deeper analysis of dialogues to uncover 
diagnostic cues of the knowledge construction. Overall, the findings suggest that au-
tomated analyses of linguistic characteristics can provide valid representations of 
individual and group processes that are beneficial for knowledge construction during 
collaborative learning. In particular, students and collaborative groups can achieve 
new levels of understanding during collaborative learning interactions where more 
complex cognitive activities occur, such as analytical thinking, elaboration and inte-
gration of ideas and reasoning. 

It is also interesting to note that it takes an analysis of both the student and colla-
borative group interaction to obtain a comprehensive understanding of the linguistic 
properties that influence knowledge acquisition during collaborative group interac-
tions. These findings stimulate an interesting discussion because, until recently, most 
research on groups has concentrated on the individual people in the group as the cog-
nitive agents [36]. This traditional granularity uses the individual as the unit of analy-
sis both to understand behavioral characteristics of individuals working within groups 
and to measure performance or knowledge-building outcomes of the individuals in 
group contexts. However, the present findings support the claims of many in the 
CSCL community to also consider group levels of granularity in discourse tracking. 

The present research has important implications for CSCL and collaborative learn-
ing-focused ITSs. In order to tailor interaction feedback to student needs, a system has 
to be able to automatically evaluate student interactions and to provide adaptive sup-
port.  The support should be sensitive to these evaluations and also follow models of 
ideal collaboration. While the field has started to recognize the benefits of automated 
language evaluation, thus far, this technology has only been used effectively in li-
mited ways (e.g. classifying the topic of conversation or speech acts) [37]. Some re-
search has attempted to address the issue of evaluating dialogue by relying on more 
shallow measures like participation to trigger feedback. Unfortunately, these ap-
proaches make it difficult to give students feedback on how to contribute, which may 
ultimately be more valuable. Computational linguistics facilities, like Coh-Metrix and 
the Linguistic Inquiry and Word Count (LIWC) tool, could be used to alleviate some 
of the burdens of capturing these important processes. Additionally, systems that are 
based on underlying cognitive frameworks of knowledge construction have the ad-
vantage of being applicable in diverse contexts.  

The present findings suggest that these systems have the capability of identifying 
linguistic features beneficial for knowledge construction on multiple levels, including 
individual learners and overall collaborative group interaction. Information gleaned 
from such analyses could be useful for those in pursuing CSCL and collaborative 
learning-focused ITSs. For instance, a system could provide accurate real time  
support for learners using an interface that delivered suggestions via a simple pop  
up window or a more sophisticated intelligent agent. However, the value of such  
enhancements awaits future work and empirical testing. 
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Abstract. Collaborative learning has been shown to be beneficial for older stu-
dents, but there has not been much research to show if these results transfer to 
elementary school students. In addition, collaborative and individual modes of 
instruction may be better for acquiring different types of knowledge. Collabora-
tive Intelligent Tutoring Systems (ITS) provide a platform that may be able to 
provide both the cognitive and collaborative support that students need. This 
paper presents a study comparing collaborative and individual methods while 
receiving instruction on either procedural or conceptual knowledge. The colla-
borative groups had the same learning gains as the individual groups in both the 
procedural and conceptual learning conditions but were able to do so with fewer 
problems. This work indicates that by embedding collaboration scripts in ITSs, 
collaborative learning can be an effective instructional method even with young 
children. 

Keywords: Problem solving, collaborative learning, intelligent tutoring system. 

1 Introduction 

While collaborative learning has been shown to be beneficial for both face-to-face 
and Computer Supported Collaborative Learning (CSCL) [9], [14], collaborative 
learning often puts challenges on students and teachers that make it hard to implement 
in the classroom. The challenges teachers face include preparing materials, teaching 
the students collaboration skills, and learning how to manage small groups [3]. For 
students, fruitful collaboration does not happen spontaneously, and collaboration 
scripts are used to support students in their learning [6]. It is important for a script to 
match the learning goals of the activity and to provide enough support for the students 
without over-scripting. Collaboration can be supported through different features such 
as roles, cognitive group awareness, and the distribution of information. The chal-
lenges faced by both the students and teachers can make the use of collaboration 
daunting. Some prior research has indicated that Intelligent Tutoring Systems (ITSs) 
can be a practical way of addressing the challenges of using collaboration in the class-
room. Most CSCL environments are missing the cognitive support that can be benefi-
cial to student learning. An ITS can provide the cognitive support (i.e. step-by-step 
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guidance and hint features) that a student needs for collaboration to be successful 
[18], but does not provide support for effective collaboration. The current research 
investigates if embedding a collaboration script into an ITS so it has both the colla-
borative and cognitive support can help a student to learn successfully.  

Even though collaborative learning has been shown to be successful in some in-
stances, few studies have investigated whether CSCL can have a positive impact on 
learning with young children. The implementation and support of collaboration in the 
classroom is particularly difficult for students in elementary school and may explain 
why there is less research with this age group. An important question then is if colla-
borative learning can be an effective instructional method to use with elementary 
school students and if it would lead to similar learning gains as students working in-
dividually. Some studies have shown successful use of collaboration with elementary 
school students as well, but have either compared the use of a CSCL setting to face-
to-face collaborative learning (i.e., not supported by computers) without comparing it 
to individual learning or have focused on interventions that mix individual and colla-
borative learning tasks without looking at each separately [1], [8], [16]. Although this 
research has shown positive impacts of young children working in small groups and 
with computers, it is still unknown how the use of a CSCL environment impacts the 
learning outcomes of young children compared to learning individually. This paper 
aims to address this question through an ITS designed specifically to support colla-
borative learning of children in elementary school. ITSs have been shown to have 
positive impacts on students in this age group when working individually to learn 
fractions [12]. We now extend this research by testing whether a tutor that supports 
collaboration can be effective for learning fractions by elementary school students.  

Although most prior work on ITSs has focused on individual learning, there has 
been some work on combining ITSs with collaborative learning that has shown prom-
ise for supporting learning with high school students [17].  Walker et al. found that 
students working with an ITS redesigned to support collaboration (specifically, peer 
tutoring) had learning gains at least equivalent to those working individually.  

In creating a collaborative tutor, it may be important to consider the possibility that 
individual and collaborative learning activities may be better for acquiring different 
types of knowledge, such as conceptual and procedural knowledge [10]. Conceptual 
knowledge is the implicit and explicit understanding of the principles in a domain and 
how they are interrelated [13]. Procedural knowledge is the ability to be able to per-
form the steps and actions in sequence to solve a problem [13]. Mullins, Rummel, and 
Spada found that with 9th graders doing algebra, students who worked collaboratively 
on conceptual tasks outperformed those who worked individually and students who 
worked individually on procedural tasks outperformed those who worked collabora-
tively [10]. Again, this study was implemented with older students and the question 
still remains if the same difference will be seen with elementary school students. 

Why would it be better to acquire different types of knowledge through different in-
structional methods? Following the Knowledge-Learning Instruction (KLI) framework, 
instruction should be designed for both the domain and for the type of knowledge 
component to be learned [5]. Simpler instructional methods tend to be associated  
with simpler knowledge components, more complex methods with more complex 
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knowledge components. Thus, collaboration, a more complex instructional method, 
would be better for more complex knowledge components, where elaboration and a 
deeper understanding is needed, such as those in conceptual knowledge. More specifi-
cally, collaborative learning may be successful because the students give and receive 
explanations and construct knowledge through their discussions [4]. On the other hand, 
individual learning would be more geared towards procedural learning where practice 
and repetition are more important for developing fluency.  

In our study, we address the feasibility of using a collaborative ITS with elementa-
ry school students learning fractions. We hypothesize that students working collabora-
tively will show learning gains on both procedural and conceptual fractions tasks. 
Also, we hypothesize that on conceptual tasks, students working collaboratively will 
have stronger learning gains than students working individually. By contrast, for stu-
dents doing procedural tasks, we hypothesize that those working individually will 
have stronger learning gains than those working collaboratively. These hypotheses are 
consistent with both the KLI framework and the Mullins et al. findings. 

2 Methods 

2.1 Tutor Design 

Informed by our prior work on the Fractions Tutor [12], we developed a new ITS for 
a challenging topic in fractions, learning equivalent fractions. Specifically, we built 
two parallel versions of this tutor for use in our study, one with embedded collabora-
tion scripts and one for individual learning. Both versions had procedural and concep-
tual problem sets. Both were built with CTAT, which we extended to support  
collaborative tutors [11]. The collaborative ITS combines the cognitive support nor-
mally provided by an ITS (step-level guidance for problem solving) with embedded 
collaborative scripts for each tutor problem. The collaboration is supported through 
the use of a shared problem view, roles, cognitive group awareness, and unique in-
formation. First, the collaborative tutors support synchronous, networked collabora-
tion, in which collaborating students sit at their own computer and have a shared 
(though differentiated) view of the problem state. They can discuss the activity 
through audio chat.  

Second, the embedded scripts define roles to distribute the activities between the 
students. The roles provide guidance to the students about what they should be doing 
to interact with their partner and help to scaffold this interaction. Students were as-
signed to either a helper role or a problem solver role for each task in a problem. The 
students were informed of their role assignment through the use of icons displayed on 
the interface (see Figure 1). An “ask” icon next to a problem step signaled to the stu-
dent that they were in the helper role and responsible for asking questions and making 
sure both they and their partner understood the answer. A “do” icon next to a compo-
nent meant the student was in the problem solver role and responsible for carrying out 
the step to move the problem solution forward (Figure 1). 

A third collaborative support feature we used in the collaborative problem sets  
is cognitive group awareness. Cognitive group awareness means that group members  
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Fig. 1. A collaborative procedural problem: multiplying to make equivalent fractions 

 
have information about other group members’ knowledge, information, or opinions 
and has been shown to be effective for the collaboration process [7]. We implemented 
cognitive group awareness by a design pattern in which the collaborative tutor poses a 
question to both students and asks each student to answer independently first without 
being tutored (bottom of Figure 2).  After both students answer the question indepen-
dently, the tutor shows them each other’s answers and gives them the opportunity to 
answer the question as a group, which is tutored. This activity allowed each student 
an opportunity to express an opinion and gave each dyad an opportunity to discuss 
and explain their answer choices, especially important when they disagreed. 

The last collaborative support feature is the use of unique information to create a 
sense of individual accountability, a popular feature in scripts such as the jigsaw [2]. 
Individual accountability means that each group member takes responsibility for the 
group reaching its goal [14]. By providing each student with information that their 
partner does not have and that is needed to complete the problem, both students have 
a stake in completing the problem. In our problem sets, unique information was im-
plemented by providing one member of the dyad with some information the other 
student did not see. The student would know they had unique information because 
there would be a share icon next to the information. The other student would need this 
information to complete a step of the problem and would see a listen icon to know 
there was some information they needed to get from their partner.  

To test our experimental hypotheses, two problem sets were created for both the 
collaborative and the individual ITSs. One set focused on procedural knowledge of 
equivalent fractions while the other set focused on conceptual knowledge of equiva-
lent fractions. The procedural problem set has four problem types, with four problems  
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Fig. 2. Example of a collaborative conceptual problem: creating equivalent fractions to find the 
pattern in the fractions 

 
each, which focus on finding equivalent fractions or determining whether fractions 
are equivalent, either by finding the common factors and reducing the fraction or by  

multiplying the numerator and denominator by the same number (see Figure 1). Each 
of the problem types focused on the steps needed to complete that procedure, without 
addressing conceptual questions about why the procedure works. The conceptual 
problem set also has four different problem types and four problems of each type. 
Two of the problem types provide the students with two stories about whether given 
fractions are equivalent that they need to compare and contrast (one story is correct 
and one story focuses on a misconception) or by providing the students with one story 
that focuses on a misconception that students need to address. The other two problem 
types focus on the definition of equivalent fractions by either having the students 
construct equivalent fractions to find a pattern in the fractions or by having students 
manipulate the denominators and numerators of the fractions independently to see 
how they relate (see Figure 2). For both problem types, students then induce a defini-
tion of what it means for fractions to be equivalent.  

2.2 Experimental Design and Procedure 

To test the hypotheses stated above, we conducted a study with 84 4th and 5th grade 
students from two US elementary schools in the same school district. The students 
came from a total of six classrooms. The experiment was a “pull-out” design, where 
the student left their normal instruction during the school day to participate in the 
study. (We did so we could collect eye tracking data, which are not reported here.)  
All students worked with the fractions ITS designed for this study and described 
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above. Each teacher paired the students participating in the study based on students 
who would work well together and had similar math abilities. These pairs were then 
randomly assigned to one of four conditions: collaborative conceptual, collaborative 
procedural, individual conceptual, and individual procedural. Twice as many students 
were assigned to the collaborative conditions as to the individual conditions.  

Before participating in the pull-out session, the students had two whole class ses-
sions during which they worked individually with the Fractions Tutor during their 
normal class period (on fractions topics other than equivalence). This allowed the 
students to become acclimated with the tutor before the experiment began. During the 
experiment, the students participated in a 25-minute pretest the morning of their par-
ticipation. Throughout the day, the pairs of students participated in the pull-out ses-
sion. Each such session lasted for one hour where during this time, they received 45 
minutes of instruction dependent on their condition. The next school day, the students 
participated in a 25-minute posttest in the morning. The study spanned a total of four 
weeks. After the end of the study, the students again had two whole class sessions 
where they again worked independently on the Fractions Tutor. 

2.3 Pre and Posttests 

We assessed students’ knowledge at two different times using two equivalent test 
forms in counterbalanced fashion. The tests targeted both conceptual and procedural 
knowledge types. Each test had 11 questions, five procedural and six conceptual. 
Each question either received a 1 when all parts were correct or a 0 otherwise. The 
test items were isomorphic to the items used in the practice problems.   

3 Results 

Table 1.  Total correct: means (standard deviation) for conceptual and procedural knowledge at 
pretest, posttest, Min. score is 0, and max. score is 5 for procedural and 6 for conceptual. 

      pretest posttest 

Conceptual 
Condition 

Individual 
Condition 

Conceptual Problems 2.00 (1.63) 2.54 (1.56) 

Procedural Problems 0.46 (0.66) 0.85 (1.21) 

Collaborative 
Condition 

Conceptual Problems 2.04 (1.32) 2.54 (1.20) 

Procedural Problems 0.50 (0.75) 0.82 (0.82) 

Procedural 
Condition 

Individual 
Condition 

Conceptual Problems 1.50 (0.76) 1.64 (1.28) 

Procedural Problems  0.50 (0.86)  0.64 (1.08) 

Collaborative 
Condition 

Conceptual Problems 2.08 (1.67) 2.58 (1.42) 

Procedural Problems  0.92 (1.16) 0.92 (1.16)  
 
Because the procedural and conceptual tutor problems were fundamentally different, 
each of these conditions was treated separately and the collaborative and individual 
conditions were not compared across problem types. Three students were excluded 
from the analysis because experimenter error, leaving 81 students. We analyzed the 
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data by individual so we could evaluate each student’s learning gain. To test our hy-
pothesis that, on tutor activities targeting conceptual knowledge, students working 
collaboratively have higher learning gains than students working individually, we 
conducted two repeated-measures ANOVAs, one for procedural test items and one for 
conceptual items, with condition (collaborative or individual) as a between-subjects 
factor and test-time (pretest and posttest) as repeated measure. For the conceptual test 
items, there is a significant pre/post difference, F (1, 39) = 4.23, p = .046, no main 
effect of condition, F (1,39) = .002, p = .966, and no interaction, F (1, 39) = .006, p = 
.940. For the procedural test items, there is a marginal pre/post difference, F (1, 39) = 
4.00, p = .053, no main effect of condition, F (1, 39) = .001, p = .976, and no interac-
tion, F (1, 39) = .032, p = .859. There were significant learning gains for both the 
collaborative and individual condition and no difference in gains between conditions. 

To evaluate our hypothesis that students working individually on tutor problems 
targeting procedural knowledge have higher learning gains than students working 
collaboratively, we conducted two repeated-measures ANOVA (for procedural test 
items and conceptual test items, respectively) with condition (collaborative or indi-
vidual) as a between-subjects factor and test-time (pretest and posttest) as repeated 
measure. For the conceptual test items, there is no effect of pre/post, F (1, 38) = 2.10, 
p = .16, a marginal effect of condition, F (1, 38) = 3.44, p = .071 with the collabora-
tive group higher, and no interaction F (1, 38) = .65, p = .426. For the procedural test 
items, there is no effect of pre/post, F (1, 38) = .22, p = .64, no main effect of condi-
tion, F (1, 38) = 1.12, p = .297, nor an interaction between condition and pre/post, F 
(1, 38) = .22, p = .64. There was no learning gain difference between the collaborative 
and individual conditions. The conditional difference reflects the fact that the students 
in the individual procedural group started lower at pretest and remained lower at post-
test. We also analyzed learning curves derived from the tutor logs for evidence of 
learning during tutor use. Specifically, we looked at the slope coefficient in the AFM 
regression equation (see Figure 3), a standard way of analyzing tutor log data [15]. 
Averaged across knowledge components, the slope was 0.27 for the conceptual condi-
tions and 0.15 for the procedural conditions. For the conceptual conditions, 81% of 
the learning curves has a slope of 0.05 or higher (a rule of thumb threshold value for a 
slope to represent effective learning) and for the procedural conditions, 60% of the 
learning curves had a slope above 0.05. 

 

 

Fig. 1. Learning curves for conditions targeting conceptual (left) and procedural  (right) know-
ledge. The learning curves are averaged across knowledge components encountered in the 
respective tutor problem sets. The red and blue lines represent the actual and AFM-predicted 
values for the collaborative conditions; the green and yellow lines for the individual conditions. 

 



 Using an Intelligent Tutoring System to Support Collaborative 141 

We conducted two t-tests (for each procedural/conceptual instructional condition) 
with collaborative/individual as the condition to see if there was a difference in the 
number of problems each student completed. For the procedural instructional condi-
tion, there is a significant difference, t (38) = 2.65, p = .012, with students working 
collaboratively doing fewer problems than students working individually by about 2.5 
problems. For the conceptual instruction condition, there is a significant difference, t 
(39) =3.61, p = .001, again with students working collaboratively doing fewer prob-
lems than students working individually by about 3.5 problems.  

4 Discussion and Conclusion 

We hypothesized that elementary school students working collaboratively with a tutor 
designed to support collaboration would have learning gains from pretest to posttest. 
The hypothesis was confirmed; the students in the collaborative conceptual condition 
had learning gains comparable to those in the individual conceptual condition. In the 
procedural instructional condition, neither the collaborative nor individual conditions 
saw any learning gains. Thus, collaborative instruction might be as effective for  
elementary school students as individual instruction, although it appears to be more 
suitable for activities aimed at acquisition of conceptual knowledge. Collaborative 
learning activities may have the added benefit that they help students develop social 
skills and learn to work together.  

While students in the collaborative condition saw fewer problems compared to 
their counterparts in the individual condition, they still had the same learning gains as 
the students in the individual conditions. This is consistent with other findings in 
CSCL [17]. This means that when authoring tutors, if collaborative tutors are used, 
fewer problems need to be developed to facilitate learning. However, we controlled 
for time and if we had controlled for number of problems, students in the individual 
condition may have learned as much as the students in the collaborative condition but 
in less time. 

While we had hypothesized that the individual condition would yield greater  
learning gains than the collaborative condition for activities geared towards acquiring 
procedural knowledge and that the reverse would hold for activities geared towards 
acquiring conceptual knowledge, we did not find these differences. We may not have 
found these differences because the instructional period was relatively short. On aver-
age the students in the collaborative conceptual condition completed 7 problems. 
Because the problem types were interleaved and not all knowledge components were 
present in each problem type, the students did not always get to practice each  
knowledge component sufficiently.  For the collaborative condition, out of the 16 
knowledge components targeted in the conceptual problems, 9 of the knowledge 
components saw (on average, per student) fewer than 5 opportunities to practice a 
knowledge component. However, the students in the individual condition completed 
12 problems on average and had at least 5 opportunities for all 16 knowledge compo-
nents. By lengthening the practice time with the tutor, such as using the tutor for  
consecutive days in the classroom, the students would have more time with the tutor 
and would get more practice. This would help the students to get more practice with 
the individual knowledge components. 
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A second explanation for the fact that the hypothesized differences between the 
conditions were not confirmed may be that the collaborative learning condition was 
more novel and perhaps more demanding for students. Put differently, students may 
need more practice with the instructional method of collaborative learning. Especially 
given that the number of skill opportunities was low, one might expect to see better 
performance on the posttest. Other studies have also shown that the introduction of 
new learning strategies can initially lead to worse learning [19]. These initial perfor-
mance losses may initially mask the success of a new learning strategy.  

The fact that there were no learning gains in the procedural conditions may be due 
to the fact that the procedural problems may have been too difficult for the students. 
We also saw that overall for all conditions, the average number of problems solved 
correctly for the procedural problem types on either the pretest or the posttest was 
below one out of five (see Table 1). The learning curves for the individual knowledge 
components do show signs of learning during the instructional session, with an aver-
aged slope across knowledge components of 0.15, well above the 0.05 threshold. 
Though the learning curves show that students start at an error rate above 50%, they 
also show clear signs of improvement. Because many of the procedural problems  
are multistep, the tests may need to be more fine-tuned to the specific knowledge 
components being learned instead of a cumulative approach of getting the entire prob-
lem correct. To be able to differentiate between the procedural and conceptual know-
ledge, more work will need to be done to develop and test tutors that can target this 
knowledge. 

The study presented in this paper extends ITSs to include support for collaborative 
learning activities. We have showed that collaborative ITSs are a feasible instruction-
al tool to use with elementary school students, with learning gains equivalent to those 
of students working independently with ITSs. The students in the collaborative condi-
tion also expressed enjoyment in working with a partner to solve problems. To the 
best of our knowledge, our study is the first showing significant learning gains with 
elementary school students working with collaborative ITSs. The use of collaborative 
ITS shows initial promise with elementary school students. 
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Abstract. Bayesian network (BN) has been successfully applied in hierarchical 
student models. Some researchers used diagnostic strategies to improve the evi-
dence level of student models. But test items are typically related to a dicho-
tomous response model, namely students' answers are scored as right or wrong. 
As we know, wrong answers result from lacking one or more relevant concepts 
in students' knowledge states. This diagnostic information of wrong answers is 
ignored. To maximize the precision of student model, this paper presents an ap-
proach using diagnostic items, which are designed to provide the information 
about which concepts are probably lacked in students' knowledge states when 
they give wrong answers. A modified NIDA (Noisy Input, Deterministic AND) 
model is built to represent the relations between students' answers and their 
knowledge states. We use simulated students to evaluate our model and the re-
sults show that the efficiency and accuracy of student modeling are improved. 

Keywords: Student model, Bayesian network, NIDA, Diagnosis. 

1 Introduction 

Student modeling is a tough task: uncertainty exists when we infer students' know-
ledge from their performances during problem solving [1]. Students might perform 
correctly by guessing even though they do not know the relevant concepts. On the 
contrary, students knowing the relevant concepts might incorrectly perform by slip-
ping. BNs have been successfully applied for hierarchical student models [2, 3, 4, 5]. 
To maximize the precision, some diagnostic strategies were constructed to improve 
the evidence level of hierarchical student models. Millán and Pérez-de-la-Cruz [3] 
combined Item Response Theory (IRT) with Bayesian student modeling on evidence 
level, which reasonably applied the diagnostic information that the student lacking 
more relevant concepts has less probability of answering the question correctly. How-
ever, their model assessed students' answers as right or wrong, without considering 
plentiful information from wrong answers. A psychometric model MC-DINA intro-
duced by de la Torre [6] applied the diagnostic information of students' answers by 
using multiple choice questions (MCQs). The author indicated the relations between 
wrong options of MCQs and students' knowledge states, and applied a data-driven 
approach to estimate the parameters. But due to too many parameters in his model, 
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the estimation is complex. Inspired by these researches, we aim to model the relations 
between students' wrong answers and their knowledge states with a reduced number 
of parameters. By introducing the diagnostic information of wrong answers, the effi-
ciency and accuracy of student modeling can be improved. 

2 Diagnostic NIDA Model 

The evidence level of student model deals with the relations between test items (e.g. 
questions) and knowledge items (e.g. concepts). The relationship between questions 
and concepts can be represented as Q-matrix in psychometrics. According to the pres-
ence or absence of the concepts, students' answers can be characterized. We suppose 
that the codes 1 and 0 respectively represent concepts correctly and not correctly 
used. Hence, if answering a question requires using three concepts, the correct answer 
can be coded as 111, and the wrong answer which is coded as 101 means that only the 
second concept is not correctly used. 

 

Fig. 1. Diagnostic NIDA model 

The NIDA model is a psychometric model which considers the guess and slip pa-
rameters for each concept (or skill). It is different from the DINA (Deterministic In-
put, Noisy AND) model, which associates the guess and slip parameters to test items 
instead of concepts [7]. As we have to diagnose the presence or absence of each con-
cept, our work is based on the NIDA model. The NIDA model involves a binary re-
sponse model. When students give a wrong answer, the probabilities of knowing all 
the relevant concepts are reduced. In fact, wrong answers are usually caused by lack-
ing some but not all the relevant concepts. We introduce the diagnostic information of 
wrong answers into our model. To reduce knowledge engineering effort, we use 
MCQs as test items. We propose a modified NIDA model (Fig. 1) to represent the 
relations between students' answers and their knowledge states. The deterministic 
function (in Fig. 1) of a binary NIDA model is logical AND. In our diagnostic NIDA 
model each question involves multiple characterized answers. The parameters of our 
diagnostic NIDA model are estimated as follows: 

• Each concept Ci has two values, 1 (known by students) and 0 (unknown by stu-
dents). Each used concept Ci,j also has two values, 1 (concept Ci is correctly used in 
question Qj) and 0 (concept Ci is not correctly used in question Qj). In a MCQ, the 
values of question Qj are multiple characterized options. 

• There are two kinds of noisy parameters between concept Ci and used concept Ci,j. 
One is the slip parameter, that is, concept Ci is known, but it is not correctly used in 
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the question Qj. The other is the guess parameter, that is, concept Ci is unknown, 
but it is correctly used in the question Qj. The noisy parameters are as follows: 

 ji
slipiji PCCP ,

, )10( ===    ji
guessiji PCCP ,

, )01( ===    (1) 

• The deterministic function represents the relations between students' performances 
(correctly or incorrectly using concepts) and the possible answers (coded options). 
When a student correctly uses all the relevant concepts for answering a question, 
his/her answer is certainly the right option. When some concepts are not correctly 
used by the student, his/her answer is certainly the coded wrong option which  
corresponds to his/her performance. When the student's performance does not cor-
respond to any coded option of the questions, and no more information can be ob-
tained, we suppose that his/her answer can be any option with the same probability 
(see Table 1). In the example of Table 1, question Qj involves three concepts  
(C1, C2, C3) and the possible answers are the four coded options (A1, A2, A3, A4).  

Table 1. An example of deterministic function P(Qj=Ak|C1,j, C2,j, C3,j) 

Used concepts (C1,jC2,jC3,j) A1 (001) A2 (110) A3 (010) A4 (111) 
000 1/4 1/4 1/4 1/4 
001 1 0 0 0 
010 0 0 1 0 
011 1/4 1/4 1/4 1/4 
... ... ... ... ... 

111 0 0 0 1 

 
The real situations are very complex. Students might exclude some bad options in 
terms of the relevant concepts which they can correctly use. In this case, some options 
might have higher probability to be chosen than others.  Hence, if we can get more 
information from real educational settings, the deterministic function needs to be 
improved. 

Our diagnostic NIDA model only requires the prior values of slip and guess para-
meters for each concept. Given a student's knowledge state, with the slip and guess 
parameters of concepts and the deterministic function, we can calculate the probabili-
ty of the student choosing each option of a question by BN inference. 

3 Relations between Concepts 

In some ITSs, students are adapted to learn the difficult concepts only after they get 
the knowledge of some simple concepts. So the prerequisite relations might exist 
between different difficulty levels of concepts. We introduce the different levels of 
concepts into our diagnostic NIDA model (see Fig. 2). The trial BN contains fourteen 
concepts, which are classified into three levels according to the difficulty. The nodes 
L1 and L2 are the prerequisite levels of knowing the more difficult concepts, which 
have two values, 1 (students get the level) and 0 (students do not get the level).  
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Fig. 2. A trial BN of different levels of concepts 

4 Evaluation 

In this part, we aim to evaluate whether the efficiency and accuracy of student model-
ing are improved by our diagnostic NIDA model. As empirical data is expensive, we 
preliminary evaluate our model by simulated students with predefined knowledge 
profiles. We have three experiments in the evaluation. For experiment 1, all the four-
teen concepts are independent and there is no difference in difficulty or relation 
among them. The prior probability of knowing each concept is 0.5. For experiment 2, 
prerequisite relations exist between the fourteen concepts and we use the prerequisite 
network in [8]. The prior probability of the concepts without prerequisites is 0.75. For 
the concepts with prerequisites, if all the prerequisites are known, the prior probability 
of knowing the concepts is 0.5; otherwise, it is 0. For experiment 3, the relations be-
tween concepts are as Fig. 2. Students get a level if they know three or more related 
concepts. The prior probabilities of knowing the easy concepts are 0.75. And if stu-
dents get the prerequisite level, the prior probabilities of knowing the more difficult 
concepts are 0.5; otherwise, it is 0.  

 

Fig. 3. Updating the probabilities of knowing the concepts in experiment 3: (a) binary NIDA 
model; (b) our diagnostic NIDA model 

We randomly generate one hundred questions. Each question is related to two or 
three concepts. For each question, there are four options, the correct answer and three 
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coded wrong answers. For each experiment, we give the prior values of the slip and 
guess parameters. We randomly generate 180 simulated students with different prede-
fined knowledge states. In experiment 2 and 3, the predefined knowledge states of 
students comply with the prerequisite relations between concepts or the different dif-
ficulty levels. The questions are randomly selected for students to test. We simulate 
students' answers in terms of their predefined knowledge states. When the student 
gives a right answer, the probabilities of knowing the relevant concepts are increased. 
When the student gives a wrong answer, according to our diagnostic BN, not all the 
probabilities of knowing the relevant concepts are reduced. The probabilities of the 
concepts which are correctly used in the wrong answer are increased and those which 
are not correctly used in the wrong answer are reduced (see Fig. 3). 

Table 2. Rate of correctly diagnosed concepts 

 Binary NIDA model Our diagnostic NIDA model 

Pslip, Pguess 0.1 0.1 0.15 0.2 
Questions 50 50 40 

Experiment 1 73.95% 96.23% 93.61% 87.33% 77.49% 

Experiment 2 90.08% 98.08% 96.92% 93.64% 86.86% 

Experiment 3 83.20% 97.39% 94.40% 89.60% 81.85% 

 

Fig. 4. Rate of correctly diagnosed concepts 

After a certain number of questions are tested, the concepts can be evaluated into 
three categories (diagnosed as known, diagnosed as unknown and undiagnosed) by a 
threshold e (0.2 in the experiments). Comparing the result with the predefined know-
ledge state of the simulated students, the rates of correctly diagnosed, incorrectly 
diagnosed and undiagnosed concepts can be calculated. The final result is the average 
value of all the students' tested results. When the prior values of the slip and guess 
parameters are given as 0.1, in experiment 1 (without the influence of relations be-
tween concepts), after 40 questions are tested by 180 students, 93.61% of concepts are 
correctly diagnosed (see Table 2), 1.19% incorrectly diagnosed and 5.20% undiag-
nosed by our diagnostic NIDA model. Comparing with the result of binary NIDA 
model tested by 50 questions, which is 73.95% correctly diagnosed, 2.37% incorrectly 
diagnosed and 23.68% undiagnosed, our model behaves well in improving the accu-
racy and efficiency of student modeling. Fig. 4 shows the rates of correctly diagnosed 
concepts tested by the binary NIDA model and our model with different numbers of 
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questions (Pslip and Pguess are 0.1). Without the influence of the relations between  
concepts (experiment 1), our diagnostic NIDA model shows a higher accuracy and 
efficiency in student modeling than the binary NIDA model. Fig. 4 also shows that 
based on our model, student modeling can be improved by introducing the relations 
between concepts (experiment 2 and 3). And in our trial BN, introducing the prerequi-
site relations between concepts (experiment 2) shows a slightly better behavior than 
introducing the different difficulty levels of concepts (experiment 3), but the latter 
requires less effort of knowledge engineering than the former. 

5 Conclusion and Future Work  

Considering the diagnostic information of students' wrong answers, we encode stu-
dents' answers according to the presence or absence of the relevant concepts. We 
introduce the modified NIDA model to represent the relations between students' an-
swers and their knowledge states. Our evaluation results show that comparing with 
binary NIDA model, the accuracy and efficiency of student modeling are improved by 
our model. In future work, we can improve our work in some aspects. Firstly, the 
prior values for the parameters are required in our model, which are usually very dif-
ficult to be acquired from expert knowledge. So we will consider how to derive them 
from data. And it is highly necessary to use the real data sets to evaluate our model. 
Secondly, some adaptive strategies will be introduced into our model to select appro-
priate test items. An available approach is to calculate the utility [3, 4] of test items.  
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Abstract. Student modeling is an important component of ITS research because 
it can help guide the behavior of a running tutor and help researchers under-
stand how students learn. Due to its predictive accuracy, interpretability and 
ability to infer student knowledge, Corbett & Anderson’s Bayesian Knowledge 
Tracing is one of the most popular student models. However, researchers have 
discovered problems with some of the most popular methods of fitting it. These 
problems include: multiple sets of highly dissimilar parameters predicting the 
data equally well (identifiability), local minima, degenerate parameters, and 
computational cost during fitting. Some researchers have proposed new fitting 
procedures to combat these problems, but are more complex and not completely 
successful at eliminating the problems they set out to prevent. We instead fit pa-
rameters by estimating the mostly likely point that each student learned the 
skill, developing a new method that avoids the above problems while achieving 
similar predictive accuracy. 

Keywords: Bayesian Knowledge Tracing Expectation Maximization Student 
Modeling. 

1 Introduction 

Within the field of Intelligent Tutoring Systems (ITSs), student modeling is important 
because it can help guide interaction between a student and an ITS. By having a mod-
el of student knowledge, an ITS can estimate how knowledgeable a student is of vari-
ous knowledge components (or “skills”) over time and use that to determine what the 
student needs to practice. 

However, student modeling is also important to researchers. The parameters 
learned from BKT can be used to characterize how students learn and to evaluate ITS 
content. Examples of this include studying the effects of “gaming the system” on 
learning [8] and evaluating hint helpfulness [4], among many other studies. 

While BKT is popular and useful, researchers have found problems with fitting 
BKT models. One such problem is identifiability: there may be multiple sets of para-
meters that fit the data equally well [3], making interpretation difficult. Additionally, 
the learned parameters may produce what is called a degenerate model, or a model 
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that fits the data well but violates the assumptions of the approach, generally leading 
to inappropriate pedagogical decisions if used in a real system [1]. 

Two popular fitting methods in the literature, Expectation-Maximization (EM) [9] 
and brute force grid search, both suffer from identifiability. Additionally, EM can get 
stuck on local minima, and brute force comes with a high computational cost. 

Researchers have attempted to deal with these issues through strategies like limit-
ing the values brute force searching can explore [2], determining which starting val-
ues lead to degenerate parameters in EM [12], computing Dirichlet priors for each 
parameter and using these to bias the search [13], clustering parameters across similar 
skills [14], and using machine-learned models to detect two of the parameters [1]. 

This work introduces a simple method of estimating BKT parameters that sacrific-
es the precision of optimization techniques for the efficiency and interpretability of 
empirical estimation. Briefly, we estimate when students learn skills heuristically, and 
then use these estimates to help compute the four BKT parameters. Our goal is to 
efficiently produce accurate, non-degenerate BKT models. 

2 Data 

For this work, we used data from ASSISTments [7], an ITS used primarily by middle- 
and high-school students. In this dataset taken from the 2009-10 school year, 1,579 
students worked on 61,522 problems from 67 skill-builder problem sets. The skill-
builders used had data from at least 10 students, used default mastery settings (three 
consecutive correct answers to achieve mastery, ending the assignment), and had at 
least one student achieve mastery. A student’s data was only included for a specific 
skill-builder if they answered at least three questions.  

3 Methods 

In this work, we developed and analyzed a new fitting procedure for BKT. We begin 
this section by describing BKT and then introduce our empirical approach to fitting 
BKT models. Finally, we describe the analyses we performed. 

3.1 Bayesian Knowledge Tracing 

Bayesian Knowledge Tracing [5] is a student model used in ITS research that infers a 
student’s knowledge given their history of responses to problems, which it can use to 
predict future performance. Typically, a separate BKT model is fit for each skill. It 
assumes that a given student is always either in the known state or the unknown state 
for a given skill, with a certain probability of being in each. To calculate the proba-
bility that a student knows the skill given their performance history, BKT needs to 
know four probabilities: P(L0), the probability a student knows the skill before at-
tempting the first problem; P(T), the probability a student who does not currently 
know the skill will know it after the next practice opportunity; P(G), the probability a 
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student will answer a question correctly despite not knowing the skill; and P(S), the 
probability a student will answer a question incorrectly despite knowing the skill. 

According to this model, knowledge affects performance (mediated by the guess 
and slip rates), and knowledge at one time step affects knowledge at the next time 
step: if a student is in the unknown state at time t, then the probability they will be in 
the known state at time t+1 is P(T). Additionally, BKT models typically assume that 
forgetting does not occur: once a student is in the known state, they stay there. 

3.2 Computing Knowledge Tracing Using Empirical Probabilities 

In this section, we present a new approach to fitting BKT models we call Empirical 
Probabilities (EP). EP is a two-step process that involves annotating performance data 
with knowledge, and then using this information to compute the BKT parameters. 

Annotating Knowledge. The first step in EP is to annotate performance data for each 
student within each skill with an estimate of when the student learned the skill. We 
assume there are only two knowledge states: known (1) and unknown (0), and do not 
allow for forgetting (a known state can never be followed by an unknown state). 

In this work, we use a simple heuristic for determining when a student learns a 
skill: we choose the knowledge sequence that best matches their performance. This is 
illustrated by Figure 1. A full description of this heuristic can be found online [6]. 

 

Fig. 1. Each of the six possible knowledge sequences are tried for a student’s performance 
history, and in this case, the best two are averaged together to get the final sequence 

Computing the Probabilities. Using the knowledge estimates, we were able to com-
pute each of the four BKT parameters for each skill empirically from the data. 

The first of these parameters is P(L0), the probability that the student knew the skill 
before interacting with the system. We can empirically estimate this by taking the 
average value of student knowledge on the first practice opportunity: 

 ( )  ∑| |  (1) 

Equation (1) is similar to a heuristic in [11] for estimating individual student prior 
knowledge. While that paper used performance to compute a prior for each student as 
opposed to using knowledge to compute a prior for each skill as we do here, the idea 
that prior knowledge can be estimated mathematically in this way is similar. 
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Using Ki and Ci as knowledge and correctness at problem i, respectively, the fol-
lowing equations are used to compute the other three BKT parameters: 

 ( )  ∑ ( )∑ ( )  (2) 

 ( )  ∑ ( )∑ ( )  (3) 

 ( )  ∑ ( )∑  (4) 

3.3 Experiments 

In this paper, we compare BKT models fit with EM and EP in terms of predictive 
accuracy, model degeneracy, and training time. Due to space constraints, only the 
predictive accuracy results are reported here. Results for the other experiments as well 
as the code and data used in all the experiments are available online [6]. 

To fit EM, we used Murphy’s Bayes Net Toolbox for MATLAB (BNT) [10]. For 
EM, it is necessary to specify a starting point. We chose an initial P(L0) of 0.5, and set 
the other three parameters to 0.1. Additionally, we set a maximum of 100 iterations 
and used the default BNT improvement threshold value of 0.001. 

To compute the parameters using EP, we implemented the equations in the pre-
vious section in MATLAB using basic functionality. Then, we entered these values 
into the conditional probability tables of a BKT model constructed with BNT. 

4 Results 

First, we examine how predictive each method is of student performance under five-
fold student-level cross-validation. We evaluated the methods using mean absolute 
error (MAE), root mean squared error (RMSE), and A’. These metrics were computed 
for each student and then used in two-tailed paired t-tests to determine the signific-
ance of the differences between the overall means of the two models. The degrees of 
freedom for the MAE and RMSE significance tests was one less than the number of 
students, whereas that of the A’ significance test was lower due to some students be-
ing excluded (students who gave all correct or all incorrect answers for all skills were 
excluded since A’ is undefined in such cases). The values below represent the average 
of the student metrics. Lower values of MAE and RMSE indicate better performance, 
whereas the opposite is true of A’. The results are shown in Table 1. 

Table 1. Prediction results for the two methods of learning BKT parameters: Expectation 
Maximization and Empirical Probabilities 

Learning Method MAE RMSE A’ 
EM (BNT) 0.3830 0.4240 0.5909 
EP 0.3742 0.4284 0.6145 
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Although the differences between these metrics are all statistically significant accord-
ing to two-tailed paired t-tests (MAE: t(1,578) = 10.88, RMSE: t(1,578) = -6.74, A’: 
t(1,314) = -7.01, p < 0.00001), the differences are small. Therefore, we believe the 
two methods are comparable in terms of predicting performance. 

We also tested EM and EP in terms of model degeneracy and fitting time. In sum-
mary, we found that only EM learned degenerate parameters, and that EP runs signifi-
cantly faster than EM. The full results are available online [6]. 

5 Conclusions and Future Work 

From this work, it appears that a simple estimation of knowledge followed by compu-
ting empirical probabilities may be a reasonable approach to estimating BKT parame-
ters. We found that EP had comparable predictive accuracy to that of EM. Additional-
ly, it is mathematically impossible for EP to learn theoretically degenerate guess and 
slip rates (i.e. above 0.5) [6], and it is at least as good as EM at avoiding empirically 
degenerate parameters, based on tests suggested and used in [1]. We also found it was 
considerably faster than EM [6]. 

An improvement to EP would be to annotate knowledge more probabilistically. EP 
makes only binary inferences of knowledge based on predictive performance. For 
example, EP always considers incorrect responses on the first problem to be made in 
the unknown state, even though some of these are slips. Therefore, a more probabilis-
tic approach may be able to produce better parameter estimates. 

EP could be used as a tractable way to help improve accuracy by incrementally in-
corporating data into models as it becomes available during a school year. This would 
improve models for skills with little or no previous data and make use of student and 
class information. If a skill has little or no previous data, using current school year 
data may improve estimates of its parameters. Also, it has been shown that incorporat-
ing student [11] and class [15] information can improve predictive performance, 
which cannot be done before the start of a school year. 

While EP achieves similar accuracy to EM and appears not to learn degenerate pa-
rameters, we did not perform any external validations of the learned parameters for 
either approach. Such an analysis would help determine how much we can trust EP 
parameters, especially when they differ from those learned by EM. 
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Abstract. The Knowledge Tracing model is broadly used in various intelligent 
tutoring systems. As it estimates the knowledge of the student, it is important to 
get an accurate estimate. The most common approach for fitting the model is 
Expected Maximization (EM), which normally stops iterating when there is mi-
nimal model improvement as measured by log-likelihood. Even though the 
model’s predictive accuracy has converged, EM may not have come up with the 
right parameters when it stops, because the convergence of the log-likelihood 
value does not necessarily mean the convergence of the parameters. In this 
work, we examine the model fitting process in more depth and answer the re-
search question: when should EM stop, specifically for the Knowledge Tracing 
model. While typically EM runs for approximately 7 iterations, in this work we 
forced EM to run for 50 iterations for a simulated dataset and a real dataset. By 
recording the parameter values and convergence states at each iteration, we 
found that stopping EM earlier leads to problems, as the parameter estimates 
continue to noticeably change after the convergence of the log-likelihood 
scores. 

Keywords: Knowledge Tracing, Bayesian Networks, Intelligent Tutoring Sys-
tems, Expected Maximization. 

1 Introduction 

The Knowledge Tracing (KT) model is widely used in various intelligent tutoring 
systems. KT is based on two knowledge parameters: learning rate and prior know-
ledge, and two performance parameters: guess rate and slip rate. Prior knowledge is 
the initial probability that the student knows a particular skill, guess is the probability 
of guessing correctly given the student does not know the skill, slip is the probability 
of making a slip given the student does know the skill, and learning is the probability 
of learning the skill given the student does not know the skill. The goal of KT is to 
infer the knowledge state of students from their observed performances. 

The most common model fitting procedure for KT is Expected Maximization 
(EM). EM is an iterative method for finding maximum likelihood or maximum a 
posteriori estimates of parameters in statistical models [6]. This method is guaranteed 
to improve the likelihood function at each iteration. In [3], the authors also claimed 
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that KT + EM results in more accurate models than KT + BF (Brute Force). To sum 
up, EM has the following distinct attributes: 

1. Convergence of likelihood does not equal to convergence of parameters. 
2. Initial values for the parameters are critical. 
3. Parameter values sometimes exhibit extremely sharp changes after convergence 

of log likelihood. 

As the parameters of KT represent the knowledge (the prior knowledge node), in-
telligence (the learning node) and attitude (the guess and slip rates) of a student, ob-
viously, an incorrect estimate of the parameters may result in a wrong evaluation of a 
student, possibly causing the tutor or teachers to give additional assignments.  Also, 
researchers interpreting the models to draw scientific conclusions will reach inaccu-
rate conclusions if the parameters are incorrect.  Thus, the acquisition of the right 
parameter is essential, as it will give the researchers the true knowledge of how stu-
dents learn. Regarding that the values of the parameters may vary at different EM 
iteration, it is valuable to know when to stop running EM in order to get the right 
parameters. 

2 Methodology 

There were two components to our study.  The first involved simulated data.  For the 
simulation we used 5,000 students giving 10 responses to a skill, for 50,000 total 
sample data points.  We set up the KT parameter values for the simulated data to: 
prior: 0.5, learn: 0.4, guess: 0.15, slip: 0.2, based on our knowledge of student learn-
ing. The real data we considered came from the 2009-2010 school year of ASSIST-
ments. We select those student-skill sequences with less than or equal to 10 attempted 
opportunities. The final dataset contains 1,775 distinct students, 123 distinct skills and 
695,732 data points. The BNT toolbox [4] is used to implement EM on the KT model, 
and EM stops when either of the two conditions is met: 

1. The slope of the log-likelihood function falls below the threshold, which is set to 
10-3 by default. 

2. The number of iterations reaches the maximum number of iterations (max_iter), 
100 by default.   

The first condition indicates the process should stop when the model’s accuracy 
ceases to noticeably improve.  The threshold for improvement is normally set up to a 
default value 10-3.  The second condition, typically not encountered fitting KT mod-
els, represents a model that is not behaving well, and is possibly stuck in an infinite 
loop.  Thus, EM typically stops when the slope of the log-likelihood score reaches 
the threshold, which we suspect is not equivalent to convergence of parameters. As 
models like the Student Skill model [5] have complicated Bayesian Network struc-
tures and massive number of parameters, it is important for researchers to decide 
when to stop running EM, more specifically, how to set the proper max_iter and thre-
shold for EM to search for the right parameters. 
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In order to know the best time for EM to stop, we set max_iter to 50 and modified 
the code to stop iterating only when the current number of iteration reaches max_iter. 
Consequently, EM will always run 50 times before its termination. At each iteration, 
we also recorded the parameter values, the log-likelihood scores, and checked if the 
log-likelihood converged using EM’s default threshold to see when EM would stop 
normally. Based on the fact that we know in advance the real parameters of the simu-
lated data, it is more straightforward to observe how the parameters of the KT model 
change over time. Meanwhile, it is still worthwhile to see how EM performs on the 
real dataset, since the results may have some common features with those from the 
simulated data. For our experiments, we used the same set of initial parameters for 
both the simulated and the real data: prior: 0.3, learning: 0.5, guess: 0.15, slip: 0.05. 

Our hypothesis is that the parameters may still change later on after the conver-
gence of the log-likelihood.  Whether this change represents change overfitting or a 
better estimate of the parameter is the question we will now explore.   

3 Results 

We first ran our experiment on the simulated dataset. Fig. 1 shows the values of the 
four KT parameters for each iteration. In order to observe how the parameters change 
over time and how close they are to the true parameters used to generated the data, we 
set the initial values as the starting points and the real values as the ending points in 
the graph. The vertical dashed line indicates when EM would have stopped using its 
default stopping criteria. As we can observe, all four parameters converged by the 35th 
iteration, and they converged at different points.  The slip rate converged comparably 
quickly; on the contrary, the other three parameters converged slowly, but almost at 
the same time. Note that the parameters still changed considerably after the dashed 
line, meaning we would get an inaccurate estimate of the parameters using EM’s de-
fault threshold. Therefore, we argue that it is necessary to wait for all the parameters 
to converge before stopping EM. Finally, the parameters at the 50th iteration are very 
close to the true parameters, which confirms the additional iterations of EM are not 
causing overfitting but are actually causing the parameters to become more accurate.   

We also inspected the log-likelihood values at each iteration, which was in accor-
dance with our hypothesis that the log-likelihood value converged quickly at early 
iterations and only changed slightly after that. We confirm that the convergence of 
log-likelihood indeed does not equal to the convergence of parameters, especially for 
the KT model. We believe this is also the reason why EM outperforms BF, consider-
ing BF searches for the best set of parameters based only on the predictive accuracies 
on the test data. And there exist multiple global and local maximums for the KT mod-
el [7], and EM always push the values of parameters closer to the real values at each 
iteration. 
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Fig. 1. Parameter curves for simulated data 

 

 
Fig. 2. Parameter curves for real data 

For the simulated data, we then tested the predictive accuracies of the KT models 
on unseen test data.  For AUC, EM’s default setting gave an accuracy of 0.643, 
which was unchanged by running it for additional iterations.  MAE slightly improved 
from 0.292 to 0.285, while RMSE was slightly worsened going from 0.459 for the 
default to 0.464 for running for 50 iterations.  Based on our experience, the normal 
values for a KT model to predict a real dataset are around 0.35 for MAE, 0.46 for 
RMSE and 0.65 for AUC. Therefore, our simulated data behaves similarly to real 
data, and the model fit is similar to that on actual data.  Although there is not much 
difference in predictive accuracy, Fig. 1 demonstrates that the parameter values are 
much closer to the real values when we let EM keep running.  

We did a similar approach to examining model fit on real data.  We performed a 
five-fold cross-validation, separating groups by skill.  We compared EM under its 
default settings vs. the models we obtained after 50 iterations.  Fig. 2 shows the pa-
rameter values at each iteration for two skills randomly selected. As these are real 
data, we cannot know their true parameter values. However, in agreement with the 
results from the simulated data (Fig. 1), the parameters continue to change after EM’s 
default settings would cause it to stop.  If the trend from Fig. 1 holds true, these  
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parameters are also more accurate.  However, at a minimum we know there is no 
particular reason to believe the parameter estimates obtained after the default stopping 
criteria.  Therefore, anyone using KT’s parameter estimates for science, rather than 
for prediction, will encounter problems. A model stopping after 7 iterations and one 
stopping after 30 iterations have similar accuracy when making predictions, but in this 
case they make rather different claims about how quickly the skills are learned, and 
what students know when they begin working with the tutor. Besides the two skills 
showed here, we also inspected the graphs generated by all the other skills we tested, 
and found that generally parameter estimates were not stable at the point when EM in 
its default settings stopped its estimation process.   

4 Conclusion and Future Work 

In this work, we examined the popular model fitting process -- Expected Maximiza-
tion for the Knowledge Tracing model in more depth and intended to answer the basic 
research question: when should EM stop. As the parameters represent the knowledge 
state of a student, it is crucial for the researchers to get an accurate estimate of the 
parameters. Although we cannot say when is the best time for EM to stop (which 
needs further exploration), we did find some valuable results, and most importantly, 
we found that stopping EM by its default threshold is definitely flawed, as the para-
meters still exhibit considerable changes after the convergence of the log-likelihood. 
From the predictive accuracy perspective, there is not much difference between the 
performances after 50 iterations and after default stopping, but simulation studies 
indicate that the parameter values are much closer to the real values when you let EM 
keep running. Although different datasets and parameters converge at different rates, 
our simulations indicate that 50 iterations are sufficient for parameter to converge.  
To sum up, we claim that EM definitely needs to run for more iteration to get the right 
values of the parameters. Overall, the results for all the datasets using both sets of 
initial parameters hold the following statements for the KT model: 

1. Initial values (in large) do not affect the convergence of the parameters. 
2. For different datasets, EM needs different number of iterations to make the para-

meters converging. 
3. The parameters converge at different iteration and do not exhibit extremely sharp 

changes across one iteration after convergence of log likelihood.  
4. Most importantly:  convergence in log likelihood space does not mean the con-

vergence in the parameter space. 

The largest limitation of this work is that we only tested Expected Maximization 
on one particular Bayesian network model – Knowledge Tracing. However, the re-
sults may differ for other models. We intend to test EM on more invariants of the KT 
model like the Student Skill model, to check if the same results hold. For example, if 
the other models also don’t show extremely sharp change after the convergence of the 
log-likelihood? Furthermore, although different initial values didn’t make a difference 
in our experiments, they did affect the time for convergence. Thus we may integrate 
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the work with parameter plausibility such as Dirichlet priors in the future. We also 
wish to understand better rules for when to terminate search, and propose using the 
parameter curve graphs generated by the simulated data to assist searching for the 
parameters for the real dataset, because we believe, how the parameters change over 
time is also a factor in determining their true values. 
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Abstract.  The notion of wheel spinning, students getting stuck in the mastery 
learning cycle of an ITS without mastering the skill, is an emerging issue.  
Although wheel spinning has been analyzed, there has been little work in un-
derstanding what factors underlie it, and whether it occurs in cultural contexts 
outside that of the United States.  This work analyzes data from 116 students in 
an urban setting in the Philippines. We found that Filipino students using the 
Scatterplot Tutor exhibited wheel spinning behaviors.  We explore the impact 
of an intervention, Scooter the Tutor, on wheel spinning behavior and did not 
find that it had any effect.  We also analyzed data from quantitative field obser-
vations, and found that wheel spinning is negatively correlated with flow, posi-
tively correlated with confusion, but not correlated with boredom.  This result 
suggests that the problem of wheel spinning is primarily cognitive in nature, 
.and not related to student motivation.  However, wheel spinning is positively 
correlated with gaming the system, so those constructs seem to be related.   

Keywords:  wheel spinning, affect, quantitative field observations, gaming the 
system. 

There has been a long history of work in on mastery learning with computer-based 
education [1, 2], and this model makes intuitive sense and certainly realizes the max-
im of “practice makes perfect,” particularly as most tutors provide assistance to the 
student in the form of hints or breaking the problem into steps. However, a bit of 
thought reveals some hidden weaknesses in the model.  If a student requires assis-
tance to solve the first two problems, presenting a third with the hope the student will 
learn the skill could very well be a sensible strategy.  If the student has been unable to 
solve twenty practice opportunities, and required considerable help on all of them, it 
is probably rather optimistic to believe that the twenty-first opportunity will enable 
the student to suddenly acquire the skill.  Using data from 116 students in an urban 
setting in the Philippines [9], this paper explores wheel spinning--the phenomenon of 
students being stuck on a particular skill--investigates what other constructs relate to 
it, and discusses possible approaches for remediation. 
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1 Investigating Student Mastery in the Scatterplot Tutor 

The testbed for this study was the Cognitive Tutor unit on scatterplot generation and 
interpretation [3].  Sixty-four of the participants (experimental) were randomly as-
signed to use a version of the tutor with an embodied conversational agent, “Scooter 
the Tutor”.  Scooter was designed to both reduce gaming the system and to help stu-
dents learn the material that they were avoiding by gaming while affecting non-
gaming students as minimally as possible [4]. In order to investigate how students 
mastered content in the Scatterplot Tutor, we made use of the log files recorded dur-
ing the study to analyze student performance. 

How did students spend their time in the Scatterplot Tutor?  We separate students 
into three categories of learners on any given problem.  The first type is those still 
working towards mastery.  The second type is those who have just mastered the skill 
on that problem.  The third type is those learners who have mastered the skill on a 
previous problem.  For purposes of this paper, we use a definition of mastery to be 
defined as three correct responses in a row.  Figure 1 shows how many students were 
engaged in each of these three activities for the first 20 practice opportunities of each 
skill.  The graph goes up to 2610, since there are 24 skills in the Scatterplot Tutor, and 
116 students (some students did not attempt all of the skills).   Therefore, on the first 
practice opportunity, all students are working towards mastering the skill, as none 
could have mastered it yet (since the definition is three correct responses in a  row).  
On the third practice opportunity, a fair proportion of the students master the skill.  By 
the seventh practice opportunity, relatively few students are still working towards 
mastery, and those students are unlikely to master the skill.  The majority of students 
are working on additional practice of the skills, and possibly overpractice [6].  
Whether all of this overpractice is wasted or even preventable [7] is debatable;  
however we were surprised at the low number of students, both in absolute terms and 
as a relative proportion, still working towards mastering the skill by the 9th practice 
opportunity. 

 

 

Fig. 1. Number of students engaged in each type of activity as a function of practice opportunity 
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Do students wheelspin within the scatterplot tutor?  The phenomenon of wheel 
spinning [8] refers to students who fail to master a skill in a computer tutor in a timely 
manner.  If we only consider students who attempt 3 or more problems, and wait until 
the 15th practice opportunity, only 63.2% of students will have mastered the skill.  
Waiting until 20 practice opportunities results in very few additional students master-
ing the skill (63.4%), as relatively few students will attempt to solve that many prob-
lems.  In short, students who master the material in the Scatterplot Tutor tend to do so 
quickly; after 7 practice opportunities 90% of the students who will eventually master 
the skill have already done so.   

These results, combined with Figure 1, which demonstrates that relatively few stu-
dents succeed in mastering a skill relative to the number working on it, suggest that 
Filipino students working in the Scatterplot Tutor are capable of exhibiting wheel 
spinning behavior.  After a student has attempted 10 problems on a skill, if he has not 
yet mastered it, then he has little hope of doing so through additional interaction with 
the ITS.  For consistency with prior research, we also adopt a threshold of 10 prob-
lems for our cutpoint for wheel spinning.  That is, if a student reaches 10 problem 
attempts on a skill without mastery, we define him as exhibiting wheel spinning be-
havior on that skill.   

2 Understanding the Interplay of Scooter the Tutor, Affect, and 
Wheel Spinning 

For interpreting the affect data, in order to obtain scientifically meaningful results, we 
restricted the data in two ways.  First, as mentioned previously, we excluded students 
who solved a small number of problems (<60).  Second, we found that certain affec-
tive states were rarely observed by our coders.   

Given the lack of statistical power, and extreme non-normality of the data, we did 
not examine the affect states of Frustration or Surprise.  That left us with Confusion, 
Flow, Boredom, Neutral, and Delight, as well as our measure of percent time gaming 
the system and percent of skills on which the student wheel spun.  

Both the control and experimental groups worked with the Scatterplot Tutor.  In 
addition, the experimental group received feedback and assistance from Scooter the 
Tutor.  One question is whether Scooter had an impact on the affective states or on the 
amount of wheel spinning.  The impact of Scooter on affective states has been pre-
viously studied [9], and this work replicates the finding of no statistically reliable 
differences as a result of Scooter.  We also measured Scooter’s impact on wheel spin-
ning, and found that in both conditions the mean was 0.37; so there appears to be no 
impact from Scooter.  Given that Scooter also included instruction, it is somewhat 
surprising that the rate of wheel spinning was not affected.   

 
What is the interrelationship between affect and wheel spinning?  To further ex-
plore wheel spinning, we examined how the other constructs we measured correlated 
with it.  As we expected student incoming knowledge to directly affect both wheel 
spinning and affective measures such as confusion and flow, we computed partial 
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correlations, partialing out the student’s pretest score.  Table 1 provides the results of 
the partial correlations.  Wheel spinning is moderately related to flow and confusion, 
both in the expected direction with flow meaning a student is less likely to wheel spin 
and confusion making a student more likely to wheel spin.  There is also a moderately 
strong relationship with gaming the system.  Perhaps most interestingly, boredom was 
not strongly related to wheel spinning, with a partial correlation of 0.145.   

Table 1. Partial correlations vs. wheel spinning 

Construct Partial correlation p-value 
Flow -0.523 1.03 x 10-8 

Confusion 0.476 2.91 x 10-7 
Gaming the system 0.437 3.24 x 10-6 

Boredom 0.145 0.14 
Delight 0.053 0.59 

 
Combined, these results suggest that students are wheel spinning not because of affec-
tive factors where they are not motivated to do the work, but rather, students are ge-
nuinely stuck on the material and need additional instructional support.  To test this 
intuition formally, we modeled the problem in Tetrad, a freely available tool for caus-
al discovery in datasets1.  We restricted our analysis to only consider confusion, bore-
dom, and flow, as these variables were the most related to wheel spinning, and they 
were also the states that had the most observations by the human coders.  In addition, 
we included domain pretest score, wheel spinning, and gaming the system in the 
model.  Figure 2 provides the result of our analysis within Tetrad.  We used the Te-
trad’s PC search algorithm to discover the structure, and its estimator functionality to 
estimate the model coefficients.  We first normalized the data to make the coefficient 
magnitudes comparable.  In addition, we set as background knowledge that the pretest 
score was causally upstream from all of the other variables. 

The interpretation of Figure 2 is that an arrow from one node to another means 
there is a direct relation between the two.  There are several interesting implications 
from Figure 2.  First, Tetrad’s search agrees that wheel spinning is related to cognitive 
factors such as confusion, but not to boredom.  Second, the search suggests that gam-
ing is causally downstream of wheel spinning, and is a function of both affective 
(boredom) and cognitive (confusion) factors.   This analysis of course is limited by 
the statistical power of the dataset, and by the variables entered into the analysis.   
  
 
 
 
 
 
 

Fig. 2. Path model of wheel spinning, gaming, and affective states 

                                                           
1 http://www.phil.cmu.edu/projects/tetrad/ 
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3 Contributions, Future Work, and Conclusions 

This work advances the state of knowledge for the field in several ways.  First, it 
places the phenomenon of wheel spinning in a broader research context.  Prior work 
was restricted to exploring students in the United States [8], while this work estab-
lishes that it occurs in at least one non-Western population.  Futhermore, this work 
examines overpractice and wheel spinning, and finds that there are many more stu-
dents engaged in overpractice than are making progress towards mastery.   

This work also examined factors that could influence the rate of wheel spinning.  
This work replicates and extends prior research linking gaming and wheel spinning 
[8].  The prior research used a custom-built gaming detector that had not been well 
validated [10].  This work uses a well-validated detector of gaming [5] with broadly 
similar results in that wheel spinning and gaming appear to be linked.  In addition, the 
direction of causality between gaming the system and wheel spinning was unclear.  
This work presents evidence that wheel spinning is caused by a deficit in student 
knowledge, which in turn causes gaming the system.  In addition to cognitive factors, 
gaming the system also appears to be caused by affective factors, such as student 
boredom.  These findings are consistent with prior work that found that boredom was 
more likely than chance to lead to gaming the system [11]. 

Third, this work investigated whether a tutorial intervention, Scooter the Tutor, 
could influence the amount of wheel spinning.  Scooter addresses both behavioral 
issues as he is triggered by gaming behavior, as well as cognitive deficits through his 
instructional lessons.  Although wheel spinning is related to cognitive deficits, Scoo-
ter was not found to be an effective intervention in this study.   

There are several interesting next steps to take from this work.  One avenue is to 
find an intervention that is capable of affecting the rate of wheel spinning.  It would 
also be interesting to perform a fuller analysis of how wheel spinning relates to affec-
tive states.  For this study, we were limited by the low rates of frustration and surprise 
in the set of analyses we were able to conduct.  In particular, we suspect frustration 
and wheel spinning are related.   

In summary, this paper investigates wheel spinning.  We have found that wheel 
spinning exists in non-Western populations, and is related to knowledge deficits ra-
ther than student boredom.  As a consequence, wheel spinning is best addressed via 
cognitive, rather than affective, interventions.   
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Abstract. Data mining techniques have been successfully employed on user in-
teraction data in exploratory learning environments. In this paper we investigate 
using data mining techniques for analyzing student behaviors in an especially-
complex exploratory environment, with over one hundred possible actions at 
any given point. Furthermore, the outcomes of these actions depend on their 
context. We propose a multi-layer action-events structure to deal with the com-
plexity of the data and employ clustering and rule mining to examine student 
behaviors in terms of learning performance and effects of different degrees of 
scaffolding. Our findings show that using the proposed multi-layer structure for 
describing action-events enables the clustering algorithm to effectively identify 
the successful and unsuccessful students in terms of learning performance 
across activities in the presence or absence of external scaffolding. We also re-
port and discuss the prominent behavior patterns of each group and investigate 
short term effects of scaffolding. 

Keywords: Educational Data Mining, Clustering, Scaffolding. 

1 Introduction 

A major component of any Intelligent Tutoring System (ITS) is the learner model (see 
[1, 2]). The learner model is in charge of estimating the learners’ proficiency and 
adapting the instruction accordingly. Building a learner model is especially challeng-
ing in exploratory environments and ill-defined domains in which students’ responses 
do not have a well-defined accuracy. These environments and domains include games 
(e.g., Newton’s Playground [3]), simulations (e.g., [4]), open-ended activities (e.g.,  
[5, 6]), and meta-cognitive tutoring (e.g., The Help Tutor [7]), to name a few. The 
challenge of modeling learners becomes even more acute in complex environments, 
where students can engage in a variety of behaviors. One solution in these environ-
ments has been to group similar actions together. For example, in Betty’s Brain [5], 
an environment that supports learning by drawing causal diagrams, all actions that 
involve editing the diagram are labeled as Edit Map. A further complication is intro-
duced in environments which are used as platforms with a large variety of activities.  
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Generating features using different number of layers (e.g., Outcome only, Outcome 
and Family, etc.) would result in different feature-sets which contain different levels 
of detail about the action-events. Using only the outcome layer would generate 18 
features while using all four layers of the action-event structure would result in 678 
features. Interestingly, including only a subset of layers in the cluster analysis did not 
lead to meaningful results. Thus, we have clustered students based on all 4 layers of 
information (and 678 features). This highlights the importance of the semantic infor-
mation that was added to the data in the preparation phase. In order to model the be-
haviors of the students we use the user modeling framework proposed in [10] for 
discovering groups of students who showed similar interaction behaviors as well as 
finding the representative behaviors of each group. Specifically, we look at whether 
the identified clusters can detect differences with regard to students’ learning out-
comes and the given activity (high vs. low scaffolding). The mentioned user modeling 
framework is used for providing support during interaction with an interactive simula-
tion, personalized to each student’s needs [10]. We will only focus on the Behavior 
Discovery phase of the framework in this paper (see [10, 13] for more details on the 
complete framework). 

In Behavior Discovery user interaction data is first pre-processed into feature vec-
tors representing each user. In our case, each vector includes the (i) frequency, (ii) 
mean, and (iii) standard deviation of time before each action-event (thus, 226 action-
events × 3 measures per action-event = 678 features). Then, these vectors are clus-
tered in order to identify users with similar interaction behaviors. The distinctive inte-
raction behaviors in each cluster are identified via association rule mining [14]. This 
process extracts the common behavior patterns in terms of class association rules in 
the form of X  c, where X is a set of feature-value pairs and c is the predicted class 
label for the data points where X applies. A confidence value is assigned to each rule 
calculated as the proportion of cases where X is true and class label is c over all cases 
where X is true. We use the Hotspot algorithm from the Weka data mining toolkit 
[15] for association rule mining. 

In order to associate behaviors to learning performance, it is first necessary to es-
tablish how the user groups generated by clustering relate to learning. If learning per-
formance measures are available, then we can assign a label to each cluster by com-
paring the average learning performance of the users in that cluster with the perfor-
mance of the users in the other clusters. This is the approach we successfully adopted 
in [10] and will be used in this paper (see [16] for an alternative approach and related 
discussion). Introduction of the multi-layer action-events in this work enables us per-
form the clustering at different levels with different degrees of details and find the 
right amount of details that describes the user behaviors effectively. 

5 Results and Discussion 

As described in the previous section, we apply clustering on user interaction data to 
find groups of users in terms of how they interacted with the simulation. Similar to 
[10], we are interested to see if the discovered clusters of users correspond to different 
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levels of learning performance. However, unlike [10], employing user actions alone 
(i.e., either the action layer or the combination of action and component layers in the 
action-events structure) did not lead to meaningful results. We attribute this to the 
complexity of the interactions in the simulation under study here compared to the one 
used in [10]. Thus, we use the full 4-layer action-events structure in our analyses. 

In addition to learning performance, we are interested in finding any difference in 
distribution of the students in the HS vs. LS conditions between the discovered clus-
ters. Due to performing two simultaneous comparisons on the data, α for the tests 
(described below) is adjusted to 0.025 using Bonferroni correction. Furthermore, we 
will discuss the association rules describing the behaviors of users in each cluster. Our 
analysis first focuses on Activity 1 (A1) and Activity 2 (A2) individually and then we 
compare the results between the two activities. 

For each activity, the optimal number of clusters is the  lowest  number suggested  
by  C-index,  Calinski  and  Harabasz [17], and  Silhouettes [18] measures  of 
clustering validity. The summary statistics of the clusters discovered for A1 and A2 
are presented in Table 1 (from left the columns describe: the activity, optimal number 
of clusters, cluster labels (HL and LL are described later), and for each cluster: num-
ber of students, average of the standardized pre-test and post-test scores, and number 
of students from the HS and LS conditions). When performing clustering we faced 
cases in which the final clusters had only one member (singletons), therefore we had 
to remove the outlier user forming the singleton and repeat the clustering. This 
process reduced the number of students to 86 for A1 and 94 for A2.  

Table 1. Summary statistics of the clusters for each activity 

Activity 
Number 

of  
clusters 

Cluster 
Label 

Overall Num-
ber  of stu-

dents 

Average Pre-test
Performance 

(SD)  

Average Post-
test Performance 

(SD) 

Number of 
HS students 

Number of 
LS students 

A1 4 

1 3 -0.9 (.1) -1.2 (.3) 1 2 
2 3 0.7 (1.1) 1.2 (.4) 0 3 

3  (LL1) 22 0.2 (.9) -0.5 (1.1) 2 20 
4 (HL1) 58 0.0 (1.1) 0.2 (.9) 42 16 

A2 3 
1 (LL2) 21 -0.2 (.9) -0.5 (.8) 11 10 

2  (HL2) 65 0.0 (1.0) 0.2 (1.0) 36 29 
3 8 0.2 (1.2) -0.3 (1.2) 1 7 

 
In order to compare the learning performance of the students in each cluster we use 

the standardized post-test scores of the students while using pre-test scores as a cova-
riate in our analysis (using ANCOVA). For the post-hoc analysis, the p values are 
again adjusted using Bonferroni correction. We apply χ2 tests in order to see whether 
the distribution of students in the LS and HS conditions for the discovered clusters is 
different from the even distribution of the two conditions in the whole sample.  

5.1 Analyzing Behaviors in Activity 1 

There is a significant difference in post-test performance of the students in the four 
clusters (p = .001) with a large effect size (η2 = 0.181) after controlling for the pre-test 
performance. Since the first two discovered clusters are very small (n = 3), we exclude 
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them from post-hoc analysis. For clusters 3 and 4 there is a significant difference in 
learning performance of students (p = 0.006). The students in cluster 4 are doing more 
than half a standard deviation better in post-test (estimated mean difference is 0.718) 
while there is no significant difference in pre-test scores. We will refer to the cluster 3 
as Lower Learning (LL1) and cluster 4 as Higher Learning (HL1). 

A χ2 test on distribution of students from the LS and HS conditions shows a signif-
icant difference with the expected distribution for the four clusters discovered for A1 
(p < .001). The same test performed only on the LL1 and HL1 clusters also provides 
similar results (p < .001). The majority (over 90 percent) of LL1 students are from the 
LS condition. While HL1 cluster is somewhat more balanced in terms of HS to LS 
ratio, it comprises over 90 percent of all students in the HS condition. The concentra-
tion of the students from the HS condition in a single cluster shows that the scaffold-
ing provided to them encouraged them to behave similarly. 

The output of association rule mining process for the LL1 and HL1 clusters of A1 is 
shown in Table 2. Rules that applied to at least 50 percent of the members of the clus-
ter and achieved a confidence level over 0.6 were selected. Each part of the associa-
tion rules is in form of a feature and a corresponding value assigned to it, for example 
“None.Build.join.resistor_f = Low” indicates that the (f)requency of using the resistor 
component when building the circuit was low. 

Table 2. Selected Rules for A1 (confidence values in brackets) 

A1 Cluster 3 (LL 1) 4 rules overall:   

1. Reading_updated.Test.endMeasure.nonContactAmmeter_f = Low [0.625] 

2. Reading_updated.Test.endMeasure.nonContactAmmeter_f = Low AND 

  None.Build.join.seriesAmmeter_m = High [1.0] 

3. Reading_updated.Test.endMeasure.nonContactAmmeter_f = Low AND 

  None.Revise.remove.lightBulb_m = Medium [1.0] 

A1 Cluster 4 (HL 1) 6 rules overall: 

1. Reading_updated.Test.endMeasure.nonContactAmmeter_f = High [0.919] 

2. Reading_updated.Test.endMeasure.nonContactAmmeter_f = High AND    

  None.Build.join.resistor_f = Low [0.971] 

3. Deliberate_measure.Test.startMeasure.nonContactAmmeter_f = High [0.856] 

Rules 1-3 for the LL1 cluster (Table 2) show that LL1 students did not use one of 
the main measurement devices, the nonContactAmmeter, frequently enough. Rules 2 
and 3 include additional conditions which are hard to interpret at this point. The HL1 
cluster includes mainly students in the HS condition. Thus, it is of no surprise that all 
selected rules include a frequent use of the nonContactAmmeter, which was required 
in order to fill out the tables successfully. Rule 2 also describes infrequent addition of 
a resistor. This behavior makes sense, as A1 focuses on light bulbs, and not resistors. 

5.2 Analyzing Behaviors in A2 

Similar to A1, there is a significant difference in post-test performance of the students in 
the three clusters discovered for A2 (p = .011) with a medium effect size (η2 = 0.096) 
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after controlling for the pretest performance. The post-hoc analysis for A2 shows a  
significant difference in learning performance between clusters 1 and 2 (estimated  
mean difference in post-test is 0.646). Cluster 3 was excluded due to its small size  
(n =8). Similar to A1, there is no significant difference in pre-test scores between clus-
ters 1 and 2. We will refer to the cluster 1 as Lower Learning (LL2) and cluster 2  
as Higher Learning (HL2). Unlike A1, the χ2 test for A2 does not show a significant 
difference in distribution of students to clusters by conditions. This means that the clus-
ter analysis was not able to identify any differences among students who received dif-
ferent levels of scaffolding prior to the task (unlike A1, all students received the same 
scaffolding in A2). 

Table 3. Selected Rules for A2 (confidence values in brackets) 

A2 Cluster 1 (LL2) 13 rules overall:   

1. None.Build.join.lightBulb_m = Average [0.923] 

2. Current_change.Revise.join.wire_f = Low AND  None.Pause_f = Low AND 

  Current_change.Revise.join.resistor_m = Low [0.778]   

3. Current_change.Revise.join.wire_f = Low AND  None.Pause_f = Low AND 

  None.Test.endMeasure.nonContactAmmeter_f = Low [0.75] 

A2 Cluster 2 (HL2) 3 rules overall:   

1. Current_change.Revise.join.wire_f = High [0.957] 

2. None.Build.join.lightBulb_m = Low [0.853] 

3. None.Build.join.lightBulb_m = Low AND Current_change.Revise.join.wire_f = High [0.978] 

 
The selected rules extracted from LL2 and HL2 clusters are shown in Table 3 (with 

the same selection criteria used for A1). The second rule for LL2 talks about students 
who do not revise circuits by adding wires, do not pause to study their outcomes, and 
last, when joining resistors to existing circuits, they do so rapidly. These three condi-
tions suggest that students in the LL2 cluster, test relatively simple circuits (without 
adding wires and loops to existing circuits), and do so hastily – without taking suffi-
cient time to reflect. Rule 3 shared many of these characteristics. Students join few 
loops to working circuits, take only few pauses, and use one of the instrument devic-
es, the nonContactAmmeter, only rarely. Put together, rules 2 and 3 of the LL2 cluster 
match current theories of learning. To learn, students should take time to reflect, 
compare similar circuits, and measure the outcomes of their methods. Students in this 
cluster only rarely engaged in these behaviors. Notably, the rules talk about specific 
aspects of extending circuits and using measurement instruments (e.g., nonContac-
tAmmeter is included, but not Voltmeter). Additional data is required to understand 
these characteristics of the rules.  

The rules for the HL2 cluster are at sharp contrast with the LL2 cluster. As the first 
rule shows, these students often extended working circuits by adding loops. The last 
two rules talk about students who take little time before adding light bulbs. These 
rules are somewhat surprising, as the activity was about resistors and not about light 
bulbs. Additional data is required before these rules can be interpreted.  
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5.3 Comparing A1 and A2 

Comparing the discovered rules for A1 and A2 helps us to understand the behaviors 
that are specific to an activity vs. the ones that transfer across all activities and levels 
of scaffolding. Additionally, such comparison can highlight the advantages and limi-
tations of using clustering to identify learners in a complex simulation.  

Overall, the rules for the four clusters show one clear trend that repeats across ac-
tivities and levels of scaffolding: A frequent use of the measurement devices, and 
especially the nonContactAmmeter, is associated with higher learning. The converse 
is true, too – an infrequent use of the instrument is associated with low learning.  

While the trend can be seen in three of the four clusters, it is notable that the rules 
themselves are dissimilar. It may be that our search space included too many similar 
features, so that alternative features that hold similar meanings appeared in different 
rule sets. An alternative explanation is that the behaviors as captured by user actions 
is dependent on the task, which means although users with similar learning perfor-
mance tend to show similar behaviors, these behaviors vary from task to task. In this 
case, transferability of cluster-based user models in simulation environments may be 
limited. We plan to collect additional data from other simulations to evaluate the 
transferability of the identified behaviors. A statistical analysis of effects of changes 
in scaffolding levels between A1 and A2 is presented in [19]. 

6 Conclusions  

We clustered students who worked with two activities and two levels of scaffolding in 
an open-ended simulation. Our results show that the clusters gave us meaningful in-
formation about learning, but only when the raw data was augmented with semantic, 
contextual data.  

Analysis of the clusters also revealed several interesting patterns in the data. All 
students who received high scaffolding were clustered in the same group, suggesting 
that the scaffolding directed them to a certain behavioral style. Notably, students who 
received low levels of scaffolding were distributed across four clusters. 

In addition, one main behavior was associated with better learning across activities: 
the frequent use of measurement devices. At the same time, while the interpretation of 
the rules may be similar, the actual rules are different, and thus their transferability 
across activities should be further studied. For example, it is not yet clear why only 
certain aspects of testing appear in the clusters, and not others. Furthermore, some 
rules remain hard to interpret. It may be that shrinking the feature list without losing 
semantic information may lead to more consistent rules across activities. 
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Abstract. Effects such as student dropout and the non-normal distribu-
tion of duration data confound the exploration of tutor efficiency, time-in-
tutor vs. tutor performance, in intelligent tutors. We use an accelerated
failure time (AFT) model to analyze the effects of using automatically
generated hints in Deep Thought, a propositional logic tutor. AFT is a
branch of survival analysis, a statistical technique designed for measur-
ing time-to-event data and account for participant attrition. We found
that students provided with automatically generated hints were able to
complete the tutor in about half the time taken by students who were
not provided hints. We compare the results of survival analysis with a
standard between-groups mean comparison and show how failing to take
student dropout into account could lead to incorrect conclusions. We
demonstrate that survival analysis is applicable to duration data col-
lected from intelligent tutors and is particularly useful when a study
experiences participant attrition.

Keywords: ITS, EDM, Survival Analysis, Efficiency, Duration Data.

1 Introduction

Intelligent tutoring systems have sizable effects on student learning efficiency —
spending less time to achieve equal or better performance. In a classic example,
students who used the LISP tutor spent 30% less time and performed 43%
better on posttests when compared to a self-study condition [2]. While this
result is quite famous, few papers have focused on differences between tutor
interventions in terms of the total time needed by students to complete the tutor.
In many studies of intelligent tutoring systems, time is simply held constant for
two groups, and efficiency then boils down to comparing the number of problems
each group could solve in the given time and the results of posttest measures.
However, it is not clear how to factor students who were not able to complete
the tutor into this analysis. In this work, we explore tutor efficiency in terms
of time and performance, while taking student dropout (ceasing to interact with
the tutor before completion) into account.

College students often use computer-based tools to complete homework as-
signments, but no specific time limits apply. Typical time duration distributions

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 178–187, 2014.
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violate the normality assumptions of many statistical tests and measures of cen-
tral tendency. Anderson, Corbett, Koedinger, and Pelletier used mean duration
data to compare differences between groups of students with and without in-
telligent feedback in the LISP tutor [1]. The authors state that the mean times
(for the control group) are underestimates, as many students in the control (no-
feedback group) did not complete all assignments. In other words, if the control
group persisted, the time they took to complete tasks would have been longer
than the observed durations for the few high-performing students who were able
to persist without feedback. This study illustrates how dropout can obscure the
true impact of an intervention.

Our exploration of tutor efficiency has three important elements: performance
(tutor completion percentage), duration (total time spent interacting with the
tutor), and dropout (whether stopped before completion). Dropout can easily
confound the results of duration and performance. Different dropout rates be-
tween experimental groups can cause attrition bias [10], where groups completing
the study are self-selected due to achievement levels; this self-selection causes the
sample to become different than the target population and hampers the study’s
generalizability [8]. When dropout exists, more complex analyses are needed to
study learning efficiency; not only are results suspect for generalization pur-
poses, but the data itself contains missing values because of high dropout rates.
By modeling tutor data with high dropout rates using survival analysis, we hy-
pothesize that we can build a more detailed understanding of tutor efficiency
and explain differences between groups in an educational intervention.

In this study, we investigate data from a prior study of the Deep Thought
logic tutor comparing versions with and without hints. Stamper et al. found
that the odds of a student in the control group dropping out of the tutor after
the first six problems were over 3.6 times higher when compared to the group
provided with (data-driven and automatically generated) hints [12]. Students
given access to hints also had better tutor performance, as well as higher overall
course scores. However, comparison of duration means showed no differences in
overall time spent in the Deep Thought logic tutor between the hint and control
groups. This is likely because this comparison does not take into account student
dropout. In this study, we applied survival analysis to data from Stamper et al.’s
study to more fully explore the impact of hints on performance, duration, and
dropout. We hypothesize that students given access to hints in the Deep Thought
logic tutor, spend less time in tutor while also performing better than students
without hints. In other words, the tutor efficiency for Deep Thought with hints
is higher than that for they system without hints. We found that students given
automatically generated hints take 55% of the time that students in the control
needed to complete the tutor.

1.1 Methods and Materials

We perform our experiments on the Spring and Fall 2009 Deep Thought proposi-
tional logic tutor [6] dataset as analyzedbyStamper,Eagle, andBarnes in 2011[13].
Data was collected from six deductive logic courses, taught by three professors.
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Fig. 1. QQ-Plots for the log-normal and Weibull distributions, the primary difference
appears to be that the Log-normal is sensitive to very small durations, while the Weibull
distribution is sensitve to very large durations

Each instructor taughtone class usingDeepThoughtwithautomatically-generated
hints available (hint group) and onewithout any additional feedback (control).The
dataset includes 105 students in the Hint group and 98 students in the Control
group. In Deep Thought, students choose the amount of time they spend using the
online tutor; however, they were graded on the completion of 13 specific proofs.

The variables we use for this study are:

Group a two level factor (Hint, Control) depicting the student’s experimental
condition

ProblemDuration the sum of the time taken over all steps in a problem until
1st completed (max 3min per step)

Duration the sum of problem durations over all 13 problems

Performance a number between 0–13 representing the number of proofs solved
by the student

Dropout a boolean (True, False) defined as true for students who stop engaging
with the tutor without completing the assignment (Performance �= 13)

Duration data often falls into a set of known distributions [3] [9]. Q-Q plots
(figure 1) and histogram/density plots (figure 2) allowed us to narrow the pos-
sible distributions down to log-normal[5] or Weibull[16]. The primary difference
appears to be that the log-normal does not fit well to early dropout (small du-
rations), while Weibull does not fit as well for extremely long durations.
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Fig. 2. Histogram with density plots for the Weibull and log-normal distributions. Both
seem to fit reasonably well.

1.2 Survival Analysis

Survival analysis is a series of statistical techniques that deal with the modeling
of “time to event” data [7]. Survival analysis, also known as reliability analysis
or duration analysis in economics, is named for its start as a method to measure
survival after applying a medical intervention.

Survival analysis includes techniques for unknown values, non-parametric
data, log-normal and Weibull probability distributions, and between-groups test-
ing. We use the survival package for R [15] to perform our analysis of learning
efficiency, where the event for survival analysis is tutor completion.

“Censoring” allows for modeling duration with unknown values. Right cen-
soring occurs when participant data is lost before tutor completion, while left
censoring would be when completion time is known but start time is not. For
our data, the duration for students who drop out, or stop using the tutor is
right censored, since we know the start time but do not know how long it would
have taken the student to complete the tutor. For example, a student who has
completed 5 problems but then quits is considered right censored as we do not
know how long it would have taken the student to complete all 13 problems.

The survival function is defined as:

S(t) = Pr(E > t) = 1− F (t) (1)

where t is the time in question, E is the time of the event (tutor completion),
Pr is probability, F(t) is the duration distribution. This function gives the prob-
ability that the time of the tutor completion event, E, is later than t. That is,
the probability that the student has not completed the tutor.
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The duration distribution function, which is found via the cumulative distri-
bution function cdf(t), is the probability of observing a problem completion time
E less than or equal to some time

F (t) = Pr(E ≤ t) = 1− S(t) = cdf(t) (2)

The derivative of F(t) is the probability density function (pdf) of the duration
distribution,

f(t)Pr(E = t) = F ′(t) =
d

dt
F (t) = pdf(t), (3)

which provides us with the probability of observing a single tutor completion
time E at some time t. The hazard function, which tells us the instantaneous
completion rate at time t, is:

λ(t) = lim
dt→0

Pr(t ≤ E < t+ dt|E ≥ t)

dt
=

f(t)

S(t)
=

pdf(t)

1− cdf(t)
. (4)

This is the probability of the event occurring at time t given that the event has
not yet occurred.

There are two models we consider for measuring effects of covariates: the ac-
celerated failure time (AFT) model and the Cox proportional hazards model.
AFT assumes that the effect results in one group that completes the tutor more
quickly, while the Cox proportional hazards model assumes that the tutor com-
pletion rate for one group is a constant multiple of that for the other. We have
chosen the AFT model, which assumes that the effect of the covariates, θ, is to
accelerate the time to tutor completion by some constant factor [14].

S(t|θ) = S(θt) (5)

The AFT model assumptions fit with our hypothesis that hints shorten the time
it takes to finish the tutor. In addition, it is easy to interpret θ as a direct modifier
to tutor completion time, and AFT facilitates using data from log-normal and
Weibull distributions.

2 Results

To explore the differences between the hint and control groups we submitted
the data to an AFT model as both a log-normal and Weibull distributions. The
log-likelihood scores were -336.6 and -341.2 respectively. We chose to use the
log-normal distribution, however both models fit similarly well and had simi-
lar results. Investigation showed the log-normal fit less well for early dropout
students, while Weibull fit less well for students with extremely long durations.
The probability distribution function (pdf) and cumulative distribution function
(cdf) for the log-normal distribution are:

pdf(t) =
1√
2πσt

e−
[ln(t)−μ]2

2σ2 , cdf(t) = Φ(
ln t− μ√

2σ2
). (6)
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where Φ(x) is the cumulative distribution function (cdf) of the standard normal
distribution. Note that we use ln(t) when using Φ, we can do this thanks to the
assumption that the log of the duration data shows a normal distribution.

The AFT model was statistically significant χ2= 9.21 on 1 degree of freedom,
p = 0.0024, n = 202, the coefficients of the model had the intercept (mean) as
5.655, the effect of Hint θ as −.599, and the SD (scale) as 0.948. The effect of
hints is e−.599 = 0.55; this means that it takes the Hint group 55% of the time
it takes the control group to solve all 13 tutor problems. We have plotted the
inverse of the survival curve in figure 4.

Figure 3 shows the hazard function for the duration data, in other words,
the instantaneous completion rate for each of the groups. It also shows the
probability density function for the completion rate. Overall, these plots give us a
good overview of the shape of the duration data, showing that the probable total
duration for students in the control group, if they were to complete the tutor,
would be much longer than that for students in the hint group. One concrete
measure of this is illustrated by the median of the survival function, the location
where 50% of people have completed the tutor. The median is found by eμ,
which is e5.65 = 284.29 for the control group and e5.65−.599 = 156.18 for the hint
group. Comparing these medians illustrates again the considerable difference in
duration, or time to tutor completion, between the groups.

We measure the difference between groups with a Student’s t test to explore
possible differences in performance between the two groups. We have no reason
to believe that the total tutor scores are not normally distributed. We find that
the total performance in tutor between the hint group (M = 9.26, SD = 4.26)
and the control group (M = 6.78, SD = 4.62) was significant, t(200) = 3.98, p <
.001, 95CI = (1.25, 3.71), with the Hint group solving between 1.25 and 3.71
more problems than the control group. To illustrate these differences at different
points in time, we have added points to the survival curve in figure 4 indicating
the mean performance score for students who left the tutor (by completing or
dropping out) within the 20%, 40%, 60%, and 80% quantiles of the maximum
duration. This lets us compare relative performance in the tutor between the two
groups. Both groups have similar scores at about the 30 minute mark, but the
hint group experiences a large increase in performance by the 60 minute mark.
After this, the rate of growth in score decreases, this is likely because students
that take an exceptionally long time are less skilled.

To illustrate the impact of dropout, we compare the results of survival analysis
to a more traditional between-groups testing method. To explore differences in
overall time in tutor between the two groups, we subjected the total elapsed time
on all 13 problems to a 2-tailed Student’s t-test. The total time in tutor between
the hint group (M = 86.05, SD = 69.80) and the control group (M = 122.95,
SD = 122.94) was not significant, t(200) = −1.34, p = 0.183.

However, since we know the data isn’t from a normal distribution, we can
improve on this accuracy by using a data transformation. To normalize the
data, we use a logarithmic transformation (common log, base 10) to make the
data more symmetric and homoscedastic. We subjected the log-transformed data
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Fig. 3. The probability density functions, represented by the dashed lines, provide the
probability of observing tutor completion at a specific time. The hazard functions,
the solid lines, are the probability of observing tutor completion at a specific time,
given that it has not occurred yet. The probability of completion grows rapidly before
becoming stable and eventually decreasing.

to a 2-tailed Student t-test. The difference in the logs of duration between the
hint group (M = 8.20, SD = 1.02) and the control group (M = 8.17, SD =
1.21) was not significant, t(200) = .168, p = 0.867. The ratio of the duration
between groups is calculated by taking the difference between the means of the
groups, since lg(x) − lg(y) = lg(xy ). The confidence interval from the log-data
estimates the difference between the population means of log transformed data.
Therefore, the anti-logarithms of the confidence interval provide the confidence
interval for the ratio. The anti-log of the log-transformed means provides us with
the geometric mean, the anti-log of the transformed standard deviation is not
interpretable. However, we can use the anti-log of the confidence intervals. The
most useful statistic we can derive is the difference ratio, and its corresponding
confidence intervals. A difference ratio of 0.026 between the means of the logged
data equates to 10.026 = 1.06 with a 95% confidence interval of CI (0.52, 2.19).

3 Discussion

The results of the survival analysis allow us to reveal striking differences between
the hint and control groups in terms of the time needed to complete the tutor.
Students in the hint group complete the tutor in less than half the time needed
for students in the control group. It is interesting that the control group and
the hint group do not have observed differences in overall tutor time; in other
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Fig. 4. The percent of students who have completed the tutor over time. We have
added points with the mean tutor score (max of 13) to each curve at the 20%, 40%,
60%, and 80% quantiles of total duration.

words - students in the control group don’t generally complete the tutor, so we
can’t observe that they would take twice as long. It is likely that, given the
nature of the online access tutor, students are only willing to spend a certain
amount of time on this homework assignment. This can explain the observations
of differences in tutor progress observed at different times in figure 4.

Using survival analysis, we have estimated that the median duration (tutor
completion time) is 284 minutes for the control group and 156 minutes for the
hint group. Dividing this by the number of problems in the tutor (13) gives us an
estimate of efficiency, since it gives a time per problem needed for solution. The
control group is therefore spending about 21 minutes per problem on average,
while the hint group is spending an average of 12 minutes per problem. Although
this estimate is derived using curves to estimate the (unknown) completion time
for the control group, it does in fact fit with the observed data in the first several
problems, before significant dropout in the control group occurred. Given these
very different rates, we can see that the control group could be discouraged by
solving less than 3 problems in an hour, while the hint group could solve 5 in the
same amount of time. We were in fact surprised, after realizing these estimates,
that students in the control group did not drop out sooner than they did!

This back-of-the-napkin estimate of efficiency is one objective measure that
suggests reasons for differences in student behavior (e.g. choice to persist or not).
Perception may also play a role in explaining why students in the control group
drop out. One possible reason is that the students perceive that the time they
are spending is not “worth it.” Breen et al. [4] defined the efficiency of a tutor,
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for how the student perceives it, as the “belief or judgement that information can
be accessed without wasting time or effort.” Scanlon and Issroff [11] posit that
computer-based instruction can conflict with the student’s perceptions of division
of labour within learning context. In other words, students using computer-
based instruction must be more self-directed and manage their own learning.
The feedback provided by the tutor with hints might have helped students in
the hint group feel more directed, while also helping them when they were stuck.
This could have led to improved student perceptions of efficiency.

Without survival analysis, we would not be able to use observed duration
to make any conclusions regarding potential differences between the hint and
control groups. Using survival analysis, we can estimate the differences between
groups by accounting for unknown values - the total time it would have taken
students who dropped out (in both groups) to complete the tutor. Survival
analysis has also enabled us to answer questions like “How much time is needed
so that 50% of the students can complete the tutor”. Using the survival function
S(t) = .5, we can estimate that the control group needs about 4.76 hours before
50% of students are done, while the hint group needs just 2.61 hours for half the
group to complete the tutor. The survival function can be used to decide how
much time needs to be allocated in schools for students to use a tutor. We are
considering using these estimates to proactively indicate to students when they
might need to seek outside help. For example, if a student has taken more than
the estimated time for half of students in their group to complete the tutor, we
could suggest they speak to a teaching assistant.

4 Conclusions and Future Work

As more learning systems become used outside of traditional classrooms it is
imperative that educational data mining researchers leverage methods such as
survival analysis that can handle non-normal data with high dropout rates. In
this paper, we have used survival analysis to re-analyze the data from six 2009
logic courses using the Deep Thought logic tutor both with and without hints.
The original paper showed that students without hints were over 3.6 times more
likely to drop after the first six problems when compared to students offered
hints. However, standard analyses were insufficient to show the impact of hints
on the time needed to complete the tutor between the two groups. Using sur-
vival analysis, we have been able to estimate the total duration for both hint and
control groups while taking into account dropout data, showing that students
in the hint group take 55% of the time to complete the tutor than students in
the control group. Using these estimates, we were able to explain approximate
time per problem in the tutor for each group. This analysis sheds light on the
probable reasons for dropout in the control group. Without these analyses, we
might have concluded that students in the control group gave up sooner or were
not persistent. However, in reality we see that these students are in fact persis-
tent and spend a considerable amount of time in the tutor - equal to the amount
of time spent in the tutor by the hint group. The difference is tutor efficiency:
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students in the hint group performed more efficiently, and were therefore able to
complete the tutor, while the control group spent a similar amount of time but
was less likely to be able to finish. This is a much richer understanding of the
differences in effects between the two groups than traditional methods provide.
The survival function also allows us to make predictions on how much time is
needed for tutor completion, both for teacher planning and student feedback.
These results suggest that survival analysis is a powerful toolbox for investi-
gating the impact of interventions on learning efficiency while accounting for
performance, duration, and dropout.
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Abstract. Modeling and predicting student knowledge is a fundamen-
tal task of an intelligent tutoring system. A popular approach for student
modeling is Bayesian Knowledge Tracing (BKT). BKT models, however,
lack the ability to describe the hierarchy and relationships between the
different skills of a learning domain. In this work, we therefore aim at
increasing the representational power of the student model by employing
dynamic Bayesian networks that are able to represent such skill topolo-
gies. To ensure model interpretability, we constrain the parameter space.
We evaluate the performance of our models on five large-scale data sets
of different learning domains such as mathematics, spelling learning and
physics, and demonstrate that our approach outperforms BKT in pre-
diction accuracy on unseen data across all learning domains.

Keywords: Bayesian networks, parameter learning, constrained opti-
mization, prediction, Knowledge Tracing.

1 Introduction

Intelligent tutoring systems (ITS) are successfully employed in different fields of
education. A key feature of these systems is the adaptation of the learning con-
tent and the difficulty level to the individual student. The selection of problems
is based on the estimation and prediction of the student’s knowledge by the stu-
dent model. Therefore, modeling and predicting student knowledge accurately
is a fundamental task of an intelligent tutoring system.

Current tutoring systems use different approaches to assess and predict stu-
dent performance. Two of the most popular approaches for estimating student
knowledge are performance factors analysis [20] and Bayesian Knowledge Trac-
ing (BKT) as presented by Corbett and Anderson [4].

As the prediction accuracy of a probabilistic model is dependent on its pa-
rameters, an important task when using BKT is parameter learning. Recently,
the prediction accuracy of BKT models has been improved using clustering ap-
proaches [19] or individualization techniques, such as learning student- and skill-
specific parameters [18,24,25] or modeling the parameters per school class [23].

Exhibiting a tree structure, BKT allows for efficient parameter learning and
accurate inference. However, tree-like models lack the ability to represent the
hierarchy and relationships between the different skills of a learning domain.

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 188–198, 2014.
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Employing dynamic Bayesian network models (DBN) has the potential to in-
crease the representational power of the student model and hence further im-
prove prediction accuracy. In ITS, DBNs have been used to model and predict
students’ performance [3,17] engagement states [2,9] and goals [3]. DBNs are also
employed in user modelling [8]. In cognitive sciences, DBNs are applied to model
human learning [5] and understanding [1]. Despite their beneficial properties to
represent knowledge, DBNs have received less attention in student modeling as
they impose challenges for learning and inference.

Recently, [12] showed that a constrained latent structured prediction approach
to parameter learning yields accurate and interpretable models. Based on these
findings, this paper proposes the use of DBNs to model skill hierarchies within
a learning domain. Similar to [12], we use a log-linear formulation and apply
a constrained optimization to identify the parameters of the DBN. We define
domain-specific DBN models for five large-scale data sets from different learning
domains, containing up to 7000 students. Students’ age ranges from elementary
school to university level. Our results show that even simple skill hierarchies lead
to significant improvements in prediction accuracy of up to 10% over BKT across
all learning domains. By using the same constraints and parameterizations for
all experiments, we also demonstrate that basic assumptions about learning hold
across different learning domains and thus our approach is easy to use.

2 Methods

Subsequently, we first give an overview of the BKT model before discussing more
complex graphical models that are able to represent skill topologies.

2.1 Bayesian Knowledge Tracing

BKT models are a special case of DBNs [21] or more specifically of Hidden
Markov Models (HMM), consisting of observed and latent variables. Latent vari-
ables represent student knowledge about one specific skill and are assumed to
be binary, i.e., a skill can either be mastered by the student or not. They are
updated based on the correctness of students’ answers to questions that test the
skill under investigation, hence observations are also binary.

There are two types of parameters in an HMM: transition probabilities and
emission probabilities. In BKT, the emission probabilities are defined by the slip
probability pS of making a mistake when applying a known skill and the guess
probability pG of correctly applying an unknown skill. The transition probabili-
ties are described by the probability pL of a skill transitioning from unknown to
known state, while pF is the probability of forgetting a previously known skill.
In BKT, pF is assumed to equal zero. The last parameter required to describe
the BKT model is the initial probability p0 of knowing a skill a-priori.

Employing one BKT model per skill, the learning task amounts to estimating
the parameters given some observations: given a sequence of observations ym =
(ym,1, ..., ym,T ) with ym,t ∈ {0, 1} and time t ∈ {1, . . . , T } for the m-th student
with m ∈ {1, . . . ,M}, what are the parameters θ = {p0, pL, pF , pS , pG} that
maximize the likelihood

∏
m p(ym | θ) of the available data.
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Fig. 1. Structure of the graphical model for a DBN with T time steps. Circular nodes
represent skills, while the rectangles are the tasks associated with those skills.

2.2 Dynamic Bayesian Networks

When employing DBNs, we consider the different skills of a learning domain
jointly within a single model. Student knowledge is again represented using bi-
nary latent variables (one per skill), which are updated based on observations
associated with the skill under investigation. However, we now also model the
dependencies between the different skills, e.g., two skills SA and SB are condi-
tionally dependent if SA is a prerequisite for mastering SB.

Probabilistic Notation. The learning task of a DBN model is described as
follows: let the set of N variables of the model be denoted by X = {Xi | i ∈
{1, . . . , N}}. In addition, let H denote the domain of the unobserved variables,
i.e., missing student answers and the binary skill variables, while Y refers to the
observed space, disjoint from the latent space H. During learning, we are inter-
ested in finding the parameters θ that maximize the likelihood of the observed
data

⋃
m ym with ym = (ym,1, ..., ym,T ) representing a sequence of T binary

answers from the m-th student. The log-likelihood of a DBN [6] is then given by

L(θ) =
∑

m

ln

(
∑

hm

p(ym | hm, θ)

)

, (1)

where we marginalize over the states of the latent variables hm for student m.
The joint probability p(ym | hm, θ) of the model for student m is defined as

p(ym |hm, θ) =
∏

i

p(Xm,i =xm,i |pa(Xm,i) =xm,pa(Xm,i)) =
∏

i

pijm,ikm,i
, (2)

where pa(Xm,i) are the parents of Xm,i, while xm,i and xm,pa(Xm,i) are the re-
alizations of the random variables Xm,i and pa(Xm,i), i.e., the states assigned
to Xm,i and pa(Xm,i) given by (ym,hm). Furthermore, we let ji,m := xm,i and
km,i := xm,pa(Xm,i) to simplify the notation. Therefore, pijm,ikm,i

denotes ex-
actly one entry in the conditional probability table (CPT) of Xm,i.

Log-Linear Models. The log-likelihood of a DBN can alternatively be formu-
lated using a log-linear model. This formulation is flexible and predominantly
used in recent literature [16,22]. Therefore, we reformulate the learning task in
the following. Let φ : Y ×H → R

F denote a mapping from the latent space H
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and the observed space Y to an F -dimensional feature vector. The log likelihood
from Eq. (1) can then be reformulated to

L(w) =
∑

m

ln

(
∑

hm

exp
(
w�φ(ym,hm)− ln(Z)

)
)

, (3)

where Z is a normalizing constant and w denotes the weights of the model. Next,
we show that this log-linear formulation of the log-likelihood is equivalent to the
traditional notation. Comparing Eq. (3) to Eq. (1), it follows that

∏

i

pijm,ikm,i
=

1

Z
expw�φ(ym,hm) =

1

Z
exp

∑

i

w�
i φi(ym,hm), (4)

and therefore

∀i, j,k : pijk =
1

Z
expw�

i φi(x), (5)

where x are the realizations of all random variables in X with j ∈ x and k ⊂
x. A feature vector φ and weights w that fulfill Eq. (5) can be specified as
follows: consider the CPT describing the relationship between a node XA and
its n− 1 parent nodes pa(XA). The CPT for these n nodes contains 2n entries.
Let k ∈ {0, 1}n−1 denote one possible assignment of states to the parent nodes
pa(XA). We can therefore define p(XA = 1 | pa(XA) = k) = 1 − p(XA = 0 |
pa(XA) = k) = 1 − pA,0,k. To continue, let pA,xA,k = 1

Z expwA,k(1 − 2xA) =
expwA,k(1−2xA)/(expwA,k+exp(−wA,k)), which leads to the feature function
φA(x) = 1− 2xA. We therefore obtain the joint distribution as a product of the
exponential terms which translates to a weighted linear combination of feature
vector entries in the exponent and thus fulfills Eq. (5). From this formulation
also follows that we need 2n−1 parameters to specify a CPT including n skills.

Optimization. In contrast to HMMs, the learning task for DBNs is not com-
putationally tractable. However, [22] showed that a convex approximation ad-
mits efficient parameter learning. Note that interpretability of the parameters
is not ensured, since guarantees exist only for converging to a local optimum.
Recently, [12] extended the approach presented by [22] to include constraints on
parameters and demonstrated that the constrained optimization increases pre-
diction accuracy on unseen data while yielding interpretable models. Using the
log-linear formulation, the algorithm presented in [12] can be directly applied to
learn the parameters of a DBN model.

DBN Specification. Next, we illustrate the specification of a simple DBN.
Similarly to BKT, we can interpret the parameters of a DBN in terms of a
learning context. To specify the CPTs of the example DBN in Fig. 1, we employ
F = 22 weights that can be associated with a parameter set θ. We subsequently
use 
 to denote proportionality in the log domain; i.e., w 
 p is equivalent to
w ∝ exp p. Let O3 denote the task associated with skill S3. Then the parameters
w20 
 p(O3 = 0 | S3 = 0) = 1 − pG and w21 
 p(O3 = 0 | S3 = 1) = pS
represent the guess and slip probabilities. Similarly, w18 and w19 are associ-
ated with pG and pS as evident from Fig. 1. Furthermore, parameters w6 
 p
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(S1,t = 0 | S1,t−1 = 0) = 1 − pL and w7 
 p(S1,t = 0 | S1,t−1 = 1) = pF are
associated with learning and forgetting; the same holds true for w8 and w9.

Skills S1 and S2 are prerequisites for knowing skill S3, i.e., the probability that
skill S3 is mastered in time step t depends not only on the state of skill S3 in the
previous time step, but also on the states of S1 and S2 in the current time step.
Therefore w10 
 p(S3,t = 0 | S3,t−1 = 0, S1,t = 0, S2,t = 0) = 1− pL0, where pL0

denotes the probability that the student learns S3 despite not knowing S1 and
S2. Also, w17 
 p(S3,t = 0 | S3,t−1 = 1, S1,t = 1, S2,t = 1) = pF1, the probability
of forgetting a previously learnt skill. Furthermore, we set wl 
 1 − pLM if
l ∈ {11, 12, 13} and wl 
 1 − pFM if l ∈ {14, 15, 16}, where pLM denotes the
probability that the student learns S3 given that he knows at least one of the
precursor skills of S3. Moreover, pFM is the probability that the student forgets
the previously known skill S3, when either S1 or S2 or none of them are known.

Finally, the parameters wl with l ∈ {2, 3, 4, 5} describe the dependencies be-
tween the different skills. We let wl 
 1 − pP0, if l ∈ {2, 3, 4} and w5 
 pP1,
where pP0 is the probability of knowing a skill despite having mastered only
part of the prerequisite skills and pP1 denotes the probability of failing a skill
given that all precursor skills have been mastered already. Moreover, we refer
to the probability of knowing a skill a-priori via p0. Note that w0 and w1 are
associated with p0. The example DBN can therefore be described by the pa-
rameter set θ = {p0, pG, pL, pF , pL0, pF1, pLM , pFM , pP0, pP1}. Importantly, the
method proposed in this work is independent of the exact parametrization used.
Therefore, the parametrization introduced here could be easily extended.

3 Results and Discussion

We show the benefits of DBN models with higher representational power on
five data sets from various learning domains. The data sets were collected with
different tutoring systems and contain data from elementary school students up
to university students. We compare the prediction accuracy of DBNs modeling
skill topologies with the performance of traditional BKT models.

Fitting the BKTmodels was done using [25], applying skill-specific parameters
and using gradient descent for optimization. As described in [25], we set the
forget probability pF to 0, while pS and pG are bounded by 0.3. In the following,
we will denote this constrained BKT version as BKTC .

We used constrained latent structured prediction [12] to learn the parameters
of the DBNs. All models are parametrized according to Sec. 2.2 and we impose
the constraints described in the following on the parameter set θ of the different
models to ensure interpretable parameters. For our first constraint set C1, we let
pD ≤ 0.3 for D ∈ {G,S, L, F, L0, F1} to ensure that parameters associated with
guessing, slipping, learning and forgetting remain plausible. The constraints on
θ can be directly turned into constraints on w. For the example DBN (Fig. 1),
the constraints translate into the following linear constraints on the weights for
C1: wi ≥ 0.4236, if i ∈ {6, 8, 10, 18, 20} and wi ≤ −0.4236, if i ∈ {7, 9, 17, 19, 21}.
For the second constraint set C2, we augment C1 by limiting pD ≤ 0.3 if D ∈
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{LM,FM,P0, P1}, yielding wi ≥ 0.4236, if i ∈ {2, 3, 4, 11, 12, 13} and wi ≤
−0.4236, if i ∈ {5, 14, 15, 16} for the example DBN (Fig. 1). The additional
constraints ensure that parameters are consistent with the hierarchy assumptions
of the model. The constraint sets C3 and C4 bound the same parameters as C1
and C2, but are more restrictive by replacing 0.3 by 0.2. Note that constraints
were selected according to previous work [4]. The presented work is, however,
independent of the selected constraint sets.

Prediction is performed as follows: we assume the observation at time t = 1
to be given and predict the outcome at time t with t ∈ {2, ..., t} based on
the previous t − 1 observations. The number of observations t for the different
experiments is the minimal number of observations covering all skills of the
according experiment. To assess prediction accuracy, we provide the following
error measures: root mean squared error (RMSE), classification error CE (ratio of
incorrectly predicted student successes and failures based on a threshold of 0.5)
and the area under the roc curve (AUC). All error measures were calculated using
cross-validation. Statistical significance was computed using a two-sided t-test,
correcting for multiple comparisons (Bonferroni-Holm).

Note that we selected skills, where users showed low performance for our
experiments, in order to make learning and prediction more challenging. In the
following, we describe the DBN models for the five data sets and discuss the
prediction accuracy for our models as well as for BKTC .

Number Representation. For the first experiment, we use data collected from
Calcularis, an intelligent tutoring system for elementary school children with
math learning difficulties [10]. The data set contains log files of 1581 children
with at least 5 sessions of 20 minutes per user. Calcularis represents student
knowledge as a DBN consisting of different mathematical skills [11,13].

The graphical model used in this experiment (see Fig. 1) is an excerpt of the
skill model of Calcularis described in [11]. Skill S1 represents knowledge about
the Arabic notation system. Calcularis does not contain any tasks associated
with this skill. The ability to assign a number to an interval is denoted by S2. The
task associated with this skill is to guess a number in as few steps as possible.
Finally, S3 denotes the ability to indicate the position of a number on a number
line. We used a maximum of T = 100 observations per child for learning and
prediction and specified the CPTs of the graphical model with F = 22 weights.

Prediction errors for the constraint sets C1 to C4 as well as BKTC are given
in Tab. 1. The constrained DBN approach yields significant and large improve-
ments in prediction accuracy compared to BKTC . We highlight the improvement
in accuracy by 11.4% (CEBKTC = 0.3141, CEC2 = 0.2783) and the reduction of
the RMSE by 3.8% (RMSEBKTC = 0.4550, RMSEC4 = 0.4378). Also note the
large improvement achieved in AUC (AUCBKTC = 0.5975, AUCC2 = 0.7093).

Subtraction. The second experiment is based on the same data set as the
first experiment. This time, however, we investigate subtraction and number
understanding skills. The graphical model (see Fig. 2(a)) is again an excerpt of
the skill model [11] of Calcularis. Subtraction skills are ordered according to
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(a) (b)

(c) (d)

Fig. 2. Graphical models for the subtraction (a), physics (b), algebra (c) and spelling
learning (d) experiments. Circular nodes represent skills, while the rectangles are the
tasks associated with those skills.

their difficulty, which is determined by the magnitude of involved numbers, task
complexity and the means allowed to solve a task. Skills S1 (e.g., 48-6=?), S2

(e.g., 48-9=?), S3 (e.g., 48-26=?), S4 (e.g., 48-29=?) and S5 denote subtraction
tasks in the number range 0−100. We emphasize that there are no observation
nodes associated with S1 and S5. The number understanding skill S6 represents
knowledge about the relational aspect of number (number as a difference between
other numbers) in the number range 0−1000. Finally, skills S7 (e.g., 158-3=?),
S8 (e.g., 158-3=?) and S9 (e.g., 158-9=?) represent subtraction in the number
range 0−1000. The difference between S7 and S8 lies in the means allowed to
solve the task. A maximum of T = 100 observations per child is used for learning
and prediction. Specification of the CPTs for the model requires F = 86 weights.

The resulting prediction accuracy for this experiment (see Tab. 1) again
demonstrates that the DBN model outperforms BKTC . With a reduction of
the RMSE by 3.5% (RMSEBKTC = 0.4368, RMSEC2 = 0.4215) and an increase
of the accuracy by 8.4% (CEBKTC = 0.2818, CEC4 = 0.2580), improvements
confirm the results observed in the first experiment. Also the growth in AUC
(AUCBKTC = 0.5996, AUCC4 = 0.6916) is again substantial.

Physics. This experiment is based on the ‘USNA Physics Fall 2005’ data set
accessed via DataShop [15]. Data originate from 77 students of the United States
Naval Academy and were collected from Andes2, an intelligent tutoring system
for physics [3]. The tutor uses rule-based algorithms to build solution graphs
that identify all possible solutions to the different tasks. Based on these graphs,
a Bayesian network is constructed to assess the general physics knowledge of the
student as well as the progress for the problem at hand.

We use the different modules of the data set as skills for our experiment.
The graphical model is depicted in Fig. 2(b). Note that we intentionally use a
simplified skill model to avoid introducing incorrect assumptions and to assess
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Table 1. Prediction accuracy of the experiments, comparing BKTC with different con-
straint sets for the DBNs. Numbers in bold denote a significant improvement compared
to BKTC . The best result for each error measure is marked (*).

BKTC C = C1 C = C2 C = C3 C = C4

Number
representation

RMSE 0.4550 0.4469 0.4452 0.4416 0.4378*

CE 0.3141 0.3279 0.2783* 0.3079 0.2831

AUC 0.5975 0.7072 0.7093* 0.7087 0.7049

Subtraction

RMSE 0.4368 0.4417 0.4215* 0.4389 0.4216

CE 0.2818 0.2812 0.2588 0.2757 0.2580*

AUC 0.5996 0.6157 0.6870 0.6332 0.6916*

Physics

RMSE 0.4530 0.4521 0.4272 0.4465 0.4244*

CE 0.2930 0.2893 0.2677 0.2870 0.2616*

AUC 0.5039 0.6511 0.6971 0.6795 0.7007*

Algebra

RMSE 0.3379 0.3335 0.3254* 0.3321 0.3267

CE 0.1461 0.1466 0.1392 0.1466 0.1379*

AUC 0.5991 0.6682 0.7004 0.6718 0.7007*

Spelling

RMSE 0.4504 0.4521 0.4495 0.4492 0.4472*

CE 0.2898 0.2893 0.2914 0.2882* 0.2906

AUC 0.5029 0.5695 0.5771 0.5735 0.5804*

if even non-experts can exploit skill structures using our proposed methods.
The model consists of the following modules: “Vectors” (S1), “Translational
Kinematics” (S2), “Statistics” (S3) and “Dynamics” (S4). These modules consist
of more complex tasks for the given topic, i.e., calculating total forces in a system
(see example in [3]). A maximum of T = 500 observations per child are considered
for learning and prediction and the model is described by F = 33 weights.

In this experiment, the benefits of the DBN model are again high (see Tab. 1):
the accuracy is increased by 10.7% (CEBKTC = 0.2930, CEC4 = 0.2616) while
the RMSE is reduced by 6.3% (RMSEBKTC = 0.4530, RMSEC4 = 0.4244) and
the AUC grows to 0.7007 (AUCBKTC = 0.5039).

Algebra. For this experiment we used data from the KDD Cup 2010 Educa-
tional Data Mining Challenge (http://pslcdatashop.web.cmu.edu/KDDCup). The
data set contains log files of 6043 students that were collected by the Cognitive
Tutor [14], an intelligent tutoring system for mathematics learning. The student
model applied in this system is based on BKT.

We use the units of the ‘Bridge to Algebra’ course as skills for our experiment
and select four units of increasing difficulty, where students have to solve word
problems involving calculations with whole numbers. The graphical model for
this experiment is illustrated in Fig. 2(c). Skill S1 (e.g., 728624 − 701312) de-
notes written addition and subtraction tasks without carrying/borrowing, while
S2 involves carrying/borrowing (e.g., 728624 − 703303). S3 (e.g., 33564 × 18)
and S4 (e.g., 10810÷ 46) represent long multiplications and divisions. Note that
the skill model is again simplified for the reasons explained in the Physics ex-
periment. We use a maximum of T = 500 observations per student for learning
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and prediction and specify the CPTs of the model employing F = 29 weights.
Similarly to the previous experiments, DBN significantly outperforms BKTC

(see Tab. 1). The RMSE is reduced by 3.7% (RMSEBKTC = 0.3379, RMSEC2

= 0.3254), while accuracy is increased by 5.6% (CEBKTC = 0.1461, CEC4 =
0.1379) and the AUC increases to 0.7007 (AUCBKTC = 0.5991). Note that DBN
and BKTC both perform better than in the other experiments as the high per-
formance of students in the involved skills makes learning and prediction easier.

Spelling Learning. The last experiment uses data collected from Dybuster,
an intelligent tutoring system for elementary school children with dyslexia [7].
The data set at hand contains data of 7265 German-speaking children. Dybuster
groups the words of a language into hierarchically ordered modules with respect
to their frequency of occurrence in the language corpus as well as a word diffi-
culty measure. The latter is computed based on the word length, the number of
dyslexic pitfalls and the number of silent letters contained in the word.
We use these modules as skills to build our graphical model (see Fig. 2(d)). Skills
S1, S2 and S3 denote the modules 3, 4 and 5 within Dybuster.Word examples are
“warum” (“why”, S1), “Donnerstag” (“Thursday”, S2) and “Klapperschlange”
(“rattlesnake”, S3). We use a maximum of T = 200 observations per child for the
learning and prediction tasks and parametrize the model using F = 21 weights.
While the DBN model still significantly outperforms BKTC in this experiment
(see Tab. 1), the magnitudes of improvement are small: the RMSE is reduced
by 0.7% (RMSEBKTC = 0.4504, RMSEC4 = 0.4472), the highest AUC amounts
to 0.5804 (AUCBKTC = 0.5029) and there is no significant improvement in CE.

Discussion. The results demonstrate that more complex DBN models outper-
form BKT in prediction accuracy. For hierarchical learning domains, CE can
be reduced by 10%, while improvements of RMSE by 5% are feasible. The
DBN models generally exhibit a significantly higher AUC than BKT, which
indicates that they are better at discriminating failures from successes. As ex-
pected, adding skill topologies has a much smaller benefit for learning domains
that are less hierarchical in nature (such as spelling learning). The results ob-
tained on the physics and algebra data sets show that even simple hierarchical
models improve prediction accuracy significantly. A domain expert employing a
more detailed skill topology and more complex constraint sets could probably
obtain an even higher accuracy on these data sets. The use of the same pa-
rameterization and constraint sets for all experiments demonstrates that basic
assumptions about learning hold across different learning domains and thus the
approach is easy to use.

4 Conclusion

In this work, we showed that prediction accuracy of a student model is increased
by incorporating skill topologies. We evaluated the performance of our mod-
els on five data sets of different learning domains and demonstrated that the
DBN models outperform the traditional BKT approach in prediction accuracy
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on unseen data. To conclude, our results show that modeling skill topologies is
beneficial and easy to use, as even simple hierarchies and parameterizations lead
to significant improvements in prediction accuracy. In the future, we would like
to analyze the influence of the skill hierarchies and the different parameters in
detail. We furthermore plan to apply the individualization techniques used in
BKT [18,24,25] to DBNs. Moreover, we would like to explore further modelling
techniques such as dynamic decision networks.
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Abstract. The rich natural language dialogue that is exchanged be-
tween tutors and students has inspired many successful lines of research
on tutorial dialogue systems. Yet, today’s tutorial dialogue systems do
not regularly achieve the same level of student learning gain as has been
observed with expert human tutors. Implementing models directly in-
formed by, and even machine-learned from, human-human tutorial dia-
logue is highly promising. With this goal in mind, this paper makes two
contributions to tutorial dialogue systems research. First, it presents a
dialogue act annotation scheme that is designed specifically to address a
common weakness within dialogue act tag sets, namely, their dominance
by a single large majority dialogue act class. Second, using this new fine-
grained annotation scheme, the paper describes important correlations
uncovered between tutor dialogue acts and student learning gain within
a corpus of tutorial dialogue for introductory computer science. These
findings can inform the design of future tutorial dialogue systems by
suggesting ways in which systems can adapt at a fine-grained level to
student actions.

1 Introduction

It has been widely demonstrated that one-on-one tutoring is more effective than
many other forms of instruction [1, 2]. This success is thought to be largely a
result of the rich natural language interaction between student and tutor [3–5].
Human tutorial dialogue has therefore been studied extensively, and the strate-
gies observed with human tutors have inspired a number of successful tutorial
dialogue systems (e.g., [6–10]). However, despite the rapid progress achieved in
modern tutorial dialogue systems, systems do not yet match the effectiveness
of expert human tutors [1]. A promising direction for further improving tuto-
rial dialogue systems is to identify direct associations between measured student
learning gain and tutorial strategies [6, 10–12].

Tutorial strategies are realized at the level of dialogue acts, which characterize
the intent of dialogue utterances. This paper explores the dialogue acts that hu-
man tutors make and identifies relationships between particular dialogue events
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and student learning gain. The analyses were conducted on a corpus of human-
human textual dialogue collected through a tutoring interface for introductory
computer science. This study is part of the larger JavaTutor project that is
developing an intelligent tutoring system whose behaviors are machine-learned
from corpora of human-human tutoring. This paper makes two novel contribu-
tions. First, it presents a tutorial dialogue act annotation scheme that addresses
an important weakness of prior annotation schemes applied in numerous tuto-
rial dialogue domains: the presence of a large majority class dialogue act that
is more vague than other acts and that presents challenges for machine-learning
models. Second, this paper utilizes a corpus manually tagged with this refined
dialogue act tag set to explore relationships between dialogue acts and student
learning gain at the end of the tutoring session. The results suggest important
relationships between tutor choices and student learning.

2 Related Work

It has long been recognized that one-on-one tutoring is one of the more effec-
tive methods of instruction [13] and that the study of human-human tutorial
interactions is crucial to the development of effective intelligent tutorial systems
addressing this need [5]. Several dialogue acts have been previously identified
as significantly correlated with learning gain [10]; in particular, specific collab-
orative acts between tutor and student have been studied and established as
influential [14]. Historically, it was often assumed that the most frequent human
tutorial acts are the effective tutorial acts, since human tutors are considered
to be generally effective [11]. This might not be the best approach, as effective
tutorial strategies vary from student to student and tutor to tutor [10].

Moving beyond this pure frequency approach, dialogue has been demonstrated
to correlate with learning gain in a variety of ways: particular dialogue act se-
quence occurrences [10], adaptation to dialogue structure correlated with posi-
tive learning gain [6], and responsiveness to student uncertainty [12]. However,
a frequent limitation in capturing dialogue acts for tutoring and across a va-
riety of dialogue domains lies with crafting the annotation scheme, where it is
often discovered after annotation that one dialogue act encompasses a larger
portion of the corpus than any other act. For example, the Inform tag com-
prises 29% of an airline reservation human-human dialogue corpus [15], and the
Non-Substantive Act tag, defined to be any act that was not a question,
feedback, or answer, comprises 46% of an ITSPOKE physics tutorial dialogue
corpus [16].

This paper expands upon prior work by defining a novel annotation scheme
derived from a variety of prior schemes. With this refined annotation scheme, the
analysis produced new statistical relationships not previously identified between
student learning gain and the dialogue events of the tutoring sessions.

3 Tutorial Dialogue Corpus

The corpus examined here consists of computer-mediated textual human-human
interactions. The sessions were conducted within an online remote tutoring
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interface for Java programming. The interface, displayed in Figure 1, consists of
four panes: the task description, the compilation and execution output, the stu-
dent’s Java source code, and the textual dialogue messages between the tutor and
the student. The content of the interfacewas synchronized in real time between the
student and the tutor; however, the tutor’s interactionswith the environmentwere
constrained to the textual dialogue with the student and the ability to progress
between tasks.

Fig. 1. The tutorial dialogue interface

The full tutorial dialogue corpus under consideration was collected in Fall 2011
and Spring 2012. Due to the time requirements of manual annotation, the current
analysis examines a subset of the full corpus, sessions between 30 students paired
with one of five tutors for the first of six sequential lessons [17]. This 30-session
corpus consists of 4,035 utterances: 2,846 (71%) tutor utterances and 1,189 (29%)
student utterances. The average number of utterances per tutorial session is 134.5
(min = 69, max = 213); tutors averaged 94.9 utterances per session (min = 46,
max = 159), and students 39.6 utterances per session (min = 21, max = 65).
Many utterances contained multiple dialogue acts; to address this concern, the
utterances were manually partitioned at sentential and phrasal boundaries by
the principal dialogue act annotator. Two sample excerpts from the corpus after
annotation are displayed in Figure 2. (The annotation scheme is described in
Section 4.)

To measure learning gain over the course of the session, students completed
an identical pretest and posttest for each lesson. The average pretest score was
50.98% (min = 23.53%, max = 100%), and the average posttest score was 76.67%



202 A.K. Vail and K.E. Boyer

Tutor Let’s move on. [D]

Tutor advances to next task.

Tutor We have plenty of time. [R]

Student Okay. [ACK]

Student edits code.

Student Which do I put first? [QD]

Tutor Try it. [D]

Tutor Be sure you are satisfying
the task. [D]

Student compiles, with errors.

Tutor What you had was close.
[FOE]

Student Why did I need quotes for
the Hello World println(),
but not this one? [QI]

Tutor Hello World was printing
literal “hello world”. [AWH]

Tutor The second was printing
the value inside the variable
DylansCompGame. [AWH]

Student Oh, alright. [ACK]

Student Makes sense. [FU]

Fig. 2. Sample annotated excerpts from the Lesson 1 corpus

(min = 41.18%, max = 100%), administered immediately after completing the
lesson. This learning gain (posttest − pretest) was statistically significant (p <
0.0001). In addition to the pretest, the students also completed a self-efficacy
survey with six Likert-scale items prior to the initial tutorial session [17]. Each
student’s computer science self-efficacy was computed as the average of these
six items. The mean self-efficacy score among the students was 3.39 out of a
possible 5.00 (min = 2.33, max = 4.33), and as described later, this score is used
in the current analysis along with pretest score as control variables within the
predictive models of learning.

4 Dialogue Act Annotation

The new refined dialogue act annotation protocol expanded upon a prior scheme
for task-oriented tutorial dialogue [17] and was further inspired by previous
annotation schemes for tutorial dialogue in several domains [16, 18, 19]. The
annotation scheme is presented in detail in Tables 1 and 2, along with the relative
frequency of the individual tags and the Cohen’s kappa achieved between two
independent human annotators. Table 1 displays dialogue acts assigned to both
tutor and student utterances; Table 2 displays those assigned to only tutor or
only student utterances.

The present dialogue act annotation scheme expands upon a prior set, with
a primary goal of further defining the vague large classes previously observed.
Figure 3 displays the decomposition of the prior tagset into the current one. The
previous set contained thirteen dialogue act tags, with the largest tag account-
ing for 33.5% of the corpus [17]. The refined annotation scheme presented here
contains 31 dialogue act tags, with the largest tag accounting for 13.66% of the
corpus. Despite the increased complexity of the proposed annotation scheme,
two independent human annotators achieved a Cohen’s kappa of κ = 0.87 on
37% of the corpus (agreement of 89.6%). The prior simpler annotation scheme
yielded a Cohen’s kappa of κ = 0.79 (agreement of 81.1%). Of the 31 tags, 21
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Table 1. Dialogue act tags assigned to both tutor and student

Tag Example Freq. κ

Explanation (E) Your code stops on line 2. 13.66% 0.716

Greeting (GRE) Have a good day! 3.49% 0.931

Acknowledge (ACK) Okay. 6.93% 0.960

Correction (CO) *explanation 0.61% 0.734

Observation (O) See, we have an error. 1.87% 0.582

Extra Domain Question (QEX) How are you today? 1.11% 1.000

Extra Domain Answer (AEX) I’m doing well. 1.11% 0.916

Extra Domain Other (OEX) Calculus is difficult. 3.59% 0.797

Yes/No Answer (AYN) No, sir. 4.20% 0.973

WH-Question Answer (AWH) Line 9. 2.68% 0.816

tags achieved a kappa that is characterized as ‘almost perfect’ inter-rater relia-
bility [20], and the excellent overall kappa achieved by the new tag set suggests
that it reliably captures important differences in dialogue acts within the tutorial
dialogue corpus. In addition to the tutorial dialogue acts, student task actions
were annotated automatically using an edit distance approach. Each period of
student coding was classified as improved, worsened, or unchanged, depending
on the change in edit distance [17].

5 Relationships between Dialogue and Student Learning

The objective of the present analysis is to identify tutor dialogue act choices
correlated with student learning gain. Dialogue acts were identified at the un-
igram (individual dialogue acts) and bigram (pairs of adjacent dialogue acts)
levels [16]. Bigrams were extracted using a three-act collocational window, as
demonstrated in Figure 4.

Utterances annotated with the Correction (CO) tag were removed prior
to analysis, as these utterances constitute artifacts of the ‘instant-messaging’
nature of the corpus and reflect typing skill rather than tutoring content. Then,
the relative frequencies of each dialogue act tag or bigram were computed, and
simple linear correlations were calculated between these and student learning.
Then, any correlations that appeared statistically significant at the p < 0.05
level were provided as input to a stepwise linear regression model within the
SAS statistical modeling software, alongside the pretest and self-efficacy scores.
Providing the pretest and self-efficacy as predictors allows the model to account
for any differences in posttest scores explainable by these variables.

Several individual dialogue acts or bigrams were significantly predictive
of student learning gain. These predictors and their regression coefficients,
along with associated p-values within the stepwise linear regression, are listed in
Table 3.
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Table 2. Dialogue act tags only assigned to one role

Tag Example Freq. κ

Tutor

Directive (D) Test your program. 9.26% 0.960

Information (I) Variable names must be one
word.

7.64% 0.734

Reassurance (R) We have plenty of time left. 1.01% 0.748

Ready Question (QR) Ready to move on? 8.65% 1.000

Questions (QQ) Any questions? 1.32% 0.972

Factual Question (QF) What line is it waiting on? 1.21% 0.831

Open Question (QO) How can you fix it? 0.66% 1.000

Evaluative Question (QE) Does that make sense? 0.76% 0.933

Probing Question (QP) Do you think that looks
correct?

0.40% 0.712

Positive Feedback (FP) Very good! 10.72% 0.948

Positive Feedback (with Elabo-

ration) (FPE)

That’s a very good ap-
proach.

1.97% 0.729

Negative Feedback (FN) No, that’s incorrect. 0.05% 1.000

Negative Feedback (with Elab-

oration) (FNE)

That’s not the right syntax. 0.25% 1.000

Other Feedback (FO) That’s an okay implementa-
tion.

0.25% 0.800

Other Feedback (with Elabo-

ration) (FOE)

That’s alright, but you need
to fix line 9.

0.61% 0.952

Student

Information Question (QI) Why does that happen? 1.77% 0.917

Confirmation Question (QC) It’s line 6, right? 2.18% 0.895

Direction Question (QD) What do I do next? 1.32% 1.000

Ready Answer (AR) Yes, I’m ready. 8.14% 0.952

Understanding (FU) Oh, that makes sense! 1.87% 0.847

Not Understanding (FNU) I don’t know why that
works. . .

0.71% 0.665

The unigram occurrence of tutor directives were negatively correlated with
learning gain, aslseen in previous studies [16, 17]. Interestingly, this was the
only unigram significantly correlated with learning gain at the p < 0.05 level.
Two other previously-identified tutorial decisions also emerged as significant:
consecutive tutor directives, as seen in a previous study on the same corpus
[17] and a tutor information move following a student answer, as seen in the
ITSPOKE dialogue corpus [16].
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Fig. 3. Decomposition of the prior tags (inner ring) into the new tags (outer ring)

Table 3. A selection of tutor dialogue act choices significantly predictive of student
learning gain

Weight Dialogue Act and Task Sequence Partial R2 p

+0.3345 pretest 0.1785 < 0.0001

+0.0868 self-efficacy 0.0003 0.2156

−0.4995 (Improved Code → D (Tutor)) 0.0047 0.0050

−0.5004 (FNU (Student) → E (Tutor)) 0.0369 0.0049

+0.4388 (QC (Student) → PF (Tutor)) 0.0265 0.0153

−0.5781 (D (Tutor)) 0.2587 0.0008

−0.5758 (D (Tutor) → D (Tutor)) 0.0216 0.0009

−0.4748 (E (Tutor) → QE (Tutor)) 0.0231 0.0080

−0.3904 (I (Tutor) → O (Tutor)) 0.1474 0.0329

+0.3784 (AWH (Student) → I (Tutor)) 0.0907 0.0392

+0.1458 (Intercept) 0.0212

There were several dialogue bigrams significantly correlated with learning gain
that had not been identified with a coarser annotation scheme. The bigrams, as
shown in Table 3, include improved code followed by tutor directive (D), a stu-
dent expression of not understanding (FNU) to a tutor explanation (E), a student
confirmation question (QC) to positive feedback (PF), a tutor explanation (E) fol-
lowed by an evaluative question (QE), and a tutor instruction (I) followed by an
observation (O). These significant relationships are discussed in the next section.
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Role Utterance Extracted Bigrams

Tutor Do you have any questions?
[QQ]

Tutor Look over your program. [D] QQ → D

Student No [AYN] D → AYN QQ → AYN

Student I believe I am understanding
the concept. [FU]

AYN → FU D → FU QQ → FU

Fig. 4. An example of the collocational window employed to capture dialogue act
bigrams at a distance

6 Discussion

This section examines the tutorial dialogue events that were found to be signif-
icantly associated with student learning. First we examine tutor directives (D
(Tutor)), which are indications that the tutor is giving explicit direction to the
student. Consecutive instructions of this nature (D (Tutor) → D (Tutor)) could
indicate that the tutor is choosing to exert substantial control over the tuto-
rial session, or that the student is relying heavily on tutor instructions [16, 17].
Another relationship that has been observed in other literature relates to the bi-
gram of a tutor offering information (I) following a student response to a question
(AWH), which could indicate a tutor elaborating upon the student’s response
beyond what he or she initially understood to be correct. This can sometimes
provide the answer that the tutor originally expected of the student. This bigram
has been previously identified as significant to student learning gain in tutoring
for physics [16].

One interesting relationship occurs when the tutor decides to offer a directive
after the student has improved the Java program (Improved Code → D (Tutor)).
This tutor dialogue act is negatively predictive of learning gain. This relationship
could be due to a tutor incorrectly believing that the student needs guidance,
and taking control of the session before it is necessary. The directives in the
current corpus were frequently an instruction to compile or run the program.
This could also occur due the enforced time limit on the session; if the tutor
does not believe that the student will complete the lesson before the end of the
session, he may give more direct instructions to hasten the completion of the
tasks.

A tutor observation after a tutor information turn (I (Tutor) → O (Tutor)) is
also negatively predictive of learning gain. This bigram could potentially indicate
a “lecturing” mode by the tutor, whereas leaving these tasks to the student to
discover could be beneficial to her overall understanding.

Another negative association with learning emerges when tutor evaluative
questions, such as “Does that make sense?”, follow an explanation (E (Tutor)
→ QE (Tutor)). One suggested interpretation of this phenomenon is that new
students lack meta-cognition; that is, students may not truly know if the material
‘makes sense’ yet. This is possibly a novice tutor move, as experienced tutors
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tend to ask more open-ended questions, judging a student’s understanding by
his or her demonstrated ability to use the material, rather than relying on the
student’s meta-cognitive abilities.

Another bigram that was negatively correlated with student learning gain was
a tutor offering an explanation when the student expresses a lack of understand-
ing (FNU (Student) → E (Tutor)). This could be explained by a tutor instinc-
tively offering the solution to the student, instead of allowing an exploratory
approach by the student before giving aid.

The only bigram found to be significantly positively correlated with learning
gain was positive feedback after a confirmation question from the student (QC
(Student) → PF (Tutor)). Often, interchanges with these annotations were of the
form “I think the answer is X?”, followed by a “Yes, very good!”. The decision
to actively support a student’s uncertain answer may provide the student some
level of confidence in his ability, which can positively impact further work in the
session.

7 Conclusion and Future Work

Tutorial dialogue is rich and highly effective, yet the mechanisms responsible for
its effectiveness are not fully understood. Identifying tutor dialogue acts that
are associated with student learning gain is a promising direction for research.
This paper has presented a novel dialogue act annotation scheme designed to
substantially reduce the dominance of a vague majority class that has existed in
many prior annotation schemes. When applied in a regression analysis to predict
student learning, this new annotation scheme demonstrated its use in identify-
ing previously undiscovered specific dialogue interactions that are predictive of
outcomes.

Compelling directions for future work include identifying and comparing effec-
tive tutor choices across differing student types, e.g. low versus high self-efficacy
students, or students entering from a variety of disciplines. Additionally, a cru-
cial direction for the field is to examine how our annotation schemes support
machine learning and data mining on corpora of tutorial dialogue in ways that
can inform the design of or support the direct extraction of effective tutorial
dialogue system behaviors. These lines of investigation will lead to greater un-
derstanding of student learning through tutoring and will inform the design of
tutorial dialogue systems.
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8. Kumar, R., Ai, H., Beuth, J.L., Rosé, C.P.: Socially Capable Conversational Tu-
tors Can Be Effective in Collaborative Learning Situations. In: Aleven, V., Kay,
J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 156–164. Springer,
Heidelberg (2010)

9. D’Mello, S.K., et al.: A Motivationally Supportive Affect-Sensitive AutoTutor. New
Perspectives on Affect and Learning Tech. 3, 113–126 (2011)

10. Chen, L., et al.: Exploring Effective Dialogue Act Sequences in One-on-one Com-
puter Science Tutoring Dialogues. In: Tetreault, J., et al. (eds.) Proc. 6th BEA
Work., Portland, USA, pp. 65–75. Assoc. for Comp. Ling (2011)

11. Stellan, Ohlsson, o.: Beyond the Code-and-count Analysis of Tutoring Dialogues.
In: R, Luckin, o. (eds.) Proc. 13th Int. Conf. AIED, Los Angeles, USA, vol. 158,
pp. 349–356. IOS (2007)

12. Forbes-Riley, K., Litman, D.J.: Adapting to Student Uncertainty Improves Tutor-
ing Dialogues. In: Vania, Dimitrova, o. (eds.) Proc. 14th Int. Conf. AIED, Brighton,
United Kingdom, pp. 33–40. IOS (2009)

13. Cohen, P.A., et al.: Educational Outcomes of Tutoring: A Meta-analysis of Find-
ings. Am. Educ. Res. J. 19(2), 237–248 (1982)

14. D’Mello, S.K., et al.: Mining Collaborative Patterns in Tutorial Dialogues. J.
EDM 2(1), 1–37 (2010)

15. Chu-Carroll, J.: A Statistical Model for Discourse Act Recognition in Dialogue
Interactions. In: Chu-Carroll, J., Green, N. (eds.) AAAI Spring Symp.: Applying
Machine Learning to Discourse Processing, Pan Alto, USA, vol. 1996, pp. 12–17.
AAAI Press (1998)

16. Litman, D.J., Forbes-Riley, K.: Correlations between dialogue acts and learning in
spoken tutoring dialogues. Nat. Lang. Eng. 12(2), 161–176 (2006)

17. Mitchell, C.M., et al.: Recognizing Effective and Student-Adaptive Tutor Moves
in Task-Oriented Tutorial Dialogue. In: Youngblood, M.G., McCarthy, P.M. (eds.)
Proc. 25th Int. FLAIRS Conf., Marco Island, Florida, pp. 450–455. AAAI Press
(2009)



Identifying Effective Moves in Tutoring 209

18. Person, N.K., et al.: The Dialog Advancer Network: A Conversation Manager for
AutoTutor. In: Gauthier, G., et al. (eds.) Proc. ITS Work. Modeling Human Teach-
ing Tactics and Strategies, Montreal, Canada, pp. 86–92. Springer (2000)

19. Core, M.G., Allen, J.F.: Coding Dialogs with the DAMSL Annotation Scheme. In:
Proc. 1997 AAAI Fall Symp.: Communicative Action in Humans and Machines,
Providence, USA, pp. 28–35. AAAI (1997)

20. Landis, J.R., Koch, G.G.: The Measurement of Observer Agreement for Categori-
cal Data Data for Categorical of Observer Agreement The Measurement. Biomet-
rics 33(1), 159–174 (1977)



When Is Tutorial Dialogue More Effective

Than Step-Based Tutoring?

Min Chi1, Pamela Jordan2, and Kurt VanLehn3

1 Computer Science Department, North Carolina State University,Raleigh NC USA
mchi@ncsu.edu

2 Learning Research and Development Center, University of Pittsburgh, Pittsburgh,
PA USA

pjordan@pitt.edu
3 School of Computing, Informatics and Decision Science Engineering, Arizona State

University, AZ USA
Kurt.Vanlehn@asu.edu

Abstract. It is often assumed that one-on-one dialogue with a tutor,
which involves micro-steps, is more effective than conventional step-based
tutoring. Although earlier research often has not supported this hypoth-
esis, it may be because tutors often are not good at making micro-step
decisions. In this paper, we compare a micro-step based NL-tutoring
system that employs induced pedagogical policies, Cordillera, to a well-
evaluated step-based ITS, Andes. Our overall conclusion is that the pair-
ing of effective policies with a micro-step based system does significantly
outperform a step-based system; however, there is no significant differ-
ence in the absence of effective policies. Moreover, while micro-step tu-
toring is more time-consuming, the findings still hold for five out of six
learning performance measures when time on task is factored out.

Keywords: Natural Language tutoring systems, Step-based tutoring
systems, Reinforcement Learning, Pedagogical Strategy.

1 Introduction

In domains like math and science solving a problem requires producing an ar-
gument, proof or derivation consisting of one or more inference steps, and each
step is the result of applying a domain principle, operator or rule. For instance,
solving an algebraic equation, 2x+5=21 can be done via two steps: 1) subtract
the same term 5 from both sides of the equation; and 2) divide both sides by 2.

A typical Intelligent Tutoring System (ITS) is step-based [13] while human
tutors or Natural Language (NL) tutoring systems, by contrast, often scaffold
students via a series of micro-steps leading to the full step. A step corresponds to
(writing) actions that are ordinarily done even without the tutor, whereas micro-
steps correspond roughly to dialogue acts in tutorial dialogues. For example, in
order to solve a physics problem, the student needs to apply several domain
principles, some of which may need to be applied multiple times. Each principle

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 210–219, 2014.
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1. T: So let’s start with determining the value of KE0.
2. T: Which principle will help you calculate the rock’s kinetic energy at T0?

Please provide the name of the principle, not an equation. {ELICIT}
3. S: Definition of kinetic energy
4. T: Yes, I agree. Now I will write the equation for applying the definition of

kinetic energy to the rock at T0: KE0 = 1/2*m*v0ˆ2 {TELL}

Fig. 1. Illustrations of Two Micro-Steps

application can be seen as a step in the ITS. In a physics tutor, for example,
applying the definition of Kinetic Energy (KE = 1

2mv2) to solve for the kinetic
energy of a falling rock at T0 is a step; once a student enters a step, then the tutor
gives feedback and/or hints. Human tutors, by contrast, often scaffold students
via a series of micro-steps leading to the full step. In the step mentioned above,
for instance, a human tutor can take the following micro-level steps: selecting
the principle to apply; writing the corresponding equation; solving the equation;
and engaging in some qualitative discussion about the principle.

Fig. 1 illustrates two micro-steps and each numbered line represents a dialogue
turn. The labels T and S designate tutor and student turns respectively. In
this example, the tutor and the student first select a principle (lines 2 & 3)
and then write the corresponding equation (line 4). Some of the tutor turns in
Fig. 1 are labeled {ELICIT} or {TELL}. This label designates a tutorial
decision step wherein the tutor has to make a tutorial decision whether to ask
the student for the requisite information or to tell it to the student. For example,
in line 2, the tutor chooses to elicit the answer by asking, “Which principle will
help you calculate the rock’s kinetic energy at T0? Please provide the name of
the principle, not an equation.” If the tutor elects to tell, however, then he or
she would state, “To calculate the rock’s kinetic energy at T0, let’s apply the
definition of Kinetic Energy.”

One common hypothesis as to the effectiveness of human one-on-one tutoring
comes from the detailed management of “micro-steps” in tutorial dialogue[6,7]
and thus suggests that micro-step based tutors are more effective than step-based
tutors. In several tests of this hypothesis, however, neither human tutors nor NL
tutors designed to mimic human tutors, outperformed step-based tutors once
content was controlled to be the same across all conditions [5,12]. All three types
of tutors were more effective than no instruction (e.g., students reading material
and/or solving problems without feedback or hints). One possible conclusion is
that tutoring is effective, but the micro-steps of human tutors and NL tutoring
systems provide no additional value beyond conventional step-based tutors[13].

Alternatively, we argue that the lack of difference between micro-step and
step-based tutors is because neither the human tutors nor the NL tutoring sys-
tems involved in those studies were good at making micro-step decisions and
several studies provide some support for this claim[3,11,2]. Previously, we in-
vestigated the impact of pedagogical policies on student learning by comparing
different versions of a micro-step based NL tutoring system called Cordillera [2].
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We applied a general data-driven methodology, Reinforcement Learning (RL),
to induce pedagogical policies directly from student interactivity logs and found
that Cordillera with effective pedagogical policies, RL-induced Cordillera signif-
icantly out-performed other versions of Cordillera. However, it is still unclear
whether the former is significantly better than a step-based ITS.

In this paper, we directly compare RL-induced Cordillera with a well-evaluated
step-based conventional ITS, Andes [14]. Our main research question is: Can a
NL tutoring system with machine-learned pedagogical policies be more effective
than a step-based ITS? Overall, we find that RL-induced Cordillera significantly
outperforms Andes. In order to investigate whether this result is indeed caused
by effective RL-induced policies, we also compare Andes to two other versions
of Cordillera: Hybrid-RL and Random. In the following, we will briefly describe
the two types of tutoring systems and the pedagogical policies employed in them
and then describe our study and finally present our results.

2 Two Types of ITSs

The Micro-Step Based Cordillera: NL Tutorial Dialogue System
The Cordillera tutorial dialogue system tutors students in both quantitative and
qualitative physics in the work-energy domain and was implemented using the
TuTalk tutorial dialogue system toolkit toolkit [8]. TuTalk supports dialogues in
which a tutor tries to elicit the main line of reasoning from a student by a series
of coherent questions. This style of dialogue was inspired by CIRCSIM-Tutor’s
directed lines of reasoning [5]. The Cordillera style of dialogue is system-initiative
in that the system always chooses the topics discussed.

Figure 2 illustrates a sample student dialogue with Cordillera. The upper top
right pane of the figure shows the problem that the student is attempting to

Fig. 2. An example of the Cordillera interface
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solve. The top left pane shows a portion of the dialogue history, and illustrates
a few questions and student responses, as well as a number of system informs;
the pending tutor question is shown in the input pane at the bottom followed by
the response the student is entering. Finally, the variables in the bottom right
pane and the equations (hidden) were entered either by the student using a form
interface (not shown) or provided by the tutor. When the tutor asks the student
to compute the value for a variable, the student must transform the equation
to a solvable form with the known values substituted and then the tutor will
do the final calculation. In order to avoid confounds due to imperfect NL un-
derstanding, a human wizard replaced the NL understanding module. During
tutoring, the wizard matched students’ answers to one of the available responses
but made no tutorial decisions.

The Step-Based Andes Tutoring System
Andes provides a multi-paned screen that consists of a problem-statement win-
dow, a variable window, an equation window, and a dialogue window. An exam-
ple of the Andes interface, as the student would see it, is shown in Figure 3. On
Andes, students construct and manipulate a solution. The interaction is open-
ended, event-driven and student-initiated. Students can enter an equation that
is the algebraic combination of several principle applications and Andes provides
immediate feedback on each entry. Andes can also algebraically manipulate equa-
tions to calculate the value for a variable. It considers an entry correct if it is
true, regardless of whether it is useful for solving the problem. When an entry
is incorrect, students can either fix it independently, or ask for what’s-wrong
help. When they do not know what to do next, they can ask for next-step help.
Both next-step and what’s-wrong helps are provided via a sequence of hints

Fig. 3. An example of the Andes interface
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that gradually increase in specificity. The last hint in the sequence, called the
bottom-out hint, tells the student exactly what to do.

Andes provides conceptual and procedural help that is designed to encourage
students to think on their own. Students can always enter any correct step and
Andes does not attempt to determine their problem-solving plans. If necessary
for giving a hint, it asks students what principle they are working on. If students
indicate a principle that is part of a solution to the problem, Andes hints an
uncompleted step from the principle application. If no acceptable principle is
chosen, Andes picks an unapplied principle from the solution that they are most
likely to be working on.

3 Decision Policies within Cordillera and Andes

In many tutoring systems, the system’s behaviors can be viewed as a sequential
decision process wherein, at each discrete step, the system is responsible for se-
lecting the next action to take. Pedagogical strategies are defined as policies to
decide the next system action when multiple are available. Each of these sys-
tem decisions affects the user’s successive actions and performance. Its impact
on student learning cannot often be observed immediately and the effective-
ness of one decision also depends on the effectiveness of subsequent decisions.
Ideally, an effective tutor should craft and adapt its decisions to users’ needs
[1,10]. However, there is no existing well-established theory on how to make
these system decisions effectively. In this work, different versions of micro-step
based Cordillera employed different pedagogical policies. The step-based Andes
employs hand-coded rules.

Three versions of Cordillera - Random, Hybrid-RL, and RL-induced - were in-
volved. The only difference among the three is the policy used. Random Cordillera
made tutorial decisions randomly. Hybrid-RL Cordillera used expert-guided data-
driven induced rules. These rules were induced by using 18 features and a greedy-
like procedure to prune the features to meet efficiency and training constraints[4].
Both the initial features and pruning procedure were suggested by human experts
and the final induced policies were also checked and approved by human experts.
But no significant difference was found on overall learning performance between
the Hybrid-RL and random policies. For RL-induced Cordillera, the data-driven
approach was greatly improved. More specifically, the RL approach involved a
much larger feature set (50 features), and more advanced domain-general feature
selection approaches. Human experts were not involved in directing the policy
generation. As reported earlier[2], these RL-induced policies indeed helped stu-
dents learn more and in a deeper way than either Hybrid-RL or random policies.

Andes, on the other hand, like most existing ITSs employs hand-coded ped-
agogical policies. For example, help in Andes is provided upon request because
it is assumed that students know when they need help and will only process
help when they desire it. A student deciding to request help can be seen as a
human-like decision policy for whether to skip or not skip content.
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4 Methods

Participants: A total of 163 participants used either Andes or one of the three
versions of Cordillera: the Andes group comprised 33 students; the Random
Cordillera Group comprised 64 students so that we could collect enough data
for RL policy induction; the Hybrid-RL Cordillera Group comprised 37 students;
and the RL-induced Cordillera group comprised 29 students. All participants
were recruited in the same way but in different years.

Domain and Procedure: The training covered the first-year college physics
work-energy domain. All participants experienced identical procedures: 1) a
background survey; 2) read a textbook covering the target domain knowledge;
3) took a pretest; 4) solved the same seven training problems in the same or-
der on either Andes or Cordillera; and 5) finally took a posttest. The pretest
and posttest were identical and contained 16 quantitative items and 16 qualita-
tive items. Both quantitative and qualitative items include multiple choice and
open-ended problems.

Students’ learning outcomes were measured by using three types of scores:
quantitative, qualitative and overall. All tests were graded in a double-blind
manner by experienced graders. In a double-blind manner, neither the students
nor the graders know who belongs to which group. For comparison purpose all
test scores were normalized to fall in the range of [0,1].

Except for following the policies (Random, Hybrid-RL, or RL-induced), the
remaining components of Cordillera, including the interface, the training prob-
lems, and the tutorial scripts, were identical for all students. However, there are
some noticeable differences for the Andes training compared to Cordillera.

Differences in the Training: The Cordillera dialogues guided students through
the training problems by hinting at the next problem solving step to be com-
pleted, or telling them what it is. Hints took the form of short answer questions.
In addition to guiding the student through problem solving, Cordillera also at-
tempted to help the student increase his/her conceptual understanding of the
domain by asking for justifications for the most important problem solving steps.
The decision for when to ask for a justification was determined by a set of ped-
agogical policies. For an example of a justification requested during problem
solving, see the current tutor turn in the bottom left input pane in Figure 2.
There was also a post-problem discussion for each problem which sought to
increase the student’s conceptual qualitative understanding.

We implemented the same seven training problems in Andes and because
Cordillera provided drawings and pre-defined some variables for each problem,
we set-up Andes to provide the same. We added a post-problem discussion to
Andes by collecting all the post-problem discussion for Cordillera into a static
text document so that the content coverage for post-problem discussion was
about the same. The post-problem discussion was delivered in a series of web
pages after the experimenter verified that the student had completed the Andes
problem.
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Note that we did not attempt to provide identical content for the problem
solving help since it reflects two different tutoring systems, but what is available
is similar. For example, while the Cordillera system’s micro-steps will always
present the content illustrated in Fig. 1, Andes will show the following series of
hints for this same step after the student makes four consecutive help requests:
1) Why don’t you continue with the solution by working on the definition of
kinetic energy. 2) What is the kinetic energy of the rock at T0? 3) The kinetic
energy of an object is defined as one half its mass times its velocity squared.
That is, 0.5 ∗ m ∗ v2. 4) Write the equation KE0 = 0.5 ∗ m ∗ v02. So for this
illustration asking for all hints on the Andes step is equivalent to a decision to
tell for all the related micro-steps in Cordillera.

While the problem solving help content is similar, there is also some concep-
tual qualitative discussion during Cordillera’s problem solving that Andes does
not offer. It is up to the student to consider the concepts involved on their own.
However, as has been pointed out, novice students have a tendency to simply
manipulate equations to isolate the unknown and seldom consider the conceptual
knowledge involved during problem solving [9].

5 Results

Overall Training Time
A one-way ANOVA showed significant differences among the four groups on
overall training time: F (3, 154) = 53.90, p < 0.001. The Andes group spent
significantly less time1 than the other three groups but there were no signifi-
cant differences in time on task among the three Cordillera groups. The average
training time (in minutes) across the seven training problems, was M = 115.94,
SD = 42.03 for Andes, M = 280.38, SD = 66.88 for Random, M = 294.33,
SD = 87.51 for Hybrid-RL, and M = 259.99, SD = 59.22 for RL-induced.

Learning Performance
Although students were recruited during different time periods, they appear
balanced on incoming competence across the conditions. A one-way ANOVA
showed that there were no significant differences in pretest scores among the
four groups on either quantitative: F (3, 159) = 1.18, p = .32, or qualitative:
F (3, 159) = 0.06, p = .98 , or overall questions F (3, 159) = 0.46, p = .71.

A repeated measures analysis using test (pretest vs. posttest) as a factor and
test score as the dependent measure showed that there was a main effect for
test. All four groups of students scored significantly higher on the posttest than
the pretest, F (1, 32) = 19.87, p < 0.001 for Andes, F (1, 63) = 78.37, p < 0.001
for Random, F (1, 36) = 48.36, p < 0.001 for Hybrid-RL, and F (1, 28) = 238.58,
p < 0.001 for RL-induced.

The same results were found from pretest to posttest on both quantitative
and qualitative questions as well. More specifically, on quantitative questions,

1 Some reading times for the last problem were lost so we used the minimum average
reading time for all other easier problems.
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Table 1. RL-induced Cordillera vs. Andes on Various Test Scores

Test Item Test RL-induced Andes Stat cohen
Set Score Cordillera d

quant Pre 0.35 (0.25) 0.28 (0.26) t(60) = 1.01, p = .28 0.27
Post 0.64 (0.22) 0.41 (0.30) t(60) = 3.29, p = 0.002 0.87 ∗ ∗
Adj Post 0.61 (.18) 0.44 (.17) F (1, 59) = 13.793, p < .0001 0.97 ∗ ∗
NLG 0.49 (0.28) 0.16 (0.38) F (1, 59) = 14.442, p < 0.0001 0.99 ∗ ∗

qual Pre 0.46(0.12) 0.45(0.14) t(60) = 0.40, p = .688 0.08
Post 0.65 (0.14) 0.54 (0.18) t(60) = 2.68, p = 0.010 0.68 ∗ ∗
Adj Post 0.65 (.14) 0.54 (.14) F (1, 59) = 7.74, p = .007 0.79 ∗ ∗
NLG 0.36 (0.24) 0.14 (0.34) F (1, 59) = 8.86, p = 0.004 0.75 ∗ ∗

Overall Pre 0.42 (0.15) 0.39 (0.16) t(60) = 0.87, p = .39 0.19
Post 0.65 (0.15) 0.50 (0.21) t(60) = 3.35, p = 0.001 0.82 ∗ ∗
Adj Post 0.64 (.11) 0.51 (.12) F (1, 59) = 16.50, p < .0001 1.13 ∗ ∗
NLG 0.42 (0.19) 0.17 (0.28) F (1, 59) = 15.97, p < 0.0001 1.04 ∗ ∗

F (1, 32) = 15.83, p < 0.001 for Andes, F (1, 63) = 33.55, p < 0.001 for Random,
F (1, 36) = 58.01, p < 0.001 for Hybrid-RL, and F (1, 28) = 95.79, p < 0.001
for RL-induced. On qualitative questions, F (1, 32) = 7.68, p = 0.009 for An-
des, F (1, 63) = 40.62, p < 0.001 for Random, F (1, 36) = 17.20, p < 0.001 for
Hybrid-RL, and F (1, 28) = 89.56, p < 0.001 for RL-induced. Therefore all four
conditions made significant gains from pre-test to post-test across all three sets of
questions: quantitative, qualitative and overall questions. In order to investigate
whether micro-step based tutors can be more effective than step-based tutors,
we first investigated whether the most effective version of Cordillera would out-
perform Andes.

RL-Induced Cordillera vs. Andes
Table 1 compares the pre-test, post-test, adjusted post-test, and NLG scores
between the RL-induced Cordillera and Andes conditions by question type. The
adjusted Post-test scores were compared between the two conditions via an AN-
COVA with the corresponding pre-test score as a covariate. NLG measures stu-
dents’ gain irrespective of their incoming competence: NLG = posttest−pretest

1−pretest .
Here 1 is the maximum score. The third and fourth columns in Table 1 list the
means and SDs of the two groups’ corresponding scores. The fifth column lists
the statistical comparison and the last column lists the effect size of the com-
parison using Cohen’s d2. Table 1 shows that there was no significant difference
between the two conditions on pre-test scores. However, there were significant
differences between them on the post-test, adjusted post-test, and NLG scores
for all three question types.

We then compared the two groups’ performance on six types of learning mea-
sures: {Quantitative,Qualitative,Overall}× {Posttest, NLG} using both pre-test
and total training time as the covariates. On one measure, quantitative posttest,

2 Which is defined as the mean learning gain of the experimental group minus the
mean of the control group, divided by the groups’ pooled standard deviation.



218 M. Chi, P. Jordan, and K. VanLehn

there was no significant difference between the two groups: F (1, 58) = 2.34, p =
0.132.But on the remaining fivemeasures,RL-inducedCordillera significantly out-
performed Andes: F (1, 58) = 7.27, p = 0.009 for qualitative posttest, F (1, 58) =
5.94, p = 0.018 for overall posttest, F (1, 59) = 4.72, p = 0.034 for quantitative
NLG, F (1, 59) = 7.34, p = 0.009 for qualitative NLG and F (1, 58) = 9.71, p =
0.003 for overall NLG respectively.

In sum, our results showed that micro-step based tutors can indeed be more
effective than step-based tutors as RL-induced Cordillera significantly outper-
formed Andes on all types of test questions. Even when time on task is factored
out, the same results hold for five out of six learning measures. Next, we com-
pared Random and Hybrid-RL Cordillera with Andes to investigate whether the
micro-step tutor would still be more effective than the step-based tutor without
effective pedagogical policies.

Random vs. Andes and Hybrid-RL Cordillera vs. Andes: There were
no significant differences between the Random-Cordillera and Andes groups on
any of the learning outcome measures. Since Andes students spent significantly
less time than Cordillera students, we compared the two conditions’ posttest
scores using both pre-test score and total training time as covariates and their
NLG scores using total training time as the covariate. To our surprise, we still
found no significant differences between the two groups. We had expected the
efficiency of the Andes group to have some impact.

Similar results were found when we compared Hybrid-RL Cordillera and An-
des on all types of learning outcome measures either when time on task is factored
in or out. Since Hybrid-RL Cordillera employed human-influenced pedagogical
rules, these results again indicate that expert tutors’ pedagogical rules may not
always be effective. Again, this study suggests that fine-grained interactions at
micro-steps are a potential source of pedagogical power, but human tutors may
not be particularly skilled at choosing the right micro-steps.

6 Conclusions and Future Work

Although it is often believed that micro-step based NL tutoring systems should
be more effective than conventional step-based ITSs, little evidence was pre-
viously found to support this. Our hypothesis is that it is because the exist-
ing micro-step based NL tutoring systems do not employ effective pedagogical
strategies. Previous work applied a general data-driven RL approach to induce
effective pedagogical policies directly from student logs and found them to be
more effective than either random or Hybrid-RL policies. However, it was still
not clear whether these RL-induced policies would make micro-step based NL
tutoring systems more effective than step-based ITSs.

In this paper, we found that RL-induced Cordillera significantly outperforms
Andes while neither Hybrid-RL Cordillera nor Random Cordillera were signifi-
cantly different from step-based Andes. Our overall conclusion is that a micro-
step based system with effective RL-induced policies can significantly outperform
a step-based ITS with hand-coded policies; however, there is no significant differ-
ence between micro-step based and step-based tutoring systems in the absence of
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effective policies. Note that micro-step based Cordillera is more time-consuming
than Andes. However, even when time on task is factored out, the micro-step
based tutoring system with effective RL-induced policies is still significantly bet-
ter than the step-based tutoring systems with hand-coded policies on five out of
six learning performance measures.

Future work that remains is to explore policy-induction for Andes and to con-
duct a comparison of step-based tutoring to micro-step tutoring when both have
effective RL-induced pedagogical policies. This may improve our understanding
of the grain-size (step vs. micro-step) issue.
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When are tutorial dialogues more effective than reading? Cog. Sci. 31(1), 3–62
(2007)

13. VanLehn, K.: The relative effectiveness of human tutoring, intelligent tutoring sys-
tems, and other tutoring systems. Educational Psychologist 46(4), 197–221 (2011)

14. VanLehn, K., Lynch, C., Schulze, K., Shapiro, J.A., Shelby, R., Taylor, L., Treacy,
D., Weinstein, A., Wintersgill, M.: The andes physics tutoring system: Lessons
learned. IJAIED 15(3), 147–204 (2005)



Predicting Student Learning

from Conversational Cues

David Adamson1, Akash Bharadwaj2, Ashudeep Singh3, Colin Ashe4,
David Yaron1, and Carolyn P. Rosé1
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Abstract. In the work here presented, we apply textual and sequential
methods to assess the outcomes of an unconstrained multiparty dialogue.
In the context of chat transcripts from a collaborative learning scenario,
we demonstrate that while low-level textual features can indeed predict
student success, models derived from sequential discourse act labels are
also predictive, both on their own and as a supplement to textual feature
sets. Further, we find that evidence from the initial stages of a collabo-
rative activity is just as effective as using the whole.
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1 Introduction

Intelligent tutoring and computer-supported collaborative learning can both pro-
vide cognitive, metacognitive, and social benefits to learners [13, 22, 27]. These
systems also offer a wealth of process data to researchers and developers. This
windfall can be used to analyze learning and other behavioral processes, and
opens the door to automatic moment-to-moment formative assessment and sup-
port. The recent boom in massive and open online courses, with their similarly
massive student-to-human-teacher ratios, has underlined both the need and the
potential for such data-driven assessments and interventions. In this paper, we
present multiple sources of predictive features from the chat transcripts of a col-
laborative learning scenario. As a baseline, we show that features based on the
lexical and syntactic contents of student contributions in chat are predictive. We
then supplement those features by paying attention to the sequence and struc-
ture of dialogue at the discourse level, and demonstrate that these features can
anticipate student learning.

The remainder of this paper is organized as follows: In Section 2, we review
relevant literature and establish a theoretical framework for our contribution.
In Section 3, we describe the collaborative learning context which we analyze
according to the methods presented in Section 4. We present our results in
Section 5, and offer some in-depth interpretation. We end with a look forward,
to future applications and extensions of this work.
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2 Background

This paper grounds itself in the fields of Educational Data Mining and Computer
Supported Collaborative Learning. In particular, we build upon prior work that
has successfully employed a variety of methods for feature extraction and pattern
learning to predict affective, collaborative, and learning outcomes from discourse.

Linguistic analysis methods for studying both individual learners and small
groups [11] have been be used to assess cognitive and meta cognitive knowl-
edge [10], critical thinking, knowledge construction [9] and consensus building
techniques [16]. In many cases [5, 26], methods for automatically labeling these
features are developed hand-in-hand with their application to a prediction task.
Analysis applied to course message boards has shown it is possible to detect
unresolved questions [12] in asynchronous discussions, and that patterns of in-
teraction and participation can be used to predict final learning outcomes [21]. In
the context of a single-user conversational tutor, a set of conversational features,
including measures of the quality and content of student answers as derived
from Latent Semantic Analysis [15], have been successfully applied to predict
the moment-to-moment affect of the learner [5].

In intelligent tutoring systems with a conversational component, automated
analysis methods may be employed as formative assessments, predicting student
learning or collaborative performance. These predictions can be used to inform a
tutor’s interventions during future learning experiences, or to provide moment-
by-moment facilitation in response to continuous assessment [1]. Recent work
has demonstrated the power of data mining for building moment-to-moment
models of student learning [2], although as this work was situated in a non-
conversational tutoring system, it did not leverage linguistic features to antic-
ipate learning. Fully automated coding and modeling methods have been used
to successfully predict the outcome of a facilitated civil-dispute negotiation [26].
Models of conversational trajectory have also been developed as a source of feed-
back for learners and their human instructors, using a set of features describing
conversational attributes derived from per-turn coding of a conversation [3, 4].
In that work, each coded move contributes to one of four underlying conversa-
tional dimensions (conformity, creativity, elaboration, and initiative), allowing
concrete quantitative measures to power a qualitative analysis of group state.

Hidden Markov Models [20] trained on sequences of student-selected sentence-
opener moves have been used to classify and describe groups of collaborative
learners as more or less productive [24, 25]. HMMs have also been applied to
surveys of participant emotion, to draw inferences about underlying affective or
cognitive state [6]. However, such work has relied on participants selecting their
next move or observed state from a limited set of options. More recent work
has used n-grams or stretchy patterns [8] over discourse act labels to model
local conversational structure and predict group task success [19]. Although this
body of work illustrates the potential of sequential models for understanding
student state, their suitability as a method for assessing individuals within an
unconstrained multiparty discourse has not been fully explored.
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3 Context and Corpus: College Chemistry Collaboration

We conduct our study data collected from a small-group chat-based collaborative
task in the domain of college chemistry. The participants in this study were first-
year undergraduate students in an introductory chemistry course, during a unit
on intermolecular interactions. Students were randomly assigned to groups of
three or four. Participation in the exercise was voluntary, and students had the
option of not consenting for their data to be included in our research. Altogether,
our analysis includes data from 50 consenting students from 16 different groups
- with a mean of 93 messages per student, or 292 per group. Students were
administered a pre-test the day before they completed the task, and completed
a post-test the day after. Two test forms were randomly counter-balanced by
student between pre- and post-test.

This task and chat environment have been used before to study methods for
automatic discussion facilitation [1]. The 90-minute task focuses on intermolecu-
lar forces and their influence on the boiling points of liquids. The task was framed
as a collaborative data analysis activity, where the students in each group were
assigned to read individually about one of three classes of molecules, and the
factors most likely to influence their boiling point. This division also provided
intrinsic motivation for collaboration, as the task could not be completed with-
out knowledge from each of the student experts. A conversational agent [14]
facilitated the activity for each group, presenting the series of exercises to the
group and prompting them to explain their reasoning to each other.

4 Methods: Predicting Learning from Conversation

We aim to capture the properties of conversation that are distinctive of more (or
less) successful learners. Low-level lexical and syntactic features are examined
alongside higher-order representations of discourse, and evaluated as candidates
for automating future formative assessment. In order to assess individual learn-
ing, we first build a linear model, predicting student post-test score from pre-test
score alone. This model accounts for 61% of variance in student performance. The
impact of collaboration, if any, might be found in the remaining unaccounted-
for variance. Thus, we use as our target the residual from this regression in the
remainder of the analysis.

4.1 Baseline Textual Features

Especially in unstructured conversational data, the success of a machine learning
algorithm is tied to the feature representation of the contents of that data. We
first use “bag-of-words” features, which represents only the vocabulary used
in a conversation (including both content words and function words). We then
present a second model, based on “complex language” features. This model
contains a superset of the bag-of-words feature set. Adjacent pairs of words
(bigrams) and local syntactic part-of-speech bigrams are added as features.
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In addition to a single student’s language (the Student Only condition
above), much of her learning may be tied up in her interactions with peers. We
therefore introduce an additional text representation (Whole Group), includ-
ing features for all students in each conversation as a second feature set. These
new features are represented as distinct - thus any unigram may appear twice in
an instance as a distinct feature, once if spoken by the student of interest, and
again if spoken by any of her groupmates.

Finally, in order to evaluate our methods’ suitability for mid-activity formative
assessment, we also test the condition where only features from the first third of
each student transcript are used for prediction (Start Only), stopping at the
end of the first phase of the activity described in Section 3.

We train a Naive Bayes classifier to differentiate groups with a positive resid-
ual (learning more than the pre-test would suggest) from those with a negative
residual. To avoid overfitting (identifying the peculiarities of individual groups,
rather than overall trends in student behavior), results of our machine-learning
experiments are presented from 16-fold leave-one-group-out cross-validation. In
this arrangement, models are trained on 15 groups of 46 or 47 students, and
tested on the remaining group of 3 or 4 students. Reported performance is av-
eraged across groups. The model is limited to using the top 100 most predictive
language features on each training fold, using χ2 feature selection [7].

4.2 Active Learning Annotation

To represent features above the contributions of individual lines of dialogue, we
refer to established frameworks for conversational analysis. In Barros et al.’s
work, a set of attributes for qualitative conversational analysis is proposed [4]
based on a set of six sentence-opening moves. This is similar to the scheme used
by Soller [23]. We combine Barros’ two types of proposal and consider just five
types of “Active Learning” moves:

– Proposals (PR) begin a sequence and introduce a new concept or idea.
– Questions (QU) target proposals and question them.
– Clarifications (CL) are elaborations on proposals, or answers to questions.
– Agreements (AG) show agreement or assent between speakers in a sequence.
– Remaining contributions are Comments (CM); including topic statements,

floor grabbing moves, pauses, etc.

In earlier works, assignment of turn labels relied on student inputs being con-
strained to a fixed set of sentence-openers. In our approach, the students are
not thus fettered, and we instead rely on annotation of free text. To allow this
flexibility, we adapted a coding manual based on the systemic functional lin-
guistics “Negotiation” framework [17], describing the flow of information and
action within a conversation. Recent work has shown that Negotiation annota-
tion can be automated for freeform chatroom conversations [18]. With an eye
toward such future automation, we adapted Mayfield’s coding manual, convert-
ing Negotiation labels to Active Learning moves using heuristics. This manual
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was first validated on separate pilot data. For this data, three transcripts (about
2000 turns of conversation) were coded by both annotators to check reliability,
and the rest were each coded by a single annotator. Resulting reliability was
high for Active Learning annotations, κ = 0.75.

From these annotations, we can now represent sequences of labeled turns as
inputs to our machine learning algorithms. As a starting point (Active Learn-
ing Trigrams), we use sequences of three consecutive labels, extracted from the
sequence of labeled turns, as a feature for our group and student tasks. In the
case of per-student outcome prediction, each tag is differentiated based on who
(relative to the student in question) is speaking - either the student herself, or
another participant. For example, PRs is a proposal issued by this student, CLo

is a clarification by another student, and so on. We consider this representation
both on its own and as a supplement to our textual features.

As in Section 4.1, we train a Naive Bayes classifier with these features and
report results from 16-fold cross-validation. As an additional experiment, we
also evaluate a single classifier trained on the combined feature set of Active
Learning Trigrams and “complex language” features.

4.3 Predicting Learning with Contrastive Hidden Markov Models

As a more sophisticated differentiator of conversational structure, we use Hid-
den Markov Models [20] to model variation between successful and unsuccessful
students. HMMs are a sequential labeling algorithm, where observed behaviors
are assumed to be a result of an unobserved, hidden state. In this case, states
may correspond to a student’s intention when contributing a new turn to the
dialogue. By analyzing sequences of observed labels, HMMs can discover these
unobserved states statistically.

Following Soller et al. [24], we train two HMMs with four hidden states, on
sequences drawn from subsets of the corpus - one using the sequences from
the four students with the highest residuals, the other using the four students
with the lowest residuals. The resulting models should distinguish the sequential
behaviors of unusually high- and low-performing students. We make no presump-
tions about the meanings of specific hidden states [6], although we expect to see
meaningful patterns relevant to collaborative discourse.

As with our textual experiments, we use leave-one-group-out cross-validation,
so no student transcript is evaluated on a model trained on a member of that
transcript. For each held-out student in the test group, we calculate the nor-
malized sequence likelihood of their entire transcript for each model, and use
the likelihoods that the two models assign to the held-out data as features for
a linear model performing binary classification. To mirror the Start Only con-
ditions above, we also apply the same procedure to only the first third of the
Active Learning sequences in each transcript, to assess this method’s suitability
for in-process formative assessment.
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5 Results and Discussion

Results for the classification experiments using textual features are presented in
Table 1. In general, we find that richer text features and including context from
group members’ posts both contribute to performance well above an individual
student’s vocabulary alone, and their benefit is somewhat additive. Further, in
the more complex model we find that using only features from the starting section
of each transcript perform statistically indistinguishably from models built on
the entire transcript, suggesting that such methods may enable mid-activity
formative assessments based on conversational features.

Table 1. Predicting individual learning above or below expected levels with textual
features alone, based on raw accuracy (%) and Cohen’s kappa. Bold represents a
marginal improvement over baseline accuracy, p < 0.1.

Student Only Whole Group Start Only
Feature Set % κ % κ % κ

Bag-of-words 0.58 0.14 0.64 0.25 0.49 -0.01
Complex language 0.64 .025 0.70 0.38 0.68 0.38

In Table 2, we see the impact of Active Learning sequential features. Active
Learning trigrams appear to offer additive benefit alongside textual features, im-
proving our ability to predict student over- or underperformance. Using the more
sophisticated contrastive HMM model, we are able to replicate this performance
by only modeling states based on sequences of Active Learning tags. Table 3
lists a few features from this combination model that are highly predictive of
high and low residual scores.

Table 2. Predicting individual learning above or below expected levels with sequential
dialogue features. Bold represents marginal improvement over baseline, p < 0.1.

Sequence Representation % κ

Active Learning Trigrams 0.66 0.30
Trigrams + Textual Features 0.72 0.43
Contrastive HMMs 0.72 0.44
Contrastive HMMs (Start Only) 0.64 0.28

5.1 Qualitative Analysis of Contrastive HMMs

The output of the contrasting HMMs can be used to gain insight into the con-
versational habits of more (or less) successful students. Figure 1 illustrates the
difference in transition patterns between student with higher and lower residual
scores. Note that although the learned states were not predetermined, fairly con-
sistent groupings emerge between models. In the model for higher scores, we see
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Table 3. Representative features for high or low residual scores

Feature Actor(s) Class Example

thinking student high i’m thinking in between

ADV WH other high so why not higher?

CLoPRsQUs both high yep - the dipole moment is what’s different
chcl3 second highest, ch3cl third highest
the last one has no dipole moment then?

agree ? student low KCl will be in the middle . . . agree?

ADJ CONJ other low smaller or bigger?

CLoQUoPRo other low i think the bp increases as we go down the table
does all 3 increase down the table?
i think the dipole moment is more important

CLo
CLs
PRo

CLs
PRs
AGo

QUo
QUs

AGo
PRo
PRs
AGs

Agreeing to ideas

Student contribution

Asking questions

Clarifying details

Higher Residuals

p < 0.25 p < 0.50 p < 0.75p < 0.10

CLo
CLs
PRo

QUo
CLo
QUs
PRs

QUo
PRo
QUs

PRo
AGo
AGs

Agreeing to ideasAsking questions

Asking questionsClarifying details

Lower Residuals

Transition Probabilities:

Fig. 1. Learned High and Low State Transitions

a strong flow between states that have high emission probabilities for questions
and clarifying statements, and from clarification to agreement to proposals. In
particular, the high-residual model favors transitions from questioning, to clar-
ification, to agreement and new ideas, whereas there’s a comparatively weak
flow out of the clarification state in the low-residual model. The low-residual
model also displays stronger tendencies toward loops in the clarification and
questioning states. It may be that students who fit the lower-residual model find
themselves in groups experiencing more confusion, but with less productive res-
olution. The low-residual model expects a lesser degree of student participation
(as indicated by lower emission probabilities for student moves, versus moves by
others). A hard-to-reach state focusing on student contributions is unique to the
high-residual model, which favors reentry into the question-clarify-agree loop.
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Table 4. Highly likely sequences, according to the HMMs for high and low residual
scores (top and bottom). Note that comments are not included in the model.

Tag Text

PRo yea they are made up of the same molecules so i cant really tell yet

QUs It’s going to be in the middle right?

CLo its going to be the smallest because the dipole moment is the smallest

QUo so its actually smallest?

CLs wait just kidding i read that wrong! Smallest.

AGo ya smaller dipole=smaller boil pt

PRo

Polar molecules have a permanent dipole moment which is caused by
differences in electronegativity between bonded atoms. One might have more
electronegativity than the other causing a nonuniform electron distribution.

CLs In my intro, it said dipole moments do not at all affect the boiling point

PRo The table shows you it does though

AGs yeah this one shows that it does

CMs which is weird

PRo They look like nonpolar molecules

Some highly probable sub-sequences according to each model are illustrated in
Table 4, with examples from the corpus.

6 Conclusions and Future Work

The experiments presented in this paper identify successful methods for predict-
ing learning outcomes from conversational transcripts. However, the small size
of this dataset makes it difficult to draw robust conclusions of statistical signifi-
cance. Future work will look to explore the predictive power of Active Learning
sequences in larger-scale and more diverse collaborative learning contexts, and
to pursue the potential in combining textual cues with conversational sequence
information in a more sophisticated ways. Further, we hope to use such models
as real-time formative assessments based on similar conversational cues to direct
instruction and provide agile conversational support for collaborative learning.
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Abstract. As Computer Supported Collaborative Learning (CSCL) gains a 
broader usage as a viable alternative to classic educational scenarios, the need 
for automated tools capable of supporting tutors in the time consuming process 
of analyzing conversations becomes more stringent. Moreover, in order to fully 
explore the benefits of such scenarios, a clear demarcation must be made 
between participation or active involvement, and collaboration that presumes 
the intertwining of ideas or points of view with other participants. Therefore, 
starting from a cohesion-based model of the discourse, we propose two 
computational models for assessing collaboration and participation. The first 
model is based on the cohesion graph and can be perceived as a longitudinal 
analysis of the ongoing conversation, thus accounting for participation from a 
social knowledge-building perspective. In the second approach, collaboration is 
regarded from a dialogical perspective as the intertwining or overlap of voices 
pertaining to different speakers, therefore enabling a transversal analysis of 
subsequent discussion slices. 

Keywords: Computer Supported Collaborative Learning, Cohesion-based 
Discourse Analysis, Dialogism, Participation Assessment, Collaboration 
Evaluation. 

1 Introduction 

Computer Supported Collaborative Learning (CSCL) gains a broader usage in several 
newest educational settings, like MOOCs or collaborative serious games, as a viable 
alternative to classic educational scenarios. The need for automated tools capable of 
supporting all their actors in the time consuming process of analyzing conversations 
becomes more stringent. Chat conversations or forums became the place where 
knowledge is collaboratively built and shared [1] and there is a complex intertwining 
between collective and individual learning processes that is worth analyzing [2]. 

Shortly put, two complementary analysis approaches compete. The first one is 
structural, uses Social Network Analyses and stems from group dynamics to unveil 
relationships between individuals to sketch networks of collaboration [3]. The second 
approach is dialogical, has roots in discourse theories [4] and uses Natural Language 
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Processing techniques to analyze the semantic cohesion of textual utterances (e.g., 
sentences or paragraphs). 

After devising several systems inspired from the dialogical approach [5] and using 
a cohesion-based model of the discourse as underlying structure [6], we propose 
computational models for assessing participation and collaboration. Within our 
approach, participation is regarded as cumulative qualitative utterance scores and is 
modeled through the interaction graph presented in the second section. Section three 
introduces two computational models for assessing collaboration. The first one is 
based on the cohesion graph [7] and can be perceived as a longitudinal analysis of the 
ongoing conversation, thus accounting for participation from a social knowledge-
building perspective. In the second model, collaboration is regarded from dialogism 
as the intertwining or overlap of voices pertaining to different speakers, therefore 
enabling a transversal analysis of subsequent discussion slices. This paper is the 
occasion to present in the fourth section the results of a large-scale validation by 
comparing the outputs of our system with human evaluations. 

2 Participation Assessment 

Measuring participation in virtual groups and communities on the web 
communicating through chats, forums or different types of social networking was 
performed in the structural approach by considering the number of emitted posts or 
utterances and by using several social networks metrics like centrality (number of 
links to other nodes), betweenness (nodes that, if eliminated would highly reduce or 
eliminate communication among other participants) [8] or page-rank derived formulas 
[9] in the interaction graph with users as nodes and posts as arcs [9]. Sometimes arcs 
have weights computed in different ways, from the simplest number of posts to more 
complicated metrics, considering the language content of the messages, like in our 
dialogical approach, which will be presented below. 

The assessment of participation of each student in CSCL chats has some 
differences from the cases of forums or other social networking due to the small 
number of participants (typical examples are 3 to 7 students) and the large number of 
exchanged utterances. In this case, due to the fact that for chat conversations we are 
dealing in most cases with a complete graph, betweenness score for all nodes is 0. 
Centrality also is not a very significant discriminant: only participants with very low 
number of emitted utterances are not central. 

In our approach, we are taking a perspective based on natural language processing 
of the content of utterances, considering the topics that were supposed to be discussed 
(for example, stated by the teacher in a CSCL homework) and focusing on discourse 
analysis. The latter’s defining feature is cohesion and our approach is fundamentally 
based on it. From a computational point of view, cohesion is computed as a 
combination of semantic distances in ontologies, semantic similarity from Latent 
Semantic Analysis vector spaces, and Latent Dirichlet Analysis topic models [7]. 
Starting from this aggregated similarity function, a multi-layered cohesion graph is 
built [10] that models through cohesive links the dependencies between the key 
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elements of the analysis: the whole conversation, participants’ utterances and 
sentences for longer posts. The previous links can be either explicit if participants 
marked the dependencies within the user interface, enforced for hierarchical links and 
adjacent analysis elements or implicit, if cohesion exceeds a threshold value [10]. 

In terms of participation, we start with the identification of discussion topics for 
each participant for pinpointing out if the needed concepts were covered. One of the 
most important metrics is the utterance score that, shortly put, represents the overall 
topics coverage augmented through cohesion with inter-linked analysis elements [10]. 
In this aim, an interaction graph is built with participants as nodes and the weight of 
links equal to the sum of utterances scores multiplied by the cohesion with the inter-
linked analysis elements [10]. 

3 Collaboration Evaluation 

In order to thoroughly assess collaboration, we have proposed two computational 
models. The first model [6] represents a refinement of the gain-based collaboration 
assessment [11] and takes full advantage of the cohesion graph [12]. The second is a 
novel approach that evaluates collaboration as an intertwining or overlap of voices 
pertaining to different speakers. The main difference between the two is that the first 
focuses on the ongoing conversations, therefore on its longitudinal dimension, 
whereas the later considers subsequent slices of the conversation, the synergy of 
voices, in other words the transversal dimension. 

3.1 Social Knowledge-Building Model 

The actual information transfer through cohesive links from the cohesion graph can 
be split between a personal and a social knowledge-building process [1, 13, 14] at 
utterance level. Firstly, a personal dimension emerges by considering utterances with 
the same speaker, therefore modeling a kind of inner voice or continuation of the 
discourse. Secondly, inter-changed utterances with different speakers define a social 
perspective that models collaboration as a cumulative effect. Our model is similar to 
some extent to the gain-based collaboration model [11] and marks a transition 
towards Stahl’s model of collaborative knowledge-building [1] by representing a 
conversation thread as a multi-layered cohesion graph. 

The continuation of ideas or explicitly referencing utterances of the same speaker 
builds an inner dialogue or personal knowledge, whereas the social perspective 
measures the interaction with other participants, encourages idea sharing and fosters 
creativity for working in groups [15], thus enabling a truly collaborative discussion. 
Moreover, personal knowledge building addresses individual voices (participant 
voices or implicit/alien voices covering the same speaker), while social knowledge 
building, derived from explicit dialog (that by definition is between at least two 
entities), sustains collaboration and highlights external voices. 
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3.2 Dialogical Voice Inter-animation Model 

In order to achieve genuine collaboration, the conversation must contain threads of 
utterances integrating key concepts (‘voices’, in the musical polyphonic sense [16]) 
that inter-animate in a similar way to counterpoints in polyphonic fugues. Voices are 
present in utterances from multiple participants of the conversation. In order to obtain 
an operationalization, a shift of perspective is required from voices, computed as 
semantic chains of related concepts, towards an individual participant. As 
collaboration is centered on multiple participants, a split of each voice into multiple 
viewpoints pertaining to different participants is required. A viewpoint consists of a 
link between the concepts pertaining to a voice and a participant, through their 
explicit use within one’s interventions in the ongoing conversation. We opted to 
present this split in terms of implicit (alien) voices [17]. Moreover, this split 
presentation of semantic chains per participant is useful for observing each speaker’s 
coverage and distribution of dominant concepts throughout the discussion. 

In addition, in order to identify the voice overlaps now pertaining to different 
participants, we changed from an ongoing longitudinal analysis of the discourse, 
presented in the previous subsection, to a transversal analysis of a context consisting 
of several adjacent utterances. We use a cumulated value of Pointwise Mutual 
Information (PMI) obtained from all possible pairs of voices pertaining to different 
participants (different viewpoints), within subsequent contexts of the analysis (within 
our implementation we used a sliding window of 5 interventions in order to model the 
local context of each voice occurrence). From an individual point of view, each 
participant’s overall collaboration can be seen as the cumulated mutual information 
between his personal viewpoints and all other participant viewpoints. Therefore, by 
comparing individual voice distributions that span throughout the conversation, 
collaboration emerges from the overlap of voices pertaining to different participants. 

4 Participation and Collaboration Validation 

The validation experiments focused on the assessment of 10 chat conversations that 
took place in an academic environment in which Computer Science students from the 
4th year undergoing the Human-Computer Interaction course at our university debated 
on the advantages and disadvantages of CSCL technologies. Each conversation 
involved 4 or 5 participants who each had to support a given technology (e.g., chat, 
blog, wiki, forum or Google Wave) in specific use case scenarios during the first 
phase of the discussion, later on proposing an integrated alternative that would 
encompass the previously presented advantages. The 10 conversations were manually 
selected from a 10 times larger corpus of chats. 

Afterwards, 76 4th year undergraduate students following the same course, but 
from a different generation, and 34 1st year master students attending the Adaptive 
and Collaborative Systems course were each asked to manually annotate 3 chat 
conversations. We opted to distribute the evaluation of each conversation due to the 
high amount of time it takes to manually assess a single discussion (on average, users 
reported 1.5 to 4 hours for a deep understanding) [18]. In the end, we had on average 
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33 annotations per conversation and the overall results indicated a reliable automatic 
evaluation of both participation and collaboration. We validated the machine vs. 
human agreement by firstly computing intra-class correlations between raters for each 
chat (avg ICCparticipation = .97; avg ICCcollaboration = .90) and, secondly, as these 
correlations were all very high indicating very few disagreements between raters, 
non-parametric correlations (avg Rhoparticipation = .84; avg Rhocollaboration = .74) were 
determined between machine vs. human mean ratings for each chat. 

5 Conclusions and Future Research Directions 

Starting from a dialogic model of discourse centered on cohesion, we thoroughly 
validated our system in terms of analyzing chat participants’ involvement and 
collaboration, the later employing a longitudinal model based on social knowledge-
building and a different transversal model based on voice inter-animation. Moreover, 
as the validations proved the accuracy of the models built on dialogism, we can state 
that the proposed methods emphasize the dialogical perspective of collaboration in 
CSCL environments. 

In addition, the analyses performed in this paper have a very broad spectrum of 
applications, extending from utterance cohesion towards group cohesion rooted in 
collaboration. Beyond the rather simple visualization of individual and collective 
involvement, our developed system is also well-suited to enable students to self-
regulate their learning. 
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Abstract. In intelligent tutoring systems with natural language dialogue, speech 
act classification, the task of detecting learners’ intentions, informs the system’s 
response mechanism. In this paper, we propose supervised machine learning 
models for speech act classification in the context of an online collaborative 
learning game environment. We explore the role of context (i.e. speech acts of 
previous utterances) for speech act classification. We compare speech act clas-
sification models trained and tested with contextual and non-contextual features 
(contents of the current utterance). The accuracy of the proposed models is 
high. A surprising finding is the modest role of context in automatically predict-
ing the speech acts. 

Keywords:  speech act· machine learning· intelligent tutoring systems. 

1 Introduction 

Speech act classification is one of the indispensable components of dialogue-based 
intelligent tutoring systems (ITS) because speech act categories dramatically constrain 
the system’s response [1, 2]. For example, when a student asks a question, the system 
should respond very differently than when the student asserts a fact or expresses being 
lost. Speech act classification is used for detecting students’ intentions (Is the student 
asking a question or asserting a fact?). More precisely, speech act classification is 
framed as a classification task in which the goal is to detect the speech act categories 
of a given utterance from a predefined set of categories that together form the speech 
act taxonomy. The speech act taxonomy is usually predefined by researchers although 
attempts to automatically discover it from data are emerging [3]. We used a prede-
fined taxonomy in the present paper [4]. 

The models in this paper will be incorporated in a multiparty simulation game on 
urban planning, called Land Science, an expansion of Urban Science [5]. The pre-
vious model of speech act classification in Land Science relied entirely on the lexical, 
semantic, and discourse features of the individual utterances without considering pre-
vious utterances within the context [3,4]. However, conversation progresses depen-
dent on the previous utterances or context. For instance, after a greeting a greeting is 
more likely. Therefore, this study aims to investigate the role of context in speech act 
classification.  
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Speech act classification has theoretical roots in Austin’s language as action theory 
[6] and subsequent work by Searle [7,8]. Different speech act taxonomies have been 
used in different domains of application. D’Andrade and Wish proposed seven  
categories of speech acts with high inter-annotator agreement among human judges: 
assertions, questions, requests and directives, reactions, expressive evaluations, com-
mitment, and declaration [9].  

Researchers have proposed several other taxonomies that are sensitive to various 
tasks and knowledge domains. Rus et al (2012) developed a data-driven method for 
automatically discovering speech act categories from online chats that were extracted 
from educational games, Urban Science and Land Science [3]. They applied utterance 
clustering methods based on the content of utterances and tried to find the natural 
groupings of the utterances in a fully automatic approach. The clusters were then 
deemed as speech act categories by assigning semantic names to the automatically 
discovered clusters. 

Rasor et al (2011) proposed a machine learning approach using decision trees to 
automate the speech act classification in student chat interactions [10]. Olney et al. 
(2003) proposed a rule-based approach to classify speech acts by focusing on 16 cate-
gories of questions [11]. The Question category is important in an ITS because the 
tutor/mentor is expected to give answer to students’ questions. Therefore, the first 
step is to identify questions in student utterances.  

Moldovan et al. (2011) developed automated speech act classification for Land 
Science epistemic game [4]. The categories of their taxonomy included the same  
seven categories as Rus et al. [3]: Statement, Request, Reaction, Metastatement, 
Greeting, ExpressiveEvaluation, and Question. Using a supervised machine learning 
approach, they examined several models with feature sets containing the 2-8 leading 
tokens of the utterance and found that using 3 leading tokens achieves more accurate 
results. Based on their approach, our model uses the two leading tokens, the last to-
ken, and the length of utterance as features and we used the same taxonomy.  

2 Method 

Our approach to speech act classification is a supervised machine learning approach. 
In supervised machine learning approach, models of the tasks are proposed as sets of 
features. Parameters of these models are learned/trained from annotated data and the 
performance of the learned models is then assessed on new, test data. The parameters 
of the proposed models are learned using several machine learning algorithms, i.e. 
decision trees and naïve Bayes.  

The feature set used in our models was designed based on two principles: first, it is 
intuitively inferred and tested that human identified the speech act of an utterance as 
soon as they heard the first few words [4], namely, the first leading tokens. However, 
the context of an utterance is assumed to improve the accuracy. Thus, another feature 
set included the contextual information, e.g. speech act category of the last few utter-
ances. Our model adds context to previous models that relied merely on the contents 
of current student utterance [4]. 
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Briefly, our feature set consists of content (non-contextual) features of the current 
utterance and contextual features (speech acts and speaker of previous utterances). 
The non-contextual features include the first two tokens and the last token which were 
represented as the actual string of characters (tokens) and the length of the utterance 
in words. The contextual features captured contextual information with the five prior 
utterances (the speech acts and actual speakers of these utterances). Our taxonomy 
consisted of seven categories. Table 1 shows examples extracted from the actual ut-
terances for each category. 

Table 1. Speech act taxonomy of seven categories with examples 

Speech act category Example from dataset 
ExpressiveEvaluation Your stakeholders will be grateful! 
Greeting Hello! 
MetaStatements oh yeah, last thing. 
Statement a physical representation of data. 

Question What should we do? 
Reaction Thank you 
Request Please check your inbox 

 
Our training data was extracted from a dataset of mentor-student chat utterances 

from seven Land Science games. A total number of 26,148 chat utterances were gen-
erated by the players and the mentor. We randomly extracted chat utterances to form 
our training data and adjusted the training data to include an even distribution of 30 
instances per speech act category. 

This data set was annotated by one human expert within the context of the chats. 
The human expert had access to the whole dialogue and context of the conversation. 
This annotated data set is deemed as the reference annotation and includes 30 utter-
ances per speech act category.  

In order to examine the impact of the limited contextual information defined in our 
automated models (speech acts of previous five utterances), the data set was further 
annotated by a second human judge in two forms. First, the utterances were randomly 
ordered and the rater annotated them without considering the limited context. Second, 
each utterance was accompanied by the speech act category (not the content) of five 
prior utterances and rater annotated the data considering the contents of the current 
utterance and prior context.  

In the first form of annotations, the rater showed a kappa of 0.55 in agreement with 
reference annotations. The agreement with reference annotations was improved to 
0.75 kappa when the rater was provided with contextual information. On the other 
hand, the agreement of the rater with himself on the two forms of annotations 
(with/without context) was about 0.6 kappa which implies that having some sort of 
information about context, changes human’s judgments and improves their accuracy 
compared to reference annotations.  

Using the reference annotation data set, we applied J48 decision trees and Naïve 
Bayes machine learning models to create the automated speech act classifier with 
different feature sets of contextual and semantic information to examine the role of 
context. The performance of our models is presented in next section.  
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3 Results 

Based on the human annotation, having contextual information improves the accuracy 
of human judgments. In fact, the more we know about context the better we can make 
decisions. Our feature set consists of two types of features: A set of 10 features which 
represent the context of the utterance by looking at the speech act category and speak-
er of five prior utterances (contextual features), and 4 features representing the seman-
tic information of the individual utterances including the first two tokens, last token, 
and the length of the utterance (semantic features). The performance of proposed 
models was tested with feature sets of contextual, semantic and both.  

Using the reference annotations as our training data, we created J48 decision trees 
and Naïve Bayes learning models using WEKA [12] and we tested our models with 
10-fold cross validation. The overall performance of models was evaluated with the 
three feature sets (contextual, semantic, and semantic & context).   

Table 2. Overall Accuracy and Kappa statistics of Naïve Bayes and J48 decision tree models 
with different feature sets 

 J48 decision tree Naïve Bayes 
Feature set Accuracy (%) Kappa Accuracy (%) Kappa 

Contextual 23.80 0.11 37.14 0.26 
Semantic 55.71 0.48 53.80 0.29 
Contexual & Semantic 56.19 0.48 54.76 0.47 

 
As seen in Table 2, using only contextual features provides enough clue to predict 

the speech act categories with an accuracy of about 37% with Naïve Bayes model. 
The semantic features improve the accuracy of J48 model to 55%, with 0.48 kappa. 
Using both kinds of features together, surprisingly, showed a low impact on the per-
formance. Adding context to semantic feature set improved Naïve Bayes algorithm 
while the performance of the J48 model did not change by adding contextual features. 

Overall, J48 model had better performance. To take a closer look at the role of con-
text in our models, we examined the performance of J48 models on predicting each of 
the speech act categories. Table 3 shows the precision and recall on each category for 
models with different feature sets. 

Table 3. The performance of J48 models on predicting each speech act category with different 
feature sets 

 Contextual Semantic Cont. & Sem. 

Category Precision Recall Precision Recall Precision Recall 

Expressive 
Evaluation 

0.22 0.30 0.35 0.93 0.35 0.93 

Greeting 0.36 0.43 0.73 0.63 0.73 0.63 

Metastatement 0.30 0.36 0.64 0.60 0.60 0.56 

Question 0.20 0.20 0.76 0.63 0.63 0.70 

Reaction 0.08 0.06 0.50 0.13 0.13 0.21 

Request 0.18 0.13 0.70 0.46 0.50 0.60 

Statement 0.23 0.16 0.62 0.50 0.53 0.58 
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As shown in Table 3, adding contextual features to the semantic feature set im-
proves the recall on some categories, such as Question, Reaction, Request, and State-
ment, whereas the precision on the categories gets lower by adding context. Overall 
adding context to the feature set had a modest impact on the performance of models. 

4 Conclusion    

In this paper, we examined the role of context (i.e., prior speech act categories and 
speakers, but not the actual content) in the performance of automated speech act clas-
sification. Contextual features seem to not have a significant impact on the overall 
performance of models; however adding context improves the performance on certain 
categories.  

The results presented in previous sections showed that having some sort of contex-
tual information has a positive impact on the accuracy of speech act classification for 
both human and computer. The models presented in this paper can be improved with 
having a larger training data and adjusting the features sets. The taxonomy also can be 
modified to multi-layer structure which enables the use of multiple feature sets to 
maximize the accuracy on certain categories.    

For future work, we plan to test our model on different and new data sets once 
available. The models can be applied to different domains to explore the possible 
improvements. We will also investigate different types and representations of contex-
tual features which can be used in the System to improve the accuracy. 
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Abstract. We present in this paper the findings of a study on the role of macro-
adaptation in conversational intelligent tutoring. Macro-adaptivity refers to a 
system’s capability to select appropriate instructional tasks for the learner  
to work on. Micro-adaptivity refers to a system’s capability to adapt its scaf-
folding while the learner is working on a particular task. We compared an  
intelligent tutoring system that offers both macro- and micro-adaptivity (fully-
adaptive) with an intelligent tutoring system that offers only micro-adaptivity. 
Experimental data analysis revealed that learning gains were significantly high-
er for students randomly assigned to the fully-adaptive intelligent tutor condi-
tion compared to the micro-adaptive-only condition. 

Keywords: macro-adaptation, intelligent tutoring systems, assessment. 

1 Introduction 

We address in this paper the role of macro-adaptivity in ITSs. We study the role of 
macro-adaptivity in the context of conversational or dialogue-based ITSs (Rus et al.; 
2013). These ITSs interact with the students primarily through conversation although 
other elements, such as images associated with instructional tasks, may accompany 
the dialogue. Our target domain is conceptual Newtonian Physics and our target popu-
lation is college students taking an introductory course in Physics, (e.g. nursing, engi-
neering students, or even Physics majors). 

Currrent state-of-the-art ITSs are quite effective. An extensive review of tutoring 
research by VanLehn (2011) showed that the effectiveness of computer tutors (d = 
0.78) is as high as the effectiveness of human tutors. Furthermore, it was found that 
the effectiveness of human tutoring is not as high as it was originally believed (effect 
size d = 2.0) but much lower (d = 0.79). Relevant questions arise from these findings. 
Where does the effectiveness come from and how can it be further increased? The 
conventional wisdom of the last decade or so has speculated that as interactivity of 
tutoring increases, the effectiveness of tutoring should keep increasing. However, 
VanLehn (2011) reported that as interactivity of tutoring increases, the effectiveness 
of human and computer tutors plateaus. 

There are several aspects of state-of-the-art conversational ITSs that may explain 
their plateau in effectiveness. First, they do not emphasize macro-adaptation through 
selection of learner-specific content and tasks, which is needed when students begin a 
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tutoring session with different backgrounds. Second, while tutorial strategies are 
somehow understood, that is not necessarily the case for tutorial tactics that control 
tutors’ actions at micro-level, e.g. decisions about step in a solution to a problem 
(VanLehn, Jordan, & Litman, 2007). Third, existing conversational ITSs emphasize 
mostly cognitive aspects. Other aspects of learning, such as affect and motivation, are 
less considered. Researchers have started to address at least two of the above three 
aspects that could lead to further increases in ITSs effectiveness: tutorial tactics 
(VanLehn, Jordan, & Litman, 2007) and affect (Lehman et al., 2011). We investigate 
in this paper the role of the less studied aspect, i.e. macro-adaptivity. Therefore, our 
research complements existing efforts towards better effectiveness of ITSs.   

It should be noted that the role of macro-adaptation was noted early on (Brusi-
lovsky, 1992). Attempts to handle macro-adaptivity have been made but their exact 
impact on learning gains has not been pursued to the best of our knowledge. For in-
stance, while the intelligent tutor ANDES (VanLehn et al., 2005) relies on a student 
model which could be used for macro-adaptation, it was never used for this purpose 
(Conati, Gertner, & VanLehn. 2002; VanLehn et al., 2005). In fact, there is one ITS 
that focuses exclusively on macro-adaptation. Indeed, the mathematics tutor ALEKS 
offers macro-adaptation only. Once a task has been selected for a learner, the learner 
sees an identical worked-out solution to the task as any other student that was as-
signed the same task. That is, within a task all students see same information follow-
ing a one-size-fits-all approach (no micro-adaptivity). Interestingly, a recent study 
showed that ALEKS can offer significant learning gains comparable to other ITSs 
(Sabo, Atkinson, Barrus, Joseph, Perez, 2013). This result emphasizes the importance 
of macro-adaptation in intelligent tutoring.  

Our work here offers further support for the important role of macro-adaptation in 
tutoring. In particular, we offer a glimpse at the important role of macro-adaptation in 
conversational ITSs. To achieve our goal, we compared a fully-adaptive conversa-
tional ITS that offers both macro- and micro-adaptivity, i.e. a fully-adaptive system, 
with a micro-adaptive-only ITS. In the fully-adaptive ITS, instructional tasks for a 
particular student were selected based on the knowledge level of the student. We de-
fined four distinct knowledge levels based on a global analysis of the performance on 
the pre-test of our subject sample. Each individual student was then placed at a cor-
responding knowledge level based on his performance on the pre-test. The selection 
of instructional tasks for each knowledge level was based on the idea that tasks should 
target concepts that students in a knowledge level are just beginning to understand 
(“green shoots”, i.e. concepts ready to emerge) while students at the immediately 
higher (and even higher) knowledge levels already show proficiency (to them, these 
look like full-grown concepts). 

2 Data-Driven Macro-adaptation 

The basis of our data-driven macro-adaptation is a multiple-choice test that partici-
pants were given prior to undergoing training. The pre-test consists of 24 multiple-
choice questions from Force Concept Inventory (FCI; Hestenes, Wells, & 
Swackhamer, 1992), 8 multiple-choice questions from Alonzo and Steedle (2009; 
(A&S), and 7 multiple-choice questions of our own (total=39 questions). Students 
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took the pre-test 2-3 weeks before the actual training in order to mitigate tiring effects 
during the actual training session and for logistical reasons. The training session con-
sisted of about 1 hour of training with one of our ITSs, followed by 30 minutes of 
post-test taking (post-test was identical to the pre-test taken weeks before). 

Once the student responses (n=49) on the pre-test were available, we selected criti-
cal concepts that students were struggling with based on Item Characteristic Functions 
(Wang and Bao, 2010) and defined knowledge levels based on this analysis. There is 
an Item Characteristic Function for each pre-test question which indicates the proba-
bility of answering the question correctly for various levels of student proficiency. In 
our case, instead of using directly student proficiency levels as given by, for instance, 
an Item Response Theory (IRT) analysis, we relied on the overall pre-test score. Due 
to the small n, an IRT analysis would have not been possible in our case. The use of 
the overall pre-test score as an approximation of proficiency level is reliable as ex-
plained next. Wang and Bao (2010) conducted an IRT analysis of FCI and confirmed 
the correctness of the unidimensional assumption needed for IRT analysis, i.e. a factor 
analysis revealed that existence of a dominant factor explaining college students’ 
abilities to answer FCI questions. Furthermore, they showed a correlation of  
0.994 between the overall FCI score (#correctly-answered/total-questions) and IRT 
proficiency levels. 

In order to facilitate the selection of targeted concepts for training, we divided the 
space of proficiency levels into four knowledge levels: low knowledge, medium-low 
knowledge, high-medium knowledge, and high-knowledge. These knowledge levels 
offer a more fine distinction among students than the typical binary categorization 
(low vs. high knowledge) but less than the finest-grain categorization based on actual 
proficiency levels derived based on an IRT analysis (or its approximation through the 
overall pre-test score). Grouping the 39 proficiency levels into four groups (low, me-
dium-low, medium-high, high) was regarded as a good compromise between cost 
(authoring effort) and performance (effectiveness). Using this method, the following 
four proficiency/knowledge levels were obtained based on the average pre-test score 
(13.95/39) and standard deviation (3.97): low knowledge (score≤10; n=7), medium-
low knowledge (11≤score≤14; n=17), medium-high knowledge (15≤score≤18; n=14), 
and high knowledge (score≥19; n=11). For instance, students in the medium-low 
knowledge level had scores within one standard deviation below the average. Of the 
49 students who were present for pre-test, 30 participated in training. 

Once the knowledge levels were assigned, we proceeded with identifying the con-
cepts that should be targeted during training for each level group. The basic idea was 
to use the pre-test as a source of identifying concepts that are “green-shoots” (ready to 
emerge) for students at particular knowledge level. We have two criteria for identify-
ing promising “green shoots” for a particular knowledge-level: students at that level 
begin to show some understanding (e.g., 10-30% of students at that level answer  
correctly questions related to a concept) and students at higher levels master it (e.g., 
>80% of the students show profficiency). Both criteria are important because there 
may be misleading “green shoots.” Misleading “green shoots” are concepts that seem 
to emerge at one knowledge level (k; i.e., 10-30% of students answer correctly ques-
tions related to a concept) and are still in an emerging state (instead of becoming ful-
ly-grown concepts) for students at the higher-up level (k+1). We conclude that such 
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green-shoots are not yet ready for “full-growth” for students at level k because stu-
dents at the immediately higher level (k+1) are still struggling with such concepts. 

Once we detected the ready-for-growth “green shoots” for a knowledge-level, ap-
propriate instructional tasks were developed aiming at exposing students to the 
emerging concepts. There is one exception for the highest knowledge level for  
which there is no immediately higher level. That is, the second criterion of selecting 
concepts already mastered by students at the immediately higher knowledge level 
cannot be applied. In this case, we simply selected concepts with the highest learning 
potential. 

3 Experiment and Results 

As already mentioned, students attending a college-level conceptual Physics course 
were recruited for this experiment. This was an introductory course opened to all 
college students. The course provided the pre-requisite kind of training that seems to 
be important for experiments of the type we are describing here. Subjects were ran-
domly assigned to one of the two training conditions: micro-adaptive-only vs. fully-
adaptive. 
 
Condition 1 (Micro-adaptive Only). In this condition students interacted with a 
dialogue-based ITS that used a fixed, predefined set of instructional tasks for all stu-
dents. That is, there was a one-size fits all approach in terms of adapting instructional 
tasks to students. The set of predefined tasks included two tasks associated with each 
of the four knowledge levels defined for the other condition (uniform selection of 
tasks from all four knowledge levels) plus one additional task selected at random for a 
total of nine tasks (the number of tasks is the same in both conditions). Once working 
on a task (problem solving), students were scaffolded as needed through hints in the 
form of increasingly informative questions. That is, there was micro-adaptation. 
 
Condition 2 (Fully-Adaptive: Macro- and micro-adaptive): In this condition stu-
dents interacted with the fully adaptive system. The system would categorize students 
to different levels of understanding based on their pre-test score and then select ap-
propriate tasks that were deemed most conducive of learning at that level of under-
standing. Tasks were selected for each knowledge level using the data-driven method 
presented earlier. A total of nine tasks were selected for each knowledge level. Once a 
task was selected for the students to work on, the micro-adaptation within the task 
was identical to the micro-adaptation in the micro-adaptive only condition. 
The distribution of students into the four knowledge levels was: (Low=2, Medium-
Low=5, MediumHigh=5, High=2) for the Fully-Adaptive condition and (Low=5, 
MediumLow=3, MediumHigh=7, High=1) for the Micro-Adaptive condition. 
 
Procedure. After signing a consent form, students took a pre-test under supervision. 
Students were all present in the same room and were given the pre-test at the same 
time (on paper). After they took the pre-test (39 multiple choice questions), students 
were given the opportunity to sign up for free tutoring sessions. Students who chose 
to participate were given extra credit in the course. Students participated in training 
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sessions in a lab in small groups. Each student individually interacted with the tutor-
ing system over the Internet from a personal computer. Each training session was 
about 1.5-hour long and consisted of approximately 1-hour of training (9 Physics 
problems) followed by a 0.5-hour for a post-test. There was a time span of about 3 
weeks between the time students took the pre-test and the time they participated in 
training (and the post-test). Pre-test and post-test were identical. 
 
Results. A number of 30 students participated in the training experiment with 16 of 
them in the micro-adaptive-only condition and 14 of them in the fully-adaptive condi-
tion. There was no significant difference in pre-test scores (percentage correct on the 
test) between the two conditions (t[28]=-.343, p=.734). A mixed ANOVA analysis 
was conducted with a pre-post-test within-subjects variable and the condition as a 
between-subjects variable. The ANOVA revealed a significant test*condition interac-
tion (F(1,28)=6.793; p=0.015; see Figure 2). Adjusted post-test scores were compared 
between conditions by running an ANCOVA with the pre-test scores as covariate. A 
significant difference was found (F(1,27)=11.974; p=.002). A pre-post test compari-
son, revealed that the fully-adaptive condition had an effect size of (Cohen’s) d= 
0.786, r=0.366 (computed using means and pooled standard deviations). This is as 
good as human tutors. VanLehn (2011) reported an average human tutor effect of d= 
0.79 (across many domains). 

4 Conclusions 

The positive results of our study in favor of macro-adaptivity indicate that improve-
ments in this area hold the promise of increasing the effectiveness of tutoring systems 
beyond the interaction plateau if coupled with advanced tutorial tactics that boost 
micro-adaptation. 

One weakness of our method stems from the IRT-style analysis based on which we 
defined our knowledge levels. A standard IRT analysis treats each wrong answer, i.e. 
distractor in a multiple-choice question, on equal footing. There is plenty of evidence 
that students of different proficiency levels react differently to different distractors 
(Dedic, Rosenfield, & Lasry, 2010). We will address this issue in order to further 
improve the level of macro-adaptivity by exploring recent advances proposed by the 
science education research community, e.g. learning progressions (Rus et al., 2013), 
and using polytomous IRT analysis. 
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Abstract. A controlled study was conducted in-natura to evaluate the 
effectiveness of presenting passive self-explanation questions in a problem-
solving tutor on code-tracing. Data was collected from multiple institutions over 
three semesters using a tutor on selection statements: fall 2012-fall 2013. 
ANOVA and ANCOVA were used to analyze the collected data. After 
accounting for the additional time provided to test group students to answer 
self-explanation questions, test group was found to fare no better than control 
group on the number of concepts practiced, the pre-post change in score or the 
number of practice problems solved per practiced concept. It is speculated that 
this lack of difference might be attributable to self-efficacy issues, and that the 
features of tutors found to be effective in-vivo might need self-efficacy supports to also 
be effective in-natura. 

Keywords: Self-explanation, Programming tutor, Evaluation, Self-efficacy. 

1 Introduction 

Self-explanation, i.e., the constructive task of explaining to oneself has been studied 
in depth. One early study found that students develop a deeper understanding of dec-
larative knowledge from expository text when self-explanation is elicited [6]. Another 
study found that self-explanation improves problem-solving skills when students are 
prompted to spontaneously generate self-explanations while studying worked-out 
examples [7]. An early meta-study found that when given by rather than given to the 
student, elaborate explanation is positively related to individual achievement [16]. 
These studies of self-explanation informed the current work, in which, problem-
solving tutors that traditionally gave elaborate explanations to the student were ex-
tended by having them elicit self-explanation from the student when they present 
step-by-step explanation of the correct answer, as is done in worked-out examples 
(e.g., [3]). 

Self-explanation has been facilitated through typed text (e.g., [13]) or verbal proto-
cols that are manually coded for analysis (e.g., [10]). Many studies have used natural 
language for self-explanation, and various approaches have been used to categorize 
and analyze natural language self-explanations (e.g., [12]). Since self-explanations in 
natural language can be ambiguous, drop-down menus (e.g., [2,15]) have been used as 
a more objective and unambiguous mechanism for eliciting self-explanation in tutors. 
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Inasmuch as the student selects rather than constructs self-explanation, drop-down 
menus are a passive self-explanation mechanism. Nevertheless, one study found that 
active self-explanation did not lead to better overall learning than passive self-
explanation [1].  

The effectiveness of providing passive self-explanation questions in a problem-
solving tutor on computer programming was studied in the current work. As compared 
to earlier studies which were conducted in-vivo or in-ovo, this study was conducted in-
natura. Some of the conditions of the in-natura setup that differentiate this study from 
earlier studies conducted in the classroom [2,14,15] or laboratory [5] are: 

• Students used the web-based tutor usually on their own time, and not in a 
structured class environment where the activity would have displaced some 
other structured classroom activity. So, students spent their own discretionary 
time to use the tutor. This might motivate students to minimize the time they 
spend working with the tutor. 

• Students usually used the tutor unsupervised. So, the seriousness with which 
they engaged in the tutoring activity was internally rather than externally dri-
ven, i.e., the primary driver of their engagement was their self-efficacy [4].  

• Students usually used the tutor as an optional supplement to their course, or as 
an assignment in the course. When they used it as an assignment, often, they 
received credit for completing the tutoring activity, not for the score they re-
ceived during the tutoring activity. This might incentivize completion over  
excellence.   

Given these incentives and constraints, the purpose of this study was to evaluate 
whether and how much self-explanation questions would affect the learning of stu-
dents in-natura.  

2 Evaluation 

A tutor on selection statements (if and if-else) was used for this study. The tutor 
covers 9-12 concepts depending on the programming language (Java/C++/C#). The 
tutor presents code-tracing problems on these concepts, i.e., in each problem, it 
presents a program containing a selection statement and asks the student to identify its 
output. If the student submits an incorrect solution, the tutor presents feedback includ-
ing step-by-step explanation of the correct execution of the program in the fashion of 
a fully worked-out example.   

Self-explanation questions are presented embedded in the step-by-step explanation 
presented after the student submits an incorrect solution. Each self-explanation ques-
tion is a blank in the step-by-step explanation that the student must fill by selecting 
the correct answer from a drop-down menu. The questions deal with the semantics of 
the program, e.g., the value of a variable, the line to which control is transferred dur-
ing execution, etc. The questions are independent of each other, but answering them 
requires the student to closely read the step-by-step explanation/worked out example 
and understand the behavior of the program in question. As such, they prompt the 



250 A.N. Kumar 

learner to generate missing content information, as recommended for the design of 
self-explanation questions [9]. 

So as not to overwhelm the student, the tutor limits the number of self-explanation 
questions per problem to three. The student is allowed as many attempts as needed, 
but must answer the current question correctly before proceeding to the next question, 
and must answer all the questions correctly before proceeding to the next problem. 
For controlled evaluation, a version of the tutor was used that did not present any self-
explanation questions. This version of the tutor allowed the learner to advance to the 
next problem as soon as it displayed step-by-step explanation of the current problem.   

2.1 Protocol 

The tutor was configured to administer pre-test-practice-post-test protocol:  

• Pre-test: Students solved a pre-test that contained one problem per concept. If they 
solved it partially or incorrectly, they received feedback, including explanation of 
the correct answer, as could be found in a worked-out example. During this expla-
nation, test group was required to answer three self-explanation questions whereas 
control group was not presented any self-explanation questions.  

• Adaptive practice: Students solved problems on only those concepts on which 
they had solved pre-test problems incorrectly. On each such concept, they solved 
problems until their average score on the concept exceeded a minimum percentage 
(usually 60%). After each problem, they received feedback that explained the cor-
rect answer. Again, during this feedback, test group was required to answer three 
self-explanation questions whereas control group was not presented any self-
explanation questions.  

• Post-test: Students solved problems on only those concepts on which their average 
score exceeded the pre-set minimum during practice session.   

The entire session was limited to 30 minutes for control group; test group was al-
lowed 40 minutes to account for the time needed to answer self-explanation questions.  

The concepts on which a student solved the problem incorrectly during pre-test, 
scored the minimum percentage correctness during practice and solved a post-test 
problem are called practiced concepts. Each practiced concept on which a pre-post 
increase in score is observed is also a learned concept. For analysis purposes, the 
number of problems solved, the score per problem and the time spent per problem 
during pre-test, practice and post-test were considered on all the concepts as well as 
only the practiced concepts. Note that since self-explanation was elicited only when a 
student solved a problem incorrectly, test group students were guaranteed to have 
answered self-explanation questions during pre-test on all the practiced concepts. 

2.2 Data Collection and Analysis 

Controlled evaluation of selection tutor was conducted in-natura over three seme-
sters: fall 2012-fall2013. The selection tutor was made available over the web. Adopt-
ing schools were randomly assigned to control or test group each semester. When a 
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student used the tutor multiple times, data from only the first time the student solved 
all the pre-test problems was considered for analysis. Since self-explanation questions 
were presented only when a student incorrectly solved a problem, all the students who 
had scored 100% on the pre-test were eliminated. After this elimination, 395 students 
remained in the control group and 335 students in the test group.  

The mean number of concepts practiced by control group was 1.62, and by test 
group was 1.78. However, since control group was allowed 30 minutes to practice 
with the tutor and test group was allowed 40 minutes, univariate analysis of the num-
ber of concepts practiced was conducted with self-explanation as the fixed factor and 
total time spent as the covariate. The difference between the two groups was found to 
be significant [F(2,597) = 62.207, p < 0.001]: accounting for the extra time allowed, 
control group practiced 1.72 ± 0.11 concepts whereas test group practiced 1.662 ± 
0.12 concepts. Therefore, test group practiced significantly fewer concepts than con-
trol group. 

No significant difference was found in the average score per pre-test problem be-
tween control and test groups [F(1,729) = 1.018, p = 0.313]. So, the two groups were 
equivalent. Test group spent significantly more time per pre-test problem than control 
group [F(1,729) = 23.024, p < 0.001]: 88.39 ± 5.4 seconds for test group versus 70.82 
± 4.9 seconds for control group. This was to be expected since test group had to an-
swer self-explanation questions every time they incorrectly solved a pre-test problem.  

Since the number of practice problems solved depended inversely on the pre-test 
score and directly on the total time allowed, univariate analysis of the number of prac-
tice problems solved was conducted with self-explanation as the fixed factor and both 
pre-test average score and total time as co-variates. A significant difference was found 
between the two groups [F(3,663) = 169.166, p < 0.001]: control group solved 7.565 
± 0.56 problems whereas test group solved 6.657 ± 0.62 problems.  

No significant difference was found in the average score per practice problem be-
tween the two groups. As could be expected, test group spent more time per practice 
problem than control group since it had to answer self-explanation questions 
[F(1,663) = 77.429, p < 0.001]: 100.615 ± 6.26 seconds for test group versus 63.343 ± 
5.71 seconds for control group. 

Univariate analysis of the number of post-test problems solved was conducted with 
self-explanation as the fixed factor and total time as a co-variate. Test group solved 
significantly fewer post-test problems than control group [F(2,601) = 53.051, p < 
0.001]: 1.796 ± 0.14 problems for test group versus 1.844 ± 0.13 problems for control 
group. Test group also scored significantly fewer points per problem than control 
group [F(1,601) = 5.908, p = 0.015]: 0.911 ± 0.02 points for test group versus 0.946 ± 
0.02 points for control group. As could be expected, test group spent significantly 
more time per post-test problem than control group [F(1,597) = 3.961, p = 0.047]: 
60.136 ± 5.94 seconds for test group versus 52.157 ± 5.38 seconds for control group.  

Finally, no significant difference was found between the two groups on the pre-
post change on practiced concepts. However, test group solved significantly more 
problems per practiced concept than control group [F(1,597) = 3.91, p = 0.048]: 0.95 
± 0.02 problems per concept for test group versus 0.92 ± 0.02 problems per concept 
for control group.  
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2.3 Discussion 

In summary, control and test groups were found to be equivalent based on average 
score per pre-test problem. Yet, after accounting for the additional time provided to 
the test group, test group practiced with significantly fewer concepts than control 
group. Test group solved significantly fewer practice and post-test problems and 
scored significantly less per post-test problem than control group. The change in 
learning as measured by the pre-post change in score on practiced concepts was no 
different between the two groups. However, the rate of learning, as measured by the 
number of problems solved per practiced concept, was significantly faster for control 
group.  

These results indicate that provision of passive self-explanation did not lead to 
greater learning in-natura. The factors listed earlier differentiating the current study, 
i.e., that students used the tutor on their own time, unsupervised, and often only for 
completion credit might explain why results found in in-vivo experiments could not 
be duplicated in-natura - the incentive for students is not so much on learning as on 
completing the task at hand in as little time as possible. But, these factors are more the 
norm than the exception for the use of tutors, especially in higher education – once a 
tutor is deployed, the author of the tutor has no control over the conditions under 
which the tutor will be used by students, unless the tutor is made an integral part of a 
structured curriculum (e.g., as in Math tutors from carnegielearning.com). Providing 
self-efficacy supports within the tutor might counter these factors.  

The study of self-explanation is not an isolated event – in the past, in a study of ref-
lection in problem-solving tutors, no additional learning gain was found to accrue 
from the provision of reflection activity after each problem [11]. So, it is speculated 
that the features of tutors that were found to be effective in-vivo might need self-
efficacy supports to also be effective in-natura. What these self-efficacy supports are, 
will be the subject of future work.  
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Abstract. Peer-reviewing is a recommended instructional technique to 
encourage good writing. Peer reviewers, however, may fail to identify key 
elements of an essay, such as thesis and conclusion statements, especially in 
high school writing. Our system identifies thesis and conclusion statements, or 
their absence, in students’ essays in order to scaffold reviewer reflection. We 
showed that computational linguistics and interactive machine learning have the 
potential to facilitate peer-review processes. 

Keywords: Peer-review, high school writing instruction, discourse analysis, 
natural language processing, interactive machine learning. 

1 Introduction 

Writing is essential to communication, learning, and problem solving. However, poor 
achievement in high school writing is a major deficiency in the US educational 
system [1]. There appears to be no single best approach to teaching writing; however, 
some practices have been shown to be more effective than others.  

One of these practices, peer-review of writing assignments, is a commonly 
recommended technique to improve writing skills, especially in large class settings. 
Peer-review not only provides students with feedback, it also gives them the 
opportunity to read essays of other students and improve their reflective and 
metacognitive skills. Several studies have found that providing feedback leads to 
improvement in the reviewer’s writing [2], especially when the students provide 
constructive feedback [3] and put effort into the process [4]. 

While web-based peer-review systems solve logistical challenges of the review 
process, such as distribution of documents, providing rubrics and review criteria, and 
supporting successive drafts, they are still far from optimal [5]. In particular, 
reviewers may not focus on the core aspects of the text being evaluated [6]. In 
argumentative writing, a thesis statement plays a pivotal role: it communicates the 
author’s position and opinion about the essay prompt; it anchors the framework of the 
essay, serving as a hook for tying the reasons and evidence presented and anticipates 
critiques and counterarguments [7]. The thesis statement thus has a major influence in 
assessing writing skills [8]. A conclusion reiterates the main idea and summarizes the 
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entire argument in an essay. It may contain new information, such as self-reflections 
on the writer’s position [7]. Since thesis and conclusion statements both play a critical 
role in the overall argument and share similar linguistic elements, in this paper we 
focus on automatically identifying these two core aspects. 

Advances in computational linguistics enable systems to automatically and quickly 
analyze large text corpora. Shermis et al. [9] reviewed the features of the three most 
successful Automated Essay Evaluation (AEE) systems. These systems can analyze 
certain pedagogically significant aspects of essays as reliably as expert human 
graders. In particular, Burstein and Marcu [10] presented a machine learning model 
for detecting thesis and conclusion sentences in students’ essays. Later they extended 
their model into a discourse analysis system as a part of ETS Criterion® software for 
online essay evaluation [11]. Their model uses lexical, syntactic, and rhetorical 
features and a complex classification framework to label different discourse elements 
of the essays like introductory material, thesis statement, topic sentences, and 
conclusion. Writing Pal (W-Pal) [12], an Intelligent Tutoring System, uses another 
AEE methodology to offer writing strategy instruction, game-based essay writing 
practice, and formative feedback to high school writers. It uses the Coh-Metrix AEE 
[13] to analyze student essays and provide formative feedback. 

We hypothesize that AEE techniques can also improve computer-supported peer-
review by calling reviewers’ attention to particular features of an essay (e.g. thesis or 
conclusion statements) that deserve comment. Our AEE model is designed to be used 
as a part of the SWoRD peer-review system [14]. To the best of our knowledge, no 
one has used AEE techniques to support intelligent scaffolding of peer-reviews. We 
believe that our system has the potential to combine the strengths of both web-based 
peer review and automated essay evaluation systems. With an ability to identify thesis 
statements, the system will scaffold reviewers’ consideration of these issues posing 
such questions as: 
• SWoRD thinks [quoted text] is [pseudonym]’s thesis statement. Do you agree?  
• SWoRD cannot find a thesis statement for [pseudonym]’s paper. Can you?  
• Tell [pseudonym] to add a thesis statement. What thesis statement would you 

recommend? 
Since the papers we assess are mainly the first drafts of high school essays that often 

lacking in both style and structure, the peer-review context gives us a unique 
opportunity to evaluate and improve our model in practice. We are planning to use the 
model in an interactive machine learning [15] framework. Since we use the results of 
our model to scaffold peer-review, the model’s outputs will be evaluated first by the 
author of the paper, and then by a number of peer-reviewers. We can use these author 
and peer evaluations as feedback to improve the model, thus reducing the need for post 
hoc time-consuming manual text annotation. This exclusive advantage will enable the 
system to assess its performance in action and improve toward the desired behavior.  

2 Methodology 

It is important that reviewers attend to thesis statements: how well they are articulated 
and supported, and whether alternative interpretations/viewpoints are considered [16, 
17]. We find that many peer reviewers, however, do not attend to thesis statements 
and focus instead on minor claims or lower level writing issues, even with review 
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prompts that specifically asked reviewers to comment on the logic of the argument. 
When students did use the term thesis in their reviews, the comments were not always 
sufficiently specific. 

In this study we address two questions: 1) Can computational linguistic methods 
detect presence/absence of thesis and conclusion sentences in student essays in order 
to guide peer reviewers (i.e., at the essay level)? 2) How well does the model 
distinguish candidate thesis or conclusion statements from other sentences (i.e., the 
sentence level)? We evaluate our model both at the essay level and sentence level and 
compare the performance with a positional baseline and manually annotated essays. 

We used 432 essays from 8 writing assignments in 2 high school courses on cultural 
literacy and world literature. We divided the essays into two sets, one for training and 
development purposes including 6 assignment prompts with 326 essays and the other 
for test purposes including 2 assignment prompts and 106 essays. We used the training 
set to build our model and extract the most predictive linguistic features of thesis and 
conclusion statements in student essays. Then we tested the performance of our model 
on the unseen test set. 

Six human judges annotated our essays, with an instruction manual based on the 
scoring guidelines and sample responses of AP English Language and Composition 
courses. Each essay was coded by at least two human judges, who were asked to 
identify sentences that were candidate thesis or conclusion statements and to rate the 
candidate sentences from 1 to 3 (i.e., 1: vague or incomplete, 2: simple but acceptable, 
3: sophisticated), based on criteria in the instruction manual. Table 1 shows the 
distribution and example sentences in each category.  

Table 1. Distribution and example sentences from different ratings categories 

Rating (%) Example Reason 

1- Incomplete (%15) There are contributing factors of our violent 
society but there are some possible solutions.  

Too vague 

2- Simple (%39) As a result of gender roles in Africa, life for 
women is extremely challenging. 

Does not mention 
the challenges. 

3- Sophisticated (%46) Including music programs in schools is 
beneficial because music improves students’ 
academic, social and emotional lives. 

Provides different 
reasons for the 
central claim. 

We used Cohen’s Kappa [18] to evaluate the agreement between judges on both 
sentence level (whether a sentence is a thesis/conclusion statement) and essay level 
(absence/presence of thesis). Kappa was calculated for all 8 writing assignments. If 
Kappa fell below 0.6, we asked the judges to review the instruction manual and redo 
the coding until their agreement was acceptable. 

We used an iterative process to find the most predictive features for identifying 
thesis and conclusion sentences in essays. Starting with 42 basic computational 
linguistic features inspired by [11], such as positional, syntactic, and cue term 
features, we used several feature selection algorithms to select the most predictive 
features. We tried different combinations of the predictive features and also added 
some semantic and rhetorical structure features to improve the model’s accuracy. 
Finally, we picked 19 features in three categories that were most predictive. 
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Positional Features: We used 3 positional features: paragraph number, sentence 
number in the paragraph, and type of paragraph (first, body, and last paragraph). We 
also used the same positional baseline as [11] in order to compare our results with 
their model. The positional baseline predicts all sentences in the first paragraph as a 
thesis statement and all sentences within the last paragraph as conclusion sentences.  

Sentence Level Features: We used a number of sentence level features based on the 
syntactic, semantic, and dependency parsing of the sentence. Based on our feature 
selection process, prepositional and gerund phrases are highly predictive of thesis and 
conclusion sentences. The number of adjectives and adverbs within the sentence is 
also highly correlated with a sentence being a thesis or conclusion statement. A set of 
frequent words was also predictive for thesis and conclusion sentences (e.g., 
“although”, “even though”, “because”, “due to”, “led to”, “caused”), and we used the 
number of occurrences of these words in a sentence as a feature in our model.  

Essay Level Features: We used 4 essay level features: number of keywords among 
the most frequent words of the essay, number of words overlapping with the 
assignment prompt, and a sentence importance score based on Rhetorical Structure 
Theory (RST) adapted from [19]. Table 2 shows the top 5 most predictive features for 
each category based on the Gini Coefficient [20] attribute selection method. This 
method considers the prior distribution of the classes and looks for the largest class in 
the training set (in our case sentences that are not the thesis) and tries to isolate it from 
other classes, which is suitable based on the nature of our classification task. 

Table 2. Top 5 most predictive features for each category based on Gini Coefficent 

Ranking Thesis Conclusion 
1 Last Sentence  Last Paragraph 
2 First Paragraph Keyword Overlap 
3 Common Words Common Words 
4 Keyword Overlap Number of Adjectives 
5 Number of Noun Phrases Number of Noun Phrases 

3 Results and Discussion 

After a data cleaning and pre-processing step, we created feature vectors for all of the 
sentences in the training set essays. Our target class had 3 labels: “thesis”, 
“conclusion”, and “other”. We considered sentences rated 2 and 3 as thesis and 
conclusion statements and put the ones rated 1 (incomplete) into the “other” category. 
We evaluated our model on two levels: sentence level and essay level, and compared 
its performance against the positional baseline and human annotated data. 

We used 3 classifiers in RapidMiner [21] in order to develop the sentence level 
models: Naïve Bayes, Decision Tree, and Support Vector Machine (SVM). We used 
10-fold essay stratified cross validation in order to evaluate our models on sentence 
level. In order to evaluate the models on essay level, we aggregated the results of the 
sentence level model in order to predict whether an essay contains a thesis/conclusion 
statement or not. Table 3 shows the performance of the 3 classifiers based on average 
Precision (P), Recall (R), and F-measure (F) among all 10 rounds of cross-validation. 
We use F, the harmonic mean of P and R, as our main performance evaluation metric.  
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Table 3. Average performance of 3 models and the positional baseline on development set  

 Thesis Conclusion Essay 
Classifier P R F P R F P R F 
Positional Baseline 0.53 0.89 0.50 0.51 0.89 0.46 0.61 0.78 0.54 
Naïve Bayes 0.62 0.76 0.68 0.57 0.72 0.62 0.71 0.66 0.67 
Decision Tree 0.75 0.68 0.71 0.62 0.43 0.51 0.75 0.71 0.73 
SVM 0.85 0.66 0.74 0.67 0.41 0.51 0.69 0.64 0.66 

In order to indicate how well the models generalize to new essays, we evaluated 
our models on an unseen test set. Table 4 shows the performance of 3 models. 

Table 4. Average performance of 3 models and the positional baseline on unseen test set  

 Thesis Conclusion Essay 
Classifier P R F P R F P R F 
Positional Baseline 0.58 0.88 0.57 0.58 0.84 0.55 0.58 0.84 0.55 
Naïve Bayes 0.70 0.79 0.74 0.65 0.69 0.67 0.63 0.65 0.64 
Decision Tree 0.82 0.84 0.83 0.49 0.75 0.59 0.75 0.73 0.74 
SVM 0.82 0.65 0.72 0.60 0.54 0.56 0.62 0.58 0.60 

The results show that all three models outperform the positional baseline. While 
the SVM classifier had the best precision on both development and test set at the 
sentence level, the Decision Tree classifier achieved higher recall and better overall 
performance at the essay level. Since we are not using the same training and test set as 
in [11], it is not valid to compare the exact value reported for P, R, and F. However, 
because we use the same positional baseline, and the results of the baseline can be 
considered as a rough estimate of the quality of the essays, we can compare the 
systems in terms of improvement over the baseline. In the thesis detection category, 
their highest reported improvement (regarding F) over the positional baseline is 0.22 
while our best improvement is 0.24 on the development set and 0.26 on the unseen 
test set. In the conclusion detection category, their highest reported improvement is 
0.23 while our best improvement is 0.16 development set and 0.12 on the unseen test 
set. In general, we have low performance in the conclusion category because the 
essays in our training set are first drafts of writing assignments and the students tend 
to spread the summary of their arguments across multiple sentences and our current 
model only works on the sentence level.  

In conclusion, our study shows that even with a relatively small corpus of essays, a 
computational linguistic model can identify core aspects of students’ essays. Our first 
priority was to detect the presence of thesis or conclusion statements within the student 
essays to provide instant feedback to authors upon submission. The second priority was 
to identify the particular sentences, to direct reviewers’ attention so that they focus some 
comments on how well the author has framed and supported his/her argument.  

Our next step is to embed our model into the SWoRD peer review system and 
evaluate its impact on the quality of student reviews. The peer-review nature of 
SWoRD gives us a unique opportunity benefit from both author and peer feedbacks in 
order to evaluate and refine our model while being used. We also plan to extend the 
model to detect other core elements of student essays such as topic sentences and 
supporting materials in order to provide feedback and scaffolding. 
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Abstract. Diagrammatic models of argument have grown in promi-
nence in recent years. While they have been applied in a number of
tutoring contexts, it has not yet been shown that student-produced di-
agrams can be used to effectively grade students or predict their future
performance. We show that manually-assigned diagram grades and au-
tomatic structural features of argument diagrams can be used to predict
students’ future essay grades, thus supporting the use of argument di-
agrams for instruction. We also show that the automatic features are
competitive with expert human grading despite the fact that semantic
content was ignored in automatic processing.

Keywords: Argument Diagrams, Essay Grading, Argumentation,
Educational Datamining, Writing, Automatic Grading.

1 Introduction

Argumentation is an essential skill, particularly in scientific domains where stu-
dents must articulate and defend clear, testable, hypotheses and frame or rechar-
acterize research problems in order to solve them. Argumentation is difficult for
novices who often fail to comprehend arguments or formulate coherent new ones.
Students’ argumentation skills are often masked by their speaking and writing
abilities, or lack thereof, which can limit the effectiveness of expert assessments
and peer review. Despite this, argumentation is not always taught explicitly,
even in domains such as law where its importance is widely acknowledged. Ar-
gumentation is also a challenging domain for AI as real-world arguments are
open-ended, typically presented orally or as written text, rely on domain-specific
conventions, and are often largely implicit. Thus argumentation presents unique
and important challenges for Intelligent Tutoring Systems (ITSs).

Diagrammatic models of argument have been growing in prominence in re-
cent years as theoretical models, practical tools, and educational interventions.
The models make argument schema explicit, reifying the essential components
and the structured relationships between them as a graph. This reification both
makes the structure salient and imposes productive constraints on novices [11].
This unfamiliar structure, however, can be unfamiliar and challenging to master,
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Fig. 1. A segment of a student-produced LASAD diagram representing an introductory
argument. It contains a central claim node surrounded by citation nodes. The isolated
node is a hypothesis that has not been integrated into the argument.

thus imposing additional cognitive load which can, in turn, inhibit performance
[10]. Equally importantly, argument diagrams are amenable to computer pro-
cessing. Making the structure of the argument explicit enables programmatic
assessment and feedback. Argument diagrams have been used in a variety of
domains including science [11], law [7], and philosophy [2]. A sample argument
diagram of the type used in this study is shown in Figure 1.

While argument diagrams have shown some success in tutoring contexts their
overall performance has been mixed (see [9]) and important open questions re-
main. In particular, it has not yet been shown that student-produced argument
diagrams are empirically-valid. That is, we have not yet shown that the diagrams
can be graded and that the features of those diagrams can be used to predict
subsequent performance on natural argumentation tasks such as essay writing.
Some prior studies (e.g. [1]) have included qualitative analyses of existing dia-
grams but that has not been connected to subsequent student performance. In
more recent work we have shown that some a-priori features of student dia-
grams (e.g. incorrect arcs) can be used to predict students’ argument compre-
hension [6]. That work, however, focused solely on note-taking diagrams where
students were annotating a shared example and did not consider their ability to
make novel arguments. In subsequent work we showed that general features of
student-produced arguments (e.g. size, length of summative text) could be used
to predict subsequent assignment grades. Those grades, however, reflected crite-
ria such as students’ presentation and the depth of their background research as
well as argument quality. Nor did the study involve grading the diagrams them-
selves. Thus while argument diagrams have been used in ITSs, they have been
promoted chiefly as pragmatic or effective interventions that improve student
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performance, not diagnostic ones. Much like a cricket player cross-training with
a soccer game, the practice is helpful but doesn’t show off your bowling.

This question of diagnosticity is important, however, both for theoretical and
practical reasons. If one of the primary benefits of argument diagramming is
the reification of argument structures then the diagram should reflect natural
practice. If, however they are not diagnostic, then explicit scaffolding is not
a useful explanation. Similarly, if the diagrams are not diagnostic then it will
be difficult to convince often skeptical domain experts to use them in place of
traditional representations. Moreover, if the diagram structure is not diagnostic
it is not clear that the skills of argument diagramming are actually transferable
to more traditional domains. Our goal in the present study is to address these
questions by testing whether or not student-produced argument diagrams can be
used to predict subsequent essay grades. We will test the following hypotheses:

Ha. Manual diagram grades can be used to predict subsequent essay grades.
Hb. Automatic diagram features can be used to predict subsequent essay grades.
Hc. Feature-based predictions can be competitive with manual grade predictions.

2 Methods

We tested these hypotheses by means of a grading and machine learning study
conducted with an exploratory dataset. The data consisted of a set of paired
diagrams and essays collected from a course on psychological research methods
(RM) held at the University of Pittsburgh in 2011. The diagrams were produced
using LASAD and were graded using a set of parallel grading rubrics. We also
defined a set of a-priori diagram rules that flagged pedagogically-relevant fea-
tures. We then applied greedy linear regression to induce a set of predictive
models connecting diagram features and grades to the essay grades.

LASAD is an online diagramming toolkit that supports complex diagram
ontologies including node and arc types, subfields, and optional text links [3].
The ontology used here has 8 types: (nodes) hypothesis, claim, citation, and
current-study; (arcs) supporting, opposing, undefined, and comparison. All con-
tained flexible text fields for semantic information such as explanations of the
relationships or citation information. A sample diagram is shown in Figure 1.
While LASAD has an optional help system (see [8]) it was not used here.

RM is a threshold course that covers ethics, study design, and analysis. It is
subdivided into 9 lab sections. Students in each section are required to complete
2 empirical research projects. Each section collaborates on the general study
design and data collection. Students author their research reports independently
or in teams of 2-3. The reports follow a clear pattern. The students are instructed
to present their overall argument in the introduction section stating their general
research question, hypothesis, claims, and citing relevant work. The subsequent
sections are expected to support this basic structure. In non-study years the
students are given lectures on hypothesis formation and selection of relevant
citations but are not always given explicit instruction in argument formation.
That is done implicitly through readings and discussion.
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The study was integrated into the first writing assignment. Students were
given an introductory lecture on argumentation, argument diagrams, and
LASAD. They were then tasked with reading 1-3 published research papers
and diagramming the arguments found using LASAD. They then used LASAD
to diagram their own argument before writing their essays. Diagramming began
in class and continued as a homework assignment with students submitting the
final diagram and essay for grading. Further details may be found in [4].

The diagrams and essays were graded by an independent grader using a pair
of parallel grading rubrics, one for diagrams and the other for essays. The grader
had served as a TA in the course in 2012 where LASAD was used again. The
rubrics each contained 14 questions, 11 of which focused on specific features of
the arguments such as the use of citations and the quality of the hypothesis.
The rest focused on the gestalt features of coherence, persuasiveness, and overall
quality. 13 were graded on a scale of -2 to 2 in 1

2 point increments. G/E.14
(Arg-Quality) was graded on a scale of -5 to 5 in 1

2 increments given its broader
scope. These scores were normalized to the range of 0 to 1 for analysis.

We tested the inter-grader reliability of the rubrics in a separate study [4].
In that study we found that suitably-trained graders can achieve statistically-
significant or marginally-significant agreement on all of the diagram grades and
most of the essay grades. In the present study we focused on the 5 features
for which both criteria had statistically-significant agreement. 4 of these were
specific criteria: (E.01 (RQ-Quality)) the quality of the research question; (E.04
(Hyp-Testable)) whether or not the hypothesis is testable; (E.07 (Cite-Reasons))
whether or not the author explains the relevance of the cited works; and (E.10
(Hyp-Open)) whether or not the author defends the novelty of the research hy-
pothesis. The remaining question, E.14 (Arg-Quality), addressed gestalt quality.

In other diagram-based systems such as LARGO [7], students are provided
with automated advice driven by a-priori rules that detect violations of an ideal
argument model or assignment-specific constraints. In this study we defined a
set of 77 diagram features that we use for basic evaluation. 34 of these features
were simple general features of the type examined in [5] such as the order and
size of the diagram. The remaining 43 features were complex features that detect
important components of the argument, such as pairs of counterarguments, and
violations of argument constraints, such as claims without supporting citations.

We developed five predictivemodels for each essay question:Mbaseline is a static
model that guesses the most common grade. Mdirect is a simple linear model of
the formEi = αi+βiGi+ε that predicts each essay grade from the corresponding
graph grade. Mgrade, Mfeature, and Mcombined are linear models that predict the
essay grade based upon a subset of the diagram grades, diagram features, or both.
These were induced via a two-pass process that first eliminates multicollinear fea-
tures and then iteratively constructs predictive models based upon the RootMean
Squared Error (RMSE). RMSE is an empirical measure of model error calculated
under cross-validation. RMSE gives the absolute value of the expected error of
each prediction. The candidate models were selected using a greedy hill-climbing
approach. They were trained using least-squares regression with RMSE scores
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calculated using 10-fold cross-validation with balanced random assignment. The
final RMSEs below were calculated via leave-one-out cross-validation. For more
details on the algorithm see [4].

3 Results

We collected and graded 105 unique diagram-essay pairs. 74 were authored by
a team, 31 by individuals. The model performance is shown in Table 1. On
every question Mcombined outperformed Mfeature which outperformed Mgrade.
Mgrade met or beatMdirect which beatMbaseline. On question E.10, for example,
the baseline RMSE was 0.463, or 1.8 points out of 5. Mdirect and Mgrade beat
Mbaseline by 0.12, while Mcombined beat it by 0.152 or more than 1

2 a point out
of 5. On question E.14 Mcombined < (Mgrade ≈ Mfeature) < Mdirect < Mbaseline

with Mcombined beating the baseline by 0.043 or almost 1
2 a point out of a range

of 11. Therefore both the expert grades (Mdirect & Mgrade) and diagram features
(Mfeature) were better predictors of students’ subsequent essay grades than the
baseline model Mbaseline while the combined models (Mcombined) beat the others
on every question.

4 Analysis and Conclusions

Proponents of argument diagrams, including ourselves, have long argued that
they can be used for both effective and diagnostic tutorial interventions. Our
goal in this study was to determine whether or not student-produced argument
diagrams can be used to predict subsequent essay grades. In this work we showed:
that manual diagram grades (Mdirect & Mgrade) were better predictors of the
essay grades than the baseline model (Mbaseline) thus validating hypothesis Ha;
that models based upon diagram features (Mfeature) also beat Mbaseline thus
validating Hb; and that the grade and feature-based models were competitive
(Mfeature ≤ Mgrade) thus validating Hc. This is surprising given that the human
grader was able to evaluate the semantic content of the diagram fields while
the automatic models did not. Therefore argument diagrams can be used for
diagnostic educational interventions and this form of empirical modeling can be
applied fruitfully even where natural language understanding is unavailable.

Table 1. RMSE scores for the five predictive models for the essay grades. The scores
were calculated using leave-one-out cross-validation.

Question Mbaseline Mdirect Mgrade Mfeature Mcombined

E.01 (RQ-Quality) 0.344 0.311 0.311 0.29 0.284
E.04 (Hyp-Testable) 0.237 0.232 0.232 0.212 0.202
E.07 (Cite-Reasons) 0.27 0.248 0.245 0.243 0.223
E.10 (Hyp-Open) 0.463 0.339 0.334 0.316 0.311
E.14 (Arg-Quality) 0.245 0.214 0.206 0.207 0.202
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Interestingly, while Mgrade and Mfeature were competitive, Mcombined domi-
nated on every problem. Therefore either the semantic content was not used by
the grader, contrary to instructions, or it conveyed different information than
the diagram structure but conferred no substantive advantage. We plan to ad-
dress this in future work and to test both the generality of these models and
their use in ITSs to support individuals, peers, and instructors. In LARGO, for
example, help is provided upon request and students are free to ignore it. Given
these results, we plan to test whether help in argumentation should be compul-
sory for lower-performing students and then faded over time. We also plan to
test whether diagnostic models such as these can be used to improve peer re-
view and expert instruction by helping to rank students by skill level, to match
appropriate mentors, and to flag students in need of expert guidance.
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Abstract. With an increasing focus on science and technology in ed-
ucation comes an awareness that students must be able to understand
and integrate scientific explanations from multiple sources. As part of
a larger project aimed at deepening our understanding of student pro-
cesses for integrating multiple sources of information, we are developing
machine learning and natural language processing techniques for evaluat-
ing students’ argumentative essays. In previous work, we have focused on
identifying conceptual elements of the essays. In this paper, we present
a method for inferring the causal structure of student essays. We used
a standard parser to derive grammatical dependencies of the essay and
converted them to logic statements. Then a simple inference mechanism
was used to identify concepts linked to syntactic connectors by these
dependencies. The results suggest that we will soon be able to provide
explicit feedback that enables teachers and students to improve compre-
hension.

Keywords: Reading, Argumentation, Natural language processing, Ma-
chine learning.

1 Introduction

Recent science and literacy standards are increasing the demand for students to
use multiple sources of information to understand explanations for phenomena
and to use data to support these explanations. Thus, there is critical need for
methods of evaluating students’ explanations and argumentative support based
on scientifically important criteria (e.g., coherence, completeness, and accuracy).

A scientific explanation, also called a causal chain, is a statement that makes
clear how one or more factors lead to an outcome. For example, in Figure 1
below, the to-be-explained outcome is an “increase in recent average global tem-
peratures”, and there are two separate initiating factors (fossil fuel consumption
and deforestation). It is expected that students need practice to become more

� The assessment project described in this article is funded, in part, by the Institute
for Education Sciences, U.S. Department of Education (Grant R305G050091 and
Grant R305F100007). The opinions expressed are those of the authors and do not
represent views of the Institute or the U.S. Department of Education.
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facile using an explanation schema to guide both writing and reading. It would
be very helpful for teachers to have a tool that supports student practice with
feedback to help them develop this explanation schema. As a first step, we are
examining whether we can automatically identify the causal structure of student
essays in two different scientific domains.

This paper describes previous research done on this task, and then presents
more fully the educational context of the current work. Then we describe our
ongoing research in using machine learning to identify the conceptual elements
of essays, and our initial efforts toward inferring causal structure.

2 Previous Research

Although causal explanations have long been a focus for science education [15,3,
for example], very little research has been done to automatically identify causal
connections in student essays, but there has been some research with other types
of texts. In 1987, Cohen [4] laid out a theoretical framework encompassing the
many different challenges that need to be solved to fully understand argumenta-
tive discourse. Thirty years later, a SemEval-2007 workshop focused on sentences
known to have one of seven different types of relations, including causation [7].
Accuracy in distinguishing betweeen the seven types ranged from 50 to 76%.

More recently, Rink et al. developed a system focused on identifying the pres-
ence or absence of a causal relationship within a sentence [12]. They used a graph
representation of the sentence and trained a machine learning technique on 700
sentences (30% with a causal relation) to distinguish graphs with and without
causal connections. Their best F1 score was 0.39. This was on news texts rather
than student essays but clearly demonstrates the difficulty of the task.

3 Educational Context

To deepen our understanding of students’ comprehension processes, we created
two document sets describing the causes of two scientific phenomena: global
warming and coral bleaching. Each document set was based on a causal model
of the scientific phenomenon and used information from reputable websites (e.g.
the United States Geological Survey). Each document contributed only a par-
tial causal chain. Students were given a document set and asked to write an
essay explaining the phenomenon using specific information from the documents
to support their conclusions and ideas. A total of 183 middle (84%) and high
school (16%) students wrote essays on the global warming document set, and
105 middle (73%) and high school (27%) students wrote essays on the coral
bleaching document set.

As mentioned above, Figure 1 gives a graphical representation of the space
of causal connections that students might make from the documents to the
conclusion in the global warming domain. Thin black arrows indicate explicit
connections made in the documents. Dotted lines indicate implicit connections
— inferences that students might make between concepts. Red lines represent
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Fig. 1. Causal model with feedback for Global Warming

“counters”, for example, “Normal temperature shifts happen but our use of cars
and factories changes things.” This graph also provides an example of how au-
tomatic assessment of the essays might be used to provide feedback to students.
The thick black arrows mark explicit connections that were identified in the
student’s essay. The thick blue arrow shows where the student made a causal
connection to the conclusion, but skipped some intermediate causal links. For
explicit feedback, the student could be shown the graph to provide an indication
of what was found and what was missing from her essay. For less guiding feed-
back, the student could be told that she has identified some links in the causal
chain, but has omitted others.

Humans evalated the essays to identify which causes (nodes in Figure 1) were
explicitly linked to the target effect (here, increase in global temperatures). Inter-
rater reliability was high (κ = 0.85), and the method was useful in discriminating
essays that provided coherent and complete answers. There was a difference in
annotation for the two sets of essays. The global warming essays were annotated
at the sentence level. Each sentence was associated with a set of codes indicating
the concepts and causal connections found in that sentence. The coral bleaching
essays were annotated later with a more sophisticated tool (brat.nlplab.org),
identifying which specific words in the essay were associated with each concept
and connection.

4 Concept Identification

In previous work, we evaluated several different techniques for identifying con-
ceptual material (i.e., the nodes in the graphs) in student essays, including simple
pattern matching, latent semantic analysis (LSA), and support vector machines
(SVMs) [8,9,10]. In general, we have found that the machine learning approaches
do best at identifying high-level claims and specific details about the claims. Stu-
dent sentences associated with these items tend to bear a striking similarity to

http://brat.nlplab.org


Toward Automatic Inference of Causal Structure in Student Essays 269

the original texts that they came from.1 The machine learning techniques have
had a much more difficult time identifying conceptual material related to infer-
ences between documents. Examples of these items are rather infrequent in the
students’ essays (explaining why we need a system like this). They also combine
information (and, therefore, words) from different documents and are thus less
similar to the original sources [9]. We have recently begun evaluating a new ma-
chine learning approach, Deep Learning [13,1,5], which uses multilayer neural
networks, but details of this approach are omitted due to space limitations.

5 Inferring Causal Connections

Once the conceptual content of an essay has been identified, the next step re-
quired for automatic structure evaluation is to find where the essay makes explicit
connections between the concepts. For this step, it is clear that a “bag-of-words”
approach would be severely handicapped because it would not be able to take
advantage of the critical information provided by the linguistic structure of the
text. To capture this structure, we applied the Stanford Compositional Vector
Grammar parser [14] from Stanford CoreNLP (v.3.3.1) to tokenize and parse the
essays and identify coreference relations [11].

We were particularly interested in taking advantage of the dependencies that
the parser identifies in the text [6]. Dependencies are textual relations that are
extracted from the parse tree, connecting different components. For example,
the sentence, “The fat dog was chased by a cat,” produces (among others) de-
pendencies indicating that “fat” is an adjectival modifier for “dog”, “dog” is
the passive nominal subject of “chased”, “cat” is the agent of “chased”, and
“chased” is the root of the sentence.

To enable inference of causal connections, we transformed the dependencies
into clauses in Prolog, because Prolog seems especially well suited for specifying
complex constraints. To evaluate the identification of connections independently
from the identification of concepts, we started from the human annotations of
concepts and connectors,2 which were also converted into Prolog clauses.

A total of five Prolog rules were used to do the inference. Three of them handle
different forms of representation. One of the two main inference rules searches
for dependencies between connectors and causes, looking at three dependency
types. The other rule looks for dependencies between connectors and results,
looking at 7 types of dependencies.

1 In fact, 25 – 30% of the student essay sentences had an LSA cosine greater that 0.75
with some sentence from the relevant document set. Ironically, this facilitates our
job of classifying the student sentences. The effect on student learning, however, is
subtle (analysis forthcoming).

2 We do not include connectors as concept codes, but they are a critical part of identi-
fying causal relations. Fortunately, students use fairly standard connectors. In coral
bleaching, for example, of 134 coded connectors, 32 were “because (of)” and 15
had some variation of “cause”. The rest, though less frequent, followed standard
conventions.
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Using this minimal inference mechanism, we calculated Recall, Precision, and
F1 scores, based on the whether the inferred causal connections matched the
annotated ones. On the coral bleaching essays, the scores were: Recall = 0.26,
Precision = 0.59, and F1 = 0.36. On the 30 (out of 183) global warming essays
we have fully annotated, this method achieved Recall = 0.37, Precision =
0.53, and F1 = 0.44. At this early stage, the results are very encouraging. This
technique outperformed the most similar previous research on inferring causal
connections (although we did have the advantage of pre-identified concepts and
connectors). Also, given that the Precision scores are high relative to the Recall
scores, more sophisticated inference rules should be able to find items that our
simple rules missed without producing too many false alarms.

6 Conclusions and Future Work

Clearly the work presented here is in its early stages, but the results so far have
been extremely encouraging. Even though we have artificially boosted our results
by starting with human-annotated concept codings, our very simple mechanism
for identifying causal relations has already outperformed previous approaches.
We are pursuing several different directions that should bring us closer to our
ultimate goal of fully automatic causal relation identification so that we can
provide reliable feedback to teachers and students.

With respect to concept classification, greedy sequence classification [2] could
be used where a sequential classifier is trained to incorporate the tag it predicted
for the previous word when tagging the next word. Neural Network Language
Models (NNLMs) have recently become very popular due to their ability to learn
a distributed representation for words at the same time as creating a language
model to predict the likelihood of a sequence of words [1]. However little work has
been done to investigate their use in creating sequential classifiers. An NNLM
could be used to create a sequential classifier that predicts the concept tag for
the central word in a word window instead of predicting the likelihood of the
central word.

Another critical component for identifying causal relations is anaphora reso-
lution. Students often use pronouns to refer to previously mentioned concepts.
In the coral bleaching domain, 10% of the identified causal relations involved a
pronominal reference. Because we included the human annotations for references
in our evaluation, we were able to correctly identify a comparable percentage of
causal relations with and without anaphora. As mentioned above, the Stanford
CoreNLP parser returns coreference relations in addition to the dependencies.
If these are reliable for student essays, they should allow us to successfully au-
tomate identification of relations across sentences.

The current inference rules for identifying causal relations are quite simple.
It is quite likely that the hit-rate of these rules can be significantly improved by
adding more dependencies, although it may well be that additional constraints
are necessary to avoid over-generalization.We will also explore the use of machine
learning techniques like Rink et al. used to automatically derive new inference
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rules [12]. Finally, we are collecting additional student essay data in these and
in new scientific explanation domains. This will support cross-domain validation
of our techniques, to ensure that they can produce robust results.
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Abstract. A peer review system that automatically evaluates student
feedback comments was deployed in a university research methods course.
The course required students to create an argument diagram to justify a
hypothesis, then use this diagram to write a paper introduction. Diagram
and paper first drafts were both reviewed by peers. During peer review,
the system automatically analyzed the quality of student comments with
respect to localization (i.e. pinpointing the source of the comment in the
diagram or paper). Two localization models (one for diagram and one
for paper reviews) triggered a system scaffolding intervention to improve
review quality whenever the review was predicted to have a ratio of lo-
calized comments less than a threshold. Reviewers could then choose
to revise their comments or ignore the scaffolding. Our analysis of data
from system logs demonstrates that diagram and paper localization mod-
els have high prediction accuracy, and that a larger portion of student
feedback comments are successfully localized after scaffolded revision.

Keywords: Peer review, review localization, scaffolding, evaluation.

1 Introduction

While peer review is a promising approach for helping students improve their
writing, peer feedback can be of mixed quality. For example, prior work [6,5] has
shown that feedback is more likely to be implemented in a revision when the
review is localized, that is, pinpoints the location of the problem mentioned in
the feedback (as shown in the examples in Fig. 1). As a first step towards helping
students improve the quality of their feedback, natural language processing and
machine learning have been used to build models for automatically detecting
whether peer reviews contain localization and other desirable feedback proper-
ties [2,11,8,7]. To date, however, such models have typically been evaluated only
intrinsically (i.e. with respect to predicting gold standard manual annotations),
rather than extrinsically with respect to a real-world task (e.g. being incorpo-
rated into a peer review system to improve review quality). In addition, while
intrinsic evaluations have shown that a predictive model can yield high accuracy
when trained and tested on data from the same peer-review assignment, how the
model performs on unseen data sets has not yet been examined. To address these
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issues, we have conducted both an intrinsic and extrinsic evaluation of review
localization in a classroom setting. First, we followed our previous work [11,7]
to implement models for predicting localization in comments of paper and dia-
gram reviews, and integrated them into SWoRD [3], a web-enabled peer review
system.1 Next, we designed and implemented a system scaffolding intervention to
improve students’ use of localization when they provide feedback to each other.
In our intervention, scaffolding is triggered whenever a review is predicted to
have a ratio of localized comments less than a threshold. Students (as reviewers)
can then choose to either revise their review comments or ignore the scaffold-
ing. Finally, we deployed this system in a classroom setting, and evaluated its
success from several perspectives. Our results show that for both diagram and
paper reviews 1) the localization models predict the absence of localization in
reviews with high accuracy, 2) the system scaffolding intervention helps review-
ers to revise their feedback to increase localization, and 3) reviewers continue to
add localization even after the scaffolding is removed.

2 Related Work

In instructional science, Gielen et al. [1] investigated effects of different peer
feedback characteristics and showed that the presence of feedback justification
significantly improved writing performance. Nelson and Schunn [6] found that
localization in reviews of papers was significantly related to problem understand-
ing, which in turn was significantly related to feedback implementation. Lippman
et al. [5] similarly showed that localization was related to the implementation of
peer feedback on argument diagrams.

Based on findings such as the above, research in computer science has used
natural language processing and supervised machine learning to automatically
detect when a free text feedback comment exhibits a desirable quality. Xiong
and Litman [11] developed models for predicting localization in peer reviews of
written papers, using features derived from a dependency parse tree. Nguyen
and Litman [7] developed a localization model tailored to reviews of diagrams
rather than papers, by considering common words between review comments
and the target diagram.

Similar methods have been used to predict feedback helpfulness label (Yes v.
No) [2], helpfulness rating [12], and other measures of review quality [8]. Particu-
larly, we found in our prior work [12] that the percentage of localized comments
contributes to improving performance of modeling review helpfulness. In this
paper, instead of developing new prediction models, we focus on integrating
existing models of review localization into a working peer review system, and
evaluating model performance in a classroom deployment.

1 While it is possible to modify a reviewing interface to have reviewers directly com-
ment upon a paper, such an interface encourages primarily feedback on low-level
text issues, and is not good for repeated errors or issues with larger sections of text.
Therefore, we focus on encouraging localization in end-comments.
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#1. Are any parts of the diagram hard to understand because they 
are unclear? If so, describe any particularly confusing parts of the 
diagram and suggest ways to increase clarity. 

Comment Entry 1: (*Required) 

Although the text is minimal, what is written is fairly clear. 

#8. APA Style: Is APA style used correctly for the following? - 
Numbers - Statistics - In-text citations - Paper header - Abbreviations 
- Section headings Etc. Are the following elements formatted 
according to APA style? - Abstract - Introduction - Method - Results - 
Discussion - References - Table/Figure 

Comment Entry 2: 

Study 17 doesn’t have a connection to anything, which makes it 
unclear about it’s purpose.  

Comment Entry 1: (*Required) 

need captions for figure 1 and 2 

Comment Entry 2: 

go thru APA manual and make sure everything is formatted correctly 

Fig. 1. Examples of localized (in green) and not localized (in black) comments in
a diagram review (left) and a paper review (right). Localization cues in the green
comments are “Study 17” (left) and “figure 1 and 2” (right).

Regarding system scaffolding to increase feedback quality, the design of our
intervention incorporates techniques from prior work in intelligent tutoring sys-
tems. Razzaq and Heffernan [9] compared two approaches for giving hints during
tutoring: proactively when students make errors, versus on-demand when stu-
dents ask for a hint. They found no difference in learning gains for students
who did not ask for many hints. Because our students are not trained on feed-
back localization we do not expect them to know when they need a hint, and
thus choose to trigger our scaffolding intervention proactively whenever a stu-
dent review lacks sufficient localization. In a different context, Kumar [4] showed
that when error-flagging was provided during tests on introductory programming
concepts, student scores improved. To implement error-flagging, correct student
answers were displayed in green and incorrect answers were displayed in red; in
addition, no reasons why the answers were incorrect were provided. In our sys-
tem we will similarly display localized versus not-localized feedback predictions
using different colors, to help students identify the problematic comments.

3 Adding Localization Scaffolding to Peer Review

A typical peer review exercise using SWoRD involves three main phases: 1)
student authors create first drafts2, 2) peer reviewers provide feedback3 on the
drafts, and 3) authors revise their drafts to address the feedback. The original
version of SWoRD only facilitates the document management and review assign-
ment aspects of peer review. To further enhance the utility of SWoRD, in this
paper we add artificial intelligence to the system by integrating the detection and
scaffolding of localization into phase 2, using prior models from the literature to
predict paper [11] and diagram [7] review localization, respectively.

In our enhanced version of SWoRD, whenever an argument diagram or paper
review is submitted, the corresponding review localization model is first used

2 A draft can be a paper, a diagram, a presentation, etc. depending on the assignment.
3 Feedback is in the form of written comments along with numerical ratings.
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Fig. 2. Scaffolding messages for revising reviews of diagrams (top left) and papers (top
right), along with the three responses available to reviewers (bottom)

to predict whether every review comment is localized or not. Fig. 1 shows ex-
amples of localized and not-localized comments from both a diagram (left) and
paper (right) review, in which comments predicted as localized are highlighted
in green. Then, if the submitted review is predicted to have a ratio of localized
comments less than a threshold of 0.54, the scaffolding intervention will be trig-
gered: the system displays an on-screen message which suggests review revision
and provides advice for doing so (see the top of Fig. 2 for diagrams (left) and pa-
pers (right)). Finally, the reviewer can choose to revise the review and resubmit,
view some model comments, or submit the review without revision (implying
disagreement) as indicated by the three buttons at the bottom of Fig. 2. Every
revised review then goes through the same localization prediction process.

4 The Peer Review Corpus

Our corpus consists of comments from diagram and paper reviews, collected from
undergraduate Research Method course in psychology at University of Pitts-
burgh, 2013. In this class, students were asked to first create graphical argument
diagrams using LASAD [10] to justify given hypotheses. Student argument di-
agrams were then distributed via SWoRD to 4 randomly assigned peers for
reviewing. Student authors could revise their argument diagrams based on peer
feedback, then used the diagrams to write the introduction of associated papers.
Similarly to the diagram review step, student papers were randomly assigned
to 4 peer reviewers (potentially different than the diagram reviewers). Finally,
after receiving reviews of their papers, authors could revise their papers before
final submission. Diagram and paper reviews both consisted of multiple feed-
back comments written in response to rubric prompts (e.g. #1 and #8 in the
top boxes in Fig. 1). Reviewers were required to provide feedback for 5 argument
diagram prompts and 8 paper prompts. Each prompt required reviewers to pro-
vide one to three comments. The system allows reviewers to edit and resubmit

4 The threshold was tuned based on data from prior classes.
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Table 1. Peer review data statistics. All re-submissions are counted.

Diagram review Paper review

Reviewers/Authors 181/185 167/183

Submitted reviews 788 720

Intervened submissions 173 51

Table 2. Localization annotation results

Diagram review Paper review

Localized comments 449 347

NOT Localized comments 718 336

their reviews at any time before the deadline with the same review scaffolding
procedure. Table 1 summarizes the dataset.

To support the evaluations described below, we collected all diagram and pa-
per review submissions which triggered a system intervention, as well as their
subsequent resubmissions (if any), and then manually coded the collected re-
views (both submissions and resubmissions) for the presence of localization in
each comment. In addition, since reviewers may edit their submitted reviews
without any system intervention, we also collected and coded localization for
all reviews where re-submission occurred after a non-scaffolded submission. By
pairing each comment with its revision, we aim to evaluate how the system
scaffolding impacted reviewer revisions.

Following the localization annotation scheme of [5], a comment is coded as
Localized if it contains at least one text span indicating where in the target dia-
gram or paper the comment is applied. The comment is coded as NOT Localized

otherwise. Two annotators independently coded comments of diagram reviews
and achieved inter-rater Kappa of 0.8. The two annotators then resolved label
disagreements to obtain the final labels used for our evaluations. Another anno-
tator who had Kappa of 0.8 when coding prior paper review data was chosen
to code the paper review comments obtained during our experiment. Table 2
summarizes the annotated data used in our analyses.

5 Review Localization Prediction Performance

Our first analysis aims to evaluate both the accuracy of predicting localization
at the comment level, and the accuracy of using these predictions to intervene
at the review submission level, for both diagram and paper reviews.

At the comment level, we evaluate how well the two review localization mod-
els predict the presence of localization compared to the manual annotations.
We also compare the models’ performance to their corresponding majority-class
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Table 3. Localization prediction performance at the comment level

Diagram review Paper review

Accuracy F-measure Kappa Accuracy F-measure Kappa

Baseline 61.5% 0.47 0 50.8% 0.34 0

Model 81.7% 0.82 0.62 72.8% 0.73 0.46

Table 4. Intervention prediction performance at the review submission level

Diagram review Paper review

Total scaffolding interventions 173 51

Incorrectly triggered scaffolding interventions 1 0

baselines5. Table 3 shows that both localization models substantially outper-
form their respective baselines. In addition, when comparing these results with
the originally reported results for these models (accuracy and Kappa figures
of 83.8% and .56 for diagrams [7], and 77.4% and .55 for papers [11], respec-
tively), we see that performance is only slightly degraded in our cross-domain
evaluation setting. Our current evaluation setting is more difficult because the
localization models were trained prior to our corpus collection while each of the
models in the original publications were trained and tested on a single dataset
using cross-validation.

At the review submission level, we consider an intervention to be correct when
at least one of the comments in a submission is labeled as NOT Localized, as
reviewers should only think the system incorrectly intervened when all of the
comments in a submitted review were indeed localized. As shown in Table 4, the
diagram review localization model yielded only one incorrect intervention, while
the system never incorrectly intervened when scaffolding a paper review.

In sum, our results show that in a real classroom setting, our models accu-
rately predict localization in the review comments of both diagrams and papers.
These comment-level predictions, in turn, are the basis of a system scaffolding
intervention that is accurately triggered from a reviewer’s perspective.

6 Reviewer Responses to the System Intervention

In this section, we first analyze whether reviewers actually revise their comments
in response to the system scaffolding intervention. For those reviews that are in-
deed revised, we then analyze whether the number of localized comments in fact
increases after review revision, and whether revision behavior varies depending
on whether the review revision was scaffolded versus unscaffolded.

Reviewer Response Types. A reviewer can respond to the system’s scaffold-
ing intervention in one of three ways (recall the buttons shown in Fig. 2):

5 The majority class is NOT Localized for diagram and Localized for paper review.
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Table 5. Percentage of different types of reviewer responses to first interventions

Response type Revise Disagree (View Example)

Diagram review 54 48% 59 52% (5) (4%)

Paper review 13 30% 30 70% (1) (2%)

Table 6. Histogram of responses by true localization ratios in diagram reviews and
paper reviews. NA means the bin has no data.

Ratio bin [0,.1) [.1,.2) [.2,.3) [.3,.4) [.4,.5) [.5,.6) [.6,.7) [.7,.8) [.8,.9) [.9,1) 1

Diagram reviews

Tot. responses 12 8 32 5 28 9 16 1 1 NA 1

%Disagree 75.0 37.5 50 20 50 77.7 43.7 0 100 NA 100

Paper reviews

Tot. responses 3 4 3 4 5 7 12 5 NA NA NA

%Disagree 100 50 66.7 75 60 85.7 66.7 60 NA NA NA

– Revise: the reviewer resubmits her review after revising it.

– View Example: the reviewer views examples of localized comments, then goes
back to the system intervention interface.

– Disagree: the reviewer submits her review without revision.

For this paper, we consider only reviewer responses after the system’s first
intervention for a review.6 Table 5 shows the percentage of different response
types to these first interventions. In addition, as View Example is not an action
that completes the review activity, the response must be followed by either a
Revise or a Disagree. The number of Revise and Disagree responses thus
include the responses that happened after View Example. As shown in Table 5,
despite the system’s high level of intervention accuracy (recall Table 4), reviewers
disagreed more than they agreed with the system’s scaffolding feedback, for
both diagram and paper reviews. To investigate whether student reviewers were
disagreeing with the system for good reasons (e.g., while not perfect, their review
was already highly localized), Table 6 reports the percentage of the total number
of responses (revisions plus disagreements) that were disagreements, with respect
to different bins of true localization ratios. Pearson correlation tests between the
percentage of Disagree responses (scaled to [0,1]) and the true localization ratio
show no significant correlations (p-value’s of 0.38 and 0.5 for diagram and paper
review data, respectively). Student disagreement thus does not seem to be related
to how well the original review had localized comments.

6 Our data shows that first interventions account for 65% and 84% of total diagram
and paper review interventions, respectively, and that reviewers were more reluctant
to edit their comments in resubmissions. Based on these findings, the current version
of SWoRD has been revised to intervene only once.
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Table 7. Comment change patterns by intervention scopes

Change pattern Scope=In Scope=Out Scope=No

Number of comments of diagram reviews

NOT Localized → Localized 26 30.2% 7 87.5% 3 12.5%

Localized → Localized 26 30.2% 1 12.5% 16 66.7%

NOT Localized → NOT Localized 33 38.4% 0 0% 5 20.8%

Localized → NOT Localized 1 1.2% 0 0% 0 0%

Number of comments of paper reviews

NOT Localized → Localized 8 20% 2 50% 5 9.1%

Localized → Localized 13 32.5% 1 25% 29 52.7%

NOT Localized → NOT Localized 19 47.5% 1 25% 20 36.4%

Localized → NOT Localized 0 0% 0 0% 1 1.8%

Review Revision. Next we evaluate the effectiveness of the system scaffolding
intervention by looking at the human-coded localization annotations for edited
comments of different types, where the types are defined in terms of the prior
system scaffolding interventions that a reviewer received. A reviewing session
starts when the reviewer creates/opens a review and ends when the reviewer
submits the review by either passing the localization threshold or disagreeing
with the system (by clicking on the rightmost button in Fig. 2). We define three
intervention scopes with respect to reviewer edits during a reviewing session:

– Scope=In: the reviewer received a system intervention in the current review-
ing session.

– Scope=Out: the reviewer did not receive a system intervention when sub-
mitting a review for the current diagram/paper, but encountered a system
intervention for a prior review of that type.

– Scope=No: the reviewer of a diagram/paper never received a system inter-
vention for either the current or prior reviews of a diagram/paper.

For each intervention scope, we collect all comments that were edited in the
revision and compare each comment’s true localization label to the true label
of its previous version. Table 7 reports the number of comment pairs according
to the four possible ways in which a comment could be changed after editing,
with respect to localization. The pattern of most interest is NOT Localized →
Localized, as this was the type of successful edit that the scaffolding interven-
tion was designed to promote. At the other extreme, the least desirable pattern
is Localized → NOT Localized, as this type of comment editing decreased
feedback quality with respect to localization.

First, consider the first rows for both the diagram and paper reviews in Ta-
ble 7, which correspond to the most desirable edit pattern. Comparing columns
shows that the percentages of NOT Localized → Localized in Scope=In and
Scope=Out are larger than that of Scope=No, for both diagram and paper re-
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views. Moreover, in Scope=Out this pattern contributes the largest portion of
edits in both diagram and paper review revisions. Such evidence indirectly sug-
gests that the system scaffolding intervention does help reviewers to localize
their previously unlocalized comments, and the impact of the intervention still
remains in later reviewing sessions after the scaffolding is removed.

The second pattern in the table, Localized → Localized, has the largest
percentage in Scope=No. We hypothesize that reviewers who were never scaf-
folded might be revising their reviews for some reason other than feedback local-
ization which they already did well. However, this pattern also contributes the
second largest percentages for the other two scopes. Perhaps reviewers might
also be attempting to add more localization signals than that were used in their
original comments. In future work we plan to revisit our localization coding
(which currently has a binary rather than ordinal value) to determine whether
reviewer editing adds further localization, or addresses a different issue.

Our third observation is that for Scope=In, the pattern NOT Localized →
NOT Localized accounts for the largest number of edit results in both diagram
and paper reviews. This suggests that there is still room for improvement in
our scaffolding of review localization. That is, even when reviewers attempted
to respond to the system intervention by revising their comments and asking
the system to evaluate them again, students still had difficulty in making the
comments localized. Potential reasons might be that our current scaffolding mes-
sages could be made clearer, or that for some review dimensions giving localized
comments is difficult. Investigating these issues will be part of our future work.

Finally, the least desirable pattern of Localized → NOT Localized occurred
only twice in all of the edits. We investigated these instances and found that
students apparently deleted their comments by mistake. The rareness of this
pattern suggests that our highlighting of localized comments in green helped
student reviewers not to remove localization from their localized comments.

7 Conclusions and Future Work

In this paper, we first integrated two review localization models for diagram and
paper reviews in a web-based peer review system, then implemented a scaffold-
ing intervention to improve the quality of peer reviews that lacked localization.
Furthermore, we deployed the system in a university classroom and evaluated
the system in terms of the prediction performance of the two localization mod-
els (in a cross-domain fashion), the system scaffolding intervention triggered by
these models, and the effect of scaffolding on reviewer revision behavior, using
data from the class. Our comment-level results showed that both localization
models outperformed majority class baselines, with absolute performance levels
approaching prior laboratory results [11,7]. Our review submission-level results
demonstrated that the two localization models could also accurately trigger sys-
tem interventions, yielding only one wrong intervention for a diagram review.

Analyzing reviewer responses to the system intervention, we found that for
reviewers who revised their reviews after the system scaffolding intervention,
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the number of comments with localization increased after editing. Moreover,
the scaffolding intervention appeared to improve localization even in later, non-
scaffolded review sessions. However, the results also demonstrated that our cur-
rent approach could be further improved, as there were both a large number of
unsuccessful attempts to localize comments, and a large number of disagreements
with the system’s suggestion to increase localization.

For future work, we plan to improve our interface to better help students
localize their review comments. In addition to using color to distinguish localized
and non-localized comments, we plan to highlight the localized text spans in
already localized comments (e.g. “Study 17” in the left of Fig. 1). We also plan to
do further annotation to examine not only whether, but how strongly, a comment
is localized. Finally, we plan to ask reviewers why they are disagreeing with the
system, as our initial analyses did not show any relationship with localization.
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Abstract. In this paper we introduce the Comprehension SEEDING
system and describe the system components designed to enhance class-
room discussion by providing real-time formative feedback to teach-
ers. Using SEEDING, teachers ask free-response questions. As students
are constructing their responses using digital devices, SEEDING allows
teachers to assess a student’s understanding. Once SEEDING collects
student responses, the system automatically groups them based on se-
mantic similarity. Teachers can use this information to address student
misconceptions and engage the classroom from a more informed perspec-
tive. This paper describes the SEEDING system and how it can be used
to aid teachers and improve classroom discussion.

1 Introduction

Teachers ask students questions in the classroom both to assess their under-
standing and also to facilitate learning. Students learn as a result of engaging
with the material and participating in shared discourse (Larson, 2000). Although
this can potentially be a reasonable way to generate classroom discussion, effec-
tive classroom engagement is difficult to achieve this way because teachers can
only involve one student at a time. This may cause other students to become
disengaged from the discussion. To address this problem, classroom response
technologies such as clickers, have been shown to improve student learning and
engagement by allowing all students to answer, while providing the teacher with
real-time formative feedback.
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Clickers are a classroom response system in which each student has a hand-
held remote control by which they respond to questions that are projected onto
a screen in the classroom. Previous work on clickers has shown that they can be
beneficial for enhancing student learning and engagement (Duncan, 2006; Fies
& Marshall, 2006; Herreid, 2006; Keller et al., 2007; Penuel, Boscardin, Masyn,
& Crawford, 2006; Siau, Nah, Siau, Sheng, & Nah, 2006). However, there are
limitations that could explain why small-scale efficacy tests for the use of the
technology have seen mixed results (Bunce et al., 2006; Carnaghan & Webb,
2007; Duggan et al., 2007). In order for teachers to take advantage of clickers
and any automated response tallying, teachers are limited to asking multiple
choice questions. Although multiple choice questions are helpful when assessing
basic factual knowledge, it can be difficult to assess deep knowledge in a closed-
response question format (Campbell, 1999; McNeill et al. 2009). The effectiveness
of clickers is limited to the quality of the multiple-choice questions that teachers
pose, and it is difficult and time consuming to construct questions with good
distractors. Even with meaningful distractors, multiple-choice questions only re-
quire students to recognize, rather than generate the correct response. According
to the Interactive, Constructive, Active, Passive (ICAP) framework (Chi, 2009),
constructing answers to free-response questions is a more cognitively engaging
task than simply selecting answers to multiple-choice questions and should result
in deeper learning.

One of SEEDING’s goals is to improve on the engagement advantages afforded
by clickers, while largely eliminating their weaknesses. Specifically, SEEDING is
a new classroom learning technology that: allows teachers to pose free-response
questions, results in all students constructing responses, provides teachers real-
time formative feedback, and aims to encourage deeper questions in the class-
room.

2 Comprehension SEEDING

SEEDING is grounded in results from three key areas of cognitive and learn-
ing sciences research, 1) student self explanation, 2) formative assessment with
classroom engagement and discourse, and 3) educational question asking prac-
tices. The Comprehension SEEDING system is divided into three analogous
distinct but related components that work together to create an enhanced learn-
ing environment for both teachers and students. These three components, self-
explanation (SE), enhanced discussion (ED), and inquiry generation (ING), are
summarized in this section and detailed in the sections that follow, while high-
lighting their theoretical advantages.

The Comprehension SEEDING system allows teachers to pose free-response
questions. Students answer these questions via digital devices (each of the stu-
dents in our current study, approximately 1250 in total, is using a Google Nexus
7, but classrooms outside the study have used laptops, netbooks, various tablets,
android phones, iPhones, and other digital devices). While students compose
their responses, the system provides a real-time analysis of the student responses.
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Once SEEDING receives most of the student responses, it automatically groups
them in up to four clusters. Teachers have the option to view and share each
student response with the class. However, showing individual responses can be
time consuming and may address misconceptions only held by a few students.
Using the clusters, teachers can quickly determine the current overall status of
the classroom’s understanding of the question posed.

SEEDING allows each student and teacher to interact with the current pre-
sented material. To achieve this level of individual interaction, the system needs
to address the different requirements of the teacher versus the students and allow
each student to use the system simultaneously in the classroom. Our approach
consists of a web-based solution that in the present study, runs on Nexus 7 tablets
for the students and typically runs on a desktop or laptop for the teacher.

SEEDING operates differently based on the user’s role (e.g, student, teacher).
Teachers using the system use their classroom computer which connects to a
projector. This provides the teacher with two windows, a control dashboard
and a classroom display. The first control window, gives teachers the ability
to control, manage, view, assess, and teach the classroom. The second window
allows the teacher to share student responses, vocabulary words, and images
with the classroom. Unlike the teacher windows, we have provided a minimal
interface for the students – they can log in, receive questions & vocabulary words,
construct their responses, and logout. As an alternative to using the on-screen
keyboard, students’ tablets are complimented with a physical keyboard to reduce
student response time during classroom sessions

3 Self Explanation

Self Explanation. Given a question, Comprehension SEEDING allows stu-
dents to reflect on their knowledge of the concepts involved and construct a
free-response answer, shown in Figure 1. It is important to note that this ap-
proach is not focused on solely getting individual responses nor is it focused on
incorporating more technology into the classroom. This approach engages stu-
dents in a complex cognitive task that causes the student to self-reflect as they
compose their response.

These cognitive tasks can be thought of as a form of self-explanation, which
has been shown in numerous studies to increase student learning gains (Chi,
2009). Importantly, SEEDING enables all students in the class to engage in this
cognitive task, rather than just one student at a time, as is typically the case
when a teacher asks a question in the classroom. We hypothesize that students
using SEEDING to self-explain or articulate their beliefs about a subject will
achieve learning gains similar to those seen in typical self-explanation scenarios.

Vocabulary List. Second language (SL) learners and students with low prior
domain knowledge often struggle to articulate their explanations because they
can’t recall the right words. To aid these students in their self-explanation,
SEEDING generates a vocabulary list. This list includes key content words ex-
tracted from the question’s reference answer as well as various foils to mitigate



286 F. Paiva et al.

the possibility of providing too strong of cues to the answer. Key content words
are determined by their mutual information with the other questions and ref-
erence answers that the teacher saved in the same folder as the question be-
ing asked. The distractor words include key content words from those same
related questions and their reference answers, WordNet’s ( e.g., WordNet is
a freely available, machine-readable, lexical database for English available at:
http://http://wordnet.princeton.edu) antonyms of the other words in the vo-
cabulary list, and WordNet coordinate terms.

All the words in the vocabulary list are lemmatized, to extract the root.
Repeated lemmas and words in the question, which the student can already
see, are removed from the list. Only the most relevant distractors, those whose
mutual information with the reference answer was the highest, are kept. Through
teacher use, we empirically determined that ten words was the best number to
keep. Finally, SEEDING presents the alphabetized list to the teacher, who is
free to add or remove words from the vocabulary box and to send the list to any
individual or to all logged in students. Ultimately, SEEDING aims to cognitively
engage all students in self-explanation as they are constructing their responses
and the vocabulary list can help by keeping SL learners and students with low
prior knowledge engaged in the self-explanation process.

4 Enhanced Discussion

As students respond to a question, SEEDING performs analysis and provides
teachers real-time feedback on the students’ understanding. This is accomplished
with system components such as a word cloud, clustering, and immediate presen-
tation of individual student responses. The word cloud is updated in real-time to
reveal the concepts students are focusing on in their responses. Clustering pro-
vides the teacher with representative responses from up to four primary groups
of similar student responses, The presentation of individual student responses
allows the teacher to check in on struggling students. Teachers can utilize all of
this real-time feedback to evaluate whether or not the classroom understanding
is headed in the direction they intend and decide what course corrections are
necessary to clear up any issues or misconceptions.

Word Cloud. As students are constructing their free-response answers, SEED-
ING presents the teacher with a word cloud. A word cloud is a presentation of
words that populates itself with frequently used content words. In this case, the
word cloud is populated with words extracted from all of the student responses.
A word is only presented to the teacher if it is used by more than one student.
The more students that use a content word, the larger it will appear in the word
cloud. The word cloud allows teachers to begin to assess the class’ understanding
before students submit their final responses.

Clustering. After students have submitted their responses to the teacher,
SEEDING automatically clusters the responses in up to four groups based on
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Fig. 1. Teacher control dashboard. Teachers view the word cloud, cluster representa-
tives, and student responses.

semantic similarity. SEEDING will then present the teacher with a representa-
tive response for each cluster along with the percentage of student responses
belonging to that particular cluster as shown below in figure 1. A cluster’s rep-
resentative is the student response that is the most representative of all of the
responses in that cluster. The teacher has the option to share any or all of the
cluster representatives with the class. Clustering and representative processing
is hypothesized to facilitate meaningful classroom discussion because the teacher
is presented with a sample of responses that represents the diverse views of the
classroom. In addition, the teacher could address misconceptions in cluster rep-
resentatives, ask the students to edit and resubmit their responses, and re-cluster
the student responses.

To cluster student responses, we need an understanding of each student’s
response and its entailment relationship to the question’s reference answer. We
do not simply want to label responses as correct or incorrect. Instead if a response
is not correct, we want to identify where the student’s response is different from
the reference answer and in what way it is different. To achieve this level of
semantic analysis, SEEDING decomposes the question, its reference answer, and
all the responses into their fine-grained semantic facets following (Nielsen et. al,
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2009). An analysis of all of these semantic facets is used to generate the feature
vectors used by the clustering algorithm, as discussed below.

Feature vectors are comprised of four sets of features, each of which is assigned
a total weighting or importance. The sum of the weights over the four sets of
features is 1.0. The first set of features is based on the subset of semantic facets
found in the reference answer that are not also found in the question. These
features were given a weight of 0.45. The second set of features, which has a
weight of 0.225, is based on the remaining facets found in the reference answer
(i.e., those facets that also existed in the question). The third set of features, with
a weight of 0.1, is based on the facets found only in the question. The final set
of features, comprising the remaining weight of 0.225, is based on any additional
facets that occur in multiple student responses. In future work, the weights of
each set of features will be learned based on training data. In the present work,
facets from the reference answer were given most of the weight (just over 2/3
of the total weight), since those are the primary semantics of interest. Since it
is easy for a student to just repeat words from the question, related facets were
given less weight. Student responses are converted into feature vectors according
to which facets in these four groups is entail by the response. These vectors are
then used in the clustering process.

SEEDING automatically initiates the clustering when the percentage of stu-
dents that have responded surpasses a threshold.1 However, teachers have the
option to cluster the responses much earlier, if desired, and are free to re-cluster
the responses at any time, if they want to account for more complete informa-
tion. Each time the teacher clusters responses, the system recomputes the feature
vectors for any student response that has changed.

At the core of SEEDING’s clustering is the k-means algorithm, shown in
the equation below. Given a set of student responses, the goal is to find the
assignment of responses, xj , to k clusters, S = {S1, S2, ...Sk}, that minimizes
the sum of the squared distances between the response vectors, xj , and their
associated (nearest) cluster centroid, μi.

Once all student responses have been converted into feature vectors. Four
randomly selected student response vectors are assigned as the initial cluster
centroids. We iterate over each student response vector, calculate its distance
from each cluster centroid, and assign the response to the cluster whose centroid
is closest. After each iteration, the cluster’s centroid is recalculated by averag-
ing the response vectors assigned to it. These two steps, assigning responses to
the closest cluster and recomputing the cluster centroids, are repeated for 10
iterations or until convergence, when the clusters stop changing.

Following the clustering, representative responses are selected for each cluster.
These representatives are presented to the teacher, who can use them to lead a
classroom discussion focused on the main beliefs expressed by students. For each
cluster, the response whose vector is determined to be closest to the cluster’s
centroid is selected as the cluster representative.

1 In the present work, teacher feedback indicated that 50% was a reasonable threshold
to present the teacher with cluster representatives.
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These cluster representatives provide the teacher with a good sense of the
student conceptions in the classroom. The teacher projects the representative
responses onto the classroom display and engages the students in a discussion
based on the various beliefs exemplified. Unlike clickers, which only allow teach-
ers to guess a priori when writing the distractors what the misconceptions might
be, SEEDING’s Enhanced Discussion can directly target the beliefs held by the
teacher’s students. Unlike typical classroom discussions, which engage and ad-
dress the perspective of only a single student at a time, SEEDING’s dialogue is
grounded by the diverse beliefs held in the teacher’s classroom.

5 INquiry Generation

The question generation component of the SEEDING project is designed to ex-
pand the classroom discussion to a view of the topic as explored in the wider
world, and to inspire teachers to think of science as a verb, not a noun. That is,
science is not a static body of factual knowledge but a process of exploration,
discovery, and peer review. The question generation component itself is being
introduced in phases which represent different approaches to question genera-
tion. Phase I involves questions from the QtA Questioning the Author (Beck,
2001) framework, which has also been included in teacher training. Phase II uti-
lizes questions extracted from the web. Phase III requires the development of a
knowledge base, from which conceptual questions can be generated.

The Phase I QtA component takes all student responses as input, as well as
the teacher question and reference answer. Common ideas are identified in the
student responses by means of word frequency counts. Meanwhile, the teacher
question is analyzed to see if a concept can be extracted. For each noun in
the teacher question, mutual information is calculated between these nouns and
the question category extracted from within the SEEDING system. The highest
scoring noun is selected as the concept, with preceding nouns and prepending
adjectives, as in kinetic energy. There are over 100 QtA question stems which are
divided into subsets for random selection based on whether the teacher question
referenced a lab or experiment, whether a teacher question concept or student
common idea was identified, or one of the remaining question stems. Sample
stems include:

– Can you think of another experiment we could do which would teach us
more about concept? If you were explaining concept to a younger person,
what other knowledge would they need to understand your explanation?

– Many of you mentioned common idea. Does anyone disagree?
– After reading the responses on the screen, what would you change about

your response, and why? If you would not change your response, why is
yours better?

The questions extracted from the web in Phase II utilize the teacher question
and reference answer in the web search. These texts are tokenized and tagged by
the Stanford taggers, and stop words are removed. Words from this group with
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the desired parts of speech (nouns, verbs, adjectives) are extracted as keywords.
These keywords are sent to a Google custom search engine to retrieve relevant
urls. A web crawler then traverses these urls, and the links from those pages,
to extract all questions from the pages it crawls. Questions are rated according
to the frequency of the keywords, and the top ranking questions are sent to be
displayed. For example, the teacher question How is work turned into mechanical
energy? results in the keywords: work, turned, mechanical, and energy. The top
retrieved questions are:

– What devices convert mechanical energy to heat energy?
– How can mechanical energy be converted to heat energy?

Note that these questions extend the discussion beyond the original teacher
question to more application and conceptual questions. The urls from which the
questions were retrieved are also provided to the teacher.

6 Discussion

As of the spring 2014 phase, over 1200 students are using SEEDING in their
classrooms. We collect feedback from the teachers and make changes to the
system accordingly. As a result, new ways to enhance the classroom learning
environment are still being developed.

Evaluation in Progress. To evaluate the effectiveness of the Comprehension
Seeding system compared to traditional and clicker classrooms, we are conduct-
ing a yearlong pilot study within sixth grade science classrooms. We are ana-
lyzing the effect of the SEEDING system use on student learning, in addition
to learning more about SEEDING adoption, use and integration into teacher
practices. With respect to teacher adoption and use, we have collected a sub-
stantial amount of data from the teachers starting with the participatory design
process and following all the way through system deployment and use. This
data consists of informal interviews with teachers, short surveys, frequent email
follow-ups, and discussions during researcher and support team visits. To date,
the teachers have been very forthcoming with their system design needs, desires,
issues, and potential barriers to use. This information has contributed greatly
to our ability to make the system and interface ”teacher friendly.” We also col-
lected a very substantial amount of observation and system log data related to
teachers’ use of the system in practice. This data helps us to make sense of how
the teachers are integrating the system into their practice. As a specific example,
we would hope that the teachers use the system to gather class-level formative
feedback that will help them lead a rich follow-up discussion. Observation and
logs can tell us if teachers are asking follow-up questions to the initiating ques-
tions, how long those questions are open for student responses, and whether or
not the teacher pauses the question during student response (perhaps to discuss
or clarify). In this way we are able to identify any specific pedagogical needs that
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the teacher may have in order to fully integrate the system into their classroom
practice.

Teachers’ (and students’) feedback on the system has been overwhelmingly
positive. The teachers’ especially appreciate the fact that all students can indi-
vidually respond to a question, and that student responses can be displayed for
class discussion. Students enjoy expressing their own thoughts, and become very
excited when their responses are displayed as one of the cluster representatives.

We are in the process of collecting student assessment data to investigate the
effect of the system on student learning. We have structured a within-teacher
research design in order to control for teacher effects. Any given teacher in our
research is teaching one or more class sections using the system, and other sec-
tions using clickers (multiple choice only) or no technology support. We have
designed our own assessments of students’ deep learning in four science units:
Atoms & Elements, Particulate Model of Matter, Force & Motion, and Energy.
These assessments consist of both open ended and multiple choice items that
span a range of cognitive depth. Each class section (SEEDING, clicker, or no
technology support) responds to each unit test pre and post instruction for that
unit. The students also respond to a year long pre and post test which encompass
all of these topics. This data collection and the scoring of the student responses
is ongoing.

Rather than collecting this assessment data with paper tests, we added a com-
ponent to the SEEDING system specifically for this purpose. Using SEEDING,
teachers specify what class and exactly how long an assessment should be. Once
a teacher begins an assessment, students are redirected from the traditional inter-
face and taken to an assessment page. This page allows students to submit answers
through free-response, multiple choice, and canvas, where using a stylus, students
can draw their responses to a question.While students are in assessments, they are
free to navigate through all the questions in the assessment, edit their responses, or
erase their drawings. Once the time for an assessment ends or the teacher decides
to terminate the assessment, the students exit the assessment.

Vocabulary List. We plan to do future research that will lead to populating the
vocabulary box with words more meaningful to SL learners. We are exploring
using a large corpus as a filter to non-science related words. We do this by
calculating co-occurrence relationships between science words. In addition, we
are exploring extracting hypernyms from content words to provide a broader
perspective of the given word.

Facet Cloud. To provide teachers with even more real-time information about
student understanding as they construct their responses, we will explore a facet
cloud. Similar to the word cloud, the facet-cloud will give teachers an indication
of how many students expressed each semantic facet. This will allow teachers to
see the semantic relationships students make as they type out their responses. For
example, if a teacher asks Is a proton positive or negatively charged? as students
are responding, the facet-cloud could present facets such as: (proton, neutral),
(atom, positive), etc. Teachers can use this feedback to guide the classroom
discussion accordingly.
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7 Conclusion

It is expected that combining the scientifically-grounded educational support
technology and methods in Comprehension Seeding will result in learning gains
that could exceed the one sigma gain found in the best current tutoring systems
as well as the more modest gains associated with effective implementation of
clicker systems. From a cost-benefit perspective, Comprehension SEEDING has
the potential to inexpensively provide a practical, focused, nearly individualized,
adaptive, scientifically based solution. Furthermore, this solution is not tied to
one specific inquiry-based pedagogy or to science education, but rather has the
potential for significant positive impact across many areas in education. We are
currently conducting a study involving approximately 1250 students to assess
the impact of Comprehension SEEDING in the classroom.
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Abstract. Automatic Question Generation from text is a critical com-
ponent of educational technology applications such as Intelligent Tu-
toring Systems. We describe an automatic question generator that uses
semantic-based templates. We evaluate the system along with two com-
parable systems for both linguistic quality and pedagogical value of gen-
erated questions and find that our system outperforms prior work.

Keywords: question generation, syntactic, semantic, pedagogy.

1 Introduction

This work evaluates three automatic question generation systems which have a
common aim: to assist students in remembering and understanding what they
have read. Roediger and Pyc [12] describe studies which show that students who
are more frequently asked questions retain significantly more than those who
are not. Beck et al. [3] demonstrate that reading comprehension can be boosted
with questions that are generated automatically. In creating question generation
systems for educational technology applications, a crucial design consideration
concerns what kinds of questions should be generated. Graesser, Rus and Cai
[7] explore many facets of this consideration, including question taxonomies,
purpose of questions, and assumptions behind questions. Another consideration
is whether the questions should be answerable from the text. This consideration
is addressed by Graesser et al. [6] in the context of information sources: whether
the answer comes from the text, student knowledge, or other sources.

Question generation approaches are often classified on a syntactic-semantic
continuum. In a syntactic approach, the sentence structure is rearranged and
altered to turn declarative sentences into questions. Syntactic examples include
early work from Wolfe [13] through recent work from Heilman and Smith [8].
Another syntactic approach, the Ceist system [14], manipulates syntax trees,
but the rules are stored externally in templates. Syntactic approaches tend to
outnumber semantic approaches as seen in the Question Generation Shared Task
and Evaluation Challenge 2010 [4] which received only one paragraph-level, se-
mantic entry[11]. Argawal, Shah and Mannem [1] continue the paragraph-level
approach using discourse cues to generate questions of types: why, when, give an
example, and yes/no. Another recent semantic approach is Lindberg et al. [10]

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 294–299, 2014.
c© Springer International Publishing Switzerland 2014
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Table 1. Classification of question generation approaches

Internal Rules External Rules

Syntactic Constituents Heilman and Smith Ceist

Semantic Constituents Argawal, Shah, Mannem Lindberg et al.

which used semantic role labeling combined with templates. This latter approach
most closely parallels our own; however, our approach is domain-independent,
and our system generates answers as well as questions.

Table 1 is provided as an assist in classifying these various approaches. On
one axis, approaches are classified according to whether they are manipulating
syntactic or semantic constituents of a sentence. On the other axis, they are
classified according to whether the rules for this manipulation are internal to the
program or kept externally, as in the form of templates. The examples shown
are to provide a general frame of reference, not to imply that any one system
entirely fits into one category. Most systems cross the boundary lines of Table 1.

2 Approach

The question generation system presented here utilizes semantic role labels and
templates. Sentences are processed by SENNA [5], which provides the tokeniz-
ing, pos tagging, syntactic constituency parsing and semantic role labeling, using
the 2005 Propbank coding scheme [2]. SENNA produces separate semantic ar-
guments for each predicate in the sentence which are matched with appropriate
templates. Question generation patterns use the more common semantic roles
A0 (proto-agent), A1 (proto-patient), and A2 - A4 (meaning varies by predi-
cate), as well as the ArgM modifiers: directionals, locatives, manner, purpose,
cause, discourse, adverbials, and temporal. Templates contain five fields: (1) the
question type identifier, (2) required fields, (3) question frame, (4) answer, and
(5) filter fields. Generated questions are stored by the question type identifier for
later retrieval by question type/depth. The system at the time of this evaluation
had 42 question types. Required fields specify what semantic argument should
be present, or absent, and any required verb forms. The answer field specifies
which semantic argument is the answer to the question. Filter fields will cause
a question to not be generated for conditions such as arguments that do not
contain nouns. Filters help prevent generating vague or confusing questions.

Table 3 provides examples of questions and the patterns from which they were
generated. The question generated in Example 1 uses the form of the verb found
in the source sentence. This template requires arguments A0, A1 and ArgM-
locative; fields A1 and ArgM-locative are placed in the question, argument A0 is
the answer. The full template also had a required field indicating that the verb
must be a form of be and a filter that excluded predicate-argument sets that
included an A2 argument.
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Table 2. Examples of Generated Questions

Example 1. Question Frame: What |verb| |A1| |AM-LOC|?
Source text: Ice wedging is the main form of mechanical weathering in any
climate that regularly cycles above and below the freezing point.
Question: What is the main form of mechanical weathering in any climate that
regularly cycles above and below the freezing point?
Answer: ice wedging

Example 2. Question Frame: How |do A0| |V| |A1|?
Source text: By examining the arrangement of these dark absorption lines, astro-
nomers can determine the composition of elements that make up a distant star.
Question: How do astronomers determine the composition of elements that
make up a distant star?
Answer: by examining the arrangement of these dark absoption lines

Example 3. Question Frame: What happens |if|?
Source text: If the atoms are pulled apart, potential energy goes up because
you are separating particles that attract each other.
Question: What happens if the atoms are pulled apart?
Answer: potential energy goes up

In Example 2, there are three fields in the question frame that must be re-
placed with source sentence text. The |do| field will be replaced by do, did or
does, depending on the plurality of the nouns and the tense of the verb. The verb
will be in its lexical form. Filters in the full template specify that A0 cannot start
with a preposition and A1 cannot start with a personal pronoun. The first filter
helps with question naturalness and the latter filter helps avoid vague questions.
A required field specifies that the ArgM-manner argument which forms the an-
swer must contain a gerund.

In Example 3, the |if| of the question frame will be replaced with the text from
the ArgM-adverbial. The full template specification has a filter which indicates
that the ArgM-adverbial must contain nouns. This is another filter for vague
questions.

3 Linguistic and Pedagogical Evaluations

For these evaluations, we utilized Amazon’s Mechanical Turk service. Previous
work by Heilman and Smith [9] demonstrates that satisfactory results can be
achieved by submitting work in small batches, and closely monitoring each batch.
For these evaluations we set up two separate tasks: a linguistic evaluation and a
pedagogical evaluation. For the linguistic evaluation, each worker was asked to
read the source sentence and question, then rate the question on a 1 to 3 scale for
grammaticality and clarity. For the pedagogical evaluation, workers were asked
to consider whether this question would help them remember or understand the
meaning of the sentence. For all tasks we requested two workers and submitted
the questions in batches of 50 or fewer questions.
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For these two evaluation tasks we compiled two corpora representing the do-
mains of social studies and science. The social studies text was taken from Spar-
kNotes Other Topics. Five files were randomly chosen representing the following
domains: Economics: the money supply, History: American History, Government:
Federalism, Philosophy: an overview of John Locke’s work, and Civics: the devel-
opment of the nation-state. These files range in length from 27 to 39 sentences,
with an average of 33 sentences. The science text was extracted from middle-
school and high-school science textbooks downloaded from ck12.org, a non-profit
that creates and freely distributes K-12 STEM material. The files represent the
following science domains: Life Science: the body, Chemistry: bonds, Biology:
the cell, Physics: matter and energy, and Earth Science: weathering. The science
files ranged in length from 53 to 69 sentences, with an average of 60 sentences.

Table 3. Inter-rater agreement for Mechanical Turk workers

Social Studies Science

Linguistics Pedagogy Linguistics Pedagogy

Mean agreement 0.72 064 0.69 0.62
Pearson’s r 0.58 0.46 0.57 0.45

Table 3 shows the inter-rater agreement between two sets of workers over all
annotations. Mean agreement is calculated as shown below, where i ranges over
the N questions rated by the annotators, r1,i is annotator 1’s normalized rating
(rating−1)/2 for the ith question (normalized ratings fall in the range [0,1]). We
also provide Pearson’s correlation coefficient numbers, which indicate a strong
positive relationship1 and are statistically significant, p < 0.001.

1− 1

N

N∑

i=1

|r1,i − r2,i| (1)

The evaluations described here compare the questions generated by the sys-
tem described in this paper (M&N), Heilman and Smith’s system (H&S), and
the Lindberg et al. system (LPN&W). Heilman and Smith’s system is available
online2; David Lindberg graciously shared his code with us. For the following
evaluations, 50 questions were randomly selected from all questions generated
by each system for a given input file. Table 4 shows the number of questions re-
maining after a given evaluation filtered out lower-quality questions. The table
shows this data for both the social studies and science corpora. For both the
linguistic and pedagogical evaluations, the questions that remained were those
that received a 3 from one worker, and at least a 2 from the other.

From Table 4, the linguistics evaluation for both data sets are remarkably
similar. The average number of questions that remained after applying the lin-
guistics filter to the social studies data was 28, 30, 37 (H&S, LPN&W, M&N),

1 http://faculty.quinnipiac.edu/libarts/polsci/statistics.html
2 http://www.ark.cs.cmu.edu/mheilman/questions/

http://faculty.quinnipiac.edu/libarts/polsci/statistics.html
http://www.ark.cs.cmu.edu/mheilman/questions/
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Table 4. Number of acceptable questions for social studies and science corpora

Social Studies Linguistic Evaluation Pedagogical Evaluation

File Questions H&S LPN&W M&N H&S LPN&W M&N

money 50 36 42 45 18 22 22
amhist 50 29 37 36 22 15 20
federalism 50 27 28 40 11 5 20
locke 50 19 21 30 6 8 10
state 50 27 21 32 11 10 13

Average 50 27.6 29.8 36.6 13.6 12 17

Percent 55.2 59.6 73.2 27.2 24.0 34.0

Science Linguistic Evaluation Pedagogical Evaluation

File Questions H&S LPN&W M&N H&S LPN&W M&N

body 50 33 27 42 23 14 25
bonds 50 30 34 31 16 19 19
cell 50 30 26 37 20 14 25
matter 50 25 32 32 12 17 18
weathering 50 18 31 38 9 21 26

Average 50 27.2 30 36 16 17 22.6

Percent 54.4 60.0 72.0 32.0 34.0 45.2

and for the science data: 27, 30, 36. This speaks both to the consistency of all 3
systems across domains, and to the validity of using MTurk for this evaluation.

Discussion. The question generation systems described in this work begin with
expository text. Our system takes this input directly into SENNA. The Heilman
and Smith system performs NLP transformations on the input text in order to
simplify complex sentences, which they note is “particularly prone to errors”[8].
Using a semantic role labeler essentially performs this simplification itself since
it identifies semantic arguments for each predicate in the sentence even within
subordinate clauses. The Lindberg et al. system likewise did not perform sentence
simplification because they note that important semantic content can be lost,
such as temporal information in prepositional phrases [10].

An additional advantage of semantic role labeling is that it can help identify
the most salient aspects of a sentence. From: As the ball gains height, it regains
potential energy because of gravity, a syntactic approach generates the question:
What regains potential energy because of gravity as the ball gains height? In
contrast, our approach identifies an ArgM-causation argument and can generate
a deeper question: Why does the ball regain potential energy?

Heilman and Smith’s system provides the answer as well as the generated
question, as does our system. The Lindberg et al. system does not provide an-
swers which frees it to ask questions that may not be directly answerable from
a sentence. Whether or not this is desirable may depend upon the application.
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4 Conclusion

We have evaluated three question generation systems in terms of both the lin-
guistic quality of the produced questions, as well as their pedagogical utility.
These types of question generation systems can be integrated into educational
technology applications such as Intelligent Tutoring Systems, in order to ensure
that students engage deeply with the material. Our system outperformed prior
work in both the linguistic and pedagogical evaluations.
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expressed are those of the authors.
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Abstract. This research’s objective is to support learners in self-directed learn-
ing of history in an open learning space. Learners who request help are pro-
vided with a list of questions to orient them to new information. All the support 
is provided only on request and gives them multiple possibilities to give them 
more freedom in self-directed learning. The originality of our research is that 
the generated questions are content-dependent. To be able to generate such sup-
port, we had to overcome one major problem: the information in the open learn-
ing space needs to be understood by our system. The construction of this  
“semantic open learning space” permits the system to generate questions de-
pending on the studied contents and the learner’s concept map. 

Keywords: Self-directed Learning, History Learning, Question Generation, 
Semantic Open Learning Space, Adaptive Learning Support. 

1 Introduction 

When learning in an open learning space such as the Internet, learners encounter a 
quantity of information far more superior than in classroom learning. This quantity of 
information can easily overwhelm a learner [1]. Learners can have difficulties in 
planning their learning if they do not have the necessary skills. 

Our objective is to support learners in self-directed learning of history in an open 
learning space. Our approach is to provide to learners content-dependent advice de-
pending on their knowledge level. To encourage history thinking, we chose to provide 
advice in the form of enquiry questions [13]. The advice is provided only on request 
of the learners to orient without forcing them. 

In history learning, an understanding of chronology is necessary [15]. Chronology 
is defined by Smart [14] as “the sequencing of events/people in relation to other and 
existing knowledge of other, already known, events/people”. Learning history is not 
only remembering a series of facts, learners need to construct an image of the past in 
their mind. Learners need, of course, to know the events but they also need to under-
stand their context. We need to support learners in acquiring information about both 
the chronology and the context. 

To achieve our objective, there are two major issues to solve: 

• The system needs to be able to understand the learning materials to be able to pro-
vide content-dependent advice. In an open learning space, preparing all the documents 
is impossible, semantic information becomes necessary. 
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• The generated questions need to orient the learners to new information that they 
can use to reinforce their understanding. The questions should encourage the learners 
to improve their knowledge of the context. Having a good knowledge of the context 
will reinforce their understanding of the events [8]. 

In this paper, we will discuss the technical issues to overcome to generate content-
dependent questions to support learners in an open learning space.  

2 Related Work 

To support learners in self-directed learning, previous research already created sys-
tems such as the Navigation Planning Assistant [9], which provides an environment 
used to describe learners’ learning plans and state of understanding to prompt their 
self-regulation in an open learning space. The limitation of this system, however, is 
that its support is content-independent due to the difficulty of working with natural 
language information on the Web. Of course, this problem can be overcome by pre-
paring the learning materials in advance. This is the case of the Betty’s Brain system 
[10], which uses concept map in an environment for learning by teaching using con-
cept map, or the Kit Build method [7], which provides a knowledge externalization 
environment for building a concept map and supporting the learner during the concept 
map construction. However, for both systems, the preparation requires a considerable 
amount of time even for constructing a closed learning space. It is not possible to use 
the same method in an open learning space because there is too much material. In our 
system, the quality of the semantic information is not as good as manually prepared 
information but the process can be applied automatically for every concept. There-
fore, it can be applied to an open learning space. 

To create questions in an open learning space, automatic question generation is ne-
cessary. Research from Mostow [11] generates multiple choices questions from a text 
to diagnose comprehension failure. However, to encourage history thinking, we need 
to generate opened questions [13]. With a similar objective is research from Heilman 
[6] which has successfully generated factual questions from complex sentences. How-
ever, our process is different because the starting point of the question generation is 
not natural language but semantic information. We have at our disposition a large 
quantity of semantic information, thus, we do not need to process the natural lan-
guage. 

3 The Semantic Open Learning Space 

When using the system, learners are provided with the same starting point. At first, 
they are provided with a document introducing the main subject of learning. Our cur-
rent working example is World War 1. The document will appear in the document 
window, in Fig. 1(b). All documents are taken from Wikipedia and contain mentions 
to other concepts. When a learner clicks on a mentioned concept in the document, it is 
added to the concept map in the concept map window, in Fig. 1(c). The concept map 
display is designed for history learning: it focuses on the events. The center of the 
concept map shows the timeline of the events. The others related concepts that form 
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the context are displayed around the timeline. The learner can also interact with the 
concept map to add relations between concepts or request more detailed information. 
If they try to add a wrong relation between two concepts, they are advised to study the 
related concepts again. Every concept map will be different depending on the learn-
ers’ knowledge and interests. All the information input to the concept map is con-
trolled by the system and can be analyzed easily by comparing to the semantic infor-
mation in the system. 

Support is only provided on request. Leaners are instructed to use the support func-
tion only when they have difficulties in directing their learning. When support is re-
quested, the system will generate a list of questions depending on the learner’s con-
cept map; this list is displayed in the question window, in Fig. 1(a). Selecting a ques-
tion will provide a document containing information that can be used to answer it. 
The learner can learn from the document and add the concepts that answer the ques-
tion to the concept map. S/he can also discover new leads to pursue his/her learning.  

To understand the learning materials, the system uses three information sources, 
Wikipedia for natural language information and two for semantic information: DBpe-
dia [2] and Freebase [3]. They are both projects that aim to create a semantic copy of 
Wikipedia. Both databases provide links to the related Wikipedia document, thus, the 
system can identify as the same on both databases. The main difference between the 
two projects is that Freebase’s information is provided by humans but DBpedia’s 
information is automatically extracted from Wikipedia. 

 

Fig. 1. System Interface 

4 Generating the Content-Dependent Questions 

The problem is that learners cannot always generate good questions [12]. The quality 
of the learning depends on the quality of the questions during this process [4].  
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According to Riley [13], a good enquiry question in history should: “Capture the in-
terest of your pupils, place an aspect of historical thinking at the forefront of the pu-
pils' minds and result in a tangible "outcome activity" through which pupils can ge-
nuinely answer the enquiry question”. Questions shouldn’t be descriptive but encour-
age learners to build their understanding of history like “Did the First Battle of the 
Marne changed the course of WW1?” When answering a question, learners should 
first look for the information and then analyze it to build their own interpretation [8]. 

Fig. 2 shows the question generation process for two concepts, the Military Conflict 
Race to the Sea and the Country German Empire. All concepts and relations have a type 
which is associated to a question in the ontology. The system requests the corresponding 
question to the ontology. The natural language pattern contains a marker giving the posi-
tion where to insert the concept name. For example, the type Military Conflict is asso-
ciated to the Question Pattern “How did the X influence the rest of the conflict?” and the 
marker “X” will be replaced by the concept name “Race to the Sea”. 

 

Fig. 2. Natural Language Question Generation 

By working on answering such questions, learners will develop their knowledge of 
the context to reinforce their understanding. With the questions, learners can focus on 
acquiring knowledge to answer the question. It becomes easier for them to navigate 
the hyperspace because they have an objective. Since they lack planning skills, this 
reduces their meta-cognitive charge to help them focus on learning the contents.  

The targets of the questions are identified by comparing the concept map built by 
the learner and the one built by the system using the semantic information. The result-
ing questions will be generated from the concepts which the learner knows the least 
also giving priority to the most important and reliable concepts. 
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Once the targets have been identified, the system needs to generate the natural lan-
guage questions for the learner. The generated questions use types defined in Graess-
er’s taxonomy [5] and are content-independent. The History Dependent Question 
Generation Ontology shown at the bottom of the Fig.2 makes the link among the 
questions types, the concept types and the relation types. This natural language pat-
terns are hand written for every concept type. 

5 Concluding Remarks and Evaluation of the Generated 
Questions 

In this paper, we described a way to generate content-dependent questions in an open 
learning space. We first described the semantic open learning space we created by 
combining Wikipedia with two semantic information sources: Freebase and DBpedia. 
Then, we describe our methodology to generate questions to trigger history thinking. 
The questions are generated from the semantic information using questions pattern 
and become content-dependent questions. 

To evaluate our method, we generated questions for 600 concepts in the WWI cat-
egory on Wikipedia. For about 50% of the concepts, no semantic information was 
available. These concepts are very minor, for example, most plane or boat models 
used during the war have their own page containing close to no information. For the 
remaining concepts, the questions have been generated and organized by order of 
importance and reliability as calculated by the system. The following are 5 questions 
judged important by the system: 

• What were the consequences of World War I on Austria-Hungary? 
• Did the Siberian Intervention change the course of World War I?  
• Would World War I have been different without Ferdinand Foch? 
• Did the First Battle of the Marne change the course of World War I? 
• How was the German Papiermark used during World War I? 

These questions are very relevant to the study of WWI. Using our method, we have 
very little error of syntax in the generated questions. For about 5% of the generated 
questions are not relevant to studied domain. However, the use of the Wikipedia cate-
gories makes this problem a rare occurrence. 
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Abstract. One of the main functions of intelligent tutoring systems is
providing feedback to help students solve problems. We present a novel
approach to program synthesis that can be used as a basis for automatic
hint generation in programming tutors. Instead of using a state-space
representation of the problem-solving process, our method finds a set of
textual edits commonly used by students on program code. Given an in-
correct program it then synthesizes new programs by applying sequences
of edits until a solution is found. The edit sequence can be used to pro-
vide hints with varying levels of detail. Experimental results confirm the
feasibility of our approach.

Keywords: programming tutors, hint generation, program synthesis.

1 Introduction

Providing interactive feedback is one of the defining features of intelligent tutor-
ing systems. Feedback serves as a mechanism for both instruction and motiva-
tion, by explaining misconceptions behind student errors and providing guidance
when students are stuck. In order to give useful feedback, a tutor must have some
knowledge of the problem-solving process. Modeling this process is particularly
challenging in open-ended domains such as programming, where it cannot easily
be decomposed into a well-defined sequence of independent steps.

Most programming tutors use manually constructed domain models. Such
models can be very effective, but are difficult to create and are only usable for a
limited set of problems. Data-driven tutors build a domain model automatically
by analyzing past student attempts. They can generate hints for new exercises
after enough students have solved them, and improve the quality of feedback
as more solutions are observed. Existing data-driven approaches model student
actions in terms of changes to program structure (e.g. adding and removing
nodes in the abstract syntax tree), resulting in a layer of abstraction between
the tutor’s model and what the students are actually doing – editing program
code. While this gives a useful high-level view of a program’s evolution, it also
limits the granularity with which individual changes can be tracked.

We propose a new data-driven approach that models programming directly
in terms of textual edits, allowing us to trace student actions more closely. Our
method is generative: given an incorrect program, it finds a sequence of edits

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 306–311, 2014.
c© Springer International Publishing Switzerland 2014
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that transforms it into a correct solution. We are implementing a Prolog tutor
based on our approach. It uses almost no language-specific information and can
potentially be adapted for other programming languages.

This paper presents the method for synthesizing new programs from an incor-
rect solution. The next section gives an overview of related work; our approach
is described in Sect. 3 and evaluated in Sect. 4, while the final section concludes
and presents directions for further work.

2 Related Work

A substantial amount of work exists concerning feedback in programming tutors.
Typical approaches describe the solution to each problem using either a set of
constraints [1,2] or reference programs [3,4]. Hints are generated by analyzing
the differences between solution description and the student’s code. The tutor
must be programmed with specific information for each supported exercise.

With increased use of technology in education, large amounts of educational
data are becoming available [5]. Data-driven approaches exploit this data to
“learn” how to solve problems from actual student solutions, reducing the need
for expert input. Typically, the problem-solving process is modeled as a search
through a state space of partial and complete solutions. Any path from the start-
ing state to a goal state corresponds to a sequence of actions solving the problem.
Goal-oriented feedback is generated by finding the most likely transition from
the current state toward a goal state. The Deep Thought logic tutor constructs
a Markov decision process for each problem from past student solutions [6].

A similar approach can be used for programming tutors. However, repre-
senting each program by a separate state is intractable even for the simplest
problems. Linkage graphs [7] and program canonicalization [8] have been used
to reduce the state-space size by grouping equal or similar programs.

3 Text-Based Program Synthesis

Given a programming exercise and an incorrect program, the task is to find
a sequence of transformations that fixes the program. We model programming
as a line-oriented text-editing process, and use line edits as basic operations
for transforming programs. For example, line edits commonly used by students
when programming the predicate del/31 in Prolog include

del(A,[B|C],D) → del(A,[B|C],[B|D]]) ,
del(A,B,C) → del(A,[A|D],D) and
C=del(A,B) → del(A,B,C) .

In general, a line edit u → v replaces a line matching u with v. If u or v is empty,
the edit inserts or removes the whole line.

1 Predicate del(X,L,L2) holds iff the list L2 equals L with one occurrence of X removed.
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To discover commonly occurring line edits, we store the interaction history
called trace for every attempt. Each trace includes the complete sequence of
characters the student inserted and removed. We find line edits in a trace by
splitting the sequence of actions into contiguous blocks modifying the same line.
The last example above corresponds to a block of four actions removing the
characters C= and inserting ,C. The order of actions within a block is irrelevant.

We count the number of times each line and line edit appears in the set of all
traces. To reduce noise, we tokenize the left- and right-hand sides of every edit
and standardize variable names. For example,

del( E, List, New) → del( E, New, List)

becomes

del(A,B,C) → del(A,C,B) .

This way edits from all traces can be compared while ignoring variations due to
whitespace, comments and identifier names. When applying edits to a student’s
program, standardized names must be mapped to actual variables in the affected
line. Finally, we calculate the conditional probability of applying each edit u → v
given a line matching u as

P (u → v|u) = # of times u → v appears all traces

# of times u appears in all traces
. (1)

3.1 Search Algorithm

After we have found a catalog of line edits, we can use them to correct students’
submissions. Given an incorrect program p0, the goal is to find a sequence of
line edits that transforms it into a working program. This is done as a best-first
search among sequences of line edits.

A priority queue of potential solutions is maintained. For each program in
the queue we also store the sequence of edits needed to reach it from p0 and its
score, defined below. We initialize the queue by adding p0 with score 1.

In each iteration of the algorithm we remove a program p with the highest
score sp from the queue. If p passes all tests (see Sect. 4), we are done. Otherwise
we search the catalog for edits u → v where the left-hand side u matches a line l
in p. We apply each such edit to p to obtain a new program p′, and add p′ to
the queue with the new score sp′ calculated as

sp′ = sp ∗ P (u → v|u) , (2)

where P (u → v|u) is the conditional probability defined by (1). This way shorter
sequences of common edits receive higher scores and are thus considered sooner.
A more sophisticated scoring function would take into account additional fea-
tures of p and p′, and likely yield better results. However, (2) works sufficiently
well to demonstrate the potential of our approach.
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3.2 Hint Generation

To use our method in a programming tutor, we must be able to provide hints
based on a sequence of line edits. For example, our method finds the edits (shown
in comments) required to fix the buggy implementation of conc/32 containing
two typical mistakes:

conc(L,[],L). % conc(L,[],L) → conc([],L,L)
conc([H|T],L,L2) :- % conc([H|T],L,L2) → conc([H|T],L,[H|L2])

conc(T,L,L2).

Line edits themselves can serve as bottom-out hints. However, a tutor must also
be able to guide the student toward a solution without giving it away. Given
a sequence of edits, we can highlight the affected lines, tokens or variables. By
parsing the program we could generate descriptive hints, e.g. “Last argument
in the head of the second rule should be a list” for the above program. If the
student must insert or remove a rule or a subgoal, a message can be shown to
that effect. Some help can be provided even for programs our method is unable
to fix, by marking lines or identifiers that appear in few or no existing solutions.

4 Evaluation

We collected traces of students’ attempts using a modified version of the tuProlog
environment3. Each trace contains at least one correct version of the program
submitted for testing. Most traces also include several incorrect submissions.
Correctness of a program is determined by running it against a set of manually
selected queries. Programs are small and simple so this gives accurate results.

We evaluated the algorithm on several problems. For each problem we used
our method to fix all incorrect student submissions. We limited the time to find a
solution to 10 seconds; a longer timeout would make it impractical for real-time
use. Our method can fix 50–70% of incorrect programs for most problems; results
are shown in Table 1. The success rate for conc/3 is likely lower because it is

Table 1. Percentage of incorrect programs fixed by our method

Problem Traces Incorrect Fixed %

conc/3 93 83 29 0.35
del/3 84 100 55 0.55

duplicate/2 50 83 51 0.63
is sorted/1 55 118 70 0.59

length/2 68 36 26 0.72
palindrome/1 56 85 58 0.68
shiftleft/2 60 66 41 0.62

2 Predicate conc(L1,L2,L) holds iff the list L is a concatenation of L1 and L2.
3 https://apice.unibo.it/xwiki/bin/view/Tuprolog/

https://apice.unibo.it/xwiki/bin/view/Tuprolog/


310 T. Lazar and I. Bratko

the first problem dealing with lists the students solved; hence, many programs
contain unique mistakes due to confusion about Prolog syntax. Some classes of
errors, such as typos, are specific to individual traces and are generally handled
poorly by our method, which considers frequently occurring edits first.

The histogram in Fig. 1 shows how many solutions were found after generat-
ing 10, 20, 30,. . . programs, for 229 corrected submissions. Our method behaves
as expected and handles the common cases better. We can correct typical bugs
by generating less than 50 programs. Submissions with typos, incorrect syntax
or multiple errors are more difficult to fix.
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Fig. 1. Number of programs generated before finding a solution

A useful advantage of our method is that it does not have to “understand” a
program to fix it. This allows us to find known mistakes in novel programs that
differ from all previous submissions. For example, the following implementation
of conc/3.

conc(L1,L2,L) :-

L1 = [],

L = L2

;

L1 = [H|T],

conc(T,L2,TL),

L = [H,TL]. % L = [H,TL] → L = [H|TL]

is the only solution that uses explicit matching and the ; operator. Our method
finds an edit that fixes the buggy line while disregarding other parts of the
program. A similar result could be achieved by normalizing the buggy program
to use separate rules and implicit matching, like the one in Sect. 3.2. This would
require a more detailed model of the Prolog language. Our method works without
relying on such a model, although it might be enhanced by it.
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5 Conclusion

We have presented a novel approach to hint generation in programming tutors.
Our method synthesizes solutions by searching for a sequence of line edits that
fixes a buggy program. This sequence can be used as a basis for providing hints.
The main advantages of our method are: (a) the set of line edits is learned
automatically from past student attempts, (b) it can handle completely novel
programs that do not map to a known approach, and (c) relative independence
from the target programming language. An unoptimized implementation of our
method was able to fix up to 70% of incorrect student submissions.

Besides implementing hint generation in an actual tutor, our future work will
consist mainly of improving the search algorithm for program synthesis. When
searching for edit sequences, the scoring function only considers edits in the
current sequence. This will be improved to also include an estimated distance to a
solution. While accurately estimating the “wrongness” of an incorrect program is
in general impossible and in any case difficult, a few rudimentary rules-of-thumb
can greatly reduce the size of the search space. Options include classifying lines
according to their function, and taking inter-line dependencies into account when
calculating probabilities.
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Abstract. This paper presents a method for generating hints based on
observed world states in a serious game. BOTS is an educational puz-
zle game designed to teach programming fundamentals. To incorporate
intelligent feedback in the form of personalized hints, we apply data-
driven hint-generation methods. This is especially challenging for games
like BOTS because of the open-ended nature of the problems. By us-
ing a modified representation of player data focused on outputs rather
than actions, we are able to generate hints for players who are in similar
(rather than identical) states, creating hints for multiple cases without
requiring expert knowledge. Our contributions in this work are twofold.
Firstly, we generalize techniques from the ITS community in hint genera-
tion to an educational game. Secondly, we introduce a novel approach to
modeling student states for open-ended problems, like programming in
BOTS. These techniques are potentially generalizable to programming
tutors for mainstream languages.

Keywords: Serious Games, Hint Generation, Data-Driven Methods.

1 Introduction

BOTS is a serious game designed to teach basic programming concepts to novice
computer users and programmers [6]. BOTS, in its current state, contains no
mechanisms for personalized feedback or problem ordering. One method of pro-
viding such feedback is to have experts create it for each problem. However,
BOTS features open-ended problems with many possible solutions, as well as
user-generated problems, making such expert annotation difficult. In this paper,
we describe an effort to incorporate ITS-like personalization through data-driven
hint generation.

Our contributions in this work are twofold. We generalize ITS hint-generation
techniques to an educational game, and introduce a novel approach to modeling
student states for open-ended programming problems. It is our hope that these
techniques can be further generalized to programming tutors for mainstream
languages in future work.
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2 Prior Work

Intelligent Tutoring Systems (ITS) have been shown to be effective at improving
student performance [1,8]. ITS originally relied heavily on subject matter ex-
perts to anticipate common mistakes and misconceptions, but in spite of subject
matter knowledge, experts are not always able to detect difficulties or miscon-
ceptions (the “expert blind spot”) [10]. Additionally, such content is very costly,
with Murray [9] estimating a cost of around 300 expert hours to create one hour
of content in an ITS. Data-driven methods are proposed as a way of combating
these effects, and can provide students individualized help based on previous
observations.

The developers of Deep Thought (a propositional logic tutor) employed a
method called Hint Factory [12]. As users work on problems, their actions are
used to build a Markov Decision Process (MDP). This was later generalized by
Eagle, et al, defining an Interaction Network as a complex network containing
data about student-tutor interactions. [4] Hints can be generated from this data
by searching the Interaction Network for users with the same solution path.
Based on the previous users’ actions, a potential next step can be suggested. If
no user has succeeded on that path before, wec an suggest the current user try
a different approach.

Systems such as the Lisp Tutor [1] and ACT Programming Tutor[3] were
developed using knowledge engineering. Recent attempts to automate program-
ming tutors have started with hint generation; however, when compared with
domains like Propositional Logic, representing programming using state-action
pairs poses many more challenges. For example, equivalent solutions to a prob-
lem can be expressed in many different ways. Directly applying Stamper’s Hint
Factory could result in a sparse state space, and we would need many more
records in order to provide hints to most students. Some approaches have at-
tempted to condense these similar solutions. One approach converts solutions
into a canonical form by strictly ordering the dependencies of statements in a
program [11]. Another approach compares linkage graphs modelling how a pro-
gram creates and modifies variables, with nested states created when a loop or
branch appears in the code [7].

3 Context

In BOTS [6], the goal of each puzzle is to program a robot to move blocks into
specific ‘goal’ positions on the map. The player controls a robot by writing a
program in a graphical, drag-and-drop programming language, as shown in Fig-
ure 1. The language supports basic robot operations (move, turn, pick up block)
and flow control constructs (variables, loops, and functions). Once the puzzle
is completed and the solution terminates without an error, the player is given
a score based on the number of instructions they have used. After completing
the puzzle, the player is encouraged to make modifications to their program and
complete the level again using fewer instructions.
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Fig. 1. In the game, players direct a robot to solve puzzles using a simple drag-and-
drop programming language. Here we see three different programs which result in the
same final state: The robot has moved a block from one side of the room to the other.

4 Methods

The intelligent tutoring system literature agrees on the definition of interactions
as the low-level, click-by-click behavior of a student in a tutor [13]. This low-level
representation is not ideal for our context, as the state space in BOTS is large
and sparsely populated when compared to other tutors which have used Hint
Factory. Instead, we will use the output of programs that players have written.
For example, in Figure 1, the screenshot depicts the initial configuration on the
left, and three distinct programs that each result in the output on the right. In
our representation, one “World State” would encompass all three programs. We
will show that this representation substantially reduces the state space and also
facilitates the generation of meaningful hints.

To develop our alternative model, we first looked to other tutors that use
data-driven hint generation, such as Deep Thought, a tutor for propositional
logic used in introductory discrete math courses [2,4], and iList, a tutor that
teaches the concepts of linked lists [5]. Both of these tutors use Hint Factory
[12] to generate hints, but do so with different underlying models of the student
states.

An interaction in Deep Thought is a single user input such as selecting a rule
to apply. These states are represented as vertices of a graph, with edges between
vertices being labelled with the logical rule (modus ponens, modus tollens) that
was used to derive the most recently added state. The developers of iList also use
Hint Factory, but their underlying model is based on snapshots of the tutor’s
internal state rather than the sequences of user interactions [5]. The authors
look at the results of the student actions rather than at the actions themselves,



Building Games to Learn from their Players 315

automatically resolving the situation in which multiple unique sequences result
in an identical state. In order to find similar states, the authors compute which
internal states are isomorphic to each other. For this work, we represent the
output of a student’s program as a grid representing the size of the stage, with
unique markers for boxes, switches, and robots, as well as a height map of the
stage. An example can be seen in Figure 2. This way, regardless of the contents of
their programs, students who are performing the same actions (such as putting
a particular block on a particular switch) will be grouped into the same state.

5 Analysis

To test the practical applicability of this state representation for analysing stu-
dent solutions and providing hints, we used a corpus of past data collected from
middle school aged players in classes and STEM-related afterschool programs.

Table 1. Results of our method for 24 puzzles. Rows indicate the Puzzle ID, number of
students who attempted the puzzle, number of individual attempts, number of unique
programs, number of ”hintable” output states, and number of unique output states.

Unique Hint-Generating Unique
Puzzle Students Attempts Programs States States

1 60 95 9 3 5
2 57 284 234 41 65
3 50 189 121 15 21
4 43 77 39 9 9
5 42 181 193 22 24
6 42 84 26 5 7
7 40 127 182 31 41
8 35 50 16 8 10
9 35 89 81 25 29
10 33 227 325 79 130
11 31 53 77 20 25
12 28 79 41 3 4
13 27 145 187 50 75
14 22 40 57 19 23
15 21 76 119 16 18
16 19 40 96 33 39
17 18 76 103 26 32
18 15 44 59 4 35
19 15 34 64 16 38
20 14 56 43 5 25
21 13 33 34 15 20
22 10 67 71 18 23
23 8 30 25 13 16
24 8 13 32 0 22
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Fig. 2. Two of the generated hints for a simple puzzle. The blue icon represents the
robot. The ’X’ icon represents a goal. Shaded boxes are boxes placed on goals, while
unshaded boxes are not on goals.

5.1 Hint Generation and State Space Coverage

To evalute how much our method was able to improve hint coverage, we com-
pared the number of unique programs written to the number of unique output
states. We then considered the number of those states for which a hint was
available as shown in Figure 1. For the problems analyzed, our approach was
consistently able to reduce the state space. For puzzle 10, a puzzle with a rich
data set of solutions, we were able to reduce the state space from 325 unique
programs to 130 unique output states. However, this reduction is meaningless
unless we are able to provide useful hints from the created states. Out of 130
unique observed states, 79 states had potential to generate hints (that is, a stu-
dent was in that state and then correctly solved the puzzle). 33 of these hints led
to Error nodes, in cases where the Error was the only observed next-step. Of the
remaining 45 hints, we found 42 to be meaningful. It is important to note that
while this problem contained more records and students than other problems in
our data set, the number of records was still quite small. Despite the lack of data
we were able to provide hints more than half of the time, and able to provide
hints for every state reached by multiple users.

6 Conclusions and Future Work

We have developed an approach to modeling student interaction with a serious
game. This approach can be used to automatically generate hints with the Hint
Factory algorithm. Rather than attempting to encode the programs or step-by-
step interactions of the user, we instead use the resulting configuration of the
world after each compilation of the student’s code. Doing so, we are able to
cover all of the unique code submissions with only a fraction of the states in
the graph. While we use a naive implementation of Hint Factory, the hints that
are generated are still useful and interesting, particularly those that lead out of
error states. This work demonstrates that even with a small number of records,
useful hints can be generated by grouping user actions according to their results.
A similar system could be used in real-time games, generating hints based on
important results or milestones rather than from low-level interaction data.
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Abstract. We describe a programming tutor framework that consists of two 
configurable components, a guided-planning component and an assisted-coding 
component that offers task relevant automatically-generated hints on demand to 
students. We evaluate the effectiveness of the new integrated planning and cod-
ing environment by comparing it to three other tutor conditions: planning-only, 
coding-only, and planning-only interleaved with planning-coding. We conclude 
that the integrated planning and coding tutor environment is more effective than 
tutored planning-only activities and that students make more efficient use of tu-
tor feedback in the integrated environment than in the coding only environment. 

Keywords: Intelligent tutoring systems, automatic hint generation, program-
ming tutors. 

1 Introduction 

With the increasing demands for skilled workers in the computing fields, there have 
been increasing efforts in developing effective and innovative approaches to recruit 
and retain students in computing majors. 

Our approach is to help students learn more effectively. Many educators have ob-
served the difficulties that students have with mastering programming [12]. The high 
failure rate of introductory programming courses and, as a result, the high drop-out 
rate from the computing majors during the first two years of college is a commonly 
known problem in many institutions [6]. It is a manifesto that ineffective learning and 
the resulting frustration are an important factor in the retention problem.   

Our approach is to use computer tutors that help students develop problem solving 
and program writing skills. It has long been known that one-on-one in-person tutoring 
with an area expert is most effective [4]. A later study [17] shows that an ITS de-
signed with proper granularity can be just as effective as human tutor.  

An effective human tutor is insightful and adaptive.  He/she can detect and ad-
dress the crux of a student’s problem. For example, the tutor may decide that a student 
has not mastered a programming construct, and the tutor will review the programming 
construct with the student before embarking on the homework problem the student 
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comes for. The tutor may also see that the student is totally stuck in a programming 
task, even though the student has a good understanding of the relevant programming 
constructs. The tutor would analyze the problem and help the student plan a solution. 
With the plan, the student is competent to carry out the coding portion. If the student 
already has a rough plan in mind, but has difficulty converting the plan to code, the 
tutor may ask probing questions to help students implement the plan with code. 

An adaptive human tutor has a bag of “tools”, which he/she chooses according to 
how to best help a student.  In this paper, we describe two such tools/components, 
which are closely integrated in an automated programming tutor we have developed, 
and present evaluation results for this new tutor environment. The first tool is guided-
planning, where the tutor guides students in both decomposing the program into sub-
goals and planning a solution to each sub-goal. The second tool is assisted-coding, 
where the tutor provides help as needed for the student to code each sub-goal.  

The effectiveness of intelligent tutoring system support for writing code is well-
established [7][13][18]. Several intelligent programming tutors have also been devel-
oped that support interactive support for program planning [5][11][14], but the effec-
tiveness of such planning interactions is not well established. 

In the remainder of the paper, we will first describe the guided-planning and as-
sisted coding components. We then present the evaluation results and conclusion. 

2 The Guided-Planning Component 

The guided-planning component is a step-by-step problem solving process that guides 
students in the right direction. It consists of two levels of granularities. At the larger 
granularity, the tutor divides problem solving into a sequence of sub-problems (e.g. 
variable analysis, flow analysis, input section, computation, output section). At the 
finer granularity, the tutor guides students in developing a detailed coding plan for 
each sub-problem, which may include concrete code snippets. Figure 1 shows the 
tabbed planning interface, as the student designs a solution for this problem: “Write a 
program that asks the user to enter how many days of vacation they took (integer). 
The program will print how many weeks and days this is.” The figure shows the stu-
dent working on the second, variable analysis, sub-problem. In the previous, IO anal-
ysis, sub-problem, the tutor has guided students in identifying the relevant quantities 
in the problem that will be assigned to variables. As shown in the figure, at the current 
sub-problem, the student indicates the data type and assigns a name to each of the 
variables. The tutor provides right-or-wrong immediate feedback to students. A 
wrong answer will be highlighted in red font. Students can right-click on the wrong 
answer for hints as to why it was wrong.  

In a planning-only version of the environment, the tutor automatically fills in cor-
responding program code in the window at the upper right as the student completes 
each of the planning sub-problems. In the planning-and-coding version, as shown in 
Figure 1, the student generates the corresponding program code, as described in  
the following section, after completing each planning sub-problem with the tutor’s 
assistance.  
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The guided-planning component is created for each tutoring problem by the teach-
er using a GUI based authoring tool. A tutor engine program renders this component 
as a tabbed interface, with a tab for each sub-problem. The authoring tool makes it 
fast to develop the planning specification for a new problem or update the one for an 
existing problem. Even though the planning component is statically defined, its ren-
dering does not have to be so. Our future work includes extending the tutor engine to 
allow the tutor to dynamically adjust the planning component’s granularity of interac-
tion with students.  

 

 

Fig. 1. Tabbed Interface divides problem solving into a sequence of sub-problems 

3 Dynamic Hint Generation and the Assisted-Coding 
Component 

The assisted-coding component depends on task relevant dynamic hint generation. 
We will first discuss dynamic hint generation and then describe how it is used in the 
assisted-coding component. 

3.1 Task Relevant Dynamic Hint Generation 

Task-relevant hints are an important component for tutoring systems. Both statically 
authored hints and dynamically generated hints have been used. Statically authored 
hints have been used in many tutoring systems for different subjects of study. CTAT 
uses authoring tools to insert hints into example tracing tutors [1].  
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Hints generated by the rule-based tutors are a form of dynamic hints [2], however, 
developing rule-based systems is time consuming. In a second, logic tutor approach, 
dynamic hints are constructed based on the matching of current student’s problem 
solving path with solutions from previous submitted solutions [3][16]. In our ap-
proach, dynamic hints are generated from a single, or at most a few, instructor-
provided solution(s). 

Dynamic hinting has the advantage of being adaptive; however, it is a challenge for 
programming tutors. For a programming problem, there are many possible correct 
solutions. The number of correct solutions is combinatorial in nature and can be infi-
nite if we treat programs with different identifiers as different. 

Programming has two distinctively opposite aspects: constraints and freedoms. 
Some things have to be done a certain order (constraints), but there is a lot of room 
for creativity (freedoms). For example, programmers have total control over the order 
of the operations that do not have dependency on each other, naming of identifiers, 
and the programming constructs to use.  The number of possible solutions is combi-
natorial to the complexity of the problem. 

The freedoms a programmer has make it a challenge to automatically generate 
task-relevant hints. A proper program representation that normalizes the freedom 
portion of programming is needed. Several promising program representation me-
thods have been proposed [8][9][15]. Our approach is based on the program represen-
tation, linkage graph, proposed in [9]. In this approach, a teacher needs to supply a 
correct solution or several different correct solutions to a programming problem. For 
each correct solution, the teacher also needs to supply a specification file for variables 
used in the file.  

We have extended this approach in the following ways:  
• Instead of one variable specification file per solution, only one specifica-

tion file per programming problem is needed.  
• For a program that a student is working on, there are potentially several 

different ways to proceed or there are may be more than one logic errors. 
We developed a module to decide what the best next-step is. 

• After the best next-step is decided, the hint presentation module starts 
with a general hint related to that step, and can progressively provide 
more detailed hints, including a bottom-out hint.  

3.2 Assisted-Coding 

Dynamic hint generation is the core of the assisted-coding component. This component 
can be used alone or together with the guided-planning component. When used alone, 
after a student is given a problem specification, the student starts coding right away 
without a planning stage. During the coding process, the student can request hints from 
the tutor as to what to do next in terms of what is wrong and how to fix the error.  

When used together with the guided-planning component, the two components 
work in an inter-leaved fashion as the student completes a problem. The guided plan-
ning component invokes the assisted-coding component after a student finishes the 
planning activities for a sub-problem. At the GUI interface, on each tabbed page for a 
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sub-problem, a student performs the planning activities on the left panel and the as-
sisted-coding on the right panel.  

Figure 2 shows the coding panel (in the upper right of the full screen) as the stu-
dent writes the code for the final, output section sub-problem of the example program. 
The tutor leaves a segment below the current goal (“3. Display the area” in this case) 
editable and the student write the corresponding code in that segment. All the other 
lines of the coding panel are not editable. This limits students’ attention to the current 
task at hand.  

The coding tutor provides feedback and advice only upon student request. At any 
time during coding, the student clicks on the check button, requesting the tutor to 
check if the code segment is correctly done. If there are errors, the tutor provides hints 
on what the student needs to do. The hints get progressively more specific if the tutor 
detects that the student is still at the same place after several tries. For example, if a 
student forgets to declare a variable for input data (e.g. temperature in Celsius), the 
tutor would first tell the student that a variable for an input data item should be de-
clared. If the student does not fix this problem, the tutor will tell the student to declare 
a variable for the temperature Celsius. If the student still fails to do so, the tutor will 
display the declaration statement to the student. 

Feedback-on-demand is more compatible than immediate feedback with our me-
thod of hint generation, which relies in part on compiling the student’s code. [7] 
showed that feedback on demand is less efficient than immediate feedback for writing 
full programs, but we hypothesize that the greater freedom offered by feedback-on-
demand is more feasible when students are coding one short, pre-planned program 
segment at a time. To evaluate this hypothesis, in the coding-only version of the tutor, 
the student codes complete program solutions, again with feedback-on-demand, with-
out assistance in decomposing the program into sub-goals. 

 

 

Fig. 2. The right panel of the tabbed interface where students write code 
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4 Evaluation 

Planning and coding are two important aspects of programming. Usually planning is 
implicitly done during the coding process. Our approach makes planning an explicit 
stage. In a previous study [10], the authors evaluated how explicit planning had im-
proved student performance in programming. The explicit planning process together 
with the automated planning tutor used throughout the learning of several program-
ming constructs have yielded substantial gains over traditional instruction. Now with 
dynamic hint generation and the assisted coding component, we can examine the ef-
fectiveness of an integrated guided-planning and assisted-coding intelligent tutor. 

4.1 Experiment 

The experiment was conducted at the University of West Georgia in four sections of 
an introductory programming course, which is a first programming class open to stu-
dents of all majors, but not intended for computer science majors. We conducted the 
study six weeks into the semester.  The study included four conditions:  

─ Planning-Coding (PC): For each problem, the tutor guides students through 
planning activities with immediate feedback and then assists students with the 
coding, with feedback on demand. 

─ Planning-Only (PO): For each problem, the tutor guides students through plan-
ning activities with immediate feedback, then generates the code for students. 

─ IPOPC: The tutor alternates between Planning-Only and Planning-Coding on 
successive problems, starting with a PO exercise. 

─ Coding-Only (CO): Tutor provides no decomposition or planning support. Stu-
dents write code to solve problems, with feedback on demand. 

Each of the four course sections was assigned to one of the conditions. The as-
signment of students to different sections was done by students themselves during the 
registration period. 

The experiment consisted of a single class session in which students completed a 
pretest, worked with the tutor for about 40 minutes, and then completed a posttest. 
The pretest and posttest consisted of two problems in which students were asked to 
write programs similar to the programs that students would develop in the tutoring 
session. For students in each condition, we applied pre/posttest balance control and 
have two test forms with comparable problems. We divide the students into two 
halves, subgroup A and sub-group B. Their pre/posttests are opposite to each other, 
i.e. subgroup A’s pre/post tests are subgroup B’s post/pretests. This is to even out the 
difficulty difference between pre/posttests. 

4.2 Evaluation Results 

Eighty-five students who completed both pre/post tests are included for evaluation. There 
were 20 students in the Planning-Coding (PC) condition, 19 in the Planning-Only (PO) 
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condition, 14 in the IPOPC condition and 32 in the Coding-Only (CO) condition. The 
instructor for the four sessions graded all the pre/post tests manually according to the 
rubrics described below. While the instructor was aware of the four different conditions, 
the instructor was not informed of any hypotheses concerning which of the conditions 
would be more or less effective. 

Test Performance. Each program on the pretests and posttests was scored with a 
grading rubric, consisting of the following six categories: 

• Variable declaration: Whether students have declared an appropriate set 
of variables for the program.  

• Variable type: Whether students have set proper variable types.  
• Input: Whether students wrote correct code to get input from the user. 
• Computation: Whether students wrote correct arithmetic expressions to 

calculate the result values. 
• Output: Whether students wrote correct code to display computation re-

sults. 
• Order: Whether students coded the operations (input, computation and 

output) in an appropriate order. 
Each program was assigned a score between 0 and 2 for each rubric. The six rubric 

scores were averaged across the two programs in the test, and the total score for a test 
is the sum of these six averages. The left side of Table 1 displays the average total 
pretest scores and posttest scores for the four conditions, followed by the learning 
gains. The right side of the table shows the six component scores for just the posttests. 
As can be seen, the learning gains in the PC condition are about three times larger 
than in the other three conditions.  

Table 1. Average Test Performance in the Four Conditions: Pretest Scores, Posttest scores, 
Learning Gains, and Six Component Scores for the Postests  

 Full Tests Posttest Component Scores 

 
Pret-
est 

Post-
test 

 
Gain 

Var 
decl 

Var 
type 

Input Comp 
Out-
put 

Order 

PC 2.28 5.05 2.78 0.93 0.86 0.86 0.71 0.70 0.99 

PO 3.28 4.20 0.95 0.86 0.77 0.70 0.56 0.59 0.73 

IPOPC 3.48 4.25 0.77 0.86 1.00 0.66 0.48 0.50 0.75 

CO 2.72 3.72 0.91 0.75 0.84 0.75 0.31 0.41 0.66 

 
We first performed an ANOVA on just the pretest scores, and the differences 

among the four conditions were not significant. We then performed a repeated-
measures ANOVA on the pretests and posttests, with two between-student factors, 
condition and test form (i.e. subgroup A or B). In this ANOVA, the main effect of the 
repeated test measure was significant, F(1,77)=18.301, p < .01, indicating that the 
overall learning gains are reliable. The main effects of condition and of test form were 
not significant. More importantly, the interaction of condition and the repeated test 
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measure was marginally significant, F(3,77)=2.212, p < .10, indicating that the learn-
ing gains were larger in some conditions than in others. 

To examine this interaction further, we performed an ANCOVA on just the post-
test scores, with condition and test form as factors, and pretest as a covariate. The 
main effect of condition in this analysis is not significant, F(3,76)=3,76, p < .16. 
However, three pairwise planned comparisons in this analysis revealed that posttest 
scores in the planning and coding (PC) condition were significantly higher than in the 
coding-only (CO) condition, p < .05, and marginally higher than in the planning only 
(PO) condition, p < .09 and marginally higher than in the interleaved (IPOPC) condi-
tion, p < .08. 

Finally, we inspected each of the six posttest coding heuristics individually. As 
shown in Table 1, the differences among the groups on the first three, relatively easy 
components are small, while the differences among the groups are larger on the hard-
er, final components. We collapsed the first three heuristics into a single composite 
measure and the last three heuristics into a second composite measure, and performed 
a repeated measure ANCOVA on these two composite scores, with condition and 
form as factors, and pretest as the covariate. Again, the effect of condition is not sig-
nificant, but the main effect of the repeated composite heuristic scores is significant, 
F(1,76)=19.581, p<.01 and, again, most importantly, the interaction of heuristic and 
condition is significant, F(3,76)=4.312, p<.01. In a follow up ANCOVA on just the 
second composite measure, the main effect of condition is significant, F(3,76)=3.054, 
p <.05, and the three planned comparisons of the PC condition with each of the other 
three conditions are all significant at the .05 level. In contrast, in a follow up 
ANCOVA on the first composite measure, neither the main effect of condition nor 
any of the three planned comparisons were significant.  

Table 2. Tutor Log Summary  

  
Average # Questions 

Finished 
At least one problem 

completed 
At least two problems 

completed 
PC 0.75 65% 10% 
PO 5.42  100% 100% 

IPOPC 1.36 86% 50% 
CO 0.03 3%  0  

Tutor Performance. Table 2 displays the average number of tutor problems the stu-
dents completed in each condition. (The tutor only records a log file when the student 
completes a problem in the first three conditions and does not log partially completed 
problems. In the last, coding-only condition, log entries were saved after the 2nd hint 
request, then after every 8 subsequent hint requests, and at the end of a problem.) As 
can be seen, the number of problems completed varied widely across conditions, but 
across the board these students in this study struggled in completing the problems.  

In the PC condition, 13 of 20 students completed at least one problem correctly during 
the 40-minute session, and 2 students completed a second problem. In sharp contrast, 
only 1 student of 32 in the CO condition completed a correct problem. This striking  
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difference in the number of students who successfully completed a relatively short pro-
gramming problem with feedback on demand, confirms that this feedback mode is more 
feasible when students are coding short, pre-planned program sub-goals one at a time, 
rather than coding complete programs.  

Further inspection of the log files revealed some of the disadvantages of the CO 
condition. Seven of the 32 CO students made poor use of the tutor’s hint capabilities, 
issuing fewer than 2 hint requests (thereby failing to generate log files). Of the re-
maining 25 students, 9 may have effectively given up; they stopped asking for tutor 
hints with substantial time remaining in the session (from 6.5 to 15.4 minutes). This 
suggests that subtask decomposition, and the students’ accompanying sense of pro-
gressive accomplishment, is key to viability of feedback-on-demand in programming.  

At the other extreme, the 19 students in the PO condition, averaged more than 5 
complete problems. In fact, all PO students completed at least 3 problems and only 4 
students failed to complete all 6 problems in the curriculum. Although the planning 
template is reasonably close to surface code, the guided-planning activity alone does 
not translate into enhanced performance on the programming posttest. Instead of the 
number of exercises students complete, it seems that the types of exercises that stu-
dents have worked on and completed matter more. 

Finally, in the IPOPC condition, 12 of 14 students completed the first, planning-
only problem, while 50% finished the second planning-and-coding problem, and no 
one finished additional problems. Note that only 50% of IPOPC students finished one 
PC problem, compared with 75% of PC students finished one or two PC problems. 
Again, these results along with the posttest outcomes suggest that subdividing the 
work so that the student actively plans the code and the tutor provides the code is not 
a viable alternative to requiring the student to actively write the code. 

5 Conclusion and Future Work 

This paper evaluates a newly developed guided-planning and assisted-coding (PC) 
intelligent programming tutor. Students working with this tutor achieved larger pret-
est-posttest learning gains than students working in a planning-only (PO) environ-
ment, a coding-only (CO) environment or in an environment that interleaves plan-
ning-only and planning-coding environments (IPOPC).  

The follow up tutor log file analysis indicates that the integrated planning and cod-
ing activities in the PC environment are intrinsically more effective than the PO and 
IPOPC environments. Students completed more tutor problems in the latter two envi-
ronments, but still did not learn as much as students using the PC environment. This 
demonstrates that code planning activities are not sufficient for students to succeed. 
After planning programs, writing the program is better than viewing a computer-
generated program. This is true even in the current environment, in which the plan-
ning template is reasonably similar to program code. 

The tutor log file analyses also indicate that the PC environment is more effective 
than the CO condition, because it is more efficient; that is, students were more likely 
to plan and code a complete correct program in the PC than to code a complete cor-
rect program in the CO condition. Both environments employed feedback-on-demand 
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and at least part of the advantage of the PC environment is that students were able to 
exercise their enhanced feedback control more efficiently within the sub-goal coding 
structure imposed by the PC environment. 

Future work will include examining the separate contributions of sub-goals, sub-
goal planning, and feedback mode to the enhanced learning gains observed in the 
integrated planning and coding environment. Future work will also include expanding 
the new environment, by extending the dynamic hinting module in the assisted-coding 
component to include most programming constructs for introductory programming 
courses, such as selection, methods and classes.  
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Abstract. Developing intelligent tutoring systems from student solution
data is a promising approach to facilitating more widespread application
of tutors. In principle, tutor feedback can be generated by matching stu-
dent solution attempts to stored intermediate solution states, and next-
step hints can be generated by finding a path from a student’s current state
to a correct solution state. However, exact matching of states and paths
does not work for many domains, like programming, where the number of
solution states and paths is too large to cover with data. It has previously
been demonstrated that the state space can be substantially reduced us-
ing canonicalizing operations that abstract states. In this paper, we show
how solution paths can be constructed from these abstract states that go
beyond the paths directly observed in the data. We describe a domain-
independent algorithm that can automate hint generation through use of
these paths. Through path construction, less data is needed for more com-
plete hint generation. We provide examples of hints generated by this al-
gorithm in the domain of programming.

Keywords: automatic hint generation, feedback, learning path con-
struction, solution space, programming tutor.

1 Introduction

We have seen a recent boom of interest in educational technology through the
emergence of Massive Open Online Courses and the creation of many educational
technology start-up companies. Much emphasis there has been on providing
students access to high quality lectures, but there is great unmet promise to
better scale the kind of learn-by-doing support that intelligent tutoring systems
can provide. A key barrier is the difficulty in authoring intelligent tutors and a
key opportunity is the use of past student solution data to ease that development
process.

The use of historical student data in generating hints has been examined
before [1], but in previous work, solution paths were entirely collected from
students. This limited the options for future students who would request hints
from such systems, requiring them to stay on the paths that their predecessors
had travelled. In such a system, a student who tried to go off-path would not
be able to receive hints, even if they were not particularly far from a solution.

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 329–339, 2014.
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Furthermore, relying entirely on historical student data makes it difficult to
generate hints for new problems that do not have collections of data, which
makes building tutors for new problems nearly impossible. Therefore, we examine
the problem of whether it is possible to construct new student solution paths
automatically, using only the solution states that have already been collected
from previous students. We center this problem around programming solutions,
as programming problems provide a large solution space to work in that cannot
be mapped out by hand.

In this paper, we focus specifically on the problem of path construction:
how do we find a set of states that can lead a student from her current state
to a correct state if no paths have been generated for that state before? With
path construction, tutors would not need to rely on previous solution paths,
though it could benefit from them; it could theoretically generate hints even for
a problem which has only been given a few correct examples. If we can identify
a path from the new solution to a correct state, it is possible to construct a hint
for the student based on the steps taken within that path. We first examine the
relevant work in the field of automatic hint generation, then frame the problem
by defining relevant features in the domain that the problem is based in. Finally,
we elaborate on the algorithm used to do the path construction, and evaluate it
on a dataset of real student solutions.

2 Related Work

As mentioned above, researchers have already examined the problem of gener-
ating hints automatically based on historical student data. The Hint Factory [1]
builds solution spaces out of data recorded from students’ past work and has
been applied in the domain of propositional logic proofs. This system constructs
solution paths, that is, sequences of solution steps students enter in the interface,
by combining all the steps that prior students have taken into a graph. Hints
can be provided to new student solution attempts as long as they exactly match
a step previously taken and stored in this graph. Because the search space in
propositional logic proofs is reasonably constrained, the stored graph provides
good coverage of the possible solution space. As long as a student’s solution steps
stay within the graph, hints can be provided. In practice, the Hint Factory was
demonstrated in the logic proof domain to generate hints for students who asked
for them about 80% of the time. In other words, the system provides tutoring in
the majority of situations without any AI programming. Ideally, we would like
an intelligent tutor to provide hints for the other 20% of requests as well. Even
more challenging, we would like to see this data-driven approach to developing
intelligent tutoring extend to domains with much larger solution spaces.

A different approach to generating feedback for new states is to cluster or
abstract the original states into equivalent groups, and provide feedback based
on which cluster the new state falls into. There have also been attempts to utilize
clusters in larger graphs, so that feedback could be propagated out from [4] or
compared to [3] a most common correct solution in order to generate feedback for
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many solutions with little work. There is great promise in the use of clustering
to provide feedback on students’ solution attempts, but clustering does pose
a challenge to providing detailed feedback that is personalized to a student’s
particular solution, especially in domains where there can be great variety in
solutions. It is also hard to tell how solutions which do not fit into the space could
be paired with a single cluster. Most importantly, while clustering facilitates
providing feedback on what’s wrong with a solution, it does not, by itself, provide
students with hints as to a reasonable next-step they could take (based on their
solution so far) when they are stuck; it can only take a student directly to the
known solution. Providing next-step hints is an important, powerful feature of
intelligent tutoring systems [7].

3 The Domain

In this paper, we describe how path construction would work in the domain of
computer science, where each solution state is a program. The technique itself
can be extended into other domains, however, assuming that a few constraints are
met. Therefore, in this section we detail the features required for our algorithm
to generate feedback within a domain.

First, there must be a collection of solution states, where each state is rep-
resented as a tree structure and has data on how many students have generated
it before. The tree should contain enough data about the student solution that it
can represent the student’s work accurately without requiring every detail. Our
states are the abstract syntax trees of the programs submitted by students. In
the case that hints need to be generated for a new problem, this collection could
be composed of a few correct solutions generated ahead of time as exemplars.

Second, there must be a method for testing solution states, test(s), which
returns a number between 0 (completely incorrect) and 1 (correct). In our ex-
ample, we run multiple test functions over a submitted program and average the
results of all the tests. Each test function provides a program with specific inputs
and checks whether the returned output is the expected value, and together they
provide a range of scores that a student can achieve.

Finally, there must be a method for comparing solution states, diff(a,b),
which returns a number between 0 (identical solutions) and 1 (completely dif-
ferent). If the states have been stored as trees, it should be possible to build a
comparison function for them; in fact, how to do this in a domain-general way
has already been explored [5].

It is worth noting that there may be several superficial differences between
solution states that should not be accounted for when comparing solutions; it
can be helpful to use a canonicalization process [6], which removes syntactic
differences while ensuring semantic equality, to ensure that any differences be-
tween solutions provide actual semantic meaning. Using a normalizing process
has the added benefit of reducing the number of states used in the solution space
significantly, while not reducing the range of solution types that the space covers.

The solution states we use as examples in this paper come fromfinal submissions
made by students on programming assignments at the introductory programming
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course at Carnegie Mellon University. Due to this, our data is quite sparse- few of
the solutions in our data set provide true intermediate steps, asmost are attempted
full solutions (thoughmany have small bugs). Therefore, to generate hints wemust
rely on our path construction algorithm heavily.

4 Path Construction Method

Due to the huge potential size of the solution space, it is impossible to construct
full solution paths for students based on what others have done in the past;
there are many options for where the student should go, and it is difficult to
specify exactly how they should get there. To more efficiently provide feedback
and hints online, we construct an initial solution space offline based on the
collection of solution states that have already been gathered. A solution space
can be thought of as a graph containing the paths that a student might take
while solving a problem; the solution states form the nodes inside the graph,
and they are connected by edges which express the edits required to move from
one state to the next. Some paths within this space are more desirable than
others; for example, paths that involve fewer steps to get to a final solution are
usually preferable. Other factors may be important in the tutoring context, such
as whether one solution or another may be more easily understood by a novice
student. In this case, we can use the frequency of a state in previous observations
as a heuristic for how useful it may be to a new student.

In the following sections, we describe the path construction algorithm that is
used on each of the incorrect states to cumulatively create this solution space.
The algorithm can also be used for a new student if they request a hint but
have a solution which is not currently in the solution space. Thus, our algorithm
not only expands the solution space beyond prior paths, but is also capable of
providing hints for student states that have never been observed before.

4.1 Identify the Optimal Goal State

First, given a solution state which is not yet correct (that is, a state which has a
test score not equal to 1), we need to find a nearby goal state within the solution
space. This state will serve as our approximation for the student’s intended final
product, and can be used to generate hints that will guide the student towards
his or her own goal.

To find the optimal goal, we first iterate through all the correct states in the
solution space to find the state which is closest to the current state (i.e., has
the lowest diff score). While this state is a possible goal for the student, it is
equally plausible that there is a better goal available; after all, while some of the
differences between the current state and the new goal may provide corrections,
others may only change superficial features, as in Figure 1.

To determine which of the changes between the two states are actually nec-
essary, we generate all the possible change vectors between their solution and
the goal. We define a change vector to hold a tree path, which is a set of nodes
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def findPattern(dna, pat, start):
if findAtIndex(dna,pat,start):

return start
while(len(dna)>start+len(pat)):

if findAtIndex(dna,pat,start):
return start

else:
start+=1

def findPattern(dna, pat, start):
while start < len(dna):

check=findAtIndex(dna,pat,start):
if check ==True:

return start
else:

start += 1
return -1

Fig. 1. In this solution-goal pair, the while loop’s test value edit and the addition of the
outer return statement are needed, but the removal of the if statement is not necessary

that can be used to find a specific position in a tree, an old subtree that will be
removed, and a new subtree that will be added. This change vector can be used
to represent the usual edits we wish to perform when modifying trees- additions,
which only have a new subtree; deletions, which only have the old subtree; and
edits, which use both. Given a solution state and a change vector, we should be
able to apply the vector to the state in order to transform it accordingly.

To find all the change vectors between the solution and the goal, we use the diff
function to find the nodes where the two trees differ, and return each difference
as a vector. In cases where the trees have a set of elements in a single child (such
as the body of a function), we can find an optimal matching of the elements
according to their types, only deleting and adding lines where it is necessary.

Once all of the change vectors have been found, we begin the process of
locating the optimal subset of them which can create a better goal. To do this,
we run the test function on the intermediate solution states that result from
applying first the changes individually, then all pairs of changes, and so on. If
the algorithm can find a state which is correct and closer to the solution state
than the current goal, it becomes the new goal state. It is important to note that,
in the worst case, this algorithm requires generation of all possible combinations
of change vectors (the power set of the original set), which requires exponential
time to execute. However, the algorithm can often halt early if it locates a new
goal which is closer to the solution than any of the other sets it is investigating.

At this point, an optimal goal for the solution state will have been found. It is
worth asking why we can’t stop here and simply give a hint to the student based
on the difference between their solution and the goal. In some cases, this is a
valid solution; for example, showing the student a comparison of their incorrect
solution to a close correct version can serve as a valuable example and may
indeed improve learning. However, if the algorithm can generate multiple steps
for the student by chunking the hints into groups, we can help them focus on
individual components of how to improve their solution, which may help them
identify similar components when they work on future problems.

4.2 Identify Valid Intermediate States

Once the goal state of the current state has been identified, the set of all change
vector combinations between it and the solution is generated. These states rep-
resent all possible intermediate states that might be included in the solution
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path. However, not all of these states are good states; some combinations of
edits might produce states which would not seem reasonable to a student. We
identify three properties that are required in possible intermediate states:

– A valid state must be well-formed, compatible with the solution language.
– A valid state must be closer to the goal than the original solution state.
– A valid state must do no worse when tested than the original solution state.

The first two properties are easily defended- there is no sense in telling a
student to go to a state that is not well-formed, and there is little point in making
a change if it does not move the student closer to the solution. In fact, if the
diff function is well made, these two properties should always be met. However,
the third property can be debated; sometimes, one needs to break a solution to
make it better overall. While it is possible that this sort of backtracking may
eventually improve a student’s solution, it is unlikely that a student will apply a
change if they see that it reduces their score, so we retain this property for the
initial version of the algorithm.

4.3 Find the Optimal Change Path

At this point, we have found the optimal goal for the solution state and identified
all possible intermediate states between the state and the goal. Now we need to
create a path out of the intermediate states to lead from the solution to the goal.
To do this, we identify several properties that are desirable in stable next states:

– Seen Before: a state which has been seen before is a state which we know
is fathomable; otherwise, it would not have been submitted by a student in
the past. This does not ensure that the state is good, or even reasonable,
but it does provide some confidence in the state’s stability.

– Near Current State: it is best if a state is close to the student’s origi-
nal solution; this ensures that the student will not need to make too many
changes based on the hint. This also gives the student a chance to make
further changes on their own, so they don’t need to rely on the hints.

– Well-performing: a stable next state should do as well on the test cases
as possible, to ensure that the student makes good progress.

– Close to Goal: the state should be as close to the goal as possible, so as to
lead the student directly there.

We combine these four desirable properties to create a desirability metric
defined by the formula (1). This metric is used to rank possible next states.
The weights in the formula can be adjusted to reflect how important each of
the properties are within the domain in question. In our data set, we found that
some of the properties were modestly correlated (such as closeness to solution
and score), and adjusted the weights to account for this double-counting and
give preference to shorter hints.
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0.3∗frequency(s)+0.4∗(1−diff(s, n))+0.1∗test(n)+0.2∗(1−diff(n, g)) (1)

After ranking all of the change states by desirability, we can pick the best
state- the one with the desirability score closest to 1- and set it as the first state
on the path to the solution. Then we identify each of the next states that would
follow the first by locating all states between the chosen state and the goal (e.g.,
all states which have change vectors containing the vectors in the first state) and
iterating on this step. This will generate an entire solution path that extends
from the original state to the goal.

At this point, the algorithm can be used to generate the next states for any
solution state given to it. With this, the solution space can be fully constructed.
Now, when a student needs a hint on a problem, we can locate their solution
within this solution space and find their next state. Turning this into a human-
readable message is beyond the scope of this paper, but can be done by trans-
forming the change vectors to match the student’s original solution and framing
them within a few simple templates.

5 Evaluation

Our research question in this project focused on whether we could construct
new student solution paths automatically using only a collection of prior student
solution states. To determine whether we have met this goal we test our system
on three metrics: whether it is possible to generate hints for incorrect states
that are stored in our solution corpus, how long hint generation takes, and how
well-aligned produced hints are to the students’ intentions.

For the purpose of this testing, we utilized the solution sets from five different
programming problems assigned in the introductory course at Carnegie Mellon
University. These problems are all fairly complex, requiring the use of condi-
tionals and loops, and had on average 34.5% of their normalized solution sets
composed of incorrect solutions.

5.1 How Often Can We Generate Hints?

Theoretically, we should be able to generate hints for any incoming solution state
as long as we have at least one correct solution state in the solution space. After
all, in the very worst case we should be able to ask the student to undo all of the
work they’ve done and then take them step by step through the correct solution.
While this is not an optimal choice, it does provide a help option for the student,
rather than forcing them to work through the problem on their own.

However, the current implementation has an efficiency limitation in the second
step of the path construction process where the change vectors are generated. The
algorithm uses the power set of the set of all possible edits to find all possible
intermediate states, which means that the algorithm grows at an exponential rate.
This is not sustainable when the number of edits grows larger; while, in principle,
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the algorithm can generate a hint for a student who is far away from all previously
seen states, it may not always do so quickly enough to be useful.

To evaluate the extent of this efficiency limitation, we analyzed the incorrect
solution states to determine the number of edits between the current solutions
and end goals. We compared these to the number of change vectors between
the solution and the optimized goal, to see how much the optimization could
improve the process. On average, the original goal found in the solution space was
about five edits away from the solution. Looking for optimized goals decreased
this distance to 2.5; more importantly, however, looking for an optimized goal
greatly increased the number of goals that were only one edit away. As is shown
in Figure 2, the number of edits required decreases at all levels of edit distance,
which means that hints will be better targeted at what the student actually
needs to do to fix their solution.

Fig. 2. A comparison of the number of edits between current solution and goal across
the dataset. When the goal state is optimized, it is more likely to be only one edit away
from the solution.

5.2 How Long Does It Take Generate a New Feedback Message?

As was mentioned before, an automatically generated hint is not particularly
useful if the student does not receive it in a timely fashion. This is not a problem
if the student’s state has been seen before, as the hint will have been stored in the
solution space, and can be delivered immediately. However, it is more interesting
to look at the cases when the feedback needs to be generated.

In measuring the time taken to generate feedback, we found that the vast
majority of solutions are not particularly far from their goals; 60% take less
than a second to generate feedback, and 90% take less than a minute. However,
we did find a few solution states which took a tremendous amount of time to
run, making it infeasible to generate paths online. 12 of the 351 solutions we
examined took longer than 20 minutes to run, and all but one of these had 15
or more edits between themselves and the goal. For the rest of the solutions,
the time required to run the algorithm was exponentially related to the number
of edits between the solution and the goal (see Figure 3). This is related to the
power set generated in finding the change vectors, and thus is difficult to address.
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Fig. 3. A comparison of number of edits between current state and end goal and the
amount of time it takes the algorithm to generate a hint. The time grows exponentially
with the number of edits, though the majority of the states are quick to generate.

5.3 Are the Chosen Goals Aligned with the Students’ Real
Intentions?

A critical question to address is whether the hints we provide will be well aligned
with the students’ intentions. We cannot know the student’s intention from their
submission alone, but we can approximate it by identifying how close the original
solution states are to the final goal states. On average, the current and goal states
have 64% similarity, suggesting that the solutions are somewhat close.

Since the data set we are using is composed of final submissions, it seems
likely that most students should have been close to their final answer when they
submitted; therefore, any great distance between a solution and its goal might
reflect poor goal choice on our part, rather than a student truly being far away
from a correct answer. To determine if this is the case, we examine real hints
generated by the algorithm, both in cases where the goal was very close to the
solution state and in cases where it was far away.

Our first example, shown to the left in Figure 4, involves a solution that only
has one small bug. This solution is two edits away from the closest correct state
in the graph, but only one of those edits is necessary; this is represented in
the optimal goal that the graph generates. The final hint message generated,
”Replace ’23456789YJQKA’ with ’23456789TJQKA’ in line 3”, pinpoints the
bug efficiently. On the other hand, the second example, shown on the right, is
very far away from all correct states in the solution space. This would not be

def intToPlayingCard(value):

faceValue = value%13

face = "23456789YJQKA"[faceValue]

suitValue = (value-faceValue)%4

suit = "CDHS"[suitValue]

return face+suit

def intToPlayingCard(value):

suit = "CDHS"

facen = "23456789TJQKA"

suitn = ((value) / 13)

face = (value - (13 * suitn))+2

findsuit = suit. find [suitn]

gaga = findsuit + face

return gaga

Fig. 4. Two student solutions to a programming problem on mapping integers to play-
ing cards. On the left, a solution that is close to its goal; the only mistake is a single
typo. On the right, a solution that is far away; it requires almost a full rewrite.
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a problem if a closer goal could be generated, but the algorithm fails to create
one. In examining the code, it is clear why this is the case- the solution has
many problems, and hard to map to a goal solution. Gently suggesting that the
student start over might be the best we can do.

6 Discussion

As we investigate whether the suggested goals are related to student intentions,
we should also question whether the solution paths we are building look anything
like solution paths students generate while working on their own. Naturally we do
not want to make the student’s experience with hints identical to their experience
without them; after all, hints are supposed to improve their learning. However,
we can test whether the hints provided will seem natural to students.

This question has been explored before in the field of learning analytics,
through examination of several detailed case studies of student work [2]. Blik-
stein found that different students had different methods of approaching pro-
gramming. Those who mostly focused on writing their own code made small
changes while iterating on their approach. Therefore, we should also suggest
small steps when possible; if we suggest that a student try a large change, they
may not be willing to modify so much of their code at once.

In our future work, we aim to determine whether the hints generated by our
system are truly beneficial to students. We are currently taking steps to run a
study in a classroom, and plan to use the resulting data to continue improving
the path construction system. As we gather more data on problems, we should
be able to provide hints that are closer and closer to the students’ original goals;
and hopefully, with a large enough solution space, we will be able to create
messages for all students, regardless of how unexpected their solutions may be.

Acknowledgements. This work was supported in part by Graduate Training
Grant awarded to Carnegie Mellon University by the Department of Education
(# R305B090023).
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Abstract. In this paper, we investigate an Intelligent Tutoring System
(ITS) for Java programming that implements an example-based learn-
ing approach. The approach does not require an explicit formalization
of the domain knowledge but automatically identifies appropriate exam-
ples from a data set consisting of learners’ solution attempts and sample
solution steps created by experts. In a field experiment conducted in an
introductory course for Java programming, we examined four example
selection strategies for selecting appropriate examples for feedback pro-
vision and analyzed how learners’ solution attempts changed depending
on the selection strategy. The results indicate that solutions created by
experts are more beneficial to support learning than solution attempts
of other learners, and that examples modeling steps of problem solving
are more appropriate for very beginners than complete sample solutions.

Keywords: intelligent tutoring system, example-based learning, pro-
gramming.

1 Introduction

Intelligent Tutoring Systems typically rely on an explicit formalization of knowl-
edge about the domain being taught. For example, constraint-based tutors and
model-tracing tutors are two prominent approaches that use an explicit repre-
sentation of the underlying domain knowledge [10]. These techniques are not
applicable if such a formalization of knowledge is not or only hardly possible.
To deal with this issue, a domain model could be approximated using data sets
consisting of correct (and also erroneous) problem solving examples: especially
larger sets of solutions (regardless whether from experts or learners) can be ex-
pected to implicitly reflect the underlying knowledge about the problem at hand,
as many structural and semantic similarities of solutions will be shared between
elements in the set. Based on this implicit model of knowledge, feedback can for
instance be provided as self-explanation prompts, asking a learner to compare
her solution to a similar (but not identical) example contained in the data set.

In this paper, we present an example-based learning approach implemented
in an ITS for Java programming that makes use of a data-driven implicit do-
main model. We propose and compare several strategies for selecting suitable
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examples. We conduct a field experiment which supports the suitability of the
approach.

The paper is organized as follows. Section 2 reviews existing data-driven meth-
ods for supporting learners, in particular approaches that use examples. In Sec-
tion 3, we present an implementation of an ITS for Java programming using an
example-based feedback provision approach, and we discuss methods for select-
ing examples for feedback provision. In Section 4, we present the evaluation of
the approach and discuss the results in Section 5. Finally, we conclude and give
an outlook of future work in Section 6.

2 State-of-Art

Several approaches that support learning, particularly for domains that lack a
strong domain theory [9], are data-driven in the regard that data sets (orga-
nized in models or databases) are used to adapt support to learners’ needs, to
provide feedback and to instruct learners. In [13], models of discussion posts
were used to provide feedback to learners. Student solutions were analyzed and
compared to the data set using keyword extraction. Also dialogue-based tutors
often rely on a model learned from text corpora in order to automatically adapt
dialogue responses to learners’ questions and explanations. Here, Dzikovska and
colleagues [6] proposed a new approach for grading student answers in a tutorial
dialogue setting based on an annotated corpus.

Another educational technology method that is heavily data-driven is example-
based learning. Examples are typically used to help learners in their acquisition
of problem-solving skills in the way that a learner is instructed how to solve a
problem using one or more examples, and after that a learner tries to solve a
similar problem on her own. Example-based learning has shown to be effective
in supporting learning also in ill-defined domains [4, 14]. For example, in the
NavEx tutor, annotated program code examples were provided to students in
order to give explanations to learners instead of providing bare solutions [3].
Also the Cognitive Tutor Authoring Tools (CTAT) were extended to support
example-tracing tutors [1]. This paradigm allows to create tutors that evaluate
student behavior by comparing it to generalized examples of problem solving
behavior. A further interesting aspect of example-based learning is that not only
correct but also erroneous examples can be used to foster learning under certain
conditions [8].

The approaches mentioned above mainly use static data sets of examples that
need to be created manually by experts. Also, methods like example-tracing
tutors model solution processes at a very fine granularity that, while effective
for feedback provision, might not be feasible for all domains [9]. In the approach
presented in this paper, we assume that a data set consisting of a mix of expert
solutions and (possibly erroneous) student solution attempts is available – we
do not assume that a fine granular model of correct solution process exists. We
describe and compare four data-driven methods for selecting suitable examples
for feedback provision under these circumstances.
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3 Example-Based Learning Approach

3.1 System Description

As an ITS user interface, we developed a web-based programming environment
which enables students to write, compile and execute Java programs. The editor
supports code-highlighting. For code debugging, compiler and program output
are displayed, so that users have access to the error messages generated by the
Java compiler. Technically, this user interface interacts with an ITS middleware
system [7] that provides services for data access, proximity measurement and
feedback provision via web service and web socket connections. Using a module
for feedback provision implemented in this middleware, learners are able to re-
quest feedback on their programs. A newly submitted learner solution attempt
is analyzed and compared to a data set consisting of sample programs created
by experts and programs of other learners. For analyzing and comparing Java
programs, a custom parser was implemented in the middleware that uses the
official Java Compiler API provided by Oracle. This parser first transforms each
newly submitted solution attempt of a learner into its corresponding Abstract
Syntax Tree (AST) representation and then calculates semantic relations be-
tween elements in the tree. The result of the parsing process is thus a graph that
consists of nodes representing syntactic elements, and edges representing hier-
archic dependencies between nodes. Nodes and edges can have additional meta
information (e.g., code position). In order to calculate the pairwise proximities
between Java programs, we used the normalized compression distance (NCD), a
proximity measure for strings [5]. Each graph was transformed to a concatena-
tion of strings using depth first search of the underlying tree where each string
represents a node or an edge with corresponding meta information. These strings
were then compared using the NCD. Based on these comparisons, an appropri-
ate example is then identified, and the feedback module generates and provides
feedback, asking learners to think about differences in the programs.

3.2 Example Based Selection Strategies

As argued above, our goal is to identify a suitable counterpart to a newly sub-
mitted solution attempt within the data set. This counterpart can then be used
to provide feedback to a learner by supporting her in finding mistakes in her own
solution. This approach employs example-based learning principles. It requires
a learner to understand the counterpart, and to identify differences between her
solution attempt and the example in order to find mistakes. Given a data set
consisting of sample solutions created by experts and solution attempts from
other learners, we need to select a counterpart that is appropriate (in terms of
its correctness and its similarity to the learner’s solution attempt), and balances
the (extraneous) cognitive load [12] depending on the learner’s level of knowledge
and stage in problem solving. A complete sample solution might be appropriate
in terms of correctness but might overload a learner related to her cognitive
capacity. On the other hand, a solution attempt of another learner might be
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public class MyClass {
public static void main(String[] args) {
}
public String hello(String name) {

return "Hello " + name;
}

}
public class MyClass {

public static void main(String[] args) {
MyClass myClass = new MyClass();

}
public String hello(String name) {

return "Hello " + name;
}

}

public class MyClass {
public static void main(String[] args) {

MyClass myClass = new MyClass();
System.out.println(myClass.hello("John Doe"));

}
public String hello(String name) {

return "Hello " + name;
}

}

public class MyClass {
public static void main(String[] args) {

MyClass myClass = new MyClass();
String result = myClass.hello("John Doe");
System.out.println(result);

}
public String hello(String name) {

return "Hello " + name;
}

}

3

4

public class MyClass {
public String hello(String name) {

return "Hello " + name:
}

}

public class MyClass {
public static void main(String[] args) {
}

} 2.2

public class MyClass {
} 1

public class MyClass {
public static void main(String[] args) {

MyClass myClass = new MyClass();
String result = myClass.hello("John Doe");

}
public String hello(String name) {

return "Hello " + name;
}

}

5.1

5.2

6

2.1

Fig. 1. Model of a sample solution composed of consecutive solution steps (and varia-
tions). Final solution steps (representing complete sample solutions) are emphasized.

inappropriate (due to mistakes made by the other learner) but could, due to a
high similarity to the learner’s solution, add little extraneous cognitive load.

In cognitive tutors based on the ACT-R theory [2], feedback is provided to a
learner depending on her actions and the expected actions defined in a cognitive
model. One idea for adapting this principle of model-tracing to a data-driven sce-
nario is to use not only sample solutions which completely solve a problem, but
to select counterparts depending on the learner’s progress. We therefore propose
to generate reasonable problem solving steps from complete sample solutions,
and to use these steps for feedback provision – thus reducing the cognitive load
in feedback provision due to simpler examples. Similar to example-tracing tutors,
these sets of partial solutions can then be used to model learning paths towards
a complete solution, taking on the role of a (still very high level) domain model
with the following differences as compared to explicit models: it allows for mul-
tiple solution parts and it does not rely on explicit learner actions. Figure 1
illustrates how a model of steps towards a sample solution in the domain of Java
programming could be designed.

Considering these aspects,we implemented four selection strategies: (1) thenear-
est learner solution (NLS) is the most similar solution that has been submitted by
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another learner, (2) the nearest sample solution (NSS) is the most similar
sample solution (part) created by an expert, (3) the next complete sample solu-
tion (NCSS) is the most similar sample solution created by an expert that com-
pletely solves the givenproblem, and (4) thenext stepof thenearest sample solution
(NSNSS) is the next solution step of the most similar sample solution part con-
tained in the data set. For example, given a JavaProgramas follows, strategyNSS
would select solution step 3,NCSS would select step 5.1 or 6, andNSNSS would
select step 4 (see Figure 1).

public class MyClass {
public static void main(String[] args) {
}
public String hello(String name) {

return Hello name
}

}

Even if using peer learner solutions as examples, strategy (NLS) could also
be beneficial for learning: these examples might be more intuitive to compre-
hend for learners and they might provide another perspective on how to solve a
given problem. We hypothesize that feedback based on expert-created solutions
would be superior since the correctness of the example can be guaranteed. In
addition, we hypothesize that selecting the nearest sample solution (NSS) or its
consecutive step (NSNSS) is more effective than selecting the nearest complete
sample solution (NCSS) for the reason that cognitive load is reduced. We do
not expect great differences between NSS and NSNSS since (depending on the
underlying model as illustrated in Figure 1) examples selected by strategy NSS
and NSNSS only differ in details – while NSS might be better if a learner has
progressed from a correct solution step in a wrong way, NSNSS is likely supe-
rior if a learner has progressed from a correct solution step in a correct way but
the learner is stuck.

4 Evaluation Design

To compare the effectiveness of the four example selection strategies in a realistic
scenario, we conducted a field study in an introductory course for Java program-
ming at Humboldt-Universität zu Berlin. We designed a curriculum composed
of 17 tasks that involve simple problems such as how to define a class, and more
complex problems such as how to repeatedly execute code with loops. For each
task, two experienced Java programmers designed one or more (depending on
the complexity of the task and possible alternative solution variants) sample
solutions. After that, based on these complete sample solutions, we modeled
correct solution steps. All these expert solutions were included in the data set.

Over a period of four weeks, students were able to use the ITS (see Section 3.1)
and could request feedback to their solution attempts (which were also included
in the data set and used for strategy NLS). The number of feedback requests
(and also the time between two requests) was not limited. After each feedback
provision, a learner was asked to rate the helpfulness of the provided feedback
on a 3-point scale from 0 to 1 (0 = not helpful, 0.5 = fair, 1 = helpful).
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The system was configured to randomly select each of the four selection strate-
gies with a probability of 25%. Within a task, an initially chosen strategy for a
specific learner was then used for each feedback provision. Since selection strat-
egy NLS requires at least one program of another learner in the data set, this
strategy was applied only when such programs were available within a data set
for a specific task. Students were not informed about the different strategies.

5 Results

During the study, 22 students used the system, 16 of these requested feedback
at least once. Table 1 summarizes the number of feedback requests and the
average student-assigned scores of the ratings depending on the strategy. While
the system chose each strategy equally often, the strategy heavily influenced
the number of feedback requests. Selecting a complete sample solution (NCSS)
resulted in fewer feedback requests. This can be explained by the fact that this
strategy reveals the complete problem solving to learners (so that, even if they
were overwhelmed with this information and did not understand the example,
they could still solve the problem with copy and paste).

Learners’ ratings tend to confirm our hypothesis that (at least from the stu-
dents’ point of view), examples created by experts are more beneficial to support
learning than using solution attempts of other learners as examples. However,
due to the small number of ratings, we did not conduct further statistical tests.
Instead, we analyzed students’ solution attempts qualitatively by determining
the correctness and completeness of each step of the student’s problem solving.
We therefore asked an experienced Java programmer to determine whether a
student’s program is (i) syntactically correct, and (ii) semantically correct in
terms of the problem that should be solved. Based on this assessment, the hu-
man expert should classify whether a program changed qualitatively between
two solution attempts considering syntactic and semantic changes. We defined
three conditions for classification as follows. A program has been improved if
previous mistakes were fixed (even if further extensions made to the program
contained new mistakes), or if it was correctly extended (even if previous mis-
takes were not corrected). A program has been remained unchanged if it was
not extended and if previous mistakes were not fixed or previous mistakes were
replaced by a new mistakes. A program has been worsened if it was extended

Table 1. Average score of the ratings, standard deviation and median

Strategy Requests Ratings Average score Standard deviation Median

NLS 29 6 0.583 0.492 0.75
NSS 24 5 0.7 0.447 1
NCSS 13 3 0.833 0.289 1
NSNSS 29 6 0.917 0.204 1

95 20 0.75 0.37 1



346 S. Gross et al.

Table 2. Changes between student’s solution attempts

Strategy improved unchanged worsened total

NLS 8 9 2 19
NSS 13 4 1 18
NCSS 8 1 0 9
NSNSS 8 8 1 17

38 21 4 63

by new mistakes, and previous mistakes were not fixed. Table 2 summarizes the
changes between solution steps depending on the example selection strategy.

It is observable that, while NSNSS was rated slightly more positive than
NSS by students, the latter was more effective in terms of leading to solution
improvements. Since the students who used the system in our study were very
beginners, many probably rather needed a correct example that is very similar
to their solution attempt in order to fix mistakes than instructions on to pro-
ceed in problem solving (even if they liked the latter). As predictable, NCSS
immediately lead to improvements (but maybe not to learning), while NLS was
comparable to NSNSS in this measure.

6 Conclusion and Outlook

In this paper, we compared four strategies for selecting an appropriate example
from a data set consisting of learners’ solution attempts and sample solution
parts created by experts. The selected examples were used to provide feedback
to learners. While the frequency of system use was too low to allow for strong
claims and statistical evidence, our results support the hypotheses that using a
data set consisting of expert solution steps is superior to using sample solutions
only and to using learner solution attempts only. Apparently, the appropriateness
of the strategies NSS and NSNSS is similar but might depend on the learner’s
situation. Hence, a goal of future work will be to analyze learner’s needs, and to
adapt feedback provision applying strategies NSS or NSNSS depending on her
progress. Also, we will further investigate strategy NLS. While it was outper-
formed in this study, the data set of student solutions was relatively small. If a
larger data set of student solutions is used for this strategy, the increased simi-
larity of examples might well increase the utility of this approach – which would
be appealing, since this would eliminate the need for expert sample solutions.

A further aspect of our future research will be to automatically derive so-
lution steps from complete sample solutions in order to reduce the effort for
modeling examples. While the representation of Java programs as graph struc-
tures is suitable for identifying sub-structures that can be used as simplified
examples (which represent solution steps), our proximity measure is not able to
identify and compare sub-structures but only whole examples. To deal with this
issue, we are currently refining the proximity measure (for more details see [11]).
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Abstract. While the effect of scaffolding on learning has received much atten-
tion, less is known about its effect on students’ strategy use, especially in trans-
fer activities. This study focuses on students’ adaptive behaviours as a function 
of given scaffolding and when transitioning from a scaffolded to an unstruc-
tured activity. We study this in the context of a complex physics simulation in 
which students choose between 124 different actions. We evaluate (i) how the 
scaffolding affects students’ building and testing behaviours, (ii) whether these 
behaviours transfer to an unstructured activity, and (iii) the relationship between 
the adapted behaviours and learning. A repeated-measures MANOVA suggests 
that students adapt their learning behaviours according to the demands and af-
fordances of the task and the environment, and that these strategies transfer 
from a scaffolded to an unstructured activity. No significant relationships were 
found between these patterns and learning.  

Keywords: scaffolding, inquiry learning, microworlds, interactive simulations, 
transfer, self-regulated learning.  

1 Introduction 

Inquiry learning lets students be the scientists and thus supports learning of important 
scientific skills such as collaboration and self-regulated learning [1]. Within the 
Science Education community, the focus of the discussion seems to have shifted from 
asking whether inquiry learning is effective, to asking about the timing and types of 
scaffolding that are most effective within an inquiry framework [1-3].  

Research on scaffolding within scientific inquiry environments has largely focused 
on the effect of scaffolding on learning outcomes.  Relatively few studies evaluate 
the effect of scaffolding on students’ use of strategies within inquiry activities [2-6]. 
To better understand the manner in which scaffolding supports acquisition of inquiry 
strategies and attitudes, one should evaluate students’ learning behaviours in a trans-
fer activity, once scaffolding has been removed [7]. However, so far there is only 
limited evidence that strategies that are acquired within a supported Intelligent Tutor-
ing System transfer to future, unsupported, learning situations [6-8]. 

In the present study we investigate the effect of scaffolding on strategy use by eva-
luating how students adapt their behaviours to given scaffolding. We further ask 
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There were no significant differences between conditions with regard to learning 
gains. Mean (SD) for pre-test, Activity 1 post-test, and Activity 2 post-test were: 
Low-Scaffolding: 47% (18%), 62% (22%), and 56% (19%). Scaffolded: 47% (17%), 
62% (19%), and 59% (19%). A higher frequency of Pauses in Activity 2 correlated 
with better performance on post-test (controlling for pre-test). However, this correla-
tion did not reach significance under the adjusted alpha level: partial-r = 0.23, p = 
0.025. No other correlations between the abovementioned behaviours and post-test 
performance were significant.   

4 Discussion and Summary 

The results presented above show three clear findings. First, there were differences 
between conditions on three of the four behaviours (Build, Grounded Feedback, and 
Test). These differences were found in both activities, even once scaffolding was 
removed. Second, Testing behaviours showed an interaction where students in the 
Unstructured condition increased their testing from Activity 1 to Activity 2, while 
students in the Scaffolded condition did not alter their testing behaviour. Last, the 
only behaviour that correlated with learning to some degree was Pauses. However, 
condition did not play a role in this behaviour.  

With regard to our first research question, and as expected, students’ behaviours 
changed significantly based on the scaffolding provided. Students in the Scaffolded 
condition performed more explicit tests throughout the activities, as was expected 
given the nature of their task.  

Our second question asks whether the effect holds once scaffolding is removed. 
The results clearly show that this is indeed the case, and students transferred their 
scaffolded behaviours on all three categories form Activity 1 to Activity 2. In such a 
short intervention, we speculate that the scaffolding primed and triggered existing 
mindsets, rather than helped students acquire new skills. This is supported by our 
previous findings about the transfer of attitudes between Activity 1 and 2 [12]. 

Our third question asks whether students shift towards more appropriate strategies. 
Notably, students did not shift towards behaviours that are associated with learning. It 
is very likely that learning in such complex environment cannot be captured by a 
simple count of actions. Thus, more than telling us about students’ adaptive beha-
viours, the lack of correlation with learning suggests that our process measures may 
be too rough to capture learning. A more intensive data-mining approach may be able 
to identify the nature of the relationship between student behaviours and learning 
[13]. At the same time, the pattern of the results strongly suggests that students indeed 
adapted their behaviours towards more appropriate behaviours, as suggested by the 
affordances of the available scaffolding and the activity.  In addition to students in 
the Scaffolded condition responding to the requirements of their task, students in the 
Unstructured group increased their use of explicit testing when grounded feedback 
was no longer useful in Activity 2.  
Overall, these results clearly show that students adapt their behaviours to match  
the affordances of the given scaffolding and activity. These results also show that 
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students transfer their adapted behaviours once scaffolding is removed. Thus, the 
study sheds some light on the manner in which prior experiences shape subsequent 
interactions and leads to skill acquisition at the inquiry level. It is well known that 
students’ prior knowledge and attitudes play important roles in learning. The current 
study further shows how prior experiences change the way students engage in learn-
ing activities in terms of the strategies that they choose to apply.  
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Abstract. An important question for teachers and developers of instructional 
software is how much guidance or assistance should be provided to help  
students learn. This question has been framed within the field of educational 
technology as the ‘assistance dilemma’ and has been the subject of a variety of 
studies. In the study reported in this paper, we explore the learning benefits of 
four types of computer-based instructional materials, which span from highly 
assistive (worked examples) to no assistance (conventional problems to solve), 
with support levels in between these two extremes (tutored problems to solve, 
erroneous examples). In this never-before conducted comparison of the four  
instructional materials, we found that worked examples are the most efficient  
instructional material in terms of time and mental effort spent on the intervention 
problems, but we did not find that the materials differentially benefitted learners 
of high and low prior knowledge levels. We conjecture why this somewhat sur-
prising result was found and propose a follow-up study to investigate this issue.  

Keywords: assistance dilemma, classroom studies, empirical studies worked 
examples, erroneous examples, tutored problems to solve, problem solving. 

1 Introduction 

A major and recurring question for teachers and developers of instructional software 
is how much assistance they should provide in order to foster students’ acquisition of 
problem-solving skills, i.e., the ‘assistance dilemma’ [1]. On the high assistance side 
of the continuum are worked examples, which present students with a fully worked-
out problem solution to study and (possibly) explain. On the low assistance side of the 
continuum are conventional problems, which students try to solve themselves without 
any instructional guidance whatsoever. In between these two extremes are intelligent-
ly-tutored problems, which provide step-by-step feedback and hints either when an 
error is made or on demand, and erroneous examples, which are worked examples 
with errors in one or more of the problem-solving steps that students have to find and 
fix. It is straightforward to place these instructional materials on a continuum of assis-
tance, but an important question is: How can the level and type of assistance best 
support learners with varying levels of prior knowledge? 
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These types of instructional materials have all been investigated in various empiri-
cal studies, in different combinations, although never all together in a single study. 
For instance, the learning benefits of worked examples have been shown in a plethora 
of studies (for reviews see [2-4]), particularly for low prior knowledge (i.e., novice) 
students. Worked examples lessen the demands on cognitive resources, as compared 
to problem solving, when students are unfamiliar with a problem domain, and allow 
them to devote available cognitive resources to learning how problems should be 
solved [4]. In order to foster more active processing of worked examples, successful 
variations and strategies have been developed [5, 6]. For high prior knowledge learn-
ers, worked examples lose their effectiveness or may even become less effective for 
learning than practicing with conventional problem solving [7], because the assistance 
provided by the examples is redundant for high prior knowledge learners. 

A variety of studies have also demonstrated the learning benefits of intelligently tu-
tored problems [8 9]. Intelligent tutors, like worked examples, tend to benefit lower 
prior knowledge learners, those who one would expect require the type of support 
provided by the tutors, more than higher prior knowledge learners [10]. There are also 
indications that tackling worked examples before working with tutored problems 
improves learning efficiency (i.e., students learn as much, in less time), and, in some 
cases, learning outcomes, as compared to tutored problem solving alone [3, 11]. 

Recent studies – a relatively small number compared to worked examples and in-
telligently tutored problems – have also investigated the effects of erroneous exam-
ples [12-14]. Presenting students with errors might help eradicate those errors by 
prompting more reflection than would occur naturally. Erroneous examples have so 
far been shown to be particularly beneficial to learners with some prior knowledge 
[13], which makes intuitive sense, since a student who has not yet understood the 
basic concepts and problem-solving procedures within a domain is less likely to be 
able to differentiate and make sense of correct and incorrect problem solutions.  

Finally, as mentioned above, giving students problems to solve, without feedback 
or support, has been shown to be most beneficial to more advanced students, ones 
with sufficient prior knowledge to gain from practice without assistance [7].  

There is some variability among studies in whether or not feedback was provided 
to students in the conventional problems group. Paas provided students with feedback 
on practice problems, which consisted of worked examples. Still, studying worked 
examples (with a practice problem after two examples) was found to be more effec-
tive than practicing with conventional problem solving with feedback [6]. 

In this study, we intended to compare the learning benefits of these four types of 
instructional materials (developed for and deployed on the web) at different levels of 
expertise (lower, higher). Although such comparisons have been partially made, no 
studies have compared the effectiveness and efficiency of all four support strategies to 
each other. This study aimed to make that comparison, taking into account students’ 
prior knowledge level in order to take a first step towards testing our hypothesis that 
worked examples and tutored problem solving are more suitable learning materials for 
students with lower prior knowledge, while erroneous examples and conventional 
problem solving are more suitable for students with higher prior knowledge.  
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2 Method 

Participants and Design. Participants were 179 10th and 11th grade students from two 
high schools in the U.S. Twenty-four participants were excluded because they did not 
fully complete all phases of the study. The remaining 155 students had a mean age of 
15.4 (SD = 0.59), with 75 males, 80 females. Participants were randomly assigned to 
one of the 4 instructional conditions: (1) Worked Examples (WE), (2) Erroneous Ex-
amples (ErrEx), (3) Tutored Problems to Solve (TPS), or (4) Problems to Solve (PS). 
 

Materials. A web-based stoichiometry tutor used in earlier studies [3, 15] was revised 
to support this study. Stoichiometry is a subdomain of chemistry in which basic ma-
thematics (i.e., multiplication of ratios) is applied to chemistry concepts.  

Table 1. Conditions and Materials used in the study. Italicized items vary across conditions  

 WE TPS ErrEx PS

 Questionnaire Questionnaire Questionnaire Questionnaire 
 Pretest (A or B) Pretest (A or B) Pretest (A or B) Pretest (A or B) 
 WE Intro video PS Intro video ErrEx Intro video PS Intro video 
 Stoich videos 

(both at beginning 
and interspersed) 

Stoich videos 
(both at beginning 
and interspersed) 

Stoich videos 
(both at beginning 
and interspersed) 

Stoich videos 
(both at beginning 
and interspersed) 

x5{ 

WE-1 TPS-1 ErrEx-1 PS-1 

WE-2 TPS-2 ErrEx-2 PS-2 
Embedded-Test-1 Embedded-Test-1 Embedded-Test-1 Embedded-Test-1 

 Posttest (A or B) Posttest (A or B) Posttest (A or B) Posttest (A or B) 
 

 

Questionnaire. Students were asked demographic, computer use, and self-
perceived prior knowledge questions. 

Pretest and Posttest. The pretest and posttest consisted of four stoichiometry prob-
lems to solve (of the same form as the Intervention Problems) and four conceptual 
knowledge questions to answer. There was an A and B form of the test, isomorphic to 
one another and counter-balanced within condition (i.e., approximately ½ of the stu-
dents in each condition received Test A as pretest and Test B as posttest, and vice 
versa). The stoichiometry problems consisted of 94 steps in total (one point per cor-
rect step). The conceptual questions consisted of 7 possible answers (one point per 
correct answer). This resulted in a maximum total score of 101 points.  

Intro and Instructional videos. After taking the pretest, all students watched a vid-
eo specific to their condition, which used a narrated example to explain how to inte-
ract with the user interface. In addition, students in all conditions were presented with 
the same instructional videos about stoichiometry and problem solving techniques, 
starting at the beginning of the intervention and spread throughout the intervention.  

Intervention Problems. Students were presented with 10 intervention problems, 
specific to condition and grouped in isomorphic pairs, as shown in Table 1 (e.g., WE-
1 and WE-2 are an isomorphic pair, TPS-1 and TPS-2, etc.). The complexity of the 
stoichiometry problems presented in the intervention gradually increased. 
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The WE items consisted of problem statements and screen-recorded videos (30-70 
sec.) of how to solve the problem. When the video finished, students had to select the 
“reason” for each step from a drop-down menu. Then they click the “Done” button 
and feedback appeared. When they were correct, they were encouraged to study the 
final correct problem state; when they were incorrect a fully worked-out final solution 
appeared below the problem that students could study self-paced (see Figure 1). 

 

 

Fig. 1. WE with incorrect reasons resulting in correct worked example feedback 

The TPS items consisted of a problem statement and fields to fill in (similar to the 
top of Figure 1) and students had to attempt to solve the problem assisted by on-
demand hints and error feedback. There were up to 5 levels of hints per step, with the 
bottom-out hint giving the answer to that step. Because the tutored problems always 
ended in a correct final problem state due to the given hints, no feedback was given at 
the end but students were encouraged to study the final correct problem state. 

The ErrEx items also consisted of screen-recorded video (30-70 sec.) demonstrat-
ing how to solve the problem, except the items contained 1 to 4 errors that students 
were instructed to find and fix. They had to fix at least one step before they could 
click ‘Done’, at which point the same ‘correct’ or ‘incorrect’ feedback messages as in 
the WE condition appeared, with a correct example shown if errors were still present. 

The PS items consisted of a problem statement and fields to fill in (similar to the 
top of Figure 1) and students had to attempt to solve the problem themselves, without 
any assistance. They had to fill out at least one step before they could click the ‘Done’ 
button. When they clicked the ‘Done’ button, the same ‘correct’ or ‘incorrect’ feed-
back messages as in the WE condition appeared, with a correct example shown if 
errors were still present. 

Embedded test problems. After every two intervention items, an embedded test 
problem was given that was identical to the first intervention item of the two (i.e., 
intervention problems 1, 3, 5, 7, and 9), but in PS form without any guidance or feed-
back. These problems consisted of a total of 122 steps (one point per correct step). 
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Mental effort rating scale. A 9-point mental effort rating scale [6] was adminis-
tered after each intervention problem. 
Procedure. The experiment was conducted at students’ schools within their regular 
science classrooms. In total, the study took 6 class periods to complete. Students re-
ceived a login for the web-based environment and could work at their own pace (for 
the phases and tasks they encountered, see Table 1). When they had finished with the 
intervention phase, however, they could not progress to the posttest; this test took 
place on the sixth and final period for all students. 

3 Results 

As mentioned in the introduction, we intended to compare the learning benefits of the 
four types of instructional materials (developed for and deployed on the web) at dif-
ferent levels of expertise (lower, higher). However, apart from differences in prior 
knowledge, these analyses did not yield additional insights about the instructional 
conditions compared to analysis of the overall sample. Because of page limitations, 
we therefore report only the overall sample results here.  

Data are presented in Table 2 and were analyzed with ANOVA. There were no 
significant differences among conditions in pretest (p = .783)1, posttest (p = .693), or 
embedded test problem performance (p = .326). 

Table 2. Mean performance, mental effort, and time on task per condition 

 WE (n=39) TPS (n=36) ErrEx 
(n=43) 

PS (n=37) 

Pretest (max=101) 48.6 (12.8) 49.4 (13.5) 48.8 (15.4) 
 

46.3 (14.3) 
Posttest (max=101) 68.5 (17.3) 71.1 (13.4) 68.3 (18.4) 66.4 (17.1) 
Embedded test (max=122) 89.4 (23.7) 95.3 (23.3) 88.3 (27.0) 84.8 (23.1) 
Mental eff. inter. probs. (1-
9) 

4.4 (1.8) * 6.1 (1.7) 5.8 (1.4) 6.1 (1.3) 

Intervention time (mins) 19.8 (5.8) * 62.4 (17.2) 37.2 (9.6) 
# 52.1 (25.2) 

~ 
Reflection time (mins) 1.7 (1.1) 1.3 (1.0) 4.3 (2.6) ^ 6.5 (3.9) * 

* - Significant difference to all other conditions         # - Significant difference to TPS and PS conditions 
^ - Significant difference to WE and TPS conditions     ~ - Significant difference to TPS 

 
However, mean mental effort invested on the intervention problems differed signif-

icantly among conditions (p < .001, ηp
2 = .166); Bonferroni post hoc tests showed 

effort was lower in the WE condition than in all other conditions (ErrEx: p < .001, d = 
0.891; TPS: p < .001, d = 0.954; PS: p < .001, d = 1.04).  

Intervention time also differed significantly among conditions (p < .001, ηp
2 = 

.503); Bonferroni post hoc tests showed that time spent in the WE condition was  
 
                                                           
1  Due to space limitations, and for readability, only p and effect size values are reported in 

this paper. F statistics and further statistical details are available from the first author. 
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lower than in all other conditions (ErrEx: p < .001, d = 2.195; TPS: p < .001, d = 
3.312; PS: p < .001, d = 1.762)), in the ErrEx condition was lower than in the TPS 
and PS conditions (TPS: p < .001, d = 1.812; PS: p < .001, d = 0.782), and in the PS 
condition was lower than in the TPS condition (p = .038, d = 0.478). Note that the last 
finding makes sense, given that the TPS condition also received instructional assis-
tance and feedback during intervention problems. Reflection time on the correct 
worked example given as feedback differed significantly among conditions (p < .001, 
ηp

2 = .418); Bonferroni post hoc tests showed it was lower in the WE and TPS condi-
tions (which did not differ from each other, p = 1.000) than in the ErrEx (WE vs. Er-
rEx: p < .001, d = 1.253; TPS vs. ErrEx: p < .001, d = 1.507) and PS conditions (WE 
vs. PS: p < .001, d = 1.670; TPS vs. PS: p < .001, d = 1.848). Reflection time in the 
PS condition was significantly higher than in all other conditions (WE vs. PS: p < 
.001, d = 1.670; ErrEx vs. PS: p < .001, d =0.672; TPS vs. PS: p < .001, d = 1.848). 

4 Discussion and Conclusions 

Our findings suggest that example study was more efficient in terms of the learning 
process: the WE condition attained equal test performance with less time and mental 
effort on the intervention problems than all other conditions. This is in line with find-
ings from prior studies that compared studying worked examples to conventional 
problem solving [cf. 16], as well as to tutored problem solving [3, 11]. 

In contrast to other studies on the worked example effect [6, 7, 16], we did not 
find a learning outcome benefit for worked examples, either overall or in the lower 
prior knowledge sample. Also, our hypothesis that the instructional materials would 
be differentially beneficial to learners based on prior knowledge level was not sup-
ported. A distinguishing aspect of this study is the use of a common user interface for 
conditions ranging from the highly assistive (WE) through unassisted problem solving 
(PS). In WE and ErrEx, the examples are implemented as videos of problem solving 
within the interface. In PS and TPS, students use the interface to solve problems, with 
conditions differing with regard to immediate versus delayed feedback. This design 
has the advantage of allowing tight control of conditions, with differences arising only 
in the nature of student interaction with the interface. The finding of equal learning 
gains across conditions is interesting, given the substantial differences in the nature of 
the student interactions as well as in the mental effort and time across condition. 

A common feature across conditions that may account for these findings is the 
presence of a fully and correctly worked example at the end of each problem-solving 
episode, which students could study as long as they wished.  We provided students 
with feedback in order to make the comparison among the conditions as fair as possi-
ble; however, providing feedback in the form of fully worked-out solutions led to a 
very strong presence of worked examples in every condition. TPS students generate 
the solution, but they also effectively get worked examples by drilling down to bot-
tom-out hints. In the ErrEx and PS conditions, in which errors occurred often (81% of 
the time)  and a correct example was then provided, the mean time spent reflecting 
on comparing student work to a correctly worked example (ErrEx = 31.1 secs and  
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PS = 42.8 secs) is comparable to the amount of time students in the WE condition 
spent watching the animated worked example (i.e., between 30 and 70 seconds, as 
earlier mentioned).  Few other studies [cf. 6] on the worked example effect provided 
students in the PS condition with worked examples as feedback, and in those studies 
they could review the feedback for a restricted amount of time that was less than the 
amount of time students in our WE condition could study the examples. 

Because the use of worked examples may have made the conditions too similar, 
we will next run a study in which the conditions will be more distinct. We will drop 
the worked examples as a form of feedback in the WE, ErrEx, and PS conditions. 
Instead of receiving the correct worked example as feedback, students will only see 
feedback highlighting the steps they correctly and incorrectly complete. 

 
Acknowledgement. National Science Foundation Award No SBE-0354420 (“Pitts-
burgh Science of Learning Center”) funded this research. 
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Abstract. This work presents an approach to assist teachers, tutors
and students from online learning environments. It is a four-steps pro-
cess called Pedagogical Recommendation Process that uses the coordi-
nated efforts of human actors (pedagogical and technological specialists)
and artificial actors (computational artifacts). The process’ objective is
to find relevant information in educational data to help creating per-
sonalized recommendations. Using the process it was possible to detect
issues within a learning environment (UFAL Ĺınguas), and discovered
why some students were facing difficulties, and what other students were
doing in order to succeed in the course. This information was used to
personalize pedagogical recommendations.

Keywords: Pedagogical Recommendation Process, Personalized Rec-
ommendations, Educational Data Mining, Online Learning Environments,
Online Courses.

1 Introduction

Studying some works on the 8th grand challenge, namely, Learning for Life:
”Conceptualize learning environments and understand how people will engage
with learning, and what learning for life will be like” [5], revealed a trend to-
wards a paradigm where education is available and accessible to anyone, from
anywhere and at any time (Anyone, Anywhere and Anytime Learning - AAAL
[2]). It relies on information and communication technology and its adoption in-
creased the offering of computer-based online courses [3]. In these environments

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 362–367, 2014.
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students interact with some educational resources (exercises, tests, videos, fo-
rums, chat, etc.), generating substantial quantities of data. Dealing with these
data raised some research questions: (1) How can data from learning environ-
ments be appropriately used? (2) How can the outcomes be used to improve
students’ learning experience? (3) How can this process become transparent for
teachers and tutors? To answer these questions this work proposes a systematic
approach named Pedagogical Recommendation Process.

2 Proposal

Our proposal is a systematic approach to help teachers and tutors, from on-
line learning environments, to assist students in their pedagogical needs. This
approach is a cyclic and iterative process named Pedagogical Recommendation
Process - PRP. The process is semi-automatic and composed of four steps (fig-
ure 1). Each step requires the coordinated actions of human actors (specialists in
the pedagogical and technological domains) and artificial actors (computational
artifacts). It uses the students interactional data as input, applying educational
data mining techniques to detect and discover pedagogical difficulties in order
to personalize pedagogical recommendations. Finally, the students’ performance
is monitored and evaluated.

Fig. 1. The Pedagogical Recommendation Process

2.1 Background

In order to understand the process, two concepts used in this work are intro-
duced: Mining Capsules and Pedagogical Recommendations.

Mining Capsules organize and encapsulate the mining process and its parame-
ters. The mining capsules are intended to promote reuse and automate data min-
ing tasks associated to a pedagogical scenario. For example: students’ interactions
patterns can be analyzed [6], predict students’ results in exercises’ and tests’ can
be predicted [8], students can be grouped according to their interests and level of
engagement to the course [1], etc. To create a capsule it is necessary to define (1)
What is the mining capsule’s objective? (2)What data are necessary to reach these
objectives? (3) How are these data processed (choose the appropriate data mining
task to reach the goal [9], and specify the details of the mining)?
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Pedagogical Recommendations are reactive or preventive actions, associ-
ated with some defined pedagogical issues. These actions may use the learning
environments’ native educational resources, or external validated educational
resources. Their objective is to improve learning experience and solve known
pedagogical problems [7]. They use the learning environment’s educational re-
sources in order to offer students personalized ways to practice or improve on
topics they are not performing well.

2.2 The Pedagogical Recommendation Process

Step 1 - Detect Practices. This steps objective is to define metrics and their
intervals of interest, as triggers to detect occurrences in the learning environment
that affect students’ learning experience. The pedagogical actor is responsible for
defining the metrics and their respective intervals of interest. The technological
actor associates these definitions with the data available in the learning environ-
ment. The computational actor operationalizes this step, generating alerts when
a pedagogical practice is detected.

Step 2 - Discover Patterns. This step’s objective is to discover a possible ex-
planation for the practices detected (hypothesis). The pedagogical actor creates
one or more hypotheses to discover the reason for the practice detected, defining
its acceptance/rejection criteria. The technological actor defines the data and
methods to reach these criteria, setting up the mining process to discover the
details. The computational actor operationalizes the step’s definition by: (1) ex-
ecuting specific statistical analysis to accept/reject the hypothesis (2) executing
the defined mining process, presenting the outcome in a way the other actors
may extract relevant information that explain the practices.

Step 3 - Recommend. This step’s objective is to provide personalized rec-
ommendations, for the practices detected, based on the patterns discovered. In
this step the pedagogical actor creates a general version for each type of recom-
mendation, based on the patterns discovered. For example, ”Answer Quantity
Difficulty Level questions about Topic”, that can be personalized to ”Answer
10 difficult questions about the Basic Set Operations. The technological actors
develop a way to create, store and personalize these general recommendations,
associating them to a particular pedagogical issue. The computational actor op-
erationalizes this step, executing the actions programmed by the technological
actor.

Step 4 - Monitor and Evaluate. This step’s objective is to measure and com-
pare the students’ performance, before and after receiving the recommendation.
The appropriateness of the recommendations is also monitored and evaluated.
The pedagogical actor is responsible for defining the success criteria (issue is
solved), and review recommendations marked as ”needs reviewing”. The tech-
nological actor develops a way to monitor and evaluate students’ and groups’
performance, and the relevance of the recommendations. The computational
actor operationalizes this step, monitoring and evaluating students and recom-
mendation items.
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3 Case Study

The course UFAL Ĺınguas (Espanhol) used an online learning environment for
teaching foreign languages - UFAL Ĺınguas. It received 2075 enrollment requests,
from which 200 were accepted [UFAL Ĺınguas, 2012a, 2012b]. The course lasted
five months (October 2012 to February 2013), and was composed of six units. A
teacher and 8 tutors were responsible for maintaining it. In the end of the course
37 students, with scores above 2500 points, were approved.

3.1 Applying the Pedagogical Recommendation Process

Applying - Detect Practices: A histogram was generated in order to visualize
how the students’ scores were distributed (figure 2). That showed us three groups:
(1) Failing students with very low score. (2) Failing and approved students results
might have been different if teachers could quickly react the students’ problems.
The third group provided us with information on what should be done to perform
well.

Fig. 2. The Pedagogical Recommendation Process

Applying - Discover Patterns: According to [6] some practices can be ex-
plained by discovering patterns in the way students interact with the educational
resources (hypothesis: the more students interact with the educational resources,
the better their performances are). The hypothesis was valid and the mining pro-
cess used was transformed in a mining capsule, shown in figure 3.

Fig. 3. Specifications for the mining capsule MC1

In the pre-processing the outliers were removed1 , dropout students’, students’
ID and treated null and missing values to avoid influence in the results. For the

1 For this work’s purpose, outliers were values three times above and/or below the
interquartile range - IQR.
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Fig. 4. Decision tree showing the interactions that resulted in low, medium and high
performances

-

Fig. 5. Teachers grades regarding their perceived relevance for each recommendation

mining part J48 algorithm (C4.5 algorithm) was used to generate a decision tree
[9]. The resulting classifier was 88.89% accurate. For the data post-processing,
the outcomes were treated to be used in the Recommend step, allowing the
pedagogical specialists to identify relevant information [4], by generating a tree-
like representation of the results (figure 4).

Applying - Recommend: Five pedagogical recommendations were created for
each node that leads to a low performance. These recommendations’ relevance
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was later evaluated by an independent group of teachers (figure 5). They were
then stored for a future offering of the course.

Applying - Monitor and Evaluate: As the data available was from the end
of the course, it was not possible to generate new data on recommendation usage.
That is a limitation, but it does not invalidate the work.

4 Conclusions

Applying the Pedagogical Recommendation Process in a case study, we were
able to answer our research questions, discovering situations where students were
facing difficulties, which helped us generate personalized recommendations based
on these specific problems. Although the results were encouraging, showing that
we could detect problems (step 1), discover the patterns associated to them (step
2) and, consequently, recommend personalized tasks focusing on the students’
needs (step 3), it is still necessary to test the ”Monitor and Evaluate” step (step
4), once that we only had access to the interactional data after the end of the
course. We conclude that the process can be applied to the next offerings of
this course, preparing the learning environment to identify and react to known
pedagogical situations. It can also be used in other courses based on the same
learning environment.

References

1. Bayer, J., Budzovska, H., Geryk, J., Obsivac, T., Popelinsky, L.: Predicting drop-out
from social behaviour of students. In: Educational Data Mining Conference (2012)

2. Bittencourt, I.I., de Barros, C.E., Silva, M., Soares, E.: A Computational Model
for Developing Semantic Web-based Educational Systems. Knowledge-Based Sys-
tems 22, 302–315 (2009)

3. Chrysafiadi, K., Virvou, M.: Student modeling approaches: A literature review for
the last decade. Expert Syst. Appl. 40(11), 4715–4729 (2013)

4. Gibert, K., Izquierdo, J., Holmes, G., Athanasiadis, I., Comas, J., Snchez-Marr, M.:
On the role of pre and post-processing in environmental data mining. In: Interna-
tional Congress on Environmental Modeling and Software (2008)

5. Kavanagh, J., Hall, W.: Grand challenges in computing research 2008. In: Grand
Challenges in Computing Research, GCCR 2008. UK Computer Research Commit-
tee, United Kingdom (2008)

6. Moran, J.M.: O que aprendi sobre avaliação em cursos semi-presenciais. In: Silva,
M., Santos, E. (eds.) Avaliação da Aprendizagem em Educação Online. Loyola,
São Paulo (2006), http://www.eca.usp.br/prof/moran/aprendi.html (accessed
in: July 3, 2013)

7. Paiva, R.O.A., Bittencourt, I.I., Pacheco, H., da Silva, A.P., Jaques, P., Isotani, S.:
Mineração de Dados e a Gestão Inteligente da Aprendizagem: Desafios e Direciona-
mentos in XXXII Congresso da Sociedade Brasileira de Computação (2012)

8. Park, J.-H., Choi, H.J.: Factors Influencing Adult Learners’ Decision to Drop Out or
Persist in Online Learning. Educational Technology & Society 12, 207–217 (2009)

9. Witten, I., Frank, E., Hall, M.: Data Mining: Practical Machine Learning Tools and
Techniques, 3rd edn. Massachusetts (2011)

http://www.eca.usp.br/prof/moran/aprendi.html


S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 368–377, 2014. 
© Springer International Publishing Switzerland 2014 

ToneWars: Connecting Language Learners and Native 
Speakers through Collaborative Mobile Games 

Andrew Head1, Yi Xu2, and Jingtao Wang1 

1 Computer Science & LRDC, University of Pittsburgh, PA, USA 
{amh140@,jingtaow@cs}pitt.edu 

2 East Asian Languages & Literatures, University of Pittsburgh, Pittsburgh, USA 
xuyi@pitt.edu 

Abstract. In this paper, we present ToneWars, a collaborative mobile game for 
learning Chinese as a Second Language (CSL). ToneWars provides a learning 
experience that combines mastery learning, microlearning, and group-based 
interaction between CSL learners and native speakers. The game explores how 
unique input modalities, like touch gestures and speech recognition, can 
improve language acquisition tasks on mobile devices. We report the design 
motivations and lessons learned through the iterative design process. We 
believe many insights from developing ToneWars are generalizable to 
designing productive language learning technology. Through a 24-participant 
(12 CSL and native speaker pairs) user study, we found ToneWars provides 
learning benefits for second-language learners and engages native speakers. 

Keywords: Mobile Learning, Serious Games, Crowdsourcing, Collaborative 
Learning. 

1 Introduction 

Learning a second language (L2) can be an extremely rewarding pursuit [14]. 
However, the process is notoriously challenging. It can take learners thousands of 
hours [17] to achieve intermediate fluency. Additional challenges are posed when a 
new language varies greatly from a learner’s native tongue, as is the case for English 
speakers learning Chinese. At the same time, the need to improve L2 learning is just 
as important as ever. According to ACTFL, Chinese as Second Language (CSL) 
enrollments in K-12 schools in the U.S have increased 195% from 2004 to 2007 [1]. 

Numerous challenges arise for CSL students as they acquire listening, speaking, 
reading, and writing skills. One of the best-known challenges involves dealing with 
the large quantity of characters 1. Meanwhile, many consider the most difficult task of 
CSL acquisition to be correct perception and pronunciation of tones due to the 
interference of the learner’s native language [7], [19]. Tones in Chinese determine 
meaning, whereas tones in western languages, such as English, are used for 
                                                           
1  According to national standard GB2312 level 1, there are 3,755 Chinese characters defined 

as “frequently” used in daily communication.   
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capabilities of mobile devices, including recording media [10], location awareness 
[6], and speech recognition [9]. These applications have been built for English as a 
Second Language (ESL) learners [8, 9], CSL learners [5, 6], and even native speakers 
of Chinese in elementary schools [10]. 

The Multimedia Word and Drumming Strokes mobile games by Tian et al [10] 
enable group-based Chinese learning. These games are played by co-located, native 
Chinese speaking children who share a single mobile device. ToneWars differs from 
these games in that during its collaborations, language learners and native speakers 
are physically separated, communicating over network from separate devices. 

Tip Tap Tones [5] by Edge et al. trains CSL learners to perceive Chinese tones 
through mobile games. Tip Tap Tones provides single player flashcard-style drills at a 
character-by-character level. ToneWars seeks to build on this work in several ways. 
First, in ToneWars players can use touch gestures and speech to input tones, 
providing practice opportunities similar to classroom exercises. Second, it enables 
phrase-level tone learning.  Third, it connects CSL learners with native speakers in 
collaborative multiplayer gameplay in order to foster greater learning motivation. 

2.2 Systems with  Users of Multiple Languages 

Duolingo [4] by von Ahn et al is a platform for crowdsourcing translations. Duolingo 
aims to produce high quality, low cost translations by breaking translation tasks into 
free, bite-sized educational exercises for learners of both the source and target 
languages. MonoTrans [12] by Hu et al uses two-way machine translation and two 
groups of monolingual users to achieve low cost translation through iterative 
collaboration. Busuu.com is an L2 learning community where learners can act as 
experts of their own native language voluntarily, communicating with other learners 
of their language through text or video chat and revising others’ written exercises. 
ToneWars, in contrast, brings together learners with native speakers in a mobile 
setting, motivating L2 learners to engage in learning through competitive gameplay. 

3 Field Study 

To identify opportunities to include CSL tone pedagogy in designing ToneWars, we 
conducted semi-structured interviews with two experienced CSL instructors (T1 and 
T2) from local universities. T1 and T2 each had 6 or more years of CSL teaching 
experience with more than 200 CSL learners at the entry and intermediate levels. We 
took several observations from these interviews: 

F1. Tones Require Continual Practice for Clean Production. Students were exposed 
to tone and pronunciation practice in the first 1-2 weeks of instruction (T1 and T2). 
After this, students’ tone perception and production deteriorated after a switch in 
material and the continuing influence of the learner’s native language (T1 and T2). At 
later stages, dedicated practice and personalized feedback could help restore cleaner 
tone production students achieved in the first weeks. Challenges to tone recognition 
varied with learning level. According to T1, beginner students frequently confused 
tone 2 and tone 4, and later they confused tone 1 and tone 4. Advanced CSL learners 
had difficulty recognizing and pronouncing tones in long phrases (T2). 
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patterns we observed without requiring large amounts of training data. Third, it could 
allow us to determine the exact cause of why each user’s misrecognized gestures were 
falsely classified. Instead of receiving a cryptic rating for each classification, we 
could compare the user’s touch gesture paths to the hard rules defined in the decision 
tree. 

The second tone input mode is speech (Fig. 3). Players enter tones by pronouncing 
characters into the phone’s microphone. If the player does not know a character but 
wants to guess its tone, she can pronounce a placeholder character with the expected 
tone. This control method had two advantages. First, oral production helps learners 
move from declarative knowledge of a language (recognizing words) to productive 
knowledge (using the words correctly) [3]. Second, by requiring students to guess the 
sound of unknown characters, they may be able to develop a deeper knowledge of the 
relationship of a character’s written radicals4 to its pronunciation. 

Our tone recognition engine is built on top of Google’s speech recognition service 
for Mandarin, a state-of-the-art speech recognition engine. A mobile device must have 
Internet access to use all features of the recognition service. In the future, a 
customized on-device Mandarin tone recognizer could be developed when the 
network is not available, like the English recognizer by Kumar et al [9]. 

4.3 Implementation 

ToneWars was written in Java for Android 4.0. We used the AndEngine 
(http://www.andengine.org/) library to speed up game programming. We also used the 
Box2D physics engine to implement the falling and collision effects in ToneWars. 
Excluding third party libraries, ToneWars has a total of 11,150 lines of code in Java.  

5 User Study 

We conducted a 24-subject user study (12 CSL and native speaker pairs) to 
understand the performance and usability of ToneWars. Before the study, we worked 
with a CSL instructor to select 25 phrases with a total of 25 unfamiliar characters. We 
sorted the phrases into 5 groups of equal difficulty. Each phrase group had 5 
characters that would be unfamiliar to CSL learners with less than 1 year of 
experience with Integrated Chinese, a popular CSL textbook in North America. No 
phrase had more than two unfamiliar characters. Although some Chinese characters 
have tones that can vary based on context, no such characters were chosen for these 
groups. 

The user study consisted of three steps: 
 

1) Pre-test. Participants completed a quiz in which they determined tones of 35 
characters. The set contained all 25 unfamiliar characters as well as 10 familiar 
characters from the phrase groups.  If participants did not know the tone, they were 
told it was okay to leave the space for response blank. 
                                                           
4  According to Wang [18], although Chinese writing is logographic, 77% of characters in 

modern Chinese have radicals that suggest their pronunciation. 
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2) Gameplay sessions. Participants were grouped into learner-native speaker pairs. 
They played 5 rounds of ToneWars. In the first 4 rounds, users controlled the game 
with touch-based tone tracing. The rounds were structured according to a 2-by-2 
within-subject design based on hint feedback mechanisms (visual vs. audio) and 
collaboration mode (single-player with AI vs. CSL learner with native speaker). The 
order of conditions was counter-balanced with a Latin-square pattern across pairs. In 
the 5th round, participants used speech to input tones. Each round presented users 
with phrases from 1 of 5 phrase groups selected above. By measuring subjects’ 
improvement in tone recall for each of these phrase groups, we sought to measure the 
impact of the above design conditions on the learning experience.  

Participants were seated in adjacent chairs facing each other. For rounds that 
utilized voice control and audio feedback, players were instructed to wear headphones 
to minimize audio interference. Each round took 8 minutes to complete.  

3) Post-test.  Participants completed a quiz identical to the pre-test after finishing 
the game sessions. All CSL learners and native speakers completed both tests. 

We recruited 24 participants (12 CSL learner and native speaker pairs) from two 
local universities. Among the learners (7 female, median age 19), a majority had less 
than one year of formal CSL learning experience. The native speakers (7 female, 
median age 22.5) were mostly undergraduate or graduate students originally from 
China.  

Participants used one of two Google Galaxy Nexus smartphones. The device has a 
4.65-inch, 720 x 1280 pixel display, 1.2-GHz dual core ARM Cortex-A9 processor, 
and runs Android OS. Devices were connected to the Internet through 802.11g Wi-Fi. 

6 Results and Discussion 

We observed a difference in initial tone identification ability for learners and native 
speakers. During the pre-test, CSL learners correctly recognized 11.6 / 35 characters 
(min = 1, max = 25, σ = 7.9, accuracy = 33%5). In comparison, 11 / 12 native 
speakers scored 35 / 35, and one native speaker scored 19 / 35 (µ  = 33.7, σ = 4.6, 
accuracy = 96%). The difference is statistically significant (t = 8.38, p < 10-6).  

After 40 minutes of gameplay, learners could recognize tones of 17.8 characters 
(min = 5, max = 34, σ = 10.4, accuracy = 51%). The average recall gain for learners 
was 6.2 characters (min = 1, max = 13, σ = 3.5). A pair-wise t-test showed this 
improvement is statistically significant (F1,11 = 6.13, p < 10-4). The native speaker that 
did not score perfectly in the pre-test properly identified 8 more tones in the post-test.  

For all experimental conditions, repeated ANOVA showed significant gain for CSL 
learners in recall of the tones of unfamiliar characters (Fig. 4). The gains were: visual 
feedback, 2.7 tones (t = 6.4, p < 10-4); audio feedback, 2.35 tones (t = 4.4, p < 0.005); 
competition with AI, 2.4 tones (t = 5.7, p < 10-4); learner vs. native speaker, 2.7 tones (t = 
4.5, p < 0.005); voice control, 1.1 tones (t = 3.0, p < 0.05). The difference  
in improvement for hint feedback types (audio vs. visual) was not significant (F1,11 = 
0.54, p = 0.60). Although learners recalled 0.3 more tones in rounds against  
 

                                                           
5 With 5 possible tones, the chance of randomly guessing a character’s tone is 20%.  
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Fig. 4. Average numbers of tones learned by condition. Error bar shows one standard deviation 

native speakers, this difference was not significant (F1,11 = 0.47, p = 0.65). We 
attribute the lack of significance to small sample size (12 CSL learners) and the large 
difference in learners’ initial ability (ranging from 1 to 25 out of 35 correct on the pre-
test). Because of this initial variation, our current results could show a gain in recall 
for each condition, but could not uncover the relative strength of any one condition. 
We plan to address this in the near future by running classroom-level, multi-week 
deployments.  

Although nearly all learners had lower initial tone identification accuracy than the 
native speakers they were paired with, 8 / 24 (33%) rounds between learners and 
speakers were won by learners. We attribute this to certain learners’ ability to become 
comfortable with the control mechanics, quickly master unknown or forgotten tones, 
and to develop successful attacking strategies. 

Participants’ qualitative feedback on ToneWars was highly favorable. Ratings of 
user perceptions were measured on a 5-point Likert scale (1 = strongly disagree, 5 = 
strongly agree). CSL learners unanimously rated ToneWars’ ease of use at 5, and 
native speakers rated it 4.75 (σ = 0.45). Learners rated ToneWars’ engagement as 4.5 
(σ = 0.52) and native speakers rated it 4.25 (σ = 0.75). Both native speakers (µ  = 4.17, 
σ = 0.83) and CSL learners (µ  = 4.25, σ = 0.75) enjoyed playing against a real-life 
partner. Compared to native speakers (µ  = 3.41, σ = 1.24), learners (µ  = 4.33, σ = 
0.98) indicated a stronger interest to play ToneWars in their spare time.  

In written comments, players were positive about ToneWars. One participant 
reported, “I would love to play a game like this to help my pronunciation and tonal 
recognition. I am always looking for new ways to learn Chinese.” Others enjoyed the 
competition. One told us that when they played against a native speaker, “it was more 
competitive than playing against the computer and for me, points have the main 
motivation for me to focus on the game.” As one learner expressed, the social aspect 
of competition could be appealing: “Having a real life opponent is always, in my 
opinion, fun because of being able to make fun conversation while playing is a plus.”  

Native speakers hoped that the challenge of ToneWars could be increased by 
introducing more phrases per round. Several participants reported moments of 
frustration with input control. In some cases, tone gestures or spoken tones were 
misrecognized due to cases we had not foreseen (left-handedness for touch) or user skill  
level (spoken tones of learners with insufficient previous tone training were often 
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misclassified). During speech input rounds, characters spoken aloud may have 
interfered with the device of a player’s co-located participant. In the future, we plan to 
improve the maturity of tone tracing and speech recognition to address these cases. 
We also hope to explore whether learner motivation against native speakers comes 
from perceived competition or from a change in game dynamics during these rounds. 

7 Conclusions and Future Work 

ToneWars is a group-based mobile game for CSL learners to master Mandarin tones 
through collaboration with native speakers. The design of ToneWars, including tone-
tracing gestures, speech input, and collaboration with native speakers, is inspired by 
effective second-language pedagogy. Our design discoveries can be applied for 
researchers building mobile learning technology to aid L2 acquisition beyond just 
Chinese. In a 24-subject study, we confirmed ToneWars’ usability and efficacy. We 
observed a 6.2-tone average gain in short term recall for second language learners 
who played around 40 minutes of ToneWars. 

We plan to continue our work with ToneWars in multiple ways. We will address 
usability problems identified above, improving speech recognition accuracy and 
incorporating algorithms to support performance-based adaptive learning. We hope to 
extend the potential of ToneWars by adding material that complements the regular 
CSL curriculum and by exploring its design principles for languages other than 
Chinese. While our current lab study shows promising results for improving learners’ 
short-term recall, we hope to evaluate ToneWars’ feasibility and educational benefits 
in larger scale, longitudinal deployments. 
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Abstract. Integrating gamification features in ITSs has become a popular theme 
in ITSs research. This work focuses on gamification of shared student/system 
control over problem selection in a linear equation tutor, where the system 
adaptively selects the problem type while the students select the individual 
problems. In a 2x2+1+1 classroom experiment with 267 middle school students, 
we studied the effect, on learning and enjoyment, of two ways of gamifying 
shared problem selection: performance-based rewards and the possibility to re-
do completed problems, both common design patterns in games. We also in-
cluded two ecological control conditions: a standard ITS and a popular algebra 
game, DragonBox 12+. A novel finding was that of the students who had the 
freedom to re-practice problems, those who were not given rewards performed 
significantly better on the post-tests than their counterparts who received re-
wards. Also, we found that the students who used the tutors learned significant-
ly more than students who used DragonBox 12+. In fact, the latter students did 
not improve significantly from pre- to post-tests on solving linear equations. 
Thus, in this study the ITS was more effective than a commercial educational 
game, even one with great popular acclaim. The results suggest that encourag-
ing re-practice of previously solved problems through rewards is detrimental to 
student learning, compared to solving new problems. It also produces design 
recommendations for incorporating gamification features in ITSs.  

Keywords: DragonBox, educational games, student control, shared control, in-
telligent tutoring systems, algebra, classroom evaluation, rewards. 

1 Introduction 

In recent years, Intelligent Tutoring System (ITS) researchers have started to  
investigate how to integrate game elements within a tutoring environment. The goal is 
typically to make the system more engaging for students, while maintaining its effec-
tiveness in supporting learning. Empirical studies have been conducted to evaluate the 
effects of gamifying tutors on students’ learning and motivation, as well as to explore 
the best design to incorporate game elements in tutors. Some studies have found that 
game-based learning environments can significantly enhance students’ learning out-
comes [3, 10] and can produce the same learning effects as nongame tutors [7].  
However, gamification of ITSs is not always successful. For example, one study [5] 
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found that tutor-like assistance led to better learning and interest as compared to 
game-like assistance in an educational game of policy argument. Therefore, gamifica-
tion of ITSs should be done with care, where possible informed by empirical studies.  

Student control over problem selection may be an interesting area for gamification. 
Full student control over problem selection tends to be detrimental for learning (see 
e.g., [2]). However, shared control between student and system has shown some 
promise. Simple forms of shared control, in which the system and the students share 
the responsibilities to select problems in the system, had led to comparable learning as 
full system control [4, 9]. However, these simple techniques may not be as engaging 
as they could be, nor do they take full advantage of ITSs’ ability to make good prob-
lem selection decisions. In the current work, we focus on a form of shared control in 
which the system selects problem types and decides when students have mastered 
each problem type and may go on to the next, while the student selects individual 
problems from a certain problem type. We try to improve on this form of shared con-
trol by adding gamification features, and investigate whether the gamified shared 
control leads to higher engagement and better learning. 

Commercial games provide plenty of ideas for gamification of problem selection. 
A feature found in many popular games (e.g., Angry Birds, DragonBox) is the possi-
bility to re-do problems after they have been completed. This feature is often com-
bined with rewards (such as a number of stars) that reflect performance on the given 
problem. One reason players may elect to re-do a problem is to increase the rewards. 
According to theories of autonomy in learning [6], allowing re-practice gives students 
more freedom, which could possibly enhance their engagement in learning. Moreover, 
re-practicing could lead to more efficient acquisition of problem-solving skills, al-
though to the best of our knowledge that has not been established definitively in the 
cognitive science literature. On the other hand, frequent re-practice may reduce prob-
lem variability and therefore be detrimental for learning [11]. Empirical investigation 
of the effectiveness of these gamification features is therefore warranted. 

In the current work, we investigate the effects of gamifying shared student/system 
control in our linear equation tutor, Lynnette. We investigated two gamification  
features: giving students the freedom to re-practice previously completed problems 
(not allowed e.g., in standard Cognitive Tutors) and rewards (stars) for each  
problem based on students’ performance. These features are similar to Angry Birds’ 
or DragonBox’ problem selection and rewards systems. We hypothesize that 1) the 
possibility to re-practice problems, added to shared control over problem selection 
will enhance students’ learning and engagement; 2) rewards based on students’ per-
formance on individual problems will also lead to better learning and engagement. 
Consequently, we created four experimental versions of Lynnette to evaluate the ef-
fects of the two gamification features. Moreover, we included two ecological control 
conditions in the study: a standard ITS and a commercial algebra game. The standard 
ITS is a control version of Lynnette without any gamification features and with full 
system control over problem selection (as is common in e.g. Cognitive Tutors). The 
algebra game is DragonBox, which has attracted substantial public attention for alle-
gedly helping young children learn algebra in a very short period of time [8, 12]. Al-
though DragonBox has been the subject of at least one research study [1], we are not 
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aware of any studies that empirically investigated its effectiveness in teaching alge-
bra. Given the publicity surrounding the game, it would be good to know how educa-
tionally effective and engaging it is, compared to technology proven to be effective in 
helping students learn (i.e., an ITS). We conducted a classroom experiment with 267 
middle school students to investigate our hypotheses.   

2 Methods 

2.1 Lynnette and DragonBox 12+ 

Lynnette – Web-Based Linear Equation Tutor on Android Tablet. Lynnette is a 
tutor for basic equation solving practice. It comprises five levels with increasingly 
difficult equations, starting with equations of the form x + a = b and their variations at 
Level 1 and ending with equations of the form a(bx + c) + d = e and their variations at 
Level 5. Students are required to explain some of their steps by indicating the main 
transformation (see Fig. 1). The problems in Lynnette do not require fractions and the 
tutor does not allow strategies that involve fractions along the way. Otherwise, it is 
flexible in the major and minor strategy variants that it recognizes. It also allows some 
suboptimal strategies, while warning students about them in the hint window (see Fig. 
1), on the assumption that students can learn from seeing and being explicitly re-
minded of suboptimal strategies. It does not allow mathematically correct but useless 
transformations. Lynnette was designed to run on Android tablets but also runs on 
regular desktop computers. It was implemented as a rule-based Cognitive Tutor using 
the Cognitive Tutor Authoring Tools (http://ctat.pact.cs.cmu.edu/). Its cognitive mod-
el comprises 73 rules.  Lynnette is the first CTAT-built tutor that runs on Android 
tablets and the first elaborate CTAT-built rule-based tutor used in classrooms. 

 

Fig. 1. The problem solving interface of Lynnette on a Samsung Galaxy Tablet 
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DragonBox 12+. We used the Android version of DragonBox 12+ in the study, 
which is one of the two DragonBox games that targets middle and high school alge-
bra. It has 10 progressive chapters, each with 20 problems, covering 24 algebraic 
rules [13]. The two sides of the screen represent the two sides of an equation. The 
game provides immediate step-by-step feedback. It starts by hiding the algebraic ex-
pressions and the players have to isolate a box on one side of the screen through mov-
ing cards (Fig. 2, leftmost). It gradually transitions to algebraic problems as the stu-
dents progress in the game (Fig. 2, middle and rightmost). As claimed on its official 
site, students can learn basic algebra in one hour with DragonBox. 

 

Fig. 2. Screenshots of DragonBox from its official site (©WeWantToKnow) 

2.2 Experimental Design, Participants, Procedure and Measurements 

We conducted an experiment with a 2x2+1+1 design with a total of six conditions. 
The 2x2 design varies two factors: 1) whether or not the students are able to access 
and re-practice completed problems; and 2) whether or not the tutor shows rewards to 
the students. The two “+1” conditions are a popular algebra game, DragonBox 12+, 
and a standard ITS.  

Table 1. Experimental conditions in the study. RePr stands for Re-Practice, NoRePr stands for 
no Re-Practice, Rwd stands for Rewards, and noRwd stands for no Rewards. 

 RePr 
+Rwd 

No-
RePr+R
wd 

RePr 
+noRwd 

No-
RePr+n
oRwd 

Dragon-
Box 12+ 

Control 
Lynnette 

Re-practice Yes No Yes No  
Rewards Yes Yes No No 

 
We created four experimental versions of Lynnette and a control version (as listed 

in Table 1). The five Lynnette tutors all used the same interface for problem solving, 
shown in Figure 1. Also, all five tutor versions employed Bayesian Knowledge Trac-
ing and Cognitive Mastery as part of their problem selection methods. The control 
version used it for full system control, as is customary in Cognitive Tutors. That is,  
in this version the tutor always selected the next problem for the student from level 1 
to level 5. The four experimental versions used Bayesian Knowledge Tracing and 
Cognitive Mastery for shared control. In these versions, the students also had to  
do the levels in order. Within a level, they could select which problem to do next.  
The tutor decided when a level was complete (namely, when all skills were mastered). 
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The system presented one or two screens in-between problems, which vary according 
to the two experimental factors. All four experimental tutor versions had a problem 
selection screen, which lists the problems within the current level. On this screen, the 
student selected the next problem (Fig. 3, right). In the two Re-Practice conditions, 
the system “recommended” problems on this screen by displaying a flag next to them. 
These problems had unmastered skills, according to the tutor’s Bayesian Knowledge-
Tracing method, and had not been practiced yet by the given student. However, stu-
dents were free to select a problem with or without a flag. Also in the two Re-Practice 
conditions, students could select any problem available on the given level, regardless 
of whether they had completed them previously. By contrast, in the No Re-Practice 
conditions, the previously-practiced problems were grayed out so they could not be 
selected again. In the two Rewards conditions, students saw an additional screen be-
tween problems (Fig. 3, left), a problem summary screen showing earned stars after 
completing each problem, based on the number of steps, hints and errors. A trophy 
could be earned for perfect performance. Further, in these conditions, the problem 
selection screen listed the rewards earned (see Fig. 3, right). After re-practice, the 
number of rewards would be updated.  

 

Fig. 3. Problem summary screen with rewards (left) and problem selection screen (right) 

267 7th and 8th grade students participated in this study. They were from 15 
classes of 3 local public middle schools, taught by 6 teachers. Students from each 
class were randomly assigned to one of the six conditions. All students completed a 
20-minute paper pre-test on the first day of the study. They then worked for 5 42-
minute class periods on consecutive school days either with one of the Lynnette ver-
sions or DragonBox 12+ using Samsung Galaxy tablet PCs. All students took an im-
mediate paper post-test after the five class periods. The pre- and post-tests were in the 
same format, which consisted of 6 equations that measured students’ procedural skills 
of solving linear equations1. Lynnette only provides practice for a subset of problem 
types that are practiced in DragonBox 12+. Therefore, among the 6 equations, 4 were 
shared types of equations between Lynnette and DragonBox 12+, while 2 were types 
of equations practiced in DragonBox 12+ only. Documentation of DragonBox 12+ 
indicates that the algebraic rules that are needed to solve the 6 procedural items could 

                                                           
1  The test forms also included items testing basic conceptual knowledge of algebra. However, 

because there was no improvement from pre-test to post-test on these items in any of the 
conditions (similar to what we saw in past studies), we do not report the results separately. 
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be practiced by Level 6 in the game [13]. We created two sets of equivalent test forms 
and administered them in counterbalanced order. We also included a 7-question ques-
tionnaire to measure students’ enjoyment of using Lynnette or DragonBox along with 
the post-test. The questions were adapted from the interest/enjoyment subscale of the 
Intrinsic Motivation Inventory, and were all based on a 7-point Likert scale.  

3 Results 

A total of 190 students were present on each day of the study and completed the pre- 
and post-tests. Given that the sample was nested in 15 classes, 6 teachers, and 3 
schools, Hierarchical Linear Modeling (HLM) was used to analyze the test data. We 
constructed 3-level models in which students (level 1) were nested in classes (level 2), 
and classes were nested in teachers (level 3; 4-level models indicated little variance 
on the school level, so we built 3-level models). Specifically, for the learning effects 
from pre- to post-tests, we used both pre- and post-test scores as dependent variables 
to fit this model: scoreij = testj + student(class)i + class(teacher)i + teacheri,  where 
scoreij was studentij’s  score on testj, and student(class)i, class(teacher)i and teacheri 
indicated the nested sources of variability in the hierarchical model. To evaluate the 
main effects and interaction effect across the conditions on the post-test, we modified 
the model and used studenti’s pre-test score prei as co-variate:  post-scorei = prei + 
tutorj + rewardsk + re-practicel + rewardsk*re-practicel + student(class)i + 
class(teacher)i + teacheri, with tutorj being whether the condition learned with a tutor 
or DragonBox 12+, rewardsk being whether the tutor condition received rewards,  re-
practicel being whether the condition allowed re-practice, and rewardsk*re-practicel 
being the interaction between the two factors. We report Cohen’s d for effect sizes. 
An effect size d of .20 is typically deemed a small effect, .50 a medium effect, and .80 
a large effect. 

Table 2. Means and SDs of all conditions on pre- and post-tests for the shared procedural 
items, game (DragonBox) only procedural items, and the overall test scores 

 RePr+Rw
d 

NoRePr+ 
Rwd 

RePr+ 
noRwd 

NoRePr+ 
noRwd 

Dragon-
Box 12+ 

Control 
Lynnette 

Pre-shared .364 
(.249) 

.327 
(.279) 

.327 
(.257) 

.364 
(.313) 

.321 
(.209) 

.386 
(.277) 

Post-shared .467 
(.291) 

.491 
(.276) 

.497 
(.364) 

.471 
(.311) 

.366 
(.289) 

.538 
(.347) 

Pre-game .324 
(.345) 

.266 
(.359) 

.318 
(.350) 

.318 
(.344) 

.331 
(.382) 

.288 
(.330) 

Post-game  .352 
(.320) 

.281 
(.358) 

.313 
(.307) 

.300 
(.323) 

.310 
(.410) 

.297 
(.356) 

Pre-overall2 .439 
(.178) 

.413 
(.142) 

.403 
(.183) 

.477 
(.172) 

.422 
(.133) 

.418 
(.155) 

Post-overall .463 
(.160) 

.491 
(.173) 

.520 
(.203) 

.503 
(.167) 

.438 
(.161) 

.477 
(.190) 

                                                           
2  Pre-overall and Post-overall include the conceptual items along with the 6 procedural items.  
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Learning Effects of Lynnette and DragonBox. Table 2 shows the average test 
scores for all conditions on the 4 shared procedural items, the 2 DragonBox/game 
only procedural items, and the overall test scores including the conceptual items. Stu-
dents in the DragonBox condition completed an average of 140 equations in the game 
by the end of the 5th period, which is equivalent to finishing Level 7. Students from all 
five Lynnette conditions completed an average of 36 equations. All five Lynnette con-
ditions together improved significantly on the shared procedural items (t(300)=4.543, 
p<.001, d=.52) as well as the overall test scores (t(300)=3.305, p=.001, d=.38), but 
did not improve on the game only items. The best tutor condition, RePr+noRwd also 
improved significantly on the shared items (t(41)=2.392, p=.021, d=.75), and the 
overall test scores (t(41)=3.088, p=.004, d=.96). By contrast, the DragonBox students 
did not show significant improvement on any of the three categories of test items 
from pre- to post-test. When comparing the post-test scores between the Lynnette 
conditions and DragonBox, the five Lynnette conditions together significantly outper-
formed the DragonBox condition on both the shared items (t(167)=2.118, p=.036, 
d=.33) and all 6 procedural items together (i.e. shared items + game-only items, 
t(167)=1.986, p=.049, d=.31). The RePr+noRwd condition also significantly outper-
formed the DragonBox condition (shared items: t(37)=2.214, p=.033, d=.73; all 6 
procedural items: t(37)=2.295, p=.027, d=.75). We also compared students’ post-test 
scores between the control Lynnette and the experimental Lynnette tutors. There were 
no significant differences on any of the categories of test items.   

Effects of Re-Practice and Rewards. We tested the main effects and interaction 
of the two factors with the four experimental Lynnette tutors. Neither re-practice nor 
rewards showed a significant main effect. The interaction between the two was signif-
icant for the overall test scores (t(104)=-2.287, p=.024). Post-hoc analysis revealed 
that for the two Re-Practice conditions, students who did not see rewards (i.e., 
RePr+noRwd) performed significantly better than students who received rewards (i.e., 
RePr+Rwd, t(41)=-2.311, p=.026, d=.72). On the other hand, there was no significant 
difference between the two No-Re-Practice conditions (i.e., NoRePr+Rwd and No-
RePr+noRwd). To explore the mechanism behind the difference between the two Re-
Practice conditions, we investigated how often the students re-practiced the completed 
problems. Seven out of 31 (22.58%) students in RePr+noRwd re-practiced a total of 9 
problems start-to-finish, whereas 16 out of 33 (48.48%) students in RePr+Rwd re-
practiced 37 problems start-to-finish. We also investigated the number of times stu-
dents re-started a problem they had solved before, regardless of whether they actually 
finished it. Specifically, we calculated the ratio of (number of re-starts)/(number of 
total problem visits) for each student in the two Re-Practice conditions. The average 
ratio was .196 (SD=.172) for RePr+Rwd and .115 (SD=.074) for RePr+noRwd, with a 
significant difference between the two (t(42)=2.858, p=.007, d=.88). In other words, 
students in RePr+Rwd re-started significantly more problems than students in 
RePr+noRwd. Moreover, the correlation between the ratio of re-starts and students’ 
post-test performance was -.277 (p=.028), controlling for the overall pre-test score. 
The more times the students re-started problems, the less they learned. 

Enjoyment. Table 3 shows the average ratings of enjoyment from the intrinsic mo-
tivation questionnaire handed out with post-test. The DragonBox students provided 
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significantly higher ratings of enjoyment while playing with the game, as compared to 
all the Lynnette conditions taken together (t(168)=-3.315, p=.001, d=.51). No signifi-
cant main effects or interaction effect of re-practice and rewards were found for en-
joyment among the experimental Lynnette tutors. The difference between the experi-
mental Lynnette tutors and the control Lynnette was not significant either.   

Table 3. Means and SDs of the enjoyment ratings across all 7 questions for all conditions 

 RePr+ 
Rwd 

NoRePr+ 
Rwd 

RePr+ 
noRwd 

NoRePr+ 
noRwd 

Dragon-
Box 12+ 

Control 
Lynnette 

Enjoy-
ment 

3.815 
(1.627) 

3.884 
(1.572) 

4.166 
(1.398) 

4.372 
(1.528) 

5.099  
(1.448) 

4.138 
(1.483) 

4 Discussion and Conclusion 

Gamifying ITSs to foster higher engagement and perhaps even better learning out-
comes has become a popular theme in the ITS community. However, what gamifica-
tion features are beneficial and how to integrate them with existing tutor features re-
mains a challenging question. Our study found that gamification of shared stu-
dent/system control was a partial success. The two gamification features held up well 
in the classroom but did not foster the expected higher enjoyment or learning gains. 
We did not find a significant difference between the experimental (gamified) Lynnette 
tutors and the control Lynnette with respect to enjoyment or learning. One of the ga-
mified conditions (RePr+noRwd) had the highest learning gains, with a greater 
pre/post effect size (d=.96) than that for all Lynnette tutors (d=.38), but was not relia-
bly better on any measure than the control tutor. Thus, gamifying tutors by incorporat-
ing common game design patterns does not automatically make them more effective. 
This finding is not uncommon. As discussed in the introduction, efforts at gamifying 
tutors frequently do not result in greater learning gains. Nonetheless, our findings may 
have practical value: students may have come to expect the problem selection features 
they know from games. Our study shows they can be added to a tutor (though with the 
caveat noted below) with relatively low implementation cost while maintaining the 
tutor’s effectiveness. 
 An interesting finding was that the students who could re-practice completed prob-
lems and received rewards performed significantly worse than their counterparts who 
could re-practice problems but did not receive rewards. The same difference was not 
found between the two conditions that could not re-practice. To the best of our know-
ledge, this is a novel finding: we are not aware of studies showing a detrimental effect 
of re-practice in (tutored) problem solving. A possible explanation is that the urge to 
earn more stars pushed the students to re-practice, yet re-practicing previously-seen 
problems is not an optimal strategy for learning as compared to practicing new prob-
lems. (In standard ITSs, it is common practice that students practice new problems 
targeting the same skills, instead of re-practicing problems they have completed be-
fore.) Further data analysis supports this explanation: there were significantly more 
re-starts of problems in the RePr+Rwd condition and there was a significant negative 
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correlation between the re-start ratio and students’ post-test scores. This finding af-
firms that performance-based rewards can influence students’ study choices but it also 
highlights the need to ensure that students are guided in making optimal choices. Al-
though the combination of re-practicing with performance-based rewards is a very 
common design pattern in games, its implementation in tutors should be handled with 
care. For example, instead of giving rewards for individual problems, one could con-
sider adding to the tutor data visualizations that help students analyze and summarize 
their performance, and provide rewards on an aggregated level. Also, instead of al-
lowing students to re-practice problems they have seen before, the system might af-
ford them freedom to select remedial new problems to earn more rewards.       

Lastly, the experiment illustrated that an ITS can help students learn more effec-
tively than a commercial educational game, even one with high popular acclaim. The 
students in the tutor conditions had greater learning gains than students who worked 
with DragonBox, in spite of the fact that the DragonBox students solved, on average, 
four times as many problems. In fact, our results indicate that DragonBox is ineffec-
tive in helping students acquire skills in solving algebra equations, as measured by a 
typical test of equation solving. This test is a fair test of DragonBox’ effectiveness; on 
average, the students who worked with DragonBox reached Level 7 in the game, and 
thus covered the necessary algebraic rules to solve the equations on this test. Al-
though DragonBox was more engaging than the tutor, where it falls short may be in 
using a concrete context to hide equations during much of the game, without a clear 
connection to standard algebraic notation and transformation rules. To be fair, We-
WantToKnow, the company that markets DragonBox has recognized the need for 
supplemental instruction outside of the game and provides a document that teachers 
can use to help transfer. It is not known how effective this additional instruction is. It 
is not that there is no learning in DragonBox - there is plenty of it, as evidenced by 
students’ progression through the game levels. However, the learning that happens in 
the game does not transfer out of the game, at least not to the standard equation solv-
ing format. Much of the publicity surrounding DragonBox seems to have focused on 
progression through the game levels as an indicator of learning, perhaps because this 
measure is so readily observable. This, in our opinion, is a profound mistake. What 
matters is not within-game learning, but out-of-game transfer of learning, and the two 
cannot be equated. We hope that our study will contribute to more careful considera-
tion in the popular media of out-of-game transfer of learning as a key criterion when 
judging the educational value of games. Incidentally, our study should not be inter-
preted as questioning the educational potential of games in general, just that of one 
game in particular. We see educational games and gamification of ITSs as promising 
approaches to developing effective and enjoyable advanced learning technologies. 

In sum, our study represents progress in our understanding of the value of gamifi-
cation in ITSs. We demonstrated ways of gamifying shared problem control in an ITS 
with no detrimental effects, though we would have liked to see gains at minimum in 
enjoyment and preferably also in learning. Further, we discovered that the combina-
tion of performance-based rewards and the freedom of re-practicing, both common 
game design patterns, is detrimental for learning when imported into an ITS. The 
comparison between the tutors and DragonBox affirms that an intelligent tutor can be 
highly effective in helping students learn. It illustrates also that an educational game 
can foster high enjoyment and gain great popularity without helping students learn. 
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We continue to see great potential for incorporating gamification features in ITSs to 
enhance students’ learning and engagement, although as our study illustrates import-
ing popular game design patterns into ITSs needs to be done with care. There may be 
no substitute for careful evaluation studies. 
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Replay Penalties in Cognitive Games 
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School of Education and Social Policy, Northwestern University, Evanston IL USA 

Abstract. Replay penalties that punish players by making them repeat progress 
are ubiquitous in video games yet noticeably absent from tutors, creating a di-
lemma for designers seeking to combine games and tutors to maximize interest 
and learning.  On the one hand, replay penalties can be frustrating and waste 
instructional time, on the other, they may increase excitement and prevent gam-
ing the system.  This study tested the effects of replay penalties on learning and 
interest.  In a randomized, controlled experiment with a two-group, between 
subjects design, 100 University students played two versions of Policy World, 
an educational game for teaching policy argument, with and without penalties 
that forced students to replay parts of the game.   Results showed that replay 
penalties decreased learning and interest.  These findings suggest a minimize 
penalties principle for designing cognitive games. 

Keywords: intelligent tutoring, educational games, serious games, penalties. 

1 Introduction 

Can cognitive games—educational games with embedded intelligent tutoring, promote 
learning as effectively as tutors [1] and be as fun to play as games?  Cognitive games 
may not be able to maximize both learning and fun—by attempting both, they might 
achieve neither.  In this study, we examine the effect of penalties on learning and 
interest to develop empirically supported principles for designing cognitive games. 

How do we design cognitive games?  Unfortunately, we cannot simply add tutors 
to stand-alone games—tutors and games are designed differently and for different 
goals.  As a result, designers are forced to choose which game-like and tutor-like 
features to use, some of which are compatible, some of which are not.  

Some of these differences are compatible.  For example, tutors often lack fantasy 
environments.  In most tutors, a learner is more likely to find himself solving a text-
book problem than battling aliens.  But we can easily design a cognitive game with 
both a fantasy environment and intelligent tutoring.  Recent studies on game-like 
elements in tutors have focused on compatible features that do not directly affect tu-
toring, like 3D graphics [2] or narrative, visual presentation, and rewards [3]. 

Other differences between tutors and games are incompatible. Tutors provide more 
assistance than games, and they make it easy for the learner to figure out what to do 
by giving scaffolding and feedback on each step.  Imagine the first-person shooter 
Halo giving the same level of assistance: not only would it tell you whether you’ve hit 
or been hit by an enemy, it would tell you what kind of weapon to choose, which 
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enemy to target, how to point the weapon, when to shoot, the enemy’s weakness, and 
so on.  Whereas players make their own game guides and walkthroughs for enter-
tainment games, tutors provide these answers for free via hints.  Tutors also minim-
ize penalties—after incorrect steps, tutors often allow learners to try again.  Imagine 
Halo with minimal penalties: being hit wouldn’t reduce your health; after missing an 
enemy, the alien would patiently wait for you try again.  These conflicting approach-
es to assistance and penalties means that it is unclear whether cognitive games can 
simply add tutors to normal games to maximize learning and fun—adding tutors may 
increase learning at the expense of fun.   

Here we are interested in penalties that directly affect tutoring, specifically replay 
penalties, where the game punishes players by making them restart at an earlier point.  
Replay penalties are ubiquitous across a wide variety of single-player video games 
such as Angry Birds, Halo, and Tetris.  Replay penalties are ubiquitous because they 
make single-player games fun—losing lives or progress after a mistake creates pres-
sure to make the right choice—which increases the excitement of making the choice 
and the satisfaction of choosing correctly. 

 

Fig. 1. Cognitive game design types (left) and possible causal effects penalties (right) 

To explore the design space at the intersection of tutors and games, Easterday, 
Aleven, Scheines & Carver [4] compared two games: a tutored cognitive game with 
high-assistance and minimal penalties and an entertainment game with low-assistance 
and replay-penalties (Figure 1).  Intuitively, we might predict a tradeoff with the 
tutored game better for learning and the entertainment game better for interest.  In 
fact, the tutored game led to greater learning and competence, which in turn increased 
interest.  So if entertainment game conventions are not effective, feedback promotes 
learning after all, how might a critiqued game with replay penalties and high feedback 
fare?  In this study, we examine the role of replay penalties in cognitive games. 

The case for replay penalties. Penalties are “rewards in reverse,” such as points, 
resources and time that are taken away for making a mistake [5, p. 192, 6, p. 94].  Game 
designers consider penalties essential because they create the challenge and meaning 
needed to generate excitement.  First, penalties create challenge by removing a re-
source needed to achieve a game goal, such as removing one of the player’s limited 
number attempts or lives, forcing the player to replay part of the game, or reducing the 
player’s points (needed to achieve a high score).  Designers use penalties to make an  
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easy game more challenging to prevent boredom.  Second, penalties create endogen-
ous value [5, pp. 31-33] or meaningful play [7, pp. 353-355] by establishing the rela-
tionship between the players’ actions and game outcomes—penalties and rewards 
communicate to the player whether her actions move her closer to, or further from the 
goals of the game.  Third, the combination of challenge and endogenous value are 
necessary for generating the interest/excitement/pleasure the player experiences when 
overcoming a challenge to reach a meaningful goal [5, p. 192], [7, p. 346]. 

Penalties might also increase learning by decreasing gaming.  Intelligent tutors are 
susceptible to the gaming the system phenomenon, when learners “attempt[] to suc-
ceed in an interactive learning environment by exploiting properties of the system 
rather than by learning the material” [8].  For example, when hints give the learner 
the correct answer after a given number of requests, learners often rapidly click the 
hint request button until they receive the answer, rather than think about the problem.  
Penalties that impose a cost to random guessing or hint abuse might prompt students 
to think about the problem. 

The case against penalties. On the other hand, penalties might decrease learning 
by wasting instructional time.  Easterday et al. [4] found that an intelligent tutor em-
bedded in a game-like environment increased learning and interest compared to a 
version that provided less feedback and stronger penalties, as is more typical of 
games, although this game-like tutor also provided less assistance, so the causal effect 
of penalties was unclear. 

Second, replay penalties might not be necessary for creating interest.  Entertain-
ment games designed for children such as Lego Star Wars are immensely popular and 
impose extremely minimal penalties: when a player dies in Lego Star Wars, he drops 
all his pieces (points and money) but immediately reappears on the screen and is giv-
en several seconds to pick up the dropped pieces. While children’s games have penal-
ties that do not affect tutoring such as losing points, they suggest that replay penalties 
may not be necessary for generating challenge and interest. 

Hypotheses. In this study, we compared how two cognitive games with either rep-
lay or minimal penalties affected learning and interest. The replay penalty version 
required students to replay parts of the game after an error, while the minimal penalty 
version allowed immediate error correction.  The outcome measures were learning, 
which measured the policy analysis skills taught by the game, and interest, as meas-
ured by the Intrinsic Motivation Inventory [9].  Assuming that penalties make games 
more challenging, there are several plausible hypotheses: 

 

1. Null: Replay penalties have minor, floor, or ceiling effects on learning and interest. 
2. Reduced gaming: Replay penalties increase learning by reducing gaming (caused 

by low levels of interest), but have little effect on low levels of interest. 
3. Tutored game: Replay penalties decrease learning and interest, because they waste 

instructional time and are unnecessary for generating interest. 
4. Critiqued game: Replay penalties increase interest by making the game more chal-

lenging and, at best, equal learning by providing identical assistance. 
5. Painful game: Penalties decrease interest by making the game too challenging. 
 

We predicted support for either the null or painful game hypothesis based on the  
motivational importance game designers place on penalties and our previous finding 
that a minimal penalties version of Policy World increased learning and aspects of 
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interest more than “game-like” version with minimal feedback and penalties [4]–
possibly suggesting that lack of feedback in the game-like version decreased learning 
and masked the motivational effects of penalties. 

2 Policy World 

Policy World [4, 10] is a cognitive game designed to teach policy argumentation [11, 
12].  In Policy World (Figure 2), the learner plays a policy analyst who must defend 
the public against the handsome but unscrupulous corporate lobbyist Mr. Harding by 
persuading the Senator to adopt policies based on evidence on topics such as carbon 
emissions, national health care and childhood obesity.  The story employs an empo-
werment theme in which the young policy analyst, after typically failing an initial job 
interview (a disguised pre-test), is recognized as having great potential by Ms. Cyn-
thia Stark, the head of a policy think-tank.  The learner is guided through a grueling 
training by two mentor characters: Molly, another young but more senior analyst, and 
a sharp-tongued virtual Tutor that teaches the learner to analyze policies.  At the end 
of the game, the player is tested in “real” senate hearings (posttests) in which the 
player must debate two policies with Mr. Harding to save the think tank’s reputation 
and defend the public against Mr. Harding’s corrupt agenda. 
 

   

Fig. 2. Policy World screenshots of player and tutor characters 

Policy World’s fantasy environment follows anime adventure/visual-novel genre 
conventions that use dialogue boxes and hand drawn images of characters 
representing the speaker against backgrounds that display the character’s location.  
The fantasy environment is heavily based on the game Phoenix Wright where the 
player stars as a defense attorney who “...must collect evidence, weed through incon-
sistent testimonies, and overcome corrupt agendas to ensure that justice prevails” 
[13], and which is one of Capcom’s top-10 best-selling series [14].  Learners routine-
ly comment positively on the similarities between the games. 

Most Policy World levels include three broad activities: searching for policy in-
formation, analyzing that information, and debating policy recommendations against a 
computer opponent. During search, learners use a fake Google interface to find 3-7 
newspaper-like reports, typically 3-5 paragraphs in length, containing causal claims 
from various sources like the New York Times, scientific journals, and bloggers that 
have varying levels of credibility and evidential support. At any time during search, 
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learners can select a report to analyze, which requires them to comprehend, evaluate, 
diagram, and synthesize the evidence about the causal claims in the report using caus-
al diagramming tools. Once learners have completed searching for evidence and con-
structing their causal diagrammatic analysis, they proceed to the final debate phase.  
During debate, learners make a policy recommendation, explain how the policy will 
affect a desired outcome, and provide evidence for their position by citing reports.  
The computer opponent (either Molly or Mr. Harding depending on the level) will 
argue against the player, attacking his recommendations, mechanism and evidence by 
providing alternate recommendations mechanism and evidence. 

 

 

Fig. 3. Policy World comprehension, diagramming and synthesis screens 

In this study, we focus on the analysis skills: comprehension, evaluation, diagram-
ming and synthesis (Figure 3) described in [4] and repeated here for coherence: 

• Comprehend.  After selecting a report to analyze, the learner attempts to highlight 
a causal claim in the text such as: “the Monitoring the Future survey shows that 21 
minimum drinking age laws decrease underage consumption of alcohol.” 

• Evaluate. The learner then uses combo boxes to identify the evidence type (expe-
riment, observational study, case, or claim) and strength of the causal claim. 
Strength is rated on a 10-point scale labeled: none, weakest, weak, decent, strong, 
and strongest. The evaluation was considered correct if: (a) the evidence type is 
correctly specified, and (b) the strength rating roughly observes the following order 
taught during training: experiments > observational studies > cases > claims. 

• Diagram.  The learner next constructs a diagrammatic representation of the causal 
claim using boxes to represent variables and arrows to represent an increasing, de-
creasing, or negligible causal relationship between the two variables. The learner 
also "links" the causal claim in the report to the new diagram arrow which allows 
him to reference that report during the debate by clicking on that arrow. 

• Synthesize. The learner then synthesizes his overall belief about the causal relation-
ship between the two variables based on all the evidence linked to the arrows be-
tween those variables up to that point. The synthesis step requires the learner to 
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specify which causal relationship between the two variables is best supported by 
the evidence, and his confidence in that relationship on a 100 point slider from un-
certain to certain. During training, a synthesis attempt is considered valid if: (a) the 
learner moves his belief in the direction of the evidence, assuming the learner's de-
scription of the evidence was correct, and (b) the learner's belief mirrors the overall 
evidence, assuming the learner's description of the evidence was correct. 

Assistance. During training, errors in analysis are flagged by animated red stars 
and an explanation for the error.  Errors in debate are also flagged and followed  
by Socratic questions that walk the learner through the steps involved in reading the 
diagram produced by analysis and citing evidence linked to the diagram.    

3 Method 

Design. The study used a two-group, between subjects, randomized, controlled, expe-
rimental design that compares a replay penalties version with a minimal penalties 
version of the game.  During training, the replay penalties version of Policy World 
erased learners’ progress upon making a mistake. When the learners made errors on 
an analysis step for a particular causal claim, they were sent back to the first analysis 
step. When learners received 5 debate strikes, they had to replay the level.  The mi-
nimal penalties version allowed learners to correct errors with no loss of progress. 

Participants.  100 university students were recruited through campus flyers and 
email.  Students were compensated $16 for completing the study and an additional $4 
for beating posttest 1 and an additional $4 for beating posttest 2.  

Procedure. Students first took a pretest on either the drinking age (5 causal claims) 
or obesity (7 causal claims).  During the pretest, students were allowed to search and 
analyze as many or as few reports as they liked before continuing to the debate.  
Students were then randomly assigned to the replay or minimal penalties training.  
Each group completed 3 training problems on video game violence (4 causal claims), 
organic foods (5 causal claims), and vaccines (4 causal claims).  During training, 
replay penalties students received penalties for errors while minimal penalties stu-
dents did not.  Since it was possible that replay penalties students might take much 
longer on training, they were allowed to advance to the test levels after 1 hour on the 
training levels.   After training, students completed the intrinsic motivation inventory 
survey [9] with sub-scales measuring perceived competence, effort, pressure, choice, 
value and interest.  Finally students played two test levels without replay penalties or 
tutoring. The debate test (on cap-and-trade, with 8 causal claims) was a debate-only 
level that provided a completed diagram (to test hypotheses about debate skills out-
side the scope of this paper).  Students then took a posttest identical to, and counter-
balanced with, the pretest. 

4 Results 

Analysis 1: Do replay penalties affect learning? To examine how penalties affect 
learning we examined students’ pre/post test analysis skill across the minimal/replay 
penalties groups using a two-way, repeated measures (mixed) ANOVA.  Both groups 
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improved on all four skills.  The minimal penalty group showed significantly greater 
improvement than the replay penalty group on comprehension, evaluation and dia-
gramming and a (not significantly) greater improvement on synthesis, (Table 1-2). 

Table 1. Both groups learned analysis but the minimal penalties group learned more 

  Pretest  Posttest  
Analysis skill Penalties M SD M SD 

Comprehend Replay 2.68 1.92 3.50 1.79 
 Minimal 2.24 1.82 4.26 1.64 
Evaluate Replay 1.72 1.58 2.38 1.59 
 Minimal 1.68 1.63 3.10 1.72 
Diagram Replay 2.26 1.77 3.36 1.79 
 Minimal 1.94 1.68 4.08 1.68 
Synthesize Replay 2.76 2.19 4.00 2.06 
 Minimal 2.66 2.50 4.60 2.34 

Table 2. The ANOVA showed a significant increase on all analysis skills for both groups and a 
greater increase on 3 out of 4 skills for the minimal penalties group 

 Test (pre/post) Penalty Test-penalty interaction 
 df F p  GES df F p GES df F p  GES 
Comprehend 1 98 53.4 7.5E-11 * 0.138 1 98 0.28 0.60 0.002 1 98 9.53 2.6E-03 * 0.028 
Evaluation 1 98 36.4 2.9E-08 * 0.094 1 98 1.51 0.22 0.011 1 98 4.86 3.0E-02 * 0.014 
Diagram 1 98 70.9 3.2E-13 * 0.183 1 98 0.48 0.49 0.003 1 98 7.31 8.1E-03 * 0.022 
Synthesize 1 98 39.2 9.8E-09 * 0.110          

 
Analysis 2: Do penalties affect intrinsic motivation?  To examine how penalties 
affect interest we asked students to complete the well-validated intrinsic motivation 
inventory [9], immediately after the three training levels and analyzed the results with 
pair-wise t tests.  The minimal penalties group felt significantly more competent, 
found the game more interesting and more valuable for learning policy (Table 3). 

Table 3. Replay penalties decreased perceived interest, competence and value 

 Replay  Minimal        
 M SD  M SD  t df p  ll ul 
Interest 3.44 1.32  3.93 1.24  1.89 97.62 0.061 . -0.02 0.99 
Effort 4.83 1.06  4.83 1.09  -0.02 97.88 0.985  -0.43 0.42 
Choice 3.41 0.82  3.50 0.87  0.57 97.59 0.567  -0.24 0.43 
Competence 3.45 1.43  4.17 1.20  2.71 94.91 0.008 ** 0.19 1.24 
Pressure 3.74 1.64  3.74 1.06  0.01 84.13 0.988  -0.54 0.55 
Value 3.88 1.56  4.41 1.34  1.80 95.91 0.075 . -0.05 1.10 
 
Analysis 3: How are penalties, learning and interest related?  To better under-
stand the causal relationships between penalties, training, interest and analysis, we 
constructed a path model using the GES algorithm implemented in Tetrad 4 [15, 16] 
which searched for equivalence classes of unconfounded causal models consistent 
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5 Discussion 

The results show that replay penalties decrease learning and interest in cognitive 
games.  They do so by decreasing training performance, which directly impacts learn-
ing, and by decreasing motivational factors (specifically perceived competence which 
affects learning and interest and in turn value), which indirectly impact learning. 

While these results may contradict our intuitions about the motivational effects of 
penalties, they are consistent with the effects on learning of previous work on com-
bining tutors and games, which found that greater assistance also increased learning 
and motivation through similar mechanisms [4].  What is surprising is that game 
designers seem to so consistently and ubiquitously use a feature that seems to de-
crease interest across a wide variety of entertaining single-player video games.  

The (apparent) contradiction is resolved by appealing to balance. Entertainment 
game designers often use (entertainment) tasks that are cognitively simple and add 
replay penalties to make them more challenging.  Replay penalties don’t create ex-
cessive frustration because players are likely to succeed if they keep trying.  Educa-
tional game designers often begin with learning tasks that are cognitively complex 
and add assistance to make them easier.  Replay penalties here make a complex task 
too frustrating.  Of course, education game designers could use less assistance and 
easier, more gradated problems, but this would lengthen learning time. 

Our intuitions about the motivational effects of games may be misleading because 
they are biased by our experience of players who have voluntarily selected to play a 
given game.  Furthermore, entertainment games are not designed to promote learning 
that transfers out of the game, so there is no reason to think that cognitive games will 
succeed by mimicking their conventions.  Entertainment games are designed to 
create the illusion of competence in a fake world, not actual competence in the real 
world [17]. 

Contribution: the minimize penalties principle.  Thus the contribution of this  
work is support for a minimize penalties principle—that cognitive games should reduce 
replay penalties to increase learning and interest.  Like the children’s game Lego Star 
Wars, it is possible to maintain interest in cognitive games when the only penalty is a 
halt in progress (the most minimal possible).  This leads to a design implication for 
educational games quite different from entertainment games: if tutoring is provided, it is 
better to balance a game by providing minimal penalties on a complex problem than 
replay penalties on a simple problem. This is the best possible result: embedding tutors 
in game environments increases learning and interest with no tradeoff. 

If we are to make educational games that are effective for fun and learning, we 
must take advantage of what we have already learned about intelligent tutoring.  
While there are many proposed principles for games [5] and educational games [e.g., 
18] and even some with empirical support [19], there are none that help designers 
resolve the conflicts that arise when applying intelligent tutoring techniques to games.  
Our previous work provided support for adding tutors to games (tutoring principle), 
to which we now add the minimize penalties principle. Future work must generalize 
and expand upon these principles if we are to apply intelligent tutoring research to 
realize the full potential of educational games. 
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Abstract. We developed a cognitive simulator of the dual storage model
of the human memory system that simulates the serial position effect of
a traditional memory recall experiment. In a cognitive science class, par-
ticipants learned cognitive information processing while observing the
memory processes visualized by the simulator. Through the practice, we
confirmed that participants learned to predict experimental results in
assumed situations implying that participants successfully constructed a
mental model and performed mental simulations while running the men-
tal model in various settings. We discuss the possibility that a cognitive
model can be used as a learning tool and, more specifically, as a mediator
tool connecting theory and empirical data.

Keywords: mental model, cognitive model, mental simulation, cogni-
tive science class.

1 Introduction

Scientific discovery learning is a big challenge in the ITS studies. The computer
simulation method is widely used in learning contexts[6,4]. A theory-and-data
correspondence is crucial in scientific discovery processes. This correspondence
enhances theory-based thinking such as data interpretation and scientific expla-
nation. In this paper, we investigate students’ scientific activities in the psychol-
ogy domain in contrast to previous studies that conducted their investigated in
the natural sciences domains such as physics and chemistry.

Anderson proposed the theory-model-data framework for clarifying functions
of computational models in cognitive science[1]. Computational models have
taken a central role in the science of the human mind. In psychology, a theory
is usually represented as a conceptual model; the semantic network model and
the dual storage model of the human memory system are representative exam-
ples. In this paper, “theories” refers to such conceptual models. A conceptual
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model as a theory predicts only abstract and qualitative experimental results.
Therefore, it is impossible for a theory to correspond directly with data. Com-
putational models are embodied, as computer programs, from such conceptual
models with some psychological assumptions. These models predict specific ex-
perimental results and enable researchers to verify the theories that underlie the
models based on a direct comparison of results of computer simulation and hu-
man experiments. Computational models function as a strong research tool for
cognitive scientists. In this paper, we investigate practical use of computational
models as learning tools by utilizing their function as a mediator between theory
and data. As a mediator for connecting a theory to data, computation models
may contribute to the improvement of students’ theory-and-data correspondence
activities.

From the viewpoint of learning activities, it is important that computational
models as externalized computer programs be internalized as mental models to
enable students to manipulate models in their minds. Plenty of related litera-
ture has emphasized the importance of mental models in science education[3,5].
By constructing mental models, students acquire the capability to accurately
predict experimental results expected to be obtained in hypothesized situations.
But, as mentioned above, there is a gap between the conceptual theory and
data. Therefore, it is usually impossible to predict a data pattern when only a
conceptual theory is given.

In this paper, we developed a cognitive simulator that performs cognitive
information processing based on the dual storage model. We report on an intel-
ligent tutoring system mounted on the simulator and on a class practice using
the tutoring system. We verify that our participants successfully improved their
ability to predict experimental results, implying that they constructed more so-
phisticated mental models of the dual storage model and performed mental sim-
ulations while assuming various experimental settings and individual differences
of simulated participants.

2 Cognitive Simulator

2.1 Dual Storage Model

The serial position effect is explained based on the dual storage model of the
human memory[2]. A main concern of our practice is the distinction between
short-term memory and long-term memory. Information from the outside world
is temporarily stored in the iconic memory. Information selectively focused in
the iconic memory is sent to the short-term memory; however, it is maintained
only for about 15 to 30 seconds. Without rehearsals of the items, they are soon
erased from short-term memory. Through rehearsal processes, information in
the short-term memory is encoded into the long-term memory. Once informa-
tion is encoded in the long-term memory, it is never forgotten. The primacy
effect emerges because only words presented earlier are encoded into long-term
memory through rehearsals. The recency effect appears because words from the
end remain in the short-term memory and are directly retrieved from it when
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asked to be reported. In contrast, words in the middle of the list have been
present too long to be held in short-term memory, but not long enough to be
encoded to long-term memory.

2.2 Production System Model

Our cognitive simulator was established as a production system model based on
the dual storage model.

The model on the server has nine production rules: (1) A presentation rule
presents an item and encoding it into the short-term memory; (2) two erasing
rules erase items from the short-term memory after a time limit for holding items
has passed, and erasing items from the short-term memory when the number of
items has exceeded the working memory capacity; (3) A rehearsal rule performs
rehearsals of items in the short-term memory; (4) An encoding rule encodes items
into long-term memory when the number of rehearsals exceeds a threshold value;
(5) Two reporting rules report items from the short-term and long-termmemories
when asked to report memorized items after all items have been presented; (6)
Two rules for stopping the system and increasing the time counter.

Additionally, four parameters control the information processing of the model:
(1) Presentation interval controls an interval between two successive item presen-
tations; (2) Rehearsals for encoding specifies the number of rehearsals needed for
encoding items into the long-term memory; (3) Working memory capacity spec-
ifies the number of items that can be simultaneously stored in the short-term
memory. When the number of items exceeds this limit, the oldest item that was
stored earliest is erased from the short-term memory; (4) Holding time specifies
a time limit for holding items in the short-term memory. When no rehearsals are
performed beyond the time limit, the item is erased from short-term memory.

This cognitive simulator visualizes which items are stored in the short-term
and the long-term memories. Participants learn how the model works while con-
firming which items are rehearsed in the short-term memory and encoded into
the long-term memory or which ones overflowed from the short-term memory.

Figure 1 shows computer simulation results along with results from human
experiments. The human experiment data were gathered through class practice
that we will report on later. A comparison of the results indicates that the model
successfully duplicated the U-shaped pattern of the human experiments data.

3 Class Practice

The class practice was performed in a cognitive science class in the School of
Informatics and Sciences of Nagoya University. Fifty-nine non-psychology ma-
jor undergraduates participated in the class practice. Three class sessions were
assigned to this practice. A summary of the sessions flow is as follows.

In the initial stage, the participants received an instructional lecture about the
procedures of the memory recall experiment investigated in the practice. After
the lecture, a pre-test was performed wherein an experimental sheet was given
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Fig. 1. The left graph shows the results of the human experiments in three settings:
the presentation intervals are one, three, and five seconds. The right graph shows the
results of the computer simulations also performed in three settings: the presentation
intervals are short, medium, and long, corresponding to the instances of one, three,
and five seconds, respectively, in the human experiments.

printed with an empty graph. The vertical axis of the graph was the recall rate
and the horizontal axis was the serial position of the presented words. Partici-
pants were required to predict experimental results; specifically, they were asked
to draw three lines on the empty graph corresponding to the experimental results
in the three intervals of one, three, and five seconds. An identical experimental
sheet was used in the middle and post-tests mentioned later.

After the pre-test, the participants joined the memory recall experiment. They
were presented with a series of 20 words at intervals of one, three, and five sec-
onds. Soon after the presentation phase, they were asked to recall the memorized
items and write them on a sheet of paper. In each of the three intervals, a total
of two experimental sessions were repeated. The recalled words by each partici-
pant were gathered via a web-based data collection system and analyzed using
a semi-automatic analysis system. The results are shown in Figure 1. The ex-
periment successfully demonstrated primary characteristics of the serial position
effect such as the recency effect, the primacy effect, and the decrease of recall of
the middle terms.

The second class session was conducted a week after the first one. In this
session, the dual storage model was conceptually explained to the participants
by an instructor. They were taught the fundamental functions of the components
of the model such as short and long term memories and were instructed on how
the model works. After the session ended, they were again required to predict
experimental results with the intervals at one, three, and five seconds on another
identical experimental sheet as used in the pre-test. These results were treated
as a middle test.

In the third session, the participants learned how the model processes informa-
tion while using our cognitive simulator. Specifically, they observed the memory
process while confirming the way each presented item is stored in the short-term
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Fig. 2. Results of subjective analysis. The left graph shows the average scores from the
viewpoint of the U-shaped pattern. The right graph shows the average scores from the
viewpoint of the recency and primacy effects. ANOVAs revealed that the main effect of
the test factor reached significance in both the U shape and the primacy/recency effects
(F(2, 68)=4.48, p<.05; F(2,68)=9.66, p<.01). The results for the multiple comparisons
using Ryan’s method are presented in the figure.

memory, the way it overflows and is erased from the memory, or is encoded into
t he long-term memory after rehearsal processes. In the simulations, the interval
of word presentation was set at three seconds. After the learning phase using the
cognitive simulator, they were again required to predict experimental results on
another identical experimental sheet. These results were treated as a post-test.
The participants observed the memory process only when the presentation in-
terval was three seconds; therefore, they had to predict the recall performance at
one and five seconds by inferring the memory process while performing mental
simulations.

4 Results

We focused on whether they drew U-shape patterns. Second, we confirmed
whether the recency and primacy effects were represented. For the review, we
used the following criteria.

As seen in Figure 1, for all results in the three interval cases, the performance
lines in the human experiments were U-shaped. We reviewed the graphs depicted
by the participants and counted the number of lines represented as U-shaped
patterns. A score from zero to three was assigned to each experimental sheet.

As seen in Figure 1, the impact of the primacy effect on the performance lines
depended on the presentation intervals, whereas the impact of the recency effect
did not. When this point is represented on the graph, one point is counted.
Additionally, for the primacy effect, when the interval time was one second,
the recall rate of initially presented items greatly decreased. When this point is
represented, one point is added. Based on these criteria, a score from zero to two
was assigned.
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Figure 2 shows the average scores in the pre-, middle-, and post-tests. An
improvement of the value from the pre- to middle test indicates the effects of
conceptual explanations by an instructor. The improvement from the pre- to
post-test indicates effects of learning experiences using the cognitive simulator
along with the conceptual explanations. As for the analysis of the U-shaped
pattern, the post-test score was greater than the pre-test score. However, there
was also an improvement from the pre- to middle-test, but no difference between
the middle- and post-tests. This indicates that a conceptual lecture was effective
enough for the participants to predict that the recall rate in the middle position
greatly decreased. On the contrary, for analysis of the recency and primacy
effects, the score of the post-test was greater than the pre-test, but the score
of the middle test was not. There was a significant increase from the middle-
to post-test, indicating that learning was improved by the use of the cognitive
simulator.

5 Conclusions

Our cognitive simulator that visualizes mental information processing enhances
deeper understanding of the human memory system, especially from behavioral
and functional points of view. Learning with such a cognitive simulator helps
students construct mental models with which they can perform mental simula-
tions. In our class practice, such a function enabled the participants to predict
experimental results accurately in various hypothesized situations. These results
imply a possibility that computational models can function as mediators between
conceptual theories and data in scientific discovery learning in the cognitive sci-
ence domain. Computational models have been used as a research tool, but our
results presented an example class practice in which they can be also used as a
learning tool in cognitive psychology education.
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Abstract. Gamification is an interesting and relatively new concept. The 
concept of Gamification is more than just game playing; it is about introducing 
game design elements in a proper way to satisfy individual motivational needs 
according to personality traits. Researcher and Educators are currently looking 
at Gamification to deal with the problem of learner engagement and motivation 
in Collaborative Learning (CL). To address this issue, we have been developing 
an Ontology for Gamifying CL Scenarios (OntoGaCLeS). In this paper, we 
present the main ontological structure used to support the personalization of 
game design elements in CL contexts. To demonstrate its use, we show the 
personalization of a gamified CL scenario through a case study.  

Keywords: gamification; ontology; collaborative learning. 

1 Introduction 

In the last years, many researchers have contributed to the development of the concept 
of gamification and its application in education [5, 8]. Deterding and colleagues 
define gamification as “the use of game design elements in non-game contexts” [3]. It 
aims to increase people’s engagement and motivation through the application of game 
mechanics, such as point system, social connections and so on, in a situation that has 
other purposes than its normally expected (i.e. for entertainment). The educational 
benefits that a learner gets through the use of gamification depend strongly on how 
well game elements are connected with pedagogical approaches [8]. 

To support a proper design of Collaborative Learning (CL) scenarios that use game 
design elements, referred to as gamified CL scenarios, our approach has developed 
semantic web tools that assist the design of CL scenarios based on the principles of 
learning theories, instructional design and game design. In this context, this paper will 
describe the development of an ontology that organizes the knowledge related to CL 
scenarios and game elements. This ontology is called OntoGaCLeS - an Ontology for 
Gamify Collaborative Learning Scenarios. It has been developed using the Hozo 
Ontology editor [9], and it is available at http://labcaed.no-ip.info:8003/ontogacles. 

In the following sections, we define the concepts of this ontology used to gamify a 
CL scenario and demonstrate how to assign proper player roles and game mechanics 
using through a case study. 
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2 Related Works 

Despite the growing number of studies and applications of gamification in the field of 
education [8], there is not any ontology that enables humans and computers to find, 
share, and combine information related to CL scenarios and game design elements. 
Our work is one of the first to define player roles as a fundamental concept that can be 
used for the personalization of game mechanics in CL scenarios. In the literature, 
there are many gamification frameworks [4, 5, 6, 10, 12, 14] that can be applied in 
different contexts and scenarios. For the learning environments, Domínguez et al. [5] 
and Simões et al. [12] propose gamification frameworks that help instructional 
designers select proper game mechanics based in learners’ individual traits. These 
frameworks were developed employing the relationship between game mechanics and 
human desired, where each game mechanics satisfies a set of human desires 

3 Gamifying a Collaborative Learning Scenario  

A gamified CL scenario is a CL scenario in which game design elements are applied 
to make the learning experience more enjoyable and meaningful. In a gamified CL 
scenario, the learning experience itself intends to be so enjoyable that learners will do 
the proposed activities even at great cost, because they are highly motivated, 
particularly because of the use of different game mechanics (e.g. leaderboards, point 
system, social connection, etc.). As motivation is the process used to allocate energy 
and to maximize the satisfaction of needs [11], a circular flow of “needs, behavior and 
satisfaction” is set in a CL scenario to gamify it, where to fulfill the learner’s 
motivational needs, a learner must be engaged in behaviors that will lead to the 
satisfaction of those needs using game mechanics. In many cases the combination of 
different game mechanics provide the adequate environment to satisfy a person’s 
motivational needs, called human desires by Domínguez et al. [5] and Simões et al. 
[12]. Thus, to support the personalization of these game mechanics in CL scenarios, 
our current formalization of a gamified CL scenario introduces concepts and terms 
shown in Figure 1, where: 

I-mot goal  is the individual 
motivation goal of person in 
focus (I). Since motivation is 
circular, at the end of a CL 
scenario, the needs of a person 
may change or intensify, and the 
level of motivation (called 
current motivational stage) will 
be increased. Thus, individual 
motivation goals will be used to 
represent needs that must be 

satisfied and motivational stage that will be achieved. 
Y<=I-mot goal is the motivational strategy that represents a set of guidelines used 

to attain the individual motivational goals (I-mot goal). Vassileva [13] argues that 

 

Fig. 1.  Concepts and terms defined in a gamified 
CL scenario
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In Figure 2 (c), the ontological structure is used to define the concept of the 
concept of a gameplay strategy as the rational arrangement among player roles and 
motivational strategies and game mechanics. This arrangement has the purpose of 
representing how different player roles have the potential to affect each other in a 
gamified CL scenario. Thus, the primary focus is a learner P that plays the primary 
player role (P-Player role), the secondary focus is a learner S that plays the secondary 
player role (S-Player role), and S<=P-mot goal with P<=S-mot goal are used to 
define the motivational strategies used by learner P to interact with learner S. 

4 Case Study 

To demonstrate the utility of our approach in the personalization of game mechanics 
for CL scenarios, we define eight gamified CL scenarios employing the ontological 
structure defined in previous section and the information shown in Table 1 and 2. 

Table 1.  Player roles for the case study 

Player role 
Necessary and desired condition

Psych. need Motivation stage Playing style (ind. trait) 
networker 

relatedness interacting-orientation, 
users-orientation socializer intrinsic motivate 

exploiter 
autonomy interacting-orientation, 

system-orientation free-spirit intrinsic motivate 
consumer 

mastery acting-orientation, 
system-orientation achiever intrinsic motivate 

self-seeker 
purpose 

 acting-orientation, 
users-orientation philanthropist intrinsic motivate 

Table 2.  Gamified CL scenarios (motivation and gameplay) for the case study 

Motivation strategy Gameplay strategy

I-Player role Motivational goal 
(I-mot goal) 

S-Player 
Role 

Game mechanics 
(what use) 

networker 
satisfaction of relatedness, 
internalize motivation  

social status, point system, 
and badges system 

socializer satisfaction of relatedness socializer 
social status, and social 
connections 

exploiter 
satisfaction of autonomy, 
internalize motivation  

point system, virtual goods 
system, and badges system 

free-spirit satisfaction of autonomy, 
 

unlockable system,  and 
customization tool 

consumer 
satisfaction of mastery, 
internalize motivation 

  virtual goods systems 

achiever satisfaction of mastery 
 

quests system, point system, 
and exclusive system 

self-seeker 
satisfaction of purpose, 
internalize motivation 

 
leaderboard, badges system, 
and exclusive system. 

philanthropist satisfaction of purpose  gifting system 
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In our modeling, each gamified CL scenario is related with only one player role so 
that a set of game mechanics defined in the Table 2 will be used to satisfy the 
psychological motivational needs, and to internalize motivation. For example, the 
gamified CL scenario for consumer will be used to satisfy of mastery need and to 
internalize motivation because player role “consumer” (shown in Table 1) has as 
necessary conditions “mastery” and current stage of motivation “intrinsic motivate.” 
The gameplay strategy for this example relates the player role “consumer” with game 
mechanics “virtual goods system.” In our current version of our ontology, we only 
define one restriction for socializer who can only work with other socializer, this 
restriction is defined as in the gameplay strategy as S-Player Role. 

To select proper game mechanics in a CL scenario using our developed ontology, 
we propose to use the next procedural steps: 
1. Match the individual motivational goal for each learner by looking the I-

mot goal in all gamified CL scenario. The result usually has more than one 
scenario that can help to internalize motivation and to satisfy basic needs. For 
example, suppose that the I-mot goal of a learner with identification l, who wants 
to satisfy his psychological motivational needs of mastery and autonomy, match 
with gamified CL scenarios for: exploiter, free-spirit, consumer, and achiever. 
The current level of motivation for learner l is “intrinsic motivate,” and he has 
personal traits of “acting-orientation” (preference for unilateral action) and 
“system-orientation” (preference for exploring the system). 

2. Check if learners have the necessary conditions to play game roles for the CL 
scenarios obtained in step (1). For learner l, the game role free-spirit and achiever 
satisfy the necessary conditions because his current level of motivation is 
intrinsic motivate, and he wants to satisfy his need of autonomy or mastery. 

3. Set the game roles obtained in the step (2) for each learner according priorities 
calculated using the desired conditions that are satisfied. Learners with all 
satisfied conditions have high-priority, and learners with only necessary 
conditions have low-priority. For learner l, the player role achiever has high-
priority because he has personal traits of acting-orientation and system-
orientation; thus, the role achiever is attribute for learner l. 

4. Finally, we set the gameplay for learner. This task is completed through selection of 
proper game mechanics in gameplay (I-gameplay). For learner l, the gameplay for 
achiever enables to select: quests system, point system, and exclusive system point. 

5 Conclusions and Future Research 

In this paper, we presented an ontological structure that enables to represent gamified 
CL Scenarios. This structure allows the personalization of game mechanics through 
the rational arrangement between motivational strategies and player roles. To 
demonstrate this personalization, in the case study, we performed the organization of 
the knowledge related to eight scenarios that allows the selection of proper game 
mechanics for each learner. Next, we presented a set of procedural steps that can be 
used together with our modeled scenario to select proper game mechanics. 
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We believe that the results of this work are the first steps forward for creating new 
type of intelligent collaborative tools that provide assistance for development of more 
engaging and motivating CL scenarios. In the current version of our ontology, we did 
not define the game dynamics that personalize the systems of rewards in each game 
mechanics. Thus, our next steps will consider how this game element must be 
formalized according our ontology. Furthermore, it is also important to identify what 
is the association of game mechanics with CL interaction patterns defined in [7; 15]. 
Future research will also consider the inclusion of optimal flow theory [1]. 
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Abstract. Intelligent game-based learning environments show considerable 
promise for creating effective and engaging learning experiences that are tai-
lored to individuals. To date, much of the research on intelligent game-based 
learning environments has focused on formal education settings and training. 
However, intelligent game-based learning environments also offer significant 
potential for informal education settings, such as museums and science centers. 
In this paper, we describe FUTURE WORLDS, a prototype game-based learning 
environment for collaborative explorations of sustainability in science mu-
seums. We report findings from a study investigating the influence of individual 
differences on learning and engagement in FUTURE WORLDS. Results indicate 
that learners showed significant gains in sustainability knowledge as well as 
high levels of engagement. Boys were observed to actively engage with FUTURE 

WORLDS for significantly longer than girls, and young children engaged with 
the exhibit longer than older children. These findings support the promise of in-
telligent game-based learning environments that dynamically recognize and 
adapt to learners’ individual differences during museum learning. 

Keywords: Intelligent game-based learning environments, informal science 
education, individual differences, science museums, educational games. 

1 Introduction 

There is growing evidence suggesting that game-based learning environments are 
effective educational tools [1]. Intelligent game-based learning environments, which 
integrate rich, immersive experiences of digital games with adaptive pedagogical 
functionalities of intelligent tutoring systems, offer considerable promise [2–4]. To 
date, much of the research on intelligent game-based learning environments has fo-
cused on formal education settings [1–3] and training [4]. However, informal educa-
tion settings, such as museums and science centers, stand poised to benefit as much, 
or perhaps even more so, from advances in intelligent tutoring and game-based learn-
ing technologies [5, 6]. While the goals of formal education and informal education 
settings overlap, informal science education places particular emphasis on affective 
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and attitudinal outcomes, which have significant implications for the design of 
intelligent game-based learning environments [6]. 

In this paper, we investigate how learners’ individual differences impact learning 
and engagement during game-based learning, as well as how individual differences 
should influence the design of museum-centric intelligent game-based learning envi-
ronments. To investigate these questions we have developed FUTURE WORLDS, a 
prototype game-based learning exhibit for sustainability education in science mu-
seums. We report findings from a museum-based study that suggest FUTURE WORLDS 
is effective at fostering significant gains in sustainability understanding and high 
levels of engagement. In addition, results indicate that the exhibit elicits more ex-
tended durations of engagement among boys and young children than girls and older 
children. Based on these findings, we argue that intelligent game-based learning envi-
ronments in museums should incorporate automated detector models for recognizing 
learners’ individual differences, as well as pedagogical planners that tailor problem 
scenarios based on these characteristics. 

2 Future Worlds 

FUTURE WORLDS is a prototype game-based learning environment about environmen-
tal sustainability designed for children ages 9–12 [6]. The exhibit integrates game-
based learning environments, intelligent tutoring systems, and interactive tabletop 
displays to enable collaborative explorations of environmental sustainability. Learners 
solve sustainability-centered problem scenarios by investigating alternate environmen-
tal decisions in a 3D simulated environment (Fig. 1). The effects of learners’ decisions 
are realized in real-time through vibrant 3D graphics, and they are accompanied by 
narrated explanations from a robot-like animated pedagogical agent. 

The prototype exhibit consists of two integrated displays: a horizontally oriented 
Samsung SUR40 interactive tabletop, and a vertically oriented 50” high-definition 
television. Visitors congregate around the interactive tabletop to explore the simulation 
through multi-touch interactions. The vertical display provides additional space for 
explanations of sustainability, which are accessible to learners standing farther away 
from the exhibit. FUTURE WORLDS’ 
3D environments and sustainability 
simulation are built with the Unity 
game engine. 

Building on sustainability curricu-
la, such as Facing the Future’s Glob-
al Sustainability Resources, the FU-

TURE WORLDS curriculum focuses on 
three integrated themes of sustainabil-
ity: water, food, and energy. Visitors’ 
objective during learning interactions 
with the FUTURE WORLDS exhibit is 
to use the interactive tabletop display Fig. 1. Future WORLDS exhibit 
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to collaboratively (or individually) reconfigure an unsustainable virtual environment 
into a sustainable environment. The first sustainability-centered problem scenario 
focuses on a virtual watershed that is plagued by several examples of unsustainable 
farming practices. Learners explore potential solutions to the environment’s sustaina-
bility challenges, such as incorporating renewable energy sources into the region’s 
electricity portfolio, implementing organic farming practices, and instituting novel 
waste-to-energy technologies. As learners manipulate the environment, their choices 
are visualized in real-time through the environment’s 3D models, textures, and anima-
tions, and the changes visibly propagate across the simulated watershed. The proto-
type exhibit’s focus on interactivity and exploration, as well as its real-time visual 
feedback, are designed to foster cause-and-effect reasoning and systems thinking. 

3 Museum Study 

To investigate learning and engagement with a game-based learning environment in 
an informal setting, a study was conducted with 43 summer campers, ranging in age 
from 8–14, at a science museum. Participants were grouped into separate cohorts 
divided across three sessions (N = 14, 16, 13). Pre-test measures were administered 
on the first day of each cohort’s week-long summer camp. The pre-test consisted of a 
demographic survey and three complementary measures of sustainability understand-
ing: a personal meaning map, a sustainability identification task, and a sustainability 
image-sorting task. 

Personal meaning maps (PMMs) consisted of a blank piece of paper with a brief 
set of instructions and a prompt phrase: sustainability. Participants used a pen to write 
or draw words, phrases, and pictures about their conceptualizations of the prompt 
phrase. After the learning experience, participants could revise their PMMs with a 
different colored pen. After the study, two raters scored each PMM based on the re-
levance and accuracy of each element on the page. Inter-rater reliability for the pre-
test (r = .84) and post-test (r = .88) PMMs achieved high levels. 

For the identification task, learners inspected an illustrated picture of an environ-
ment—depicting both sustainable and unsustainable environmental practices—and 
annotated the picture by circling “good” practices and crossing out “bad” practices. 
Participants revised their annotations during the post-test. Two raters scored the anno-
tations using a rubric vetted by subject matter experts, and achieved high agreement 
on both the pre-test (r = .97) and post-test (r = .95).  

For the image-sorting task, learners were given copies of ten images depicting 
various environmental practices (e.g., solar panels, traffic congestion). Participants 
organized the images into two categories of their choosing, with the goal or choosing 
two categories containing as similar a number of images as possible. An expert-based 
categorization of “sustainable” and “unsustainable” was considered the gold standard 
response, and this benchmark was used to grade responses.  

Later in the study, several days after the pre-test, participants were given the op-
portunity to explore various parts of the museum, including an area where the FUTURE 

WORLDS exhibit was located. During these study sessions, all participants entered the 
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study room at the same time and were allowed to spend up to 40 minutes in the area. 
Learners could leave the space at anytime and were free to explore as they saw fit. 
However, once they left the area, learners were not permitted to return. 

Including FUTURE WORLDS, there were 13 exhibits in the study area. No other mu-
seum visitors had access to the room during the study. A nearby human docent was 
available to resolve technical issues and answer questions. Verbal interactions be-
tween the docent and participants were otherwise kept to a minimum. Eleven of the 
exhibits in the study room were permanent exhibits at the museum. In addition to 
FUTURE WORLDS, one temporary exhibit was added to serve as a control. This tempo-
rary exhibit was the only other exhibit with a human docent, and it consisted of a 
white board with a sign asking learners to share the most interesting thing they 
learned in the citizen science area using sticky notes. None of the content in the dis-
tractor exhibits overlapped with FUTURE WORLDS.  

A post-test was conducted immediately following each participant’s exit of the 
study area, which included the same sustainability measures as the pre-test. All ses-
sions were video recorded. Post-study analyses of the video data were conducted by 
two coders to determine total dwell time (time spent interacting with the exhibit to 
any extent) as well as time spent in each of three possible “tiers of proximity” relative 
to FUTURE WORLDS. Inter-rater reliability was established with a subset of the study 
data and then the remainder was coded independently (k = .70).  

4 Empirical Findings 

To investigate the efficacy of the FUTURE WORLDS exhibit, statistical analyses of the 
pre- and post-test measures, as well as coded video recordings, were conducted. 
Paired t-tests indicated that learners showed significant gains in PMM score from pre-
test (M = 0.8, SD = 1.8) to post-test (M = 1.2, SD = 2.3), t(37) = 2.5, p < .05. There 
were also significant increases on the identification task from pre-test (M = 5.96, SD = 
2.45) to post-test (M = 6.42, SD = 2.55), t(37) = 3.28, p < .05, as well as significant 
gains on the image sorting task from pre-test (M = 7.11, SD = 3.81) to post-test (M = 
8.66, SD = 2.67), t(37) = 2.59, p < .05. Correlation analyses were conducted to inves-
tigate whether learners’ individual characteristics—including age and gender—
showed significant relationships with learning outcomes, but none were observed. 

For each learner, total dwell time, as well as time spent in each of three proximity 
tiers, was determined using video recording data. Across all participants, the average 
dwell time at FUTURE WORLDS was 12.5 minutes. This is promising, given dwell 
times typically reported in other informal contexts, such as 5.03 minutes [5] and 4.9 
minutes [7]. However, it should be noted that FUTURE WORLDS dwell times were 
recorded in a semi-controlled study setting, whereas the above cited dwell times were 
recorded from observations of the general public in non-controlled settings.  

A two-tailed independent samples t-test revealed a significant effect of gender on 
dwell time, where girls (M = 8m:46s, SD = 5m:21s) spent roughly half the time as 
boys (M = 16m:23s, SD = 10m:33s) engaging with FUTURE WORLDS,  t(35) = 2.86, p 
< .05. To follow up on this analysis, tier-specific dwell time was examined by gender. 
Results indicated that males (M = 14m:12s, SD = 7m:34s)  spent significantly more 
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time in the first tier than females (M = 8m:56s, SD = 3m:56s), which is the tier of 
closest proximity to the exhibit, t(29) = 2.27, p < .05. 

Additional findings about the influence of learners’ individual characteristics 
emerged from analyses of engagement based on learner age. Results indicated that 
younger children spent more time at the FUTURE WORLDS exhibit than older children, 
t(44) = 3.52, p < .01. In fact, children under age 10 spent twice as much time (M = 
20m:50s, SD = 12m:33s) as children age 10 and older (M = 9m:56s, SD = 6m:45s). 

5 Discussion 

Results suggest that learners’ sustainability understanding improves from interactions 
with FUTURE WORLDS. Furthermore, evidence of extended dwell time suggests that 
learners are highly engaged with the exhibit. In combination, these two sets of find-
ings suggest that learner engagement with FUTURE WORLDS is not superficial; learn-
ers are actively engaged for prolonged periods at sufficient depth to yield significant 
learning gains across three distinct measures of sustainability knowledge. Also, FU-

TURE WORLDS appears to be equally effective for boys and girls, as well as young and 
older children, in terms of fostering learning.  

Our observation that gender and age have significant effects on dwell time point 
toward engagement-centric design implications for future iterations of FUTURE 

WORLDS and intelligent game-based learning environments in general. Regarding 
gender, several possible mediating factors could explain why girls spent less time 
with FUTURE WORLDS than boys, such as video game interest or affinity for the 
game’s visual aesthetic style. Additional studies are necessary to isolate what design 
factors are responsible for the observed gender differences, and how elements of 
FUTURE WORLDS’ design should be augmented to deliberately appeal to females to an 
extent that is comparable to males. Regarding age, results suggest that future itera-
tions of FUTURE WORLDS should incorporate problem-solving scenarios that span a 
broader range of content and complexity. It is plausible that the implemented problem 
scenarios in the FUTURE WORLDS prototype were sufficiently challenging for young 
children but were not difficult enough for older children, and thus did not sustain their 
engagement for extended periods. Incorporating intelligent tutoring system capabili-
ties to dynamically adapt the difficulty of problem scenarios to individual learners, or 
groups of learners, is a promising way to match scenarios’ content complexity to the 
capabilities of diverse learners. We hypothesize that this form of adaptive pedagogical 
functionality will increase motivation and dwell time. However, adaptive pedagogical 
planning will require models for automatically detecting learners’ individual characte-
ristics as they approach and use exhibits. Administering lengthy pre-tests is not a 
viable design choice for most informal settings; automated detector models show 
more promise for diagnosing learner characteristics to inform adaptive pedagogical 
functionalities. 

Notably, we did not find a relationship between dwell time and learning. We ex-
pect that adding curricular material beyond the prototype’s current proof-of-concept 
scope—creating opportunities for more variance in content exposure—could reveal 
relationships between dwell time and learning that have not thus far been observed.  
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6 Conclusions and Future Work 

Intelligent game-based learning environments show considerable promise for infor-
mal settings such as museums and science centers. Creating effective intelligent 
game-based learning environments for museums requires a grounded understanding 
of how learners engage with, and learn from, game-based exhibits. In this paper, we 
described an empirical study that found FUTURE WORLDS yields significant gains in 
sustainability knowledge, as well as high levels of engagement, during museum learn-
ing. Furthermore, boys were observed to actively engage with FUTURE WORLDS for 
significantly longer durations than girls, and young children engaged with the exhibit 
for longer periods than did older children. These individual differences underscore the 
importance of future work investigating adaptive pedagogical functionalities, as can 
be provided by intelligent tutoring techniques, to dynamically tailor game-based 
learning experiences based on gender and age, as well as automated detectors for 
diagnosing learners’ individual and group characteristics. 
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Abstract. Intelligent tutoring systems are beginning to include more varied 
forms of media, but little is known about how to choose the appropriate media 
and whether or not it should be animated. This study used a 2 (animated/static) 
x 2 (picture/concept map) factorial design in order to evaluate the effect of ani-
mation and media type on conceptual knowledge, relational knowledge, and 
free recall. Learners on Mechanical Turk (N = 208) were exposed to one of four 
conditions in which they viewed a modified Khan Academy video on cell parts. 
We found that animation induced higher learning gains when it comes to rela-
tional knowledge. For conceptual knowledge, animated concept maps outper-
formed animated pictures while static pictures produced slightly more learning 
than static concept maps. Our results indicate that using animations to slowly 
build complexity in visual displays is particularly important when the displays 
have a rich structure as in concept maps. 

Keywords: picture, concept map, animated media, static display, Khan Acade-
my, Biology, link, node. 

1 Introduction 

As intelligent tutoring systems (ITSs) become more and more sophisticated, the types 
of media that can be included in such systems have become increasingly varied. In 
order to support the students’ learning, ITSs have included static images (e.g.  
AutoTutor [1]), diagrams (e.g. Andes [2]), animated illustrations (e.g. Guru [3]), con-
cept maps (e.g. Guru [3], Betty’s Brain [4]), videos (e.g. Operation Aries! [5]), and 
other media. However, there are at this time very few rules in place to guide which 
media type to select and how to present it given a myriad of parameters such as the 
student’s prior knowledge, student’s spatial ability, and task demands [6]. More work 
is needed to understand what types of media work best under certain conditions. 

Recently, the tension between static and animated images has been of particular in-
terest. The literature on animated images demonstrates a strong division between re-
sults, where animations sometimes contribute significantly to students’ learning and, at 
other times, they have no impact on learning whatsoever. For instance, in the document 
explanation literature, images animated using a technique called “sequential display” 
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(where an image starts out blank and segments of an image appear when they become 
relevant in the narration) often result in better memory for the information on the im-
age [7]. In a recent meta-analysis, animations were shown to have a d = .37 advantage 
over static images when it comes to learning [8]. However, the authors caution that 
this effect is not as strong under all conditions (for instance, animations had a weaker 
effect in Biology than they did in Chemistry), and may in fact disappear in some cir-
cumstances (such as when the animations are purely decorational). For instance, [9] 
found that students who viewed an ordered series of static images outperformed those 
who viewed an animated visual of the same dynamic process, which is one of the 
conditions under which animations are meant to operate best. Therefore, it seems that 
additional investigations must be done to discover the strengths and limitations of 
image animation. 

However, it is not only animated pictures and illustrations that have been investi-
gated for their efficacy. Researchers focused on concept maps, an educational device 
that is growing in popularity and has been incorporated into multiple ITSs, have also 
examined how animation can add to student learning. One of the limitations of con-
cept maps is that they often contain no cues to guide specifically how they should be 
read. Eye tracking research bears this out, as gaze patterns vary largely between par-
ticipants examining a concept map [10]. Therefore, animations are seen as a method 
of directing student attention and imposing a specified processing order. There have 
been two substantial investigations into concept map animation, but the results of 
these studies have been mixed, indicating that there may be conditions and best prac-
tice rules that guide the animation of concept maps as well. [11] found that animated 
concept maps resulted in better recall of the information 48 hours later over static 
maps or even animated text, but that animation had no effect on the ability to recall 
lower-level details. Recently, [12] also compared static and dynamic text and concept 
maps but found that animation provided no advantage for either text or concept maps. 
These opposing results may be due to at least one of two key differences in the expe-
rimental designs of the aforementioned studies: concept map complexity/size, where 
[12]’s map was more complex than [11]’s, and the use of accompanied narration, 
which [12] claimed counteracted the effects of animation in their study by providing 
too much scaffolded guidance. 

While there seems to be indications that both animated concept maps and pictures 
can be advantageous to learning under the right conditions, very little is known about 
how they compare to each other. It seems intuitive to suppose that both have their 
own time and place in educational multimedia environments, but there are currently 
no rules to guide the selection of one over the other for ITS designers, and further 
still, there is no research to suggest whether the presence or absence of animation for 
either of these media forms should inform this selection decision. Currently, both the 
concept map animation literature and the picture animation literature focus primarily 
on how each media type stacks up to its own static version, as well as how it com-
pares to and/or works alongside text (e.g. [11], [13]). How concept maps and pictures 
compare to each other in terms of learning, as well as how animation affects this 
comparison, is still an open question.  
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It may also be the case that it is not a simple matter of determining which media 
type is most effective, but rather, which type aids specific kinds of learning. For  
instance, one of the strengths of concept maps is that they explicitly model the rela-
tionships between concepts, which have been theoretically linked to creativity, under-
standing, and deep knowledge of the material [14,15]. However, both pictures and 
concept maps can convey conceptual knowledge, or information pertaining to the 
topic’s main concepts, such as through picture labels or labeled nodes. To date, none 
of the concept mapping literature has tried to differentiate between these different 
knowledge types; therefore, little is known about how concept maps, especially ani-
mated concept maps, may influence memory for these kinds of information. Picture 
animation research has revealed that animation can have an effect on memory for 
different types of knowledge. [8] found that animation had the largest effect on pro-
cedural motor knowledge, followed by declarative knowledge. Others have found that 
the method chosen for animation, such as displaying objects that are thematically 
related versus spatially related, can deeply impact how the information is later re-
called [16]. It may be instructive to investigate how images, animated or not, impact 
conceptual and relational knowledge as well, as this would allow for a direct compari-
son between the performance of students exposed to either concept maps or pictures. 

Likewise, there also remains an open question as to how narration impacts ani-
mated concept maps. Narration is the preferred mode of information delivery when 
pictures, animated or not, are available, so that the student’s attention is not split be-
tween the text and the picture [17]. Narration presented with animated images is also 
not uncommon (e.g. [13]). However, questions have been raised about whether narra-
tion washes out the effects of animation in concept maps [12]. Narration may there-
fore be one parameter for deciding whether or not to use an animated image or  
concept map, but a replication of this “washing out” should be observed before deeply 
exploring this parameter. 

In this study, we will look at how pictures and concept maps, both animated and 
static, effect students’ relational and conceptual knowledge learning in Biology, as 
well as their free recall of information. This will allow for a direct comparison be-
tween pictures and concept map media types in terms of their learning efficacy, which 
may help guide selection principles for their inclusion in educational multimedia envi-
ronments. The visual in every condition will also be accompanied by spoken narration 
in order to further test [12]’s hypothesis that spoken narration removes the animation 
effect that had been observed by [11]. Although no advantage was found for anima-
tion in Biology visuals [8], this domain relies heavily on visual aids, and so discover-
ing the best practices for displaying these visuals is to the advantage of both educators 
and ITS designers within the field of Biology. 

This experiment used a Khan Academy Biology video as the basis for the educa-
tional intervention. Khan Academy is a popular online company dedicated to making 
short, freely available video lectures that students find easy to understand. Khan 
Academy videos always feature audio narration of a lesson played in synchrony with 
screen capture of the narrator drawing pictures or working out problems that support 
the lesson. Therefore, the videos produced by Khan Academy are ideal for this kind 
of investigation because they are ecologically valid learning videos that natively  
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feature picture animation and spoken narration. Khan Academy is also at the forefront 
of online, self-paced education, and features the kind of media which could be in ITSs 
due to their low production costs. This experiment seeks to use and modify these ma-
terials, which already exist in the educational world, in order to compare the learning 
produced by animated pictures and concept maps. 

2 Methods 

A 2 x 2, between-subjects experiment was conducted in order to examine the interac-
tive effects of media animation (animated vs. static) and media type (picture vs. con-
cept map). Participants were randomly assigned to one of these four conditions. 

Participants were recruited through Mechanical Turk (MTurk), an online service 
offered through Amazon. MTurk allows “requesters” to put up short tasks (“HITs”) to 
be completed by their “workers,” who are then paid a small wage for satisfactorily 
completing the task. Requesters can also place restrictions, called “qualifications,” on 
who can participate in their study. To ensure quality results, participants who wished 
to participate in the current study had to have previously completed 50 HITs and had 
to have at least 95% of those HITs approved by the requesters, meaning that they had 
done an adequate job on the task and had been paid for it. Additionally, participants in 
this study had to certify that they were above 18 years of age (an MTurk standard), 
were a native English speaker, were a United States or Canadian citizen (implemented 
to increase the odds of recruiting native English speakers and enforced via IP checks), 
had adequate hardware to complete the experiment, and did not have significant hear-
ing impairments. Those who failed to meet these criteria were disqualified from pro-
ceeding to the experiment. Participants who completed the study were paid $1.00. 

In this experiment, 214 participants completed the study, but six were disqualified 
due to their failure to meet the participation criteria. The average age of the partici-
pants was 35.91, with a minimum age of 18, a maximum of 72, and a median of 32.5. 
One hundred fourteen of the participants (54.8%) were female. Previous examinations 
of the Mechanical Turk workers found that workers are, on average, 31 years old, 
with ages ranging from 18 to 71, and 55% of workers are female [18], making our 
sample typical of the MTurk population with the exception that workers outside of the 
United States and Canada were excluded. Studies have shown that the MTurk popula-
tion appears to function similarly (i.e., produce qualitatively and quantitatively similar 
results) to university populations and other online populations [19,20,21]. 

The materials for this study consisted of four edited videos which made up the sti-
muli, two interchangeable knowledge measures, and a brief demographics survey 
(portions of which are reported above). The interventions for this study are based on 
the “Parts of a Cell” video produced by Khan Academy. In Parts of a Cell, the narra-
tor discusses various cellular components while drawing and labeling them on screen. 
The Parts of the Cell video was selected due to its straightforward nature and its popu-
larity, as it is one of the most highly viewed videos from their Biology series. The 
original Parts of the Cell video was edited to shorten the overall video length from 21 
minutes to 15 and to remove segments of the video where the narrator scrolls away 
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from the main image to illustrate some point in an aside. This edited video comprised 
the animated picture stimulus. The animated concept map stimulus replaced the visu-
al portion of the edited video with an animated concept map. In the concept map ver-
sion, the nodes correspond to the same labeled and drawn cell parts that appeared in 
the pictorial version. The concept map is composed of 18 key propositions (facts in 
node-link-node format) arranged in a hierarchical layout, with much of the arrange-
ment of the map determined by the order in which information is delivered in the 
narration. In the animated concept map, propositions are added to the map generally 
when the proposition has been stated for the first time. Once added to the map, propo-
sitions are not removed, and the map builds in complexity until it reaches its com-
pleted state near the end of the lesson. This is the traditional method of animating 
concept maps [11,12]. The static stimuli, both pictorial and concept map, were 
created by taking the final, complete version of the cell picture and concept map, 
respectively, and using that static image as the visual for the entire video while pre-
serving the same audio narration. 

While the “smooth drawing” of the picture and the chunked “sequential display” of 
the concept map are not visually equivalent forms of animation, both represent the 
ecologically valid and traditional display methods associated with their respective 
media types; concept maps have long been considered “animated” if displayed one 
proposition at a time, while pictures lend themselves to being drawn as a form of 
drawing attention to and elaborating certain areas of the image (as would be seen in, 
for instance, expert human tutoring [22]). This experiment considers both styles of 
animation as roughly functionally equivalent, as both are intended to guide the stu-
dent’s attention to specific parts of the media. 

The knowledge measures were created by first extracting the propositional facts of 
the ensuing lesson (e.g. “Vesicles transport proteins”). These propositions were then 
made into multiple choice questions by removing either the equivalent of a proposi-
tion’s node (e.g. “Vesicles transport ______”) or its linking phrase (“Vesicles ______ 
proteins.”). There were 18 key propositions in the Biology lesson videos, and there-
fore 18 node and 18 link questions were created for the knowledge measures. The 
questions were then randomly sorted into Form A and Form B such that each proposi-
tion is represented only once per form, resulting in 9 node question and 9 link ques-
tions per form. Participants experienced either Form A or Form B as their pretest, and 
received the opposite test for their posttest (counterbalanced). 

To participate, MTurk workers had to first accept the assignment on MTurk, and 
were then transferred to the actual experiment, which took place in Qualtrics. Once 
the worker consented to participate and had made the necessary certifications, he or 
she first took a pretest to assess his/her prior knowledge on cell parts in Biology. Af-
ter completing the pretest, participants then experienced one of the four conditions 
(animated picture video, animated concept map video, static picture video, static  
concept map video). Controls were removed from the video in order to help prevent 
starting and stopping the lesson, and participants were instructed merely to listen  
attentively while the video plays without taking notes. Once the video completed, 
participants performed a free recall task, where they were asked to write down as 
much information as they could remember from the material they just saw and heard. 



 Animated Presentation of Pictorial and Concept Map Media in Biology 421 

 

After the free recall task, participants took the posttest (the opposite test form from 
the pretest), and then filled out a brief demographics form. They were then given a 
password to enter into Mechanical Turk as proof of completion, for which they were 
then paid. 

3 Results 

This research seeks to investigate the effects of animation (animated versus static) and 
media type (picture versus concept map) on various types of learning, specifically 
conceptual learning, relational learning, and the general free recall of facts. This was 
accomplished by examining different types of questions: those questions querying the 
student’s memory of node information (conceptual), link information (relational), and 
their free recall responses. Each of these research questions has been analyzed and 
considered separately below. 

We first investigated how animation and the media type affected “link” questions, 
which tap into relationship knowledge. The nine multiple choice link questions from 
both the pre- and posttests were first scored for correctness, and then each partici-
pant’s proportional learning gains score was calculated. Proportional learning gains, 
formulated as (Proportionalized Posttest – Proportionalized Pretest) / (1 – Proportio-
nalized Pretest), are a useful learning gains metric because they control for prior 
knowledge. These were then analyzed using a 2 x 2 between-subjects analysis of va-
riance (ANOVA). While there was not a significant main effect for media type (p = 
.39) or a significant animation x media type interaction (p = .645), there was a signifi-
cant main effect for animation, F(1, 204) = 4.041, p = .046. We see that, when the 
media was animated (M = .542, SD = .377), participants scored significantly higher 
on the link questions than those in the static media conditions (M = .405, SD = .577;  
d = .281). 

The analysis of the node questions was given a similar treatment; the scores from 
the nine node questions in the pre- and posttests were used to calculate a proportional 
learning gains score, which was then examined using a 2 x 2 between-subjects 
ANOVA. There was no significant main effect for animation (p = .741), but there was 
a marginally significant main effect for the media type, F(1, 204) = 3.402, p = .067, 
where those in the concept map condition (M = .427, SD = .39) scored higher on  
node questions than those in the picture condition (M = .319, SD = .452; d = .254). 
However, the results may be best explained by the significant animation x media type 
interaction, F(1,204) = 9.021, p = .003. When the media was animated, those in the 
concept map condition (M = .501, SD = .282) outperformed those in the picture con-
dition (M = .222, SD = .537) on the conceptual node questions (d = .65). When the 
image was static, however, those in the picture condition (M = .414, SD = .347) 
learned more about concepts (nodes) than did those in the concept map condition  
(M = .347, SD = .468; d = .165). 

The free recall was scored automatically by comparing the responses to a list  
of keywords created from the transcript of the audio narration. One point was 
awarded for each of the keywords mentioned in the free recall response (although not 
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for repeated mentions), and a coverage score for each person was then calculated by 
dividing the number of keywords mentioned by the total number of keywords on the 
list. This allowed us to examine their memory for technical vocabulary particular to 
the topic. The coverage scores were then analyzed using a 2 x 2 ANOVA to investi-
gate the impact of animation and media type on the participants’ memory for vocabu-
lary. A covariate of the combined pretest scores for both link and node questions was 
also included in order to control for prior knowledge. There was no main effect for 
media type (p = .374), but there was a marginally significant main effect for anima-
tion, F(1,202) = 3.524, p = .062, where those who experienced an animated visual (M 
= .349, SD = .2) had better coverage of key vocabulary terms than those in the static 
visual conditions (M = .318, SD = .19; d = .195). 

4 Discussion 

In order to aid common ITS design decisions, this study sought to examine how ani-
mation, combined with picture representations and concept maps, affects memory for 
different types of information. The interpretation of the results is clearest when sepa-
rately considering how relationships and concepts are best learned. 

When it comes to knowledge of relationships, this experiment provides evidence 
that animation can contribute significantly to learning gains, indiscriminate of wheth-
er the image is a picture or a concept map. It seems that the action of animation, there-
fore, is better at guiding attention to the relationships between concepts, which  
included relationships such as part-of relations, properties, typology, and functional 
connections (“Vesicles – transport – proteins”). While this finding is not explicitly 
supported by the picture animation literature, there are some indications that it is in 
line with previous work. Animation has been shown to be somewhat effective in  
supporting declarative knowledge learning (d = .44), which would contain both con-
cept and relationship knowledge, but it is especially effective in teaching procedural 
motor knowledge (d = 1.06; [8]). While procedural motor knowledge is undoubtedly 
also a combination of conceptual and relationship knowledge, it is mostly focused on 
the relational “how to” information. Therefore, it is somewhat expected that anima-
tions would aid more in teaching relationship knowledge. For concept maps, however, 
this is entirely new information; most recently, animation had been found to have no 
effect on learning [12], and there has not been an investigation on how animation 
would impact the learning of links or nodes. Therefore, the discovery that animation 
does in fact support learning with concept maps provides evidence that animated con-
cept maps may need to be more deeply explored to understand the conditions under 
which they do or do not aid learners. Interestingly, although it seems intuitive that 
concept maps would be superior at teaching relational knowledge, no such link was 
found in this study, perhaps partially due to the topic (where many of the relationship 
are “part-of” relations, which are equivalently conveyed pictorially).  

Conceptual learning is a more complex story. When the media is animated, concept 
maps provide superior support in teaching conceptual knowledge (operationalized  
by node questions). This is particularly interesting because it is not merely a case of 
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concept maps explicitly spelling out the concepts while the picture merely represents 
them pictorially. The image on the picture drawn by the narrator is also labeled, and 
the labels of the picture and nodes of the concept map share a high overlap (93%, with 
the remainder being words jotted down on the picture in an aside). Therefore, the 
concepts are both equally visually represented in verbal form, but the concept map 
has the added advantage of removing extraneous detail, which may be the key to its 
success. Although animated pictures have been shown to aid in teaching declarative 
knowledge [8], which is at least partly conceptual, this study indicates that animated 
concept maps may be even better for creating gains in conceptual knowledge. For the 
static media, the picture fared slightly better than the concept map in terms of concep-
tual learning, although the difference is not great. This may be because, in the absence 
of animation, the more detailed picture has more unique cues to encode, and so more 
attention is paid to the labels and concepts. Further investigation is needed to deter-
mine if there is a true advantage of static pictures over static concept maps. However, 
both static conditions produced higher learning gains for concepts than did the ani-
mated picture, possibly due to its overwhelming volume of information and action. 

The results from the free recall analysis show a more general (albeit slighter) trend, 
where animation affected participants’ recall of technical vocabulary, which included 
both conceptual and relationship knowledge (e.g. terms such as "cytosol" and "tran-
scribe"). This effect in and of itself is not surprising given that the literature shows 
that animation tends to improve learning [8], but what is interesting is the lack of 
effect for media type. Previous analyses of free recall responses in experiments with 
animated or static concept maps or text have found that concept maps produce better 
free recalls than text [11,12]. Here, when comparing two image-based media, this 
effect disappears; it is possible then that animated image-based media may produce 
more recalled information than text, although additional research would need to be 
done to make this direct comparison. While the present free recall analysis is not as 
thorough as those typical of the concept map literature, where free recall responses 
are hand scored against a list of declarative knowledge statements, the free recall 
analysis done here does hint that animation may be useful in not just recognition of 
key terms, as may be demonstrated by the multiple choice questions, but in recall of 
information. 

The pattern of results from this study implies that, generally speaking, there are 
conditions under which concept maps or pictures may be the preferred media, with 
animation being the main parameter considered in the present work. Animation in 
general seemed to contribute to relationship knowledge, while animated concept maps 
specifically were most efficacious in instilling conceptual knowledge. Although, if 
animation is not an option, static pictures were more effective for conceptual know-
ledge. This underlines two general findings. First, different types of media seem to 
have their own contexts in which they are most effective in improving learning, and 
the learning environment and knowledge goals should be addressed in order to decide 
on the media type. Second, animation can have different effects on different types  
of media and learning, and further exploration of this little studied effect is in  
order. There are also some other interesting implications of this study. This study 
demonstrated that animated concept maps are not redundant with spoken narration, 
which would lead to a washing out of learning differences, as [12] suggested. While 
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the parameters under which animation is not useful for concept maps is not yet 
known, narration does not seem to be one of those parameters. Additionally, it is in-
teresting that these effects were found in the domain of Biology, which was one of the 
least successful domains in demonstrating differences between animation and static 
images. It may be the case that other domains would produce a stronger effect.  

While this work fills gaps in our current knowledge of animated media, there are 
some limitations to this study. First, the results of this study do not take into account 
the effects of domain (in this case, Biology). It may be the case that certain domains 
or even certain properties of specific lessons are better represented with other types of 
media or other forms of animation. Likewise, this study also examines very specific 
kinds of knowledge measures, those that measure conceptual and relational know-
ledge, but it may be true that for other types of knowledge, such as general declarative 
knowledge, deep knowledge, or procedural knowledge, the results may vary. It is not 
the purpose of the present work to claim that one media type is superior to another  
in general, but rather, to relate that under the established conditions, animation and 
animated concept maps seem to produce larger learning gains in relational and con-
ceptual knowledge, respectively. This work also does not explore every method of 
animating an image; there remains a breadth of animation methods in the existing 
literature to explore using this paradigm.  

With the growing use of concept maps and other forms of media in ITSs, it is  
important that we continue to investigate the conditions under which they can be ef-
fective so that informed design decisions can be made. This will allow us to select the 
most effective media to use in our systems while avoiding investing in unnecessary 
"bells and whistles" that do not contribute to the student's experience. Future work 
which explores the limitations and advantages of different types of media in varying 
degrees of animation are necessary to contribute to the field's development.  
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Abstract. Making connections between graphical representations is integral to 
learning in science, technology, engineering, and mathematical (STEM) fields. 
However, students often fail to make these connections spontaneously. ITSs are 
suitable tools to support connection making. Yet, when designing an ITS for 
connection making, we need to investigate what learning processes and con-
cepts play a role within the specific domain. We describe a multi-methods  
approach for grounding ITS design in the specific requirements of the target 
domain. Specifically, we applied this approach to an ITS for connection making 
in chemistry. We used a theoretical framework that describes potential target 
learning processes and conducted two empirical studies – using tests, eye track-
ing, and interviews – to investigate how these learning processes play out in the 
chemistry domain. We illustrate how our findings inform the design of a chemi-
stry tutor. Initial pilot study results suggest that the ITS promotes learning 
processes that are productive in chemistry. 

Keywords: Connection making, multiple representations, empirically grounded 
design, multi-methods approach, chemistry. 

1 Introduction 

The ability to make connections between graphical representations is integral to learn-
ing in science, technology, engineering, and mathematical (STEM) fields [1]. For 
instance, to learn about chemical bonding, students need to make connections be-
tween Lewis structures, ball-and-stick figures, space-filling models, and electrostatic 
potential maps (EPMs; see Figure 1). Connection making is a difficult task that stu-
dents often do not engage in spontaneously, even though it is critical to their learning 
[1-2]. Hence, they need support to make these connections [3]. Recent research indi-
cates that intelligent tutoring systems (ITSs) can be effective in supporting connection  
 

 

Fig. 1. Graphical representations of ethyne: Lewis, ball-and-stick, space-filling, EPM  
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making [4]. However, to design effective connection making support, we need to 
investigate which specific learning processes play a role within the target domain. The 
goal of this paper is to describe a multi-methods approach for grounding the design of 
an ITS in a particular domain.  

Our objective in using this approach is to develop an ITS for connection making 
that has the potential to significantly enhance students’ learning in chemistry. ITS 
support for connection making is likely to enhance chemistry learning for several 
reasons. First, the ITS framework of learning through problem solving is in line with 
the chemistry education literature, which indicates that problem-solving activities can 
significantly enhance conceptual learning [5], especially when they include graphical 
representations [6]. Second, even though several educational technologies for chemi-
stry learning exist [7-9], this research is novel because none of them provide explicit 
and adaptive support for connection making between graphical representations. Final-
ly, the chemistry education literature widely acknowledges that connection making is 
one of the major stumbling points in chemistry education [10].  

In this paper, we describe a new approach to ground the design of this ITS in the 
chemistry domain. Specifically, we describe how integrating multiple methods pro-
vided answers to the following questions: First, which learning processes are impor-
tant in chemistry and should be supported by the ITS? Second, what problem-solving 
behaviors should the ITS foster? Third, which chemical bonding concepts should the 
ITS target? Finally, does the resulting ITS enhance productive learning processes? 
Even though we address these questions within the chemistry domain, we believe that 
our approach is a first step towards creating a principled methodology for informing 
the design of an ITS by the requirements of the specific target domain. 

2 Domain-Specific Grounding of Connection-Making Support 

2.1 Theoretical Framework 

To inform the design of ITS support for connection making, we draw on a theoretical 
framework, which proposes that two types of connection-making abilities play a role 
in domain expertise [4]. Sense-making ability means that a student can relate aspects 
that correspond to one another across representations because they depict the same 
concept (e.g., in the example shown in Fig. 1, relating the local negative charge that 
results from the triple bond shown in the Lewis structure to the region of high electron 
density depicted by the red color in the EPM). Perceptual fluency is the ability to 
rapidly and effortlessly find representations that depict the same concept, by relying 
on perceptual characteristics [11] (e.g., by rapidly seeing that the representations in 
Fig. 1 show the same molecule based on their linear geometry). The chemistry educa-
tion literature suggests that both sense-making ability [9, 12] and perceptual fluency 
in connection making [9-10] are important aspects of chemistry expertise. 

We conducted two empirical studies that instantiate this framework for the specific 
domain of chemistry. Study 1 investigates whether sense-making ability and percep-
tual fluency are indeed separate connection-making abilities in chemistry. Study 2 
investigates the domain-specific aspects of sense-making ability.  
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2.2 Study 1: Assessment of Sense-Making Ability and Perceptual Fluency  

The chemistry education literature documents the importance of both sense-making 
ability and perceptual fluency in connection making [9]. Confirming the claim that 
these are indeed distinct abilities is a prerequisite for the design of separate activities 
to support each of these abilities. To address this question, we conducted an a priori 
factor analysis on an assessment of sense-making ability and perceptual fluency. 

Method. Undergraduate and graduate chemistry students with varying levels of ex-
pertise were recruited through emails and fliers to take a 30-40 minute online test. 118 
students started; 44 students completed the test. We consider resulting missing data to 
be at random because the item order was at random. The test contained one question 
about chemistry courses taken, 16 multiple-choice items on sense-making ability (8 
on similarities, 8 on differences), and 9 multiple-choice items on perceptual fluency.   

Results. We used the SPSS AMOS software to compare three models: a 1-factor 
model (not distinguishing sense-making ability and perceptual fluency), a 2-factor 
model (sense-making ability and fluency), and a 3-factor model (sense-making simi-
larities, sense-making differences, and fluency). We excluded missing values (result-
ing from incomplete tests) on an item-by-item basis. To compare the fit of the tested 
models, we used root mean squared error (RMSE). The results show that the 3-factor 
model (RMSE = .072) and the 2-factor model (RMSE = .082) both yielded a better fit 
than the 1-factor model (RMSE = .088). Because the sense-differences and sense-
similarity factors in the 3-factor model correlated highly with r = .93, we choose the 
2-factor model for further analyses. The resulting two factors, sense-making ability 
and perceptual fluency, correlate moderately with r = .62. 

A repeated measures ANOVA showed that students performed significantly better 
on the sense-making scale (M = .75; SD = .12) than on the fluency scale (M = .62; SD 
= .24; p < .01). To investigate the relation of these two abilities with chemistry profi-
ciency, we conducted a regression of the number of chemistry courses taken. The 
number of courses taken is associated with marginally higher sense-making ability (β 
= .22, p < .10), and with significantly higher perceptual fluency (β = .448, p < .01). 

Discussion. The finding that sense-making ability and perceptual fluency are separate 
skills in chemistry is in line with the chemistry education literature [9-10, 12] and 
supports the design of separate activities for these connection-making abilities.  

The finding that students have higher sense-making ability than fluency is not sur-
prising: it mimics a current trend in educational practice because most research on 
connection making focuses solely on sense-making processes [3]. Only recently has 
perceptual fluency gained attention in the education and psychology literature [11]. 
Thus, our data encourages the design of an ITS that targets perceptual fluency. 

The finding that chemistry proficiency (approximated by the number of courses 
taken) is a better predictor of perceptual fluency than of sense-making ability is sur-
prising. It seems that chemistry instruction does not sufficiently target the ability to 
make sense of connections between graphical representations. Given that students’ 
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performance on the sense-making scale is far from perfect (M = .75; SD = .12), there 
is an instructional need for an intervention that targets students’ sense-making ability.  

2.3 Study 2: Eye Tracking and Interview Study on Sense-Making Ability 

The ability to make sense of the connections between representations involves under-
standing similarities and differences between different graphical representations. The 
goal of Study 2 was to investigate the relation between students’ ability to identify 
similarities and differences between representations and their reasoning about do-
main-relevant concepts. Furthermore, our goal was to identify specific concepts that 
students struggled with when making connections. Study 2 combined eye-tracking 
and interview data. This procedure allows us to investigate which visual attention 
patterns are associated with low and high quality connections.  

Method. Twenty-six students participated in Study 2 (21 undergraduate and 5 gradu-
ate chemistry students). Sessions took place in the laboratory and lasted 30-45 min. 
Students were asked to describe similarities and differences between two graphical 
representations of the same molecule (similar to those in Fig. 1). Students performed 
this task on an SMI RED250 eye tracker. All verbal responses were audiotaped. 

To analyze the eye-tracking data, we created areas of interest (AOIs) for each  
representation. We considered two measures. First, we considered frequency of 
switching between AOIs, which is used to indicate perceptual integration [13]. We 
computed AOI switches as the number of times a fixation on one AOI was followed 
by another. Second, we considered second-inspection durations. First inspections of 
an AOI is often considered to indicate initial processing of material that occurs (to a 
certain extent) automatically [14]. Fixations after the first inspection (i.e., when a 
student re-inspects an AOI) are considered to reflect intentional processing to inte-
grate the information with other information [14]. We computed the second-
inspection durations as the sum of fixation durations that occurred after the initial 
fixation on a given AOI.  

Table 1.  First level of the interview coding scheme 

Code Definition (Example) 
Surface 
 

Student makes a connection between representations, based on some concep-
tually irrelevant feature (“um so they’re both like red on the top”) 

Similarities 
 
 

Student refers to a structural feature of representations that depict the same 
concept (“the space-filling model and the EPM both in shape are very similar 
cause they show the electron cloud”)

Differences 
 

Student refers to a structural feature of two representations that differs be-
tween representations or to information that differs between representations  

Inference 
 

Student explains a concept that goes beyond what is depicted (“this [the 
EPM] just shows that on the oxygen it’s more reactive because there’s lone 

To analyze the interview data, we applied a two-level coding scheme. First-level 
codes were adapted from prior research on connection making [2]. Specifically,  
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we distinguished connections based on surface features, similarities, or differences, 
and whether students made inferences about concepts not explicitly shown in the 
representations. Table 1 provides descriptions and examples for first-level codes. We 
constructed the second-level codes bottom up: by collecting concepts that were men-
tioned during the interview and then coding for their occurrence. Interrater reliability 
was good with 85% agreement for first-level codes and 72.9% for second-level codes. 

Results. First, we analyzed how the eye-tracking data relates to the first-level inter-
view codes (see Table 1). Three participants were excluded from the analysis because 
the eye-tracking ratio was below 85%. A regression of second-inspection durations on 
first-level codes showed that longer second-inspection durations were associated with 
significantly more surface connections (β = .60, p < .01), and marginally more differ-
ences (β = .39, p = .06). There was no association of second-inspection durations with 
similarities. A regression of AOI switches on first-level codes showed that more AOI 
switches were associated with significantly more surface connections (β = .55, p < 
.01). There was no association with similarities or differences.  In turn, a regression of 
surface connections, similarities, and differences on inferences showed that difference 
utterances were associated with significantly more inferences (β = .51, p < .01). There 
were no associations between similarity or surface utterances and inferences. 

Next, we analyzed the second-level interview codes. We identified concepts related 
to the topics of atom identity (symbol, number of electrons, CPK color coding, gener-
al identity information), molecule structure (bond angle, bond length, conformation, 
geometry, atomic radii, electron cloud), energy (steric interactions, relative energy), 
electrons (core, valence, shared, lone), atomic structure (shells, orbitals, hybridization 
potential, spin states), and bonding (type, electronegativity, charge distribution). To 
get insights into which concepts are particularly difficult for undergraduates, we com-
pared the relative frequency of a concept being discussed by graduate versus under-
graduate students. We used differences larger than 1 SD to indicate that undergra-
duates were unlikely to point out this difference, even though it relates to an important 
concept. We found that the most difficult concepts for undergraduates were CPK 
color coding, bond angle, atomic radii, relative energy, bonding type, and reactivity. 
In addition, undergraduate students were less likely use these concepts to make infe-
rences about the behavior of electrons, atoms, and molecules to explain bonding. 

Discussion. Our findings show no clear positive effects of commonly used measures 
of visual attention. Integrating the eye-tracking data with first-level interview codes 
allowed us to disambiguate the effects of eye-tracking measures on students’ reason-
ing about domain-relevant concepts. Students who switched more frequently between 
representations were more likely to focus on surface-level connections. Students with 
longer second-inspection durations were more likely to notice surface features and 
differences between representations. Only difference-connections were associated 
with making more inferences about domain-relevant concepts.  

It is surprising that we found no positive associations between noticing similarities 
between representations and making inferences about chemistry concepts. It may be 
that expertise in chemistry relies on the use of different graphical representations for 
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complementary purposes, rather than in using them interchangeably because they 
provide similar information. Indeed, this interpretation aligns with the literature on 
how chemistry experts use representations [15]. Consequently, we hypothesize that 
ITS support for connection making in chemistry should focus on how different graph-
ical representations depict complementary information, rather than how they depict 
similar concepts. To do so, the ITS should help students to redirect (after initial in-
spection) their attention to the representations and to focus on them for a longer dura-
tion, rather than to frequently switch between different representations. 

Furthermore, our findings suggest that the ITS should target the concepts of CPK 
color coding, bond angle, atomic radii, relative energy, bonding type, and reactivity. 
These concepts may be more difficult because they are more complex: they are typi-
cally used to reason about bonding phenomena that involve the interaction of one 
molecule with additional atoms and molecules rather than about the structure of indi-
vidual atoms and molecules.  

3 Design of a Chemistry Tutor for Connection Making  

Study 1 encourages developing an ITS for chemistry that targets sense-making ability 
and perceptual fluency through separate activities. Study 2 suggests that sense-making 
activities should focus on differences between representations, not on similarities. 
Here we describe how these findings informed the design of a chemistry tutor.  

3.1 Tutor Design 

In line with prior research [3], sense-making activities are designed to help students in 
relating conceptually relevant aspects of different graphical representations. As Study 
2 suggests, we focus on differences between representations in providing complemen-
tary information. Sense-making activities involve three parts. Consider a problem that 
targets one of the concepts that we found to be particularly difficult in Study 2: bond-
ing type and electron behavior (Fig. 2). Students identify the type of bond between 
atoms and make inferences about how electrons are distributed across the molecule. 
First, they solve this problem with one representation (e.g., a Lewis structure, see Fig. 
2A). Second, they solve a corresponding problem with another representation (e.g., an 
EPM, see Fig. 2B). Third, students are prompted to explain differences between re-
presentations (e.g., the local negative charge is shown by a larger number of electron-
dots shown in Lewis structures, and by red color in EPMs; Fig. 2C).  

The design of the fluency-building activities is based on Kellman and colleagues’ 
perceptual learning paradigm [11]. Rather than focusing on why or how different 
representations correspond to one another, fluency-building support aims at helping 
students become faster and more efficient at extracting relevant information from the 
representations based on repeated experience with a large variety of problems. Thus, 
the fluency-building activities provide numerous practice opportunities to find corres-
ponding graphical representations based on their perceptual properties. Fig. 3 shows 
two sample problems in which students have to choose a representation that show the 
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same molecule. Choices are designed to contrast which perceptual aspects provide 
relevant information. For instance, to solve the example on the left-hand side of Fig. 
3, students have to attend to how EPMs depict the geometry of the molecule. To solve 
the example on the right-hand side, students need to attend to the lone pair in Lewis 
structures, which have implications for electronegativity that the EPM depicts as col-
or. Students receive a series of these problems and are encouraged to solve them fast, 
by using perceptual properties and without overthinking the problem.  

 

Fig. 2. Sense-making problems 

 

Fig. 3. Fluency-building problems. 

3.2 Initial Pilot Results 

We collected initial pilot data from four students who worked with a handful of sense-
making and fluency-building prototypes. During the pilot sessions, we collected eye-
tracking data, interview data, and tutor log data. The interview data suggests that  
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students like the tutor activities because they contain multiple graphical representa-
tions. For instance, one student commented, “I think it does a good job at showing 
multiple layouts instead of just one, so one can understand”. The small sample size 
did not warrant a quantitative analysis of the eye-tracking data. Instead, we viewed 
the eye-gaze recordings and counted the number of times a student reinspected a 
graphical representation. For sense-making activities, this qualitative analysis sug-
gests that impasses and reflection prompts (see Fig. 2C) are associated with subse-
quent reinspection of the representations. For fluency-building problems, we found 
that students frequently switch between representations. Finally, the log data showed 
that the reflection prompts (see Fig. 2C) had higher-than-average error rates. Fluency-
building activities had a lower average error rate than sense-making problems. 

In addition, we collected pre- and post-test data from three students in a second pi-
lot study who worked with a fully-functioning version the ITS for one hour. We found 
learning gains of 16 percent points on sense-making items, 27 percent points on flu-
ency items, and 7 percent points on transfer items about chemistry concepts. 

3.3 Discussion 

With respect to the sense-making activities, the pilot log data shows that sense-
making prompts are challenging. This observation is in line with the finding in Study 
1 that sense-making problems are difficult and further supports the conclusion that we 
need to support students’ sense-making abilities, especially since Study 2 shows that 
noticing differences between representations is associated with conceptual inferences. 
Our qualitative analysis of the eye-tracking data suggests that impasses and prompts 
lead to reinspections of representations. This observation is promising because Study 
2 showed that longer second-fixation durations are associated with inferences by help-
ing students notice differences between representations. Thus, the pilot data suggests 
that sense-making activities enhance productive visual attention behaviors. 

With respect to the fluency-building activities, further investigation is needed. The 
fact that the log data suggests that fluency-building activities are easier than sense-
making activities stands in contrast to the finding of Study 1 that students have lower 
perceptual fluency than sense-making ability. On the one hand, one might conclude 
that the current design of the fluency-building activities enhances superficial visual 
processing because they are not difficult enough. On the other hand, we cannot neces-
sarily draw the conclusion that frequent switching between representations and low 
error rates are associated with low learning gains, because the finding from Study 2 
that frequent switching is associated with surface connections was based on an inves-
tigation of only sense-making items (not of perceptual fluency items).  

Finally, pilot results on pretest to postest learning gains indicates that the ITS is ef-
fective in improving students’ sense-making ability, perceptual fluency, and transfer 
of conceptual knowledge. An experiment testing the effectiveness of the sense-
making and fluency-building components of the ITS is currently under way. Specifi-
cally, we will analyze mediation effects of eye-gaze behaviors, conceptual reasoning, 
and problem-solving behaviors on students’ pretest to posttest learning gains. 
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4 Conclusion and Future Work 

We described a multi-methods approach to ground the design of an ITS in the re-
quirements specific to the target domain. Our goal in applying this approach to the 
chemistry domain was to inform the design of an ITS for connection making. Our 
empirical approach built on a theoretical framework that proposed two separate abili-
ties: sense-making ability and perceptual fluency. We then conducted an assessment 
study that supports the existence of these two connection-making abilities in the che-
mistry domain. Even though this finding is in line with the chemistry education litera-
ture, which states that both skills are important aspects of chemistry expertise [9], our 
study is (to the best of our knowledge) the first to provide empirical support for this 
claim. Next, we conducted a study that combined eye-tracking and interview data to 
investigate which learning processes and concepts are most important with respect to 
sense-making ability. We found that making sense of differences between representa-
tions is more important than making sense of similarities between representations. 
Our data suggests that the visual mechanism by which students attend to differences 
between representations is to reinspect graphical representations rather than to fre-
quently switch between representations (possibly among others). Furthermore, we 
identified several aspects of representations that undergraduates fail to identify spon-
taneously even though they constitute important chemistry concepts. Finally, our 
initial pilot results indicate that the ITS design enhances productive learning 
processes, that students perceive it as valuable, and that it leads to learning gains. 

A limitation of the research described in the present paper is that our data are corre-
lational in nature, but not causal. The results from Study 1 lead to the prediction that 
providing separate activities to support sense-making ability and perceptual fluency 
enhances students’ learning in chemistry. Furthermore, the findings from Study 2 lead 
to the prediction that sense-making activities will enhance students’ learning if they 
emphasize differences between representations rather than similarities, and if they 
help students to visually reinspect representations. The next step in our research is to 
experimentally test these predictions. We are currently conducting an experiment to 
evaluate the effectiveness of sense-making and fluency-building activities based on 
pretest to posttest learning gains, and to contrast whether (as hypothesized) students 
learn best when working with both sense-making and fluency-building activities, 
compared to working with either type of activity alone. Furthermore, we use the eye-
tracking and interview measures described above to analyze whether (and how)  
students’ visual attention patterns and connection-making utterances mediate the  
anticipated effects of the sense-making and fluency-building activities. 

In sum, by using a multi-methods approach to ground ITS design in the specific 
requirements of the chemistry domain, we developed a system that appears to enhance 
productive learning processes and that addresses educational needs. Furthermore, this 
approach equips us with an initial theoretical model of how students’ connection mak-
ing might enhance their learning in chemistry and with a set of eye-tracking and  
interview measures that we can use to evaluate the effectiveness of the ITS. We con-
clude that our approach presents a useful methodology to identify domain-specific 
aspects that should shape the design of ITSs with multiple graphical representations. 
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Abstract. We examine a corpus of physics tutorial dialogues between
a computer tutor and students. Either graphs or illustrations were dis-
played during the dialogues. In this work, stepwise linear regression, aug-
mented to remove unwanted terms, is used to build models that identify
situations when each graphic may aid learning. Our experimental results
show that grouping students by pretest score, then by gender produces
a model that significantly outperforms the baseline.

Keywords: student modeling, ITS, dialogue, graphs, illustrations, physics.

1 Introduction

One-on-one tutoring between a student and a human tutor is a very effective
method of instruction [10]. Intelligent tutoring systems (ITS) have been devel-
oped to provide one-on-one tutoring, but from a computer-based tutor rather
than a human tutor, and have been shown to improve student knowledge [17].

Visual representations, such as illustrations and graphs, are one method used
to convey information to students thought to help them learn concepts. Illustra-
tions use images to represent concepts [15,9], whereas graphs convey concepts
primarily through such graphs as bar graphs or line graphs [15]. While much
of the ITS research has made the assumption that one representation is best
for everyone, differences exist between representations. Illustrations are easier
for novices to interpret [12], but have surface features that may distract stu-
dents [8]. Graphs can help students connect descriptions of situations to the
base concepts [16], but students are more likely to make mistakes with them
[14]. Researchers have thus examined the benefits of using multiple representa-
tions. Helping students become fluent in multiple representations and to be able
to translate between them are beneficial [15]. Research into using multiple repre-
sentations during tutoring tends to treat all students as identical; the switching
of representations are on a fixed schedule [13,15]. However, research suggests
that there are differences among students, leading to some representations being
more beneficial than others. Student differences to consider include gender [14],
spatial reasoning ability [9], and skill with domain concepts [9]. Adapting to stu-
dents in other instances have had success, such as uncertainty and motivation
leading to increased persistence and better learning gains [1,6].

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 436–441, 2014.
c© Springer International Publishing Switzerland 2014
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This paper explores building models to predict when illustrations and graphs
benefit learning. We first describe an algorithm that constructs such models using
stepwise linear regression augmented to conform to certain syntactic constraints.
We then examine the models learned and find that models including both pretest
score and gender when describing tutoring situations perform best.

2 Corpus

The data comes from a study comparing the effectiveness of showing illustrations
versus graphs during conceptual physics tutoring with an ITS [11]. Subjects
solved a physics problem in Andes [17], with the Rimac physics coach walking
them through problem solving [7]. Andes presented the problem statement and
a visual representing the situation described. Rimac provided instruction on
solving the problem through a typed natural language dialogue. After solving
the problem, subjects engaged in a reflection dialogue designed for students to
reflect on concepts; it was a typed natural language discussion with a computer
tutor. It began with a question on a key concept from the problem and after
answering this question, the student has a discussion of the concept with the
tutor. During this discussion, visuals were shown to help explain concepts.

Subjects saw only illustrations or only graphs during tutoring; the visuals pre-
sented the same information. Problems, reflection questions, and their orders,
remained the same. Twenty-nine college students without college-level physics
were recruited and randomly assigned one of the visuals to see. They began by
filling out a background survey then completed a standard test for determin-
ing spatial reasoning ability [5]. They took a pretest to measure their incoming
physics knowledge. At the end of tutoring, they took an isomorphic, counterbal-
anced post-test. We have 2043 data points at the utterance level.

Prior work on this corpus found differences from the pooled data using AN-
COVAs [11]. This paper presents work on mining the data to learn models that
can identify situations when illustrations or graphs were beneficial for learning.

2.1 Features

Features similar to those below have been used in previous work on tutoring
systems [4,2,3] and have been found useful by cognitive science research on visual
representations [14,9]. From this literature, we selected the features we could
extract from the data collected during the study.

Gender – Female or Male
SpatialReason – score on the spatial reasoning test (high, low)1

Condition – experimental condition (graph, illustration)
PreScore – score on pretest (high, low)
WalkThruPctCorrect – percent of correct answers in the current problem’s walk

through dialogue with the physics coach (high, low)

1 Median splits were performed for ease of interpreting results.
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RQPctCorrect – percent of correct answers in the current problem’s prior reflection
dialogue (high, low)

ProblemPctCorrect – percent of correct answers in current problem (both walk
through dialogue and prior reflection dialogue(s)) (high, low)

SessionPctCorrect – percent of correct answers in session (high, low)
PctThruProblem – for each problem, how far through the dialogues (walk through

and reflection) the subject has gone (early, late)
PctThruSession – how far through tutoring (# completed dialogues) (early, late)
KCusage – whether Knowledge Components (KCs) must be stated or applied
ItemDifficulty – whether the question is easy or hard, as determined by percent

correct on a small pilot study using these dialogues

3 Modeling

To build an adaptive policy, we use stepwise linear regression to learn a model
that explains the variance in post-test score using interactions between the fea-
tures above. Standard stepwise regression produces rules that may be contra-
dictory or non-adaptive, which are not helpful in creating an adaptive policy.
We augment stepwise regression to address these additional constraints. We also
constrain the syntax of the models to better describe the tutoring situation.
Thus, we are trying to optimize r2, subject to certain constraints.

The algorithm below shows how to learn an adaptive policy. Once learned,
the policy can be applied at every decision point by starting at the top of the
list and applying the first that applies.

1. Convert each feature into binary factors, one factor for each feature value. Each
factor has a value of either 1 or 0, depending on whether the feature has that
particular value for that data point.

2. Run stepwise linear regression on the data subject to syntactic constraints
Model – Models have the form postscore =

∑
terms + prescore. Both postscore

and prescore are continuous variables. Prescore is included because pretest
scores are often correlated with posttest scores; in this corpus it is a trend.

Terms – Create terms by multiplying two or more factors together. Each term
contains one Condition factor so that the final model learned can indicate
situations when a visual helped or hindered learning. Additional factors in the
term describe the situation.

3. Identify problematic term pairs. Problematic terms can be identified by:
Contradictory pair – Two terms with opposite conditions and the other fac-

tors are identical. For example, 0.123*ConditionIsGraph* GenderIsFemale and
0.789*ConditionIsIllus*GenderIsFemale contradict each other because the first
says to show graphs to females, while the second says to show illustrations.

Non-adaptive pair – Two terms with the same factors, except one is opposite
between the two terms. For example, 0.456*ConditionIsGraph* PctThruSes-
sionIsLate and 0.123*ConditionIsGraph*PctThruSessionIsEarly are not adap-
tive since they say to show graphs regardless of the percent through tutoring.

4. For each problematic term pair, remove the one with the lower absolute value of
the coefficient (avc)2.

2 We also explored removing both terms, but found that the final models did not
perform as well.
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Table 1. Models are compared across 10-fold cross validation according to adjusted r2

values and their 95% confidence intervals. Italicized rows indicate results significantly
better than baseline (p < 0.05). Underlined indicates the best result.

Model Adj. r2 95% CI

Baseline (Illustration) 0.1127 (0.0896, 0.1358)

1 Factor 0.0955 (0.0737, 0.1172)

2 Factors

Gender 0.1788 (0.1428, 0.2148)
SpatialReason 0.1488 (0.1149, 0.1826)
PreScore 0.3499 (0.3266, 0.3732)
PctThruProblem 0.1007 (0.0635, 0.1378)
PctThruSession 0.1180 (0.0851, 0.1509)

3 Factors (PreScore and ...)

Gender 0.4571 (0.4220, 0.4922)

SpatialReason 0.2817 (0.2367, 0.3267)
PctThruProblem 0.3418 (0.3183, 0.3653)
PctThruSession 0.3087 (0.2782, 0.3392)

5. With the remaining terms, run multiple linear regression to learn the final model
since the coefficient signs may change from the original model.

6. Convert the terms into rules and rank them using avc. The Condition factor indi-
cates the visual to show and the other factors indicate the situation. For negative
coefficients, use the visual opposite the one indicated by the Condition factor. Neg-
ative coefficients suggest that the visual is detrimental to learning in that situation.

4 Results

The models are compared to a baseline, which always predicts showing the same
kind of graphic. We choose illustrations since they showed better learning gains.
Models are each evaluated using ten-fold cross validation and are compared
according to the adjusted r2 value. The performance of the baseline can be seen
in the first row of Table 1.

The “1 Factor” model contains only one factor describing the situation, plus
the interaction feature Condition. As seen in Table 1, it is not significantly differ-
ent than the baseline. Since all terms in this model consist of one non-Condition
factor, the model can only identify situations by one feature (e.g. GenderIsFe-
male or PctThruSessionIsLate). This may not be enough to adequately describe
situations when illustrations or graphs are more beneficial than the other; the
descriptions may be too coarse-grained.

Finer-grained situation descriptions are created by adding more factors to each
term. Five features were selected based on prior work suggesting a change in these
features can cause large changes inmodels [11,9]:Gender, SpatialReason,PreScore,
PctThruProblem, and PctThruSession. Five “2 Factor” models were created, one
for each feature; two perform significantly better than baseline: Gender and
PreScore, with PreScore significantly better than other models seen so far. Thus,
keeping PreScore as the second feature, we add a third factor to this model, draw-
ing from the same set of features. As seen in Table 1, all four “3 Factor” models
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Table 2. Rules for the best 3 Factor model: PreScore*Gender

Female High Pretesters (n = 8) Female Low Pretesters (n = 9)

1. If WalkThruPctCorrect=Low, 1. If SessionPctCorrect=High,
show Graph show Graph

2. If RQPctCorrect=Low, show Graph 2. If PctThruSession=Early, show Illus
3. If SessionPctCorrect=High, show Illus 3. If ProblemPctCorrect=High, show Illus
4. If ProblemPctCorrect=High, show Illus 4. If PctThruProblem=Early, show Illus
5. If PctThruProblem=Early, show Graph 5. If RQPctCorrect=Low, show Illus
6. If PctThruSession=Early, show Graph

Male High Pretesters (n = 3) Male Low Pretesters (n = 9)

1. If RQPctCorrect=Low, show Illus 1. If RQPctCorrect=Low, show Illus
2. If SessionPctCorrect=High, show Illus 2. If WalkThruPctCorrect=Low, show Illus
3. If WalkThruPctCorrect=Low, 3. If SessionPctCorrect=High, show Illus

show Illus 4. If PctThruSession=Early, show Graph
5. If PctThruProblem=Early, show Graph
6. If ProblemPctCorrect=High, show Illus

perform significantly better than baseline, with PreScore*Gender performing sig-
nificantly better than the rest; Table 2 has its policy.

In the model, we see differences between the partitions. Low pretesting females
with a High PctSessionCorrect should be shown graphs, where as males and high
pretesting females should be shown illustrations. When early in the tutoring
session, low pretesting females should see illustrations whereas high pretesting
females and low pretesting males should see graphs. When WalkThruPctCorrect
is low, high pretesting females should see graphs whereas males should see illus-
trations. When RQPctCorrect is low, high pretesting females should see graphs
but males and low pretesting females should see illustrations. That these differ-
ences exist in the model suggest that looking at interactions with both features
improves situation description.

5 Discussion and Future Work

Prior work on this data found differences from the pooled data [11] by identifying
when one group of students may benefit from one visual representation over
another. This work identifies situations when one graphic might be better than
the other for the same student and creates an adaptive model. In ongoing work,
we have incorporated one model into a tutoring system and are evaluating its
effectiveness at selecting visuals that aid learning compared to both alternating
visual representations and using only one throughout tutoring.

This paper also presents a technique for mining data to create an adaptive
policy when a gold standard is not available. It starts with a standard method
(stepwise linear regression) and augments it to remove terms unwanted for de-
veloping adaptive systems. The method seeks to identify situations when one
graphic is better than the other. Increasing situation descriptions, by adding
more factors to each term, improve model performance. Many models, particu-
larly those involving PreScore, significantly outperform the baseline. In ongoing
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work, we are exploring improvements to model development, such as automati-
cally identifying factors to add to a term to improve situational descriptions.
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Abstract. Learning by creating models is an active form of learning,
which is well suited to induce deep understanding of phenomena. But
how to evaluated such models, and apply feedback accordingly? What
makes a learner created model a good model? We present two methods
to assess and grade conceptual models and report on the application of
these to model-data obtained from learners in a summer science class.
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1 Introduction

Learning by building models is an active form of learning during which learners
create external representations in the form of models, and by doing so develop
their understanding of phenomena [1,2]. A new group of tools is emerging that
uses logic-based (symbolic, non-numerical) representations for expressing con-
ceptual knowledge [3,4]. Different from numerical-based, they employ a qualita-
tive vocabulary for users to construct their explanation of systems and how they
behave. The use of graphical user interfaces has improved usability [5], and the
tools are becoming common in education [6], and professional practice [7].

But how are teachers supposed to evaluate such conceptual models? There is
a need to establish methods for analyzing learners ability to develop and deploy
conceptual models [8]. This paper presents two approaches for assessing learner
constructed models, and the application of these approaches in a real-word case.

2 Conceptual Models

The DynaLearn learning environment [9] enables learners to create conceptual
models by working through several stages of representation from specifying and
interpreting simple, static concept maps at the lowest level (level 1), to com-
plex dynamic models with advanced representations for capturing causality at

� Co-funded by EU FP7, DynaLearn, 231526, http://www.dynalearn.eu & EU Re-
gional Dev. Fund and Rep. of Cyprus, Didaktor/0311/92, Research Promotion FND.
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the highest level (level 6). Consider the details in Fig. 1. This model has three
entities, notably First cube, Medium and Second cube, pairwise connected by
the configurations Left of and Right of. Both cubes are assigned the quantity
Temperature and Heat, with a single value Interval and an unknown direction
of change (δ). Medium has quantity Flow, which can take the values Minus
(negative flow), Zero (no flow, steady), and Plus (positive flow). The current
value and direction of change (δ) is unknown for Flow. The following dependen-
cies hold. The magnitude of Flow is determined by the temperature difference.
And Flow negatively influences (I−) the Heat of the First cube, and posi-
tively (I+) the Heat of the Second cube. Changes in heat positively influence
(P+) changes in the Temperature quantities. Changes in temperature then feed
back into changes of the Flow, positively from the Temperature of the First cube
(P+), and negatively from the Temperature of the Second cube (P−). Finally,
Temperature of the First cube is higher (>) compared to the Temperature of
the Second cube, which together with the subtraction of the two temperatures
implies that Flow is above zero (having the value Plus).

First cube Second cube
Medium

Left of Right of

Temperature

I
Interval

Temperature

I
IntervalFlow

Mzp
Plus
Zero
Minus

Heat
I

Interval

Heat

I
Interval

Fig. 1. Dynalearn model (level 4) showing energy exchange between two bodies

Fig. 2 shows the simulation result. The state graph (left top) shows the initial
scenario and two states, with state 1 representing the behavior interpretation
of the initial scenario, and state 2 being its successor. Second, the inequality
history (left bottom) shows that the Temperature of the First cube is greater
(>) compared to the Temperature of the Second cube in state 1, while in state 2
they become equal (=). Third, the value history (right top and bottom) shows
the progression over states for the magnitude of quantities and their direction
of change. For instance, Flow has value Plus in state 1 and decreases (arrow
pointing down), and has value Zero in state 2 while being steady. Note that the
temperatures do not change their qualitative value (magnitude). However, the
Temperature of the First cube decreases in state 1, while the Temperature of the
Second cube increases. In state 2 both quantities have stabilized (δ = 0). Similar
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Medium: Flow
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Temperature (First cube) ? Temperature (Second cube) 
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Interval

1 2

  

First cube: Temperature

Interval

1 2

  

Second cube: Heat

Interval

1 2

  

Second cube: Temperature

Interval

1 2

  

Fig. 2. Simulation results for the model shown in Fig. 1

to the temperatures, the Heat of the First cube decreases and the Heat of the
Second cube increases in state 1, while both stabilize in state 2.

3 Method 1 - Modelling Practices Based Assessment

Liem [10] proposes a framework that distinguishes three categories for determin-
ing model quality. Verification based on model errors constitutes 50% of the
metric. It is based on the different aspects that modelers need to learn to repre-
sent: Structure (10%), Quantities (5%), Quantity spaces (5%), Causality (10%),
Inequalities and correspondences (10%) and Simulations (10%). The commu-
nicative value of the model constitutes 25% of the metric, and is based on:
Quality of the layout (5%) and Documentation (20%). The adequacy of the
model as a domain representation to fulfill a particular goal, determines the last
25% of the metric. It concerns: Correctness (10%), Completeness (10%), and
Parsimony (5%). The two validation categories (communicative value and ade-
quacy) are more subjective and rely on the expertise of the evaluator. The scores
in each subcategory reflect both the things that a learner has done correctly and
the errors that have been made. See for example the equation used to calculate
the structure score given below. The scoring results in a number, which can be
scaled to any grading system. The metrics of other subcategories are analogous.

(
Entity + ConfigurationDefinitions − StructureErrors

Entity + ConfigurationDefinitions

)
∗ 100 = Score (1)

4 Method 2 - Criterion Referenced Artifact Analysis

This method draws from the principles of artifacts analysis [11]. Three aspects
are assessed. Representational quality depends on the inclusion of objects,
variable quantities, processes and relations. Objects (e.g. animals, plants, air)
constitute the core ingredients of a model on which the rest is based. Variable
quantities (e.g. size, population, velocity, temperature) are the changing features
that characterize objects. Processes are mechanisms that cause change. In a
model explaining thermal equilibrium, ’heat flow’ is a process. Relationships
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are all the inter-relationships between the other three model ingredients. These
interrelationships can be causal, or none-causal. To analyse the representational
feature, all relevant model ingredients are identified. The model receives score 1
for objects if none of the expected objects are represented, score 2 if only some of
the objects are not included, and score 3 if all objects are represented. A similar
approach is taken for the other aspects. The interpretive function relates to
a models efficiency in providing an interpretation (score 0 if not present, 1 if the
story does not cover all elements, and 2 if the story is coherent and includes all
elements). A model has predictive power when it allows the formulation and
testing of predictions for new aspects of the phenomenon it represents (score 0
when it does not, 1 when it does but results are incorrect, and 2 when it allows
for correct predictions).

5 Deployment and Results

A course was given, which engaged learners in constructing and simulating con-
ceptual models, involving 17 learners (15-17 years old). Learners worked in six
groups of two or three learners. The learners were introduced to DynaLearn
and the subject matter details regarding cups containing water and ice, with
the goal for them to discover the difference between temperature and energy,
and the proper causal model relating these quantities (see Fig. 1). Each group
created a basic and a more advanced model.

Method 1. Table 1 shows the assessment of the basic models. To illustrate
the scoring, consider model 1 made by group 2 (m1g2) (Fig. 3). The entities
are not connected with configurations, hence two #29 structure errors (cf. [10]).
As a result the equation (Eq. 1) becomes (3 + 0 − 2)/(3 + 0) ∗ 10 yielding a
score of 3,3. Error #20 (incorrect type of causality) is also present; the model
included a P+ relationship from Flow (Medium) to Temperature (Cube one)
which should be reversed. Similarly, the I+ relationship from Temperature (Cube
one) to Flow (Medium) should be reversed. The result is 5, which reflects the
4 causal relationships minus the 2 incorrect divided by the total, (4 − 2)/4 ∗
10. Concerning the simulation (not shown in Fig. 3), the 10 reflects a correct

Cube one
Cube twoMedium

Temperature

Zpm
Maximum
Plus
Zero

Temperature

Zpm
Maximum
Plus
Zero

Flow

Zp
Plus
Zero

Fig. 3. Model 1 created by group 2 (m1g2)
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simulation with no dead ends (error #34). There are also no mistakes concerning
quantities, quantity spaces, and inequalities and correspondences (hence scores
5, 5, and 10, respectively). The model is complete (10) and parsimonious (5), but
not totally correct (7.9), as the quantity space of temperature is incorrect and
the model does not reach equilibrium, hence (14− 3)/14 ∗ 10, where 14 is the set
of model elements and 3 the aforementioned errors. The model layout is fine but
it lacks the correct documentation. The representational, interpretational, and
predictive power are not well presented (4.8 in total): ((0, 66 + 1+ 1 + 0, 2)/4+
0 + 0)/3 ∗ 20, with 0,66 for entities, 1 for quantities, 1 for processes, and 0,2 for
the relations, all divided by 4, as it received 0 for the description of the other
two elements.

Table 1. Score for model 1 using method 1 (m1g1 = model 1 of group 1, etc.)

Criteria m1g1 m1g2 m1g3 m1g4 m1g5 m1g6 Average

Structure 10% 8.3 3.3 4.3 5 10 3.3 5.7

Quantities 5% 5 5 3.3 5 2.5 2.5 3.9

Quantities spaces 5% 5 5 5 5 5 5 5

Causality 10% 7.5 5 10 10 0 0 5.4

Ineq. & Corres. 10% 10 10 10 10 0 10 8.3

Simulations 10% 0 10 10 0 0 10 5

Total Errors (50%) 35.8 38.3 42.6 35 17.5 30.8 33.3

Correctness 10% 7.1 7.9 8.9 8.9 7.5 7.9 8.0

Completeness 10% 10 10 10 10 8.3 10 9.7

Parsimonious 5% 4.7 5 4.6 4.2 3.8 5 4.5

Total adequacy (25%) 21.8 22.9 23.4 23.1 19.6 22.9 22.3

Layout of the model 5% 5 5 5 5 5 5 5.0

Documentation 20% 18.5 4.8 9.4 5.2 12.2 4.8 9.2

Total communication (25%) 23.5 9.8 14.4 10.2 17.2 9.8 14.2

Total score 81.1 71 80.5 68.3 54.3 62.5 69.8

Method 2. Table 2 presents the evaluation using method 2, focussing on:
representation, interpretation and prediction. Consider again model m1g2. It re-
ceived full points for the represented objects (Cube one, Cube two and Medium)
and processes (Flow). It received 1 point for variable quantities due to problems
identified earlier concerning quantity spaces of Temperature, and 1 point of rela-
tionships due to the errors identified concerning P+ relations. The interpretation
story for the model was semi-correct and received 1 point. The model explains
the phenomenon by equalizing Flow to Temperature difference, correctly identi-
fying that Flow negatively influences the Temperature of Cube one, and stating
that a greater temperature difference results in a greater Flow. It received 2
points for prediction as the model allows for changing initial values and observe
the results.
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Table 2. Score for model 1 using method 2

Model features m1g1 m1g2 m1g3 m1g4 m1g5 m1g6 Average

Representation 1.33

Objects 2 2 2 2 0 2 1.67

Variable properties 1 1 2 1 0 1 1.00

Processes 2 2 2 2 0 2 1.67

Relationships 1 1 2 2 0 0 1.00

Interpretation 1 1 2 2 0 0 1.00

Prediction 0 2 2 1 0 2 1.17

6 Conclusion

This paper contributes to the research area of modeling competence assessment.
It describes two complementary assessment methods. The obtained data indi-
cate that the two methods were successful in capturing the differences between
learners as well as between the subcategories of each assessment criterion.
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Abstract. While intelligent tutoring systems have been designed to teach free-
body diagrams, existing software often forces students to define variables and 
equations that may not be necessary for conceptual understanding during the 
problem framing stage. StaticsTutor was developed to analyze solutions from a 
student-drawn diagram and recognize misconceptions at the earliest stages of 
problem framing, without requiring numerical force values or the need to pro-
vide equilibrium equations. Preliminary results with 81 undergraduates showed 
that it detects several frequent misconceptions in statics and that students are  
interested in using it, though they have suggestions for improvement. This re-
search offers insights in the development of a diagram-based tutor to help prob-
lem framing, which can be generalized to tutors for other forms of diagrams.  

Keywords: intelligent tutoring system, statics tutor, free-body diagram.  

1 Introduction 

If you are one of the over 100,000 freshman engineering students in the U.S. [1], you 
will likely take a course in engineering mechanics called Statics. Streveler, et al.’s [2] 
elegant overview of conceptual learning within engineering notes that statics, along 
with thermal science and electrical circuits, is one of the most difficult domains for 
students. Chi [3] and Reiner, et al. [4] address the question of why some misconcep-
tions are particularly prevalent and difficult to correct. Their results suggest that partic-
ularly problematic misconceptions may be based on metaphors to physical phenomena 
that are similar but not quite right, e.g., thinking of electrical current as a fluid. Or, 
difficult misconceptions are based on phenomena with unobservable components or 
relationships. Computer simulations are mentioned as a potential solution. This paper 
describes the StaticsTutor, an attempt to provide students not only with the simulation, 
but also with interactive feedback that directly addresses conceptual challenges.  
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2 Related Work 

It is well established that engineering problem solving skills are critical for students to 
become practicing engineers. The most important stage of problem solving is problem 
framing, which occurs at the onset of problem solving in which students structure the 
problem using reasoning and metacognitive skills [5, 6]. When they know to do so, 
students typically attempt framing as the first step of the problem solving process [7, 
8], and Voss & Post [9] found that early framing leads to better success in later stages 
of the problem.  

A model-tracing tutor can be successful for well-defined problem-solving proce-
dures, but recognizing the student’s model for solving an open-ended engineering 
challenge is a work in progress. In the last a few decades, intelligent tutoring systems 
(ITSs) have steadily improved to make content more accessible to the average stu-
dents [10]. Tutors have been used both in class and for homework in mathematics, 
physics, computer programming, and other subjects [11, 12]. While these systems 
have been successful, very few explicitly tutor on underlying concepts, focusing in-
stead on helping students master the procedural skills. There have been exceptions, 
notably the effort with Andes to address conceptual problems [13]. StaticsTutor was 
designed with the intent to distract students as little as possible with numerical values 
and focus on the concepts of statics: equilibrium, resolution of forces into their ortho-
gonal components, and summation of moments about any moment axis consistently 
using the rules of vector multiplication. 

In the domain of intelligent tutors, we can expect more personalized feedback and 
conceptual teaching. Evaluations have shown that students who did their homework 
on Andes [12] learned significantly more than students who did the homework on 
paper. Whereas most tutoring systems have students enter only the answer to a prob-
lem, Andes has students enter several intermediate steps, such as drawing vectors, 
drawing coordinate systems, defining variables and writing equations while providing 
feedback after each step. When students ask for help in the middle of problem solv-
ing, Andes gives hints on what is wrong or on what kind of step to take next.  

There are some other existing diagram-based tutoring systems. COLLECT-UML 
[14] supports individual and collaborative learning of UML class diagrams. EER-
Tutor [15] helps learning and practicing principles of Enhanced Entity-relationship 
modelling. Free-Body-Diagram Assistant [16] provides students opportunities to con-
struct FBDs for the human body and receive constructive feedback in biomechanics. 
CogSketch [17], which is a sketch-based educational software application, has dem-
onstrated the powerful ability to understand sketched shapes and recognize them even 
after rotation or change of position. Labeling provides a rapid way to match instructor 
and student components. However, in engineering statics, many problems ask the 
student to define one or more forces without requiring specific labels on those forces, 
so matching by labels has some limitations. Mechanix [18] is a free-body diagram 
tutoring system based on free-hand drawing recognition. A checklist area is shown 
with specific instructions to guide students in order to finish the problem, However, a 
typing mode is still needed to check the value of each force. Unlike the existing free 
body diagram tutors, StaticsTutor addresses conceptual understanding at the problem 
framing stage. 
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3 StaticsTutor Interface and Architecture 

The tutor uses a web-based drawing interface, XDraw, developed internally by author 
Jackman using the Microsoft Silverlight framework. A backend database saves stu-
dents diagrams. StaticsTutor communicates with XDraw via a TCP socket between 
the two servers. Currently, authoring is based on xml files on the tutor server. In the 
future, a GUI will be implemented to serve as an authoring tool and interface. XDraw 
supports basic drawing objects such as points, lines, rectangles and vectors as well as 
free-hand drawing. A coordinate system is an object that is defined by the drawing 
tool as well. Students can rotate the coordinate system to facilitate solving the prob-
lem so that the angle of the forces would be adjusted based on the new axes.  

The drawing can be designated as scaled or un-scaled. A scaled drawing allows the 
student to set up a grid scale for distance and the magnitude and units of force vectors. 
Also, a measuring tool is provided to measure distance between any two points. The 
scaled mode can be applied to vector magnitude check and distance measurement. 
The un-scaled mode provides more flexibility in creating a free-body diagram at the 
problem framing stage. For this study, students performed problems using the un-
scaled mode.  

The overall architecture of StaticsTutor includes 5 parts: domain model, expert so-
lution, evaluation sequence, domain-wide check functions and student model. It has 
been used for a tutor in thermo-dynamics courses as well, the ThermoCycleTutor [19, 
20], which indicates the generality and feasibility to different domains. 

The problem solution, created by an expert instructor, contains a correct diagram 
and appropriate force values. The tutor can designate the student correct if the stu-
dent's diagram is conceptually equivalent to the problem solution even if not identical. 
E.g., for a pin, the force could be pulling from below or pushing from above and both 
would be correct. Similarly, point B in Figure 1 must be between A and C, and not 
too close to either side, but its exact position is not important. The problem solution 
contains the number of forces reacting at each point, and the angle of each force. 
Magnitudes of forces are not represented because this approach is focused on concep-
tual structure. The tutor can accept all the possible correct angles. A tolerance value 
for the angles can be added by the solution author to make the tutor more accepting of 
student vectors that are not exact, e.g., 10 degrees. Also, the tutor gives students the 
freedom to draw either resultant forces or resolved forces in a selected orthogonal 
coordinate system.  

StaticsTutor's problem evaluation sequence evaluates the free-body diagram in a 
number of steps inspired by the three overall stages of problem framing defined by 
several authors [21, 22]. First, the learner defines the stated problem. Second, the 
learner reflects on the stated problem, which involves a) a review of his or her per-
sonal assumptions about the problem situation, b) identification of a clear interpreta-
tion of the problem prior to considering the possible solution and c) identification of 
preexisting solutions embedded in the initial problem situation. Third, the learner 
reframes the problem if necessary.  

In the example problem in this paper (Figure 1), the StaticsTutor problem evalua-
tion sequence contains the following eight steps. A beam (1 meter) is attached to a 
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wall using a pin (point A) and a rope (point B). An external force (500 Newtons) act-
ing at point C is pushing downward on the beam. The weight of the beam can be neg-
lected since the problem statement does not indicate otherwise. Initially, the tutor 
takes three steps to consider if the student has clear recognition of the stated problem, 
which contains check of whether all non-force components are present, and a check of 
the given forces: Step_1 “if a beam is present and point A, B and C are present and in 
correct relative location,” Step_2 “if the number of forces at point C is correct,” and 
Step_3 “if the angle of force at point C is correct.” These three steps correspond to the 
first stage of problem framing, defining the problem. Each step functions by calling 
one or more of the domain-wide check functions. E.g., a check function that accepts a 
diagram point and the number of expected forces at that point per the problem solu-
tion might look like numForcesCorrect(point, expectedNumForces) and 
return a True or False. More detail on check functions provided below.  

The tutor's next steps (4-7) focus on stage two of problem framing, whether the 
student has a clear interpretation of the problem. It contains Step_4 “if the number of 
forces at point A is correct,” Step_5 “if the angle of the forces at point A are correct,” 
Step_6 “if the number of forces at point B is correct,” and Step_7 “if the angle of the 
forces at point B are correct.” If any of the angles of the student diagram do not match 
the problem solution, the tutor will offer problem-specific feedback, such as, "Please 
check the angle of the force at point A." Also, the tutor evaluates the student's inter-
pretation of the problem by evaluating the diagram components with a pool of do-
main-wide misconceptions. If the pin (point A), for example, does not have both its 
vertical and horizontal components represented, then the student may not understand 
that a pin exerts forces in both directions, and would receive the misconception feed-
back for pins. There are similar misconception feedback checks for ropes, hinges, and 
rollers. Domain-wide misconception feedback contains text and pictorial explanations 
created by co-authors Starns and Faidley, who teach engineering statics, and has been 
used in multiple problems. 

The last stage is to check student’s reframing of the problem. To check for refram-
ing, StaticsTutor looks for extra information that may have drawn initially before the 
student recognized the type of problem appropriately. Step_8 checks for anomalies 
such as a force that is not associated with any point or line, or an extra point that is 
not needed. Each of the eight steps needed to be satisfied for the problem to be  
complete.  

Note that the eight steps of the problem evaluation sequence described above were 
specific to the particular problem posed, although the evaluation functions they used 
were the domain-wide check functions. Therefore, problem authors can change the 
evaluation sequence based on the needs of the problem or based on different pedagog-
ical preferences, though most likely the sequence will still correspond to the three 
stages of problem framing. For example, the check for extra information might be 
removed if the instructor is not interested in this sort of evaluation. Also, some ex-
perts do not require students to draw the beam if the beam’s weight is negligible, in 
which case they might chose to remove the beam check.  

It is important to describe the check functions in more detail because they support 
StaticsTutor's approach that is agnostic of force values, enabling the more generic 
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problem framing analysis. A pool of domain-wide check functions is available to the 
problem evaluation sequence. This pool contains general checks applicable to all 
problems, such as check the angle of a force, check the number of forces attached to a 
point. Check functions were designed in three levels to handle forces. First, a force 
can be directly accessed via its label, if it has been predefined by the problem state-
ment, i.e., F1, and the student has labeled it. Second, a force can be indirectly accessed 
via its contacting point, e.g., a pin, from a heuristic spatial relation check of its head 
and tail within a tolerance. However, if its head and tail are touching two different 
points, this force would be assigned to both points. StaticsTutor cannot resolve this 
ambiguity issue for now, which also would be difficult to resolve for a human instruc-
tor. In most situations, the name of the contacting point is given in the problem state-
ment. Students have the flexibility to draw forces attached to contacting points and 
name the forces to their liking. By this means, StaticsTutor does not need to enforce 
labeling of the forces in order to ensure a match with the expert solution. Third, a 
force can be attached to other objects, e.g., a line, where it might represent the weight 
of a beam. StaticsTutor gives point association a higher priority than other object 
association. So a force is considered as object-associated only if it is not attached to 
any point.  

Lastly, a model of the student is constructed for the purposes of tracking student 
performance, recording the student’s misunderstandings and facilitating the instruc-
tor’s analysis. The student model contains: 1) the series of student drawings, each of 
which is automatically saved when the student sends a request for feedback; 2) the 
feedback message generated by the tutor; and 3) answers to a post-survey that is  
administered using third-party software.  

4 Preliminary Evaluation 

StaticsTutor was tested on 81 engineering undergraduates in Fall 2013 who were 
enrolled in first-year mechanical engineering courses. Each student completed a stat-
ics problem with StaticsTutor. While a complete analysis of results is beyond the 
scope of this paper, it is worth noting that the categories of errors (Table 1) corres-
pond with common misconceptions elicited from the instructor about hinge and rope 
elements, which validates our tutor design. 24% of students solved the problem com-
pletely before their first request for feedback and the remaining students' had request 
counts with a mean of 6.8 and median of 4. Their times to complete the problems 
were similarly distributed with a maximum time of 44 minutes, mean of 7.8 minutes, 
and median of 3.8 minutes. In total, 79% of students completed the problem, despite 
their initial misconceptions.  

Table 1. Categories of Tutor Feedback Across 714 Requests (n=81; students could err in 
multiple categories) 

Basics 
missing 

Forces at 
C missing 

Hinge & 
Rope 

Rope 
Issue 

Hinge 
Issue 

Extraneous 
Info 

Fully 
Correct 

25.5% 2.8% 15.7% 16.1% 18.9% 1.4% 19.6% 
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5 Conclusions and Future Work 

As most existing ITSs require students to define variables and equilibrium equations 
that may not be necessary during the problem framing stage, this initial investigation 
of StaticsTutor provides a guideline on how ITSs could help students at the initial 
stage of problem solving at a conceptual level, with little distraction on problem-
specific input. This architecture could easily apply to domains beyond diagram tutors. 
Its evaluation architecture is based on the three subskills in problem framing: 1) defin-
ing, 2) reflecting and 3) reframing the problem. It can evaluate a free-body diagram 
without requiring labeling of the forces, and can detect misconceptions based on each 
problem component. The architecture also allows students the option to either draw 
resultant forces or decompose them using a specified coordinate system. Future work 
will integrate the ability to customize feedback based on previous errors made by an 
individual student, as well as evaluate the impact of StaticsTutor on classroom as-
sessments, a statics concept inventory, and other learning measures.  
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Abstract. In order to build coherent textual representations, readers use 
cognitive procedures and processes referred to as reading strategies; these 
specific procedures can be elicited through self-explanations in order to 
improve understanding. In addition, when faced with comprehension 
difficulties, learners can invoke regulation processes, also part of reading 
strategies, for facilitating the understanding of a text. Starting from these 
observations, several automated techniques have been developed in order to 
support learners in terms of efficiency and focus on the actual comprehension 
of the learning material. Our aim is to go one step further and determine how 
automatically identified reading strategies employed by pupils with age 
between 8 and 11 years can be related to their overall level of understanding. 
Multiple classifiers based on Support Vector Machines are built using the 
strategies’ identification heuristics in order to create an integrated model 
capable of predicting the learner’s comprehension level. 

Keywords: Self-Explanations, Reading Strategies, Comprehension Prediction, 
Identification Heuristics, Support Vector Machines. 

1 Introduction 

In order to build textual coherence and to achieve a consistent representation of the 
discourse, readers need to transcend beyond what is explicitly expressed by 
employing cognitive procedures and processes, referred to as reading strategies. 
Those procedures are elicited through self-explanations [1]. Research on reading 
comprehension has shown that expert readers use specific strategies to on-line 
monitor their reading, thus being able to know at every moment their level of 
understanding. Moreover, when faced with a difficulty, learners can call upon 
regulation procedures, also part of reading strategies [2]. In this context, 
psychological and pedagogical research has revealed that people tend to understand 
better a text if they try to explain themselves what they have read [3]. Starting from 
these observations, techniques such as SERT (Self-Explanation Reading Training) [4], 
were developed to support students better understand texts. 
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Reading strategies have been extensively studied with adolescent and adult readers 
using the think-aloud procedure that engages the readers to self-explain what they 
understood so far at specific breakpoints while reading. Our study is focused on 
comprehension assessment for an audience more rarely studied, primary pupils, 
whose guidance plays a central role. As previous research suggests, self-regulation 
can be enhanced through the use of metacognitive reading strategies [5]. Pupils tend 
to better understand a given text by employing these specific mechanisms [6]. Also, 
this paper represents a continuation of previous research [7, 8], with a refined set of 
heuristics for best matching human annotations, accompanied by a prediction 
mechanism based on Support Vector Machines [9] in order to estimate pupil’s 
comprehension level of a given text. 

The following section presents an overview of the evaluation of reading strategies, 
their categorization, and other similar automated systems that have been developed to 
identify the employed reading strategies. The third section is centered on the 
description of the used heuristics, while the fourth section introduces the classifier 
that combines the previously identified reading strategies and predicts the learner’s 
comprehension level. Afterwards, the fifth section encompasses the performed 
validations for testing the system’s accuracy, while the last section is focused on 
conclusions and future improvements. 

2 Overview of the Assessment of Reading Strategies 

Expert readers frequently make use of four types of reading strategies in order to 
achieve a deep understanding from the texts they read [4]. Paraphrasing enables 
readers to express what they understood from the explicit content of the text and can 
be considered the first and essential step in order to achieve a coherent representation. 
Text-based inferences, consisting predominantly of causal and bridging strategies, 
build explicit relationships between two or more textual segments of the initial text. 
On the other hand, knowledge-based inferences create relationships between the 
information from the text and the reader’s personal knowledge and are essential to 
create the situation model [10]. Control strategies refer to the actual monitoring 
process, when readers explicitly express what they have or have not understood. 

Nevertheless, if we want students to be assisted while reading, one human expert 
(e.g., a teacher) can take care only after a small number of them, which makes it 
impossible for such training techniques to be used on a large scale. For example, this 
is one of the major problems of MOOCs (Massively Online Open Courses) in which, 
due to the previous constraints, assistance is frequently provided by peer students, 
increasing nevertheless the risk of making mistakes [11, 12]. Moreover, assessing the 
content of a verbalization is a demanding and a subjectivity-laden activity, which can 
be assisted by computer-based techniques. These are the main motives behind the idea 
of using a computer program instead of, or as support for, a human tutor. 

Initial experiments were conducted by McNamara and her colleagues [13] and 
iSTART [14] can be considered the first implemented system that addresses self-
explanations [15]. It has various modules that explain the SERT method to the 
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students, one that shows them how to use those techniques using a virtual student, and 
another training module that asks students to read texts and give verbalizations, 
evaluates them and provides an appropriate feedback. iSTART divides verbalizations 
into four main categories: irrelevant, paraphrases, verbalizations that use knowledge 
previously found in the text and verbalizations which use external knowledge from 
the students’ experience. It is easier to automatically identify paraphrases and 
irrelevant explanations, but it is more difficult to identify and evaluate verbalizations 
that contain information coming from students’ experience [16]. 

We conducted an experiment [6] for analyzing the control and the regulation of 
comprehension through reading strategies. Pupils (3rd–5th grade, 8–11 years old) were 
given the task to read aloud two French stories and were asked at predefined moments 
to self-explain their impressions and thoughts about the reading materials. The self-
explanations were coded according to McNamara's [4] scheme. The results of this 
study support the view that pupil’s self-explanations are an adequate way to access to 
their reading strategies. The sole exception consists of prediction strategies, which 
were scarcely used in comparison to McNamara’s participants, perhaps due to the age 
of the pupils. Initial and partial automated results based on the previous study were 
presented in [7], and we present in this paper data from a larger sample, using fine-
tuned heuristics and an automatic classifier for predicting comprehension. 

3 Reading Strategies Identification Heuristics 

In terms of reading strategies, our aim was to create automated extraction methods 
designed to support tutors at identifying various strategies employed by pupils that are 
best aligned with the annotation categories: 1/ paraphrasing, 2/ text-based inferences 
consisting of causality and bridging, 3/ knowledge-based inferences or elaboration 
and 4/ monitoring or control [6]. A clear demarcation between causal inferences and 
bridging had to be established within our automated system due to underlying 
approaches and computational complexity, although causal inferences can be 
considered a particular case of bridging, as well as a reference resolution. In addition, 
we have tested various methods of identifying reading strategies and we will focus 
solely on presenting the refined heuristics that provided in the end the best overall 
human–machine correlations. 

In ascending order of complexity, the simplest strategies to identify are causality, 
with markers like “parce que” (because), “pour” (for), “donc” (thus), “alors” (then), 
“à cause de” (because of) and control, with markers like “je me souviens” (I 
remember), “je crois” (I believe that), “j’ai rien compris” (I haven’t understood 
anything) for which cue phrases based on pattern matching techniques have been 
used. As particular refinement for causality, all occurrences of the keywords at the 
beginning of a verbalization have been discarded because the strategy needs to create 
an inferential link between two adjacent textual segments, out of which the first is 
lacking since it is the beginning of a verbalization. In this particular case, the use of 
causality patterns indicates a lacunar pupil formulation frequently observed at their 
age. In terms of control, besides the verification of specific cue phrases, we added a 
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check to verify whether the pattern exists in the sentences within the original text, in 
which case we would be dealing with a paraphrase rather than a control statement. 

As a second stage of complexity, paraphrases, that in the manual annotation were 
considered mere repetitions of the same semantic propositions by human raters, were 
automatically identified through lexical similarities. More specifically, words from 
the verbalization were considered as paraphrased words if they had identical lemmas 
or stems, or were synonyms extracted from lexicalized ontologies – WordNet [16] or 
WOLF [17] – with words from the initial text. Adjacent words from pupil’s self-
explanations, identified as paraphrased concepts were grouped into paraphrase 
segments in order to highlight contiguous zones highly referential to the initial text. In 
addition, if more than a predefined percentage of relevant words from a sentence from 
the initial text are paraphrased within the verbalization, that specific sentence is 
tagged as a paraphrasing segment. The previous percentage was empirically set after 
performing multiple iterations with incremental values, whereas relevant words are 
obtained after stop words elimination and after selecting solely dictionary words. 

In the end, the strategies most difficult to identify are knowledge inference and 
bridging, for which semantic similarities have to be computed. An inferred concept is 
a non-paraphrased word for which the following three semantic distances were 
computed: the highest similarity to another word from the initial text (expressed in 
terms of semantic distances in ontologies, Latent Semantic Analysis and Latent 
Dirichlet Allocation) [7] and the relevance of both words to the textual fragments in-
between consecutive self-explanations expressed as semantic cohesion. The latter 
distances had to be taken into consideration for better weighting the importance of 
each concept, with respect to the whole text. In the end, for classifying a word as 
inferred or not, a weighted sum of the previous semantic similarities is computed and 
compared to a minimum imposed threshold which was experimentally set at 0.4 for 
maximizing the precision of the knowledge inference mechanism. 

As bridging consists of creating connections between different textual segments 
from the initial text, cohesion was measured between the verbalization and each 
sentence from the referenced reading material [7]. Semantic similarity was measured 
in-between the current verbalization and the two previous textual blocks from the 
initial text. In order to relate to the overall cohesion between the verbalizations and 
what was initially stated within the reading material, the imposed similarity threshold 
for tagging a sentence as being a bridged element uses a cohesion value that exceeds 
the mean plus standard deviation of all previous similarity measures performed on all 
self-explanations of a given pupil. Similarly to paraphrases and for best adapting to 
the manual annotation process, adjacent sentences from the initial text tagged as being 
bridged within the verbalization are grouped into a bridging segment. Moreover, if a 
sentence is considered to be a paraphrasing segment due to a high density of 
paraphrased words, that sentence is not taken into consideration while defining the 
final bridging segments. To better highlight the identification mechanisms, Fig. 1 
depicts with bold bridged sentences from the initial text with verbalization 2 that 
exceed the identified threshold and that are not marked as paraphrases. In the end, 
four bridged segments are automatically determined: A3, B1 together with B2 due to 
adjacency within the same paragraph, C1 and C3 from the later textual block. 
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Fig. 1. Bridging identification 

4 Combining Automatically Identified Reading Strategies for 
Predicting Comprehension 

All the previous reading strategies and their corresponding identification heuristics 
can be viewed as attributes that describe the learner’s comprehension level. In order 
to predict the comprehension level of each learner based on the used reading 
strategies, post-tests were administered to each pupil and comprehension scores were 
manually determined using these tests. Therefore, we found it appropriate to use a 
classifier that accepts as inputs the number of used reading strategies and predicts a 
comprehension class depicting the reader’s understanding level expressed as a 
comprehension level class estimate. 

Similar to the textual complexity problem for which Support Vector Machines 
(SVMs) [9] have been proven to be the most relevant [18], we trained multiple SVMs 
for determining the appropriate comprehension class. A one-versus-all approach 
implementing the winner-takes-all strategy is used to deal with the problem of 
multiple SVM returning 1 for a specific text (the classifier with the highest output 
function assigns the class). As specific optimizations, an RBF kernel with degree 3 
was selected and a Grid Search method [19] was enforced to increase the 
effectiveness of the SVM through the parameter selection process for the Gaussian 
kernel. Exponentially growing sequences for C and γ were used, and each 
combination of parameter choices was checked using the testing corpora; in the end, 
the parameters that generated the best precision were selected. 
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5 Validations of the Identification Heuristics and of the 
Comprehension Prediction Model 

We ran an experiment with 82 pupils with age between 8 and 11 years, uniformly 
distributed in terms of their age, who had each to read aloud two French stories of 
about 450 words (The Cloud Swallower and Matilda). During their lecture, pupils had 
to stop in-between at five, respectively six predefined markers, and explain what they 
understood up to that moment. Their explanations were first recorded and transcribed, 
then annotated by two human experts (PhD in linguistics and in psychology), and in 
the end categorized according to the imposed annotation scheme. Nevertheless, when 
looking at manual assessments, discrepancies between evaluators were identified due 
to different understandings and perceptions of pupil’s intentions, expressed within 
their self-explanations; all disagreements were solved individually by mediation for 
each self-explanation. In addition, predefined rules and patterns were used to perform 
automatic cleaning in order to process the phonetic-like transcribed verbalizations. 

 

Fig. 2. Visualization of automatically identified reading strategies 
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Fig. 2 depicts the main interface of our developed system in which the grey 
sections represent the pupil’s self-explanations, whereas the white blocks represent 
paragraphs from the read story. All strategies are highlighted within the self-
explanation with a specific color encoding: control (cyan blue), causality (purple), 
paraphrasing (green), inferred concept [*] (yellow) and bridging (red) with a clear 
demarcation of the textual segments from the reading material comprising of inter-
linked cohesive sentences. In addition, Fig. 2 also depicts in the last column the 
cohesion measures normalized in [0; 1] with previous paragraphs from the story. 

Three variables were required for fine-tuning the higher-level reading strategies: 
bridging requires a minimum semantic cohesion (Mincoh_bridging) and a maximum 
percentage of words for not considering a sentence as paraphrased (Maxparaphrase), 
while knowledge inference uses only a minimum similarity threshold (Minsim_KI). Our 
system automatically determines the most suitable values for maximizing the overall 
Pearson correlations and F1-scores as measures of outputs’ correctness with regards 
to the manual annotations (see Table 1). As expected, paraphrases, control and 
causality occurrences were much easier to identify than information coming from 
pupils’ experience [20]. Moreover, our experiments demonstrate that although the 
variables for the two texts have similar optimal values, there are rather high 
fluctuations in the accuracy of the reading strategies’ identification, therefore 
highlighting the specificities of each text and the intrinsic subjectivity of the analysis. 

Table 1. Accuracy of the automatically identified reading strategies 

Statistic measure Paraphrasing Text-based Inference 
(causality and bridging) 

Knowledge-
based Inference 

Control 

Text 1: The Cloud Swallower 
Mincoh_bridging = .40; Maxparaphrase = 60%; Minsim_KI = .33 

Pearson correlation .64 .55 .41 .84 
Precision .64 .79 .50 .76 
Recall .99 .83 .94 .63 
F1 score .78 .81 .65 .68 

Text 2: Matilda 
Mincoh_bridging = .45; Maxparaphrase = 65%; Minsim_KI = .33 

Pearson correlation .56 .69 .48 .90 
Precision .73 .71 .34 .86 
Recall .99 .94 .97 .70 
F1 score .84 .81 .50 .77 

All verbalizations together, from both texts 

Mincoh_bridging = .4; Maxparaphrase = 65%; Minsim_KI = .33 
Pearson correlation .64 .60 .35 .89 
Precision .69 .74 .47 .83 
Recall .99 .90 .87 .68 
F1 score .81 .81 .61 .74 

After fine-tuning the identification heuristics, we opted to create three 
comprehension classes for predicting the learner’s comprehension level with a 
distribution of 30%, 40% and 30% of all pupil scores sorted in ascending order and to 



 Are Automatically Identified Reading Strategies Reliable Predictors 463 

 

apply 3-fold cross-validations for the SVM training process. The resulting average 
agreement between automatic predictions and the class assigned from the post-test 
scores was approximately .78 in most runs (see Table 2). Due to a rather limited 
corpus, the prediction accuracy oscillates between different training sessions, with a 
minimum of .66. We also noticed a rather small differentiation between the first and 
the second class, as well as conflicting instances of pupils with a high number of used 
reading strategies, but pertaining to opposite comprehension classes. The previous 
contradictions in terms of the number of used reading strategies in opposition to 
pupils’ comprehension levels, corroborated with rather small differentiations between 
adjacent classes, led to a rather low prediction accuracy of the second class. 

Table 2. Comprehension prediction based solely on the four automatically identified reading 
strategies 

Verbalizations pertaining to Agreement 
– Class 1 – 

Agreement 
– Class 2 – 

Agreement 
– Class 3 – 

Average 
agreement  

Text 1: The Cloud Swallower 1 .33 .67 .67 
Text 2: Matilda .67 .33 1 .67 
Both texts 1 .33 1 .78 

Nevertheless, results are encouraging based on the limited number of training 
instances, the reduced number of classification attributes and the fact that a lot of 
noise existed within the transcriptions. From this point, it becomes clear that external 
factors should be enforced in order to increase the accuracy of the prediction and to 
create a more comprehensive view, as the diversity and the richness of the strategies a 
reader carries out depend on many factors, either personal (proficiency, level of 
knowledge, motivation), or external (textual complexity). 

In order to prove the feasibility of the previous statements, we added a simple 
factor already computed during the identification process: the average value of 
cohesion between each verbalization and the corresponding paragraphs from the 
initial text. This measure emphasizes the link between what was initially stated and 
the learner’s understanding or personal perspective. As expected, the results from 
Table 3 highlight an increase in the overall prediction accuracy. 

Table 3. Comprehension prediction based on the four heuristics plus the average cohesion 
value added as an attribute for classification 

Verbalizations pertaining to Agreement 
– class 1 – 

Agreement 
– class 2 – 

Agreement 
– class 3 – 

Average 
agreement  

Text 1: The Cloud Swallower 1 .33 1 .78 
Text 2: Matilda 1 .67 .67 .78 
Both texts 1 .67 1 .89 

In the end, notable improvements in terms of the initial experiments presented in 
[7] can be observed: 1/ the use of 8 times more participants, each self-explaining two 
texts instead of only one; 2/ an important increase in the identification accuracy for 
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paraphrases, knowledge and text-based inferences; 3/ although bridging taken 
individually has still a low correlation which indicates that the human annotated 
bridging strategy is not aligned with the identification heuristics, the use of the new 
class of text-based inferences demonstrates that the integrated perspective of bridging 
and causality taken together is more cognitively relevant and representative with 
regards to the manual annotations; 4/ the use of Support Vector Machines for 
predicting the learner’s comprehension level. 

6 Conclusion and Future Research Directions 

Our aim consists of supporting tutors and our approach emphasizes the benefits of a 
regularized and deterministic process of identification as a viable alternative to the 
subjectivity-laden task of manual annotation. Moreover, the performed validations 
confirm that reading strategies are related to the pupil’s comprehension level, but also 
highlight the need to add more factors, potentially inspired from textual complexity 
measures [21, 22] or essay scoring techniques [23] in order to increase the accuracy of 
the predictions.  

As the comprehension scores are not global, but related to the read texts subject to 
expressing one’s meta-cognitions, we can state that reading strategies can be used to 
predict comprehension based on the overall experimental settings. Our next aim 
consists of deploying and using our system in classroom settings to analyze student’s 
reading strategies and to infer possible comprehension problems in near realtime. 
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Abstract. Education research has identified strategic flexibility as an
important aspect of math proficiency and learning. This aspect of student
learning has been largely ignored by Intelligent Tutoring Systems (ITSs).
In the current study, we demonstrate how Hidden Markov Modeling can
be used to identify groups of students who use similar strategies during
tutoring and relate these findings to a measure of strategic flexibility. We
use these results to explore how strategy use is expressed in an ITS and
consider how tutoring systems could integrate a measure of strategy use
to improve learning.

1 Introduction

Strategic flexibility in arithmetic problem solving is both an important reflec-
tion of knowledge [1,2] and a recognized predictor for future learning [3,4]. The
National Mathematics Advisory Panel [5] lists flexibility along with accuracy
and speed of problem solving as the core defining features of a student’s math
proficiency. Despite the importance placed on flexible problem-solving, work on
Intelligent Tutoring Systems (ITSs) has traditionally focused on the accurate
completion of problem steps rather than on the strategies used by students to
complete them. The current study identifies differences in strategy use within
an ITS, relates these differences to a pencil and paper measure of strategic flex-
ibility, and explores how ITSs may be designed to support strategic flexibility.

Strategic flexibility refers to a student’s knowledge of multiple strategies and
their ability to choose the best of those strategies for a given problem [6,4].
Measures of strategic flexibility correlate with both the student’s procedural
and conceptual knowledge [1,7,4]. Schneider et al. [2] found a bidirectional rela-
tionship between procedural and conceptual knowledge and hypothesized that
these two types of knowledge improve strategic flexibility in an iterative fash-
ion. Students who have high strategic flexibility are more likely to adapt their
strategies, transferring their knowledge to solve new problems [8,4]. Conversely,
students who lack strategic flexibility struggle to solve more difficult or unfa-
miliar problems that require the use of different strategies [6]. An active area of
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research concerns developing pedagogical methods to foster strategic flexibility
and understanding the impact of strategic flexibility on problem solving.

Studies of ITSs have shown their effectiveness for developing students’ pro-
cedural and conceptual knowledge in math problem solving [9,10,11]. Little re-
search, however, has explored the impact of ITSs on strategic flexibility. Unlike
the traditional studies of strategic flexibility, which use pencil and paper, ITSs
confine students to working within the structure of the interface. This raises the
question of if and how different strategies present themselves in rigid tutoring
interfaces. One study focuses on the effects of allowing strategic flexibility within
a tutor [12]. Measuring the number of times students made variations from the
main strategy path, Waalkens et al. found that students did not take advan-
tage of the flexibility permitted by the interface. Without instructing students
to solve problems using multiple strategies, the likelihood of a student using
a divergent strategy is low. Previous research on strategic flexibility has found
that although students may be aware of many strategies, they often limit their
choice to the most efficient one when problem solving [6]. Acknowledging these
earlier findings, we identify two ways to improve research on strategic flexibil-
ity within ITSs. First, researchers must actively encourage the use of different
strategies if they wish to observe student’s strategic flexibility. Second, as we will
discuss, researchers should use more sophisticated methods for modeling strate-
gies and detecting how they are used. Introducing these changes to ITS research
of strategic flexibility will make it possible for researchers to explore the effect of
strategically focused interventions on how well students solve future problems.

Outside of the math domain there has been some work on developing more
complex methods for assessing strategy from the choices students make in ITSs.
Piech et al.[13] looked at differences in the paths that introductory programmers
take when completing programming assignments and found that strategic differ-
ences in two homework assignments at the beginning of the semester predicted
students’ midterm grades. These sequences or paths can be seen as a reflection
of the strategies that a student employs during problem solving. Additionally,
the area of research on meta-cognitive hint seeking identifies the strategies stu-
dents use when unable to solve problems [14,15]. Using a model of hint seeking,
Roll et al. [16] found that recognizing and intervening when students are using
bad hint seeking strategies improves learning. Work from these different areas
demonstrates that strategy use can be identified within a tutoring system, and
also suggests that these results can identify opportunities for tutoring.

1.1 The Current Study

The current study bridges research on strategic flexibility in mathematics and
work identifying strategy use in ITSs. With evidence supporting the value of
strategic flexibility in math, it is important that tutoring systems develop ap-
proaches for understanding and supporting strategic flexibility. In the current
study, we use Hidden Markov Modeling (HMM) to cluster participants into
strategically distinct groups. We present evidence supporting the hypothesis that
these groups differ on a measure of strategic flexibility collected using the pencil
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and paper test developed by Rittle-Johnson and Star [7]. Furthermore, we use
this HMM method to explore how flexibility presents itself in a math ITS as
differences in tutor behavior. We conclude with recommendations concerning
how ITSs can be built to measure and encourage flexible strategy use.

2 Materials and Methods

We used an observational design in which all participants completed the same
tutor curriculum. Students completed a 20-minute pencil and paper math test to
assess proficiency with algebraic problem solving and strategic flexibility. A week
after taking this test, students spent an hour and a half in the school computer
lab working with an algebra ITS.

2.1 Participants

There were 112 eighth and ninth grade Algebra I students (72 eigth grade; 57
females; mean age 13.6, SD 1.2) who took a math test and participated in the
tutoring. There were seven eighth grade classes (3 advanced and 4 regular) and
four ninth grade classes (2 regular and 2 remedial). All students attended the
same large, urban public school. The school consisted of 60.6% Caucasian, 33.5%
African American, and 1.3% Asian. Approximately 52% of students qualified for
free or reduced lunch.

There were four teachers whose classes participated in this study. Each teacher
taught the same grade and advancement level to students in their class. All four
teachers used the same algebra curricula, which was supplemented with work
on the ALEKS online math program. All classes had previously covered the dis-
tributive property and solving multi-step equations. Human subjects’ approval
and consent from the school was obtained prior to conducting the study.

2.2 Materials

Assessment. We used a modified version of the Rittle-Johnson and Star [7]
assessment, which assesses mathematical knowledge (both conceptual and pro-
cedural) and strategic flexiblity for one- and two-step algebra equation problem

Table 1. An example of the two strategies for solving the two problem types. Both
strategies are correct, but the green strategies are those biased by the tutor.

Divide Problem Divide Problem Multiply Problem Multiply Problem

Distribute Strategy Both Sides Strategy Distribute Strategy Both Sides Strategy

2(3x+ 5) = 6 2(3x+ 5) = 6 (8y−4)
2

= 6 (8y−4)
2

= 6

2 ∗ 3x+ 2 ∗ 5 = 6 2(3x+5)
2

= 6
2

(8y)
2

− 4
2
= 6 2 ∗ (8y−4)

2
= 6 ∗ 2
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solving. We implemented only the procedural skill and strategic flexibility por-
tion of the assessment. The test of strategic flexibility assessed three features;
the ability to generate, recognize, and evaluate multiple strategies. Although we
followed the organization of this assessment, we modified many of the math prob-
lems tested in this assessment in order to better accommodate an older student
population and focus more directly on the problems being studied within the tu-
toring system. The student’s procedural accuracy was calculated by percentage
of problems correctly solved.

Problem Types. Work on strategic flexibility has found that while students
may be aware of many strategies they will often learn to use the most efficient
strategy for a specific problem [4,6]. To encourage the use of different strategies
we used 6 variations of the linear equation. Students saw 6 examples of each type
of problem. For this study we collapsed the 6 problem types into two categories;
“divide problems,” in which the problem can be solved by dividing both sides
by a coefficient, and “multiply problems,” in which the problem can be solved
by multiplying both sides by a coefficient (Table 1). While both of these prob-
lem types can be solved using either of two correct strategies, “distribute” or
“both sides”, we took several actions to bias strategy use. First, the tutor hints
recommended different strategies for the two problem types. Table 1 displays
the recommended strategies in green. Second, distribute required fewer tutor ac-
tions than the both sides strategy for divide problems, while the both strategies
required the same number of actions for multiply problems. Finally, if students
chose their strategy to avoid large fractions, this would promote the use of the
multiply strategy for the multiply problems. This last decision-making heuristic
applies more for problems that require student calculation.

Intelligent Tutoring System. We used a modified version of Cognitive Tu-
tor [11]. The tutoring interface directs students to select the step the computer
should take to solve the problem. Students can choose between actions to “trans-
form” or “solve” the problem. The transform command directed the computer
to take actions to change the structure of the equation. Table 1 shows how
the transformation of “distribute,” “multiply both sides” or “divide both sides”
would change the equation. Solve actions instruct the computer to perform var-
ious calculations, such as combining like terms. This is an important feature of
the tutor because students must indicate each step taken to solve the problem
rather than combining steps in their calculations.

2.3 Data Analysis

With strategic flexibility so closely related to procedural skill [1,2], the inclusion
of off-task strategy paths would bias our clustering method to cluster based
on students’ use of off-task strategies. Because we are interested if the correct
strategies students learn to use are related to their strategic flexibility we restrict
our analysis to on-task actions only. For each student we recorded the choices
made when faced with the problems shown in Table 1.
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We based our analysis on the HMM clustering method described by Smyth
[17] and Piech et al. [13]. Detailed justification of this method can be found in
these two papers, so we will only summarize the steps of the analysis. Using
the on-task student actions, we fit an HMM model to each student’s action
sequence; the model had a hidden state for every possible action, where each
state had 100% probability of emitting the action represented by that state (this
is essentially a Markov Chain). After fitting the model to a student’s actions,
we modified the transition probabilities between hidden states so that none of
the transition probabilities were equal to zero. We did this by replacing all zero
probability transitions with a small constant (1× 10−10) and renormalizing the
transition probabilities. Next, we calculated the log probability that this model
fit each of the other student’s action sequences individually. After doing this
for all students, we calculated the distance between two subjects sequences as
the average of the log probability of one subject’s model predicting the other
subject’s data with the log probability of the other subject’s model predicting
the first subject’s data. Finally, we used these pairwise distances to cluster the
students. We used the k-mediods clustering algorithm [18] to ensure clusters of
similar size and to deemphasize the effect of outliers. We determined the number
of clusters by fitting models with 2 through 10 clusters and evaluating the log
probability with leave-one-subject-out cross-validation. We found four clusters
best fit the data. The parameters of these 4 clusters were next used to initialize a
composite HMM model, which had additional latent states for each cluster that
transitioned only to their respective smaller HMMs. After initializing this new
HMM using the individually computed transition probabilities, we retrained the
composite HMM using all the data. The resulting estimates are considered better
than those generated by separately training the model on the four smaller HMMs.
This method is particularly useful for building descriptive rather than predictive
models of the data [17] and is thus useful for understanding the common strategy
choices displayed during tutoring.

3 Results

3.1 Flexibility Score

Our study replicates the results of Rittle-Johnson and Star [1]. We found a
significant correlation between strategic flexibility and procedural knowledge
r(110) = 0.73, p < 0.001.

3.2 HMM Clustering

We clustered students based on their correct problem solving paths using the
method described in section 2.3. We best fit a four cluster model. We found
a significant difference in the average strategic flexibility scores of students in
the different clusters, f(3, 107) = 10.1, p < 0.001. Figure 1 shows the mean and
standard errors for the four clusters. Post hoc comparisons using the Tukey HSD
test indicated that the only significant (p < 0.05) differences were between the
2nd and 3rd cluster and the 3rd and 4th cluster.
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Fig. 1. The mean flexibility of the four identified clusters with standard error

3.3 Exploring Strategic Flexibility in Tutor Behavior

We used the transition probabilities generated from the HMM training to explore
the different strategies learned. The four clusters of students showed distinct
patterns of strategy use. Figure 2 shows the predominate strategies used by the
four groups. In cluster 2 (n = 25) and cluster 3 (n = 54), students alternate
between the tutored strategies. In cluster 1 (n = 16) and cluster 4 (n = 16), on
the other hand, students use the same strategy for both problem types. Students
in cluster 1 distribute on both problems, whereas students in cluster 4 apply
either divide or multiply to both sides of the equation in order to eliminate the
coefficient.

We next wanted to test if the strategies presented by each group of students
were learned over the course of tutoring. To see if students increased their use
of either of the dominant strategies of each cluster (displayed in Figure 2) we fit
each cluster’s data to an additive factor model (AFM) [19]. For this paper we
are interested in only using this model descriptively to observe if students are
increasing their use of the dominant strategies. We found that as students gained
practice with the problems they increased their use of the dominant strategies,
these slopes are displayed in Table 2.

Table 2. The coefficient for the learning rate of each cluster’s dominant strategy by
problem type, as computed by the Additive Factors Model

Cluster Divide Problems Multiply Problems

1 .21 .05
2 .05 .04
3 .13 .02
4 .14 .02
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Fig. 2. The student behavior for each cluster. The Divide (D) and Multiply (M) labels
represent the problem type and the Distribute and Both Sides labels denote the strategy
taken. The node size denotes the number of times it was visited. Green nodes are
strategies that were suggested by the tutor, blue nodes are (valid) untaught strategies,
and orange nodes are hints. Arrow gradients denote transition probability.

4 Discussion

The ability to flexibly solve math problems is a valued measure of proficiency and
important to future learning [5,8]. Few studies have investigated how strategic
flexibility is displayed in ITSs, and perhaps as a result no studies have directly
measured math flexibility using an ITS. The current study uses a method pre-
viously employed in a different domain [13] to identify groups of students in a
math ITS that differ in how they apply strategies to solving equations.

First, our findings from the behavioral pre-test replicated results from Rittle-
Johnson and Star [1,7], showing a correlation between strategic flexibility and pro-
cedural knowledge. Understanding how strategic flexibility is represented during
tutoring is less clear. The Rittle-Johnson and Star measure of strategic flexibility
directs students to generate multiple solution paths; however, in a tutoring set-
ting students are not prompted to choose multiple strategies. Studies of strategic
flexibility have observed that when students are not asked to generate multiple
strategies they will often use only one strategy to solve problems [4,6]. This makes
it difficult to observe flexible strategy use indirectly. To combat this challenge, our
study used two sets of problems, which despite being solvable by the same two
methods, were set up to favor different methods. As previous research would sug-
gest, students remain relatively consistentwithin problem types; however, between
problem types students changed strategies. When students appropriately adjust
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their strategy this suggests that these students are more strategically flexible and
would be better able to adapt and transfer their knowledge to similar, but novel
problems– testing this hypothesis is one possible direction for future work.

In the current study we used a variation of the HMM clustering method used
by Smyth [17] and Piech et al. [13] to cluster participants according to their
correct action sequences. This clustering method, while conducted without in-
formation about a student’s strategic flexibility measure, distinguished groups
that significantly differed in strategic flexibility. This distinction suggests that
the strategies students choose are reliant on their strategic flexibility. The lack
of a significant difference between clusters 1 and 3 suggests that students may
be less likely to use the optimal strategy on multiply problems. This can be
explained by the lack of a direct benefit for using the both sides strategy on the
multiply problems, as discussed in section 2.2. We ran this study to develop a
method for identifying strategy use in math problem solving and while experi-
mental manipulations must be done to learn more about the underlying causes
of strategic flexibility in the tutor, the exploratory analysis from our work sets
forth multiple areas of potential research.

The HMM clustering provides some insight into how the strategic flexibility
scores translate into strategy use during tutoring. Students in cluster 3 show
flexibility in their ability to switch between the distribute and the both sides
strategy. This is echoed in their high strategic flexibility scores. Students in
cluster 2 show a similar pattern, however their strategy path also shows that
these students are reliant on the hints that direct them towards these strategies.
The positive slopes from the AFM, indicate that while these students are learning
to apply these strategies more often over the course of tutoring, this is at a slow
rate. Students in cluster 1 generally use the distributive strategy to solve both
problem types. Although there is some use of the both sides strategy, users of this
strategy are seen returning to the distribute strategy. The positive learning gains
reported from the AFM indicate that over the course of tutoring students become
more rigid in their use of the distribute strategy on both problems. Students in
cluster 4 use the both sides strategy to solve these problems and increase in their
use of this strategy over tutoring. The behavior of cluster 4 scoring the lowest
on the strategic flexibility and only using the both sides’ strategy suggests that
these students may not recognize distribute’ as a potential strategy for solving
these problems and could benefit most from an intervention.

As an observational study, we are limited in the causal claims we can make
about the relationship between strategic flexibility and strategy use in the tutor.
However, the methods used in this study can be applied in future experiments.
First, this study demonstrates a means of observing strategy use by designing
problems to specifically favor some strategies over others. Future studies could
use a model of students’ decision-making heuristics (i.e., a model of how they
decide between possible next actions, such as avoiding fractions) to identify prob-
lems that favor different strategies. These problems could be used to triangulate
the strategies that students know and do not know.
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The current study used a version of the tutor in which students had to ex-
plicitly select each transformation of the problem. This tutoring format lends
itself well to the method of strategy detection that we use, however, it may not
apply to other tutors. Future work should extend the model to contexts in which
students have more freedom in making multiple transformations in a single step,
such as is seen in Waalkens et al. [12]. We expect different interfaces may foster
strategic flexibility to different levels.

Two questions of great interest remain present in the field: How best can
strategic flexibility be improved and to what extent does that improvement in-
fluence learning?While these questions are outside the scope of the current study,
the ability to identify students based on their strategy use can establish the ef-
fects of an experimental intervention on strategy use and help identify individual
differences in response to intervention. Paired with AFM, this strategy cluster-
ing method can identify the strategies students are using and if these strategies
are increasing in use. Just as work by Yudelson and Koedinger [20] has demon-
strated learning gains with an improved model of procedural skills, so should
researchers investigate how modeling strategic flexibility impacts learning.

In conclusion, we investigated the relationship between strategic flexibility and
the strategies students used in an ITS using HMM clustering. We discovered that
students could be clustered into four distinct strategy groups which differed on
their average flexibility scores. A closer look at the strategies used by the four
groups showed that students converged in their use of these strategies over the
course of tutoring. An exploration of the different strategies suggested multiple
explanations for students’ strategy use including learning from tutor hints, gaps
in knowledge, and decision making heuristics favoring different strategies. This
study is an first step in integrating models of strategic flexibility into ITSs.
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Abstract. Computational Thinking (CT) can effectively promote science learn-
ing, but K-12 curricula lack efforts to integrate CT with science. In this paper, 
we present a generic CT assessment scheme and propose metrics for evaluating 
correctness of computational and domain-specific constructs in computational 
models that students construct in CTSiM – a learning environment that com-
bines CT with middle school science. We report a teacher-led, multi-domain 
classroom study using CTSiM and use our metrics to study how students’ mod-
el evolution relates to their pre-post learning gains. Our results lay the frame-
work for online evaluation and scaffolding of students in CTSiM. 

Keywords: Computational Thinking, Science education, CT Assessments, 
Computational Modeling, Agent-based modeling and Simulations, Scaffolding.  

1 Introduction 

Computational Thinking (CT) encompasses the representational practices and beha-
viors involved in formulating and solving problems and designing systems by draw-
ing on computer science concepts like abstraction, decomposition, recursion, and 
simulation [6]. CT can play an important role in K-12 STEM education because com-
putational modeling is an effective approach for learning challenging science and 
math concepts [3, 6]. Despite these known synergies between CT and science educa-
tion, efforts to integrate them in the K-12 curricula and develop relevant CT-based 
assessments are lacking [2].  

Several CT-based environments focus on domain-independent game design activi-
ties, and assessments typically measure use of different computational constructs over 
time [2, 4]. Frequent use of CT constructs is favored, but their effects on final artifacts 
(e.g., games designed) and the relation between final artifacts and pre-defined learn-
ing goals are rarely considered. Some interventions also include system-dependent 
post-assessments, which hinder generalization and make learning gains hard to ascer-
tain [5]. The few efforts to integrate CT and science learning have primarily used 
external pre-post assessments to measure changes in students’ attitude or awareness 
about CT, rather than proficiency in CT skills and science concepts [3]. 

In this paper, we present initial steps toward a more systematic assessment  
of CT-based science learning. We present a recent 6th-grade classroom study with 
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CTSiM – a CT-based science learning environment. Pre- and post-tests assess gains in 
students’ science and CT knowledge. We also evaluate students’ computational mod-
els and their model evolution trajectories with respect to an ‘expert’ model, and then 
investigate their relationship to pre-post learning gains across different modeling ac-
tivities. 

2 The CTSiM Learning Environment and Learning Activities 

In CTSiM, students first construct a conceptual model and then design a correspond-
ing computational model for a given science phenomena. CTSiM employs an agent-
based-modeling approach. Conceptual modeling involves identifying the relevant 
agents with appropriate properties and behaviors described as sense-act processes that 
capture the properties sensed and acted upon by the behaviors. For example, a fish 
agent’s ‘feed’ behavior senses the fish’s ‘hunger’ property and acts upon its ‘energy’ 
property. The student models how this behavior is enacted by constructing a computa-
tional model in the ‘Construction world’ (see Fig. 1) by selecting from a library of 
visual primitives that includes domain-specific (e.g., ‘speed’) and domain-general 
(e.g., conditionals and loops) primitives. The relevant domain-specific primitives for a 
behavior are made available only if the student has correctly conceptualized the rele-
vant properties of the sense-act model of the behavior.  

 

Fig. 1. The Construction world with a ‘fish-breathe’ procedure in a fish-tank unit 

Students can simulate their computational models and use step-by-step highlight-
ing to trace the model execution. Students can also verify the correctness of their 
models in the ‘Envisionment world’ using a side-by-side comparison of their model 
behaviors with an ‘expert’ simulation (see Figure 2). Identifying differences helps 
students refine and correct their conceptual and computational models. Reference 
domain information is also provided through hypermedia resources. 

Currently, CTSiM comprises four primary modeling activities. (Activity 1): Stu-
dents generate algorithms to draw simple shapes to explore the relations among  
acceleration, speed, and distance. They start by modeling shapes like squares with 
equal-length segments, implying constant speed. Then, they modify their algorithms 
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to generate spirals, where each line segment is longer (or shorter) than the previous 
one, to model acceleration; (Activity 2): Students model a rollercoaster car as it tra-
verses segments of a track: (1) up (pulled by a motor) at constant speed, (2) down 
(accelerating), (3) flat (cruising), and (4) up again (decelerating). An expert simula-
tion helps students understand “correct” system behavior and build models to match 
these behavior; (Activity 3): Students model part of a closed fish tank system - a ma-
cro-level semi-stable model involving the food chain, respiration, and reproduction 
processes of fish and duckweed, and the macro-level elements of the waste cycle. The 
non-sustainability of the model (the fish and the duckweed gradually die off) encou-
rages students to reflect on the probable cause (toxicity from increasing fish waste), 
prompting the transition to Activity 4; (Activity 4): Students introduce Nitrosomonas 
and Nitrobacter bacteria to model the waste cycle, which convert the ammonia in the 
toxic fish waste to nutrients (nitrates) for the duckweed. The simulations with plots of 
chemical concentrations helps students understand the interdependence and balance 
among the agents in the fish tank ecosystem. 

 

Fig. 2. The Envisionment world for a fish-tank unit 

3 Method 

We conducted a 2-week classroom study with 25 6th-grade, middle Tennessee stu-
dents. The study was run daily during the 50-minute science period and was led by 
the science teacher, who had no significant prior experience with programming and 
was introduced to CTSiM during two 90-minute training sessions before the study. 
During the intervention, he alternated between teaching using CTSiM and having the 
students work individually to build their models using CTSiM. On Day 1, students 
took pre-tests for both the units. They worked on Modeling Activity 1 from days 2-4, 
and Activity 2 on days 5 and 6, then took the Kinematics post-test on day 7. Students 
then worked on the Ecology unit Activity 3 from days 8-10, and Activity 4 on days 
11and 12. All students took the Ecology post-test on day 13. Student actions on the 
CTSiM system were continually logged as events for subsequent analysis. 

We designed pre-post assessments to measure both science content and CT skills. 
The Kinematics domain questions tested the concepts of acceleration, speed, and dis-
tance and their relations, including the generation and interpretation of speed-time 
graphs. Ecology domain questions focused on students’ understanding of the role  
of the species in a fish-tank ecosystem and their interdependence. CT skills were  
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assessed by asking students to construct algorithms for scenarios using computational 
and scenario-specific constructs primitives specified in the questions. This tested stu-
dents’ abilities to interpret given abstractions to generate meaningful algorithms, and 
their understanding of programming constructs like conditionals, loops, and variables.  

The computational models that students generated for each activity were evaluated 
by comparing them against the expert model for that activity. We developed a vector-
distance model accuracy metric [1] for measuring the difference between a student’s 
model and the expert model; a distance of 0 implying a perfect match, i.e., the stu-
dent’s model contained all the primitives in the expert model and no extraneous  
primitives. The distance measure is based on the bag-of-words metric with each 
agent-procedure represented by the set of primitives they contain. Equation 1 defines 
our correctness measure as a fraction of the expert primitives in the student model.  

The incorrectness measure captures extraneous primitives used in the student mod-
els (Equation 2).  The vector distance (accuracy) metric (Equation 3) combines the 
(correctness, incorrectness) measures, calculating the model’s vector distance to the 
expert model represented as the point (1,0). By labeling primitives as computational 
(e.g., ‘repeat’) or domain (e.g. ‘speed’), we calculated separate computational and 
domain vector distances. We applied this metric to evaluate all but the Activity 1 
shapes, which did not have one particular correct expert model.  ∑ |  | ∑ | |                                           (1) 

 ∑ (| |  |  |) ∑ | |                             (2)  ( )  + ( 1)               (3) 

4 Results 

We report results for 22 out of the 25 students who participated in the study because 
one student was absent for the Ecology post-test and two others were outliers in terms 
of their inactivity (low number of edits to their models (≤ 5)) in at least one or the 
activities. The intervention produced significant learning gains overall, and for both 
domains and CT skills, measured separately [1]. All learning gains were significant at 
the p<0.0001 level and effect sizes were high (in the range of 0.4-0.7).  

We also studied the modeling performance across activities, and found that on the 
average, students made more edits to their fish-macro models [mean = 146.5 
(sd = 64.8)] than the fish-micro models [85.36(29.8)], and made the least number of 
edits in the Rollercoaster (RC) activity [49.9(16.24)]. The significant jump in the 
number of edits from RC to the fish-macro unit (p<0.0001) was expected because of 
the increased complexity and size of the expert model. We also calculated an edit 
‘effectiveness’ measure. This was the proportion of a student’s model edits that im-
proved the model accuracy. Overall, the effectiveness of students’ edits decreased 
significantly (p<0.0001) from the RC [.7(.1)] to the macro activity [.58(.09)], and then 
increased significantly (p<0.0001) in the micro activity [.7(.09)]. A similar trend can 
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be seen for the final models where the final model accuracy decreased from the RC 
[.24(.16)] to the fish-macro model [.5(.27)] and then increased for the micro model 
[.3(.27)]. The trend persists for both domain and computational aspects of modeling 
performance.  

We hypothesized that the changes in edit-effectiveness and model-accuracy across 
activities could be linked to the challenges students faced in the corresponding activi-
ties. For example, the RC activity involved modeling a single agent and a single pro-
cedure. However, the fish-macro activity introduced new domain content, multiple 
agents and multiple procedures for each agent. In a previous study, we coded student 
activity videos for the number of challenges faced, which confirmed the increase in 
challenges from the RC to the fish-macro activity and the decrease from the macro to 
micro activity [1]. While no quantitative conclusions can be drawn across the two 
studies, the basic modeling activities were the same, so we believe that the changes in 
the vector-distance and effectiveness metrics are likely the result of a corresponding 
change in the number of challenges faced across the activities. 

Table 1. Edit effectiveness predicts final model accuracy 

Correlations Rollercoaster  Fish-tank macro  Fish-tank micro  
Overall  R=-0.73, p<0.0005 R=-0.58, p<0.005 R=-0.69, p<0.0005 
Domain  R=-0.45, p<0.05 R=-0.53, p<0.05 R=-0.48, p<0.05 
CT  R=-0.76, p<0.0001 R=-0.71, p<0.0005 R=-0.82, p<0.0001 

Table 1 shows, not surprisingly, that effectiveness of students’ edits is a strong 
predictor of their final model accuracies. However, effectiveness was not a good pre-
dictor of pre-post gains. All correlations were below 0.3 and were not significant at 
the p<0.05 level. This generally agrees with previous results in which students’ final 
model accuracy was not predictive of learning gains, except in the fish-tank micro 
unit, where fewer challenges were experienced by the students [1]. 

Table 2. Effects of different model-edit consistencies on final model and pre-post gains 

 Final model distance Pre-post gains 
Less   
consistent 

Highly 
consistent 

t-test Less   
consistent 

Highly 
consistent 

t-test 

Roller-
coaster 

.29(.1), 
n=11 

.2(.2), 
n=11 

t=1.33, 
p>0.05 

14.4(23.4), 
n=11 

28.0(10.6)
, n=11 

t=1.76, 
p>0.05 

Fish-tank 
macro 

.66(.2),  
n=8 

.41(.3), 
n=14 

t=2.21, 
p<0.05 

46.1(.3), 
n=8 

34.4(.21), 
n=14 

t=1.21, 
p>0.05 

Fish-tank 
micro 

.56(.2),  
n=6 

.20(.2), 
n=16 

t=3.45, 
p<0.005 

21.1(.1), 
n=6 

44.2(.22), 
n=16 

t=2.45, 
p<0.05 

Qualitative examination of students’ model evolutions indicated variations in mod-
eling consistency, so we implemented a measure of edit consistency in model im-
provement as the coefficient of determination (R2) from a linear regression on a  
student’s model accuracy over time. We split students into two groups by their edit 
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consistency (above or below the median consistency value of 0.9) across all activities. 
We then compared the final model distances and pre-post gains across these ‘high 
consistency’ and ‘low-consistency’ groups (see Table 2). Final model accuracy and 
pre-post gains are generally higher in the high-consistency group, although the fish-
macro activity deviates from this trend. This may be because the Ecology post-test 
was taken after the fish-micro activity and effects of edit-consistency in the macro 
unit became secondary to that of the micro unit. 

5 Discussion and Conclusions 

This paper studies student performance in a synergistic CT-based science learning 
environment based on students’ pre-post tests, their computational models, and their 
model evolution across units. We designed system-independent pre-post assessments 
for science and CT and developed vector-distance, effectiveness, and consistency 
measures to characterize student models. Using these assessments, we show that stu-
dents gained significantly on both science and CT content in Kinematics and Ecology. 
When the modeling activities were less complex, students’ model edits were more 
effective and consistent, and their final models were more accurate. Students with 
more effective edits tended to have more accurate final models, but effectiveness was 
a weak predictor of learning gains. Students with more consistent edits also had more 
accurate final models, but they were also likely to have high learning gains for most 
activities. We believe that our vector-distance metric can help with online evaluation 
of students’ models, providing opportunities for scaffolding and guidance in CTSiM.  
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Abstract. Logic is a fundamental discipline for Computer Science, and 
Engineering students. However, despite its importance, there are several 
problems with the teaching of this discipline in graduate courses. Trying to 
improve this situation, we designed, and developed a new tutoring system for 
Logic, called Heraclito. This system implements a dynamic and adaptive student 
model, which is able to automatically solve the problems presented to students in 
a way similar to the employed by teachers, and, at the same time, is able to 
follow, and adapt itself to the form of reasoning used by students. The paper 
presents the main components of Heraclito’s student model, including the formal 
definition its similarity measurement function, and the similarity experiments 
conducted with Logic proofs generated by this system.  

Keywords: Logic Tutors, Automatic Provers, Natural Deduction, Intelligent 
Tutoring Systems, Learning Objects.  

1 Introduction 

Despite the importance of Logic for the development of analysis, formalization, and 
troubleshooting skills, there are several problems with the teaching of this discipline in 
graduate courses. In practice, the difficulties begin when concepts such as formulas, 
inference rules, and formal proofs begin to be taught. This was our main motivation to 
conceive a new tutoring system for Logic called Heraclito, intended to help the 
teaching of Natural Deduction in Propositional Logic (NDPL). Heraclito belongs to the 
class of intelligent tutoring system for Logic intended to teach deduction in 
Propositional Logic. In this category, the work that stands out most is the environment 
Logic-ITA[11], which is an intelligent tutoring system with a fairly traditional 
architecture for teaching deduction. The KRRT[1], P-Logic Tutor[7], and the Hint 
Factory[9] method to automatic generation of hints for a logic tutor, are also important 
examples of this type of system. More recent work has explored the use of probabilistic 
models (Markov models) to infer the main properties of the student model[2]. Heraclito 
differs from these systems in several aspects. Its approach to teach Logic, based on 
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Socio-Historical theory[10], is not the common way to design Logic tutoring systems. 
There are relatively few works on tutoring systems explicitly based on socio-historical 
concepts. To date, ECOLAB[6], and the collaborative learning system of Chiru, and 
Trausan-Matu [4], are the most outstanding examples.  

Other advance of Heraclito, which is the focus of this paper, resides in its student 
model. Different than Logic-ITA[11], Heraclito can analyze the logical validity of 
current proof step, and identify the tactical role this step assumes in the overall proof 
strategy: if it is useful, or not for the strategy. Different than Hint Factory[9], 
Heraclito's automatic hints are based on this prover, and not on previous teacher's 
experience represented by a bayesian probabilistic model. To assure the credibility of 
these hints, we take an indirect way, measuring objectively the similarity degree 
achieved by proofs automatically generated by the prover, when compared to proofs 
made by Logic teachers. 

2 NDPL Proofs and the Proof Similarity Measurement 

Formulas of Propositional Logic (PL) form the main interaction language between 
Heraclito, and students. A PL well-formed formula (or simply a formula) ϕ is a simple 
proposition A, B, C, ..., or is formed by the combination of simple propositions by 
logical conjunction (ϕ∧ψ), disjunction (ϕ∨ψ), negation (¬ϕ), the conditional (ϕ→ψ), 
and bi-conditional (ϕ↔ψ) operators. An argument ϕ1, ϕ2, ..., ϕn ⊢ ψ is formed by a set 
of hypothesis or premises, an ϕ1, ϕ2, ... , ϕn a conclusion ψ. The argument is valid if, 
and only if, the conclusion is true, when all hypothesis are true. The deductive system 
used by Heraclito is very similar to the deductive system presented in [3]. It uses the 
introduction, and elimination rules for the five logical operators. There are two 
hypothetical rules: the Reductio Ad Absurdum (RAA) and the Proof of the Conditional 
(PC). Heraclito also supports derived rules like Modus Tollens, Disjunctive Syllogism, 
Hypothetical Syllogism, Constructive Dilemma, Exportation and Inconsistency. 

The similarity measurement used by Heraclito was based on Jaccard index[8], 
extended to measure the similarity of the main proof, and then generalized to handle 
subproofs. A proof P is a finite set of steps P={p1, p2, ..., pn} with each step indexed by 
its line number. A fragment FP⊆P is a subset of a proof P, which contains some 
proof-steps of P, but which do not necessarily start in 1, or go continually till n. Each 
proof-step pi is a quadruple pi=<l,ϕ,r,rfs>, where: l is the subproof level, ϕ is the 
formula, r the inference rule, and rfs is the ordered list of references. The functions  
l(pi), ϕ(pi) , r(pi) , and rfs(pi) return the value of these components for the proof step pi. 
A proof P is a well-formed proof if for all pi∈P, the formula ϕ(pi) is a well-formed 
formula resulting from the correct application of the deduction rule r(pi) over 
referenced steps rfs(pi).  

The measurement of the syntactical similarity of two well-formed proofs, P and Q, is 
based on how much steps of these two proofs match. A match between two pairs of 
proof-steps pi∈P, and qj∈Q occur if both formulas, and deduction rules of these steps 
are equal, i.e., ϕ(pi)=ϕ(qj), and r(pi)=r(qj). To measure the syntactical similarity index 
of two formulas, is necessary to abstract all line numbers, references, and subproof 
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levels of the steps of some proof. This is made through the operator δ(P)={<ϕ(pi),r(pi)> 
| pi∈P}. Now, if P and Q are well-formed proofs, which do not contains subproofs it is 
possible to calculate the Jaccard index J(A,B) using δ(P) and δ(Q) , as follows: J(δ(P), 
δ(Q ))=∣δ(P)∩δ(Q)∣ / ∣δ(P)∪δ(Q)∣. 

This provides the basic similarity index between proofs P and Q. However, the 
restriction on subproofs is much strong and unnecessary. To solve this, we created the 
general similarity degree of proofs Δ(P,Q), which measure the similarity on 
unrestricted well-formed proofs, based on a recursive process that follows the structure 
of the subproofs, measuring the similarity of the subproofs, and then summing up, and 
normalizing these indexes. To implement the normalization we departed from the 
purely set-theoretic approach of Jaccard index, and used recursive counting functions. 

Some auxiliary operations and classes were used to define Δ(P,Q). The operation Pi.. 

j={pk∈P ∣ I <= k <=x j} selects a contiguous part of some proof P, from step i to j. The 
operation Pn={pk∈P ∣ l(pk)=n} selects steps on particular level n. The operation PR 
={pk∈P | r(pk)∈R} where R is a set of deduction rules, selects the proof-steps of proof P 
which used the rules in R. The operation P∥Q={<pi,  qj> | pi∈P , qj∈Q , ϕ(pi)=ϕ(qj) and 
r(pi)=r(qj)} makes the match pairing of P, and Q proofs (or proof fragments).  

Note that, because this operation return pairs of proof steps, it possible for distinct 
pairs to have the same formula and rule, but have distinct line numbers if they have 
different references, or proof-levels. So, to extract the sets of unique pair matches 
resulting from P∥Q we define the class UP(P∥Q), as follows: UP(P∥Q)={U ⊆P∥Q ∣ for 
all <p, q> , <r, s>∈U , p=r and j=l if and only if q=s}. Now, the function that counts the 
proof-step matches that occur in proof-level n and above of proof fragments P and Q, is 
defined as follows: 

 
matchesn(P,Q)=  ∣δ(P)∩δ(Q)∣  +  Max   (spmatchesn

S(P,Q))  (1) 
                                                  UP(Pn

{RAA,PC }∣∣Qn
{RAA,PC}) 

 
The term ∣δ(Pn)∩δ(Qn)∣, counts the set of distinct matching steps contained in the level 
n of P and Q. The maximization right term discovers the maximum count of matching 
steps in the matching subproofs of P and Q. The Pn

{RAA,PC}∣∣Qn
{RAA,PC} operation will 

identify the set of matching subproofs of P and Q. If eventually two subproofs were 
duplicated in the same level of some of these proofs, then UP(Pn

{RAA,PC}∣∣Qn
{RAA,PC}) will 

pick up only the sets of unique combinations of matching proofs, and then only the 
combination that returns the maximum matching count, will be used as the value of the 
right term. To count the matching proof steps of these combinations of matching 
subproofs, it is used the function spmatchesn

S(P,Q) defined recursively for a set of 
matching subproofs S, and for a proof-level n, as: 
 
                         matches+n+1(Pi..j,Qk..l)+ spmatchesn

S\{<p,q>}(P,Q) 
spmatchesn

S(P,Q) =        if exists <p,q>∈S such that                (2) 
                                       rfs(p)=<i,j> and rfs(q)=<k,l> 
   0,    otherwise 
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The left term of the sum, when S is not empty, counts the set of matching steps of some 
matching subproof pair 〈pi,qj〉 using the function matchesn(P,Q) previously defined, 
only that, in this case, this function is applied to the next level n+1 of the proof. The 
right term of the sum is simply the recursive application of spmatches() for the 
remaining set of matching subproof pairs, without 〈p,q〉. Now, using matchesn(P,Q) , is 
possible to define the general syntactical similarity index Δ(P,Q) as follows: 
Δ(P,Q)=2×matches0(P,Q) / ∣P∣+∣Q∣.  

3 The Student Model on Heraclito System 

The Heraclito system is a component system of MILOS infrastructure[5]. Heraclito 
was designed as a multiagent system composed of three pedagogical agents that run on 
a server, and a set of interactive Heraclito Learning Objects (HLO). The HLO are Java 
applications, or Android tablets apps. They are active, and interactive objects built over 
a proof editor, and combined with additional multimedia material about NDPL 
contents, and exercises. Heraclito has three pedagogical agents: the Mediator, the 
Specialist, and the Student Profile agents. Mediator agent selects pedagogical strategies 
and controls the tutoring process, based on the current status of the student model. This 
model emerges from the interplay among the proof editor, and these agents. This 
resulted in a model, which contains, besides the HLO the student is working, the 
current argument (exercise), and the partial proof being worked by the student, and 
diagnostic information provided by Specialist agent, which the identification of what 
part of the proof is being worked by the student (proof's premises, main part, or end of 
the proof), the percentile of the proof completed by the student, the current diagnose 
about the resolution process. 

The focus of this paper is the Specialist agent, which represents the role of the teacher 
as a specialist in Logic. This agent follows the resolution process of the student, analyzing 
whether last step of the partial proof is on the right way to finish it. Its main responsibility 
is to estimate the system's (teacher's) degree of confidence that student will complete 
problem solving task, diagnosing if the last step produced by the student is: (1) useful: if 
the formula contained in the last step effectively contributes to the proof of the argument, 
the step is said to be useful; (2) harmful: if the hypothetical RAA or PC rule used in the 
last step will eventually prevents the completing of the proof for the argument, then the 
step is classified as harmful; (3) redundant: the last step is not harmful, but it is 
unnecessary to complete the proof. To find out which category the last step belongs, the 
Specialist uses a NDPL prover to complete the partial proof (see Fig. 1).  

First it uses the prover to complete the proof, starting from the last step. If the 
completion is not possible, then the last step prevented the proof of the argument, and 
must be considered harmful. In NDPL this only can occur if the step starts a RAA or a 
PC subproof, which cannot be proved with current premises. To check if the last step is 
redundant Specialist invokes again the prover, but this time from one step before last 
step. If the last step does not belong to the completed proof, then this step is not 
considered necessary by proof strategies incorporated in the prover, and is classified as 
redundant. Otherwise, it is considered useful. After identifying the category of the last 
step, the Specialist passes this information to Mediator. 
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Fig. 1. Specialist agent analysis of a proof-step 

The NDPL prover was developed in Prolog. It uses a mixed forward/backward 
chaining proof method, which tries to mimic students', and teachers'. The method is 
divided in three phases applied recursively: (1) premises expansion (forward chaining), 
(2) target checking, and (3) new target selection (backward chaining). The forward 
chaining phase (1) adds new formulas to the list of premises, through the application of 
NDPL elimination rules over formulas in the current list of premises. Fig. 2 shows the 
code for application of Modus Ponens rule. This phase implements a search process 
over elimination rules, trying to find the best rule to apply in each step. The ordering of 
expand_premises() clauses (see Fig. 2) program provide the basic heuristic used to 
imitate known teacher's resolution processes. 

Phase (2) only checks if the target formula P of the argument already appears in the 
expanded list. If this is true then this recursive proving cycle ends. Otherwise, the 
prover pass to backward chaining phase (3), where the structure of the target formula is 
matched to NDPL introduction rules to select new targets to prove. Fig. 3 shows the 
code for disjunction introduction rule: to prove P∨Q , first try to prove P, and if this 
does not work, try to prove Q.   

The natural deduction proof is obtained by annotating in the output proof list 
(ProofOut), the rules applied in proving phases. To finish the proof is necessary to 
reverse its order, set its line numbers, proof levels, and references used by each rule, 
and eliminate unused steps eventually generated by the prover. The partial prover 
applies the same proving method as the full prover, after it has rehearsed or “re-proved” 
the part of the proof already made by the students. The basic “re-proving” is made by 
including all steps already made by the student in the initial premises list. However, if 
some RAA or PC subproof is found, then a new “re-proving” recursive procedure is 
started to keep the state variables of the prover updated, because the partial proof of the 
student could finish just in the middle of one of these subproofs. This allows the prover 
to recall the strategies used to reach to the current point of the proof, because the set of 
premises also provide heuristics used to select these strategies. Thus, the partial prover 
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can follow the reasoning used by the student, if there are corresponding strategies 
incorporated in its knowledge base. To do so, it incorporates several proving strategies, 
in addition to those which mimics known teacher's proofs. 

 

Fig. 2. Application of Modus Ponens rule in phase (2) of NDPL prover 

 

Fig. 3. Application of disjunction introduction in phase (3) of NDPL prover 

4 Similarity Experiment 

The similarity experiment measured the degree of similarity of the proofs generated by 
the Specialist agent, when compared to a set of proofs produced by a group of four 
teachers of Logic. The comparing proofs where collected from the teacher's solutions 
for an exercise book in Logic made in 2009. This was two years before the start of 
Heraclito's project, so the proofs have no relation with this system. A total of 51 well- 
formed proofs were selected from the exercise book, the only condition was that these 
proofs used only the NDPL rules used by Heraclito. Then, for each teacher's proof P, it 
was calculated the similarity index Δ(P,Q) in relation to the Heraclito corresponding 
proof Q. The average similarity degree was high, achieving 84.3%. A subset of 33 
proofs achieved a 100% degree value, being complete matches between teacher's 
solutions, and Heraclito's generated proofs. From the remaining proofs, 5 achieved a 
high degree of similarity of 80% or more. Fig. 4 shows a typical example of a high 
similarity index proofs.  
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Fig. 4. Example of proofs with high similarity index 

In this case, the difference was due to the decision on when to apply elimination 
rules. Heraclito's prover strategy is to apply these rules as early as possible. The teacher 
strategy was to apply elimination rules when necessary. These different strategies 
generally cause no differences in the similarity index, because they are kept in the same 
proof level, and the similarity index does not takes into consideration the ordering of 
steps. However, in this proof the steps resulting from elimination rules were put on 
different levels causing a measurable difference on Δ(P,Q) .  

 

Fig. 5. Example of proofs with low similarity index 

A subset of 6 proofs achieved a medium similarity degree, from 60% to less than 
80%. The remaining 7 proofs achieved only a low similarity index. Fig. 5 shows an 
example of this situation. In this case, even considering that the general strategy is the 
same in both proofs, being based on the use of Reduction Ad Absurdum, Heraclito 
prover used more steps to reach the same conclusion, resulting in a low similarity 
degree. Note that, because of the adaptive and dynamic behavior of the student model, 
this kind of difference is not a big issue for the tutoring system as a whole. If some 
student is really following the strategy outlined in the left side proof in Fig. 5, then the 
corresponding step 3 will be included as part of the partial proof being created by this 
student. With this, the prover has enough information to finish the overall proof 
following the same strategy. 
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5 Conclusions and Future Works 

Heraclito is being experimentally used for almost two years to help the teaching of 
Logic. Until now the results are encouraging, providing favorable evidences that 
Heraclito is on the right way to become a good tool to help students learn Logic. Its 
prover has the ability to follow the reasoning used by the student, being able to restart 
the proof exactly at the point where the student left off. This ability is the basis for the 
student model, which emerges from the interactions between Heraclito’s agents and the 
student. This is an important contribution of Heraclito, because what emerges from 
these interactions is a truly dynamic and adaptive student model that tries to adapt itself 
to the way that the student is trying to solve the exercise, not forgetting the “right” way 
to solve it.  

From now on, we pretend to use Heraclito as an effective tool to teach Logic in our 
Universities. We are developing a production version of this system able to support up 
to 500 students in several different classes. To accomplish this task we are designing 
and developing the scalability of Heraclito, through the distribution of the agents of this 
system for operation on a cluster of machines. 
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Abstract. Intelligent Tutoring Systems (ITS) give assessments to estimate a 
student’s current knowledge. A great deal of work in the past years, (e.g. KDD 
Cup2010) has focused on predict students immediate next performance, while 
what is important is will the student retain that knowledge for later use. Some 
previous studies such as Wang, et al, Xiong, et al. have started to investigate 
this question by trying to predict student retention after a time interval of sever-
al days. We created a novel system that would automatically reassess and allow 
students to relearn the material to enhance a student’s long-term knowledge. It 
is showed before that this intervention raised student learning, and now we are 
wondering if it also makes assessment of student long-term knowledge better 
(i.e, more predictive power). The result shows that the reassessment and re-
learning information is very useful in assessing student long-term knowledge. 

keywords: Intelligent Tutoring System, dynamic assessment, reassessment and 
relearning, long-term knowledge, student modeling.  

1 Introduction 

The ASSISTments project is premised on the notion our schools are asked to do too 
much testing. Every minute testing is a minute stolen from instruction. The solution is 
to use data from students learning for assessment purposes. Intelligent Tutoring  
Systems (ITS) give assessments to estimate student current knowledge and predicts 
student performance on the immediate next action has been investigated by many 
researchers. But what if our goal is not to ask “do they know this right now?” but 
“will they retain this knowledge later?” This is a more important question because the 
purpose of education is to teach students so that they can retain it rather than imme-
diately understand it but quickly forget. Some previous study [1,2] have investigated 
this question by trying to predict student performance after a several days interval.  
In this paper, instead, we are trying to predict student performance after a much  
longer – six months interval. 

Compared to traditional assessment, the dynamic assessment [3] that we are con-
ducted in this study utilizes the amount of assistance that students require to judge the 
depth of student knowledge. We would not be the first to show that letting students 
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learn could help assessing. Different researchers showed that by offering increasingly 
more explicit prewritten hints in response to incorrect responses, better assessment 
can be achieved [4,5,6]. ASSISTments itself has been used in the past along similar 
lines [7] and has been shown that we can better predict students state test scores if we 
use the number of hints, their responses and other student data. 

We created a novel system that would automatically reassess and allow students to 
relearn the material to enhance students’ long-term knowledge. We call it the Auto-
matic Reassessment and Relearning System (ARRS). Details on how ARRS works 
can be found here [8]. The ARRS system gives us an opportunity to investigate two 
interesting questions. First, do the models for assessing student knowledge retention 
several days later perform differently from those for assessing student knowledge 
retention after a longer time interval (six months)? Second, can we do better in assess-
ing student knowledge retention after six months by utilizing the extra information 
gathered from the ARRS system? The main difference between this study and pre-
vious ones is that not only features of student learning behavior, but also features of 
student relearning behavior were investigated. 

Different logistic regression models were built and analyzed to address these two 
questions. The result showed that given the same feature set, higher accuracy can be 
achieved in assessing shorter interval knowledge retention than the longer interval 
retention, which indicates that assessing longer interval retention could be a harder 
task. With the extra information of student reassessment and relearning, however, we 
were able to assess student longer interval retention even better than the shorter inter-
val retention. This result suggests that reassessment and relearning information is very 
useful in assessing student long-term knowledge. Details about the experiments,  
including a brief introduction to the ARRS system, can be found on our webpage [8]. 

2 Methods 

2.1 The Tutoring System and Dataset 

The data used here came from two ARRS experiment classes in the ASSISTments 
platform in school year 2010-2011. This data is available here [8]. The ARRS is a 
sub-system build in the ASSISTment platform, which automatically reassess student a 
week later, a month later, and then finally two months after a student originally mas-
ters a skill (master here means achieve a preset level -- typically three consecutive 
correct answers). If students fail the reassessment, they will be given an opportunity 
to relearn the topic until master it again. 

There were 128 students, 33 skills and 53449 data instances in this experiment. 
Students were separated into groups 1 and 2, and skills were separated into groups A 
and B. At the beginning of the experiment, all students completed a first assignment 
of each skill. Then group 1 students did group A skills assignments in the ARRS 
while group 2 students did group B skills assignments in the ARRS. After six months, 
all students were given a one item per skill posttest. 

To simplify the analysis, in this study we focused on the first reassessment and re-
learning phase, that means only data from the first assignment (first phase) and the 
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one week later reassessment and relearning assignment (second phase) were included 
in this study. We also excluded 29 students since they missed either the first assign-
ment or the posttest for some skills. We excluded student skill pairs in the ARRS 
condition where seven days later reassessment or relearning was not finished. These 
data pre-processing result in 1538 student skill pairs for the control condition and 
1587 student skill pairs for the ARRS condition. 

2.2 Models and Analysis 

Logistic regression models were built to assessing student long term knowledge. Fea-
tures includes the prior knowledge firstp_pretest, information of student’s original 
learning process: firstp_avg_correct, firstp_avg_phint, firstp_avg_attempt, 
firstp_nquestions, the prior knowledge at seven days later secondp_pretest, and in-
formation of student re-learning process: secondp_avg_correct, secondp_avg_phint, 
secondp_avg_attempt,  secondp_nquestions. Forward input stepwise procedure was 
conducted to eliminate useless features. 

We used The Root Mean Squared Error (RMSE) of predicting a posttest score as a 
measure of assessing accuracy. secondp_pretest was the target for assessing shorter 
term retention, and posttest was the target when assessing longer term retention. 

A 5- fold cross validation was done for all of the models. That is, we randomly se-
parated all student skill pairs into five folds, and ran all the models five times. Each 
time the models were trained on four folds and tested on the remaining one fold. 

RQ1: Do the models for assessing student knowledge retention several days later 
perform differently from those for assessing student knowledge retention after a 
longer time interval? 

To answer this question, we built two comparable models as shown in Table 1. The 
Shorter-term_Phase1_Model used features from the first assignment to predict student 
knowledge retention one week later, while the Longer-term_Phase1_Model used fea-
tures from the first assignment to predict student knowledge retention six months 
later. To avoid the influence of the relearning in predicting the longer term knowledge 
retention, we used control group data to evaluate the Longer-term_Phase1_Model. 
And we used ARRS group data to evaluate the Shorter-term_Phase1_Model because 
there is no data on control group’s shorter term knowledge retention. 

Table 1. Short-term_Phase1_Model (SP1) vs. Long-term_Phase1_Model (LP1) 

Model Dependent Data Feature Selected RMSE 
SP1 phase2_pretest ARRS firstp_avg_correct 

firstp_avg_attempt 
0.4049 

LP1 posttest Control firstp_avg_correct 
firstp_avg_phint 

firstp_avg_attempt 

0.4296 
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Since both conditions had the same group of students, we were able to compute a 
student level paired t-test to determine whether the RMSE difference between these 
two models was statistically reliable. The result is statistically reliable, t(98) = 2.58, p 
= 0.01. The result suggests that the six months knowledge retention is harder to assess 
than the seven days knowledge retention is not surprising, and some may say it’s tri-
vial. However, the short term model helped us in setting up a baseline for the models 
of assessing longer term retention to compare with. 

RQ2: Can we do better in assessing student knowledge retention six months later 
by utilizing the extra information gathered from the ARRS system? 

Similar to RQ1, we built several logistic regression models as shown in Table 2. 
All these models predicted the posttest score using the ARRS group data. 

Phase1and2_Model used all the features from both the first assignment, and the 
ARRS assignment seven days later in a single stepwise logistic regression model. 

To improve upon the Phase1and2_Model, we considered the fact that some of the 
ARRS student skill pairs do not have relearning features because they answered their 
reassessment question correctly. This caused large amount of missing data when  
we use a single model to describe all the ARRS data. We then built a model  
called Phase1and2_Combined_Model, which was the combination of two  
sub-models: Phase1and2_norelearning_Model, and Phase1and2_relearning_Model. The 
Phase1and2_norelearning_Model ran on the student skill pairs in which the students did 
not need to relearn the material for the skill, while the Phase1and2_relearning_Model ran 
on the student skill pairs in which the students needed and finished the relearning  
assignment. 

Table 2. Phase1and2_Model vs. Phase1and2_Combined_Model 

Model Data Feature Selected RMSE 
Phase1and2_Model ARRS firstp_avg_correct 

firstp_avg_phint se-
condp_avg_correct 
secondp_nquestions 

0.3886 

Phase1and2_Combined
_Model 

ARRS -- 
 

0.3861 

Phase1and2_norelearni
ng_Model 

ARRS 
no 
relearn 

firstp_avg_correct 
firstp_avg_phint 

-- 

Phase1and2_relearning
_Model 

ARRS 
relearn

ing 

 firstp_avg_correct 
secondp_avg_correct 
secondp_nquestions 

-- 

 
In Table 2, the feature column of Phase1and2_Combined_Model is empty, because  

it is the combination of two different models (Phase1and2_norelearning_Model and 
Phase1and2_relearning_Model). Also, the RMSE column for Phase1and2_norelearning 
_Model and Phase1and2_relearning_Model is empty, because the dataset of these two 
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models are different with other models in the table, thus the RMSEs of these two models 
are not comparable with other models’. 

Until now, we could draw two conclusions. First, by comparing Longer-
term_Phase1_Model in Table 1 and Phase1and2_Model in Table 2, we observed the 
extra features gathered from ARRS did improve the accuracy in assessing student 
long term knowledge. A student level paired t-test suggested this improvement was 
statistically reliable, t(98) = 4.61, p < .001. Compared to the short term model Short-
er-term_phase1_Model, however, this new long term model has a better, but not reli-
ably better, RMSE, t(98) = 1.82, p = 0.07. Second, by separating models according to 
whether or not a student needed relearning for one skill, we were able to further  
improve the model for assessing long term knowledge. Although the improvement 
between the Phase1and2_Model and the Phase1and2_Combined_Model was not  
reliable, t(98) = 1.05, p = 0.30, amazingly, the Phase1and2_Combined_Model was 
able to reliably improve upon the short term model Shorter-term_Phase1_Model in 
Table 1, t(98) = 2.02, p < 0.05. This proved again the importance of the relearning 
features, especially the average correctness in the relearning phase and the number of 
questions students need to relearn a material. 

3 Discussion and Future Work 

In this paper, we compared model performance between assessing student shorter 
interval knowledge retention and longer interval knowledge retention. Results  
suggested that longer interval knowledge retention is harder to assess. We then inves-
tigated the effect of the extra features gathered from ARRS and concluded that  
relearning features are useful in assessing long-term knowledge retention.  

One limitation of this work is the amount of data. The experiment was a pioneer 
study of ARRS, and has only several thousands of data instances. Verifying the result 
of this study in a larger dataset or a different tutoring system could be helpful.  

Another limitation is that we only used the information from the one week later 
reassessment and relearning phase. Future study could further investigate the predict-
ing power of data from the later phases of two weeks, one month, and two months 
later. 

4 Contributions 

This paper analyzed data gathered from a novel system, which automatically reas-
sesses student knowledge and allows them to relearn the material, to evaluate its pow-
er in assessing student long-term knowledge and makes several contributions. 

First, assessing student current knowledge has been investigated by researchers in 
ITS for many years. Recently some researchers have discovered the difference be-
tween assessing current knowledge and knowledge retention several days later. We 
further explored this topic, and compared the model performance between assessing 
student shorter interval retention (seven days later) and longer interval retention  
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(six months later). Results showed that the later is a harder problem to address.  
We then concentrated on improving the assessing accuracy of the longer interval  
retention. 

Second, for the task of predict student knowledge six months later, compared to 
other dynamic testing methods, we not only looked at the assessment power of the 
features in student learning process, but also the assessment power of these features in 
student relearning process. To do so, instead of using data from a single session, we 
also used data from a second session at one week later. We built and analyzed differ-
ent stepwise logistic regression models to see if number of problems (learning speed) 
and other features (hints and attempt) of the second session help the prediction. Result 
shows that having data from both the learning session and the relearning session lead 
to better prediction. More interestingly, it shows that tracking how much relearning 
(measured by the number of problems student need to finish before re-mastery a skill) 
students need was a useful predict. This indicates that student relearning time is a 
useful indicator of the depth of student knowledge. 

Furthermore, we found that making separate models according to weather or not a 
student needs relearning for a skill gives better prediction, and surprisingly, even 
better than predicting students’ shorter interval retention. 
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Abstract. In this paper, we compare pioneer methods of educational
data mining field with recommender systems techniques for predict-
ing student performance. Additionally, we study the importance of in-
cluding students’ attempt time sequences of parameterized exercises.
The approaches we use are Bayesian Knowledge Tracing (BKT), Perfor-
mance Factor Analysis (PFA), Bayesian Probabilistic Tensor Factoriza-
tion (BPTF), and Bayesian Probabilistic Matrix Factorization (BPMF).
The last two approaches are from the recommender system’s field. We ap-
proach the problem using question-level Knowledge Components (KCs)
and test the methods using cross-validation. In this work, we focus on
predicting students’ performance in parameterized exercises. Our experi-
ments shows that advanced recommender system techniques are as accu-
rate as the pioneer methods in predicting student performance. Also, our
studies show the importance of considering time sequence of students’
attempts to achieve the desirable accuracy.

1 Introduction

Parameterized questions and exercises have recently emerged as an important
tool for online assessment and learning. A parameterized question is essentially
a template for the question, created by an author. At presentation time, the
template is instantiated with randomly generated parameters. As a result, a sin-
gle question’s template is able to produce a large number of different questions.
One of the benefits of this technology is in the self-assessment context: the same
question can be used again and again with different parameters. This allows
every student to achieve understanding and mastery.

On the practical side, this property and other benefits, such as re-usability
and being cheating-proof, made parameterized exercises very attractive for the
large-scale online learning context. In turn, it made platforms that supported
parameterized questions such as LON-CAPA [8] or edX very popular for college-
offered online learning and MOOCs.

On the research side, a range of studies have confirmed the value of parame-
terized questions as e-learning tools [5,9,1,4]. At the same time, Hsiao et. al’s [4]
experience with parameterized questions in the self-assessment context demon-
strated that the important ability to try the same question again and again is
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not always beneficial, especially for students who are not good in managing their
learning. The analysis of a large number of student logs revealed some consid-
erable number of unproductive repetitions. For example, we can observe many
cases where students repeatedly try and correctly solve the same exercise with
different parameters (which is at the time apparently easy for them) instead
of focusing on new, more challenging questions. We can also observe repetitive
failed attempts to solve the same exercise for which the students are apparently
not ready, instead of focusing on simpler exercises and missing knowledge.

We believe that this unproductive practice could be avoided if a personalized
e-learning system featuring parameterized exercises can predict the success of
students’ future problem-solving attempts in the same way as a recommender
system can predict, for example, whether a user would or would not like a new
movie. The ability to predict students’ performance in the context of solving
parameterized exercises could enable the system to intercept non-productive be-
havior and recommend a more efficient learning path. We also believe that the
presence of a large volume of learning data that is now collected in online learn-
ing systems makes the task of performance prediction possible. In addition, we
beleive that the repetition of exercises makes the attempt sequencing of stu-
dents’ activities an important factor to predict their performance. As a result,
we expect the time-aware (or sequence-aware) approaches to perform better in
this context. However, so far, there have been no attempts to explore approaches
for predicting success in solving parameterized exercises. This paper attempts
to bridge this gap by exploring a range of techniques for performance predic-
tion. We compare advanced log-driven time-aware prediction approaches such as
Bayesian Knowledge Tracing [2], Performance Factor Analysis [11], and tensor
factorization (as an advanced collaborative filtering approaches [6]) with matrix
factorization (as a baseline approach that does not model attempt sequences).

2 Background: Predicting Student Performance

The traditional approach to predict user experience with unknown items using
the past experience of the user, along with a large community of other users, was
developed in the field of collaborative recommender systems [10]. While collab-
orative filtering approaches were designed to predict user taste, not user perfor-
mance, technically it is resolved to predicting a score for unknown items based
on the past experiences of users. We can consider users of a collaborative filter-
ing system as students, items as skills/questions/steps in solving the problem,
and user rating as the predicted value representing student’s success/failure. In
recent years, more modern approaches, such as matrix factorization [7] and ten-
sor factorization [6] have been used in recommender systems. There are several
works applying factorization techniques to student modeling, such as Thai et.
al’s tensor factorization [12]. But none of these works are focused on predicting
user performance in parameterized questions at the question level.

Another approach for Predicting Student Performance (PSP) in problem solv-
ing is based on the idea of cognitive modeling. With cognitive modeling, each
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problem or problem-solving step (item) is associated with specific units of knowl-
edge (Knowledge Components or KCs) to be mastered. Observing students’
past successes and failures, a cognitive modeling system attempts to model stu-
dent mastery for each unit of knowledge. The traditional approach for cognitive
modeling is Bayesian Knowledge Tracing (BKT) [2], which employs a two-state
dynamic Bayesian network estimating the latent cognitive state (student knowl-
edge) from students’ performance.

More recently Performance Factor Analysis (PFA) [11] has emerged as a pow-
erful approach for cognitive modeling and performance prediction. PFA takes
into account the effects of the initial difficulty of the KCs and prior successes
and failures of a student on the KCs associated with the current item.

The problem of PSP in the context of solving parameterized problems is some-
what harder than predicting solving regular “solve-once” problems. Traditional
modeling approaches are not fully adequate for parameterized problem case since
they can’t distinguish repeated attempts to solve the same problem from solving
a new problem related to the same skills. While there are some works focused on
performance prediction in classes with parameterized exercises, they focus on a
much coarser level of prediction, such as PSP in the whole class [9].

3 The Approaches

As we stated in the introduction section, we expect the time-aware approaches
perform better than time-ignorant approaches in PSP for parameterized exer-
cises. Also, we expect advanced recommender systems approaches to perform as
good as the pioneer methods in PSP. To study these expectations, we experiment
on four student modeling approaches: BKT [2], PFA [11], Tensor Factorization
[6], and Matrix Factorization [13]. As the previous work in PSP is focused on
knowledge tracing and regression models, we choose a method of each: BKT
and PFA. As for approaches of recommender systems, we choose a tensor fac-
torization method that can include students’ attempt sequence and a matrix
factorization method. Each of these methods has their positive and negative as-
pects; e.g. BKT can model the time sequence of student attempts while PFA
cannot model that explicitly; PFA can handle multiple knowledge components
while BKT can only model one KC; and tensor factorization and matrix factor-
ization methods predict a personalized performance for each student. We choose
a Max baseline in addition to the above methods. This baseline predicts success
(the majority class) for every attempt. Using this baseline, we explore how our
models preform given our imbalanced data. In the following, we provide a brief
description of each of the methods.

Bayesian Knowledge Tracing: The Bayesian Knowledge Tracing [2] model
assumes a two-state learning model where each Knowledge Component (skill,
or rule) is either in the learned or unlearned state. It uses a simple dynamic
Bayesian network where the observable variable represents student performance
(correct or incorrect) and the hidden variable represents student knowledge state.
There are four parameters in BKT : the initial knowledge parameter (p(L0))
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represents the probability that the student knows a KC before practicing on
any items associated with the KC; the learning rate parameter (p(T )) represents
the probability that a student learns a KC by practicing; the guess parameter
(p(G)) represents the probability when a student doesn’t know a KC but answers
the item correctly; the slip parameter (p(S)) represents the probability when a
student knows the KC but answers the item incorrectly.

Performance Factor Analysis: Performance Factor Analysis [11] predicts stu-
dent’s performance based on the easiness of the current Knowledge Compo-
nent(s), student’s prior correct responses and incorrect responses on the KC(s)
associated with the current item using a standard logistic regression model. The
correctness of response of a student on an item is modeled as the dependent vari-
able here. PFA does not model time sequences directly, but it considers them as
the number of past successes and failures.

Matrix/Tensor Factorization: Matrix factorization is a popular approach
in the recommender systems field. In the educational data mining domain, to
predict student performance, we can model a user’s attempt on all of the items as
a one-dimensional binary array of length q (number of items). If a user succeeds
in solving that item, the value for that element will be one and zero otherwise.
Considering all of the items and all of the students, we can model all students’
success or failure on all questions using an s× q-matrix. Since different students
might have different number of attempts on various items, we consider only the
success or failure of the last attempt of the student. Some of the values of this
matrix are unknown to us because some students might have never tried an
item. The task of predicting user performance aims to find the values of these
unknown elements of the matrix. In this paper, we use a Bayesian probabilistic
matrix factorization (BPMF) method [13] to predict the success or failure of
students in various questions.

However, a student might have more than one attempt with different results
on an item. Thus, we should consider a method to incorporate time into the
factorization model. One way of doing so is to use tensors. A tensor is a multi-
dimensional or N -way array. A matrix is a 2-way tensor. In our problem, the
sequence of one user’s attempt on one item can be seen as a t-dimensional array
consisting of zeros and ones. Zeros are representative of student’s failure in that
particular attempt of the item and ones are indicative of success. Consequently,
if we want to model all the attempts each student has made on each item, we
will end up with a three-dimensional tensor of the size s×q×t, which has binary
values of failure or success. The task of predicting user performance here aims
to find the success or failure of a student in each attempt of an item. Tensor
factorization methods try to decompose a tensor into lower-dimensional space
and predict the missing values of the tensor by approximating them using this
lower-dimensional representation. In this paper, we use the Bayesian probabilis-
tic tensor factorization (BPTF) introduced by Xiong et. al [13] to predict the
success or failure of students.
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4 The Dataset

Our dataset was collected from the online self-assessment system QuizJET [4],
which provides parameterized questions for learning Java programming. Each
parameterized question is generated from a template filling parameters inside
the question with random (and reasonable) values to avoid providing the exact
same question to the student. Students can try different versions of the same
question multiple times until they acquire the knowledge or give up. The dataset
was collected from Fall 2010 to Spring 2013 (six semesters). The subject domain
is organized into reasonably coherent topics, each topic has several questions.
Each question is assigned to one topic. We experimented on 27, 302 records of
166 students on 103 questions. The average number of attempts on each question
is equal to three. Students have at least one attempt to at most 50 attempts in
one question. Our dataset is imbalanced: the total number of successful attempts
in the data equals to 18, 848 (69.04%) and the total number of failed attempts is
8454. We used user-stratified 5-fold cross-validation to split the data, so that the
training set has 80% of the users (with all their records) randomly selected from
original dataset, while the remaining 20% of the users were retained for testing.
We performed a 5-fold cross-validation to perform the comparison in our studies.
We ensured that all of the questions seen in the test set have at least one student
attempt in the training set. In this way, all models are predicting unseen students
on observed questions in each run. Simple statistics of are dataset are shown in
Table. 1.

Table 1. Dataset Statistics

Average Min Max

#attempts per sequence 3 1 50

#attempts per question 265 25 582

#attempts per student 165 2 772

#different students per question 87 7 142

#different questions per student 54 1 101

5 The Experiment

Our approach is to consider each question to be a distinct subtopic and use
questions as knowledge components for modeling. Among the methods discussed
above, BPTF, BKT, and PFA each consider the student’s attempt sequence in a
way: BKT models it explicitly as an HMM, BPTF has a smooth changing condi-
tion for students’ attempts and PFA summarizes this information in the number
of previous successful and unsuccessful attempts. On the contrary, BPMF does
not consider this information. To examine the performance of these approaches
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and compare them using different information resources, we design the following
experiment.

The Procedure. We treat a question (item) as a knowledge component (KC) in
this set of experiments. By using question (item) level KCs, we would be able to
capture a question’s characteristic for predicting different attempts on the same
question. To model the tensor, we use the three dimensions of student, question,
and attempt. Each element of the tensor shows the success (1) or failure (0) of
student in that question for the specific attempt. To model the matrix, we use
the two dimensions of student and question. Each element of the matrix shows
the success (1) or failure (0) of student in the last available attempt of that
question.

We use existing tools implementing the above methods to perform our exper-
iments. We use EM algorithm for BKT and set the initial parameters as follows:
p(L0) = 0.5, p(G) = 0.2, p(S) = 0.1, p(T ) = 0.3. For running PFA, we use
the implementation of logistic regression in WEKA [3]. For BPTF and BPMF,
we utilize the Matlab code prepared by Xiong et. al.1. We experimented with
different latent space dimensions for BPTF and BPMF (5, 10, 20 and 30) and
chose the best one, which has the latent space dimension of 10.

Table 2. Results of the Methods with Question as Unit to Predict Student Performance

Methods Accuracy RMSE TP TN FP FN Maj. Min. Maj. Min.

precision precision recall recall

BKT 74.38(0.8) 0.4152 3527.6 534.8 1156.0 242.0 75.33 68.69 93.43(0.9) 32.00

PFA 74.69(1.0) 0.4185 3381.4 701.4 989.4 388.2 77.34 64.16 89.56(1.1) 41.63

BPTF 74.26(0.9) 0.4189 3423.4 636.2 1054.6 346.2 76.42 64.59 90.60(1.4) 37.88

BPMF 71.73(0.5) 0.4365 3386.4 531 1159.8 383.2 74.39 58.46 89.95(1.6) 31.21

Max 69.04 0.5564 3769.9 0 1690.5 0 0.6904 0 100 0

The Results. The results of our experiments are shown in Table 2. Numbers
in parenthesis show the confidence interval with P < 0.05. We can see that
the accuracy of all models, except BPMF, are very close to each other. The
BPMF model lacks the time sequencing of student attempts and performs poorly
compared to the other three methods. All methods beat the Max baseline’s
accuracy. Among the models, BKT has slightly more true positives and false
positives. It means that BKT tends to predict more positive values (successes)
for the students. It over estimates the student’s performance. BPTF has the
next most true positives and false positives. PFA has more true negatives and
1 http://www.cs.cmu.edu/˜lxiong/bptf/bptf.html
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false negatives than other approaches. It means that PFA tends to predict more
failures for the students. BKT has the highest minority precision and significantly
highest majority recall. PFA has the highest majority precision and highest
minority recall. It means that if PFA predicts a success for a student and if
BKT predicts a failure for students, their prediction is more likely to be true
compared to the other methods.

6 Conclusion and Future Work

In this study, we explored several student modeling approaches in predicting
student performance in solving parameterized exercises, particularly in the pro-
gramming area. All the models we studied (BKT, PFA, BPTF, and BPMF)
outperformed the max baseline, showing the feasibility of applying these stu-
dent models to parameterized exercising systems which are different from the
traditional step-by-step, fine-grained designed tutoring systems.

In our experiment, we saw that the sequencing information is an important
factor in PSP for parameterized exercises and time-aware models perform better
than the time-ignorant matrix factorization method. These time-aware methods
do not differ significantly in results of PSP. This result encourages us to seek for
more advanced approaches in this area, as future work.

In addition, the success of using BPTF, which is one of the advanced matrix
factorization techniques in the recommendation area, encourages more research
on applying more recommendation techniques in PSP. Giving that factorization
techniques do not need to know the exact Knowledge Components that influence
students’ performance, they reduce the manual effort in exercising authoring for
student modeling, which is promising for providing student modeling in a larger
scale.

Our effort in this work in treating a question (item) as a KC for BKT and
PFA. However, we haven’t explored whether using more coarse-grained or fine-
grained level KCs would give better prediction performance. Particularly, since
PFA is designed for modeling multiple KCs, we need further experiments to
compare these models when each item is associated with multiple KCs.

Also, since our study uses user-stratified cross-validation, which requires mod-
els to predict for new students, BPTF and BPMF encounter an unfavorable situ-
ation, since it is hard to give highly accurate prediction for the student with little
or no information for that specific student. We will further explore these models’
performance giving different amount of information of students or questions that
the model is predicting for.

Obtaining reasonable accuracy of predicting performance for parameterized
questions is necessary to investigate how to give recommendations to help stu-
dents: whether to keep practicing on the current question or to move to another
suitable question or to learn from reading an example.



Predicting Student Performance in Solving Parameterized Exercises 503

References

1. Brusilovsky, P., Sosnovsky, S.: Individualized exercises for self-assessment of pro-
gramming knowledge: An evaluation of quizpack. ACM Journal on Educational
Resources in Computing 5(3), Article No. 6 (2005)

2. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of
procedural knowledge. User Modeling and User-Adapted Interaction 4(4), 253–278
(1994)

3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: An update. ACM SIGKDD Explorations Newslet-
ter 11(1), 10–18 (2009)

4. Hsiao, I.-H., Sosnovsky, S., Brusilovsky, P.: Adaptive navigation support for param-
eterized questions in object-oriented programming. In: Cress, U., Dimitrova, V.,
Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 88–98. Springer, Heidelberg
(2009)

5. Kashy, E., Thoennessen, M., Tsai, Y., Davis, N.E., Wolfe, S.L.: Using networked
tools to enhanse student success rates in large classes. In: FIE, vol. I, pp. 233–237.
Stipes Publishing L.L.C., (1997)

6. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM 51(3),
455–500 (2009)

7. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

8. Kortemeyer, G., Kashy, E., Benenson, W., Bauer, W.: Experiences using the open-
source learning content management and assessment system lon-capa in introduc-
tory physics courses. American Journal of Physics 76(438) (2008)

9. Minaei-Bidgoli, B., Kashy, D.A., Kortemeyer, G., Punch, W.F.: Predicting student
performance: An application of data mining methods with an educational web-
based system. In: FIE 2003 (2003)

10. Parra, D., Sahebi, S.: Recommender systems: Sources of knowledge and evaluation
metrics. In: Velásquez, J.D., Palade, V., Jain, L.C. (eds.) Advanced Techniques in
Web Intelligence-2. SCI, vol. 452, pp. 149–175. Springer, Heidelberg (2013)

11. Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis-a new alter-
native to knowledge tracing. In: AIEd, pp. 531–538 (2009)

12. Thai-Nghe, N., Horvath, T., Schmidt-Thieme, L.: Context-aware factorization for
personalized student’s task recommendation. In: Int. Workshop on Personalization
Approaches in Learning Environments, vol. 732, pp. 13–18 (2011)

13. Xiong, L., Chen, X., Huang, T.-K., Schneider, J.G., Carbonell, J.G.: Temporal
collaborative filtering with bayesian probabilistic tensor factorization. In: SDM,
vol. 10, pp. 211–222 (2010)



 

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 504–509, 2014. 
© Springer International Publishing Switzerland 2014 

A Study of Exploring Different Schedules of Spacing  
and Retrieval Interval on Mathematics Skills  

in ITS Environment 

Xiaolu Xiong and Joseph E. Beck 

Department of Computer Science  
Worcester Polytechnic Institute  

100 Institute Road, Worcester, MA 
{Xxiong,josephbeck}@wpi.edu 

Abstract. The present study was designed to help answer several questions re-
garding the impact of spacing and expanding retrieval practice on mathematics 
skills. For this study, we set up four different interval schedules (1 day; 4 days; 
7 days; 14 days) in an ITS environment, and examined the impact on retention 
performance by comparing results across groups. There were significant per-
formance differences on different groups of students, and all fours groups of 
students showed small declines in the retention performance with longer inter-
vals. Furthermore, we examined students with high-, medium-, and low-
knowledge of skills, and found a strong effect on retention performance with 
the basis of initial performance on skills. In addition, students with weaker 
knowledge showed a much more rapid forgetting than students with higher 
knowledge.  These results suggest retention intervals should probably not be 
fixed, but should vary based on the student’s knowledge of the skill. 

Keywords: knowledge retention, retrieval practice, spacing effect, intelligent 
tutoring system.  

1 Introduction 

Expanding retrieval practice is based on the robust memory phenomenon known as the 
spacing effect, in which memory for repeated items is better when repetitions spaced 
apart rather than massed together [5, 6]. In expanded retrieval, these repetitions are 
spaced increasing intervals, making it necessary to retain the skill for longer and longer 
amounts of time before one attempt to retrieve it. This effect is specifically important to 
a cumulative subject as mathematics: we are more concerned with students’ capability 
to remember the knowledge that they acquired over a long period of time. 

Inspired by the notion of robust learning [2] and the design of the enhanced ITS 
mastery cycle (Figure 1) proposed by Wang and Beck [7], we developed and dep-
loyed a system called  the  Automatic  Reassessment  and  Relearning  System  
(ARRS)  to  make  decisions about when to review skills which students have mas-
tered. ARRS is an implementation of expanding retrieval in the ITS environment, 
Unlike most ITS system [4] which the tutoring stopped if the student mastered a given 
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skill, ARRS assumes that if a student masters a skill with three correct responses in a 
row, such mastery is not necessarily an indication of long-term retention. Therefore, 
ARRS will present the student with a reassessment test on the same skill at expanding 
intervals spread at least 3 months of schedule, that is firstly 7 days after mastery, then 
14 days, 28 days and 56 days after the previous test. If a student fails the reassessment 
test, ASSISTments will give him an opportunity to relearn the skill.  

 

Fig. 1. The enhanced ITS mastery learning cycle 

We refer to the number of problems required to achieve mastery as the mastery 
speed, it represents a combination of how well the student knew this skill originally, 
and how quickly he can learn the skill. We observed that, in general, the slower the 
mastery speed, the lower the probability that the student can answer the problems in 
the retention test correctly. Students who mastered a skill in 3 or 4 problems had an 
82% chance of responding correctly on the first retention test, while students who 
took over 7 attempts to master a skill only had a 62%. 

Previous studies showed that mastery speed is an extremely important feature for 
predicting student’s retention performance and has a long term effect on students’ 
retention performance [8]. According to these results, we can say that students with 
different mastery speed have different retention patterns, so we decided to start the 
exporting the optimal retrieval schedules for different levels of students. 
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2 An Experiment on Different Schedules of Retention Interval 

We first conducted an experiment to investigate how different retention intervals af-
fect student retention performance. There were several objectives for this experiment. 
A central goal was to investigate knowledge-related differences in terms of spacing 
and retention interval. As we mentioned before, students who receive retention tests 
have demonstrated mastery in the initial problem set, which we refer to as the mastery 
learning problem set. We already observed these students have significantly differ-
ences in the fixed-schedule retention tests. Thus, it is worth to find out how mastery 
speed affects the retention performance given different intervals. This experiment 
tested students with different retention intervals to explore this question.  

The participants were 672 middle and high school students from 34 classes. Teach-
ers of these classes enabled ARRS in ASSISTments voluntarily, and they assigned 
mathematics mastery learning problem sets according to whatever instructional con-
tent they would normally cover in class.  Teachers also required their students to use 
ASSISTments to finish their homework on a daily basis. Students were randomly 
allocated to one of four conditions which applied with different retention intervals: 
174 students were assigned to the 1-day condition, 170 students were assigned to 4- 
day retention test condition, 162 student and 166 students were assigned to 7-day and 
14-day condition. Students worked on their assignments in various environments 
include school computer labs, home computers and mobile devices.  Prior to this 
experiment, students and teachers already had experiences of using ASSISTments and 
working with ARRS.  

Students were randomly assigned to one of four retention interval conditions: 1-
day, 4-day, 7-day, or 14-day. The differences among these conditions were the inter-
val between achieving mastery and receiving the reassessment test. For example, 
Students in the 1-day condition received the corresponding retention tests the day 
after they finished the mastery learning problem sets; while students in 14-day condi-
tions received reassessment test 14 days after they finished the mastery learning prob-
lem sets. It is important to notice that all reassessment tests were released only on 
weekdays; this particular behavior of ARRS was designed to cooperate with teachers, 
and it delayed the assigning of the retention tests which were scheduled to be released 
on Saturdays and Sundays.  

This experiment began on September 15, 2013 and ended on December 15, 2013. 
During these three months, students constantly received mastery learning problem 
sets as homework assignments from their teachers. Once they answered three consec-
utive questions correctly in a mastery learning problem set, a retention test was sche-
duled based on which condition a student was in and ready to be assigned (e.g., 1, 4, 
7, or 14 days after mastery). For mastery learning problems sets, to finish on time, 
students were required to complete it within one day of when the teacher assigned it.  
Similarly, for ARRS tests, which were generated by ASSISTments according to the 
appropriate schedule interval, students had one day to complete these tests.  Howev-
er, it was not uncommon for students to not always complete assignments on time.   
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3 Results and Discussion 

In this study, we asked whether a different retention interval would affect students’ 
retention performance. We were particularly interested in whether or not longer spacing 
would impede students’ retention. In order to determine if different retention interval 
affected students’ performance, we examined students’ retention test performance in 
different conditions.  

As we expected, students in longer retention interval had lower retention perfor-
mance than students in shorter retention interval, but none of the differences are par-
ticularly large, even the 1-day performance (80.4%) and 14-day performance (76.0%) 
only differed by 4.4%. We also noticed that students in the 4 days and 7 days condi-
tions had very close retention performance, namely 77.6% and 77.5%, and this can be 
explained by the some portion of 4 days retention tests had been delayed one or two 
days to skip weekends. 

When considering whether there were changes in retention performance of students 
with different mastery speed, we grouped the data by three identified mastery speed 
bins, then we also examined students’ retention test performance. Table 1 shows the 
retention performance by mastery speed and retention interval. 

Table 1. Retention performance by mastery speed and retention interval 

 All retention tests 
(maximizes external validity) 

Retention tests 
completed on time 

(maximizes internal validity) 
Retention 
test delay 

# tests % correctness # tests % correctness 

mastery speed 3 - 4 
1 day 1186 84.4% 462 85.1% 
4 days 1169 82.2% 389 84.6% 
7 days 1171 81.7% 409 84.1% 

14 days 1233 81.2% 419 83.8% 
mastery speed 5 - 7 

1 day 467 77.9% 184 75.5% 
4 days 432 76.2% 149 73.2% 
7 days 362 77.1% 147 72.9% 

14 days 420 73.1% 150 72.7% 
mastery speed > 7 

1 day 280 67.5% 110 70.0% 
4 days 320 62.8% 111 65.8% 
7 days 267 59.6% 105 68.6% 

14 days 243 54.8% 85 60.0% 
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The left part of Table 1 shows how students performed on retention tests, and in-
cludes data from all students.  Including data from all students’ results in high exter-
nal validity as it ensures that our results generalize to other, similar, populations of 
learners.  However, we have seen some tests were completed more than one week 
later after they were due.  Including such data in the study makes it difficult to de-
termine which experimental condition the student was in.  How should we analyze 
students who were in the 7-day condition but completed their retention test 14 days 
later? 

To account for students not being conscientious in completing retention tests on 
time, we have selected tests which were finished on time (finished no more than one 
day after released and made available to students).  As a result, performance on these 
tests reflects retention performance on the intervals specified by the study.  That is, a 
student in the 7-day condition was answering his retention test after a delay of be-
tween 7 and 8 days, but 14 days would not be possible.  Although this approach max-
imizes internal validity, it also introduces a selection bias.  Students who finish their 
assignments on time are not a random sample of the population, but rather are those 
who watch their assignment schedules more closely, and those who cared more about 
finishing assignments on time.  These non-random selection effects make these stu-
dents not perfectly representative of the population as a whole.  This tension between 
internal and external validity is common in field research, and we present both sets of 
data. 

In all students, we have seen consistent decrease in retention performance with 
longer retention intervals, whether they were high mastery level, medium mastery 
level or low mastery level students. The results from Table 1 also demonstrated a 
main effect of mastery speed on retention performance: students with slower mastery 
speed had significantly lower performance than students with a faster mastery speed 
(p ≈ 2.2 × 10-27); this statement is true even when we comparing 1-day performance 
of students with slow mastery speed versus 14-day performance of students with fast 
mastery speed (67.5% for mastery speed > 7 versus 81.2% for mastery speed on 3 or 
4). A large and interesting effect is that students with slower mastery speed had larger 
decrease in retention performance as retention intervals got longer.  This interaction 
effect was statistically reliable (p ≈ 3.4 × 10-22). For example, high mastery level 
student had a decrease of 3.2% between 1 day tests and 14 days tests but retention 
performance of low mastery level students dropped 12.7%. The horizontal compari-
sons on Table 1 also suggest that students who finished test on scheduled intervals 
were more likely to retain skills, confirming our suspicion above about these students 
not being a representative sample.   

4 Contributions, Future Work and Conclusions 

As this paper contributes to a large body of literature empirically demonstrating the 
effects of spaced learning, it makes three unique contributions. First, this paper stu-
died actual effects of spaced learning over long time period for mathematics materials 
and practices whereas most ITS studies were focused on shorter term and only few 
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looked effects over time. Second, this experiment investigated the concept of finding 
the optimal retention interval by using mastery speed for students with different mas-
tery speed. Moreover, this study suggested the necessity of retention tests as a mea-
surement method of robust learning.  

Our goal is to find the optimal spacing schedules for students and the best way to 
boost their performance in long-term mathematics learning; there are so many open 
problems worth of future research: Is there a better to predict who will retain a skill? 
Do these mistakes indicate lack of effort or interest on the student’s part, or a genuine 
lack of knowledge? What should we do after students fail a retention test, should we 
just reply on the connection between well-learned procedural skills and long-term 
retention [1]? We are also interested in interventions that can decrease the rate of 
wheel spinning [3]. Most importantly, there are some very challenging problems that 
we believe can be answered in our following studies. First, do assigning high frequent 
retention tests and relearning assignments to low knowledge student help to improve 
their mastery level? And what other tutoring methods we can use if a student fails to 
retain a skill?     

This paper presents the first study of exploring the optimal spacing schedule in 
learning mathematics skills. With the experiment data we collected, we revealed the 
relationships between master speed and retention performance in different retention 
intervals, and most importantly, these relationships will help dictate which learning 
schedules and memory techniques are most suitable for learning and retrieving.  
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Abstract. Students often need prompt feedback to make the best from the learn-
ing activities. Within classrooms, being aware of students’ achievements and 
weaknesses can help teachers decide how to time feedback. However, they usu-
ally cannot easily assess student’s progress. We present an approach to generate 
automated notifications that can enhance teacher’s awareness in runtime. This 
paper formulates the theoretical framing and describes the technological infra-
structure of a system that can help teachers orchestrate learning activities and 
monitor small groups in a multi-tabletop classroom. We define the design 
guidelines underpinning our system, which include: i) generating notifications 
from teacher-designed or AI-based sources; ii) enhancing teacher’s awareness 
in the orchestration loop; iii) presenting both positive and negative notifica-
tions; iv) allowing teachers to tune the system; and v) providing a private 
teacher’s user interface. Our approach aims to guide research on ways to gener-
ate notifications that can help teachers drive their attention and provide relevant 
feedback for small group learning activities in the classroom.  

Keywords: Orchestration, Notifications, F2F Collaboration, Classroom, CSCL.  

1 Introduction 

Teachers have a crucial role as managers of the different elements of the learning 
environment [3]. They are responsible for conducting the class design, ensuring pro-
ductive use of time, resources, learning technologies and providing attention to each 
student. Students often need scaffolding and prompt feedback on performance to 
make the best from the learning activities designed by the teacher [14]. Thus, besides 
orchestrating the multiple activities that occur in different dimensions within the 
classroom, teachers also should provide feedback to the students. The provision of 
feedback is an essential part of effective learning achievement [14, 15]. Being aware 
of students’ progress, achievements and weaknesses can help teachers enhance the 
provision of timely and effective feedback [13]. In the classroom, this support should 
ideally be provided while the learning activity is still underway, so necessary adjust-
ments can be made. However, even though providing timely feedback is very important, 
teachers can easily become absorbed with their multiple orchestration responsibilities, 
making it difficult for them to attend to the students who need it most.  
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Fig. 1. Left: Multi-tabletop pervasive classroom for small group collaboration. Right: Notifica-
tions in the teacher’s dashboard. 

A wide range of learning technologies have been used over the past years to im-
prove instruction and learning in the classroom [11]. However, the development of 
tools to effectively support teacher’s awareness and help them provide enhanced 
feedback to students has been relatively neglected [2, 8]. Research suggests that some 
sort of integrated assessment is needed in order to give effective feedback [1]. Unfor-
tunately, teachers often cannot assess the quality of students’ artefacts, partial out-
comes, student’s performance or their collaborative interactions on-the-fly. This opens 
up an opportunity to exploit the use of emerging technology that can unobtrusively 
capture aspects of students’ activity and then automatically alert teachers about events 
that are hard to assess within the time constraints of a class. 

We propose an approach to automatically generate notifications for teachers in a 
timely manner during a class. Our system is implemented in a classroom enhanced 
with pervasive technologies: the MTClassroom [8]. This learning environment is  
ideal to plan and orchestrate small group activities by exploiting the affordances of 
five horizontal and three vertical shared devices (Figure 1, left). In our setting, the 
notifications can be generated by assessing, in real-time, qualitative aspects of the 
knowledge artefacts being built by the students (in the form of concept maps) and 
comparing them with a model of expert knowledge and a set of misconceptions de-
fined by the teacher. Alternatively, notifications can be generated based on quantita-
tive aspects of student’s collaboration that may be associated with undesired patterns 
of interaction, such as social loafing [10] or strategies of low achieving groups [9]. 

2 Related Work 

Previous research has delivered tools that enhance teacher’s awareness and reflection 
through different dashboards or visualisations. Verbert et al. [16] observed that these 
kinds of tools have been deployed in three learning contexts: online learning settings, 
face-to-face lectures and face-to-face small group work within classrooms. Teacher’s 
awareness tools and the automated generation of notifications have only been ex-
plored in online learning settings [16]. For the very different case of face-to-face  
work in classrooms, an important example tool is the Tinker Board [3], that shows 
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information on a large display to support reflection on a small-group activity. Simi-
larly, the Tinker Lamp [3] is a widget that students can use to indicate to the teacher 
which stage of the activity they are up to. Martinez-Maldonado et al. [8] explore the 
impact of showing visualisations of student’s data to help teachers decide where to 
place her attention. Other studies have agreed that this type of information can be 
useful for teachers using both private or public displays [4] and can be integrated with 
different devices like tablets [5], smart-boards [3] and tabletops [8]. Our approach is 
the first effort we are aware of that describes guidelines to build a system that  
provides teachers with automatic notifications in the classroom. 

3 Context of the Learning Environment 

As a foundation to define our approach, we first introduce the context of the learning 
environment. Then we describe an example authentic scenario. We built our system 
targeting university level learning activities for tutorial classes that can be held in the 
MTClassroom [8]. This is the first classroom with multiple interactive tabletops that 
can (i) unobtrusively capture data about each learner’s activity, linking it to the 
learner’s identity; and (ii) provide orchestration tools and real-time student’s data 
analysis. It is composed of 5 interconnected multi-touch tabletops, each well suited 
for face-to-face work in groups of up to 5 students and enhanced with the CollAid [7] 
sensing system. Each tabletop records the activity of students within each group to a 
central repository that can be accessed by other services in real-time. One of these 
services generates visual indicators to enhance teacher’s awareness and shows them in 
the MTDashboard. The MTDashboard is displayed on a handheld device that allows 
teachers to orchestrate the MTClassroom (Figure 1, right). One of the applications 
that can be used in this learning environment is CMate [7]. This is a concept mapping 
tool that records activity logs, traces of the task progress and information about stu-
dent’s maps. A concept map is a directed graph in which nodes represent the main 
concepts of the subject matter and the edges are labelled with a linking word to form 
meaningful statements called propositions [12]. More information about the environ-
ment can be found in the technical papers of CMate [7] and MTClassroom [8].  

An example study where our approach can be applied was conducted during an 
undergraduate course on Human-Computer Interaction (HCI). A total of 95 students 
were enrolled in this subject. Students were divided at the beginning of the semester 
into 6 tutorial classes, with around 15 students each. Each tutorial was facilitated by a 
class teacher. In the example course, the students were organised into 24 groups of 3, 
4 or 5, who worked together during the tutorial sessions. The same 1-hour weekly 
tutorial ran in each tutorial, with three different class teachers (the main teacher had 
one class and the other 2 class teachers had 2 and 3 classes). The learning goals for 
students using CMate commonly consist of collaborating with their group to create a 
concept map that answers a focus question. In this way, the teacher needs to monitor 
up to five small groups building five different concept maps in parallel. It is not easy 
for the teacher orchestrating the class while, at the same time, assessing each concept 
map to know if students are building a high quality map or have misconceptions.  
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4 Approach and Design Guidelines 

Figure 2 illustrates the context where our approach is deployed and the process that 
the teacher can follow to design, enact and diagnose the classroom activity. We de-
scribe this process in terms of the design guidelines underpinning our system.  

 

Fig. 2. MTFeedback context: conceptual diagram of the approach 

i) Generating notifications from on teacher-designed or AI-based sources. This 
process starts with the teacher designing the learning activity before the classroom 
sessions (1). In this stage, the main teacher designs a macro-script for the sessions. 
The teacher can define a source of expert knowledge and common misconceptions 
that can be used to match student’s artefacts automatically. In our study, these can be 
defined by the teacher using CMapTools, a third-party widely used concept map edi-
tor [12]. The expert knowledge is represented as a concept map that contains the 
propositions that the teacher considers the students should have in their maps. Com-
mon misconceptions that the teacher wants to track are defined separately, as a set of 
propositions. The teacher can also select AI-based sources to generate notifications 
that may consist of matching students’ activity logs with patterns of interaction asso-
ciated with either high or low collaboration groups [9]. For example, our previous 
work, using sequence mining on tabletop touch data, found that it is possible to iden-
tify high collaborative groups which often work in parallel, interacting with other 
students’ objects and focus on the crucial elements of the problem to solve [9]. 

ii) Enhancing teacher’s awareness in the orchestration loop. The designed activity 
is then enacted in the classroom (2). In the classroom, teachers commonly follow an 
orchestration loop [3] where small group activities can be described as follows: the 
teacher monitors the groups, assesses their performance to decide which group(s) may 
need support, attends to the chosen group and starts the cycle again. Our approach 
aims to support the teacher’s decision making about which groups most need their 
immediate attention by enhancing their awareness of each group’s progress in this 
orchestration loop. We describe this as the following process: a) The pervasive inter-
active tabletops capture, synchronise and gather activity logs of each group in a  
central repository; b) our system compares each group’s logged activity against the 
expert knowledge and the list of misconceptions; c) notifications may be generated 
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accordingly and sent to the MTDashboard; d) the MTDashboard interface shows 
visualisations and notifications to the teacher; and e) the teacher looks at the 
dashboard and decides whether a certain group(s) needs feedback or not.  

iii) Presenting both positive and negative notifications. It has been found that re-
ceiving too many notifications can produce a negative effect on users, as it makes it 
hard to readily determine what has changed over time [6]. To avoid this, we give two 
types of negative notifications and one positive notification; the choice of these was 
defined by the main teacher’s pedagogical requirements. First, a Misconception Noti-
fication (MN) is triggered for the group that has the most misconceptions in the class-
room. Our system assesses groups every half a minute, deciding which group, if any, 
needs a new notification generated. This way, the teacher can eventually determine 
whether all groups have recurrent misconceptions or if the whole class needs a clarifi-
cation of the activity. Similarly, the system may provide alerts when patterns of either 
high or low collaboration are detected for certain groups. 

iv) Allowing teachers to tune the system. It is important to allow the teacher to tune 
or configure the rules used to generate notifications as well as the timing or pace in 
which they are displayed on the teacher’s dashboard. For example, a second negative 
notification is the Slow-Group Notification (SN). For this, our system compares the 
progress of all the groups in the classroom and flags a group as being left behind if it 
has less than half of the propositions created by the top achieving group. This rule 
was tested on a dataset collected in sessions run in previous semesters [8] but it can be 
tuned by the teacher. By contrast, a Positive Notification (PN) can be generated when 
a group had at least P% of their propositions matching the expert knowledge (the 
parameter P was tuned by the teacher to be 50% in our study).   

v) Providing a private teacher’s user interface. Figure 1 (right) shows the teacher’s 
dashboard as displayed on a handheld tablet. The interface has a set of buttons for the 
teacher to control the classroom technology. It also features up to five visualisations, 
each associated with an active tabletop. Inspired by [8], we used visualisations that 
indicate the size of each group’s solution and the proportion that matches the expert 
knowledge (a figure with an outer and an inner circle respectively). The notifications 
appear as a square (red for negative or green for positive) around the group informa-
tion. For example, Figure 1 (right) shows two notifications: a negative notification for 
the group with the most misconceptions (red square around the blue table), and a 
positive one for a group that included half of the expert knowledge and had no mis-
conceptions (green square around the red table). Teachers can be instructed to get a 
message on the screen with more information about the notification by tapping inside 
of the coloured square.  

5 Conclusions 

Providing teachers access to automatically captured data can enhance their awareness 
[4], however, effective ways to show this information in the classroom are still 
needed. This paper describes the theoretical and technological framing, and the design 
guidelines, of a system that can provide teachers with notifications of small group 
work in runtime. We aim to exploit student’s data captured at a multi-tabletop  
classroom to alert the teacher about aspects of student’s collaboration, and their  
solutions, that cannot be easily analysed by the teacher on-the-fly. This can help 
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teachers provide immediate or delayed feedback. Even though our approach can be 
generalised to other kinds of small group learning activities, this paper presented a 
learning context in terms of a collaborative concept mapping activity as an instance of 
the application of our approach. The sources to generate notifications can be simple 
(expert knowledge and misconceptions defined by the teacher). Our future work will 
investigate the impact of using our system with real teachers and students, in-the-
wild. Future work should also consider the use of machine learning techniques that 
can detect potential problems in groups to alert teachers proactively.   
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Abstract. Online surveys are becoming more popular as a means of informa-
tion gathering in both academia and industry because of their relatively low cost 
and delivery. However, there are increasing debates on data quality in online 
surveys. We present a novel survey prototyping tool that integrates embedded 
learning resources to facilitate the survey prototyping process and encourage 
creating scientifically sound surveys. Results from a controlled pilot study con-
firmed that survey structure follows three guided principles: simple-first,  
structure-coherent and gradual-difficulty-increase, revealing positive effects on 
survey structures under learning resources influences.  

Keywords: Survey Design, Hidden Markov Model, Ill-defined domain.  

1 Introduction 

The web has lowered the barrier to collect information through surveys [1]. Survey 
Monkey1, one of the most popular online survey tools, has successfully created more 
than 15 million online surveys. However, until today, most of the online survey tools 
mainly focus on the support of survey delivery and simple analytics, neglecting the 
quality of the survey. For experienced survey researchers, they can rely on their ex-
pertise and experience to ensure survey validity and reliability. Non-experienced  
survey creators may be at a disadvantage from a lack of feedback or guidance, un-
knowingly creating biased and incomplete surveys. In this paper, we study and report 
an innovative solution to encourage creating scientifically sound surveys. 

In traditional Artificial Intelligence, intelligent tutoring systems have succeeded in 
automatically providing feedback for problem solving and direct instructions, in the 
form of examples or definitions of the concepts [2] or auto-grading [3]. Recent Intel-
ligent Tutoring Systems face new challenges due to the increasing importance of  
interdisciplinary study in ill-defined domains, where there is no guarantee of getting 
quick and sound feedback and the quality of answers is difficult to evaluate. For in-
stance, reasoning legal arguments [4], providing semantic and constructive feedback 
for survey design [5], and programming assignments [3, 6] among others.  

                                                           
1 Survey Monkey: https://www.surveymonkey.com 
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Constrain-based tutors are studied to effectively provide feedback for ill-defined 
problems. However, it is time-consuming to manually generate constraints for a broad 
domain [9,10]. A less costly way of receiving constructive feedback is to obtain an-
swers from online Q&A systems [11], crowdsourcing, [12] or collecting community 
feedback through a systematic peer review process [13]. However, these approaches 
still present several challenges such as low answering rate [14], answer quality ambi-
guity [15], and among others. To address these new challenges and move from auto-
matic assessment to a more data-driven approach for feedback generation, there are 
techniques such as considering probabilistic distance to solution for assessing the 
progress to identify misconceptions or the problem solving path [6], forms of latent 
semantic analysis (LSA) for automatic evaluation and topic mapping [3]. QUAID 
[16] is one of the few web tools that assist survey methodologists in examining survey 
questions such as wording, syntax, and semantics of questions. Our focus is on survey 
structure and adaptive learning resources during the survey prototyping process. Ap-
plying previous research conclusions into our study, we hypothesize that embedded 
learning resources and providing automatic hints [8] during survey prototyping 
process with dynamic survey structure modeling will enhance survey design quality. 
Before providing effective feedbacks, understanding user behaviors in creating survey 
also helped better suggesting learning resources. To research all the issues addressed 
above, we present an innovative system – Survey Sidekick and study the effectiveness 
of our approach. 

2 Survey Sidekick 

Survey Sidekick (https://surveysidekick.com) is an online survey tool developed by 
EdLab, Teachers College Columbia University. The beta version was launched in Oc-
tober 2012 and is currently open via invitation. We currently have 444 users, with 102 
of them designing one or more surveys. Survey Sidekick supports design, delivery, 
data analytics and reporting. The system includes embedded learning resources (orange 
icons) and interface support (blue icons) (Figure 1). Both are displayed at the relevant 
moment during prototyping process at the side of the questions or the entire survey. 
Embedded learning resources are tutorials extracted from a survey design textbook 
[17]. Further design rationale is reported in [5]. In this work, we extend the dynamic 
learning resources support by evaluating the survey structure & question composition. 

 

Fig. 1. Survey editing interface; https://surveysidekick.com 
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3 Modeling Sequential Survey Structure Using HMM 

The Hidden Markov Model (HMM) is a popular method for modeling sequential data. 
In this study, we employ the HMM to model users’ hidden tactics in designing a sur-
vey, and use the choice of each answer type (e.g. free text, Likert, and multiple choice) 
as the outcome of the hidden tactics. The hidden tactics together can be thought of as 
the strategy used to design the survey. A similar study is conducted by Yue et al. [18] 
in understanding users’ information seeking behavior. In Survey Sidekick, there are 7 
different types of question/answer types supported. They are: Numeric (N), Free text 
(F), Short answer (S), Multiple choices with single correct answer (MS), Multiple 
choices with multiple correct answers (MM), Likert with 5-value scale (LI), and Likert 
list with more than 5-values (LL).  

We have a sequence of survey answer types from T1 to TM, and each is from the 
predefined set: TS = {N, F, S, MS, MM and LI}. HMM assumes that we also have a 
sequence of hidden states, from H1 to HM, and each answer type is generated by a cor-
responding hidden state, but different answer types can be generated by the same hid-
den state with different probabilities. A HMM model has several parameters: the 
number of hidden states HS, the start probability of each state , the transition proba-
bilities among any two hidden states  and the emission probability from each state 
to each action .  

4 Evaluation and Results 

We randomly selected the training dataset from Survey Sidekick, which contains 38 
surveys with 1,048 questions. For the test data set, we recruited 22 subjects and ran-
domly assigned them into control and treatment groups to design a survey on the same 
scenario [5], where control group had no learning resources access and treatment group 
did. All the usage logs, including the survey content (questions, questions types, survey 
layouts, survey administration) and learning resources usage (modules, sub-modules, 
access points: static list view or dynamic box view) were collected. 

4.1 Survey Structure Analysis 

The first step of using HMM is to determine the number of hidden states, which also 
refers to the model selection problem. A complex model with large number of states 
will help to increase the sequence likelihood, as there are more parameters that can be 
used to describe the model more precisely. The tradeoff is a high risk of over-fitting. 
We chose hidden state (HS=7) because it had the best performance under Akaike 
Information Criterion (AIC). The emission probability of each hidden state and transi-
tion probability are shown in Table 1, in which the probabilities under 0.05 were re-
moved for clarity of presentation. The hidden states can be thought as the underlying 
“tactics” or “strategies” the surveyors use to design their survey. For example, in 
HS2, the designers focused on collecting information based on the Likert questions, 
while in HS5, the designers tend to collect data either using Likert questions or  
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multiple choices questions. However, some hidden states (e.g. the HS1) also have 
high probabilities of generating both Likert question and free text questions, which 
suggests they make alternative choices for collecting the same type of information. 

Table 1. The Hidden States of Survey Structure ( )(left); Transitions among the hidden states 
( ) (right) 

 N LI MM MS F S  HS
1 

HS
2 

HS
3 

HS
4 

HS
5 

HS
6 

HS
7 

HS1  0.41   0.60   0.84  0.10   0.07  

HS2  0.84   0.07 0.09   0.91    0.07  

HS3    0.12 0.85     0.61 0.34   0.05 

HS4   0.53 0.37    0.10   0.77   0.14 

HS5  0.43 0.15 0.42        0.93  0.07 

HS6   0.63   0.35    0.28  0.05 0.41 0.24 

HS7 0.09   0.86         0.35 0.61 

4.1.1 Simple First Principle 
HS7 has a high prior probability (start probability), which means that surveys usually 
begin with HS7, asking a numeric question or simple multiple-choice questions (i.e. a 
demographic question with numeric or multiple-choice question type such as what is 
date of birth). HS2 also has a reasonable start probability, in which the Likert ques-
tions or short answer questions may be asked. Moreover, the prior probability also 
indicates the complex question type (free text) is less likely to appear as the survey 
starters (HS1 & HS3). The result aligned with literature in designing the opening 
survey where Iarossi [7] suggested using simple questions to begin the survey. 

4.1.2 Structure Coherence Principle 
The probability in each diagonal cell is the highest in each row, which suggests an 
interesting fact in the survey designing process:  the same types of questions tend to 
be used closely together.  It indicates a consistency among sub-sections. One of the 
biggest benefits of designing a survey this way is that the structure coherence may 
help designers reduce cognitive load that caused by switching between different types 
of questions. Such finding is again supported by the design principle proposed by 
Iarossi [7]: finishing one topic before raising a new topic, which focused more on the 
content consistency, but the HMM structure also strongly suggests consistency at the 
structure level. In addition, maintaining survey structure consistency appears to be a 
more manageable task when the survey involves skip logic, or detailed questions.  

4.1.3 Gradual Difficulty Increase Principle 
We also observed several inter-type transitions: HS6HS3, HS6HS7, HS7HS6 
and HS3HS4. Take HS7HS6 for instance, after raising the opening questions 
(HS7), the designers may continue asking simple short answer questions or more 
difficult multiple-choice questions. To give a concrete example, after demographic 



520 I.-H. Hsiao et al. 

questions (usually numeric type) or skip logic questions (usually multiple choice with 
single correct answer) are asked, a more difficult multiple-choice question or free-text 
based question is likely to be extended to solicit more in-depth information from the 
survey takers. If however the short answer type questions were asked, the next step 
will either stay in the same state (self-transition), go back and ask another round of 
simple questions (HS6HS7), or ask even more difficult questions, e.g. the open-
ended questions (HS6HS3). The transition from HS3HS4 (free text question to 
multiple-choice question) also suggests that the designers tend to choose to ask even 
more in-depth questions for the open-ended questions. In addition, we found that 
HS1, HS2 and HS5 are less likely to transit to other survey hidden states. Their cor-
respondent question types, such as Likert and free text questions appear to be at the 
very end of the entire survey.   

4.2 Effects of Learning Resources  

To evaluate how learning resources affect on survey prototyping structures, we 
looked at the topics accessed by users, survey question types, question text, survey 
layout edits and moves. We found that on average every user in learning-resources-
enabled group studied 5.18 topics, and 57 topics in total. They had significantly more 
moves, or structural edits, (p<0.05) in survey design. However, did they learning re-
sources they studied actually affect the moves? We found that among all the topics 
studied by the users, a large portion (49.12%) of the topics were about survey struc-
tures, including Survey Layout, Question Structure, Skip Logic. Based on structural 
principles found in section 5.1, we calculated the question sequencing likelihoods for 
both groups. The learning-resources-enabled group was found to have 10.57% of 
question sequences in line with the structural principles. On the other hand, the con-
trolled group only achieved 1.69% in line with structural principles. This demon-
strates the learning resources’ positive effect on users’ decision-making process with 
respect to survey structure.  

5 Discussion and Limitation 

The study results showed the hidden variables of HMM can uncover users’ latent 
“factors” in the survey design process. The inter-type transitions provide valuable 
information on improving survey design. More importantly, three survey design prin-
ciples were verified: simple-first, structure-coherent and gradual difficulty in-
crease. Such principles allow us to predict the survey structure and provide valuable 
feedback when designers distort the sequential difficulty of survey questions or put 
too many transitions between multiple survey question types. We also recognize  
several limitations of this study: 1) current baseline model only used the complete 
surveys in Survey Sidekick, and therefore it did not fully take the expertise of the 
survey content creator into account. Thus, the results may not be indicative of best 
practices. 2) We interpreted a scientifically sound survey as equivalent to a structural-
ly sound survey. We did not measure the survey reliability and validity in current 



 Survey Sidekick: Structuring Scientifically Sound Surveys 521 

study design. However, we believe that the Survey Sidekick has attempted to address 
such issues by designing “official-ness” [5] and other features in the system.  
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Abstract. Authoring tools have been shown to decrease the amount of time and 
resources needed for the development of Intelligent Tutoring Systems (ITSs). 
Although collaborative learning has been shown to be beneficial to learning, 
most of the current authoring tools do not support the development of colla-
borative ITSs. In this paper, we discuss an extension to the Cognitive Tutor Au-
thoring Tools to allow for development of collaborative ITSs through multiple 
synchronized tutor engines. Using this tool, an author can combine collabora-
tion with the type of problem solving support typically offered by an ITS. Dif-
ferent phases of collaboration scripts can be tied to particular problem states in 
a flexible, problem-specific way. We illustrate the tool’s capabilities by present-
ing examples of collaborative tutors used in recent studies that showed learning 
gains. The work is a step forward in blending computer-supported collaborative 
learning and ITS technologies in an effort to combine their strengths. 

Keywords: Problem solving, collaborative learning, intelligent tutoring system, 
authoring tools.  

1 Introduction 

While most Intelligent Tutoring Systems (ITSs) are geared towards individuals, there 
has been some evidence that collaborative ITSs are also beneficial [5-6], [14]. ITSs 
take advantage of features, such as step-based guidance and hints, to support success-
ful learning [12] while Computer Supported Collaborative Learning (CSCL) envi-
ronments provide support for learning through collaboration scripts, which provide 
structure for tasks and interactions within a group, and help support the development 
of mutual understanding and explanation [3]. Despite these benefits, the combination 
of the two may not be more widely used because of a lack of effective and flexible 
authoring tools for creating collaborative learning opportunities within ITSs [8]. 
While there has been ongoing work to develop collaboration tools to make collabora-
tion scripts more accessible and easier to use across learning domains [1], [7], [11], 
[13], these tools often do not take advantage of beneficial ITS features. We have 
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created a tool that flexibly supports the use of collaboration scripts while also provid-
ing support for ITS features by extending an existing ITS authoring tool, the Cogni-
tive Tutor Authoring Tools (CTAT) [2].  

To demonstrate the utility of the tool, we will present examples from experiments 
we have run where we have created learning opportunities based on collaboration 
scripts. According to Dillenbourg [3], a collaboration script consists of a set of phases 
where each phase has five attributes: the task, the group composition, the distribution 
of the task (this includes who gets what information and who does what, such as 
through roles), the mode of the interaction, and the order of the phases. Any of these 
attributes can change between phases, and to allow for flexibility in the scripts devel-
oped, an authoring tool needs to support each of these attributes independently so the 
script can dynamically change with the problem state. 

The enhancement to CTAT described in this paper supports the development of 
ITSs that contain these attributes. Authors can create collaborative ITSs by embed-
ding various problem-specific features that trigger dynamically, based on the problem 
state, to move students through different phases of the collaboration script, all without 
programming. In this paper, we provide examples of collaborative script phases (i.e. 
cognitive group awareness [4] and sharing unique information) developed using 
CTAT. These examples were used in two “pull-out studies,” run in three elementary 
schools, with a total of about 70 participating students in collaborative conditions and 
illustrate the flexibility of authoring collaborative tutors.  

2 Authoring Tool Extensions to Support Collaboration 

In this section, we describe how one type of ITS, a collaborative example-tracing 
tutor [2], can be authored with CTAT. Similar to how tutors for individual learners 
are developed, an author creates two key components: A user interface designed for 
the problem being tutored (in Flash) and a behavior graph (in the CTAT software), 
which stores all of the acceptable solution paths and commonly-occurring incorrect 
steps. Behaviorally, example-tracing tutors are similar to other types of ITSs, provid-
ing all the key functionality defined by VanLehn [12], and below we describe how the 
CTAT extension has allowed communication between tutors for collaboration. 

2.1 Authoring Collaborative Tutors 

To expand CTAT so it supports collaborative example-tracing tutors, we added the 
capability to run multiple synchronized tutor engines, one for each student in a collabo-
rating group (see Figure 2). It is important to note that any number of tutor engines can 
be run in synchronized fashion. Specifically, for any given problem in a collaborative 
tutor, there is a separate behavior graph file per collaborating student and a separate 
interface file. The collaborative version of CTAT allows authors to synchronize the 
tutors so that it can maintain a problem state that is in sync between tutor engines (and 
between collaborating students). When one of the collaborating students takes an action, 
this input is sent to both the student’s tutor engine and their partner’s tutor engine.  
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By contrast, tutor output is only sent to the corresponding student interface. One result 
of this input sharing is that student actions taken on one interface will be “mirrored” on 
the other interface in the corresponding interface component. Yet this set up also allows 
for differentiation in the tutor feedback provided to collaborating partners, for example 
by means of unique feedback, individualized hints, information based on roles, and 
different sets of available actions at any given point in a problem. This set-up allows for 
great flexibility in authoring tutors with embedded collaboration scripts. In particular, 
the power of the approach comes from being able to craft tutors in which the collabora-
tors have different views on the same problem and tasks are distributed across collabo-
rators, so as to structure and support their different roles according to particular colla-
borative phases in a collaboration script. There are many collaboration features, such as 
the cognitive group awareness and unique information described below, as well as other 
scripts such as the jigsaw and the tutee/tutor paradigm, where the benefit of the activity 
comes from the students having different roles and responsibilities in the problem-
solving task. 

 

 

Fig. 1. Diagram displaying the communication between two synchronous tutor engines. A 
student interface action is shown with the solid line and feedback is shown with the dotted line. 
Student 1 has entered a 5 into the interface, which has been distributed to both example-tracing 
engines, and each student has received individual feedback based on the result. 

To author a collaborative tutor, each of the steps to create an individual tutor is fol-
lowed for each member of the collaboration, typically, in interleaved fashion. First, an 
author creates an interface through drag-and-drop with Flash. Each interface can be 
identical or designed to match the student’s roles. Once an interface is created, an 
author creates a behavior graph by demonstrating problem-solving behavior on the 
interface. After the behavior graph is created through demonstration, the graph can be 
annotated with hints and error feedback messages. The hints and feedback provided 
can be the same for each student or can be customized for each student. To author 
collaborative tutors, CTAT allows multiple behavior graphs to be open simultaneous-
ly and to each connect to their own student interface. This allows authors to test the 
collaboration and synchronization of the tutor engines. 
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3 Collaboration Examples Using CTAT for Collaboration 

Below we describe two examples of collaborative phases, which have been shown to 
be successful [4], to demonstrate the flexibility of CTAT in supporting different col-
laboration features. Specifically, building on our prior work on the Fractions Tutor 
[10], we created a collaborative tutoring system to help elementary students learn 
fractions. In three school studies, we have observed positive learning gains related to 
tutor usage [9]. As students use the tutor, they each sit at their own computer and 
communicate via Skype. The two examples illustrate the types of collaboration fea-
tures that can be implemented within a ITS using the collaborative version of CTAT.  

The first example demonstrates a task that supports cognitive group awareness, in 
which the students are learning conceptual knowledge about equivalent fractions. 
Cognitive group awareness refers to having information about group members’ know-
ledge, information, or opinions, and sharing of this information has been shown to 
help guide collaboration [4]. In this example, cognitive group awareness is combine 
with step-by-step support for problem solving as follows: First, the collaborating 
partners each answer the same question separately; then, the tutor displays both part-
ners’ answers to promote discussion; and, finally, the partners provide a final answer 
endorsed by both (see Figure 1, panel A1). The students are not given feedback on 
their individual answer but are shown what their partner selected and are asked to 
select the correct answer as a pair. This allows each student to see their partner’s  
understanding of the question before discussing and choosing a group answer. 

 

 

Fig. 2. Example conceptual tutor problem. Panel A1 displays an example of support for cogni-
tive group awareness. Panel B displays an example of individual information. 

We also used the enhanced version of CTAT to implement a second collaboration 
script phase, in which students are provided with unique information to share with 
their partner. As in the previous example, the collaborative tutor provides a different 
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view on the same problem for each collaborating partner. Specifically, we imple-
mented a script that distributes information between the partners and supports the 
sharing of this information. Students are either shown an example response about the 
fractions and asked to share with their partner, as indicated by the “share” icon, or are 
asked to listen to their partner’s information, as indicated by the “listen” icon (see 
Figure 1, panel B). After the first student shares their example response, the students 
then switch roles, with the second student receiving a different example to share. This 
activity provides each student with a different viewpoint that they can then use to start 
a discussion. Both example phases illustrate a range of collaborative tasks that can be 
supported using CTAT for collaboration by integrating the group formations (individ-
ual or dyadic tasks), the task distributions (roles and unique information), and the 
timing of the phase for the different tasks (ordering of the tasks) into a ITS environ-
ment that can provide feedback and hints to the student.  

4 Discussion and Conclusion 

CSCL has been shown to be an effective paradigm for knowledge acquisition [6], yet 
most authoring tools for ITSs do not support collaborative learning. We extended 
CTAT so it supports the authoring of collaborative tutors, allowing for scripts to be 
flexibly developed to align with the problem state and goals, while maintaining the 
typical ITS advantages. With this new version of CTAT, authors can develop colla-
borative ITSs with embedded collaboration scripts, so that features that support effec-
tive collaboration can be intertwined with those that support problem solving and the 
support for collaboration and problem solving can unfold dynamically with the prob-
lem state and can be shared among collaborating students. Unlike many CSCL tools, 
the tutor follows along with the students and can provide personalized hints and  
feedback on domain knowledge.  

The extension to support collaborative authoring required a relatively small num-
ber of changes to CTAT, although these changes enable a wide range of collaborative 
tutoring interactions to be authored. First, we made it possible to use multiple tutor 
engines in synchronized fashion. Each tutor engine “serves” a single student in a 
group, but has access to the actions of the other students. This loose coupling makes it 
possible for the tutor engines to maintain a shared problem state yet respond different-
ly to each student. CTAT provides the flexibility to develop a wide range of scripts. 
Collaborative tutors built using the CTAT extension have been used successfully in 
two different studies [9]. 

ITS and CSCL work often proceed somewhat separately. The work reported here 
represents a step forward in blending certain ITS tools and CSCL tools, in an effort to 
combine their strengths. Authoring collaborative ITSs with CTAT works well for 
collaboration scripts closely tied to the problem state but does not support collabora-
tion scripts that are more independent of the problem, such as conversational agents. 
Cognitive group awareness and unique information were given as examples in this 
paper, but the design space is much larger and limits are still being determined. We 
look forward to continued use of our combined tool in the ITS and CSCL communi-
ties to explore the range of collaborative tutoring interactions it can support.  
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Abstract. Intelligent Tutoring Systems (ITSs) constitute an alternative to expert 
human tutors, providing direct customized instruction and feedback to students. 
ITSs could positively impact education if adopted on a large scale, but doing 
that requires tools to enable their mass production. This circumstance is the key 
motivation for this work. We present a component-based approach for a system 
architecture for ITSs equipped with meta-tutoring and affective capabilities. We 
elicited the requirements that those systems might address and created a system 
architecture that models their structure and behavior to drive development 
efforts. Our experience applying the architecture in the incremental 
implementation of a four-year project is discussed. 

Keywords: architecture, component-based, tutoring, meta-tutoring, affect. 

1 Introduction 

Intelligent Tutoring Systems (ITSs) seem capable of becoming untiring and 
economical alternatives to expert human tutors. This possibility has proven difficult to 
achieve, but significant progress has been made. The use of ITSs has become more 
common, and there is significant work about their pedagogical and instructional 
design but not about their technological implementation. ITSs are software products 
and, as for any other software product, their implementation on a massive scale relies 
on the principle of assembly instead of crafting them as one-of-a-kind systems. 
Component-based software engineering [1] is an appropriate approach for handling 
mass production. Component-based software engineering addresses the development 
of systems as an assembly of parts (components), with the development of these parts 
as reusable entities and with the maintenance and upgrading of systems through 
customizing and replacing such parts.  

Following a component-based approach, we have defined a system architecture to 
drive the development of ITSs equipped with affective and meta-tutoring capabilities, 
called affective meta intelligent tutoring systems (AMTs). Defining a system architecture 
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is the first step in creating a component-based software framework to implement AMT-
like applications. This system architecture takes advantage of previous experiences with 
ITS implementations; most of that previous experience was extracted from the analysis 
made on existing ITS behavior described in [2], as well as from previous experience in 
the development of real-time affective companions, mainly by the work described in [3].  

This paper is organized as follows: Section 2 provides the terminology and 
background for system architectures, ITS behavior, and affect recognition; Section 3 
describes the AMT system architecture; Section 4 describes the implementation of an 
application following the AMT system architecture and discusses its software metrics; 
and Section 5 provides a conclusion. 

2 Terminology and Background 

The following terminology and background summary contextualizes the work 
described in this paper: 

System Architecture. A system is a group of interacting, interrelated or independent 
modules forming a complex whole. Modules are self-contained entities that carry out 
a specific function; they are implemented as a set of parts called components. A 
system architecture is a conceptual model that describes the modules and components 
of a system and how they interconnect with each other; it becomes a software design 
model by mapping each component to a set of classes following software engineering 
methodologies. The system architecture is essential for realizing the system's quality 
attributes [4].  

ITS Behavioral Description. ITSs are typically used to assign tasks to students; tasks 
are composed of steps that the student must accomplish. The structure of this kind of 
ITSs, called step-based, is described in [2] and can be summarized as follows: (1) the 
group of tasks known by the ITS conforms its Knowledge Base; (2) a Task Selector 
chooses from the Knowledge Base the Task that the student must solve by considering 
the student’s previous performance reported by an Assessor; (3) a User Interface (a 
tool or an environment) provides the space in which the interaction between the tutor 
and the student occurs; (4) a Step Analyzer methodically examines the student’s steps 
and determines whether they are correct or incorrect and then reports that information 
to a Pedagogical Module and to an Assessor; (5) a Pedagogical Module provides 
support (hints and feedback); the provided support depends on current steps and the 
student’s previous performance; and (6) an Assessor measures the performance of the 
student (requested hints, time used to go from one step to another, etc.). 

Affect Recognition Strategies. Research shows that learning is enhanced when 
affective support is present [5]. To provide that support, ITSs need to recognize 
students’ affect. Diverse strategies exist for affect recognition; the one we are 
considering for this work uses sensing devices to read students’ physiological responses; 
this strategy uses, among others, brain-computer interfaces, eye-tracking systems, face-
based emotion recognition systems, and diverse sensors to measure skin conductance 
(arousal), posture, and finger pressure [6].  
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3 System Architecture 

The system architecture was engineered [7] on the principles of encapsulation, low 
coupling, centralized shared data, and layering. Functionality is encapsulated in 
simple components; components that are complex and/or serve diverse purposes are 
split into several collaborative components. Components are low-coupled to facilitate 
replacement, i.e., to increase modifiability. A centralized data-sharing mechanism is 
used to pass data among modules to reduce latency. Components are organized in a 
three-layer structure in which the bottom layer encodes utility services for data 
management and communication responsibilities; the middle layer encodes the 
business logic; and the topmost layer encloses the user interface, which handles the 
interaction with the user. Since the user interface is particular to a specific system, it 
is not described here. Fig. 1 shows modules (boxes), components (gray boxes), and 
their relationships (arrows) as follows: 

Tutor Module. It encapsulates the ITS behavior. Its components and relationships are 
summarized in Section 2.  

Meta Tutor Module. It encapsulates the logic for providing meta-tutoring 
recommendations and promoting meta-skills in the student. The Meta Tutor module 
has two components: (1) an Inspector that reads Tutor events (populated in the Shared 
Repository) and filters those that suggest an intervention is needed; and (2) an Engine 
that provides intelligence to the Meta Tutor; the Engine is notified by the Inspector of 
compelling events and it infers the type of intervention that must be done. 
Interventions consist of showing a message or disabling channels of user interaction. 
The Engine implements the policies about how and when interventions must be done. 
It communicates the interventions to the User Interface for its execution. 

Affective Companion Module. It encapsulates the logic for generating affective 
interventions. The Affective Companion has two components: (1) an Event Selector 
reads the data for Tutor events and affective states (populated in the Shared 
Repository) and filters combinations that suggest an intervention is needed; and (2) an 
Affective Engine that implements the affective intelligence; the Affective Engine is 
notified by the Event Selector of compelling combinations of Tutor events and 
affective state data and infers the type of intervention that must be done. Interventions 
consist of motivational messages. The Affective Engine implements the policies about 
how and when interventions must be done. It communicates the interventions to the 
User Interface for its execution. 

Shared Repository. It is a centralized means for passing data among the other 
modules, which are running concurrently. The Shared Repository module follows a 
blackboard architectural model, in which a common data repository, “the blackboard,” 
is updated by some modules and read by others. The Tutor posts events to the 
blackboard and the Emotion Recognition Subsystem posts affective state reports.  
The Meta Tutor and Affective Companion observe the blackboard, looking for data that 
triggers an action on their side.  
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Emotion Recognition Subsystem. It is a facade that provides a simplified interface 
to a source of affective state data, such as a third-party system, framework, or library.  

The system architecture prioritizes the quality attributes of modifiability, extensibility, 
and integrability. Modifiability refers to the ease with which a component can be 
modified for use in applications or environments other than those for which it was 
specifically designed; affective and cognitive intelligence require this quality since they 
are implemented in different ways. Extensibility refers to being prepared for extension 
into unforeseen contexts since not all application requirements can be determined in 
advance; our system architecture required this quality to make feasible the addition of 
new tutoring, meta-tutoring, or affective support capabilities. Integrability is the process 
of combining software subsystems to assemble an overall system; AMT system 
architecture requires the integration of a third-party system or code (1) for affect 
recognition to support the functionality of the Affective Companion module and (2)  
for decision-making (machine-learning algorithm implementation) to support the 
functionality of the Affective Companion and Meta Tutor modules. 

 

Fig. 1. AMT System Architecture 

4 Usage and Discussion 

The AMT system architecture has been used as a reference during a four-year project 
focused on developing an AMT application [8]. The AMT application was 
implemented in Java with Swing components. The final version is composed of 16 
packages, 120 classes, 1507 methods, 1810 attributes, and 37,374 lines of code. A 
production-rule system and a third-party implementation of emotion recognition 
algorithms were used to support the application development. A detailed description 
of moving from AMT system architecture to software design is outside the scope of 
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this paper due to space limitations; nevertheless, a description of mapping the ITS 
module to a software design can be found in [9]. The four-year implementation 
process was managed using a revision control system and comprises 1,643 revisions 
and 8 released versions. Differences between released versions include, among others, 
changes in requirements, enhancements of decision-making strategies, and bug fixing. 
A total of 15 developers were involved in the different stages of the project, and a 
team of at least four developers was working concurrently in every stage.  

The results of applying the system architecture were measured indirectly by 
evaluating the structural software quality of the systems developed under its influence 
using software metrics. Due to space limitations we report the evaluation of four AMT 
application releases, one from each development year, as follows: (1) Release 742 
implemented the first deployed Tutor; it was focused on the User Interface (a tool) and 
had limited tutoring capabilities; coding the skeleton of the system was the primary goal 
during this year. (2) Release 1277 refashioned the User Interface and implemented an 
enhanced Tutor. (3) Release 1545 included a Meta Tutor, continued refashioning the 
User Interface, and enhanced the Tutor module. (4) Release 1643 added the Affective 
Companion capabilities, enhanced the Meta Tutor, and refactored the User Interface 
and Tutor. The metrication of structural qualities, shown in Table 1, includes measures 
for size, complexity, and coupling as follows: number of packages (P), number of 
classes (F), number of functions (Fn), number of lines of code (LoC), number of 
comments (LoCm), average cyclomatic complexity (AvC), maximum afferent coupling 
(MaxAC), and maximum efferent coupling (MaxEC) [10]. 

Table 1. Comparison of software metrics for modules in diverse AMT application releases 

Release 
Tutor 

Date P F Fn LoC LoCm AvgC MaxAC MaxEC 
742 07/2010 5 24 347 10656 2861 3.11 4 5 
1277 07/2011 9 42 650 20839 4127 3.61 8 9 
1545 07/2012 11 55 885 24542 4654 3.03 9 9 
1643 07/2013 14 62 936 25189 4816 2.96 12 10 

 

Release 
Meta Tutor 

Date P F Fn LoC LoCm AvgC MaxAC MaxEC 
1545 07/2012 1 22 202 3346 437 2.68 4 4 
1643 07/2013 1 22 248 4210 458 3.05 5 7 

 

Release 
Affective Companion 

Date P F Fn LoC LoCm AvgC MaxAC MaxEC 
1643 07/2013 3 36 323 7975 1403 2.59 9 6 

 
Even though we had a high turnover in the development team, the size, complexity, 

and coupling remained at acceptable values. Size measurements (P, F, Fn, LoC, and 
LoCm) show a correspondence of the requirements implemented in each release and 
the size of the application, as well as a balance in its granularity. The average 
complexity (AvgC) at the module level remains within acceptable ranges (below 
five); at a fine-grain level (classes), not shown in the table, those values are not 
always acceptable. The decrease in average complexity in the latest versions of Tutor 
shows the refactoring outcome (functionality was fixed and developers focused on 
code improvements). Lower values in coupling measures (MaxAC and MaxEC) are 
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better since they are a sign of independence; the high values of coupling in Tutor can 
be justified because they belong to the User Interface (highly connected); Meta Tutor 
values are acceptable, but Affective Companion values suggest that a refactoring 
would be required in the implementation of this module. 

5 Conclusions 

In this paper, we have presented the AMT system architecture, the first step for 
creating a component-based software framework to implement AMT-like 
applications. We have defined its requirements and qualities and have shown how the 
AMT system architecture addresses them to support large-scale reuse. Software 
metrics for different releases of one AMT application show how the system 
architecture provided a flexible partition of the system that facilitates modifiability, 
extensibility, and integrability. With this proposed system architecture, we aim to 
share our experience, looking forward to making the development of AMT-like 
systems an easier, faster, and standardized process. 

Acknowledgments. This material is based upon work supported by the National 
Science Foundation under Grant No. 0910221. 
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Abstract. Automation of tutor modeling can contribute to scalable development 
and maintenance of Intelligent Tutoring Systems (ITS). In this paper, we are 
proposing a modification to the process used to build Example Tracing tutors 
which are a widely used tutor model. Our approach automatically uses behavior 
demonstrations by multiple non-experts (such as learners) to create a partially 
annotated generalized tutor model.  

Keywords: Tutor Models, Example Tracing Tutors, Authoring, Automation.  

1 Introduction 

Example-Tracing Tutors (ETT) are a popular and effective tutor model that have been 
used to build ITS for a wide range of learning domains [1] since their introduction over 
a decade ago [2]. The popularity of this model is rooted in the reduction of effort & 
expertise requirements associated with building these tutors. This objective is furthered 
by the availability of well-developed general purpose authoring tools such as the Cogni-
tive Tutors Authoring Tools (CTAT) [3] and the ASSISTment Builder [4]. The effec-
tiveness of these models is based in their ability to capture learner behaviors at a  
fine-grained level and provide step-by-step guidance in structured learning activities. 

Building ETTs involve three stages: (1) User interface development, (2) Behavior 
demonstration, (3) Generalization and Annotation of the behavior graph. While au-
thoring tools listed earlier support non-programmers through each of these stages, the 
work in all of these stages is completely manual. Note that while this process does not 
require ITS developers to have advanced computing expertise, their expertise in the 
learning domain is exercised. Web based tools, such as the ASSISTment Builder, 
have enabled a community of educators with the relevant domain & pedagogical  
expertise to participate in this process of building ETTs. 

As ITS are being deployed to a large active user pool, it is now possible to pilot the 
user interface with a small sample of learners to collect multiple behavior demonstra-
tions. In this manner, the effort of behavior demonstration (Stage 2) can be distributed to 
a scalable workforce. An algorithm that can automatically create a generalized behavior 
graph from the multiple demonstrations collected in this way can significantly reduce 
the (Stage 3) effort of the ITS developer. 
                                                           
* This research was funded by the US Office of Naval Research (ONR) contract N00014-12-C-0535.  
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The choice of problem solving as the underlying learning activity is motivated by its 
applicability to a wide range of STEM domains. Specifically, we are focusing on 
applying the learning platform to build a high school Physics learning system cover-
ing topics in Electricity and Magnetism. 

Figure 1 shows a rendering of a Physics problem in our learning environment. The 
UI employs a tile metaphor to allow use of the learning environment on multiple web-
enabled devices including touch screen devices with relatively low screen resolution 
(such as smart phones). The first tile shows a problem statement. Learners can solve a 
given problem without tutor assistance or can click on the help button in which case the 
decomposition of the problem into a series of solution steps is presented. In addition to 
the access to this decomposition upon requesting help, we have implemented a tutoring 
engine that uses ETTs to provide feedback and scaffolded hints to the learners. 

Our workbench includes two separate tools for supporting the three stage ETT de-
velopment process. First, a WSIWYG problem authoring tool allows non-
programmers to build user interfaces. The solution steps shown above showcase some 
of the UI elements that are available to the authors. Second, a model building tool 
enables them to demonstrate problem solutions and edit/annotate the behavior graph 
which is accessible side-by-side within the same tool. 

2.2 Related Work 

As a result of the successful wide use of the Knowledge Tracing and Example Tracing 
tutors, researchers working with these types of tutor models have been able to collect 
data that capture solution traces from multiple learners. In recent years, a number of 
researchers have published interesting work investigating the use of this trace data. 

Sudol et al. [5] aggregated solution paths taken by different learners to develop a 
probabilistic solution assessment metric. Johnson et al. [6] are creating visualization 
tools for interaction networks that combine learner traces from open-ended problem 
solving environments. They have developed an algorithm for reducing the complexity 
of combined networks to make them more navigable. In a similar spirit, work by Rit-
ter et al. [7] used clustering techniques to reduce the large feature space of student 
models to assist in qualitative model interpretation. 

Note that some of this existing work has used traces generated by learners after an 
ITS has been developed. The work presented in this paper focuses on use of solution 
demonstrations by learners to assist in building the ITS. McLaren et al. [8] also pro-
posed the use of activity logs from novice users to bootstrap tutor model development. 

3 Learning Tutor Models 

3.1 Behavior Demonstrations and Behavior Graphs 

Before we present our algorithm for automatically generalizing behavior demonstra-
tion, this section will describe the representation we use for capturing behavior  
demonstrations and visualize behavior graphs. 
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field of events and may be annotated with additional information such as element 
identifiers if necessary for readability. Besides a sequential organization of solution 
state, the behavior graph above showcases an alternate path between the states labeled 
3=Done and 5=Done. Alternate paths are an important feature of behavior graphs 
especially for the use of ETTs in ill-defined learning domains. They support learner’s 
exploration of alternate solutions to a problem. 

In addition to nodes and edges, behavior graphs include unordered groups which 
indicate that states within a group may be traversed in any order. The states bound by 
the blue box are an example of an unordered group is shown in Figure 2c. This unor-
dered group indicates that the three UI elements corresponding to the mixed fraction 
may be filled in any order. 

Behavior graph authoring tools support a number of additional annotations on both 
the nodes and the edges. For example, incorrect edges may be annotated with correc-
tive feedback provided to learners when their trace traverses that edge. Nodes are 
usually annotated with hints for tutoring applications and with skills for student mod-
eling and assessment applications. 

3.2 Desirable Characteristics of Behavior Graphs 

Readable 
One of the key characteristics of Behavior Graphs that makes them a popular model is 
that they are readable by ITS authors without requiring a deep understanding of com-
putational or cognitive sciences. Automatically created behavior graphs should be 
editable with existing authoring tools to facilitate manual annotation and modifica-
tions. Ideal generation algorithms should create concise graphs without losing other 
desirable characteristics. This may involve collapsing redundant paths and even  
pruning spurious or infrequent edges. 

Complete 
In order to minimize author effort, generated behaviors graphs should be as complete 
for creating an ETT as possible. As a minimal criterion, at least one valid path to the 
final solution should be included. Note that the creation of a complete graph (even 
manually) relies on the availability of one or more complete behavior demonstrations. 

Accurate 
Behavior graphs should be error free. This includes being able to accurately capture 
the correct and incorrect events by learners depending on their current state. 

Robust 
One of the reasons for the success of good ETTs is the ability to use them with a wide 
range of learners under different deployment conditions. Automatically generated 
behavior graphs should retain this characteristic, e.g., by identifying alternate paths 
and unordered groups. A robust behavior graph need not necessarily be the most un-
constrained graph, which maybe prone to gaming behaviors by learners. It is not unfo-
reseeable that the use of a data-driven approach could contribute to creating behavior 
graphs that are more robust than those authored to a human expert. 
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3.3 Algorithm for Automatically Creating Behavior Graphs 

Now we will describe a preliminary four-stage algorithm that combines multiple be-
havior demonstrations to automatically create a behavior graph. Several simplifying 
assumptions are made about the demonstrations which are explicitly noted to encour-
age the development of more robust algorithms. 

Stage 1. Reduce Retracted Events 
We assume that all retracted events in a demonstration correspond to mistakes which 
were corrected by the user when the prior event is retracted. We process each available 
demonstration independently to combine the data from all retracted events into the last 
occurring event with the same element in each demonstration. The combined data val-
ues from the retracted events are considered as incorrect inputs for that element. This 
stage of the algorithm is similar to pre-reduction step used by Johnson et al. [6].  

Stage 2. Calculate Sequence of States 
We assume that there is one and only one path through the UI elements of the solution 
interface. This stage calculates the most frequently taken path through those elements 
to create a sequence of states for the automatically generated behavior graph. In the 
current implementation, we also assume that all demonstration end in a correct solu-
tion. For each unique UI element, collect events from all available demonstrations 
that were generated by the element under consideration. After stage 1, there should be 
at most one such event in each demonstration. As these events are collect, the posi-
tional index an event is found in each demonstration is preserved. Elements are sorted 
in an increasing order of the mode of their positional indices to obtain the sequence of 
states. Mean is used as a tie-breaker if elements have the same positional mode. 

Stage 3. Generate Edges 
Given the sequence of states, we can generate a behavior graph by constructing edges 
between the states. For each unique correct data value an element takes in the demon-
strations, we generate a correct edge between to the state corresponding to the ele-
ment from the previous state. Similarly, for each incorrect data value (identified in 
Stage 1), an incorrect edge is generated at the previous state. The frequency of a data 
value is used to highlight each edge. This information can be used to prune a behavior 
graph for readability. Due to the small amount of data used in the experiment  
presented in this paper, no pruning is applied to the graphs generated. 

Stage 4. Identify Unordered Groups 
Two adjacent states are added to an unordered group if the corresponding UI elements 
frequently share each other’s positional indices in the multiple demonstrations. Cur-
rently, we use a heuristic function (√# ) to determine the threshold 
frequency. Unordered groups between adjacent pairs of states are merged. 

3.4 Pilot Data Collection 

We conducted an experiment to collect behavior demonstrations for five Physics problems 
on the topic of Electrostatics. We recruited nine subjects to participate in the experiment. 
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All subjects were adult BBN employees who had completed a high-school Physics course 
that covered topics in Electricity and Magnetism during their education. None of the sub-
jects are educated in advanced Physics or are practicing Physicists in their professions. No 
refresher of the subject matter was provided prior to the experiment to elicit common mis-
takes from the subjects. They were allowed to use a scientific calculator and were provided 
data (Coulomb’s constant, Charge of an electron) required to solve the problem. 

Each subject spent one hour on the experiment. Time spent on the experiment 
counted towards their regular work hours. During the one hour, a sequence of five 
problems was presented, one at a time. Each problem included a problem statement 
and a number of steps. Figure 1 shows one of the problems used in our data collec-
tion. The data collection was completed over two days. 

Table 1. Pilot Data Collection Statistics 

 # 
Demonstration

#Demonstration Events #UI 
Elements  Min. Max. Total Avg. St.Dev.

problem1 9 5 8 49 5.44 0.96 5 
problem2 9 18 28 195 21.67 3.43 18 
problem6 9 35 52 377 41.89 6.08 37 

problem10 6 37 41 230 38.33 1.86 37 
problem15 4 54 58 223 55.75 1.48 55 

All nine subjects were able to complete the first three problems (problem1, 
problem2, problem6) within an hour. Six subjects completed the fourth problem 
(problem10) and only four completed the fifth problem (problem15). Table 1 
shows some statistics about the behavior demonstrations used in our experiment. 

3.5 Analysis and Results 

The algorithm described in Section 3.3 was applied to the set of behavior demonstra-
tions available for each problem to automatically create a behavior graph for each 
problem. Figure 3 shows the automatically created graphs for problem1, prob-
lem2 and problem15. Because of the large numbers of UI elements in problem2 
and problem15, only part of their behavior graphs are shown. The automatically 
generated behavior graphs use the same representation as manually authored behavior 
graphs such as the one shown in Figure 2c to allow further annotation of these graphs 
within our model building tools (mentioned in Section 2.1). 

Ideally, tutor models should be evaluated in terms of learning efficacy by deploy-
ing them in a relevant sample learner population. However, since our learning plat-
form is currently under development, we will use a number of other metrics, shown in 
Table 2, to evaluate the automatically generated graphs with respect to some of the 
desirable characteristic listed in Section 3.2. Descriptive statistics about the generated 
graphs (Number of nodes, edges, groups) are included. 
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Complete. The minimal criterion for completeness is guaranteed by the assumptions 
made at Stage 2 of our algorithm. Once we operationalize our authoring tools, we 
would like to measure additional authoring effort required annotate and modify auto-
matically generated graphs as a measure of completeness. 

Accurate. Edge accuracy measures the percentage of Correct & Incorrect edges that 
were accurately classified by the algorithm. Error rate is a frequency weighted combina-
tion of edge accuracy that measures the fraction of learner events that will be inaccurate-
ly classified by the automatically generated behavior graph. We believe this should be 
the primary metric for evaluating automatic behavior graph generation. As we see from 
Table 2, both our accuracy metrics have scope for significant improvement. Note that 
the trivial algorithm that generates an interaction network would achieve an error rate of 
0% on the demonstrations used to build the network. For experimental validity, it is 
better to use held out demonstrations to measure accuracy metrics. Due a small amount 
of data used in our experiment, this is an evaluation shortcoming. 

Robust. Branching factor is the average number of data values available at each UI 
element. A large branching factor indicates the capability to process a large variety of 
learner inputs at each state. Average number of retracts, a related metric, measures the 
average number of retracted events identified during Stage 2 of our algorithm. Held-
out demonstrations can also be used to measure the robustness towards unseen user 
inputs. Finally, a larger number of unordered groups is indicative of flexibility a graph 
affords to learners to explore the solution paths of a problem. 

4 Discussion 

In this paper, we have proposed a modification to the current process used to develop 
ETTs that employs multiple behavior demonstrations to automatically generate a par-
tially annotated behavior graph. The impact of this modification is not only the potential 
for scalable ITS development by reduction in authoring effort, but also the increased 
validity of tutor models generated from behavior demonstrations that are collected from 
the intended end-user. We have also presented a preliminary algorithm for automated 
behavior graph generation as well as a number of analytical metrics that can be used to 
evaluate the performance of the algorithm in terms of a set of desirable characteristics. 
Results presented here establish a baseline to compare improved algorithms. 

There are some shortcomings of our current approach. First, our algorithm merges 
alternate solution paths into a single sequence of states due to an assumption made at 
Stage 2. Ability to extract alternate paths will be useful for application of our process 
to ill-defined learning domains. Second, our algorithm does not discover navigational 
constraints in problem solving interfaces that are used to prevent the learners from 
loafing or gaming the system. By including navigational events during the process of 
collecting behavior demonstration, it is possible to automatically include these con-
straints in the behavior graphs. Similarly, our algorithm can be extended to automati-
cally discover optional elements in the solution interface. Finally, it would be useful 
to modify our algorithm to improve existing manually authored behavior graphs to 
facilitate automated ITS maintenance. 



544 R. Kumar et al. 

 

Note that the problem of combining multiple sequences of data (e.g. protein se-
quences) into graph like structures has been explored by researchers working on other 
types of intelligent systems. Also, work in ontology alignment, social network analy-
sis and graph induction has developed techniques that could motivate innovative  
approaches to automatically generating behavior graphs. In addition to improving 
behavior graph generation algorithms, a key directions leading from this work is the 
need to integrate these algorithm with ITS authoring tools. 

In conclusion, we emphasize the need to employ data-driven approaches for ITS 
development. The process modification discussed in this paper is a step towards dis-
tributed ITS development that can employ communities of learners and education for 
scalability. An interesting sub-problem of selection of appropriate users for eliciting 
behavior demonstrations needs further attention. Finally, we want to note that in real 
world ITS deployments, it is possible to collect couple of order of magnitudes more 
behavior demonstrations for generating and maintaining behavior graphs. Access to 
such data is likely to lead to drastically different approaches to ITS development. 
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Abstract. In this paper, the language independence of DOM-Sortze for creating 
Educational Ontologies from electronic textbooks is tested. DOM-Sortze has 
been designed to be language and domain independent. Initially, it was tested 
with documents written in the Basque language. In this work, DOM-Sortze has 
been enhanced to deal with the English language. In addition, the benefit of in-
corporating Wikipedia as a knowledge source in the elicitation process of the 
Educational Ontology is also considered. The obtained results confirm the lan-
guage independence of this approach.  

Keywords: Domain Module, Educational ontology, Ontology learning, Lan-
guage independence. 

1 Introduction 

To be effective, any Technology Supported Learning System (TSLS) requires an 
appropriate representation of the knowledge to be mastered by the student, i.e., the 
Domain Module. The Domain Module is considered the core of any TSLS [1]. In  
the literature, the Domain Module has been represented in several means, including the 
ontological approach [1]. In the approach presented throughout this paper, the Domain 
Module is described by means of an Educational Ontology, the Learning Domain On-
tology (LDO), and Learning Objects (LOs) [2]. Educational Ontologies encapsulate the 
domain knowledge of a TSLS along with the related pedagogical knowledge [3].  
The LDO contains the main domain topics and the pedagogical relationships among 
them. Pedagogical relationships can be structural ─isA and partOf─ or sequential 
─prerequisite and next─ [2].  

Ontology learning, i.e., gathering domain ontologies from different resources in an au-
tomatic or semiautomatic way has been addressed in many projects [4, 5]. Most of  
these projects aim at building or extending a domain ontology or populating lexical on-
tologies such as Wordnet [6] or EuroWordnet [7]. Ontology learning usually combines 
machine learning and Natural Language Processing (NLP) techniques to build domain 
ontologies or to enhance and populate some base ontologies. Ontology learning relies on 
the assumption that there is semantic knowledge underlying syntactic structures.  
For instance, Text2Onto [8] uses Hearst’s patterns [9] to gather taxonomic relationships, 
and nested terms-based methods to identify the set of candidate domain topics.  
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OntoLT [10], a Protégé (http://protege.stanford.edu/) plug-in for the extraction of ontolo-
gies from texts, identifies taxonomic relationships on nested terms, relying on the appear-
ance of a term and some modifiers (Genus et Differentiam). 

DOM-Sortze [2] is a suite of applications and web-services that address every task 
for the semiautomatic development of the Domain Module from electronic textbooks: 
the acquisition of the LDO, generation of LOs for the topics to be mastered, and the 
supervision of the construction process. This web-service oriented approach makes 
DOM-Sortze flexible and platform-independent. DOM-Sortze was designed to be 
able to deal with different languages and domains. This suit of applications does not 
strongly depend on a concrete language, even though it has been initially applied on 
textbooks written in the Basque language. 

DOM-Sortze combines NLP techniques with heuristic reasoning and ontologies to 
construct the Domain Module. It uses a set of heuristics and patterns based on syntac-
tic information that allow the identification of meaningful pieces of knowledge from 
which the LDO is built. Furthermore, it has been observed that similar or equivalent 
patterns exist for other languages such as English [11]. Thus, DOM-Sortze can easily 
be enhanced to deal with a new language. It needs the heuristics and the patterns for 
identifying the topics and relationships, and to enhance the NLP Analysis Service 
with a NLP analyser for the new language. 

In this paper, the automatic identification of structural relationships from document 
outlines written in English is addressed to confirm the language independence of this 
approach. Two versions of the process are tested: first the heuristic-based process 
(Section 2) and then the Wikipedia-enhanced process (Section 3). To end up, some 
final remarks and future work are provided. 

2 Heuristic-Based Elicitation from Document Outlines 

Document outlines are useful sources of information for acquiring the Domain Mod-
ule in a semi-automatic way; they are usually well-structured and contain the main 
topics of the domain. In addition, they are considerably summarised, so a lot of useful 
information can be extracted with a low cost process. The authors of textbooks have 
previously analysed the domain and decided how to organise the content according to 
pedagogical principles in order to promote the learning and understanding of their 
content. The organisation of the textbook is reflected in the outline. Thus, most of the 
implicit pedagogical relations can be inferred from the outline. The outline analysis 
process consists of two phases: basic analysis and heuristic analysis. 

In the basic analysis, the main topics of the domain and the relationships between 
these topics are mined from the outline. In this approach, each index item is consi-
dered as a domain topic. Besides, the structure of the document outline is used as a 
means to gather pedagogical relationships. A subitem of a general topic is used to 
explain part of it or a particular case of it. Therefore, structural relationships are de-
fined between every outline item and all its subitems.  

In the heuristic analysis the results of the basic analysis are refined based on a set 
of heuristics that categorise the relationships identified in the previous step and mine 
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new ones, mainly prerequisite relationships. The heuristics entail the condition to be 
matched, and the post-condition, i.e., the relationships that are recognised. The heuris-
tic analysis relies on the empirically gathered confidence of the heuristic, i.e. the  
percentage of times the heuristic fires correctly.  

The identification of Structural Relationships is carried out to categorize the rela-
tionship between an item and its subitems. In previous experiments, it was noticed the 
isA relationships could be inferred in different cases (see Table 1). On the one hand, 
homogeneous subitems allow the identification of such relationship. Both subtitems 
share a common head (clustering) which is enhanced with some modifier following a 
Genus et differentiam pattern. A set of heuristics (group heuristics) allow the identifi-
cation of isA relationships from homogeneous structures. On the other hand, other 
fragments containing isA relationships are more heterogeneous. In the example, three 
kinds or security methods are presented. The first one is an acronym whereas the 
second one is a proper name. Individual heuristics are aimed at the identification of 
structural relationships in these situations. 

Table 1. Examples of outline fragments from which isA relationships can be inferred 

Homogeneous subitems Heterogeneous subitems 
5. Numerical classification 

  5.1    Exclusive clustering 
  5.2    Hierarchical clustering 

6. Transport and network-level security methods 
           6.1   SSL 

       6.2    IPSec 
       6.3    Virtual private networks 

The structural relationships are identified in the heuristic-driven process described 
next. For each outline item, a group heuristic that matches is looked for. Group heu-
ristics identify isA relationships from homogeneous subitems or if the outline item 
entails certain keywords. If such a heuristic fires, then isA relationship is defined be-
tween the outline item and each of its subitems. Otherwise, the individual heuristic 
that triggers is search for on every subtitem. Different heuristics can be fired together 
in the same group of subitems so, the most confident one is returned; the default heu-
ristic (partOf) is returned when no other heuristic condition is met [12]. Then, the list 
of applied heuristics is processed to get the confidence on an underlying isA relation-
ship using (Equation 1),  ∑ ( ) ( )∈ ∑ ( ) ( )∈    (1) 

where h represents a heuristic, f(h) is the number of times the heuristic h is triggered, 
c(h) is the confidence on heuristic h, Hi the set of heuristics that identify isA relation-
ships and Hp the set of heuristics that reinforce the hypothesis that the relationship is a 
partOf  relationship, and n represents the number of subitems. If the confisA value goes 
beyond a threshold, then the structural relationships are refined as isA, otherwise, the 
relationships are labeled as partOf.   
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To support the acquisition of structural relationships from document outlines writ-
ten in English, equivalent heuristics to those described in [12] have been defined. 
Those heuristics rely on syntactic patterns and do not use any domain-specific know-
ledge. Some of those heuristics rely on NLP services, for instance, those to identify 
entity names. Therefore, the NLP services have to provide the same functionality for 
English, to which end they were enhanced to use the Illinois Named Entity Tagger 
[13] for NLP tasks. This tool has been mainly used for entity recognition. 

2.1 Experiment 

To validate the proposal, 57 outlines of different courses have been processed. The 
evaluation of the proposal described throughout this paper was conducted following a 
gold-standard approach. The authors of the paper and lecturers of the courses defined 
the LDOs that were used as optimal output. These LDOs were restricted to the topics 
referred on the outlines and the structural relationships between those topics (1197 
partOf, 483 isA). Then, every outline was processed and the automatically gathered 
ontologies were compared to the gold-standard. The process was evaluated in terms of 
recall, i.e., the percentage of identified relationships, and precision, i.e., the percen-
tage of correctly classified relationships. 

HP (Heuristic Process) columns on Table 2 show the results of this experiment. 
The overall precision and recall measures are positive (83.85%). Furthermore, the 
scores achieved for the partOf relationships were even higher; 84.12% precision and 
98.66% recall. However, the recall for isA relationships dramatically dropped to 
21.20%, although the precision was still good (78.95%). A deep analysis of the results 
was conducted to determine why the results were worse than expected. The lack of 
knowledge on certain domains significantly affected the performance. For instance, it 
was observed that many of the topics involved in the missing isA relationships con-
tained proper names; however, the entity name recognizer used in the experiment was 
unable to identify them. A training process would be necessary to fulfill such purpose. 
Given that the process aims to be domain-independent, this was not an option.  

To improve the results, a new step was included in the elicitation process using 
Wikipedia as an additional resource. This improvement is described in next section. 

Table 2.  Results of the Heuristic Process (HP) and the Wikipedia-Enhanced Process (WEP) 

 partOf isA Total 
 HP WEP HP WEP HP WEP 
Precision (%) 84.12 89.19 78.95 77.30 83.85 87.70 
Recall (%) 98.66 96.49 21.20 50.53 83.85 87.70 

3 Enhancing the Elicitation Process with Wikipedia 

Wikipedia is a collaborative online encyclopedia containing over 30 million articles in 
287 languages (as of January 2014). It has a vast, constantly evolving tapestry of rich-
ly interlinked articles, i.e., concepts and semantic relationships [14]. Wikipedia is an 
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appropriate resource for NLP given that it is: domain independent (it has a large cov-
erage), up-to-date, and multilingual [15]. Ponzetto and Strube [15] derived a large 
scale taxonomy containing isA relationships from Wikipedia. In the proposal pre-
sented throughout this paper, this taxonomy has been used to discover missing isA 
relationships. In most cases, these kinds of relationship appear in lower-levels (in-
volving leave nodes) of the LDO. To improve the results an additional process is  
carried out: 

1) Identify groups of sibling nodes (topics) of the LDO extracted from the outline; 
2) select the groups of leave nodes in which the partOf relationship has been identi-
fied to apply the subsequent steps; 3) normalize the nodes (removing plural marks, 
apostrophes and avoiding case differences); 4) link every node to those Wikipedia 
articles which are labeled with the normalized text of the node; 5) run a disambigua-
tion process based on Wikiminer [14] to map each node to a unique article; 6) process 
every group using Ponzetto and Strube’s taxonomy [15] to look for common ancestor; 
7) infer isA relationships in those groups that share a common ancestor, as long as it 
does not appear at top-levels in the taxonomy. 

3.1 Experiment 

The results of the Wikipedia-Enhanced Process (WEP) have also been tested using 
the gold-standard (see WEP columns on Table 2). The overall performance has im-
proved (87.70% precision and recall). Regarding partOf relationships, the recall has 
slightly decreased (96.49% vs. 98.66%) but the precision has slightly increased from 
84.12% to 89.12%. In regards to isA relationships, the recall has dramatically in-
creased from 21.20% to 50.53% whereas the precision was hardly affected (77.30% 
vs. 78.95%). 

4 Conclusions 

In this paper, the language independence of DOM-Sortze for creating Educational 
Ontologies has been tested. DOM-Sortze is a suite of applications and web-services 
aiming at the semiautomatic development of Domain Modules from electronic text-
books. In order to build the Learning Domain Ontology, DOM-Sortze relies on a heu-
ristic-driven document outline analysis. This suite was designed to be language and 
domain independent. Initially, it was tested with documents of different areas written 
in the Basque language. In this work, DOM-Sortze has been enhanced to deal with the 
English language. The heuristics used for the outline analysis have been adapted from 
those identified for the Basque language. 

An experiment using 57 outlines of courses that cover different areas has been 
conducted. Furthermore, an additional step in which Wikipedia is used to refine the 
relationships has been included. This new step dramatically improved the recall for 
the isA relationships (29.33% enhancement), while the precision was barely affected. 
In addition, the overall performance also increased, as the precision for the partOf 
relationship slightly improved, minimally decreasing its recall.  
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The obtained results confirm the language independence of this approach. In addi-
tion, the use of the Wikipedia places the presented proposal on the fast track towards 
the multilingual Educational Ontology learning.  
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Abstract. Authoring Intelligent Tutoring Systems is expensive and time
consuming. To reduce costs, the Cognitive Tutor Authoring Tools and
the Example-Tracing Tutor paradigm were developed to make the tutor
authoring process more efficient. Under this paradigm, tutors are con-
structed by demonstrating behavior directly in a tutor interface, reducing
the need for programming expertise. This paper evaluates the efficiency
of authoring a tutor with SimStudent, an extension to the Example-
Tracing paradigm that is designed to produce greater generality in less
time by induction from past demonstrations and feedback. We found
that authoring an algebra tutor in SimStudent is faster than Example-
Tracing while maintaining equivalent final model quality. Furthermore,
we found that the SimStudent model generalizes beyond the problems
that were used to author it.

1 Introduction

Intelligent Tutoring Systems (ITSs) are a widely used educational technology
[1] that has been shown to improve learning over many traditional forms of
instruction [2–7]. One challenge associated with ITSs is that they are difficult to
build and require developers to make decisions about trade offs between power,
usability, fidelity, and cost [8]. To overcome the challenge of authoring high-
quality tutors, many authoring tools have been developed [8]. We focus on the
Cognitive Tutor Authoring Tools (CTAT), which has been shown to decreases
the time required to build a tutor by as much as 50% [9]. CTAT achieves these
gains by providing a drag-and-drop interface builder and by providing support
for authoring two types of tutors: Cognitive Tutors and Example-Tracing Tutors.

Cognitive Tutors provide step-by-step feedback to students while they solve
problems by comparing their actions to a model of expert behavior for the given
domain. This model uses production rules, if-then rules that map each state in a
tutoring interface to a legal action that might be taken on that state [10]. These
production rules are quite general, in that a single rule might apply to many
states throughout problem solving. However, in general these models are costly
to produce. It can take 200-300 hours of development to produce a Cognitive
Tutor for one hour of instruction and tutor development usually requires multiple
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kinds of expertise (i.e., domain expertise, Cognitive Psychology, and Computer
Science) [8, 11].

Example-Tracing Tutors were developed to reduce the costs of producing a
Cognitive Tutor [9, 11]. These tutors reduce the technical costs of tutor de-
velopment by allowing domain experts and Cognitive Psychologists to build a
cognitive model by demonstration rather than by programming a production
rule model. To build an expert model in this paradigm, the tutor author demon-
strates every legal action at every step for every problem. The resulting cognitive
model, called a behavior graph, is a simplified production rule model, where each
production rule maps a single state to a single action. While some methods for
generalization do exist, these models are still much less general than Cogni-
tive Tutors. However, in practice this limitation is balanced out by the ease of
authoring– in many cases individuals can learn to author tutors in one after-
noon [9].

While CTAT drastically reduces the cost of authoring ITSs, the tutors that
it can produce are at two ends of an authoring spectrum: Cognitive Tutors are
difficult to produce, but are maximally general, while Example-Tracing Tutors
are easy to produce, but are maximally specific. Recent extensions to Example-
Tracing Tutors have addressed how to make Example-Tracing Tutors more gen-
eral. Existing techniques include specifying sequences of actions that might be
executed in any order, employing regular expressions or formulas for matching
demonstrations, and duplicating behavior graph structures for many problems
of similar type, an approach called mass-production [11]. While these techniques
have improved Example-Tracing Tutor generality, more research into how gen-
eral expert models might be produced without technical expertise is still an
active area of research.

One promising development is the SimStudent architecture, a CTAT mod-
ule that tries to bridge the gap between Example-Tracing Tutors and Cognitive
Tutors by learning production rule models from demonstrations and problem-
solving feedback [12]. Previous work has shown that authoring a model by tutor-
ing (both demonstrations and feedback) is more efficient than demonstrations
alone. However, the SimStudent approach to authoring has never been compared
to the more widely used Example-Tracing approach.

We compare authoring time for a tutor built with SimStudent and Example-
Tracing by using a Keystroke-Level Model (KLM) [13], a simple human informa-
tion processing model that estimates how many seconds it would take a trained
user to perform authoring actions. This analysis shows that SimStudent can
reduce authoring time by as much as 50%, for domains that SimStudent has
adequate background knowledge. Additionally, we evaluate the quality of the
model produced by each approach and show that while both approaches pro-
duce models with equivalent quality by the end of authoring, SimStudent shows
the ability to generalize from authored to unauthored problems along the way.
Before showing these results, we review CTAT and how it can be used to author
an Example-Tracing Tutor and then show how the SimStudent architecture can
be used to author a tutor through CTAT.
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2 Authoring an Example-Tracing Tutor in CTAT

In this section, we show an example of how CTAT can be used to author an
Example-Tracing tutor for one- and two-step Algebra equation solving for a
given tutor interface. For more details see [9].

To construct an Example-Tracing tutor, one demonstrates behavior directly in
the tutoring interface. Traces of these actions are recorded in a behavior graph.
A simple Algebra tutor interface and its associated behavior graph are shown in
Figure 1.

Fig. 1. The Algebra interface and the Behavior Graph produced from demonstrating
behavior directly in the interface. The green text specifies the actions taken in the
interface and the black text just below shows the author produced skill labels. The
ellipsoids between the second and third state (partly occluded by the labels) signify
that the actions can be executed in any order.

In this figure we see an interface for tutoring multi-step algebra equation
solving (right) and a behavior graph (left). Each node represents a state of the
tutoring interface, where the initial state represents the problem to solve. Each
link coming out of a node represents an action that might be performed in the
state the node represents. In Example Tracing each link is produced as a result
of a single action demonstrated directly in the tutor interface, where many legal
actions might be demonstrated for each state.

As an example of authoring, consider a tutor for solving the equation x+2 =
10 (using the interface shown in Figure 1). To construct this tutor the author
would:

1. Create an empty behavior graph.
2. Input the equation into the interface.
3. Create the initial node of the behavior graph to represent this start state.
4. Demonstrate the first action, subtract 2 from both sides. This demonstration

produces a new link in the behavior graph, which the author will label with
to the knowledge necessary to perform that action (this label is useful for
monitoring learning).
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5. Demonstrate the second action, entering x as the new left side of the equa-
tion. A second link is produced and labeled in the behavior graph.

6. Next, the third action is demonstrated, entering 8 as the new right side of
the equation. A third link is produced and labeled in the behavior graph.

7. The author performs the final action, clicking the done button. This adds
a final link to the behavior graph, which the author labels as requiring the
done skill.

8. Because the order of the second and third actions doesn’t matter, the au-
thor either selects both links and marks them as being unordered or returns
to the previous state by clicking on the node in the behavior graph and
demonstrating the actions in reverse order.

Figure 1 shows the resulting behavior graph (with the second and third links
marked as unordered– denoted by the ellipsoids behind the skill names). For
a given tutor interface, an author may produce many behavior graphs, each
representing a different problem that might be solved in that interface. Other
CTAT tools deploy the interface and associated behavior graphs as an ITS, a
matter not discussed here.

3 Authoring Using SimStudent

While the Example-Tracing approach has proven effective for authoring, the
generality of the model is quite limited. To overcome this limitation the Sim-
Student architecture was created. This system extends Example-Tracing by in-
ducing more general production rule models from demonstrations and tutoring
feedback (for details on this rule induction see [12]). To summarize, SimStudent
learns production rules from the demonstrations and refines the conditions on
these production rules based on the author’s feedback.

The process of authoring a tutor with SimStudent is similar to Example Trac-
ing, in that the SimStudent asks for demonstrations when it does not know how
to proceed. However, when SimStudent already has an applicable production
rule, it fires the rule and shows the resulting action in the tutor interface. It
then asks the tutor author for yes/no feedback on whether this action is correct.
Based on the author’s feedback, SimStudent refines the conditions of its produc-
tion rules and proceeds to continue trying to solve the problem. If the author’s
feedback is negative, SimStudent may exhaust all of its applicable production
rules. In these cases, SimStudent asks the user for a demonstration of the correct
action. Figure 2 shows how SimStudent communicates with the tutor author to
receive a demonstration or feedback.

When authoring models in SimStudent, the author does not have to specify
that interface actions are unordered, as one would need to do in Example Tracing,
because the production rules learned by SimStudent are applicable in any order,
as long as their conditions are satisfied. It is worth noting that the process for
authoring a tutor using SimStudent produces both behavior graphs, which might
subsequently be used for Example Tracing, and a more general production rule
model, which might be used in a full-fledged Cognitive Tutor.
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Fig. 2. The image on the left shows SimStudent asking for a demonstration when it
does not know how to proceed. The image on the right shows SimStudent asking for
feedback on the action it took when it does know how to proceed.

4 Method

An Algebra tutor was authored using both the Example-Tracing and SimStu-
dent approaches. In both cases, the tutor was authored to provide step-by-step
feedback on the 20 algebra equations shown in Table 1, where they are organized
by the skills necessary to solve them.

We estimated the average authoring time for each approach using the KLM
technique, which involved breaking down each authoring action into its primitive
steps (many mental pauses, point-and-click actions, and key presses) and then
using timing data for how long the average user needs to complete these primitive
steps. The KLM provides an accurate prediction of error-free task execution time
for an expert user [13]. Both tutors were authored using CTAT and the same
Algebra tutor interface, shown in Figures 1 and 2. As shown above, the authoring
actions (e.g., providing demonstrations) differ only slightly between approaches;
however, the frequency of these actions differs more substantially. In particular,
many demonstrations are replaced with feedback when authoring in SimStudent.
To compare timings between the two approaches we kept count of the number
of authoring actions needed to author each problem, ignoring those actions that
were identical between approaches (e.g., creating new behavior graph or start
state).

Finally, after each problem demonstration, we evaluated the model quality
in terms of the 20 problems that the finished tutor should be able to teach.

Table 1. A tutor was developed to teach these 20 problems using the Example-Tracing
and SimStudent approaches. The problem numberings denote the order in which prob-
lems were authored, so all problems of the same type were authored together.

Subtract Add Divide Sub + Divide Add + Divide

1. x+1=10 5. x-5=10 9. 3x=12 13. 5x+2=12 17. 2x-1=1
2. x+2=12 6. x-6=20 10. 4x=8 14. 7x+1=15 18. 3x-3=3
3. x+3=20 7. x-7=14 11. 2x=10 15. 2x+4=8 19. 5x-2=8
4. x+4=4 8. x-2=9 12. 7x=14 16. 3x+6=9 20. 7x-4=10
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To evaluate each model we computed a step and recall score, similar to previous
studies [12]. The step score equals the number of correct actions suggested by
the model divided by the total number of actions (both correct and incorrect)
suggested by the model at each step. When the model suggests no actions, the
step score is 0. The step score is averaged across all steps to get an overall step
score that represents the quality of the model. The recall score is equal to 1 if
the model suggests a correct action on a given step and 0 otherwise. The recall
score is averaged across all steps to get an overall recall score. Recall assesses
how complete a model is, in terms of the percentage of steps that can be tutored.

5 Results

5.1 Authoring Time

Each approach had two authoring actions. Authoring in Example Tracing con-
sisted of demonstrating actions and specifying actions as unordered; whereas,
authoring in SimStudent consisted of a slightly longer demonstration and re-
quired the author to give feedback on SimStudent’s actions. Table 2 shows the
number of seconds estimated for each of these actions using the KLM. These
estimates were produced by breaking each action down in terms of their primi-
tive steps (mental pauses, pointing and clicking, and keypresses) and summing
the time it would take the average user to perform these steps, using previously
computed estimates [13].

Figure 3 shows the cummulative time required to author 20 problems using
each approach; these estimates were computed by counting the number of tu-
toring actions needed to author each problem and multiplying these counts by
the time estimates shown in Table 2.

5.2 Model Quality

To evaluate the quality of each model we computed the step and recall scores on
all 20 problems in the training set after each problem had been authored. This
is meant to assess the quality in terms of the 20 problems each model is being
built to teach. Figure 4 shows the step and recall scores of each approach after
each problem had been authored.

Table 2. The KLM estimates of how long it would take an author to perform each
authoring action

Action Time (sec)

Example-Tracing Demonstration 8.8
Example-Tracing Specify Unordered Actions 5.8
SimStudent Demonstration 10.4
SimStudent Feedback 2.4
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Fig. 3. Cummulative authoring time (in seconds) for each approach, as estimated by
the KLM. This model only computes the time needed to perform actions that dif-
fer between approaches (demonstrations, specifying ordering, and feedback), so these
estimates are slightly less than actual authoring time.

Fig. 4. The step and recall scores computed over all 20 problems after each problem has
been authored (the x axis is # of problems authored so far). The Example-Tracing step
and recall scores are identical at all points and are just shown with a single line. There
is a slight increase in the slope of the Example-Tracing line at problem 12 because the
problems transition from one to two step equations.

6 Discussion

The KLM analysis of the two approaches shows evidence that authoring using
the SimStudent approach may yield improved authoring efficiency over the stan-
dard Example-Tracing approach. This efficiency gain was because SimStudent
only required feedback, instead of demonstrations, when it had applicable pro-
duction rules. Providing feedback (2.4 sec) takes much less time than performing
a demonstration (8.8 sec for Example Tracing and 10.4 sec for SimStudent), so
this results in a substantial decrease in authoring time. If SimStudent was used
solely as a way to improve the efficiency of producing behavior graphs for an
Example-Tracing tutor (and not as a way to author more general productions),
then it appears authoring efficiency would improve.
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When analyzing the model quality of the two approaches, it is important to
note that by the end of the authoring process both tutors achieve 100% step and
recall scores. However, the process each approach takes to get to 100% is quite
different. Figure 4 shows that the Example-Tracing tutor linearly progresses
towards perfect scores. Such linear progress is to be expected because it achieves
perfect step and recall on all problems that have been authored and 0 step and
recall on all problem that have not been authored.

For the SimStudent approach the progression is much different. After the first
problem has been authored SimStudent has approximately 40% step and recall
scores on the entire set of 20 problems (much larger than the 5% scores for
Example-Tracing). This increase is due to the fact that SimStudent is (attempt-
ing to) learn general rules from the first problem and some of those rules transfer
to the steps in other problems that have similar demands (e.g., knowing that
the problem is done when you have x equals some number). After the first prob-
lem, SimStudent’s step and recall scores jump every time it sees a new problem
type because SimStudent learns new production rules to solve these new types
of problems (such as adding or dividing) that are useful in solving subsequent
problems.

The greater generalization that SimStudent demonstrates within the
20-problem it gets trained on also applies beyond those 20 problems. That is,
whereas the Example-Tracing model can only tutor on these 20 problems, the
SimStudent model will work on a wider set of problems. For example, the Sim-
Student model can tutor problems of the same type that have different numbers
and minor variations of these problems, such as “(x+2)=9” or “2+x=9.” This is
why we see plateaus in Figure 4 where SimStudent has already learned how to
solve novel problems of the same type. Additionally, SimStudent can tutor some
of the steps of more complex problems (e.g., finishing “5x + 10 = 7x” after 7x
has been been subtracted from both sides) thus saving time in authoring those
more complex problems.

Interestingly, we also observed that as SimStudent gets tutored on new prob-
lems its Step score sometimes decreases for previously tutored problems (though
never enough to regress below the progress of Example-Tracing). This regression
occurs because SimStudent is biased to learn the most general production rule
conditions from the examples it sees and thus often overgeneralizes in its early
rule acquisition. For example, when generalizing the conditions on the divide
rule after getting positive feedback (e.g., when entering divide 2 for 2x=10 –
problem #11), SimStudent may learn a rule without a pre-condition specifying
a need for a coefficient and thus apply too broadly (e.g., divide 2 for x-2=9).
In general, this results in behavior where SimStudent tries to apply productions
where they are not applicable, such as trying to add on previous subtraction
problems. This overgeneralization might be desirable when trying to model stu-
dent errors (an application for which SimStudent has been used in the past), but
when authoring an expert model of a tutor a decrease in step score on previously
authored problems is not desirable. One way to minimize this effect would be to
tutor problems in an interleaved vs. blocked fashion, as suggested by previous
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work [14]. By regularly returning to older problem types, SimStudent can receive
negative feedback in the cases where it has overgeneralized. Alternatively, other
approaches could be used to limit SimStudent’s overgeneralization, such a using
prior knowledge [15] to constrain the generalization.

One limitation of this analysis is that it does not account for the time it takes
to develop domain predicates and primitive function operators for the SimStu-
dent system, which are used for production rule learning. These are short pieces
of code (roughly similar to writing functions in an Excel spreadsheet), but they
do add development time that is not needed in the standard Example-Tracing
approach. Despite this additional start-up cost, given the slopes of the lines in
Figure 3 the SimStudent approach should eventually result in time savings as
more problems are authored. The 16 predicates and 28 function operators used
in this study [12] were developed for the algebra domain, but some may be appli-
cable in other domains. Nevertheless, many domains will require new predicates
and functions to be hand authored by someone with technical expertise, and this
knowledge would need to be tested to ensure that it provides adaquate cover-
age of the given domain. Li and colleagues [16] have demonstrated how domain
specific predicates and functions can be automatically acquired, eliminating or
reducing this start-up knowledge engineering, but more work is still needed to
demonstrate broader generality of this approach.

To summarize, we found that SimStudent decreases the amount of time needed
to author a tutor over the standard Example-Tracing approach. This result is
mainly due to the fact that less demonstrations are required with the SimStudent
architecture. We also found that by the end of tutor authoring both approaches
had equivalent model quality. Furthermore, we showed evidence that SimStudent
produces a model that is more general than the specific demonstrations it sees,
bridging the gap between an Example-Tracing Tutor and a full-fledged Cognitive
Tutor. In some cases SimStudent overgeneralized, and we suggest ways that these
overgeneralizations might be reduced. In conclusion, SimStudent appears to be
a promising approach for reducing authoring time and producing more general
models than standard Example Tracing.
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Abstract. Much research has been done on the development of an intelligent  
tutoring system (ITS), and small empirical studies have demonstrated the effec-
tiveness of ITS at promoting student learning. However, large-scale implemen-
tation of ITS in school settings has not been researched thoroughly. In this  
paper, we describe an ongoing randomized controlled trial (RCT) to evaluate 
the efficacy of a web-based tutoring system—the ASSISTments—as support for 
homework. The program is used in 46 middle schools in the state of Maine, to 
provide immediate feedback to students, and to provide reports to teachers to 
support homework review and instruction adaptation. We describe the chal-
lenges for the RCT, approaches used to understand implementation of the sys-
tem, and findings on how the system is being used. 

Keywords: efficacy, implementation, Intelligent Tutoring System, homework. 

1 Introduction 

The field of intelligent tutoring systems (ITS) has a long history and many studies 
have been conducted to show the effectiveness of ITS at improving student learning 
(e.g., Anderson et al., 1995; Koedinger et al., 1997; VanLehn et al., 2005). Recently, 
VanLehn (2011) claims that ITS can be nearly as effective as human tutors. Given the 
promising results found, efforts have been made to introducing ITSs into schools in 
order to help students learn more effectively (e.g., Koedinger et al., 1997; Arroyo et 
al., 2009). Most of these research studies have been at a relatively smaller scale within 
one school, or one school district in short durations. While these studies have the 
advantages of being more cost-effective and able to show the results quickly, factors 
such as varieties in school settings, implementation fidelity, counterfactuals, user 
support, and user-learning curves are typically not well studied and understood. After 
evaluating the Cognitive Tutors Algebra I (CTAI) curriculum, one of the most well 
developed ITSs, in a wide variety of middle schools and high schools in seven states 
for 2 years, Pane et al. (2013) reported there were no effects in the first year of  
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Prior research also has established the promise of ASSISTments for improving 
student outcomes in middle school mathematics through homework support (Mendi-
cino et al., 2009; Singh et al., 2011; Kelly et al., 2013). While the findings from these 
studies are encouraging, they only examined tightly controlled implementation of 
ASSISTments in a few schools over short durations. An investigation was not done 
regarding the factors that may hinder or facilitate the implementation of the interven-
tion, which is critical for introducing the system to schools at scale. 

3 Method 

3.1 The Research Design  

The study is an independent RCT involving 46 public schools from two cohorts, in-
volving 114 teachers and more than 2,500 students in Maine, with schools randomly 
assigned to either treatment or control (i.e. “business as usual”) conditions. The inter-
vention is implemented in Grade 7 math classrooms in treatment schools over 2 con-
secutive years (academic years 2012–13 and 2013–14 for Cohort 1 schools and 2013–
14 and 2014–15 for Cohort 2 schools). In the treatment condition, teachers receive 
professional development (PD) and use ASSISTments in the first year to become 
proficient with the system, and then teachers use ASSISTments with a new cohort of 
students in the second year when student outcomes are measured.  

During the study, teachers in the treatment group are expected to assign approx-
imately 25 minutes of homework in ASSISTments for a minimum of three nights per 
week, in order to take full advantage of the ITS. Homework assignments are expected 
to be a mixture of different problem types, including mastery learning problems, reas-
sessment problems that are automatically assigned by the system, and textbook prob-
lems. Teachers will receive performance reports early the next morning via email. 

The ultimate research question for the study is “Do students who use ASSISTments 
for homework learn more than students who do homework without ASSISTments?” 
While we are not there yet to answer this question, we hope to address an exploratory 
question through the data collected in the first implementation year: “What is the 
 implementation compliance and how much is ASSISTments used by students and 
teachers on learning?” 

3.2 Collecting Data at Different Stages to Facilitate Implementation  

Data collection activities in the first implementation year center on understanding 
implementation start-up issues and identifying areas of implementation that may re-
quire additional support from the developer during the second implementation year. 

Before Intervention: Understand the Context and Collect Baseline Data. A good 
understanding of the context of an RCT and the baseline information of the partici-
pants is needed to judge the impact of the intervention and to ensure the successful 
implementation of the intervention. At the beginning of the study, we conducted a 30-
minute interview with principals from each school to learn about existing homework 
policy, data use, and other initiatives in participating schools. A pre-intervention 
teacher survey was administered to collect initial data about their current homework 
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assigning, grading, and reviewing practices; formative assessment and differentiated 
instruction practices; and how technologies have been utilized to support homework.  

During Intervention: Monitor Implementation Fidelity. In contrast to an effec-
tiveness trial, the goal in an efficacy trial is to determine whether an innovation has a 
beneficial effect in best-case implementations. Therefore, it is fair game to monitor 
and adjust implementation of the innovation. ASSISTments automatically records 
detailed, time-stamped data of each student and teacher usage (i.e., “the click 
stream”). Analyzing such data allows us to assess the extent to which students are 
using the system to complete homework and the extent to which teachers are assign-
ing problems and monitoring students’ nightly homework performance. The design of 
candidate analytics can be guided both by the categories of implementation fidelity 
(e.g., adherence, exposure, quality of delivery, uptake; Cordray, 2008) and by the 
pathways in the theory of change. By doing so, a portrait of implementation is pre-
sented to the developer team, so that they can ponder: Is this the quality of implemen-
tation we expected as creators of the intervention? What actions can we take that 
might bring implementation up to our desired levels? 

Halfway through Intervention: Capture Factors That Hinder Implementation. 
Near the end of the first implementation year, the team conducted face-to-face inter-
views with a random sample of the teachers to learn about (a) factors that influenced 
decisions related to homework assignments, (b) teachers’ perspective on the impact of 
ASSISTments, (c) changes in teachers’ review routines and instruction strategies, (d) 
challenges and usability of ASSISTments, and suggestions for improvement.  

During Second Year Implementation: Establish Contrast with Counterfactuals. 
To attribute cause and effect between interventions and outcomes, one critical task of 
an RCT is to compare the implementation of the intervention with counterfactuals. 
After a “warm-up,” routines have been set up to implement the intervention, and thus 
the focus of data collection may shift to establish contrast between the two experi-
mental groups. Classroom observation is a powerful tool to capture teachers’ practices 
and their interactions with students. We developed a classroom observation protocol 
to characterize teachers’ reviews of homework and their efforts to adapt instruction. 
To better understand the motivation behind instruction adaptation, observers follow 
up with a brief interview.  

4 Findings 

Below we report preliminary findings from data collected from the first year of teach-
ers and students’ usage of ASSISTments.  

The principal interviews revealed that in general homework is required and as-
signed almost nightly. This confirms that homework, despite all the controversial 
discussion regarding its influence on learning (Kohn, 2006), remains a major practice 
at schools. Teacher support was brought up as one of concerns as there were many 
demands on teacher’s time (e.g., Common Core curriculum integration, meeting AYP 
goals, etc.) and a new intervention just added to these. We also learned access to the 
Internet at home is a concern in many schools. These perspectives were brought back 
to the PD specialist and the system engineers of ASSISTments. A teacher support 
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plan was then adapted to make it more on-demand and ongoing, to better align with 
school PD community timelines and topics. An off-line version of ASSISTments was 
developed to ensure accessibility for all students during the study.  

Teachers’ responses to the pre-intervention survey revealed that teacher’s general 
homework assignment practices align with the specified use model. Notably, even 
though Maine’s laptop initiative has put laptop computers in the hands of every mid-
dle school student and teacher ever since 2002, we were surprised that no teachers 
chose “on laptop” when being asked, “In what formats do your students usually do 
their homework?” Among all of the 31 items in the survey, no significant differences 
have been detected between responses in the two different conditions.  

Compared to self-report or observations, we found using analytics of system logs 
to monitor implementation fidelity is objective, and has lower cost and faster turna-
round time. A first useful analytic was how often teachers made assignments with 
ASSISTments. We found that across 3 months, on average, most teachers assigned 
homework in ASSISTments 1–2 days in a week with only one teacher meeting the 
expectation of three assignments per week. Homework completion rates were around 
75% and average minutes spent doing homework was 15 minutes. Both values were 
approximately as expected. A key “uptake” analytic was whether teachers were open-
ing ASSISTments reports as a necessary prelude to adaptive teaching. The ASSIST-
ments trainer was very surprised at the particular teachers who were not opening  
reports. These findings led to concrete plans of which teachers to follow up in the 
next round of school visits, what types of behaviors to target during coaching, and a 
change of the agenda items of the “best practices” workshop.  

Although homework could provide data for adjustment of instruction, it is very time-
consuming for teachers to aggregate and organize paper-based homework to scan for 
insights. Therefore, the teacher interview focused on the impact of ASSIST-ments re-
ports on homework review. The biggest change reported by the majority of the 12 inter-
viewees is that they can target on the problematic areas identified by the reports. The 
conversation shifts from checking correctness of every problem to “why” answers were 
wrong and the process of doing math. The homework review time reduces from 30 mi-
nutes to 15 minutes, as one teacher reported. The reports informed their planning and 
sometimes they had to change their plans when the report suggested students were not 
ready to move along. Teachers felt students were more engaged in the homework discus-
sion because the discussion was more in time and on target. Based on the feedback from 
interviews, improvements were made regarding the usability of ASSISTments interface, 
accessibility of reports, and individual coaching. 

5 Conclusion 

In this paper, we present approaches used in an efficacy trial being conducted in 46 
middle schools in Maine to collect data to understand the implementation of an ITS 
and thus better interpret the impact of the intervention on student learning. Overall, 
our recommendation is that researchers who are conducting RCTs to evaluate effec-
tiveness of ITSs or other technology-based interventions in schools should focus on 
implementation and use different approaches to collect data at different stages to 
compare the implementation against a program logic model. This can lead to better 
control of the expected contrast between conditions, which in turn can improve the 
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quality of the research. The implementation data also provides a unique opportunity 
for researchers to learn about the value that teachers and students find from the inter-
vention, which is often non-detectable from a 30-item standardized test given at the 
end of the year. Research methods presented in this paper can be informative to later 
studies that aim at implementing ITS interventions at scale to a large population. 
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Abstract. Learning Management Systems (LMS) are increasingly being used in 
Computer-Assisted Education. LMS are used in distance learning and class-
room teaching, as teachers and students support tools for learning. Teachers can 
design and provide material, activities and assessments exercises for the stu-
dents. Nevertheless, this procedure is usually done in the same way for all the 
students, regardless of their performance and behavior differences. This re-
search aims to propose an Intelligent Tutoring System (ITS) model to be inte-
grated with Learning Management Systems. The proposed model of ITS is 
based on Multiagent Systems, in order to provide adaptability to any existent 
LMS. The main contribution of the presented model is to aggregate the benefits 
LMS at the ITS and vice versa, creating an intelligent learning environment. 

Keywords: Intelligent Tutoring System, Learning Management Systems, Mu-
liagent Systems, User Adaptation, Moodle. 

1 Introduction 

According to [1] Learning Management Systems (LMS) can be defined as a set of 
integrated interactive learning tools where the content and pedagogical resources are 
available online. These tools allow teachers to provide feedback to students in learn-
ing activities and are considered important resources for higher education.  

LMS are satisfactorily used in e-learning, but they usually do not operate in an interac-
tive and personalized way for the students, by posting tasks and study material according 
to their characteristics. Usually LMS provide the same pedagogical resources and the 
same content for all the students, without considering their specific, individual needs. 

In order to provide adaptability to the learning environments, according to the stu-
dent characteristics, and permit a high degree of interactivity between the environ-
ment and users, some research points to the use of resources provided by Artificial 
Intelligence (AI) [14]. 

The motivation of this research emerges, reflecting the problem of how to enhance 
the teaching and learning process on LMS using AI techniques in order to make a 
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learning environment adapted to the characteristics of the students, individually in 
real time. Therefore, this paper proposes an architectural model based on ITS in order 
to attain personalized learning, exploring the students’ skills in the best way, and 
making learning better and more effective. 

1.1 Background 

A Learning Management System (LMS) is a software application for the administra-
tion, documentation, tracking, delivery of material and assessment. LMS is a database 
of learning objects and are constituted by a set of technological resources and tools 
that use cyberspace to transmit content and enable interaction among educational 
process actors [10]. The use of these systems has increased significantly, due to its 
ease to provide interaction between students and teachers and the ease of access, from 
anywhere, at any time, both to the contents as well as the tools of activities and peda-
gogical mediation offered by the system. Several examples of LMS are available, 
such as Moodle, Dokeos, Sakai, Caroline, Angel, among others [1]. 

ITS are complex systems that involve several different types of specialty: domain 
knowledge, student's knowledge, pedagogical knowledge, among others [6].  Ac-
cording to Santos et al. [13], an ITS is characterized by incorporating AI techniques in 
its development project and acts as an aid in teaching-learning process. According to 
Conati [4], ITS is the interdisciplinary field that investigates how to develop educa-
tional systems that provide tailored instructions to the students’ needs, as many teach-
ers do. Research on ITS is concerned with the construction of environments that  
enable more efficient learning. The agents’ technology made the ITS more tailored to 
individual needs and the characteristics of each student [8]. 

ITS have been shown to be highly effective for improving the performance and 
motivation of students [9]. According to Pereira et al. [12] the convergence of ITS 
and LMS approaches can potentiates the learning process, making the LMS an intelli-
gent learning environment. 

According to Wooldridge [15], an agent is a computer system situated in some envi-
ronment that is capable of autonomous action in order to meet the objectives that are 
delegated to it. Intelligent agents are those that have at least the following characteristics: 
autonomy, reactivity, proactivity, and social ability. An agent is an autonomous entity, 
able to make decisions, respond on time, pursue goals, interact with other agents, and that 
have reasoning and character, in addition to having belief, desires and intentions, (BDI). 
The BDI model represents a cognitive architecture based on mental states, and has its 
origin in the model of human practical reasoning. An architecture based on the BDI 
model represents its internal processes through the mental states belief, desire and inten-
tion, and defines a control mechanism that selects a rational course of action. [5]  

Agents use to inhabit an environment containing other agents, called Multiagent 
Systems (MAS). The main focus of MAS is to provide mechanisms of computer  
systems to create a society of agents which interact each other through a shared envi-
ronment [2]. Recently, proposals for modeling MAS are based on two different ab-
stractions: agents and artifacts (A&A), where the agent is an (pro-) active entity, 
which is responsible for controlling and accomplishing the goals through tasks, while 
the artifact is a reactive entity whose functions and services make that individual 
agents work together in a MAS [11]. 
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1.2 Related Work 

In order to know the current state of research on LMS and the use of intelligent agents 
as tutors in these environments, a systematic review of the literature was performed. 
Sources used in the research were: Capes Portal1, IEEEXplore2, ACM Digital Li-
brary3, and Springer Link4. Several papers and articles published between 2004 and 
2013 were selected. 14 searches were conducted with different sets of keywords and 
46 relevant results, selected by title and abstract, in which there were 31 different 
research works were found. Of the 31 selected, 22 were available for reading. 

Research works related to tutoring in LMS and adaptive environments were found, 
having as a reference the LMS Moodle. Models of intelligent agents were primarily 
used. This bibliographical research was conducted to find and analyze the state of the 
art and similar works that address the adaptability in LMS, taking into account the 
students’ needs, learning styles, usability preferences, etc.  

The present work differs from the founded related works by proposing a multiagent 
based architecture which uses a set of BDI agents who mimic an ITS architecture and 
obtain all the necessary knowledge (beliefs) from the LMS database to configure the 
course in a personalized way for each student, delivering subject matter and activities 
to the student according to their skills, in different levels of difficulty. 

2 Model Definition 

The architecture of the proposed model is based on a multiagent architecture and a 
knowledge base of these agents, which compose an ITS functional model that works 
based on the information obtained from the database of the LMS coupled with the 
system. The abstract model of the ITS agents was designed as generic as possible and 
a case study is performed using, as a basis, the architecture of the LMS Moodle in 
order to build an instance of the model. This LMS was chosen because it is a widely 
used LMS platform today, and the source code and documentation about it is very 
easily obtained. 

As a part of the model, the interface between the agents and the LMS was defined 
as an Artifact abstraction that interacts with the LMS database. Thereby the abstract 
model of the ITS agents is independent of the internal architecture of the LMS 
coupled with the system and the model deals with any LMS by designing a new Arti-
fact according to the LMS architecture. 

An user interface of the system integrated to the LMS was also developed, in 
which the teacher defines the pedagogical model for the course setting up a tree for 
providing sequencing resources to the student and the difficulty levels of the proposed 
activities for the student as well as the priorities of tasks and resources posted by the 
teacher, in the LMS. The agents use this information to deal with the sequencing 
learning individually, according to the information of each student in the LMS  
database. 
                                                           
1 Capes Portal - http://www.periodicos.capes.gov.br/ 
2 IEEEXplore - http://ieeexplore.ieee.org/Xplore/home.jsp 
3 ACM Digital Library - http://dl.acm.org/ 
4 Springer Link - http://link.springer.com/ 
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According to Freedman [7], “The traditional ITS model contains four components: 
the domain model, the student model, the teaching model, and a learning environment 
or user interface.” In this research the teacher model is represented by the pedagogical 
model, the domain model by the domain base, and the user interface by the control 
device. In the proposed model, two types of agents, called the Bedel Agent and the 
Tutor Agent are used, respectively. The Bedel Agent, and its whole knowledge and 
interaction structure mimics the pedagogical model of the classic abstract model of 
the ITS, while the Tutor Agent, and its whole structure, constitute the student model 
of the classic abstract model of ITS. The LMS database, in turn, can be associated 
with the abstraction of the domain base of the ITS. These correlations are shown in 
Figure 1. The black blocks represent the interface components in the LMS. 

 

Fig. 1. Classical model with the proposed model 

The Bedel Agent performs its action as the virtual tutor of the course, setting up 
the LMS interface, according to this pedagogical model, the published resources in 
the LMS and the students’ performance. 

To design the pedagogical model with the proposed teaching strategies, according 
to these resources, the teacher uses an especially developed tool which is incorporated 
into the LMS interface. The teacher uses this tool to build a diagram shaped graph, 
which represents all the possible sequencing for learning, according to the student 
performance. 

The behavior of the Bedel agent is determined by the available resources and activ-
ities published in the LMS by the teacher, as well as the pedagogical mediation flow 
diagram (graph). The plans and beliefs of this agent are influenced dynamically by the 
changes made in the LMS database insofar as the course takes place and individually 
for each student based on the performance of each one of them. 

The Tutor Agents are the agents that have direct contact with the students. They 
guide the students, indicating changes in their performance, each time an activity is 
evaluated, encouraging them to improve when they have had a drop in performance or 
congratulating them when they have achieved better performance.  

The agents use available information from the LMS database in order to obtain and 
store the updated information. The Bedel Agents use this information to update the 
student profile data and inform the Tutor Agents about the changes in the profile of 
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the students. The proposed model takes into account a large amount of students, 
teachers and courses, providing, therefore, the existence of one Bedel Agent for each 
course and one Tutor Agent for each student. The model works as follow: 

• The teacher accesses the course for the first time and the Bedel enabled its confi-
guration block. The teacher inserts the resources and activities in the course and 
configures the Bedel agent. 

• For each course, there is an artifact with an ID that is activated by the Bedel. 
• Bedel agent checks the students’ achievement in the activities. 
• Bedel agent checks the tasks’ grades computation held by the teacher, calculates 

the students’ performance and stores in the database the information needed. Then 
new activities in the LMS become available to the students in a personalized way. 

• Tutor agent sends messages to encourage students or congratulate him/her, ac-
cording to his/her performance.  

When the Bedel agent checks the evaluation of the task, made by the teacher, the 
agent verifies if all the students have been evaluated and, after that, calculates the 
profile-grade of them, the profile-grade average and the values of each one of  
the profile levels (basic, intermediate, advanced).  

The main goal of the Tutor agent is to verify the change in the student performance 
and send motivational and feedback messages to him/her. This agent has, in this stage 
of the project a reactive behavior because it acts after receiving messages from the 
Bedel agent. However, in the general structure of the model, its performance may be 
extended, taking into account the overall scenario of the LMS and considering the 
interaction with Bedel agents from various courses as well as other Tutor agents. 

The proposed model assumes that the system comprises four types of actors: the human 
actor teacher and student; and the agents: Tutor and Bedel. The students are grouped into 
three different profiles according to their performance (grades) in the accomplished tasks 
and their access to different resources (teaching materials). This group’s separation takes 
into account the profile-grade of each student (SPG), which is calculated as follows: 

SPG = SG + (AG + AcG) 
            CN 

The sum of the grades (SG) is calculated by multiplying the value of the last pro-
file-grade of the student with the number of times the profile-grade was calculated 
(last-calculation-number), before the current calculation. The activity-grade (AG) is 
the grade of the last activity evaluated by the teacher that activated the calculation of 
the new profile-grade. The access-grade (AcG) is a score that is added to the activity-
grade, depending on whether the student read or did not read the content that is a pre-
requisite of this activity.  

The calculation-number (CN) is the amount of times the profile-grade is calculated, 
including the current calculation. This value is equal to 1 + last-calculation-number. 

The last-profile-grade is the student profile-grade at position [last-calculation-
number]. The student belongs to the intermediate profile level if his/her profile-grade 
is between 0.5 more or less than the average of profile-grade of the class. The student 
who has a higher grade, with a difference of over 0.5 from the average, will have the 
advanced profile level and the student who has a lower grade, with more than 0.5 of 
difference, will have the basic profile level. 
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These values were used due to the fact that in the LMS that was used for the case 
study, the grades are in the range of 0-10 and students are considered approved with 
grades larger than 6. 

3 Implementation and Tests of the Model 

The proposed model integrates concepts from ITS within a well-known LMS that 
have consolidated use, such as Moodle, which are (by default) not adaptive them-
selves, and that can be better leveraged using Artificial Intelligence technics, resulting 
in an intelligent learning environment that are adaptive and are more suitable for the 
implementation of challenging learning methodologies for the students. 

To implement the agents of the system, the Jason tool was used. Jason is an inter-
preter for an extended version of AgentSpeak language. According to Bordini et al. 
the most interesting aspects of the AgentSpeak language is that it was inspired and 
built on the human behavior model, which was developed by philosophers, and is 
known as the belief-desire-intention (BDI) model. [3]. 

 

Fig. 2. Student view 

According to the research conducted by Al-Ajlan and Zedans [1], The Moodle 
LMS has a good architecture, robust implementation, interoperability, has nearly the 
maximum score for functionality expected for an e-learning platform and has the best 
rating in the adaptation category. For all these reasons, the LMS used in this work, as 
a case study for the implementation and evaluation of the proposed model, is Moodle.  

To test the prototype several adaptations were made in the Moodle LMS code, in 
order to integrate it with the agents that implement the proposed model. The commu-
nication between the LMS and the agents is done through the database, which is up-
dated by both the LMS and the BD artifact, on the agent’s side.  

Student A - Basic Student B - Advanced

Grade 
profile



 An Intelligent LMS Model Based on Intelligent Tutoring Systems 573 

 

Resources and activities are displayed in the LMS in different ways, depending on 
the students' profile who can change from the basic profile to the intermediate or ad-
vanced and vice versa. Figure 2, shows two snapshots of the Moodle screen interface 
viewed by two students with different profiles (basic and advanced). The general 
profile is used when an activity or resource is mandatory for the students. 

The first resource and the first activity are shown for both students and, after deli-
vering the first activity, a profile is defined for each of them, through the profile 
grade. Based on this, the resources and activities are shown individually. 

4 Remarks and Future Work  

In this study an intelligent learning management system based on intelligent tutoring 
system for large LMS was presented, which could help teachers to provide activities 
and resources in a customized way according to the student's performance and beha-
vior in the course. Students are continuously assessed by their interaction in the 
course and through the grades obtained by them in the tasks. According to the results 
of this assessment, more advanced tasks are provided for students who show a better 
performance, enabling a more efficient learning, further exploring students' skills, and 
maintaining a base level for learning the content of the course. 

Related Work with LMS and adaptability generally differentiate the students by 
learning style. In this research, students are differentiated by their performance, taking 
into account the grades obtained, and their participation (hits) in the various resources 
available in the course. With this differentiation, it was proved to be possible to create 
an adaptive environment, based on a conventional LMS, which updates, steadily, the 
profile of the students, and with it the system behaves adaptively and individually for 
each student leading the process of teaching and learning by the agents’ action, indi-
cating the contents and most appropriate activities. 

The main contribution of the presented model is to aggregate the benefits of the learn-
ing management system (LMS) at the Intelligent Tutoring Systems (ITS) and vice versa, 
creating an intelligent learning environment that provides the best of both approaches, 
combining the robustness and usability of LMS which usually comes from hard learning 
environments, and the effectiveness of intelligent tutors who offer a much more flexible 
environment that implements more complex strategies for teaching, but is usually con-
structed ad hoc for specific areas and with difficulty in reusability. 

As future work, we can mention: the improvement of the tutor configuration block, 
as regards the dependence level between features in order to prevent cyclic dependen-
cies, the reports implementation, to be available to the teacher, with an indicative 
performance of all the students during the course, performed by agents, and to im-
prove the model so that the teacher doesn’t need to input all the possible sequences of 
the activities and resources, that will be inferred by the agents. 

References 

1. Ajlan, A.-A., Husein, Z.: Why Moodle. In: International Workshop on Future Trends of 
Distributed Computgin System. IEEE (2008) 

2. Rafael, B., Renata, V., Moreira, A.F.: Fundamentos de sistemas multiagentes. In: Ferreira, 
C.E. (ed.) Jornada de Atualização em Informática (JAI 2001), vol. 4(1), pp. 3–44. SBC, 
Fortaleza (2001) 



574 C.E. Giuffra Palomino, R. Azambuja Silveira, and M.K. Nakayama 

 

3. Bordini, R.H., Hubner, J.F., Wooldridge, M.: Programming multi-agent systems in 
AgentSpeak usingJason. John Wiley & Sons (2007) 

4. Conati, C.: Intelligent tutoring systems: new challenges and directions. Paper presented at 
the Proceedings of the 21st International Joint Conference on AI (2009) 

5. Mosser, F.: Um ambiente para desenvolvimento de agentes B.D.I. Trabalho de conclusão 
de curso. Universidade Federal de Pelotas, 2004. Disponível em:  
http://www.inf.ufsc.br/~silveira/INE602200/Artigos/ 
TCC_Moser.pdf (accessed on December 04, 2011) 

6. Claude, F., Thierry, M., Esma, A.: Using pedagogical agents in a multi-strategic intelligent 
tutoring system. In: Proceedings of the A I-ED 1997 Workshop on Pedagogical Agents, 
pp. 40–47 (1997) 

7. Freeman, R.: What is an Intelligent Tutoring System? Published in Intelligenge, 11(3):  
15-16, 2000. Disponível em  
http://faculty.cs.niu.edu/~freedman/papers/link2000.pdf (accessed 
on January 20, 2014) 

8. Frigo, L.B., Pozzebon, E., Bittencourt, G.: O papel dos agentes inteligentes nos sistemas 
tutores inteligentes. World Congress on Engineering and Technology Education, São  
Paulo, Brasil (2004) 

9. Lima, R.D., Rosatelli, M.C.: Um sistema tutor inteligente para um ambiente virtual de en-
sino aprendizagem. Anais do WIE, 2003 (2004) 

10. Milligan, C.: Delivering Staff and Professional Development Using Virtual Learning Envi-
ronments. In: The Role of Virtual Learning Environments in the Online Delivery of Staff 
Development. Institute for Computer Based Learning, Heriot-Watt University,Riccarton, 
Edinburgh EH14-4AS. October 1999. Disponível em:  
http://www.icbl.hw.ac.uk/jtap-573/573r2-3.html (accessed on January 13, 
2014) 

11. Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A metamodel for multi-agent sys-
tems. Autonomous agents and multiagent systems 17(3), 432–456 (2008) 

12. Pereira Alice, T.C.: Schmitt Valdenise, Álvares Maria R C Dias. Ambientes virtuais de 
aprendizagem. Livraria Cultura, 2007. Disponível em: 
http://www.livrariacultura.com.br/imagem/capitulo/ 
2259532.pdf (accessed on November 27, 2011) 

13. Santos, C.T., Frozza, R., Dahmer, A., Gaspary, L.P.: Dóris – Um agente de acompanha-
mento pedagógico em sistemas tutores inteligentes. In: Sbie 2001 Simpósio Brasileiro De 
Informática Na Educação, 12.,2001, UFES, Vitória-ES (2001) 

14. Silveira, R.A.: Ambientes inteligentes distribuídos de aprendizagem. CPGCC da UFRGS, 
Porto Alegre (1998) 

15. Michael, W.: An introduction to multiagent systems, 2nd edn. Jonh Wiley & Sons Ltd 
(2009) 



Designing an Interactive Teaching Tool

with ABML Knowledge Refinement Loop
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Abstract. Argument-based machine learning (ABML) knowledge re-
finement loop offers a powerful knowledge elicitation tool, suitable for
obtaining expert knowledge in difficult domains. In this paper, we first
use it to conceptualize a difficult, even ill-defined concept: distinguishing
between “basic” and “advanced” programming style in python program-
ming language, and then to teach this concept in an interactive learning
session between a student and the computer. We demonstrate that by
automatically selecting relevant examples and counter examples to be ex-
plained by the student, the ABML knowledge refinement loop provides
a valuable interactive teaching tool.

Keywords: intelligent tutoring, knowledge elicitation, argument-based
machine learning, ill-defined concept, programming style, computer pro-
gramming, python.

1 Introduction

Argument-based machine learning (ABML) knowledge refinement loop offers a
powerful knowledge elicitation tool, suitable for obtaining expert knowledge in
difficult domains [2,3,6]. Benefits of ABML for knowledge elicitation include: (1)
the expert only needs to explain a single example at the time, (2) it enables
the expert to provide most relevant knowledge by showing him problematic
examples only, and (3) it helps the expert to detect deficiencies in his or her
explanations by providing counter examples [3]. In this paper, we would like to
verify whether ABML knowledge refinement loop could also be used by students,
as an interactive teaching tool based on machine learning and argumentation.

As our case study we selected a difficult, hard to define concept: programming
style in python programming language. This language often enables short and
elegant solutions. And although the meaning of this latter word is not well
defined, it is quite widely accepted in computer programming what has been
nicely put by Richard O’Keefe: “Elegance is not optional.” [8]

We were particularly interested in distinguishing between “basic” and “ad-
vanced” solutions of exercises that typically occur in introductory programming
lessons with python as the language of choice. Consider the following solutions:
Although both solutions apply to the same exercise, they demonstrate two very
different approaches to solve it. In both cases the problem is divided into several
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c© Springer International Publishing Switzerland 2014
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# Solution 1 # Solution 2
def most_different(words): def most_different(words):

most_letters = 0 return max(words, key=lambda x:len(set(x.lower())))
for word in words:

characters = []
for c in word.lower():

if not c in characters:
characters.append(c)

if len(characters) > most_letters:
most_letters = len(characters)
most_diff_word = word

return most_diff_word

Fig. 1. A “basic” solution (left) and an “advanced” solution (right)

subproblems. However, in Solution 1 each subproblem is expressed separately,
while Solution 2 effectively utilizes available built-in functions and mechanisms.
The first solution (left) is less sophisticated and clearly a preferred option for the
beginners, while the second one (right) is arguably more elegant, more advanced,
and perhaps even easier to read by an advanced programmer, but may be difficult
to understand for beginners.

While this paper is not concerned whether the second solution is better than
the first one, our domain expert – a teacher of introductory programming course
– labeled solutions such as Solution 1 as “basic,” and solutions such as Solution 2
as “advanced.” Our goal was to design an interactive tool for supporting students
to learn this concept, with respect to distinguishing advanced solutions from the
basic ones.

The experts in this domain are generally able to recognize good or bad pro-
gramming style merely by observing solutions, provided that the solutions are
correct, sensible, and complex enough to enable a more advanced approach [1].
The expert should therefore be able to distinguish between “basic” and “ad-
vanced” programming style (i.e., between simple and more sophisticated solu-
tions) based on solutions only. In our approach, the text of the exercise did not
influence the expert’s decisions at all. Our teaching tool should therefore not
depend on understanding semantics (or deeper meanings) of the exercise text.

Note that the aim of this paper is not to debate what is a suitable pro-
gramming style and whether the recognition of “elegant” or “advanced” pro-
gramming style is possible by observing the solutions of programming exercises
only (without knowing the instructions of the exercise itself). Nor do we claim
that our teacher’s views about programming style in python programming lan-
guage are absolutely correct or indisputable. The goal of this paper is merely
to demonstrate the use of argument-based machine learning (ABML) knowl-
edge refinement loop for the purpose of designing an interactive teaching tool.
In particular, we intend to demonstrate the use of ABML knowledge refinement
loop for: (1) knowledge elicitation of a difficult (even ill-defined) concept from
the domain expert – a teacher of introductory computer programming, and (2)
student-computer interaction that involves student’s argumentation of automat-
ically selected examples and counter examples.
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A similar idea, however with a different goal, was explored in a system for
smart authoring of automated tutors, SimStudent, where students can learn by
teaching a live machine-learning agent, using a game-like learning environment
[5]. Nan et al. showed that an extended version of SimStudent successfully learns
grammar rules for the difficult task of article selection in English [4].

The paper is organized as follows. In Section 2, we briefly explain the exper-
imental design. Section 3 highlights two important goals of knowledge elicita-
tion from the teacher, namely to obtain (1) relevant description language in the
form of new attributes, and (2) consistently labeled learning data. In Section
4, we describe in detail the interactive learning session between a student and
the computer, using our (argument-based) teaching tool. Also, the results of an
experiment with students learning to distinguish between basic and advanced
solutions are presented. We then conclude the paper and point out directions for
future work.

2 Experimental Design

From a textbook of introductory programming in python, we selected 121 solu-
tions of 62 different exercises. The teacher labeled each solution as “basic,” or
“advanced.” We randomly selected 91 solutions for learning and 30 solutions for
testing (the proportion of positive and negative examples was preserved).

In order to design a successful teaching tool, it was first required to “con-
ceptualize” the domain, that is, to elicitate relevant knowledge from the teacher
and transform it into both human- and computer-understandable form. Also, the
labels of examples had to be corrected, if necessary. The knowledge in form of
attribute values and correct labels had to be incorporated into the teaching tool.
Finally, the teaching tool had to be tested by the students. At the end of the
interactive session, the students were therefore asked to classify all 30 examples
in the test set.

The teaching tool was operated by the teacher. It is essentially based on
ABML knowledge refinement loop, and has the following main properties:

1. It is capable of building a rule-based model, using attributes and arguments
that are currently included into the domain.

2. It finds “critical examples,” i.e. examples that the current model cannot
classify successfully, and therefore should be explained.

3. It enables the user to explain given examples in various ways:
– by introducing (predefined) attributes into the domain,
– by attaching arguments to selected critical examples,
– by assigning constraints to particular attributes in the arguments (high,
low, true, false, higher/lower than a particular value etc.)

4. It selects appropriate “counter examples,” if necessary.
5. It measures the progress of the student (in terms of accuracy of the obtained

rules on the unseen test data). However, this information was not disclosed
to the students during the experiments.

A detailed description of the ABML knowledge refinement loop can be found in
[3] and [7].
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3 Knowledge Elicitation from the Teacher

The knowledge elicitation process is described in detail in the next section, where
the student-computer interaction is presented. It is actually very similar to that
interaction, however, there are two very important differences:

– features (attributes) that would describe the domain well are not yet known,
– labels of examples (given by the teacher) are likely to contain inconsistences.

The goal of the knowledge elicitation from the teacher is therefore not only to
obtain a (rule-based) model consistent with his knowledge, but – even more
importantly – (1) to obtain relevant description language in the form of new
attributes, and (2) to obtain consistently labeled learning data.

This goal is achieved with the help or relevant critical examples and counter
examples being presented to the teacher during the interaction. As the teacher
is asked to explain given examples or to compare the critical examples to the
counter examples, he may introduce new attributes into the domain. The incon-
sistences are usually found quite easily, since inconsistently labeled examples are
likely to appear as critical or counter examples.

In the present case study, the knowledge elicitation process consisted of 9
iterations. Table 1 shows the list of all attributes used: at the beginning of the
process 5 of them were included into the domain, and 9 new attributes were
introduced by the teacher during the process. Only 1 initial attribute remained
in the final model.

Table 1. List of attributes

# Attribute Type Description Start Final

1 cRows cont. number of rows X X
2 cVar cont. number of variables X
3 cFor cont. number of for loops X
4 cWhile cont. number of while loops X
5 cIf cont. number of conditionals X
6 NeLoop T/F occurrence of nested loop X
7 LiCom T/F occurrence of list comprehension X
8 cLCbFor cont. number of tokens before the last for in list compr. X
9 cLCaFor cont. number of tokens after the last for in list compr. X

10 Zip T/F occurrence of zip function X
11 cSlice cont. number of list slices X
12 Lambda T/F occurrence of lambda function X
13 cFunc cont. number of built-in functions X
14 cMeth cont. number of built-in methods X

The attributes that occurred in the rules of the final model were included
in the interactive teaching tool presented in the next section. The final model
contained 9 rules, all of them were found sensible by the expert.
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4 A Student-Computer Interactive Learning Session

At the start of the learning session, each student is given the following task: to
obtain rules for determining whether a particular solution of (an unknown) pro-
gramming exercise is an advanced one. The rules must consist of the attributes
that remained in the final model obtained by the teacher (see Table 1) only. That
is, the goal of the interaction is the student being able to express the target con-
cept using the teacher’s expressive language. The instructions were accompanied
with a simple example that demonstrates differentiating between a basic and an
advanced solution, similar to the one in Fig. 1. In order to facilitate learning, the
ABML knowledge refinement loop was used to present the student with relevant
examples (and counter examples, if necessary). To accomplish the task in as few
iterations as possible, the students are advised to give explanations that:

– contain the most important feature(s) to explain the given example,
– use the smallest possible number of features in a single argument,
– try not to repeat the same arguments.

In the sequel, we demonstrate 4 out of 5 iterations of a typical interaction that
actually occurred in one of the learning sessions.

Iteration 1. In the beginning of the interaction, only 5 initial attributes listed
in Table 1 were included into the domain, and no arguments were given yet.
The solution A.20-3 (Fig. 2) was the first critical example presented to the
student. The student was asked to explain which features speak in favor of this
solution being an advanced one. His argument was “the solution is advanced
because function zip is present and the number of rows is low.” He also gave
an interesting remark that the overall number of different tokens in the solution
might have been a more appropriate feature than simply the number of rows.

# solution A.20-3 (advanced)

def crossword(word, words):

return [d for d in words if len(d) == len(word) \\

and all(c1 == ’.’ or c1 == c2 for c1, c2 in zip(word, d))]

# solution B.22-3 (basic)

def match(b1, b2):

b = ""

for c1, c2 in zip(b1, b2):

b += c1 if c1 == c2 else "."

return b

Fig. 2. The first “critical example,” and the corresponding “counter example”

The student’s argument was not sufficiently good: the algorithm selected the
(basic) solution B.14-1 (see Fig. 2) as the counter example. He was asked to
compare the counter example B.14-1 with the critical example A.20-3 and try
to improve the argument. The student noticed an important difference between
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the two examples: the advanced solution A.20-3 contains a list comprehension,
whereas the basic solution B.14-1 does not. He extended the argument to “the
solution is advanced because zip function is present, the number of rows is low,
and a list comprehension occurs.” There were no more counter examples.

Iteration 2. The (advanced) solution A.35-1 (see Fig. 3) was then presented
to the student. The student now observed a relatively high number of occurring
methods (join, split, lower) and chose this as the most important argument.
Again he gave an interesting suggestion: namely, that the attribute cMeth should
have been normalized, taking into account the overall number of tokens in the
solution. Another suggestion was to include a new feature: the number of distinct
methods that occur in the solution.

# solution A.35-1 (advanced)

def censorship(text, forbidden):

return " ".join(word for word in text.split() \\

if word.lower() not in forbidden)

Fig. 3. Solution with “a high number of occurring methods and a list comprehension”

The method now selected a solution from the class “basic” as the counter exam-
ple. The student quickly noticed several differences between the two solutions,
and chose the fact that the advanced one contains a comprehension list to be
the most important one among them. The argument was thus extended to “the
solution is advanced because the number of used methods is high, and a list
comprehension occurs.”. The algorithm did not find more counter examples.

Iteration 3. was very similar to the second one, thus we skip its description.

Iteration 4. The solution A.13-3 (see Fig. 4), again an advanced one according
to the teacher, was presented to the student. He now selected a new attribute
to describe the reasons for the teacher’s opinion: the relatively high number of
occurring functions.

# solution A.13-3 (advanced)

def pairs():

return [(i, j) for i in range(1, 101) for j in range(i+1, 1001) \\

if len(str(i)) != len(str(j)) and sum(map(int, str(i))

Fig. 4. Another python “one-liner”

After another counter example, the student extended his argument with another
unused attribute from the list of available features: a relatively high number of
tokens after the last for statement within the list comprehension. The argu-
ment was extended to “the solution is advanced because the number of used
functions is high, and the number of tokens after the last for in the list compre-
hension is high.”. He also suggested that the number of for statements within a
list comprehension would be another interesting attribute. The extension of the
argument worked well: no counter examples were found.
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Iteration 5. The student’s arguments now resulted in a rule-based model that
covered all positive examples for the class “advanced”. However, now the algo-
rithm found a problematic example of a different kind: a basic solution that was
also covered by one of the obtained rules for the opposite class. The problematic
example was the solution B.34-2. The key example of the problematic rule was
the solution A.20-2. The student was now asked to compare these two solutions
(see Fig. 5). Namely, what makes the solution A.20-2 more advanced compared
to the solution B.34-2.

# solution B.34-2 (basic)

def even_vs_odd(s):

t = sum(e % 2 for e in s) > len(s) / 2

return [e for e in s if e % 2 == t]

# solution A.20-2 (advanced)

def crossword(word, words):

return [d for d in words if len(d) == len(word) \\

and all(c1 == ’.’ or c1 == c2 for c1, c2 in zip(word, d))]

Fig. 5. What makes the solution A.20-2 more advanced compared to B.34-2?

The student chose another yet unused attribute from the list of available fea-
tures: a relatively high number of tokens before the last for statement within
the list comprehension. After seeing a relevant counter example he extended the
argument with the presence of the zip function. The argument “the solution
is advanced because the number of tokens before the last for in the list com-
prehension is high and zip function is present.” hit upon no counter examples.
Moreover, no more critical or problematic examples were detected and thus the
learning process concluded.

4.1 Assessment

During the interactive session student therefore also expressed his own (actually
very sensible) suggestions on how to introduce new features into the learning
domain or how to improve on the existing ones. Such new features can easily
be incorporated into the teaching tool. Incidentally, the student’s obtained rule
model for determining whether a particular solution is advanced even outper-
formed the teacher in terms of classification accuracy on the testing data (90% vs.
83%; note that the same learning and testing set were used in all experiments).
More importantly, the teacher found all given arguments and the obtained rules
sensible.

The whole interactive procedure consisted of only 5 iterations and lasted about
half an hour. This can be explained by the fact that the student only had to
choose among the given attributes (and not yet to discover them). The student
was selecting the attributes for his arguments rather skillfully, and in accordance
with the given recommendations stated at the beginning of this section.
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In the experiment with 7 students, the interactive learning session on aver-
age consisted of 7.1 iterations, the classification accuracy of students’ final rule
models on the testing data were (on average) 87.1% (AUC: 0.74, Brier: 0.25),
while they themselves (on average) correctly classified 86.7% examples of the
(previously unseen) testing data.

5 Conclusion

We demonstrated the use of argument-based machine learning (ABML) knowl-
edge refinement loop [3,7] for the purpose of knowledge elicitation of a difficult,
ill-defined concept of distinguishing between “basic” and “advanced” program-
ming style in python programming language, and used the results of knowledge
elicitation for designing an interactive teaching tool. For the first time, ABML
knowledge refinement loop was used in an interaction between a student and the
computer. An interactive learning session between the student and the computer
was thus described in detail. The initial experimental results with students are
very promising, and suggest that ABML knowledge refinement loop provides a
valuable interactive teaching tool. As a line of future work, we consider designing
an online multi-domain learning platform based on student’s argumentation of
automatically selected examples and counter examples.
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Abstract. Despite leading to strong learning outcomes, intelligent
tutoring systems (ITS) have struggled to reach widescale adoption.
However, recent increases in educational technology adoption are slowly
leading to larger user bases. Such order-of-magnitude increases have sig-
nificant research implications for the number and diversity of users. To
better understand the problems and solutions that impact this transition,
a review of barriers to ITS adoption was performed. This paper signifi-
cantly extends a prior systematic mapping study of recent ITS literature
(2009-2012) focusing on barriers in the developing world. The present
study examines research published on possible barriers to adoption re-
lated to students, teachers, and school systems. The results indicate that
while barriers related to students have received extensive attention, less
attention has been given to barriers related to teachers and schools. Suc-
cessful and innovative approaches to integrating ITS with teacher and
school needs are reviewed, with consideration given to both published
research papers and successful commercial systems.

Keywords: Intelligent Tutoring Systems, Systematic Mapping Study,
ITS Architectures, Barriers to Adoption, Big Data.

1 Introduction

After significant development and investment in intelligent tutoring systems
(ITS), current trends indicate that wider adoption may be on the horizon.
Overall, educational technology is on the rise: annual investment in educational
technology has tripled since 2002 and is becoming more common at all levels of
education [7]. Considering that rigorous evaluations of ITS have demonstrated
highly significant (0.76σ) learning gains [20], ITS should see an expanded role in
educational technology. The rise of Massive Open Online Courses (MOOC’s), for
example, may present an opportunity for synergy between high-class-size teach-
ing and individualized adaptation (ITS). The growth of educational technology
in K-12 schools is another significant trend.

Larger user bases for ITS have sweeping implications. First, more learners
could benefit from ITS. Second, a large and sustained user base generates big
data, potentially orders of magnitude greater than what is currently available.
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Systems like Cognitive Tutor and ASSISTments already have hundreds of thou-
sands of users and store data in open repositories such as the Pittsburgh Science
of Learning Center DataShop [8, 13]. One roadblock for ITS has been that evalu-
ating features through lesion studies (i.e., turning features on or off) results in a
combinatorial explosion of feature combinations. Larger data sets can be used to
test more combinations of features, which offers insight into fundamental ques-
tions about the effectiveness of tutoring strategies, multimedia, and individual
differences. This ties into a related benefit: greater diversity of users. A limita-
tion for ITS research has been the oversampling of WEIRD (Western, Educated,
Industrialized, Rich and Developed) populations [4]. Greater adoption, even if it
did not change the distribution of diversity (e.g., percentage of minority users),
would increase the raw sample sizes large enough to see if significant effects (e.g.,
learning gains, motivation) remain significant for subgroups.

These benefits depend on more widespread adoption of ITS, but the transition
of educational technology into the hands of learners has often been difficult [3].
In a prior study, a systematic literature review considered barriers to adoption
of ITS in the developing world [15]. One takeaway from that study was that
barriers found in both most-developed and developing countries are at least as
important as those that are unique to developing countries alone. This study
follows up on that thread by reviewing a broad range of general barriers to ITS
adoption, in an effort to identify barriers that received higher or lower levels
of emphasis, barriers that seemed most essential for adoption, and highlighting
how existing ITS target these key barriers.

2 Systematic Mapping Study Design

Before conducting this study, a broad set of barriers to adoption related to stu-
dents, teachers, and school needs was identified. The research question behind
this study was: “What fraction of ITS research addresses each barrier to adop-
tion?” In this context, addressing a barrier means to direct effort or attention to
it within the paper as part of the design or experimental process (e.g., not just
part of the background literature review). A systematic mapping design was
used, following guidelines from Petersen et al. [16]. The study presented here
covers articles and conference papers published no earlier than January 1, 2009
and indexed before January 1, 2013. The inclusion criteria, search methodology,
and screening criteria for including papers mirrors Nye [15].

The full text of 2586 papers was reviewed, based a set of citations aggregated
from the search phrase “intelligent tutoring system” OR “intelligent tutoring sys-
tems” in Thomson-Reuters Web of Science, ACM Digital Library, IEEE Xplore,
and ERIC. The primary inclusion criteria for ITS required an inner-loop (i.e.,
intelligent step-based hints or feedback) as defined by VanLehn [20]. Since this
criteria is not always straightforward, a second category of “adaptive learning
systems” collected fringe systems with only an outer loop (e.g., selecting the next
problem to work on) and possibly rudimentary feedback. The study considered
two units of analysis: papers and ITS architecture families.



Barriers to ITS Adoption: A Systematic Mapping Study 585

2.1 Categorization Criteria

Barriers to information and communications technology (ICT) were aggregated
from multiple reviews that focus primarily on formal settings in Western coun-
tries [3, 14, 17]. From these papers a set of categorization criteria was developed:

1. Independent ICT (Learner): Addresses technologies that enable home or
remote use of the ITS, such as web-based ITS.

2. Motivation (Learner): Addresses motivation or employs techniques that are
known to impact motivation, such as affect, games, or pedagogical agents.

3. Peer Support (Learner): Addresses peer support or collaborative designs such
as computer supported collaborative learning (CSCL).

4. Beliefs (Teacher): Addresses teacher beliefs about ITS utility or expectations.
5. ITS-Integrated Curricula (Teacher): States that the ITS is integrated into

an established curricula that teachers might adopt or adapt.
6. Pedagogy Match (Teacher): Addresses the fit of the ITS to teacher pedagogy.
7. Peer Support (Teacher): Describes integration with communities of practice

or support for teacher collaboration using the ITS.
8. Time (Teacher): Measures or discusses time costs for adoption, time savings

due to adoption, or notes barriers due to lack of time.
9. Training (Teacher): Describes a process for training teachers to use the sys-

tem or barriers due to lack of training.
10. Administrative Support (School): Addresses administrator buy-in or needs.
11. Technical Support (School): Addresses technical needs or technical support.
12. Assessments (Exosystem): Addresses standardized assessments and tests.
13. Software Cost (Exosystem): States or implies that it is free or low cost.

These factors are broken down by the stakeholder involved: student/learner,
teacher, school administration, and exosystem (e.g., geographic or country-level).
When examining families of ITS families as units of analysis, a family qualified
as addressing a barrier if at least one of their papers did so.

3 Mapping Study Results

The study identified 815 ITS papers on ITS and 240 adaptive learning system
(ALS) papers. 373 families of ITS architectures were identified. 36% of ITS
papers belonged to 12 major ITS families that had 10 or more papers. 35% of
ITS papers described architectures that were discussed only once. ALS tended to
be single-paper architectures (80%), which is not surprising since these were not
the focus of the search criteria. Adaptive systems mainly described e-learning
(over 80% were web-based) or game-based systems (13% were games).

3.1 Student Needs and Barriers

Table 1 shows the percentage of papers and architectures that addressed each
student-related barrier. The “Major ITS Families” sample refers to architectures
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with more than 10 papers published during the study period. Student motivation
received significant attention, particularly among major ITS families. A num-
ber of topics related to motivation were also considered by many ITS papers,
such as pedagogical agents (31%), affective interaction (18%), games (15%), and
metacognition, such as self-regulated learning (4%). Web-based ITS were also
a major focus, which can enable student access in a variety of contexts (com-
puter labs, home PC’s, etc.). Over the last 4 years, almost all major ITS families
reported a web-based version, which could be accessed by students inside or
outside of the classroom. Systems such as Andes and AutoTutor Lite explicitly
noted that easier setup and access were reasons for building a web-based ver-
sion and a key use-case for ASSISTments is web-based homework [21, 10, 5].
With that said, few systems focused on increasing access for students who lack
home computers, so additional challenges remain in this area (e.g., mobile-only
internet users). Peer support and interaction received a moderate level of focus,
with over 10% of papers describing a mechanism for student collaboration (e.g.,
computer-supported collaborative systems), competitive games, teamwork, or
content sharing. Overall, barriers related to students received moderate to high
emphasis.

Table 1. Research Focus on Student-Centric Barriers

Independent/ Peer
Sample Web ITS Motivation Support

All ITS Papers 41.0% 47.2% 11.3%

ITS Families 53.6% 48.0% 17.2%

Major ITS Families 83.3% 91.7% 50%

All ALS Papers 84.6% 31.3% 16.3%

3.2 Teacher Needs and Barriers

Less emphasis was placed on teacher-related barriers, as shown in Table 2. De-
spite significant attrition by teachers discussed by VanLehn et al. [21], where only
10% continued using Andes, few ITS papers directly researched or addressed
teacher factors. Even major ITS families seldom addressed teacher factors in
their papers, though many did note them on their project websites.

The barrier that received greatest amount of attention was pre-made curricula:
a curriculum unit or course integrated with the ITS. Integrating the ITS into cur-
ricula units reduces the burden on teachers, allowing them to adopt or adapt that
existing curriculum. Three distinct approaches to this problem were observed:
building a full curriculum around the ITS, specifying alignment mappings to ex-
isting materials, and building the ITS around a specific popular curriculum. Cog-
nitive Tutor for Algebra took the first approach, supplementing the ITS with an
accompanying textbook and full course that are steadily being approved by state
curriculum bodies [12]. ALEKS (Assessment and Learning in Knowledge Spaces),
an adaptive learning system for math, does not have its own textbook but instead
stores mappings that align to curricula (e.g., Common Core) and can embed sec-
tions of multiple existing textbooks to align with them [1]. The My Science Tutor
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Table 2. Research Focus on Teacher-Centric Barriers

ITS Pedagogy Peer
Sample Beliefs Curricula Match Support Time Training

All ITS Papers 1.8% 7.5% 2.5% 0.5% 2.9% 1.6%

ITS Families 3.5% 9.4% 4.6% 0.8% 4.6% 2.7%

Major ITS Families 41.7% 58.3% 33.3% 16.7% 25.0% 25%

All ALS Papers 2.1% 7.1% 1.7% 1.7% 3.3% 3.3%

project took the final approach, building its content around the existing Full Op-
tion Science System (FOSS) curricula [22].

Barriers such as training, peer support, beliefs, time, and interactions with
pedagogy were mentioned less frequently. These are important, since teacher
attitudes and engagement with ICT impact learning gains [18]. Training was
not mentioned as a major barrier, though papers noted that teachers received
training sessions. Papers that addressed peer support systems between teachers
were rare. When mentioned, they were usually noted as a feature rather than
a roadblock. For example, ASSISTments tried to increase parental involvement
by emailing parents with updates on students’ performance on concepts that
they were studying [5]. Teacher beliefs about the ITS were stated as a major
barrier when they were discussed (i.e., some teachers refused to use an ITS). In
some reports, teachers’ apriori reactions were influential (e.g., they never even
tried the system once). As such, teacher beliefs may tie into general educational
technology issues rather than ITS design.

Time and pedagogy issues were mentioned more centrally and were tied to
ITS features. A recurring theme from the reviewed papers was that teachers
valued saving time and monitoring student outcomes to support their own ped-
agogy [19]. Systems with high levels of adoption (e.g., ALEKS, Cognitive Tutor,
ASSISTments) tend to offer well-developed interfaces for managing class ros-
ters and monitoring estimates of student knowledge. Some go further, using the
student model to notify teachers of student impasses or acting as a teacher as-
sistance agent to identify student problems in online classes [6]. Authoring tools
that give teachers more control over content have also been developed. In theory,
this gives the teacher more control over the pedagogy. Authoring tools were most
common in adaptive e-learning systems, but are also available in ASSISTments,
the Cognitive Tutor Authoring Tools (CTAT), and various other systems [11].
However, overall use and demand for authoring tools by teachers is generally low:
due to time constraints, most teachers probably prefer to select from existing
tutoring problems rather than develop new content.

3.3 School and Exosystem

Table 3 displays the percentage of the reviewed papers that consider school-level
and external issues. Administrative or technical support factors were seldom
mentioned in the reviewed papers. VanLehn et al. [21] was a notable exception,
proposing a transition to a web-based system to facilitate multi-platform support
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and setup. From a technical standpoint, web-based platforms reduce the burden
for installing and updating an ITS. It is unclear how much of the shift toward
web-based ITS is motivated by simplifying access and reducing technical support
barriers, but they are probably related. Interfaces to help administrators view
student and class performance were noted as a desirable feature at the school
level by a few papers, but were not discussed as frequently as teacher interfaces.

Table 3. Research Focus on School and Exosystem Barriers

Administrative Technical Standardized
Sample Support Support Assessments

All ITS Papers 0.7% 1.8% 2.1%

ITS Families 1.1% 3.0% 3.2%

Major ITS Families 8.3% 25.0% 33.3%

All ALS Papers 1.3% 2.1% 1.3%

Standardized tests were also noted by only a few papers, but systems that
mentioned such tests considered them in depth. For example, ASSISTments and
Wayang Outpost both support MCAS (Massachusetts Comprehensive Assess-
ment System) and SAT preparation, and have even included mechanisms to
project student’s scores [9, 2]. These projections model transfer learning and
can be better predictors for test item performance than practice items alone,
such as a practice test [8]. Since standardized tests are now commonly included
in state requirements, projecting their scores may be an increasingly desirable
feature for ITS.

The amount of free or low-cost software is not reported in Table 3 because
data was incomplete: only about 2% of all publications discussed the topic (0.6%
commercial ITS against 1.23% free, open-source, or low-cost ITS). In general,
cost does not appear to be a primary barrier. The Cognitive Tutor and ALEKS,
two of the most popular systems, are sold commercially. VanLehn et al. [21]
noted that teacher perceptions were actually biased toward commercial software
rather than free academic software. As such, bias against free software may be a
larger barrier than a reasonable fee. Additionally, paid software implies technical
support, which is less commonly offered by free or open-source projects.

4 Discussion and Future Directions

To summarize, a large number of papers discussed student-related barriers, while
attention to teacher- and school-related barriers was mixed. Compared to the
typical ITS, systems with high adoption addressed ITS-integrated curricula,
teacher monitoring and customization tools to help teachers include the ITS in
their pedagogy, and minimizing teachers’ time costs. These may be key barriers
that impact adoption and attrition. Features that required serious time invest-
ment (e.g., authoring tools) were used infrequently. A number of other barriers
were mentioned infrequently overall (training and technical support) or were not
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necessarily tied to the ITS design (teacher beliefs on ICT). A few systems re-
searched standardized tests as a type of transfer learning, turning a potential
barrier into a feature. This research offers significant value, since standardized
tests have real consequences for learners (e.g., graduation, college acceptance)
and other educational stakeholders. Finally, cost barriers may work in the op-
posite direction than expected, with some educators wary of “free software.”

A unifying theme for ITS adoption in formal learning settings is the need to
communicate with the teacher, administration, or even parents. This typically
involves opening the student model to provide reports, predictions, or views
that other stakeholders can use to improve educational outcomes. In particu-
larly, teachers “in-the-loop” is critical, since overall learning gains depend on
both teacher and ITS interventions. Effective reports from the ITS can save
teachers time and help them work the system into their pedagogy. Additionally,
understanding the granularity of knowledge that helps a teacher apply their
pedagogical strategies should offer insight into both computer and human in-
struction. Communication in the opposite direction, with the ITS requesting or
receiving information directly from teachers, could also help ITS harness judg-
ments that a human can easily make but a computer cannot (e.g., two students
shared a computer). Tightening the loop between ITS and teachers may be a step
forward for both ITS adoption and effectiveness. By focusing on these adoption
barriers, ITS should be able to reach more students, provide better outcomes,
and collect more data to help understand fundamental learning processes.
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Abstract. There are well-acknowledged challenges to scaling computerized per-
formance-based assessments. One such challenge is reliably and validly identify-
ing ill-defined skills. We describe an approach that leverages a data mining 
framework to build and validate a detector that evaluates an ill-defined inquiry 
process skill, designing controlled experiments. The detector was originally built 
and validated for use with physical science simulations that have a simpler, li-
near causal structure. In this paper, we show that the detector can be used to 
identify demonstration of skill within a life science simulation on Ecosystems 
that has a complex underlying causal structure. The detector is evaluated in three 
ways: 1) identifying skill demonstration for a new student cohort, 2) handling the 
variability in how students conduct experiments, and 3) using it to determine 
when students are off-track before they finish collecting data. 

Keywords: science simulations, science inquiry, inquiry assessment, perfor-
mance assessment, behavior detector, reliability, educational data mining. 

1 Introduction 

Performance-based assessment tasks, complex tasks that require students to create 
work artifacts and/or follow processes, are being seen as alternatives to multiple-
choice questions because the latter have been criticized as not capturing authentic and 
relevant “21st century skills” such as critical and creative thinking (e.g. [1]), and 
scientific inquiry (e.g. [2]). When implemented using computerized simulations [3], 
games [1] and virtual worlds [2], they have the potential to be scaled because they can 
be deployed consistently, can automatically evaluate students’ work products and 
processes they follow to create those work products [1], [2], [3], [4], and by virtue of 
automatic assessment, can provide real-time feedback to students and educators [1], 
[3]. However, an assessment challenge arises when skills are ill-defined (cf. [1]), 
meaning that there are many correct or incorrect ways for students to demonstrate 
skills [5]. How can assessment designers guarantee that the evaluation rules or models 
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they author [1] to identify demonstration of skill within a given task are consistently 
and accurately doing so? Furthermore, how can they guarantee models will work 
across different contexts (tasks)? 

In this paper, we explore the challenge of creating reliable, scalable evaluation of 
an ill-defined scientific inquiry process skills in the context of Inq-ITS [3], a simula-
tion-based intelligent tutoring system that also acts as a performance assessment of 
students’ inquiry skills. We determine whether an evaluation model (detector) of an 
inquiry process skill already shown to generalize for physical science simulations 
with simple, linear causal structures [6], [7], [8], [9] can also identify the skill in a 
Life Sciences simulation on Ecosystems that has a complex causal structure (cf. [10]).  

2 Prior Work: Validating a Designing Controlled Experiments 
Detector for Inq-ITS Physical Science Activities 

Inq-ITS [3] is a web-based virtual lab environment in which students conduct inquiry 
with interactive simulations and inquiry support tools. The simulations were designed 
to tap content areas aligned to middle school Physical, Life, and Earth Science  
described in Massachusetts’ curricular frameworks. Each Inq-ITS activity provides 
students a driving question, and requires them to investigate that question using the 
simulation and tools (see Figure 1 for an example Ecosystems activity) in a semi-
structured inquiry. More specifically, students attempt to form a testable hypothesis 
using a pulldown menu-based sentence builder, collect data by changing the simula-
tion’s variables and running trials (Figure 1), analyze their data using pulldown menus 
to construct a claim and by selecting trials as evidence, and communicate findings in 
an open text field (see [3]). A key aspect of the system is that activities are perfor-
mance assessments of inquiry skill, because skills are inferred from the inquiry 
processes they follow and the work products they create with the support tools. 

The process skill of focus in this paper is designing controlled experiments when 
collecting data with the simulation. Students design controlled experiments when they 
generate trials that make it possible to infer how changeable factors (e.g. seaweed, 
shrimp, small fish, and large fish within an Ecosystem) affect outcomes (e.g., the 
overall balance of the ecosystem) [6]. This skill relates to application of the Control of 
Variables Strategy (CVS; cf. [11]), but unlike CVS, it takes into consideration all the 
experimental design setups run with the simulation, not just isolated, sequential pairs 
of trials [6], [3]. The challenge in assessing this skill is that it is ill-defined; students’ 
data collection patterns can vary widely and there are many ways to successfully 
demonstrate (or not demonstrate) this process skill [12]. The added difficulty of con-
ducting inquiry in a complex system whose variables interact in nonlinear ways (as 
opposed to simpler linear systems in which variables have more straightforward de-
pendencies [13]) also contributes to the multitude of ways in which students collect 
data. This in turn also affects the complexity of assessing this skill. 

To address this assessment difficulty, we developed and validated a data-mined de-
tector to determine whether students designed controlled experiments within Inq-ITS 
physical science activities [6], [7], [8], [9]. We chose a data mining approach to over-
come limitations of other models that could under- or over-estimate students’ mastery 
of this skill (e.g. [14]), and to enable easier validation of how well it would perform 
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by testing it against data not used to build it, thereby addressing issues of reliability 
and scalability (see [12], [9] for a discussion). Data mining was applied to build mod-
els that could replicate human judgment of whether or not students designed  
controlled experiments. Training and testing labels were generated using text replay 
tagging of students’ log files [15], [6], a process in which human coders tag segments 
of logfiles (clips) with behaviors or skills. This detector was originally built for a 
physical science topic on Phase Change as a J48 decision tree. In subsequent work, 
the decision tree was further improved by choosing features that increased the theoret-
ical construct validity of the detector, and by iterative refinement of the decision tree 
to find an optimal feature set [7], [9]. Examples of chosen features included the num-
ber of data trials collected, how many times the simulation variables were changed, 
various counts of controlled trials in which only one variable was changed, and vari-
ous counts for repeated trials with the exact same simulation setup. The detector uses 
cutoffs of feature values to predict if a student designs controlled experiments. 

Overall, we have strong evidence for using this detector to evaluate the designing 
controlled experiments skill for physical science inquiry activities at scale. For exam-
ple, as well as being able to predict skill demonstration on held-out test data for Phase 
Change (the same student sample and simulation from which it was constructed [7]), 
the models also generalized to predict the same skill within two other physical science 
topics on energy during free fall [8] and density [9]. The generalization test to the 
Energy activities also addressed how well the model could handle both new students, 
and the variability in how they collect data and demonstrate skill [8]. The detector 
was also validated for a second purpose, determining if a student was off-track when 
collecting data [7]. In follow-on work, the detector was deployed in Inq-ITS to drive 
proactive interventions, before they finished collecting data in the Phase Change si-
mulation [16], [12]. Thus, the detector could both assess the skill when students finish 
collecting data, and to drive interventions. 

The present study extends this prior work to determine if this detector built and va-
lidated for physical science simulations can evaluate the skill and drive interventions 
for a more complex Life Science simulation on Ecosystems. We adapt our former 
analytical techniques [6], [7], [8], [9] to address this question.  

3 Inq-ITS EcoLife Ecosystems Activities 

The EcoLife simulation assesses students’ inquiry skills and hones their knowledge of 
ecosystems. It addresses the two strands of the Massachusetts Curricular Frameworks: 
1) the ways in which organisms interact and have different functions within an  
ecosystem to enable survival, and 2) the roles and relationships among producers, 
consumers, and decomposers in the process of energy transfer in a food web. The 
EcoLife simulation (Figure 1) consists of an ocean ecosystem containing big fish, 
small fish, shrimp, and seaweed. Two inquiry scenarios were developed for this simu-
lation. In the first, students are explicitly told to stabilize the ecosystem. In the 
second, students are to stabilize the shrimp population (or alternatively, ensure that 
the shrimp population is at its highest). Students then address the questions by engag-
ing in the inquiry process described earlier. 
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There are key differences between our physical science simulations and the Eco-
systems simulation that can make assessing the designing controlled experiments skill 
more difficult. For example, unlike the physical science simulations that have discrete 
choices for variable values [3], in Ecosystems students add and remove organisms 
with varying numbers. The Ecosystems simulation model is also complex causal sys-
tem whose multiple variables are interconnected in a non-linear fashion [13], [10], 
unlike the physical science simulations which have simple linear dependencies [3]. 
This added complexity increases the hypothesis search space [17], and makes  
understanding the effects of the independent variables on dependent variable(s) more 
challenging. As such, the simple control for variables strategy (cf. [11]) may not be 
applied in a straightforward manner for this task. 

 

Fig. 1. EcoLife experiment stage. Here, students add and remove organisms, and scan the eco-
system to determine how the population changes over time. 

4 Dataset: Distilling Clips from Ecosystems Activities 

We collected interaction data from 101 students from a Central Massachusetts middle 
school who engaged in inquiry with the Ecosystems activities. Then, text replay tag-
ging of log files (clips) [15] was again used to generate a test set for evaluating the 
applicability of the detector to Ecosystems. A clip contains all actions associated with 
formulating hypotheses (hypothesize phase actions) and all actions associated with 
designing and running experiments (experiment phase) [6].  

One human coder (the third author) tagged all the clips distilled from the Ecosys-
tems logfiles. A second coder who originally tagged clips in physical science also 
tagged the first 50 clips to test for agreement. Aside from training the first coder,  
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determining inter-rater reliability was particularly important because, in addition to its 
complexity, the Ecosystems environment has a substantially different UI and interac-
tion pattern than the previous physical science simulations [3]. Agreement for the 50 
clips tagged by both coders was high overall, κ = .71, on par with our prior work cod-
ing for this skill [6]. In total, 226 clips were tagged, and of those, 52.2% were tagged 
as the student having demonstrated skill at designing controlled experiments. 

5 Results: Generalizability of the Detector to Ecosystems 

The overarching goal of this paper is to determine how well the designing controlled 
experiments detector built and validated for physical science simulations with a simp-
ler, linear causal model, generalizes to predict skill demonstration in a second topic, 
Ecosystems with a more complex simulation. This goal is important to ensure the 
model can correctly identify skill in multiple simulation contexts, students and stu-
dents’ experimentation patterns. To do so, three questions are addressed: First,  
acknowledging that there might be individual differences in how students conduct 
inquiry in general, can the detector be applied to new students who used the Ecosys-
tems simulation [8]? Second, can the detector handle the variability in how students 
collect data in Ecosystems [8]? Finally, can the detector be used to determine when 
scaffolding could be applied when a student is “off-track” [7]? 

Commensurate with our prior work on testing the goodness of detectors [6], [7], 
[8], [9], the degree to which the detector agrees with human judgment (the clip labels 
described previously) is summarized using two metrics, A’ computed as the Wilcoxon 
statistic [18] and Cohen’s Kappa. Briefly, A' is the probability that the detector can 
distinguish a clip where skill is demonstrated from a clip where skill is not demon-
strated, given one clip of each kind. The chance value of A’ is .50. Cohen’s Kappa (κ) 
estimates whether the detector is better than chance (κ = 0.0) at agreeing with the 
human coder’s judgment. A’ and Kappa were chosen because, unlike accuracy, they 
attempt to compensate for successful classifications occurring by chance (cf. [19]). A’ 
can be more sensitive to uncertainty in classification than Kappa, because Kappa 
looks only at the final label, whereas A’ looks at the classifier’s degree of confidence.  

5.1 Can the Detector Be Applied to New Students in Ecosystems? 

The following analysis benchmarks how well the detector handles new students in the 
new science domain with a more complex simulation [8]. As mentioned earlier, this 
cohort of students came from a different school than those from which the original 
detector was built. As shown in Table 1, the detector’s performance was quite high 
and indicate that the detector can be used to evaluate new students’ performance in 
the Ecosystems activities [8]. It could distinguish when a student designed controlled 
experiments in Ecosystems from when they did not A’ = 75% of time. The detector’s 
overall agreement with human judgment of whether a student designed controlled 
experiments was also quite high, κ = .61. This performance is on par with previous 
metrics computed at the student-level across three physical science topics, A’ ranging 
from .82 to .94 and κ ranging from .45 to .65 across studies [7], [8], [9]. 
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Table 1. Confusion matrix and performance metrics computed when applying the designing 
controlled experiments detector to the Ecosystems clips 

 

Table 2. Performance metrics for the designing controlled experiments detector disaggregated 
by number of trials in students’ experimentation 

 

5.2 Can the Detector Handle the Variability in How Students Collect Data? 

Though the previous results are highly encouraging, they only reveal one aspect of 
generalizability. We found in prior work that by sampling data according to the varia-
bility in students’ experimentation patterns, specifically how many trials they col-
lected, we could reveal weaknesses in the detector [8]. We follow a similar process 
here to characterize how well the detector handles the experimentation variability 
within Ecosystems. Unlike [8] in which clips were sampled to balance exact counts of 
trials collected by students (e.g. clips where students collected exactly 4 trials, clips 
with exactly 5 trials, etc.), here clips were binned into different groups of variability. 
As an example, one bin contained 40 clips where students collected exactly 2 or 3 
trials (Table 2). This deviation was performed because there was greater variability in 
the number of trials run by students in Ecosystems than in Physical Science. In addi-
tion, the number of clips for any specific number of runs was not large enough to 
generate valid performance metrics. Bins were chosen to both balance the number of 
clips per bin and to ensure each had enough set of clips for generating metrics. 

As shown in Table 2, the detector handled the variability in students’ experimenta-
tion reasonably well. Performance was high for clips with 2 or 3 simulation runs (A’ 
= .90, κ = .76) and clips with 4 or 5 runs (A’ = .64, κ = .44). The detector did, howev-
er, struggle on predicting clips with 6 to 10 runs as indicated by A’ = .53 and κ = .07 
values close to chance. It also did not perform as well for clips with more than 10 
runs, A’ = .66 and κ = .20, albeit better than chance.  

True N True Y
Pred N 91 27
Pred Y 17 91

* Pc = precision; Rc = recall

Pc = .84, Rc = .77
K = .61, A'=.75

Runs # Clips A' K Pc Rc
[2,3] 40 .90 .76 .83 .83
[4,5] 39 .64 .44 .78 .67

[6-10] 38 .53 .07 .82 .60
>10 65 .66 .20 .88 .89

* Pc = precision; Rc = recall
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5.3 Can the Detector Identify When Students Are “Off-Track” When Designing 
Controlled Experiments so That Scaffolds Can Be Effectively Applied?  

As mentioned, it is also of interest to determine if the detector can be used to identify 
when students are off-track by not designing controlled experiments. This is impor-
tant so that a timely intervention can be given before they finish collecting data to 
prevent floundering [16]. We can determined this by measuring how well the detector 
can identify skill using less data than was used by the human coder to identify skill 
[7]. More specifically, we can use a subset of a student’s interaction data up to and 
including the nth time the student ran the simulation to predict if a student ultimately 
did/did not design a controlled experiment. The grain size of “simulation run” was 
chosen because an intervention given at this point may prevent students from floun-
dering and collecting more confounded data [3], [16]. 

Like [7], detector performance was measured using data up to a given number of 
simulation runs. Since there was more variation in how many times the simulation 
was run in Ecosystem and its increased complexity, detector performance was meas-
ured by varying the number of simulation runs from 1 to 10. Again, A' and κ were 
computed for each simulation run. As shown in Figure 2, the detector can predict if a 
student is “off-track” when collecting data in Ecosystem in as few as 3 simulation 
runs, indicated by A’ and κ values well above chance, replicating earlier findings [7]. 
We note the detector performs at chance level for exactly one simulation run because 
the designing controlled experiments skill can be only identified after the student has 
collected two or more trials with the simulation (cf. [11]). We also note, however, that 
as the number of runs exceeds 6, the detector has difficulty distinguishing positive 
from negative examples. This is indicated by A’ values ranging from .58 to .66. The 
detector, though, still agrees with human judgment fairly well, κ = .41 to .52. The 
implications of this finding are discussed in the next section.  

 

 

Fig. 2. Designing controlled experiments performance (A’ and κ) predicting skill demonstra-
tion using data up to and including the nth simulation run, n = [1,10]. As shown, the detector 
can be applied in as few as three simulation runs. However, as the number of runs exceeds 6, 
the detector has difficulty time distinguishing positive from negative examples (indicated by A’ 
closer to chance = .5) even though it still agrees well with human labels (κ >= .40).  
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6 Discussion and Conclusions 

Performance-based assessments (e.g. [1], [2], [3]) present added assessment chal-
lenges when the underlying skills they tap are ill-defined (cf. [1]). The main challenge 
is that such skills may be demonstrated in many correct or incorrect ways by the  
student (e.g. [5]) which calls to question the reliability and applicability of the under-
lying assessment models aimed at identifying such skills. Towards the goal of provid-
ing reliable, scalable performance-based assessment of inquiry, we determined if a 
data-mined detector for designing controlled experiments [6], originally built for 
Physical Sciences simulations [7], [8], [4] that have simpler, linear dependencies be-
tween simulation variables, could be applied to the same skill in Ecosystems, a more 
complex simulation. In brief, we addressed if the detector could: 1) handle student-
level validation, 2) assess the multi-faceted ways in which students’ conduct inquiry 
in a complex system, and 3) predict when scaffolding in this domain is needed, a 
question of importance since the system aims to provide feedback to students as they 
experiment to prevent them from floundering [3], [16]. 

The results indicated that the detector had broad generalizability (cf. [20]) given 
that it could reliably assess the skill within Ecosystems and given its prior success at 
doing so for physical science simulations [7], [8], [4]. Its performance on the Ecosys-
tems data was akin to that of the physical science simulations [7], [8], [4] under stu-
dent-level validation. When assessing variability of how students experimented, the 
detector could identify skill demonstration well when students ran between 2 and 5 
trials, but performance dropped when students collected more data than 5 trials. Final-
ly, we found evidence that the detector could detect if a student was “off track” in as 
few as three simulation runs, commensurate with prior findings within a physical 
science simulation [7], but also had lower performance as the number of runs in-
creased above 5. One possible way to overcome this limitation as the number of runs 
increases is to reset the ‘window’ of students’ experimentation patterns after they 
receive scaffolding, i.e., after a student receives scaffolding, the system could treat the 
student as if they had not conducted any actions with the simulation. Then, after three 
more data collections, the system could again determine if the student is still off-track.  

This work makes two contributions towards performance-based assessment and 
generalizability of EDM detectors. First, this study complements prior work on build-
ing generalizable detectors of affect (e.g. [21]) and other undesirable behaviors within 
ITS’s (e.g. [20], [22]) with its focus on skill assessment. The power of using the EDM 
approach to build models that identify skill demonstration is in the ability to learn 
evaluation rules (cf. [1]) from student data, and the ability to quantify how reliable the 
model is at identifying skills for new students and within different tasks (e.g. physical 
science vs. life science) by testing detector performance with new student data. 
Second, as in [7], [8], [9], this study employs additional validation techniques in addi-
tion to student-level generalizability tests (e.g. [21], [22]) to determine the extent to 
which the detector can be used to evaluate skill and drive scaffolding in the more 
complex domain of Ecosystems. While student-level validation is important, other 
aspects specific to assessment such as handling variability in how students engage in 
performance-based tasks and specific to formative assessment such as students get 
timely feedback so they do not flounder [3] are also necessary if such models are to 
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generalize to multiple situations. Overall, these results are promising towards realiz-
ing scalable assessment and real-time formative feedback of inquiry skill develop-
ment across science topics. In particular, our computer-based approach complements 
other assessments of deep science knowledge (e.g. [23]) by focusing on inquiry skills. 
In addition, since our assessments are performance-based, they may help overcome 
the limitations associated with assessing inquiry via traditional methods [2].  

The generalizability and reusability of the detector has been hypothesized to be due 
to judicious feature engineering [7]. As such, including other types of features may 
improve prediction and generalizability. For example, [8] suggests that using ratio-
based features instead of a raw counts for features may improve generalizability. For 
future work, issues such as improved feature engineering will be explored to ensure 
this detector can work for new students, handle the variability in students experiment, 
and ensure that scaffolding will be applied at an appropriate time across all Inq-ITS 
activities for physical, life, and earth science. 
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Abstract. In analytical writing in response to text, students read a
complex text and adopt an analytic stance in their writing about it.
To evaluate this type of writing at scale, an automated approach for
Response to Text Assessment (RTA) is needed. With the long-term goal
of producing informative feedback for students and teachers, we design a
new set of interpretable features that operationalize the Evidence rubric
of RTA. When evaluated on a corpus of essays written by students in
grades 4-6, our results show that our features outperform baselines based
on well-performing features from other types of essay assessments.

Keywords: Automatic Essay Assessment, Analytical Writing in Re-
sponse to Text, Feedback, Natural Language Processing.

1 Introduction

Automatic Essay Assessment can provide a fast, effective and affordable solution
to the problem of assessing student writing at scale. The 2010 Common Core
State Standards for student learning emphasize the ability of students as young
as the fourth grade to construct essays where they interpret and evaluate a text,
construct logical arguments based on substantive claims, and marshal appropri-
ate evidence in support of these claims [4]. The Response to Text Assessment
(RTA) is developed for research purposes to assess skills at generating analytical
text-based writing, and to provide an outcome measure that is independent of
a state’s accountability test. Specifically, the RTA, unlike available large-scale
assessments, is designed to evaluate the integration of reading comprehension
and writing skills [4]. Our research takes a first step towards developing an au-
tomatic essay assessment system for the RTA. Our goal is to develop a tool that
can further large-scale research on the impact of instruction, interventions, and
policies that influence the development of this writing skill.

A second goal of our work is to develop a system that could ultimately generate
information about students’ writing that might be useful for informing instruc-
tion. One of the important aspects of the RTA is its multi-dimension rubric,
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which is used to evaluate students’ thinking about the text, their skill at finding
evidence to support their claims, and other well-studied criteria associated with
effective analytical writing. Such detailed information about students’ analytical
writing skills is critical in providing informative feedback to students, or giving
instructors diagnostic insights into the strengths and weaknesses of students.
Thus, an important aspect of our research is designing features for automated
assessment that are interpretable given the rating rubrics. While many features
previously used in scoring (e.g., Ngrams, part of speech tags, content vectors,
Latent semantic analysis, etc.) might yield an automated RTA scoring system
with high accuracy, their disconnect from the rubric render them difficult to use
as the basis of tutoring or learning analytic systems.

The contributions of our work are as follows. First, analytical response-to
text writing is a relatively new domain for the task of automatic assessment. We
particularly focus on automatically assessing Evidence, which is one of the sub-
stantive dimensions of the RTA. Second, we focus on the use of the RTA at the
upper elementary level. As such, we tackle the challenge of using computational
Natural Language Processing techniques for automation on data that is partic-
ularly noisy given the stage of writing development of the students. Finally, our
scoring models are based on a new set of features that we designed to reflect the
detailed criteria of the rubric related to how students use the reference text. One
advantage is that our features are meaningful and interpretable, which should
make them useful for producing informative feedback for students and instruc-
tors in downstream applications. A second advantage is that our features in fact
outperform two baselines based on well-performing features from other types of
essay assessment, suggesting the suitability of our approach for the RTA.

2 Related Work

Many essay assessment systems rely on holistic rubrics [1,13,7]. Holistic scoring
methods assess the overall quality of an essay by considering multiple criteria
simultaneously in order to assign a single score. In contrast, trait-based scoring
methods [10,8] can provide multiple scores, as they separately consider compo-
nent parts or writing purposes when scoring an essay. While holistic methods are
typically more efficient and provide more reliable scores, trait-based methods are
better at providing diagnostic insight on student performance [16,2]. However,
most trait-based scoring systems focus on surface and organizational aspects of
writing. In the RTA, substantive dimensions of writing such as Analysis and Evi-
dence1 are more important2 [4]. In this paper we focus on assessing the Evidence
dimension of the RTA rubric, which is shown in Table 2. The Evidence dimen-
sion evaluates how well students use selected details from the text to support
and extend a key idea.

1 There is only a correlation of 0.37 on these dimensions in our data.
2 The RTA has 5 different rubrics to score the 5 different dimensions: Analysis, Evi-
dence, Organization, Style, MUGS (Mechanics, Usage, Grammar, Spelling).
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In terms of writing tasks, most systems (whether holistic or trait-based) focus
on assessing writing in response to open-ended prompts [1,13,7,10,5] rather than
in response to text. In contrast to the RTA, available assessments tend not to
directly measure complex writing skills in which critical thinking and reading
are deeply embedded [6,5]. They usually use more generic rubrics instead of
task-specific ones. They also do not explicitly evaluate the quality of reasoning
based on information from only the text, and instead evaluate dimensions such
as structure, elaboration, and vocabulary sophistication [14]. Furthermore, most
writing is typically generated by upper elementary, secondary, or post-secondary
students [3,6], rather than the younger students targeted by RTA. Our research,
which uses the RTA and its task-specific rubrics, takes a step toward evaluating
substantive dimensions of analytical writing in response to text.

3 Data

Our research uses the dataset introduced in [4], which is a corpus of essays
written by students in grades 4–6. The students first read an article from Time
for Kids about a United Nations effort to eradicate poverty in a rural village in
Kenya, then wrote an essay in response to a prompt. The prompt as well as two
student essays are shown in Table 1. Our dataset has a number of properties
that may increase the difficulty of the automatic assessment task. The essays in
our dataset are short: The average number of words is 161.25 (SD=92.24), while
the average number of unique words is 93.27 (SD=40.57). The essays also have
many spelling and grammatical errors, and are not well-organized.

The essays are assessed by raters on a scale of 1-4 [4]. Half of the assess-
ments are scored by an expert. The rest are scored by undergraduates trained
to evaluate the essays based on the criterion. The currently available corpus
contains 1569 essays with 603 of them double-scored for inter-rater reliability
checks. Inter-rater agreement (Kappa) on the double-scored part of the corpus
on Evidence is 0.42 and Quadratic Weighted Kappa is 0.67. In this paper we
only focus on predicting the Evidence ratings, which were produced using the
rubric shown in Table 2. An example of a high and low-scoring student essay
based on this rubric are shown in Table 1. The distribution of Evidence scores is
469 ones, 594 twos, 335 threes and 171 fours on the full dataset, and 133 ones,
131 twos, 54 threes and 35 fours on the doubly-coded portion where both raters
agreed.

4 Features

As discussed above, one goal of our research in predicting Evidence scores is to
design a small set of rubric-based meaningful features that perform acceptably
and model what is actually important in an essay. In order to help us better
understand the process of scoring, our experts first derive a decision tree from
the rubric, shown in Fig. 1. To operationalize key decision points in this tree, we
develop methods for extracting the following four features from every essay.
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Table 1. Sample high and low-scoring essays with highlighted supporting evidence

Prompt: The author provided one specific example of how the quality of life can be
improved by the Millennium Villages Project in Sauri, Kenya. Based on the article,
did the author provide a convincing argument that winning the fight against poverty
is achievable in our lifetime? Explain why or why not with 3-4 examples from the text
to support your answer.

Essay with score of 1 on Evidence dimension: Yes, because even though proverty
is still going on now it does not mean that it can not be stop. Hannah thinks that
proverty will end by 2015 but you never know. The world is going to increase more
stores and schools. But if everyone really tries to end proverty I believe it can be done.
Maybe starting with recycling and taking shorter showers, but no really short that you
don’t get clean. Then maybe if we make more money or earn it we can donate it to
any charity in the world. Proverty is not on in Africa, it’s practiclly every where!
Even though Africa got better it didn’t end proverty. Maybe they should make a law or
something that says and declare that proverty needs to need. There’s no specific date
when it will end but it will. When it does I am going to be so proud, wheather I’m
alive or not.

Essay with score of 4 on Evidence dimension: I was convinced
that winning the fight of poverty is achievable in our lifetime. Many peo-

ple couldn’t afford medicine or bed nets to be treated for malaria . Many

children had died from this dieseuse even though it could be treated easily.

But now, bed nets are used in every sleeping site . And the medicine is free

of charge. Another example is that the farmers’ crops are dying because they

could not afford the nessacary fertilizer and irrigation . But they are now, making

progess. Farmers now have fertilizer and water to give to the crops. Also with

seeds and the proper tools . Third, kids in Sauri were not well educated. Many

families couldn’t afford school . Even at school there was no lunch . Students were

exhausted from each day of school. Now, school is free . Children excited to learn

now can and they do have midday meals . Finally, Sauri is making great progress. If
they keep it up that city will no longer be in poverty. Then the Millennium Village
project can move on to help other countries in need.

Table 2. Rubric for the Evidence dimension of RTA

1 2 3 4

Features one or no
pieces of evidence

Features at least 2
pieces of evidence

Features at least 3
pieces of evidence

Features at least 3
pieces of evidence

Selects inappropriate
or little evidence
from the text; may
have serious factual
errors and omissions

Selects some appro-
priate but general ev-
idence from the text;
may contain a factual
error or omission

Selects appropriate
and concrete, specific
evidence from the
text

Selects detailed, pre-
cise, and significant
evidence from the
text

Demonstrates little
or no development
or use of selected
evidence

Demonstrates lim-
ited development
or use of selected
evidence

Demonstrates use of
selected details from
the text to support
key idea

Demonstrates inte-
gral use of selected
details from the
text to support and
extend key idea

Summarize entire
text or copies heavily
from text

Evidence provided
may be listed in
a sentence, not
expanded upon

Attempts to elabo-
rate upon Evidence

Evidence must be
used to support key
idea / inference(s)
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Fig. 1. Decision Tree. I. The evidence is beyond list-like if at least 3 pieces are provided
and the student tries to explain the use of evidence in his/her own words, or attempts to
connect evidence to his/her thesis. II. High quality evidence includes specific examples
from different parts of the text, or an explanation of why the evidence is important.
III. The evidence is sophisticated if it is used to support the key idea, and to make
inference(s).

Number of Pieces of Evidence (NPE) is defined to capture the first part
of the root node of the decision tree: If there are fewer than 2 pieces of evidence,
score the essay as 1. For calculating NPE, we use a list of important words
for each of the main topics, where the topics and words are defined based on
the text and by experts. Any information in the essays that is related to these
text-based topics will be considered as a piece of evidence. We use a simple
window-based algorithm with fixed window-size3 to calculate NPE. A window
contains evidence related to a topic if there are at least two words from the list
of words for that topic. Each topic is only counted as a piece of evidence once to
avoid redundancy. NPE is also used by part “b” of the second node of the tree.

Concentration (CON) captures part “a” of the second node of the decision
tree. If the essay consists of a not specific, brief list of different pieces of evidence
without any elaboration, it has a high concentration and should get the score of
2. We define concentration as a binary feature which indicates if the essay has a
high concentration. The high concentration essays have fewer than 3 sentences
with topic words. In the case of elaborated evidence, there should be at least
three sentences addressing topic words. To calculate this feature, we count the
number of sentences that have at least one topic word. If there are less than
three sentences with topic words, the concentration is high which means the
distribution of topic words in different sentences is low.

Specificity (SPC) is defined to capture the information in the third node of
the decision tree. High quality evidence includes specific examples from different
parts of the text, or an explanation of why the evidence is important. We extract

3 For all window-based features, we set the window size value to 6 by trying some
different values on a small subset of the dataset and choosing the best value.
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a comprehensive list of topics which includes every specific example from the text
related to each topic. For each of the examples we need to answer this question of
whether the student talked about this specific example or not. So the specificity
feature is a vector of integer values. Each value shows the number of examples
from the text mentioned in the essay for a single topic. We use the same window
based algorithm which we use for NPE to calculate each value of the vector.

Word Count (WOC) is used as a feature because in prior work and in our
own data, longer essays tend to receive higher scores. Although word count is
not rubric-based, we have not yet defined features to discriminate score 4 due to
the difficulty of operationalizing “sophisticated.” Until we define such features,
we temporarily include word count as a potentially helpful fallback feature.

Based on the defined features, we imagine generating feedback that points
students to alternative sources of evidence, that highlights the need to elabo-
rate on the included evidence, or that suggests that students be more specific
in their usage of evidence. For example, a student could be given feedback such
as “You provided evidence about malaria as condition of poverty that was im-
proved, but there are other relevant evidence in the text that you also need to
focus on, such as lack of fertilizer for crops.” For teachers, we envision providing
summary information such as students’ weakness in elaborating on the evidence
they provided.

5 Experimental Setup

We configure a series of experiments to test the validity of three hypotheses: H1)
the new features will outperform or at least perform equally well as baselines,
H2) due to noisy data, spelling correction will improve predictive performance,
and H3) word count will be helpful in discriminating the score of 4 from the rest
as we have not yet defined features for that part of the decision tree.

In our experiments, we do 10-fold cross validation using 3 different classifi-
cation methods: Naive Bayes, Random Forest (max depth = 5) and Logistic
Regression.4 Since Naive Bayes is used in [11] (which is one of our evaluation
baselines, as discussed below), for comparability we include Naive Bayes as one of
our classification methods. Since Random Forest is a decision tree based model
and our features are motivated by the decision tree of Fig. 1, we expect this
approach to be well-suited for our task. We also include logistic regression to de-
termine whether any observed differences are due to changing features or chang-
ing classifiers. Unless otherwise noted, the performance measures reported below
are calculated by comparing the baseline and new classifier results with the first
human rater’s scores. We chose the first human rater because we do not have the
scores of the second rater for the entire dataset. The performance measures we
report are Accuracy, Kappa and Quadratic Weighted Kappa, which are standard
evaluation measures for essay assessment systems.

4 While we also tried other classifiers like SVM, due to space limitation we only report
results for the classification methods that yielded comparable results to the baselines.
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For comparing our models and features with existing methods, we consider
two different baselines. Baseline1 is one of the best performing methods [11]
used in the Hewlett Foundation automated essay scoring competition [15], which
was mainly about holistic scoring both on source-based and free-text writing
tasks. We choose this baseline because it is an easy-to-implement and open
source method: Unigrams and part-of-speech bigrams are extracted and filtered
down to the top 500 features by the chi-squared statistic, then a Naive Bayes
model is trained on the resulting feature set. Based on some experiments with
different Ngram-based features, however, we found that removing part-of-speech
bigrams from this model improved performance on our data; therefore, we only
use unigrams as features in our experiments. Baseline2 is LSA [9] trained on pre-
scored essays and the text. While our first baseline came from the holistic scoring
literature, LSA has been successfully used in trait-based systems to score content
and ideas [8,12], which seems more similar to our task of scoring Evidence. Since
we do not have a separate pre-scored set of training essays, we do cross-validation
in our experiments. Scores are assigned based on the scores of the 10 most similar
essays, weighted by their semantic similarity based on [12].

6 Results and Discussion

We first examine the hypothesis that our new features will outperform or at
least perform equally well as the baselines (H1).5 The ‘comp’ columns of Table
3 show the results on the complete dataset. Runs 6 and 7 show that using all 4
new features with either a Random Forest or Logistic Regression classifier yield
significantly higher performance than either baseline. Random Forest yields the
highest means overall. Run 3 shows that using only the features of Baseline1
(unigrams) with Random Forest does not match the performance of Random
Forest and our features, suggesting that our improvements are not just due
to changing the classifier of Baseline1. The last three runs show that adding
unigrams to our 4 features also do not improve our results. We repeat this
experiment using the subset of the doubly-coded portion of the dataset where
the 2 raters agreed (353 essays). The ‘sub’ columns of Table 3 show that these
results yield the same conclusions as the ‘comp’ columns, although the absolute
performance figures are even higher on this less noisy part of the dataset (with
QWKappa close to the human .67 figure noted in Section 3).

We also examine whether any subsets of our complete 4 feature set could yield
comparable predictive performance to using all features. In this experiment we
only use Random Forest, as it is the best performing classifier in the experiments
above. In each run, we omit one of the features to see if the absence of the feature
significantly impacts performance. The results in Table 4 show that removing
any of the 4 features significantly degrades model performance compared to using

5 Since Baseline1 outperforms Baseline2 with one exception (see runs 1 and 2 in Table
3), we focus on comparing our results to Baseline1. Both baselines, in turn, outper-
form predicting the majority class scores (accuracies of .38 and .37 for the ‘comp’
and ‘sub’ portions of the data, respectively).
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Table 3. Evaluating performance using 10-fold cross evaluation on both the complete
(comp) dataset (n=1569), and the subset (sub) of the double-coded portion of the
dataset (n=603) where the 2 raters agreed (n=353). Significantly better results than
Baseline1 are marked by * (p < 0.05). The best results are bolded.

RUN Method Accuracy Kappa QWKappa

comp sub comp sub comp sub

1 Baseline1 (NB + unigrams) 0.52 0.52 0.32 0.28 0.53 0.43

2 Baseline2 (LSA) 0.45 0.43 0.21 0.19 0.47 0.48*

3 RF +unigrams 0.52 0.59* 0.28 0.39* 0.50 0.47*

4 logistic + unigrams 0.49 0.59* 0.27 0.37* 0.52 0.55*

5 NB + 4 features 0.48 0.56* 0.26 0.31* 0.48 0.46*

6 RF + 4 features 0.57* 0.62* 0.37* 0.43* 0.62* 0.64*

7 logistic + 4 features 0.55* 0.61* 0.36* 0.41* 0.59* 0.56*

8 NB +unigrams + 4 features 0.52 0.53 0.33 0.29 0.58* 0.45

9 RF +unigrams + 4 features 0.54 0.61* 0.31 0.40* 0.52 0.56*

10 logistic +unigrams + 4 features 0.50 0.60* 0.28 0.40* 0.53 0.60*

Table 4. Performance evaluation of feature subsets on the complete dataset (n=1569).
Significantly worse results compared to using all features are marked by ⊗ (p < 0.05).

Method Accuracy Kappa QWKappa

All(NPE,CON,SPC,WOC) 0.57 0.37 0.62

NPE,CON,SPC 0.53⊗ 0.31⊗ 0.57⊗

CON,SPC,WOC 0.54⊗ 0.34⊗ 0.60⊗

NPE,SPC,WOC 0.55⊗ 0.35 0.60⊗

NPE,CON,WOC 0.53⊗ 0.32⊗ 0.58⊗

all 4 features. This suggests that the 4 features capture complementary rather
than redundant information.

To evaluate our hypothesis regarding the positive effect of first spell correcting
the essays (H2), we repeat the best experimental setting from Table 3 using a
630 essay subset of our dataset where both the original and a manually spell-
corrected version of each essay is available; the majority class accuracy for this
subset is 0.39. Table 5 shows that spelling correction did indeed improve perfor-
mance significantly, particularly accuracy by 4%.

Finally, our last hypothesis (H3) is that word count is useful for discriminating
score 4 from the rest, as we have not yet defined any rubric-based features for
that discrimination. To test this hypothesis, we use Random Forest with all
features (All) and after removing word count (All minus WOC) to predict the
ratings for 3 different data subsets defined by Evidence ratings: 1) essays rated
as 1 and 2; 2) essays rated as 1, 2 or 3; and 3) essays rated as 3 and 4. We
also do this comparison using all essays. The results are in Table 6. As can be
seen, including word count only significantly improves performance for the data
subset that included score 4 (as well as for the complete dataset).
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Table 5. The effect of spelling correction (n=630)

Method Accuracy Kappa QWKappa

RF + 4 features 0.52 0.33 0.62

RF + 4 features (spell checked) 0.56* 0.36* 0.65

Table 6. Performance evaluation of the word count feature. Significant improvements
when including word count are marked by * (p < 0.05)

Dataset Features Majority Accuracy Kappa QWKappa

1,2
All 0.56 0.75 0.48 0.48
All minus WOC 0.56 0.75 0.49 0.49

1,2,3
All 0.42 0.60 0.36 0.55
All minus WOC 0.42 0.59 0.35 0.54

3,4
All 0.66 0.66* 0.19* 0.19*
All minus WOC 0.66 0.63 0.1 0.1

1,2,3,4
All 0.38 0.57* 0.37* 0.62*
All minus WOC 0.38 0.53 0.31 0.57

7 Conclusion and Future Work

We present results for predicting the Evidence dimension of a rubric developed
for the new assessment task of analytical writing in response to text (RTA) us-
ing a dataset of essays written by upper elementary school students. We design a
new set of rubric-based features that we believe will be more meaningful and inter-
pretable than priorwell-performing but generic features likeNgrams andLSA, and
compared the predictive utility of our features with these prior baseline features.
Our results show that for assessing Evidence, our new methods significantly out-
performs baseline methods that performed well on other kinds of automatic essay
assessment tasks, and that all 4 features are needed to achieve the best results. We
also investigate the impact of one source of noise in the data and find that (man-
ually) correcting spelling errors further improves our results. Finally, we demon-
strate that the rubric-based features are particularly valuable for predicting scores
when there is a correspondence between the features and where they are used in
the decision tree; however, a simple wordcount feature adds value when predicting
decisions involving sophisticated evidence, which we have not yet operationalized.

There are still several ways in which our work can be enhanced. Based on
our results, we plan to preprocess our data using automated spelling correction
as this type of noise was shown to impact Evidence assessment. We would also
like to explore using natural language processing techniques to extract topics
and words automatically, as our current approach requires these to be manually
defined by experts (although this task needs only be done once for each new
text and prompt). In addition, we need to improve our implementation of the
Specificity feature as well as develop additional features to fully operational-
ize the Evidence decision tree. We also plan to use natural language processing
guided by the RTA rubrics to develop features for predicting the other scor-
ing dimensions. Finally, we plan to examine the generalizability of our current
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results, by applying our best-performing model to a new dataset obtained from
higher grade levels. Our long term goal is to develop downstream applications
based on automated RTA, such as intelligent tutoring systems that can produce
informative feedback.
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Abstract. Csikszentmihalyi’s flow theory states that the components that lead 
to an optimal state of intrinsic motivation and personal experience may further 
lead to optimal learning. However, little evidence suggests that a tutoring sys-
tem (TS) aimed at providing flow preconditions impacts student learning when 
the contents are the same. Therefore, this study tests this hypothesis by modify-
ing a TS used in an international English language institute (IELI) to provide 
flow preconditions of students and maintain a balance between the skill level of 
students and the difficulty level of learning tasks. Fifty-five students in the IELI 
were separated into two groups to use the modified TS and the original TS. 
Analysis results indicate an improved engagement and affective quality, as well 
as reduced frustration levels of the students who used the proposed TS. 

Keywords: Tutoring System, Affective Quality, Engagement. 

This study examines the influence on providing students with a Tutoring System (TS) 
that supports the inherent task-related features of flow preconditions [1, 2]; for exam-
ple, clear goals, immediate feedback, and a balance between challenge and skill [3, 4]. 
The variables normally measured in association with Csikszentmihalyi’s construct of 
flow are operationalized. This study examines whether students improve in engage-
ment, improve in affective quality, decrease in frustration, and improve in learning 
performance; when a TS provides flow preconditions with learning contents con-
trolled to be the same. 

This study modifies a TS for vocabulary learning that was normally used by Eng-
lish as a second language (ESL) students in an international English language institute 
(IELI), in order to provide flow preconditions during learning. The flow preconditions 
were provided to students by loosely incorporating factors that are stated in [3, 4] as 
follows: 1) a clear goal (the TS instructed the students to answer as many training 
problems correctly as possible); 2) feedback that is given immediately (although the 
original TS already included this feature); 3) adaptive tasks, which were implemented 
                                                           
* Corresponding Author. 
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by using a task-selection controller that balanced the personalized difficulty level of a 
selected task with a student’s skill level at each task loop; and 4) enhanced concentra-
tion of the students, by applying a time limit to each task loop.  

Study participants consisted of 55 ESL students from the IELI Reading 3 and Read-
ing 4 classes (intermediate ESL students). The participants had not learned the given 
vocabulary words at IELI. Each student completed the study in one to two weeks. In 
total, 43 students completed the study. The experiment and the manner in which data 
obtained from human subjects was used received approval from the local Institution 
Review Board (IRB). 

Learning performance was evaluated using one-way ANOVA. Random assignment 
appears to achieve a balance across all groups in terms of the incoming student com-
petency. No statistically significant differences were found between the two groups in 
the pretest scores (p = 0.19). Additionally, the two groups did not significantly differ 
in the total training time spent on the TSs.  Differences in learning performance be-
tween the pre- and posttests were also evaluated using one-way ANOVA. Both 
groups made significant gains from pretest to posttest p = 0.01 for the experimental 
group and p = .009 for the control group.  

However, statistically significant differences were found between the two groups in 
the ratings of engagement (items “The activity is fun” and “I find the activity pleasur-
able”: p  = .01 and p = .03 respectively), affective quality (see item “The activity is 
adequate, neither too difficult nor too easy” and “I enjoy the activity without feeling 
bored or anxious”: p = .003 and p = .001, respectively), and frustration (items “The 
activity makes me tired”, “The activity is difficult”, and “The activity is boring”:  
p = .003; p = .03; and p = .04, respectively). Based on the measurement results, the 
experimental group may have had a significantly better experience than that of their 
controlled peers.  
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Abstract. Recent research shows a lack of student interest and declined
enrollment in physics. Our system offers four levels of difficulty with ac-
tivities that enable students to exercise a range of lower and higher or-
der cognitive skills. Moreover, we adopt existing methods in probabilistic
user modeling to provide personalized help. Our work models both do-
main concepts as well as user attitudes.
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1 Introduction

Research shows a declined enrollment in university physics programs and that
physics as taught in schools do not seriously take student interests into account
[4]. As a way to overcome this challenge, attempts to integrate physics mate-
rial in an interactive and individualized manner have shown to increase student
interest and performance (e.g., [3,5]). However, students’ interest in physics is
closely related to their self-esteem and sense of academic achievement [4]. Fos-
tering student interest requires teachers to pay close attention to students and
guide them. Unfortunately, large-sized classes make it logistically infeasible to
realize this. We propose an intelligent tutoring system (ITS) that provides indi-
vidualized feedback and aims to increase student interest in physics by providing
a variety of activities that exercise different levels of thinking skills.

Originally devised as handbooks to systematize learning objectives and as-
sessment, Bloom’s taxonomy has become a foundational structure in Education
[1]. The taxonomy reprsents the process of mastering a subject through several
levels of cognitive activities starting wtih remembering at the lowest level and
creating at the highest.Our objective in this work is to adopt Bloom’s taxonomy
to create interactive activities that enable students with varying expertise to
apply a range of cognitive skills.

2 System Overview

Our system is called Kirchhoff’s Rules Intelligent Tutor (KRIT) as it focuses on
helping students with the application of Kirchhoff’s rules. The complexity of a
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circuit is determined by the layout parameters (number of batteries, resistors,
and junctions). The objective of these exercises is to apply Kirchhoff’s rules and
algebraically solve for one of three variables (voltage, resistance, current). KRIT
has four activity types displayed as separate levels to the student, multiple choice
questions, coached exercises, guided exercises and a create and share activity.

Our student model represents how much help a student currently needs as well
as thier current level of understanding. These factors are crucial in developing
a personalized ITS because different types of students prefer different levels of
assistance regardless of their level of understanding. These preferences may also
vary as a function of the exercises’ difficulty. Hence, a personalized tutor must
provide support suited for the individual’s needs.

Since this type of information is unknown to KRIT, it must be inferred in-
directly. Due to the inherent uncertainty of the inference problem, we adopt a
probabilistic approach by using a dynamic Bayesian network (DBN) [2]. Our
DBN reflects how the student’s domain knowledge (K for short) influences her
performance on applying algebra and physics concepts. We use observable events
to estimate the student’s understanding of these concepts thus, the DBN incor-
porates all the events observed from one response at each stime step.

To model student characteristics, our DBN includes the current need for help
and receptiveness to help (N and R for short respectively). We estimate these
variables using passively collected behavioral observations such as pausing, un-
doing what was typed, and making use of hints and system explanations. Addi-
tionally, note that K influences N to model advanced students are less likely to
need help. In turn, N influences R to model the correlation between neediness
and receptiveness to automated help. Together, K and N define the student’s
current state which is used to inform KRIT in its decision making.

3 Conclusions and Future Work

Pilot studies have shown promising results and we are currently in the process of
performing a large scale usablity test. We also have plans to develop the system
for mobile platforms and perform a longitudinal study.
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Abstract. We present a reflection-on-action system supporting students’ reflec-
tion and self-assessment after a tabletop brainstorming learning activity. Open 
Learner Models (OLMs) were core to the reflection task, to scaffold student’s 
self-assessment of egalitarian contribution; and group interaction from ideas 
sparked from each other. We present multiple OLMs to the group generated 
from logs automatically captured from the collaborative activity. Our work ad-
vances the understanding of OLMs for brainstorm reflection, and the benefit of 
multiple OLM representations. 

Keywords: OLMs, Visualisations, Brainstorming, F2F Collaboration. 

1 Overview 

Analyzing alternative views of captured student data can be used to provide effective 
support to both students and teachers [2]. This is particularly crucial for developing 
collaborative skills for idea generation, and for students to reflect on how well they 
contributed to the group [3] and their interaction with others. Reflection involves 
actively monitoring, evaluating and modifying one’s thinking and comparing it to 
peers. Reflection-on-action is when one evaluates their own process, “thinking back 
on what [they] have done in order to discover [how] knowing-in-action [their ac-
tions] may have contributed to an unexpected outcome” [4]. Open Learner Models 
(OLMs) have long been used as a method to support student reflection on their devel-
opment of knowledge, skills, performance and understanding [1]. We support reflec-
tion with OLM visualisations immediately after the brainstorm (Figure 1—top).  

We created models and their visualisations for two key aspects of group brain-
storming: contribution equality in terms of the number of ideas created by each stu-
dent, and group effect in terms of the number of ideas sparked. We scaffold each area 
differently. For contribution equality, we analyse the effect of two group OLMs on 
students’ self-awareness, by presenting them in sequence, incrementing the detail of 
the student information shown (Figure 1—2,3). For idea sparking, we compare the 
inspection of the final product to a replay of the whole brainstorm process, and a 
hands-on reflection task with the presentation of a group summary OLM to students 
(Figure 1—5,6). We analyse the effect of the scaffolded reflection activity by measur-
ing changes in self-awareness, from Likert data and students’ written responses, after 
presenting each new piece of information. We examine whether students gain greater 
insights from studying each of the different OLMs. 
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Fig. 1. Egalitarian Contribution and Idea Sparking OLMs 

Our set of carefully designed OLMs, offered students the benefit of reflection on what 
they did, how they did it, and what they learnt. Our work enabled learners to step back 
and critically reflect on their actions. Multiple representations for both egalitarian partici-
pation and idea sparking led to insights for the majority of students. This work moves 
towards demonstrating OLM effectiveness for gaining insights into the collaborative 
process. Moving forward, we will examine the integration of these OLMs into an authen-
tic classroom setting and explore their long-term use over multiple brainstorms.  
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Abstract. This paper investigated frequency of questions and depth of ques-
tions in terms of both task difficulty and game phase when players collabora-
tively solve problems in an online game environment, Land Science. The results 
showed frequency of questions increased with both the task difficulty and un-
familiar tasks in the game phases. We also found players asked much more 
shallow questions than intermediate and deep questions, but more deep ques-
tions than intermediate questions. 

Keywords: question asking, collaborative problem solving, online game envi-
ronment. 

Question Asking. Questions that students ask reflect their specific knowledge defi-
cits, uncertainty about information, and apparent contradictions [1]. Student question 
asking reveals active learning, construction of knowledge, curiosity and the extent of 
the depth of the learning process [2]. Previous research on question asking focused on 
the classroom [3] and one-on-one tutoring [4] environments. Student questions in the 
classroom were infrequent and unsophisticated as compared with one-on-one tutoring 
environments, because one-on-one tutoring environments could tailor activities to the 
student’s knowledge deficit and removing social barriers [1]. Recently, multiparty 
educational games have allowed groups of students to interact with computer-
mediated communication on tasks that require collaborative learning and problem 
solving [5]. However, there are few empirical studies on question asking in this mul-
tiparty environment. This study investigated the question asking during collaborative 
problem solving in an online game environment, Land Science. 

Land Science is an interactive urban-planning simulation with collaborative prob-
lem solving in an online game environment [6]. Players are assigned an in-game in-
ternship in which they act as land planners in a virtual city with the guidance of a 
mentor. They communicate with others through text chats for inquiries.  

This paper examines the frequency of questions as a function of the task difficulty, 
game phase, and question depth in Land Science. Three hypotheses are proposed: the 
frequency of questions increases as a function of increasing (1) task difficulty, (2) the 
task unfamiliarity, and (3) question depth.  
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Method. 100 middle and high school students participated in 7 Land Science games. 
Two student researchers manually identified 1,936 (13.32%) questions from students’ 
chats, and then coded them into 18 question categories according to the Graesser-
Pearson Taxonomy [7], and the Other category (the average Kappas above .76). Then 
the questions were scaled into shallow, intermediate, versus deep level (see 7 for de-
tail). The 14 stages of the game were scaled into easy, medium and difficult by a 
member of the Land Science development team based on the task familiarity and 
complexity. In addition, four phases were coded as introduction, new task, repeated 
task and closing. 

Results and Discussion. Relative frequency of questions was operationally defined in 
the unit of per 100 words. Jonckheere-Terpstra trend tests were performed on 3 task 
difficult levels and 4 game phases separately. Results showed that the frequency of 
questions increased with task difficulty (p=.023), and with task unfamiliarity 
(p=.071). A nonparametric Kendall’s tau-b test confirmed the trend (r=.458) in task 
difficulty and task unfamiliarity (r=.331). Therefore, players did ask more questions 
as task difficulty and task unfamiliarity increased. General Linear Model showed 
there was a significant effect for depth of question, F(2,37)=401.27, p<.001, η2=.956. 
Post-hoc Bonferroni tests indicated that shallow questions (M=.80, SD=.097) were 
significantly more than deep (M=.15, SD=.078) and intermediate (M=.05, SD=.032) 
questions, and deep questions were significantly more than intermediate questions. 

These findings confirmed that question asking during collaborative problem  
solving in multiparty educational game environment was similar to classroom envi-
ronment: players asked more shallow questions [5]. Therefore, the mentor should 
demonstrate how to ask deep question in order to facilitate deep learning. 
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puter games for STEM learning. Any opinions are those of the authors. 
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Abstract. Within the educational context, researchers have focused on applying 
agent and ontology-based technologies to improve the processes of localization, 
retrieval, cataloging, and reuse of learning objects. This scenario highlights se-
mantic heterogeneity issues, creating an excellent opportunity to evaluate, and 
explore ontology alignment techniques able to provide semantic integration be-
tween different ontologies. This work presents the MSSearch service, which 
combines state of the art agent and ontology-based technologies, with advanced 
alignment techniques to provide a semantic search service for a learning object 
repository. MSSearch was tested with a base of more than 11.000 learning ob-
ject, answering queries in real-time. The quality of the answers were checked 
by educational experts and considered very satisfactory, when compared against 
similar queries made with the standard search engine of a public repository of 
learning objects, containing a similar set of learning objects. 

Keywords: Ontology Alignment, Learning Objects, Multiagent Systems,  
Metadata. 

1 Introduction 

The MSSearch system presented in this work uses advanced ontology alignment tech-
niques to create a semantic search engine, and a native OWL Learning Objects (LO) 
repository. The OBAA metadata ontology [3] was chosen to represent, and store LO 
metadata. The most important problem addressed by MSSearch is how to correlate 
LO metadata stored in the repository to educational ontologies, which represent, for 
instance, the learning domains, teaching strategies, and other educational topics. The 
establishment of relations among metadata and educational ontologies, or among 
distinct, but generally heterogeneous educational ontologies could be very complex. 
Fortunately, there are some techniques that can make this process easier, allowing the 
automatic, or semi-automatic establishment of the relations among the ontologies. 
Ontology alignment [1,2] is currently regarded as an important mechanism for the 
integration of semantically heterogeneous databases, and as an enabling technology to 
provide semantic searches on these databases. 
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2 The MSSearch System 

The architecture of MSSearch system was designed according to the guidelines, and 
principles presented in [4]. The ontology layer is formed by a set of educational  
ontologies aligned to the metadata ontology. The interface layer contains the web 
interface with common users (WebQueryInterface) and administrators (WebAdminIn-
terface), the web services interface (RESTfulInterface), and the interface with LO 
repositories through the OAI-PMH harvesting protocol (OAIPMHInterface). 

The agents layer is composed by the following agents: MetaQuery: agent responsi-
ble for executing the queries in semantic repository; MetaUpdate: agent that updates 
metadata stored in the repository; MetaLoad: agent, which is charged with the task of 
to populate the database with learning object metadata; OntoAlign: agent that perform 
the alignment of ontologies; SemanticSearch: agent that implements the semantic 
search mechanism. This agent also implements the relevancy-based ordering of query 
results; RDFBaseManager: this agent encapsulates the storage facility of native RDF 
triples storage, which currently is the graph storage system provided by JENA TDB; 
OWLReasoner: agent that encapsulates the OWL inference engine used in MSSearch. 
Currently this agent is integrated with the Pellet reasoner. Agents MetaQuery, Me-
taUpdate, MetaLoad, RDFBaseManager, and OWLReasoner form the core subsystem 
of MSSearch, which combines the JENA TDB RDF database, with the Pellet reasoner, 
to provide a native OWL repository able to store, locate, and retrieve LO metadata. 
The remaining agents implement the semantic search, and alignment functionality. 

A performance evaluation experiment was conducted to measure the execution 
time of operations to load, and query. The load operation was tested from 99 till 
11088 LO, which were obtained from BIOE repository (http://objetoseducacionais2. 
mec.gov.br/?locale=en). Based on test results, it was possible to estimate that the load 
time remained linearly proportional to the number of objects, indicating a possible 
maximum complexity of order O(n). In another test a complex SPARQL query was 
performed aiming to recover all LO in the semantic repository, ordered by their title. 
According to the test results, the performance of query operation appears to be loga-
rithmically proportional when the number of LO stored in the repository ranges from 
99 to 4200, passing to a more linear performance after 4200. A user perception expe-
riment was conducted with four teachers. The results show that, from the point of 
view of its users, MSSearch consistently returned best query results than BIOE. 
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Abstract. In this paper, we study effective communication skills by
analyzing the structure properties (e.g., degree, hub) of participants’
interactions in an online classroom discussion context. We perform a
regularized canonical correlation analysis to explore the social network
signatures of effective communication skills (e.g., perspective taking). Ex-
periments on computer-mediated communication among college students
have shown that a statistically significant correlation exists between ef-
fective communication skills and social network profiles, measured on
the same participant, with an effect size of 0.81. We discover that people
showing more perspective taking behaviors are more popular and influen-
tial than others in their communication network. Such people also tend
to reach out to people who behave similarly, which implies a like-attracts-
like social phenomenon that complies with the Law of Attraction.

In this paper, we address an important and yet unexplored research question
about effective communication: what are the network signatures of effective com-
munication skills? We create a regularized canonical correlation analysis model
to study the associations between an array of ten effective communication skills
and a group of 17 social network metrics, all measured on the same participant.
We answer intriguing questions, such as, are people who show perspective tak-
ing behaviors more popular than others in their communication network? This
research is a part of a larger research endeavor to understand an emerging social
communication phenomenon in online interactions, which we call communica-
tion intelligence. The constructs of communication intelligence, or intelligence-
embodied communication skills, are the ten effective communication skills that we
study. These skills include connection, proof, restraint, agreement, appreciation,
self-reflection, perspective taking, monitoring, balance, and plan. The 17 social
network measures used in this study are: in degree, out degree, degree, weighted
in degree, weighted out degree, weighed degree, eccentricity, closeness centrality,
betweenness centrality, authority, hub, modularity class, page rank, component
ID, strongly connected ID, clustering coefficient, and eigenvector centrality.

Experimental Data: Our experiment data were from computer-mediated com-
munication among college students. We had a total of 44 students with females
(55%) and males (45%) relatively evenly distributed. Most of the students were
juniors (34%) and seniors (45%). Students from two disciplines (i.e., pre-law and
communication studies) discussed ill-defined topics, such as “right to die,” and
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“internet free speech.” They were randomly assigned to small groups of 7 or
8 people with the goal of encouraging more focused discussion. In our experi-
ments, we collected two set of quantitative measures: (1) scores of the use of
intelligence-embodied skills and (2) measures of social network profiles. For each
student, the scores associated with each intelligence-embodied skill used in the
overall discussion were computed by averaging over the number of posts asso-
ciated with that student. The social network profiles were generated through
Gephi and then were normalized by group size.

ResearchMethod–RegularizedCanonicalCorrelationAnalysis: Canon-
ical correlation analysis (CCA) is a method for exploring the relationship between
two sets of variables, all measured on the same experimental unit. CCA is not only
a regressionmethod, but also a dimension reduction method, in that it determines
the relationship between two sets of variables and computes how many dimensions
are necessary to understand the association between these two sets of variables. Reg-
ularized canonical correlation analysis (RCCA) imposes a ridge penalty onCCA to
address the issue that multicolliearity is present within either or both sets of vari-
ables, or the number of experimental units is less than the number of measuring
variables. In this research, we use RCCA to identify associative patterns between
participants’ use of intelligence-embodied skills and their networkmetrics, because
intelligence-embodied communication skills appear to be interrelated.

Experimental Results: With regularized canonical correlation analysis, (λ1 =
0.0001 for communication skill variables and λ2 = 0.00001 for network
metric variables), we found one statistically significant (α=0.1) canonical di-
mension. This significant canonical dimension has a canonical correlation 0.90
(p-value=0.08) with a large effect size of 0.81. For the communication skill vari-
ables, the first canonical dimension is most strongly influenced by perspective
taking (0.63). This result provides an exciting way to study perspective taking
through the lens of social network metrics, as shown below.

• Popular – people showing more perspective taking behaviors are more popu-
lar (i.e., positive correlations with hub, degree) than others in the communication
network.

• Influential – people showing more perspective taking behaviors are more
influential (i.e., a positive correlation with authority). Their neighborhoods do
not interact much themselves (i.e., a negative correlation with clustering coeffi-
cient). They contribute to a large local community (i.e., a positive correlation
with eccentricity) that has more communication (i.e., a correlation with strongly
connected).

• Like-attracts-like – people showing more perspective taking behaviors are
more likely to communicate with people who behave similarly. This is based on
a correlation found between perspective taking and network component – people
tend to communicate with others who demonstrate similar level of perspective
taking. In other words, their communication network demonstrates propinquity.

FutureWork: For further validation of our results, we will replicate the above ex-
periments with a larger sample of populations and possibly from diverse cultures.
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Abstract. The amount of data available to build simulation models of schools is 
immense, but using these data effectively is difficult.  Traditional methods of 
computer modeling of educational systems often either lack transparency in 
their implementation, are complex, and often do not natively simulate non-
linear systems. In response, we advocate a Complex Adaptive Systems ap-
proach towards modeling and data mining. By simulating agent-level attributes 
rather than system-level attributes, the modeling is inherently transparent, easily 
adjustable, and facilitates analysis of the system due to the analogous nature of 
the simulated agents to real-world entities. We explore the design a CAS model 
of schools using multiple levels of data from varied data streams. 

Keywords: Complex Adaptive Systems, Agents, Educational Data Mining. 

1 Multi-level CAS Design of an Educational System 

As schools become increasingly wired, the ability to collect data at multiple levels has 
grown exponentially to the point of becoming overwhelming. We classify the mul-
tiple data streams into four levels: Individual, Classroom, School, and District. This 
work is centered on finding the complementary links between these levels and using 
them together to bring a much clearer picture of the overall educational system.  

At the highest levels, most of the academic work in the fields of learning analytics, 
educational data mining, and intelligent tutoring systems focus specifically at the 
classroom level or the individual student level using data from learning management 
systems or finer grain data from logs created from educational technologies[3]. Some 
work has brought together log data and correlated it with student grades, but little has 
been done to harness all of these data streams into a robust model. We propose a CAS 
(Complex Adaptive System) model to do this, for two reasons: the inherent transpa-
rency of using agent-based analogues, and the ease with which a CAS model can 
represent non-linearities. CAS is a method developed in physics, mathematics, and 
other sciences [1,2] to deal with the issues of complexity, and has been redefined by a 
growing number of applications in many domains. The most striking feature of a CAS 
is that even simple agents – with only a few attributes and rules– can produce  
complex, dynamic behavior at many different scales of interest.  
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Agent-Based Modeling (ABM) is a technique for creating a computer-based si-
mulation of a CAS. Crucially, ABM relies on modeling agent-level behavior, rather 
than system-level behavior. The agents of such a system can represent schools, class-
rooms, or even individual students and teachers.  The agents, then, are analogues for 
real-world entities, and are thus endowed with the same properties as their physical 
counterparts.  In this way, non-linear behavior can emerge from the simulated system 
in the same way that it emerges in the classroom, school, or school district.  Further, 
an ABM is inherently transparent, as the simulated agents have properties that are 
directly analogous to those of the real agents in the system of interest. For these rea-
sons we believe ABM is a fruitful method for simulating all the complex interactions 
and non-linearities found in a school system. 

Educational systems currently collect many characteristic-, performance- and out-
come-level data, including grades, test results, economic status, gender, age, race, etc. 
However, such data, while useful, still leave many aspects of classroom performance 
unreported. For example, none of them include the nature and frequency of interac-
tions among students, teachers and students, students and principals, teachers and 
principals, or principals and superintendents. In addition, there are no correlations 
between the availability of resources, the nature of such interactions, and the overall 
performance of students and schools/school districts.  CAS methodology can offer a 
way to simulate and model such interactions at multiple levels, including classrooms, 
schools, districts, and states. Due to the interactive nature of the classroom there is a 
great potential for threshold “tipping point” effects to exist, and it is intuitively true 
that some students or student clusters can have an outsize effect on the rest of the 
class.  One of the goals of this research will be to discover and understand the under-
lying dynamics of such threshold effects, within the classroom, the school, and the 
district-wide school system, so that a smarter approach in resource allocation can 
produce a more effective educational system. This work identifies the links between 
multiple streams of data and the development of CAS model to represent an entire 
school ecosystem, from the individual student to the district level. This model allows 
for predictive analysis at each level by simulating interactions at the other levels. The 
end result of this effort produces a robust model of an educational system at multiple 
scales, one that can not only help determine the causal factors of desirable outcomes, 
but also allow for multiple “what if” scenarios to be run in simulation, so that these 
outcomes can be improved and resources are expended in the most efficient manner. 
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Abstract. Trialogue-based tasks can be used to gather evidence that may be 
difficult to obtain using traditional assessment approaches, such as embedded 
questions. However, more research needs to be done in order to create valid, 
fair, and reliable conversation tasks that can be used for assessment purposes. 
This paper describes ongoing efforts at developing and evaluating trialogues for 
assessing students’ science inquiry skills. 
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1 Introduction 

Natural language conversations between students and pedagogical agents (e.g., a virtual 
peer or teacher) have been used successfully as part of intelligent tutoring systems and 
formative assessment systems. A trialogue is a particular type of conversational task in 
which there are typically two virtual agents (e.g., a tutor and a peer) and one human 
student. Compared to traditional testing formats, trialogues may elicit more evidence of 
students’ skills and their conceptual knowledge, and may allow for interactive, adaptive 
assessments [1]. This paper describes aspects of our development process and presents 
current work implementing and evaluating trialogues for assessing science inquiry skills. 

2 Trialogue-Based Tasks 

The current work on conversation-based assessments leverages many advances made 
through previous research on natural language intelligent tutoring systems. More 
specifically, these trialogues are based on the research and architecture of AutoTutor [2].  

The development process of these trialogue-based tasks also follows the principles 
of Evidence-Centered Design [ECD; 3]. This iterative process starts from a clear 
definition of the constructs, followed by the scene design process that involves 
authoring, implementing, and testing of scripts. Characters and other graphical 
components are designed, storyboards are produced and revised, and a trialogue-
based task prototype is developed and evaluated with the intended audience. 

Conversation diagrams have been designed to facilitate authoring of these tasks. 
These diagrams serve as communication tools to facilitate communication about task 
design among an interdisciplinary group of experts that includes assessment 
developers, dialogue engineers, and scientists. Utterances including sample responses 
are connected, forming conversation paths. These paths may involve several turns 
between the student and the virtual agents depending on the student’s input. Several 
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types of responses are usually handled including: correct response, partially correct 
response, irrelevant response, metacognitive and metacommunicative questions, and 
silence. The scoring process has two components: (1) path-based scoring and (2) 
revised scores based on additional evidence (from human or automatic).  

3 The Volcano Scenario 

The current trialogue scenario introduces students to factors related to volcanic 
eruptions and allows them opportunities to converse with virtual agents, place 
seismometers to collect data, analyze data, take notes, and make data-based 
predictions. These activities were designed to evaluate students’ science inquiry skills 
such as data collection and evidence-based reasoning. Several trialogue-based tasks 
gather information about decisions students make during data collection, conceptual 
misconceptions, and alert level predictions based on data collected. For example, after 
making notes about the data collected by seismometers, the student interacts with two 
virtual agents (Dr. Garcia and a student agent named Art) to review and compare one 
of his/her own notes with one of Art’s notes.  

4 Preliminary Results 

A small study with 10 students (50% female) in 6th to 8th grade was conducted using 
the volcano scenario that included 2 trialogue-based tasks. Participants completed a 
background questionnaire, interacted with the volcano scenario, and completed 
usability and engagement questionnaires. Each session lasted approximately 90 
minutes. Results from the usability and engagement questionnaire showed that, in 
general, students enjoyed the activity. Participants were able to complete the activity 
with minimal instruction. Students generated mindful conversations and reflected 
various levels of the target constructs.  

5 Future Work 

New trialogue-tasks targeting a variety of constructs are being developed, as well as 
tools to facilitate the development of these tasks. Existing trialogues are being refined 
based on new data. Future work also includes conducting large-scale validity studies, 
as well as improving testing and scoring approaches and investigating the 
psychometric properties of these tasks. 
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Abstract. MILA–T (MILA–Tutoring) is constructed to give students explicit 
instruction on scientific modeling and inquiry, intending in part to help cultivate 
positive attitudes toward science. The results of a two-week controlled experi-
ment using MILA–T in middle school classroom show a significant effect of 
MILA–T on students' attitudes towards science. 
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1 Introduction 

Middle school science education carries metacognitive learning goals: students learn 
about scientific inquiry and modeling to reflect on and regulate their knowledge of 
science [6]. Attitudinal learning goals on curiosity, skepticism, and positive argumen-
tation are addressed [2]. Here, we examine whether metacognitive tutoring helps im-
prove middle school students' attitudes toward science, scientific inquiry, and careers 
in science. Our hypothesis is that metacognitive tutors improve students' attitudes 
towards these topics. We present a controlled experiment with an exploratory learning 
environment called MILA (Modeling & Inquiry Learning Application, [3]) that 
evolves from the ACT system [4], and a metacognitive tutoring extension called 
MILA–T (MILA-Tutoring), in which access to MILA–T was varied. Attitudinal sur-
veys were given before and after engagement, and we report changes to these scores. 

2 Experimental Design and Results 

Students participated in the intervention for approximately 50 minutes per day for 
nine days. Students completed attitudinal surveys on the first and last days and parti-
cipated in a seven-day curriculum in between. The survey measured five constructs: 
Attitude Toward Scientific Inquiry [1], Career Interest in Science [1], Anxiety toward 
Science [5], Perception of the Science Teacher [5], and Desire to Do Science [5].  
This study is a controlled experiment. In the control condition, students received 
MILA without MILA–T enabled during the seven-day curriculum. In the experimen-
tal condition, MILA–T is available to the students, providing individualized, situated  
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feedback on the model construction process. 237 students participated in the interven-
tion, with 99 in the control condition and 138 in the experimental. 

The primary question of this research is whether changes in students' scores on 
these metrics changed over the course of the intervention based on exposure to 
MILA–T. To answer this question, we conducted a multivariate analysis of variance. 
First, we examined whether students were roughly equivalent on the given metric 
prior to the intervention. Then, we examined whether students' scores on that metric 
changed, and whether those changes were connected to the experimental condition. 

Prior to the intervention, no significant relationship between attitude toward scien-
tific inquiry and condition existed. Analysis of the overall change to attitude toward 
science inquiry revealed no significant change overall. However, breaking the groups 
down by condition revealed a statistically significant (p < .05) difference between the 
two groups. Students in the experimental group experienced an average increase of 
1.46 points on their attitude toward scientific inquiry score (σ = 7.16). Students in the 
control group, on the other hand, experienced an average decrease of 1.16 points on 
their attitude toward scientific inquiry score (σ = 6.33). Thus, students interacting 
with MILA–T experienced a statistically significant increase in their attitudes toward 
scientific inquiry compared to students without MILA–T. Students in the experimen-
tal condition concluded the study with a higher (p < .05) attitude toward scientific 
inquiry (µ = 22.14, σ = 7.73) than those in the control condition (µ = 20.02, σ = 7.44). 

Prior to the intervention, no statistically significant relationship existed between 
career interest in science and condition. Analysis of changes within groups revealed 
that students in the experimental group experienced a statistically significant increase 
in their career interest in science (p < .05) of 2.03 points (σ = 6.01). Students in the 
control group, on the other hand, no significant increase. These results indicate that 
participation with MILA–T led to an increase in career interest in science, while  
participation without MILA–T did not. 
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Abstract. This selective review discusses the emotions that learners report ex-
periencing while interacting with agent-based learning environments.  
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1 Toward a Deeper Understanding of Emotions and ABLEs 

How do students feel about interacting with specific types of computer-based learning 
environments (CBLEs)? Does the incidence of discrete emotions vary between simi-
lar types of these environments? What features support or hinder learners’ experience 
of different emotions? This selective review addresses these questions as they relate 
to a type of CBLE: agent-based learning environments (ABLEs). ABLEs are unique 
from other CBLEs because of their use of pedagogical agents (PAs). PAs are ani-
mated characters designed to provide several functions such as immediate and tailored 
prompts and feedback to support student learning [1-7]. The primary objective of this 
review is to compare the emotions elicited by six different ABLEs. This selective 
review differs from other reviews, in several ways: (1) by focusing only on CBLEs 
with PAs; (2) examining any study that measured emotions using one or more  
methods so long as they met the criteria; (3) comparing and contrasting learners’ inci-
dence of each of the discrete emotions reported for all six of the ABLEs. Seven stu-
dies were selected on the basis of the following inclusion and exclusion criteria: (1) 
studies had to measure more than one discrete emotional state using a forced-choice 
measure1; (2) they had to report the incidence of emotions as either proportions or 
frequencies; and (3) in the case of multiple published articles based on the same or 
part of a common data set, the study with the larger sample size was taken.  

Table 1 was created to eliminate the redundancy of the large number of emotional 
labels used by the seven studies by organizing them into sets that could: (1) be opera-
tionalized as different emotional states and (2) that reduced the number of emotional 
labels, but maintained as much meaningful variation in learners’ emotions as possible. 
This synthesis was guided by research and operationalization of emotions by Pekrun 
                                                           
1 Emotions in Table 1 could add up to more than 100% if they possessed different object-

focuses (e.g., PA [admiration/reproach] vs. event outcome [joy/distress]) [1]. 
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[8] and D’Mello, Graesser, and colleagues [2]. Emotions were therefore associated 
within the dimensions of valence and activation. Positively-valenced, activating emo-
tions that were specifically related to learning and characterized as cognitive-affective 
states (e.g., curiosity, engagement) were grouped together because they represent 
ideal emotional states where the learner is not just feeling ‘good and energized’ (e.g., 
happy), but in an emotional state where they are prepared to learn effectively. 

2 Results 

Table 1. Proportions of grouped discrete emotions experienced with ABLEs 

 

3 Discussion 

A number of preliminary conclusions can be drawn from this review: First, game-like 
elements, when implemented in a sufficient quantity (e.g., more than a narrative con-
text) and with sufficient quality to make the environment truly game-like are related 
to learners’ experience of positive, activating emotions [1, 6, 7]. Similarly, the relev-
ance of content to students’ academics and the affordance of choice in an ABLE is 
also related to learners’ experience of positive emotions [1, 4, 6, 7]. This review  

   ABLE  
   AutoTutor 

[2] 
Operation 
ARIES! [3] 

Crystal 
Island 

[6] [7] 

MetaTutor 
[5] 

Prime 
Climb  

[1] 

Wayang 
Outpost1 

[4] 
Val. Act. Emotion %        
+ Act. Happy/Joy/ 

Delight 
/Excitement  

.06 .02 .25 .14 .09 .92** .34 

+ Act. Eng./Flow / 
 Focus/ Curi-
osity 

.24 .24 .42 .41    

+ Act.2 Admiration      .82*  
+ De-Act. Concentrated/ 

Satisf ied 
      .58 

- Act. Anger/  
Frustration 

.13 .06 .07 .16 .03  .06 

- Act. Fear/ 
Anxiety/ 
Distress 

 .01 .09 .05 .00 .08**  

- Act. Disgust/ 
Contempt/ 
Reproach 

    .00 .18*  

- De-Act. Boredom/ 
Tired 

.18 .33 .03 .09   .02 

- De-Act. Sadness   .02  .03   
+/- Act.2 Confusion .17 .09 .13 .16    
+/- Act. Surprise .03 .01   .03   
NA  Baseline Neutral .19 .26   .77   
+ Act. - .30 .26 .67 .55 .09 .92/.82 .34 
+ De-Act. -       .58 
- Act. - .13 .07 .16 .21 .03 .08/.18 .06 
- De-Act. - .18 .33 .05 .09 .03 - .02 
+/- Act.? - .20 .10 .13 .16 - -  
NA  Baseline - .19 .26 - - .77 -  



 Understanding Students’ Emotions during Interactions with Agent 631 

illustrates that there is a range in the incidence of desired (positively-valenced,  
activating) emotions that learners experience while interacting with ABLEs. Few 
negatively-valenced, activating emotions are elicited, however, which is good news. 
Instead, the greatest challenge for researchers to target in emotional interventions is 
boredom. Neutral was found to be one of the most commonly appearing states in 
those environments that measured it [2, 3, 5]. Future research should include neutral 
because it is important to capture the range of students’ emotional states, including 
those that may be considered to be a non or baseline emotional state. More studies 
with forced-choice emotional labels and their incidence are needed to validate and 
expand upon the number of ABLEs presently reviewed and the samples they  
drew upon.  
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Abstract. This paper presents an Authoring System for the design of pedagogical 
devices dedicated to the teachers. This system helps a teacher to create his 
pedagogical scenario. It generates also the teacher’s pedagogical device (based on 
Web 2.0 tools) and a dashboard, which allows controlling the students' activities. 
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1 Research Context 

The research context concerns the project-based pedagogy, which can be classified in 
the active pedagogy [1]. This pedagogy is supported by a pedagogical method named 
MAETIC, which is represented by a book [2]. This method targets students of 
professional trainings. It permits the acquisition of know-how corresponding to the 
educational objectives fixed by the teacher. For that, the students develop a "product" 
by the implementation of project management techniques.  

MAETIC recommends that students follow a five steps cycle, to realize their 
activities. This five-step process represents the pedagogical scenario. On the students’ 
side, every group of students holds a logbook to describe the progress of the project 
and realize deliverables. On the teacher’s side, a pedagogical device (named  
e-suitcase MAETIC) allows to inform the students about the progress of the Teaching 
Unit. The teacher writes, on his e-suitcase, the students’ activities. To control his 
teaching, he has also a dashboard, which allows controlling the students’ activities. 

To structure the design process of the e-suitcases MAETIC, we follow a design 
method created by D. Leclet-Groux [3] and called MAUI (French acronym, 
instructional design method based on cognition). This iterative method follows a 
succession of stages, by gradually refining the specifications. It is also an incremental 
method. The designer develops a core of the system and adds supplementary features. 
MAUI is located in the Instructional Design Domain and based on the ADDIE model 
[4]. Evaluations of the MAUI design method have been realized, on the ground [5].  

2 The SAPRISTI System 

MAETIC has been used in Maroco (Faculty of Science and Technology, University 
Sidi Mohamed Ben Abdellah, Fès) and in Djibouti (University of Djibouti). Initially, 
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15 teachers were trained to the concept of collective project-based pedagogy and the 
use of MAETIC was explained. But, we found that this training was not sufficient 
because, we encountered the  two following problems.  

1. When teachers wish to apply MAETIC in their teachings, they have only the 
MAETIC book, which outlines the activities to be performed by students. They 
have problems in the scenario design and they don’t have help with the design of 
their pedagogical scenarios (order of sessions, duration, skills preferred, …). To 
solve this problem, we aim to provide assistance to the scenarios design, through 
a computer tool. This assistance helps the definition of the teachers' pedagogical 
needs and customizes the MAETIC activities. 

2. Teachers can have difficulties in supervising students, when they are novice at 
the use of the method. They do not have a screen, where all the students’ 
activities are grouped to control the best of workflow. They don't have help to the 
establishment of their pedagogical device. To solve this problem, we propose to 
develop a tool that automatically generates the E-Suitcase MAETIC and the 
students’ logbooks. This tool creates also a dashboard that allows seeing the 
students’ activities. These activities are grouped on the one screen to control the 
students' workflow. 

This tool calls the SAPRISTI System (French acronym: Système Auteur pour la 
concePtion et la généRation de dIspositifs pédagogiqueS support de maeTIc). It can 
be considered as a Authoring Tool [6]. It supports the MAUI design method. 
SAPRISTI is composed by two components: 1- the Assistance Component. First, it 
collects information about the description of the Teaching Unit. Second, it generates 
the pedagogical scenario. For this, it relies on model of knowledge (activities and 
skills) and rules. 2- the Generator Component, which generates the technological 
environment. These devices are represented in the form of weblogs.  
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Abstract. The paper analyses the use of an automatically generated
map as a mediator; that map visually represents the study domain of a
university course and fosters the co-activity between teachers and stu-
dents. In our approach the role of the teacher is meant as a media-
tor between the student and knowledge. The mediation (and not the
transmission) highlights a process in which theres no deterministic rela-
tion between teaching and learning. Learning is affected by the students
previous experiences, their own modalities of acquisition and by the in-
puts coming from the environment. The learning path develops when the
teachers and the students visions approach and, partly, overlap. In this
case we have co-activity. The teacher uses artifacts-mediators in such a
process (Bruner). The automatically generated map can be considered
a mediator. The paper describes the experimentation of the artifact to
check if its use fosters: (1) the elicitation of the different subjects per-
spectives (different students and the teachers), and (2) the structural
coupling that is the creation of an empathic process between the per-
spectives of the teacher and the student as the way to enable co-activity
processes between teaching and learning.

Keywords: Co-actvity, Structural Coupling, Mediation, Latent Seman-
tic Analysis, Self Organizing Map, Zoomable User Interfaces.

1 Introduction

The artifact described in the paper was created within the project I-TUTOR (In-
telligent Tutoring for Lifelong Learning - http://www.intelligent-tutor.eu/)
approved by the European Community. The research group composed by re-
searchers of the information science field and education field has been work-
ing for the last years in the development of AI enabled artifacts for e-learning
[1][2][3]. The system aims at helping teachers and students foster a professional
and enactive approach. In such a direction some plug-ins for the Moodle Learning
Management System have been developed. The I-MAP plug-in is a concept map,

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 634–637, 2014.
c© Springer International Publishing Switzerland 2014

http://www.intelligent-tutor.eu/


Fostering Teacher-Student Interaction and Learner Autonomy 635

that represents the course domain in terms of all its relevant topics as they’re de-
scribed by the teacher. It relies on the creation of two semantic spaces aimed at
modeling both the course topics and the students interaction with the VLE: the
conceptual space and the activity space (one for each student). Latent Semantic
Analysis (LSA) has been adopted to compute the semantic space generated from
a document corpus on the basis of the occurrence frequencies of a set of mean-
ingful terms in each document. A self-Organizing Map (SOM) neural network
is used for both learning the topology of data in the space itself and clustering
input vectors. Finally, the map represents the 2D projection of the SOM lattice
after the training as a grid of cells. The map has been developed as a Zooming
User Interface representing graphically documents and topics. The reader is re-
ferred to [4] for a detailed description. In the experimentation the map was used
to activate a co-activity/empathy [5]. Co-activity and empathy are meant as a
progressive approach between the teachers perspective and the students one. At
the beginning the savy knowledge (of the teacher) and knowledge that comes
from the common sense (of the student) can show many elements of discontinu-
ity. Thanks to the didactical transposition [6] and to the listening the teaching
and learning process lets the actors reach, through continuous adaptations, a
level of consistency between the two perspectives. The result of such a process is
the structural coupling [7][8][9] In such a direction its necessary that the teacher
can have multiple and flexible mediators, that is, artifacts and processes (active,
iconic, analogic and simboli; [10]) that let the teacher represent reality. The path
is organized in teaching and learning activities [11] that let the student experi-
ence in an active way the learning paths (open-ended activities). The use of the
map is set in this direction: from the teachers viewpoint the maps nodes are the
key words of the course and, then, the map represents the savy knowledge re-
lated to the course domain; since the maps nodes are not connected the student
can freely build a net among the concepts selecting both the starting node and
the path to be created.

2 Experimentation and Findings

The objective of the experimentation is aimed at verifying (1) if the teaching
process activates an empathic attitude (co-activity) between the teacher and
the student e (2) if the map can let students create a personalized path. The
overall research design is framed within a qualitative approach implying a phe-
nomenological method of inquiry. The experimentation involved a small sample
of participants: one group of 10 students enrolled in the face-to-face graduate
course in General Didactics, a second group composed by 5 students studying in
e-learning modality in the same graduate course and a third group of 10 students
who followed the course in the past years with a different syllabus.. The partic-
ipants of each group were interviewed by the teacher through a semi-structured
open conversation [12]. Students were asked to examine the map generated by
I-MAP (that has just nodes and no hedges) and to interpret it describing in a
narrative way the path that could connect all or a part of the map nodes ac-
cording to their own logic. The task implied also to make it explicit the meaning
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of the connection among the nodes and to discuss it with the teacher. Gathered
data were: the net built by each student and the linguistic analysis of the descrip-
tion made by students themselves and focused also on the presence of the deixis
phenomenon. The use of the I-MAP tool demonstrated (Table 1) its efficacy in
group 1 and 2 both in the impact in the processes of co-activity teacher-students,
since even if the maps created are different and with personalized elements, they
showed to be consistent with the global approach of the course. Also the lin-
guistic aspects highlight the students attitude towards the map according to a
co-activity logic. Besides the use of the pronoun we” and the informal register
preferred by students show the presence of a dialogic process between the teacher
and the student. Groups 1 and 2 had a similar behavior compared to group 3
where a wider dispersion emerges in the occurrences of the node used. The map
lets every student express his/her own perspective. As highlighted in Table 1
students created different paths starting from different nodes. There were two
main options: some students (starting from the node action) developed a path
more focussed on key concepts, others (starting from the node design) reported
the teachers habitus from the design step to the assessment.

Table 1. Results of the experimentation

Node name
Visited Start

Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

Apprendimento 12% 7 % 13% 13% 0% 17%
Azione 18% 19% 9% 38% 55% 0%
Contesto 14% 8% 14% 13% 0% 17%
Costruttivismo 4% 5% 8% 0% 0% 17%
Dispositivo 14% 14% 7% 0% 0% 0%
Formazione 6% 8% 13% 0% 0% 0%
Progettazione 12% 13% 9% 38% 0% 33%
Progetto 6% 7% 10% 0% 45% 17%
Valutazione 12% 14% 14% 0% 0% 0%

std. dev. 0.05 0.05 0.03 0.16 0.22 0.12

In the future we plan to let the user have the chance to choose the starting
node not only in the interpretation of the map, but also in its construction,
enhancing the awareness of the importance of this choice and its effects.
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Abstract. We investigated the incidence of momentary co-occurrence of affec-
tive states in a computerized learning environment. Novice students (N = 99) 
used a learning environment designed to teach the basics of computer pro-
gramming. Only 46 of these students reported a sufficient number of co-
occurring affective states for statistical modeling. Two co-occurring pairs of  
affective states occurred at rates higher than chance: Confusion/Uncertainty + 
Frustration and Curiosity + Flow/Engagement. We found that the co-occurrence 
of Curiosity + Flow/Engagement was related to success and fewer errors when 
testing code as well as the use of available hints and overall performance. 

1 Introduction 

Most research into affective states in ITSs and computerized learning systems has 
assumed that a student experiences one affective state at a time (see meta-analysis 
[1]). We expand this topic by examining co-occurring affective states, or instances 
when multiple affective states are experienced at the same time. Determining what 
affective states co-occur and how those co-occurrence patterns are related to learning 
is important for more effective design of intelligent tutoring systems (ITSs) that sense 
and respond to student affect. For example, if confusion and frustration co-occur, it is 
unclear whether an affect-sensitive ITS should respond to confusion, frustration, or 
both. We contrast previous research of co-occurring affective states (such as [2]) by 
focusing on affective states that are learning-centered and arguably more likely to be 
relavent to ITSs [3]. In particular, we investigated what pairs of affective states  
co-occurred and how co-occurrence related to interaction events and performance. 

2 Method 

Ninety nine students completed 35 minutes of problem-solving exercises with the 
Python computer programming language. Students were retrospectively shown syn-
chronized videos of their face and on-screen activity and were asked to make judgments 
about what affective states (13 choices including Neutral) they were experiencing at 
various points in the learning session. With each judgment, students could also volunta-
rily provide a secondary, co-occurring affective state they experienced. Of 99 novice 
computer programming students, 46 students had at least 10 secondary affect ratings 
and provided usable distributions to analyze co-occurring affective states. 
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3 Results and Discussion 

The most commonly occurring affective states (Anxiety, Boredom, Confusion, Curiosity, 
Flow/Engagement, and Frustration) were examined for co-occurrence using Lift, an 
association rule learning metric. Lift accounts for the prior probability of each affective 
state when calculating co-occurrence likelihood, and was computed for each student to 
ensure independence of data points. We performed one-sample t-tests comparing the Lift 
values of each co-occurring pair with a test value of 1 (chance). Confusion + Frustration 
(Mean Lift = 1.138, N = 46, p = .123) and Curiosity + Flow/Engagement (Mean Lift = 
1.335, N = 40, p = .038) were the pairs that occurred above chance, through non-
significantly for the Confusion-Frustration pair. 

We then correlated the Lift of the two co-occurring affective state pairs with key 
events from the learning session. Due to the small sample size, we focused on the size 
rather than significance of the correlations and found that Confusion + Frustration did 
not appear to exhibit any meaningful trends. However, Curiosity + Flow/Engagement 
was associated in the expected direction with a higher proportion of Key Press events 
(r = .208), less hint usage (r = -.203), more error-free code (r = .314), and overall 
better performance (r = .226). 

Though a seemingly infrequent phenomenon, co-occurring affect states do exist 
and have some connections to the learning process. Understanding more about the 
complex nature of affective states in learning environments can lead to better affect 
detection and thus better affective awareness in intelligent tutoring systems. Affective 
awareness can in turn can improve the efficacy of teaching in a world where 
computers play the role of teacher more and more frequently. 
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Abstract. We developed a new learning environment that targets beginners and 
aims at producing mastery of capabilities for observing body proportions and 
drawing the human body precisely. The learning environment has functions that 
create awareness of bones in a motif, and that then evaluate bones and contours 
shown in the human body sketches. 

Keywords: Skill, Sketch, Drawing, Learning environment, Recognition. 

1 Introduction 

Various tools and software have been produced to support drawing of pictures and 
dia-grams on a virtual plane in computers. For example, Bill Baxter et al. have devel-
oped a system to draw pictures on a virtual canvas by operating a paintbrush in virtual 
space1). It uses a force feedback display device, a Phantom, as the interface and oper-
ates a stylus pen as the paintbrush1). However, the system provides only tools suffi-
cient for drawing pictures within a virtual space and does not support learning for 
drawing skill. 

We have built several learning support systems for sketching to date2-3). However, 
the motif of the systems was still objects such as a glass and a plate. In the system, 
circumscribed rectangles of the motif were drawn first to catch the rough shape of the 
motif. In the precedent research4), however, objects to be drawn were changed from 
still objects to moving human beings. The present study succeeds the precedent re-
search and rebuilds the learning support environment of drawing the human body. 
This study is intended to overcome the shortcomings of earlier studies and to develop 
a new learning support environment for high-precision human body drawing. The 
learning support environment for human body drawing to be built in this study is 
intended for beginners who never learned human body drawing. Our performance 
target is intended to induce learners to ascertain the proportions of a human body 
model and draw a human body based on those proportions. In addition, this study 
devotes no attention to shadow. Therefore, our system is not a learning support  
system for drawing shadows. 
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2 Proposed Method 

We have built a new system including the following elements to alleviate the short-
comings of our earlier system. The new system supported function to change compo-
sition, bone diagnosis of entire body drawing, and diagnosis of contour drawing 

2.1 Flow chart 

We might separate our system into three phases of actions, as shown in Figure 1: first 
is the composition decision phase; second is the bone drawing phase; and third is the 
contour drawing phase. 

    

Fig. 1. Left: Flow chart, Right: Contours produced using a handwriting input system 

2.2 System Configuration 

Our system is so-called application software and uses one set of PCs. The set includes 
a pen tablet for learner's information input for handwriting. It is an Intuos4 system 
from WACOM. 

Information Input for Handwriting.  
A learner of our system performs information input for handwriting, making use of a 
pen tablet. They might simply draw a human body on the paper set on the tablet with 
the attached pen with a pencil lead (graphite). This remodeling enables learners to 
send handwriting information input to a computer through the tablet when they draw a 
human body using a pen. The right picture of Figure 1 shows the contours displayed 
on the system screen produced from handwriting information of human body  
drawing. 

3 Learning Support System for Sketching Human Body 

Learners exercise drawing guided by the display on the system screen. The system 
screen resembles the left picture of Figure 2. Learners work in separate three phases 
of actions in our system. Details of the three phases are described below. 
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Fig. 2. Left: System screen, Right: Examples of the human body model used 

3.1 Phase of Drawing Composition 

The composition is determined by the direction and posture of the object to be drawn. 
We prepare several 3DCG models of naked human bodies which have different post-
ures, which might be directed freely (Right picture of Fig. 2).  

Determining the composition fixes the bones and contours of a human body model. 
Correct information is generated at this point of phases for use in later phases. 

3.2 Phase of Drawing Bones 

We inserted the phase of drawing bones in sketching human body in our research 
based on a textbook5). The system diagnoses bones of the entire body drawn. The left 
picture of figure 3 portrays bones of the diagnosed human body. 

Learners draw bones on the paper while referring to the example displayed on the 
system screen. They might switch between display and non-display of the example on 
screen as they wish. To diagnose bones of the drawn human body, the learner inputs 
positional information related to joints and ends of bone by pointing at them (totally 
15 places) on the paper on the tablet using the attached pen. The system shows bones 
of human body superimposed on bones of the example (Right picture of Fig. 3).  

 

                   

Fig. 3. Left: Bones of a model human body, Right: Screen displaying bones of the drawn  
human body 

 



 Development of a Learning Environment for Human Body Drawing 643 

         

Fig. 4. Left: Characteristic points to generate contours of the human body model, Right: Screen 
shot displaying human body sketching 

3.3 Phase of Drawing Contours 

After learners’ master bone drawing, they proceed to the phase of contour drawing to 
practice those associated skills. 

Although the bone drawing is diagnosed after one set of drawings, the diagnosis of 
the contour drawing is done in real time. On completion of a contour drawing on the 
paper, it is displayed on the system screen. Then the system judges whether that con-
tour is drawn based on a corresponding contour of the human body model. A learner's 
contour drawing is shown on the screen in four colors. Learners can judge their own 
performance from the colors (Right picture of Fig. 4). 

4 Concluding Remarks 

For this study, we built a learning support system for sketching a human body. Our 
system diagnoses bones and contours of human body drawn by the learner. We wish 
to add an advising function to our system in our future development. 
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Abstract. In Intelligent Tutoring Systems, continuous analysis of learner’s 
brain states is essential. Several studies have proposed different methods to 
evaluate learner’s mental states in cognitive tasks. However, these studies do 
not take into account the nature of the cognitive task. In this paper, we have de-
veloped various categories of brain games in order to study the variation of 
some specific brain states (engagement, workload and distraction) depending on 
the type and difficulty of the game. The preliminary results showed a close rela-
tionship between the category of game, the workload mental state and learner’s 
performance.  
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1 Introduction 

In Intelligent Tutoring Systems (ITS) recognition of user brain states and cognitive 
status remains of great importance. To detect and assess users’ alertness several stud-
ies have been undertaken in the field of artificial intelligence, human computer inter-
action, cognition and neuroscience [2, 3, 5]. The major part of these systems was 
based on two fundamental mental metrics, namely, mental workload and mental en-
gagement. Mental workload can be seen as the mental effort and energy invested in 
terms of human information processing during a particular task. Mental engagement 
is related to the level of mental vigilance and alertness during the task. The loss or 
diminution of engagement is considered as a distraction [4]. 

In this paper we aim to study the behavior and the evolution of these brain states 
through their EEG signals [1] depending on the category and difficulty of task pre-
sented to the learner. Thus, we developed three categories of brain games (memoriza-
tion, concentration and reasoning) and assessed their variation among learners. 

2 Experiment and Results 

In order to study the behavior of the brain in different cognitive games and track the 
impact of games’ category on different player’s brain states, we conducted an experi-
ment with 20 participants (mean age=28, SD=4.67) from Montreal University. This 
study consists of 3 steps: (1) Initially, we installed the B-Alert X10 headset on the 
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participant, (2) The participant is invited to do three tasks of baseline to establish a 
classification of brain state, and (3) finally, the participant is invited to play some 
brain games which are grouped into three main categories (memorization, concentra-
tion and reasoning). During all the experiment, EEG was recorded from 9 sensors 
integrated into a Wi-Fi cap, with a linked-mastoid reference. The sensors are placed 
according the 10-20 system. The EEG was sampled at a rate of 256 Hz, converted to 
PSD and processed by the B-Alert software. Thus, three brain states (Workload, En-
gagement and Distraction) were extracted and analyzed for this study.  

An important result obtained from statistical analysis showed that workload  
and engagement states depend on the game category. This result is assumed after 
conducting three one way ANOVA tests (see table 1). 

Table 1. Relationship between brain states and game category 

Brain States Results of ANOVA 
  F p 
Workload 3.32 0.04* 
Engagement 18.33 0.000* 
Distraction 0.56 0.57   

This result is very consistent since learner’s concentration and mental activity in-
crease according to the nature of proposed task; more the nature or category of the 
task is interesting, more he is engaged on the task and he reasons. 

Another result confirmed that the workload only depends on the game difficulty 
(One Way ANOVA: F(2,224)=0.64, p=0.04*). However, no significant results were 
found for the engagement and distraction states.  

3 Conclusion 

In this paper, we have assessed the variation of three brain states (Engagement, Work-
load and distraction) obtained from EEG signal processing depending on the category 
and difficulty of game. We have successfully shown that Workload and Engagement 
states depend significantly on the category of game unlike distraction. Moreover, only 
the Workload state depends on the difficulty of game.   

These results are important from an educative perspective because we should think 
more in terms of learner cerebral abilities according to the category of task in a  
game design. More precisely, we think to adapt the tutor’s module, in intelligent tu-
toring systems, according to learner’s cerebral states evolution and category of task  
presented to the learner. 
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Abstract. The intelligent tutoring system field is concerned with ways of per-
sonalizing to the student. Wang and Heffernan introduced the Student Skill 
model and showed that it was reliably better than the Knowledge Tracing (KT) 
model in predictive accuracies. One limitation of their work is that they only 
investigated one particular way of personalizing, which individualizes all four 
KT parameters simultaneously. But it may be better if we just use some of the 
parameters to personalize the model. More generally, we want to address the re-
search question: What are the most important features to personalize? In this 
work, we systematically explored all 16 possible ways of incorporating student 
features into the model. We found that prior and slip are the two most important 
features to individualize, and the best model is the one with all four parameters 
individualized. Additionally, the one parameter that can be dropped without any 
hurt to performance is guess. 

Keywords: Knowledge Tracing, Bayesian Networks, prediction, personaliza-
tion, Intelligent Tutoring System. 

1 Introduction 

The traditional way of modeling student knowledge is Corbett and Anderson’s Know-
ledge Tracing (KT) model [1]. Wang and Heffernan introduced the Student Skill (SS) 
model [5] and showed that it was reliably better than the KT model in predictive accu-
racies. The goal of our experiment is to search for the best structures of the SS model 
by trying all 16 possible ways of incorporating student features. The dataset we used 
came from the 2009-2010 school year of ASSISTments, containing 1775 distinct 
students, 123 distinct skills and 695,732 data points. The code and data used in the 
experiments are available online [6]. 

2 Methodology and Discussion 

In this paper, we investigated the research question: which of the four features: slip, 
guess, prior, or learn rate of student are most important to individualize in a Bayesian 
Knowledge Tracing framework. We extended Wang and Heffernan’s work by explor-
ing more structures of the SS model and searched for the best combination of indivi-
dualization features.  
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Two major observations were made from the experiments. First, the results showed 
that if we individualize only one feature for student, the most valuable feature would 
be slip or prior. It is not surprising that prior is an important feature to individualize 
since students’ prior knowledge differs greatly. Since slip represents the probability of 
a wrong answer given the student knows the skill, the fact that individualizing slip 
makes the greatest difference suggests teachers or tutoring systems may need to pay 
attention to the students with large slip rates to check if they lose interest after master-
ing a skill or if they are still confused with some aspects of the skill while already 
mastered the major part of it, and take different actions accordingly.  

Second, the single best model is the one with all four parameters personalized for 
student, but is not reliably different than the one without student guess. This result 
indicates that if we don’t want to individualize all four parameters due to efficiency or 
data amount, guess rate could be the first feature to consider removing.  

This paper investigated a new research question. No one in the ITS field has 
looked at what parameters to best individualize but this opens up a whole new idea. 
Our finding that prior and slip are more important to individualize is a novel contribu-
tion. But we did not answer the question, why is this so? What is it about prior and 
slip that gives this extra boost in precision?  This raises a new question about what 
might be better ways to individualize. 
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Abstract. It is suggested that most learning technologies used in higher educa-
tion reinforce what is known as the banking concept of education. Teachers and 
designers often give too much importance to results and content delivery. We 
explore the role of learning technologies to promote students’ meaningful learn-
ing, critical thinking and collaboration, as well as teacher’s awareness and  
orchestration. Our approach aims to bridge the gap between principles of peda-
gogy, student modelling, modest computing and usability. We will show the 
applicability of our approach as a learning ecology including in three scenarios: 
face-to-face, remote, and mobile learning environments.  

Keywords: Design ·Modest computing ·Learning ecology ·Banking education. 

1 Introduction  

It has been posed that most learning technologies used in higher education courses 
reinforce what is known as the banking model of education [2]. This term was  
first used by Freire [3] to describe the type of teacher-student relationship where the 
former attempts to deposit content into the latter. Students are receivers of informa-
tion rather than critical thinkers [3]. Teachers and designers of learning technologies, 
often inadvertently, give more importance to the results and the content rather  
than the process of meaningful learning [6]. We propose the development of a learn-
ing ecology to promote students’ meaningful learning, critical thinking and collabora-
tion, as well as to enhance teacher’s awareness and orchestration [1]. We refer  
to learning ecology as the series of technologies, practices and other contextual fac-
tors underpinning student’s learning opportunities distributed across multiple spaces. 
Our research aims to show how the particular affordances of learning technologies 
can be exploited by teachers and designers to define and enact learning tasks that 
address the banking model of education by promoting collaboration, dialogue and  
problem-solving skills. 
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2 Proposed Approach and Work in Progress 

Figure 1 shows the main elements of our approach. The first element is the Theoreti-
cal Layer. This includes the pedagogy and learning theories we ground upon. For 
example, we ground on Freire’s ideas [3] that propose ways to tackle banking educa-
tion through teacher-student dialogue and problem-posing collaborative activities. 
Various tools that afford these activities have been presented in the ITS/AIED com-
munity. This approach is closely related to other well established principles such as 
the promotion of meaningful learning (e.g. Novak’s concept maps) and constructiv-
ism [6]. Our second layer aims to bring those theories to practice, into real learning 
settings. This includes the metaphor of orchestration [1]. This is an usability approach 
that highlights the role of the teacher and technology in terms of coordination and 
awareness. In addition, we aim to align to the idea of modest computing [1]  
which proposes practical ways to exploit the affordances of technology to make them 
useful for teachers and learners, even if complexity of the technical approach is 
minimal. 

 

 

Fig. 1. Our three layered approach: educational theory, orchestration and technologies 

Finally, we aim to integrate the Technology-Social context layer with the theories, 
including the use of intelligent tools (e.g. as suggested by McCalla [5]; data mining, 
automated alarms and learner models), or even simpler approaches such as student’s 
data visualisations and teacher’s dashboards (modest computing) [4] that can  
provide enough support to help teachers and students enhance their dialogical  
relationship. These tools complement a number of emerging technologies that are 
currently being used for teaching and learning in ubiquitous (e.g. mobile computing), 
pervasive (e.g. tabletops and interactive whiteboards) and remote (internet-based) 
environments.  

The work will explore the applicability of our approach as a learning ecology in, 
but not limited to, three potential scenarios: a face-to-face pervasive setting for small-
group problem-posing activities [4]; an open learning system for remote collaboration 
and a mobile ubiquitous environment. From the teacher’s perspective our work seeks 
out to provide them with dashboards that help them orchestrate the technology, moni-
tor student’s progress and receive automated alarms of student’s inactivity. 

Theoretical layer
Technological-

Theoretical layer Technology - Social context layer

Freire’s Pedagogy [3]

Meaningful Learning [6]

Problem-posing Learning
Constructivism
Collaborative Learning

Classroom orchestration [1]

Modest computing
Usability 

Mobile computing (ubiquitous)

Pervasive computing (IWB’s ,tabletops)

Intelligent support (learner models, data 
mining, alarms) [5]
Awareness tools (visualisations, dashboards, 
OLM’s) [4]

The banking model of education appears to be reinforced by the 
current use of some learning technologies [2]. 

The Problem

PRAXISTHEORY

Ecological Approach
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Abstract. Negotiation mechanism used in the current implementations
of Open Learner Models is mostly positional based and provides minimal
support for learners to understand why their beliefs contradict with that
of the system. This study aims at proposing a new paradigm of learn-
ing that uses negotiation coupled with targeted responses to motivate a
learner and enhance their metacognitive skills along with their cognitive
skills.

Keywords: Negotiation, Metacognition, negotiation-driven learning,
inter-est-based negotiation, learner motivation.

1 Introduction

In recent years much research has been done in the field of Intelligent Tutoring
Systems (ITS) to support and promote independent, self-regulated learning. Open
LearnerModels (OLMs) aim at enhancing both cognitive and metacognitive skills
of a learner through guided content, externalization, scaffolding and negotiation.
However, negotiation has been underutilized in the current implementations of
OLMs. Negotiating or debating with others allows us to identify alternative per-
spectives [1]. According to the Constructivist Learning Theory “learning is a pro-
cess of construction of knowledge through dialogues”[1]. Therefore in this study
we propose the paradigm of Negotiation-Driven Learning (NDL) with the aspira-
tion to enhance the role of negotiation as a problem-understanding technique and
use it to promote metacognitive activity and enhance learning.

2 Background

The negotiation aspect of the current implementations of OLMs is aimed at
solving the problem of the conflict between the learner’s beliefs and that of
the system [2]. OLMs rely upon the externalization of a learner’s knowledge
to promote metacognitive skills, while negotiation is generally related with the
occurrence and resolution of conflict. Position-Based Negotiation (PBN) is em-
ployed to resolve these conflicts, however this approach confines the scope of
negotiation as more of a “problem solving” technique rather than a “problem
understanding” technique [3].
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3 Negotiation Driven Learning

Fig. 1. Proposed Interest-Based Auto-
mated Negotiation Agent

NDL aims at exploiting the benefits
of Interest-Based Negotiation (IBN)
[1], which aims at exploring underly-
ing interests of the parties rather than
their negotiating positions. IBN plays
a vital role in NDL, since in NDL
we are concerned with motivating the
learner by trying to understand their
reason for holding a particular belief,
which in turn can help identify why
such beliefs are held and how can a
learner be persuaded to change them.
The proposed system would gener-
ate a Behavioral Model (BM) of the
learner as they interact with the sys-
tem. The BM will include information
about the interactions of the learner with the system; their interest in their re-
spective LM, their enthusiasm in discussing their LM, their help-seeking pattern
and their confidence in their abilities. The behavioral model will be continuously
updated through the Session Manager (SM) which would record interactions of
the learner with the system in real-time. Once the baseline BM of the learner
is generated it will be used by the Automated Negotiation Agent (ANA) to
understand the motivational state the learner is in and use this information to
select the best suited negotiation strategy from the Plan Base (PB) to maximize
learning.

4 Conclusion

Negotiation provides an excellent opportunity to challenge the learners and pro-
mote metacognitive skills by motivating them to think more objectively about
their learning. Although the research on NDL is in its early stages, we believe
that the paradigm of NDL holds great potential as it opens up new perspec-
tives of learning by using automated IBN to challenge and intrinsically motivate
learners through discussions.
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Abstract. We present a new ITS system called SCALE (Student Centered 
Adaptive Learning Engine), which is focused on improving learning outcomes 
by using data collected from existing and emerging educational technology sys-
tems combined with machine learning techniques to automatically generate 
adaptive capabilities. This allows for the creation of intelligent tutoring systems 
in a less costly fashion in terms of time and effort. SCALE uses data logs col-
lected from an existing educational technology system to create the initial adap-
tivity and then improves over time as additional data is added or with the help 
of human input. This paper describes two main adaptive capabilities of problem 
selection and hint generation. 

In this research, we present a system called SCALE (Student Centered Adaptive 
Learning Engine), which has been designed to greatly reduce the high cost of adaptive 
learning by implementing methods of deriving intelligent tutoring capabilities from 
collected student data. A key differentiator of SCALE from existing intelligent tutor-
ing systems is that it improves over time with additional data and/or with the help of 
human input. SCALE employs a ‘human-centered, data driven’ approach to discover 
or improve the underlying models that drive learning. Unlike a pure machine learning 
solution, SCALE is able to report to the developers exactly why the system behaves 
as it does and allows for human input to maximize improvements through refinement 
over time. By using existing large datasets previously collected from existing educa-
tional technologies, we have tested and validated the techniques used in the system. 

While intelligent tutoring systems have delivered significantly better results com-
pared to non-adaptive software, their use has been limited due to the difficulty and 
cost of creating the adaptive content. Most tutors rely on “student models” that are 
time consuming to create and require experts to understand the subject material and 
comprehend the underlying processes used to provide help and feedback. We stream-
line this work by building initial models using data collected from students solving 
problems with the intent to enhance the development of ITSs. Previous work in the 
automatic discovery of student models [4] and automated hint generation [1,5] lay the 
foundation of the system. SCALE features functionality that includes generating stu-
dent models that build and organize themselves and improve over time as more data is 
collected, and dynamically selecting the students’ next problems to maximize student 
learning and minimize time needed to master a set of skills. SCALE also provides 
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hints and feedback on multi-step problems, and utilizes a “feedback loop” to provide 
continuous improvement of the features over time as more data is collected.  

The Knowledge Tracing and problem selection mechanisms use past research on 
knowledge component (KC) modeling like that used in DataShop [3]. The hint and 
feedback mechanism utilize past research with the Hint Factory [1], which is a novel 
method of automatically generating context specific, just-in-time (JIT) hints for stu-
dents solving multi-step problems [1]. The method is designed to be as specific as 
possible, derived on-demand, and directed to the student’s problem-solving goal, to 
provide the right type of help at the right time.  

We have demonstrated the ability to use data collected from educational technolo-
gies to automatically generate adaptive capabilities. The main contribution of this 
work is to demonstrate the design of the SCALE system to provide problem selection 
and knowledge tracing, as well as providing just in time hints and feedback. While 
previous efforts have demonstrated these abilities individually, SCALE represents the 
first complete commercial viable solution for a complete ITS generated with data.  

In the future, SCALE will provide tools that let instructors and developers explore 
the data using meaningful visualizations that will provide insights into student learn-
ing that builds off additional previous research in improving student models [2]. Often 
this means identifying areas where the existing models seem to contradict the data 
collected. Built around the concept of curating data, these tools can also prompt de-
velopers, educators, and users of the educational software for more human input in 
order to improve the underlying models that the system generates.  
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Abstract. In this paper we study 2217 essays written during ITS-based physics 
tutoring. Using output from the Stanford parser, we calculate various simple 
and more complex linguistic features, including average sentence length, tree 
height and number of subordinate clauses. Using the WEKA J48 implementa-
tion of the C4.5 algorithm and other statistics, we attempt to find relationships 
between linguistic features, the complexity of the students’ text, students’ 
scores on a physics posttest and their learning gain from the tutoring sessions.  
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1 Introduction 

This paper describes an initial attempt to identify relationships between the linguistic 
complexity of students’ writing about physics word problems and their physics skill. 

We examined the following questions: 

Question 1: Since students wrote multiple versions of each essay with tutoring in 
between, was there a significant difference in essay complexity between initial and 
final essays? 

Question 2: How does essay locale (first/medial/last) affect essay complexity? 
Question 3: How does linguistic complexity affect learning? 
Question 4: Do other features affect essay complexity? 

Our study uses a set of 2217 student essays, along with the pretest and posttest scores 
for these students. We used the Stanford Parser1 to parse the files. We then used the 
C4.5 algorithm [1], implemented in WEKA2 as J48, to test our hypotheses. 

2 Methods 

The data used in this study were originally collected for testing ITSPOKE [2], a spo-
ken dialogue ITS that uses the facilities of the text-based Why2-Atlas physics ITS [3]. 
                                                           
1 http://nlp.stanford.edu/software/lex-parser.shtml 
2 http://www.cs.waikato.ac.nz/ml/weka/ 
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In the ITSPOKE system, a student is given a qualitative problem in elementary col-
lege physics. The student responds with an essay answer, then is coached using tutori-
al dialogue to improve the answer until it is judged acceptable. In general, students 
revised their essays by adding a missing concept or revising an incorrect one. 

Each student did about five problems from a set of 11, with a pretest before the 
first problem and a posttest after the last. There were 91 students who did a total of 
495 problems. The students wrote a total of 2217 essays, or about 4.5 essays per  
problem. There were a total of 14524 sentences, or about 6.5 sentences per essay. 

To reduce the frequency of erroneous parses, we engaged in several forms of data 
cleaning. The most important was spelling correction, which reduced the unique word 
count from the 2217 essays (247192 words) from about 2000 words to 1471. In one 
extreme case, there were 27 wrong spellings for acceleration, totaling 130 instances. 

This study involved 16 features, including three measures of essay complexity. 

1. Experiment type. Sessions could have a human tutor, a synthesized voice, or a 
response built from prerecorded snippets of human voices. 

2. Essay locale. Students wrote between one and 16 essays per problem. We coded 
essays as the student’s first, middle or last attempt. 

3–6. Part of speech counts. We counted nouns, verbs, adverbs and prepositions per 
essay. All counts were normalized by dividing by the number of words in the essay. 

7–10. Constituent counts. We also counted the number of noun phrases, adjective 
phrases, adverb phrases, and prepositional phrases, normalized by essay length. 

11–13. Measures of linguistic complexity. We used four measures of linguistic 
complexity. As in the Flesch readability formula [4], we used the number of words 
per sentence as a simple measure of writing complexity. This number was calculated 
at the essay level, i.e., total words in the essay divided by the number of sentences. 
Since the height of the parse tree is a rough measure of the amount of subordination in 
a sentence, we used the average height of the parse trees in a student essay as a 
second measure. The third measure was the average number of subordinate clauses 
per essay, implemented as the number of SBARs generated by the Stanford parser. 

14–16. Student educational data – pretest score, posttest score and learning gain. 
Pretest and posttest scores were available at the student level, i.e., students took the 
pretest before their first problem and the posttest after their last. Pretest and posttest 
scores are expressed as the percent of correct answers. Per convention, the normalized 
learning gain was defined as the student’s improvement with respect to questions 
missed on the pretest, i.e., (posttest - pretest)/(1 - pretest). 

3 Results 

We used the two-tailed paired t-test to determine whether final student essays were 
significantly longer than the corresponding initial essays. After deleting problems 
where students only wrote one essay, there were 482 essays. The average lengths 
were significantly different, averaging 53 words for the initial essays and 129 for the 
final essays. The value t = -22.38 (df = 481) is significant at the p < .001 level. 
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More importantly, we used the two-tailed paired t-test to determine whether final 
student essays contained a larger percentage of SBARs than the corresponding initial 
essays. We obtained t = 2.97 (df = 481), which is significant at the p  < .01 level. Thus 
students did write more complex essays after being tutored. The other measures of 
complexity performed equivalently. 

Table 1 shows the results for questions 2–4. For question 2, we used J48 to inquire 
to what extent essay locale (initial, medial or final) predicted whether the given meas-
ures of essay complexity were greater or less than the median. 

Question 3 is at the student level rather than at the essay level. To compare against 
student-level measures of learning, we rolled up essay-level linguistic measures to the 
student level. Student average sentence length for initial (resp. final) essays equals the 
total number of words in all of the student’s initial essays divided by the total number 
of sentences in those essays. Similarly, student average SBAR percent equals the total 
SBARs in any of the student’s initial (resp. final) essays divided by their total words. 

Question 4 asks whether we can identify any of the causes of complexity. We 
tested all 216 combinations of the 16 basic features. The last two lines of Table 1 show 
two typical results, i.e., whether experiment type or essay locale can predict whether 
the percent of SBARs (compared to total words) is greater or less than the median. As 
the reader can see, the accuracy is similar to the previous experiments. 

Table 1. Results for Questions 2–4 

Ques. Input Output Accuracy 
    2 
     

     

  Essay locale   Avg tree height     61.89% 
  Essay locale   Avg sentence length     50.07% 
  Essay locale   Avg SBARs/sent.     50.29% 

    3 
     
     

     

  Student average sentence
  length for initial essays 

  Pretest score     50.40% 
  Posttest score     51.01% 
  Learning gain     50.20% 

  Student average SBAR %
  for initial essays 

  Pretest score     50.40% 
  Posttest score     53.44% 
  Learning gain     50.20% 

  Student average sentence
  length for final essays 

  Posttest score     52.41% 
  Learning gain     56.29% 

  Student average SBAR %
  for final essays 

  Posttest score     53.43% 
  Learning gain     50.05% 

    4 
     

  Experiment type   % of SBAR words     57.56 % 
  Essay locale   % of SBAR words     52.50 % 

4 Conclusions and Related Work 

In this paper we used several measures of linguistic complexity to compare the com-
plexity of student essays in a physics ITS with experimental measures, such as the 
location of the essay in a series, and learning measures, such as the students’ posttest 
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scores and learning gains. Although Student’s t showed a significant relationship 
between essay locale (first or last essay of a series) and essay complexity, as meas-
ured by the percent of subordinate clauses, most relationships between features were 
not significant. 

In addition to average sentence length, Flesch’s Reading Ease formula [4] uses av-
erage syllable count. Litman et al. [5] uses statistics derived from counting student 
and tutor words, including total words, words per turn, and the ratio between students 
and tutor words. Lipschultz et al. [6] uses the percent of domain-related words in the 
student’s utterance. Coh-Metrix [7] calculates a large number of features, including 
parts of speech and word frequency statistics, in order to measure cohesion. Connec-
tives and logical operators are two simple linguistic categories that are significant for 
measuring cohesion. To the best of our knowledge, none of these authors uses com-
plexity metrics derived from syntactic parse trees. We are currently adding some of 
these measures to our study to see if they improve the accuracy level. 

Acknowledgements. We thank Diane Litman for the use of the ITSPOKE data. The 
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Computer technologies may present some potential advantages not present in human 
instructors. There are currently many effective tutoring systems that have been 
created. The program chosen for the current evaluation was the Assessment and 
LEarning in Knowledge Spaces (ALEKS). It uses adaptive programming to best serve 
the learner’s needs in learning mathematics. This program has been shown to be as 
effective as other mathematics tutoring systems in direct tests [1]. On average, It has 
been observed that students improved their performance on researcher-conducted 
tests, standardized state tests, and national tests. Teacher feedback has indicated that 
ALEKS is a successful training program, noting that students have shown increased 
math skill, confidence, and retention. In a randomized trial, students were assigned to 
a technology guided condition using ALEKS or a teacher guided condition received 
traditional style instruction from human teachers. It was found that the program 
overall outperformed non program performance on standardized tests the two 
conditions did not differ from each other [2].  

The ALEKS system is an open system in which the student has some control over 
the learning process. This freedom can be seen as a benefit increasing students control 
and persistence in the learning process. However, a student’s implicit beliefs about 
learning could provide an obstacle to learning with this type of technology [3]. Dweck 
and her colleagues [4] studied young children’s beliefs about the flexibility of their 
intelligence can have a direct impact on their learning strategies.  

We investigated the impact of student’s beliefs on learning within the ALEKS 
tutoring system to see if different behaviors and outcomes from the system were 
observed. Because the ALEKS system always provides students with problems that 
are a challenge to them, Dweck’s findings would predict that students that have fixed 
learning beliefs would attempt fewer problems than students with a flexible view of 
learning. Similarly, students with a flexible view would be more persistence and show 
better performance within ALEKS. 

The current study was run as an after school program meeting two days per week for 
25 week duration. Sixth graders that volunteer for the program interacted with the 
intelligent tutoring system, ALEKS, in three 20 minute blocks each day and receive two 
20- minute breaks (a snack break and a game break) between the learning sessions. The 
current paper focuses on the data from students in year three of the program that 
completed the Epistemological belief scale. This sample consisted of n = 69 students.  
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The metrics used in this study were topics attempted, topics mastered, TCAP 
pretest and the Epistemological belief scale. The topics attempted and topics mastered 
metrics were collected by the ALEKS system during the course of the 25 week 
program. The scores of student’s 5th grade Tennessee Comprehensive Assessment 
Program (TCAP) were used to assess pre-program mathematics knowledge. Students 
also completed the subsection of the Epistemological belief scale associated with 
views on fixed learning. This subscale consisted of 10 likert-scaled questions from 
strongly agree to strongly disagree. This scale was validated for use with middle 
school students in mathematics [3]. From this test, students were categorized as either 
having a fixed learning point of view (n=9) or a flexible learning viewpoint (n=60). 

A t-test performed on the students 5th grade TCAP indicated not a significant 
difference between groups on pretest knowledge. However, students with a more 
flexible view of learning (M=45.38) did perform slightly better than those a fixed 
view of learning (M=37.00). 

A t-test performed on the number of topics attempted by students during the 
program indicated that there was a significant difference between groups (t(67) = 
2.10, p < .05) with students with a more flexible view of learning attempting more 
problems (M = 207.70(130.92) versus M=112.44(89.81)).  

A t-test performed on the number of topics mastered by students during the 
program found a significant difference between groups (t(67) = 2.46, p < .05) with 
students with a more flexible view of learning showing mastery of more problems (M 
= 87.17(60.99) versus M=52.89(34.57)).  

Our current study found evidence that a student’s beliefs about learning can have an 
impact on both how much a student will try and now much the student will learning 
when working with educational technology. In that, students that view learning as fixed, 
will not try as hard within the systems. However, flexible learners show more 
persistence by attempting more problems than those with a fixed view. It would appear 
that this persistence also enables students to master more of the material. 
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Abstract. We designed and implemented the ISCARE tutor which enables 
competition one against one solving a collection of exercises in a limited 
amount of time, with a double adaptation: adaptation of matches so that 
students with similar knowledge levels are paired; and adaptation of exercises. 
This study proves that a competition system with the characteristics of ISCARE 
can be an effective tool for learning, producing important learning gains during 
the learning process. 
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1 Introduction 

We designed and implemented a new competition system. More details about this 
design are in [1] and [2]. This new tutoring system was called ISCARE (Information 
System for Competition based on pRoblem Solving in Education) which is based on 
exercise solving. ISCARE incorporates features to try to motivate students (e.g. 
matches one against one, adaptive challenges in different rounds with classmates who 
are close in knowledge, real time visualization of the opponent’s exercise progress, or 
leaderboards) and to reduce negative emotions (e.g. adaptation of matches or a 
reduction of the score difference between winners and losers). In [3], we showed that 
the ISCARE system can motivate students without generating negative emotions. This 
paper aims at analyzing if the ISCARE competition system can bring learning. 

2 The Experiment  

During two different course editions, students interacted with the ISCARE system 
during a class session at a Computer Architecture Laboratory course. A total of 25 
students were considered in the 2013 edition (with adaptation of exercises enabled in 
ISCARE), and 32 in the 2012 edition (without adaptation). The total number of 
rounds was set to 4, so each student competed against 4 different classmates. In 
addition, there were 12 exercises per round with a limited time of 10 minutes. Before 
the interaction with the competition tutor, students did a pre-test, next interacted for 
60 minutes with ISCARE, and next did the post-test. The pre-test and post-test lasted 
for about 10 minutes each one. 
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3 Results 

There are different metrics for learning gains in the literature. We followed the one 
proposed in [4], i.e. LG1=(post_test – pre_test)/(1 – pre_test), for students who got a 
post-test grade greater than his/her pre-test grade. For students who had a pre-test 
score greater than the post-test one, we applied LG2=(post_test – pre_test)/pre_test. 
Therefore, the learning gain of any students will range within the interval [-1, 1]. 
Considering all students in both course editions (N= 57), learning gains were with 
mean 0.53 and std. deviation 0.46, being the confidence interval at 95% [0.40, 065]. 
Applying a dependent t-test between the post-test and pre-test, there is a statistically 
significant difference in favor of the post-test (t=5.626, p=0.000). 

If the metric applied for calculating the learning gains were the same for all students 
and being LG=(post_test – pre_test)/pre_test , then learning gains would be with mean 
0.29 and std. deviation 0.38, being the confidence interval at 95% [0.19, 0.39]. 

Learning gains were impressively high. This result proves that interactions with a 
competition intelligent tutoring system such as ISCARE were effective and that this 
system improved learning in the presented experience as the pre-test and post-test 
were designed of a similar level of difficulty. Therefore, an ITS such as ISCARE that 
implements competition and other educational features can bring learning. 

Nevertheless, the interpretation of these results should take into account the 
specific context (e.g. difference of about 60 minutes between the pre-test and the post-
test, or the specific topics covered in the experiment).  
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Abstract. This paper presents a semi-supervised machine-learning approach to 
predicting whether students will be successful in solving problem-solving tasks 
within narrative-centered learning environments. Results suggest the approach 
often outperforms standard supervised learning methods. 
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vironments, semi-supervised learning. 

1 Introduction 

Recent years have witnessed growing interest in narrative-centered learning environ-
ments, which tightly integrate interactive narratives, digital games, and the adaptive 
pedagogy of intelligent tutoring systems to generate highly engaging interactive story 
experiences for personalized learning [1]. Because students have considerable auton-
omy in these open-ended environments, it is possible for students to unintentionally 
spend time on problem-solving tasks for which they already have mastery, and inad-
vertently skip problem-solving tasks where they have gaps in knowledge. This paper 
introduces a data-driven method for predicting whether students will successfully 
complete problem-solving tasks based on their prior performance. We leverage self-
training semi-supervised learning as a framework for predicting problem-solving task 
success [2]. We compare this framework to naïve Bayes (NB) and support vector 
machine-based (SVM) classifiers. Results suggest that self-training often provides the 
most accurate predictions. The resulting models show significant promise for  
supporting pedagogical planning in narrative-centered learning environments. 

2 Results and Discussion 

To evaluate the self-training semi-supervised learning approach to predicting prob-
lem-solving performance, we analyze student data from a classroom deployment of 
CRYSTAL ISLAND [1]. During game play, students progressed in solving the problem 
scenario by completing concept matrices based on informational texts they encoun-
tered in the game. In this work, we analyze student data from 10 frequently attempted 
concept matrices (on average, 565 students attempted them). 
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Prediction accuracy rates are compared across self-training semi-supervised learn-
ing, supervised learning, and a baseline using the majority label. The results fall into 
two major categories: (1) the self-training method outperforms the corresponding 
supervised learning technique and baseline, and (2) the baseline performs better than 
both self-training and supervised learning. In the first category, 3 out of the 10 classi-
fications show that self-training using NBs outperforms both the other two approach-
es, and 4 out of the 10 classifications show that self-training using SVMs outperforms 
the other approaches. Table 1 describes pairwise comparisons using one-way repeated 
measures ANOVA for NBs (F(1.13, 32.64) = 74.91, p < 0.001) and SVMs (F(1.01, 
39.55) = 34.98, p < 0.001) for the classifications in this category. Statistical signific-
ance is measured using least significant difference post-hoc tests. The second catego-
ry of observations in which the baseline (M=87.39) performs better than both  
supervised learning (M=84.12) and self-training (M=84.38) consists of relatively easy 
problem-solving tasks in which 87.39% of students successfully solved the tasks. 

Table 1. Average Model Accuracy on Predicting Success of Problem-Solving Tasks in First 
Category. (statistical significance over * baseline and § supervised learning) 

Approach Naïve Bayes Support Vector Machine 

Baseline 68.107 74.880 
Supervised Learning 71.724* 83.338* 
Self-Training 73.182*§ 83.788*§ 

 
We have proposed an approach to predicting problem-solving performance leve-

raging semi-supervised learning. Results suggest that the self-training semi-
supervised learning method can improve predictive models’ accuracy over standard 
supervised learning techniques, and thus support adaptive pedagogical planning in 
narrative-centered learning environments. 
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Abstract. Can a system have the ability to dynamically generate, on
demand, a large number of self-learning and self-assessment exercises in
order to supplement a learning environment in philosophy? We addressed
this issue with our Phi-GYM project with its integrated authoring tool
for tutoring systems in philosophy. Our motivation in designing the au-
thoring tool was to: (1) Find an effective way to semi-automatically gen-
erate a wide range of exercises, and; (2) Provide philosophy teachers
with an easy, autonomous, and collective way to create exercises related
to classical philosophical texts without worrying about any technology.

Keywords: Authoring system; Tutoring system; Exercise generation;
Philosophy; Text reading and comprehension.

1 Introduction

One goal of massive online education is to provide learning for thousands of
students. Rapid and easy design of material that respects proven educational
paradigms in a given field is thus essential to ensure the quality of such courses.
The Quebec government thus undertook to fund technologies that facilitate the
easy production of open, online, self-learning and self-assessment material. Thus
was born the metaphor that inspired the Philosophical Gymnasium1 (Phi-GYM),
which aims to allow practice the intellectual gymnastics needed by Quebec col-
lege2 students, who all have to read and write philosophical texts. The first issue
we addressed and which led to the development of an authoring tool was: How
can a system have the ability to dynamically generate, on demand, a multitude

1 Known in French as ”Le Gymnase Philosophique”.
2 The College level in Quebec stands between the high school (grades 7-12) and
university levels.
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of pedagogically relevant self-learning and self-assessment exercises in order to
supplement philosophys planned learning environment? Our motivations in de-
signing the authoring system were: (1) To find an effective way to continuously
update the learning environment in order to provide a wide range of exercises;
(2) To provide philosophy teachers with an easy, autonomous, and collective way
to pen exercises, allowing them to focus on the exercises philosophical content
and not worry about technology.

There is currently no such an authoring system. The projects originality also
resides in the fact that both the learning (GYM-Tutor) and authoring (GYM-
Author) environment are designed as an integrated one and developed in parallel.
After a review of related work, we focus on the architecture of the GYM-Author
with an emphasis on its semi-automatic generation function and then explain
how the two systems are integrated.

2 Related Work

The beginning of the 2000s saw AIEDi and ITS research communities interested
in authoring systems, and their classification [1-5], as they addressed the problem
of the generation of learning material. Authoring systems do not support the
learning itself; their purpose is to support the creation and generation of learning
materials for the ITS environment, and, often provide means to generate this
learning semi-automatically and even automatically. As highlighted by [6], semi-
automatic generators of exercises combine the advantages of [the automatic and
manual] classes of generators, which is why we chose to design GYM-Author as
semi-automatic exercise generator. We believe these to be the most adaptive,
and they fit one of our primary goals to help teachers in a more efficient way.

3 Design and Architecture Overview

GYM-Author is a web based pedagogy-oriented authoring tool in philosophy,
a domain where much of the learning is made through the reading of classical
texts, often written hundreds and even thousands years ago, and by producing
written texts about these classical texts (either about the texts themselves or
about their content).

GYM-Author provides many roles to teachers; the learning designer role and
the knowledge expert role (Fig. 1). The learning designer is responsible for the
edition of various pedagogical scenarios according to the objectives and the con-
texts of learning. The knowledge expert is responsible for creating contents and
exercises in philosophy following a predefined pedagogical scenario constrained
by the types of questions offered: Multiple choice questions, Tagging, Cloze test
and brief answer. The knowledge expert can edit the domain knowledge in or-
der to categorize the didactic material. For instance, the philosophical notions
can be organized according to the author of the philosophical text, the period
of text, etc. GYM-Author, provides a predefined scenario, which is a structure
of learning modules, activities, and exercises based on underlying reading and
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writing strategies. This scenario is only editable by the learning designer while
it is implicit for the knowledge expert. Thus, Gym-author lets the knowledge
expert deal with cognitive aspects (organization of domain knowledge), leaving
the pedagogical aspects (organization of learning objectives and contexts) to
the learning designer. GYM-Authors architecture owns the main tools (exercise
generation, scenario authoring, collective edition and preview) that support the
authoring process, the domain model and the pedagogical model (Fig. 1). GYM-
Author and GYM-Tutors architectures share some components (Fig. 2). Both
share: (1) the same Domain Model populated by philosophical texts, quotes,
notions and related contents; (2) the same Pedagogical Model (pedagogical sce-
nario, hints) but they use different parts of it when needed. While GYM-Author
owns an Author Model (profile, scenario building rights, collaboration rights),
GYM-Tutor has a Learner Model (profile, progression, performance, philosophi-
cal text annotated). The core of GYM-Author is an Exercise generator tool and
Pedagogical scenario-authoring tool. The core of GYM-Tutor is to be done; its
the inference engine that proceeds to the cognitive diagnostic task based on the
Learner Model.

Fig. 1. GYM-Author architecture Fig. 2. Phi-GYM system

4 Usability Evaluation

To improve and validate the design of the Phi-GYM system during its produc-
tion, we have adopted a participatory design approach, based on short iterative
cycles of design and development with evaluations. The expert in ergonomics
intervened for evaluation by inspection then we conducted scenario-based qual-
itative tests with eight potential end-users. The data analysis has shown that
several aspects which seem obvious to us were not for users on their first try
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(I dont know where to go, I cant find any instruction that help me, This text
doesnt seem important to me so I skip it) but the system appears to be well-
mastered, memorized and pleasant after a full exploration (Its fun to do this
kind of exercises, Finally I find this tool convenient). The user quickly becomes
effective with the system and manages to generate perfectly usable exercises.
These results are already considered in the next iteration and further tests are
planned including with GymTutor.
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Abstract. The Comprehension SEEDING system allows students to respond to 
an open-ended question using tablet computers; the system provides formative 
feedback to teachers to facilitate discussion and encourage students to engage in 
reflective behaviors. Data from a semester-long intervention suggested that few 
students engaged in this reflective process, leading us to question under what 
conditions the reflection process does or will occur. Using logistic regression, 
we investigated different ways the system was used, and what types of usage 
lead to desired, reflective behavior. 

Keywords: data mining, classroom response technology, classroom discussion. 

1 Introduction 

Comprehension SEEDING is a new type of classroom response technology in which a 
teacher poses a discussion question and students reply by typing an answer on a tablet 
computer. After a sufficient number of responses have been received, the system 
automatically clusters the responses (for a description of the system and clustering 
algorithm and other system components, see [1]). Clustering allows teachers to 
quickly evaluate the class’s understanding and use that information to lead a 
productive discussion, which, in turn, should encourage students to reflect on and 
revise their original answer. To facilitate the discussion process, the system includes a 
number of features (e.g., teachers can “pause” students from entering or editing 
responses, teachers can display individual or cluster representatives, etc.)  

Preliminary data from a semester-long pilot study showed that students only revised 
or changed their answers 32% of the time. To raise this rate, we examined the log data 
associated with how students used the system, identifying types of system use that lead 
to the revisions/reflective behavior. We used the Comprehension SEEDING system log 
data to ask: What student and teacher behaviors predicted a statistically significant 
change in likelihood that a student would revise his/her original response?  

Data were collected from 8 sixth grade science teachers (416 students) who used 
the system to ask 414 questions, which generated 8,751 question-response pairs. We 
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first coded answers to determine the type of revision students made to their initial 
response (no change, substantive change, or non-substantive change.) Two raters 
coded 20% of the data and achieved Kappa = 0.81 (p<0.01), 95% CI (0.75, 0.86) 
(characterized as almost perfect agreement [2]). The remainder of the data was coded 
by a single coder. In order to predict whether or not students would revise their 
answer, the following predictors were used:  

• Student variables: teacher, class, pretest score,  
• Experience variables: # of days into the school year, # of times class 

period had previously used SEEDING, # of times teacher had previously 
used SEEDING with sixth grade science classes 

• Question variables: seconds to first response, whether or not the teacher 
displayed a response, and whether or not the teacher paused the question. 

2 Results 

The outcome (dependent variable) focused on three types of revisions: no change 
(68.1% of the responses), non-substantive change (e.g., grammar and spelling 
changes) (5.3% of the responses) and substantive change (26.6% of the responses). 
Because our outcome was categorical, we examined potential predictors using 
multinomial logistic regression. Teacher, number of days into school year, and the 
pretest score, did not predict the likelihood of a student changing his or her answer 
with statistical significance. On the other hand, class, seconds to first response, 
number of times teachers used SEEDING, number of times a class used SEEDING, and 
whether or not the teacher displayed student responses did change the likelihood of a 
student changing his/her response.  Among those predictors, seconds to first response 
mattered statistically, but did not correspond with a meaningful change in student 
behavior. Whether or not a teacher displayed student responses increased the odds of 
a non-substantive (grammar/spelling) change by 61%; however, displaying student 
answers did not predict a change in the likelihood of a substantive revision. The 
number of times the class used SEEDING positively predicted likelihoods to 
substantially change answers; using SEEDING more increased the odds of changing a 
response 13%. Surprisingly, the data show that the number of times teachers used 
SEEDING with their sixth grade science classes actually decreased the likelihood that a 
student would substantially change his/her answer by 9%.  This result is complicated 
by the fact that teachers may have used the system for classes that were not part of the 
study (i.e., non-sixth grade classes) and is an interesting area for future research. 
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Abstract. Learner-centered learning can be defined as an approach to learning 
in which learners choose the topic to study and learning tasks. Because of avail-
able choices, learners can find it difficult to make a decision about which of the 
topics/tasks would be more appropriate for them. Identifying other learners with 
similar characteristics and then considering the tasks that worked well, makes it 
possible to suggest appropriate tasks to a learner.  Based on this concept, we 
introduce a rule-based recommender system that supports learner-centered 
learning and helps learners to select learning tasks that are most suitable for 
them, with the focus on maximizing their learning.  

Keywords: Personalization, Learning Management Systems, Recommender 
System. 

1 Introduction 

Nowadays, recommender systems in e-learning are gaining a lot of attention as these 
systems support learners by providing relevant and personalized information that is 
likely of interest to them. In learner-centered learning, learners can choose the topics 
to learn and tasks to complete. The benefit of such approach is that it motivates learn-
ers and can enhance their performance [1]. When learners make choices about what to 
learn then typically they decide based on their interest and knowledge. However, 
sometimes, learners can find it difficult to choose what to learn. In such cases,  
recommender systems can help making appropriate selections.  

In this paper, we propose a rule-based recommender system that supports learners 
in learner-centered settings where courses have assignments that allow learners to 
select from a number of available learning tasks with different difficulty levels (e.g., 
easy, moderate and challenging). In such assignments, learners can select different 
combinations of tasks (e.g., many easy tasks, a few challenging tasks, etc.). Our pro-
posed system provides recommendations of which learning tasks are most suitable for 
learners, considering the different difficulty levels of the learning tasks. The provided 
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recommendations are based on the learner’s previous performance, the tasks that the 
learner planned to do and the performance of learners with similar characteristics.  
The system has been designed to be integrated in any learning management system. 
The architecture of the proposed recommender system is presented in Fig 1. 

 

Fig. 1.    Architecture of Rule-Based Recommender System  

As shown in Fig. 1, the proposed recommender system consists of four modules:  

• Learner Modelling Module aims at gathering information about the learners’ learn-
ing styles based on the Felder-Silverman learning style model [2], prior know-
ledge, expertise level and performance.  

• Neighborhood Generation Module aims to find learners who share the same cha-
racteristics as a target learner (a learner for whom a recommendation is calculated). 

• Recommendation Generation Module aims to generate suitable recommendations 
for a target learner. These recommendations are generated based on a set of rules 
which are used to rank the appropriateness of difficulty levels and then select the 
appropriate learning tasks. 

• Recommendation Display Module displays recommendations to the learner. 
 
The main benefit of the proposed system is that instead of ratings from learners 
(which are often used in recommender systems), the proposed system uses actual 
performance of other similar learners to identify which tasks worked well for those 
similar learners. In addition, the proposed recommender system uses an advanced 
neighborhood approach to find similar learners. This enables our system to generate 
more suitable recommendations that support learners more effectively, leading to a 
better selection of learning tasks from which learners can benefit most. 
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Abstract. The goal of this research is to improve existing forms of help in tu-
toring systems by using “Buggy” messages, which are a simple text message 
specific to the incorrect answer.  Buggy messages are created from machine 
learned incorrect processes based on the student’s incorrect answer.  A rando-
mized control trial is run in ASSISTments to determine if the buggy messages 
were effective. 

Keywords: Buggy Messages, Randomized Control Trial, Machine Learning. 

1 Introduction 

In many tutoring systems students are often given the option to ask for help. In the 
ASSISTments tutoring system hints are the most common form of help. “Buggy” 
messages are when a message appears on the screen after a student enters a wrong 
answer. They were first introduced in [4] and a history of related research is summa-
rized in [5]. Messages will only appear if the answer given by the student matches a 
predicted wrong answer. Buggy messages are supported but rarely used in  
ASSISTments because it takes too much time to predict and enter all the  
incorrect messages for all possible common wrong answers. The machine learning 
algorithm in this paper can identify most wrong answers and exactly how a student 
derived them by taking advantage of the existing infrastructure and data in ASSIST-
ments. Buggy messages have several advantages over hints such as not giving the 
student the answer and provide more personalized tutoring which address issues  
mentioned in [1-3]. 

2 Machine Learning Process 

The entire machine learning process can be broken down into five main parts. All 
possible solution paths to an incorrect answer are derived, reconstructed, stored, gene-
ralized, and finally chosen. Basically all incorrect solution paths are derived for each 
incorrect answer in a template  Since there can be several ways to reach a single an-
swer the machine learning algorithm uses the template-instance infrastructure in AS-
SISTments to remove ambiguity on which incorrect process a student used and  
generalize the incorrect process across all instances. 
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3 Randomized Control Trial 

The purpose of this study is to see if buggy messages will cause an increase in learn-
ing rate compared to hints.  A randomized control trial was run on the ASSISTments 
intelligent tutoring system.  The control group received hints and the experiment 
group received hints and buggy messages.  Out of all the statistics examined the only 
significance difference was the amount of hints used, with the experimental group 
using fewer hints.  Hints per problem had a significant reduction (p=0.03), with an 
effect size of 0.24, where the group with hints (n=172) used 0.48 hints her problem 
and the group with buggy messages (n=184) used 0.35 hints per problem.  

4 Contributions, Conclusions and Future Work 

The contributions this paper makes are that we propose an algorithm to search and 
discover functions that can predict common wrong answers across problems that are 
generated from the same template.  We think that this algorithm can help ASSIST-
ments and other system that create problems with similar algorithms.  To test to see if 
the bug messages were effective we reported on a study where we showed that al-
though we did not get an increase in student learning, we did show a positive effect in 
decreasing the number of hints that students use.  As future work there needs to be a 
way to create bug messages that are known to be good bug messages, since the ones 
used in the randomized control trial may, or may not, have been good messages. 

Acknowledgement. We acknowledge funding from NSF (#1316736, 1252297, 
1109483, 1031398, and 0742503), ONR's 'STEM Grand Challenges' and IES 
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Abstract. Intelligent tutors have been shown to be almost as effective
as human tutors in supporting learning in many domains. However, the
construction of intelligent tutors can be costly. One way to address this
problem is to use previously collected data to generate models to provide
intelligent feedback to otherwise non-personalized tutors. In this work,
we explore how we can use previously collected data to build models of
student dropout over time; we define dropout as ceasing to interact with
the tutor before the completion of all required tasks. We use survival
analysis, a statistical method of measuring time to event data, to model
how long we can expect students to interact with a tutor. Future work
will explore ways to use these models to to provide personalized feedback,
with the goal of preventing students from dropping out.

1 Introduction

Student dropout, which we are defining as students who quit interacting with
the tutor before completion of all required tasks, can confound study results.
Dropout can be a form of selection bias in the form of attrition bias [6]. The
effects of attrition bias can threaten the internal validity of a study, as well as
harm the studies generalizability if the attrition causes the sample to become
different than the target population [5].

Anderson, Corbett, Koedinger, and Pelletier used mean duration data to com-
pare differences between groups of students with and without intelligent feedback
in the LISP tutor [1]. The authors state that the mean times (for the control
group) are underestimates, as many students in the control (no-feedback group)
did not complete all assignments. In other words, if the control group persisted,
the time they took to complete tasks would have been longer than the observed
durations. Differences in posttest scores could also be partially explained by the
fact that students in control group did not complete the tutor.

In our previous work, we modeled the total time-in-tutor using survival anal-
ysis and found that introduction of automatically generated hints reduced the
time needed to complete the tutor by almost half [3]. For this paper, rather than
focusing on the total time until tutor completion we will focus on the total time
until tutor dropout. We want to know, how long will a student interact with a
tutoring system before dropping out. We also want to explore how we can use
these models of dropout to create new interventions aimed at keeping students
engaged with the tutor until completion.

S. Trausan-Matu et al. (Eds.): ITS 2014, LNCS 8474, pp. 676–678, 2014.
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2 Preliminary Results

Survival analysis is a series of statistical techniques that deal with the modeling
of time to event data [4]. It derived its name from its start within medical liter-
ature. Survival analysis is also known as reliability analysis or duration analysis.
It has been used to model the reliability of parts, measure bird disturbance [2],
as well as to model the activity of Wikipedia editors [9].

We start by first plotting the Kaplan-Meier survival estimator, see figure 1,
which is represented as a series of declining steps which is intended to approach
the true survival function. This plot is useful as a visualization for the overall
differences between the two groups. We perform our preliminary analysis on the
Spring and Fall 2009 Deep Thought logic tutor dataset as analyzed by Stamper,
Eagle, and Barnes [7]. We look specifically at 151 students who stopped using
the tutor before completing all of the questions required for the homework as-
signment. Next, we generate an Accelerated Failure Time (AFT) model which
assumes that the effect of any covariates, is to accelerate the time until dropout
by some constant factor [8]. Application of the AFT model provides us with co-
efficients of the model, the intercept (mean) was μ = 4.20 and the SD (scale) was
σ = 1.44. The median of the survival function, the location where 50% of people
have dropped out of the tutor, is found by eμ = e4.20 = 66.89, meaning that half
of the students had dropped out after about an hour of tutor interactions. We
have plotted the resulting survival curve in figure 1.
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Fig. 1. The Kaplan-Meier survival estimation and corresponding 95% confidence in-
tervals show the percent of students remaining in tutor over time. The lighter (orange)
line is the AFT model produced from the same data.
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3 Discussion and Future Work

The results of this analysis provide us with a model of how long we can expect
students to interact with a tutor. In future work we can explore potential dif-
ferences in duration with covariates (such as pretest scores,) to provide more
detailed models. We are also interested in exploring ways to use this information
to inform dropout preventing interventions. We hypothesize that we can mitigate
dropout by providing feedback when students reach certain thresholds of time
within specific problems as well as total tutor time. To test our hypothesis, we
will build survival models based on past student data, and using these models
we will provide feedback in the form of a pop-up window that will encourage the
student, as well as provide them with resources if they are struggling. Although,
for this to be effective we need to have a better understanding of the reasons why
students dropout. For a pilot study, we might want to flag these students and
have the course instructor or teaching assistants reach out. We can augment our
dropout models with information about the students current tutor performance,
to get an idea of how likely the student is to complete the tutor. Overall, the
use of survival modeling will provide us with more accurate representations of
student time-in-tutor, and we can use this information to create interventions
that will reduce the number of students who quit the tutor without finishing.
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Abstract. In the context of popular peer review educational approaches,
teachers wish to know whether the students are benefiting from peer
reviews and applying the changes in their second drafts. This paper
presents a tool for teachers that compares information about students
first and second drafts of papers focusing on the extent and type of
changes in the papers.

Keywords: Compare drafts, Students’ changes, Peer review, Learning
analytics.

1 Introduction

Computer-supported peer review systems are popular educational systems that
help students to improve their learning and also teachers to make better decisions.
Generally in a peer review system, instructors assign students a writing task and
then students submit their first drafts to the system. In turn, the system assigns
each paper to several peers in the class to review according to criteria provided
by the instructor. Finally, the system distributes the peer reviews to the authors,
who read the reviews and, ideally, use them to improve their second drafts.

In the context of a peer review system, many teachers use the first draft as a
peer review exercise and the second draft as an instructor-graded object; other
teachers have multiple rounds of peer review. In either case, teachers wish to
know whether students are playing the system (or otherwise not benefiting from
peer review) and just turning in the same paper for the second draft. Teachers
also wish to know whether changes tend to be relatively minor ones or whether
more substantive revisions are taking place.

Occasionally instructors use tools like Microsoft OfficeWord to compare drafts
of documents one by one. There are also some nicer tools specifically designed for
text version comparison (such as [2,3]), but they all need to be fed by one pair of
drafts at each time and it would a daunting task for a teacher to compare all the
drafts of a class manually. Therefore, an automatic tool to extract comparison
information and summarize it for teachers would be beneficial for them to make
sense of the students’ changes.

In this paper, we address this issue by designing a tool for teachers to summa-
rize students’ changes across drafts. Our goal is to create a prototype interface
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that draws attention to problematic cases of each student assignment and also
make general class trends salient, even if the class has multiple hundreds of stu-
dents. For this study, we employ a questionnaire which taps the general attitudes
of teachers towards our tool. The results show that this tool would be useful for
teachers but it needs additional improvements.

2 Methods

Given two versions of a text, we first split the texts into sentences and then use
an off-the-shelf text version comparison tool to find and highlight the changes be-
tween two drafts. In our experiments, we used Compare Suite [1] which provides
a command line version and also a graphic representation of the differences. The
generated report of this tool counts changes and shows the track-changes view.
However, this information is overwhelming and we did a simple post-processing
over the output of these reports to aggregate the adjacent modified errors.
Figure 1 shows an example of detailed report of the draft comparison.

Fig. 1. A screenshot of the detailed drafts comparison. Deleted words are red
(strikethrough), added words are purple (underlined) and modified words are green
({old word/new word}).

Moreover, to provide a sense of amount of change between drafts, we define
a measure to calculate the change based on number of added sentences, deleted
sentences and modified words in each sentence:

Change(%) =
A+D +

∑M
i

mi

|Li|
A+D +M + U

× 100

where A, D and M are total number of added, deleted and modified sentences
respectively. U is number of unmodified shared sentences between two drafts.
Furthermore, Li is the total number of words in sentence i and mi is the number
of modified words in sentence i. Intuitively, when number of added or deleted
sentences increases, the percentile of change also increases. Also, if the number
of modified words in a sentence increases, the change in that sentence increases.

Figure 2 shows a part of summarized comparison reports for each student in
a class. In this set of experiments, the change threshold is set 50%, i.e. change
more than 50% is categorized as “many changes” and less than 50% as “few
changes”. As can be seen the higher number of added, deleted and modified
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Fig. 2. A screenshot of a sample class comparison report

(a) Pie chart (b) Stacked column chart (c) Histogram

Fig. 3. Graphs of comparison reports for a class based on changes in sentences

sentences results in a higher change score. We also depict the statistics of changes
in a class as graphs to help instructors better understand whether students are
benefiting from peer review assignments for their courses. Figure 3 shows the
graphs that are provided to teachers.

3 Pilot Study

In order to evaluate the utility of our tool for instructors, we ran a pilot study
for 4 classes (two psychology, one computer science and one physics). We asked
the instructors’ feedback focusing specially on these questions:

1. What patterns did you easily notice about how much your students revised
their documents?

2. What was hard to read or confusing in the currently provided information?
3. How, if at all, would this kind of data influence your teaching?
4. What additional information would you like about your students’ revision

behaviors?

Generally, instructors agreed that “the reports are good summaries of the changes
in the drafts and the color coding makes them intuitive to glance through”. On
the other hand, they all mentioned that “the detailed reports of draft
comparisons are also overwhelming and not so exciting on their own” (such as
Figure 1). So, in order to “make for easier reading of patterns”, they suggested
to give more control to the teachers over showing the changes. For example,
by turning on and off displaying different change types or by displaying only
the modified text and “hovering over it pops-up the old text”. Two instructors
were not sure that the reports will influence their teaching, since the changes
were too much. But one instructor mentioned that “it can help with grading -
facilitate quicker recognition of how students are responding to feedback.” One
instructor was also positive about the charts and thought that “all three charts
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will be very useful for getting a sense of what the students are doing with the
revisions.” Finally, they all made some suggestions to improve the reports, for
instance one of the shared suggestions was to “tie localized feedback/revision
suggestions to implemented revisions”. In future, we are planning to apply these
suggestions and deploy this tool as a component of a real peer review system.
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Abstract. This paper presents two different approaches to example-based prob-
lem solving support in the domain of programming based on concept analysis 
of the learning content. The goal of these approaches is to offer students a set of 
most relevant remedial examples when they have trouble solving a problem.  
The paper reviews earlier work and introduces a global and a local approach for 
selecting examples that are similar to the problem in terms of concept coverage 
and structure of the content, respectively. It also reports results of a lab study 
conducted to explore the effectiveness of each approach. 

Keywords: concept-based similarity, problem solving support, remediation. 

1 Introduction 

Example-based problem solving is one of the efficient approaches used by Intelligent 
Tutoring Systems (ITSs) in the programming domain [1]. In this approach, when the 
student has trouble solving a problem, the system tries to find the relevant examples 
which might be helpful to solve the problem. The approach has been used, for example, 
in ELM-ART ITS for LISP programing [2]. While known to be efficient, this approach 
remains one of the least explored since the original LISP research was based on advanced 
episodic learner modeling which is difficult to build for other programming domains. 

Our goal is to create a different version of the example-based problem solving sup-
port for Java programming which is generalizable in multiple different programming 
languages without too many effort that is required for advance analysis of content in a 
system like ELM-ART. The main innovation is in analyzing domain concepts related 
to programming problems and examples and using the underlying concept structure to 
find similarity between examples and problems. The similarity can be obtained using 
number of complicated approaches, but our first challenge was to choose between 
global and local similarity approaches. A global concept-based similarity considers 
whether two sets of concepts are more or less similar as a whole and in its simple 
form could be identified by cosine similarity of vectors of concepts. A local concept-
based similarity considers similarity on the structure level where detailed level of 
similarity can be identified by structure of blocks and adjacent concepts.  

To explore and compare these two approaches, we developed a specialized concept 
analysis tool, JavaParser, which can extract not only the list of concepts but also con-
cept structure [3]. The parser provides a fine-grained level of indexing per line of 
code which helps identifying blocks of code that have sets of adjacent concepts.  
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The parser helped us index a considerable volume of Java programming problems and 
examples and we could then start a study comparing the approaches. In the present 
work, we introduce global and local concept-based approaches for finding similar 
examples for Java problems and present preliminary results of a lab study that aims to 
compare the effectiveness of these approaches. 

2 Method 

We propose global and local concept-based approaches for example-based problem 
solving. The conventional global concept-based similarity approach is based on co-
sine similarity with TF-IDF weighting for vectors of concepts. The local concept-
based similarity approach is based on selecting sets of examples that have the closest 
blocks of code to the question that the user failed in. The main idea of this approach is 
to build subtrees of concepts that have appeared together as blocks in each of the con-
tents. As a result, each subset of concepts that are either in the same line or in the 
same block, will be merged together to create a subtree for the content. Having 
created the subtrees, we can find the similarity of a question and example by compar-
ing their corresponding subtrees. Several methods have been suggested to compare 
trees, among which Tree Edit Distance (TED) is quite well known and has been wide-
ly used in other studies for similar purposes [4]. The distance between the question 
and the example is obtained using Eq. (1): 
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where WDQE is the weighted distance between question Q and example E; N and M 
represent the total number of the subtrees in Q and E, respectively; TED is the Tree 
Edit Distance between the given subtrees sq and se; WQe is the sum of Term Frequen-
cy–Inverse Document Frequency (TF-IDF) values of the concepts in the subtree se for 
the question Q; Similarly, WEq is the sum of TF-IDF values of the concepts in the 
subtree sq for the example E. Finally, the weighted distance WDQE is used in Eq. (2) to 
determine the similarity between example E and question Q:  

 
EQWD

e
Sim

,

1
α

=  (2) 

where Sim is the local concept-based similarity between the example E and question 
Q; and α is a coefficient for the exponential function which is set to 0.01 in the 
present study. Finally, the top five examples with the highest similarity value can be 
selected for presenting to the student as remedial support.  

3 Preliminary Evaluation 

We conducted a lab study to investigate the effectiveness of local and global concept-
based similarity approaches. We hypothesized that the local approach might outperform 
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the global one since it considers the closeness of chunks in determining the similarity in 
a somewhat similar way to ELM-PE that was known as a very successful example rec-
ommendation approach. The study started in January 2014 and is ongoing. To date, we 
have had 12 subjects. The learning materials are organized into 6 Java topics, 83 anno-
tated Java examples, and 24 parametric Java questions. Subjects were assigned to three 
topics based on their pretest scores and had to solve 4 questions in each of those topics. 
We selected relevant examples for the questions and asked the student to rate their help-
fulness in two different conditions: one at the time that student’s answer to question was 
incorrect and one after the student finished solving a question. The rating ranges from 0 
representing ‘Not helpful at all’ to 3 representing ‘Very helpful’. An analysis of the 
results showed that the average rating of students for the examples selected by the glob-
al concept-based approach (1.95) was higher than the local concept-based approach 
(1.49). Contrary to what we expected, closeness of the concepts did not help select more 
relevant examples. However, for a much more detailed discussion of results, we need to 
look into different conditions under which each approach performs better. 

4 Conclusion  

We proposed global and local concept-based approaches that provide remedial rec-
ommendations of examples for Java programming problem solving. These approaches 
can be leveraged to address the problem solving support in different programming 
languages with little effort. The result of the ongoing lab study showed that global 
similarity is almost always helpful for students while local similarity is not. The col-
lected rating data can be useful for cross validation of multiple numbers of similarity 
approaches and this data is open for other researchers as well. For future work, we 
would like to perform detailed analysis on the results and also explore whether the 
approaches can be improved by taking into account the user knowledge. 
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Abstract. In this paper we discuss the Comprehension SEEDING sys-
tem and how it enhances the classroom discussion. SEEDING attempts
to accomplish this by providing real-time formative assessment of stu-
dent responses. Teachers can pose questions using the SEEDING system,
students submit typed responses, and the system automatically groups
the responses according to their semantic similarity. These components
equip teachers with the necessary tools to engage the classroom in a
broad and enhanced discussion.

1 Introduction

In a typical classroom, teachers pose questions both to assess student under-
standing and also to facilitate learning. Students learn as a result of engaging
with the material through shared discourse (Larson, 2000). However, this is dif-
ficult to achieve as teachers typically can only involve a few students in a discus-
sion. To address this problem, classroom response technologies, such as clickers,
provide a means to allow all students to respond to multiple choice questions.

Clickers are a classroom response system in which students respond to ques-
tions that are projected onto a screen in the classroom. Previous work on clickers
has shown that they can be beneficial for enhancing student learning (Duncan,
2006; Keller et al., 2007; Penuel, Boscardin, Masyn, & Crawford, 2006; Siau,
Nah, Siau, Sheng, & Nah, 2006). However, there are limitations that could ex-
plain why small-scale efficacy tests for the use of the technology have seen mixed
results (Bunce et al., 2006; Carnaghan & Webb, 2007; Duggan et al., 2007). In
order for teachers to take advantage of clickers, they are limited to multiple
choice questions. This can make it difficult to assess deep knowledge in a closed-
response question format (Campbell, 1999). Even with meaningful distractors,
multiple-choice questions only require students to recognize the correct response.
According to the ICAP (Interactive, Constructive, Active, Passive) framework
(Chi, 2009), constructing answers to free-response questions is a more cognitively
engaging task and leads to larger learning gains.

2 Comprehension SEEDING

The Comprehension SEEDING system allows teachers to pose free-response
questions. Students can answer these questions via tablets. While students com-
pose their responses, the system provides a real-time analysis of the student
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responses. Once SEEDING receives a few student responses, it automatically
groups the student responses into four clusters. Teachers have the option to
view and share each student response with the class. However, this can be time
consuming and might only address a few possible misconceptions about a ques-
tion. Using the four clusters, teachers can quickly determine the current overall
status of the classroom′s understanding of the question.

SEEDING is grounded in results from three key areas of cognitive and learn-
ing sciences research: (1) student self explanation, (2) formative assessment with
classroom engagement and discourse, and (3) educational question-asking prac-
tices. The Comprehension SEEDING system is divided into three distinct but
related components that work together to create an enhanced learning environ-
ment for both teachers and students. The enhanced discussion (ED) component
and its theoretical advantages are described in the following section.

3 Enhanced Discussion

As students respond to a question, SEEDING performs analysis and provides
teachers real-time feedback on the students’ understanding. To cluster student
responses, we need an understanding of each student′s response and its entail-
ment relationship to the question′s reference answer. We dont simply want to
label responses as correct or incorrect. Instead, if a response is not correct, we
want to understand and identify specifically where the error or misconception
exists. To achieve this level of semantic analysis, we break down the reference an-
swer and all responses into their fine-grained semantic facets following (Nielsen
et. al, 2008). An analysis of all of these semantic facets is used to generate the
feature vectors used by the clustering algorithm, as discussed below.

Feature vectors are comprised of four sets of features, each of which is assigned
a total weighting or importance. The sum of the weights over the four sets of
features is 1.0. The first set of features is based on the subset of semantic facets
found in the reference answer that are not also found in the question. These
features were given a weight of 0.45. The second set of features, which has a
weight of 0.225, is based on the remaining facets found in the reference answer.
The third set of features, with a weight of 0.1, is based on the facets found only in
the question. The final set of features, comprising the remaining weight of 0.225,
is based on any additional facets that occur in multiple student responses. In
future work, the weights of each set of features will be learned based on training
data. Student responses are converted into feature vectors according to which
facets in these four groups are entailed by the response.

SEEDING clusters responses automatically as soon as the percent of the class
that has submitted responses passes a threshold. Each time, the system decom-
poses all the current responses into facet-based representations. This will allow
the system to compare the student facets with the reference answer facets when
clustering the student responses. For example, if just three students submit a re-
sponse that addresses all of the facets in the reference answer, those students form
a cluster. Similarly, this holds true for responses that fail to address certain facets
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from the reference answer. At the time of clustering, all responses are turned into
vectors. Four randomly selected response vectors are assigned as the initial clus-
ter centroids. We iterate over each student response vector, calculate its distance
from each cluster centroid, and assign the response to the cluster whose centroid
is closest. After each iteration, the cluster’s centroid is recalculated by averag-
ing the response vectors assigned to it. These two steps, assigning responses to
the closest cluster and recomputing the cluster centroids, are repeated for 10
iterations or until convergence, when the clusters stop changing.

4 Conclusion

In this paper, we presented the Comprehension SEEDING system, new classroom
engagement technology designed to improve classroom discussion by increasing
student engagement and providing immediate formative feedback to teachers.We
focused on SEEDING′s enhanced discussion component and in particular, on the
novel use of clustering and clustering algorithm, which provide a key foundation
to facilitate formative assessment and enhanced classroom discussion.
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Abstract. Negotiation mechanism used in the current implementations
of Open Learner Models is mostly positional based and provides minimal
support for learners to understand why their beliefs contradict with that
of the system. This study aims at proposing a new paradigm of learn-
ing that uses negotiation coupled with targeted responses to motivate a
learner and enhance their metacognitive skills along with their cognitive
skills.

Keywords: Negotiation, Metacognition, negotiation-driven learning,
inter-est-based negotiation, learner motivation.

1 Introduction

In recent years much research has been done in the field of Intelligent Tutor-
ing Systems (ITS) to support and promote independent, self-regulated learning.
Much of this research has primarily focused on generation and visualization of
Learner Models (LM). Open Learner Models (OLM) aim at enhancing both
cognitive and metacognitive skills of a learner through guided content, external-
ization, scaffolding and negotiation. However, negotiation has been underutilized
in the current OLMs. Negotiating or debating with others allows us to identify
alternative perspectives [1][2]. According to the Constructivist Learning The-
ory “learning is a process of construction of knowledge through dialogues”[1].
Therefore in this study we will focus on “fully-negotiated” LMs [3] and propose
the paradigm of Negotiation-Driven Learning (NDL) with the aspiration to en-
hance the role of negotiation as a problem-understanding technique and use it
to promote metacognitive activity and enhance learning.

2 Problem Description

The negotiation aspect of the current implementations of OLMs is aimed at
solving the problem of the conflict between the learner’s beliefs and that of the
system [4]. OLM relies upon the externalization of a learner’s knowledge to pro-
mote metacognitive skills. Negotiation is generally related with the occurrence
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and resolution of conflict. Position-Based Negotiation (PBN) is employed which
considers both the learner and the system to firmly commit to their positions.
Only one party finally reaches their position or a compromised position is ac-
cepted by both parties [5].

A negotiation session is initiated by the system when there is a conflict be-
tween the learner’s and system’s sets of beliefs. A learner is also allowed to
start a negotiation session when they do not agree with their LM. The learner
is allowed to defend and retain their beliefs if they can justify them [3]. In or-
der to justify themself, the learner has to provide evidence or justification. The
system asks the learner a set of questions to prove the validity of their claim.
These are closed-ended, directed questions that evaluate the knowledge of the
learner about a certain topic. What is “tested” is not the “motivation” behind
their claim but the learner’s knowledge. This confines the scope of negotiation as
more of a “problem solving” technique rather than a “problem understanding”
technique.

3 Proposed Solution: Negotiation Driven Learning

Almost all implementations of fully negotiated LMs follow an ideology which
constrains negotiation to just “negotiating to solve problems/conflict”. In this
context, negotiation is used as a supplement for “teaching” whereas in our point
of view negotiation provides an excellent opportunity for “learning”.

When a learner negotiates their LM with the system, they are actively involved
in a dialog, intrinsically motivated to justify their claim, hence more likely to
conceive new knowledge. This provides an excellent opportunity to indulge the
learner in metacognitive-guided learning, where they build knowledge by ac-
tively using and enhancing their cognitive and metacognitive skills. NDL aims
to take advantage of this precise opportunity by understanding and challenging
the motivational state of the learner, indulging the learner in an active dialog
which promotes self-regulated learning, and provides a chance to the learner
to understand “what and how” they learn. Contrary to the concept of PBN,
Interest-Based Negotiation (IBN) [1] is a process that aims at exploring under-
lying interests of the parties rather than their negotiating positions. Therefore
the concept of IBN seems much more appropriate to be incorporated in NDL.
The concept of IBN can allow us to use negotiation as means to understand the
reasons behind the beliefs of a learner. IBN can play a vital role in NDL, since
in NDL we are concerned with motivating the learner by trying to understand
their reason for holding a particular belief which in turn can help identify why
such beliefs are held and how can a learner be persuaded to change them.

3.1 Proposed System

The proposed system would generate a Behavioral Model (BM) of the learner
as they interact with the system. The BM will include information about the
interactions of the learner with the system; their interest in their respective LM,
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their enthusiasm in discussing their LM, their help-seeking pattern and their
confidence in their abilities. The behavioral model will be continuously updated
through the Session Manager (SM) which would record interactions of the learner
with the system in real-time.

Fig. 1. Proposed Interest-Based
Automated Negotiation Agent

Once the baseline BM of the learner is
generated it will be used by the Automated
Negotiation Agent (ANA) to understand the
motivational state the learner is in and use
this information to select the best suited ne-
gotiation strategy from the Plan Base (PB) to
maximize learning. For example; if the BM of
the learner shows that they are confident in
their abilities but avoid discussing their LM
with the system, the ANA will try to prompt
the learner’s attention towards their LM. Us-
ing “challenge” as a motivational trigger, the
system will try to entice the learner into dis-
cussing why their beliefs differ from that of
the system in an open-ended discussion. The
goal would be to intrigue the learner into discussing their LM such that both
the system and the learner understand why they hold certain beliefs and how
they can overcome these differences.

4 Concluding Remarks

NDL follows the notion that learning is maximized by participation in the learning
process and negotiation provides an excellent opportunity to challenge the learn-
ers which promotes metacognitive skills by motivating them to think more objec-
tively about their learning. Although the research on NDL is in its early stages,
we believe that the paradigm of NDL holds great potential as it opens up new
perspectives of learning by using automated IBN to challenge and intrinsically
motivate learners through discussions.
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Abstract. The following phenomenographic study aims to explore student per-
ceptions of an adaptive learning system employed within a large undergraduate 
cohort of chemistry students during the Fall 2013 term.   In particular, the pur-
pose was to determine what student perceptions were concerning the adaptive 
system and how these perceptions influenced the students metacognitive and 
self-regulatory behaviors. 

Keywords: metacognition phenomenography blended learning.  

1 Introduction 

The present study explores how these perceptions of the metacognitive accuracy of 
the intelligent tutoring system impact student self- regulation and behavior within a 
blended course at a large tier-one university within the southeastern United States. . 

2 Knowillage 

The adaptive learning tool under consideration is the Knowillage adaptive learning 
system. The primary purpose of the online tool was to prepare individualized learning 
paths for each topic, e.g. periodicity or thermochemistry, based upon pre-test ques-
tions correlated to specific web based text pages concerning the topic. According to 
the software developers, Knowillage creates a learning path of individualized readings 
to address a student’s deficits without wasting a student’s time upon material already 
mastered as measured by the topic pre-test.  

3 Theoretical Framework 

Self-regulated learning theory provided a useful mechanism to describe “the process 
whereby learners personally activate and sustain cognitions, affects, and behaviors” 
[1, pg. 1]. Given that most learners exhibit poor metacognitive skills [2], the Knowil-
lage system does not rely upon the learner’s metacognitive skill to determine a useful 
learning path. The Knowillage system decides what instructional text or instructional 
materials are most relevant to the unique learning deficits of the learner as measured 
by a multiple choice pretest. 
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4 Research Question 

From the preceding theoretical framework and unique educational conditions, the 
following research question arose: 

Q1: How does variation in learner perception of the metacognitive tool Knowillage  
influence self-regulation of learning and gaming of the system? 

5 Methods      

In order to assess learner conceptualizations of Knowillage, a phenomeno- graphic me-
thodology was employed. Phenomenography is both a theoretical perspec- tive and 
methodology taken by educational researchers to explore learner perceptions of pheno-
mena or “people’s conception of reality” [3, pg. 178]. In the present study, however, the 
large group of 300 engineering students precluded the possibility of deep interviews 
with the entire cohort so a survey was distributed to all 300 participants. For the present 
study, 91 of the 300 participants responded to the survey for a response rate of 30%.  

6 Results 

   Q2: How does variation in learner perception of the metacognitive tool 
Knowillage influence self-regulation of learning and gaming of the system? 
 

Review of the survey responses indicated that students were not using the Knowillage 
system in a manner anticipated by the system.  Learners were misusing or rather 
using the tool by randomly clicking on answers to pre-tests and summative tests in a 
manner unexpected by the software developers. Learners were also regulating the 
context of their learning by enhancing their learning environment through the use of 
the optional hardcover textbook.  In addition, many students claimed to have paid a 
private tutoring company to help them achieve success in the course. 

 
52% reported that they read the textbook more because of Knowillage 
47% admitted to maladaptive behaviors such as randomly answering pre-tests  
45% reported that Knowillage did not provide the right amount of reading 
55% reported that the practice problems were not related to the subject at hand 
32% enlisted a private tutoring company to find success in the course 

7 Discussion 

It appears from the evidence that the students’ perceptions of the tool and its legitimacy 
differed to a great degree with many students questioning the accuracy of the Knowil-
lage system. The present study suggests that when learners are inserted into highly 
structured learning environments in an ecological setting, learners will engage in the 
regulation of the learning context and find ways to shape the learning environment into 



694 A. Thomas 

a space that can meet their psychological self-regulatory needs. The present study has 
raised a number of future questions as to why were some students more suspicious of 
the Knowillage technology than others?   Does this suspicion of technology correlate 
with greater self-regulatory behaviors, prior knowledge, or something else?  At what 
point do students game the system as a result of an analysis of the diagnostic perfor-
mance of a tool such as Knowillage? These questions remain to be explored in future 
work. 
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Abstract. Grounded feedback aims to facilitate sense making by reflecting stu-
dents’ symbolic input in a linked concrete representation that is easier to reason 
with. Initial studies led to explorations of what prior knowledge is necessary to 
support that reasoning. Specifically, we tested if it is obvious to students that a 
sum is larger than its two positive addends. It is not! Thus, concrete representa-
tions for sense making may fail because students lack prerequisite knowledge 
we may assume they have. More generally, these results suggest that skilled qu-
alitative reasoning may often come after, not before, quantitative reasoning.  

Keywords: grounded feedback, fraction addition, graphical representations. 

Effective instruction elicits students’ prior knowledge and facilitates useful connec-
tions between what students already know and what they are learning. To that end, 
my work presents and investigates grounded feedback, in which student inputs (e.g., 
5/12) are reflected in a more familiar representation that is easier to reason with  
(e.g., a fraction bar). Prior work shows experimental support for such feedback over 
right/wrong immediate feedback (e.g., [1]), but does not provide a full theoretical 
characterization of grounded feedback or design recommendations for its implementa-
tion. My proposed work on grounded feedback will: continue to examine its effects 
with empirical, controlled classroom studies; explicitly define it and situate it in a 
theoretical framework; build a theoretical model of how students use grounded feed-
back to make sense of new information; and delineate design recommendations for its 
implementation. This paper focuses on the design recommendations.  

Our work on grounded feedback examines middle school students learning fraction 
addition (Fig. 1 shows a tutor example). The grounded feedback consists of rectangu-
lar fraction bars that reflect the symbolic values that students enter. This common 
representation (e.g., [2]) is intended to elicit students’ prior knowledge of magnitude 
and make salient important fractions concepts (e.g., one cannot add fractions by simp-
ly adding the numerators and denominators). An experiment with 5th graders showed 
student learning with grounded feedback, and some benefits over immediate 
right/wrong feedback [3]. However, that study also revealed students’ difficulty inter-
preting the feedback: they often indicated that a problem was solved even when their 
proposed sum did not line up with the combined length of the given addends. This 
finding suggests that 1) the students did not realize that two addends equal their sum 
and/or 2) some aspect of the representation blocked students’ use of that knowledge. 
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