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Abstract. We propose a novel adaptive Self-Organizing Map (SOM).
In the introduced approach, the SOM neurons’ neighborhood widths
are computed adaptively using the information about the frequencies
of occurrences of input patterns in the input space. The neighborhood
widths are determined differently for each neuron in the SOM grid. In this
way, the proposed SOM properly visualizes the input data, especially,
when there are significant differences in frequencies of occurrences of
input patterns. The experimental study on real data, on three different
datasets, confirms the effectiveness of the proposed adaptive SOM.

Keywords: Self-Organizing Map, adaptive Self-Organizing Map, neigh-
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1 Introduction

The Self-Organizing Map (SOM) [1] is an example of the artificial neural network
architecture. It can be also interpreted as a visualization technique, since the
algorithm performs a projection from multidimensional space to 2-dimensional
space, this way creating a map structure. The location of points in 2-dimensional
grid aims to reflect the similarities between the corresponding objects in mul-
tidimensional space. Therefore, the SOM algorithm allows for visualization of
relationships between objects in multidimensional space.

The SOM technique is an unsupervised data analysis approach, i.e., there is
no additional training data required. Although the method consists of two sub-
stantial phases, i.e., the training phase and the testing phase, both of the phases
proceed using the same testing dataset. During the training phase, the weights
corresponding to each neuron in the SOM grid are being computed. An impor-
tant step during this process is updating of the neurons in the neighborhood of
the Best Matching Unit (BMU) – the closest neuron to the currently matched
input pattern. Usually, the neighborhood of the BMU is selected using the Gaus-
sian kernel (see [1] for other choices of neighborhood functions). However, the
choice of the neighborhood function parameters, and the choice of the function
itself is always to some extent arbitrary, because there are no strict guidelines,
and resulting optimal solutions in this matter. Therefore, any justified proposals
regarding the neighborhood size of the BMU are desirable, because that choice
strongly affects the quality of the final SOM visualization, and consequently, the
performance of the entire analysis.
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1.1 Our Proposal

In this paper, we propose a method for the SOM neurons’ neighborhood widths
adaptive computation. The neighborhood widths are determined differently for
each neuron in the SOM grid. The introduced method is based on the mea-
surement of the frequencies of occurrences of patterns in the input space. The
Gaussian kernel is employed as the neurons’ neighborhood function, and the
Gaussian standard deviation determining the neurons’ neighborhood width is
calculated adaptively on the basis of the mentioned frequency. Therefore, the
whole considered SOM is an adaptive enhancement to the traditional approach.
In case of input patterns appearing frequently in the input space, the corre-
sponding BMU’s neighborhood is wider than in case of input patterns occurring
rarely in the input space. Consequently, the proposed adaptive SOM reserves
larger area for frequent input patterns, and smaller area for rare input patterns.
In this way, the novel SOM properly visualizes input data, especially, when there
are significant differences in frequencies of occurrences of input patterns in the
input space. As a result, the entire visualization comprising the final result will
reflect the input data more accurately.

2 Related Work

The SOM visualization technique has been extensively studied, and numerous
improvements and extensions have been developed, including the Growing Hier-
archical SOM (GHSOM) [2], the asymmetric SOM [3, 4], the supervised SOM [5],
and the adaptive SOM [6–11], to name a few. Naturally, the adaptive SOM ver-
sions are of particular interest for the purposes of our research.

In the paper [11], a statistical iterative Gaussian kernel smoothing problem is
considered. The authors propose a batch SOM algorithm consisting of two steps.
In the first step, the training data are partitioned according to the Voronoi
regions of the map unit locations. In the second step, the units are updated
by taking weighted centroids of the data falling into the Voronoi regions, with
the weighing function given by the neighborhood. The neighborhood width is
decreased in each iteration of the algorithm. The difference between the approach
from the work [11] and the method developed in our paper is that in [11], the
neighborhood width is being constantly decreased exponentially according to the
adaptation rule (4) introduced in [11], while in our work, the neighborhood width
is adapted to a given dataset depending on the dataset’s specific properties.

In the paper [10], an Adaptive Double SOM (ADSOM) is proposed. The con-
structed map is designed for subsequent clustering analysis without requiring
of a priori knowledge about the number of clusters. ADSOM updates its free
parameters and allows convergence of its position vectors to a fairly consistent
number of clusters provided its initial number of nodes is greater than the ex-
pected number of clusters.

The paper [9] proposes a Time Adaptive SOM (TASOM). The work, together
with the paper [11], is especially important in the context of our research, because
it also introduces a method of neurons neighborhood size adaptive computation.
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In the approach proposed in [9], every neuron has its own learning rate and
neighborhood size. The difference between the solution from [9] and our method
is following. In [9], the adaptation of the neighborhood size results from the
“closed-loop” learning of the parameter, i.e., the neighborhood size is updated on
the basis of the final quality of visualization (so as to minimize an appropriate
error function). Consequently, a learning process is a necessary stage of that
analysis. On the other hand, in case of our approach, the neighborhood size
is computed in the “open-loop” system, only on the basis of the input dataset
analysis (i.e., measurement of frequencies of occurrences of input patterns). No
learning process is required, and the method does not rely on the final results of
the visualization. Consequently, no additional error function is necessary.

In the work [8], an adaptive hierarchical structure called “Binary Tree
TASOM” (BTASOM) is introduced. The considered SOM enhancement resem-
bles a binary natural tree having nodes composed of TASOM networks. The
BTASOM is proposed to make TASOM fast and adaptive in the number of its
neurons.

The paper [7] proposes an adaptive incremental learning algorithm of the SOM
weights. According to the algorithm, the SOM weights are updated incrementally
using a higher-order difference equation, which implements a low-pass digital
filter.

Finally, in the paper [6], an adaptive GHSOM-based approach (A-GHSOM) is
introduced as an effective technique to deal with the anomaly detection problem.
As the authors claim, their GHSOM enhancement can adapt on-line to the ever-
changing anomaly detection. Consequently, according to the authors, A-GHSOM
is superior over the standard GHSOM-based methods, and it provides higher
accuracy in identifying intrusions, particularly “unknown” attacks.

3 Traditional Self-Organizing Map

The SOM algorithm provides a non-linear mapping between a high-dimensional
original data space and a 2-dimensional map of neurons. The neurons are ar-
ranged according to a regular grid, in such a way that the similar vectors in
input space are represented by the neurons close in the grid. Therefore, the
SOM technique visualizes the data associations in the input high-dimensional
space.

It was shown in [12] that the results obtained by the SOM method are equiv-
alent to the results obtained by optimizing the following error function:
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∑

r
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where xµ are the objects in high-dimensional space, wr and ws are the prototypes
of objects in the grid, hrs is a neighborhood function (e.g., the Gaussian kernel)
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that transforms non-linearly the neuron distances (see [1] for other choices of
neighborhood functions), D (·, ·) is the squared Euclidean distance, and Vr is
the Voronoi region corresponding to prototype wr. The number of prototypes is
sufficiently large so that D (xµ, ws) ≈ D (xµ, wr) + D (wr, ws).

According to (2), the SOM error function can be decomposed as the sum of
the quantization error and the topological error. The first one minimizes the
loss of information, when the input patterns are represented by a set of proto-
types. By minimizing the second one, we assure the maximal correlation between
the prototype dissimilarities and the corresponding neuron distances, this way
assuring the visualization of the data relationships in the input space.

The SOM error function can be optimized by an iterative algorithm consisting
of two steps (discussed in [12]). First, a quantization algorithm is executed.
This algorithm represents each input pattern by the nearest neighbor prototype.
This operation minimizes the first component in (2). Next, the prototypes are
arranged along the grid of neurons by minimizing the second component in the
error function. This optimization problem can be solved explicitly using the
following adaptation rule for each prototype [1]:

ws =

∑M
r=1

∑
xµ∈Vr

hrsxµ
∑M

r=1

∑
xµ∈Vr

hrs

, (3)

where M is the number of neurons, and hrs is a neighborhood function (for
example, the Gaussian kernel of width σ (t)). The width of the kernel is adapted
in each iteration of the algorithm using the rule proposed by [11], i.e.,

σ (t) = σm (σf/σm)
t/Niter , (4)

where σm ≈ M/2 is typically assumed in the literature (for example, in [1]),
and σf is the parameter that determines the smoothing degree of the principal
curve generated by the SOM algorithm [11].

4 A Novel Adaptive Self-Organizing Map

In this paper, we propose a novel adaptation rule of the SOM neurons’ neigh-
borhood widths. The neighborhood widths are determined differently for each
neuron in the SOM grid. The proposed rule employs the exponential update (4)
from the work [11], includes the information about the frequencies of occurrences
of all input patterns, and consequently, provides a more accurate and effective
adaptation process than the rule (4) itself.

The SOM neurons’ neighborhood widths are adapted in our research using
the Gaussian kernels of the following standard deviation:

σi (|xi| , t) =
|xi|

maxj (|xj |)σm (σf/σm)t/Niter , (5)
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where xi, i = 1, . . . , n is a vector of features representing the ith object in
analyzed dataset, j = 1, . . . , n, n is the total number of objects, |·| is the L1-
norm meaning the number of objects given as the argument, and the rest of the
notation is explained in (4).

By utilizing the information about the frequencies of occurrences of input
patterns, the method proposed in this paper exploits the specific nature and
character of a given dataset, and this way, it visualizes the dataset in the SOM
grid more accurately by better adjusting to the dataset features and properties.

If the Gaussian kernels specifying the SOM neurons’ neighborhood width are
fitted to the frequencies of occurrences of input patterns, then the resulting SOM
will assign the wider neighborhoods (i.e., the larger area in the SOM grid) to
the neurons corresponding to the input patterns appearing more frequently in
the input space, and likewise, the obtained SOM will assign the narrower neigh-
borhoods (i.e., the smaller area in the SOM grid) to the neurons corresponding
to the input patterns appearing less frequently in the input space.

The desirable consequence of this phenomenon is that the proposed improved
adaptive SOM is dataset-dependent, and therefore, it reflects properly the rela-
tionships between input patterns, especially if the input dataset is highly diverse
with respect to the input patterns’ frequencies of occurrences.

5 Experiments

In our experimental study, we have evaluated effectiveness of the proposed im-
proved adaptive SOM technique by conducting the clustering process in the
SOM grid obtained using the proposed approach and in the SOM grid returned
by a reference method. As the reference method, we have used the traditional
time adaptive SOM technique. As the clustering method, we have employed the
standard well-known k-means clustering algorithm with the correct number of
clusters provided a priori as the input data. Clustering process has been carried
out in the 2-dimensional space of the SOM grid. The experimental research aims
to ascertain the superiority of the introduced adaptive SOM on the basis of the
comparison of the clustering results obtained using the proposed SOM and the
classical one. The experiments have been conducted on real data in the three
different research fields: in the field of words clustering, in the field of sound sig-
nals clustering, and in the field of human heart rhythm signals clustering. The
first part of the experimental study has been carried out on the large dataset
of high-dimensionality (Subsection 5.3), while the remaining two experimental
parts have been conducted on smaller datasets, but also of high-dimensionality
(Subsection 5.4 and Subsection 5.5). In this way, one can assess the perfor-
mance of the investigated methods operating on datasets of different size and na-
ture, and consequently, one can better evaluate the effectiveness of the proposed
approach.

The sound signals visualization and clustering was carried out on the piano
music recordings, and the human heart rhythm signals analysis was conducted
using the ECG recordings derived from the MIT-BIH ECG Databases [13].
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In case of the piano music dataset and the ECG recordings dataset, a graphical
illustration of the U-matrices generated by SOM is provided, while in case of the
“Bag of Words” dataset no such illustration is given, because of the high number
of instances in that dataset, which would make such images unreadable.

5.1 Evaluation Criteria

As the basis of the comparisons between the investigated methods, i.e., as the
clustering evaluation criteria, we have used the accuracy rate [4, 14] and the
uncertainty degree [4]:

1. Accuracy rate. This evaluation criterion determines the number of cor-
rectly assigned objects divided by the total number of objects.
Hence, for the entire dataset, the accuracy rate is determined as follows:

q =
m

n
, (6)

where m is the number of correctly assigned objects, and n is the total
number of objects in the entire dataset.
The accuracy rates qi and the accuracy rate q assume values in the interval
〈0, 1〉, and naturally, greater values are preferred.
The accuracy rate q was used in our experimental study as the main basis
of the clustering accuracy comparison of the three investigated approaches.

2. Uncertainty degree. This evaluation criterion determines the number of
overlapping objects divided by the total number of objects in a dataset.
This means, the number of objects, which are in the overlapping area be-
tween clusters, divided by the total number of objects. The objects belonging
to the overlapping area are determined on the basis of the ratio of dissimi-
larities between them and the two nearest clusters centroids. If this ratio is
in the interval 〈0.9, 1.1〉, then the corresponding object is said to be in the
overlapping area.
The uncertainty degree is determined as follows:

Ud =
μ

n
, (7)

where μ is the number of overlapping objects in the dataset, and n is the
total number of objects in the dataset.
The uncertainty degree assumes values in the interval 〈0, 1〉, and, smaller
values are desired.

5.2 Feature Extraction

Features of the time series considered in Subsection 5.4 and Subsection 5.5 have
been extracted using a method based on the discrete Fourier transform (DFT),
which is described in details in [15].
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5.3 Words Visualization and Clustering

In the first part of our experimental study, we have utilized excerpts from the
“Bag of Words” dataset from the UCI Machine Learning Repository [16]. It is
a high-dimensional dataset of strongly asymmetric nature, especially useful in
case of the asymmetric data relationships analysis. It is so, because significant
differences in frequencies of occurrences of different words in the entire dataset.
Therefore, the experimental investigation on the “Bag of Words” dataset clearly
shows the superiority of the proposed asymmetric approach over its traditional
symmetric counterpart.

Dataset Description. The “Bag of Words” dataset consists of five text collec-
tions: Enron E-mail Collection, Neural Information Processing Systems (NIPS)
full papers, Daily KOS Blog Entries, New York Times News Articles, PubMed
Abstracts. The total number of analyzed words was approximately 10,868,000. In
the SOM grids generated by the investigated methods, five clusters representing
those five text collections in the “Bag of Words” dataset were formed.

Text Feature Extraction. Feature extraction of the textual data investigated
in this part of our experimental study was carried out using the term frequency
– inverse document frequency (tf-idf ) approach. The Vector Space Model (VSM)
constructed in this way is particularly useful in our research, because it implicitly
captures the terms frequency (both: local – document-dependent and global –
collection-dependent), which are the source of the hierarchy-based asymmetric
relationships in analyzed data (i.e., in this case, between words).

The dimensionality of the analyzed VSM model (i.e., the number of features)
was chosen as the minimal length of the vocabularies in the five considered text
collections. Consequently, the number of features utilized in this part of our ex-
perimental study was 6,906. It was necessary to truncate the longer vocabularies
in order to build the data matrix comprising the analyzed VSM model. As a re-
sult, not all of the words in the remaining four text collections have been taken
into account. Nevertheless, the considered experimental problem remains a high-
dimensionality issue, and the number and variety of the words in the analyzed
vocabularies makes the problem complex and challenging. Of course, also the
highly-asymmetric nature of the investigated dataset is preserved.

Experimental Results. The results of this part of our experiments are re-
ported in Tables 1 and 2, where the accuracy rates corresponding to each inves-
tigated approach are presented.

The average (arithmetic average) numbers of words assigned to correct clus-
ters reported in Table 1 and words located in the overlapping areas in Table 2
(in numerators of the ratio fractions) were rounded to the nearest integer values.

The results of this part of our experimental study show that clustering of the
SOM grid obtained using the introduced adaptive method outperforms clustering
of the SOM grid returned by the standard adaptive approach. The proposed
approach leads to the higher clustering accuracy measured on the basis of the
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Table 1. Accuracy rates of the words clustering

q

Traditional adaptive SOM 8,389,009/10,868,000 = 0.7719
Proposed adaptive SOM 9,183,822/10,868,000 = 0.8450

Table 2. Uncertainty degrees of the words clustering

Ud

Traditional adaptive SOM 2,304,016/10,868,000 = 0.2120
Proposed adaptive SOM 1,523,182/10,868,000 = 0.1402

accuracy rate, and also to the lower clustering uncertainty measured on the basis
of the uncertainty degree.

5.4 Piano Music Composer Visualization and Clustering

In this part of our experiments, we considered three clusters representing three
piano music composers: Johann Sebastian Bach, Ludwig van Beethoven, and
Fryderyk Chopin.

Dataset Description. Each music piece was represented by a 30-seconds
sound signal sampled with the 44100 Hz frequency. The entire dataset con-
sisted of 70 sound signals. Feature extraction process was carried out according
to the Discrete-Fourier-Transform-based (DFT-based) method described in Sub-
section 5.2.

Experimental Results. The results of this part of our experiments are demon-
strated in Fig. 1, and in Tables 3 and 4. Figure 1 presents the maps (U-matrices)
generated by the symmetric (Fig. 1(a)) and asymmetric (Fig. 1(b)) SOM tech-
niques. The U-matrix is a graphical presentation of SOM. Each entry of the
U-matrix corresponds to a neuron in the SOM grid, while value of that entry
is the average dissimilarity between the neuron and its neighbors. Table 3, in
turn, presents the accuracy rates, while Table 4 reports the uncertainty degrees
corresponding to each of the examined approaches.

The average (arithmetic average) numbers of signals assigned to correct clus-
ters reported in Table 3 and signals located in the overlapping areas in Table 4
(in numerators of the ratio fractions) were rounded to the nearest integer values.

Also in this part of our experiments, the proposal of this paper appeared to
be superior over the other examined adaptive visualization technique.

5.5 Human Heart Rhythms Visualization and Clustering

The human heart rhythm signals clustering experiment was carried out on the
dataset of ECG recordings derived from the MIT-BIH ECG Databases [13].
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Fig. 1. Piano Music Composers Maps (U-matrices)

Table 3. Accuracy rates of the piano music composer clustering

q

Traditional adaptive SOM 27/32 = 0.8438
Proposed adaptive SOM 31/32 = 0.9688

In this part of our experiments, we considered three clusters representing
three types of human heart rhythms: normal sinus rhythm, atrial arrhythmia,
and ventricular arrhythmia. This kind of clustering can be interpreted as the
cardiac arrhythmia detection and recognition based on the ECG recordings.

Dataset Description. Our clustering recognizes the normal rhythm, and also,
recognizes arrhythmias originating in the atria, and in the ventricles.

We analyzed 20-minutes ECG holter recordings sampled with the 250 Hz
frequency. The entire dataset consisted of 63 ECG signals. Feature extraction
was carried out according to the DFT-based method described in Subsection 5.2.

Table 4. Uncertainty degrees of the piano music composer clustering

Ud

Traditional adaptive SOM 8/32 = 0.2500
Proposed adaptive SOM 1/32 = 0.0313

Experimental Results. The results of this part of our experiments are pre-
sented in Fig. 2, and in Tables 5 and 6, which are constructed in the same way
as in Subsection 5.4.
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Fig. 2. Human Heart Rhythms Maps (U-matrices)

Table 5. Accuracy rates of the human heart rhythms clustering

q

Traditional adaptive SOM 45/63 = 0.7143
Proposed adaptive SOM 58/63 = 0.9206

Table 6. Uncertainty degrees of the human heart rhythms clustering

Ud

Traditional adaptive SOM 18/63 = 0.2857
Proposed adaptive SOM 7/63 = 0.1111

Finally, in the last part of our empirical study, the proposed adaptive SOM
clustered by the k-means clustering algorithm produced results superior over the
results returned by the reference method clustered using the same algorithm,
confirming the usefulness and effectiveness of the proposed solution.



An Improved Adaptive Self-Organizing Map 119

6 Summary

In this paper, a novel adaptive SOM version was proposed. In the introduced
approach, the neurons’ neighborhood widths are determined using the informa-
tion about the frequencies of occurrences of input patterns in the input space.
The neighborhood widths are determined differently for each neuron in the SOM
grid. In case of input patterns appearing frequently in the input space, the neigh-
borhood of the corresponding BMU is wider than in case of the input patterns
occurring rarely in the input space. Consequently, the patterns frequent in the
input space will receive larger area for their prototypes in the SOM grid, in con-
trast to the patterns rare in the input space, which will get less place for their
prototypes in the grid. In this way, the proposed method provides a proper vi-
sualization of the input data, especially, when there are significant differences in
the frequencies of occurrences of input patterns, and consequently, our proposal
can be regarded as superior over the traditional adaptive SOM technique.
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