
295M. José Escalona et al. (eds.), Information System Development: Improving
Enterprise Communication, DOI 10.1007/978-3-319-07215-9_24,
© Springer International Publishing Switzerland 2014

 Abstract Software architectures are frequently represented as large models where
many competing quality attributes have to be taken into account. In this context,
there may be a large number of possible alternative architectural transformations
that the architecture designer has to deal with. The complexity and dimensions of
the solution space make that fi nding the most appropriate architecture considering
several quality attributes is a challenging and time-consuming task. In this paper, we
present a model transformation framework designed to automate the selection and
composition of competing architectural model transformations. We also introduce a
case study showing that this framework is useful for rapid prototyping through
model transformations.

 Keywords Model Transformations • Architecture Refi nement • NFR

 Chapter 24
 An Automated Approach for Architectural
Model Transformations

 Grzegorz Loniewsli , Etienne Borde , Dominique Blouin , and Emilio Insfran

 G. Loniewsli (*) • E. Borde
 Institute Telecom , TELECOM ParisTech ,
 LTCI—UMR 514, 46, rue Barrault , 75013 Paris , France
 e-mail: grzegorz.loniewski@telecomparistech.fr; etienne.borde@telecomparistech.fr

 D. Blouin
 Lab-STICC , Universite de Bretagne-Sud, Centre de Recherche ,
 BP 92116 , 56321 Lorient Cedex , France
 e-mail: dominique.blouin@univ-ubs.fr

 E. Insfran
 Department of Computer Science and Computation , Universitat Politècnica de València ,
 Camino de Vera, s/n , 46022 Valencia , Spain
 e-mail: einsfran@dsic.upv.es

mailto:grzegorz.loniewski@telecomparistech.fr
mailto:etienne.borde@telecomparistech.fr
mailto:dominique.blouin@univ-ubs.fr
mailto:einsfran@dsic.upv.es

296

24.1 Introduction

 Since software systems are constructed to satisfy business goals, the design activities
and especially architecture design must also be responsive to those business goals
[1]. Business goals are described in [2] as high-level objectives of the business,
organization, or system that capture the reasons why a system is needed and guide
decisions at various levels within the software development life cycle . According to
[3], the view that the rationale for a Non-Functional Requirement (NFR) 1 can be
found in business goals gives software and system architects a new lens through
which to examine and realize the NFRs of software systems.

 The dimensions of the architectural models along with the number of alternative
architectural strategies to be applied lead to a situation, where architects have to be
given support in the candidate architectures exploration. Otherwise, architects man-
ual work is time consuming, and essential design decisions are not always well
motivated.

 Model-driven Development (MDD) emphasizes the use of models and models
transformations as the primary artefacts for automating the software production
process. However, in a previous study [4], we showed that there is still a lack of
MDD approaches, which starting from requirements, benefi t from this automation.
Most of the MDD approaches only consider system functional requirements, with-
out properly integrating NFRs into their development processes [2]. Also,
approaches which make use of the knowledge about architectural strategies imple-
mented as transformations in the context of design space explorations are lacking.

 There exist several partial solutions to deal with design space evaluation with
respect to NFRs [5 – 7] and NFRs in design decisions [3 , 8 , 9]. However, approaches
which consider these two dimensions in an integrated MDD environment are not
common.

 In this paper, we introduce a MDD approach, tailored for embedded software
architecture design, where architecture refi nements are implemented as model
transformations driven by NFRs and goals. The approach is fully automated making
use of: (1) higher-order transformations (HOT) in ATL with which to generate
model refi nements for specifi c design model; (2) extended goals specifi cation from
an extension of the Requirements Defi nition and Analysis Language (RDAL) [10];
(3) and fi nally the knowledge about the impact of particular model transformations
of different quality properties.

 The remainder of this paper is structured as follows. Section 24.2 introduces the
problem statement, assumptions and challenges. Section 24.3 introduces our
approach giving details about the use of MDD knowledge to select the architectural
transformation, and the composition of architecture refi nements. Section 24.4 pres-
ents a case study using a theoretic example to show the feasibility of the approach.
Finally, Sect. 24.5 presents the conclusions and further work.

1 Some authors use different names, remarkably “quality attribute requirement” or “quality require-
ment” as a synonymous of NFR.

G. Loniewsli et al.

297

24.2 Problem Statement and Challenges

 This section discusses in details the problem that we address in this paper. First, we
present the inputs and assumptions of our contribution. Then we enumerate the
challenges raised by current limitations in interpreting this knowledge.

 To our understanding, MDE processes for embedded systems are keen on
 providing the level of information considered as the main inputs of the method:

• The model of a system architecture that represents software and hardware com-
ponents, along with the bindings between them. Such model constitutes a candi-
date solution that could be refi ned or improved through applying tailored
architectural model transformations.

• System NFR and goals that must be met by the system. For example, constraints
related to: end-to-end data fl ow latency; services response time; availability; and
power consumption are part of usual NFR of embedded systems. In addition, the
defi nition of quality goals refi nes some of the NFR into an objective of minimiz-
ing or maximizing a quality attribute. For example, minimizing power consump-
tion. The main difference between a quality goal and a NFR is that the latter
gives a strict defi nition when to approve or discard a solution while the former
aims at improving the characteristic of a solution (as long as all the requirements
are met).

• A set of model transformations that implement refi nements or improvements of
the source model, each of them focusing on increasing the satisfaction of a qual-
ity objective (reducing power consumption, increasing availability, etc.).

 In the following, we explain the challenges raised by merging this information in
order to automate design decisions.

 As explained in the Introduction section, our objective is to take advantage of the
formalization of (1) requirements, (2) sensitivities, and (3) model transformations in
order to automate the design space exploration towards an architecture that satisfi es
requirements and reach goals at best.

 The fi rst challenge raised by this objective comes from the necessity of solving
tradeoffs between competing goals. For example, availability can be increased
by redundancy patterns to the price of increasing the system’s power consumption.
To the best of our knowledge, there are no existing approaches that would describe
how to solve the tradeoff between quality attributes expressed as design pattern
(as a model transformation). When a design pattern is implemented as a model
transformation improving a quality goal, solving the competition between these
goals leads to selecting and composing these model transformations. Indeed, trans-
formations are usually defi ned to be generic (like design patterns) whereas they will
compete with other transformations when used in practice. As a consequence, a
combination of competing model transformations should be used during the design
of an embedded system.

 The second challenge comes from the size of the design space to explore in order
to study such tradeoffs. To answer this challenge, it is thus of prime importance to
automate the selection and composition of model transformations. Of course, the

24 An Automated Approach for Architectural Model Transformations

298

quality of the exploration algorithm is very important in this context, as well as the
implementation of a framework to enable the selection and composition of model
transformations. The evaluation and optimization of the exploration algorithm is
left as a future work of this contribution, which focuses fi rst on automating the
selection and composition of model transformations.

 Finally, the last main challenge of this approach is the management of dependen-
cies between model transformations, as model transformations can be used sequen-
tially and potentially with an imposed order. In this paper, we consider model
transformations that apply to a given element as competing and independent trans-
formations: only one of them can be selected and applied to this element indepen-
dently of other transformations.

24.3 Method Overview

 At coarse grain, model transformations are grouped into two main categories of
model transformation languages: (1) rule-based transformation languages, or (2)
imperative transformation languages [5]. Rule-based transformation languages,
such as ATL and QVT-R, are of great interest in our context since they express
model transformation logics in a way that is easy to interpret and adapt. Indeed,
modifying the pattern matching part of a transformation rule is suffi cient to modify
the set of elements this rule applies to. In addition, superimposition helps to com-
bine different sets of rules [11]. Contrasting with rule-based formalisms, the adapta-
tion of imperative transformation languages requires a deep understanding of the
control fl ow graph that leads to the execution of one or another transformation.
Model transformations we deal with in this paper are endogenous (AADL [12] to
AADL model transformations) in order to refi ne or improve the architecture of an
embedded system while representing the result of this refi nement in an analyzable
model (using AADL as an output language).

 To facilitate aforementioned pattern matching modifi cations, thus creating new
model transformation rules in an automated manner, the artifacts described hereaf-
ter have been designed.

 The Transformation Rules Catalog (TRC) was designed to gather MDD knowl-
edge, describing not only available model transformations, but also their impact on
quality attributes. Figure 24.1a presents defi ned metamodel for the TRC artifact.
Quality attributes are defi ned in the RDAL specifi cation. The impact of a model
transformation on a given quality attribute is specifi ed by an integer value ranging
from −5 (very negative effect on the quality attribute) to +5 (very positive impact on
the quality attribute). It is thus of the responsibility of the transformations specifi er
to defi ne the impact of each of the transformations on the defi ned quality attributes.

 The Transformations Iteration Plan (TIP) is an artifact with which to describe
which transformation rules should be applied and how to produce the fi nal
 architecture refi nement rules. Its metamodel is presented on the Fig. 24.1b .

G. Loniewsli et al.

299

 In the following subsections, we present the overall process that we have imple-
mented in order to automate the specifi c architecture refi nements generation.
Figure 24.2 illustrates this process and its three main activities.

24.3.1 Candidate Transformation Identifi cation

 In order to identify the transformations that can be applied to a particular element of
the input model, we introduce a method based on the steps presented hereafter.

 Step 1. Application of the HOT that takes as input the generic model transforma-
tions referenced in the TRC and generates new model transformations that after
their application on the architecture model produce lists of transformations that can
be applied to each element of the input model.

 Step 2. Execution of transformations generated in step 1. Data collected after
 executing all of the newly created transformations allow creating a set of tuples
< element, list of transformations >. It constitutes the output of the pattern-matching
phase of the transformations execution engine;

 Figure 24.3 illustrates the ATL implementation of the HOT where rule TR1 is
transformed into a new rule TR1’ . Rule TR1 originally transforms an input element
of type A (that conforms to SimpleMetamodel) into an output element of type that
conforms to the same metamodel. On the right side of Fig. 24.3 the output of the

 Fig. 24.1 Metamodels (a) transformation rules catalog, (b) transformations iteration plan

 Fig. 24.2 Process schema

24 An Automated Approach for Architectural Model Transformations

300

HOT is a rule TR1’ that transforms all the elements of type A (same pattern match-
ing clause as the original rule TR1) into an output element out of type Result from
the PatternMatching metamodel (defi ned by us). The output element is then initial-
ized in the following manner: key attribute receives the name (a unique identifi er) of
the element that was matched by this rule, and value attribute is initialized with a list
of names of the matched rules that apply, in this case TR1 . The execution of the
rule TR1 ’ on a given source model conforming to SimpleMetamodel outputs a XMI
fi le containing tuples of all possible rules (among those referenced in TRC) that can
be applied to each source model element.

 Each of the transformations declared in the TRC, when applied the aforemen-
tioned steps 1 and 2, outputs the result of the pattern matching condition checking
applied on the model, giving the set of candidate transformations for a given design
element.

24.3.2 Transformations Selection

 We distinguish the following inputs to the selection process: (1) Set of tuples
 < element, list of transformations > resulting from the candidate transformations
identifi cation; (2) RDAL specifi cation—information about the quality attributes to
optimize along with responsible for them architecture elements (sensitivities); (3)
TRC artifact—information on the judged impact that each transformation has with
respect to all the quality attributes which are important for the system’s architecture.

 The output of the selection process is the Transformations Iteration Plan (TIP),
which defi nes which model transformations should be used in an iteration of the
architecture refi nement. It consists of the actual tuples < element, transformation > to
be applied. Figure 24.1b shows the ecore metamodel of the TIP artifact.
 Element7ransformation meta-class defi nes aforementioned tuples describing which
transformation (attribute: ruleld) is going to be applied on which model element
(attribute: elementld is the element’s qualifi ed name which identifi es every element
in deterministic manner). After the iteration planning, the architecture refi nement
composition is to be performed.

rule TR1 {
from
 in : SimpleMetamodel!A
to
 out : SimpleMetamodel!A (
 key <- in.qualifiedName)

}

rule TR1’ {
from
 in : SimpleMetamodel!A
to
 out : PatternMatching!Result (
 key <- in.name)
do {
 out.value.add(‘TR1’);
}

HOT

 Fig. 24.3 Schema of the higher-order transformation for pattern matching

G. Loniewsli et al.

301

 The inputs presented above (set of tuples, RDAL specifi cation, and TRC)
 combines several factors to be considered while analyzing possible architectural
refi nements. These factors can not be analyzed in isolation, as their complex rela-
tionships have to be considered all together. For this purpose, different multi- crite-
ria decision making methods are known (e.g. AHP [7]). They can be easily integrated
to our approach to analyze provided input data from the goals’ specifi cation and
MDD knowledge. We propose to use simple rules with which to select transforma-
tions of the best possible impact on targeted quality goals.

 The selection process is illustrated on Fig. 24.4 . In Step 1, we iterate on the ele-
ments for which some applicable transformations were found (candidate tuples).
For each of these elements, we retrieve from the RDAL specifi cation a list of sensi-
tivities. Sensitivity is simply a reference to a quality attribute from an element of the
architecture. In the retrieved list, sensitivities are ordered with respect to their prior-
ity in RDAL metamodel. On Fig. 24.4 , elementA is sensitive, by order of impor-
tance, to quality attributes QA4 , QA1 and QA3 . In Step 2, for each candidate
transformation to be applied on elementA , the list of quality impact values is
retrieved from the TRC specifi cation. E.g. TR1 has negative impact (−1) on quality
attribute QA4 , a positive (+3) impact on QA1 , and a negative impact (−2) on QA3 .
In Step 3, values obtained in step 2 are then used for the selection of rules to be
applied. Our tool performs pair-wise comparisons considering the priority of the
quality attribute and the impact value. However, different multi criteria decision
making methods can be applied here. In Step 4, the output of the selection process
is a list of transformations to be applied on particular model element. They are
ordered from the best to the worst with respect to the quality properties that should
be taken into account. Optimal refi nement selection is a very challenging task.
However, our selection algorithm along with the refi nements generation provides
means to review the refi nements space in an effi cient manner. Identifi ed solutions
should be evaluated in the proposed in TIP order, validating the correctness of the
identifi ed refi nements if the already search solutions are not satisfactory, and alter-
natives have to be explored.

 Fig. 24.4 Transformations selection process

24 An Automated Approach for Architectural Model Transformations

302

24.3.3 Transformations Composition

 The composition of architecture refi nement is performed by using the HOT to trans-
form original rules into a new set of rules which are going to be applied on particu-
lar model elements. This process takes as input the rules defi nitions (TRC) and also
the refi nements confi gurations (TIP).

 Figure 24.5 illustrates the realization of mentioned above refi nements generation
with an ATL implementation of the HOT where rule TR1 is transformed into a new
rule TR1” . Rule TR1 was originally specifi ed to transform all the elements of type
A in source metamodel SimpleMetamodel. TR1” uses the transformation mecha-
nism of the original rule but with a limited set of elements for which this rule has
been selected: as depicted on Fig. 24.5 (changed pattern matching condition in the
output transformation TR1”).

 Finally, the framework implemented to support presented process executes gen-
erated model transformations on the input AADL model to produce a refi ned AADL
model. If the evaluation of the output model is not satisfactory, the architect has the
possibility to continue the design space exploration from step 2 (i.e. transforma-
tions selection), to produce output models with different results in terms of quality
attribute.

 Next section details designed intermediate artifacts and shows their use in the
automation of the complete process introduced in this section.

24.4 Case Study

 Architectures of embedded systems are frequently very large models where many
competing quality attributes have to be taken into account. At the same time, the
amount of possible architectural refi nements increases as developers are becoming
familiar with model-driven techniques. However, the complexity and the dimen-
sions of the solution space make that fi nding the most correct solution is a challeng-
ing, time-consuming task.

 In this section, we present a case study where given candidate architecture is
refi ned in order to ensure the satisfaction of two quality attributes: MemoryFootprint

rule TR1 {
from
 in : SimpleMetamodel!A
to
 out : SimpleMetamodel!A (
 elem <- in.elem)

}

rule TR1’’ {
from
 in : SimpleMetamodel!A (
 in.elemID = ‘elem1’ or … or
 in.elemID = ‘elemN’)

to
 out : SimpleMetamodel!A (
 elem <- in.elem)

}

HOT

 Fig. 24.5 Schema of the HOT for actual transformations generation

G. Loniewsli et al.

303

and TimingPerformance . Memory footprint refers to the amount of memory
resources that the running system needs for proper execution. It is one of the
 characteristics of embedded systems which possess limited memory resources.
Optimization of this quality property is often a challenging task. Timing perfor-
mance is one of the most important quality properties of embedded real-time
 systems. At design time, architects have to ensure that it is possible to satisfy the
imposed on the system timing constraints. The application of the process presented
in this paper is automated by JAVA/ATL implementation.

 This case study bases on a theoretical example to show how our approach deals
with the complexity of embedded systems’ architectures design. In this example,
where input model consists of 4 elements, 2 transformations apply to 3 of them, and
another 2 transformations apply to the fourth element. Thus we get ten alternative
possible architectures. Even in this very simple example, the automation of archi-
tectural refi nement proves benefi cial, as the different refi nement combinations are
not always easy to be confi gured manually.

 Figure 24.6a presents a simple system specifi cation where three threads of type
 Producer (T1 , T2 , T4) interact with one Consumer thread (T3) through event data
ports. Moreover, the specifi cation consists of the defi nitions of a system, one pro-
cessor with one process running.

 In the requirements specifi cation (RDAL), important quality attributes are
assigned to elements of the architecture. This assignment is called sensitivity .
It indicates the quality attributes to be considered while transforming sensitive
 elements. In our example, connections cnx1 and cnx2 , as well as input event data
port p_in are sensitive to MemoryFootprint while for cnx3 the priority is assigned to
 TimingPerformance (see Fig. 24.6b).

 In our example, TRC consists of four rules. Rules TR2 and TR4 are specifi ed to
transform an in event data port and rules TR1 and TR3 apply to a connection .
These transformations can be used to implement lock-free queues for managing
delayed communications between periodic tasks [13]. The underlying theory is

 Fig. 24.6 Case study artifacts: (a) AADL specifi cation, (b) RDAL specifi cation

24 An Automated Approach for Architectural Model Transformations

304

presented in [14]. Transformations TR1 and TR2 implement queues accesses with
lookup tables that contain indexes of the queue which a task can access for each of
its activation (over a hyper-period). Transformations TR3 and TR4 implement
queues accesses by computing indexes at runtime. Thus, TR3 and TR4 consume
more memory but less CPU time in comparison to TR1 and TR2 . Details about
their infl uence on particular quality attributes can be found in Table 24.1 .

 In order to validate the different steps described on Fig. 24.3 Sect. (24.3), we have
executed the process on the use-case described in previous subsection. Several con-
fi gurations of the architectural refi nements have been automatically identifi ed and
necessary tailored transformations have been generated. Figure 24.7 shows the out-
put of that process for two successive iterations of the selection algorithm.

• For iteration 1, the result shows that the architecture refi nement will contain dif-
ferent transformations applied to different model elements, since three elements
of the input model are sensitive to MemoryFootprint quality attribute, they are
transformed by the low memory footprint version of available transformations
(TR3). One input element is transformed by the transformation resulting in lower
CPU consumption, as this element is primarily sensitive to TimingPerformance .

• For iteration 2, the identifi ed architecture refi nement sets the transformation that
is preferable for improving the TimingPerformance of the architecture (TR1) on
one more element of the input model in comparison to the iteration 1 (element
highlighted by a dashed line on Fig. 24.7).

 The resulting architecture refi nements produced in each of the iterations are next
executed in RAMSES execution framework [13], producing candidate architectures
that need to be validated by the analysis tools and domain experts.

 Table 24.1 Quality impact from transformation rules catalog

 Transformation Rule

 TR1 TR2 TR3 TR4

 Quality property Memory Footprint −4 −4 2 2
 Timing Performance 5 5 −3 −3

 Fig. 24.7 Identifi ed architectural refi nements (TIP artifact)

G. Loniewsli et al.

305

 The main outcome of this contribution is to automate the design space explora-
tion, based on the selection and composition of legacy transformations in architec-
tural refi nement and improvement processes. The performed case study shows
design space exploration by the automated production of different candidate archi-
tectures. Moreover, it proves to be useful in rapid prototyping and evaluation of
embedded systems architectures, with respect to specifi ed quality properties.

24.5 Conclusions and Further Work

 It is well accepted in the software architecture community that goals and quality
attribute requirements are the most important drivers of architecture design [15].
However, dealing with several competing goals and quality attribute requirements
to perform well-informed architectural design decisions is not an easy task. MDD
techniques, based on explicit modeling of these goals and quality attribute require-
ments, and design decisions (this latter as model transformations) will allow not
only to perform automated and documented design decisions but to preserve impor-
tant architectural knowledge. In this paper, we introduced a specifi c MDD approach
tailored for embedded software architecture design with the aim of helping software
architects to perform these informed design decisions based on automating the
selection and composition of competing model transformations [16]. The main con-
tribution of the paper is to bring together quality attribute requirements to design
decisions (represented as model transformations) and to use this information to
automate the selection of architectural refi nements based on these relationships.

 Currently, some improvements are being planned in the architecture refi nement
framework, among them: integrating an evaluation process for the resulting archi-
tecture to quantitatively measure the resulting architecture (regarding the goals and
quality requirements stated); reviewing the RDAL metamodel to be able to capture
more expressive requirements; and enriching our implementation tool by adding a
user-friendly interface to allow architects to easily defi ne and test different architec-
tural transformations. Finally, we are developing a tool framework to automate all
this process and we are planning to use this tool to conduct an industrial case study
in the context of a medium-size embedded system development project.

 Acknowledgments This research work is partially funded by the “Chaire Ingénierie des Systèmes
Complexes” and by the MULTIPLE project (MICINN TIN2009-13838).

 References

 1. Ozkaya I, Bass L, Sangwan R, Nord R (2008) Making practical use of quality attribute infor-
mation. IEEE Software 25(2):25–33

 2. Anton A, McCracken W, Potts C (1994) Goal decomposition and scenario analysis in business
process reengineering. In: 6th Conference on advanced information systems engineering
(CAiSE‘94), Utrecht, Holland

24 An Automated Approach for Architectural Model Transformations

306

 3. Clements P, Bass L (2010) Using business goals to inform a software architecture. In: 18th
IEEE Int. Requirements engineering conference (RE‘10. IEEE CS), pp 69–78

 4. Loniewski G, Insfran E, Abrahão S (2010) A systematic review of the use of requirements
engineering techniques in model-driven development. In: 13th MODELS Conf. Springer,
Berlin, pp 213–227

 5. Elahi G, Yu E (2007) A goal oriented approach for modeling and analyzing security tradeoffs.
In: 26th Int. Conf. on conceptual modeling (ER‘07). Springer, Berlin, pp 375–390

 6. Letier E, van Lamsweerde A (2004) Reasoning about partial goal satisfaction for requirements
and design engineering. In: 12th ACM SIGSOFT Int. Symp. on Foundations of Software Eng
(SIGSOFT ‘04/FSE-12, ACM, New York), pp 53–62

 7. Svahnberg M, Wohlin C, Lundberg L, Mattsson M (2003) A quality-driven decision support
method for identifying software architecture candidates. Int Journal of Software Engineering
and Knowledge Management 13(5):547–573

 8. Ameller D, Franch X (2012) Linking quality attributes and constraints with architectural deci-
sions. In: CoRR abs/1206.5166

 9. Sterritt A, Cahill V (2008) Customisable model transformations based on non-functional
requirements. In: IEEE congress on services, CS, Washington, pp 329–336

 10. The Requirements Defi nition and Analysis Language Annex of AADL, https://wiki.sei.cmu.
edu/aadl/index.php/Standardization

 11. Wagelaar D, Tisi M, Cabot J, Jouault F (2011) Towards a general composition semantics for
rule-based model transformation. In: 14th Int. Conf. on model driven engineering languages
and systems (MoDELS 2011), LNCS 6981, pp 623–637

 12. The Architecture Analysis & Design Language (AADL), version 2, Jan 2010, http://standards.
sae.org/as5506a/

 13. Cadoret F, Robert T, Borde E, Pautet L, Singhoff F (2013) Deterministic implementation of
periodic-delayed communications and experimentation in AADL. In: 17th International sym-
posium on object/component/service-oriented real-time distributed computing, June 19–21,
Paderborn

 14. Cadoret F, Borde E, Gardoll S, Pautet L (2012) Design patterns for rule-based refi nement of
safety critical embedded systems models. In: 17th Int. Conf. on Eng. of complex computer
systems (ICECCS‘12). IEEE CS, Washington, DC, pp 67–76

 15. Ameller D, Franch X, Cabot J (2010) Dealing with non-functional requirements in model-
driven development. In: 18th IEEE Int. Requirements Engineering Conf. (RE‘10). IEEE
Computer Society, Washington, DC, USA, pp 189–198

 16. Czarnecki K, Helsen S (2003) Classifi cation of model transformation approaches. In:
Workshop on generative techniques in the context of model-driven architecture (OOPSLA‘03),
Anaheim, CA

G. Loniewsli et al.

https://wiki.sei.cmu.edu/aadl/index.php/Standardization
https://wiki.sei.cmu.edu/aadl/index.php/Standardization
http://standards.sae.org/as5506a/
http://standards.sae.org/as5506a/

	Chapter 24: An Automated Approach for Architectural Model Transformations
	24.1 Introduction
	24.2 Problem Statement and Challenges
	24.3 Method Overview
	24.3.1 Candidate Transformation Identification
	24.3.2 Transformations Selection
	24.3.3 Transformations Composition

	24.4 Case Study
	24.5 Conclusions and Further Work
	References

