
Chapter 8
Mapping of Expression Quantitative Trait Loci
Using RNA-seq Data

Wei Sun and Yijuan Hu

Abstract RNA sequencing (RNA-seq) is replacing expression microarrays for
genome-wide assessment of gene expression abundance. Many sophisticated sta-
tistical methods have been developed to map gene expression quantitative trait loci
(eQTL) using microarray data. These methods can potentially be applied to RNA-
seq data with minor modifications. However, they fail to exploit two types of novel
information that are available from RNA-seq but not from microarrays: the allele-
specific expression (ASE) and the isoform-specific expression (ISE). This chapter
gives an overview of the statistical methods that are specifically designed for eQTL
mapping using RNA-seq data, as well as the challenges and some future directions.

8.1 Introduction

In most living organisms, the DNA information stored in a cell is transcribed into
messenger RNA (mRNA) and then translated into protein, which is the working
force of the cell. The amount of mRNA produced by a gene is generally referred
to as gene expression. Since mid 1990s, gene expression microarrays have been
widely employed to assess mRNA abundance genome-wide. The huge amount
of data produced by expression microarrays have not only greatly improved our
understanding of cell biology, but also provided invaluable resources to guide the
diagnosis and treatment of human diseases. For example, gene expression profiles
have been used to dissect cancer subtypes [45] and to predict drug sensitivities [20].
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The mRNA abundance of a gene may be associated with the genotype of one or
more genetic loci, which are referred to as expression quantitative trait loci (eQTL).
In most eQTL studies, genome-wide gene expression data and DNA genotype data
of genetic markers such as single nucleotide polymorphisms (SNPs) are collected in
a common set of samples. Then eQTLs are identified by linkage/association analysis
in which the expression of each gene is treated as a quantitative trait. We refer
the readers to [10, 51] for reviews on eQTL studies and their potential impacts
on understanding the genomic basis of human complex traits, and to [33, 68] for
reviews on statistical methods and computational tools for eQTL studies using gene
expression from microarrays.

In this chapter, we will focus on eQTL mapping using RNA-seq data. RNA-
seq, i.e., high-throughput RNA sequencing, is replacing expression microarrays for
transcriptome studies. To explain the motivations of designing statistical methods
specifically for RNA-seq data, it is helpful to first describe the differences between
the microarray and RNA-seq platforms. In microarray experiments, the abundance
of gene expression is measured by fluorescent signals on a set of probes, where each
probe contains a specific short piece of DNA sequence (e.g., 25 base pairs for most
Affymetrix arrays). The amount of information that can be obtained is limited by
the design of the microarray:

• The quantification of gene expression is confined to the regions where the probes
are placed. The probes are pre-selected to cover known genes, and in most array
platforms, the probes are located at the 3’ ends of the transcripts instead of being
uniformly distributed across exonic regions. Therefore, previously unknown
transcripts cannot be measured for expression and the measurements at known
transcripts may be biased by the signals at the 3’ ends.

• The same probe sequences are used for all samples and do not accommodate the
genetic differences across samples or the differences between the paternal and
maternal alleles of a sample. Therefore, the gene expression from the paternal
and maternal alleles cannot be distinguished.

In RNA-seq experiments, the expression of a gene is measured by the number
of sequence reads mapped to that gene [18, 42]. RNA-seq overcomes the two
limitations of microarrays. First, RNA-seq objectively quantifies the genome-wide
transcript abundance without relying on pre-selected probes. Second, an RNA-seq
read delivers allele-specific information if it overlaps with at least one heterozygous
SNP/indel (i.e., a SNP or an insertion or deletion that is heterozygous between the
paternal and maternal alleles).

Figure 8.1 illustrates the data generated by the two platforms. In particular,
microarray data take continuous values and RNA-seq data are discrete counts.
If that is all the difference between the two platforms, then there is no need to
develop novel statistical methods for RNA-seq data because one can simply replace
the linear regression model for continuous microarray data with the generalized
linear regression model (with Poisson or negative binomial distribution assumption)
for count data. In fact, the raw sequence data from RNA-seq contain much more
information than a single count as shown in Fig. 8.1. First, in a diploid genome such
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Fig. 8.1 (a) Gene expression data from a microarray. Each sample is measured by an array with
tens of thousands of pre-selected probes. The expression of one gene is estimated by combining
the fluorescent signals of multiple probes. (b) Gene expression data from RNA-seq. The data of
each sample is stored in a text file, usually in the FASTQ format. An FASTQ file contains millions
of records and each record corresponds to an RNA-seq read with four lines: the sequence identifier,
the actual DNA sequence, a separator, and the sequencing quality scores for every base pair of the
sequence

as the genome of human or mouse, there are two sets of chromosomes, one from
the father and one from the mother. Thus most genes (e.g., autosomal genes and
X-linked genes in females) have two copies and each copy is called an allele of
this gene. The expression of each allele of a gene, i.e., allele-specific expression
(ASE), can be extracted from the raw RNA-seq data. Second, in a higher organism
such as a human or mouse, one gene often comprises of several exons and the exons
can be grouped in different ways to produce different proteins or non-coding RNA
molecules. Each combination of the exons of a gene is called a transcript or an
RNA isoform. The expression of each isoform, i.e., isoform-specific expression
(ISE), can also be inferred from the raw RNA-seq data. In summary, the RNA-seq
platform delivers much more information than the microarrays and thus warrants
the development of novel statistical methods to fully exploit the new features.

The remainder of this chapter is organized as follows. Sections 8.2 and 8.3 will
introduce eQTL mapping using ASE and ISE, respectively. Section 8.4 will discuss
some challenges and future directions.

8.2 eQTL Mapping Using ASE

We will first describe the quantification of ASE and show how the ASE enables the
detection of cis-regulatory eQTLs. Then we will introduce statistical methods for
eQTL mapping using ASE under two scenarios, namely, with and without known
haplotypes between the candidate eQTL and the gene of interest.
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Fig. 8.2 An example of ASE abundance quantification using RNA-seq, for a hypothetical gene
with two exons and one heterozygous SNP within each exon. (a) Two haplotypes of this gene.
(b) The number of allele-specific reads from these two haplotypes

8.2.1 Quantification of ASE Using RNA-seq

ASE can be measured by the number of RNA-seq reads that are mapped to the
gene and overlapped with at least one SNP or indel with heterozygous genotype.
Figure 8.2 illustrates the quantification of ASE for a hypothetical gene with two
exons. There are two SNPs with heterozygous genotypes on the exonic regions of
this gene, one SNP for each exon. Given the genotype at each SNP, allele-specific
read count (ASReC) can be obtained by counting the number of reads harboring a
particular SNP allele. For example, there are 6 reads overlapping with the first SNP
with genotype CT, and the ASReCs are 4 and 2 for SNP alleles C and T, respectively.
Then, the ASE of this gene can be estimated by combining ASReCs across multiple
SNPs if the haplotype information is available. In the example shown in Fig. 8.2a,
the genotypes of the two SNPs are CT and GA and the possible haplotype pairs are
(C-G, T-A) and (C-A, T-G). If we knew that the underlying haplotype pair is (C-G,
T-A), we could obtain the gene-level ASReCs as shown in Fig. 8.2b.

Next we discuss a few issues related to ASE quantification: haplotype phasing,
sequence mapping bias, and expected ASReC.

8.2.1.1 Haplotype Phasing

Many algorithms (e.g., [8,12,36]) have been developed to infer the haplotype phases
from the genotypes of unrelated individuals. It is well known that the phasing
accuracy deteriorates as the length of the haplotype increases. However, it is still
reasonable to assume that the phasing is accurate within the exonic regions of a
gene because those regions are relatively short (∼90 % of the annotated genes are
shorter than 100 kb [16]) and tend to undergo less recombination [62]. In addition,
the switch errors (i.e., mistaken swapping from one haplotype to the other) in
exonic regions can be captured and corrected by RNA-seq reads (either single or
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paired-end reads) that overlap with two or more heterozygous SNPs (i.e., SNPs
with heterozygous genotypes) and thus provide direct information on the haplotype
phase. Some reads may even span over non-adjacent exons due to alternative
splicing and thus provide information on long-range phase.

8.2.1.2 Sequence Mapping Bias

A common practice in RNA-seq studies is to map the reads of all samples against the
same reference genome. This may induce mapping bias because the reads harboring
reference alleles tend to be mapped more accurately than those harboring alternative
alleles. There are several solutions to this problem.

1. Identify and remove SNPs that may cause mapping bias by mapping simulated
reads to the reference genome [46].

2. Employ an allele-aware sequence aligner [70] that uses both the reference
genome and alternate alleles to map reads.

3. Construct the two haploid genomes for each diploid individual and map the reads
against the two genomes separately [26, 30].

The third approach is the most unbiased and most comprehensive one, although
it requires more information, i.e., the complete haploid genomes, and more compu-
tational time. Such an effort can be well justified for certain diploid samples with
two very different haploid genomes, e.g., F1 mice from a cross of two inbred mouse
strains with different genome backgrounds.

8.2.1.3 Expected ASReC

What proportion of RNA-seq reads are allele-specific? The answer depends on
two factors, the density of DNA polymorphisms (usually SNPs or indels) with
heterozygous genotypes and the read length. Clearly, the more different are the
two haploid genomes, the more reads are allele-specific; the longer the reads are,
the more likely they overlap with heterozygous DNA polymorphisms. The expected
proportion of allele-specific reads can vary from 0.5 % in a human study with short
reads [46, 55] (Fig. 8.3a) to 35 % in an F1 mouse study with longer reads [11]
(Fig. 8.3b). To be specific, the human study [46,55] adopted an RNA-seq experiment
with 35 bp single-end reads and used ∼1.4 million HapMap SNPs to extract allele-
specific reads. The number of heterozygous SNPs for an individual ranges from
392,800 to 415,500 with a median of 409,100. In another on-going study involving
550 breast cancer patients from The Cancer Genome Atlas (TCGA) using 2×50 bp
paired-end reads and ∼30 million 1000G SNPs, we identified 3.4 % reads as allele-
specific. The number of heterozygous SNPs across these TCGA samples ranges
from 1.91 million to 2.02 million with a median of 1.97 million. The increase of
the proportion of allele-specific reads from 0.5 % to 3.4 % in the two human studies
can be attributed to both the longer reads and the larger number of heterozygous
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Fig. 8.3 Scatter plot of the total number of RNA-seq reads versus the total number of allele-
specific reads for all the samples in (a) a human study of unrelated individuals of African
population (HapMap YRI samples) [55] and (b) a mouse study of three reciprocal F1 crosses of
three mouse inbred strains (CAST/EiJ, PWK/PhJ and WSB/EiJ) representative of three subspecies
within the Mus musculus species group (M. m. castaneus, M. m. musculus and M. m. domesticus,
respectively)

SNPs. By contrast, the mouse study [11] collected 2×100 bp paired-end RNA-seq
reads from F1 mice with around 17.5 million heterozygous SNPs/indels per sample,
making it possible to harvest 35 % of RNA-seq reads as allele-specific.

8.2.2 ASE for cis-eQTL Mapping

Given ASE, we can assess whether there is allelic imbalance of gene expression.
In some publications, the terms ASE and allelic imbalance are used exchangeably.
In this book chapter, however, ASE indicates the expression measurement from
a particular allele. ASE is available for a gene if it has exonic SNPs/indels with
heterozygous genotypes, and thus having ASE does not imply allelic balance.
A number of pioneering studies have shown that allelic imbalance in gene expres-
sion exists and may be associated with disease susceptibility [17, 27, 35, 40, 60, 73].
For example, the reduction in the expression of one allele at the TGFBR1 gene in
blood cells (germline) leads to an elevated risk of colorectal cancer [60]. In addition,
effective treatments can be developed by silencing the disease allele while sparing
the expression of the wild-type allele [41]. Here, we focus on mapping the DNA
polymorphism that leads to allelic imbalance of gene expression, which is called a
cis-eQTL and is a main mechanism of allelic imbalance.

To better understand cis-eQTLs, it is helpful to introduce the concept of trans-
eQTL and clarify their differences. Cis-eQTL and trans-eQTL have been widely
used to refer to eQTLs that are close to the associated genes and eQTLs that are
distant, respectively. An arbitrary distance, such as 200 kb or 1 Mb, is often used
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to distinguish local and distant eQTLs. It has been pointed out before [51] and is
worthwhile to be emphasized again: it is misleading to refer to a local or distant
eQTL as a cis- or trans-eQTL as the latter have their own biological meanings.

The Latin words cis and trans mean “on the same side” and “across”, respec-
tively. A cis-eQTL is located on the same chromosome as its target gene and
influences the gene expression in an allele-specific manner. Specifically, a mutation
in the maternal allele only changes the gene expression from the maternal allele
but does not affect the expression from the paternal allele (Fig. 8.4a). A plausible
scenario is that a cis-eQTL is located at the transcriptional factor binding site of a
gene and thus interferes with the transcriptional factor binding in the allele-specific
manner. A cis-eQTL is likely to be a local eQTL, though this is not always true.
By contrast, a trans-eQTL of a gene can be located anywhere in the genome and
it influences the gene expression of both alleles to the same extent. One possible
mechanism is that a trans-eQTL modifies the activity or abundance of a protein
that regulates the gene and such regulation does not distinguish the two alleles of
the gene [67] (Fig. 8.4b). Therefore, cis- and trans-eQTLs should be distinguished
by ASE (Fig. 8.4a, b) [14, 52] rather than their physical distance to the target gene.
Note that cis- and trans-eQTLs cannot be distinguished by the total expression of
the gene, which shows the same pattern at the population level (Fig. 8.4c, d).

From the above discussions, it is clear that ASE is informative for cis-eQTL
mapping. Figure 8.5a–d shows a hypothetical example of cis-eQTL mapping using
ASE. Assume that the gene of interest has two exons with one SNP for each.
We wish to test whether a candidate eQTL, displayed on the left of the gene in
Fig. 8.5a, cis-regulates the gene expression. First, we count the number of allele-
specific reads. As mentioned in Sect. 8.2.1, an RNA-seq read is allele-specific if
it can be assigned to one of the two alleles of the gene without ambiguity. As
illustrated in Fig. 8.5a, individuals (i) and (ii) have heterozygous genotypes for
at least one exonic SNP, and thus their ASE can be measured by the number of
reads that overlap with the heterozygous SNPs. Haplotype information is required
to combine ASE measured at individual exonic SNPs into the gene-level ASE. For
example, for individual (i), we count the number of allele-specific reads mapped to
the haplotypes A-A and T-G. Next, we associate ASE with the candidate eQTL. For
individual (i) in Fig. 8.5a, given the longer haplotypes C-A-A and T-T-G that span
over the gene as well as the candidate eQTL, we can link ASE of the A-A and T-G
haplotypes of the gene to the C and T alleles of the candidate eQTL, respectively
(Fig. 8.5c). The association testing seeks to answer the question whether one allele
of the candidate eQTL is associated with a higher or lower ASE of the gene.
If the answer is yes (and assuming there is no other factor inducing the allelic
imbalance), then we expect allelic imbalanced expression when the genotype of the
candidate eQTL is heterozygous and allelic balanced expression when the genotype
is homozygous; in other words, the candidate eQTL is a cis-eQTL. For example,
individual (i) has a heterozygous genotype C/T at the candidate eQTL and has a
higher ASE corresponding to the C allele than the T allele (Fig. 8.5c). Individual (ii)
has a homozygous genotype C/C at the candidate eQTL, each C allele corresponding
to the same ASE (Fig. 8.5d). A real data example of 65 HapMap samples is shown
in Fig. 8.5f.
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Fig. 8.4 (a) An example of a cis-eQTL in two samples. In sample 2 where the candidate eQTL
(the SNP for which we test association) has a heterozygous genotype CG, the expression of the
two alleles are different. (b) An example of a trans-eQTL in two samples. In sample 2 where the
candidate eQTL has a heterozygous genotype TA, the expression of the two alleles are the same.
(c) A simulated data for a cis-eQTL across 60 samples with 20 samples within each genotype class.
(d) A simulated data for a trans-eQTL across 60 samples with 20 samples within each genotype
class. This figure is adapted from Fig. 1 in our earlier paper Sun and Hu (2013) [56]

The total read count (TReC) is also informative for cis-eQTL mapping, which
is similar to the traditional eQTL mapping using gene expression measured by
microarrays. While ASE provides information at the allele level, TReC contributes
at the individual level and in a way that is consistent with the allele level. In
Fig. 8.5a–d, the C allele of the candidate eQTL is associated with a higher ASE,
which is manifested at the allele level (Fig. 8.5c, d) and at the individual level
(Fig. 8.5b). In general, the TReC of a gene is much greater than the sum of the
two ASReCs in that TReC includes many reads that do not overlap with any
heterozygous SNPs/indels.
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Fig. 8.5 (a)–(d) A hypothetical example of cis-eQTL mapping. (a) RNA-seq measurements of a
gene with two exons in three individuals. (b) TReC (total read count) for the three individuals.
(c–d) ASE for individual (i) and (ii). (e)–(f) A real data example of cis-eQTL mapping between
gene KLK1 and SNP rs1054713. (e) Association between the genotypes and TReC. The y-axis
is the total number of reads mapped to the gene KLK1 and each point corresponds to one of the
65 samples. (f) Association between the genotypes and ASE. When the genotype of rs1054713
is heterozygous, the ASE of the two alleles of this gene can be associated with the two alleles of
rs1054713. ASET and ASEC denote the ASReC corresponding to the T and C allele of rs1054713,
respectively. When the genotype of rs1054713 is homozygous, we denote the ASReC of the two
alleles of this gene by ASE1 and ASE2, respectively. This figure is a modified version of Figs. 2
and 4 of the earlier paper by Sun and Hu (2013) [56]

8.2.3 eQTL Mapping Using ASE with Known Haplotypes

While the haplotypes across the exonic regions of a gene can be accurately phased,
those extending from the gene to a candidate eQTL may not be reliably phased
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because the candidate eQTL may be far away from the gene. In this section,
we assume that the extended haplotypes are known and defer the scenario with
unknown haplotypes to the next section.

Our statistical model is for a particular gene of interest. To simplify the notation,
we skip the index for gene. The model was originally proposed by Sun (2012) [55]
and reviewed by Sun and Hu (2013) [56]. We use the following notation.

• Let H = (h1,h2) denote the haplotype pair consisting of haplotypes h1 and h2

across the exonic SNPs. Let H̃ = (h̃1, h̃2) denote the extended haplotype pair
consisting of both the exonic SNPs and the candidate eQTL. Here the order of the
two haplotypes is arbitrary and thus (h1,h2) is the same as (h2,h1) and (h̃1, h̃2)
is the same as (h̃2, h̃1). We assume that both H and H̃ are known here.

• Let T be the total read count (TReC). Note that a paired-end sequence read is
counted as one read.

• Let N1, N2 and N denote the allele-specific read count (ASReC) from haplotypes
h1 and h2 and the total ASReC, respectively. Naturally, N = N1 +N2.

• Let G be the genotype of the candidate eQTL, which has two alleles A and B.
Under the additive genetic effect, G = 0, 1, and 2 for genotypes AA, AB and BB,
respectively. Dominant, recessive, and co-dominant effects can also be modeled
using appropriate coding for genotypes.

• Let X be the relevant covariates including an intercept. Typically, X include the
log form of the total read count per sample reflecting the read depth.

We model the probability of T given G and X by a negative binomial distribution
indexed by parameters (γγγ ,βT ,φ), which is denoted by PTReC(T |G,X;γγγ,βT ,φ).
A negative binomial distribution can be considered as an infinite gamma mixture
of Poisson distributions. It allows over-dispersion in the read counts, a phenomenon
that is often observed in sequencing data across biological replicates. Thus the neg-
ative binomial distribution has been commonly used for RNA-seq data analysis [5].
In particular, we assume that T follows the negative binomial distribution with mean
μ and a dispersion parameter φ :

PTReC(T |G,X;γγγ,βT ,φ) =
Γ (T +1/φ)
T !Γ (1/φ)

(
1

1+φ μ

)1/φ ( φ μ
1+φ μ

)T

,

where

log(μ) = γγγTX+w(G,βT ),

and

w(G,βT ) =

⎧⎨
⎩

0 if G = 0
log [1+ exp(βT )]− log2 if G = 1
βT if G = 2.
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The functional form of w(G,βT ) reflects the additive genetic effect. To see this, we
write the means of T given X and G= 0,1,2 by μAA,X, μAB,X and μBB,X, respectively,
where

μAA,X = exp(γγγTX),

μAB,X = exp(γγγTX+ log [1+ exp(βT )]− log2)

μBB,X = exp(γγγTX+βT ).

We can see that βT characterizes the difference between log(μAA,X) and log(μBB,X)
and μAB,X is at the mid point between μAAX and μBB,X, i.e., μAB,X = (μAA,X +
μBB,X)/2.

We model the probability of N1 given N, H̃ and X assuming that N1 follows
a beta-binomial distribution indexed by parameters (βA,ψ) and denote the model
by PASReC(N1|N, H̃,X;βA,ψ). A beta-binomial distribution extends a binomial
distribution to allow over-dispersion. In particular, we assume that N1 follows a
beta-binomial distribution with mean p and a dispersion parameter ψ:

PASReC(N1|N, H̃,X;βA,ψ) =

(
N
N1

)
∏N1−1

k=0 (p+ kψ)∏N−N1−1
k=0 (1− p+ kψ)

∏N−1
k=1 (1+ kψ)

,

where

p =

⎧⎨
⎩

0.5 if the candidate eQTL has a homozygous genotype AA or BB,
q if H̃ indicates haplotype configuration B-h1 and A-h2, respectively,
1−q if H̃ indicates haplotype configuration A-h1 and B-h2, respectively.

Thus q characterizes the proportion of ASReC corresponding to the B allele
among the total ASReC corresponding to the heterozygous genotype AB. We
further express q as eβA/(1+ eβA). Note that the covariate effects are ignored here
because they are expected to be the same on the two alleles of a gene within an
individual. When the candidate eQTL cis-regulates the expression of the gene,
we have βA = βT . To see this, we first define μA and μB as the mean ASReC
corresponding to the A and B alleles, respectively, at the baseline of X. Then,
βA = log[q/(1− q)] = log(μB/μA). On the other hand, βT = log(μBB,X/μAA,X) =
log{(2μB)/(2μA)}, where the second equation follows from the additive genetic
effect and from canceling out the individual-specific covariate effects. By contrast,
when the candidate eQTL trans-regulates the gene expression, we have βT �= 0 but
βA = 0.

The likelihood based on the TReC and ASReC data of n unrelated individuals
takes the form

L(ΘΘΘ) =
n

∏
i=1

PTReC(Ti|Gi,Xi;γγγ ,βT ,φ)PASReC(Ni1|Ni, H̃i,Xi;βA,ψ), (8.1)
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where ΘΘΘ = (γγγ,βT ,φ ,βA,ψ). We refer to (8.1) as the TReCASE model, which
is the novel model for cis-eQTL mapping using RNA-seq data. For trans-eQTL
mapping, since ASE data are uninformative, the likelihood is only based on the
TReC data: L(γγγ ,βT ,φ) = ∏n

i=1 PTReC(Ti|Gi,Xi;γγγ ,βT ,φ). A hypothesis testing
method has been developed to distinguish whether an eQTL is cis- or trans- by
testing H0: βT = βA [55].

8.2.4 eQTL Mapping Using ASE with Unknown Haplotypes

When the haplotypes connecting the candidate eQTL and the gene of interest are
unknown, we consider all possible haplotype pairs (h̃k, h̃l) that are compatible with
the known haplotypes in the gene body (H) and the genotype at the candidate
eQTL (G). We denote these haplotype pairs as (h̃k, h̃l)∼ (G,H). Then the likelihood
function is a weighted summation of the probabilities, each corresponding to a
possible haplotype pair and given by (8.1), i.e.,

L(ΘΘΘ) =
n

∏
i=1

PTReC(Ti|Gi,Xi;γγγ ,βT ,φ)

× ∑
(h̃k,h̃l)∼(Gi,Hi)

PASReC(Ni1|Ni, h̃k, h̃l ,Xi;βA,ψ)P(h̃k, h̃l ;πππ) fkl(Xi), (8.2)

where ΘΘΘ = (γγγ,βT ,φ ,βA,ψ,πππ,{ fkl(.)}k,l). We explain the terms that are not in (8.1)
as follows.

Suppose there are K possible haplotypes across the exonic SNPs and the
candidate eQTL. Write the frequency of the kth haplotype by πk = Pr(h̃ = h̃k)
and πππ = (π1, . . . ,πK). We denote the model for the probability of H̃ = (h̃k, h̃l)
indexed by πππ by P(h̃k, h̃l ;πππ). Under the assumption of Hardy-Weinberg equilibrium,
P(h̃k, h̃l ;πππ) = πkπl .

The density function of X given H̃ = (h̃k, h̃l) is denoted by fkl(X). Under the
assumption of gene-environment independence, fkl(X) reduces to the marginal
density function of X and will drop out from (8.2). In some applications, H̃ and X are
correlated. One important example is when X represent the principal components
for ancestry. Another example is when the gene influences both the environmental
exposure (e.g., cigarette smoking) and the disease occurrence (e.g., lung cancer) [3].
In such cases, fkl(X) can be specified using a generalized odds-ratio function [28].

8.3 Isoform-Specific eQTL Mapping

More than 90 % of human multi-exon genes can be alternatively spliced, resulting
in RNA isoforms [44, 64]. Alternative splicing may directly cause a disease or
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modify certain disease susceptibility [19, 61, 63]. Although several methods have
been proposed for detecting the event of alternative splicing and estimating the
RNA-isoform abundance [2, 4, 21, 23, 31, 34, 38, 39, 50, 59, 65], only a few have
been developed for testing the differential RNA-isoform usage between two groups
of samples (e.g., cases vs. controls) [22, 54, 59]. Differential isoform usage refers
to the changes of RNA-isoform expression relative to the total expression of the
corresponding gene. The purpose of isoform-specific eQTL mapping is to dissect
the genetic basis of the differential isoform usage. There are a few points worth
mentioning from the statistical perspective on isoform-specific eQTL mapping.

• Because the isoform structure or abundance cannot be directly measured,
transcriptome reconstruction and abundance estimation are necessary steps of
isoform-specific eQTL mapping. The uncertainty of the transcriptome recon-
struction and the abundance estimation should be incorporated into isoform-
specific eQTL mapping.

• In most eQTL studies or genome-wide association studies, SNP genotype effects
are assumed to be additive. Thus the SNP genotype is essentially a quantitative
covariate. However, most existing methods assess the differential isoform usage
between two groups of samples (e.g., cases vs. controls) and few methods can
test the association between the isoform usage and a quantitative covariate.

• One gene may be differentially expressed with respect to a covariate, both in
terms of the total expression and the isoform usage. It will be useful to jointly
test for differential expression and differential isoform usage.

8.3.1 Transcriptome Reconstruction and Isoform Abundance
Estimation

A gene usually occupies a consecutive segment of the DNA sequence and it is
often composed of several exons that are separated by introns. A subset of the
exons may be employed by the cell to construct alternatively spliced messenger
RNAs (mRNAs). These mRNAs may be translated to different proteins. Each RNA
isoform is often referred to as a transcript and thus each gene can be considered
as a transcript cluster. In some organism such as a human or a mouse, there are
existing annotations on the kinds of transcripts a gene may encode. Such annotations
are often incomplete or inaccurate, for example, some transcripts may be express
in a particular tissue and/or developmental stage. In some other organisms, such
as those without complete reference genomes, such transcriptome annotations are
not available at all. Therefore, one may need to reconstruct the transcriptome
from the observed RNA-seq data. This task can be achieved with or without
a reference genome [18]. The reference genome-guided reconstruction is often
more accurate and computationally more efficient than the de novo transcriptome
construction without a reference genome. Thus the former approach is more popular
for organisms that have reference genomes. Given the transcriptome annotation, the
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Fig. 8.6 All possible isoforms of a gene with three exons and the corresponding design matrix XT

abundance of each transcript can be estimated by the number of RNA-seq reads
aligned to that transcript. However, most RNA-seq fragments cannot be uniquely
assigned to a specific transcript. To estimate transcript abundance in the presence
of such alignment ambiguity is the focus of many existing works [31, 32, 37, 43, 48,
49,53,59,72]. Penalized regression methods have been developed to simultaneously
reconstruct transcriptome and estimate transcript/isoform abundance [6, 38, 39, 71].
The method we will describe next is an example of such penalized regression
methods.

8.3.2 Isoform-Specific eQTL Mapping

The method presented here is based on Sun et al. (2013) [58]. We first illustrate the
statistical model by a hypothetical gene with three exons (Fig. 8.6). An RNA-seq
read may overlap with one or more exons. Thus we count the number of RNA-seq
reads per exon set. For this simple gene, there are seven possible exon sets, denoted
by {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, and {1,2,3}. Note that each RNA-seq read
is only counted once. For example, if an RNA-seq read overlaps with both exon 1
and 2, it will be counted for exon set {1,2} instead of exon set {1} or {2}. There
are seven possible isoforms (right panel of Fig. 8.6). We code each isoform as a
covariate, which corresponds to one row of the design matrix XT (left panel), where
T denotes matrix transpose. The seven columns of matrix XT correspond to exon
sets {1}, {2}, {3}, {1,2}, {2,3}, {1,3}, and {1,2,3}. Each element in XT is the
effective length of the column-specific exon set within the row-specific isoform.
Intuitively, the effective length of an exon set A, denoted by ηA, is the number of
unique locations within A, where a randomly selected sequence fragment can be
sampled. We defer the details of effective length calculation to the next section, but
would like to point out that there are special exon sets that consist of non-contiguous
exons in the specific isoform. For example, the exons in set {1,3} is non-contiguous
with respective to isoform 1-2-3 and the effective length of {1,3} is denoted by
η{1,(2),3}. Our effective length calculation accurately reflects the fact that sequence
reads of exon set {1,3} are more likely from isoform 1-3 rather than isoform 1-2-3.
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In this example, the gene expression in the ith sample is denoted by a vector:
yi = (yi{1},yi{2},yi{3},yi{1,2},yi{2,3},yi{1,3},yi{1,2,3})T, where yiA indicates the TReC
at the exon set A. As in Sect. 8.2.3, we model the probability of a TReC via a negative
binomial distribution. Let fNB(μ ,φ) be a negative binomial distribution with mean
μ and a dispersion parameter φ . We assume that yiA ∼ fNB(μiA,φ). Assuming
independence of yiA’s given the underlying RNA isoforms, then yi ∼ fNB(μμμ i,φ) ≡
∏A fNB(μiA,φ) where μμμ i = (μi{1},μi{2}, . . . ,μi{1,2,3})T. By the definition of the
design matrix X, we transform the problem of isoform deconvolution to a regression
problem: yi ∼ fNB(μμμ i,φ), μμμ i = TiXγγγ = Ti ∑7

u=1 xubu, where Ti is TReC of this gene
in sample i, X = (x1, . . . ,x7), γγγ = (b1, . . . ,b7)

T, and bu ≥ 0 is the expression rate
of the uth isoform. Note that bu quantifies the relative expression abundance with
respect to the total expression Ti.

Next, we present the general method. Suppose that we study the isoform-specific
expression of a gene with m exon sets and p possible isoforms across n individuals,
and we are particularly interested in whether a covariate G has an influence on the
isoform-specific expression of this gene. We assess this hypothesis by a likelihood
ratio test. Under the null hypothesis, we solve the problems of isoform selection
and abundance estimation by assuming that the isoform usage is the same for all
samples. Thus we use a negative binomial regression with the link function μμμ i =
TiXγγγ . Note that a linear link function instead of commonly used log link function
is used to reflect the fact that the total number of reads is the summation of the
number of reads from all the isoforms. Under the alternative, we model the effect of
G as follows. Let gi be the value of G in the ith sample. Without loss of generality,
we restrict the range of gi to be [0,1]. For example, if G is genotype of a SNP,
we set gi = 0, 1/2, and 1 for genotypes AA, AB, and BB, respectively. Provided
μμμ i = TiXγγγ , we model the influence of G on bu (1 ≤ u ≤ p) by a linear model:
bu = γu(1− gi) + γu+pgi, where γ j ≥ 0 for 1 ≤ j ≤ 2p. Therefore, we have two
negative binomial problems, with p and 2p covariates, under null and alternative,
respectively.

The major difficulty of this problem comes from the high dimensionality of
the possible isoforms [25]. We address this difficulty by two sequential steps.
First we identify the candidate isoforms for a gene using a modified connectivity
graph approach [23, 38]. Next we select among the candidate isoforms using a
penalized negative binomial regression problem. For example, under the alternative,
the objective function becomes f (γγγ,φ) =∑n

i=1 log [ fNB(μμμ i,φ)]−∑2p
j=1 λ log(γ j+τ),

where λ and τ are two tuning parameters that can be selected by BIC or extended
BIC [57]. We use the log penalty λ log(γ j+τ) because of its superior theoretical and
empirical advantages over other penalties [9,15,57]. Given λ and τ , the parameters
γγγ and φ can be estimated by a coordinate descent algorithm [57]. The above model
is formulated when the isoform usage is associated with one quantitative covariate;
it is straightforward to extend it to include multiple quantitative covariates. For a
categorical covariate (e.g., under the dominant or recessive effect of a SNP), we can
simply code it as a number of dummy variables, which can be treated as multiple
quantitative covariates.



160 W. Sun and Y. Hu

Due to the variable selection (i.e., selecting expressed RNA isoforms) under both
the null and the alternative hypotheses, the asymptotic distribution of the likelihood
ratio statistic is unknown. Thus we estimate the null distribution of the statistic by
parametric bootstrap. Specifically, we generate the vth bootstrap sample, denoted
by ỹ(v) (a vector of length nm), by sampling from a negative binomial distribution
with mean μ̂μμ0 and a dispersion parameter φ̂0, where μ̂μμ0 (a vector of length nm)
and φ̂0 are estimated under the null. Then using this bootstrap sample, we apply
the penalized regression approach under the null and the alternative to obtain a
likelihood ratio statistic LRv. Repeat the parametric bootstrap for a large number
of times (e.g. 10,000 times) and pool the LRv’s, we obtain the null distribution for
the observed statistic LR. The final p-value is the proportion of LRv’s that are equal
to or larger than the likelihood ratio statistic from original data.

The above solution only tests differential isoform usage, which is the difference
of relative abundance of an isoform with respect to the total expression of the
gene for different values of G. If we are interested in testing both the differential
expression and the differential isoform usage of a gene, the original link function
μμμ i = TiXγγγ can be changed to be μμμ i = RiXγγγ , where Ri is the total number of RNA-
seq reads of the ith sample across all genes. The reason is as follows. The original
link function can be written as μμμ i = TiXγγγ = Ri(Ti/Ri)Xγγγ , where (Ti/Ri) measures
the total expression of the gene in the ith sample. Then skipping the ratio (Ti/Ri)
in the original link function leads to the new link function, which is equivalent to
assuming this gene has a constant expression rate across samples.

8.3.3 Calculation of Effective Length

An RNA-seq fragment is a segment of RNA to be sequenced. Usually only part of an
RNA-seq fragment is sequenced: one end or both ends, hence single-end sequencing
or paired-end sequencing. All the discussions in this section are for paired-end
reads, though the extension to single-end reads is straightforward. The minimum
fragment size is the read length, denoted by d. This happens when the two reads of
a fragment completely overlap. We impose an upper bound for the fragment length
based on prior knowledge of the experimental procedure and denote the upper bound
by lM . Then the fragment length l satisfies d ≤ l ≤ lM . We denote the distribution of
the fragment length for sample i by ϕi(l), which can be calculated using observed
read alignment information. The fragment length distribution is incorporated in our
model to allow across-sample variations due to the differences in fragment length
distribution.

For the ith sample, the effective length of exon j of r j base pairs (bps) is

ηi,{ j} = f (r j,d, lM,ϕi) =

⎧⎪⎨
⎪⎩

0 if r j < d
min(r j ,lM)

∑
l=d

ϕi(l)(r j +1− l) if r j ≥ d
.
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rjrj + 1 − ll1

Fig. 8.7 An illustration of effective length calculation for an exon of r j bps and RNA-seq fragment
of l bps. The orange box indicates the exon, and the black lines above the orange box indicate two
RNA-seq fragments, while each RNA-seq fragment is sequenced by a paired-end read. There are
r j + 1− l distinct choices to select an RNA-seq fragment of l bps from this exon, and thus the
effective length is r j +1− l

If r j < d, the exon is shorter than the shortest fragment length, and thus the effective
length of this exon is 0. In other words, no RNA-seq fragment is expected to overlap
and only overlap with this exon. If r j ≥ d, the effective length is r j +1− l, i.e., there
are r j + 1− l distinct RNA-seq fragments that can be sequenced from this exon

(Fig. 8.7). Then ∑
min(r j ,lM)

l=d ϕi(l)(r j +1− l) is summation across all likely fragment
lengths, weighted by the probability of having fragment length l.

In the following discussions, to simplify the notation, we skip the subscript of i.
For two exons j and k ( j < k) of lengths r j and rk, which are adjacent in the
transcript, the effective length for the fragments that cover both exons is

η{ j,k} = f (r j + rk,d, lM,ϕ)−η{ j} −η{k}. (8.3)

For three exons j, h, and k ( j < h < k) of lengths r j, rh and rk, which are adjacent in
the transcript, the effective length for the fragments that cover all three exons is

η{ j,h,k} = f (r j + rh + rk,d, lM)−η{ j,h} −η{h,k} −η{ j,(h),k} −η{ j} −η{h} −η{k},

where η{ j,(h),k} is the effective length in the scenario that the transcript covers
consecutive exons j, h, and k, whereas the observed paired-end read only covers
exons j and k.

η{ j,(h),k} =

⎧⎪⎪⎨
⎪⎪⎩

0 if (r j,rh,rk) ∈ R1
min(r j+rh+rk,lM)

∑
l=2d+rh

ϕ(l)δl otherwise

where R1 = {(r j,rh,rk) : r j < d or rk < d or rh + 2d > lM}, and δl = min(r j, l −
rh − d)−max(d, l − rh − rk) + 1. The above formula is derived by the following
arguments. Let l j and lk be the lengths of the parts of the fragment that overlaps with
exon j and k, respectively. Given l, the restriction of l j and lk are l = l j + lk + rh,
d ≤ l j ≤ r j, and d ≤ lk ≤ rk, and thus the range of l j is max(d, l − rh − rk) ≤ l j ≤
min(r j, l− rh −d). For more than three consecutive exons, the effective lengths can
be calculated using recursive calls to the above equations.
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In practice, a few sequence fragments may be observed even when the effective
length is zero, which may be due to sequencing errors. To improve the robustness
of our method, we modify the design matrix X by adding a pre-determined constant
eLenMin to each element of X.

8.4 Discussion

We conclude this chapter by a few discussion points.

8.4.1 eQTL Mapping Using Both ASE and ISE

We have introduced statistical methods of using ASE or ISE for eQTL mapping.
A natural extension is to use both ASE and ISE for eQTL mapping. The likelihood
can be similar to the one for eQTL mapping using ASE, but using count data from
exon sets intend of genes. Such a model can explain more subtle changes in the gene
expression data. For example, one isoform is used in one allele, but not in the other
allele, i.e., allele-specific isoform usage. A major challenge would be computational
feasibility. Thus a more computationally efficient implementation is needed for such
an effort.

8.4.2 cis-eQTL and Imprinting

Allelic imbalance of gene expressions may be due to factors other than cis-eQTL.
Arguably, the second most likely factor causing allelic imbalance, after cis-eQTL,
is imprinting. Imprinted genes are differentially expressed on maternal and paternal
alleles. Thus imprinting is also referred to as the parent-of-origin effect [47]. An
important lesson we learned from our recent study of ASE in F1 mice [11] is that
“imprinting is incomplete for most genes and cis-acting mutations can modify the
strength of imprinting”. Usually imprinting effect is much more subtle than cis-
eQTL effects. Therefore, to obtain more sensitive and more accurate estimates of
imprinting effects, it is crucial to jointly study imprinting and cis-eQTL.

8.4.3 Quality Control and Possible Non-genetic Factors

Quality control (QC) is a necessary step for eQTL mapping using RNA-seq
data. Low quality samples may be detected by checking the sequencing quality
scores, mapping quality, percentage of uniquely mapped reads, percentage of reads
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mapped to exonic regions, percentage of rRNA reads, and the distribution of insert
size for paired-end reads [1, 13, 66]. Sample identity check is a very important
step in genome-wide genomic studies. Between sample contamination may be
detected by the percentage of heterozygous SNPs, sex-mismatch (recorded sex from
demographic information vs. sex inferred from genomic data), or the D-statistic that
measures the median correlation of gene expression between one sample versus each
of the other samples [1, 69]. Sample swap will seriously reduce the power of eQTL
analysis. Fortunately, checking for sample swap is relatively easy using RNA-seq
data than using microarray data [29]. A QC step that is crucial for ASE data is the
mapping bias toward reference alleles, which has been discussed at Sect. 8.2. For
ISE data, checking the coverage of the whole gene body is important because there
may be a trend of increasing read depth towards the 3’ end of a gene. The method
described in Sect. 8.3 assumes a uniform distribution of read depth, though the
hypothesis testing method is not sensitive to this assumption due to the resampling
nature of the test [58].

The effect of non-genetic factors can be accounted for by including them (or
an appropriate transformation of them) as covariates in eQTL mapping. First, the
overall read depth per sample is one factor that should always be included. In
addition, GC content and dinucleotide frequencies may influence gene expression
in a sample-specific manner. For example, gene expression and GC content
may be positively correlated in some samples, but negatively correlated in other
samples [74]. A conditional quantile normalization method has been proposed to
model such sample-specific effects from sequence contents within the framework
of generalized linear regression models [24]. This approach can be employed in the
eQTL-mapping framework described in this book chapter.

8.4.4 The Genetic Architecture of Gene Expression

Figure 8.8 shows the results of two genome-wide eQTL studies: a yeast study of
∼6,000 genes and ∼1,000 SNPs in 112 yeast segregants (offspring) (Fig. 8.8a) and
a human study of ∼18,000 genes and ∼1,000,000 SNPs (germline genotype) in 550
breast cancer patients. Gene expression abundance was measured by microarrays
in the yeast study and by RNA-seq in the human study. The difference in the
genetic architecture of gene expression between the two studies is remarkable. In
both studies, the eQTL plots have a diagonal pattern, which corresponds to a large
number of local eQTLs. In the yeast study, there are several vertical bands, each
corresponding to an eQTL hotspot, i.e., a genetic locus that is eQTL of many genes.
In contrast, there is no such eQTL hotspot in the human study. The two studies
are representative for experimental cross and human studies. In experimental cross,
usually two strains with very different genetic backgrounds are crossed and thus
some loci may have large and broad effects on many genes. For example, in the yeast
study, several eQTL hotspots arise because one strain has several genes deleted.
In human studies, the genetic differences across humans are much smaller than
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Fig. 8.8 The results of eQTL studies in (a) 112 yeast sergeants of two yeast strains [7] and (b)
550 breast cancer patients of an on-going study. Each point represents a genome-wide significant
association. The color indicates certain range of the p-value. More liberal p-values are used for the
yeast study because there is a smaller number of genes and SNPs and hence less burden of multiple
testing correction

in experimental crosses and generally no single locus can substantially alter the
expression of many genes. We have reported similar findings in a recent human
eQTL studies with 2,494 twins and a validation data set of 1,895 independent
subjects [69]. The conclusion is that, for human studies, the vast majority of genetic
effects on gene expression are through local eQTL and most of the local eQTL are
likely to be cis-eQTL [55]. This implies that the identification of distant eQTLs
may be as difficult as or even more difficult than genome-wide association studies
for complex traits.
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