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Abstract. Artificial intelligence techniques are capable to handle a large
amount of information collected over the web. In this paper, big data
paradigm has been studied in volunteer and grid system called Comcute
that is optimized by a genetic programming scheduler. This scheduler
can optimize load balancing and resource cost. Genetic programming
optimizer has been applied for finding the Pareto solu-tions. Finally,
some results from numerical experiments have been shown.

Keywords: big data, volunteer computing, genetic programming.

1 Introduction

It is estimated that 2.5 exabytes of digital data are captured per day. A collection
of large data sets requires some advanced database management tools based on
artificial intelligence techniques to allow decision making, discovery and process
optimization. Especially, big data sharing is a scientific and practical challenge
due to some rapid progresses in finance, business as well as web banking. It is
worth to mention that large data sets are gathered by ubiquitous smartphones,
tablets, and wireless sensor networks with cameras or microphones. In result,
the data store capacity has approximately doubled every three years since the
1980s. Moreover, data storage and also their visualization, analysis and search
are still considered as an open problem to solve, too [17].

Massively parallel software on thousands of servers is required and that is
why big data (an acronym BD) is not convenient to most relational database
management systems. In such systems as desktop statistics and visualization
packages, sizes of data are beyond the capability of commonly used tools within
a tolerable elapsed time. A single big data set consists of terabytes of data
and it can increase to achieve many petabytes for one volume. What is more,
progress in speed of data in and out gives an opportunity to take advantage
for big data development. Another criterion is wide variety data that is related
to a huge range of data types and sources. Above four criteria: high volume,
extraordinary velocity, great data variety, and veracity create the 4Vs model for
big data description [20].
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We can distinguish some differences between big data and business intelli-
gence as regards data use. Some nonlinear system identification methods and
inductive statistics are applied for BD to deduce causal effects, nonlinear rela-
tionships. We can use regressions to discover dependencies and to find behaviors
and predictions. On the other hand, some descriptive statistics can be developed
for business intelligence to identify quantity effects or trends.

Genetic programming starts from a goal to be achieved and then it creates an
application autonomously without explicitly programming [14]. To some extent,
it replies the question that has been formulated by Arthur Samuel - a founder of
machine learning - “How can computers be made to do what needs to be done,
without being told exactly how to do it?” [18]. This paradigm uses the principle
of selection, crossover and mutation to obtain a population of programs. It has
been successfully applied to some problems from different fields [15]. Especially,
multi-criterion genetic programming (MGP) can determine the Pareto-optimal
solutions [2].

In this paper, MGP has been applied as a multi-objective scheduler for efficient
using big data by volunteer grids. This scheduler optimizes both a workload of
a bottleneck computer and the cost of the system. Moreover, an immunological
system based procedure has been applied to handle admissible solutions. Finally,
some outcomes for numerical experiments have been presented.

2 Multiagent Approach to Big Data Acquisition and
Mining

Big data introduces a lot of issue in terms of data acquisition, storing and mining.
Data is often gathered from multiple sources, which may be heterogeneous and
spread geographically across the world. Moreover, the collected data may be
stored in multiple geographically spread facilities as well due to sheer requirement
of storage capacity, which cannot be fulfilled by a single outpost. Like in every
distributed system, possibilities of communication loss and node downtime are
undeniable and such occurrences need to be handled by software involved in
data mining. This problem is even more important in case of mobile settings
(e.g. mo-bile sources of data) as availability of data depends on time in such
environments. Because of that, connection losses are no longer an anomaly they
become a given trait of the system [5].

Multiagent systems are well suited for big data acquisition because of traits,
which are commonly assigned to agents. The most important is mobility, which
means the ability to move between different facilities. By doing that agents can
get closer to the source of data or closer to the data they are about to process. It
reduces bandwidth requirements and delays caused by network communication
over long distances [5].

The ability to react upon sudden changes of the environment and to act
proactively are other important traits, which an agent can take advantage of
to improve data mining efficiency. Those traits provide foundation for handling
changes in availability of data sources or collected data. Proactivity and auton-
omy translate to capability of an agent to set its own goals and act upon them
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without external influence or control. An agent can proactively decide to move
to another set of data or initiate communication with other agents when it sees
it feasible. It is especially important in case of big data mining, as the expected
results of the extraction of deeply concealed knowledge from the data set, which
is processed, cannot be pre-determined. This means that appropriate actions
and intermediate goals of the knowledge extraction cannot be predetermined as
well, so the agent needs to decide what to do on its own.

Other useful traits of agents include abilities to communicate and negotiate.
In agent-based data mining system it is possible to distinguish different roles
and groups of tasks that constitute the whole mining process [12]. Individual
roles can be then assigned to agents. Through communication and negotiation
working groups of agents can be established, each of them containing agents with
a unified incentive to fulfill goals of their group.

Agent-based approach can improve efficiency of data mining compared to cen-
tralized approaches [23]. It was applied in different domains showing promising
results for further research, e.g banking and finance domain [16] or resource
allocation in distributed environments [5].

3 Genetic Programming and Immunological Systems

Genetic programming permits discovering a game playing strategy and can be
applied in optimal control, planning and sequence induction [14]. Fig. 1 shows
an example of a tree as a model of the computer program performance. This tree
is equivalent to the parse tree that most compilers (parsers) construct internally
from a computer program source. A parse tree consists of branches and nodes:
a root node, a branch node, and a leaf node. A parent node is one which has at
least one other node linked by a branch under it. A child node is one which has
at least one node directly above it to which it is linked by a branch of the tree.

The size of the parse tree is limited by the number of nodes or by the number
of the tree levels. Nodes in the parse tree are divided on functional nodes and
terminal ones. A functional node represents the procedure randomly chosen from
the primary defined set of functions:

FFF = {f1, . . . , fn, . . . , fN} . (1)

Each function should be able to accept, as its arguments, any value and data
type that may possible be returned by the other procedure [14]. Moreover, each
procedure should be able to accept any value and data type that may possible
be assumed by any terminal in the terminal set:

TTT = {a1, . . . , am, . . . , aM} . (2)

So, each function should be well defined for any arrangement of arguments
that it may come across. Furthermore, the solution to the problem should be
expressed by the combination of the procedures from the set of functions and
the arguments from the set of terminals. For example, FFF = {AND,NOT} is
sufficient to express any Boolean function.
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Fig. 1. An example of a parse tree as a chromosome of an genetic algorithm

The biological immune system has distributed elements as well as some fea-
tures of artificial intelligence like an adaptation, learning, using memory, and
associative retrieval of information in recognition [11]. Especially, the negative
selection algorithm (NSA) can be applied for change detection because it uses the
discrimination rule to classify some trespassers [10]. Detectors can be randomly
generated to reduce those detectors that are not capable of recognizing them-
selves. However, detectors capable to distinguish intruders are kept to defense
an organism. In the NSA, detection is performed probabilistically [3].

An antigen can support an antibody generation by stimulation a reaction
against squatters. Besides, some positive viruses and bacteria cooperate with
antigens [13]. An antibody (an immunoglobulin) is a large Y -shaped protein
capable to recognize and deactivate external objects as negative bacteria and
viruses [22]. It is worth to underline that the NSA can manage constraints in an
evolutionary algorithm by dividing the population in two assemblies [6]. Anti-
gens belong to the feasible solution sub-population, and “antibodies” – to the
infeasible one.

The initial fitness for all antibodies in the current infeasible subpopulation is
equal to zero. Next, a randomly selected antigen G− from the feasible subpopu-
lation is compared to the some chosen antibodies. After that, the match measure
S between G− and the antibody B− is calculated due to the similarity at the
genotype level. This measure of genotype similarity for the chromosome integer
coding is, as follows [1]:

S(G−, B−) =
M∑

m=1

|G−
m −B−

m| , (3)

where:
M – the length of the solution,
G−

m - value of the antigen at position m, m = 1,M ,
B−

m - value of the antibody at position m, m = 1,M .
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The negative selection can be modeled by an evolutionary algorithm, which
prefers infeasible solutions that are similar to randomly chosen feasible one in
the current population. We assume that all random choices of antigens are based
on the uniform distribution.

The situation is different in the case of antibodies. If the fitness of the selected
winner is increased by adding the amount of the similarity measure, then an anti-
body may pass over because of the relatively small value of assessment (3). On
the other hand, some constraints may be satisfied by this alternative. What is
more, if a constraint is exceeded and the others are not, the value of a similarity
measure may be lower for some cases. One of two similar solutions, in genotype
sense, may not satisfy this constraint and another may satisfy it.

4 An Extended NSA*

To avoid above disadvantages, some similarity measures can be developed from
the state of an antibody B− to the state of the selected antigen G−, as below:

fn(B
−, G−) =

{
gk(B

−)− gk(G
−), k = 1,K, n = k,

|hl(B
−)|, l = 1, L, n = K + l,

n = 1, N,N = K + L (4)

where
gk(x) ≤ 0, k = 1,K,
hl(x) = 0, l = 1, L.

The distance fn(B
−, G−) between B− and G− is supposed to be minimized

for all constraint indexes n. If fn(B
−, G−) < fn(C

−, G−), then B− ought to be
preferred to C− due to the nth constraint. Moreover, if B− is characterized by
all shorter distances to the antigen than the antibody C−, then B− should be
preferred for all constraints. However, some situations may occur when B− is
characterized by the shorter distances for some constraints and C− is marked
by the shorter distances for the others. In this case, it is difficult to select an
antibody. So, a ranking procedure can be applied to calculate fitness of antibodies
and then to select the winner.

In a ranking procedure, distances between the chosen antigen and some anti-
bodies are calculated due to their ranks [2]. If B− is characterized by the rank
r(B−) such that 1 ≤ r(B−) ≤ rmax, then the increment of the fitness function
is estimated, as below:

Δf(B−) = rmax − r(B−) + 1 . (5)

Subsequently, some fitness values of selected antibodies are increased by their
given increments. Then antibodies are returned to the current population and
this process is repeated typically three times the number of antibodies. Each
time, a randomly chosen antigen is compared to the same subset of antibodies.

Afterwards, a new population is constructed by selection, crossover and muta-
tion without calculations of fitness. That process is repeated until a convergence
of population emerges or until a maximal number of iterations is exceeded. At
the end, the final population as outcomes from the negative selection algorithm
is re-turned to the external evolutionary algorithm.
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5 Optimization Model for Volunteer Grid

In the grid and volunteer computing systems like BOINC or Comcute, some
scientific projects are transformed to a set of the calculation tasks that are
executed concurrently by volunteer computers with a support of some levels
of the middle-ware modules. A society of scientists can use these systems for
extensive distributed calculations in some research projects. The 24-hour average
performance of the most popular volunteer system BOINC is 8.186TeraFLOPS.
Moreover, the number of active volunteers can be estimated as 238,412, and also
388,929 computers process data [4].

In the Comcute system, an application for the Collatz hypothesis verification
and another one for finding the 49th Mersenne number were applied to prove
the intense human interactions, scalability and high performance [7].

In the architecture of the volunteer grid Comcute (Fig. 2), we can distinguish
the Z -layer where the system client defines new tasks, starts instances of pre-
viously defined tasks, tracks statuses of running tasks and fetches results for
completed tasks. On the other hand, the W -server layer supervises execution of
tasks. For each task instance, a subset of W -servers is arranged that partitions
the task among its members. The tasks pass input data packets for the task in-
stance to connected S -servers beneath them as well as collect and merge results
obtained from the S -layer. S -server is a distribution server that is exposed to
clients who fetch execution code and subsequent data packets and return results
for these data packets. I -client level is an untrusted layer of volunteers fetching
and returning results to the system.

To test the ability of the MGP with NSA* for handling constraints, we con-
sider a multi-criterion optimisation problem for task assignment in a distributed
computer system [2]. Especially, MGP can minimize Zmax – the workload of
a bottleneck computer and C – the cost of machines, concurrently.

A set of parallel tasks {T1, . . . , Tv, . . . , TV } communicated with each other is
considered among the coherent computer network with hosts located at the pro-
cessing nodes from the given setW = {w1, . . . , wi, . . . , wI}. Let the task Tv be exe-
cuted on some hosts taken from the set of available sortsΠ = {π1, . . . , πj , . . . , πJ}.
The over-head execution time of the task Tv by the computer πj is represented by
an item tvj .

The first criterion is a total host cost, as follows:

C(x) =

I∑

i=1

J∑

j=1

κjx
π
ij (6)
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Fig. 2. Architecture of the Comcute system

where
x =

[
xm
11, . . . , x

m
vi, . . . , x

m
V I , x

π
11, . . . , x

π
ij , . . . , x

π
IJ

]T
,

xπ
ij =

{
1 if πj is assigned to the wi,
0 otherwise,

xm
vi =

{
1 if task Tv is assigned to the wi,
0 otherwise,

κj – the cost of the host πj .
Another criterion is Zmax – a workload of the bottleneck host that is supposed

to be minimized. It is provided by the subsequent formula:

Zmax(x) = max
i∈1,I

⎧
⎪⎨

⎪⎩

J∑

j=1

V∑

v=1

tvjx
m
vix

π
ij +

V∑

v=1

V∑

u=1
u�=v

I∑

i=1

I∑

k=1
k �=i

τvuikx
m
vix

m
uk

⎫
⎪⎬

⎪⎭
, (7)



778 J. Balicki et al.

where
τvuik – the total communication time between the task Tv assigned to the ith
node and the Tu assigned to the kth node.

Fig. 3 shows the workload of the bottleneck computer for the instance with
15 modules and two hosts. There are 30 decision variables and 7.394 admissible
module assignments. An optimal workload of the bottleneck host is 47 [TU]
versus the maximal one 102 [TU]. Even a small movement of a task to another
host or a substitution of host sort can cause a relatively big alteration of its
workload. What is more, there are two optimal solutions, as follows:
x*(1)=[1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2]
x*(2)=[2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]

Fig. 3. Workload of the bottleneck computer for generated solutions

A host is supposed to be equipped with necessary capacities of resources. Let
the memories z1, . . . ,zr, . . . , zR be available in the volunteer system and let djr
be the capacity of memory zr in the host πj . We assume the task Tv holds cvr
units of memory zr during a program execution. The host memory limit cannot
be exceeded in the ith node, as bellow:

V∑

v=1

cvrx
m
vi ≤

J∑

j=1

djrx
π
ij , i = 1, I, r = 1, R . (8)
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Let πj be distributed independently according to the exponential distribution
with rate λj . Hosts and tasks like Z, W or S can be allocated to nodes to
guarantee the required reliability R, as below [1]:

V∏

v=1

I∏

i=1

J∏

j=1

exp
(−λjtvjx

m
vix

π
ij

) ≤ Rmin . (9)

Let (XXX , F, P ) be the multi-criterion optimization question for finding the rep-
resentation of Pareto-optimal solutions [6]. It can be established, as follows:

1. XXX - an admissible solution set

XXX = {x ∈ BBBI(V+J) |
V∑

v=1

cvrx
m
vi ≤

J∑

j=1

djrx
π
ij , i = 1, I, r = 1, R;

V∏

v=1

I∏

i=1

J∏

j=1

exp
(−λjtvjx

m
vix

π
ij

) ≤ Rmin;
I∑

i=1

xm
vi = 1, v = 1, V ;

J∑

j=1

xπ
ij = 1, i = 1, I}

where: BBB = {0, 1},
2. F - a vector quality criterion

F :XXX →RRR2 (10)

where:
RRR – the set of real numbers,
F (x) = [Zmax(x), C(x)]T for x ∈XXX ,
Zmax(x) and C(x) are calculated by (7) and (6) respectively.

3. P - the Pareto relation [8].

To solve this problem we can apply the Strength Pareto Evolutionary Algo-
rithm SPEA [24] or the Adaptive Multi-Criterion Evolutionary Algorithm with
Tabu Mutation AMEA+ [1]. Moreover, some scheduling algorithms based on
tabu search studied in [21] can be combined with an evolutionary approach.

In AMEA+, a tabu search procedure was applied as the second mutation
operator to decrease the workload of the bottleneck computer. Moreover, we
introduced the NSA* to improve the quality of obtained solutions and the evo-
lutionary algorithm was denoted as AMEA*.

6 Numerical Experiments

For the instance with 15 tasks, 4 nodes, and 5 computer sorts, there are 80 binary
decision variables. An average level of convergence to the Pareto set is 17.7% for
the MGP* and 17.4% for the AMEA*. A maximal level is 28.5% for the MGP*
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and 29.6% for the AMEA*. For this instance the average number of optimal
solutions is 19.5% for the MGP* and 21.1% for the AMEA*. Fig. 4 6 shows the
process of finding efficient task assignment by MGP* for the cut obtained from
the evaluation space according to the cost criterion C and the workload of the
bottleneck computer Zmax. An average level of convergence to the Pareto set,
an maximal level, and the average number of optimal solutions become worse,
when the number of task, number of nodes, and number of computer types
increase. An average level is 37.7% for the MGP* versus 35,7% for the AMEA*,
if the instance includes 50 tasks, 4 nodes, 5 computer types and also 220 binary
decision variables.

Fig. 4. Pareto front determined by GMP*

Concluding Remarks

Multi-objective genetic programming is relatively new paradigm of artificial in-
telligence that can be used for finding Pareto-optimal solutions. A computer
program as a chromosome gives possibility to represent knowledge that is spe-
cific to the problem in more intelligent way than the data structure.

Our future works will focus on testing the other sets of procedures and ter-
minals to find the Pareto-optimal task assignments for different criteria and
constraints. Initial numerical experiments confirmed that sub-optimal in Pareto
sense task assignments can be found by genetic programming. That approach
permits for obtaining comparable quality outcomes to advanced evolutionary
algorithm. Us-ing volunteer model of computations based on our Comcute sys-
tem we plan implement large scale text classifier [9]. This task will allow us to
evaluate the proposed architecture for real life tasks. Also the implementation
will served as a proof of concept of an easy integration model for distributed
computational nodes.
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