
45M. José Escalona et al. (eds.), Information System Development: Improving
Enterprise Communication, DOI 10.1007/978-3-319-07215-9_4,
© Springer International Publishing Switzerland 2014

Abstract  Development of enterprise applications is expensive, takes time and
requires knowledge, tools and techniques. Contemporary enterprise applications
must be dependable as well as customizable in the evolutionary way according to
changes in the enterprise business processes. The wider goal of our research is to
develop techniques for development of enterprise applications that software end
users, in collaboration with software developers, are able to change safely and easily
according to changing requirements. In accordance to the software engineering
triptych: to write software, the requirements must be prescribed; to prescribe the
requirements, the domain must be understood; to understand the domain, we must
study one. We present and exemplify P systems based enterprise domain model. We
treat an enterprise as a membrane-computing structure and utilize P system notions,
notations and formalisms in modelling of enterprises and enterprise business
processes. In our understanding this P systems based enterprise model can provide a
practically usable framework for development of evolutionary enterprise
applications.

Keywords  Evolutionary Enterprise Applications • P Systems • Model Driven
Engineering • Laboratory Information Management Systems

Chapter 4
Towards P Systems Based Approach
for Evolutionary Enterprise Application

Gunnar Piho, Jaak Tepandi, and Viljam Puusep

G. Piho (*)
Clinical and Biomedical Proteomics Group, University of Leeds,
Beckett St, Leeds LS9 7TF, UK

Department of Informatics, Tallinn University of Technology,
Akadeemia St. 15A, Tallinn 12618, Estonia
e-mail: g.i.piho@leeds.ac.uk; gunnar.piho@ttu.ee

J. Tepandi • V. Puusep
Department of Informatics, Tallinn University of Technology,
Akadeemia St. 15A, Tallinn 12618, Estonia
e-mail: jaak.tepandi@ttu.ee; viljam.puusep@ttu.ee

mailto:g.i.piho@leeds.ac.uk
mailto:gunnar.piho@ttu.ee
mailto:jaak.tepandi@ttu.ee
mailto:viljam.puusep@ttu.ee

46

4.1  �Introduction

The goal of our research is to develop practically usable techniques for development
of enterprise applications that software end users, in collaboration with software
developers, are able to change safely and easily according to changing require-
ments. We use a case-study-based research methodology. The case is Laboratory
Information Management System (LIMS) software development in Clinical and
Biomedical Proteomics Group (Cancer Research UK Clinical Centre, Leeds
Institute of Molecular Medicine, St. James University Hospital at University of
Leeds). LIMS represents a class of computer systems designed to manage labora-
tory information [1].

According to software engineering triptych, in order to develop software we
have to: (a) informally and/or formally describe a domain (D); (b) derive require-
ments (ℛ) from these domain descriptions; and (c) finally from these requirements
we have to determine software design specifications and implement the software
(S), so that D , S ⊨ ℛ (meaning the software is correct) holds [2]. The term
domain or application domain can be anything to which computing can be applied
[3]. In our studies the application domain is business domain in general (producing,
buying and selling either products or services) and clinical research laboratory
domain in particular.

In research laboratories, like CBPG, business processes are changing constantly
and different research groups within the same research laboratory, sometimes even
different investigators in one and the same research group, require different business
processes and different or differently organized data. While standardized in some
ways, such system for scientists has to be flexible and adaptable so, that there are
customizable possibilities to describe data, knowledge and also research methods.

In addition to the three principal layers (presentation, domain and data source),
in contemporary distributed enterprise application architecture there is also a
communication (containing and connecting logic) layer [4, 5], illustrated on Fig. 4.1.

In our understanding the communication layer and the presentation layer are
similar in their nature. The presentation layer gives humans an interface (forms,
documents, etc.) to the defined logic (domain model). Similarly, the communication
layer gives artificial agents (services, software systems, etc.) an interface (commu-
nication protocols, etc.) to the defined logic.

Accessing Data

Defining Logic

Containing and Connecting Logic

Using Logic
Fig. 4.1  4-Tier architecture
of distributed enterprise
application architecture

G. Piho et al.

47

We are looking for ways to minimize (better to completely avoid) changes in the
domain logic and in the data source (and therefore also in data access) layers as
these changes are risky and time consuming. We are trying to find possibilities to
fulfil user requirements only by making changes in the presentation or in the com-
munication layers. It would be nice if these changes can be made by end users even
at run-time.

P system (membrane computing) [6] is the model for the distributed computing
where multisets of symbol objects encapsulated into membrane structure are pro-
cessed in the maximum parallel manner. P system aims to mimic the structure and
the functioning of living cells. In [7] we presented and exemplified P systems based
enterprise domain model. We treated an enterprise as a membrane-computing struc-
ture (Fig. 4.2) and utilized P system notions, notations and formalisms in modelling
of enterprises and enterprise business processes.

In the current paper we describe, how in our understanding this P systems based
enterprise domain model can provide a practically usable framework for develop-
ment of evolutionary enterprise applications.

In Sect. 4.2 we describe the related works. In Sect. 4.3 we shortly describe the P
systems based enterprise domain model we presented in [7]. We propose and illus-
trate the evolutionary criteria and explain the possible UI based evolution of the
enterprise applications in Sect. 4.4. These criteria are derived from the P systems
based enterprise domain model. We conclude in Sect. 4.5.

4.2  �Related Works Towards Evolutionary Information
Systems

Searching in the document titles of the IEEE Xplore digital library the words “evo-
lution”, “information” and “system”, we found 30 papers. Eight of them we found
were related to the evolutionary information systems research topic.

Fig. 4.2  A cell-like
enterprise structure

4  Towards P Systems Based Approach for Evolutionary Enterprise Application

48

Layzell and Luocopoulus [8], in 1988, described the collaborative European
project RUBRIC, whose aim was to improve the practice of constructing large,
sophisticated information systems by avoiding the practice of embedding business
policy within program logic. The target was to separate not only business data, but
also business policy from the operational procedure. They proposed a rule-based
approach to the construction and evolution of business information systems. The
structural components were based on entity-relationship model consisting of enti-
ties, which are any concrete or abstract things from the universe of discourse.

Clark, Lobsitz and Shields [9], in 1989, described the documenting process of
the TASC-EDGETM (The Analytic Science Corporation—Effective Development
through Growth and Evolution) methodology for the evolutionary software devel-
opment. Based on the classical waterfall model and on the manual change of the
code, the main models (process model, information model, and development model)
of the TAS C-EDGE methodology are eligible also today. By combining develop-
ment, operation (includes user feedback) and requirements analysis this TASC-
EDGE evolutionary software development was based on the principle of listening to
the system users and to responding to their needs.

Oei, Proper and Falkenberg [10], in 1992 discussed the need for information
systems capable of evolving to the same extent as organization systems do and pro-
posed a formal model for the evolution of information systems. Informally this
model transformed the requests from users of the information system into update
and retrieval actions of the application.

In 1992, Lui and Chang [11] were working for evolutionary information systems.
They proposed a Visual Specification Model for specification design, change and
redesign. In this method they focussed on the database schema changes in a single
relation and on their effects to other components in the specification. The wider goal
of their research was to develop a unified methodology to construct conversion
functions, to maintain change history, and to detect inconsistency when multiple
relations involved in a change.

Shifrin, Kalinina and Kalinin [12], in 2002, described the MEDSET technology
for development, deployment and support of information systems in clinical medi-
cine and other poorly formalized subject domains. The basic statements they pointed
out were: (a) realization data structures in compliance with the structure of business
process; (b) stability of the database model; and (c) user interface consistency to
support some definite part of one business process.

Wang, Liu and Ye [13], in 2008, pointed out the potential inconsistencies among
the ontology and the dependant applications in case of the ontology evolution and
analysed the approaches of maintaining the consistency and keeping the
continuousness of the dependant applications during the evolution. They proposed
two scenarios for maintaining the consistency: property split and property range
changes. By splitting they mean the situation, when for instance the text property of
employee’s home address is split into more specific properties of city, district, street,
etc. In splitting the business process itself does not change: only the data used in this
business process becomes more accurate. By range changes they mean the situation
when the business process itself will change. For example the funding: what was
only for full time students is now available also for part time students.

G. Piho et al.

49

Aboulsamh and Davies [14], in 2010, proposed a metamodel-based approach to
information systems evolution and data migration. They expand model-driven
engineering to facilitate the evolution of information systems. They claim that in the
domain of information systems, after the initial development and delivery, the auto-
matic change of the systems is useful only if the data held in the system can be
migrated easily to the next version and therefore their proposed method is focussed
on migration of the information held in the system data.

Ralyté, Arni-Bloch and Léonard [15], in 2010, proposed a process model for
integrating new services with the information system. They claim, that before
publishing a service to be reused in some composition, the validation of the data
consistency, rules soundness, process compatibility and organizational roles com-
pliance have to be guaranteed.

4.3  �P Systems Based Enterprise Domain Model

Cells and enterprises have both very intricate structure and functioning. Similarities
can be seen in their internal activities as well as in their interactions with the neigh-
bouring cells/enterprises, and with the environment in general.

Both cells and enterprises have a way to organize and control their processes.
Cells have biological processes, enterprises have business processes and both have
informational processes. Any cell means membranes. Any enterprise means enter-
prise structure. Both cells and enterprises are clearly separated from their environ-
ment and both have compartments (membranes/enterprise structure units) where
specific processes take place.

Similarities can be seen also in sending messages from compartment to compart-
ment. Cells can transport packages of molecules from one part to other part through
vesicles enclosed by membranes in a way that transported molecules are not
“aggressed” during their journey by neighbouring chemicals. Enterprises have
internal or use external post and transportation services to transport messages, docu-
ments and products from location to location in a secured way.

Similarities can be seen also in creating and destroying compartments. Cell is
able to create and destroy membranes in order to make biochemical processes more
efficient. Enterprise is able to create and liquidate their structural units in order to
make business processes more efficient.

In summary, cells and enterprises contain many fascinating similarities at vari-
ous levels starting with similarities in structure, in communication/cooperation
among neighbouring cells/enterprises, and ending with the interaction with the
environment.

In Fig. 4.2 the membrane like enterprise structure is illustrated. Membranes
are the roles [16] the parties (persons or enterprise units) can play in order to
fulfil some enterprise related tasks. The external membrane (skin) we call enterprise.
The elementary membrane is the role only persons can play. Patients, managers,
doctors, students, etc. are the examples of such person only roles. The regions in the

4  Towards P Systems Based Approach for Evolutionary Enterprise Application

50

context of enterprise are parties (persons and/or organizations—groups of persons)
playing the particular role. In P systems based enterprise model (differently from
the P systems) the distinction must be made between the notion role (membrane)
and the notion party (region), because for instance, the manager’s role and Mr John
Smith being the manager from the date to the date do not have the same meaning.
However, sometimes we can use these notions also interchangeably because of
one-to-one correspondence; especially in case of roles only the organizations
(e.g. hospital, laboratory, etc.) can play.

Every structural unit in an enterprise receives documents (d) (information
received in speech can also be modelled as a document). In every structural unit
there are also descriptions of these documents i.e. formats (f) of these documents.
For instance, a human resources (HR) department knows exactly what should be the
format (fi) of a document (di) to compose an employment contract document (dj)
according to the contract document format (fj). HR department also knows, what
kind of information (ai, e.g. name, date of birth, address, etc.) should be recorded
into the company records (dk). Therefore the business rules for the HR department
can be notated as follows.

	

d f f d f f a

a f d f

i j j i j i

i k k k

i ®

®
	

This means that according to a document di (e.g. order), the recruitment of an
employee is started. As a result the employment contract (dj) is concluded and some
employee data (ai) are created. The employee data is then recorder into a specific
document dk (e.g. record in a list of workers) of the company. Both of illustrated
rules are catalytic rules where the document formats fi, fj and fk are catalysts describ-
ing precisely the documents (di, dj, dk) the company uses. This means, that docu-
ments and therefore document formats are company specific. The employee data ai
(e.g. archetypal domain model describing persons) we consider to be written in
universally understandable language of business archetypes and archetype patterns.
We describe them in Sect. 4.4.1.

We can also use indicators ℎere, in and out. For instance the same rules with
these indicators can be as dififj → (dj, out)fifj (ai, here) and aifk → (dk, out)fk. This
means for example that documents dj and dk created by HR department are going to
the “surrounding” enterprise unit.

Membrane dissolving (δ) in P system based enterprise model means either con-
centrating of the post or eliminating of the structural unit of organization. Differently
from the basic P system, in the P system based enterprise domain model, in case of
dissolving, not only the objects and child members, but also the rules are left free in
the surrounding enterprise unit. We also expect that in P system based enterprise
domain model the enterprise itself (skin membrane) can be dissolved.

Similarly to base P system, also in the P system based enterprise model the rules
are processed non-deterministically in the maximally parallel manner. Non-
determinism can be seen for instance as HR department’s possibility to choose the
order of rules (creating employment contract or recording employee data) and
objects (whatever document first) deliberately.

G. Piho et al.

51

For the maximum parallelism we probably have to determine the employees
(catalyst e) in the HR department rules, e.g. dififje → dj(out)fifjai (here)e and
aifke → dk(out)fke.

For instance (illustrated in Fig. 4.3), in case there are five orders (di
5), three units

of employee data (ai
3) and two HR department employees (e2) in HR department,

then after the first round of processing with the maximum parallel manner the HR
department objects can be di

3ai
5e2 (both employees were choosing the first rule),

di
5ai

1e2 (both were choosing the second rule) or di4ai3e2 (shown in picture, one
employee choose the first rule and other the second rule).

Concluding the paper [7], in our understanding, we can formally define the enter-
prise using the formal definition (Π = (O, C,μ, ω1, ω2, … , ωm, R1, R2, …, Rm, i0) of P
systems of degree m. Looking for the Fig. 4.1, the enterprise application architec-
ture (also some model of the enterprise) we have data (ω1, ω2, … , ωm in formal defi-
nition where ωi means particular set of data in particular compartment, e.g. in HR
department, Fig. 4.3); finite set of classes (O in formal definition) describing busi-
ness domain logic objects (describing any data) and workflows (using the data);
different business domain rules (R1, R2, …, Rm in formal definition where Ri means
particular set of rules in particular compartment, Fig. 4.3); different document for-
mats (catalysts, C) for converting the data defined by business domain logic to and
from man or machine readable documents like printable reports, web pages, stand-
alone client forms, communication protocols for remote logic (another computer or
software) etc. We also have the enterprise structure (μ) and the compartment (i0)
which contains (can contain) the result of the calculation. Informally it means that
any enterprise is a “computer” calculating its budget. Result of this “calculation” is
kept in the accounting department (compartment, i0) data.

Fig. 4.3  Processing of rules in P systems based enterprise domain model

4  Towards P Systems Based Approach for Evolutionary Enterprise Application

52

4.4  �Towards Evolutionary Enterprise Applications

We see the concept of P-systems Π = (O, C, μ, ω1, ω2, … , ωm, R1, R2, …, Rm, io),
described by classes (O), catalysts (C), structure (μ), data (ω1, ω2, … , ωm) and rules
(R1, R2, …, Rm), as a roadmap towards evolutionary information systems.

In our understanding, the enterprise application is evolutionary, if software end
users, in collaboration with software developers, are able to change safely and easily
(according to changing requirements) the following: (1) classes (O) describing
domain concepts; (2) document formats (catalysts, C) that the system uses; (3) the
structure (μ) of the system: (4) data (ω1, ω2, … , ωm) can be changed anyway (we
can add as many lines as needed to documents or send as many documents as
needed); (5) calculation rules (R1, R2, …, Rm); and (6) the location (io) where the
calculation results are held.

We describe here (because of limited number of pages) only how we change
classes and document formats in current LIMS for CBPG project and let the other
two for our later papers.

4.4.1  �Classes Are Changed Using Archetypes
and Archetype Patterns

O is the finite and non-empty set of all possible classes (names of concepts and
groups of concepts as well as logical and computational models of these concepts
and groups of concepts) used in modelling of enterprises (then names and logical
models of concepts) and in enterprise application implementations (then computa-
tional models of these concepts). Let as suppose, that we have at least two subsets
of classes in O: (a) classes describing archetypes and archetype patterns (OA ⊂ O),
(b) classes describing business domain logic (OB ⊂ O; OA ⊂ OB).

Business archetypes and archetype patterns are originally designed and intro-
duced by Jim Arlow and Ila Neustadt [16]. Business archetype patterns (product,
party, order, inventory, quantity and rule), composed by business archetypes
(person’s name, address, phone number, etc.) are information models and describe
the universe of discourse of businesses as it is, neither referring to the software
requirements nor to the software design. For instance, in Fig. 4.4 the party arche-
type pattern is illustrated.

The party archetype pattern represents a (identifiable, addressable) unit that
may have a legal status and has some autonomous control over its actions. Persons
and organizations are types of parties. Party has different properties like party
contacts (phone number, e-mail, web address, and postal address), registered iden-
tifiers (passport, VAT number, domain name, stock exchange symbol, etc.) etc.
Each party can play different roles (patient, clinician, employee, customer, etc.)
and can be in different relationships (e.g. being married, having a child, studying
in school). Both roles and relationships are time limited (property valid in role and

G. Piho et al.

53

relationship archetypes). Role type is used to store common information (e.g.
constraints describing parties who can play the role) for a set of similar role
instances and relationship type is used to store common information (e.g. con-
straints describing which roles can form the relationship) for a set of a similar
relationship instances. In the current model only binary (more flexible and cleaner
than n-ary) relationships are used, which means that one relationship binds exactly
two related roles conditionally called as “provider” and “consumer”.

Let us suppose, that classes illustrated in Fig. 4.4 are realized in code, and that
we also have a database schema support for such classes (this is what we have in
CBPG LIMS project). This means, that we have database tables for recording party
instances (persons and organizations), role instances, relationship instances, rela-
tionship type instances and role type instances.

In a clinical laboratory, for instance, the common roles for persons are patient
(whose blood will be tested), clinician (who ordered the blood testing), and medical
technical assistant (MTA, who performed the blood testing). Normally in the
domain logic layer of enterprise applications in such case we have to realize Patient,
Clinician and MTA classes in code. In archetypes and archetype patterns based
approach, we use, we do not. We have only one RoleType class for all classes and
one Role class for all possible class instances (e.g. objects) of all possible classes.
Such an approach gives for us the possibility to add new “classes” even at runtime.
For instance, to add a new “class” named laboratory manager, the only thing to do
is to add a new record to the RoleType database table.

To “add new properties” in such an archetypes and archetype patterns based
approach, we have the property Characteristics (Fig. 4.4) in all our programmed

Fig. 4.4  Party archetype pattern

4  Towards P Systems Based Approach for Evolutionary Enterprise Application

54

classes. These are constructs similar to the RDF (Resource Description Framework)
triplets. This means, that the Characteristics property holds a collection of {cate-
gory, name, value, authorized by, valid from, valid to} records. For example the
notation “person is 176 cm tall, measured by Dr Smith at 3rd of May 2000” is a
characteristic with “body metrics” denoting category, “is tall” denoting name,
“176 cm” denoting value, “Dr Smith” denoting authorized by, and “3rd of May
2000” denoting valid from.

4.4.2  �Document Formats Are User Editable

We use document formats (e.g. end user editable files, DB records or values of prop-
erties) in number of places in current LIMS for CBPG project. For example, the
following end user editable script (content of a file)

first describes the automatically generated dialog, shown in Fig. 4.5, and then prints
the barcode (Fig. 4.6) according to entered, using this dialog, values.

Fig. 4.5  Fragment of
generated barcode printing
dialog

Fig. 4.6  Example of
generated barcode

G. Piho et al.

55

The other example is how we generate UI at runtime. For example, the UI,
illustrated in Fig. 4.7, is generated according to the following scripts.

First, the GridRange lists the properties, by their names, the master grid shows.
Next, the PropertyRange lists the properties the detail panel (left side panel of main
form) shows. Finally, the EditRange lists the properties the edit dialog shows.

This means that we have document formats (GridRange, PropertyRange,
EditRange) which describe documents (user interfaces). When we change docu-
ment formats, the user interfaces, and therefore the information system, will change.
As document formats are properties, it is possible to change the values of these
properties at runtime using, for example, reflection technology. Generally speaking
we use the document formats as catalysts (C) for mapping data described by busi-
ness domain logic classes to user or machine readable documents. Different map-
pings require varying levels of knowledge and authority from the end users.
Therefore an organisation deploying such a system should determine the ability of
users to perform a specific mapping, for example by specifying their roles and
responsibilities with the aid of a RACI (Responsible, Accountable, Consulted,
Informed) matrix.

Fig. 4.7  Screenshot of MyLIS (LIMS for CBPG) user interface

4  Towards P Systems Based Approach for Evolutionary Enterprise Application

56

4.5  �Conclusion

We see the concept of P-systems (Π = (O, C, μ, ω1, ω2, … , ωm, R1, R2, …, Rm, io)),
described by objects (O), catalysts (C), structure (μ), data (ω1, ω2, … , ωm) and rules
(R1, R2, …, Rm), as a roadmap towards evolutionary information systems. We follow
the software engineering triptych: to write software, the requirements must be pre-
scribed; to prescribe the requirements, the domain must be understood; to under-
stand the domain, we must study one.

We presented and exemplified the P systems based enterprise domain model. We
treated an enterprise as a membrane-computing structure and utilized P system
notions, notations and formalisms in modelling of enterprises and enterprise busi-
ness processes.

The wider goal of our research is to develop techniques for development of enter-
prise applications that software end users, in collaboration with software develop-
ers, are able to change safely and easily according to changing requirements.

In our understanding this P systems based enterprise domain model can lead us
towards evolutionary enterprise applications. In our understanding, the enterprise
application is evolutionary, if software end users, in collaboration with software
developers, are able to change safely and easily (according to changing require-
ments) the following:

	1.	 Classes (O) describing domain concepts. (For example being able to define a
new domain concept patient, using some archetypal language (Sect. 4.4.1), so
that patient is a role that only party who is a person (Fig. 4.4) can play).

	2.	 Document formats (catalysts, C) that the system uses.
	3.	 The structure (μ) of a system.
	4.	 Data (ω1, ω2, … , ωm) can be changed anyway. We can add as many lines as

needed to documents or send as many documents as needed.
	5.	 Calculation rules (R1, R2, …, Rm).
	6.	 Location (io) where calculation results are held.

Acknowledgments  This work is supported by Estonian Ministry of Education and research
(SF0140013s10); by Tallinn University of Technology (Estonia); by University of Leeds (United
Kingdom); by Cancer Research UK.

References

	 1.	ASTM (2006) E1578-06 Standard guide for laboratory information management systems
(LIMS). ASTM International. http://www.astm.org/Standards/E1578.htm. Accessed 4 June
2014

	 2.	Bjørner D (2007) Domain theory: practice and theories (a discussion of possible research top-
ics). Macau SAR, China. http://www.imm.dtu.dk/~dibj/ictac-paper.pdf. Accessed 4 June 2014

	 3.	Bjørner D (2006) Software engineering. In: Abstraction and modelling. Texts in theoretical
computer science. The EATCS series, vol 1. Springer, Heidelberg

	 4.	Fowler M (2003) Patterns of enterprise application architecture. Addison-Wesley, Boston, MA

G. Piho et al.

http://www.astm.org/Standards/E1578.htm
http://www.imm.dtu.dk/~dibj/ictac-paper.pdf

57

	 5.	Chappell D (2006) Comparing .NET and Java: the view from 2006. Microsoft TechEd
Developers, Barcelona

	 6.	Paun G (2004) Introduction to membrane computing. http://psystems.disco.unimib.it/down-
load/MembIntro2004.pdf. Accessed 30 Aug 2011

	 7.	Piho G, Tepandi J, Puusep V (2013) P systems based enterprise domain model. Research
Report. Tallinn University of Technology

	 8.	Layzell P, Loucopoulos P (1988) A rule-based approach to the construction and evolution of
business information systems. In: Software maintenance

	 9.	Clark P, Lobsitz R, Shields J (1989) Documenting the evolution of an information system. In:
Aerospace and Electronics Conference, NAECON 1989. Proceedings of the IEEE 1989
National

	10.	Oei J, Proper H, Falkenberg E (1992) Modelling the evolution of information systems.
Department of Information Systems, University of Nijmegen, Nijmegen, The Netherlands

	11.	Liu C, Chang S (1992) A visual specification model for evolutionary information systems. In:
Computing and information, 1992. Proceedings. ICCI ’92

	12.	Shifrin M, Kalinina E, Kalinin E (2002) MEDSET – an integrated technology for modelling,
engineering, deployment, support and evolution of information systems. In: Computer-based
medical systems 2002 (CBMS 2002)

	13.	Wang Y, Liu X, Ye R (2008) Ontology evolution issues in adaptable information management
systems. In: e-Business engineering, 2008. ICEBE ’08

	14.	Aboulsamh M, Davies J (2010) A metamodel-based approach to information systems evolu-
tion and data migration. In: Software engineering advances (ICSEA), 2010 fifth international
conference

	15.	Ralyté J, Arni-Bloch N, Léonard M (2010) Information systems evolution: a process model for
integrating new services. In: AMCIS 2010 proceedings

	16.	Arlow J, Neustadt I (2003) Enterprise patterns and MDA: building better software with arche-
type patterns and UML. Addison-Wesley, Boston, MA

4  Towards P Systems Based Approach for Evolutionary Enterprise Application

http://psystems.disco.unimib.it/download/MembIntro2004.pdf
http://psystems.disco.unimib.it/download/MembIntro2004.pdf

	Chapter 4: Towards P Systems Based Approach for Evolutionary Enterprise Application
	4.1 Introduction
	4.2 Related Works Towards Evolutionary Information Systems
	4.3 P Systems Based Enterprise Domain Model
	4.4 Towards Evolutionary Enterprise Applications
	4.4.1 Classes Are Changed Using Archetypes and Archetype Patterns
	4.4.2 Document Formats Are User Editable

	4.5 Conclusion
	References

