
Statistical Classifier with Ordered Decisions

as an Image Based Controller
with Application to Gas Burners

Ewaryst Rafaj�lowicz1, Halina Pawlak-Kruczek2, and Wojciech Rafaj�lowicz1

1 Institute of Computer Engineering control and Robotics
2 Institute of Heat Engineering and Fluid Mechanics,
Wroc�law University of Technology Wroc�law, Poland

ewaryst.rafajlowicz@pwr.wroc.pl

Abstract. We consider a statistical decision problem as a tool for solv-
ing control problems with a camera in the loop. The first stage is features
extraction from images. Its role is to process images in order to extract
features relevant for the control problem. Then, they are fed as inputs
to the Bayesian decision problem. At the second stage a loss function,
which is a sum of squared deviations of decisions from true decisions
is considered. Finally, an approximation of the optimal decision rule is
proposed, using a learning sequence of decisions, which – together with
feature extracting algorithms – form the control system. The proposed
approach is illustrated by a system that is dedicated to control natural
gas burners.
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1 Introduction

A camera in a control loop is a very rich source of information, in many cases
even too rich. In such a case a control system has to reduce information content.
Otherwise, very similar images are considered as different, which may lead to the
instability of the control loop. It seems that the Bayes decision theory is a good
source of general ideas on how to select proper decisions when an environment
is randomly changing (see [5] for fundamentals of general Bayesian decision the-
ory) and [4] or [7] for more specialized pattern recognition setting. However, we
have to point out that the Bayes decision theory has two points, which are not
compatible with applications in control theory. Namely,

1. the Bayes decision theory is static in the sense that the decision is taken only
once (an idea of using classifiers in a nonstationary environment has been
proposed in [18], [19]),

2. it assumes that we know all necessary a priori probabilities of an environment
states and all probability density functions of states from each class.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 586–597, 2014.
c© Springer International Publishing Switzerland 2014



Statistical Classifier with Ordered Decisions 587

In order to apply the Bayesian approach we have to start from assumptions
made in 2), but then we have to take a more realistic empirical approach that is
based on estimating these quantities from observations. Concerning 1), we have
to take into account that

– a decision can be changed when the next image is collected and processed,
– possible reasons for changing decisions include:

• disturbances in the process under control,
• a correction of the previous decision, even when disturbances were not
present,

• erroneously interpreted previous frames, resulting in incorrect decisions.
– processing of images should be sufficiently fast in order to ensure proper

behavior of the controlled process.

The last point, in turn, requires the extraction of features from images that are
relevant for process control. Thus, we arrive to the two stage approach. Namely,

1st stage consists of image acquisition and extraction of relevant features,
2nd stage consists of calculating decisions.

In this paper we assume that the process under control has no long memory. In
other words, its dynamics (transient process) can be neglected. If it cannot be
ignored, then the proposed approach can be extended, e.g., by assuming that
states of the process form a Markov chain, but this generalization is outside the
scope of this paper.

We also assume that for a proper process control it suffices to use a finite num-
ber, say l > 1, of decisions. In other words, we quantize a decision process. The
class of decisions can be arbitrarily large (in order to approximate an arbitrary
decision function), but it must be finite or at most countable.

In opposite to the classical setting of Bayes problems, in which labels of the
decisions are arbitrary and unordered, we consider the problem with decision
labels that are linearly ordered. There are practical reasons to take the above
point of view. Namely, when decisions are applied to the process under control
and we admit some errors in decisions, it is important to attach a larger loss
when instead of decision ”1” we take decision ”4” then if decision ”2” (closer to

”1”) is undertaken. We can assume that I def
= {1, 2, . . . , I}, I ≥ 2 is the set of

labels of our decisions. In practice, decision ”1” may mean, apply a force of 10
N to a controlled system, while decisions ”2” and ”3” correspond to applying
forces 15 N and 22 N, respectively. It is only of importance, that 10 N is closer
to 15 N, then to 22 N.

As an optimality criterion we take the expectation of the sum of differences
between the ”true” (mostly desirable) decision label and our decision. We shall
prove that the optimal decision rule is extremely simple in this case. Namely,
its the a posteriori mean (possibly ”rounded” to the nearest decision from the
above list).

As the next step, we discuss an empirical version of the controller, i.e., we
propose an algorithm, which approximates the optimal decision rule.
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It should be mentioned that different orderings were suggested in [20], [13],
but they were introduced in the feature space, while here, we consider ordering
in the space of labels. In [15] two dimensional class labels were considered and
applied to a fault location problem.

2 Decision Problem – Theoretical Setting

Let Y (t) denote an image of the process at time t. Y (t) is an r × c matrix,
where r is the total number of pixels that are stacked in a vector, c is the
number of colors, e.g., three in RGB format. Denote by Ω an operator (linear
or nonlinear) defined on the above described set of matrices with values in Rd,
i.e., X(t) = Ω(Y (t)) is d-dimensional vector. We shall interpret operator Ω as a
feature extractor which extracts features relevant to the controlled process and
forms a pattern X(t) that is sufficient for proper decision making. The form of
operator Ω is problem dependent and not discussed in this section.

2.1 Assumptions

1) For each t, X(t) ∈ Rd is a random vector, for which a correct decision, denoted
as i(t), is an element of I, labeled as 1, 2, . . . , I.

2) New pair (X, i) is a random vector representing features and a correct decision
i, which is unknown for a new feature vector X to be classified.

3) Probability distribution of (X, i) is unknown, but we also have a learning
sequence

(X(k) = X(tk), i
(k) = i(tk)), k = 1, 2, . . . , n

of observedX(k) ∈ Rd and the corresponding correct decisions i(k) ∈ {1, 2, . . . , I}.
We assume that (X(k), i(k))’s are independent, identically distributed random
vectors with the same probability distribution as (X, i).

4) Denote by 0 ≤ q(i) ≤ 1, a priori probability that for X a correct decision is

i, i = 1, 2, . . . , I,
∑I

i=1 q(i) = 1.
5) The next ingredient of the problem setting is a loss function, L(i, j) say, which
attaches loss L(i, j) if the correct decision for X is i, while our decision j ∈ I.
In this paper we take

L(i, j) = (i− j)2, i, j ∈ I (1)

as the loss function. It reflects our idea that it is reasonable to attach a larger
loss when incorrect decision j is far from the correct one, i.e., i.

Let EX denotes the expectation w.r.t. X , while P (i|X) is the a posteriori
probability that for new feature vectorX the correct decision is i. In other words,
P (i|X = x) is the conditional probability of the event that i is the correct label
of the decision for given vector of features X = x.
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2.2 Problem Statement

The aim is to find a decision function Ψ(X), which specifies a decision from I
for X and such that it minimizes the expected loss given by:

R(Ψ) = EX

[
I∑

i=1

(i− Ψ(X))
2
P (i|X)

]

, (2)

In other words, our aim is to minimize the risk R(Ψ), which is our loss that
is averaged of all possible feature vectors X , while averaging is done according
to the probability distribution of X . In order to ensure correctness of (2), we
have to assume that we are looking for minimizer Ψ∗(x), say, in the class of
measurable functions.

The above problem statement is a theoretical one, because we do not know
P (i|X)’s and probability distribution of X . However, it is reasonable to firstly
solve problem (2) as if these quantities were known (see the next Section) and
then, to estimate Ψ∗(x) from the sequence of past correct decisions. This ap-
proach can be named ”learning statistically optimal control”.

3 From Image Features to Optimal Decision Rule

The outer expectation in (2) is carried out with respect to a nonnegative prob-
ability measure corresponding to the distribution of X . Thus, it suffices to min-
imize the expression in the square brackets in (2) for each vector of feature X
separately. In other words, in order to minimize R(Ψ) it suffices to minimize the
conditional risk, which is defined as follows

r(ψ, x)
def
=

I∑

i=1

(i− ψ)
2
P (i|X = x) (3)

with respect to ψ, which is a real variable, while x is treated as a parameter.
Notice that ψ∗ which minimizes (3) must depend on x and this dependence is
in fact our decision making unit Ψ∗, that can be also described as follow:

Ψ∗(x) = argmin
ψ

r(ψ, x) (4)

for all x ∈ Rd in the range of X .
Note that minimizing (4) we have to ensure that Ψ∗(x) is a positive integer

form the class of admissible decisions I.

3.1 Optimal Decision Rule

The decision rule Ψ∗(x), which minimizes (3), can be derived in two steps that
follows.
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Step 1. For fixed x we have to minimize the sum of (i − ψ)2 with weights,
which sum up to 1. The best ψ, which is further denoted as Ψ̃(x), is the a
posteriori mean:

Ψ̃(x) =

I∑

i=1

i P (i|X = x) (5)

It is worth explaining how formula (5) works in an idealized case. If the range
of random vectors (features) X can be divided into disjoint subregions Γi, each
corresponding to unique decision i, then P (i|X = x) = 1 exactly for x ∈ Γi and
P (j|X = x) = 0 for all j �= i. In this case Ψ̃(x) = i for x ∈ Γi.

In more realistic cases we have to perform the following step.
Step 2. In order to ensure that our decision is a positive integer we round it

as follows:
Ψ∗(x) = ROUND

(
Ψ̃(x)

)
, (6)

where ROUND(t) is an integer, which is closest to t.
Let us assume the existence of probability densities f(x|i), which describes

the conditional p.d.f. of X , provided that it corresponds to i-th decision from I.
Then, according to the Bayes rule, P (i|X = x) is given by

P (i|X = x) =
f(x|i) q(i)

f(x)
, i = 1, 2, . . . , I, (7)

f(x)
def
=

I∑

l=1

f(x|l) q(l) , (8)

which allows us to express the a posteriori probabilities in terms of probability
densities corresponding to i-th and all other decisions and a priori probabilities
that i-th decision is appropriate. Reasoning analogously as in the proof of The-
orem 1 in [16] the following result can be derived.

Theorem 1. For linearly ordered decision labels the expected loss (2) is mini-
mized by decision rule (5), (6).

3.2 Countable Decision Set and Exponential Family of Features

Here we illustrate the above theoretical derivations and simultaneously we shall
show that the above theory easily conveys to an infinite but countable set of
decisions.

Assume (in this section only) that we have only one feature x ∈ [0, ∞).
Probability densities have the form:

f(x|i) = n
xk

k!
exp(−nx), x ∈ [0, ∞), i = 0, 1, . . . , (9)

where n ≥ 1 is a selected integer. For convenience we have labeled classes from
0. We also assume that a priori probabilities that i-th decision is the proper one
are equal to qi = (1 − q) qi, i = 0, 1, . . ., 0 < q < 1. Then,
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f(x) =

∞∑

i=0

f(x|i) qi = n(q − 1)
(
−en(q−1)x

)
(10)

while ∞∑

i=0

i f(x|i) qi = n2
(
q2 − q

)
x
(
−en(q−1)x

)
(11)

Thus, we obtain the optimal decision rule Ψ∗(x) = ROUND(n q x).

4 Second Stage – Toward Empirically Tuned Controller

When P (i|X = x) and qi, i ∈ I are unknown, one can not apply Thm. 1 directly.
The well-established way of circumventing this difficulty consists of the following
steps:

1. Collect a learning sequence

Ln = (X(k), i(k)), k = 1, 2, . . . , n

that contains pairs: a feature vector X(k) and the corresponding proper de-
cision label i(k) (suggested by experts, which are assumed to provide proper
decisions).

2. Estimate P (i|X = x) and qi, i ∈ I from Ln

3. Insert the above-mentioned estimates into the optimal decision rule (5), (6)
and use it as an approximation of the optimal one.

The above way frequently leads to empirical decision rules that are asymptot-
ically (as n → ∞) as good as the optimal one (in the sense of the expected
loss).

Estimators of f(x|i) can be based on orthogonal expansions or the well-known
Parzen-Rosenblatt kernel estimator, partitioning estimators and many others
(see [6] and [7] for detailed discussions and extensive bibliographies). All these
approaches operate directly on the whole learning sequence, which has to be
stored and available for each pattern to be recognized. This feature is highly
undesirable when one needs to use an empirical decision rule on-line for a process
control.

4.1 Empirical Decision Rule

Therefore, we propose simplified estimators of f(x|i)’s that do not require the
storage of the whole learning sequence in order to make current decision. This
goal can be achieved by applying the well known neural nets with radial basis
functions.

Denote by K(t) ≥ 0, t ∈ R a kernel, which is such that

∫ ∞

−∞
K(t) = 1,

∫ ∞

−∞
tK(t) = 0,

∫ ∞

−∞
t2 K(t) < ∞
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Define

I(i) = {(X(k), i(k)) : i(k) = i}.
I∑

i=1

Card(I(i)) = n,

where Card denotes the cardinality of a set. Let n(i) = Card(I(i)) denote the
number of decisions with the label i in the learning sequence.

The simplest task is estimating a priori probability that a decision has label
i. It suffices to set

q̂(i) =
n(i)

n
, i = 1, 2, . . . , I (12)

as the estimator of q(i).

As estimators f̂(x|i) of f(x|i) we take the following RBF net:

f̂(x|i) = 1

J(i)hd(n(i), i)

J(i)∑

j=1

K

(
||x− C

(j)
i ||

h(n(i), i)

)

, i = 1, 2, . . . , I, (13)

where
– C

(j)
i ∈ Rd, j = 1, 2, . . . , J(i) are centers of RBF’s for estimating f(x|i),

– h(n(i), i) is i-th smoothing parameter that depends on n(i),
– ||.|| is a norm in Rd.

We refer the reader to rich bibliography and recent results on RBF’s contained
in [2], [4], [15], [16], [18], [19], [21], [22], [13], [10]. Define the second, composite,
RBF net as follows:

f̂(x) =

I∑

i=1

q̂i f̂(x|i). (14)

It consists of RBF nets (13) with weights q̂i.
In (13) and (14) the role of the learning sequence is not directly visible. It

is ”hidden” in selecting centers C
(j)
i ∈ Rd. Firstly, we select those (X(k), i(k))’s

that are contained in I(i) for given i. Then, they serve for selecting C
(j)
i j =

1, 2, . . . J(i) for the same i. We omit the discussion on selecting centers, since it
is well covered in the available literature.

Define the estimators p̂(i, x) of P (i|X = x) as follows

p̂(i, x) =
q̂i f̂(x|i)
f̂(x)

, (15)

Now, as the empirical decision rule Ψ̂ we take

Ψ̂(x) = ROUND

[
1

f̂(x)

I∑

i=1

i q̂i f̂(x|i)
]

. (16)
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4.2 Important Special Case

Training controllers (16) with f̂(x|i) given by (13) usually requires a long learning
sequence. In many cases one can simplify (13) by setting J(i) = 1, i = 1, , 2, . . . I

and properly selecting K(.) and C
(1)
i (further we use a simplified notation sim-

plified, namely Ci).
Then, (16) can be rewritten as follows:

Ψ̂(x) = ROUND

⎡

⎣

∑I
i=1 i q̂i h

−d(n(i), i)K
(

||x−Ci||
h(n(i),i)

)

∑I
i=1 q̂i h

−d(n(i), i)K
(

||x−Ci||
h(n(i),i)

)

⎤

⎦ (17)

5 Example – A Control System for a Natural Gas Burner

In [11], [12], [1] monitoring gas burners by cameras have been discussed. As far
as we know, a control system based on a camera in the loop has been proposed
only in [14]. In this paper, a decision unit is based on learning an artificial neural
network. Our approach is based on (17), which can be interpreted as an RBF
net, but it differs from the one considered in [14] in that the structure of the
decision unit is the empirical version of the optimal decisions. Thus, also its
structure has some optimality advantages.

It is worth explaining why we need to control burners that are fed by a natural
gas. The reason is that natural gas contains varying amounts of methane and in
order to get a flame having reasonable properties we have to control the air supply
rate.

Our two-stage approach is sketched in Fig. 2 (left panel), where fat lines are
paths of a video stream, while thin lines are paths of transmitting signals varying
in time only.

5.1 Extraction of Features from Flames

As mentioned in the Introduction, we propose the two-stage approach. The first
stage consists of features extraction from a current flame. Algorithms dedicated
to feature extraction and state recognition will be developed elsewhere. Here we
use relatively simple features of flames. Namely, color i.e., the content of yellow
and blue parts of the flame (see Fig. 1) and shape of the flame that can
indicate laminar or turbulent flow of the gas and air mixture (compare images
in the bottom row of Fig. 1).

At each image in Fig.1 one can notice a rotameter with its float indicating the
air flow rate. The air flow rate is our input signal to the burner. Thus, the model of
our system to be controlled is very simple. It consists of an input signal u(t), which
represents the air flow rate at time t. The flow rate is scaled from 0 (the lowest
rotameter position, which corresponds to flow rate 3.5 m3/h) to 100% (maximal
air flow rate). The outputs of our system consists of two variables, namely,
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– x1(t) – the percentage of the blue color in the flame at time t,
– x2(t) – the percentage of the flame height, in which the flame burns in the
laminar way, i.e., it does not contain a turbulent flow.

Fig. 1 explains the meaning of x1(t) and x2(t). The flame in upper left panel
contains almost no blue color (x1(t) = 5%, say) and almost all the flame shape is
turbulent (x2(t) close to zero). Upper right and lower left panels show flames with
more blue color and more parts with laminar shape of the flame, i.e., x1(t) and
x2(t) are larger. Finally, the flame in lower right panel contains about x1(t) = 50-
60% of blue color and about x2(t) = 50-60% of the flame length burns in the
laminar way. The flame in lower right panel of Fig. 1 is considered as the reference

Fig. 1. Flames (rotated to save space corresponding to different air flow rates that are
measured by the rotameter shown at the bottom of each figure

image, i.e., the one that we would like to keep by increasing or decreasing the air
flow rate independently of the methane content in a natural gas. that is supplied
to the burner. One can select slightly different proportions as desired x∗

1 and x∗
2,

taking into account that if more air can mix with the gas before combustion, the
flame burns providing a higher temperature, which results in more blue color in
it. On the other hand, a smaller air supply rate leads to an incomplete reaction
that appears as a light yellow flame, which is cooler.

Analyzing the intense reactions zone of flame, the fuel undergoes pyrolysis
initially, as evidenced by the presence in the area of soot and compounds C2
and CH, as manifested by a yellow color of the flame zone. Next there is an
intensive zone of the oxidation reaction as the oxygen concentration increases,
as evidenced by the initial absence of visible light radiation, and then the blue
color of the area. This area is characterized by the highest concentrations of
radicals and the highest temperature.

5.2 Control Unit

At the second stage, vectors of extracted features x1(t) and x2(t) are supplied to
a control unit, where a control action, denoted as Ψ̂(x(t)), is calculated as follows.
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Table 1. Interpretation of decisions and their a priori probabilities

C =

⎡
⎢⎢⎢⎢⎣

0.1 0.2
0.3 0.4
0.5 0.5
0.7 0.6
0.9 0.9

⎤
⎥⎥⎥⎥⎦

Dec. Interpretation prior qi

dec1 increase u(t) by 40% 0.1

dec2 increase u(t) by 20% 0.2

dec3 keep previous u(t) 0.4

dec4 decrease u(t) by 20% 0.2

dec5 decrease u(t) by 40% 0.1

Fig. 2. Estimated optimal decision regions in Example 2 for h = 0.005

Consider (17) with I = 5 decisions, each based on x(t) = [x1(t), x2(t)] and
K(.) being the Gaussian kernel. Matrix of centers C is selected as shown in
Tab. 1 (left table).

Positions of centers correspond to the above-mentioned interpretation of
x1(t), x2(t), where the row [0.5, ] 0.5] reflects the desired state x∗

1 and x∗
2.

Interpretation of decisions and a priori probabilities of selecting them are
shown in Tab. 1 (right table). In other words, the image based controller works
as follows:

u(t) = u(t− 1)− (Ψ̂(x(t)) − 3) 20%, (18)

where u(t− 1) is our previous decision (it should be replaced by u(t−Δ) if the
time interval between decisions is Δ > 0). Finally, u(t) is sent to an actuator
that changes position of a valve that controls the air flow rate.

We do not present the results on selecting smoothing parameters h(n(i), i),
i = 1, 2, . . . , I, referring the reader to [17], in which it was demonstrated that
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in this case h = 0.005 provides acceptable results. For simplicity we set all
h(n(i), i)’s to be equal to each other. This common value will be denoted by h.

Summarizing, in Figure 2 (right panel) decision regions in the feature space
are shown. We provide this version in order to stress that having decision regions
one can implement the empirical decision rule as a fast controller, provided that
also feature extraction is sufficiently fast.

6 Conclusions

The usefulness of linear ordering of decisions was discussed. It was shown that
the minimization of the expected loss leads to a simple and interpretable decision
rule. A learning algorithm is proposed that is based on the sequence of proper
decisions for given stochastic states. This result is in sharp contrast with the
results when 0-1 loss is minimized (see [7]). As a consequence, building 0-1 loss
optimal decision rule for large number of labels is a difficult task (see, [3], [8],
[9]).

Here we have provided a simple decision rule that is expected to be useful
in control of industrial processes using cameras. In particular, its usefulness for
control of gas burners was sketched.
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