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Abstract. When evolutionary algorithms for solving multi-modal op-
timization problems are applied, the crucial issue to be solved is main-
taining population diversity to avoid drifting and focusing individuals
around single global optima. A lot of techniques have been used here so
far. Simultaneously for last twenty years a lot of effort has been made in
the area of evolutionary algorithms for multi-objective optimization. As
the result at least several highly efficient algorithms have been proposed
such as NSGAII or SPEA2. Obviously, also in this case maintaining of
population diversity is crucial but this time, taking the specificity of op-
timization in the Pareto sense, there are built-in mechanisms to solve
this issue effectively. If so, the idea arises of applying of state-of-the-
art evolutionary multi-objective optimization algorithms for solving not
original multi-modal (but single-objective) optimization task but rather
its transformed into multi-objective problem form by introducing addi-
tional dispersion-oriented criteria. The goal of this paper is to present
some further study in this area.

1 Motivation

One of the most important issue regarding multi-modal optimization is the abil-
ity for discovering not only the global but also (as many as possible) local optima
(modes). When evolutionary solver is applied it is inseparably connected with
keeping population dispersed and not focusing individuals around the global
optima. Many techniques responsible for maintaining population diversity have
been proposed so far. It is enough to call techniques based on modification of
mechanism of selecting individuals for new generation (crowding model), mod-
ification of parent selection (fitness sharing, sexual selection), restricted appli-
cation of selection and/or recombination mechanisms (grouping individuals into
sub-populations, introducing environment with some topography etc.) [7] just
to mention a few. Each of them however has its own shortcomings and it is not
possible to point out a single diversity-maintaining technique giving evidently
the best results and to be used in all (or at least in the majority of) cases.
What is important their efficiency and the effectiveness depends often on the
optimization algorithm used.

For the last thirty years evolutionary multi-objective optimization algorithms
(EMOAs) have become more and more popular [4,11]. Historically, one tried
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to use classical EAs by combining all objectives in one single objective and
repeating algorithm runs with different weights assigned to particular objectives
to obtain different non-dominated solutions. The advantage of such an approach
is its simplicity, however it is pretty unnatural, slow (since the EA has to be
(re)run at least as many times as the number of solutions should be found)
and—what is the most important—depending on the definitions of the objective
functions (and their combination)—it often turns out that combining objectives
with different weights results with the same solution, what makes this approach
simply useless.

Also another techniques consisting in redefining multi-objective problem into
single-objective one (and then (re)running single-objective algorithms to find
consecutive non-dominated solutions, one in single algorithm’s run) turned out to
be useless in particular cases. It is enough to mention for instance ε—constrains
technique which is useless in the case of concave problems.

That is why a lot of effort has been made to develop efficient and effective
evolutionary (as general and population-based) algorithms for multi-objective
optimization. It has been performed successfully and such algorithms as SPEA-
II [20,19] or NSGA-II [14] are nowadays state-of-the-art EMOAs giving a really
high-quality results in most cases. Also, agent-based multi-objective evolutionary
algorithms (combining agent-based and evolutionary paradigms) were proposed
and they proved to be quite effective in some cases (for example in multi-objective
portfolio optimization problems) [5,6,8,9].

What is important, when the multi-objective optimization (and algorithms)
(in the Pareto sense) are being considered as one of the most important differ-
ence in comparison to single objective optimization (algorithms) is the fact that
the solution to be found is the whole set of non-dominated alternatives called
the Pareto set (or the Pareto frontier in the objective space). The crucial here
is the fact that using (weak) non-domination relation instead of simple mutual-
comparisons as a mechanisms responsible for distinguishing “better” and “worse”
alternatives—EMOAs are dedicated for looking for the whole set of solutions in
one single run. One has to remember that the goal of the multi-objective opti-
mization (in the Pareto sense) is to find (as-many-as-possible) non-dominated
solutions dispersed over the whole Pareto frontier. Since EMOAs are population-
based it is obviously the more so simple and natural but—what is crucial here—
they have natural, built-in mechanisms for maintaining population diversity as
well as the diversity of the solution itself.

The question thus arises if—in contrast to historical modifications of multi-
objective optimization problems into single-objective one(s)—the way for ob-
taining high-quality solutions of multi-modal optimization tasks is converting
multi-modal problems into multi-objective optimization problems by introduc-
ing additional objective responsible for maintaining population dispersed and
then applying for solving such a modified problem one of the state-of-the-art
efficient evolutionary multi-objective optimization algorithms.

Obviously such experiments have already been conducted. It is enough to
mention here the work of M. Preuss, G. Rudolph and F. Tumakaka [12] but it
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still seems to be only a putting a toe into the water and the goal of this paper
is to follow this research direction and to make some comparative assessment
of several dispersing-oriented objectives introduced as a second objective while
converting multi-modal single-objective optimization task into multi-objective
optimization problem with the special attention paid to clustering method.

The computing experiments presented in this paper may be treated as pre-
liminary results, planned to be adapted and ported to ParaPhrase1 agent-based
computing platform, which supplies hybrid CPU/GPU computing infrastructure
via dedicated virtualisation tools.

2 The Idea of Transformation of Multi-modal into
Multi-objective Optimization Problem

Typically, multi-objective (or multi-criteria) optimization problem (MOOP) is
formulated as follows ([1,19,4]):

MOOP ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Min/Max : fl(x̄), l = 1, 2 . . . , L
Taking into consideration :
gj(x̄) ≥ 0, j = 1, 2 . . . , J
hk(x̄) = 0, k = 1, 2 . . . ,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2 . . . , N

The set of constraints, both equalities (hk(x̄)), as well as inequalities (gj(x̄)),
and constraints related to the decision variables, i.e. lower bounds (x(L)

i ) and
upper bounds (x(U)

i ), define so called searching space—feasible alternatives (D).
Because of space limitation it is enough to say in this place that in the course
of this paper multi-objective optimization in the Pareto sense is considered, so
solving of defined problem means determining of all feasible and non-dominated
alternatives from the set (D). Such defined set is called Pareto set (P) and in
objective space it forms so called Pareto frontier (PF).

Simultaneously, the multi-modal optimization task (assuming minimization)
means determining of all x+ ∈ D such as ∃ε > 0∀x ∈ D ‖ x − x+ ‖< ε ⇒
f(x) ≥ x+ [2].

So, proposed transformation of multi-modal (but single-objective) into multi-
objective optimization problem consists in formulating MOOP with original
multi-modal function and dispersing oriented function as the second objective
with preserving all original constraints and bounds of course.

MOOP ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Min/Max : fm(x̄), original multi−modal function
Min/Max : fd(x̄), dispersing − oriented function
Taking into consideration :
gj(x̄) ≥ 0, j = 1, 2 . . . , J
hk(x̄) = 0, k = 1, 2 . . . ,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2 . . . , N

1 http://paraphrase-ict.eu
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It can be said that such transformation unnecessarily complicates a problem to
be solved because it makes multi-objective optimization problem from a single-
objective one. However solving multi-modal single-objective problem (finding
all global and local optima) is also not an easy task—there were lots niching
techniques for evolutionary algorithms proposed and none of them is simple and
perfect. Paradoxically converting such a problem into multi-objective one can
lead to constructing simple and efficient techniques for evolutionary algorithms,
especially that we utilize well established and very efficient evolutionary multi-
objective algorithms.

3 Variants of Dispersion–Oriented Objective

During our experiments following variants of the second objective have been
tested: fitness sharing, centroid method, weighted dispersion criteria and
clustering.

Fitness sharing is classical niching technique consisting in (artificial) de-
creasing the value of fitness function according to the (higher) number of direct
neighbors of given individual. Obviously there are some issues and decisions to
be made (e.g. determining the radius of the neighborhood, determining the dis-
tance metrics and making a decision if it is calculated in the objective or in a
decision variable space, determining how “density” is calculated and what is its
influence on the fitness function value).

Discussion regarding above aspects can be found for instance in [4]. In its most
popular version it is described according to the formula fFS(xi) =

f(xi)
mi

, where
mi is the sum of sharing function values defined as mi =

∑N
j=1 sh(d(xi, xj)) and

f(x) =

⎧
⎨

⎩

1−
(

d(xi,xj)
σsh

)α

, x > 0

0 , x = 0
(1)

where σsh is a radius of the niche and α parameter determines the shape of the
fitness sharing function (usually equals 1).

Centroid based method is a simple in assumption and easy in implemen-
tation method for dispersing the population. The fitness value of the specimen
is increased according to its (increasing) distance to the population center of
gravity calculated as −→xc =

∑N
i=0

−→xi

N .
Weighted dispersion criteria technique tries to address one of the most

significant problems observed in evolutionary multi-modal optimization: con-
centration of the whole population (which is usually intensifying over the course
of time/iterations) around “strong” individuals, especially individuals located
nearby the global optima. As a consequence of this phenomena the loss of
the population diversity is observed and the chance for discovering (as many
as possible) local optima is lower and lower. So the question is if it is not a
good idea while introducing the second objective and converting multi-modal
single objective problem into multi-objective optimization problem introducing
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the second criteria as a function which value would be inversely proportional
to the value of the first criteria. In such a way strong individuals (from the
first—crucial objective perspective) will not be able to “dominate” and to at-
tract the rest of the population to their neighborhood. Simultaneously those
individuals will not be lost by the population since they are “strong” as regards
the first objective (so they won’t be dominated in the Pareto domination re-
lation). So assuming the first objective as a multi-modal function F (x) with a
global optima M = F (xmax) the second objective Sweighted can be defined as
Sweighted = α∗(F (xi)/F (xmax)∗S(xi), where: α is a weighting coefficient, S(xi)
is the original value of dispersing function, F (xi) and F (xmax) are current and
maximum values of the original (multi-modal) function (i.e. the first objective
in fact).

One of interesting and (especially taking presented in section 4 selected prelim-
inary results) promising technique is clustering. One of the fundamental ques-
tion that can be considered is whether any of dispersion-oriented technique (i.e.
the second objective after converting multi-modal into multi-objective optimiza-
tion task) should be applied globally or “locally” i.e. within windows dividing the
whole domain into sub-domain(s).When using clustering as a dispersion-oriented
technique firstly all clusters are identified and then the fitness of individuals that
are located outside or at the borders of the clusters is increased and the fitness
of individuals that are located inside clusters is decreased proportionally to their
distance from the center of the cluster.

Generally, research on clustering techniques and genetic algorithms was con-
ducted in two areas: using evolutionary algorithms as a clustering technique
[10,17,13,3] and using a clustering technique in evolutionary algorithm in order
to find multiple solutions of multi-modal (but single criteria) problems [16,15].
We used clustering technique together with evolutionary algorithm as the mech-
anism of dispersing individuals over the solution space (as the second objective)
during solving multi-modal problems converted into multi-objective ones.

For the purposes of making experiments unsupervised k-windows clustering
algorithm has been implemented and used [18]. It is using a window(s)-based
technique for determining possible clusters. Algorithm initializes a given number
of 2-dimensional windows over the set of individuals. Then, it is moving on
windows and enlarges them to cover existing clusters. Next, when all moving and
enlarging operations have been performed—consolidation is being performed. All
overlapping windows are either consolidated or skipped depending on the number
of individuals belonging to the overlapped windows. In the consequence, the
algorithm is able to reduce reasonably the (large) number of (possible) clusters
identified originally at the beginning.

Algorithm consists of two crucial functions: movement and enlargement. The
goal of movement function is setting the window as close to the center of the
cluster as possible. Movement function is performed iteratively as long as the
distance of the center of new window reaches the threshold value Θv (set exper-
imentally).
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The goal of enlargement operation is to improve the number of individuals
belonging to the particular window. The window is being enlarged by Θe value
in each dimension. Appropriate enlargement is the one assuring improving the
number of individuals belonging to the given window with the number higher
than Θc threshold value. If the number of new individuals belonging to the given
window is smaller than Θe value then the last step of enlargement function is
being withdrawn.

The crucial issue with using clusters is determining the number of clusters cov-
ering the whole population in the most appropriate way. In k-window algorithm
it is determined by the algorithm itself during its work. To achieve that effec-
tively, relatively the significant number of windows is needed at the beginning.
After performing moving and enlarging operation pretty big number of windows
are overlapping. So merging function is performed then. To do that—the number
of “common” i.e. belonging to overlapped windows individuals is determined and
then:

– if it is larger than the threshold value Θs windows are treated as parts of
the same cluster and the smaller one is being removed;

– otherwise both windows are merged;
– if windows overlap but neither merging nor eliminating threshold is achieved,

it is assumed that windows (their individuals) belong to different clusters.

Data: a, Θe,Θm,Θc,Θv ,k
Result: clusters c11, c12, . . .
begin

W ←− DetermineInitialWindows(k, a);
for wj ∈ W do

while The center or the size change do
movement(Θv, wj);
enlargement(Θe, Θc, Θv, wj);

end
end
merge(Θm, Θs,W )

end
Algorithm 1. Unsupervised k-windows clustering algorithm

There is a pretty big number of parameters influencing significantly the be-
havior of the algorithm i.e.:

– the ratio between the initial number of windows and the number of individ-
uals in population. It should be relatively high to spread windows among
all clusters. During experiments it was set to 10%. (For the population with
1000 individuals it was set to 100 windows);

– the initial size of the window—it was determined experimentally;
– the minimum distance between windows at the beginning. It is important

parameter to avoid overlapping windows during initialization;
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Data: k,a
Result: a set W of k d− ranges
begin

initialize k d-ranges windows wm1, . . . , wmk each of size a;
select k random points from the dataset and center the d-ranges at these
points

end
Algorithm 2. DetermineInitialWindows

Data: a, Θv,a d-range w
begin

while The distance between m and the previous center of w is greater or
equal to Θv do

find the patterns that lie within the d-range w ;
calculate the mean m of these patterns ;
set the center of w equal to m ;

end
end

Algorithm 3. Operation movement

Data: Θe,Θv ,Θc,a, d-range w
begin

while The increase in number of patterns is ≥ Θc% across every di do
for Each coordinate di do

while The increase in number of patterns across di is ≥ Θc% do
enlarge w across di
movement(Θv, w)

end
end

end
end

Algorithm 4. Operation enlargement

– the movement threshold (Θv)—it defines the minimum distance between
the new and the current gravity center of the window during its movement.
When this value is not achieved movement operation is finished;

– the enlargement increase ratio (Θe)—it is a percentage ratio between the
old and the new window size in consecutive steps of enlargement operation.
During experiments it was set to 10% for each dimension respectively.

– enlargement stop ratio threshold (Θc)—the factor defining the minimum
increase of the number of new individuals in the window when enlargement
operation is performed. During experiments presented in this paper it was
defined as enlargement_stop_threshold =

enlargement_increase_ratio
init_window_population_ratio

– merge ratio (Θs) is the minimum number of common individuals belonging
to two windows to merge them. During experiments it was set to 80%;
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Data: Θm,Θs,a set W of d− ranges
begin

for Each not marked d− range wj ∈ W do
mark wj with label wj ;
if ∃ wi �= wj ∈ W that overlaps with wj then

compute the number of points n that lie in the common part of
windows ;
if n/ | wi |≥ Θs and | wi |<| wj | then

disregard wj

end
if 0.5(n/ | wj | +n/ | wi |) ≥ Θm then

mark all wj labeled d-ranges in W with label wj

end
end

end
end

Algorithm 5. Operation merging

– merge disregard ratio (Θm) is the minimum ratio of common individuals
belonging to two windows to remove one of them (the smaller one). During
experiments it was set to 90%.

4 Experimental Results

As a multi-modal benchmarks Michalewicz’s, Rastrigin’s and Schwefel’s func-
tions have been used. As a second (dispersion related) objective: fitness sharing,
centroids and weighted centroids methods have been applied. As experimental
tool jEMO framework has been used2. Because of the space limitations only a
few experimental results are here presented.

First results obtained without clustering mechanism are presented. In table 1
there are listed the most important parameters of this experiment. As one may
see in figure 2 transforming classical multi-modal optimization problem into
multi-objective one and applying NSGA-II algorithm for solving such modified
problem with centroids as a dispersion-oriented second objective allows for ob-
taining pretty promising results. They differ of course depending on particular
parameters used but generally speaking results are promising.

For comparison in table 2 there are listed parameters of sample experiment
where dispersion was applied “locally” i.e. within clusters discovered by described
in section 3 k-window clustering algorithm. This time experiment was performed
with the use of Michalewicz benchmark and typical obtained results are pre-
sented in figure 1. As one may see obtained results are also promising and en-
couraging for further research.

2 code.google.com/p/jemo/

code.google.com/p/jemo/
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Table 1. Selected parameters taken in experiment 1

Parameter Value
Original function Rastrigin

Distribution function Centroid
Optimization algorithm NSGAII

Population size 1000
Number of generations 40

Mutation Radial mutation
Mutation probability 0.5

Strong mutation probability 0.15
Domain control type Move to domain border
Specimen repairing None

Recombination Radial crossover
Recombination probability 0.5

Domain control type Move to border
Specimen repairing None

Selection Classical tournament
Tournament size ratio 80%

Tournament probability 0.8
Clustering none

a) -2 -1  0  1  2

-2

-1

 0

 1

 2

-2 -1  0  1  2

-2

-1

 0

 1

 2

b) -0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-2 -1.5 -1 -0.5  0

Fig. 1. Results obtained in experiment 1. Found solutions (a) and Pareto frontier (b).

b) 0  0.5  1  1.5  2  2.5  3
 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3
 0

 0.5

 1

 1.5

 2

 2.5

 3

c)  0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

Fig. 2. Results obtained in experiment 2. Found solutions of: (a) multi-modal problem
and (b) multi-objective problem
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Table 2. Selected parameters taken in experiment 2

Parameter Value
Original function Michalewicz

Distribution function Centroid
Optimization algorithm NSGAII

Population size 1000
Number of generations 40

Mutation Radial mutation
Mutation probability 0.5

Strong mutation probability 0.15
Domain control type Move to domain border
Specimen repairing None

Recombination Radial crossover
Recombination probability 0.5

Domain control type Move to border
Specimen repairing None

Selection Classical tournament
Tournament size ratio 80%

Tournament probability 0.8
Clustering yes

Initial window’s size [0.4][0.4]
Initial number of windows 500
Movement threshold (Θv) 0.1
Enlargement increase step 0.08

Enlargement stop ratio threshold (Θc) 0.2
Merge ratio (ΘS) 0.9

Merge disregard ratio (Θm) 1

5 Summary and Conclusions

When evolutionary algorithms for solving multi-modal optimization problems
are applied the crucial issue to be solved is maintaining population diversity
to avoid drifting and focusing individuals around single global optima. A lot of
techniques have been proposed and used here so far.

Simultaneously, for the last twenty years a lot of effort has been made in the
area of evolutionary algorithms for multi-objective optimization. As the result
at least several highly efficient algorithms have been proposed such as NSGAII
or SPEA2. Obviously, also in this case maintaining of population diversity is
crucial but this time taking the specificity of optimization in the Pareto sense
there are built-in mechanisms to solve this issue effectively.

If so, the idea arises of applying state-of-the-art evolutionary multi-objective
optimization algorithms for solving not originalmulti-modal (but single-objective)
optimization task but its transformed into multi-objective problem form by intro-
ducing additional dispersion-oriented criteria as it is discussed in section 2.
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One of important issues is the definition of the dispersion-oriented criteria.
In the course of this paper some of them, i.e. classical fitness sharing, centroids,
weighted centroids have been discussed.

On the basis of some observations taken during experiments the idea of ap-
plying the second objective not globally but locally within some areas of concen-
tration of individuals arose. To put this idea into practice k-window clustering
algorithm has been implemented and applied and then dispersion-oriented mech-
anisms have been applied not globally but within formed windows.

Because of the space limitations it is impossible to present comprehensive
review of obtained results especially that there are many parameters influencing
the behavior and effectiveness of the proposed approach. Nevertheless it can be
said for sure that preliminary results are promising and encourage for further
research in this area.
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