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    Abstract     Software architectures are frequently represented as large models where 
many competing quality attributes have to be taken into account. In this context, 
there may be a large number of possible alternative architectural transformations 
that the architecture designer has to deal with. The complexity and dimensions of 
the solution space make that fi nding the most appropriate architecture considering 
several quality attributes is a challenging and time-consuming task. In this paper, we 
present a model transformation framework designed to automate the selection and 
composition of competing architectural model transformations. We also introduce a 
case study showing that this framework is useful for rapid prototyping through 
model transformations.  
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24.1         Introduction 

 Since software systems are constructed to satisfy business goals, the design  activities 
and especially architecture design must also be responsive to those business goals 
[ 1 ]. Business goals are described in [ 2 ] as  high-level objectives of the business, 
organization, or system that capture the reasons why a system is needed and guide 
decisions at various levels within the software development life cycle . According to 
[ 3 ], the view that the rationale for a Non-Functional Requirement (NFR) 1  can be 
found in business goals gives software and system architects a new lens through 
which to examine and realize the NFRs of software systems. 

 The dimensions of the architectural models along with the number of alternative 
architectural strategies to be applied lead to a situation, where architects have to be 
given support in the candidate architectures exploration. Otherwise, architects man-
ual work is time consuming, and essential design decisions are not always well 
motivated. 

 Model-driven Development (MDD) emphasizes the use of models and models 
transformations as the primary artefacts for automating the software production 
process. However, in a previous study [ 4 ], we showed that there is still a lack of 
MDD approaches, which starting from requirements, benefi t from this automation. 
Most of the MDD approaches only consider system functional requirements, with-
out properly integrating NFRs into their development processes [ 2 ]. Also, 
approaches which make use of the knowledge about architectural strategies imple-
mented as transformations in the context of design space explorations are lacking. 

 There exist several partial solutions to deal with design space evaluation with 
respect to NFRs [ 5 – 7 ] and NFRs in design decisions [ 3 ,  8 ,  9 ]. However, approaches 
which consider these two dimensions in an integrated MDD environment are not 
common. 

 In this paper, we introduce a MDD approach, tailored for embedded software 
architecture design, where architecture refi nements are implemented as model 
transformations driven by NFRs and goals. The approach is fully automated making 
use of: (1)  higher-order transformations  (HOT) in ATL with which to generate 
model refi nements for specifi c design model; (2) extended goals specifi cation from 
an extension of the Requirements Defi nition and Analysis Language (RDAL) [ 10 ]; 
(3) and fi nally the knowledge about the impact of particular model transformations 
of different quality properties. 

 The remainder of this paper is structured as follows. Section  24.2  introduces the 
problem statement, assumptions and challenges. Section  24.3  introduces our 
approach giving details about the use of MDD knowledge to select the architectural 
transformation, and the composition of architecture refi nements. Section  24.4  pres-
ents a case study using a theoretic example to show the feasibility of the approach. 
Finally, Sect.  24.5  presents the conclusions and further work.  

1   Some authors use different names, remarkably “quality attribute requirement” or “quality require-
ment” as a synonymous of NFR. 
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24.2      Problem Statement and Challenges 

 This section discusses in details the problem that we address in this paper. First, we 
present the inputs and assumptions of our contribution. Then we enumerate the 
challenges raised by current limitations in interpreting this knowledge. 

 To our understanding, MDE processes for embedded systems are keen on 
 providing the level of information considered as the main inputs of the method:

•    The model of a system architecture that represents software and hardware com-
ponents, along with the bindings between them. Such model constitutes a candi-
date solution that could be refi ned or improved through applying tailored 
architectural model transformations.  

•   System NFR and goals that must be met by the system. For example, constraints 
related to: end-to-end data fl ow latency; services response time; availability; and 
power consumption are part of usual NFR of embedded systems. In addition, the 
defi nition of quality goals refi nes some of the NFR into an objective of minimiz-
ing or maximizing a quality attribute. For example, minimizing power consump-
tion. The main difference between a quality goal and a NFR is that the latter 
gives a strict defi nition when to approve or discard a solution while the former 
aims at improving the characteristic of a solution (as long as all the requirements 
are met).  

•   A set of model transformations that implement refi nements or improvements of 
the source model, each of them focusing on increasing the satisfaction of a qual-
ity objective (reducing power consumption, increasing availability, etc.).    

 In the following, we explain the challenges raised by merging this information in 
order to automate design decisions. 

 As explained in the Introduction section, our objective is to take advantage of the 
formalization of (1) requirements, (2) sensitivities, and (3) model transformations in 
order to automate the design space exploration towards an architecture that satisfi es 
requirements and reach goals at best. 

 The fi rst challenge raised by this objective comes from the necessity of solving 
tradeoffs between competing goals. For example, availability can be increased 
by redundancy patterns to the price of increasing the system’s power consumption. 
To the best of our knowledge, there are no existing approaches that would describe 
how to solve the tradeoff between quality attributes expressed as design pattern 
(as a model transformation). When a design pattern is implemented as a model 
transformation improving a quality goal, solving the competition between these 
goals leads to selecting and composing these model transformations. Indeed, trans-
formations are usually defi ned to be generic (like design patterns) whereas they will 
compete with other transformations when used in practice. As a consequence, a 
combination of competing model transformations should be used during the design 
of an embedded system. 

 The second challenge comes from the size of the design space to explore in order 
to study such tradeoffs. To answer this challenge, it is thus of prime importance to 
automate the selection and composition of model transformations. Of course, the 
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quality of the exploration algorithm is very important in this context, as well as the 
implementation of a framework to enable the selection and composition of model 
transformations. The evaluation and optimization of the exploration algorithm is 
left as a future work of this contribution, which focuses fi rst on automating the 
selection and composition of model transformations. 

 Finally, the last main challenge of this approach is the management of dependen-
cies between model transformations, as model transformations can be used sequen-
tially and potentially with an imposed order. In this paper, we consider model 
transformations that apply to a given element as competing and independent trans-
formations: only one of them can be selected and applied to this element indepen-
dently of other transformations.  

24.3      Method Overview 

 At coarse grain, model transformations are grouped into two main categories of 
model transformation languages: (1) rule-based transformation languages, or (2) 
imperative transformation languages [ 5 ]. Rule-based transformation languages, 
such as ATL and QVT-R, are of great interest in our context since they express 
model transformation logics in a way that is easy to interpret and adapt. Indeed, 
modifying the pattern matching part of a transformation rule is suffi cient to modify 
the set of elements this rule applies to. In addition, superimposition helps to com-
bine different sets of rules [ 11 ]. Contrasting with rule-based formalisms, the adapta-
tion of imperative transformation languages requires a deep understanding of the 
control fl ow graph that leads to the execution of one or another transformation. 
Model transformations we deal with in this paper are endogenous (AADL [ 12 ] to 
AADL model transformations) in order to refi ne or improve the architecture of an 
embedded system while representing the result of this refi nement in an analyzable 
model (using AADL as an output language). 

 To facilitate aforementioned pattern matching modifi cations, thus creating new 
model transformation rules in an automated manner, the artifacts described hereaf-
ter have been designed. 

 The Transformation Rules Catalog (TRC) was designed to gather MDD knowl-
edge, describing not only available model transformations, but also their impact on 
quality attributes. Figure  24.1a  presents defi ned metamodel for the TRC artifact. 
Quality attributes are defi ned in the RDAL specifi cation. The impact of a model 
transformation on a given quality attribute is specifi ed by an integer value ranging 
from −5 (very negative effect on the quality attribute) to +5 (very positive impact on 
the quality attribute). It is thus of the responsibility of the transformations specifi er 
to defi ne the impact of each of the transformations on the defi ned quality attributes.

   The Transformations Iteration Plan (TIP) is an artifact with which to describe 
which transformation rules should be applied and how to produce the fi nal 
 architecture refi nement rules. Its metamodel is presented on the Fig.  24.1b . 
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 In the following subsections, we present the overall process that we have imple-
mented in order to automate the specifi c architecture refi nements generation. 
Figure  24.2  illustrates this process and its three main activities.

24.3.1       Candidate Transformation Identifi cation 

 In order to identify the transformations that can be applied to a particular element of 
the input model, we introduce a method based on the steps presented hereafter. 

  Step 1.  Application of the HOT that takes as input the generic model transforma-
tions referenced in the TRC and generates new model transformations that after 
their application on the architecture model produce lists of transformations that can 
be applied to each element of the input model. 

  Step 2.  Execution of transformations generated in step 1. Data collected after 
 executing all of the newly created transformations allow creating a set of tuples 
< element, list of transformations >. It constitutes the output of the pattern-matching 
phase of the transformations execution engine; 

 Figure  24.3  illustrates the ATL implementation of the HOT where rule  TR1  is 
transformed into a new rule  TR1’ . Rule  TR1  originally transforms an input element 
of type  A  (that conforms to  SimpleMetamodel ) into an output element of type that 
conforms to the same metamodel. On the right side of Fig.  24.3  the output of the 

  Fig. 24.1    Metamodels ( a ) transformation rules catalog, ( b ) transformations iteration plan       

  Fig. 24.2    Process schema       
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HOT is a rule  TR1’  that transforms all the elements of type  A  (same pattern match-
ing clause as the original rule  TR1 ) into an output element  out  of type  Result  from 
the  PatternMatching  metamodel (defi ned by us). The output element is then initial-
ized in the following manner:  key  attribute receives the name (a unique identifi er) of 
the element that was matched by this rule, and  value  attribute is initialized with a list 
of names of the matched rules that apply, in this case  TR1 . The execution of the 
rule  TR1 ’ on a given source model conforming to  SimpleMetamodel  outputs a XMI 
fi le containing tuples of all possible rules (among those referenced in TRC) that can 
be applied to each source model element.

   Each of the transformations declared in the TRC, when applied the aforemen-
tioned steps 1 and 2, outputs the result of the pattern matching condition checking 
applied on the model, giving the set of candidate transformations for a given design 
element.  

24.3.2     Transformations Selection 

 We distinguish the following inputs to the selection process: (1) Set of tuples 
 < element, list of transformations > resulting from the candidate transformations 
identifi cation; (2) RDAL specifi cation—information about the quality attributes to 
optimize along with responsible for them architecture elements (sensitivities); (3) 
TRC artifact—information on the judged impact that each transformation has with 
respect to all the quality attributes which are important for the system’s architecture. 

 The output of the selection process is the Transformations Iteration Plan (TIP), 
which defi nes which model transformations should be used in an iteration of the 
architecture refi nement. It consists of the actual tuples < element, transformation > to 
be applied. Figure  24.1b  shows the ecore metamodel of the TIP artifact. 
 Element7ransformation  meta-class defi nes aforementioned tuples describing which 
transformation (attribute:  ruleld ) is going to be applied on which model element 
(attribute:  elementld  is the element’s qualifi ed name which identifi es every element 
in deterministic manner). After the iteration planning, the architecture refi nement 
composition is to be performed. 

rule  TR1 {
from
   in : SimpleMetamodel!A 
to 
    out : SimpleMetamodel!A ( 
       key <- in.qualifiedName ) 

}

rule  TR1’ {
from
    in : SimpleMetamodel!A 
to 
    out : PatternMatching!Result ( 
       key <- in.name ) 
do { 
       out.value.add(‘TR1’); 
} 

HOT

  Fig. 24.3    Schema of the higher-order transformation for pattern matching       
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 The inputs presented above (set of tuples, RDAL specifi cation, and TRC) 
 combines several factors to be considered while analyzing possible architectural 
refi nements. These factors can not be analyzed in isolation, as their complex rela-
tionships have to be considered all together. For this purpose, different multi- crite-
ria decision making methods are known (e.g. AHP [ 7 ]). They can be easily integrated 
to our approach to analyze provided input data from the goals’ specifi cation and 
MDD knowledge. We propose to use simple rules with which to select transforma-
tions of the best possible impact on targeted quality goals. 

 The selection process is illustrated on Fig.  24.4 . In Step 1, we iterate on the ele-
ments for which some applicable transformations were found (candidate tuples). 
For each of these elements, we retrieve from the RDAL specifi cation a list of sensi-
tivities. Sensitivity is simply a reference to a quality attribute from an element of the 
architecture. In the retrieved list, sensitivities are ordered with respect to their prior-
ity in RDAL metamodel. On Fig.  24.4 ,  elementA  is sensitive, by order of impor-
tance, to quality attributes  QA4 ,  QA1  and  QA3 . In Step 2, for each candidate 
transformation to be applied on  elementA , the list of quality impact values is 
retrieved from the TRC specifi cation. E.g.  TR1  has negative impact (−1) on quality 
attribute  QA4 , a positive (+3) impact on  QA1 , and a negative impact (−2) on  QA3 . 
In Step 3, values obtained in step 2 are then used for the selection of rules to be 
applied. Our tool performs pair-wise comparisons considering the priority of the 
quality attribute and the impact value. However, different multi criteria decision 
making methods can be applied here. In Step 4, the output of the selection process 
is a list of transformations to be applied on particular model element. They are 
ordered from the best to the worst with respect to the quality properties that should 
be taken into account. Optimal refi nement selection is a very challenging task. 
However, our selection algorithm along with the refi nements generation provides 
means to review the refi nements space in an effi cient manner. Identifi ed solutions 
should be evaluated in the proposed in TIP order, validating the correctness of the 
identifi ed refi nements if the already search solutions are not satisfactory, and alter-
natives have to be explored.

  Fig. 24.4    Transformations selection process       
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24.3.3         Transformations Composition 

 The composition of architecture refi nement is performed by using the HOT to trans-
form original rules into a new set of rules which are going to be applied on particu-
lar model elements. This process takes as input the rules defi nitions (TRC) and also 
the refi nements confi gurations (TIP). 

 Figure  24.5  illustrates the realization of mentioned above refi nements generation 
with an ATL implementation of the HOT where rule  TR1  is transformed into a new 
rule  TR1” . Rule  TR1  was originally specifi ed to transform all the elements of type 
A in source metamodel  SimpleMetamodel. TR1”  uses the transformation mecha-
nism of the original rule but with a limited set of elements for which this rule has 
been selected: as depicted on Fig.  24.5  (changed pattern matching condition in the 
output transformation  TR1” ).

   Finally, the framework implemented to support presented process executes gen-
erated model transformations on the input AADL model to produce a refi ned AADL 
model. If the evaluation of the output model is not satisfactory, the architect has the 
possibility to continue the design space exploration from step 2 (i.e. transforma-
tions selection), to produce output models with different results in terms of quality 
attribute. 

 Next section details designed intermediate artifacts and shows their use in the 
automation of the complete process introduced in this section.   

24.4      Case Study 

 Architectures of embedded systems are frequently very large models where many 
competing quality attributes have to be taken into account. At the same time, the 
amount of possible architectural refi nements increases as developers are becoming 
familiar with model-driven techniques. However, the complexity and the dimen-
sions of the solution space make that fi nding the most correct solution is a challeng-
ing, time-consuming task. 

 In this section, we present a case study where given candidate architecture is 
refi ned in order to ensure the satisfaction of two quality attributes:  MemoryFootprint  

rule  TR1 {
from
   in : SimpleMetamodel!A 
to 
   out : SimpleMetamodel!A ( 
      elem <- in.elem )

}

rule  TR1’’ {
from
    in : SimpleMetamodel!A (
       in.elemID = ‘elem1’ or … or
       in.elemID = ‘elemN’ ) 

to 
       out : SimpleMetamodel!A (
         elem <- in.elem )

} 

HOT

  Fig. 24.5    Schema of the HOT for actual transformations generation       
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and  TimingPerformance .  Memory footprint  refers to the amount of memory 
resources that the running system needs for proper execution. It is one of the 
 characteristics of embedded systems which possess limited memory resources. 
Optimization of this quality property is often a challenging task.  Timing perfor-
mance  is one of the most important quality properties of embedded real-time 
 systems. At design time, architects have to ensure that it is possible to satisfy the 
imposed on the system timing constraints. The application of the process presented 
in this paper is automated by JAVA/ATL implementation. 

 This case study bases on a theoretical example to show how our approach deals 
with the complexity of embedded systems’ architectures design. In this example, 
where input model consists of 4 elements, 2 transformations apply to 3 of them, and 
another 2 transformations apply to the fourth element. Thus we get ten alternative 
possible architectures. Even in this very simple example, the automation of archi-
tectural refi nement proves benefi cial, as the different refi nement combinations are 
not always easy to be confi gured manually. 

 Figure  24.6a  presents a simple system specifi cation where three threads of type 
 Producer  ( T1 ,  T2 ,  T4 ) interact with one  Consumer  thread ( T3 ) through event data 
ports. Moreover, the specifi cation consists of the defi nitions of a system, one pro-
cessor with one process running.

   In the requirements specifi cation (RDAL), important quality attributes are 
assigned to elements of the architecture. This assignment is called  sensitivity . 
It indicates the quality attributes to be considered while transforming sensitive 
 elements. In our example, connections  cnx1  and  cnx2 , as well as input event data 
port  p_in  are sensitive to  MemoryFootprint  while for  cnx3  the priority is assigned to 
 TimingPerformance  (see Fig.  24.6b ). 

 In our example, TRC consists of four rules. Rules  TR2  and  TR4  are specifi ed to 
transform an  in event data port  and rules  TR1  and  TR3  apply to a  connection . 
These transformations can be used to implement lock-free queues for managing 
delayed communications between periodic tasks [ 13 ]. The underlying theory is 

  Fig. 24.6    Case study artifacts: ( a ) AADL specifi cation, ( b ) RDAL specifi cation       
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presented in [ 14 ]. Transformations  TR1  and  TR2  implement queues accesses with 
lookup tables that contain indexes of the queue which a task can access for each of 
its activation (over a hyper-period). Transformations  TR3  and  TR4  implement 
queues accesses by computing indexes at runtime. Thus,  TR3  and  TR4  consume 
more memory but less CPU time in comparison to  TR1  and  TR2 . Details about 
their infl uence on particular quality attributes can be found in Table  24.1 .

   In order to validate the different steps described on Fig. 24.3  Sect. ( 24.3 ), we have 
executed the process on the use-case described in previous subsection. Several con-
fi gurations of the architectural refi nements have been automatically identifi ed and 
necessary tailored transformations have been generated. Figure  24.7  shows the out-
put of that process for two successive iterations of the selection algorithm.

•     For iteration 1, the result shows that the architecture refi nement will contain dif-
ferent transformations applied to different model elements, since three elements 
of the input model are sensitive to  MemoryFootprint  quality attribute, they are 
transformed by the low memory footprint version of available transformations 
( TR3 ). One input element is transformed by the transformation resulting in lower 
CPU consumption, as this element is primarily sensitive to  TimingPerformance .  

•   For iteration 2, the identifi ed architecture refi nement sets the transformation that 
is preferable for improving the  TimingPerformance  of the architecture ( TR1 ) on 
one more element of the input model in comparison to the iteration 1 (element 
highlighted by a dashed line on Fig.  24.7 ).    

 The resulting architecture refi nements produced in each of the iterations are next 
executed in RAMSES execution framework [ 13 ], producing candidate architectures 
that need to be validated by the analysis tools and domain experts. 

   Table 24.1    Quality impact from transformation rules catalog   

 Transformation Rule 

 TR1  TR2  TR3  TR4 

 Quality property  Memory Footprint  −4  −4   2   2 
 Timing Performance   5   5  −3  −3 

  Fig. 24.7    Identifi ed architectural refi nements (TIP artifact)       
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 The main outcome of this contribution is to automate the design space explora-
tion, based on the selection and composition of legacy transformations in architec-
tural refi nement and improvement processes. The performed case study shows 
design space exploration by the automated production of different candidate archi-
tectures. Moreover, it proves to be useful in rapid prototyping and evaluation of 
embedded systems architectures, with respect to specifi ed quality properties.  

24.5      Conclusions and Further Work 

 It is well accepted in the software architecture community that goals and quality 
attribute requirements are the most important drivers of architecture design [ 15 ]. 
However, dealing with several competing goals and quality attribute requirements 
to perform well-informed architectural design decisions is not an easy task. MDD 
techniques, based on explicit modeling of these goals and quality attribute require-
ments, and design decisions (this latter as model transformations) will allow not 
only to perform automated and documented design decisions but to preserve impor-
tant architectural knowledge. In this paper, we introduced a specifi c MDD approach 
tailored for embedded software architecture design with the aim of helping software 
architects to perform these informed design decisions based on automating the 
selection and composition of competing model transformations [ 16 ]. The main con-
tribution of the paper is to bring together quality attribute requirements to design 
decisions (represented as model transformations) and to use this information to 
automate the selection of architectural refi nements based on these relationships. 

 Currently, some improvements are being planned in the architecture refi nement 
framework, among them: integrating an evaluation process for the resulting archi-
tecture to quantitatively measure the resulting architecture (regarding the goals and 
quality requirements stated); reviewing the RDAL metamodel to be able to capture 
more expressive requirements; and enriching our implementation tool by adding a 
user-friendly interface to allow architects to easily defi ne and test different architec-
tural transformations. Finally, we are developing a tool framework to automate all 
this process and we are planning to use this tool to conduct an industrial case study 
in the context of a medium-size embedded system development project.     
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