
Chapter 18
Detecting Copy Number Changes and Structural
Rearrangements Using DNA Sequencing

Venkatraman E. Seshan

Abstract Chromosomal abnormalities in the form of deletions, duplications,
inversions and translocations are common in cancer. These changes feed the
oncogenic process by affecting genes that are involved in tumor growth. Next
generation sequencing has aided our ability to study these changes at very high
resolution. In this chapter we will describe the nature of these data and the
information contained in them for the detection of the structural changes. We will
present the circular binary segmentation algorithm for the segmentation of array
based copy number data and adapt it to NGS data. We will also present a method for
the detection of somatic structural rearrangement. We will illustrate these methods
using data from breast cancer cell line (tumor) along with its blood (normal)
counterpart generated by the cancer cell-line encyclopedia project.

18.1 Introduction

The flow of genetic information in cells [3, Chap. 5] occurs primarily through
the transcription of DNA into RNA which is then translated into proteins that
carry out the cellular functions. This is stated as DNA makes RNA, RNA makes
proteins, proteins make us [18] and referred to as the central dogma of molecular
biology [8]. This implies that changes to DNA can have an effect on the biological
processes. These changes in DNA can be mutations as well as structural changes.
In humans, autosomal chromosomes appear in pairs, one from each parent, and
thus have two copies of every gene; the allosomes (sex chromosomes) are XX in
females (two copies of X) and XY in males (one copy each of X and Y). Gains
and losses of all or parts of chromosomes are known as copy number changes
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and are implicated in many diseases. These changes could either be germline
(inherited) or somatic (acquired). Examples of germline changes are 3 copies of
chromosome 21 (copy number gain) resulting in Down’s syndrome [15, Chap. 5] or
single X (copy number loss) resulting in Turner’s syndrome [15, Chap. 5]. Somatic
changes are very common in cancer, where a gene is gained and it promotes growth
(oncogene, e.g., ERBB2 (HER2/Neu) in breast cancer [14]), or a gene is deleted
and the ability to control growth is lost (tumor suppressor gene, e.g., PTEN in
prostate cancer [38]). Other changes to DNA such as the Philadelphia chromosome
[23], a reciprocal translocation between chromosomes 9 and 22, is another type of
structural change implicated in cancer (chronic myelogenous leukemia or acute
lymphocytic leukemia). Thus, studying copy number changes and other structural
rearrangements is important for understanding the oncogenic process.

Karyotyping, which is the study of the number and appearance of chromo-
somes, was the earliest method used for detecting chromosomal aberrations and
provides information at a low resolution. The development of comparative genomic
hybridization (CGH) [13, 20] allowed measurement of copy number changes over
the entire genome and enabled it to be localized to a chromosome at an improved
resolution of 10 to 20 megabase. High throughput methods such as BAC (bacterial
artificial chromosome), aCGH (array comparative genomic hybridization) and SNP
(single nucleotide polymorphism) arrays, based on the microarray technology have
systematically increased the resolution and thereby our ability to detect gains
and losses of smaller chromosomal regions; see [27] for a review of array CGH
technology. Whereas a karyotype assay can clearly show trisomy of chromosome
21, the loss of PTEN cannot be readily visualized in a Affymetrix SNP 6.0 array
with over 1.8 million markers. Thus sound analytic methods are required for the
large volume of noisy data generated by the high throughput methods.

The analysis of copy number data is composed of two parts—the identification of
regions of gains and losses in each subject followed by combining this information
across samples to identify recurrent events associated with cancer. Several methods
have been proposed for the per sample analysis of copy number data which can
be characterized as “smoothing and thresholding” or “segmentation” methods.
A comprehensive comparison of the performance of several of these methods was
done by [16]. Overall, segmentation methods were found to be most suitable for
the per sample analysis of copy number data. The principal concept behind the
segmentation methods is that since copy number for a cell is integer valued, gains
and losses are discrete events and thus along a chromosome the gain or loss induces
a jump discontinuity. Note that the tissue sample being assayed is a collection of
cells all of which will not have the same changes. However, the distinct clones that
make up the tissue sample is expected to be far fewer than the number of cells and
hence the average copy number will have the form of a step function. We formulated
this as a change point problem to develop the circular binary segmentation (CBS)
algorithm [25, 36] which is one of the widely used methods. GISTIC [4], GRIN
[28] and RAE [34] are frequently used algorithms to combine the copy number
changes detected in the per sample analysis in order to identify recurrent events and
implicated genes.
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Next generation sequencing (NGS) of genomic DNA enables us to obtain infor-
mation on somatic mutations and structural changes. The structural changes include
copy number gains and losses as well as rearrangements such as inversions and
translocations. [Note: Inversions and translocations are explained in Sect. 18.3.1]
Several algorithms such as BreakDancer [6], CNVnator [1], CNVseq [40], CREST
[37], SegSeq [7], seqCBS [33], SVminer [12] are currently used for obtaining
structural change information from NGS data. In the following sections we will
describe the CBS algorithm, adapt it to sequencing data, and demonstrate it using
cell line data. We will finish the chapter by presenting a simplified summary of the
procedure for identifying other structural variations.

18.2 Background

In this section we will describe the design and techniques used to generate the
data that are to be analyzed. The first step in the process of obtaining the data is
the generation of a library of genomic DNA composed of short DNA fragments,
typically 100 to 500 nucleotides long, from the sample of interest. This library
can encompass the entire genome (whole genome sequencing) or selected genomic
regions (targeted sequencing). The creation of the library in either case begins
with generating DNA fragments by randomly breaking the entire genome using a
technique such as sonication. The fragments are then sorted by molecular weight to
enable the selection of fragments of the desired length. In targeted sequencing an
additional selection process is employed where the DNA is hybridized to arrays with
probes that are designed to capture DNA fragments that cover the genomic regions
of interest. A specific case of targeted sequencing is whole exome sequencing where
the genomic regions selected are all the exons (coding regions) of all known genes
(approximately 20,000). Custom gene panels [11] that cover a smaller collection
of genes known to be most commonly associated with cancer are also currently in
use. The regions in targeted sequencing span a small fraction of the whole genome,
1–2% in the case of whole exome and even less for custom panels, allowing for
high coverage of the target.

The library that is generated is then sequenced to obtain reads, which are the
strings of bases or nucleotides, that make up a part of the fragment. Sequencing can
either be single-end or paired-end where the DNA fragments are sequenced (read)
from either one end or both ends, respectively. Read length, which is the number
of nucleotides sequenced, can be specified in the instrument for an experiment. The
reads are then mapped to a reference genome to obtain positional information on
where the reads, and hence the fragments, come from, i.e., their locations. These
locations follow a probability distribution that is influenced by factors such as
the GC content and mappability. The data used for identifying structural changes
are various characteristics of the reads such as their locations and fragment size.
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In cancer research, the principal goal of DNA sequencing is to identify changes in
DNA (mutations and structural) acquired by the tumor. Hence, typically, both tumor
and normal cells are sequenced. The sequencing of normal cells will help identify
any germline events, for example, BRCA1 mutation, that may be present. In paired
tumor-normal sequencing, the comparison of the tumor to its matched normal will
benefit from the canceling out of the influence of the technical factors that affect
sequencing. Running them in the same batch would additionally ensure that batch
effects are minimized. Although the use of paired tumor-normal samples is ideal for
identifying changes that are specific to the tumor, it may not always be feasible. For
instance, the analysis of archival tumors in which only tissue samples from the tumor
are available will need an external pool of normal samples to identify tumor specific
changes. However, large scale copy number polymorphisms have been seen in the
germline [31] and Redon et al. (2006) [29] created a first-generation copy number
variation (CNV) map from copy number profiling of the HapMap samples. Thus,
the comparison of tumor data to an external normal needs to account for technical
artifacts that may not cancel as well as inherited copy number events.

Unlike karyotying, both sequencing and array based measurement of copy
numbers query the DNA fragments directly and do not contain information on
individual cells. This introduces an identifiability problem as follows. Let us
suppose that a global change in copy number has occurred in which every single
chromosome in the cell is duplicated resulting in a total copy number of four.
Whole genome duplication such as these and aneuploidy in general are common
in cancer [9]. In terms of information contained in the DNA, a tissue with cells of
this kind is indistinguishable from a tissue of normal cells. In general, both the array
based and sequencing approaches to copy numbers can only provide relative copy
number changes and require external information to resolve the relative numbers
into absolute copy numbers. The ABSOLUTE algorithm [5] provides a method to
use the ploidy (which is the average copy number) and tumor purity to obtain the
absolute copy numbers.

In the next section, we will present a method for analyzing copy numbers from
matched tumor-normal sequencing data. Furthermore, the changes identified will be
based on the relative copy numbers and thus gains and losses will be relative to the
average copy number of the tumor.

18.3 Methods

The read data generated from DNA sequencing contains not only information on the
nucleotides that make up the subject’s genome but also the relative abundance of a
locus as well as distances between loci. These additional elements can be leveraged
to detect structural changes to the DNA. In the following subsections we will
develop a method to obtain the copy number profile from the relative abundance
measure.
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Fig. 18.1 Different types of fragments in a paired end DNA sequencing data

18.3.1 Structural Change Information in NGS Data

In the background section, we described how the reads data that are to be used for
identifying structural changes are generated. We will now describe the information
contained in these data using Fig. 18.1 which shows a portion of the tumor genome
and five fragments from it.

The displayed portion of the tumor genome consists of a striped and a shaded
part both of which are contiguous in the germline but the transition from the
striped to the shaded does not occur in the germline and thus represents a structural
change boundary. The fragments shown are from paired end reads where the thick
rectangles are the reads and the thin one connecting them is the inferred intermediate
region once the reads are mapped.

In the germline, both the striped and the shaded regions will appear exactly
twice in a cell provided they are not polymorphic but in a tumor cell they appear
more than twice if the region is gained and fewer than twice if it is lost. The
transition corresponds to a translocation if both the regions have the same orientation
as in the reference genome and an inversion if their orientations are opposite.
The translocations can be intra- or inter-chromosomal depending on whether both
regions come from the same chromosome and different chromosomes, respectively.

The fragments shown in the figure are read pairs for which at least one of the two
ends is mapped to either the striped or the shaded genomic region. The top three
fragments have both ends mapped and the bottom two have only one end mapped.
Note that, although both reads of Fragment 4 are shown, only the read contained
in the striped region will be mapped using a standard alignment procedure and the
other end would require a partial read mapping algorithm such as CREST [37] to
be mapped. Unmappable reads, such as the mate pair of Fragment 5, can occur if
the read contains repetitive elements that are not uniquely identifiable.

A region that is gained in the tumor will contribute more fragments to the tumor
reads and one that is lost will contribute fewer fragments. So the counts of the reads
within a region, namely its abundance measure, is related to the copy number. Since
the reads in Fragments 1, 2 and 5 are completely contained within the striped and
shaded regions, they only contribute to the abundance measure. Since the two ends
of Fragments 3 and 4 are mapped to the two regions, not only do they contribute to
the abundance measure, they can also inform directly on the possible location of a



360 V.E. Seshan

structural change. Zhao et al. (2013) [41] provide a review of various computational
tools available for CNV detection that use one or a combination of these features.

In a targeted sequencing experiment, a read pair will contain the location of a
structural transition, only if that transition occurs near a targeted genomic region
which enables such a fragment to be captured. So a targeted sequencing experiment
is unlikely to detect translocations and inversions unless the regions where such
events could occur are specifically targeted, for example, the translocation in
Philadelphia chromosome. Hence de novo structural rearrangements are rarely
identifiable in targeted sequencing. The abundance measure however, is available
and effective for copy number profiling both in whole genome and targeted
sequencing. We will describe our method based on abundance measure (read-depth)
in detail.

18.3.2 Circular Binary Segmentation

Let X1,X2, . . . be a sequence of random variables. A change-point is an index
ν such that the random variables X1, . . . ,Xν have a common distribution F0 and
Xν+1, . . . have a different distribution F1 (until the next change-point or the end of
the sequence). For the copy number problem using data from array CGH the Xis
are the log-transformed normalized intensities (or log-ratios) of the markers which
are ordered by the position along the chromosome and thus is a finite sequence of
length m. Since the copy number of a cell is integer valued and the tumor consists
of far fewer distinct clones than cells, it is appropriate to view the locations where
the copy number changes to be the change-points that we wish to detect.

The test statistic introduced in the CBS algorithm [25] to detect the change-points
is the maximal t-statistic given by:

T = max
1≤i< j≤m

{
σ̂i j

√
1

j− i
+

1
m− j+ i

}−1 ∣∣∣∣S j −Si

j− i
− Sm −S j +Si

m− j+ i

∣∣∣∣
where Si = X1+ · · ·+Xi is the partial sum and σ̂2

i j is the mean-squared error given by

σ̂2
i j =

1
m−2

[
m

∑
1

X2
i − (S j −Si)

2/( j− i)− (Sm −S j +Si)
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The motivation for this test statistic is as follows. If the Xis are normally distributed
with a common variance then the change-points correspond to a change in mean.
Suppose the change-points are fixed at i and j then the optimal statistic to test the
equality of the means of the two sets {Xi+1, . . . ,Xj} and {X1, . . . ,Xi,Xj+1, . . . ,Xm} is
the t-statistic. Because the change-points are unknown we obtain our test statistic by
maximizing the t-statistic over all possible i and j. Note that j = m corresponds to
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the case of a single change-point. The null hypothesis of no change-points is rejected
if the p-value of the test statistic is below the significance threshold. Since the log-
ratio data may not be normally distributed the CBS procedure was made robust
by using a permutation reference distribution. The algorithm begins by testing for
the presence of change-points in whole chromosomes. If the null hypothesis of no
change-points is rejected, then the change-points that are detected will segment the
chromosome into two (test detects one change-point) or three contiguous regions
(test detects two change-points). The test procedure is applied recursively to each of
the regions until no change-points are detected in any of them.

In comparative studies, the CBS algorithm was found to perform well consis-
tently [39] and had the best operational characteristics [16] amongst several methods
for analyzing copy number data. However, since the test statistic is maximizing over
both i and j the computing time grew as the square of the number of markers which
made the analysis burdensome as the resolution of arrays increased. To address
this, [36] developed a faster CBS algorithm using tail probability approximations
of Gaussian random fields as well as sequential testing. These and additional
algorithmic improvements have made the use of this procedure routine for the
analysis of array based copy number data.

18.3.3 Adapting CBS to NGS Data

In a sequencing experiment, the DNA fragments are sampled randomly and thus,
a region that has a higher copy number contributes a larger number of fragments
than a region with a lower copy number. The locations that the reads are mapped
to is a function of several factors such as sequence composition and fragment size.
Although the distribution of the locations of the mapped reads is non-uniform, the
ratio of the read counts between tumor and normal will be proportional to the tumor
to normal copy number ratio. Two additional scaling factors are needed for the read
count ratio to reflect the true copy number ratio. The first is the ratio of total number
of reads in the tumor and normal, which adjusts for the fact that tumors are often
sequenced to a higher coverage than normal. The second factor depends on the
purity and ploidy of the tumor. Thus the read count ratio data enables us to detect
the regions of copy number change but will only give us a relative copy number. For
instance, suppose we are interested in knowing whether the ERBB2 gene is gained
(relative to the average copy number of the tumor) in a breast cancer sample; we
can count the fragments that map to this gene in the tumor and normal samples
and compare that ratio to the ratio of total number of fragments mapped in the two
samples.

The independent elements in a sequencing experiment are the DNA fragments
which are represented by a read pair, if both ends are mapped, and a single read, if
only one end is mapped. If the abundance measure is calculated at the nucleotide
level, then a DNA fragment contributes to the read count of all the positions within
the read as well as all those in its mate pair. This induces a serial correlation in
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the abundance measure data indexed by genomic position. Read pairs that span a
structural transition, such as Fragment 3, can induce a longer range correlation.
In order to obtain copy number data that are independent, we need that each
fragment be counted towards only one abundance measure data point.

A deterministic approach to ensure that each fragment is counted towards one
copy number data point only, is to represent each fragment by its mid-point. This
presents a problem for fragments where only one end is mapped as well as those
fragments with both ends mapped that are not consistent with the lengths of the
fragments selected for sequencing. Such fragments can be removed from the copy
number calculations and since they typically represent a small fraction of the reads,
it is expected to have minor effect on the copy number profile. Alternately, we
can include them as follows: for fragments with only one end mapped, use the
midpoint of the read; for fragments with both ends mapped, pick one of the reads
at random and pick its midpoint. In targeted sequencing, we expect only one of the
two reads in a read pair that needs such probabilistic assignment, to be near a target
interval and can choose the midpoint of that read to represent it. We will calculate
the abundance measure for copy number profiling from these positional data. Note
that under this data representation, the average number of fragments per position
will be the average coverage divided by the read length for single-end sequencing
and average coverage divided by twice the read length for paired-end sequencing.
For example, in an experiment with 50× coverage using 2×75bp sequencing this
translates to a read count of 1/3 fragments per base. Since this number is small, we
will require that the data be binned to aggregate information and provide reliable
copy number profile. We recommend a bin size that gives an average bin count of
25 or higher which for this example will result in a bin size of 100 bases.

A final feature of the data that requires attention is specific to targeted sequencing
where capture technique is used to enrich DNA fragments from genomic regions of
interest. Although these capture technologies have high specificity, it is not perfect,
i.e., the library being sequenced will consist of DNA fragments that are not on target.
This will lead to a large number of bins, far exceeding the bins that cover the regions
being targeted, with very low counts (typically singletons). Since these bins are
spread over the entire genome, the data from them will have an undue influence
on the copy number profile and should be discarded prior to analysis. We address
this by using primarily bins that span the regions of interest with target intervals
enlarged to allow for fragment overhang.

With these preliminaries in place, let N1 and N0 be the total number of mapped
fragments for the tumor and normal samples, respectively. Let (n1i,n0i) be the tumor
and normal fragment counts for the ith bin, and m be the number of bins. Similar
to the log-ratios from copy number arrays we define the copy number data used
for the segmentation as Xi = log2[(1+ n1i)/(1+ n0i)]− log2(N1/N0), where the 1
is added to address bins with zero counts. The average fragment counts for bins
within a region of constant copy number is proportionally increased or decreased
and thus the log-ratio has a constant mean. However, the variability of fragment
count is proportional to the average and thus we expect the variability of the log-ratio
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to be inversely proportional to the average fragment count. While the test statistic
shown in Sect. 18.3.2 is adequate, a weighted version of the statistic will be more
appropriate.

Suppose {Y1, . . . ,Yk} and {Z1, . . . ,Zl} are two sets of random variables where
Yis have mean μ and variance σ2

i and Z js have mean θ and variance τ2
j . Then

the minimum variance estimate of the difference in means μ − θ is the difference
in weighted average with weights given by the inverse of the variances, i.e.,
(∑σ−2

i Yi/∑σ−2
i )− (∑τ−2

j Z j/∑τ−2
j ). Thus the optimal statistic for testing the

hypothesis μ = θ is the weighted t-statistic based on this difference in weighted
average. The maximal t-statistic we will use for change-point detection will be the
maximum over all i and j of the weighted t-statistic suggested by the minimum
variance estimate. Note that we need to know the parameters σ2

i and τ2
j , at least up

to a constant, to obtain the weighted t-statistic.
For the fragment count data, we expect the variance of the counts to be

proportional to the mean. The proportionality constant is 1 if the counts have a
Poisson distribution and the relationship holds for distributions with extra variation
such as negative binomial. So the variance of the log of the counts will be inversely
proportional to the mean counts and thus the weight will be proportional to counts.
Note that the tumor counts in the log ratio is affected by gains and losses and which
can influence the weights. Thus we recommend using only the normal counts for
the weights which is consistent with the null hypothesis of no change. In order to
dampen the effect of bins with very large counts we suggest that the weights grow
as the logarithm of the counts. In the next section we will present an example of the
copy number analysis of sequencing data to demonstrate all these.

An alternate approach to the analysis is to use a variance stabilizing transfor-
mation. Anscombe (1948) [2] showed that for a Poisson random variable X , the
transformation

√
X +3/8 is variance stabilizing, if the rate parameter is large

enough (≥ 5). However, in order to allow for extra variation if we posit that
the count data are distributed as negative binomial, then the variance stabilizing

transformation is either sinh−1
[√

(X +3/8)/(k−3/4)
]

or log(X + k/2) where

k is the dispersion parameter. Ignoring the transformation’s dependence on the
dispersion parameter k, one can define the copy number data as

√
n1i +3/8 −√

n0i +3/8 and segment them using the unweighted CBS algorithm. Note that these
data will not be centered at zero and hence the sign of the segment mean does
not indicate a gain or a loss from the average tumor copy number. However, the
underlying true regions of constant copy number will be the same as in the log-ratio.

18.4 An Example

In this section we will illustrate in detail the steps involved in the analysis of DNA
sequencing data for copy number changes using data from a cancer cell line. The
data are from the breast cancer cell line HCC1143 and its blood (normal) counterpart
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HCC1143BL which are part of the cancer cell line encyclopedia (CCLE) project
(http://www.broadinstitute.org/ccle/home). Whole exome sequencing (paired-end
2×75bp) was done for these two samples and the read data, aligned to the
HG19_Broad_variant (Human reference GRCh37) reference genome, are available
at the Cancer Genomics Hub (https://cghub.ucsc.edu/datasets/data_sets.html). The
size of these two data sets are 10.8 Gb and 8.3 Gb, respectively, and the analysis will
require powerful computers. Software requirement for this analysis are: Bioconduc-
tor [10], specifically the Rsamtools [22] and DNAcopy [32] packages, Integrative
Genomics Viewer [30], Picard [26] and samtools [19]. Note that all dependencies
of these software should also be available.

We begin with using samtools to summarize the data file that was downloaded
from CCLE. The summary data (with line numbers added) for the normal sam-
ple are:

1 68629600 + 6562518 in total (QC-passed reads +
QC-failed reads)

2 10054468 + 1517557 duplicates
3 67842739 + 5593779 mapped (98.85%:85.24%)
4 68629600 + 6562518 paired in sequencing
5 34314800 + 3281259 read1
6 34314800 + 3281259 read2
7 66854380 + 5314442 properly paired (97.41%:80.98%)
8 67196156 + 5353240 with itself and mate mapped
9 646583 + 240539 singletons (0.94%:3.67%)
10 301196 + 35316 with mate mapped to a different chr
11 260127 + 29485 with mate mapped to a different chr

(mapQ>=5)

The first line says that there are approximately 75 million reads in total in this
sample which are decomposed into those that passed quality control (QC) and
those that did not. This QC flag is platform and aligner specific. We will restrict
the analysis to only those reads that passed QC (over 90% of the total). Lines 4
through 6 give the breakdown of the reads in Line 1, namely they are paired (Line
4) and that each end contributes half of the reads (Lines 5 and 6). Line 3 gives
the number of reads that are mapped to the reference genome among the number
listed in Line 1. The reasons the reads are unmapped are varied, such as structural
rearrangement as seen in Fragment 4 of Fig. 18.1 or viral DNA mixed in with the
sample. Line 7 gives the number of reads from fragments with both ends mapped
and the two reads are consistent with the expected fragment sizes and the reads are
in the proper direction (5′ to 3′ and vice versa, respectively). Line 8 gives the reads
from fragments for which both ends are mapped. This number is larger than the one
in Line 7 as it includes improperly paired reads as well. The counts of improperly
paired reads with the two ends mapped to two different chromosomes is given in
Line 10 and the subset that meets a mapping quality threshold is given in Line 11.
Line 9 gives the number of fragments for which only one of the two reads is mapped.
Finally, Line 2 gives the numbers of reads that are considered duplicates.

http://www.broadinstitute.org/ccle/home
https://cghub.ucsc.edu/datasets/data_sets.html
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Duplicates are fragments for which the two ends, when mapped, give the
same start and end locations and (nearly) identical read sequences. Since it is
very unlikely that two identical DNA fragments are generated during the original
DNA preparation, these are considered to have risen at the PCR amplification step
where some fragments can get overamplified. Thus, duplicate reads do not provide
independent information on the DNA of the sample and hence, only the read pair
with the best read qualities is kept and the rest are removed from further analysis.
We accomplish the deduplication step using the Picard software (MarkDuplicates
option) which unlike samtools can also remove inter-chromosomal duplicates.

In summary, these data come from approximately 34 million fragments of
which 5 million are potential PCR duplicates resulting in 29 million fragments
of usable data. The pairs that are not proper (the excess of Line 8 over Line 7),
especially, the ones with the mate mapped to a different chromosome (Lines
10 and 11), are the informative ones for non copy number structural changes
(translocations and inversions). Additionally, information in the mate pair of the
singletons in line 9 can potentially be extracted using partial read alignment
for use in detecting structural variations. A similar breakdown of the summary
data of the tumor file tells us that there are approximately 34 million usable
fragments in that sample. The target enrichment intervals used for the whole
exome sequencing is available in the CGHUB website (https://cghub.ucsc.edu/
datasets/whole_exome_agilent_1.1_refseq_plus_3_boosters_plus_10bp_padding_
minus_mito.Homo_sapiens_assembly19.targets.interval_list.tsv). There are a total
of 36.6 million bases in these intervals (31.8 million if the targets labeled
new_exome_1.1_content are excluded) which results in an expected count of
1 fragment per base in the target region.

Note that for variant (somatic mutation) detection, it is customary to conduct
indel realignment and recalibration of quality score steps on the sequence data using
GATK [21]. The copy number analysis can be performed after these steps and can
benefit from them, particularly if read quality is accounted for in the analysis since
the influence of poor quality reads can be eliminated. The quality recalibration step
is valuable for identifying other structural variations reliably.

Once the data have been deduplicated, we extract the properly paired reads
from both the tumor and normal samples. Since the data are from a cancer
cell that originated in a female, we only extracted the reads that mapped to the
22 autosomes and the X chromosome which resulted in 28.5 and 33.5 million
fragments, respectively, for tumor and normal. The number of reads mapped to
the Y chromosome is approximately 16,000 for both the tumor and the normal
which is reassuringly negligible. The densities of the fragment lengths for the tumor
and normal samples are shown in Fig. 18.2. Fragments with lengths smaller that
76 or larger than 750 were not included in this figure for visual clarity. Although
the fragments not included in the density plot can provide alternate information
on structural changes, their contribution to the abundance measure is minimal as
they represent 0.49% and 0.66% of normal and tumor fragments, respectively. The
fragment lengths of the normal sample (median 163) are slightly larger than that for

https://cghub.ucsc.edu/datasets/whole_exome_agilent_1.1_refseq_plus_3_boosters_plus_10bp_padding_minus_mito.Homo_sapiens_assembly19.targets.interval_list.tsv
https://cghub.ucsc.edu/datasets/whole_exome_agilent_1.1_refseq_plus_3_boosters_plus_10bp_padding_minus_mito.Homo_sapiens_assembly19.targets.interval_list.tsv
https://cghub.ucsc.edu/datasets/whole_exome_agilent_1.1_refseq_plus_3_boosters_plus_10bp_padding_minus_mito.Homo_sapiens_assembly19.targets.interval_list.tsv


366 V.E. Seshan

100 200 300 400 500 600 700

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

Fragment length

D
en

si
ty

HCC1143BL
HCC1143

Fig. 18.2 The distribution of fragment lengths in tumor (dashed line) and normal (solid line)
samples. The densities were generated using fragments whose lengths are between 76 and 750
bases

Table 18.1 The target
intervals in the TP53 gene

Chr Start End Width Target

17 7572915 7573020 106 Target_128140
17 7573915 7574045 131 Target_128141
17 7576841 7576938 98 Target_128142
17 7577007 7577167 161 Target_128143
17 7577487 7577620 134 Target_128144
17 7578165 7578301 137 Target_128145
17 7578359 7578566 208 Target_128146
17 7579300 7579602 303 Target_128147
17 7579688 7579733 46 Target_128148
17 7579827 7579924 98 Target_128149

the tumor sample (median 154), and a vast majority of fragments (93.8% of normal
and 96.6% of tumor) are fewer than 300 bases in length.

In order to provide further insight into the nature of targeted sequencing data, we
will take an in depth look at the well known cancer gene TP53. This gene spans a 10
kilobase region on chromosome 17 with target intervals of different widths which
are shown in Table 18.1. A figure of the data from this region for the normal sample
generated using Integrative Genomics Viewer is in Fig 18.3. In the top part of the
figure, the chromosome is shown with the region of interest in p13.1 highlighted in
red and the genomic positions in bases. Below that are the genes in that region and
the exons. The gene display is packed to show various forms of the gene present in
RefSeq (http://www.ncbi.nlm.nih.gov/refseq/); the tall blue rectangles are the exons

http://www.ncbi.nlm.nih.gov/refseq/
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Fig. 18.3 The normal sample coverage plot for TP53 as obtained from the Integrative Genomics
Viewer. The tall blue rectangles are the exons targeted in sequencing

and the shorter ones are start and end of untranslated regions (UTR). The labels for
the target intervals in Table 18.1 were added to the figure generated by IGV. The
labels are 0 to 9 for the 10 intervals in the table, and the third rectangle is labeled
with a star as it does not appear to be a target interval in this sequencing experiment.
In the bottom three-quarters of the figure, the coverage histogram is shown in the
upper part and a stacked display of individual reads in the lower part.

Aspects of the data seen in the figure are:

• In order to achieve target coverage, the capture probes must be designed such
that either end of the fragment falls on the target interval. This leads the coverage
to extend beyond the target intervals (overhang on all target intervals).

• Overlap of fragments leads to non-uniform coverage within a target interval. This
is attributable to varying widths of the fragments as well as tiling of capture
probes. (Notice the bimodality of the coverage histogram for the eighth target.)

• Targets need not achieve the same average coverage as seen in the intervals
labeled 0 and 7 having much higher coverage than the rest and the interval labeled
1 having a low coverage. Possible reasons for this are capture probe efficiency
and interval characteristics such as size and GC content.

The figure provides several pieces of information on the individual reads. It color
codes fragments in red to indicate that they are too wide compared to expected
width and blue to indicate that these fragments are narrower than read length.
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Such fragments are suggestive of insertions and deletions respectively. Other colors
are used to indicate the two ends mapping to different parts of the genome which
are inconsistent with the expected fragment lengths (see http://www.broadinstitute.
org/software/igv/AlignmentData for details).

While a majority of fragments will be on target, there is a non-negligible
proportion of fragments that are off-target and they can influence copy number
computations which we will illustrate now. We obtained all the fragments (279,702
for normal and 339,030 for tumor) that are mapped to a 10 megabase region on
chromosome 17 beginning at the 40 megabase mark. We binned the fragments
by their midpoints into consecutive bins of length 100 bases where the genomic
position a bin represents is its midpoint. We obtained the number of fragments in
each bin for both normal and tumor samples. Of the 100,000 possible bins in the
region, 13,297 had a nonzero count for at least one of the two samples. We expanded
the target intervals in this region by 100 base pairs in both directions and derived
the bins that intersect with the intervals. Of the 13,297 bins, only 6,835 of them
do and hence are expected to have nonzero counts. However, bins with very small
counts in the normal sample are inconsistent with the desired high coverage of the
targets and thus are candidates for removal. There are 784 bins with fragment count
of 2 or lower. Of the 6,439 bins that do not intersect with the target intervals 553
have fragment counts in the normal sample of at least 10, far more than the small
number expected due to off-target fragments. Therefore, we included them in the
copy number analysis. This results in 6,604 bins that are to be used in the copy
number analysis and 6,693 bins to be discarded. The discarded bins account for
just 5,807 fragments in the normal and 8,582 in the tumor (less than 3%). Fig. 18.4
shows the log-ratio computed as the ratio of scaled fragment counts where the grey
and red points correspond to the included and discarded bins, respectively. Note that
the red points form a band around zero with a significant presence near 1 and -1,
which are the bins with one fragment in the tumor sample and zero in the normal,
and vice versa. Despite the clear gain visible at the 46 megabase location, the loss
in the 40–41.3 megabase region and focal loss around 42.7 megabase, the large
number of red points in those regions will have an adverse effect on the copy number
analysis, demonstrating the utility of pruning these bins. For the whole genome,
binning the data results in 1,723,210 bins with nonzero counts in either sample of
which 1,039,881 are to be discarded using the same consideration; they account for
less than 4% of the total fragment count which is far lower than that expected from
target efficiency.

The final piece of information needed for applying weighted CBS to the data
are the weights assigned to the bins. The optimal weight for a bin is proportional to
the variance of the fragment count for that bin which is a function of the unobserved
rate parameter. The fragment counts which are the estimates of the rates are also very
skewed thus using weights proportional to counts will make a handful of bins with
large counts highly influential. Thus, we chose weights proportional to the logarithm
of bin counts assigning greater weights to bins with large counts but protects against
undue influence of bins with extreme counts. Although the optimal weights for the
weighted t-statistic will depend on the mean counts of both the normal and the tumor

http://www.broadinstitute.org/software/igv/AlignmentData
http://www.broadinstitute.org/software/igv/AlignmentData
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Fig. 18.4 The copy number log-ratio plot of the 40–50 megabase region on chromosome 17. The
bins included in the analysis are in grey and the ones excluded are in red

samples, the tumor counts can change dramatically due to gains and losses. Thus,
a more suitable choice of weights is to use the logarithm of just the normal counts
(or median of several normal samples, if available).

Using the DNAcopy package, we segmented the logarithm of the ratio of scaled
fragment counts for the bins to be used in the analysis. In Fig. 18.5, we show
the whole genome copy number profile for this sample. The points are the log-
ratio of the bins which are shown in alternate shades of grey to indicate different
chromosomes. The algorithm segmented the genome into 419 regions with constant
copy number which are shown as blue lines drawn at the level of the segment mean.
The number of segments vary between chromosomes with the largest number (44)
in chromosome 1 and the smallest number (7) in chromosome 22. The figure also
shows the segmentation results from a SNP array analysis as red lines. Note that
the SNP array data are not necessarily in the same scale and thus the red and
blue lines may not overlap. Furthermore, since the SNP array probes cover the
genome more uniformly than the targeted exome sequencing, there are far more red
segments. However, the two sets of results show remarkable concordance except
for chromosomes 2 and X, where the systematic large gap between the blue and red
lines suggests that the cells used for exome sequencing have one fewer copy of these
two chromosomes compared to the cells used for the SNP array.

In Fig. 18.6, we present a 25 megabase region on chromosome 17 to highlight
the results. Note that while the exome segments (blue) and SNP segments (red)
are similar, there are some locations where they differ. There is a small region
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Fig. 18.5 The copy number profile of the whole genome. The chromosomes are colored in
alternate shades of grey. The blue lines are regions of constant copy number identified from exome
sequencing data. The red lines are the regions from SNP array data

Fig. 18.6 The copy number profile of the 25–40 megabase region on chromosome 17. The blue
lines are the segment means from exome sequencing data. The red lines from SNP array data
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around 29 megabase and several small regions around 44 megabase the SNP array
identifies that are not seen in the exome data. This may be attributable to the lack
of data since the exome target intervals do not span the genome uniformly. In
order to ascertain this, we reviewed the intervals identified by the SNP array and
compared it to the target interval. The interval around 29 megabase spanned from
positions 28,931,871 to 29,187,109 which is a 255 kilobase region. There are 17
target intervals in the whole exome sequencing in the last one third of this region
starting from positions 29,111,193 and ending at 29,185,353 that covered just 4,676
bases. Likewise, the seven regions identified around 44 megabase in the SNP array
covered an area that is 1.1 megabase long but were target poor for exome sequencing
in that the target intervals only spanned 23 kilobases. The region between 35 and 38
megabase shows three segments for the exome where as just one for the SNP. This
could be either due to higher resolution of exome data or the cell lines not being
static.

It is common practice to undo small changes that do not meet a magnitude
threshold. This occurs when a gentle wave in the data due to technical artifact looks
like a change in mean. This step was not applied in the results presented as the
goal was to present the full results. The overarching message from this analysis is
that DNA sequencing, in particular targeted sequencing, can be successfully used to
obtain copy number profiles.

18.5 Other Structural Variations

DNA sequencing can be used to identify other structural variants such as inversions
and translocations. As seen in Sect. 18.2, the informative fragments for identifying
these are those of Type 3 in Fig. 18.1. These are fragments that have high
quality reads on both ends that are reliably mapped to the genome but are not
properly paired. The improper pairing can occur due to an inter-chromosomal
translocation, where the two reads are mapped to two different chromosomes, an
intra-chromosomal translocation, where the reads from the two ends are mapped to
the same chromosome but are directed away from each other rather than towards
each other, or an inversion, where the reads from the two ends are mapped in the
same direction. In all cases, the inferred fragment size is far larger than the expected
fragment size. [Note: A proper pair can result in a large fragment size when there
is a deletion in between the two reads; Fragments of type 4 in Fig. 18.1 can also
be used for identifying these structural variations provided partial alignments can
be done.]

The “bam” files used in this step have been deduplicated, realigned and their base
quality scores recalibrated. The first step in identifying inversions and translocations
is to extract all the improperly paired fragments where both reads are mapped
to chromosome 1 through X and pass the instrument’s quality control. There are
158,433 such fragments in the normal sample and 145,858 in the tumor. Note that
these counts are just 0.5% of the total number of fragments in the sample. This is
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to be expected since the striped-shaded region junction (seen in Fig. 18.1) needed
for these structural events are uncommon as most fragments are interior fragments
(of Types 1 and 2). Additionally fragments of Types 4 and 5 will be unmapped
using standard alignment software. Although a read may pass quality control as
determined by the sequencing machine, the mapping quality of the read may not be
high enough to provide valid information. Thus, we will use the mapping quality
filter of 20 (possible error in alignment of 1%) to restrict the analysis to high quality
reads. This reduced the number of fragments where both ends are mapped with a
quality greater than 20 to 108,055 for the normal and 98,385 for the tumor. Note
that there are more improperly paired fragments in the normal than the tumor. This
might be due to the sequence similarity between different regions in the genome and
hence mapping may not be unique and absolute.

A single fragment suggesting a structural variation is not a proof of it. The more
the number of fragments indicating a structural variation the stronger the evidence.
However, a somatic structural change acquired in the tumor will not be present
in the germline. Hence one must verify that any structural variant identified in
the tumor is present only in the tumor and not the germline. We begin this by
counting the number of fragments from both tumor and normal samples that are in a
neighborhood of every fragment. In the Example section earlier, we noted that most
fragments are between 75 and 300 bases long. Thus, we define the neighborhood
of a fragment to be within 1,000 bases of the starting location of the reads from
both ends. Note that the neighborhood of each fragment will contain itself and
hence the minimum fragment count is 1. Of the 206,440 combined fragments, only
3,042 have fragment counts greater than 1. Furthermore, if a fragment has several
other fragments in its neighborhood, then all of them have this fragment in their
neighborhoods as well. In fact, they cluster strongly and the 3,042 fragments with
neighborhood count of more than one reduce to a far smaller number of clusters.

In Fig. 18.7, we display the fragment counts in the tumor plotted against the
counts in the normal. The scatterplot shows that, in this data, there is a strong
relationship between the tumor and normal counts suggesting that most of the
suggested changes are present in both tumor and normal cells. In order to identify
possible tumor specific changes we restricted ourselves to the fragments for which
the normal count in the neighborhood is at most 3 and conducted a Binomial test for
the hypothesis that the proportion of tumor counts out of the total is greater than 0.5.
Table 18.2 lists the three clusters of fragments that are significant after adjusting for
multiple comparison. The table gives the chromosome to which the fragments are
mapped, the median start location of the first and second read, and the number of
fragments in tumor and normal.

In Fig. 18.8, we show the copy number profiles, obtained using the abundance
measure data, for these two regions. The top and bottom row of figures correspond
to chromosomes 21 and 14, respectively. The first figure in each row shows the
entire region where the start locations of the respective reads are marked by a
vertical line. For chromosome 14, the two lines at position 105.412 megabase
appear as one due to their closeness. The second and third figures in the top
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Fig. 18.7 The number of fragments in the neighborhood of an improperly paired fragment that
belong to tumor and normal samples

Table 18.2 The details of the three clusters of fragments identified as present in
tumor only

First read Second read Fragment count

Chromosome Location Chromosome Location Tumor Normal

21 43,246,325 21 47,347,121 21 0
14 106,471,416 14 107,282,893 20 0
14 105,412,008 14 105,412,453 26 3

row show the read locations of the first and second read are close to breakpoints
identified in the copy number segmentation in the previous section and thus this
rearrangement is consistent with copy number data. The second figure in the bottom
row corresponds to the read location of 106.471 megabase in the second row of
Table. 18.2. While this location is close to a break point, its companion is close
to the end of chromosome with just two target intervals in its vicinity, and thus
no additional information on the structural change is available. The third figure in
the bottom row shows the two read locations in the third row and the two points
in the interval between them that are seen in the figure are below the majority of
the points in their vicinity. This suggests a small deletion since the two locations are
just 445 bases apart. However the copy number segmentation does not pick them up
as the magnitude of the change is within the noise of the copy number ratio. In all,
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Fig. 18.8 The copy number profiles of the regions with plausible structural variants listed
in Table 18.2

the presence of breakpoints in the copy number profile near the read locations of the
plausible structural variations, lend support to their presence.

Although there are extensive structural rearrangements present in this cell line
(the spectral karyotype of these cells is at http://www.path.cam.ac.uk/~pawefish/
BreastCellLineDescriptions/HCC1143.html), we identified just 3 of them and none
of the inter-chromosomal ones. Our inability to detect such an event is primarily
due to fact that these data rose from a targeted sequencing and hence has large gaps
in information. In order for targeted sequencing to be able to detect inversions and
translocations, the junction (the striped-shaded region boundary in Fig. 18.1) should
be close to a target interval and the capture probe should fully reside within the
striped or the shaded region. This makes the likelihood of a fragment that contains
an inversion or a translocation event being captured and sequenced very low. Thus
whole genome sequencing is more apt for identifying structural rearrangements as
it does not select for specific fragments to be sequenced and is thus far more likely
to contain fragments with such events.

18.6 Summary

DNA sequencing, in particular targeted sequencing, is widely used in cancer
research with the primary purpose of identifying somatic mutations. In this chapter,
we adapted the Circular Binary Segmentation algorithm for the analysis of copy

http://www.path.cam.ac.uk/~pawefish/BreastCellLine Descriptions/HCC1143.html
http://www.path.cam.ac.uk/~pawefish/BreastCellLine Descriptions/HCC1143.html
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numbers using DNA sequencing data. We showed using a whole exome sequencing
dataset that copy number profile can be obtained from it. Despite the target intervals
covering less than 2% of the genome, this profile is highly concordant with profile
obtained from SNP array with whole genome coverage. The high coverage used in
exome sequencing has the potential to identify intragenic changes such as deletion
of a few exons which may not be feasible with current whole genome arrays.

DNA sequencing also provides information on polymorphic sites (SNPs) within
the target intervals which in turn provides allele specific copy number information.
We adapted CBS to obtain parent specific copy number profile from SNP array
data [24] which can in turn be adapted to sequencing data. Similarly, the ASCAT
algorithm, developed by Van Loo et al. (2010) [35], for the analysis of allele specific
copy numbers can also be applied in the sequencing context. Such an analysis can
provide additional information such as copy neutral loss of heterozygosity or uni-
parental disomy which enhances our understanding of the oncogenic process.

DNA sequencing contains three types of information - copy number, genotype
and structural rearrangement. The methods we described treat these separately.
However, since these data elements are not orthogonal to each other, there is
potential to borrow information from all three types of data to develop a unified
method to detect these structural variations. Other considerations such as the optimal
bin size and the choice of filtering parameters and their effect should be studied for
existing methods as well as those being developed.

The purpose behind studying structural variations is their impact on gene expres-
sion and their consequences. There is a positive correlation between copy numbers
and gene expression. Likewise, the bcr-abl fusion protein provides a powerful
example for the consequences of translocations. However, a comprehensive catalog
of all possible events will require several tens of thousands of samples [17]. Thus
careful consideration of the design of these experiments is essential. As we noted,
targeted sequencing may not provide information on structural rearrangements
but the high coverage that they can achieve to detect somatic mutations will be
prohibitively resource intense for whole genome sequencing. Additionally, fusion
transcripts are best detected using RNA sequencing. These aspects present a vibrant
area for future research on how best to combine different sequencing methodologies
to extract the information in a sample. A related problem is how best data from
multiple samples can be combined to identify the affected biological processes and
pathways and how they can be prioritized for further study.

Finally, the volume of data from these experiments are immense and will require
efficient software for processing them. This presents a venue for the development of
efficient methods and algorithms. In summary, DNA sequencing provides a wealth
of data which can add to our knowledge with further research and proper analytic
tools.
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