
Chapter 20
Statistical Considerations in the Analysis
of Rare Variants

Debashis Ghosh and Santhosh Girirajan

Abstract Recently, whole-genome and whole-exome sequencing has begun to
demonstrate success in the identification of disease-causing genes. Many of these
genes exhibit abnormal genetic behavior and low prevalence in the population; these
molecules are commonly referred to as rare variants. In this chapter, we provide an
overview of rare variants and their scientific relevance in medicine and public health.
We then provide a review of existing methods for association, primarily focusing on
the sequence kernel association test (SKAT) and related methods. These procedures
are related to kernel machines, which we will also describe. Finally, we discuss the
implications of rare variants in terms of multiple testing.

20.1 Introduction

Large-scale genomics has been at the forefront of science and medicine over the
last decade. The advent of high-throughput technologies including single nucleotide
polymorphism (SNPs) microarrays, array comparative genomic hybridization and
genome sequencing have enabled rapid discovery of genetic variants varying in size
and frequency [18]. Copy number variants are deletions and duplications in the
genome that constitute the most genetic variation, in total base pairs, between
individuals [35]. Classically, disease-association studies involved evaluation of
either variants of high frequency in the population, also termed common variants,
or variants of low frequency or rare variants. In this chapter, we will consider
analysis of rare variants with specific focus on copy number variants. One of
the key statistical challenges in the analysis of rare variants is that they have
small population prevalences. If we view the rare variants as predictors that we
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wish to associate with a phenotype, then they in fact contain very little statistical
information. To illustrate the idea, suppose we wish to regress the phenotype on a
rare variant that we treat as binary, where zero indicates absence and one indicates
presence. We assume that the regression model is linear. Then it can be shown
analytically that the information about the regression coefficient in such a setup is
maximized when half of the subjects have the rare variant and half do not. However,
by definition, for rare variants, a majority of subjects will not have the rare variant,
the implication being that we are in an inherently low-power situation. Thus, it is
necessary to begin to think about pooling information in various ways; this will be
one of the themes explicated on in the chapter.

The structure of this chapter is as follows. In Sect. 20.2, we provide some
biological background to rare variants. Section 20.3 reviews association methods
for the analysis of rare variants and in particular focuses on the sequence kernel
association test (SKAT) [56] and its extensions. The SKAT methodology is based
on the kernel machine framework originally proposed by Liu et al. [33, 34], so we
also expand on this. Finally, we discuss the multiple comparisons problem and how
its consideration needs to be modified for the rare variant problem in Sect. 20.4.
This chapter concludes with some discussion in Sect. 20.5.

20.2 Biological Background

Association of disease genes to phenotypic traits or overt disease has been carried
out with the discovery, characterization or genotyping of variants. Genetic studies
have relied upon identifying causative genes by finding genetic variants, common
(>1 % or >5 % in the population) or rare, and whether they are enriched in cases
compared to controls. Common variants are contributed by alleles that originated
during the development of humans and are therefore shared between different
human populations [39]. These variants constitute most of the human genetic
variation, in frequency, and are also represented as SNPs that tag specific haplotypes
mapped by the HapMap project [10, 11]. While technologies and genetic methods
have concentrated on implicating common or rare variants of extreme size for
disease etiology, identification and characterization of variants of intermediate size
and frequency remains a challenge [50].

The basis for rare variants can be best understood in a historical context. In
the field of human genetics of complex traits, the dominant school of thought
in the early 2000s was based on the so-called common disease-common variant
(CDCV) hypothesis [45, 46]. This framework postulated that for many diseases,
multiple SNPs would be needed to explain a large percentage of variation in the
phenotype. Identification of SNPs in linkage disequilibrium or functional variants
in the neighborhood of causative genes is the basis of genome-wide association
studies (GWAS) [22]. This thought very much influenced the design of GWAS
and the technology used to measure DNA variation. The dominant platform for
measuring SNPs was the microarray platform, which was being used simultaneously



20 Rare Variants 407

for measuring transcript mRNA expression. The major company that developed
the SNP microarray platform was Affymetrix (http://www.affymetrix.com), and
the DNA variations selected to be on the chip primarily represented variants
that satisfied the CDCV hypothesis, i.e., all of the variants had to be sufficiently
present in the population. In particular, what tended to be excluded from the SNP
microarrays were DNA variants where the less prevalent form had a population
prevalence (termed minor allele frequency) that was less than 5 %.

Currently, there have been over 2000 GWAS studies that have been conducted in
humans (genome.gov, 2013) with a major finding that DNA variations in the form
of SNPs can only explain a limited amount of variation for several human disease
associated phenotypes [37, 38]. GWAS has been only successful in studies on type-
2 diabetes, age-related macular degeneration, coronary artery disease, and Crohn
disease as well as for obesity and height. These studies were not successful for
a majority of common complex diseases including neurodevelopmental disorders
such as autism, schizophrenia, and epilepsy. This has led to consideration of
reasons for the missing heritability [38]. The difficulty of achieving statistical
power to identify multiple loci of small effect sizes is considered as a major factor.
Other factors, not considered in traditional GWAS studies [5], such as gene-gene
interactions and gene-environment interactions, have also been proposed [57].

Rare variants, on the other hand, tend to have much bigger effects than the
DNA variants identified from first-generation GWAS. This alternative model is
termed common disease rare variant (CDRV). From an evolutionary point of view,
these variants are under strong selection and their frequency in the population is
maintained by de novo mutations. In fact, new germline mutations arise constantly,
based on the underlying sequencing architecture or age of the parents, at a rate of
about 61 base pairs for single nucleotide mutations [4] and 16–50 kbp per diploid
genome [24]. Genetic associations for copy number variants have met with higher
success for variants of low frequency. These variants were classically associated
with clinically recognizable syndromes such as 7q11.2 deletions in individuals with
features of Williams syndrome, 22q11.2 deletions in individuals with features of
DiGeorge syndrome, and 17p11.2 deletions in Smith-Magenis syndrome [19].

Developments in microarray technology and rapid incorporation of high-
throughput genotyping in diagnostic laboratories have resulted in the identification
of about two dozen CNVs that are strongly enriched in affected cases with
neurodevelopmental impairments compared to controls. However, extensive phe-
notypic heterogeneity even in individuals carrying the same CNV has complicated
further analysis. For example, the 16p11.2 deletion was originally associated with
autism, but was later identified to be enriched in individuals with intellectual
disability, epilepsy, schizophrenia, and obesity [40, 47, 55]. Comparison of CNV
load (measured as the proportion of population carrying a deletion or duplication
of a particular size) across cohorts of affected population suggests that the CNV
load correlates with the severity of neurodevelopmental disorders [17]. Similarly,
phenotypic variability and severity associated with a specific disease-associated
CNV can be also explained by rare variants in the genetic background [19, 21].
These variants modulate the ultimate phenotypic expression either by additive
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or synergistic effect, in genetic terms, in a digenic or oligogenic manner [53]
Genome sequencing has made tremendous strides in finding the missing heritability.
Sequencing of the protein coding sequences in the genome for neurodevelopmental
disorders has identified several rare, de novo variants that cluster in pathways related
to nervous system development, maturation, and maintenance [16,41,42,48]. These
studies have, however, revealed a complex genetic basis for common diseases; for
example, recent estimates suggest that a minimum of 1000 genes as causal for
autism. These disorders can be explained by an infinitesimal model consistent with
the role of multiple rare variants in complex disease [14]. According to this model
the genetic etiology can be explained by a hybrid of the two models. The challenge
therefore lies in understanding how these variants work together in causing the
disease rather than if they are rare or common [14].

The implications of rare variants for medicine and public health are potentially
quite paradigm shifting. Both disciplines have placed a tremendous emphasis on
evidence that has been gathered from consideration of population-based analyses
of biomedical data. However, rare variants are predictor variables that by definition
are quite individual-specific. Simply based on their prevalence, standard population-
based analyses will have low power to detect them. The rare variant paradigm also
is quite in tune with the notion of personalized medicine, where treatments and/or
interventions would be tailored to the particular variant present in the individual.
Very broadly speaking, this is consistent with the patient-centered/patient-oriented
paradigm in medicine that has been developing over the last few years. Figure 20.1
describes the genetic spectrum for disease that analysts must contend with.

20.3 Kernel Machine Methodology

20.3.1 Setup and Review of Methods

We now describe tests of associations between rare variants and a phenotype. To
make the ideas concrete in this chapter, we will suppose that we have available
(Yi,Gi,Zi), i = 1, . . . ,n for n subjects, which is a random sample from (Y,G,Z).
Here, Y denotes the phenotype, G is a p−dimensional vector for the genotypes for
the p variants within a region, and Z is a q−dimensional vector of confounding
variables to adjust for. Here and in the sequel, we will assume that each component
of G will count the number of minor alleles. We can postulate a class of regression
models for Y given G and Z; a standard one would be to postulate a generalized
linear model:

h(E[Yi|Gi,Zi]) = α0 +αT Gi +β T Zi, (20.1)
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Fig. 20.1 (a) Size of variant. Genetic variants are ordered by size on the horizontal axis versus
frequency on the vertical axis. Note that single nucleotide variants or more specifically single
nucleotide polymorphisms (used for GWAS studies) are more frequent than copy number variants
(i.e., deletions and duplications) in the human genome. The large chromosomal aberrations such
as trisomies and monosomies are rarer and are the cause for severe developmental disabilities.
(b) Frequency of Variants. Variants can be classified by the frequency (on the horizontal axis)
and its effect, i.e. penetrance (proportion of individuals carrying a variant also manifesting a
phenotype) on the vertical axis. Note that rare variants (typically <0.1 % to <5 %) are highly
penetrant, associated with severe developmental disorders, while common variants have modest
effect. Variants of intermediate frequency are currently missed by most studies. Current studies
also suggest that multiple rare alleles interacting in common or related pathways are responsible
for several human disorders

where (α0,α,β ) are the regression coefficients to be estimated, and h is a link
function. Note that the current model (20.1) can allow for both continuous and
binary phenotypes.

While model (20.1) is quite standard in the statistical literature, new issues arise
when attempting to apply it to rare variant data. First, due to the sparsity of G
the components of α will not be estimated very well. Due to this as well as for
computationally feasibility, there has been a reliance on the use of score-based
tests, which will be less sensitive to this type of sparsity relative to a Wald test,
for example. A second problem is one of power. Models such as (20.1) that treat
the genetic effects as fixed effects will have lower power due to the number of
degrees of freedom for jointly testing α = 0. To circumvent this issue, two classes
of approaches have been developed. The first includes methods that can broadly
interpreted as collapsing methods [31, 32, 36, 44]. These tests effectively reduce G
into a scalar quantity G∗ and to fit model (20.1), where αT Gi is replaced by γG∗

i .
The reduction to a one-dimensional quantity leads to a reduction in the number of
parameters and a potential gain in power.

Collapsing approaches will work in situations in which the components of G
have effects on Y that are in the same direction. However, it might be the case that
this assumption is not true. The SKAT methodology of Wu et al. [56] then becomes
quite useful in this regard. In particular, it generalizes (20.1):
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h(E[Yi|Gi,Zi]) = α0 + f (Gi)+β T Zi, (20.2)

where now f is a flexible non-linear function of the rare variants. This is a special
case of the kernel machine framework originally proposed by Liu et al. [33, 34].
We will describe the technical details of the approach in the next section. We point
out here that the rare variant effects are allowed to be much more flexible than
in (20.1). Further, the test of the genetic effect in (20.2) is identical to testing for a
random effect being zero for a certain linear mixed effects model. This amounts to an
effective shrinking of the degrees of freedom and allows for pooling of information
across the rare variants. The score test amounts to a quadratic form that takes
deviations of the individual rare variant effects and squares them.

20.3.2 Kernel Machines: Technical Details

In this section, we review the technical details behind the SKAT model in the case
of h in (20.2) being the identity link. This material is intended for mathematically
minded readers and can be skipped upon initial reading of this chapter. Recall the
model from the previous section with α0 = 0:

Yi = β T Zi + f (Gi)+ ei, (20.3)

where β is a q× 1 vector of regression coefficients, f (Gi) is an unknown centered
smooth function, and the errors ei are assumed to be independent and follow
N(0,σ2). Here, we are centering the response so that there is no intercept term as
in (20.2). Note that when f (·) = 0, (20.3) reduces to the standard linear regression
model.

20.3.2.1 Function Space of f (G): Specification

We assume the nonparametric function f (G) lies in a function space F spanned by
a set of basis functions {φ1(G), · · · ,φ j(G), · · · ,φJ(G)}J

j=1 such that any function in

the space F can be written as f (G) = ∑J
j=1 ω jφ j(G) for some constants {ω j}J

j=1.

Note that the set of basis functions can be finite (J < ∞) or infinite (J = ∞). In the
machine learning literature, such basis functions are called features.

Specification of a function space using basis functions or features might be
complicated since explicit expressions of features are required and the number of
features might be high or even infinite. An alternative way to conveniently specify
a function space is to use a kernel function K(G,G′) instead of the basis functions.
Specifically, a kernel function K(G,G′) is a bounded, symmetric, positive function
satisfying

∫
K(G,G′) f (G) f (G′)dGdG′ ≥ 0, (20.4)
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for any arbitrary square integrable function f (G) and all G,G′ ∈ Rp. The kernel
function can be viewed as a measure of similarity between two values of the
covariate vector G and G′. Following from the Mercer Theorem (e.g., see p. 33 of
[6]), any kernel function satisfying some regularity conditions implicitly specifies
an unique function space spanned by a particular set of basis functions (features),
and vice versa. Before formally defining such a function space, we give a few
examples.

1. The dth degree Polynomial Kernel: K(G,G′) = [G · G′ + 1]d , where G · G′ =
∑p

k=1 gkg′k denotes the dot product. Recall that g represents components of the
vector G in (20.3). This dth degree polynomial kernel generates the function
space F spanned by all possible dth order monomials of the components of G.
For example, if d = 1, the first polynomial kernel generates the linear function
space with basis functions {z1, · · · ,zp}. If d = 2, the second polynomial kernel
corresponds the quadratic function space with basis functions {zk,zkz′k} (k,k′ =
1, · · · , p), i.e., the main effects, all two-way interactions and quadratic main
effects. Note that the function space determined by the dth degree polynomial
kernel is of finite dimension.

2. The Gaussian Kernel: K(G,G′) = exp{−||G − G′||2/ρ}, where ||G − G′|| =
∑p

k=1(gk − g′k)
2. The Gaussian kernel generates the function space spanned by

radial basis functions, whose nice properties can be found in Bühmann [3]. The
function space determined by the Gaussian kernel is of infinite dimension.

3. The identity by state kernel: Kwee et al. [26] propose the use of the concept of
identity by state to define a new kernel. The kernel is given by

K(G,G′) = ∑p
s=1 IBS(Gs,G′

s)

2p
,

where the IBS function denotes the number of alleles shared identically by state
at position s.

The above examples suggest that the choice of a kernel function determines which
function space one would like to use to approximate f (G). The dimension of the
function space defined by a kernel function K(·, ·) is determined by the dimension
of the eigenfunctions of K(·, ·). The use of a kernel to specify a function space avoids
specifications of complicated basis functions (features) and inner products. One
will see in the next section that it has significant computational advantages in high
dimensional problems. It should be noted that the term “kernel” here has a rather
different meaning from that used in the kernel smoothing literature. A commonly
used function space defined by a kernel is a Reproducing Kernel Hilbert Space
(RKHS), which we label as FK . Technical details on RKHS can be found in Wahba
[54] or Chapter 3 of Cristianini and Shawe-Taylor [6].
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20.3.2.2 Primal and Dual Representations of f (G)

Any function f (G) in the function space FK defined by a kernel K(·, ·) can have a
primal representation directly using the basis functions (features) of FK , and it can
equivalently have a dual representation using the kernel function K(G,G′) directly.
Specifically, for an arbitrary function h(G)∈FK , its primal representation takes the
form

f (G) =
J

∑
j=1

ω jφ j(G) = φ(G)T ω, (20.5)

where φ(·) = {φ1(·), · · · ,φJ(·)}T is a J × 1 vector of the standardized orthogonal
basis functions (features), i.e., standardized Mercer features of the function space
FK , and ω ≡ (ω1, · · · ,ωJ)

′ is a vector of some constants. The square norm of f (·)
can be written as

‖ f‖2
FK

=
J

∑
j=1

ω2
j = ωT ω. (20.6)

Alternatively, the same f (G) can be equivalently written in a dual representation
using the kernel function K(·, ·) directly as

f (G) =
L

∑
l=1

αlK(G∗
l ,G), (20.7)

for some integer L, some constants α1, . . . ,αL and some {G∗
1, · · · ,G∗

L} ∈ Rp. For
justifications of these results and more details about the RKHS, see Cristianini and
Shawe-Taylor (2000[6], Chapter 3).

Estimation of β and f (·) proceeds by maximizing the scaled penalized likelihood
function

− 1
2

n

∑
i=1

{Yi −β T Zi − f (Gi)}2 − 1
2

λ‖ f‖2
FK

, (20.8)

where λ is a tuning parameter and controls the tradeoff between goodness of fit
and complexity of the model. When λ = 0, the model interpolates the data, whereas
when λ = ∞, the model reduces to a simple linear model.

While the function (20.8) is hard to optimize directly, we introduce the
Lagrangian multiplier (also called the dual parameter) γ to obtain

L (ω,β ,e,γ) =−1
2

n

∑
i=1

e2
i −

1
2

λωT ω +
n

∑
i=1

γi{β T Zi +φ(Gi)
T ω + ei −Yi}. (20.9)
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The dual problem is formulated by constructing an objective function by removing
the high-dimensional primal coefficient vector ω and the constraint parameters
e from L (ω,β ,e,γ) and writing L (ω,β ,e,γ) as a function of β and the dual
parameter vector γ only. We will see that the resulting estimators β̂ and γ̂ can be
expressed as a function of some kernel function K(·, ·). One can then conveniently
obtain the maximizer of the original primal problem ω̂ and then f̂ (G) at any
arbitrary G as a function of the kernel function K(·, ·).

Specifically, the dual problem to minimizing (20.8) is

min
β ,γ

Q(β ,γ) (20.10)

where Q(β ,γ) = supω,eL (ω,β ,e,γ). Note that (20.10) is an unconstrained opti-
mization problem, and the number of unknown parameters depends only on β and
the dual parameters γ , whose dimension is equal to the sample size n, often much
smaller than J, the dimension of the primal vector ω . Therefore the dual formulation
(20.10) effectively transforms the often infinite-dimensional optimization problem
(20.8) into a finite-dimensional problem.

To obtain Q(β ,γ), one differentiates L (ω,β ,e,γ) with respect to e and ω and
sets the derivatives to zero. We have

ê = γ

ω̂ = λ−1
n

∑
i=1

γiφ(Gi). (20.11)

Substituting ω̂ and ê into L (·), some calculations give

Q(β ,γ) = (Y −β T Z)T γ − 1
2

γT (I +λ−1K
)

γ (20.12)

where Y = (Y1, · · · ,Yn)
T and Z = (Z1, · · · ,Zn)

T , K is an n×n matrix whose (i, i′)th
element is K(Gi,Gi′), the kernel function evaluated at the pair of the design points
(Gi,Gi′). Note that the kernel matrix K measures the similarity among the covariate
values (G1, · · · ,Gn). One can see that even when p (the dimension of G) or J (the
dimension of the feature space) is high, the dimension of K is not affected by p and
J and remains the same as the sample size n.

Differentiating Q(β ,γ) with respect to γ and β , some calculations give

β̂ =
{

ZT (I +λ−1K)−1Z
}−1

ZT (I +λ−1K)−1Y (20.13)

γ̂ = (I +λ−1K)−1(Y − β̂
T

Z). (20.14)
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Plugging (20.14) into (20.11), we have

ω̂ = λ−1{φ(G1), · · · ,φ(Gn)}γ̂ = λ−1{φ(G1), · · · ,φ(Gn)}(I+λ−1K)−1(Y − β̂
T

Z).

It follows that the nonparametric function f (·) evaluated at the design points
(G1, · · · ,Gn)

T is estimated as

f̂ = λ−1Kγ̂ = λ−1K(I +λ−1K)−1(Y − β̂
T

Z). (20.15)

The estimator of the nonparametric function f (·) at an arbitrary G is

f̂ (G) = φ(G)T ω̂ (20.16)

= λ−1{K(G,G1), · · · ,K(G,Gn)}(I +λ−1K)−1(Y − β̂
T

Z). (20.17)

Note that the estimators β̂ and f̂ (·) in (20.13) and (20.15) are the maximizer
of the original primal problem. Examination of equations (20.13) and (20.17)
suggests that the estimators β̂ and f̂ (·) are both conveniently evaluated using the
kernel function K(·, ·) and do not require specifying the high (maybe infinite)
dimensional basis functions (features) {φ(G)}. This means one simply summarizes
the similarity of high-dimensional covariates (G1, · · · ,Gn) using a kernel matrix K,
then calculates β̂ and f̂ (·) by inventing an n×n matrix involving the kernel matrix
K, which is of the dimension of sample size and is often small in high dimensional
problems, e.g., microarray problems. Using (20.14), one can easily see that f̂ (G)
can be rewritten as

f̂ (G) =
n

∑
i=1

λ−1γ̂iK(G,Gi).

A comparison of this equation with equation (20.7) suggests that f̂ (G) takes exactly
a dual representation with L = n, (G∗

1, · · · ,G∗
n) = (G1, · · · ,Gn) and α = λ−1γ̂ .

Hence the estimated Lagrangian multiplier γ̂ serves as the coefficients in the dual
representation of f̂ (G), apart from a scale factor.

In Liu et al. [33], it is shown that the estimates of f and β can be derived as
estimates from a random effects model of the following form:

Y = β T Z+ f + e, (20.18)

where β is a q× 1 vector of regression coefficients, f is an n× 1 vector random
effects following f ∼ N{0,τK(ρ)}, ρ is a scale parameter, and e ∼ N(0,R = σ2I).
Because of this equivalence, all regression parameters in the model can be estimated
by maximum likelihood, while the variance component parameters can be estimated
by restricted maximum likelihood. If we assume f (G) ∈ FK , one can easily see
from the linear mixed model representation (20.18) of the least squares kernel
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machine that H0 : f (G) = 0 is equivalent to testing the variance component τ = 0.
The null hypothesis H0 : τ = 0 places τ on the boundary of the parameter space. Liu
et al. [33] developed a score test for testing H0.

20.3.3 SKAT Extensions

Since the seminal work of Wu et al. [56] on this topic, there have been several
notable extensions of the SKAT methodology. One extension was by Lee et al.
[28, 29], which made the observation that the collapsed approaches and SKAT
could be combined into a unified framework based on a prior distribution for the
linkage disequilibrium between rare variants within a genomic region of interest.
An application of the SKAT statistics to meta-analysis has been developed by Lee
et al. [27]. Finally, we note that Ionita-Laza et al. [23] have extended the SKAT
approach to simultaneously incorporate common and rare variants.

20.3.4 SKAT Example

We now describe the application of the SKAT methodology to data from Girirajan
et al. [20], in which the role of structural variants in autism was explored. The
data come from the Simons Simplex Complex Foundation. For the purposes of this
chapter, we will assume that the rows of the data matrix below represent statistically
independent observations. A sample of the data is given below:

chrom start end size pheno
1 chr1 6191784 6494317 302533 0
2 chr1 108655067 108718023 62956 0
3 chr1 143636400 143700636 64236 0
4 chr1 143636400 143701095 64695 0
5 chr1 143639096 143701095 61999 0

In this file, start and end denote the beginning and end of the structural variant, and
size denotes the length of the variant and is the difference between start and end.
Finally, pheno is a coding of the phenotype as zero for control and one for case
(i.e., autism). Our analyses using SKAT will use start, end and pheno.

We consider data from chromosome 1, which has been considered to be a hotspot
for structural variations in autism. We have measurements from 99 cases and 76
controls. We note that the hotspots have variable length, which is why the size
column shows variation. In order to implement the SKAT method, we need to
convert each row of the dataset into a vector of zeroes and ones. The zero represents
absence of a structural variant while one indicates its presence. We partitioned
chromosome 1 into 2000 nonoverlapping windows of equal size and determined for
each row of the dataset how many windows the alteration overlapped with. This is
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Fig. 20.2 Boxplot of distribution of copy number burden for chromosome 1 in controls (left
boxplot) versus autism cases (right boxplot). The data represent the total number of structural
variants from 50 windows that had at least one variant across the 175 samples

done by comparing both the start and end to the window in question. Note that
this will give us a 175 by 2000 matrix with zeroes and ones. However, of the 2,000
columns, only 50 have at least one nonzero entry. This means that for each subject,
we have a 50-dimensional vector of counts. It is not easy to perform descriptive
statistics on this type of data. As in [20], we can define a concept of copy number
burden, which means to simply add the up the counts over the 50 dimensions for
each subject. A plot of the distribution of copy number burden between cases and
controls is given in Fig. 20.2.

Based on Fig. 20.2, we find almost no difference between the copy number
burden distribution of cases and controls, aside from two high outliers among the
autism cases. However, the SKAT methodology may be able to identify differences
between the controls and cases when examining the 50-dimensional count vectors
that cannot be seen in the copy number burden data. To illustrate our method,
we simulated a covariate Z = Z from a standard normal distribution and used the
following R code to run SKAT.

# y.b = pheno variable from the dataset; Z: simulated
# normal(0,1) covariate;
# G: structural variant data, here a 50-dimensional
# vector of counts
# kernel specifies the kernel matrix needed to run
# SKAT; options include linear, IBS, quadratic
# and 2 way interaction; the first three have the
# option of being weighted by the
# inverse of the variance of the estimated
# proportion of the rare variant, as described
# in Madsen and Browning (2009)
#
# Here, we use the weighted linear kernel.
#
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obj = SKAT_Null_Model(y.b~Z,out_type="D",
kernel="linear.weighted")

skat1 = SKAT(G,obj)

Further details about the code can be found in the SKAT manual. We note that
the default procedure of Wu et al. [56] is recommended for a sample size greater
than 2000. Given that our example has a sample size of 175, SKAT performs an
adjustment in terms of using higher-order approximations in order to estimate the
null distribution of the test statistic. Using this adjustment, the p-value from SKAT
is 5.27× 10−5. Thus there is strong evidence of structural variants in chromosome
one being associated with autism.

20.4 Multiple Testing

Next, we discuss the impact of multiple comparisons on the analysis of rare variant
data from sequencing studies. While genomics has experienced an explosion in
the literature on multiple testing, there are two unique issues in the sequencing
context. First, because these variations are rare by definition, the number of single
variant hypothesis tests that need to be performed are actually quite small relative to
numbers of tests in other problems (e.g., number of tests in common-variant GWAS
studies). What is more challenging, however, is the fact that there is an inherent
discreteness in the data structure. For a given rare variant, we can represent the data
as in Table 20.1, where the cell entries represent the number of samples in each of
the groups. We wish to test for independence of the rows and columns, and many
methods exist for testing the null hypothesis of no association between presence of
rare variant and group label. If the expected cell count is greater than five in all the
cells, then one can safely use chi-squared statistics. However, when the cell counts
are small, we then use Fisher’s exact test, where the p-value is computed using a
hypergeometric distribution.

While there has been a lot of work on extensions and generalizations of the
FDR estimation methodology, most of the literature in this area has used the fact
that under the null distribution, the p-values are uniformly distributed on (0,1) or
more generally, that the test statistics have a continuous distribution. This will not
apply in the case of rare variant data with respect to the presence/absence calls. The
literature on multiple testing with discrete p-values is much more limited. An initial
procedure was proposed by Tarone [51] which involves only considering hypotheses

Table 20.1 Rare variant presence/absence analysis

Rare variant present Rare variant absent Total

Y = 0 a b a+b
Y = 1 c d c+d

a+c b+d a+b+c+d
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where a sufficiently small rejection probability is possible and to then perform a
Bonferroni test on those selected hypotheses. This procedure has been modified to
the false discovery setting in Gilbert [15], where the Bonferroni adjustment was
replaced by the Benjamini-Hochberg [2] procedure. Theoretical aspects of the B-H
procedure with discrete test statistics have been addressed by Ferreira [9]. An FDR-
based estimation procedure in the spirit of the q-value methodology of Storey [49]
was developed in Pounds and Cheng [43]. In Kulinskaya and Lewin [25], the B-H
procedure was applied to so-called fuzzy p-values, whose behavior under the null
hypothesis is identical to that of a Uniform(0,1) random variable so that the usual
methods apply. Applications of discrete multiple testing ideas to a cancer genomics
problem can be found in Ghosh [12, 13]. Some recent work of Bancroft et al. [1]
uses a novel sequential permutation p-value approach to estimate FDR that would
be applicable in this setting as well.

Finally, an open problem in this area is the incorporation of dependence into
multiple testing procedure. While there has been a lot of recent work in the area
on multiple comparisons with dependent data [8, 30], almost all of this work again
assumes that the p-values are derived from continuous distribution, which is not
the case here. However, the argument that rare variants operate with a network
structure is less plausible than for phenomena such as gene expression, so a case
could be made that dependence is not as big of an issue as in other genomic settings.
Again, this topic is definitely worthy of future exploration.

20.5 Discussion

This chapter has attempted to discuss issues in the analysis of rare variant data
for a statistical audience. One of the major messages from this chapter is that the
phenomenon being described is one with a low probability of occurring, but given
its occurrence, it can have a large effect.

One of the major challenges in this area will be development of methods that
will have high power of detecting these events. A major statistical lesson that has
been used here is that the score method of testing has definite merits. While classical
statistical theory teaches us that the behavior of the likelihood ratio test, Wald test
and score test will be identical as the sample size tends to infinity, it is also the case
that we are definitely in a small-sample scenario where asymptotic theory will not
hold. The score statistic provides many advantages, one of the major ones being that
of avoiding having to estimate rare variant effects.

An area not discussed in this chapter is meta-analysis. This has become the de
rigueur method for identifying candidate genes from genomewide studies. We point
the reader to the recent review by Evangelou and Ioannidis [7] and note the SKAT
approach to this problem that was described in Lee et al. [27].

While this area is relatively new, we should also be wise to lessons that have been
learnt in many other settings. For example, it is well-known that selected variables
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or SNPs suffer from the so-called ‘winner’s curse’ so that estimated effects will be
biased. This will also be the case for the rare variants and is inherent to the statistical
task at hand.

Finally, we believe that a tactic that will be useful in the future is what we term
‘pooling information.’ One of the major reasons that SKAT methods have had such
a major impact in this area is that the equivalence with variance components models
and the introduction of random effects models leads to the ability to pool infor-
mation across estimated parameters. Statistically, this can be conceptualized using
shrinkage theory, Empirical Bayes and more generally, Bayesian methods. Given
the increasing availability of genomewide information from different data sources,
pooling information using ‘vertical integration’ techniques [52] will be needed to
identify and to elucidate the functionality of rare variants in the foreseeable future.
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