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Abstract. In the paper the comparison of ensemble based methods ap-
plied to censored survival data was conducted. Bagging survival trees,
dipolar survival tree ensemble and random forest were taken into consider-
ation. The prediction ability was evaluated by the integrated Brier score,
the prediction measure developed for survival data. Two real datasets with
different percentage of censored observations were examined.
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1 Introduction

Methods for analysis of classification and regression problems are developing
to provide faster, more stable and more accurate prediction. The same goal
inspires also the researchers working on survival data. Very often new approaches
for classification or regression tasks are then adapted to data with incomplete
information. Such incomplete information is an integral part of censored data,
which contains observations with unknown failure times. For such data we only
know how long the observation has not experienced any failure, but the exact
failure time remains unknown.

Except statistical methods, which often require many strict assumptions, sur-
vival trees and survival ensembles belong to the most common non-parametric
methods for survival data analysis. The fast development of survival trees started
in the mid-1980s and lasted for the next ten years [3]. The survival ensemble is
quite a new branch of analysis of survival data. First methods were proposed in
2004 - bagging survival trees [8] and relative risk forests [10]. The consecutive
approaches were proposed by Kretowska [15], Hothorn [9], and Ishwaran [11].

In this paper the comparison of predictive ability of three ensemble methods
was conducted. Bagging survival trees [8] and random survival forest [11] are
implemented and available in R packages, while dipolar survival tree ensemble
[15] was implemented by the author in C++. In order to compare the predictive
ability of the models, the integrated Brier score [6] was applied. Experiments were
performed on two data sets with different percentage of censored observations.
The first data, Veteran’s Administration (VA) lung cancer study [4], contains
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6.5 percent of censored observations, while the other one - malignant melanoma
[1] - 72 percent.

The paper consists of six sections. In Section 2 the definition of survival data
as well as the survival time distribution functions are presented. Section 3 con-
tains introduction to survival ensemble and more detailed description of three
distinguishes ensemble methods. The definition of the integrated Brier score is
given in Section 4. Experimental results are presented in Section 5, while Section
6 summarizes the results .

2 Censored Data

Let 79 denotes the true survival time and C' denotes the true censoring time
with distribution functions F' and G respectively. We observe a random variable
O = (T, A,X), where T = min(T°, C) is the time to event, A = I(T' < C) is a
censoring indicator and X = (X7, ..., Xy) denotes the set of N covariates from a
sample space x. We have a learning sample L = (x;,¢;,9;), i = 1,2, ..., n, where
X; is N-dimensional covariates vector, t; - survival time and §; - failure indicator,
which is equal to 0 for censored cases and 1 for uncensored cases.
The distribution of survival time may be described by several functions:

— survival function
S(t) = P(T > t) (1)
where P(e) means probability, S(0) = 1 and lim;_,o S(¢) =0

— density function

Pt<T<t+At)
At—0 At

(2)

where f(t)dt is the unconditional probability of failure in the infinitesimal
interval (t,t + dt).
— hazard function

Pt <T <t+AtT >1t)
At—0 At

3)

where A(t)dt is the probability of failure in the in infinitesimal interval (¢, ¢+
dt), given survival at time ¢.
— cumulative hazard function

A(t) = /0 Au)du = —log S(t) (4)

The estimation of survival function S(¢) may be done by using the Kaplan-
Meier product limit estimator [13], which is calculated on the base of the learning
sample L and is denoted by S(¢):

st = 1] (mj - dj) (5)

. m;
Il <t
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where £(1) < t2) < ... < {(p) are distinct, ordered survival times from the
learning sample L, in which the event of interest occurred, d; is the number of
events at time t(;) and m; is the number of patients at risk at t¢;) (i.e., the
number of patients who are alive at £(;) or experience the event of interest at

t))-
The Nelson-Aalen estimator of cumulative hazard function is defined as:
d.
Ht)y= > 7 (6)
m;

Jltgy <t

The ’patients specific’ survival probability function is given by S(t|x) =
P(T > t|X = x). The conditional survival probability function for the new pa-
tient with covariates vector X,e, is denoted by S (t|Xnew)- Similarly H (¢|Xnew)
means a conditional cumulative hazard function.

3 Ensembles of Survival Trees

An ensemble is a set of k single predictors, often trees. Depending on the data,
the ensemble may solve classification, regression or survival problems. In case
of censored survival data single predictors are usually survival trees, which have
the ability to cope with censored observations. Unlike the ensemble for classifi-
cation and regression problems, the ensemble of survival trees does not return
the exact predicted value. The outcome for a given observation is a distribution
function of survival time. Thus, analyzing such a function, the time intervals
with higher and smaller probability of failure occurrence may be distinguished
for the observation.

Each single tree is built on the base of bootstrap sample drawing with re-
placement from the learning data. A general algorithm of building and using the
ensemble is given as follows:

1. Draw k bootstrap samples (L1, Lo, ..., L) of size n with replacement from
L
2. Induct k single trees T; based on each bootstrap sample L;, i =1,2,...,k
Having a new observation X, drop it down each of k single trees
. On the base of the results of k single trees, calculate a function f(t|Xpew),
being an outcome of the whole ensemble

0

Comparing various approaches to building the ensembles, the differences are
visible in steps 2 and 4 of the above algorithm.

3.1 Bagging Survival Trees

The approach was proposed by Hothorn et al. [8]. The authors did not focus on
special splitting criterion for single tree induction. They used a method previ-
ously proposed by LeBlanc and Crowley [16] which employed a measure based
on Poisson deviance residuals. They presented an original method of calculating
the function f(¢|Xnew), which takes a form of aggregated Kaplan-Meier survival
function: S'A(t\xnew). Step 4 is here divided into two parts:
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4a Build aggregated sample LA(Xpew) = {L1(Xnew); L2(Xnew)s -« - - » Lk (Xnew) s
where L;(Xpew) 18 a set of observations from the bootstrap sample L; that
reached the same leaf node of the tree T; as the observation X,,cq.

4b On the base of aggregated sample La(Xpew), compute the Kaplan-Meier
aggregated survival function for a new observation X;e: S (t|Xnew)

3.2 Dipolar Survival Trees Ensemble

Unlike the bagging survival tree, which is an example of univariate tree, the single
dipolar survival tree [14] belongs to multivariate approaches. It means that each
internal node contains the split which is based not only on one variables (e.g
x; > ¢), but a linear combination of input variables is examined. The test takes
the form of a hyperplane: H(w, 0) = {x : wl'x = 6}. If a given feature vector x is
situated on the positive site of the hyperplane the test returns the value greater
or equal to 0, in the other case the test returns the negative value. The values
of w and @ are calculated by the minimization of dipolar criterion function [2].

Dipolar survival trees ensemble [15] is build according to the general rules
presented above. Similarly to bagging survival trees, the result of the whole
ensemble for a new features vector X, is calculated as an aggregated survival
function S4 (t|Xnew)-

3.3 Random Survival Forest

Randon survival forest was proposed by Ishwaran et al. [11]. The method differs
from the previous ones, both in the induction process and in the way the results
are calculated. During the induction process the randomization is injected into
each node generation. It means that the best split is not chosen by the analysis
of the whole set of available variables but a subset of variables is selected. Then,
basing on this subset, the split that maximizes survival difference between two
child nodes is chosen.

The results of the whole ensemble is calculated as the average of cumulative
hazards functions received for each single tree. Step no. 4 is here divided into
three parts:

4a For each survival tree T;, ¢ = 1,2, ..., k, determine a set L;(Xyeq) containing
the covariates vectors from the bootstrap sample L; which belong to the same
leaf node as Xyew

4b For each set L;(Xpew) calculate the Nelson-Aalen estimator of CHEF:
H} (t|Xnew), 1 =1,2,...,k

4c Calculate the average of CHF to obtain the ensemble CHF:

t|xnew = ZH* t|xnew (7)
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4 Model Validation

In case of censored survival data where the exact failure time for a given subject
may be unknown, the classical validation measures used in regression problems
are not applicable. Indexes which are used in survival analysis do not calculate
the differences between the given and predicted failure times, they rather use the
differences between survival functions [6,5] or the order of predicted and given
survival times [7]. The integrated Brier score [6] belongs to the first types of
indexes. For a fixed time point ¢ the contribution to the Brier score is divided
into three groups:

1t1§tand5zzl
2. t; >t and (6; =1 or §; =0)
3.ti§tand5i:0

For the observations belonging to group 1 the failure occurred before ¢ and the
event status at ¢ is equal to 0, so in the Brier score we present this as (0 —
S(t]x;))2 = S(tx;)2. The observations of group 2 do not experienced any event
at time ¢, hence the event status at ¢ is equal to 1 and the contribution to the
Brier score is: (1 — S(t[x;))2. The contribution to the Brier score for observation
of group 3 can not be calculated, because the event status at ¢ is unknown
for them. Since the observations of group 3 do not have any contribution to
the Brier score, the loss of information should be compensate by additional
weighting of the existing contributions. The observations in group 1 have the
weight G(t;)~! and those in group 2 the weight G(t)~', where G(t) denotes the
Kaplan-Meier estimator of the censoring distribution. It is calculated on the base
of observations (¢;,1 — d;). The definition of the Brier score is given as:

BS(t) =L SN (S(t|x:)?I(t; <t NG =1)G(t:) ™ +
(1= S(t]x))2I(t: > )G(t)~Y) (8)

where I(condition) is equal to 1 if the condition is fulfilled, 0 otherwise. The BS
equal to 0 means the best prediction.
The integrated Brier score is calculated as:

1 maz(t;)
= /O BS(t)dt )

max

5 Experimental Results

The comparison of three ensemble methods in application to censored survival
data was conducted. Experimental results were performed on the base of two
real data sets with different percentage of censored observations. The value of
the integrated Brier score, given in the paper, is the average value of the index
calculated for 20 runs of 10-fold cross-validation. The random survival forest
(RSF) is implemented in R package 'randomForestSRC’ [12]. Since the package
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uses Harrell’s concordance index [7] as a prediction measure, package ’pred’
[17] was used to calculate the integrated Brier score. The second aggregation
technique is the bagging survival trees method (BST) proposed by Hothorn et
al. [8], which is implemented in ’ipred’ package [18].

The first analyzed dataset contains the information from the Veteran’s Ad-
ministration (VA) lung cancer study [4]. In this trial, male patients with ad-
vanced inoperable tumors were randomized to either standard (69 subjects) or
test chemotherapy (68 subjects). Only 9 subjects from 137 were censored. De-
tailed description of the variables is given in table 1.

Table 1. Description of VA lung cancer data

Variable name Description

Variables assessed at the time of randomization

Treat Chemotherapy (0-standard, 1-test)

Cell Cell type (0-squamous, 1-small, 2-adeno, 3-large)
Prior Prior therapy (0-no, 1-yes)

KPS Karnofsky rating

DiagTime Disease duration

Age Age

Outcome variables

Time Survival time

Status Failure indicator (0- censored observation, 1- death)

In table 2 the integrated Brier scores (IBS) for VA lung cancer data are
presented. The experiments were conducted for the ensembles with different
number of single trees: 50, 100, 200, 500, 1000. The results for RSF do not
depend on the number of single trees, for 100 trees as well as for 1000 trees the
IBS equals 0.104. The best results are for bagging survival trees method, for
1000 trees IBS equals 0.098. The most visible influence of the number of trees is
for DST ensemble technique. For 50 trees the IBS equals 0.119, then decreasing
with increased number of trees, riches the value 0.104 for 1000 trees, what is
comparable with the IBS received for RSF.

Table 2. The integrated Brier scores received for VA lung cancer data

Number of trees RSF BST DST Ensemble

50 0.105 0.102 0.119
100 0.104 0.101 0.111
200 0.109 0.101 0.108
500 0.103 0.099 0.105

1000 0.104 0.098 0.104
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Fig. 1. Survival functions for VA lung cancer data a) Treat=0, KPS=20; b)Treat=1,
KPS=20; c¢)Treat=0, KPS=80; d)Treat=1, KPS=80

In figure 1 the survival functions for VA lung cancer data are presented.
The functions were calculated for patients with standard or test chemotherapy
with Karnofsky rating equals 20 or 80. Disease duration and age were fixed as
their median values (5 and 62, respectively), Cell and Prior were fixed as 0.
For each observation the survival functions received as the results of BST, RSF
and DSTE are presented. In figure 1a) and 1b) the functions are quite similar
for all the examined methods. The differences exist for functions in figures 1c)

Table 3. Description of malignant melanoma data
Variable name Description

Variables assessed at the time of operation

Sex The patients sex (1-male, 0-female)

Age Age (years)

Thickness Tumour thickness (cm)

Ulcer Indicator of ulceration ( 0-absent, 1-present)

Outcome variables
Time Survival time (days)
Status Failure indicator (0- censored observation, 1- death from melanoma)
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Table 4. The integrated Brier scores received for malignant melanoma data

Number of trees RSF BST DST Ensemble

50 0.151 0.149 0.149
100 0.152 0.147 0.150
200 0.152 0.148 0.148
500 0.155 0.148 0.147
1000 0.153 0.150 0.146
a) b)
10—
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Fig. 2. Survival functions for malignant melanoma data a) Sex=0, Thickness=0.97; b)
Sex=1, Thickness=0.97; ¢) Sex=0, Thickness=3.56; d) Sex=1, Thickness=3.56

and 1d). The survival function received for DSTE gives the most pessimistic
prediction, especially for time greater than 150 days. Comparing, for example,
the probability of survival for 200 days, BST and RSF give the value about 0.4,
while for DSTE the probability equals 0.2. Median survival times, also presented
in figure 1, are similar for three methods. Analyzing the graphs one could say
that the type of treatment does not influence the survival, while Karnofsky rating
has a great impact on patients survival.

The other data set contains the information on 205 patients (148 censored
cases) with malignant melanoma following radical operation. The data was
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collected at Odense University Hospital in Denmark by K.T. Drzewiecki [1].
Each patient is described by four variables presented in table 3.

Table 4 presents the integrated Brier scores received for malignant melanoma
data. The results for RSF do not depend on the number of trees and the inte-
grated Bries scores take the values from the range [0.151; 0.155]. For bagging
survival trees the best result is for 100 trees - IBS=0.147, while for 1000 trees
IBS equals 0.15. The best results are for DST ensemble and the minimal value
of IBS is equal to 0.146 for 1000 trees.

Figure 2 presents survival functions received for malignant melanoma data.
The influence of sex and tumor thickness was verified. Variable ” Thickness” was
fixed as its lower and upper quartiles: 0.97 and 3.56, respectively. The experi-
ments were conducted for 54 years old people without ulceration. As we could
see, sex do not influence the survival. The differences are visible between fig-
ures with different values of Thickness: the prediction is worse for patients with
greater tumor thickness. The results received for BST, RSF and DSTE show the
main tendency of survival changes in a similar manner, but the exact prediction
is slightly different for them.

6 Conclusions

In the paper the prediction ability of tree-based ensemble methods was verified.
The analysis covered the results of three techniques: bagging survival trees, ran-
dom survival forest and dipolar survival tree ensemble. The prediction ability
was tested by calculating the integrated Brier score. The analysis was conducted
on the base of two medical data sets. The analysis did not show that one method
outperformed the results of two others. The best value of the integrated Brier
score in case of VA lung cancer data was for bagging survival forest, in case
of the other data set - malignant melanoma - the best result was achieved by
dipolar survival tree ensemble.
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