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Abstract. Criteria weights are typically cognitively demanding to elicit and 
numeric precision is problematic since information in real-life multi-criteria 
decision making often is imprecise. One important class of methods rank the 
criteria and receive a criteria ordering which can be handled in various ways by, 
e.g., converting the resulting ranking into numerical weights, so called 
surrogate weights. In this article, we analyse the relevance of these methods and 
to what extent some validation processes are strongly dependent on the 
simulation assumptions. We also suggest more robust methods as candidates for 
modelling and analysing multi-criteria decision problems of this kind. 
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1 Introduction 

Methods attempting to elicit precise criteria weights range from direct rating (DR) 
and point allocation (PA) methods to more elaborated ones, but when it comes to 
providing reasonable weights, we have significant difficulties due to the fact that we 
do not seem to have the required granulation capacity and we also suffer from other 
deficiencies. To somewhat facilitate eliciting weights from decision-makers, some of 
the approaches utilise ordinal or imprecise importance information to determine 
criteria weights and sometimes values of alternatives.1 

[1] introduced a process utilising systematic simulations. The basic idea is to 
generate surrogate weights as well as “true” reference weights from some underlying 
distribution and investigate how well the result of using surrogate numbers match the 
result of using the “true” results. The idea in itself is good, but the methodology is 
vulnerable since the validation result is heavily dependent on the distribution used for 
generating the weight vectors. This article discusses some important aspects and 
shortcomings of some popular weight methods as well as the validation techniques for 
these. We also discuss the relevance and correctness of some common measurements 
for method validation and conclude with a discussion of more robust methods that 
might be better candidates. 
                                                           
1 Other approaches use intervals to express uncertainty inherent in elicitation procedures,  

e.g., [2,3]. 



 Rank Ordering Methods for Multi-criteria Decisions 129 

2 Rank Ordering Methods 

Different elicitation formalisms have been proposed by which the decision-maker can 
express preferences. Such a formalism is sometimes based on scoring points, as in 
point allocation (PA) or direct rating (DR) methods. In PA, the decision-maker is 
given a point sum, e.g. 100, to distribute among the criteria. Sometimes, it is pictured 
as putty with the total mass of 100 that is divided and put on the criteria. The more 
mass, the larger weight on a criterion. In PA, there are consequently N–1 degrees of 
freedom (DoF) for N criteria. DR, on the other hand, puts no limit to the number of 
points to be allocated. The decision-maker allocates as many points as desired to each 
criterion. The points are subsequently normalized by dividing by the sum of points 
allocated. Thus, in DR, there are N degrees of freedom for N criteria.  

In [4], there is a discussion on weight approximation techniques which brings the 
suggestions of rank sum (RS) weights and rank reciprocal (RR) weights. They are 
suggested in the context of maximum discrimination power, and are both alternatives 
to ratio based weight schemes. The rank sum is based on the idea that the rank order 
should be reflected directly in the weight. Assume a simplex Sw generated by w1 > w2 
> ... > wN, where Σwi = 1 and 0 ≤ wi.

2 Assign an ordinal number to each item ranked, 
starting with the highest ranked item as number 1. Denote the ranking number i 
among N items to rank. Then the RS weight becomes for all i = 1,…,N ݓ௜RS ൌ ܰ ൅  1 –  ݅∑ ሺܰ ൅ 1 –  ݆ሻே௝ୀଵ ൌ 2ሺܰ ൅  1 –  ݅ሻܰሺܰ ൅ 1ሻ  
Another idea discussed is rank reciprocal weights. They have a similar origin as the 
RS weights, but are based on the reciprocals (inverted numbers) of the rank order for 
each item ranked. These are obtained by assigning an ordinal number to each item 
ranked, starting with the highest ranked item as number 1. Then denote the ranking 
number i among N items to rank and the rank reciprocal (RR) weight becomes 

௜RRݓ ൌ 1ൗ݅∑ 1݆ே௝ୀଵ  
A decade later, [5] suggested a weight method based on vertices of the simplex of the 
feasible weight space. To use the rank order, the ROC (rank order centroid) weights 
are calculated. These are the centroid components of the simplex Sw. The weights then 
become the centroid (mass point) components of Sw. The ROC weights are then, for 
the ranking number i among N items to rank, given by 

௜ROCݓ ൌ 1ൗܰ ෍ 1݆ே
௝ୀ௜  

In this way, it resembles RR more than RS but is, particularly for lower dimensions, 
more extreme than both in the sense of weight distribution, especially the largest and 
smallest weights. 
                                                           
2 We will, unless otherwise stated, presume that decision problems are modelled as simplexes Sw. 
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2.1 A Combined Method 

Since these weight models in a sense are opposites, it interesting to see how extreme 
behaviours can be reduced. A natural candidate for this could be a linear combination 
of RS and RR. Since we have no reasons to assume anything else, we suggest 
balancing them equally in an additive combination of the Sum and the Reciprocal 
weight function that we will call the SR weight method: 

w୧SR ൌ 1ൗ݅ ൅ ܰ ൅ 1 െ ݅ܰ∑ ቀ1ൗ݆ ൅ ܰ ൅ 1 െ ݆ܰ ቁே௝ୀଵ  
Of course, other combinations of weights would be possible, but the important results 
of the paper are obtained using SR and comparing it with others weight functions. For 
another candidate, the actual mix of the proportions between the methods would 
affect the results in accordance with its proportions. As will be shown below, all 
results are sensitive to the underlying assumptions regarding the mind-sets of 
decision-makers. The SR method is a representative of a class of methods able to 
handle varying assumptions on decision- maker behaviour.  

2.2 Geometric Weights 

Geometric weights are based on the idea that the rank order should be reflected 
multiplicatively in the numeric weights. The multiplicative nature of the geometric 
weight can be motivated by the likewise multiplicative nature of the terms ݓ௜௑ݒ௜ሺܽሻ that the overall value ܸ௑ሺܽሻ ൌ  ∑ ௜ሺܽሻ௠௜ୀଵݒ௜௑ݓ , that an alternative a is 
evaluated by, consist of. Assign an ordinal number to each item ranked, starting with 
the highest ranked item as number 1. Denote the ranking number i among N items to 
rank. Then the geometric sum (GS) weight becomes 

௜GSሺsሻݓ ൌ ∑௜ିଵݏ ௝ିଵே௝ୀଵݏ   for  0 ൏ ݏ ൏ 1 
As usual, a larger weight is assigned to lower ranking numbers. Similar to some other 
suggested weight methods, GS contains a parameter s.  

3 Assessing Models for Surrogate Weights 

The underlying assumption of most de facto standard simulation studies is that there 
exist weights in the decision-maker’s mind which are inaccessible by any elicitation 
method. We will continue this tradition when determining the efficacy, in this sense, 
of some ranking approaches below. The modelling assumptions regarding decision-
makers above are then inherent in the generation of decision problem vectors by a 
random generator. Thus, following an N–1 DoF model, a vector is generated in which 
the components sum to 100%, i.e., a process with N–1 degrees of freedom. Following 
an N DoF model, a vector is generated keeping components within [0%, 100%] and 
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subsequently normalising, i.e., a process with N degrees of freedom. Other 
distributions modelling actual decision-makers would of course be possible, and could 
be elicited in one way or another. The important observation is that the validation 
methods are highly dependent of the model of decision-makers and this produces 
significant effects on the reliability of the validations.  

3.1 Simulation Studies 

Thus, in the simulations described below it is important to realize which background 
model we utilise. As stated above, when following an N–1 DoF model, a vector is 
generated in which the components sum to 100%. This simulation is based on a 
homogenous N-variate Dirichlet distribution generator. On the other hand, following 
an N DoF model, a vector is generated without an initial joint restriction, only keeping 
components within [0%, 100%] yielding a process with N degrees of freedom. 
Subsequently, they are normalised so that their sum is 100%. We will call the N–1 
DoF model type of generator an N–1-generator and the N DoF model type an  
N-generator.  

3.2 Comparing the Methods 

An N–1 DoF model presents a computer simulation consisting of four steps, assuming 
the problem is modelled as the simplex Sw. 

Generation Procedure 

1. For an N-dimensional problem, generate a random weight vector 
with N components. This is called the TRUE weight vector. 
Determine the order between the weights in the vector. For each 
method X' ∈ {ROC,RS,RR,EW}, use the order to generate a 
weight vector wX'. 

2. Given M alternatives, generate M × N random values with value 
vij belonging to alternative j under criterion i.  

3. Let wi
X be the weight from weighting method X for criterion i. 

For each method X ∈ {TRUE,ROC,RS,RR,EW}, calculate 
Vj

X = ∑i wi
X vij. Each method produces a preferred alternative, i.e. 

the one with the highest Vj
X. 

4. For each method X' ∈ {ROC,RS,RR,EW}, assess whether X' 
yielded the same decision (i.e. the same preferred alternative) as 
TRUE. If so, record a hit. 

 
It should be noted that most simulation studies to date arrive at the same conclusions 
regarding ROC, RS, and RR. As we have emphasised above, this is not surprising 
since different simulations using the same assumptions on degrees of freedom and 
definitions of weighting methods should (modulo programming errors) yield the same 
results. A study by [6], though, came up with a different result where RS performed 
better than ROC with RR in third place. Their paper also suggests a new surrogate 
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weight, ROD, which generates almost identical weights to RS and, thus, performs 
almost identically. For our purposes, we will consider the latter two equal and will not 
discuss ROD separately. The random weight distribution in most other simulations (in 
step 1 of the generation procedure above) is generated by an N–1 procedure, thus 
generating a vector with N–1 DoF. Roberts and Goodwin, however, employ a 
different distribution generating function where a fixed number, say 100, is given to 
the most important criterion and the others are uniformly generated as U[0,100]. As 
explained above, this N-generator is not the same as N–1-generators based on a 
Dirichlet distribution and thus, their simulation study instead yields the result that RS 
outperforms ROC with RR in third place. Given an N-generator, RS outperforms 
ROC and RR with EW far behind. ROC is slightly better than RR. While yielding a 
different “best” weighting method, this result is consistent with the other study results 
considering it is merely a consequence of choice of DoF in the simulator generator.  

Our simulations were carried out with a varying number of criteria and 
alternatives. There were four numbers of criteria N = {3, 6, 9, 12} and five numbers 
of alternatives M = {3, 6, 9, 12, 15} creating a total of 20 simulation scenarios. Each 
scenario was run 10 times, each time with 10,000 trials, yielding a total of 2,000,000 
decision situations generated. For this simulation, an N-variate joint Dirichlet 
distribution was employed to generate the random weight vectors for the N–1 DoF 
simulations and a standard round-robin normalised random weight generator for the N 
DoF simulations. Unscaled value vectors were generated uniformly, and no 
significant differences were observed with other value distributions. The results of the 
simulations are shown in the tables below, where we show a subset of the results with 
chosen pairs (N,M). The tables show the winner frequency for the six methods ROC, 
RR, RS, GS, SR, and EW (equal weights) utilising the simulation methods N–1 DoF, 
N DoF and a 50% combination of N–1 DoF and N DoF. All hit ratios in all tables are 
given in per cent and are mean values of the 10 scenario runs.3 In Table 1, using an 
N–1-generator, it can be seen that ROC outperforms the others, when looking at the 
winner, but with GS and SR close behind. RR is better than RS behind the others. In 
Table 2, the frequencies have changed according to expectation since we employ a 
model with N degrees of freedom. Now RS outperforms all others. SR and GS are 
close behind while ROC and RR are far behind. In Table 3, the N and N–1 DoF 
models are combined with equal emphasis on both. Now, we can see that in total RS, 
SR, and GS generally perform the best.  

Table 1. Using an N–1-generator 

N–1 DoF Winner ROC RS RR GS SR
3 criteria 3 alternatives 90.2 88.2 89.5 90.0 89.3
3 criteria 15 alternatives 79.1 76.6 76.5 78.2 76.9
6 criteria 6 alternatives 84.8 79.9 82.7 83.9 83.1
6 criteria 12 alternatives 81.3 75.6 78.2 80.0 78.9
9 criteria 9 alternatives 83.5 75.6 79.5 82.0 81.2

12 criteria 6 alternatives 86.4 77.8 80.8 84.8 84.1
12 criteria 12 alternatives 83.4 72.9 76.8 81.4 80.2

                                                           
3 The standard deviations between sets of 10 runs were around 0.1-0.3 percent. 
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Table 2. A model with N degrees of freedom 

N DoF Winner ROC RS RR GS SR
3 criteria 3 alternatives 87.3 89.3 88.3 88.6 89.1
3 criteria 15 alternatives 77.9 81.1 79.1 80.1 80.6
6 criteria 6 alternatives 80.1 87.3 78.1 84.3 85.1
6 criteria 12 alternatives 76.4 84.3 74.3 81.0 82.0
9 criteria 9 alternatives 76.3 87.2 69.8 82.2 83.0

12 criteria 6 alternatives 77.5 90.3 67.8 84.5 84.6
12 criteria 12 alternatives 73.4 87.6 63.1 80.8 81.7

Table 3. N and N–1 DoF models are combined 

Combined Winner ROC RS RR GS SR
3 criteria 3 alternatives 88.8 88.8 88.9 89.3 89.2
3 criteria 15 alternatives 78.5 78.9 77.8 79.2 78.8
6 criteria 6 alternatives 82.5 83.6 80.4 84.1 84.1
6 criteria 12 alternatives 78.9 80.0 76.3 80.5 80.5
9 criteria 9 alternatives 79.9 81.4 74.7 82.1 82.1

12 criteria 6 alternatives 82.0 84.1 74.3 84.7 84.4
12 criteria 12 alternatives 78.4 80.3 70.0 81.1 81.0

3.3 Introducing Noise 

In the above simulations, rankings are induced from the “true” weights. But this 
assumes that the decision-maker is perfect in converting its belief into orderings, i.e. 
that the elicitation is perfect. This assumption can at least partly be taken account of 
by slightly altering the generated “true” weights before the order is generated. For 
instance, a 10% noise in this sense means that after a generation of a “true” weight 
vector in step 1 in the generation procedure, the weights are multiplied by a uniformly 
distributed random factor between 0.9 and 1.1 for the generation of the ranking order 
(not for the “true” test). By this approach, the size of the change also depends on the 
true weights. Attributes which have a large true weight will be changed more than 
attributes which have a small true weight. This in turn will introduce more errors in 
the important attributes. The generated order in a way simulates that the decision-
maker can be uncertain regarding the weight ordering. A measure of robustness can 
then be that the less affected the method is by this disturbance, the more robust it is. 

Table 4. Introducing noise 

Combined Noise ROC RS RR GS SR
9 criteria and 
9 alternatives 

0% 79.9 81.4 74.7 82.1 82.1
10% 79.0 80.7 73.9 81.6 81.5
20% 78.2 79.8 73.0 80.4 80.3
30% 76.9 79.0 72.5 79.0 78.8

 
From Table 4 it can be seen that the behaviour of the respective methods are 

similar and the hit percentage naturally decreases when the amount of noise increases. 
Nevertheless, all five methods are quite robust in this sense, even at 30% noise level. 
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3.4 Discarding Unnatural Decision Situations 

It can be argued that the vectors generated by the simulations do not always constitute 
natural decision problems. For instance, the simulator could generate a weight vector 
with one component as high as 0.95 and the others correspondingly low. Likewise, 
the simulator could generate a problem with a weight as low as 0.0001 and such a 
criterion would probably not be considered at all in real life. Therefore, a filter was 
designed to discard weight vectors deemed unnatural. Below, we can see the effect of 
cut-off filters on the simulation results. We used two filters. The weak filter discarded 
all generated “true” vectors with a component larger than 0.7 + 0.3/N or smaller than 
0.05/N. The strong filter discarded all generated “true” vectors with a component 
larger than 0.6 + 0.25/N or smaller than 0.1/N. If a vector was discarded, a new vector 
was generated assuring that the total number of vectors remained constant in each 
simulation. Table 5, Table 6 and Table 7 show the results from applying the weak and 
strong cut-off filters to three selected decision simulations. 

Table 5. Filter with 3 criteria and 3 alternatives 

Combined Cut-off ROC RS RR GS SR
3 criteria and 
3 alternatives 

None 88.8 88.8 88.9 89.3 89.2
Weak 88.5 89.6 89.3 89.5 89.8
Strong 88.3 90.3 89.4 89.7 90.2

Table 6. Filter with 6 criteria and 12 alternatives 

Combined Cut-off ROC RS RR GS SR
6 criteria and 

12 alternatives 
None 78.9 80.0 76.3 80.5 80.5
Weak 78.8 80.9 76.7 81.3 81.6
Strong 78.6 82.3 76.8 81.7 82.4

Table 7. Filter with 9 criteria and 9 alternatives 

Combined Cut-off ROC RS RR GS SR
9 criteria and 
9 alternatives 

None 79.9 81.4 74.7 82.1 82.1
Weak 79.9 82.8 75.1 83.0 82.7
Strong 79.8 83.5 75.4 83.5 83.3

From the tables, it can be seen that most methods improve when faced only with 
“reasonable” decision situations, the improvement being between 1% and 2%. SR and 
RS improved the most, with GS and RR less so. The exception is ROC which does 
not improve at all, rather the hit rate diminishes slightly as extreme decision vectors 
are cut off.  

4 Conclusion 

The aim of this study has been to find robust multi-criteria weights that would be able 
to cover a broad set of decision situations, but at the same time have a reasonably 
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simple semantic regarding how they are generated. To summarise the analysis, we 
look at the average hit rate in per cent over all the pairs (N,M) that we have reported 
in the tables above. From the table, it is clear that, considering performance averages, 
GS and SR are the best candidates when it comes to finding the winning alternative, 
closely followed by RS. The other surrogate weighs are not in contention. For 
example, the ROC method relies too heavily on the assumption of decision-makers 
having an internal decision process with N–1 degrees of freedom for a decision 
problem with N criteria. Further, the three methods RS, GS, and SR all handle both 
noise and “unnatural” decision situations equally well. In conclusion, to be robust a 
rank ordering method should fare well under the varying assumptions. We have above 
discussed various aspects of performance and it can be seen that the GS and SR 
methods are the most efficient and robust surrogate weighs that both perform very 
good on average and are stable under varying assumptions on the behaviour of the 
decision-maker.  Of the two, GS performs a little bit better but is more complex since 
it requires a parameter to be selected. As simplicity could be regarded an additional 
sign of robustness, we conclude that GS and SR are equally robust and better choices 
for surrogate weight functions than the other candidates in the paper. 
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