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Abstract. Surface plasmon polaritons (SPPs) confined along metal-
dielectric interface have attracted a relevant interest in the area of ultra-
compact photonic circuits, photovoltaic devices and other applications
due to their strong field confinement and enhancement. This paper in-
vestigates a novel cascade neural network (NN) architecture to find the
dependance of metal thickness on the SPP propagation. Additionally, a
novel training procedure for the proposed cascade NN has been devel-
oped using an OpenMP-based framework to strongly reduce the training
time. The performed experiments confirm the effectiveness of the pro-
posed NN architecture for the problem at hand.

Keywords: Cascade neural network architectures, Surface plasmon po-
laritons, Plasmonics, Plasmon structure.

1 Introduction

Surface Plasmon Polaritons (SPPs) are quantized charge density oscillations oc-
curring at the interface between a metal and a dielectric when a photon couples
to the free electron gas of the metal. The emerging field of surface plasmon-
ics has applied SPP coupling to a number of new and interesting applications
[1],[2],[3], such as Surface Enhanced Raman Spectroscopy (SERS), photovoltaic
devices optimisation, optical filters, photonic band gap structures, biological and
chemical sensing, and SPP enhanced photodetectors.

Some papers appeared in literature simulate and analyse the excitation and
propagation of SPPs on sinusoidal metallic gratings in conical mounting. Re-
searchers working in the emerging field of plasmonics have shown the significant
contribution of SPPs for applications in sensing and optical communication.
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One promising solution is to fabricate optical systems at metal-dielectric in-
terfaces, where electromagnetic modes called SPPs offer unique opportunities to
confine and control light at length scales below 100nm [4],[5].

The studies and experiences conducted on SPPs are well assessed and show
that the propagation phenomena are well established by the involved materials
in the plasmon structure at large thickness, conversely when it becomes smaller
than the wavelength of the exciting wave, investigations are required due to the
actual poor understanding [6].

This paper proposes a novel neural netwok (NN) topology to study of the prob-
lems of a SPP propagating at a metal flat interface separating dielectric medium.
Currently, we are using NNs to study the inner relation between SPPs exciting
wavelength, metal thickness and SPP wavelength and propagation length. The
focus of this paper is on the determination of the dependance of the SPP prop-
agation of the metal thickness employing suitable NN schematics. Due to the
high sensitivity of the neural model to data oscillations a novel training pro-
cedure has been devised in order to avoid polarisations and miscorrections of
some NN weights. Moreover, since such a training procedure could be expensive
in terms of computational power and wall-clock time, a parallel version using
an OpenMP environment, with shared memory, has been developed and opti-
mised to obtain maximum advantage from the available parallel hardware. A big
amount of data has been put into proper use for the investigated NN topology.
Such data have been made available by solving 3D Maxwell equations with rel-
ative boundary conditions by COMSOL Multiphysics, which is an efficient and
powerful software package to simulate the characteristics of SPPs.

2 Basics of Surface Plasmon Polaritons

The field of plasmonics is witnessing a growing interest with an emerging rapid
development due to the studies and researches about the behaviour of light at
the nanometer scale. Light absorption by solar cells patterned with metallic
nanogratings has been recently investigated, however we consider light-excited
SPPs at the metal surface. The outcomes of our investigation can be used to
improve efficient capturing of light in solar energy conversion cells [1]. Therefore,
our main research interests are toward the properties of SPPs.

SPPs are electromagnetic waves propagating along metal-dielectric interfaces
and exist over a wide range of frequencies, evanescently decaying in the per-
pendicular direction. Such electromagnetic surface waves arise via the coupling
of the electromagnetic fields to oscillations of the conductor electron’s plasma
[7]. SPP is the fundamental excitation mode at a metal-dielectric interface that
is coupled to an electromagnetic wave as described in [7]. The most simple ge-
ometry sustaining SPPs is that of a single, flat interface (see Fig. 1) between a
dielectric, non-absorbing half space (z > 0) with positive real dielectric constant
ε2 and an adjacent conducting half space (z < 0) described via a dielectric func-
tion ε1(ω). The requirement of metallic character implies that Re[ε1] < 0. As
shown in [7], for metals this condition is fulfilled at frequencies below the bulk
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plasmon frequency ωp. We look for propagating wave solutions confined to the
interface, i.e. with evanescent decay in the perpendicular z-direction [7].

The electromagnetic field of a SPP at the dielectric-metal interface is obtained
by solving Maxwell’s equations in each medium with the associated boundary
conditions. The adopted structure is a metal-dielectric interface composed by
Molybdenum and air as shown in Fig. 1. This structure is the most simple in
order to reduce computational effort, as the main purpose of the paper is to
investigate the important relation between dispersion and thickness of the metal
by means of a proper novel NN architecture. It should be noted that this relation
is not affected by the complexity of the structure.

The basic mathematical equations describing the electromagnetic phenomena
concerning SPP propagation are listed below:

Hd = (0, Hyd, 0) e
i(kxd x+kzd z−ωt)

Ed = (Exd, 0, Ezd) e
i(kxd x+kzd z−ωt)

Hm = (0, Hym, 0) ei(kxm x−kzm z−ωt)

Em = (Exm, 0, Ezm) ei(kxm x−kzm z−ωt)

(1)

with boundary condition at z = 0

Exm = Exd

Hym = Hyd

εmEzm = εdEzd

(2)

as a consequence of the previous equation we have

kxm = kxd (3)

We consider a system consisting of a dielectric material, characterised by
an isotropic, real, positive dielectric constant εd, and a metal characterised by
an isotropic, frequency dependent, complex dielectric function εm = εr + iεi.
In order to introduce the main parameters characterising SPPs assuming the
interface is normal to z-axis and the SPPs propagate along the x direction (i.e.,
ky = 0), the SPP wavevector kx or β is related to the optical frequency ω through
the dispersion relation.

kx = k0

√
εd εm

εd + εm
(4)

β =
ω

c

√
εd εm

εd + εm
(5)

We take ω to be real and allow kx to be complex, since our main interest is
in stationary monochromatic SPP fields in a finite area, where

k0 =
ω

c
(6)
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is the wavevector in free space, and λ0 = c
ω is the wavelength in vacuum. For

metals, the permittivity is complex, which leads to kx being complex. The imagi-
nary part of kx defines the SPPs damping and as it propagates along the surface.
The real part of kx is connected to the plasmons wavelength, λSPP :

λSPP =
2π

Re[β]
(7)

LSPP is the SPP propagation length, physically the energy dissipated through
the metal heating and it is the propagation distance. LSPP is defined as follows:

LSPP =
1

Im[β]
(8)

Finally, the following reports the expression of the electric field of plasmon
wave:

ESPP = E±
0 ei(kxx±kzz−ωt) (9)

where
kx = k

′
x + ik

′′
x

k
′
x = 2π

λSPP

3 Input Data for the Proposed Cascade NN Architecture

By solving the full wave 3D Maxwell equations in the simple geometry shown in
Fig. 2, which separates two media as metal and dielectric, using the finite element
method-based software package COMSOL Multiphysics, we have obtained the
LSPP and λSPP data values for different thickness values. The perfectly matched
layer boundary condition was chosen for the external surface of the plasmon
structure. The exciting wave was monochromatic on the visible spectra and
ranging from 400nm to 700nm.

We have performed many numerical simulations while varying the exciting
wavelengths for each investigated thickness, hence obtaining the corresponding
SPP waves. A SPP propagates at the interface dielectric-metal decaying into the
metal.

The values of LSPP and λSPP were computed for the all visible range of
wavelength at the following different thickness values t of the metal: 36nm,
42nm, 48nm, 54nm, 60nm, 72nm, 84nm, 96nm and 128nm.

4 The Proposed Neural Network Architecture

The prediction of λSPP and LSPP from the set of values λ0 and t is related to the
problem of the dependence of LSPP from λSPP . To obtain a correct prediction of
λSPP by a neural network-based approach a value of λSPP is needed. Although
this can be obtained by a cascade process, the traditional means have that the
cascade NN is accommodated by separate training sessions for each different
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Fig. 1. Geometry for SPP propagation at
a single interface between metal and di-
electric

Fig. 2. Implemented geometry in COM-
SOL

dedicated NN. Unfortunately, such training sessions would result in very time-
consuming computation.

In order to overcome the above mentioned problem, this paper proposes a
novel parallel paradigm for training that manages to run a single comprehensive
training for the cascade NN as a whole, thus avoiding separate training phases.
This novel solution has been used for the problem at hand, described in Section 2.

Essentially, the adopted topology has been derived from a pair of common two-
layer feed-forward neural networks (FFNNs) [8], used to separately predict λSPP

and LSPP , respectively. The comprehensive structure is similar to a cascade feed-
forward, whereby the output of the first neuroprocessing stage is connected with
the input of the second stage and form a new extended input vector for the
second stage. On the other hand, the vector provided as input to the second
neuroprocessing stage depends on the predicted values obtained from the first
stage, hence it propagates a prediction error.

Moreover, during the training phase, while some outputs can be validated for
the first neuroprocessing stage, the localised deviation from the correct frequency
spectrum could corrupt the training of the second stage. The behaviour of this
novel topology is as a two step processing of the data signal that is comprehensive
also of a so called second validation or ω-validation, described in the following,
aiming at avoiding such an error propagation, which would otherwise endanger
the correct training of the second neuroprocessing stage.

A given output from the first stage has to be validated on the frequencies
domain, by a validation module, before it can be used. This validation module
performs the ω-validation by means of the Fourier computation on a delayed
Gaussian window of the output and training signal.

An intermediate level of data processing requires the implementation of a
module performing the Fourier transform of the data. Its relative parameters
are not a priori established, however are on-line determined by the novel NN
topology and then by its training procedure.
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Fig. 3. The proposed cascade NN architecture

Fig. 4. An equivalent recurrent schema

Fig. 3 represents the proposed architecture, which will be detailed in the fol-
lowing. It is possible to recognise two groups of modules, the first comprising
IIIa and IVa, whereas the second IIIb and IVb, each acting as a FFNN. The
proposed novel topology behaves as a cascade FFNN topology [9]. Fig. 4 depicts
a more complex novel topology that performs the prediction as a Nonlinear Au-
toRecoursive with exogenous inputs (NARX) recurrent neural network topology
[10]. Such figure shows the implemented delay lines to the blocks performing
the neural processing. It should be noted that we have implemented one neuron
as a purelin while the remaining neurons in the first hidden layer process the
input signal. The performed simulations have shown an increased computational
effort, for this recurrent scheme, while the corresponding results have not sig-
nificantly improved the accuracy on the predicted data. Even though this is a
novel recurrent cascade topology this paper fully investigates the scheme shown
in Fig. 3. The following provides the details of the proposed NN cascade.

Input data analysis. The input layer (I) does not directly provide the input
vector (u) to the first FFNN hidden layer (IIIa), being it firstly processed
by an intermediate layer (II) that is trained to extrapolate a set of parameters
necessary to perform the ω-validation, i.e. the σ for the Gaussian window Fourier
analysis. This layer (II) is also provided with ad adjunct purelin neuron acting
as a transmission line for the following layer (IIIa).

The main purpose of II is to characterise the frequency peaks windows on
the data spectrum in order to associate, after the training phase, an optimum
σ value to perform gaussian-window Fourier analysis on the output data from
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the second FFNN hidden layer (IVa). For this reason, the input to the following
layers are provided as

xVa = yII(xI) = [τ,Δτ , σ|xI]

xIIIa = xI (10)

where xVa retains the discrete sample number τ and both the window size Δτ

and σ for the described Fourier analysis.

FFNNs hidden layers The first neuroprocessing module acts as a fully connected
FFNN and consists of two hidden layers, i.e. IIIa and IVa. The first hidden
layer (IIIa) embeds 10 neurons with tansig activation function, whereas the
second hidden layer (IVa) consists of 7 neurons with logsig activation function.
Similarly, the second neuroprocessing module provides the functionalities of a
fully connected FFNN, however its two hidden layers, IIIb and IVb, consist of
8 and 5 neurons with tansig activation function, respectively.

FFNN training and validation The implemented FFNN neuroprocessing mod-
ules are trained by the Levenberg-Marquardt algorithm with a gradient descent
method. Hence, for the τ -esime discrete time step, the variation introduced to
the weights are given by

wμν
ij (τ) = wμν

ij (τ − 1)− ηe(τ) ∂e(τ)
∂wμν

ij (τ)

eμ(τ) = ỹμ(τ) − yμ(τ)

(11)

where wμν
ij (τ) represents the value for the τ -esime step of the connection weight

from the i-esime neuron of the μ layer to the j-esime neuron of the ν layer, η is
the learning rate parameter, ỹμ(τ) and yμ(τ) are respectively the training and
output signal from the μ layer.

ω-validation The output of the first neuroprocessing module comes from the
second FFNN hidden layer (IVa) and is sent, as valid output, to the last layer
of the network and also as input to the validation module (Va). The validation
module consists of a functional unit performing the fast Fourier transform on
a selected window of the input signals. Moreover, the validation module uses a
dynamically allocated buffer to implement a size-varying delay line.

The latter is used to enable real-time online resizing of the Fourier window to
suit the properties of the investigated signal. These adjustments are performed
starting from the parameters contained in xVa as (10). Once the gaussian win-
dowed Fourier transform has been computed, the following values are determined

M(τ,Δτ , σ) = max
[τ :τ+Δτ ]

{ ∣∣∣F̂σ[ ˜yIVa]− F̂σ[y
IVa]

∣∣∣ }

m(τ,Δτ , σ) = min
[τ :τ+Δτ ]

{ ∣∣∣F̂σ[ ˜yIVa]− F̂σ[y
IVa]

∣∣∣ } (12)
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then the module is trained to admit only certain regions of the (M,m) pairs
plan which validate the output signal of the layer IVa.

If the output signal results validated, it is then sent as input for the layer
IIIb as

xIIIb = [xI|yIVa] (13)

The first neuroprocessing module takes xI as input and is trained by all
the available patterns, while the second module is trained only by the allowed
sequences selected according to the validation procedure. In the other case, i.e.
if the ω-validation is negative, the second module skips the data during the
training process and gives a NaN flagging, being the relative data for the second
variable unavailable.

Final output Finally, the implemented topology gives a global output with a
layer consisting of two neurons purelin.

5 Training Procedure on OpenMP

The neural network architecture proposed above has introduced a sequential
validation phase for the results of the first neuroprocessing module. Validation
has to be performed before the first module results can be sent as input for
the second module. Unfortunately, such sequential operations make the training
process expensive in terms of CPU time. In order to shorten training time in
this section is described a parallel implementation of the same neural network
architecture, using OpenMP, that manages to obtain asynchronous training and
validation.

Generally, when parallelising an application using OpenMP, processes are
forked, joined and synchronised (e.g. by means of a barrier). Such mechanisms,
however, introduce a runtime overhead, e.g. when the processes having produced
and communicated their results have to wait until the synchronisation barrier
is over. This is often the case when the computation times of processes are not
perfectly balanced [11]. Therefore, our parallel version aims at reducing such
an overhead by avoiding, as much as possible, the fork-join-barrier constructs,
and by introducing instead processes that produce and consume data. The main
reason for using OpenMP is that, by means of a shared memory, communication
overhead among processes can be avoided, however, on the other hand, shared
memory requires a complex handling of semaphores and locks before accessing
some parts of the memory itself. We have handled the synchronisation concern
in such a way that overhead is minimised [12].

Mainly, the proposed parallel solution is based on the continuous execution of
different processes to care for the different phases of training for the above cas-
cade NN. In our experiments a multi-core processor has been used, however any
kind of shared memory system supporting OpenMP directives can be employed.
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Fig. 5. The proposed OpenMP training
asynchronous stream

 

 

Fig. 6. Global performance graph of
the implemented NN architecture

The proposed cascade NN has been trained to predict the values of λSPP and
LSPP starting from an input vector.

u(τ) = [λ0, t] (14)

To evaluate the performance of the cascade NN, two different kinds of error
were considered. We define two local errors ea and eb, as well as a global error
e∗ as follows:

ea = ỹIVa − yIVa

eb = ỹIVb − yIVb

e∗ = max {ea, eb} ≥ |ỹVI − yVI|
(15)

where ỹ indicates the training value.
For each training epoch, the outputs from layers IVa, IVb and VI (see Fig. 3.)

were used to compute the errors ea, eb and e∗ as in (15). The training has been
organised in four different activities, executed on an OpenMP environment (see
Fig. 5).

The first activity, named NN Simulation, provides as input to the whole cascade
neural network with a training pattern, which has been previously generated.

The second activity, named Phase A, and started once the first activity has
terminated, uses a gradient descent algorithm to adjust the neural weights of
the intermediate layer II and the first neuroprocessing (layers IIIa and IVa).

The third activity is the ω-validation and is started concurrently with Phase
A, hence after NN Simulation has finished, since the results produced by IVa are
needed. The ω-validation activity performs the gaussian windowed fast Fourier
transform of the training set and the predicted signal resulting as output of
IVa, then M and m defined in (12) are computed. Eventually, the values of M
and m are used to decide if the pattern data are usable to train the second
neuro-processing module (IIIb and IVb).
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Finally, the fourth activity is Phase B performing a further training that
adjusts the output weights of layer VI. For the proposed schema (see Fig. 3),
module Vb acts as a controller determining whether it is appropriate to merge
data from IVa and IVb before they can be given as input to VI. The merge is
enabled when the ω-validation has given a positive result, otherwise only data
resulting from IVa are used. Moreover, all the weights in layer VI are adjusted
when the result of ω-validation is positive, otherwise only the synaptic weights
of the first neuron in VI is adjusted.

The four activities above are started each as a process (see Fig. 5). Process
NN Simulation feeds data and triggers the execution of processes Phase A and
ω-validation. The latter two processes give their outputs to process Phase B,
and then wait for new data, till the training stops. Process Phase B starts as soon
as input data are available. At the end of the training epoch the global network
performances are stored for further analysis. All the measures of performance
involved in the training process are given by the Mean Squared Error (MSE),
though for the global network performances, the formula is adjusted by using
the global error e∗ of (15).

Fig. 5 shows in two vertical tiers some rectangles. Each rectangle corresponds
to a process that can execute in parallel with another that is on the same row.
In the picture, the time evolves while going down. The arrows with continuous
lines represent a flow of data from a producer to a consumer process, whereas the
dotted line the communication of an event. Ellipses show repositories of data.
The said interactions among processes are iterated until the training session
stops.

While having devised a parallel solution, our effort has been to optimise the
use of computational resources, hence autonomous processes needing as less syn-
chronisation as possible have been implemented as described above. Our pro-
posed solution manages to greatly reduce the wall-clock timeframe needed for
the training.

6 Results and Conclusions

The proposed NN cascade has been mainly derived from a couple of common
two-layer feed-forward neural networks used to separately predict λSPP and
LSPP . The comprehensive structure is similar to a cascade feed-forward, where
the output of the first neuroprocessing stage has been connected with the inputs
for the second stage to form a new extended input vector.

For training and evaluation we have used the global error e∗ to compute
the mean square error (MSE) of the network. Fig. 6 shows the performance of
the proposed and implemented novel cascade NN architecture in terms of such
metrics. Fig. 7 reports the values of the computed and predicted λSPP and
LSPP . The obtained results confirm the good predictions obtained by the novel
NN schema.
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Fig. 7. The computed and predicted λSPP and Lspp

Simulation results for the NN cascade confirm the effectiveness of the devel-
oped novel architecture whose performance during the training and evaluation
phases show a very low MSE. Other complex NN architectures such as pure
NARX model or advanced Wavelet Recurrent Neural Networks [13] could not
be used because of the prediction instability for the data at hand.
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