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Abstract. The presented here paper describes a new approach to the video com-
pression problem. Our method uses the neural network image compression algo-
rithm which is based on the predictive vector quantization (PVQ). In this method
of image compression two different neural network structures are exploited in the
following elements of the proposed system: a competitive neural networks quan-
tizer and a neuronal predictor. For the image compression based on this approach
it is important to correctly detect scene changes in order to improve performance
of the algorithm. We describe the image correlation method and discuss its effec-
tiveness.

1 Introduction

Multimedia data transmission is widely spread nowadays. Most of the applications re-
quire effective data compression in order to lower the required bandwidth or storage
space. Various techniques of the data coding achieve this goal by reducing data redun-
dancy. In most of the algorithms and codecs a spatial compensation of images as well
as movement compensation in time is used. Video compression codecs can be found in
such applications as:

1. various video services over the satellite, cable, and land based transmission chan-
nels (e.g., using H.222.0 / MPEG-2 systems [1]);

2. by wire and wireless real-time video conference services (e.g., using H.32x [2] or
Session Initiation Protocol (SIP) [3]);

3. Internet or local area network (LAN) video streaming [4];
4. storage formats (e.g., digital versatile disk (DVD), digital camcorders, and personal

video recorders) [5].

Currently, many image compression standards are used. The most popular are JPEG
and MPEG. They differ in the level of compression as well as application. JPEG and
JPEG2000 standards are used for image compression with an adjustable compression
rate. There is a whole family of international compression standards of audiovisual data
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combined in the MPEG standard, which is described in more details in literature (see
e.g. [6]). The best known members are MPEG-1, MPEG-2, and MPEG-4. We used
a PVQ (Predictive Vector Quantization) algorithm in our work to compress a video
sequence. It combines a VQ (Vector Quantization) [7], [8] and DPCM (Differential
Pulse Code Modulation). More information on the techniques can be found in sources
[9], [10], [11]. To detect a scene change we used image correlation method. Then we
can change necessary parameters of the predictor and the codebook.

2 Video Compression Algorithm

The design of the compression algorithm described here is based on the existing algo-
rithm described in [9–11]. Selected algorithm due to neural network features presents
better adjustment to a frame and gives better compression. The extension includes a
scene change detection algorithm, which is based on the correlation between frames.
The diagram below (see Fig. 1) shows the proposed algorithm.

Fig. 1. Video compression algorithm

2.1 Neuronal Image Compression Algorithm

In the literature several methods for image compression have been proposed. Among
them the vector quantization (VQ) technique has emerged as an effective tool in this
area of research [12]. A special approach to image compression combines the VQ tech-
nique with traditional (scalar) differential pulse code modulation (DPCM) leading to the
predictive vector quantization (PVQ). In this paper, we develop a methodology where
the vector quantizer will be based on competitive neural network, whereas the predictor
will be designed as the nonlinear neural network.

We assume that an image is represented by an N1 ×N2 array of pixels X = [xn1,n2 ];
n1 = 1,2, . . . ,N1, n2 = 1,2, . . . ,N2. The image is portioned into contiguous small blocks
Y(k1,k2) = [ym1,m2 (k1,k2)] of the dimension M1 ×M2; m1 = 1,2, . . . ,M1, m2 = 1,2,
. . . ,M2:

Y(k1,k2) =

⎡
⎢⎣

y1,1 (k1,k2) · · · y1,M2 (k1,k2)
...

. . .
...

yM1,1 (k1,k2) · · · yM1,M2 (k1,k2)

⎤
⎥⎦ , (1)
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where we identify: k1 = 1,2, . . . ,K1 =
N1
M1

, k2 = 1,2, . . . ,K2 =
N2
M2

.
The arrays (1) will be represented by the corresponding vectors

V(k1,k2) = [v1 (k1,k2) , . . . ,vL (k1,k2)]
T , (2)

where: L = M1 ·M2, v1 (k1,k2) = y1,1 (k1,k2), vL (k1,k2) = yM1,M2 (k1,k2). It means that
the original image is represented by N1·N2

L vectors V(k1,k2). The successive input vec-
tors to the encoder V(t); t = 1,2, . . . ,K1 · K2 correspond to vectors V(k1,k2) in the
line-by-line order.

The general architecture of the predictive vector quantization algorithm (PVQ) is de-
picted in Fig.2. This architecture is a straightforward vector extension of the traditional
(scalar) differential pulse code modulation (DPCM) scheme (see e.g. [9, 10]).
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Fig. 2. The architecture of the image compression algorithm

The block diagram of the PVQ algorithm consists of the following elements: en-
coder and decoder, each containing an identical neural-predictor, codebook and neural
vector quantizer. The successive input vectors V(t) are introduced to the encoder. The
differences E(t) = [e1 (t) ,e2 (t) , . . . ,eL (t)]

T given by the equation

E(t) = V(t)−V(t) (3)

are formed, where: V(t) = [v1 (t) ,v2 (t) , . . . ,vL (t)]
T is the predictor of V(t). Statisti-

cally, the differences E(t) require fewer quantization bits than the original subimages
V(t). The next step is vector quantization of E(t) using the set of reproduction vectors
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G = [g0,g1, ...,gJ] (codebook), where g j = [g1 j,g2 j, ...,gq j]
T (codewords). For every

L-dimensional difference vector E(t), the distortion (usually the mean square error)
between E(t) and every codeword g j, j = 0,1, . . . ,J − 1 is determined. The codeword
g j0 (t) is selected as the representation vector for E(t) if

d j0 = min
0≤ j≤J

d j, (4)

where we can take a measure d in expression (4) as e.g. the Euclidean distance. When
adding the prediction vector V (t) to the quantized difference vector g j0 (t) we get the

reconstructed approximation Ṽ(t) of the original input vector V(t), i.e.

Ṽ(t) = V(t)+ g j0 (t) . (5)

The predicted vector V(t) of the input vector V(t) is made from past observation of re-
constructed vector Ṽ(t − 1). In our approach, the predictor is a nonlinear neural network
specifically designed for this purpose. In future research we plan to employ orthogonal
series nonparametric estimates for the predictor design [13–15], neuro-fuzzy predictor
[16–19], and decision trees for mining data streams [20–25].

The appropriate codewords j0 (t) are broadcasted via the transmission channel to
the decoder. In the decoder, first the codewords j0 (t) transmitted by the channel are
decoded using codebook and then inverse vector-quantized. Next, the reconstructed
vector Ṽ(t) is formed in the same manner as in the encoder (see relation (4)).

2.2 Scene Detection

The parameters of the neural image compression algorithm are strictly determined bas-
ing on given compressed image. This comes from the fact that these parameters are
established through the learning process of the neural networks applied in this neu-
ral compression algorithm. In the case of the video compression, every frame of the
film will be processed as a separate image. Unfortunately, that a file containing our
compressed film will include an additional information about parameters of this com-
pression. To avoid this situation, we could assign the same compression parameters to
several consecutive compressed frame of the video. This concept is based on the as-
sumption that these frames are similar each to other in an acceptable level. Clearly, if
these frames are not similar we should use separately for every frame parameters de-
termined for a given frame. For instance, we observed this situation when a change of
the scene in the film is encountered. In our concept, we will try to detect the key frame
which separates neighboring scenes. Thanks to this idea, we save a space in the file
containing compressed film, assigning the same parameters to all frames from a given
scene, and we improve quality of the compressed film giving different compression
parameters for significantly different frames.

In this context, the scene detection is a crucial problem. Among many other ap-
proaches [26–28], the methods based on the correlation coefficient are worth consid-
eration. Correlation coefficient is the number indicating the level of the linear ratio
between two random variables. Cuts, gradual transitions, and motion can be distin-
guished in the video frames using this parameter. For the cuts, the difference between
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the two frames is large, and the correlation of these frames is low. For a gradual transi-
tion, pixel values of two adjacent frames are different, but are similar in the edges and
textures, so the correlation in the spatial domain is high [29]. A histogram of brightness
changes slightly for motion scenes that take place on the same background. However,
for scenes of gradual transition or cuts, it changes gradually or abruptly.

Differences between objects motion in the scene and the scene change can be ob-
tained by comparison of the key frames with subsequent frames. The key frame his-
togram Hk f can be defined as:

Hk f (rk) = nk, (6)

where rk is the k-th level of brightness, nk is the number of pixels in frame of the
brightness level rk.

For N frames in the video, we calculate the histogram Hi, i = 2,3, ..., N. The correla-
tion between Hk f and Hi can be defined as:

corr(Hk f ,Hi) =
∑m

j=0(Hk f ( j)− hk f )(Hi( j)− hi)√
∑m

j=0(Hk f ( j)− hk f )2 ∑m
j=0(Hi( j)− hi)2

, (7)

where m is the number of brightness scale levels rk; hk f , hi are mean values of Hk f and
Hi [30], respectively, and can be defined as:

hi =
1
m

m

∑
j=0

Hi( j). (8)

Then, the correlation value computed from Eq. (7) is compared with a threshold. If the
correlation value is lower than the assumed threshold, the algorithm determines a new
key frame. A diagram of the proposed scene change detection algorithm is shown in
Fig. 3.
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Fig. 3. Scene change detection algorithm

3 Experimental Results

The efficiency of the algorithm was tested on a set of frames extracted directly from a
video file of a 576x416 resolution with 256 levels of gray. Four tests were conducted.
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In the first and second tests, the frames were compressed within single scene (Fig. 4).
In the first test the frames were compressed with a separate codebook and predictor for
each of the frames (Fig. 5). For the second test, a single codebook and predictor were
used for all frames (Fig. 6).

Fig. 4. Original sequence (a); compressed sequence: test 1 (b); compressed sequence: test 2 (c)

Fig. 5. Difference between frames in the test 1

A transit frames between scenes were chosen for the third and fourth tests based on
the scene change detection algorithm (Fig. 7). In this algorithm each frame is compared
with the keyframe. When the new scene is detected the algorithm marks a new keyframe
(see Fig. 8).

In the test 3 the same codebook and predictor were used before and after the scene
change. As the results show, this approach is insufficient in case of a major scene change
(Fig.9). For the fourth test, the scene transition was detected and separate codebooks and
predictors were created for frames before and after the scene transition (Fig.10).
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Fig. 6. Difference between frames in the test 2

Fig. 7. Original sequence (a); compressed sequence: test 3 (b); compressed sequence: test 4 (c)

Fig. 8. Scene change detection
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Fig. 9. Difference between frames in the test 3

Fig. 10. Difference between frames in the test 4

4 Conclusions

The tests show that the scene change detection algorithm is especially useful for the
presented compression algorithm. It is apparent that without the scene detection a video
sequence compressed by our algorithm would exhibit a poor quality of frames after the
scene transition. On the other hand, the number of data resulting from including the
compression parameters for every frame would greatly impact on the output files size.
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