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Abstract. Dynamic signature is behavioural biometric attribute which
is commonly used to identity verification. Methods based on the parti-
tioning are one of the types of methods for identity verification using
signature biometric attribute. These methods divide trajectories of the
signature into parts and during verification phase compare created frag-
ments of trajectories in each partition. Partitioning is performed on the
basis of values of signals describing dynamics of signing process (e.g. pen
velocity or pen pressure). In this paper we propose a new method for dy-
namic signature verification using hybrid partitioning. Partitions in the
proposed method can be interpreted as, for example, high velocity in the
first phase of the signing process or low pressure in the final phase of
the signing process. Our method assumes use of all partitions during clas-
sification process and our classifier is based on the flexible neuro-fuzzy
system of the Mamdani type. Simulations were performed using public
SVC2004 dynamic signature database.

1 Introduction

Signature is a behavioural biometric attribute used to verify identity of the
individual. This attribute is very interesting from the practical point of view
because identity verification using the signature is commonly accepted in the
society. However, verification based on the behavioural global features is more
difficult than verification based on physiological ones, like fingerprint or iris.

Dynamic signature (called also on-line signature) is signature created in the
real time using some kind of input digital device, e.g. graphic tablet. It contains
also information about the dynamics of signing, like velocity and pressure signals
changing over time. This information are very useful during verification process
and increases its accuracy.

Approaches to identity verification based on dynamic signature may be cate-
gorized into few groups, one of them are methods based on signature partitioning
(see [23]). In this paper we propose a new method for dynamic signature ver-
ification based on hybrid of horizontal and vertical partitioning (see [9], [65]).
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First, signature is divided into partitions on the basis of time indexes values, be-
cause we assume that some regions of the signature acquired in certain timeframe
can be more characteristic for the user than other regions. Next, trajectory in
each selected partition is divided into two parts on the basis of velocity and pres-
sure signals average values. Previous researches have shown that combination of
velocity and pressure with shape makes verification more effective than use of the
separated dynamic features (see [17], [23]-[24], [63]-[65]). The partitioning allows
selection of the most discriminative features of the signature which belong to
the user. In the verification phase we propose flexible neuro-fuzzy system of the
Mamdani type (see e.g. [6], [8], [14], [50]-[51]). Our method assumes partitioning
signatures into few subspaces (number of subspaces results from the product of
the number of horizontal and vertical partitions) which are weighted by weights
of importance and used during classification process. In this process we use data
from all partitions created during training phase.

This paper is organized into 4 sections. Section 2 contains detailed description
of the algorithm. Simulation results are presented in Section 3. Conclusions are
drawn in Section 4.

2 Detailed Description of the Algorithm

In our method we use four signals of the signature over time: x-trajectory, y-
trajectory, pressure and velocity. First three of them are acquired directly from
the graphic tablet and the velocity is first derivative of the signature trajectory.
Before beginning of the main phase of the method, all training signatures of the
signer i should be pre-processed by commonly used methods to remove some
intra-class variations (see e.g. [17], [18], [33], [40]). Signatures are pre-processed
with reference to one signature of the user (called base signature) which is the
most similar to all training signatures. During pre-processing the length, rota-
tion, scale and offset of the signatures are matched. After a pre-processing, main
phase of training process is performed.

The individual steps of the algorithm are detailed below: Step 1. Partition-
ing of signatures. First, signatures are partitioned on the basis of time indices
values into two parts. Next, fragment of the signature in each partition is divided
into two parts on the basis of the average value of pressure and velocity signal.
This second step is also performed in two phases: 1) velocity and pressure signals
are divided into two parts, 2) partitioning of the whole signature is performed,
signature elements which time points corresponding to the velocity and pressure
signals are assigned to the appropriate partition. After this phase signatures are
divided into eight parts (four partitions related to the velocity and four partitions
related to the pressure). This step is performed during the training and the test
phase. Step 2. Templates generation. In this step templates, which contains
average values of training signatures signals, are generated for each partition.
The templates are regarded as the reference signature of the user. This step is
performed only during training phase. Step 3. Determination of similarities
between signatures and template in each partition. In this step similar-
ities between each signature of the user and template are calculated for each
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partition. In the training phase the similarities are used for determination of the
classifier. In the test phase the similarities are created only for the test signature.
They are used in the classification process. This step is performed during training
and test phase. Step 4. Determination of the partition importance in the
classification process. In this step weights of importance for each partition
are created. They allow to evaluate which partition contains information char-
acteristic for the user. The weights are used in the verification process. This step
is performed only during training phase. Step 5. Preliminary separation of
the reference signatures in the partition. During this step linear boundary
of the inclusion of genuine signatures in each partition is created (see [64]). The
boundary is used to determine fuzzy sets applied in the classification process.
This step is performed only during training phase. Step 6. Determination of
the parameters of fuzzy classifier of genuineness of the signatures. The
parameters describe fuzzy sets of the classifier, which is used in the classification
phase. Fuzzy rules describe a way of test signature classification. The fuzzy sets
in the rules are based on decision boundaries determined in the step 5. Therefore
they may be interpretable. This step is performed only during training phase.
Step 7. Classification of the genuineness of the signatures. In this step
signature is classified as genuine or forgery. In this process flexible neuro-fuzzy
system of the Mamdani type is used. This step is performed only during test
phase.

We can see that steps 1-6 are performed during training phase, while steps
1,3,7 are performed during test phase.

After training phase, velocity and pressure signals of the base signature, in-
formation about partitions and parameters of the classifier are stored into the
database. These information will be used in the test phase.

2.1 Vertical Signature Partitioning

First, vertical partitioning based on selected time intervals of signing is per-
formed. This is possible because lengths of the signals of all signatures are the
same through the pre-processing. Alignment of the length is performed using
Dynamic Time Warping algorithm (see e.g. [22]), which operates on the basis
of matching velocity and pressure signals. Result of this matching is a map of
corresponding points of the signatures signals, which is used to match trajecto-
ries of the signature (see [9]). Vertical partitions partv{s}i,j,k of the sample k of the
signature j of the signer i based on signal s (velocity v or pressure z) are created
using the following equation:

partv
{s}
i,j,k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 for 0 < k ≤ Li

P{s}

2 for Li

P{s} < k ≤ 2Li

P{s}
...

P {s} for (P{s}−1)Li

P{s} < k ≤ Li

, (1)
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where s is a signal type (velocity or pressure) used during alignment phase, i is
the user number (i = 1, 2, . . . , I), j is the signature number (j = 1, 2, . . . , J), Li is
a number of samples of the user i, k is the sample number (k = 1, 2, . . . , Li) and
P {s} is a number of partitions (P {s} � Li). In this method we have assumed,
that P {v} = P {z} = 2.

2.2 Horizontal Signature Partitioning

After vertical partitioning, horizontal partitioning of the signature is performed.
In the first step of this process average values avg

{s}
i,p of velocity and pressure

signals of the base signature are computed for each vertical partition. This is
described by the following formula:

avg
{s}
i,p =

1

Ki,p

Ki,p∑

k=1

si,j=jBase,p,k , (2)

where Ki,p in number of samples in the vertical partition p (p = 1, 2) of the user i,
si,j,p,k ∈ {vi,j,p,k, zi,j,p,k} is signal (velocity v or pressure z) value of the sample k
(k = 1, 2, . . . ,Ki,p), which belongs to the vertical partition p, of the base signature
(for which j = jBase) of the signer i.

Next, division into horizontal partitions on the basis of values determined in
(2) is performed. Horizontal partition parth

{s}
i,j,p,k of the sample k, which belongs

to the vertical partition p (of the index specified in the formula (1)), of the sig-
nature j of the signer i based on signal s (velocity v or pressure z) is determined
as follows:

parth
{s}
i,j,p,k =

{
1 for si,j,p,k < avg

{s}
i,p

2 for si,j,p,k ≥ avg
{s}
i,p

. (3)

We use two horizontal partitions, because our previous research have shown
that method based on two partition achieves best performance.

In the next step templates of the signatures for each partition are generated.

2.3 Generation of the Templates

Template ta
{s}
i,p,r of the partition p, r (p denotes index of the vertical partition

described by the formula (1), r denotes index of the horizontal partition described
by the formula (2)) of the signer i for signatures aligned with use of signal s
(velocity v or pressure z) and trajectory a (x or y) is described by the following
equation:

ta
{s}
i,p,r =

⌊

ta
{s}
i,p,r,1, ta

{s}
i,p,r,2, ..., ta

{s}
i,p,r,K

{s}
i,p,r

⌋

, (4)

where K
{s}
i,p,r in number of samples in the partition p, r (r = 1, 2), determined

for signal s, of the user i, ta{s}i,p,r,k is template value for the time step k of the
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partition p, r of the signer i for signatures aligned with use of signal s (velocity
v or pressure z) and trajectory a (x or y) which is calculated by the formula:

ta
{s}
i,p,r,k =

1

J

J∑

j=1

a
{s}
i,j,p,r,k, (5)

where a
{s}
i,j,p,r,k is trajectory (x or y) value in the sample k of the partition p, r,

determined for signal s (velocity v or pressure z), of the signature j of the signer
i.

Next, distances between templates from all partitions and each signature tra-
jectory are calculated.

2.4 Determination of Similarities between Signatures and Template
in Each Partition

Distance da
{s}
i,j,p,r between template of the partition p, r, determined for signal

s (velocity v or pressure z) of the signer i and trajectory a (x or y), and the
signature j of the signer i is described by the following equation:

da
{s}
i,j,p,r =

√
√
√
√
√

K
{s}
i,p,r∑

k=1

(
ta

{s}
i,p,r,k − a

{s}
i,j,p,r,k

)2

. (6)

The next phase of this step is calculation of distances between templates and
signatures in two dimensional space. Distance d

{s}
i,j,p,r, between the trajectory of

signature j of the signer i and template of the signer i in the partition p, r,
determined for signal s (velocity v or pressure z), is calculated by the formula:

d
{s}
i,j,p,r =

√
(
dx

{s}
i,j,p,r

)2

+
(
dy

{s}
i,j,p,r

)2

. (7)

The values d
{s}
i,j,p,r are used directly to determine the parameters of the fuzzy

sets of the signature classifier.
In the next step, weights of importance for partitions are calculated.

2.5 Determination of the Partition Importance in the Classification
Process

The weights are created on the basis of mean distances d̄{s}i,p,r between signatures
and template in partitions and standard deviation of distances in each partition.
The mean distance d̄

{s}
i,p,r between signatures of the signer i and the template of

the signer i in the partition p, r, determined for signal s (velocity v or pressure
z), is calculated by the formula:

d̄
{s}
i,p,r =

1

J

J∑

j=1

d
{s}
i,j,p,r. (8)
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Standard deviation of signatures σ
{s}
i,p,r of the user i from the partition p, r,

determined for signal s (velocity v or pressure z), is calculated using the following
equation:

σ
{s}
i,p,r =

√
√
√
√ 1

J

J∑

j=1

(
d̄
{s}
i,p,r − d

{s}
i,j,p,r

)2

. (9)

Next, weights of importance are calculated. Weight w
′{s}
i,p,r of the partition p, r,

determined for signal s (velocity v or pressure z), of the user i is calculated by
the following formula:

w
′{s}
i,p,r = d̄

{s}
i,p,r · σ{s}

i,p,r . (10)

After that, weights should be normalized to simplify the classification phase.
Weight w{s}

i,p,r of the partition p, r, determined for signal s (velocity v or pressure
z), of the user i is normalized by the following equation:

w
{s}
i,p,r = 1− cw · w′{s}

i,p,r

max
{
w

′{s}
i,p,r

} , (11)

where cw ∈ (0, 1] is the auxiliary constant of the normalization, which prevents
elimination of the partitions associated with a small values of the weights from
the classification process (in our simulations we assumed that cw = 0.9).

In the next step, preliminary separation of the reference signatures in the
partitions is realized.

2.6 Preliminary Separation of the Reference Signatures in the
Partition

In the considered problem, immediate adaptation of the method for verification
of new users’ signature is required. This eliminates the possibility of machine
learning in the classifier selection. Therefore, we developed a flexible neuro-fuzzy
classifier which requires properly prepared descriptors, determined once on the
basis of the reference signatures of the user.

The boundary of the inclusion of genuine signatures is determined by exploit-
ing the consistency of dissimilarity measures in training signatures (see [23],
[24]). Parameters of the boundary are computed using the means and standard
deviations of the distances. The mean distance d̄a

{s}
i,p,r, between signatures of the

signer i and template of the signer i in the partition p, r, determined for signal s
(velocity v or pressure z) and trajectory a (x or y), is calculated by the formula:

d̄a
{s}
i,p,r =

1

J

J∑

j=1

da
{s}
i,j,p,r. (12)
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� �s
i,p,r

dy

� �s
i,p,r

dx

� �s
i,p,r

dlrn

� �s
i,p,r

dtst
genuine

signatures
boundary

� �s
i,p,r

dlrnmax

� �s
i,p,r

dfor

Fig. 1. Illustration of the genuine signature boundary. Genuine training signatures of
the user are described as circles, genuine training signatures of other users are described
as diamonds.

Standard deviation of signatures σa
{s}
i,p,r of the user i from the partition p, r,

determined for signal s (velocity v or pressure z) and trajectory a (x or y), is
calculated using the following equation:

σa
{s}
i,p,r =

√
√
√
√ 1

J

J∑

j=1

(
d̄a

{s}
i,p,r − da

{s}
i,j,p,r

)2

. (13)

The linear boundary of the inclusion of genuine signatures in the slope-
intercept form is presented as follows:

dy (dx) = −σy
{s}
i,p,r

σx
{s}
i,p,r

dx+ c
{s}
i,p,r · d̄x{s}

i,p,r ·
(
σy

{s}
i,p,r

σx
{s}
i,p,r

+ 1

)

, (14)

where c
{s}
i,p,r is constant parameter used to adjust the position of the line, which

is determined in such a way that dlrn
{s}
i,p,r is equal to dfor

{s}
i,p,r, as depicted in

Fig. 1.
Remarks on Fig. 1 can be summarized as follows: (a) Grey circles in Fig. 1

represent the distances between signatures and templates created individually
for each user (see (6), (7)). Therefore, they represent the instability of the sig-
nature created by the individual user within each partition and they are not
interpretable clusters of data. Theoretically, grey circles should lie exactly in the
centre of the coordinate system. In practice, large distance between grey circles
and the origin of the coordinate system means that quality of the acquired sig-
natures is low and the reliability of the dynamic signature of the user is also
low. In other words, in the context of considered user the method is not reliable,
because the user is unable to create in a similar way a few signatures at the
same time. (b) White circles in Fig. 1 theoretically should also be exactly in
the centre of the coordinate system, because they represent signatures created
by the user in the test phase. In practice, it is expected that the white circles
will be placed at a certain distance from the origin of the coordinate system
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(e.g. due to changes of signature in time). (c) Diamonds in Fig. 1 represent the
signatures of other users. Therefore, they should be significantly further from
the origin of the coordinate system than white circles. (d) Fuzzy rules of the
classifier define a way of signature classification which depends on the location
of the descriptors (dtst{s}i,p,r) of the test signature in relation to the boundary of
the inclusion of the reference signatures of the user. Please note that the sample
(white circle) does not have to be classified as false, even if it is located over the
boundary of the inclusion of the reference signatures of the user in the partition
(within the inclusion area of false signatures). This happens when: (1) sample
in the other partitions is more similar to the template, (2) the reliability of the
partition is small (the partition is associated with the low value of the weight).
It is a distinctive feature of our method against the methods presented in other
works. (e) Values dlrnmax

{s}
i,p,r (see Fig. 1) have an impact on spacing of fuzzy

sets, which represent values {low, high} assumed by the linguistic variables "the
truth of the signature of user i from the partition p, r, determined for signal s".

� �1 s
A

1 { }s
A

�
1

�
1

�
1

1
B

2 � �s
A

2
A

� �s
dlrnmax

� �s
dlrnmax

�
1

�
1

�
1

1

2
B

(1):R

:

“low” “low” “low”

“high” “high” “high”

� �s
dtst

� �s
dtst

� �
1,

s

i
w

� �s
w

2,i

{ }s

{ }s

(2)R

i,1,1

i,1,1

...

...
i,1,1

i,1,1

� �s
w

i,1,1

� �s
w

i,1,1

�s�
Pi, ,2

�s�
Pi, ,2

� �s
w �s�

Pi, ,2

� �s
w �s�

Pi, ,2

�s�
Pi, ,2

�s�
Pi, ,2

Fig. 2. Input and output fuzzy sets of the flexible neuro-fuzzy system of the Mamdani
type for signature verification

Next, determination of the classifier is performed.

2.7 Determination of the Parameters of Fuzzy Classifier of
Genuineness of the Signatures

In this step flexible Mamdani-type neuro-fuzzy system is used. Neuro-fuzzy sys-
tems combine the natural language description of fuzzy systems (see e.g. [1]-[5],
[10]-[13], [16], [21], [25], [28], [34], [45]-[47], [60]-[61]) and the learning properties
of neural networks (see e.g. [7], [26], [29]-[32], [35]-[39], [41]-[42], [48], [55]-[56],
[58]-[59]). Alternative approaches to classification can be found in [15], [20],
[43]-[44], [49], [52]-[54], [57]. Our system works on the basis of two fuzzy rules
presented as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R(1) :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IF
(
dtst

{s}
i,1,1isA

1
i,1,1

{s}) ∣
∣
∣w

{s}
i,1,1 OR

(
dtst

{s}
i,1,2isA

1
i,1,2

{s}) ∣
∣
∣w

{s}
i,1,2 OR

...(
dtst

{s}
i,P{s},1isA

1
i,P{s},1

{s}) ∣
∣
∣w

{s}
i,P{s},1 OR

(
dtst

{s}
i,P{s},2isA

1
i,P{s},2

{s}) ∣
∣
∣w

{s}
i,P{s},2 THENyiisB

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

R(2) :

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

IF
(
dtst

{s}
i,1,1isA

2
i,1,1

{s}) ∣
∣
∣w

{s}
i,1,1 OR

(
dtst

{s}
i,1,2isA

2
i,1,2

{s}) ∣
∣
∣w

{s}
i,1,2 OR

...(
dtst

{s}
i,P{s},1isA

2
i,P{s},1

{s}) ∣
∣
∣w

{s}
i,P{s},1 OR

(
dtst

{s}
i,P{s},2isA

2
i,P{s},2

{s}) ∣
∣
∣w

{s}
i,P{s},2 THENyiisB

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (15)
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w
� �
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v

w
� �
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z

w
� �
2 2,

z

w

Fig. 3. Average values of weights of the users determined for each partition of dynamic
signature

where (a) dtst
{s}
i,p,r are input linguistic variables, whose numeric value is a dis-

tance between the test signature trajectory of the signer i and the linear bound-
ary of the inclusion of genuine signatures in the partition p, r, determined for
signal s. (b) A1

i,p,r
{s}, A2

i,p,r
{s} are input fuzzy sets related to the signal s ∈ {v, z}

shown in Fig. 2. Fuzzy sets A1
i,p,r

{s} and A2
i,p,r

{s} represent values {low, high}
assumed by input linguistic variables dtst

{s}
i,p,r. (c) yi is input linguistic variable

interpreted as reliability of signature. (d) B1, B2 are output fuzzy sets shown
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in Fig. 2. Fuzzy sets B1, B2 represent values {low, high} assumed by output
linguistic variable determining the reliability of signature. (e) w

{s}
i,p,r are weights

of the partition p, r, determined for signal s, of the user i.
Signature is considered true if the following assumption is satisfied:

ȳi =

S∗

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

µ
A2

i,1,1
{s}

(
dtst

{s}
i,1,1

)
, µ

A2
i,1,2

{s}
(
dtst

{s}
i,1,2

)
, . . . ,

µ
A2

i,P{s},1

{s}
(
dtst

{s}
i,P{s},1

)
, µ

A2

i,P{s},2

{s}
(
dtst

{s}
i,P{s},2

)
;

w
{s}
i,1,1, w

{s}
i,1,2 . . . , w

{s}
i,P{s},1, w

{s}
i,P{s},2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S∗

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

µ
A2

i,1,1
{s}

(
dtst

{s}
i,1,1

)
, µ

A2
i,1,2

{s}
(
dtst

{s}
i,1,2

)
, . . . ,

µ
A2

i,P{s},1

{s}
(
dtst

{s}
i,P{s},1

)
, µ

A2

i,P{s},2

{s}
(
dtst

{s}
i,P{s},2

)
;

w
{s}
i,1,1, w

{s}
i,1,2 . . . , w

{s}
i,P{s},1, w

{s}
i,P{s},2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+

S∗

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

µ
A1

i,1,1
{s}

(
dtst

{s}
i,1,1

)
, µ

A1
i,1,2

{s}
(
dtst

{s}
i,1,2

)
, . . . ,

µ
A1

i,P{s},1

{s}
(
dtst

{s}
i,P{s},1

)
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where (a) S∗ {·} is a weighted t-conorm (see [6]). (b) ȳi is the value of the output
signal of applied neuro-fuzzy system (see e.g [27]) described by rules (15). Detailed
description of the system can be found in [51]. Formula (16) was created by taking
into account in the description of system simplification resulting from the spac-
ing of fuzzy sets shown in Fig. 2: μA1

i,p,r
{s} (0) = 1, μA1

i,p,r
{s}

(
dlrnmax

{s}
i,p,r

)
= 0,

μA2
i,p,r

{s} (0) = 0, and μA2
i,p,r

{s}

(
dlrnmax

{s}
i,p,r

)
= 1. (c) cthi ∈ [0, 1] - coefficient

determined experimentally during training phase for each user to eliminate dis-
proportion between FAR and FRR error (see [62]). The parameters cthi ∈ [0, 1],
computed individually for the user i, are used during verification process in the
test phase.

3 Simulation Results

The simulation was performed using public SVC2004 signature database which
contains signatures of 40 users. The signatures were acquired in two sessions
using the digitizing tablet. In the first session each user created 10 genuine
signatures. In the second session, each user came again to create another 10
genuine signatures. In this session he/she also created four skilled forgeries for
five other users. The SVC2004 database contains 20 genuine signatures and 20
skilled forgeries for each user.

Test procedure proceeded as follows for signatures of each from 40 signers
available in the database. During training phase we used 5 randomly selected
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(from 20) genuine signatures of each signer. During test phase we used 10 ran-
domly selected (from the remaining 15) genuine signatures and all 20 skilled
forgeries of each signer. The process was performed five times, and the results
were averaged. The described method is commonly used in evaluating the effec-
tiveness of methods for dynamic signature verification, which corresponds to the
standard crossvalidation procedure. The test was performed using the authorial
testing environment implemented in C# language.

We also implemented some other methods based on partitioning to compare
the results of our simulations: 1) method presented in [17] which achieves very
good results, 2) our previous method based on vertical partitioning proposed in
[9], 3) our previous method based on horizontal partitioning proposed in [65].

Table 1 contains simulation results described as values of FAR (False Ac-
ceptance Rate) and FRR (False Rejection Rate), which are commonly used in
biometrics (see e.g. [19]). As mentioned earlier, in the simulations we assumed
that a number of vertical partitions is equal to 2 and a number of horizontal
partition is also equal to 2. Moreover, we present average values of weights of
importance for each partition (w̄{s}

p,r ), averaged in the context of the users (see
Fig. 3), which describe reliability of the signature in the partitions.

Table 1. Results of simulation performed by the system (16)

Method Average Average Average
FAR FRR error

Ibrahim et al. [17] 11.05 % 13.75 % 12.40 %
Zalasiński & Cpałka [65] 12.15 % 11.00 % 11.58 %
Cpałka & Zalasiński [9] 10.51 % 10.45 % 10.99 %
Our method 11.73 % 9.95 % 10.84 %

4 Conclusions

In this paper we presented a new method for dynamic signature verification us-
ing hybrid partitioning. In this method the signature is divided into few vertical
parts, which are divided into two horizontal parts. All created partitions are used
during classification process. The method assumes use of the classifier based on
the Mamdani type neuro-fuzzy system which is characterized by very good accu-
racy and ease of interpretation of the collected knowledge. Accuracy achieved in
our simulations performed using SVC2004 database proves the correctness of the
proposed assumptions. Moreover, the simulations show that partitions created
on the basis of the velocity signal are more reliable than partitions created on
the basis of the pressure signal. This is due to the higher value of weights (11)
associated with the partitions of the signal v (see 3). The most reliable partition
is the one created in the final phase of the signing process (p = 2) and associated
with the high value (r = 2) of the velocity signal v.
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