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Abstract. We present here a new classifier called an intuitionistic fuzzy decision
tree. The performance of the new algorithm is illustrated by providing an analysis
of well known benchmark data. The results are compared to some other well
known classification algorithms.

1 Introduction

Decision trees, with their well known advantages, are very popular classifiers which
recursively partition a space of instances (observations). Following the source Quinlan
the ID3 algorithm [21], many other approaches have been developed along that line (cf.
[25]).

Classical (crisp) decision trees were extended to fuzzy decision trees which turned
out to be more stable, and effective method to extract knowledge in uncertain classi-
fication problems (Janikow [16], Olaru et al. [20], Yuan and Shaw [38], Marsala [18],
[19]).

The next natural step is to take advantages of the intuitionistic fuzzy sets introduced
by Atanassov [1], [2], [3] (A-IFSs for short) while building the trees.

In this paper we propose a new intuitionistic fuzzy decision tree classifier. The data
is expressed by means of intuitionistic fuzzy sets. Also the measures constructed for the
intuitionistic fuzzy sets are applied while making decisions how to split a node while
expanding the tree. The intuitionistic fuzzy tree proposed here is an extension of the
fuzzy ID3 algorithm [6].

The potential of the new algorithm is illustrated by providing an analysis of well
known benchmark data. The results are compared to other commonly used algorithms.

2 A Brief Introduction to A-IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh [39]) given by

A
′
= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an A-IFS

(Atanassov [1], [2], [3]) A is given by

A = {< x, μA(x), νA(x) > |x ∈ X} (2)
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where: μA : X → [0, 1] and νA : X → [0, 1] such that

0<μA(x) + νA(x)<1 (3)

and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. (An approach to the assigning memberships and
non-memberships for A-IFSs from data is proposed by Szmidt and Baldwin [26]).

Obviously, each fuzzy set may be represented by the following A-IFS:
A = {< x, μA′ (x), 1 − μA′ (x) > |x ∈ X}.

An additional concept for each A-IFS in X , that is not only an obvious result of (2)
and (3) but which is also relevant for applications, we will call (Atanasov [2])

πA(x) = 1− μA(x) − νA(x) (4)

a hesitation margin of x ∈ A which expresses a lack of knowledge of whether x belongs
to A or not (cf. Atanassov [2]). It is obvious that 0<πA(x)<1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [27], [28], [30], entropy (Szmidt and Kacprzyk [29], [31]), sim-
ilarity (Szmidt and Kacprzyk [32]) for the A-IFSs, etc. i.e., the measures that play a
crucial role in virtually all information processing tasks.

Hesitation margins turn out to be relevant for applications - in image processing (cf.
Bustince et al. [14], [13]) and classification of imbalanced and overlapping classes (cf.
Szmidt and Kukier [33], [34], [35]), group decision making, negotiations, voting and
other situations (cf. Szmidt and Kacprzyk papers).

3 Intuitionistic Fuzzy Decision Tree - New Algorithm Description

The intuitionistic fuzzy decision tree proposed here has its roots in the soft decision
tree introduced by Baldwin et al. [6] which follow the source ID3 tree introduced by
Quinlan [21].

We consider numeric attributes but the methods presented here can be also easily
applied to the nominal attributes (the algorithm is even simpler then). We use here intu-
itionistic fuzzy sets for data representation. More, the new idea of deriving intuitionistic
fuzzy sets in each node was applied as potentially giving the most accurate results.

Splitting the nodes is the most important step in generating a decision tree. The
step demands to point out the best attributes for splitting. Proper picking up the at-
tributes influences accuracy of a decision tree, and its interpretation properties. In the
tree presented here intuitionistic fuzzy entropy was used (Szmidt and Kacprzyk[29]) as
a counterpart of “information gain” [21].

In the next sections the most important components of the algorithm are described.

3.1 Fuzzy Partitions of the Attribute Values (granulation)

The idea of a universe partition (granulation), i.e., replacing a continuous domain with
a discrete one has been extended to fuzzy sets by Ruspini [23]. The idea was used here
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Fig. 1. Illustration of symmetric fuzzy partitioning, and asymmetric fuzzy partitioning (on at-
tribute 2 “Plasma glucose concentration” of benchmark “Pima Diabetes” with 5 fuzzy sets)

to partition a universe of each attribute by introducing a set of triangular fuzzy sets such
that for any attribute value the sum of memberships of the partitioning fuzzy sets is 1.

More formally, the membership χj,k(oij) of the i-th observation (instance) oij in
respect to the j-th attribute to the triangular fuzzy sets k and k+1 (where k = 1, . . . , p)
is:

χj,k(oij) + χj,k+1(oij) = 1, k = 1, . . . , p− 1, (5)

and for the j-th attribute Aj we have oij ∈ Aj , i = 1, . . . , n, j = 1, . . . ,m.
In other words, the sum of the membership values for an observation oij is one (the sum
results from only two neighboring fuzzy sets).

Remark. Here, for the purpose of granulation we use symbol χ for the membership
values so to make a difference between membership values resulting from the attribute
granulation (χ) and the membership values of the intuitionistic fuzzy sets μ.

We use here symmetric, evenly spaced triangular fuzzy sets (symmetric fuzzy parti-
tions), and asymmetric, unevenly spaced triangular fuzzy sets (asymmetric fuzzy parti-
tions such that each partition contains equal number of data points) [4,23]. In Fig. 1 an
example is shown of symmetric fuzzy partitioning (symmetric granulation), and asym-
metric fuzzy partitioning (asymmetric granulation). The two kinds of partitioning are
illustrated on attribute 2 of the “PIMA Diabetes” problem with 5 fuzzy sets. Fuzzy par-
titioning (triangular fuzzy sets) is a starting point to assign nodes in a soft ID3 decision
tree - cf. Fig. 2.

3.2 Fuzzy ID3 Algorithm

In this section we present a fuzzy generalization of ID3 algorithm [6].
Consider the following database

T = {oi =< oi,1, . . . , oi,m > | i = 1, . . . , n}, (6)

where oi,j is a value of the j-th attribute Aj , j = 1, . . . ,m, for the i-th instance. We
assume that oi,j are crisp.
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Fig. 2. Fuzzy partitioning as a starting point to constructing nodes in a soft ID3 tree

At the beginning of generating a fuzzy ID3 decision tree from data, its root contains
all the instances (top down approach). Each node is split by partitioning its instances.
A node becomes a leaf if all the attributes are used in the path considered or if all its
instances are from a unique class.

Splitting the nodes in a decision tree can be represented by the rules. Assume that
Pj is a partition set of the attribute space Ωj (j = 1, . . . ,m), and that partition of each
attribute is via triangular fuzzy sets. Let Pχj,k

∈ Pj be the k-th partitioning fuzzy set
expressed by a triangle membership function χj,k being a component of the partition
of the j-th attribute. The following rule expresses conjunction of the fuzzy conditions
along the path from the root to a tree node

B ≡ Pχj1
∧ · · · ∧ PχjN

(7)

where Pχjr
are triangular fuzzy sets, and its set of indexes represented by the subse-

quence (jr) is in a considered rule a result of pointing up a pair: (1) a unique attribute
numbers j, and (2) one from the k triangle fuzzy sets for each attribute partitioning.
Formula (7) expresses a conjunction of the conditions which are to be fulfilled for an in-
stance oi so that it were present in a considered node. Database T = {oi, i = 1, . . . , n}
generates a support for B (7) given as:

w(B) =

n∑

i=1

∏

jr

Prob(Pχjr
|oi) (8)

where Prob(Pχjr
|oi) is a probability defined on the fuzzy set Pχjr

provided the obser-
vation oi. It is easily calculated using the membership function χjr(oi).

Let {Cl, l = 1, . . . , h} denotes a set of decision classes. Formula (8) is also used for
generating support for a given decision class, e.g., Cx in a given node, namely

Prob(Cx|B) =
w(Cx ∧B)

∑h
l=1 w(Cl ∧B)

=
w(Cx ∧B)

w(B)
. (9)

Splitting a node (starting from a root) is related to the attributes’ abilities evaluation
to generate a next level with the child nodes. A potential possibility of an attribute A
for producing child nodes As, s = 1, . . . p is tested by calculating its classical entropy:
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I(As) = −
h∑

l=1

Prob(Cl|As) log(Prob(Cl|As)), s = 1, . . . p., (10)

The common entropy for an attribute A is the following weighted mean value:

I(A) =

∑p
s=1 w(As) · I(As)∑p

s=1 w(As)
(11)

In (10) and (11) it has been assumed that As represents a rule from the root to the s-th
child node.

Using the presented above formulas makes it possible to generate the nodes in a
fuzzy ID3 tree [6].

3.3 Deriving Intuitionistic Fuzzy Sets from Data

We will present now a modification of the soft ID3 approach (Section 3.2) by using
intuitionistic fuzzy sets.

Let assume that an attribute A, splitting a node into the child nodes As, s = 1, . . . p,
is tested. For simplicity we assume that only two decision classes C+ and C− are
considered. Support for these classes in each node is

for class C+ : w(C+ ∧ A1), w(C
+ ∧ A2), · · · , w(C+ ∧ Ap)

for class C− : w(C− ∧A1), w(C
− ∧ A2), · · · , w(C− ∧Ap).

(12)

Independently for each class their frequencies for the verified splitting are calculated
(proportions between support of a class in the child nodes and its cardinality in the
parent node)

p(C+|As) :
w(C+∧A1)
w(C+∧A) ,

w(C+∧A2)
w(C+∧A) , · · · , w(C+∧Ap)

w(C+∧A)

p(C−|As) :
w(C−∧A1)
w(C−∧A) ,

w(C−∧A2)
w(C−∧A) , · · · , w(C−∧Ap)

w(C−∧A) .
(13)

Having the relative frequencies p(C+|Ai) and p(C−|Ai) (13), we use the algorithm
given in [5,6] to construct independently fuzzy sets representing the classes C+, and
C−. The fuzzy sets obtained for C+, and C− are abbreviated Pos+ and Pos−, respec-
tively. In the fuzzy ID3 tree [6] the fuzzy sets Pos+(As) and Pos−(As), s = 1, . . . , p
are tested by a classical entropy (10) - (11) to assess the attributes.

In the algorithm proposed here we use the fuzzy model (expressed by Pos+ and
Pos−) to construct intuitionistic fuzzy model (details are presented in Szmidt and Bald-
win [26]). Intuitionistic fuzzy model of the data in the child nodes As, s = 1, . . . p (due
to the algorithm in [26]) is expressed by the following intuitionistic fuzzy terms

π(As) = Pos+(As) + Pos−(As)− 1
μ(As) = Pos+(As)− π(As)
ν(As) = Pos−(As)− π(As).

(14)

This way each child node s is described by the following intuitionistic fuzzy set

< As, μ(As), ν(As), π(As) >, s = 1, . . . , p (15)
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where μ describes support for the class C+; ν describes support for the class C−; π
expresses lack of knowledge concerning μ and ν.

An instance oi characteristic at node As can be expressed as well in terms of intu-
itionistic fuzzy sets

χAs(oi)· < μ(As), ν(As), π(As) >, i = 1, . . . , n,

where χAs is a membership function at node As expressed by the product in (8). Having
in mind the property (5) we can obtain full information value of an instance oi while
partitioning A and obtaining in result the child nodes {As, s = 1, . . . , p} :

χAs(oi)· < μ(As), ν(As), π(As) > +χAs+1(oi)· < μ(As+1), ν(As+1), π(As+1) > .
(16)

Both (15) and (16) may be used (alternatively) in the algorithm proposed for assessing
and choosing the attributes while splitting the nodes in the intuitionistic fuzzy decision
tree.

3.4 Selection of an Attribute to Split a Node

In the process of expanding a tree – a crisp, fuzzy or intuitionistic fuzzy tree, the crucial
step is splitting a node into children nodes. To split a node an attribute is selected on the
basis of its “information gain”. Different measures may be used to assess “information
gain”. We use here an intuitionistic fuzzy measure – intuitionistic fuzzy entropy [29].

Intuitionistic fuzzy entropy E(x) of an intuitionistic fuzzy element x ∈ A is given
as [29]:

E(x) =
min{lIFS(x,M), lIFS(x,N)}
max{lIFS(x,M), lIFS(x,N)} , (17)

where M,N are the intuitionistic fuzzy elements (< μ, ν, π >) fully belonging (M ) or
fully not belonging (N ) to a set considered

M =< 1, 0, 0 >
N =< 0, 1, 0 >,

lIFS(·, ·) is the normalized Hamming distance [28,30]:

lIFS(x,M) = 1
2 (|μx − 1|+ |νx − 0|+ |πx − 0|)

lIFS(x,N) = 1
2 (|μx − 0|+ |νx − 1|+ |πx − 0|).

It is also possible to use other intuitionistic fuzzy measures to evaluate the attributes
(cf. [36], [37]) but due to the space limitation here we discuss entropy only.

Intuitionistic fuzzy entropy of an intuitionistic fuzzy set with n elements: X =
{x1, . . . , xn} is [29]:

E(X) =
1

n

n∑

i=1

E(xi). (18)
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To compute intuitionistic fuzzy entropyE(As) (17) in a child nodeAs, s = 1, . . . , p,
we make use of the intuitionistic fuzzy representations (12)–(15) of the possible child
nodes derived while testing attribute A.

Total intuitionistic fuzzy entropy of an attribute A is abbreviated E(WA) whereas
entropy of a child node – E(As). Total intuitionistic fuzzy entropy of A is a sum of the
weighted intuitionistic fuzzy entropy measures of all the child nodes As, s = 1, . . . , p,
with the weights reflecting supports (cardinalities) of the nodes:

E(WA) =

∑p
s=1 w(As)E(As)∑p

s=1 w(As)
. (19)

Instead of using (19) we may calculate E(WA) by applying a weighted intuitionistic
fuzzy representation of each instance oi (16) while partitioning an attribute A. Next,
using (18), a total intuitionistic fuzzy entropy is calculated for a chosen attribute. This
method was applied in the numerical experiments (cf. Section 4).

An attribute for which total intuitionistic fuzzy entropy is minimal is selected for
splitting a node.

A flowchart representing a process of generating intuitionistic fuzzy decision tree is
in Fig. 3.

3.5 Classification of the Instances

A leaf in a soft tree is described by a proportion of the classes considered. A single
instance usually belongs to several leaves. In result we need aggregated information
about total degree of membership of a single observation to each class.

To classify the instances we use here measure SUM which is a sum of the products
of the instance membership values at leafs and support for a class considered in these
leafs [6]. Total support of the observation oi, i = 1, . . . , n, for a class C is:

supp(C|oi)SUM =

L∑

j=1

supp(C|Tj) · χ(Tj |oi), (20)

where {Tj : j = 1, . . . , L} is a set of the leafs; L is the number of the leafs; supp(C|Tj)
is a support of the classes considered in the j-th leaf; χ(Tj |oi) is a membership value of
the observation oi (it is a result of the partitioning of the universe attributes), different
for each leaf, fulfilling:

∑L
j=1 χ(Tj |oi) = 1.

4 Results of the Numerical Experiments

We have verified classification abilities of the new intuitionistic fuzzy decision tree with
other well known algorithms.

The following measures were used to compare the behavior of the classifiers com-
pared:
– total proper identification of the instances belonging to the classes considered,
– the area under ROC curve [15].

Behavior of the intuitionistic fuzzy decision tree proposed here was compared espe-
cially with other decision trees, namely:
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Fig. 3. A flowchart representing a process of generating intuitionistic fuzzy tree
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Table 1. “Sonar” benchmark data – comparison of the intuitionistic fuzzy decision tree and other
classifiers

Classification accuracy (x̄± σ) [%]
Algorithm for both classes AUC ROC

intuitionistic fuzzy tree (asym) 80.80 ± 7.76 (∗) 89.81 ± 5.66 (∗)
RandomForest 80.41 ± 8.80 89.53 ± 7.58

MultilayerPerceptron 81.61 ± 8.66 88.48 ± 7.31
pruned intuitionistic fuzzy tree (asym) 78.63 ± 7.89 86.92 ± 6.29 (−)

LMT 76.27 ± 9.62 (−) 84.15 ± 8.55 (−)
NBTree 77.07 ± 9.65 (−) 83.10 ± 9.89 (−)

SDT (refitting) 73.28 ± b.d. (b.d.) b.d.
SDT (backfitting) 72.56 ± b.d. (b.d.) b.d.

Logistic 72.47 ± 8.90 (−−) 80.02 ± 8.78 (−−)
J48 (unpruned C4.5) 73.42 ± 9.36 (−) 79.37 ± 10.83 (−−)
J48 (pruned C4.5) 73.61 ± 9.34 (−) 79.31 ± 10.80 (−−)

– J48 – implementation of the crisp tree proposed by Quinlan C4.5 ([22]),
– LMT (Logistic Model Tree) – a hybrid tree building the logistic models at the leaves

([17]),
– NBTree – hybrid decision tree building the Bayes classifiers at the leaves,
– RandomForest – here consisting of 10 decision trees which nodes are generated on

the basis of a random set of attributes ([10]).

Besides the trees, also neural networks (MultilayerPerceptron), and logistic regression
(Logistic) were used for the evaluation. The evaluation of the above algorithms was
performed using WEKA (http://www.cs.waikato.ac.nz/ml/weka/). Next, the results ob-
tained by Olaru and Wehenkel [20] using Soft Decision Trees (SDT) are compared.

We present here the results obtained by intuitionistic fuzzy decision tree for “Sonar”
benchmark data (http://archive.ics.uci.edu/ml/datasets.html). The dataset contains 208
instances, 60 numerical attributes, 2 classes (111 – metal cylinder, and 97 instances –
rocks). We use simple cross validation method with 10 experiments of 10-fold cross
validation (giving 100 trees). For each experiment an average value of the accuracy
measures, and of their standard deviations were calculated. So to compare an average
accuracy of the new intuitionistic fuzzy decision tree with other classifiers, t-Student test
was used (Table 1). One minus in Table 1 means that the (worse) result was obtained
by a classifier while using classical t-Student test, two minuses mean using corrected
t-Student test (for cross validation).

Results obtained (Table 1 – accuracy, and Fig. 4 – ROC curves) show that the in-
tuitionistic fuzzy decision tree is the best concerning the area under ROC curve, and
the second one in respect of accuracy (a little worse than Multilayer Perceptron). In
other words, the new intuitionistic fuzzy decision tree turned out a better classifier for
“Sonar” benchmark data than other crisp and soft decision trees, even slightly better
than Random Forest, and almost as effective as Multilayer Perceptron.

Surprisingly enough, just for the “Sonar” benchmark data, the proposed classifier
turned out to be worse than the simplest k-nearest neighbor classifier. Due to space
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Table 2. Comparison of the accuracy of k-NN classifier, trees.J48 and the intuitionistic fuzzy
decision tree for chosen benchmark data

Classification accuracy (x̄± σ) [%]
Data set k-NN for k=1 k-NN for k=3 trees.J48 (pruned) IFS tree

PIMA 70.62 ± 4.67 73.86 ± 4.55 74.49 ± 5.27 75.72 ± 4.37
Sonar 86.17± 8.45 83.76± 8.51 73.61 ± 9.34 80.80 ± 7.76

Ionosphere 87.10 ± 5.12 86.02 ± 4.31 89.74 ± 4.38 90.36 ± 4.50
Wine 95.12 ± 4.34 95.85 ± 4.19 93.20 ± 5.90 97.88 ± 3.53
Glass 70.30 ± 8.96 69.84 ± 8.61 67.61 ± 9.26 75.16 ± 6.21
Iris 95.40 ± 4.80 95.20 ± 5.11 94.73 ± 5.30 96.20 ± 4.37

limitation we do not present a detailed comparison of the proposed classifier for other
data sets (as for the “Sonar” data – Table 1), but results of the experiments with the k-
nearest neighbor classifier (Table 2) are added for several other benchmark data sets,
namely: “PIMA”, “Ionosphere”, “Wine”, “Glass”, “Iris” (http://archive.ics.uci.edu/ml/
datasets.html). It is easy to notice that the proposed classifier produces more accurate
results than the k-nearest neighbor classifier (the “Sonar” benchmark data is an excep-
tion). In other words, the proposed classifier may be not the best solution for all possible
data sets, but no other classifier can be, for obvious reasons! However, for the data sets
presented in Table 2 it turned out to be usually better, and certainly not worse than the
classifiers presented in Table 1. In addition, as a tree type classifier, it can be a properer,
if not the best choice, in many applications when comprehensibility and transparency to
the human being is relevant.
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5 Conclusions

We have proposed a new intuitionistic fuzzy decision tree which is an extension of
the fuzzy ID3 decision tree algorithm. The tree proposed was tested on a well known
benchmark examples. The results are very encouraging.
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