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Abstract. This research deals with the initial investigations on the con-
cept of a multi-chaos-driven evolutionary algorithm Differential Evolu-
tion (DE). This paper is aimed at the embedding and alternating of set
of two discrete dissipative chaotic systems in the form of chaos pseudo
random number generator for DE. Repeated simulations were performed
on the selected test function in higher dimensions. Finally, the obtained
results are compared with canonical DE.
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1 Introduction

These days the methods based on soft computing such as neural networks, evolu-
tionary algorithms, fuzzy logic, and genetic programming are known as powerful
tool for almost any difficult and complex optimization problem. Differential Evo-
lution (DE) [1] is one of the most potent heuristics available.

This paper is aimed at the investigating the novel concept of multi-chaos
driven DE. Although a number of DE variants have been recently developed,
the focus of this paper is the embedding of chaotic systems in the form of chaos
pseudo random number generator (CPRNG) into the DE.
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Firstly, the motivation for this research is proposed. The next sections are
focused on the description of evolutionary algorithm DE, the concept of chaos
driven DE and the used test function. Results and conclusion follow afterwards.

2 Motivation

This research is an extension and continuation of the previous successful ini-
tial experiments with chaos driven DE [2], [3] with test functions in higher
dimensions.

In this paper the novel initial concept of DE/rand/1/bin strategy driven alter-
nately by two chaotic maps (systems) is introduced. From the previous research
it follows, that very promising results were obtained through the utilization
of Delayed Logistic, Lozi, Burgers and Tinkerbelt chaotic maps. The last two
mentioned chaotic maps have unique properties with connection to DE: strong
progress towards global extreme, but weak overall statistical results, like average
CF value and std. dev., and tendency to premature stagnation. While through
the utilization of the Lozi and Delayed Logistic map the continuously stable
and very satisfactory performance of ChaosDE was achieved. The idea is then
to connect these two different influences to the performance of DE into the one
multi-chaotic concept.

Recent research in chaos driven heuristics has been fueled with the predis-
position that unlike stochastic approaches, a chaotic approach is able to bypass
local optima stagnation. This one clause is of deep importance to evolutionary
algorithms. A chaotic approach generally uses the chaotic map in the place of a
pseudo random number generator [4]. This causes the heuristic to map unique
regions, since the chaotic map iterates to new regions. The task is then to select
a very good chaotic map as the pseudo random number generator.

The initial concept of embedding chaotic dynamics into the evolutionary al-
gorithms is given in [5]. Later, the initial study [6] was focused on the simple
embedding of chaotic systems in the form of chaos pseudo random number gen-
erator (CPRNG) for DE and SOMA [7] in the task of optimal PID tuning

Several papers have been recently focused on the connection of heuristic and
chaotic dynamics either in the form of hybridizing of DE with chaotic searching
algorithm [8] or in the form of chaotic mutation factor and dynamically chang-
ing weighting and crossover factor in self-adaptive chaos differential evolution
(SACDE) [9]. Also the PSO (Particle Swarm Optimization) algorithm with el-
ements of chaos was introduced as CPSO [10] or CPSO combined with chaotic
local search [11].

The focus of our research is the pure embedding of chaotic systems in the
form of chaos pseudo random number generator for evolutionary algorithms.

This idea was later extended with the successful experiments with chaos driven
DE (ChaosDE) [2], [3] with both and complex simple test functions and in the
task of chemical reactor geometry optimization [12].

The concept of Chaos DE has proved itself to be a powerful heuristic also in
combinatorial problems domain [13].
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At the same time the chaos embedded PSO with inertia weigh strategy was
closely investigated [14], followed by the introduction of a PSO strategy driven
alternately by two chaotic systems [15] and novel chaotic Multiple Choice PSO
strategy (Chaos MC-PSO) [16].

The primary aim of this work is not to develop a new type of pseudo random
number generator, which should pass many statistical tests, but to try to use and
test the implementation of natural chaotic dynamics into evolutionary algorithm
as a multi-chaotic pseudo random number generator.

3 Differential Evolution

DE is a population-based optimization method that works on real-number-coded
individuals [1]. For each individual xi,G in the current generation G, DE gen-
erates a new trial individual x′

i,G by adding the weighted difference between
two randomly selected individuals xr1,G and xr2,G to a randomly selected third
individual xr3,G. The resulting individual x′

i,G is crossed-over with the original
individualxi,G. The fitness of the resulting individual, referred to as a perturbed
vector ui,G+1, is then compared with the fitness of xi,G. If the fitness of ui,G+1

is greater than the fitness ofxi,G, then xi,G is replaced withui,G+1; otherwise,
xi,G remains in the population asxi,G+1. DE is quite robust, fast, and effective,
with global optimization ability. It does not require the objective function to be
differentiable, and it works well even with noisy and time-dependent objective
functions. Please refer to [1], [17] for the detailed description of the used DE-
Rand1Bin strategy (1) (both for Chaos DE and Canonical DE) as well as for
the complete description of all other strategies.

uj,i,G+1 = xj,r1,G + F · (xj,r2,G − xj,r3,G) (1)

4 The Concept of ChaosDE

The general idea of ChaosDE and CPRNG is to replace the default PRNG with
the discrete chaotic map. As the discrete chaotic map is a set of equations with
a static start position, we created a random start position of the map, in order
to have different start position for different experiments (runs of EA’s). This
random position is initialized with the default PRNG, as a one-off randomizer.
Once the start position of the chaotic map has been obtained, the map generates
the next sequence using its current position.

The first possible way is to generate and store a long data sequence (approx.
50-500 thousand numbers) during the evolutionary process initialization and
keep the pointer to the actual used value in the memory. In case of the using up
of the whole sequence, the new one will be generated with the last known value
as the new initial one.

The second approach is that the chaotic map is not re-initialized during the
experiment and no long data series is stored, thus it is imperative to keep the
current state of the map in memory to obtain the new output values.



Multi-chaotic Differential Evolution: A Preliminary Study 419

As two different types of numbers are required in ChaosDE; real and integers,
the modulo operators is used to obtain values between the specified ranges, as
given in the following equations (2) and (3):

rndreal = mod(abs(rndChaos), 1.0) (2)

rndint = mod(abs(rndChaos), 1.0) ×Range+ 1 (3)

Where abs refers to the absolute portion of the chaotic map generated number
rndChaos, and mod is the modulo operator. Range specifies the value (inclusive)
till where the number is to be scaled.

5 Chaotic Maps

This section contains the description of discrete dissipative chaotic maps used
as the chaotic pseudo random generators for DE. In this research, direct output
iterations of the chaotic maps were used for the generation of real numbers in the
process of crossover based on the user defined CR value and for the generation
of the integer values used for the selection of individuals. Following chaotic maps
were used: Burgers (4), and Lozi map (5).

The Burgers mapping is a discretization of a pair of coupled differential equa-
tions which were used by Burgers [18] to illustrate the relevance of the concept
of bifurcation to the study of hydrodynamics flows. The map equations are given
in (4) with control parameters a = 0.75 and b = 1.75 as suggested in [19].

Xn+1 = aXn − Y 2
n

Yn+1 = bYn +XnYn
(4)

The Lozi map is a discrete two-dimensional chaotic map. The map equations
are given in (5). The parameters used in this work are: a = 1.7 and b = 0.5 as
suggested in [19]. For these values, the system exhibits typical chaotic behavior
and with this parameter setting it is used in the most research papers and other
literature sources.

Xn+1 = 1− a |Xn|+ bYn

Yn+1 = Xn
(5)

5.1 Graphical Example – Lozi Map and Burgers Map

The x, y plots of the chaotic maps are depicted in Fig. 1 - left (Lozi map) and
Fig. 3 - left (Burgers map). The typical chaotic behavior of the utilized maps,
represented by the examples of direct output iterations is depicted in Fig. 1 -
right (Lozi map) and Fig. 3 - right (Burgers map).

The illustrative histograms of the distribution of real numbers transferred into
the range <0 - 1> generated by means of studied chaotic maps are in Figures 2
and 4.
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Fig. 1. x, y plot of the Lozi map (left); Iterations of the Lozi map (variable x) (right)

0.2 0.4 0.6 0.8 1.0
Value

100

200

300

400
Frequency

Fig. 2. Histogram of the distribution of real numbers generated by means of the chaotic
Lozi map transferred into the range <0 - 1> – 5000 samples
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Fig. 3. x, y plot of the Burgers map (left); Iterations of the Burgers map (variable x)
(right)
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Fig. 4. Histogram of the distribution of real numbers generated by means of the chaotic
Burgers map transferred into the range <0 - 1> – 5000 samples

6 Benchmark Function

For the purpose of evolutionary algorithm performance comparison within this
initial research, the multimodal Schwefel’s test function (6) was selected.

f (x) =

D∑

i=1

−xi sin
(√

|xi|
)

(6)

Function minimum:
Position for En: (x 1, x 2. . . xn) = (420.969, 420.969,. . . , 420.969)
Value for En: y = -418.983·Dimension

7 Results

The novelty of this approach represents the utilization of discrete chaotic maps as
the multi-chaotic pseudo random number generator for the DE. In this paper, the
canonical DE strategy DERand1Bin and the Multi-Chaos DERand1Bin strategy
driven alternately by two different chaotic maps (ChaosDE) were used.

The previous research [2], [3] showed that through the utilization of Burgers
and Tinkerbelt maps the unique properties with connection to DE were achieved:
strong progress towards global extreme, but weak overall statistical results, like
average CF value and std. dev. Whereas through the utilization of the Lozi
and Delayed Logistic maps, the continuously stable and very satisfactory perfor-
mance of ChaosDE was achieved. The idea is then to connect these two different
influences to the performance of DE into the one novel multi-chaotic concept.
The moment of manual switching over between two chaotic maps as well as the
parameter settings for both canonical DE and ChaosDE were obtained analyti-
cally based on numerous experiments and simulations (see Table 1)

Experiments were performed in the combined environment of Wolfram Math-
ematica and C language, canonical DE therefore used the built-in C language
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Table 1. Parameter set up for Chaos DE and Canonical DE

Parameter Value

PopSize 75
F 0.8
CR 0.8
Dimensions 30
Generations 100·D = 3000
Max Cost Function Evaluations (CFE) 225000

pseudo random number generator Mersenne Twister C representing traditional
pseudorandom number generators in comparisons. All experiments used differ-
ent initialization, i.e. different initial population was generated within the each
run of Canonical or Chaos driven DE.

Within this initial research, one type of experiment was performed. It utilizes
the maximum number of generations fixed at 3000 generations. This allowed the
possibility to analyze the progress of DE within a limited number of generations
and cost function evaluations.

The statistical results of the experiments are shown in Table 2, which represent
the simple statistics for cost function values, e.g. average, median, maximum
values, standard deviations and minimum values representing the best individual
solution for all 50 repeated runs of canonical DE and several versions of ChaosDE
and Multi-ChaosDE.

Table 3 compares the progress of several versions of ChaosDE, Multi-ChaosDE
and Canonical DE. This table contains the average CF values for the generation
No. 750, 1500, 2250 and 3000 from all 50 runs. The bold values within the both
Tables 2 and 3 depict the best obtained results. Following versions of Multi-
ChaosDE were studied:

– Burgers-Lozi-Switch-500 : Start with Burgers map CPRNG, switch to the
Lozi map CPRNG after 500 generations.

– Lozi-Burgers-Switch-1500 : Start with Lozi map CPRNG, switch to the Burg-
ers map CPRNG after 1500 generations.

Table 2. Simple results statistics for the Schwefel’s function – 30D

DE Version Avg CF Median CF Max CF Min CF StdDev

Canonical DE -5822.8 -5754.4 -5443.23 -6500.44 226.4365
Lozi-No-Switch -11296.9 -11581 -7842.25 -12235.5 879.1985
Burger-No-Switch -11052.1 -11192.9 -8473.79 -12105 667.7065
Burger-Lozi-Switch-500 -11332.9 -11459.1 -7871.2 -12486.9 799.7749
Lozi-Burger-Switch-1500 -11475.5 -11489.6 -10354.5 -12279.7 373.059
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Table 3. Comparison of progress towards the minimum for the Schwefel’s function

DE Version Generation
No. 750

Generation
No. 1500

Generation
No. 2250

Generation
No. 3000

Canonical DE -5231.94 -5537.79 -5738.96 -5822.8
Lozi-No-Switch -5839.69 -7998.35 -9965.25 -11296.9
Burger-No-Switch -6075.91 -8854.6 -10564.1 -11052.1
Burger-Lozi-Switch-500 -6538.11 -8658.15 -10356.3 -11332.9
Lozi-Burger-Switch-1500 -5701.57 -7719.37 -10663.1 -11475.5
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Fig. 5. Comparison of the time evolution of avg. CF values for the all 50 runs of
Canonical DE, ChaosDE and Multi-ChaosDE. Schwefel’s function, D = 30.

The graphical comparison of the time evolution of average CF values for all
50 runs of ChaosDE/Multi-ChaosDE and canonical DERand1Bin strategy is
depicted in Fig. 5. Finally the Figures 6 - 8 confirm the robustness of Multi-
ChaosDE in finding the best solutions for all 50 runs.

Obtained numerical results given in Tables 2 and 3 and graphical compar-
isons in Figures 5 - 8 support the claim that all Multi-Chaos/ChaosDE versions
have given better overall results in comparison with the canonical DE version.
From the presented data it follows, that Multi-Chaos DE versions driven by
Lozi/Burgers Map have given the best overall results.

For the Burgers-Lozi-Switch-500 version the progressive Burgers map CPRNG
secured the faster approaching towards the global extreme from the very begin-
ning of evolutionary process. The very fast switch over to the Lozi map based
CPRNG helped to avoid the Burgers map based CPRNG weak spots, which
are the weak overall statistical results, like average CF value and std. dev.; and
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Fig. 6. Comparison of the time evolution of CF values for all 50 runs of Multi-ChaosDE
version: Burgers-Lozi-Switch-500
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Fig. 7. Comparison of the time evolution of CF values for all 50 runs of Multi-ChaosDE
version: Lozi- Burgers -Switch-1500
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Fig. 8. Comparison of the time evolution of CF values for all 50 runs of canonical DE
(blue) and Multi-ChaosDE versions: Burgers-Lozi-Switch-500 (magenta), Lozi-Burgers-
Switch-1500 (black)

tendency to stagnation. This version was able to reach the best individual mini-
mum CF value. The initial faster convergence (starting of evolutionary process)
and subsequent continuously stable searching process without premature stag-
nation issues are visible from Fig. 5 (magenta line), Fig. 6 and Fig. 8 (magenta
lines).

Through the utilization of Lozi-Burgers-Switch-1500 version, the strong
progress towards global extreme given by Burgers map CPRNG helped to the
evolutionary process driven from the start by mans of Lozi map CPRNG to
achieve the best avg. CF and median CF values. The moment of switch (at 1500
generations) is clearly visible from Fig. 5 (black line) and Fig. 7 and Fig. 8 (black
lines).

8 Conclusions

In this paper, the novel concept of multi-chaos driven DERand1Bin strategy was
tested and compared with the canonical DERand1Bin strategy on the selected
benchmark function in higher dimension. Based on obtained results, it may be
claimed, that the developed Multi-ChaosDE gives considerably better results
than other compared heuristics.

Since this was a preliminary study of the novel presented concept, only one sin-
gle benchmark function in higher dimensions was utilized to test and more deeply
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analyze the influence of alternating several CPRNGs to the performance of orig-
inal previous ChaosDE concept. Nevertheless the original concept of ChaosDE
itself was tested on huge set of both simple and complex benchmark functions
based mostly on the IEEE CEC 2005 benchmark set and with nine different
discrete dissipative chaotic systems. Thus based on the deeper analysis of re-
sults from the previous research the composition of the presented experiment
was prepared.

Future plans are including the testing of combination of different chaotic sys-
tems as well as the adaptive switching and obtaining a large number of results
to perform statistical tests.

Furthermore chaotic systems have additional parameters, which can by tuned.
This issue opens up the possibility of examining the impact of these parameters
to generation of random numbers, and thus influence on the results obtained by
means of ChaosDE.
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