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Abstract. The paper presents a generalization of self-organizing neural
networks of spanning-tree-like structures and with dynamically defined
neighborhood (SONNs with DDN, for short) for complex cluster-analysis
problems. Our approach works in a fully-unsupervised way, i.e., it oper-
ates on unlabelled data and it does not require to predefine the number
of clusters in a given data set. The generalized SONNs with DDN, in the
course of learning, are able to disconnect their neuron structures into
sub-structures and to reconnect some of them again as well as to adjust
the overall number of neurons in the system. These features enable them
to detect data clusters of virtually any shape and density including both
volumetric ones and thin, shell-like ones. Moreover, the neurons in par-
ticular sub-networks create multi-point prototypes of the corresponding
clusters. The operation of our approach has been tested using several di-
versified synthetic data sets and two benchmark data sets yielding very
good results.

Keywords: generalized self-organizing neural networks with dynami-
cally defined neighborhood, multi-point prototypes of clusters, cluster
analysis, unsupervised learning.

1 Introduction

Data clustering or cluster analysis is an unsupervised process that aims at group-
ing unlabelled data records from a given data set into an unknown in advance
number of cluster or groups. Elements of each cluster should be as ”similar” as
possible to each other and as ”dissimilar” as possible from those of other clus-
ters. Cluster analysis belongs to fundamental issues in data mining and machine
learning with wide range of applications, cf., e.g., [15], [1].

This paper presents a technique for cluster analysis based on self-organizing
neural networks (SONNs) of spanning-tree-like structures and with dynamically
defined neighborhood (henceforward referred to as SONNs with DDN) outlined
in Kohonen’s work [10]. However, we propose an essential generalization of these
networks by introducing original mechanisms that, in the course of learning:
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a) automatically adjust the number of neurons in the network, b) allow to dis-
connect the tree-like structure into sub-trees, and c) allow to reconnect some of
the sub-trees preserving the no-loop spanning-tree properties. All these features
enable them to detect data clusters of virtually any shape and density including
both volumetric clusters and thin, piece-wise linear, shell, polygonal, etc. types
of clusters. Similar, to above-listed, mechanisms have been proposed by us in [7],
[8], [9] ([5], [6] present their earlier versions) to obtain - for clustering purposes -
the so-called dynamic SONNs with one-dimensional neighborhood; they can be
treated as a special case of the presently proposed generalized SONNs with DNN.
First, their details are presented. Then, an illustration of their operation using
several synthetic data sets containing data concentrations of various shapes and
densities is given. Finally, their application to the clustering of two benchmark
data sets is presented.

An idea of evolving topological structures of self-organizing neural networks
has been addressed in the literature. However, some existing solutions do not
directly deal with data clustering, e.g. in [11] and [14] evolving neuron trees are
used to decrease the computational complexity of Winner-Takes-Most (WTM)
learning algorithm. In [16] tree structures are used to visualize the obtained
results for the purpose of comparison with conventional decision trees. Among
data clustering techniques (to some extent alternative to our approach), evolving
topological structures are proposed in [3], [13], and in [4], [2]. However, the
approaches of [3], [13] do not enable to detect, in an automatic way, the number
of clusters in data sets. In turn, the results of experiments presented in [4], [2]
do not provide an information on how effective the proposed approaches are in
terms of the automatic detection of the number of clusters in data sets.

2 Generalized SONNs with DDN for Clustering Analysis

First, we consider the conventional SONN with one-dimensional neighborhood.
Assume that the network has n inputs x1, x2, . . . , xn and consists of m neurons
arranged in a chain; their outputs are y1, y2, . . . , ym, where yj =

∑n
i=1 wjixi,

j = 1, 2, . . . ,m and wji are weights connecting the i-th input of the network
with the output of the j-th neuron. Using vector notation (x = (x1, x2, . . . , xn)

T ,
w j = (wj1, wj2, . . . , wjn)

T ), yj = wT
j x . The learning data consists of L input

vectors x l (l = 1, 2, . . . , L). The first stage of any Winner-Takes-Most (WTM)
learning algorithm that can be applied to the considered network, consists in
determining the neuron jx winning in the competition of neurons when learning
vector x l is presented to the network. Assuming the normalization of learning
vectors, the winning neuron jx is selected such that

d(x l,w jx ) = min
j=1,2,...,m

d(x l,w j), (1)

where d(x l,w j) is a distance measure between x l and w j ; throughout this paper,
the Euclidian distance measure will be applied



Generalized Tree-Like Self-Organizing Neural Networks for Cluster Analysis 715

dE(x l,w j) =

√
√
√
√

n∑

i=1

(xli − wji)
2
. (2)

The WTM learning rule can be formulated as follows:

w j(k + 1) = w j(k) + ηj(k)N(j, jx , k)[x (k)−w j(k)], (3)

where k is the iteration number, ηj(k) is the learning coefficient, and N(j, jx , k)
is the neighborhood function. At this point, we have to address the problem of
a spanning-tree-like structure of the SONN with DDN. The neighborhood of a
given neuron in such a topology is defined along the arcs emanating from that
neuron as illustrated in Fig. 1. Therefore, the paths between any two neurons
in such a structure are the pieces of SONN with one-dimensional neighborhood.
The topological distance dtpl(j, jx ) between the jx -th neuron and some other
neurons is equal to 1 if those other neurons are direct neighbors of the jx -
th one as shown in Fig. 1. The distance dtpl(j, jx ) = 2 for the neurons that are
second along all paths starting at the jx -th one (see Fig. 1), etc. The topological
distance measure is the basis of the neighborhood function N(j, jx , k). In this
paper, the Gaussian-type neighborhood function is used:

N(j, jx , k) = e
− d2tpl(j,jx )

2λ2(k) (4)

where λ(k) is the radius of the neighborhood (the width of the Gaussian ”bell”).
As already mentioned, the generalization of the above-presented SONN with

DDN consists in introducing mechanisms that allow the network:

I) to automatically adjust the number of neurons in the network by removing
low-active neurons from the network and adding new neurons in the areas
of existing high-active neurons,

II) to automatically disconnect the network, as well as to reconnect some of the
sub-networks again preserving the no-loop spanning-tree properties.

j
x

d j, j( ) = 1
xtpl

d j, j( ) = 2
xtpl

d j, j( ) = 3
xtpl

Fig. 1. Examples of neighborhood of the jx -th neuron
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These two features enable the generalizedSONNwithDDN to fit in the best way
the structures that are ”encoded” in data sets to display them to the user. In partic-
ular, the number of disconnected sub-networks is equal to the number of clusters
detected in a given data set. Moreover, the neurons in a given sub-network cre-
ate a multi-point prototype of the corresponding cluster. The mechanisms I and
II are implemented by activating (under some conditions) - after each learning
epoch - five successive operations (cf. [7]):

1) the removal of single, low-active neurons,
2) the disconnection of the network (sub-network) into two sub-networks,
3) the removal of small-size sub-networks,
4) the insertion of additional neurons into the neighborhood of high-active neu-

rons in order to take over some of their activities,
5) the reconnection of two selected sub-networks.

The operations 1, 3 and 4 are the components of the mechanism I, whereas
the operations 2 and 5 govern the mechanism II. Based on experimental investi-
gations, the following conditions for activating particular operations have been
formulated.

Operation 1: The neuron no. jr is removed from the network if its activity -
measured by the number of its wins winjr - is below an assumed level winmin,
i.e., winjr < winmin. winmin is experimentally selected parameter (usually,
winmin ∈ {2, 3, ..., 7}). The removal of the jr-th neuron is followed by reconfig-
uration of the network topology as shown in Fig. 2. If the jr-th neuron has only
two neighbors (Fig. 2a), they are now topologically connected. In the case of
three or more neighbors of the jr-th unit (Fig. 2b), one of them, say j1, which
is nearest to the jr-th one in terms of their weight-vector distance, is selected.
Then, the remaining neighbors are topologically connected to the j1-th unit.

Operation 2: The structure of the network is disconnected into two sub-
networks by removing the topological connection between two neighboring neu-
rons j1 and j2 (see Fig. 3) after fulfilling the following condition: dE,j1j2 >
αdscdE,avr where dE,j1j2 = dE(x j1 , x j2) (dE is defined in (2)), dE,avr =
1
P

∑P
p=1 dE,p is the average distance between two neighboring neurons for all

pairs of such neurons in the network (dE,p is the dE distance for the p-th pair
of neighboring neurons, p = 1, 2, . . . , P ), and αdsc is experimentally selected
parameter governing the disconnection operation (usually, αdsc ∈ [2, 4]).

a) b)

Fig. 2. Removal of single, low-active neuron connected with two (a) and three (in gen-
eral, more than two) (b) neighboring neurons (illustrations of the exemplary network
structure before, during, and after the operation, respectively)
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Fig. 3. Disconnection of the network into two sub-networks (illustration of the exem-
plary network structure before, during, and after the operation, respectively)

Operation 3: A sub-network that contains ms neurons is removed from the
system if ms < ms,min, where ms,min is experimentally selected parameter (usu-
ally, ms,min ∈ {3, 4}).

The operation of the insertion of additional neurons into the neighborhood of
high-active neurons in order to take over some of their activities covers 2 cases
denoted by 4a and 4b, respectively.

Operation 4a: A new neuron, labelled as (new), is inserted between two neigh-
boring and high-active neurons j1 and j2 (see Fig. 4a) if they fulfil the following
conditions: winj1 > winmax and winj2 > winmax, where winj1 and winj2 are
the numbers of wins of particular neurons and winmax is experimentally selected
parameter (usually winmax ∈ {4, 5, ..., 9}). The weight vector w (new) of the new

neuron is calculated as follows: w (new) =
w j1+w j2

2 .
Operation 4b: A new neuron (new) is inserted in the neighborhood of high-

active neuron j1 surrounded by low-active neighbors (see Fig. 4b) if the fol-
lowing conditions are fulfilled: winj1 > winmax and winj < winmax for j
such that dtpl(j, j1) = 1, where winj1 and winmax are as in Operation 4a and
winj is the number of wins of the j-th neuron. The weight vector w (new) =
[w(new)1, w(new)2, . . . , w(new)n]

T is calculated as follows: w(new)i = wj1i(1 + ξi),
i = 1, 2, . . . , n, where ξi is a random number from the interval [−0.01, 0.01].
Therefore, particular components of high-active neuron j1, after experimentally
selected random modification in the range of [−1%, 1%], give the weight vector
w (new) of the new neuron. It is a starting point for the new neuron in its further
evolution as the learning progresses.

Operation 5: Two sub-networks S1 and S2 are reconnected by introducing
topological connection between neurons j1 and j2 (j1 ∈ S1, j2 ∈ S2) - see Fig.

5 - after fulfilling condition: dE,j1j2 < αcon

dE,avrS1
+dE,avrS2

2 . dE,j1j2 is the same

a) b)

Fig. 4. Insertion of additional neuron between two high-active neighbouring neurons
(a) and into the neighborhood of a single high-active neuron (b) (illustrations of the
exemplary network structure before, during, and after the operation, respectively)
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Fig. 5. Reconnection of two sub-networks (illustration of the exemplary network
structure before, during, and after the operation, respectively)

as in Operation 2. dE,avrS1
and dE,avrS2

are calculated for sub-networks S1 and
S2, respectively, in the same way as dE,avr is calculated in Operation 2 for the
considered network. αcon is experimentally selected parameter that controls the
reconnection process (usually, αcon ∈ [3, 5]).

The conditions that govern Operations 1 through 5 are checked after each
learning epoch. The condition that is fulfilled activates the appropriate
operation.

In the experiments presented below, the following values of control parameters
are selected: winmin = 2, winmax = 4, ms,min = 3, αdsc = 3, and αcon = 4.
Moreover, the learning process is carried out through 10000 epochs, the learning
coefficient ηj(k) = η(k) of (3) linearly decreases over the learning horizon from
7 · 10−4 to 10−6, the neighborhood radius λ(k) = λ of (4) is equal to 2, and the
initial number of neurons in the network (at the start of the learning process) is
equal to 2.

3 Cluster Analysis in Two-Dimensional Synthetic Data
Sets

Fig. 6 shows the performance of the generalized SONN with DDN applied to the
set of uniformly distributed data (i.e., without any clusters in them). It is a hard-
to-pass test for very many clustering techniques, especially those generating a
predefined number of clusters - regardless of whether any clusters exist in data or
not. Our approach perfectly passes this test. After initial jump to 2, the number
of sub-networks (clusters) stabilizes on 1, i.e., the system detects one big cluster
in data (see Fig. 6h) and generates a multi-point prototype for it (see neurons of
Fig. 6f). Fig. 6g shows the adjustment of the number of neurons in the network
in the course of learning.

Figs. 7, 8, and 9 present further illustrations of the performance of our ap-
proach applied to various two-dimensional synthetic data sets. Fig. 7a presents
data set used in [17]; it contains two overlapped Gaussian distributions, two
concentric rings, and a sinusoidal curve with 10% noise added to data. Fig. 8a
presents data set with various types of clusters in it. Both, thin piece-wise linear
and two-ellipsoidal as well as volumetric of various shapes and densities clus-
ters are considered. Finally, Fig. 9a presents a ”classical” two-spiral data set. As
the above-listed figures show, in all of these data sets our approach detects the
correct numbers of clusters and generates multi-point prototypes for them.
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Fig. 6. Synthetic data set (a) and the evolution of the generalized SONN with DDN
in it in learning epochs: b) no. 20, c) no. 50, d) no. 100, e) no. 200, and f) no. 10 000
(end of learning), as well as plots of the number of neurons (g) and the number of
sub-networks (clusters) (h) vs. epoch number

4 Cluster Analysis in Selected Benchmark Data Sets

Our approach will now be tested using two multidimensional benchmark data
sets such as Breast Cancer Wisconsin (Diagnostic) and Congressional Voting
Records (BCWD and CVR, for short) [12]. BCWD data set has 569 records and
30 numerical attributes, whereas CVR data set - 435 records and 16 nominal at-
tributes. It is essential to note that our approach does not utilize the knowledge
on class assignments of particular records and on the number of classes (equal to 2



720 M.B. Gorza�lczany, J. Piekoszewski, and F. Rudziński
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Fig. 7. Synthetic data set (a) and the evolution of the generalized SONN with DDN
in it in learning epochs: b) no. 20, c) no. 50, d) no. 100, e) no. 200, and f) no. 10 000
(end of learning), as well as plots of the number of neurons (g) and the number of
sub-networks (clusters) (h) vs. epoch number

in both sets). Our approach works in a fully-unsupervised way, i.e., it operates on
unlabelled data and without any predefinition of the number of clusters (classes).

Figs. 10 and 11 as well as Tables 1 and 2 present the performance of our
approach applied to both data sets. First, Figs. 10b and 11b show that our ap-
proach detects the correct number of clusters in both data sets. Second, since
the number of classes and class assignments are known in both original data
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Fig. 8. Synthetic data set (a) and the evolution of the generalized SONN with DDN
in it in learning epochs: b) no. 20, c) no. 50, d) no. 100, e) no. 200, and f) no. 10 000
(end of learning), as well as plots of the number of neurons (g) and the number of
sub-networks (clusters) (h) vs. epoch number

sets, a direct verification of the obtained results is also possible (see Tables 1
and 2). The percentages of correct decisions, equal to 90.51% (BCWD data
set) and 94.71% (CVR data set), regarding the class assignments are very high
(especially, that they have been achieved by the unsupervised-learning systems
operating on benchmark data sets).
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Fig. 9. Synthetic data set (a) and the evolution of the generalized SONN with DDN
in it in learning epochs: b) no. 20, c) no. 50, d) no. 100, e) no. 200, and f) no. 10 000
(end of learning), as well as plots of the number of neurons (g) and the number of
sub-networks (clusters) (h) vs. epoch number

Table 1. Clustering results for BCWD data set

Class
label

Number
of records

Number of decisions for
sub-network labelled:

Number
of correct

Number
of wrong

Percentage
of correct

Malignant Benign decisions decisions decisions

Malignant 212 166 46 166 46 78.30%
Benign 357 8 349 349 8 97.76%

ALL 569 174 395 515 54 90.51%
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Table 2. Clustering results for CVR data set

Class
label

Number
of records

Number of decisions for
sub-network labelled:

Number
of correct

Number
of wrong

Percentage
of correct

Republican Democrat decisions decisions decisions

Republican 168 158 10 158 10 94.05%
Democrat 267 13 254 254 13 95.13%

ALL 435 171 264 412 23 94.71%
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Fig. 10. Plots of the number of neurons (a) and the number of sub-networks (clusters)
(b) vs. epoch number (BCWD data set)

a) b)

0 2000 4000 6000 8000 10000

Epoch number

0

40

80

120

160

N
u
m
b
e
r 
o
f 
n
e
u
ro
n
s

0 2000 4000 6000 8000 10000

Epoch number

0

2

4

6

8

N
u
m
b
e
r 
o
f 
s
u
b
-n
e
tw
o
rk
s

Fig. 11. Plots of the number of neurons (a) and the number of sub-networks (clusters)
(b) vs. epoch number (CVR data set)

5 Conclusions

The generalized SONNs with DDN that can be effectively applied in complex,
multidimensional cluster-analysis problems have been presented in this paper.
Our approach works in a fully-unsupervised way, i.e., it operates on unlabelled
data and it does not require to predefine the number of clusters in a given data
set. The proposed networks, in the course of learning, are able to disconnect
their neuron structures into sub-structures and to reconnect some of them again
as well as to adjust the overall number of neurons in the system. These fea-
tures enable them to detect data clusters of virtually any shape and density
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including both volumetric ones and thin, shell-like ones. Moreover, the neurons
in particular sub-networks create multi-point prototypes of the corresponding
clusters. The operation of our approach has been illustrated by means of several
diversified synthetic data sets and then our approach has been tested using two
benchmark data sets (Breast Cancer Wisconsin (Diagnostic) and Congressional
Voting Records) yielding very good results.
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5. Gorza�lczany, M.B., Rudziński, F.: Application of genetic algorithms and Kohonen
networks to cluster analysis. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R.,
Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 556–561. Springer,
Heidelberg (2004)

6. Gorza�lczany, M.B., Rudziński, F.: Modified Kohonen networks for complex cluster-
analysis problems. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh,
L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 562–567. Springer, Heidel-
berg (2004)
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8. Gorza�lczany, M.B., Rudziński, F.: Application of dynamic self-organizing neural
networks to WWW-document clustering. ICAISC 2006 1(1), 89–101 (2006); (also
presented at 8th Int. Conference on Artificial Intelligence and Soft Computing
ICAISC 2006). Zakopane (2006)
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