
Leszek Rutkowski   Marcin Korytkowski
Rafał Scherer   Ryszard Tadeusiewicz
Lotfi A. Zadeh   Jacek M. Zurada  (Eds.)

 123

LN
AI

 8
46

7

13th International Conference, ICAISC 2014
Zakopane, Poland, June 1–5, 2014
Proceedings, Part I

Artificial Intelligence
and Soft Computing



Lecture Notes in Artificial Intelligence 8467

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany



Leszek Rutkowski Marcin Korytkowski
Rafał Scherer Ryszard Tadeusiewicz
Lotfi A. Zadeh Jacek M. Zurada (Eds.)

Artificial Intelligence
and Soft Computing
13th International Conference, ICAISC 2014
Zakopane, Poland, June 1-5, 2014
Proceedings, Part I

13



Volume Editors

Leszek Rutkowski
Marcin Korytkowski
Rafał Scherer
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Preface

This volume constitutes the proceedings of the 13th International Conference
on Artificial Intelligence and Soft Computing, ICAISC 2014, held in Zakopane,
Poland, during June 1–5, 2014. The conference was organized by the Polish
Neural Network Society in cooperation with the University of Social Sciences in
�Lódź, the Institute of Computational Intelligence at the Cz ↪estochowa University
of Technology, and the IEEE Computational Intelligence Society, Poland Chap-
ter. Previous conferences took place in Kule (1994), Szczyrk (1996), Kule (1997)
and Zakopane (1999, 2000, 2002, 2004, 2006, 2008, 2010, 2012, and 2013) and at-
tracted a large number of papers and internationally recognized speakers: Lotfi
A. Zadeh, Igor Aizenberg, Shun-ichi Amari, Daniel Amit, Piero P. Bonissone,
Jim Bezdek, Zdzis�law Bubnicki, Andrzej Cichocki, W�lodzis�law Duch, Pablo A.
Estévez, Jerzy Grzymala-Busse, Martin Hagan, Yoichi Hayashi, Akira Hirose,
Kaoru Hirota, Er Meng Joo, Janusz Kacprzyk, Jim Keller, Laszlo T. Koczy,
Soo-Young Lee, Robert Marks, Evangelia Micheli-Tzanakou, Kaisa Miettinen,
Ngoc Thanh Nguyen, Erkki Oja, Witold Pedrycz, Marios M. Polycarpou, José
C. Pŕıncipe, Jagath C. Rajapakse, Šarunas Raudys, Enrique Ruspini, Jörg Siek-
mann, Roman Slowiński, Igor Spiridonov, Ponnuthurai Nagaratnam Suganthan,
Ryszard Tadeusiewicz, Shiro Usui, Fei-Yue Wang, Jun Wang, Bogdan M. Wil-
amowski, Ronald Y. Yager, Syozo Yasui, and Jacek Zurada. The aim of this
conference is to build a bridge between traditional artificial intelligence tech-
niques and so-called soft computing techniques. It was pointed out by Lotfi A.
Zadeh that “soft computing (SC) is a coalition of methodologies which are ori-
ented toward the conception and design of information/intelligent systems. The
principal members of the coalition are: fuzzy logic (FL), neurocomputing (NC),
evolutionary computing (EC), probabilistic computing (PC), chaotic computing
(CC), and machine learning (ML). The constituent methodologies of SC are, for
the most part, complementary and synergistic rather than competitive.” These
proceedings present both traditional artificial intelligence methods and soft com-
puting techniques. Our goal is to bring together scientists representing both areas
of research. This volume is divided into six parts:

– Neural Networks and Their Applications
– Fuzzy Systems and Their Applications
– Evolutionary Algorithms and Their Applications
– Classification and Estimation
– Computer Vision, Image and Speech Analysis
– Special Session 3: Intelligent Methods in Databases

The conference attracted 331 submissions from 29 countries, and after the
review process, 139 papers were accepted for publication. ICAISC 2014 hosted
three special sessions:
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Special Session 1: “Machine Learning for Visual Information Analysis and Secu-
rity” organized by:

– Rafa�l Scherer, Cz ↪estochowa University of Technology, Poland
– Svyatoslav Voloshynovskiy, University of Geneva, Switzerland

The session was supported by the project “New Perspectives on Intelligent
Multimedia Management with Applications in Medicine and Privacy Protecting
Systems” co-financed by a grant from Switzerland through the Swiss Contribu-
tion to the Enlarged European Union.

Special Session 2: “Applications and Properties of Fuzzy Reasoning and Cal-
culus”, organized by:

– Witold Kosiński , Polish-Japanese Institute of Information Technology, Poland

Special Session 3: “Intelligent Methods in Databases” organized by:

– Rafa�l A. Angryk, Georgia State University, USA
– Marcin Gabryel, Cz ↪estochowa University of Technology, Poland
– Marcin Korytkowski, Cz ↪estochowa University of Technology, Poland

The session was supported by the project “Innovative Methods of Retrieval and
Indexing Multimedia Data Using Computational Intelligence Techniques”funded
by the National Science Centre.

I would like to thank our participants, invited speakers, and reviewers of
the papers for their scientific and personal contribution to the conference. The
following reviewers were very helpful in reviewing the papers:

R. Adamczak
T. Babczyński
M. Baczyński
M. Bia�lko
A. Bielskis
M. Blachnik
L. Bobrowski
L. Borzemski
J. Brest
T. Burczyński
R. Burduk
B. Butkiewicz
C. Castro
K. Cetnarowicz
J. Chang
M. Chis
W. Cholewa

M. Choraś
K. Choros
P. Cichosz
R. Cierniak
P. Ciskowski
C. CoelloCoello
B. Cyganek
J. Cytowski
I. Czarnowski
J. de la Rosa
W. Duch
L. Dutkiewicz
L. Dymowa
A. Dzieliński
P. Dziwiński
D. Elizondo
A. Fanea

I. Fister
M. Fraś
M. Gabryel
A. Gaw ↪eda
M. Giergiel
F. Gomide
Z. Gomó�lka
M. Gorgoń
M. Gorza�lczany
D. Grabowski
E. Grabska
K. Gr ↪abczewski
P. Grzegorzewski
J. Grzymala-Busse
H. Haberdar
R. Hampel
Y. Hayashi
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Z. Hendzel
Z. Hippe
A. Horzyk
E. Hrynkiewicz
D. Jakóbczak
A. Janczak
D. Kacprzak
O. Kahm
W. Kamiński
T. Kaplon
A. Kasperski
V. Kecman
E. Kerre
F. Klawonn
J. Kluska
L. Koczy
A. Ko�lakowska
J. Konopacki
J. Korbicz
M. Kordos
P. Korohoda
J. Koronacki
M. Korzeń
W. Kosiński
J. Kościelny
M. Korytkowski
L. Kotulski
Z. Kowalczuk
J. Kozlak
M. Kraft
M. Kretowska
M. Kretowski
D. Krol
A. Kubiak
P. Kudová
J. Kulikowski
O. Kurasova
V. Kurkova
M. Kurzyński
J. Kusiak
N. Labroche
J. Lampinen
A. Lig ↪eza
H. Liu
M. �Lawryńczuk

J. �L ↪eski
B. Macukow
K. Madani
W. Malina
J. Mańdziuk
U. Markowska-Kaczmar
M. Marques
A. Marsza�lek
A. Martin
A. Materka
R. Matuk Herrera
J. Mazurkiewicz
V. Medvedev
J. Mendel
M. Mernik
J. Michalkiewicz
Z. Mikrut
S. Misina
W. Mitkowski
W. Moczulski
W. Mokrzycki
M. Morzy
T. Munakata
G. Nalepa
L. Nassif
A. Nawrat
M. Nieniewski
A. Niewiadomski
R. Nowicki
A. Obuchowicz
E. Oja
S. Osowski
M. Pacholczyk
F. Pappalardo
K. Patan
M. Pawlak
A. Piegat
Z. Pietrzykowski
V. Piuri
P. Prokopowicz
A. Przyby�l
R. Ptak
E. Rafaj�lowicz
E. Rakus-Andersson
M. Rane

Š. Raudys
R. Rojas
L. Rolka
I. Rudas
F. Rudziński
A. Rusiecki
H. Safari
S. Sakurai
N. Sano
J. Sas
a. Sashima
R. Scherer
M. SepesyMaucec
P. Sevastjanov
A. S ↪edziwy
A. Skowron
E. Skubalska-

Rafaj�lowicz
K. Slot
D. S�lota
A. S�lowik
J. Smol ↪ag
C. Smutnicki
A. Soko�lowski
T. So�ltysiński
J. Starczewski
J. Stefanowski
E. Straszecka
V. Struc
P. Strumi�l�lo
M. Studniarski
P. Suganthan
R. Sulej
V. Sumati
J. Swacha
P. Szczepaniak
E. Szmidt
M. Szpyrka
J. Świ ↪atek
R. Tadeusiewicz
H. Takagi
Y. Tiumentsev
A. Tomczyk
V. Torra
B. Trawinski
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E. Volna
R. Vorobel
M. Wagenknecht
T. Walkowiak
L. Wang
Y. Wang
J. W ↪as

S. Wiak
B. Wilamowski
M. Witczak
M. Wojciechowski
M. Wozniak
M. Wygralak
J. Zabrodzki

S. Zadrożny
D. Zaharie
D. Zakrzewska
A. Zamuda
R. Zdunek

Finally, I thank my co-workers �Lukasz Bartczuk, Piotr Dziwiński, Marcin
Gabryel, Marcin Korytkowski, and the conference secretary Rafa�l Scherer for
their enormous efforts to make the conference a very successful event. Moreover,
I would like to acknowledge the work of Marcin Korytkowski, who designed the
Internet submission system.

The conference volumes are devoted to the memory of Prof. Witold Kosiński,
co-founder of the Polish Neural Network Society, who passed away on March 14,
2014.

June 2014 Leszek Rutkowski
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Roman S�lowiński - Poland
Tomasz G. Smolinski - USA
Czes�law Smutnicki - Poland
Pilar Sobrevilla - Spain
Janusz Starzyk - USA
Jerzy Stefanowski - Poland

Pawel Strumillo - Poland
Ron Sun - USA
Johan Suykens Suykens - Belgium
Piotr Szczepaniak - Poland
Eulalia J. Szmidt - Poland
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Ali M. S. Zalzala - United Arab

Emirates

ICAISC Organizing Committee

Rafa�l Scherer, Secretary
�Lukasz Bartczuk, Organizing Committee Member
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Věra K̊urková
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Tomasz Żabiński, Tomasz M ↪aczka, Jacek Kluska, Maciej Kusy,
Zbigniew Hajduk, and S�lawomir Prucnal

Computer Vision, Image and Speech Analysis

An Approach for Imperfection Propagation: Application to Land Cover
Change Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 637

Amine Bouatay, Wadii Boulila, and Imed Riadh Farah



XVIII Table of Contents – Part I

Large-Scale Region-Based Multimedia Retrieval for Solar Images . . . . . . . 649
Juan M. Banda and Rafal A. Angryk

Three-Dimensional Urban-Type Scene Representation in Vision System
of Unmanned Flying Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 662

Andrzej Bielecki, Tomasz Buratowski, and Piotr Śmigielski
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Piotr P�loński and Krzysztof Zaremba

B-Spline Smoothing of Feature Vectors in Nonnegative Matrix
Factorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Rafa�l Zdunek, Andrzej Cichocki, and Tatsuya Yokota

Variants and Performances of Novel Direct Learning Algorithms for L2
Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Ljiljana Zigic and Vojislav Kecman

Bioinformatics, Biometrics and Medical Applications

Evolving Parameters for a Noisy Biological System – The Impact of
Alternative Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

David J. Barnes and Dominique Chu

Classification of EEG Signals Using Vector Quantization . . . . . . . . . . . . . . 107
Petr Berek, Michal Prilepok, Jan Platos, and Vaclav Snasel



XXII Table of Contents – Part II

Offline Text-Independent Handwriting Identification and Shape
Modeling via Probabilistic Nodes Combination . . . . . . . . . . . . . . . . . . . . . . 119

Dariusz Jacek Jakóbczak
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Abstract. In recent years wind energy has been the fastest growing
branch of the power generation industry. Maintenance of the wind tur-
bine generates its the largest cost. A remote monitoring is a common
method to reduce this cost. Growing number of monitored turbines re-
quires an automatized way of support for diagnostic experts. Early fault
detection and identification is still a very challenging task. A tool, which
can alert an engineer about potentially dangerous cases, is required to
work in real-time. The goal of this paper is to show an efficient system
to online classification of operational states of the wind turbines and to
detecting their early fault cases. The proposed system was designed as
a hybrid of ART-2 and RBF networks. It had been proved before that
the ART-type ANNs can successfully recognize operational states of a
wind turbine during the diagnostic process. There are some difficulties,
however, when classification is done in real-time. The disadvantages of
using a classic ART-2 network are pointed and it is explained why the
RBF unit of the hybrid system is needed to have a proper classification
of turbine operational states.

Keywords: wind turbines, monitoring, hybrid system, ART neural net-
work.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 3–11, 2014.
c© Springer International Publishing Switzerland 2014



4 A. Bielecki et al.

1 Introduction

Determining the operational state of the wind turbine, which works under vari-
able load, is a complex task. Nowadays it is done by an expert. There are var-
ious kinds of data which are collected when a turbine works - see [5] for wind
turbine machine and data description. The number of operating data (such as
wind speed, rotational speed, power) and vibration signals of a gear and bearing
elements is very large, and therefore their constant analysis by experts is unreal-
istic. Methods and systems for automatic determining of the current operational
states are necessary. They would support the work of experts.

The problem of classification of the wind turbine data had been investigated
by several authors beforehand. The research by Shuhui et al. [17], who com-
pared classification techniques for the wind curve estimation, was one of the
first works on this subject. It should be mentioned, however, that the works
describe only multilayered feed-forward types of networks. Another important
contribution was given by Kim [12], who compared several classification meth-
ods. His experiments showed that unless the number of independent variables
in the system is low, ANNs work better than other methods. Nevertheless, the
multi-layer feed-forward network, trained by the back-propagation algorithm,
was the investigated one.

The research concerning possibilities of ART neural networks, carried out, so
far, by the authors, were innovative and gave positive results [3,4,5]. The systems
based on ART-2 networks were able to perform classification of the operational
states of a wind turbine. ART-2 networks are capable of performing efficient
classification and identification of new classes of states. The experiments that
had been done beforehand did not simulate fully the real-time processing. The
simulations had time steps which triggered diagnostic checks. Every time all the
data between steps had to be processed. The data could be passed to ANN with
different order to improve the classification. Large number of the data, which
should be calculated during every step, was the disadvantage of this solution. In
this paper a new type of a system based on ANNs is proposed in order to do
real-time monitoring which can detect a fault on its early stage.

2 Characteristics of the Proposed System

The new hybrid system contains two units: a classical ART-2 network, which
will be briefly recalled in next subsection, and a structure of RBF networks with
specified operations which were done on ART-2 network (see subsection 2.2).

2.1 ART-2 Unit

The ART-2 is an unsupervised neural network, based on the adaptive reso-
nance theory (ART). A typical ART-2 architecture, introduced by Carpenter
and Grossberg [7,8], is presented as the left part of Fig.1 (only one unit of each
type is shown here). In the considered subsystem, an input pattern s is the first,
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presented to the F1 layer, which consists of six kinds of units - the W, X, U, V, P
and Q cells. It then undergoes a process of activation, including normalization,
noise suppression and updating. This result in an output pattern p from the F1

layer. An activation is produced across F2 layer through bottom-up weights bij
as a response to this output pattern. As the F2 layer is a competitive layer with a
winner-takes-all mode, only one stored pattern is a winner. It also represents the
best matching pattern for the input pattern at the F1 layer. Furthermore, the
pattern of activation on the F2 layer brings about an output pattern that is sent
back to the F1 layer via top-down weights tji. For the orienting sub-system, it
contains a reset mechanism r and a vigilance parameter ρ to check the similarity
between the output pattern from the F2 layer and the original input pattern
from the F1 layer. If both patterns are concordant, the neural network enters a
resonant state where the adaptation of the stored pattern is conducted. Other-
wise, the neural network assigns an uncommitted (inhibitory) node on the F2

layer for this input pattern, and thereafter, learns and transforms it into a new
stored pattern.

Fig. 1. Architecture of hybrid system of ART and RBF
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2.2 New RBF Unit

The new unit in the proposed system is designed to better control over the work
of ART-2 network. Creating the internal areas, determined by RBF networks,
in the analyzed space, is the main idea of the introduced system. The mapping
between ART-2 clusters (F2 layer) and that areas is introduced. Each cluster,
after its creation, is paired with the specified area. At the starting point there
is only one area and only one area is modified at the same time. The RBF unit
observes the number of clusters in F2 layer. It waits every ctime after each cluster
is added to F2 layer. When the number of clusters is stable then it ”closes” the
current area and ”opens” a new one. For every point from the data set, which
is put as an input signal, one area is selected. If that area is open, all the data
points are saved. The area which is being closed, has its borders determined. An
RBF network is specified to set the borders. The Mixture of Gaussians method
(see [19] - mog dd function) is applied to create RBF network and to learn it by
using all the saved points. Initially RBF unit waits stime before making decision
of closing first area. The architecture of new hybrid system is presented as whole
Fig.1.

3 Results

Two simulations of a wind turbine work have been done on the basis of historical
data. The changes of operational states and vibration signals were investigated.
The historical data contain 27000 measuring points in time (sampling frequency
is 1 per 15 minutes). Each point is a vector which has three components that
correspond to the operational states values and one component that corresponds
to the vibration signal value. A turbine fault can be observed at this data on
vibration canal after 14500-th point (Fig.2).
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Fig. 2. Vibration signals for all measuring points
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First simulation used classical ART-2 network as it was used in [3,4,5]. The
second one used a hybrid system, fully described in section 2. Each simulation
expressed the real-time actions done by an online classifier. Each data point was
put into the system once in the same order as it had been recorded. It means that
the failure should have been observed during simulation, not at the end of the
simulation or only at the end of some parts of simulation data. The ART part of
the hybrid system had all parameters set as the network in the first simulation
(vigilance parameter ρ= 0.978). The hybrid system has also the parameters ctime

and stime set to values 1000 and 2000. The wind turbine states classification after
3000 simulation time points is shown in Fig.3. To this point both simulations gave
the same results.

After that time point, the first simulation - the ART-2 network - continued
working with a classical algorithm. It gave some unwanted results at the end
of the simulation as it was shown in Fig.4. The mentioned disadvantage was
manifested by the fact that there was one cluster (a green one in Fig.4) with both
low and high values of vibrations whereas it should be divided into two separated
clusters. Similar phenomena was observed many times during the simulation.

Table 1. Details of simulation process using the proposed hybrid system

Time Observed actions

1 1-st class-neuron was added to new opened area 1

50 2-nd class-neuron was added to area 1

71 3-td class-neuron was added to area 1

91 4-rh class-neuron was added to area 1

214 5-th class-neuron was added to area 1

743 6-th class-neuron was added to area 1

747 7-th class-neuron was added to area 1

977 8-th class-neuron was added to area 1

3000 Borders of area 1 were determined and area 2 was opened

5869 1-st class-neuron was added to area 2

6253 2-nd class-neuron was added to area 2

11158 3-td class-neuron was added to area 2

14382 4-th class-neuron was added to area 2

16385 Borders of area 2 were determined and area 3 was opened

16797 1-st class-neuron was added to area 3

22429 2-nd class-neuron was added to area 3

24493 Borders of area 3 were determined and area 4 was opened

26266 1-st class-neuron was added to area 4

The second simulation - the hybrid system - determined borders of the system
internal areas. Table 1 presents the moments when some new classes and areas
were created during the simulation (see also Fig.5 and Fig.6). If there are the
points which were not fitted to the first area, then it means that a potential fault



8 A. Bielecki et al.

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8 0

0.2

0.4

0.6

0.8

1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

power

wind

v1

Fig. 3. The operational states (wind, power) and vibration signal classified by both
classical ART-2 network and hybrid system using first 3000 points
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Fig. 5. The operational states (wind, power) and vibration signal classified by classical
ART-2 network using first 15000 points
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Fig. 7. Number of points which are categorized as area 2 in the time domain

occurred. The second area was opened at the early simulation time point. It was
filled later as it is shown in Fig.7, which means that the area 2 is a detector of
a turbine failure.

4 Concluding Remarks

It has been stressed that monitoring is crucial in wind turbines exploitation.
There are few attempts to create systems for intelligent monitoring, based on
artificial intelligence - see [9] and references given there. The simulations, de-
scribed in the previous section, show that the proposed hybrid system can be
a good solution for a such task. The turbine damage can be detected by using
that system on an early stage.
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10. Jab�loński, A., Barszcz, T.: Procedure for data acquisition for machinery working
under non-stationary operational conditions. In: The Ninth International Confer-
ence on Condition Monitoring and Machinery Failure Prevention Technologies,
London, June 12-14 (2012)
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Abstract. This paper presents the parallel architecture of the conjugate
gradient learning algorithm for the feedforward neural networks. The
proposed solution is based on the high parallel structures to speed up
learning performance. Detailed parallel neural network structures are
explicitly shown.

1 Introduction

The feedforward neural networks have been investigated by many scientists e.g.
[1], [17], [27], [29], [30]. To train the feedforward networks the gradient methods
were often used, see e.g. [8], [12], [16], [28]. The conjugate gradient algorithm
is one of these learning methods [7], [9], [10], [14], [15]. In the classical case the
neural networks learning algorithms are implemented on serial computer. Unfor-
tunately, this approach is very slow because the learning algorithm requires high
computational load. Therefore, high performance dedicated parallel structure is
a suitable solution, see eg. [2] - [6], [24], [25]. This paper presents a new concept
of the parallel realisation of the conjugate gradient learning algorithm. A single
iteration of the parallel architecture requires much less computation cycles than
a serial implementation. The efficiency of this new architecture is very satisfying
and is explained in the last part of the paper.

The structure of the feedforward network is shown in Fig. 1. The network
has L layers, Nl neurons in each l − th layer and NL outputs. The input vector
contains N0 input signals. In the recall phase the network is described by

s
(l)
i =

Nl−1∑
j=0

w
(l)
ij x

(l)
i

y
(l)
i (t) = f(s

(l)
i (t))

(1)

The parallel realisation of the recall phase algorithm uses architecture which
requires many simple processing elements. The parallel realisation of the feed-
forward network in recall phase (1) is depicted in Fig. 2a and its processing

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 12–21, 2014.
c© Springer International Publishing Switzerland 2014
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Fig. 1. Sample structure of the feedforward neural network

Fig. 2. Recal phase of the feedforward network and the structures of processing ele-
ments

elements (PE) in Fig. 2b. Two kinds of functional processing elements are used
in the proposed solution. The aim of the processing elements A is to create
matrices which contain values of weights in all layers. The input signals are en-
tered for rows elements parallel, multiplied by weights and received results are
summed in columns. The activation function for each neuron in the l−th layer is

calculated after determination of product w
(l)
i x(l) in processing element of type

B. The outputs of neurons in the previous layer are simultaneously inputs to the
next layer. The output y(L) for the last layer is the output of the whole network.

The conjugate gradient method [14] is used to train the feedforward network.
We minimize the following goal criterion
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J (t) =
1

2

∑NL

i=1
ε
(L)2

i (t) =
1

2

∑NL

i=1

(
y
(L)
i (t)− d(L)

i (t)
)2

(2)

where ε
(L)
i is defined as

ε
(L)
i (t) = y

(L)
i (t)− d(L)

i (t) (3)

and d
(L)
i (t) is the i− th desired output. The errors ε

(l)
i in the hidden layers are

calculated as follows

ε
(l)
i (t)

∧
=

Nl+1∑
m=1

δ
(l+1)
i (t)w

(l+1)
mi (t) (4)

δ
(l)
i (t) = ε

(l)
i (t) f ′

(
s
(l)
i (t)

)
(5)

On this basis, we can determine the components of the gradient vector for each
weight

∇w(l)
ij (t) = δ

(l)
i x

(l)
j (6)

The conjugate gradient algorithm is based on the first three elements of the
Taylor series expansion of the goal function. In the classical case, this requires
knowledge of the gradient vector and the Hessian matrix. However, the conjugate
gradient algorithm can determine the directions of search and step length without
the Hessian matrix. Instead, it uses the directional minimization along a selected
direction. In this algorithm, the weights of the entire network are treated as a
single vector and their derivatives form the gradient vector g. Operation of the
conjugate gradient algorithm is described below.

1. The choice of the initial weight vector.
2. The calculation of the gradient and the initial direction p1 of minimization

p1 = −g1 (7)

3. The linear minimization along the selected direction

wt+1 = wt + α
∗pt (8)

where α∗ is the factor which minimizes the vector wt in direction pt.
4. Calculate the new values of weights.
5. Calculate the new gradient.
6. Calculate the new direction of minimization

pt+1 = −gt+1 + βtpt (9)

where βt is given by (10), (11) or (12).
7. If the network has not been learned return to step 3

In practice, there are 3 different methods to calculate βt.
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– Hestenes-Stiefel

βt =
gT
t+1(gt+1 − gt)

pT
t (gt+1 − gt)

(10)

– Polak-Ribiere

βt =
gT
t+1(gt+1 − gt)

gT
t gt

(11)

– Fletcher-Reeves

βt =
gT
t+1gt+1

gT
t gt

(12)

This paper used the method of calculating βt proposed by Fletcher and Reeves.
The task of suggested parallel structure will be realisation of all calculations
described by equations (1) - (9) and (12).

2 Parallel Realisation

First, we calculate the errors in all neurons using backpropagation and determine
the gradient vector. This is accomplished by the structure shown in Fig. 3. Its
processing elements are shown in Fig. 4. The A processing elements are used

to calculate the error ε
(L)
i (3) in the output layer. The elements B transfer the

errors to the linear part of neurons (5), and the processing elements C compute

errors ε
(l)
i in the hidden layers (4).

Fig. 3. The structure showing how to propagate error back and compute the gradient
vector
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Fig. 4. The processing elements for propagating error back and computing the gradient
vector

The D processing elements are used to calculate the gradient vector com-
ponents (6) for all weights and finally to update the weights (9) of the neural
network. Additional processing element E calculate value of βt based on the
square of the length of the gradient vector derived from the processing elements
D according to the Fletcher-Reeves method (12). Alternatively, one can apply
the methods of Hestenes-Stiefel (10), or Polak-Ribiere (11) making minor mod-
ifications in processing elements D and E.

Fig. 5. The structure for computing the goal function and its processing element
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Fig. 6. The general structure for parallelization of the conjugate gradient learning
algorithm

Figure 5 shows the structure of the goal function calculation and its pro-
cessing element. Figure 6 shows the general structure of the parallel conjugate
gradient learning algorithm. It consists of several layers. The layer W contains
the parallel structures of the recall phase, the error backpropagation, the per-
forming of the gradient of the goal function and the coefficient βt. The P layer
is used to determine the current direction vector of search on the basis of the
gradient vector, the previous direction vector of search and factor βt (12). The

Fig. 7. The processing element of the P − th layer
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Fig. 8. Additional processing elements in the A− th, B − th and T − th layers

Fig. 9. Idea of the weight transfer between the A− th, B− th and T − th layers during
searching the α∗

layers processing elements are shown in Fig. 7. The task of the layers A, B, T,
and the control unit CU is to minimize the goal function in the direction pt and
determine the value of factor α∗. The layers A, B and T are analogous in struc-
ture to the W layer but also include processing elements calculating the slope of
the goal function at the points a, b and temp. The points a and b determine the
current range searching, while the point temp is the next approximation of α∗.
The control unit CU based on the values of a, b, temp and the slopes at these
points, determines a new searching range according to Fig. 9. Then, the new
temp point is determined (see Fig. 10). Above steps are repeated until we find
the α∗ minimizing the goal function in the direction pt [7].
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Fig. 10. The method of determining a temporary solution during searching the α∗

3 Conclusion

In this paper the parallel realisation of the conjugate gradient learning algorithm
for the feedforward neural network was proposed. We assume that all multipli-
cations and additions operations take the same time unit. For simplicity of the
result presentation we show graphs for only one layer. We can compare compu-
tational performance of the parallel implementation of the conjugate gradient
learning algorithm with sequential solution up to Nl−1 = 100 inputs and up
to Nl = 100 outputs of neural network. Computational complexity of the se-
rial conjugate gradient learning algorithm is of order O(K2) and equals TSl =
11NlNl−1−2Nl−2Nl−1+m(11NlNl−1−2Nl−2Nl−1+29). In the presented paral-
lel architecture each iteration requires only TPl = Nl+2Nl−1+m(Nl+2Nl−1+21)
time units (see Fig. 11) The factor m is the number of steps required to reach
the directional minimum and to obtain the α∗. Assuming m = 10 performance
factor (PF = TSl/TPl) of parallel realisation of the conjugate gradient learning
algorithm achieves nearly 350 for Nl−1 = 100 inputs, Nl = 100 outputs in the
l− th layer and it grows fast when these numbers grow, see Fig. 11. We observed

Fig. 11. Number of times cycles in a) classical (serial), b) parallel implementation and
c) performance factor
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that the performance of the proposed solution is promising. Analogous parallel
approach can be used for the other advanced learning algorithm of feedforward
neural networks, see eg. [1]. In the future research we plan to design parallel
realisation of learning of other structures including probabilistic neural networks
[18]-[20] and various fuzzy structures [13], [23], [21], [22], [26].
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Abstract. Surface plasmon polaritons (SPPs) confined along metal-
dielectric interface have attracted a relevant interest in the area of ultra-
compact photonic circuits, photovoltaic devices and other applications
due to their strong field confinement and enhancement. This paper in-
vestigates a novel cascade neural network (NN) architecture to find the
dependance of metal thickness on the SPP propagation. Additionally, a
novel training procedure for the proposed cascade NN has been devel-
oped using an OpenMP-based framework to strongly reduce the training
time. The performed experiments confirm the effectiveness of the pro-
posed NN architecture for the problem at hand.

Keywords: Cascade neural network architectures, Surface plasmon po-
laritons, Plasmonics, Plasmon structure.

1 Introduction

Surface Plasmon Polaritons (SPPs) are quantized charge density oscillations oc-
curring at the interface between a metal and a dielectric when a photon couples
to the free electron gas of the metal. The emerging field of surface plasmon-
ics has applied SPP coupling to a number of new and interesting applications
[1],[2],[3], such as Surface Enhanced Raman Spectroscopy (SERS), photovoltaic
devices optimisation, optical filters, photonic band gap structures, biological and
chemical sensing, and SPP enhanced photodetectors.

Some papers appeared in literature simulate and analyse the excitation and
propagation of SPPs on sinusoidal metallic gratings in conical mounting. Re-
searchers working in the emerging field of plasmonics have shown the significant
contribution of SPPs for applications in sensing and optical communication.
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One promising solution is to fabricate optical systems at metal-dielectric in-
terfaces, where electromagnetic modes called SPPs offer unique opportunities to
confine and control light at length scales below 100nm [4],[5].

The studies and experiences conducted on SPPs are well assessed and show
that the propagation phenomena are well established by the involved materials
in the plasmon structure at large thickness, conversely when it becomes smaller
than the wavelength of the exciting wave, investigations are required due to the
actual poor understanding [6].

This paper proposes a novel neural netwok (NN) topology to study of the prob-
lems of a SPP propagating at a metal flat interface separating dielectric medium.
Currently, we are using NNs to study the inner relation between SPPs exciting
wavelength, metal thickness and SPP wavelength and propagation length. The
focus of this paper is on the determination of the dependance of the SPP prop-
agation of the metal thickness employing suitable NN schematics. Due to the
high sensitivity of the neural model to data oscillations a novel training pro-
cedure has been devised in order to avoid polarisations and miscorrections of
some NN weights. Moreover, since such a training procedure could be expensive
in terms of computational power and wall-clock time, a parallel version using
an OpenMP environment, with shared memory, has been developed and opti-
mised to obtain maximum advantage from the available parallel hardware. A big
amount of data has been put into proper use for the investigated NN topology.
Such data have been made available by solving 3D Maxwell equations with rel-
ative boundary conditions by COMSOL Multiphysics, which is an efficient and
powerful software package to simulate the characteristics of SPPs.

2 Basics of Surface Plasmon Polaritons

The field of plasmonics is witnessing a growing interest with an emerging rapid
development due to the studies and researches about the behaviour of light at
the nanometer scale. Light absorption by solar cells patterned with metallic
nanogratings has been recently investigated, however we consider light-excited
SPPs at the metal surface. The outcomes of our investigation can be used to
improve efficient capturing of light in solar energy conversion cells [1]. Therefore,
our main research interests are toward the properties of SPPs.

SPPs are electromagnetic waves propagating along metal-dielectric interfaces
and exist over a wide range of frequencies, evanescently decaying in the per-
pendicular direction. Such electromagnetic surface waves arise via the coupling
of the electromagnetic fields to oscillations of the conductor electron’s plasma
[7]. SPP is the fundamental excitation mode at a metal-dielectric interface that
is coupled to an electromagnetic wave as described in [7]. The most simple ge-
ometry sustaining SPPs is that of a single, flat interface (see Fig. 1) between a
dielectric, non-absorbing half space (z > 0) with positive real dielectric constant
ε2 and an adjacent conducting half space (z < 0) described via a dielectric func-
tion ε1(ω). The requirement of metallic character implies that Re[ε1] < 0. As
shown in [7], for metals this condition is fulfilled at frequencies below the bulk
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plasmon frequency ωp. We look for propagating wave solutions confined to the
interface, i.e. with evanescent decay in the perpendicular z-direction [7].

The electromagnetic field of a SPP at the dielectric-metal interface is obtained
by solving Maxwell’s equations in each medium with the associated boundary
conditions. The adopted structure is a metal-dielectric interface composed by
Molybdenum and air as shown in Fig. 1. This structure is the most simple in
order to reduce computational effort, as the main purpose of the paper is to
investigate the important relation between dispersion and thickness of the metal
by means of a proper novel NN architecture. It should be noted that this relation
is not affected by the complexity of the structure.

The basic mathematical equations describing the electromagnetic phenomena
concerning SPP propagation are listed below:

Hd = (0, Hyd, 0) e
i(kxd x+kzd z−ωt)

Ed = (Exd, 0, Ezd) e
i(kxd x+kzd z−ωt)

Hm = (0, Hym, 0) e
i(kxm x−kzm z−ωt)

Em = (Exm, 0, Ezm) ei(kxm x−kzm z−ωt)

(1)

with boundary condition at z = 0

Exm = Exd

Hym = Hyd

εmEzm = εdEzd

(2)

as a consequence of the previous equation we have

kxm = kxd (3)

We consider a system consisting of a dielectric material, characterised by
an isotropic, real, positive dielectric constant εd, and a metal characterised by
an isotropic, frequency dependent, complex dielectric function εm = εr + iεi.
In order to introduce the main parameters characterising SPPs assuming the
interface is normal to z-axis and the SPPs propagate along the x direction (i.e.,
ky = 0), the SPP wavevector kx or β is related to the optical frequency ω through
the dispersion relation.

kx = k0

√
εd εm
εd + εm

(4)

β =
ω

c

√
εd εm
εd + εm

(5)

We take ω to be real and allow kx to be complex, since our main interest is
in stationary monochromatic SPP fields in a finite area, where

k0 =
ω

c
(6)
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is the wavevector in free space, and λ0 = c
ω is the wavelength in vacuum. For

metals, the permittivity is complex, which leads to kx being complex. The imagi-
nary part of kx defines the SPPs damping and as it propagates along the surface.
The real part of kx is connected to the plasmons wavelength, λSPP :

λSPP =
2π

Re[β]
(7)

LSPP is the SPP propagation length, physically the energy dissipated through
the metal heating and it is the propagation distance. LSPP is defined as follows:

LSPP =
1

Im[β]
(8)

Finally, the following reports the expression of the electric field of plasmon
wave:

ESPP = E±
0 e

i(kxx±kzz−ωt) (9)

where
kx = k

′
x + ik

′′
x

k
′
x = 2π

λSPP

3 Input Data for the Proposed Cascade NN Architecture

By solving the full wave 3D Maxwell equations in the simple geometry shown in
Fig. 2, which separates two media as metal and dielectric, using the finite element
method-based software package COMSOL Multiphysics, we have obtained the
LSPP and λSPP data values for different thickness values. The perfectly matched
layer boundary condition was chosen for the external surface of the plasmon
structure. The exciting wave was monochromatic on the visible spectra and
ranging from 400nm to 700nm.

We have performed many numerical simulations while varying the exciting
wavelengths for each investigated thickness, hence obtaining the corresponding
SPP waves. A SPP propagates at the interface dielectric-metal decaying into the
metal.

The values of LSPP and λSPP were computed for the all visible range of
wavelength at the following different thickness values t of the metal: 36nm,
42nm, 48nm, 54nm, 60nm, 72nm, 84nm, 96nm and 128nm.

4 The Proposed Neural Network Architecture

The prediction of λSPP and LSPP from the set of values λ0 and t is related to the
problem of the dependence of LSPP from λSPP . To obtain a correct prediction of
λSPP by a neural network-based approach a value of λSPP is needed. Although
this can be obtained by a cascade process, the traditional means have that the
cascade NN is accommodated by separate training sessions for each different
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Fig. 1. Geometry for SPP propagation at
a single interface between metal and di-
electric

Fig. 2. Implemented geometry in COM-
SOL

dedicated NN. Unfortunately, such training sessions would result in very time-
consuming computation.

In order to overcome the above mentioned problem, this paper proposes a
novel parallel paradigm for training that manages to run a single comprehensive
training for the cascade NN as a whole, thus avoiding separate training phases.
This novel solution has been used for the problem at hand, described in Section 2.

Essentially, the adopted topology has been derived from a pair of common two-
layer feed-forward neural networks (FFNNs) [8], used to separately predict λSPP

and LSPP , respectively. The comprehensive structure is similar to a cascade feed-
forward, whereby the output of the first neuroprocessing stage is connected with
the input of the second stage and form a new extended input vector for the
second stage. On the other hand, the vector provided as input to the second
neuroprocessing stage depends on the predicted values obtained from the first
stage, hence it propagates a prediction error.

Moreover, during the training phase, while some outputs can be validated for
the first neuroprocessing stage, the localised deviation from the correct frequency
spectrum could corrupt the training of the second stage. The behaviour of this
novel topology is as a two step processing of the data signal that is comprehensive
also of a so called second validation or ω-validation, described in the following,
aiming at avoiding such an error propagation, which would otherwise endanger
the correct training of the second neuroprocessing stage.

A given output from the first stage has to be validated on the frequencies
domain, by a validation module, before it can be used. This validation module
performs the ω-validation by means of the Fourier computation on a delayed
Gaussian window of the output and training signal.

An intermediate level of data processing requires the implementation of a
module performing the Fourier transform of the data. Its relative parameters
are not a priori established, however are on-line determined by the novel NN
topology and then by its training procedure.
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Fig. 3. The proposed cascade NN architecture

Fig. 4. An equivalent recurrent schema

Fig. 3 represents the proposed architecture, which will be detailed in the fol-
lowing. It is possible to recognise two groups of modules, the first comprising
IIIa and IVa, whereas the second IIIb and IVb, each acting as a FFNN. The
proposed novel topology behaves as a cascade FFNN topology [9]. Fig. 4 depicts
a more complex novel topology that performs the prediction as a Nonlinear Au-
toRecoursive with exogenous inputs (NARX) recurrent neural network topology
[10]. Such figure shows the implemented delay lines to the blocks performing
the neural processing. It should be noted that we have implemented one neuron
as a purelin while the remaining neurons in the first hidden layer process the
input signal. The performed simulations have shown an increased computational
effort, for this recurrent scheme, while the corresponding results have not sig-
nificantly improved the accuracy on the predicted data. Even though this is a
novel recurrent cascade topology this paper fully investigates the scheme shown
in Fig. 3. The following provides the details of the proposed NN cascade.

Input data analysis. The input layer (I) does not directly provide the input
vector (u) to the first FFNN hidden layer (IIIa), being it firstly processed
by an intermediate layer (II) that is trained to extrapolate a set of parameters
necessary to perform the ω-validation, i.e. the σ for the Gaussian window Fourier
analysis. This layer (II) is also provided with ad adjunct purelin neuron acting
as a transmission line for the following layer (IIIa).

The main purpose of II is to characterise the frequency peaks windows on
the data spectrum in order to associate, after the training phase, an optimum
σ value to perform gaussian-window Fourier analysis on the output data from
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the second FFNN hidden layer (IVa). For this reason, the input to the following
layers are provided as

xVa = yII(xI) = [τ,Δτ , σ|xI]

xIIIa = xI (10)

where xVa retains the discrete sample number τ and both the window size Δτ

and σ for the described Fourier analysis.

FFNNs hidden layers The first neuroprocessing module acts as a fully connected
FFNN and consists of two hidden layers, i.e. IIIa and IVa. The first hidden
layer (IIIa) embeds 10 neurons with tansig activation function, whereas the
second hidden layer (IVa) consists of 7 neurons with logsig activation function.
Similarly, the second neuroprocessing module provides the functionalities of a
fully connected FFNN, however its two hidden layers, IIIb and IVb, consist of
8 and 5 neurons with tansig activation function, respectively.

FFNN training and validation The implemented FFNN neuroprocessing mod-
ules are trained by the Levenberg-Marquardt algorithm with a gradient descent
method. Hence, for the τ -esime discrete time step, the variation introduced to
the weights are given by

wμν
ij (τ) = wμν

ij (τ − 1)− ηe(τ) ∂e(τ)
∂wμν

ij (τ)

eμ(τ) = ỹμ(τ) − yμ(τ)

(11)

where wμν
ij (τ) represents the value for the τ -esime step of the connection weight

from the i-esime neuron of the μ layer to the j-esime neuron of the ν layer, η is
the learning rate parameter, ỹμ(τ) and yμ(τ) are respectively the training and
output signal from the μ layer.

ω-validation The output of the first neuroprocessing module comes from the
second FFNN hidden layer (IVa) and is sent, as valid output, to the last layer
of the network and also as input to the validation module (Va). The validation
module consists of a functional unit performing the fast Fourier transform on
a selected window of the input signals. Moreover, the validation module uses a
dynamically allocated buffer to implement a size-varying delay line.

The latter is used to enable real-time online resizing of the Fourier window to
suit the properties of the investigated signal. These adjustments are performed
starting from the parameters contained in xVa as (10). Once the gaussian win-
dowed Fourier transform has been computed, the following values are determined

M(τ,Δτ , σ) = max
[τ :τ+Δτ ]

{ ∣∣∣F̂σ[ ˜yIVa]− F̂σ[y
IVa]
∣∣∣ }

m(τ,Δτ , σ) = min
[τ :τ+Δτ ]

{ ∣∣∣F̂σ[ ˜yIVa]− F̂σ[y
IVa]
∣∣∣ } (12)
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then the module is trained to admit only certain regions of the (M,m) pairs
plan which validate the output signal of the layer IVa.

If the output signal results validated, it is then sent as input for the layer
IIIb as

xIIIb = [xI|yIVa] (13)

The first neuroprocessing module takes xI as input and is trained by all
the available patterns, while the second module is trained only by the allowed
sequences selected according to the validation procedure. In the other case, i.e.
if the ω-validation is negative, the second module skips the data during the
training process and gives a NaN flagging, being the relative data for the second
variable unavailable.

Final output Finally, the implemented topology gives a global output with a
layer consisting of two neurons purelin.

5 Training Procedure on OpenMP

The neural network architecture proposed above has introduced a sequential
validation phase for the results of the first neuroprocessing module. Validation
has to be performed before the first module results can be sent as input for
the second module. Unfortunately, such sequential operations make the training
process expensive in terms of CPU time. In order to shorten training time in
this section is described a parallel implementation of the same neural network
architecture, using OpenMP, that manages to obtain asynchronous training and
validation.

Generally, when parallelising an application using OpenMP, processes are
forked, joined and synchronised (e.g. by means of a barrier). Such mechanisms,
however, introduce a runtime overhead, e.g. when the processes having produced
and communicated their results have to wait until the synchronisation barrier
is over. This is often the case when the computation times of processes are not
perfectly balanced [11]. Therefore, our parallel version aims at reducing such
an overhead by avoiding, as much as possible, the fork-join-barrier constructs,
and by introducing instead processes that produce and consume data. The main
reason for using OpenMP is that, by means of a shared memory, communication
overhead among processes can be avoided, however, on the other hand, shared
memory requires a complex handling of semaphores and locks before accessing
some parts of the memory itself. We have handled the synchronisation concern
in such a way that overhead is minimised [12].

Mainly, the proposed parallel solution is based on the continuous execution of
different processes to care for the different phases of training for the above cas-
cade NN. In our experiments a multi-core processor has been used, however any
kind of shared memory system supporting OpenMP directives can be employed.
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Fig. 5. The proposed OpenMP training
asynchronous stream

 

 

Fig. 6. Global performance graph of
the implemented NN architecture

The proposed cascade NN has been trained to predict the values of λSPP and
LSPP starting from an input vector.

u(τ) = [λ0, t] (14)

To evaluate the performance of the cascade NN, two different kinds of error
were considered. We define two local errors ea and eb, as well as a global error
e∗ as follows:

ea = ỹIVa − yIVa

eb = ỹIVb − yIVb

e∗ = max {ea, eb} ≥ |ỹVI − yVI|
(15)

where ỹ indicates the training value.
For each training epoch, the outputs from layers IVa, IVb and VI (see Fig. 3.)

were used to compute the errors ea, eb and e∗ as in (15). The training has been
organised in four different activities, executed on an OpenMP environment (see
Fig. 5).

The first activity, named NN Simulation, provides as input to the whole cascade
neural network with a training pattern, which has been previously generated.

The second activity, named Phase A, and started once the first activity has
terminated, uses a gradient descent algorithm to adjust the neural weights of
the intermediate layer II and the first neuroprocessing (layers IIIa and IVa).

The third activity is the ω-validation and is started concurrently with Phase
A, hence after NN Simulation has finished, since the results produced by IVa are
needed. The ω-validation activity performs the gaussian windowed fast Fourier
transform of the training set and the predicted signal resulting as output of
IVa, then M and m defined in (12) are computed. Eventually, the values of M
and m are used to decide if the pattern data are usable to train the second
neuro-processing module (IIIb and IVb).
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Finally, the fourth activity is Phase B performing a further training that
adjusts the output weights of layer VI. For the proposed schema (see Fig. 3),
module Vb acts as a controller determining whether it is appropriate to merge
data from IVa and IVb before they can be given as input to VI. The merge is
enabled when the ω-validation has given a positive result, otherwise only data
resulting from IVa are used. Moreover, all the weights in layer VI are adjusted
when the result of ω-validation is positive, otherwise only the synaptic weights
of the first neuron in VI is adjusted.

The four activities above are started each as a process (see Fig. 5). Process
NN Simulation feeds data and triggers the execution of processes Phase A and
ω-validation. The latter two processes give their outputs to process Phase B,
and then wait for new data, till the training stops. Process Phase B starts as soon
as input data are available. At the end of the training epoch the global network
performances are stored for further analysis. All the measures of performance
involved in the training process are given by the Mean Squared Error (MSE),
though for the global network performances, the formula is adjusted by using
the global error e∗ of (15).

Fig. 5 shows in two vertical tiers some rectangles. Each rectangle corresponds
to a process that can execute in parallel with another that is on the same row.
In the picture, the time evolves while going down. The arrows with continuous
lines represent a flow of data from a producer to a consumer process, whereas the
dotted line the communication of an event. Ellipses show repositories of data.
The said interactions among processes are iterated until the training session
stops.

While having devised a parallel solution, our effort has been to optimise the
use of computational resources, hence autonomous processes needing as less syn-
chronisation as possible have been implemented as described above. Our pro-
posed solution manages to greatly reduce the wall-clock timeframe needed for
the training.

6 Results and Conclusions

The proposed NN cascade has been mainly derived from a couple of common
two-layer feed-forward neural networks used to separately predict λSPP and
LSPP . The comprehensive structure is similar to a cascade feed-forward, where
the output of the first neuroprocessing stage has been connected with the inputs
for the second stage to form a new extended input vector.

For training and evaluation we have used the global error e∗ to compute
the mean square error (MSE) of the network. Fig. 6 shows the performance of
the proposed and implemented novel cascade NN architecture in terms of such
metrics. Fig. 7 reports the values of the computed and predicted λSPP and
LSPP . The obtained results confirm the good predictions obtained by the novel
NN schema.
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Fig. 7. The computed and predicted λSPP and Lspp

Simulation results for the NN cascade confirm the effectiveness of the devel-
oped novel architecture whose performance during the training and evaluation
phases show a very low MSE. Other complex NN architectures such as pure
NARX model or advanced Wavelet Recurrent Neural Networks [13] could not
be used because of the prediction instability for the data at hand.
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Abstract. Artificial neural networks have been widely used for machine
learning tasks such as object recognition. Recent developments have
made use of biologically inspired architectures, such as the Convolutional
Neural Network, and the Deep Belief Network. We test the hypothesis
that generative models such as the Deep Belief Network should perform
better on occluded object recognition tasks than purely discriminative
models such as Convolutional Neural Networks. We find that the data
does not support this hypothesis when the generative models are run in
a partially discriminative manner. We also find that the use of Gaussian
visible units in a Deep Belief Network trained on occluded image data
allows it to also learn to classify non-occluded images.1

1 Introduction

Partially occluded object recognition has historically been a challenging task.
Most methods of solving this problem rely on complex preprocessing and fea-
ture extraction algorithms, often involving image segmentation and other extra
processing [16] [22] [23] [24]. More recently, techniques involving the use of gen-
erative model reconstructions have been proposed [18].

Convolutional Neural Networks (CNNs) are feed-forward Artificial Neural
Networks (ANNs), while Deep Belief Networks (DBNs) make use of Restricted
Boltzmann Machines (RBMs) that use recurrent connections. The fundamental
difference between these networks then, is that the DBN is capable of function-
ing as a generative model, whereas a CNN is merely a discriminative model. A
generative model is able to model all variables probabilistically and therefore to
generate values for any of these variables. In that sense it can do things like re-
produce samples of the original input. A discriminative model on the other hand
models only the dependence of an unobserved variable on an observed variable,

1 This research was supported by the Natural Sciences and Engineering Research
Council of Canada.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 34–46, 2014.
c© Springer International Publishing Switzerland 2014



Application of Support Vector Machines, CNNs and DBNs 35

which is sufficient to perform classification or prediction tasks, but which cannot
reproduce samples like a generative model can. This suggests that DBNs should
perform better on the task of partially occluded object recognition, as they ought
to be able to use their generative effects to partially reconstruct the image to aid
in classification. This hypothesis is what we wish to test in our work comparing
CNNs, and DBNs.

2 Learning Algorithms

In order to contrast the effectiveness of generative models with discriminative
models on the occluded object recognition task, we compared several models of
Artificial Neural Network (ANN), as well as other machine learning algorithms,
including: the Support Vector Machine (SVM), the CNN, (two discriminative
models) and the DBN, (one generative model). Although the SVM is not a
proper ANN strictly speaking, its popularity as a discriminative classifier means
that it deserves inclusion as a control.

2.1 Support Vector Machine

The SVM is a powerful discriminant classifier first developed by Cortes & Vapnik
[4]. Although technically not considered to be an ANN, Collobert & Bengio
[3] showed that they had many similarities to Perceptrons with the obvious
exception of learning algorithm.

2.2 Convolutional Neural Networks

The earliest of the hierarchical ANNs based on the visual cortex’s architecture
was the Neocognitron, first proposed by Fukushima & Miyake [6]. This network
was based on the work of neuroscientists Hubel & Wiesel [13], who showed the
existence of Simple and Complex Cells in the visual cortex. Fukushima took the
notion of Simple and Complex Cells to create the Neocognitron, which imple-
mented layers of such neurons in a hierarchical architecture [5].

Then LeCun et al [14] developed the CNN, which made use of multiple Convo-
lutional and Subsampling layers, while also using stochastic gradient descent and
backpropagation to create a feed-forward network that performed exceptionally
well on image recognition tasks such as the MNIST. The Convolutional Layer
of the CNN is equivalent to the Simple Cell Layer of the Neocognitron, while
the Subsampling Layer of the CNN is equivalent to the Complex Cell Layer of
the Neocognitron. Essentially they delocalize features from the visual receptive
field, allowing such features to be identified with a degree of shift invariance.
This unique structure allows the CNN to have two important advantages over a
fully-connected ANN. First, is the use of the local receptive field, and second is
weight-sharing. Both of these advantages have the effect of decreasing the num-
ber of weight parameters in the network, thereby making computation of these
networks easier.
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Fig. 1. The basic architecture of the CNN

2.3 Deep Belief Networks

One of the more recent developments in machine learning research has been
the Deep Belief Network (DBN). The DBN is a recurrent ANN with undirected
connections. Structurally, it is made up of multiple layers of RBMs, such that
it can be seen as a ‘deep’ architecture. To understand how this is an effective
structure, we must first understand the basic nature of a recurrent ANN.

Recurrent ANNs differ from feed-forward ANNs in that their connections
can form cycles. The advantage of recurrent ANNs is that they can possess
associative memory-like behaviour. Early Recurrent ANNs, such as the Hopfield
network [11], showed promise in this regard, but were limited. The Hopfield
network was only a single layer architecture that could only learn very limited
problems due to limited memory capacity. A multi-layer generalization of the
Hopfield Network was developed known as the Boltzmann Machine [1], which
while able to store considerably more memory, suffered from being overly slow
to train.

A variant of the Boltzmann Machine was first known as a Harmonium [21], but
later called a RBM, which initially saw little use. Then Hinton [7] developed a fast
learning algorithm for RBMs called Contrastive Divergence, which uses Gibbs
sampling within a gradient descent process. The RBM is primarily different
from a regular Boltzmann Machine by the simple fact that it lacks the lateral
or sideways connections within layers.

By stacking RBMs together, Hinton, Osindero, & Teh, [9] created the DBN.
The DBN is trained in a greedy, layer-wise fashion. This generally involves pre-
training each RBM separately starting at the bottom layer and working up
to the top layer. All layers have their weights initialized using unsupervised
learning in the pre-training phase, after which fine-tuning using Backpropagation
is performed using the labeled data, training in a supervised manner.

When introduced, the DBN produced then state of the art performance on
such tasks as the MNIST. Later DBNs were also applied to 3D object recognition
[17]. Ranzato, Susskind, Mnih, & Hinton [18] also showed how effective DBNs
could be on occluded facial images.



Application of Support Vector Machines, CNNs and DBNs 37

Boltzmann Machine Restricted Boltzmann Machine

Visible Layer

Hidden Layer

Visible Layer

Hidden Layer

Deep Belief Network

RBM

RBM

RBM

Visible Layer

Fig. 2. The structure of the general Boltzmann Machine, the RBM, and the DBN

3 Methodology

For the object/image dataset, the small NORB [15] was used. The small NORB
consists of 5 object categories and several thousand images per category, for a
total of 24300 images each in the training and test sets. The small NORB proper
includes a pair of stereo images for each training example, but we chose to only
use one of the images in the pair. Normal, non-occluded images with the object
fully visible in the image are seen in Figure 3. Occluded images were created
by occluding a random half of each image in the test set with zeroes (black) as
shown in Figure 4.

Fig. 3. Images from the small NORB non-occluded data set

For the SVMs we tested various parameters from the literature, such as Huang
& LeCun [12] and Ranzato et al. [19] and eventually settled on a Gamma value
of 0.0005, and a C value of 40. Gamma is how far a single training example
affects things, with low values being ”far” and high values being ”close”. C is
the tradeoff between misclassifying as few training samples as possible (high C)
and a smooth decision surface (low C). For code for the SVMs, we used the
library “LIBSVM” by Chih-Chung Chang and Chih-Jen Lin from the National
Taiwan University [2].
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Fig. 4. Images from the small NORB occluded data set

For the CNN, Sirotenko’s Matlab library “CNN Convolutional neural network
class” (http://www.mathworks.com/matlabcentral/fileexchange/24291-
cnn-convolutional-neural-network-class)was used andmodified extensively
to serve our purposes. Determining the architecture of a CNN requires special con-
siderations. To calculate the reasonable dimensions of a square layer from either its
previous layer (or next layer) in the hierarchy requires at least some of the follow-
ing variables to be assigned. Let x be the width of the previous (or current) square
layer. Let y be the width of the current (or next) square layer. Let r be the width
of the square receptive field of nodes in the previous (or current) layer to each cur-
rent (or next) layer node, and f be the offset distance between the receptive fields
of adjacent nodes in the current (or next) layer. The relationship between these
variables is best described by

y =
x− (r − f)

f
(1)

where, x ≥ y, x ≥ r ≥ f , and f > 0.
For convolutional layers f = 1 and (1) generalizes to

y = x− r + 1 (2)

For subsampling layers r = f , and thus (1) generalizes to

y =
x

f
(3)

From this we can determine the dimensions of each layer. The architecture for
the CNN on the NORB dataset is shown in Table 1, where S, C and F represent
convolutional, subsampling and fully connected layers, respectively.

Various parameters for the CNN were also experimented with to determine
the optimal parameters to use in our experiments. We eventually settled on
100 epochs of training. The CNN learning rate and learning rate decrement
parameters were determined by using Huang and LeCun’s recommendations
[12]. That is to say, the learning rate was initially set to 2.00E-05, and gradually
decremented to approximately 2.00E-07.

For the DBN we used Stansbury’s Matlab library “Matlab Environment
for Deep Architecture Learning (MEDAL)” (https://github.com/
dustinstansbury/medal). Experiments were also conducted on the parameters

http://www.mathworks.com/matlabcentral/fileexchange/24291-cnn-convolutional-neural-network-class
http://www.mathworks.com/matlabcentral/fileexchange/24291-cnn-convolutional-neural-network-class
https://github.com/dustinstansbury/medal
https://github.com/dustinstansbury/medal
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Table 1. The architecture of the CNN used on the NORB dataset, based on Huang &
LeCun [12]

CNN

Layer Nodes k or r Feature Maps

S1 96x96
C2 92x92 5 8
S3 23x23 4 8
C4 18x18 6 24
S5 6x6 3 24
C6 1x1 6 24
F1 100 1
F2 5 1

for the DBN. By default, DBNs use binary visible units. A modification has been
suggested to use Gaussian visible units for image data [10]. DBNs using both bi-
nary and Gaussian visible units were tested.

Two different amounts of hidden nodes were used, 2000 and 4000 respectively
for the binary units. This was because prior experiments used to determine the
effectiveness of various parameter configurations found that the binary units in
combination with 2000 hidden nodes seemed to actually perform better than
the combination of binary units and 4000 hidden nodes, which was different
than expected. Gaussian units on the other hand, showed greater effectiveness
at 4000 hidden nodes, than at 2000 hidden nodes, which was expected. For this
reason, we tested multiple configurations. Eventually, through systematic efforts
involving testing various parameters at different values and looking at the change
in performance, we settled on the Layer, Learning Rate, and Epoch parameters
for the Visible and Hidden Node cases shown in Table 2. Hinton also provided
some suggested values that we took into consideration [8].

Table 2. The parameters chosen as an optimal configuration for the DBNs

Parameters - DBN

Parameters Learning Rate Epochs

Visible Layers Hidden Pre-Training Fine-Tune Pre-Training Fine-Tune

Binary 2 2000 0.1 0.01 200 50
Binary 2 4000 0.1 0.01 200 50
Gaussian 2 4000 0.001 0.001 200 50

Some more parameters we settled on are shown in Table 3, some of which
were based on experimentation, while others were simply default settings that
worked well. Details about the various parameters are described by Hinton [8].

Finally, experiments were performed with the optimized parameters for SVMs,
CNNs, and DBNs on the small NORB image dataset. Each of the training and
testing sets consisted of 24300 images. These experiments consisted of three
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Table 3. The parameters chosen as an optimal configuration for the DBNs

Parameters - DBN

Momentum 0.5
Weight Penalty 2.00E-04
Batch Size 100
Begin Simulated Annealing At 50
Number of Gibbs Sampling 1
Sparsity 0.01
Start to Vary Learning Rate At 50

different methods of training: one which consisted of training exclusively on the
non-occluded training set, followed by testing on both a non-occluded test set and
an occluded test set; one which consisted of training exclusively on the occluded
training set, followed by testing on both a non-occluded test set and an occluded
test set; and finally one which consisted of training on a mixture of non-occluded
and occluded images, followed by testing on both a non-occluded test set and an
occluded test set. Three replicates were performed for each experimental setup
and averaged.

4 Results

4.1 Support Vector Machines

Table 4 provides a direct comparison of the non-occluded, occluded, and mixed
trained SVMs.

Table 4. A comparison of the accuracy results of the non-occluded, occluded, and
mixed trained SVMs

SVM - NORB

Training Training Test Mixed Test Non-Occluded Test Occluded Test

Non-Occluded 0.999 ± 0.003 0.513 ± 0.001 0.825 ± 0.007 0.200 ± 0.003
Occluded 0.994 ± 0.0001 0.446 ± 0.0002 0.200 ± 0.0001 0.692 ± 0.0005
Mixed 0.973 ± 0.0003 0.754 ± 0.001 0.813 ± 0.001 0.694 ± 0.0005

Note: Mean of 3 replicates ± standard error.

4.2 Convolutional Neural Networks

Table 5 provides a direct comparison of the non-occluded, occluded, and mixed
trained CNNs.
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Table 5. A comparison of the accuracy results of the non-occluded, occluded, and
mixed trained CNNs

CNN - NORB

Training Training Test Mixed Test Non-Occluded Test Occluded Test

Non-Occluded 0.955 ± 0.000 0.515 ± 0.000 0.831 ± 0.000 0.199 ± 0.000
Occluded 0.693 ± 0.003 0.444 ± 0.017 0.304 ± 0.031 0.585 ± 0.002
Mixed 0.832 ± 0.002 0.717 ± 0.003 0.769 ± 0.009 0.665 ± 0.010

Note: Mean of 3 replicates ± standard error.

4.3 Deep Belief Networks

Tables 6-8 provide a direct comparison of the non-occluded, occluded, and mixed
trained DBNs, with the differences between each table resulting from the effects
of choosing different visible units and number of hidden units in the ANN.

Table 6 shows specifically the performance of the DBNs using binary visible
units and having 2000 hidden nodes.

Table 6. A comparison of the accuracy results of the non-occluded, occluded, and
mixed trained DBNs using binary visible units with 2000 hidden nodes

DBN - Binary Visible Unit w/ 2000 Hidden Nodes

Training Training Test Mixed Test Non-Occluded Test Occluded Test

Non-Occluded 0.993 ± 0.0002 0.545 ± 0.000 0.873 ± 0.007 0.214 ± 0.004
Occluded 0.847 ± 0.007 0.451 ± 0.026 0.193 ± 0.044 0.708 ± 0.009
Mixed 0.832 ± 0.013 0.680 ± 0.013 0.676 ± 0.037 0.684 ± 0.020
Note: Mean of 3 replicates ± standard error.

Table 7 shows specifically the performance of the DBNs using binary visible
units and having 4000 hidden nodes.

Table 7. A comparison of the accuracy results of the non-occluded, occluded, and
mixed trained DBNs using binary visible units with 4000 hidden nodes

DBN - Binary Visible Unit w/ 4000 Hidden Nodes

Training Training Test Mixed Test Non-Occluded Test Occluded Test

Non-Occluded 0.989 ± 0.002 0.520 ± 0.008 0.841 ± 0.014 0.203 ± 0.002
Occluded 0.852 ± 0.007 0.458 ± 0.014 0.208 ± 0.022 0.708 ± 0.006
Mixed 0.866 ± 0.008 0.673 ± 0.001 0.653 ± 0.004 0.693 ± 0.004
Note: Mean of 3 replicates ± standard error.

Table 8 shows specifically the performance of the DBNs using Gaussian visible
units and having 4000 hidden nodes.
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Table 8. A comparison of the accuracy results of the non-occluded, occluded, and
mixed trained DBNs using Gaussian visible units with 4000 hidden nodes

DBN - Gaussian Visible Unit w/ 4000 Hidden Nodes

Training Training Test Mixed Test Non-Occluded Test Occluded Test

Non-Occluded 0.981 ± 0.003 0.550 ± 0.002 0.832 ± 0.006 0.258 ± 0.013
Occluded 0.786 ± 0.001 0.673 ± 0.002 0.693 ± 0.006 0.652 ± 0.005
Mixed 0.860 ± 0.016 0.697 ± 0.023 0.714 ± 0.044 0.679 ± 0.006

Note: Mean of 3 replicates ± standard error.

5 Discussion

The experiments performed have shown that when training a classifier on only
the non-occluded training set, the occluded task is a particularly challenging one
for both the discriminative models, such as SVMs and CNNs, and the generative
models, namely the DBNs. In general, training on the non-occluded images tends
to lead to good performance on the non-occluded test set, but poor performance
on the occluded test set, while in most cases, training on the occluded images
leads to good performance on the occluded test set, and poorer performance on
the non-occluded test set.

However, it appears that training on the occluded training set only, for DBNs
using Gaussian visible units at least, produces a highly unusual result of good
performance on the non-occluded test set (69% accuracy). This behaviour is not
apparent with the DBN using binary visible units (19-21% accuracy). A much
less pronounced but similar effect is also visible with the CNN (30% accuracy),
which is not seen at all with SVM, which performs at chance (20% accuracy). It
may be that this is because the SVM is a purely discriminative model. The CNN
while also a discriminative model, is also an ANN, which gives it some similarity
to the DBN. Nevertheless, the unexpectedly good performance of the Gaussian
visible unit based DBN on the dataset type it wasn’t trained on is something
perhaps worth looking into for future research. Though this seems to come at a
cost to performance on occluded test set, as it is the only classifier that performs
better on the dataset type it wasn’t trained on (69% accuracy), than on the type
it was trained on (65% accuracy).

Training the SVM, the CNN, and the DBN with Gaussian visible units on
a mixed training set containing both non-occluded and occluded images leads
to slightly worse performance on the non-occluded test set than an exclusively
non-occluded trained classifier, and slightly better performance on the occluded
test set than an exclusively occluded trained classifier. This result suggests that
mixed training actually improves performance on the occluded problem. It is
possible that these classifiers are benefiting from the more complete images in
the non-occluded part of the training set.

Training a DBN with binary visible units on a mixed training set containing
both non-occluded and occluded images performs worse on the non-occluded
test set than a pure non-occluded training set, and is worse but is very close in
performance on the occluded test set to that trained on a pure occluded training
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set. This is expected, as a mixed training set should yield mediocre performance
on both test sets compared to classifiers trained exclusively on the non-occluded
or the occluded training sets.

While training a SVM, CNN, and a DBN with Gaussian visible units on a
mixed training set leads to better relative performance on the non-occluded test
image set than on the occluded test image set, the reverse appears to be the case
with DBNs with binary visible units, which had better relative performance on
the occluded test image set than on the non-occluded test image set. This is
somewhat curious, and may be indicative of the differences between binary and
Gaussian visible units.

In comparison to other work in the literature, the experiments performed on
the SVM and CNN did not exceed the performance of the results from Huang
and LeCun [12]. Huang and LeCun were able to achieve 88.4% accuracy with
their SVM on the small NORB dataset, and 93.8% accuracy with their CNN
on the small NORB dataset [12]. The SVM in our experiments, with the same
parameters as Huang and LeCun [12], achieved 82.5% ± 0.7% accuracy, while
our CNN achieved 83.1% accuracy. Our best performing algorithm was actually
a DBN using binary visible units and 2000 hidden nodes, which achieved 87%
accuracy. In comparison, Nair and Hinton [17], achieved 93.5% accuracy with
their DBN on the standard small NORB dataset, and 94.8% accuracy with their
DBN using extra unlabeled data. Thus, on the non-occluded images, we did not
achieve quite as good results as the best in the literature.

A major reason for our relatively inferior performance was that we chose to
only take one of the two stereo images in the NORB dataset to be used by
our algorithms. The top performing results in the literature on the other hand,
generally made use of both of the stereo images. We chose not to use the stereo
pair images primarily because of limitations on our part, namely that it would
double the size of the dataset in memory, and that in the case of the CNN it
would require a considerable modification to the architecture of the network.
Thus, we chose to save both memory and time by using only the single image.
This was an important choice, because we were limited in the amount of RAM
available on our computers, and the amount of time to required to train with
even this limited version of the NORB was quite substantial. Also, in reality it
often difficult to obtain stereo images without resorting to some special robotic
vision setup. Conversely, single images are readily available in many datasets,
CCTV cameras, and Internet searches.

As far as occluded images are concerned, there is a lack of results in the liter-
ature that are directly comparable to our work. Probably the most similar work
done so far would be Ranzato et al. [18]. Their work on classifying facial expres-
sions includes some use of occlusion. Rather than using NORB, they used the
Cohn-Kanade (CK) dataset, and the Toronto Face Database (TFD), classifying
7 different facial expressions, rather than 5 objects. Their Type 3 - right half,
Type 4 - bottom half, and Type 5 - top half occlusions are most similar to the
occlusions we used in our experiments. Unlike our experiments, their deep gen-
erative model actually attempts to reconstruct the image first before classifying.
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This takes full advantage of the unique properties of generative models. As such,
they achieve fairly impressive results.

Overall their results in combination with our own results appear to show that
the advantage of using a generative model comes from the reconstruction process
that Ranzato et al. [18] were able to use, and is not simply a result of classification
using a generative model discriminatively as we did. Further research naturally
could involve actually implementing some kind of reconstruction process similar
to what Ranzato et al. [18] used, except on the small NORB dataset, to see
whether or not this conjecture actually holds.

A further possible reason why the performance of the generative DBN did not
exceed the discriminative models could be because the DBNs were fine-tuned
with Backpropagation. As this process is inherently discriminative rather than
generative, the final resulting network perhaps behaves more like a discriminative
model than a generative model. If this is the case, we should be able to see some
difference in the accuracy of the model when it has only been pre-trained, and
not yet fine-tuned with Backpropagation. To truly test this possibility, we may
need to find a generative model that is fully generative through and through,
such as a Deep Boltzmann Machine (DBM) [20].

6 Conclusions

It thus appears that the original hypothesis that the generative models would
perform significantly better on the occluded task than the discriminative models
is not well supported by the results of the experiments performed. Rather, when
run in a discriminative manner, the generative model, in our case, the DBN
appears to perform close to equally well to the discriminative models, the SVM
and the CNN. This suggests that, with regards to other findings in the literature
which use generative models and are able to show a difference, that this difference
is primarily due to the additional use of reconstruction processes, and is not due
to merely the architecture and training algorithm itself.

On the other hand, with regards to DBNs using Gaussian visible units, when
trained on the occluded training set and tested on the non-occluded dataset,
show remarkable performance that perhaps warrants further research. In fact,
this may suggest that intentionally occluding data sets may allow for good per-
formance on both the non-occluded and occluded tasks, at least when using this
particular variant of DBN. Such could prove useful in tasks in which the original
training set is non-occluded, but the real-world test data may well be occluded,
such as in the case of real-world face recognition from CCTV cameras.
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Abstract. Learning results of multilayer perceptrons highly depend on
the initial weight values. The proper selection of weights may improve
network performance and reduce time of the learning process. In the
paper, a new multilayer perceptron weight selection algorithm based on
determination of the variability of the approximated function, within
various fragments of its domain, has been proposed. This algorithm has
a low computational complexity. Results of numerical experiments have
been presented for many learning sets. The comparison of cost function
values for neural networks initialized with the applying of the proposed
algorithm and for networks initialised by the popular Nguyen-Widrow
algorithm has been shown. Independently of the epoch number, the use
of the proposed algorithm made it possible to achieve better results for
a vast majority of the learning sets.

Keywords: neural network, multilayer perceptron, initialisation.

1 Introduction

The multilayer perceptron MLP is one of the most common neural network
architectures because it has some significant advantages. A predisposition for
operation with multi-dimensional data is one of them [1]. MLP consists of an in-
put layer including the network inputs, one or more hidden layers and one output
layer. MLPs with one hidden layer are frequently applied. The output value of
neurons is equal to f (w0 +

∑q
l=1 wlul), where f denotes the activation function,

q is the number of the neuron inputs, w1, . . . , wq are the weights, w0 is called
the bias or the threshold value, u1, . . . , uq are the neuron inputs. The activation
functions of neurons in the hidden layers are the most often sigmoidal. These
functions may be bipolar or unipolar. One of the bipolar activation functions is
given by the formula

fb(x) =
2

1 + exp (−2x) − 1. (1)

The shape of this function is similar to tanh(x), where tanh denotes the hyper-
bolic tangent. For determination of the function (1), a lower number of processor
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operations is required than for the calculation of the tanh(x) value. If a MLP is
applied in microcontrollers, that have a low computational power, the function
tanh(x) may be interpolated with the use of the look-up tables or approximated
with piecewise continuous polynomial models [2].

In Figure 1, the R2 → R transformation has been presented, which is done
by the neuron with two inputs and the activation function given by the formula
(1). The middle of the slope is marked with the bold line. The middle of the
q-dimensional hyper-slope is the straight line described by the equation

w0 +

q∑
l=1

wlul = 0. (2)

The Euclidean norm of the neuron weight vector ‖ [w1, . . . , wq]
T ‖ determines

the slope width. The bias w0 shifts the slope and has no influence on its width.

a) b)

Fig. 1. Neuron output described by the function fb(w1u1 + w2u2 + w0) for a) w1 =
w2 = 1 and w0 = 0 b) w1 = w2 = 0.5 and w0 = 0. The middles of the slopes are
marked with the bold lines.

The proper selection of the initial weight values is very significant for the
speed and results of the MLP learning, that is usually carried out with the first
or second order gradient algorithms. The appropriate initialisation of the weight
values decreases the probability of getting stuck at a shallow local minimum
of the cost function. This makes it possible to avoid the case that a part of
the neurons is unused. Too low weight values may significantly slow down the
learning process. Too high weight values result in neuron saturation and increase
the probability of quickly getting stuck at a lousy local minimum. Besides the
proper slope width, their proper placement in the hyperspace is very important.
The serious problems with proper selection of initial values of the weights result
often in that the learning is repeated multiple times, beginning each time, from
a different starting point. This is so called multistart.

A significant influence of initial weight values on learning results was the
reason of some trials to make use of various initialisation methods, most of
which is applied very rarely. A part of them is time consuming and complicated in
usage. In [3], the application of the genetic algorithms for selection of the weights
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and choosing the MLP topology is described. In [4] the sensitivity analysis based
initialization method for two-layer MLP is proposed. First, random values are
assigned to output layer weights. After that, these values are updated based on
sensitivity formulas, and finally the weights are calculated using an appropriate
linear system of equations. Authors of [5] considered a method depending on the
weight fluctuation analysis and matching to various data. The paper [6] presents
the algorithm using the least squares method LSM for optimising weights of
neurons with the linear activation functions in the last layer. After LSM, the
weight optimisation in the previous layers with the gradient methods is applied.
A method with using prototypes for selection of weights for MLP intended for
modeling of mechanical forces is described in [7]. The use of straight linear
approximation to analytically determine a minimum of the sum of squared errors
is presented in [8].

The Nguyen-Widrow algorithm [9] is commonly used for selection of the ini-
tial weight values in the hidden layers. This algorithm may be used only with
neurons having a bias and which activation function is bounded. The concept of
the Nguyen-Widrow algorithm relies on the selection of the weight values in such
a way that the slopes are close to evenly distributed in the input space. In [9], an
application of this algorithm with MLPs having only one hidden layer has been
proposed, but this algorithm may be used for initialisation of a higher number
of the hidden layers. The first step of the Nguyen-Widrow algorithm consists
of association pseudorandom numbers uniformly distributed on the interval of
[−1, 1] for all weights in the hidden layer. In this way, the hyper-slope directions
are random. If the neuron input values are included in the interval of [−1, 1],
then the neuron weight vectors are normalised so that their Euclidean norms are
equal to 0.7ϕ1/q, where ϕ is the number of neurons in the initialised layer. Next,
the biases are generated utilising the pseudorandom number generator, of the
uniform distribution on the interval

[
−0.7ϕ1/q, 0.7ϕ1/q

]
, which results in a close

to even distribution of the slopes. In [9], it has been shown that the Nguyen-
Widrow algorithm makes it possible to significantly shorten the learning time
and to achieve much better results than in the case that the weight and bias
values are pseudorandom numbers of the uniform distribution on the interval
[−0.5, 0.5]. Superiority of the Nguyen-Widrow algorithm is also shown in [10].
Simplicity, good performance, low computational complexity and task indepen-
dence are reasons why Nguyen-Widrow initialisation algorithm is available in
many sophisticated software for neural networks computing. For example, this
is the default initialisation method in Matlab Neural Network Toolbox.

The algorithm proposed by the author of the present paper evenly arranges
in the input space, only a part of the slopes. Most of the slopes are located
in those areas of the space wherein the function being approximated changes
most and to which the biggest data number belongs to. In order to determine
the function variability, standard deviations of the approximated function values
are calculated, but other variability measures may also be used.

Numerous experiments with MLPs initialised with the use of the proposed al-
gorithm and with MLPs initialised according to the Nguyen-Widrow algorithm
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have been conducted. These experiments confirmed the reasonability of the ap-
plication of the algorithm proposed in this paper. The reason for comparing the
results of the application of the proposed algorithm only with the results ob-
tained from Nguyen-Widrow algorithm, was the eagerness to conduct as many
number of the time consuming computer simulations as possible and the fact of
the exceptional popularity of the Nguyen-Widrow algorithm.

The further part of this article is organised as follows. In Section 2, the pro-
posed initialisation algorithm is presented and its computational complexity is
explained. In Section 3, the way in which the computer simulations were con-
ducted is described and the obtained results are shown. The conclusions are at
the end of the paper.

2 Proposed Method

For the sake of a concise notation, it is assumed, in this section, that the network
input values belong to the interval [−1, 1] and that the network has only one
output. In such case, the learning set consists of the pairs {Xi, di}Ni=1 where
di denotes the desirable network output value when its inputs are equal to the
elements of the vector Xi = [xi,1, xi,2, . . . , xi,S ]

T , S is the number of the network
inputs. MLP maps the S-dimensional hyperspace H = [−1, 1]S into the set of
real numbers.

The first step of the proposed algorithm relies on division of the hyperspace
H into lower disjoint fragments of the equal size. In Fig. 2, an exemplary divi-
sion of H for MLPs which have 1, 2 and 3 inputs is shown. Let n denote the
number of the space fragments, obtained after the division of H, and let v be
the number of neurons in the hidden layer which is located closest to the input
layer. The algorithm is designed to initialise this layer. The division of H should
be performed in such way that n < v and n� N , where the symbol � denotes
much less. Let h1, h2, . . . , hn denote the fragments obtained after the division of
H.

For each fragment ha, a = 1, 2, . . . , n, the standard deviation σa is calculated
from all values di assigned with the vectors Xi belonging to ha. If no vector Xi

belongs to ha, then σa = 0 is assumed.
In the next step, for each fragment ha, the number of slopes, intentionally

located to pass through ha, is calculated. This number is denoted by λa. It is
given by the formula

λa =

⌊
σa ·#a∑n
a=1 σa ·#a

· v
2

⌋
, (3)

where #a is the number of the vectors Xi belonging to ha, �·� denotes the
floor function which value is equal to the largest integer not greater than the
argument.

Let us note that 0 ≤ λa ≤ v
2 except of the very rare probable case that∑n

a=1 σa#a = 0, wherein the proposed algorithm cannot be applied. Such case
may only happen when the function being approximated does not change in all
fragments.
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a)

b) c)

Fig. 2. Exemplary division of the data space H into smaller fragments, for a) MLP
with one input, b) MLP with two inputs, c) MLP with three inputs

Most of the slopes are placed in the fragments where the values of the products
σa#a are the highest, i.e. where the variability of the approximated function is
considerable and where is a lot of data. It is often reasonable to expect that
more measuring data is in the significant fragments. If it is not the case, then,
instead of determining λa from the relationship (3), one may calculate λa using
the formula

λa =

⌊
σa∑n
a=1 σa

· v
2

⌋
. (4)

Each neuron produces one slope. The number of neurons whose weights are
selected so that the middles of the slopes created by them passes through the
relevant ha amounts to

β =

n∑
a=1

λa. (5)

The number of the other neurons in the hidden layer is equal to

δ = v − β ≥ v
2
. (6)

After determining the number of slopes located in respective fragments
h1, h2, . . . , hn, the weights and the biases of the neurons forming those slopes
should be calculated. For each fragment ha, for which λa > 0, the following
procedure is repeated λa times

a) The weight values w1, w2, . . . , ws are selected as random numbers uniformly
distributed on the interval [−1, 1].

b) The weight vectors are normalised so that their Euclidean norm is equal to

0.7δ1/s, i.e.
∥∥∥[w1, w2, . . . , ws]

T
∥∥∥ = 0.7δ1/s.

c) Is determining the point by which the middle of the slope is passing through.
This point is positioned within the fragment ha. The coordinates p of this
point are generated on the basis of the relationship
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p = pa + rb, (7)

where pa ∈ RS is the vector of the centre coordinates of the fragment ha, r is
a pseudorandom number of the uniform distribution on [−0.4, 0.4], b ∈ RS

is the vector, whose elements are the lengths of the sides of the fragment
ha. For the division presented in Fig. 2b, the fragments have the lengths of
all sides equal to 0.5; thus, for such division b = [0.5, 0.5]T . It is worthwhile
to note that the point of the coordinates calculated in this way is always
located at some distance from the edge of the fragment ha.

d) The middle of the slope may be described by the equation of the straight
line passing through the point p. This straight line must fulfil the equation
[w1, w2, . . . , ws]p+ w0 = 0. Hence, the bias is equal to

w0 = −[w1, w2, . . . , ws]p. (8)

In this way, the weights and biases for β of the neurons have been determined.
The weights of the other δ neurons in the same layer are selected with the use
of the Nguyen-Widrow algorithm. The Euclidean norm of the weight vectors for
all neurons is equal to 0.7δ1/s.

Figure 2 depicts an exemplary division of the space into smaller fragments
that, for s = 2, are squares and, for s = 3 - cubes. Obviously, the side lengths
may be different within various dimensions and, for s = 2, the space H may
be divided into rectangles and, for s = 3, into rectangular prisms, while for
s = 4, into hyper-rectangular prisms. Together with the increasing network
input number, the dimension of the space H will increase which will result in
the exponential increase of the number of fragments obtained after the division.
If s = 7 and the fragments are hyper-cubes with the side length of 0.5, then
the number of those hyper-cubes amounts to as much as 47 = 16384 and the
condition n < v is not satisfied. For s > 3, it is possible to use the a priori
knowledge to chose the two most significant inputs and, in those two dimensions
only, make the division into squares or rectangles. If we do not dispose the a
priori knowledge on the process being modelled by the network, then one of the
methods described in [11] may be used for the selection of the two or three most
significant inputs.

If MLP has several outputs, then σa may be assumed as the sum of the
standard deviations of the desired values of all network outputs. This is the only
necessary change for entering in the algorithm.

In spite of the rather long description, the proposed initialisation algorithm
is simple and may be briefly summarized in the following steps:

- division of the space H into n smaller disjoint fragments h1, h2, . . . , hn and
calculation of standard deviations σ1, σ2, . . . , σn
- calculation of the numbers of the slopes arranged intentionally in the fragments
h1, h2, . . . , hn
- determination of the weights of β neurons according to steps a and b from
page 51
- calculation of these neurons biases from the equation (8)
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- determination of the weights and biases of the other δ neurons, with the use
of the Nguyen-Widrow algorithm

Computation complexity of Steps 1-5 can be easily determined. The numbers
of operations required for steps 1-5 are presented in Tab. 1. Since β ≤ v, v ≥
δ ≥ v/2 and n << N , the total computational complexity is O(N + v).

Table 1. Computational complexity of Steps 1-5

Step 1 2 3 4 5

Comp. Complexity O(N) O(n) O(β) O(β) O(δ)

3 Numerical Experiments

The proposed algorithm was tested on MLPs having one hidden layer which
contained 30 or 45 neurons. The activation function of these neurons is described
by the equation (1). In the output layer was one neuron with the linear activation
function f(x) = x. The cost function minimized during learning was the mean
squared normalised error, given by the formula

E =
1

N

N∑
i=1

(di − y(Xi))
2 , (9)

where y(Xi) denotes the network output value, when the network inputs are
equal to the elements of the vector Xi, di is the desirable value of the output.
For learning of MLPs, 6 various learning sets were used, which will be described
in a further part of this section. The Levenberg-Marquardt algorithm was used
to learn both MLPs with the hidden layer initialised according to the Nguyen-
Widrow algorithm and MLPs with the hidden layer initialised by applying the
proposed algorithm. The weights and the biases in the output layer were pseu-
dorandom numbers of the uniform distribution on [−2, 2]. After 200 epochs, the
learning was interrupted due to very insignificant changes in the cost function
value. The initialisations and learning were repeated 100 times for each data set
in order to obtain consistent results. In Table 3 and Table 5, the results obtained
from calculating the mean of 100 cost function values after 50, 100, 150 and 200
learning epochs are presented. There are also shown, the averaged values of the
100 best results obtained from all learning epochs (independently in which of the
200 epochs the cost function had the lowest value). Due to the huge number of
operations to be conducted, all simulations were run on Supernova cluster which
is in the Wroc�law Network and Supercomputer Centre. Two-hundred learning
epochs for 2 ·2 ·6 ·100 = 2400 networks were performed in total. The experiments
were conducted using Matlab R2011b.

In Tables 2 and 4, the number of the intentionally arranged slopes is presented,
which are sorted in the descending order of the products σa#a values.

Prior to network learning, all data set was rescaled so that the values of the
MLP inputs belonged to the interval [−1, 1].
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Fig. 3. Map of a South America piece terrain

The first learning set included the altitudes of a piece of South American
surface, presented in Fig. 3. The data used to create this set was downloaded
from the U.S. Geological Survey server, where a raster-type numerical model of
the whole world, called GTOPO30 (30 arc second resolution, approx. 1 km) is
freely available. The name of downloaded file is w100s10. The data description is
in [12]. Half of the data was used for learning the network to model the terrain
located between the geographic coordinates 80◦West, 10◦South and 60◦West,
60◦South. In the downloaded file, the altitudes are specified at the points on the
grid of size 1km x 1km. In order to decrease the instance number in the learning
set to 9000, MLP was trained to model the terrain on the basis of the averaged
data on the areas of 40km x 40km. The altitudes in the created learning set were
given in kilometres.

MLP was also learned to approximate various functions on the area [−2, 2] x
[−2, 2]. These functions were described by the equations:

f1(x, y) = sinc
(√

x2 + y2
)
, where sinc(x) = sin(x)

x ,

f2(x, y) = x
2 − y2 + 1,

f3(x, y) = sin(xy),
f4(x, y) = tanh

(
x+ y2

)
.

The functions f1, f2, f3, f4 have been presented in Fig. 4. The learning sets
included 10000 function values arranged uniformly in the area of [−2, 2] x [−2, 2].

A next learning set was a common UCI benchmark [13] with the real-world
data. It included the information on the forest fires in Portugal, described in
[14]. The applied input values were:

1. x-axis spatial coordinate within the Montesinho park map: 1 to 9
2. y-axis spatial coordinate within the Montesinho park map: 2 to 9
3. FFMC index from the FWI system: 18.7 to 96.20
4. DMC index from the FWI system: 1.1 to 291.3
5. DC index from the FWI system: 7.9 to 860.6
6. ISI index from the FWI system: 0.0 to 56.10
7. temperature in Celsius degrees: 2.2 to 33.30
8. relative humidity in %: 15.0 to 100
9. wind speed in km/h: 0.40 to 9.40
10. rain in mm/m2: 0.0 to 6.4

The networks were trained to model the number of forest hectares burned
in fires. Since the burned areas are very skewed towards 0.0 according to a
suggestion of the author of [14], the logarithmic transformation was applied and,
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a) b)

c) d)

Fig. 4. Plots of functions: a) f1 b) f2 c) f3 d) f4

due to that, the desirable values of the output were the values of the natural
logarithm of the burned down surface. After rejection of the incomplete data
from the learning set, 683 instances remained therein.

For networks containing 30 neurons in the hidden layer, a division into 4x4
fragments has been applied, while for networks with 45 neurons in the hidden
layer, a division into 5x5 fragments has been used.

Two-input networks were trained with the use of first five learning sets. The
MLP for modelling the forest fires had 10 inputs. For this learning set, two
dimensions were selected, for which the absolute value of the tau-Kendall’s cor-
relation coefficient has the highest value. Though, the coefficient is considerable
less suitable for selecting important dimensions, then the methods described in
[11], still, the application of the proposed algorithm has made it possible to
achieve a lower cost function value, independently of the number of neurons in
the hidden layer and of the learning epoch number.

In each experiment, λa was calculated on the basis of the relationship (3). For
the first five learning sets, it is of no importance if λa has been determined from
(3), or from (4), since the learning data is distributed uniformly.

For all learning sets except one, better cost function values were achieved
for the networks initiated with the proposed algorithm. Only for MLP with 45
neurons in the hidden layer, a worse result was achieved solely for f2 approxi-
mation after 200 epochs. The reason probably was the very fast increase of the
function value near the area edge [−2, 2] x [−2, 2]. For the other learning sets,
better results were obtained using the proposed initialisation method, indepen-
dently from the number of the neurons in the hidden layer and of the number
of epochs.
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Table 2. Intentional placement of slopes in successive space fragments for MLP with
30 neurons in the hidden layer (the fragments are sorted in the order of descending
products σa#a)

Learning set Numbers of intentionally arranged slopes β δ

altitudes 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 8 22

f1 2 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 8 22

f2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 6 24

f3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 4 26

f4 2 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 8 22

forestfires 7 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 12 18

Table 3. Cost function values for MLP with 30 neurons in the hidden layer and the
division into 4x4 fragments

Learning Initialisation Epochs Best
set 50 100 150 200 results

altitudes Nguyen-Widrow 0.121422 0.109224 0.105208 0.102790 0.1028
proposed alg. 0.109423 0.100346 0.097213 0.095467 0.0955

f1 Nguyen-Widrow 5.38733
·10−5

2.35098
·10−5

1.67948
·10−5

1.26850
·10−5

1.2593
·10−5

proposed alg. 4.04619
·10−5

2.00634
·10−5

1.48935
·10−5

1.14843
·10−5

1.1484
·10−5

f2 Nguyen-Widrow 2.04380
·10−5

1.78020
·10−6

6.40758
·10−7

2.67063
·10−7

2.6634
·10−7

proposed alg. 1.03015
·10−5

1.49403
·10−6

4.74928
·10−7

2.28305
·10−7

1.9308
·10−7

f3 Nguyen-Widrow 0.000216 6.07932
·10−5

3.27470
·10−5

2.20635
·10−5

2.2064
·10−5

proposed alg. 0.000162 4.18492
·10−5

2.09658
·10−5

1.48085
·10−5

1.4809
·10−5

f4 Nguyen-Widrow 5.64910
·10−5

1.75280
·10−5

1.04108 ·
10−5

7.77503
·10−6

7.5759
·10−6

proposed alg. 4.07863
·10−5

1.46316
·10−5

8.21932
·10−6

5.60217
·10−6

5.5904
·10−6

forestfires Nguyen-Widrow 0.332333 0.223907 0.199884 0.188826 0.1888
proposed alg. 0.319951 0.221115 0.197248 0.187231 0.1872

Table 4. Intentional placement of slopes in successive space fragments for MLP with
45 neurons in the hidden layer (the fragments are sorted in the order of descending
products σa#a)

Learning set Numbers of intentionally arranged slopes β δ

altitudes 3 3 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 30

f1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 37

f2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 12 33

f3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 37

f4 2 2 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 33

forestfires 9 6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19 26
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Table 5. Cost function values for MLP with 45 neurons in the hidden layer and the
division into 5x5 fragments

Learning Initialisation Epochs Best
set 50 100 150 200 results

altitudes Nguyen-Widrow 0.092335 0.084083 0.080648 0.078118 0.0781
proposed alg. 0.084756 0.075429 0.071347 0.069773 0.0698

f1 Nguyen-Widrow 1.77273
·10−5

8.13942
·10−6

4.87171
·10−6

3.11094
·10−6

3.1066
·10−6

proposed alg. 1.14645
·10−5

5.08797
·10−6

3.46884
·10−6

2.60112
·10−6

2.4441
·10−6

f2 Nguyen-Widrow 8.79198
·10−6

1.71116
·10−6

6.34263
·10−7

2.64994
·10−7

2.2113
·10−7

proposed alg. 7.43586
·10−6

1.27823
·10−6

6.00127
·10−7

3.46263
·10−7

2.4405
·10−7

f3 Nguyen-Widrow 0.000152 2.49260
·10−5

1.10722
·10−5

6.83138
·10−6

6.7847
·10−6

proposed alg. 5.22798
·10−5

1.54230
·10−5

8.01098
·10−6

5.46735
·10−6

5.4662
·10−6

f4 Nguyen-Widrow 2.72470
·10−5

8.45098
·10−6

4.37114 ·
10−6

2.71129
·10−6

2.6623
·10−6

proposed alg. 1.46324
·10−5

4.55952
·10−6

2.28194
·10−6

1.47283
·10−6

1.4486
·10−6

forestfires Nguyen-Widrow 0.100030 0.029168 0.020253 0.017022 0.0170
proposed alg. 0.090955 0.026000 0.018777 0.016336 0.0163

4 Conclusions

The proposed method is quite simple for implementation and has a low linear
computational complexity. For all used learning sets, the time of initialisation
with the described algorithm does not exceed 0.4% of one epoch of the Levenberg-
Marquardt algorithm. The conducted experiments confirm the efficiency of the
proposed method and the reasonability of selection of the fragment number
slightly lower than the number of neurons in the hidden layer.

The presented method may be recommended, in particular, for networks with
a low number of inputs or when it is known, before processing the learning,
which network inputs are the most important ones. If the network input number
is high and it is not a priori known which dimensions are particularly significant,
then the methods for determining the most significant inputs, described in [11],
may be applied. The author suggests considering to accept of lower lengths of
the sides h1, . . . , hn in the dimensions assigned to more important inputs.

After simple modifications, the proposed method may also be used for min-
imizing other cost functions. For instance, it is only necessary to modify (3) or
(4) to minimize a weighted sum of squared errors in which the squared errors
are multiplied by the biggest values in those fragments of the domain in which
the function or the process being modelled should be mapped at the highest
accuracy.
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Abstract. In on-line gradient descent learning, the local property of
the derivative of the output function can cause slow convergence. This
phenomenon, called a plateau, occurs in the learning process of the mul-
tilayer network. Improving the derivative term, we employ the proposed
method replacing the derivative term with a constant that greatly in-
creases the relaxation speed. Moreover, we replace the derivative term
with the 2nd order of expansion of the derivative, and it beaks a plateau
faster than the original method.

Keywords: soft committee machine, derivative, Taylor expansion, re-
laxation speed, residual error, statistical mechanics.

1 Introduction

Learning in neural networks can be formulated as the optimization of an objec-
tive function that quantifies the system’s performance. An important property of
feed-forward networks is their ability to learn a rule from examples. Statistical
mechanics has been successfully used to study this property[1, 2]. A compact
description of learning dynamics can be obtained by using statistical mechanics,
which uses a large input dimension N and provides an accurate model of mean
behavior for a realistic N [1, 2].

Several studies have investigated ways to accelerate the learning process[3–5].
For example, slow convergence due to plateaus occurs in learning processes that
use a gradient descent algorithm. In gradient descent learning, the parameters
are updated in the direction of the steepest descent of the objective function
and the derivative of the output is taken into account. Falhman [6] proposed a
learning method in which the derivative term is replaced with a constant and
empirically showed that their method could speed up the convergence. We refer
to this learning method as the simple method in this paper. We supplied the
theoretical support for the simple method for a simple perceptron [7].

In this paper, we use the simple method to train a soft committee machine and
investigate how it solves a credit assign problem. We theoretically analyze the
behavior of the simple method using statistical mechanics methods and derive
coupled differential equations of the order parameters that depict its learning

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 59–66, 2014.
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behavior. We validate the analytical solutions by comparing them with those of
a simulation. We then compare the behaviors of the simple method with those
of the original method.

2 Model

In this work, we employ a teacher-student formulation and assume the existence
of a teacher network that produces the desired output for the student network.
First we formulate a teacher network and a student network and then we intro-
duce the gradient descent algorithm.

The student is a soft committee machine with weight vectors between input

and two hidden units, J
(m)
i = (J

(m)
i1 , ..., J

(m)
iN ), i = 1, 2, wherem denotes learning

iterations. The soft committee machine is a two-layer fully connected network
consisting of non-linear hidden units and a linear output unit. The weight values
between the hidden units and the output unit are fixed to +1. This network
calculates the majority vote of hidden unit outputs. The teacher is a simple
perceptron with weight vectors B = (B1, ..., BN ) for simplicity [1].

We assume that the teacher and student receive N -dimensional input ξ(m) =

(ξm1 , . . . , ξ
(m)
N ), that the teacher outputs t(m) = g(y(m)), and that the student

outputs s(m) =
∑2

i=1 s
(m)
i =

∑2
i=1 g(x

(m)
i ). Here, g(·) is the output function,

y(m) is the inner potential of the teacher calculated using y(m) =
∑N

j=1 Bjξ
(m)
j ,

and x
(m)
i is the inner potential of the ith hidden unit of the student calculated

using x
(m)
i =

∑N
j=1 J

(m)
ij ξ

(m)
j .

We assume that the elements ξ
(m)
j of the independently drawn input ξ(m) are

uncorrelated random variables with zero mean and unit variance; that is, the
jth element of the input is drawn from a probability distribution P(ξj). The
thermodynamic limit of N → ∞ is also assumed. The statistics of the inputs

in the thermodynamic limit are
〈
ξ
(m)
j

〉
= 0,

〈
(ξ

(m)
j )2

〉
= 1, and ‖ξ(m)‖ =

√
N , where 〈· · · 〉 denotes the average and ‖ · ‖ denotes the norm of a vector.

Each element Bj , j = 1 ∼ N , is drawn from a probability distribution with
zero mean and 1/N variance. With the assumption of the thermodynamic limit,
the statistics of the teacher weight vector are 〈Bj〉 = 0,

〈
(Bj)

2
〉
= 1/N , and

‖B‖ = 1. The distribution of inner potential y(m) follows a Gaussian distribution
with zero mean and unit variance in the thermodynamic limit. For the sake of

analysis, we assume that each element of J
(0)
ij , which is the initial value of the

student vector J
(0)
i , is drawn from a probability distribution with zero mean

and 1/N variance. The statistics of the ith hidden weight vector of student are〈
J
(0)
ij

〉
= 0,

〈
(J

(0)
ij )2
〉

= 1/N , and ‖J(0)
i ‖ = 1 in the thermodynamic limit.

The output function of hidden units of the student g(·) is the same as that

of the teacher. The distribution of the inner potential x
(m)
i follows a Gaussian

distribution with zero mean and (Q
(m)
ii )2 variance in the thermodynamic limit.

Here, (Q
(m)
ii )2 = Jm

i ·Jm
i . These assumptions are used for the theoretical analysis.
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Next, we introduce the gradient descent algorithm. For the possible inputs
{ξ}, we want to train the student network to produce the desired outputs t = s.
The generalization error is defined as

ε(m)
g =

〈
1

2
(t(m) − s(m))2

〉
=

〈
1

2

(
g(y(m))− g(x(m)

1 )− g(x(m)
2 )
)2〉

, (1)

where angle brackets 〈·〉 denote the average over possible inputs. At each learning
step m, a new uncorrelated input ξm is presented, and the current hidden weight
vector of student Jm

i is updated using

J
(m+1)
i = J

(m)
i +

η

N

(
g(y(m))− g(x(m)

1 )− g(x(m)
2 )
)
g′(x

(m)
i )ξ(m), (2)

where η is the learning step size and g′(x) is the derivative of the output function
g(x).

3 Theory

The sigmoid function is used as the output of the teacher and that of the hidden
unit of the student: g(x) = erf(x/

√
2). The derivative of the function is g′(x) =√

2/π exp(−x2/2). The learning equation of the soft committee machine[1] is
then

J
(m+1)
i =J

(m)
i +

η

N

(
erf(

y(m)

√
2
)− erf(

x
(m)
1√
2
)− erf(

x
(m)
2√
2
)

)√
2

π
exp(

(x
(m)
i )2

2
)ξ(m).

(3)
By using g(x) = erf(x/

√
2) in Eq. (1), the generalization error of the soft

committee machine[1] with two hidden units can be obtained by

εg =
1

π

[
2∑

i=1

{
sin−1

(
Q2

ii

1 +Q2
ii

)
− 2 sin−1

(
Ri√

2(1 +Q2
ii)

)}

+2 sin−1

(
Q2

12√
1 +Q2

11

√
1 +Q2

22

)
+ sin−1

(
1

2

)]
(4)

Here, Ri = B · Ji and Q2
12 = J1 · J2. We omit m for simplicity. From this

equation, we can calculate the generalization error by substituting Q2
ii, Q

2
12, and

Ri at each time step m into Eq. (4) .
In this paper, as mentioned above, we use the simple method to train a soft

committee machine. We expand g′(x) =
√
2/π exp(x2/2) ∼

√
2/π(1 + x2/2

+x4/8 · · · ) and use the first term. We thus modify learning Eq. (3) to include a
constant term:
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J
(m+1)
i = J

(m)
i +

η

N

(
erf(

y(m)

√
2
)− erf(

x
(m)
1√
2
)− erf(

x
(m)
2√
2
)

)√
2

π
ξ(m)

= J
(m)
i +

η

N
δiξ

(m). (5)

The general forms of the differential equations of Q2
ii, Q

2
12, and Ri are given

by

dRi

dt
=η 〈δiy〉 , (6)

dQ2
ii

dt
=2η 〈δixi〉+ η2

〈
δ2i
〉
, (7)

dQ2
12

dt
=η (〈δ2x1〉+ 〈δ1x2〉) + η2 〈δ1δ2〉 . (8)

Here, we define t as t = m/N , and represent the learning process using continu-
ous time t in the thermodynamic limit of N → ∞. By calculating 〈δiy〉, 〈δixi〉,
〈δixj〉,

〈
δ2i
〉
, and 〈δ1δ2〉, we can obtain the differential equations of the simple

method:

dRi

dt
=

√
2η

π

(
1−

2∑
k=1

2Ri√
2(1 +Q2

ii)

)
(9)

dQ2
ii

dt
=
2
√
2η

π

(
Ri −

2Q2
ii√

2(1 +Q2
ii)
− 2Q2

12√
2(1 +Q2

ll)

)

+
4η2

π2

[
2∑

k=1

{
sin−1

(
Q2

kk

1 +Q2
kk

)
− 2 sin−1

(
Rk√

2(1 +Q2
kk)

)}

+ 2 sin−1

(
Q2

12√
1 +Q2

11

√
1 +Q2

22

)
+ sin−1

(
1

2

)]
(10)

dQ2
12

dt
=

√
2η

π

{
2∑

k=1

(
Ri −

2Q2
ii√

2(1 +Q2
ii)
− 2Q2

12√
2(1 +Q2

ll)

)}

+
4η2

π2

[
2∑

k=1

{
sin−1

(
Q2

kk

1 +Q2
kk

)
− 2 sin−1

(
Rk√

2(1 +Q2
kk)

)}

+ 2 sin−1

(
Q2

12√
1 +Q2

11

√
1 +Q2

22

)
+ sin−1

(
1

2

)]
(11)

Here, i �= l.



Soft Committee Machine Using Simple Derivative Term 63

4 Results

Figure 1 shows the numerical calculation of the theoretical results and the sim-
ulation results. The horizontal axis indicates time t = m/N , where m is the
learning iteration. The vertical axis for theoretical results shows the generaliza-
tion error. As written in Sec. 2, the element of the Input ξ(m) is generated by
uncorrelated random variables with zero mean and unit variance. The vertical
axis for simulation results shows the square mean error for N inputs. Initial con-

ditions were R
(0)
1 = R

(0)
2 = 0, (Q

(0)
11 )

2 = (Q
(0)
22 )

2 = 1, and (Q
(0)
12 )

2 = 0. For the
simulation results, N = 1000, and each point was obtained by averaging over 10
trials. The learning step size η was set to 0.1, 0.5, 1, or 2.0. Theoretical results are
labeled ’th’ and are shown by the solid line. Simulation results using the simple
method are labeled ”sim” and are shown by the broken line. Simulation results
of the original method are labeled ’original’ and shown by the dotted line.
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(c) η = 1.0
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Fig. 1. Time evolution of mean squared error. Learning step size of η = 0.1, 0.5, 1.0,
or 2.0 is used.

First, we compare the numerical calculations of the theoretical results with
the simulation results using the simple method to determine the validity of the
theoretical results. From the figures, the numerical calculations of the theoretical
results (solid line) agreed with those of the simulation results (broken line).

Next, we compare the relaxation speed for the simple method with that of
the original method. From Fig. 1 (a)-(c), we can see that the relaxation speed of
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the simple method is faster than that of the original method when the learning
step size is less than 1.0. However, it slows down and the residual error becomes
large when the learning step size is 2.0 (Fig. 1 (d)).

4.1 Learning Dynamics of the Simple Method

As shown in Fig. 1, residual errors become large when the simple method is
used. We therefore investigate the learning dynamics of the simple method and
compare them with those of the original method.

Figure 2 show the learning dynamics of the original method (Fig. 2 (a)) and
those of the simple method (Fig. 2(b)). The vertical axis shows Ri, Q

2
ii, and Q

2
12.

Figure 2 (a) shows the simulation results obtained using the original method and
Fig. 2 (b) shows the results obtained by numerical calculation of the theoretical
results and by simulations using the simple method. R2 and Q2

22 in Fig. 2(b)
are not shown because of the symmetry of the theoretical results. In Fig. 2(b),
theoretical results are labeled (th) and simulation results are labeled (sim). Initial

conditions were R
(0)
1 = R

(0)
2 = 0, (Q

(0)
11 )

2 = (Q
(0)
22 )

2 = 1, and (Q
(0)
12 )

2 = 0. The
learning step size was set to η = 1.
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Fig. 2. Learning dynamics of original method and simple method

From Fig. 2 (a), R1 and R2 rapidly approach values close to a fixed point
that is stable within the symmetric subspace. However, when t > 200, R1 and
R2 eventually approach values R1 = 0 and R2 = 1. These are the optimum fixed
points that break the symmetry between hidden units. Q2

11 and Q2
22 are also

almost 1 at the early stage of learning, but at t > 200, Q2
11 and Q2

22 eventually
approach values Q2

11 = 0 and Q2
22 = 1, which are the optimum fixed points. This

means that J2 converges into B, and J1 completely disappears when t > 300.
Q2

12 converges into zero, indicating that J1 and J2 are orthogonal to each other.
Figure 2(b) shows that by using the simple method, Q2

11, Q
2
22, R1, R2, and Q

2
12

stay close to a fixed point that is stable within the symmetry subspace.
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Next, we consider using the 2nd or 4th orders of expansion of exp(x/
√
2)

whereby R1, R2, Q
2
11, Q

2
22, and Q

2
12 behave independently. The learning equation

using the 0th order, 2nd order, and 4th order is

J
(m+1)
i = J

(m)
i +

η

N
(t(m) − s(m)

1 − s(m)
2 )

√
2

π

(
1− (x

(m)
i )2

2
+

(x
(m)
i )4

8

)
ξ(m).

(12)
If |xi| <

√
2, we don’t update Ji.

Figure 3 shows the results obtained by using the simulation results. The ver-
tical axis shows the mean squared error. Each figure includes the mean square
error obtained by the original method labeled ’original’, that of using 0th and
2nd orders labeled ’2nd’, and that of using 0th, 2nd, and 4th orders labeled ’4th’.
Figure 3(a) shows the results when the learning step size is η = 0.1, (b) shows
those of η = 0.5, (c) shows those of η = 1, and (d) shows those of η = 2. Each
point was obtained by averaging over 10 trials.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1  10  100  1000

M
ea

n 
S

qu
ar

e 
E

rr
or

Time: t=m/N

(a) η = 0.1

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1  10  100  1000

M
ea

n 
S

qu
ar

e 
E

rr
or

Time: t=m/N

(b) η = 0.5

 1e-35

 1e-30

 1e-25

 1e-20

 1e-15

 1e-10

 1e-05

 1

 1  10  100  1000

M
ea

n 
S

qu
ar

e 
E

rr
or

Time: t=m/N

(c) η = 1.0

 0.01

 0.1

 1

 1  10  100  1000

M
ea

n 
S

qu
ar

e 
E

rr
or

Time: t=m/N

(d) η = 2.0

Fig. 3. Time evolution of mean squared error. Original method, 2nd order approxima-
tion, and 4th order approximation are used. Learning step size is set to η = 0.1, 0.5, 1.0,
or 2.0.

From these figures, it is shown that using the 0th and 2nd orders helped the
mean squared error break out of the plateau faster than the other two methods,
including the original method.
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5 Conclusion

In this paper, we applied a simple method that replaces the derivative with a
constant to a soft committee machine. We first built the theory of the soft com-
mittee machine with a simple method using the statistical mechanical method.
We then demonstrated the validity of the theoretical results by comparing them
with those of the simulation results. We found that the relaxation speed of the
simple method was faster than that of the original method until the learning
step size reached η ≥ 1; at η = 2, the residual error became larger than that
of the original method. It was also found that the simple method stayed close
to a fixed point that is stable within the symmetry subspace. To overcome this
problem, we added the 2nd order expansion of the derivative, and this modifi-
cation resulted in the eventual approach to the optimum fixed point that broke
the symmetry between hidden units.

Acknowledgments. The authors thank Professor Masato Okada and Associate
Professor Hayaru Shouno for insightful discussions.
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Abstract. Limitations of capabilities of one-hidden-layer networks are
investigated. It is shown that for networks with Heaviside perceptrons as
well as for networks with kernel units used in SVM, there exist large sets
of d-variable functions which cannot be tractably represented by these
networks, i.e., their representations require numbers of units or sizes of
weighs depending on d exponentially. Our results are derived using the
concept of variational norm from nonlinear approximation theory and
the concentration of measure property of high dimensional Euclidean
spaces.

Keywords: model complexity of neural networks, one-hidden-layer net-
works, highly-varying functions, tractability of representations of multi-
variable functions by neural networks.

1 Introduction

Originally, biologically inspired neural networks were modeled as as multilayer
distributed computational systems. Later, one-hidden-layer architectures be-
came dominant in applications due to relatively simple optimization procedures
needed for adjustment of their parameters (see, e.g., [1, 2] and the references
therein). In some literature, one-hidden-layer networks are called shallow net-
works to distinguish them from deep ones containing more hidden layers.

In addition to a variety of successful applications of one-hidden-layer networks,
also theoretical confirmation of their capabilities has been obtained. Shallow net-
works with many types of computational units are known to be universal approx-
imators, i.e., they can approximate up to any desired accuracy all continuous
functions on compact subsets of Rd. In particular, the universal approximation
property holds for shallow networks with perceptrons having any non-polynomial
activation function [3, 4] and with radial and kernel units satisfying mild con-
ditions [5–7], [8, p.153]). Moreover, all functions defined on finite subsets of Rd

can be represented exactly by one-hidden-layer networks with either sigmoidal
perceptrons [9] or with Gaussian radial units [10].

Proofs of the universal approximation capability of shallow networks require
potentially unlimited numbers of hidden units. These numbers representing model
complexities are critical factors for practical implementations. Dependence of
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model complexities of shallow networks on their input dimensions, types of units,
functions to be approximated, and accuracies of approximation have been stud-
ied using tools from nonlinear approximation theory (see, e.g., [11] and refer-
ences therein). Inspection of upper bounds on rates of approximation by shallow
networks led to descriptions of various families of functions that can be well
approximated by shallow networks with reasonably small numbers of computa-
tional units of various types. On the other hand, cases when numbers of networks
units are untractably large are less understood. Only few lower bounds on rates
of approximations by shallow networks are known and the estimates are mostly
non constructive and hold for types of computational units that are not com-
monly used [12, 13]. Moreover, in some cases, sizes of weights can be more critical
factors for successful learning than numbers of network units [14].

Recently, new hybrid learning algorithms were developed for deep networks
[15, 16]. Training networks with more than one hidden layer involves compli-
cated nonlinear optimization procedures and thus generally it is more difficult
than training shallow ones. Hence, it is desirable to develop some theoretical
background for characterization of tasks whose computations by networks with
shallow architectures would require networks with considerably higher complex-
ities than computations by deep networks. Bengio et al. [17] suggested that a
cause of difficulties in representing functions by shallow networks tractably can
be their “amount of variations”. As a class of function with high-variations they
considered the parities on d-dimensional Boolean cubes {0, 1}d. They proved
that a classification of points in {0, 1}d according to their parities by support
vector machine (SVM) with Gaussian kernel units cannot accomplish this task
with less than 2d/2 units.

On the other hand, it is well-known and easy to verify that for any d, the
d-dimensional parity can be represented by a one-hidden-layer Heaviside per-
ceptron network with d units. Indeed, parity can be visualized as a plane wave
orthogonal to the diagonal of the cube in the direction of the vector (1, . . . , 1)
(see, e.g.,[18, 19]). So some functions are highly-varying with respect to one
type of computational units, while they are “varying” much less with respect to
another type of units. Thus it is reasonable to consider the notion of a highly-
varying function with respect to a type of computational units.

In this paper, we propose to formalize this concept in terms of a norm called
variation with respect to a set of functions. This norm has been studied in non-
linear approximation theory and plays an important role in estimates of rates
of approximation by neural networks (see, e.g., [11] and the references therein).
We show that the size of the variational norm of a function with respect to a
dictionary of computational units reflects both the number of hidden units and
sizes of output weights in a shallow network with units from the dictionary repre-
senting such function. Using the concept of variational norm, we describe classes
of d-variable functions whose representations by networks with a given type of
units with increasing numbers of inputs d are not tractable in the sense that rep-
resentations of such functions by these network require numbers of units or some
of sizes of output weights to grow exponentially with d. Using concentration of
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measure property in high-dimensional Euclidean spaces we estimate probability
distributions of sizes of variations. We show that for popular dictionaries (such
as dictionaries formed by SVM and by Heaviside perceptrons) with increasing
dimension d almost any randomly chosen Boolean function has large variational
norm (depending on d exponentially). Our results imply that for large d, in sets
of functions with constant Euclidean norms most Boolean real valued functions
cannot be tractably represented by Heaviside perceptron networks or by SVMs.
We illustrate general existential results by an example of a concrete class of non
tractable functions. Some preliminary results from this paper appeared as work
in progress in local conference proceedings [20].

The paper is organized as follows. Section 2 contains basic concepts on shal-
low networks, dictionaries of computational units and Boolean functions. Sec-
tion 3 presents a mathematical formalization of the concept of a “highly-varying
function”, shows that it is related to large sizes of networks representing such
functions or large output weights of these networks. In Section 4 estimates of
probabilistic measures of sets of functions with variations depending on d expo-
nentially are derived and illustrated by an example of a class of functions which
cannot be tractably represented by one-hidden-layer Heaviside perceptron net-
works. Section 5 is a brief disussion.

2 Preliminaries

One-hidden-layer networks with single linear outputs, compute input-output
functions from sets of the form

spannG :=

{
n∑

i=1

wigi |wi ∈ R, gi ∈ G
}
,

where G, called a dictionary, is a set of functions computable by a given type
of units, the coefficients wi are output weights, and n is the number of hidden
units. This number can be interpreted as a measure of model complexity. In this
paper we use the term shallow network meaning one-hidden-layer network with
a single linear output. By

spanG :=
⋃
n∈N

spannG

is denoted the set of functions computable by one-hidden-layer networks with
units from the dictionary G with any number of hidden units.

We investigate growth of complexities of networks representing functions of
increasing numbers of variables d. Let D be an infinite subset of the set of
positive integers, F = {fd | d ∈ D} a class of functions and {Gd | d ∈ D} a class
of dictionaries, such that for every d ∈ D, fd is a function of d variables and
Gd is formed by functions of d variables. We call the problem of representing
the set F by networks from {spanGd | d ∈ D} tractable if for every d ∈ D,
there exists a network in spannd

G representing fd as its input-output function
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such that nd and absolute values of all output weights in the network grow with
d polynomially. Note that different concepts of tractability were used in other
contexts (see, e.g., [11]).

In this paper, we focus on representations of real-valued functions on finite
subsets of Rd by shallow networks with units from several dictionaries. We denote
by Hd(X) the dictionary of functions on X ⊂ Rd computable by Heaviside
perceptrons, i.e.,

Hd(X) := {ϑ(v · .+ b) : X → {0, 1} | v ∈ Rd, b ∈ R} ,

where ϑ denotes the Heaviside activation function defined as

ϑ(t) := 0 for t < 0 and ϑ(t) := 1 for t ≥ 0.

Note that Hd is the set of characteristic functions of half-spaces. The dictionary
Sd(X) is formed by functions on X computable by perceptrons with signum
activation function sgn : R→ {−1, 1} defined as

sgn(t) := −1 for t < 0 and sign(t) := 1 for t ≥ 0.

We denote

Pd(X) := {sgn(v · .+ b) : X → {−1, 1} | v ∈ Rd, b ∈ R} .

For a kernel Kd : Rd × Rd → R, we denote by FKd
(X) the dictionary of kernel

units, i.e.,
FKd

(X) := {Kd(., x) : X → R |x ∈ X}.
The set of real-valued functions on the d-dimensional Boolean cube {0, 1}d is

denoted
B({0, 1}d) := {f | f : {0, 1}d → R}.

It is a linear space isomorphic to the Euclidean space R2d . Thus on B({0, 1}d)
we have the Euclidean inner product defined as

〈f, g〉 :=
∑

u∈{0,1}d

f(u)g(u)

and the Euclidean norm ‖f‖2 :=
√
〈f, f〉. By · is denoted the inner product on

{0, 1}d, defined as u · v :=
∑d

i=1 uivi.

3 Highly-Varying Functions

In this section, we investigate a mathematical formalization of the observation of
Bengio et al. [17] that representations of highly-varying functions might require
large networks. We show that the concept of a variational norm from approxi-
mation theory can play a role of a measure of tractability of representations of
classes of functions by shallow networks.
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For a subset G of a normed linear space (X , ‖.‖X ), G-variation (variation with
respect to the set G), denoted by ‖.‖G, is defined as

‖f‖G := inf {c ∈ R+ | f/c ∈ clX conv (G ∪ −G)} ,

where −G := {− g | g ∈ G}, clX denotes the closure with respect to the norm

‖ · ‖X on X , and convG :=
{∑k

i=1 aigi | ai ∈ [0, 1],
∑k

i=1 ai = 1, gi ∈ G, k ∈ N
}

is the convex hull of G.
Variation with respect to a set of functions was introduced by Kůrková [21]

as an extension of Barron’s [22] concept of variation with respect to sets of
characteristic functions. Barron investigated the set of characteristic functions
of half-spaces, which corresponds to the dictionary of functions computable by
Heaviside perceptrons. For d = 1, variation with respect to half-spaces coincides
up to a constant with the concept of total variation from integration theory.
Variational norms play an important role in estimates of approximation rates by
one-hidden-layer networks (see, e.g., [11, 23, 24] and the references therein).

The following straightforward consequence of the definition of G-variation
shows that in all representations of a function with large G-variation by networks
with units from the dictionary G, the number of units must be large or some
absolute values of output weights must be large.

Proposition 1. Let G be a bounded subset of a normed linear space (X , ‖.‖),
then for every f ∈ X ,
(i) ‖f‖G ≤

{∑k
i=1 |wi|

∣∣∣ f =
∑k

i=1 wi gi , wi ∈ R, gi ∈ G, k ∈ N
}
;

(ii) for G finite with cardG = k,

‖f‖G = min
{∑k

i=1 |wi|
∣∣∣ f =

∑k
i=1 wi gi , wi ∈ R, gi ∈ G

}
.

Proposition 1 implies that families of sets of d-variable functions {Fd |d ∈ D}
with Gd-variations growing with d exponentially cannot be tractably represented
by networks with units from Gd.

Note that G-variation is a norm and thus by multiplying f by suitable con-
stants we can obtain functions with arbitrarily large or small variations. How-
ever, in neurocomputing we are interested in computation of functions with
similar sizes as computational units. For example, in dictionaries Hd(X) and
Pd(X) FKd

(X) formed by functions on a finite subset X of Rd, the supremum
of l2-norms of their elements is 2cardX/2. Thus we explore variational norms of
functions in the spheres of radii 2card(X)/2 in the Euclidean spaces B(X).

To describe classes of functions with large variations, we use the following
lower bound on variational norm from [19] (see also [25, 26]). By G⊥ is denoted
the orthogonal complement of G.

Theorem 1. Let (X , ‖.‖X ) be a Hilbert space and G its bounded subset. Then

for every f ∈ X \G⊥, ‖f‖G ≥ ‖f‖2

supg∈G |g·f | .

Theorem 1 implies that functions which are “almost orthogonal” to G have
large variations. To take advantage of this theorem, we use the angular pseudo-
metrics δ on the unit sphere Sm−1 in Rm defined as
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δ(f, g) = arccos |f · g|.

Note that this pseudometrics defines the distance as the minimum of the two
angles between f and g and between f and −g (it is a pseudometrics as the
distance of antipodal vectors is zero).

The next corollary of Theorem 1 states that functions which have large dis-
tances measured by an angular pseudometrics δ from the set G have large G-
variations.

Corollary 1. Let m be a positive integer, G ⊂ Sm−1, and f ∈ Sm−1 such that
has for some α ∈ (0, π/2) and all g ∈ G, the angular distance δ(f, g) ≥ α. Then
‖f‖G ≥ 1

cos α .

4 Sets of Functions with Large Variations

In this section we show that for reasonably “small” dictionaries G formed by
functions on finite subsets X of Rd with cardX = m there exist “large subsets”
of spheres in Rm consisting of functions with “large” G-variations. The following
theorem estimates probability that a randomly chosen vector f ∈ Sm−1 has G-
variation larger than 1

cos α . Its proof is based on a geometrical property of high-
dimensional Euclidean spaces called “concentration of measure”. This property
implies that for large dimensions m, most of the areas of spheres Sm−1 in m-
dimensional spaces Rm lie “close” to the equators of these spheres (see, e.g.,
[27]).

Theorem 2. Let m be a positive integer, μ a uniform measure on Sm−1 such
that μ(Sm−1) = 1, G a finite subset of Sm−1 with cardG = k, α ∈ (0, π/2), and

Vα = {f ∈ Sm | ‖f‖G ≥ 1
cos α}. Then μ(Vα) ≥ 1− k e−

m(cos α)2

2 .

Proof. By Corollary 1, Vα contains all f ∈ Sm−1 satisfying for all g ∈ G, |f ·
g| ≤ cosα, i.e., all f with δ(f, g) = arccos |f · g| ≥ α. Let C(g, ε) denotes
the spherical cap with a center g ∈ G and the angle α = arccos ε defined as
C(g, ε) = {h ∈ Sm−1 |h · g ≥ ε}. So f is not contained in any of the spherical
caps C(g, ε) with a center g ∈ G. With d increasing, the normalized measures

of the spherical caps are decreasing exponentially fast: μ(C(g, ε)) ≤ e−mε2

2 (see,

e.g., [28, p.11]). Thus μ(Vα) ≥ 1− k e−m(cos α)2

2 .

Combining Theorem 2 with “relatively small”sizes of the dictionaries
Hd({0, 1}d), Pd({0, 1}d), and FKd

({0, 1}d), induced by a bounded kernel Kd :
{0, 1}d×{0, 1}d → R (such as the Gaussian), we obtain an estimate of the frac-

tion of the area of the sphere of radius 2d/2 in the space B({0, 1}d) � R2d which
contains functions with variations depending on d exponentially. By Sm−1

r we
denote the sphere of radius r in Rm.
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Theorem 3. Let d be a positive integer, μ a uniform measure on S2d−1
2d/2

such

that μ(S2d−1
2d/2

) = 1, G a dictionary formed by functions on {0, 1}d such that for

all g ∈ G, ‖g‖2 ≤ 2d/2, α ∈ (0, π/2), and Vα(G) = {f ∈ S2d−1 | ‖f‖G ≥ 1
cos α}.

(i) If G = Hd({0, 1}d), then μ(Vα(Hd({0, 1}d))) ≥ 1− 2d
2

e−
2d(cos α)2

2 ;

(ii) if G = Pd({0, 1}d), then μ(Vα(Hd({0, 1}d))) ≥ 1− 2d
2

e−
2d(cos α)2

2 ;
(iii) if GKd

({0, 1}d), where K : {0, 1}d × {0, 1}d is a kernel such that

supx∈{0,1}d |K(x, x) ≤ 1, then μ(Vα(GKd
({0, 1}d))) ≥ 1− 2d e−

2d(cos α)2

2 .

Proof. (i) and (ii) follow from Theorem 2 and an upper bound 2d
2−d log2 d+O(d)

on the dictionary cardHd({0, 1}d) [29, 30]. Thus cardinalities of both dictionaries

Hd({0, 1}d) and Pd({0, 1}d) are smaller than 2d
2

, which is much smaller than

the cardinality 22
d

of the whole space B({0, 1}d). The Euclidean norm of all
elements of Pd({0, 1}d) is 2d/2, which is the maximal value of the Euclidean
norms of elements of Hd({0, 1}d).
(iii) follows from Theorem 2 and the cardinality 2d of the dictionaryGKd

({0, 1}d)
formed by kernel units centered at the vertices of the Boolean cube {0, 1}d.

Theorem 3 holds for any kernel with supx∈{0,1}d |K(x, x)| = 1 and implies that

representations of most functions from B({0, 1}d) having their Euclidean norms
equal to 2d/2 by SVM induced by the kernel K are not tractable, i.e., their
representations require exponentially large numbers of units or exponentially
large sizes of output weights.

Setting cos α = 2−d/4, we obtain from Theorem 3 the lower bound

1− e−
2d/2−2d2

2

on the relative size of the subset of the ball of radius 2d/2 in B({0, 1}d) containing
functions with variations with respect to half-spaces larger or equal to 2d/4. So by
Proposition 1, for large d almost any randomly chosen real-valued Boolean func-
tion with the norm 2d/2 cannot be tractably represented by a shallow Heaviside
perceptron network.

Theorem 3 showing that for large d, almost any function on the sphere of
radius 2cardX has variation depending on d exponentially is existential. However,
to construct concrete examples of such functions is not easy. The only example
of which we are aware is the function “inner product mod 2” which serves in
theory of circuit complexity as ana example of a function which does not belong
to the class L̂T2 of depth-2 polynomial-size threshold gate circuits with weights
being polynomially bounded integers (see, e.g., [18]). For every even positive
integer d, let βd : {0, 1}d → {−1, 1} be defined for all x ∈ {0, 1}d as

βd := (−1)l(x)·r(x)

where l(x), r(x) ∈ {0, 1}d/2 are defined for every i = 1, . . . d2 as l(x)i := xi
and r(x)i := x d

2+i. When the range {−1, 1} is replaced with {1, 0}, functions
computing inner products of l(x) with r(x) mod 2 are obtained.
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The following theorem is a corollary of a lower bound on the variational norm
from [19, Theorem 3.7]. Recall the h = Ω (g(d)) for two functions g, h : N → R
meaning that there exist a positive constant c and n0 ∈ N such that for all
n ≥ no one has h(n) ≥ c g(n) [31].

Theorem 4. Let d be an even integer, then ‖βd‖Hd({0,1}d) ≥ ‖f‖Pd({0,1}d) =

Ω(2d/6).

By Theorem 4 and Proposition 1 we get the following corollary.

Corollary 2. Let d be an even integer and βd(x) =
∑m

i=1 wiϑ(vi · x + bi) be
a representations of the function βd : {0, 1}d → {−1, 1} by a one-hidden-layer
Heaviside perceptron network. Then

∑m
i=1 |wi| = Ω(22d/6) .

Corollary 2 implies that a representation of a class of d-variable Boolean func-
tions {βd | d even } by one-hidden-layer Heaviside perceptron networks is not
tractable. These functions cannot be represented by Heaviside perceptron net-
works with both numbers of units and sums of absolute values of output weights
polynomially bounded.

5 Discussion

We investigated model complexities of one-hidden-layer networks representing
high-dimensional functions. We showed that the concept of variational norm with
respect to a dictionary studied on approximation theory reflects both numbers
of units and sizes of output weights in representing networks with units from
the dictionary. Using properties of high-dimensional spaces, we proved that for
networks with common units (such as perceptrons and SVM kernel units) with
increasing input dimension dmost of the functions require networks with number
of units or sizes of output weights depending on d exponentially. An essential
condition in our arguments is a relatively small size of these dictionaries. The
upper bound 2d

2−d log2 d+O(d) on the dictionary of Heaviside perceptrons on the
Boolean cube was derived already in 19th century by one of the founders of
high-dimensional geometry [29].

Our results hold for functions of comparable norms as network units. Note that
also in theory of circuit complexity (see, e.g., [18]), there are studied represen-
tations of functions of fixed Euclidean norms by networks with gates computing
functions with the same norms by networks with constrains on both numbers
of units and their output weights. In particular, in this theory there are studied
representations of Boolean functions with values in {−1, 1} by networks com-
posed from signum perceptrons. All these functions have Euclidean norms equal
to 2d/2.

Acknowledgments. This work was partially supported by grant COST
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25. Kůrková, V.: Minimization of error functionals over perceptron networks. Neural
Computation 20, 250–270 (2008)
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Non-euclidean Principal Component Analysis
for Matrices by Hebbian Learning
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Abstract. Modern image data analysis is apparently based on matrix
norms. The calculation of those norms is frequently time consuming as
well as matrix calculations in general. For this reason, complexity re-
duction is a key feature in image analysis. In this paper we investigate
Schatten-p-norms as matrix norms based on the matrix trace operator,
such that the mathematical vector space of matrices becomes a Banach
space. As the first main result we develop a semi-inner product for these
Banach spaces which generate the respective norms. Then we explain
a mathematical theory of eigen-matrices for this scenario and give as
the second main result an online learning scheme for the iterative deter-
mination of those eigen-matrices with respect to a covariance operator
defined for datasets of matrices/images, which can be used for complexity
reduction.

1 Introduction

Analysis of image data is still an promising subject due to the images size. Fur-
ther, image data can be compared by Schatten-pnorms [7, 17], which seem to
be more appropriate for similarity descriptions[5, 13]. However, calculation of
matrix norms or distance measure thereof frequently require expansive calcula-
tions. Therefore, a low-dimensional feature representation is demanded. This is
frequently done either by explicit feature extraction based on image processing
tools or by handling the data matrices as vectors equipped with respective lp-
norms and subsequent principal component analysis in both cases [1, 10, 11, 18].
However, both approaches are accompanied with an information loss [2].

In this paper we consider matrix norms as an alternative way, in particular
we focus on Schatten-p-norms. We explain the concept of eigen-matrices and
principal components for this scenario. For this purpose, we develop a semi-
inner product (SIP) assigned to Schatten-p-norms and present an online learning
algorithm for determination of the principal components for a given matrix data
set, which make use of the SIP. We mathematically proof these concepts and
give illustrative examples to demonstrate the approach.

� D.N. is supported by a grant of the European Social Foundation (ESF), Saxony.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 77–88, 2014.
© Springer International Publishing Switzerland 2014
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2 Banach Vector Spaces and Semi-inner Products

Banach spaces have gained popularity in machine learning, recently [3, 6, 8, 9, 19,
20]. Prominent n-dimensional examples are the lp-spaces with the Minkowski-p-
norm

‖x‖p = p

√√√√ n∑
i=1

|xi|p (2.1)

for 1 ≤ p ≤ ∞. In particular, the frequently applied l1-norm ‖•‖1 constitutes
a Banach space but does not form a Hilbert space. Thus, an inner product
generating ‖•‖1 does not exist.

2.1 Semi-inner Products for Vector Spaces

In the following, we briefly introduce basic concepts and properties of semi-inner
products, which are important for Hebbian PCA learning in Banach spaces,
neglecting details for better reading. The details are explained in the Appendix.

Semi-inner products, introduced by G. Lumer in 1961, can be seen as a
generalization of inner products [12]:

Definition 1. A semi-inner product (SIP) [•, •] of a general vector space V is
a map

[•, •] : V × V −→ C (2.2)

with the following properties:

1. positive semi-definite
[x,x] ≥ 0 (2.3)

and [x,x] = 0 iff x = 0
2. linear with respect to the first argument for ξ ∈ C

ξ · [x, z] + [y, z] = [ξ · x+ y, z] (2.4)

3. Cauchy-Schwarz inequality

|[x,y]|2 ≤ [x,x] [y,y] (2.5)

We emphasize that, in contradiction to inner products, SIPs may violate the
symmetry condition, i.e. we generally have [x,y] �= [y,x].

G. Lumer has proven that an arbitrary Banach space B with norm ‖x‖
B

can
be equipped with a SIP [•, •]

B
such that

‖x‖
B
=
√
[x,x]

B
(2.6)

is valid [12]. Although this SIP maybe not unique, we can always find a SIP such
that

[x, λ · y] = λ · [x,y] (2.7)
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holds whereas uniqueness is achieved when the SIP is continuous with respect
to the second argument [4].

The SIPs for the above mentioned (complex) lp-spaces are given as

[x,y]p =
1(

‖y‖p
)p−2

n∑
i=1

xi · ȳi · |yi|p−2 (2.8)

with the real counterpart

[x,y]p =
1(

‖y‖p
)p−2

n∑
i=1

xi |yi|p−1
sgn (yi) (2.9)

as explained in [10].

2.2 Hebbian Learning of Principal Components Using SIPs

Suppose the space Cn equipped with the SIP [•, •]p and a dataset V =
{vk|k = 1 . . .N} ⊂ Cn of centered vectors is given. Let further W =
{wk|k = 1 . . .K} be a set of vectors with K = min (n,N) randomly initialized.
Recently, it has been shown that the iterative process

wk = wk + ε · [vl,wk]p ·

⎛⎝vl −
k∑

j=1

[vl,wj ]p ·wj

⎞⎠ (2.10)

for a randomly chosen vectorsvl ∈ V and a learning rate 0 < ε � 1 converges
to the K eigenvectors of the covariance matrix CV of V corresponding to the K
largest eigenvalues [10]. If p = 2, this algorithm is the well-known Hebbian Prin-
ciple Component Analysis (HPCA) algorithm introduced by Oja and Sanger
[14–16].

3 Schatten-Norms and Semi-inner Products

In the following we assume matrices A,B ∈ Cm×n. We emphasize a this point
that Cm×n is a mathematical vector space. The Schatten-p-norm sp (A) of a
matrix A is defined as

sp (A) = p

√√√√ n∑
k=1

(σk)
p (3.1)

with the σk (A) are the singular values of A, i.e. the squared singular values
(σk (A))

2 are the eigenvalues of Ω = A∗A and where A∗ denotes the conjugate
complex of A [17]. With this matrix norm1 the vector space Cm×n becomes a
1 Matrix norms (operator norms) differ from usual norms that the submultiplicativity
‖A ·B‖ ≤ ‖A‖ · ‖B‖ is additionally required. Thus, matrix norms become compliant
with the matrix multiplication. For a detailed description and properties compared
to usual norms we refer to [7].
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Banach space Bm,n of matrices. In the following we will develop a SIP for this
Banach space. For this purpose, first we review basic properties of the norm
sp. Thereafter we present the respective SIP and investigate its utilization in
Hebbian Oja-learning.

3.1 Basic Properties of Schatten-p-Norms

In this section we summarize some basic properties, which are useful in the
following investigations. Let |A| denote the absolute value of A ∈ Bm,n to be
the positive square root of Ω = A∗A. Then the Schatten-p-norm can be written
as

sp (A) =
p

√
trace(|A|p) (3.2)

with the matrix trace operator trace (•) [7].

Remark 1. We remark at this point that the trace operator is a linear operator
and it is cyclic, i.e. sp (λ · A+ γB) = λ · sp (A) + γ · sp (B) and

sp (ABC) = sp (CAB) (3.3)

are valid, the latter using the usual matrix product based on the Euclidean inner
product.

The Schatten-p-norm sp (A) belongs to the class of sub-multiplicative matrix
norms, i.e. sp (AB) ≤ sp (A) · sp (B). Further, it is unitarily-invariant such that
sp (A) = sp (PA) with P being an unitar matrix. Because of the trace property
(3.2) it follows that sp (A) is also invariant with respect to any basis transfor-
mation: sp (A) = sp

(
BAB−1

)
. By definition, it is also self-adjoint such that

sp (A) = sp (A
∗) is valid.

Important cases are p = 1 and p = ∞, which correspond to the nuclear or
trace norm and the spectral norm, respectively. The value p = 2 defines the
Frobenius-norm, which is consistent with the vector norm ‖•‖2. It is also known
as Hilbert-Schmidt-norm s2 (A) =

√
trace (A∗A). The dual of sp (A) is the norm

sq (A) with 1
p + 1

q = 1.

3.2 Semi-inner Products for Schatten-p-Norms

According to the definition (3.1), the Schatten-p-norm sp (A) can be seen as the
Minkowski-p-norm (2.1) of the vector σ of the singular values of the matrix A. It
is already known that the Frobenius-norm is induced by an inner product given
as

〈A,B〉F = trace (A∗B) (3.4)

making the space of the matrices to a Hilbert space [7]. According to the Cauchy-
Schwarz-inequality we have |〈A,B〉F |

2 ≤ |〈A,A〉F | · |〈B,B〉F |. Using this obser-
vation and keeping in mind that Schatten-p-norms correspond to Banach spaces
we can state the following lemma:
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Theorem 1. The Banach space Bm,n of matrices A,B ∈ Cm×n equipped with
the Schatten-p-norm sp (A) =

p
√∑n

k=1 (σk)
p from (3.1) corresponds to the SIP

[A,B]p : Bm,n ×Bm,n → C defined as

[A,B]p =
1

(sp (B))
p−2 trace

(
AB∗ (|B|m)

p−2
)

(3.5)

with |B|m =
√
BB∗ or, equivalently,

[A,B]p =
1

(sp (B))
p−2 trace

(
A∗B (|B|n)

p−2
)

(3.6)

is valid with |B|n =
√
B∗B.

The proof of the theorem is given in the Appendix.
We remark that the real SIP [A,B]°p : B°

m,n×B°
m,n → R for the Banach space

B°
m,n = Rm×n is also linear in the second argument and, hence, it generates a

linear operator
FA [B] = [A,B]

°
p ·A (3.7)

in B°
m,n according to [10].

4 Principal Components in Bm,n

In this section we explain the concept of eigen-matrices and principal compo-
nents for the Banach space of matrices and present a respective online learning
algorithm.

4.1 Principal Components

Let B (n ·m) = {bk}k=1,...,n·m be a basis in the vector space Bm,n. We consider
a linear projection operator Pl,p

m,n : Bm,n → Cl defined by

Pl,p
B(n·m) [A] =

(
[A, b1]p , . . . , [A, bl]p

)

(4.1)

with 1 ≤ l ≤ n · m. Further, assuming a set S = {S1, S2, . . . |Sk ∈ Bm,n} we
define the linear covariance operators CS ∈ B[m,n]×[m,n] as the expectation
CS = E [Sk � S∗

k ]. The set B[m,n]×[m,n] is the space of block matrices of size
m × n where each element is itself a matrix of size m × n. Each operator O
generates a linear mapping O : Bm,n → Bm,n by

O [A] =

⎛⎜⎜⎜⎜⎜⎝
[O11, A]p . . . [O1n, A]p

...
...

[Om1, A]p . . . [Om,n, A]p

⎞⎟⎟⎟⎟⎟⎠ (4.2)
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and a matrix X ∈ Bm,n, X �= 0, is called an eigen-matrix of the operator O if

O [X ] = λX (4.3)

is valid. The scalar λ is the eigenvalue assigned to X . The set Λ =
{λk|k = 1, . . . , n ·m} of all eigenvalues forms the spectrum of O. If the operator
is regular, i.e. O−1 exists, then the respective eigen-matricesXk generate a basis
in Bm,n, because Bm,n is a vector space itself. If O = CS the eigen-matrices
are also denotes as principal components.

4.2 Hebbian Learning of Principal Components

In this section we extend the Oja-Sanger-learning of principal compo-
nents of the Rn to the Banach space B°

m,n. We suppose a dataset
V =

{
Vk|k = 1 . . .N, Vk ∈ B°

m,n

}
of centered matrices and a set W ={

Wk|k = 1 . . .K, Wk ∈ B°
m,n

}
randomly initialized with K = min (n ·m,N).

We consider the iterative process

�Wk = ε · [Vl,Wk]
°
p ·

⎛⎝Vl − k∑
j=1

[Vl,Wj ]
°
p ·Wj

⎞⎠ (4.4)

for a randomly chosen matricesVl ∈ V and a learning rate 0 < ε � 1. We can
state the following lemma:

Lemma 1. The algorithm defined in (4.4) converges such that the matrices Wk

are the eigen-matrices according to the eigen-matrix equation (4.3) corresponding
to the K largest eigenvalues of the covariance operator CV of the dataset V.

Proof. Since Bm,n is a Banach space with the SIP [•, •]p generating the norm
sp (•), the convergence follows by the same arguments as for the Banach space
considerations in [10], i.e. like in the original proof only the norm properties are
required to show convergence. Now we restrict ourself two the case of only one
principal component, i.e. K = 1 and set W =W1. The stationary state is given
by �W = 0. Because of 0 < ε� 1 we can consider the expectation and obtain
for this state

E [FV [W ]] = γ ·W, (4.5)

which is again an eigenvalue equation with γ = E
[
[V,W ]°p · [V,W ]°p

]
. Further,

we know from (3.7) that FV [W ] = [V,W ]
°
p · V is a linear operator for each

V ∈ V . We have

E [FV [W ]] = E
[
V · [V,W ]

°
p

]
= E [V � V ∗] [W ]

= CV [W ]

in complete analogy to [10]. The generalization to K > 1 is straightforward
following the argumentation in [16]. This completes the proof.
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5 Illustrative Example

We illustrate the above considerations by the following experiment. We consider
a database of gray-scale images from handwritten digits ′0′ . . .′ 9′ consisting of
images of size 16× 16 pixels. We determined the first two principal components
for several Schatten-p-norms and compare them with the respective vectorial
counterpart. The results for the l2-, l1-, and l5-norms are depicted in Fig.’s 1, 2,
and 3, respectively.

As we can observe from the exemplary simulations, clear differences between
the matrix and the vectorial approach are apparently. Thus, the different math-
ematical treatment leads to diverse guise also depending on the parameter p.
However, the consequences of this different behavior for applications is not yet
clear so far, i.e. whether principal components in the matrix space can be con-
tribute to better performance in applications. However, this is not the focus of
this contribution, which is dedicated to provide the mathematical theory.

Fig. 1. Visualization of the first two principal components for the l2-norm for vectors
(top) and matrices (bottom)
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Fig. 2. Visualization of the first two principal components for the l1-norm for vectors
(top) and matrices (bottom)

Fig. 3. Visualization of the first two principal components for the l5-norm for vectors
(top) and matrices (bottom)
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6 Concluding Remarks and Future Work

In this paper we investigated the mathematical theory of Schatten-p-norms for
matrices and considered principal component analysis in the respective Banach
space of matrices. For this purpose we present a semi-inner product inducing
the norm and adapt the Oja-Sanger algorithm for vectorial principal component
analysis to this matrix case. For both new aspects we provide the mathematical
theory and proof mathematically the required properties. After verification of
the mathematical concepts we illustrated the different behavior of the matrix
approach compared to the vectorial ansatz for an illustrative example. In future
work we will investigate the properties of this matrix approach in deeper detail in
applications like image classification or time-dissolved spectra. For this purpose,
we can use Schatten-p-norms directly in vector quantization methods like self-
organizing maps or learning vector quantization. An alternative offered by this
paper is to transfer the original data in the coordinate space of the principal
matrices and handling the classification problem in that transformed data space.
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Appendix

In this Appendix we proof the Theorem (1):

Proof. We start the proof considering (3.5). It is clear that (3.6) holds, iff (3.5) is valid,
because A and A∗ have the same singular values as well as B and B∗, and, additionally
paying attention to the properties of the trace operator for matrices. Thus it remains
to proof the SIP-properties:

1. Linearity: We observe that [A,B]p is linear in the first argument because of the
linearity of the trace operator.

2. Scalar multiplication in the second argument: The relation sp (λ · B) =
|λ| · sp (B) is valid because of the norm properties and |λ ·B|m = |λ| · |B|m such
that

(λ ·B)∗
(
|λ · B|m

)p−2
= λ · |λ|p−2 ·B∗ ·

(
|B|m

)p−2

is valid. Using the cyclic property (3.3) and, again, the linearity we obtain
[A, λ ·B]p = λ · [A,B]p.

3. Positive semi-definiteness: We consider

[A,A]p =
1

(sp (A))
p−2 trace

(
AA∗ (|A|m

)p−2
)
.

Because, AA∗ and |A|m are both positive semi-definite, trace
(
AA∗ (|A|m

)p−2
)
≥

0 is valid and, hence, [A,A]p ≥ 0. The equality holds only for A = 0.
4. Cauchy-Schwarz-inequality: Last we proof the Cauchy-Schwarz inequality. For

this purpose, we suppose two matrices A, B ∈ Bm,n and βi are the eigenvalues of
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B. We consider∣∣∣trace(A ·B∗ ·
(
|B|m

)p−2
)∣∣∣ ≤∣∣∣trace(A ·B∗

+ ·
(
|B+|m

)p−2
)∣∣∣

=
∣∣trace (A ·B+ · (B+)

p−2)∣∣
=

∣∣trace (A · (B+)
p−1

)∣∣
whereby B+ is a matrix B+ ∈ Rm×n is a real matrix with the eigenvalues β+

i = |βi|.
We observe at this point that for the singular values of B and B+ the equality

σi (B) = σi (B+)

holds. Further, using the Neumann-inequality

trace
(
A · B̂

)
≤

n∗∑
i=1

σi (A) · σi

(
B̂
)

with n∗ = min (m,n) for arbitrary matrices A, B̂ ∈ Bm,n with the respective
singular values σi (A) and σi

(
B̂
)
, we can conclude that

trace
(
A · (B+)

p−1) ≤
n∗∑
i=1

σi (A) · (σi (B+))
p−1

holds. Thus, ∣∣∣[A,B]p

∣∣∣ = ∣∣∣∣ 1

(sp (B))
p−2 trace

(
AB∗ (|B|m

)p−2
)∣∣∣∣

≤ 1

(sp (B))
p−2

n∗∑
i=1

σi (A) · (σi (B+))
p−1

=
1

(sp (B+))
p−2

n∗∑
i=1

σi (A) · (σi (B+))
p−1

whereby we used the equality

sp (B) = sp (B+)

because of the same singular values. We consider the respective (real) SIP (2.9) in
lp-spaces

[σ (A) , σ (B+)]p =
1(

‖σ (B+)‖p
)p−2

n∗∑
i=1

σi (A) |σi (B+)|p−1 · sgn (σi (B+))

for the singular value vectors σ (A) and σ (B+), which can be simplified to

[σ (A) , σ (B+)]p =
1(

‖σ (B+)‖p
)p−2

n∗∑
i=1

σi (A) · (σi (B+))
p−1
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paying attention to σi (B+) ≥ 0 such that sgn
(
σi

(
B+

))
= 1. For this SIP, the

Cauchy-Schwarz-inequality∣∣∣[σ (A) , σ (B+)]p

∣∣∣ ≤ ‖σ (A)‖p · ‖σ (B+)‖p

for the singular value vectors is valid in lp-spaces.
Keeping in mind that ‖σ (A)‖p = sp (A) as well as ‖σ (B+)‖p = sp (B+) we can
collect the pieces and finally obtain∣∣∣[A,B]p

∣∣∣ ≤ sp (A) · sp (B)

which is the required Cauchy-Schwarz-inequality for the SIP [A,B]p from (3.5)
related to the Schatten-p-norm sp (A) from (3.1).

This concludes the proof of the theorem.
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Abstract. Paper presents the hardware implementation of the Hopfield
continuous neural network. We propose a molecular realization of a spin
glass model. In particular, we consider a spin glass like structure that
allows interconnection strengths change and neuron state test. Proposed
device is based on SBA-15 mesoporous silica thin film, activated byMn12

molecular magnets. Our idea seems to be feasible from the technological
point of view.
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1 Introduction

Neural network hardware has been a subject of rapid development during the
last decade. Unlike the conventional von-Neumann architecture that is sequen-
tial in nature, hardware implementation of artificial neural networks (ANNs)
profits from massively parallel processing. A large variety of hardware has been
designed to exploit the inherent parallelism of the neural network models. De-
spite the tremendous growth in the digital computing power of general-purpose
processors, neural network hardware has been found to be promising in some
specialized applications, such as image processing, speech synthesis and anal-
ysis, pattern recognition, high energy physics and so on [1–4]. Due to limited
space it is not intention of the paper to present the state of the art in neu-
ral network hardware architectures nor provide a broad view of principles and
practice of hardware implementation of neural networks. On the other hand it
is quite natural to find relationship to the closest and existing competitors of
the proposed solution. These are digital and analog neurochips. Digital Neural
ASICs are the most powerful and mature neurochips. Digital techniques offer
high computational precision, high reliability, and high programmability. Fur-
thermore, powerful design tools are available for digital full- and semi-custom
design. Disadvantages are the relatively large circuit size compared to analog
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implementations. Synaptic weights can be stored on or off chip. This choice is
determined by the trade-off between speed and size. There are two well-known
digital Neurochips, CNAPS [5] and SYNAPSE-1 [6].The standard CNAPS sys-
tem consists of a common sequencer chip and four processor chips. Its die mea-
sures about one square inch with more than 13 million transistors integrated.
Unlike CNAPS and the SYNAPSE which were designed for a wide range of
neural network algorithms, the NESPINN (Neurocomputer for Spiking Neu-
ral Networks), designed at the Institute of Microelectronics of the Technical
University of Berlin, is optimized more strictly to a certain class of neural net-
works: spiking neural networks. Spiking neural networks model neurons on a level
relating more closely to biology. They do not only incorporate synaptic weight-
ing, postsynaptic summation, static threshold and saturation, but also compu-
tation of membrane potentials, synaptic time delays and dynamical thresholds.
One NESPINN-Board is designed to compute about 105 programmable neurons
in real-time [7]. Analog electronics have some interesting characteristics that
can directly be used for neural network implementation. Operational amplifiers,
for instance, are easily built from single transistors and automatically perform
neuron-like functions, such as integration and sigmoid transfer. These otherwise
computationally intensive calculations are automatically performed by physical
processes such as summing of currents or charges. Analog electronics are very
compact and offer high speed at low energy dissipation. With current state-of-
the-art micro electronics, simple neural (non-learning) associative memory chips
with more than 1000 neurons and 1000 inputs each can be integrated on a sin-
gle chip performing about 100 GCPS. Disadvantages of analog technology are
the susceptibility to noise and process-parameter variations that limit compu-
tational precision and make it harder to understand what exactly is computed.
Chips built according to the same design will never function in exactly the same
way. Apart from the difficulties involved in designing analog circuits, the problem
of representing adaptable weights is limiting the applicability of analog circuits.
Weights can for instance be represented by resistors, but these are not adaptable
after the production of the chips. Chips with fixed weights can only be used in
the recall phase. Implementation techniques that do allow for adaptable weights
are: capacitors, floating gate transistors, charge coupled devices (CCDs), etc [8].
The main problems with these techniques arise from process-parameter varia-
tions across the chip, limited storage times (volatility), and lack of compatibility
with standard VLSI processing technology. The weight sets for these train-able
chips are obtained by training on a remote system (PC or workstation) and
are then downloaded onto the chip. Then another short learning phase can be
carried out in the chip used for the forward phase, and the remote system up-
dates the weights until the network stabilizes. This yields a weight matrix that
is adjusted to compensate for the inevitable disparities in analog computations
due to process variance. This method has been used for Intel’s analog ETANN
chip [9]. It should be clear that these chips are suited for many different applica-
tions, but do not allow for on-board training. Although analog chips will never
reach the flexibility attainable with digital chips, their speed and compactness
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make them very attractive for neural network research, especially when they
adopt the adaptive properties of the original neural network paradigms. A final
promising advantage is that they more directly interface with the real, analog
world, whereas digital implementations will always require fast analog-to-digital
converters to read in world information and digital-to-analog converters to put
their data back into the world. Advances in lithographic techniques and our
understanding of solid-state systems have brought us to a point where we are
interested in the electronic transport properties of organic molecules that are a
few nanometers in size. One reason for this study is that simply the fact that
such studies have not been performed before. Moreover successful implemen-
tation of molecular transistor has turned our attention to using it as a single
artificial neuron [10]. The purpose of this paper is to present completely new
hardware implementation of the artificial neuron based on molecular technique.
We describe the idea of a spin-glass like hardware implementation of a Hopfield
neural structure. This approach recalls the original Hopfield model of a contin-
uous neural network. The Hopfield continuous neural network has come up as a
projection of a physical spin-glass model[11, 12] into an artificial neural networks
domain. Spin-glasses are unique kinds of structures that consist of paramagnetic
atoms arranged in a rigid lattice (solid). Opposite to the ferromagnetic and anti
ferromagnetic solids, the spin glasses are not lasting long structures. Their main
properties are: disorder and rivalry of spin-spin interactions [13]. The later can
be either ferromagnetic or anti ferromagnetic with the same probability. This
disorder can originate from structural properties of a sample or atoms type in
the crystalline lattice. This leads to the phenomenon called frustration - there
is no configuration of spins that satisfies all bonds between lattice points. The
schematic representation of a spin-glass can be seen in fig.1.

FMFM

h
EX

AM

Fig. 1. The schematic representation of a spin-glass. In the picture FM means fer-
romagnetic interaction, while AM means anti ferromagnetic interaction, hEX is an
external magnetic field. Arrows mean spins directions of atoms.
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For those systems quenched randomness of spin-spin interactions can be ob-
served [14].Characteristic property of solids in spin-glass state is their reaction
to the external magnetic field. Opposite to the ferromagnetic solids (external
magnetic field is removed from the substance) and a paramagnetic substance
(magnetic moments of atoms rapidly set up along the magnetic field), in the
spin-glass a slow upward drift occurs toward the minimum in the sense of the
Hamilton function minimum. This process has been induced by the external
field. A single spin senses the magnetic field either as externally applied or from
other spins. The magnetic field affecting on a single spin can be expressed in
equation:

hi =

N∑
j=1

wijSj + h
EX . (1)

In equation (1) hi is a magnetic field affecting on atom i, Sj is a j-atom
spin, hEX is an external magnetic field, wij > 0 measures the strength of the
interaction.

The system like this has a few ground states - the total energy function has
more than one minimum. The ground state of a spin glass is its configuration
that minimizes the frustration. According to the total minimum of the potential
energy principle, the system is drifting towards configuration corresponding to
its minimum energy. In the Ising spin glass model the Hamilton function of the
total energy can be expressed by equation (2).

H =
N∑
i=1

N∑
j=1

wijSiSj + h
EX

N∑
i=1

Si. (2)

As Hopfield noticed [15], [16], finding the ground state of a spin glass is equiv-
alent to solving the combinatorial optimization like problems. The energy land-
scape is determined by a strength of the interaction and the external magnetic
field. If the combinatorial optimization is projected into the energy function
the solution corresponds to the minimum of the Hamilton function. Therefore,
spins in the spin-glass will arrange in the expected way. The spin-glass has been
projected into computer domain as an Hopfield continuous structure. The sim-
ulations confirmed its efficiency. The main problem of the Hopfield structures is
the computational time. Software implementations of the Hopfield networks are
not really continuous. This feature can be only imitated due to Euler discretiza-
tion. Also hardware implementation of a Hopfield networks are far from ideal and
cannot be compared to a real spin-glass. One-to-one realization of a spin-glass to
solving a specific problem is impossible - it is not likely to determine strength of
the interaction between atoms (the optimization problem is determined by the
strength of the interaction). Another problem is how to detect the spin of the
atom states. In the present work we propose the model of a spin-glass realized
by a molecular neurons localized in a thin film of a hexagonally arranged meso-
porous silica SBA-15. Our approach offers full control of the interaction strength
(corresponding to the interconnection strength in the neural network).
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2 The Idea

Authors propose using of SBA-15 mesoporous silica thin film, activated byMn12
molecular magnets. Silica SBA-15 has a form of thin and long rods with walls
built with amorphous silica (SiO2). The rods arrangement is regular, in this case
hexagonal. The structure of this species was depicted in fig. 2.

silica walls

pores

Fig. 2. The structure of SBA-15 type mesoporous silica

This material can be deposed as a thin films on a substrate (e.g. silicon wafers).
Interesting feature of this layout is that it is possible to obtain 2D hexagonal
structure (mesopores arranged vertically to the substrate’s surface)[17], what
was depicted in figure 3.

Silicon substrate

SBA-15 thin film

Fig. 3. 2D hexagonally arranged SBA-15 thin film on a silicon wafer substrate

Silica SBA-15can be activated by Mn12 molecular magnets [18]. Magnetic
crystals Mn12 exhibit unusual magnetic ground states, with high electron spin,
S = 10. In this case the most important thing is to obtain homogenous distribu-
tion of doping agent inside silica matrix and maintain such a distance between
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active units, so they do not interact with each other. As authors mastered the
method of doping SBA-15 silica pores by Mn12 molecular magnets (bounded
by propyl-carbonate units), the distribution control of the doping agents and
distance between active centres was possible [19], [20]. Having this done we can
construct single-molecule-magnet based neuron, the core of the spin-glass like
neural network. The critical point of this idea is the thin film from SBA-15 silica
grafted by Mn12 molecular magnets, deposed between two electrodes. Due to
distribution control of the magnets in silica matrix, each time we are able to
obtain the same amount of Mn12 clusters in the molecular neuron and be sure,
that they do not interact with each other. Important feature of the molecular
neuron is that it will work in low temperature (extremely long time of magnetic
relaxation of Mn12 can be observed in low temperature). Assuming thickness of
a active silica based layer about 20nm, conductivity electrons can tunnel between
electrodes only through the pores in silica (silica walls are amorphous so a chance
of passing it by electrons is extremely low) in interaction with Mn12 magnets
located there. The electron spin can be changed as much as magnetic moment
of a molecular magnet can. Electrons reaching anode are spin-polarized. This
output current can be passed to the input of the next molecular neuron. The
strength of the interaction are realized by organometalic rectifier-resistor (po-
lianiline based system). The tuning of the resistance enables the adjustment of
the electron mean free path and therefore probability of electron spin relaxation.
The schematic representation of the network consist of two molecular neurons
was depicted in figure 4.

e e e e eee e e e e eee e

e e ee e

e

SBA-15
thin layer

Mn12

electrodes

silicon substrate

interconnection strenght
- rectifier-resistor

Fig. 4. Schematic representation of a neural network consisting of two molecular neu-
rons

As it was mentioned before, there is no possibility of checking the atoms spin
state in the lattice of the spin glass. In the case of proposed system, the state
of each molecular neuron can be defined by measuring the current of polarized
electrons (source of polarized electrons can be e.g. a ferromagnetic electrode).
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3 Conclusion

In the paper we have presented completely novel hardware implementation of an
artificial neuron - single-molecule-magnet based neuron. Our idea seems to be
feasible from the technological point of view. Authors mastered the technology of
the thin SBA-15 film deposition on the silicon substrate. The geometrical proper-
ties of these layers were confirmed by TEM microscope imaging and X-Ray scat-
tering. The physical-chemistry properties were checked by Raman spectroscopy
supported by DFT simulations, SQUID magnetometry and EPR spectroscopy.
Considering the current status of research it is our belief a successful realization
of a molecular neuron is only a matter of time.
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Abstract. The paper deals with the problem of a robust fault diagnosis
of a wind turbine. The preliminary part of the paper describes the Linear
Parameter-Varying model derivation with a Recurrent Neural Network.
The subsequent part of the paper describes a robust fault detection, iso-
lation and identification scheme, which is based on the observer and H∞
framework for a class of non-linear systems. The proposed approach is
designed in such a way that a prescribed disturbance attenuation level is
achieved with respect to the actuator fault estimation error while guar-
anteeing the convergence of the observer. Moreover, the controller pa-
rameters selection method of the considered system is presented. Final
part of the paper shows the experimental results regarding wind turbines,
which confirms the effectiveness of proposed approach.

Keywords: Fault diagnosis, fault identification, robust control, fault-
tolerant control, neural networks.

1 Introduction

The problemof fault diagnosis (FD) of non-linear industrial systems ([3,5,6,10,11])
has received considerable attention during the last three decades. Indeed, it devel-
oped from the art of designing a satisfactory performing systems into the modern
theory and practice that it is today. Within the usual framework, the system be-
ing diagnosed is divided into three main components, i.e. plant (or system dynam-
ics ([10])), actuators and sensors. The paper deals with the problem of full fault
diagnosis of actuator, i.e. apart from the usual two steps consisting of fault detec-
tion and isolation (FDI), the fault identification is also performed. This last step is
especially important from the viewpoint of Fault-Tolerant Control (FTC) ([1,8]),
which is possible if and only if there is an information about the size of the fault
being a result of fault identification (or fault estimation). In this paper a robust
fault estimation approach is proposed, which can be efficiently applied to realise
the above-mentioned three-step procedure. The proposed approach is designed in
such a way that a prescribed disturbance attenuation level is achievedwith respect
to the fault estimation error while guaranteeing the convergence of the observer.
While the fault-tolerant control scheme is based on replacing the faulty actuator
and feeding them into the robust controller.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 97–108, 2014.
c© Springer International Publishing Switzerland 2014
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The paper is organized as follows. Section 2 presents a method for transform-
ing a neural state-space model into a discrete-time polytopic LPV model. Sec-
tion 3 describes the proposed actuator observer. Whilst section 4 describes the
robust controller and an integration procedure with the observer based strategy.
The final part of the paper presents a comprehensive case study regarding the
wind turbine, which clearly indicate the performance of the proposed approach.

2 Derivation of a LPV Model in Polytopic Form from a
Neural-Network Model

The goal of this section is to present a neural state-space model that can repre-
sent a general class of state-space models and can be easily transformed into a
LPV one.

Let us consider the following discrete-time LPV model:

xk+1 = A(θk)xk +B(θk)uk, (1)

yk+1 = C(θk)xk+1, (2)

where A(θk), B(θk), C(θk) are continuous mappings and θk is a time-varying
parameter. Matrices A,B,C are θk dependent and represents a general LPV
model.

A general form of state-space neural network model proposed within the
framework of the paper is

xk+1 = Axk +Buk +A1σ(E1xk), (3)

yk+1 = Cxk+1, (4)

where x ∈ Rn denotes the state vector, y ∈ Rp the output and u ∈ Rm the input
vector. A, A1, B, C, E1 are real-valued matrices of appropriate dimensions
and represent the weights which will be adjusted during the training stage of
the Recurrent Neural Network (RNN). The non-linear activation function σ(·),
which is applied elementwise in (3)–(4) is taken as a continuous, differentiable
and bounded function.

For stability and identifiability proofs of the proposed RNN the reader is
refereed to ([4]). Practical implementation RNN is shown in Fig. 1: the outputs
instead of the states are taken as input to sigmoidal layer. This modification
facilities the implementation of LPV controllers designed based on this model.
The subsequent section shows how to use the derived neural network for robust
fault diagnosis and how to transform it into an LPV form.

3 Actuator Fault Diagnosis

The main objective of this section is to provide a detailed design procedure of the
robust observer, which can be used for actuator fault diagnosis. In other words,
the main role of this observer is to provide the information about the actuator
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Fig. 1. State-space recurrent neural network

fault. Indeed, apart from serving as a usual residual generator (see, e.g.,([10])),
the observer should be designed in such a way that a prescribed disturbance
attenuation level is achieved with respect to the actuator fault estimation error
while guaranteeing the convergence of the observer.

Let us consider to following non-linear system:

xk+1 = Axk +Buk + g (xk) +Lafa,k +W 1wk, (5)

yk+1 = Cxk+1 +W 2wk+1, (6)

where xk ∈ X ⊂ Rn is the state vector, uk ∈ Rr stands for the input, yk ∈ Rm

denotes the output, fa,k ∈ Rm stands for the actuator fault. While wk ∈ l2 is
a an exogenous disturbance vector with W 1 ∈ Rn×n, W 2 ∈ Rm×n being its
distribution matrices while

l2 = {w ∈ Rn| ‖w‖l2 < +∞} , ‖w‖l2 =

( ∞∑
k=0

‖wk‖2
) 1

2

. (7)

Following ([2,10]), let us assume that the system is observable and the follow-
ing rank condition is satisfied:

rank(CLa) = rank(La) = s (8)

Under the assumption (8) it is possible to calculate

H = (CLa)
+ =
[
(CLa)

TCLa

]−1
(CLa)

T . (9)

Multiplying (6) by H, and then substituting (5), it can be shown that

fa,k = H(yk+1 −CAxk −CBuk −Cg (xk)−CW 1wk −W 2wk+1). (10)

Finally, by substituting (10) into (5), it can be shown that:

xk+1 = Āxk + B̄uk +Gg (xk) + L̄yk+1 +GW 1wk − L̄W 2wk+1, (11)

where G = (In −LaHC), Ā = GA, B̄ = GB, L̄ = LaH.
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In order to estimate (10), i.e. to obtain f̂k it is necessary to estimate the
state of the system, i.e. to obtain x̂k. Consequently, the fault estimate is given
as follows

f̂a,k = H(yk+1 −CAx̂k −CBuk −Cg (x̂k)). (12)

The corresponding observer structure is

x̂k+1 = Āx̂k + B̄uk +Gg (x̂k) + L̄yk+1 +Ko(yk −Cx̂k), (13)

while the state estimation error is given by

ek+1 =
(
Ā−KoC

)
ek +Gsk + (GW 1 −KoW 2)wk − L̄W 2wk+1 =

= A1ek +Gsk + W̄ 1wk + W̄ 2wk+1,
(14)

where
sk = g (xk)− g (x̂k) . (15)

Similarly, the fault estimation error εfa,k can be defined

εfa,k = fa,k − f̂a,k = −HC (Aek + sk +W 1wk)−HW 2wk+1. (16)

Noth that both ek and εfa,k are non-linear with respect to ek. To settle this
problem within the framework of this paper, the following solution is proposed.

Using the Differential Mean Value Theorem (DMVT) ([13]), it can be shown
that

g (a)− g (b) = Mx(a− b), (17)

with

Mx =

⎡⎢⎢⎢⎢⎣
∂g1
∂x

(c1)

...
∂gn
∂x

(cn)

⎤⎥⎥⎥⎥⎦ , (18)

where c1, . . . , cn ∈ Co(a, b), ci �= a, ci �= b, i = 1, . . . , n. Assuming that

āi,j ≥
∂gi
∂xj
≥ ai,j , i = 1, . . . , n, j = 1, . . . , n, (19)

it is clear that:

Mx =
{
M ∈ Rn×n|āi,j ≥ mx,i,j ≥ ai,j , i, j = 1, . . . , n,

}
(20)

Thus, using (17), the term A1ek +Gsk in (14) can be written as

A1ek +Gsk = (Ā+GMx,k −KoC)ek (21)

where Mx,k ∈Mx. From (21), it can be deduced that the state estimation error
can be converted into an equivalent form

ek+1 = A2(α)ek + W̄ 1wk + W̄ 2wk+1, (22)

A2(α) = Ã(α) −KoC,
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which defines an LPV polytopic system ([7]) with

Ã =

{
Ã(α) : Ã(α) =

N∑
i=1

αiÃi,

N∑
i=1

αi = 1, αi ≥ 0
}

, (23)

where N = 2n
2

. Note that this is a general description, which does not take into
account that some elements of Mx,k maybe constant. In such cases, N is given

by N = 2(n−c)2 where c stands for the number of constant elements of Mx,k.
In a similar fashion, (16) can be converted into

εfa,k = −HC (A3(α)ek +W 1wk)−HW 2wk+1, (24)

with

A3 =

{
A3(α) : A3(α) =

N∑
i=1

αiA3,i,

N∑
i=1

αi = 1, αi ≥ 0
}

. (25)

The objective of further deliberations is to design the observer (13) in such
a way that the state estimation error ek is asymptotically convergent and the
following upper bound is guaranteed

‖εf‖l2 ≤ ω‖w‖l2 (26)

where ω > 0 is a prescribed disturbance attenuation level. Thus, on the contrary
to the approaches presented in the literature, ω should be achieved with respect
to the fault estimation error but not the state estimation error.

Thus, the problem of H∞ observer design ([14]) is to determine the gain
matrix Ko such that

lim
k→∞

ek = 0 for wk = 0, (27)

‖εf‖l2 ≤ ω‖w‖l2 for wk �= 0, e0 = 0. (28)

In order to settle the above problem it is sufficient to find a Lyapunov function
Vk such that:

ΔVk + εTfa,kεfa,k − μ
2wT

kwk − μ2wT
k+1wk+1 < 0, k = 0, . . .∞, (29)

where ΔVk = Vk+1 − Vk, μ > 0.
Indeed, if wk = 0, (k = 0, . . . ,∞) then (29) boils down to

ΔVk + εTfa,kεfa,k < 0, k = 0, . . .∞, (30)

and hence ΔVk < 0, which leads to (27). If wk �= 0 (k = 0, . . . ,∞) then (29)
yields

J =
∞∑
k=0

(
ΔVk + εTfa,kεfa,k − μ

2wT
kwk − μ2wT

k+1wk+1

)
< 0, (31)
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which can be written as

J = −V0 +
∞∑
k=0

εTfa,kεfa,k − μ
2

∞∑
k=0

wT
k wk − μ2

∞∑
k=0

wT
k+1wk+1 < 0. (32)

Bearing in mind that

μ2
∞∑
k=0

wT
k+1wk+1 = μ2

∞∑
k=0

wT
kwk − μ2wT

0 w0, (33)

inequality (32) can be written as

J = −V0 +
∞∑
k=0

εTfa,kεfa,k − 2μ2
∞∑
k=0

wT
kwk + μ

2wT
0 w0 < 0. (34)

Knowing that V0 = 0 for e0 = 0, (34) leads to (28) with ω =
√
2μ.

Since the general framework for designing the robust observer is given, then
the following form of the Lyapunov function is proposed ([13]):

Vk = eTkP (α)ek, (35)

where P (α) � 0. On the contrary to the design approach presented in the
literature (see, e.g. ([14])) and the references therein) it is not assumed that
P (α) = P is constant. Indeed, P (α) can be perceived as a parameter-depended
matrix of the form (cf. ([7]))

P (α) =

N∑
i=1

αiP i. (36)

As a consequence:

ΔVk + εTfa,kεfa,k − μ
2wT

kwk − μ2wT
k+1wk+1 =

eTk
(
A2(α)

TP (α)A2(α) +A3(α)
TH1A3(α) − P (α)

)
ek+

eTk
(
A2(α)

TP (α)W̄ 1 +A3(α)
TH1W 1

)
wk+

eTk
(
A2(α)

TP (α)W̄ 2 +A3(α)
TH2

)
wk+1+

wT
k

(
W̄

T
1 P (α)A2(α) +W T

1 H1A3(α)
)
ek+

wT
k

(
W̄

T
1 P (α)W̄ 1 +W T

1 H1W 1 − μ2I
)
wk+

wT
k

(
W̄

T
1 P (α)W 2 +W T

1 H2

)
wk+1+

wT
k+1

(
W̄

T
2 P (α)A2,k +HT

2 A3(α)
)
ek+

wT
k+1

(
W̄

T
2 P (α)W 1 +HT

2 W 1

)
wk+

wT
k+1

(
W̄

T
2 P (α)W̄ 2 +W T

2 H
THW 2 − μ2I

)
wk+1 < 0.
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with H1 = CTHTHC and H2 = CTHTHW 2.
By defining

vk =
[
eTk , w

T
k , w

T
k+1

]T
(37)

inequality (37) becomes

ΔVk + εTfa,kεfa,k − μ
2wT

k wk − μ2wT
k+1wk+1 = vT

kMV vk < 0, (38)

where MV is given by (39).

MV =

⎡
⎣A2(α)

TP (α)A2(α) + A3(α)
TH1A3(α) − P (α) A2(α)

TP (α)W̄ 1 + A3(α)
TH1W 1

W̄T
1 P (α)A2(α) + W T

1 H1A3(α) W̄T
1 P (α)W̄ 1 + W T

1 H1W 1 − μ2I

W̄T
2 P (α)A2(α) + HT

2 A3(α) W̄T
2 P (α)W 1 + HT

2 W 1

A2(α)
TP (α)W̄ 2 + A3(α)

TH2

W̄ T
1 P (α)W 2 + W T

1 H2

W̄T
2 P (α)W̄ 2 + WT

2 HTHW 2 − μ2I

⎤
⎦ .

(39)
The following theorem constitutes the main result of this section:

Theorem 1. For a prescribed disturbance attenuation level μ > 0 for the fault
estimation error (16), the H∞ observer design problem for the system (5)–(6)
and the observer (13) is solvable if there exists matrices P i � 0 (i = 1, . . . , N),
U and N such that the following LMIs are satisfied:⎡⎢⎢⎣

AT
3,iH1A3,i −P i AT

3,iH1W 1 AT
3,iH3 A2,iU

T

W T
1 H1A3,i W T

1 H1W 1 − μ2I W T
1 H2 W̄

T
1 U

T

HT
2 A3,i HT

2 W 1 W T
2 H

THW 2 − μ2I W̄
T
2 U

T

UA2,i UW̄ 1 UW̄ 2 P i −U −UT

⎤⎥⎥⎦ ≺ 0,

i = 1, . . . , N. (40)

where (cf. (23) and (14))

UA2,i = U(Ãi −KoC) = UÃi −NC, (41)

UW̄ 1 = U(GW 1 −KoW 2) = UGW 1 −NW 2. (42)

Proof. The following lemma can be perceived as the generalisation of this pre-
sented in ([7]).

Lemma 1. The following statements are equivalent

i) There exists X(α) � 0 such that

V (α)TX(α)V (α) −W (α) ≺ 0, (43)

ii) There exists X(α) � 0 such that[
−W (α) V (α)TUT

UV (α) X(α)−U −UT

]
≺ 0. (44)



104 M. Luzar et al.

Proof. For proof, see [12].

It is easy to show that (44) is satisfied if there exist matrices Xi � 0 such that[
−W i V T

i U
T

UV i Xi −U −UT

]
≺ 0, i = 1, . . . , N. (45)

Subsequently, observing that the matrix (39) must be negative definite and
writing it as

⎡⎢⎣A2(α)
T

W̄
T
1

W̄
T
2

⎤⎥⎦P (α)
[
A2(α) W̄ 1 W̄ 2

]
+ (46)

⎡⎣A3(α)
TH1A3(α) − P (α) A3(α)

TH1W 1 A3(α)
TH3

W T
1 H1A3(α) W T

1 H1W 1 − μ2I W T
1 H2

HT
2 A3(α) HT

2 W 1 W T
2 H

THW 2 − μ2I

⎤⎦ ≺ 0.

(47)

and then applying Lemma 1 and (45) leads to (40), which completes the proof.

Finally, the design procedure boils down to solving LMIs (40) and then (cf.
(41)–(42)) Ko = U−1N .

It can be also observed that the observer design problem can be treated as an
minimization task, i.e.

μ∗ = min
μ>0,P 10,U ,N

μ (48)

under (40).

4 Controller Design

The objective of this section is to design the control strategy uf,k for (5)–(6)
the tracking error

ek = xk − xf,k, (49)

will be asymptotically convergent with guaranteeing the prescribed disturbance
attenuation level. To achieve this goal, the following control strategy is proposed:

uf,k = −f̂k−1 +Kc(xk − x̂f,k) +K2γk + uk. (50)

Taking into account the problems with one-step fault prediction, the following
assumption is imposed

f̂k = f̂k−1 + v̄k, v̄k ∈ l2. (51)

Bearing in mind that all faults present in the real systems have a finite value,
such an assumption is fully justified. Thus, for the convergence analysis, the
following form of the FTC control is used

uf,k = −f̂k−1 − v̄k +Kc(xk − x̂f,k) +K2γk + uk, (52)
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where

γk = g (xk)− g (x̂f,k) . (53)

Using a similar approach as in Section 3 and setting K2 = HC, the tracking
error becomes:

ek = A1ek + (BHCA−BKc) ef,k +Gωk + W̃ w̄k, (54)

with K2 = HC, A1 = A−BKc and H = (CB)+, where

W̃ = [B, [BHC − I]W ] , w̄k =

[
v̄k

wk

]
, ωk = g (xk)− g (xf,k) .

Using the same arguments as in Sec. 3, the convergence analysis can be
relaxed to the following form of the tracking error

ek+1 = A1ek +Gsk + W̄ 1wk + W̄ 2wk+1, (55)

Similarly as in Sec. 3, (55) can be expressed as:

ek+1 = A2(α)ek + W̄ 1wk + W̄ 2wk+1, (56)

A2(α) = (A(α)−BKc) ek, (57)

with

A =

{
A(α) : A(α) =

N∑
i=1

αiAi,

N∑
i=1

αi = 1, αi ≥ 0

}
. (58)

The following theorem constitutes the main result of the present section.

Theorem 2. For a prescribed disturbance attenuation level μ > 0 for the track-
ing error (55), the H∞ controller design problem (52) for the system (5)–(6) is
solvable if there exist P � 0, U , V such that the following LMIs are satisfied:⎡⎢⎢⎢⎣

I − P i 0 0 A2,iU

0 −μ2I 0 W̃ 1U

0 0 μ2I W̃ 2U

UTAT
2,i U

TW̃
T

1 UT W̃
T

2 P i −U −UT

⎤⎥⎥⎥⎦ ≺ 0, , i = 1, . . . , N.

with

A2,iU =
(
Ãi −BKc

)
U = ÃiU −BV . (59)

Proof. The proof is similar to the one of Theorem 1.

Thus, the final design procedure is: given a prescribed disturbance attenuation
level μ, obtain P � 0, U , V by solving (59). Finally, the gain matrix of the
FTC controller is:

Kc = V U−1. (60)
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5 Illustrative Example

The objective of this section is to provide an illustrative example regarding the
proposed robust FTC. The presented example is based on the wind turbine
collected data provided in [9]. Note that the analytical model given in [9] is not
used. The model was obtained using the artificial neural network, presented in
Section 2. The proposed neural network was trained using Levenberg-Marquardt
backpropagation algorithm. 70% of the data set gathered from the system was
taken as a training set, 15% as validation set and 15% as testing set. Figure
2 presents the performance of the neural network. The training process stops
after 12 iterations which confirms, that prescribed Mean Squared Error level is
reached. In figure 3 the result of neural network modelling is presented. It is
clear, that the neural model reflects real system satisfactorily.
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Fig. 2. Neural network performance

The considered fault is the 30% reduced pressure in hydraulic pitch system.
The simulation results of the fault-tolerant controller are compared to the

results of the reference controller in figure 4. The FTC is designed to manage
low pressure in the pitch system, which is not the case for the reference controller
that performs poorly in the fault case, showing the oscillations in the control
signal. It is clear, that the LPV controller performs significantly better than
the reference controller in the fault case. The pitch usage is higher for reference
controller than for fault-tolerant controller.
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Fig. 3. System and neural model output for the pitch angle (validation set)
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Fig. 4. Simulation results of the fault-tolerant controller (solid line) and the reference
controller (dotted line) at both normal and low pressure in the hydraulic pitch system

.

6 Conclusions

The paper deals with the problem of robust FTC for a class on non-linear sys-
tems. In particular, a combination of the celebrated generalised observer scheme
with the robust H∞ approach is proposed to settle the problem of robust fault
diagnosis. The proposed approach is designed in such a way that a prescribed
disturbance attenuation level is achieved with respect to the actuator fault esti-
mation error while guaranteeing the convergence of the observer. Moreover, the
controller design, which realises the switching strategy between observer and real
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actuator output, is carefully analysed. The final part of the paper is concerned
with a comprehensive case study regarding the wind turbine. Simulations show
that the LPV controllers are superior to a reference controller designed using
classical methods.
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Abstract. We propose a novel adaptive Self-Organizing Map (SOM).
In the introduced approach, the SOM neurons’ neighborhood widths
are computed adaptively using the information about the frequencies
of occurrences of input patterns in the input space. The neighborhood
widths are determined differently for each neuron in the SOM grid. In this
way, the proposed SOM properly visualizes the input data, especially,
when there are significant differences in frequencies of occurrences of
input patterns. The experimental study on real data, on three different
datasets, confirms the effectiveness of the proposed adaptive SOM.

Keywords: Self-Organizing Map, adaptive Self-Organizing Map, neigh-
borhood width, Gaussian kernel, visualization.

1 Introduction

The Self-Organizing Map (SOM) [1] is an example of the artificial neural network
architecture. It can be also interpreted as a visualization technique, since the
algorithm performs a projection from multidimensional space to 2-dimensional
space, this way creating a map structure. The location of points in 2-dimensional
grid aims to reflect the similarities between the corresponding objects in mul-
tidimensional space. Therefore, the SOM algorithm allows for visualization of
relationships between objects in multidimensional space.

The SOM technique is an unsupervised data analysis approach, i.e., there is
no additional training data required. Although the method consists of two sub-
stantial phases, i.e., the training phase and the testing phase, both of the phases
proceed using the same testing dataset. During the training phase, the weights
corresponding to each neuron in the SOM grid are being computed. An impor-
tant step during this process is updating of the neurons in the neighborhood of
the Best Matching Unit (BMU) – the closest neuron to the currently matched
input pattern. Usually, the neighborhood of the BMU is selected using the Gaus-
sian kernel (see [1] for other choices of neighborhood functions). However, the
choice of the neighborhood function parameters, and the choice of the function
itself is always to some extent arbitrary, because there are no strict guidelines,
and resulting optimal solutions in this matter. Therefore, any justified proposals
regarding the neighborhood size of the BMU are desirable, because that choice
strongly affects the quality of the final SOM visualization, and consequently, the
performance of the entire analysis.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 109–120, 2014.
c© Springer International Publishing Switzerland 2014
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1.1 Our Proposal

In this paper, we propose a method for the SOM neurons’ neighborhood widths
adaptive computation. The neighborhood widths are determined differently for
each neuron in the SOM grid. The introduced method is based on the mea-
surement of the frequencies of occurrences of patterns in the input space. The
Gaussian kernel is employed as the neurons’ neighborhood function, and the
Gaussian standard deviation determining the neurons’ neighborhood width is
calculated adaptively on the basis of the mentioned frequency. Therefore, the
whole considered SOM is an adaptive enhancement to the traditional approach.
In case of input patterns appearing frequently in the input space, the corre-
sponding BMU’s neighborhood is wider than in case of input patterns occurring
rarely in the input space. Consequently, the proposed adaptive SOM reserves
larger area for frequent input patterns, and smaller area for rare input patterns.
In this way, the novel SOM properly visualizes input data, especially, when there
are significant differences in frequencies of occurrences of input patterns in the
input space. As a result, the entire visualization comprising the final result will
reflect the input data more accurately.

2 Related Work

The SOM visualization technique has been extensively studied, and numerous
improvements and extensions have been developed, including the Growing Hier-
archical SOM (GHSOM) [2], the asymmetric SOM [3, 4], the supervised SOM [5],
and the adaptive SOM [6–11], to name a few. Naturally, the adaptive SOM ver-
sions are of particular interest for the purposes of our research.

In the paper [11], a statistical iterative Gaussian kernel smoothing problem is
considered. The authors propose a batch SOM algorithm consisting of two steps.
In the first step, the training data are partitioned according to the Voronoi
regions of the map unit locations. In the second step, the units are updated
by taking weighted centroids of the data falling into the Voronoi regions, with
the weighing function given by the neighborhood. The neighborhood width is
decreased in each iteration of the algorithm. The difference between the approach
from the work [11] and the method developed in our paper is that in [11], the
neighborhood width is being constantly decreased exponentially according to the
adaptation rule (4) introduced in [11], while in our work, the neighborhood width
is adapted to a given dataset depending on the dataset’s specific properties.

In the paper [10], an Adaptive Double SOM (ADSOM) is proposed. The con-
structed map is designed for subsequent clustering analysis without requiring
of a priori knowledge about the number of clusters. ADSOM updates its free
parameters and allows convergence of its position vectors to a fairly consistent
number of clusters provided its initial number of nodes is greater than the ex-
pected number of clusters.

The paper [9] proposes a Time Adaptive SOM (TASOM). The work, together
with the paper [11], is especially important in the context of our research, because
it also introduces a method of neurons neighborhood size adaptive computation.
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In the approach proposed in [9], every neuron has its own learning rate and
neighborhood size. The difference between the solution from [9] and our method
is following. In [9], the adaptation of the neighborhood size results from the
“closed-loop” learning of the parameter, i.e., the neighborhood size is updated on
the basis of the final quality of visualization (so as to minimize an appropriate
error function). Consequently, a learning process is a necessary stage of that
analysis. On the other hand, in case of our approach, the neighborhood size
is computed in the “open-loop” system, only on the basis of the input dataset
analysis (i.e., measurement of frequencies of occurrences of input patterns). No
learning process is required, and the method does not rely on the final results of
the visualization. Consequently, no additional error function is necessary.

In the work [8], an adaptive hierarchical structure called “Binary Tree
TASOM” (BTASOM) is introduced. The considered SOM enhancement resem-
bles a binary natural tree having nodes composed of TASOM networks. The
BTASOM is proposed to make TASOM fast and adaptive in the number of its
neurons.

The paper [7] proposes an adaptive incremental learning algorithm of the SOM
weights. According to the algorithm, the SOM weights are updated incrementally
using a higher-order difference equation, which implements a low-pass digital
filter.

Finally, in the paper [6], an adaptive GHSOM-based approach (A-GHSOM) is
introduced as an effective technique to deal with the anomaly detection problem.
As the authors claim, their GHSOM enhancement can adapt on-line to the ever-
changing anomaly detection. Consequently, according to the authors, A-GHSOM
is superior over the standard GHSOM-based methods, and it provides higher
accuracy in identifying intrusions, particularly “unknown” attacks.

3 Traditional Self-Organizing Map

The SOM algorithm provides a non-linear mapping between a high-dimensional
original data space and a 2-dimensional map of neurons. The neurons are ar-
ranged according to a regular grid, in such a way that the similar vectors in
input space are represented by the neurons close in the grid. Therefore, the
SOM technique visualizes the data associations in the input high-dimensional
space.

It was shown in [12] that the results obtained by the SOM method are equiv-
alent to the results obtained by optimizing the following error function:

e (W) =
∑
r

∑
xμ∈Vr

∑
s

hrsD (xμ, ws) (1)

≈
∑
r

∑
xμ∈Vr

D (xμ, wr) + K
∑
r

∑
s�=r

hrsD (wr , ws) , (2)

where xμ are the objects in high-dimensional space, wr and ws are the prototypes
of objects in the grid, hrs is a neighborhood function (e.g., the Gaussian kernel)
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that transforms non-linearly the neuron distances (see [1] for other choices of
neighborhood functions), D (·, ·) is the squared Euclidean distance, and Vr is
the Voronoi region corresponding to prototype wr. The number of prototypes is
sufficiently large so that D (xμ, ws) ≈ D (xμ, wr) + D (wr, ws).

According to (2), the SOM error function can be decomposed as the sum of
the quantization error and the topological error. The first one minimizes the
loss of information, when the input patterns are represented by a set of proto-
types. By minimizing the second one, we assure the maximal correlation between
the prototype dissimilarities and the corresponding neuron distances, this way
assuring the visualization of the data relationships in the input space.

The SOM error function can be optimized by an iterative algorithm consisting
of two steps (discussed in [12]). First, a quantization algorithm is executed.
This algorithm represents each input pattern by the nearest neighbor prototype.
This operation minimizes the first component in (2). Next, the prototypes are
arranged along the grid of neurons by minimizing the second component in the
error function. This optimization problem can be solved explicitly using the
following adaptation rule for each prototype [1]:

ws =

∑M
r=1

∑
xμ∈Vr

hrsxμ∑M
r=1

∑
xμ∈Vr

hrs
, (3)

where M is the number of neurons, and hrs is a neighborhood function (for
example, the Gaussian kernel of width σ (t)). The width of the kernel is adapted
in each iteration of the algorithm using the rule proposed by [11], i.e.,

σ (t) = σm (σf/σm)
t/Niter , (4)

where σm ≈ M/2 is typically assumed in the literature (for example, in [1]),
and σf is the parameter that determines the smoothing degree of the principal
curve generated by the SOM algorithm [11].

4 A Novel Adaptive Self-Organizing Map

In this paper, we propose a novel adaptation rule of the SOM neurons’ neigh-
borhood widths. The neighborhood widths are determined differently for each
neuron in the SOM grid. The proposed rule employs the exponential update (4)
from the work [11], includes the information about the frequencies of occurrences
of all input patterns, and consequently, provides a more accurate and effective
adaptation process than the rule (4) itself.

The SOM neurons’ neighborhood widths are adapted in our research using
the Gaussian kernels of the following standard deviation:

σi (|xi| , t) =
|xi|

maxj (|xj |)
σm (σf/σm)t/Niter , (5)
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where xi, i = 1, . . . , n is a vector of features representing the ith object in
analyzed dataset, j = 1, . . . , n, n is the total number of objects, |·| is the L1-
norm meaning the number of objects given as the argument, and the rest of the
notation is explained in (4).

By utilizing the information about the frequencies of occurrences of input
patterns, the method proposed in this paper exploits the specific nature and
character of a given dataset, and this way, it visualizes the dataset in the SOM
grid more accurately by better adjusting to the dataset features and properties.

If the Gaussian kernels specifying the SOM neurons’ neighborhood width are
fitted to the frequencies of occurrences of input patterns, then the resulting SOM
will assign the wider neighborhoods (i.e., the larger area in the SOM grid) to
the neurons corresponding to the input patterns appearing more frequently in
the input space, and likewise, the obtained SOM will assign the narrower neigh-
borhoods (i.e., the smaller area in the SOM grid) to the neurons corresponding
to the input patterns appearing less frequently in the input space.

The desirable consequence of this phenomenon is that the proposed improved
adaptive SOM is dataset-dependent, and therefore, it reflects properly the rela-
tionships between input patterns, especially if the input dataset is highly diverse
with respect to the input patterns’ frequencies of occurrences.

5 Experiments

In our experimental study, we have evaluated effectiveness of the proposed im-
proved adaptive SOM technique by conducting the clustering process in the
SOM grid obtained using the proposed approach and in the SOM grid returned
by a reference method. As the reference method, we have used the traditional
time adaptive SOM technique. As the clustering method, we have employed the
standard well-known k-means clustering algorithm with the correct number of
clusters provided a priori as the input data. Clustering process has been carried
out in the 2-dimensional space of the SOM grid. The experimental research aims
to ascertain the superiority of the introduced adaptive SOM on the basis of the
comparison of the clustering results obtained using the proposed SOM and the
classical one. The experiments have been conducted on real data in the three
different research fields: in the field of words clustering, in the field of sound sig-
nals clustering, and in the field of human heart rhythm signals clustering. The
first part of the experimental study has been carried out on the large dataset
of high-dimensionality (Subsection 5.3), while the remaining two experimental
parts have been conducted on smaller datasets, but also of high-dimensionality
(Subsection 5.4 and Subsection 5.5). In this way, one can assess the perfor-
mance of the investigated methods operating on datasets of different size and na-
ture, and consequently, one can better evaluate the effectiveness of the proposed
approach.

The sound signals visualization and clustering was carried out on the piano
music recordings, and the human heart rhythm signals analysis was conducted
using the ECG recordings derived from the MIT-BIH ECG Databases [13].
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In case of the piano music dataset and the ECG recordings dataset, a graphical
illustration of the U-matrices generated by SOM is provided, while in case of the
“Bag of Words” dataset no such illustration is given, because of the high number
of instances in that dataset, which would make such images unreadable.

5.1 Evaluation Criteria

As the basis of the comparisons between the investigated methods, i.e., as the
clustering evaluation criteria, we have used the accuracy rate [4, 14] and the
uncertainty degree [4]:

1. Accuracy rate. This evaluation criterion determines the number of cor-
rectly assigned objects divided by the total number of objects.
Hence, for the entire dataset, the accuracy rate is determined as follows:

q =
m

n
, (6)

where m is the number of correctly assigned objects, and n is the total
number of objects in the entire dataset.
The accuracy rates qi and the accuracy rate q assume values in the interval
〈0, 1〉, and naturally, greater values are preferred.
The accuracy rate q was used in our experimental study as the main basis
of the clustering accuracy comparison of the three investigated approaches.

2. Uncertainty degree. This evaluation criterion determines the number of
overlapping objects divided by the total number of objects in a dataset.
This means, the number of objects, which are in the overlapping area be-
tween clusters, divided by the total number of objects. The objects belonging
to the overlapping area are determined on the basis of the ratio of dissimi-
larities between them and the two nearest clusters centroids. If this ratio is
in the interval 〈0.9, 1.1〉, then the corresponding object is said to be in the
overlapping area.
The uncertainty degree is determined as follows:

Ud =
μ

n
, (7)

where μ is the number of overlapping objects in the dataset, and n is the
total number of objects in the dataset.
The uncertainty degree assumes values in the interval 〈0, 1〉, and, smaller
values are desired.

5.2 Feature Extraction

Features of the time series considered in Subsection 5.4 and Subsection 5.5 have
been extracted using a method based on the discrete Fourier transform (DFT),
which is described in details in [15].
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5.3 Words Visualization and Clustering

In the first part of our experimental study, we have utilized excerpts from the
“Bag of Words” dataset from the UCI Machine Learning Repository [16]. It is
a high-dimensional dataset of strongly asymmetric nature, especially useful in
case of the asymmetric data relationships analysis. It is so, because significant
differences in frequencies of occurrences of different words in the entire dataset.
Therefore, the experimental investigation on the “Bag of Words” dataset clearly
shows the superiority of the proposed asymmetric approach over its traditional
symmetric counterpart.

Dataset Description. The “Bag of Words” dataset consists of five text collec-
tions: Enron E-mail Collection, Neural Information Processing Systems (NIPS)
full papers, Daily KOS Blog Entries, New York Times News Articles, PubMed
Abstracts. The total number of analyzed words was approximately 10,868,000. In
the SOM grids generated by the investigated methods, five clusters representing
those five text collections in the “Bag of Words” dataset were formed.

Text Feature Extraction. Feature extraction of the textual data investigated
in this part of our experimental study was carried out using the term frequency
– inverse document frequency (tf-idf ) approach. The Vector Space Model (VSM)
constructed in this way is particularly useful in our research, because it implicitly
captures the terms frequency (both: local – document-dependent and global –
collection-dependent), which are the source of the hierarchy-based asymmetric
relationships in analyzed data (i.e., in this case, between words).

The dimensionality of the analyzed VSM model (i.e., the number of features)
was chosen as the minimal length of the vocabularies in the five considered text
collections. Consequently, the number of features utilized in this part of our ex-
perimental study was 6,906. It was necessary to truncate the longer vocabularies
in order to build the data matrix comprising the analyzed VSM model. As a re-
sult, not all of the words in the remaining four text collections have been taken
into account. Nevertheless, the considered experimental problem remains a high-
dimensionality issue, and the number and variety of the words in the analyzed
vocabularies makes the problem complex and challenging. Of course, also the
highly-asymmetric nature of the investigated dataset is preserved.

Experimental Results. The results of this part of our experiments are re-
ported in Tables 1 and 2, where the accuracy rates corresponding to each inves-
tigated approach are presented.

The average (arithmetic average) numbers of words assigned to correct clus-
ters reported in Table 1 and words located in the overlapping areas in Table 2
(in numerators of the ratio fractions) were rounded to the nearest integer values.

The results of this part of our experimental study show that clustering of the
SOM grid obtained using the introduced adaptive method outperforms clustering
of the SOM grid returned by the standard adaptive approach. The proposed
approach leads to the higher clustering accuracy measured on the basis of the
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Table 1. Accuracy rates of the words clustering

q

Traditional adaptive SOM 8,389,009/10,868,000 = 0.7719
Proposed adaptive SOM 9,183,822/10,868,000 = 0.8450

Table 2. Uncertainty degrees of the words clustering

Ud

Traditional adaptive SOM 2,304,016/10,868,000 = 0.2120
Proposed adaptive SOM 1,523,182/10,868,000 = 0.1402

accuracy rate, and also to the lower clustering uncertainty measured on the basis
of the uncertainty degree.

5.4 Piano Music Composer Visualization and Clustering

In this part of our experiments, we considered three clusters representing three
piano music composers: Johann Sebastian Bach, Ludwig van Beethoven, and
Fryderyk Chopin.

Dataset Description. Each music piece was represented by a 30-seconds
sound signal sampled with the 44100 Hz frequency. The entire dataset con-
sisted of 70 sound signals. Feature extraction process was carried out according
to the Discrete-Fourier-Transform-based (DFT-based) method described in Sub-
section 5.2.

Experimental Results. The results of this part of our experiments are demon-
strated in Fig. 1, and in Tables 3 and 4. Figure 1 presents the maps (U-matrices)
generated by the symmetric (Fig. 1(a)) and asymmetric (Fig. 1(b)) SOM tech-
niques. The U-matrix is a graphical presentation of SOM. Each entry of the
U-matrix corresponds to a neuron in the SOM grid, while value of that entry
is the average dissimilarity between the neuron and its neighbors. Table 3, in
turn, presents the accuracy rates, while Table 4 reports the uncertainty degrees
corresponding to each of the examined approaches.

The average (arithmetic average) numbers of signals assigned to correct clus-
ters reported in Table 3 and signals located in the overlapping areas in Table 4
(in numerators of the ratio fractions) were rounded to the nearest integer values.

Also in this part of our experiments, the proposal of this paper appeared to
be superior over the other examined adaptive visualization technique.

5.5 Human Heart Rhythms Visualization and Clustering

The human heart rhythm signals clustering experiment was carried out on the
dataset of ECG recordings derived from the MIT-BIH ECG Databases [13].
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Fig. 1. Piano Music Composers Maps (U-matrices)

Table 3. Accuracy rates of the piano music composer clustering

q

Traditional adaptive SOM 27/32 = 0.8438
Proposed adaptive SOM 31/32 = 0.9688

In this part of our experiments, we considered three clusters representing
three types of human heart rhythms: normal sinus rhythm, atrial arrhythmia,
and ventricular arrhythmia. This kind of clustering can be interpreted as the
cardiac arrhythmia detection and recognition based on the ECG recordings.

Dataset Description. Our clustering recognizes the normal rhythm, and also,
recognizes arrhythmias originating in the atria, and in the ventricles.

We analyzed 20-minutes ECG holter recordings sampled with the 250 Hz
frequency. The entire dataset consisted of 63 ECG signals. Feature extraction
was carried out according to the DFT-based method described in Subsection 5.2.

Table 4. Uncertainty degrees of the piano music composer clustering

Ud

Traditional adaptive SOM 8/32 = 0.2500
Proposed adaptive SOM 1/32 = 0.0313

Experimental Results. The results of this part of our experiments are pre-
sented in Fig. 2, and in Tables 5 and 6, which are constructed in the same way
as in Subsection 5.4.
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Fig. 2. Human Heart Rhythms Maps (U-matrices)

Table 5. Accuracy rates of the human heart rhythms clustering

q

Traditional adaptive SOM 45/63 = 0.7143
Proposed adaptive SOM 58/63 = 0.9206

Table 6. Uncertainty degrees of the human heart rhythms clustering

Ud

Traditional adaptive SOM 18/63 = 0.2857
Proposed adaptive SOM 7/63 = 0.1111

Finally, in the last part of our empirical study, the proposed adaptive SOM
clustered by the k-means clustering algorithm produced results superior over the
results returned by the reference method clustered using the same algorithm,
confirming the usefulness and effectiveness of the proposed solution.
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6 Summary

In this paper, a novel adaptive SOM version was proposed. In the introduced
approach, the neurons’ neighborhood widths are determined using the informa-
tion about the frequencies of occurrences of input patterns in the input space.
The neighborhood widths are determined differently for each neuron in the SOM
grid. In case of input patterns appearing frequently in the input space, the neigh-
borhood of the corresponding BMU is wider than in case of the input patterns
occurring rarely in the input space. Consequently, the patterns frequent in the
input space will receive larger area for their prototypes in the SOM grid, in con-
trast to the patterns rare in the input space, which will get less place for their
prototypes in the grid. In this way, the proposed method provides a proper vi-
sualization of the input data, especially, when there are significant differences in
the frequencies of occurrences of input patterns, and consequently, our proposal
can be regarded as superior over the traditional adaptive SOM technique.

Acknowledgment. This work was prepared as a part of the statutory jobs.
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Abstract. Artificial neural networks (ANNs) are used often to solve a
wide variety of problems using high performance computing. The paper
presents automatic loop parallelization for selected ANNs programs by
means of the TRACO compiler that permits us to extract loop depen-
dences and produce synchronization-free slices including loop statement
instances. Coarse-grained parallelism of nested program loops is obtained
by creating a thread of computations on each processor to be executed in-
dependently. Program loops of recurrent and back-propagation networks
are analysed. The speed-up and efficiency of parallel programs produced
by means of TRACO are studied. Related compilers and ANNs paral-
lelization techniques are considered. Future work is outlined.

Keywords: artificial neural networks, automatic loop parallelization,
iteration space slicing, multi-core processing.

1 Introduction

Artificial neural networks (ANNs) are tools for non-linear statistical data mod-
elling. They are designed much like biological neural networks. Both comprise
a series of simple information processing units that operate in parallel. ANNs
can be used to solve a wide variety of problems while being robust to error in
training data. They have been successfully applied to pattern recognition and
classification tasks, time series prediction, data mining, function approximation,
data clustering and filtering, as well as data compression [1].

Parallel processing of neural network algorithms is an important research
issue since neural networks are large networks in practice, and they are used in
real-time applications.

The lack of automated tools permitting for exposing parallelism for multi-
core and multiprocessor systems decreases the productivity of programmers and
increases the time and cost of producing the parallel program. Because most
computations are contained in program loops, automatic extraction of paral-
lelism from loops is extremely important, allowing us to produce parallel code
from existing sequential applications and to create multiple threads that can be
easily scheduled to achieve high program performance.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 121–130, 2014.
c© Springer International Publishing Switzerland 2014
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Different techniques have been developed to extract coarse-grained parallelism
that is represented with synchronization-free slices of computations available in
loops, for example, those presented in papers [2, 3]. Unfortunately, these tech-
niques very often fail to parallelize loops exposing storage-related dependences,
and as consequence potential parallelism is left unexploited in some cases [4].

In this paper, we demonstrate automatic loop parallelization by means of
Iteration Space Slicing (ISS) [4] implemented in the TRACO compiler. It per-
mits for extracting coarse-grained parallelism in neural network applications.
Program loops of recurrent and back-propagation networks are studied. Experi-
mental results, exposing speed-up and efficiency of parallel programs generated
by TRACO, are presented.

2 Parallelism Extraction

Iteration Space Slicing (ISS) techniques are implemented in the source-to-source
TRACO compiler which applies also other techniques for loop parallelization:
free-scheduling, variable privatization and parallel reduction. Output C-like code,
produced by TRACO, is compilable and contains OpenMP directives [5]. TRACO
is available at the website http://traco.sourceforge.net.

ISS was introduced by Pugh and Rosser [6]. It takes dependence information
as input to find all statement instances that must be executed to produce the
correct values for the specified array elements. Dependences of a loop nest are
described by dependence relations with constraints presented by means of the
Presburger arithmetic (PA) that is the first-order theory of the integers in the
language L having 0, 1 as constants, +,- as binary operations, and equality =,
order < and congruences ≡n modulo all integers n ≥1 as binary relations.

Coarse-grained code is presented with synchronization-free slices or with slices
requiring occasional synchronization. Let us remind the basics of ISS. An
(iteration-space) slice is defined as follows.

Definition 1. Given a dependence graph defined by a set of dependence rela-
tions, a slice S is a weakly connected component of this graph, i.e., a maximal
subgraph such that for each pair of vertices in the subgraph there exists a forward
or reverse path.

ISS requires an exact representation of loop-carried dependences and conse-
quently an exact dependence analysis which detects a dependence if and only if it
actually exists. TRACO uses the dependence analysis [7] proposed by Pugh and
Wonnacott where dependences are represented by dependence relations. This
analysis is implemented in Petit [8].

A dependence relation is a tuple relation of the form [input list ]→[output
list ]: formula, where input list and output list are the lists of variables and/or
expressions used to describe input and output tuples and formula describes the
constraints imposed upon input list and output list and it is a Presburger formula
built of constraints represented with algebraic expressions and using logical and
existential operators.

http://traco.sourceforge.net
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Standard operations on relations and sets are used, such as intersection (∩),
union (∪), difference (-), domain (dom R), range (ran R), relation application
(S�= R(S ): e�∈S�iff exists e s.t. e→e�∈R,e∈S ), positive transitive closure of
relation R, R+ = {[e]→[e�] : e→e�∈ R ∨ ∃ e ��, e→e��∈ R ∧ e��→e�∈ R+},
transitive closure R* = R+ ∪ I. In detail, the description of these operations is
presented in papers [7, 9].

Definition 2. An ultimate dependence source is a source that is not the desti-
nation of another dependence. Given a relation R, describing all dependences in
a loop, a set, SUDS , containing ultimate dependence sources, can be calculated
as follows SUDS=domain(R)-range(R).

Definition 3. The set of ultimate dependence sources of a slice forms the set of
its sources.

Definition 4. The representative source of a slice is its lexicographically minimal
source.

The approach to extract synchronization-free slices [4] relies on the transitive
closure of an affine dependence relation describing all dependences in a loop
and consists of two steps. First, representatives of slices are found in such a
manner that each slice is represented with its lexicographically minimal state-
ment instance. Next, slices are reconstructed from their representatives and code
scanning these slices is generated.

In order to find the elements of set SUDS that are representatives of slices,
we build a relation, RUSC , that describes all pairs of the ultimate dependence
sources that are transitively connected in a slice, as follows:

RUSC = {[e]→ [e′] : e, e′ ∈ SUDS , e �= e′, (R∗(e) ∩R∗(e′) �= ∅)}, (1)

where the dependence relationR describes all the dependences in a loop. Relation
RUSC binds elements e and e’ that are transitively connected, i.e., they are the
sources of the same slice.

To reconstruct slices, set S repr containing representatives of each slice is found
as

Srepr = SUDS − range(RUSC). (2)

If e is the representative of a slice with multiple sources, then the remain-
ing sources of this slice can be found applying relation (RUSC)* to e, i.e.,
(RUSC)*(e). If a slice has the only source, then (RUSC)*(e)=e. The elements
of a slice represented with e can be found applying relation R* to the set of
sources of this slice:

Sslice = R
∗((RUSC)

∗(e). (3)

The parallel code is generated by means of a loop generator for scanning poly-
hedra, for example, CLOOG [10] or the codegen function of the Omega project
[11] can be applied.

The presented technique is illustrated by means of the following parametrized
loop.
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Example 1.

for(i=1; i<=n; i++)

for(j=1; j<=n; j++)

a[i][j] = a[i+1][j+1] + a[i+1][j-1];

Slice 1
Slice 2

6

5

4

3

2

1

1              2             3              4             5             6

Fig. 1. Dependences for the loop example, n=6

For this loop, there are the two dependence relations returned by Petit [8].
R1 = {[i,j]→[i+1,j+1] : 1 � i < n && 1 � j < n},
R2 = {[i,j]→[i+1,j-1] : 1 � i < n-2 && 2 � j < n}.
Dependences are illustrated in Figure 1.

Relation RUSC calculated by means of the Omega calculator [9] is empty, i.e.,
RUSC = ∅. The following set including sources of slices are produced by means
of the Omega calculator.
Srepr = {[i,j] : i = 1 && 1 � j � 2}.

Applying the Gen affine algorithm for independent slices extraction [4], the
following parallel code with OpenMP pragmas [5] is generated:

#pragma omp parallel for private(k,i,j) default(shared)

for(k=1; k<=min(n,2); k++)

for(i=1; i<=n; i++)

for(j=1+(-i-k)%2; j<=n; j+=2)

a[i][j] = a[i+1][j+1]+a[i+1][j-1];

3 Neural Networks Parallelization

Source code samples of the following neural networks have been analysed and
multi-threaded by means of TRACO.

– Boltzmann Machine - is a network of symmetrically coupled stochastic binary
units. A studied application is a rendition of the classic Travelling Salesman
Problem [12], where the shortest tour needs to be found among all cites
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Fig. 2. a) Boltzmann Machine with a simple matrix architecture, b) common structure
of a multilayer backpropagation network, c) common structure of the Elman network
[14]

Table 1. Effectiveness and compilation time (in seconds) for TRACO, CETUS, and
PLUTO

ANN All loops
TRACO CETUS PLUTO

Loops % Time Loops % Time Loops % Time

boltzmann 16 5 31 1,35 4 25 3,1 2 12 0,58

back propagation 9 7 77 1,45 7 77 5,92 4 44 1,49

elman 18 16 88 0,90 16 88 4,00 13 72 0,63

total 43 28 65 3,71 27 62 13,03 19 44 2,71
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without visiting the same one twice. The algorithm works out the minimum
Cartesian distance through cities. At the start, the Boltzmann algorithm
tries random variations of combinations searching for the final solution. As
it gets closer to the solution, it limits the variation of combinations to those
that come closest to succeeding.

– Elman networks - the neural network architectures proposed by Jeffrey El-
man [15]. They are recurrent and designed to learn sequential or time-varying
patterns. Networks can recognize and predict learned series of values or
events. Elman’s definition of a context revolved around prior internal states,
and thus he added a layer of ”context units” to a standard feed-forward net
[1]. In this way, the states of the hidden units could be fed back into the
hidden units during the next stage of input. The example code contains 18
program loops.

– Back-propagation networks - a classic and popular form of training multi-
layer neural networks. A program from medical informatics, to be analyzed,
is based on paper [13]. The example was presented by Christopher Frenz as
a simple introduction to feed-forward nets with some back-propagation. The
goal of this network is to predict a patients risk for heart disease.

The original source codes of discussed ANNs are available at websites [13, 14].
Applications are written in C++ and Java. The structures of studied networks
are illustrated in Figure 2.

Given a program, loops are recognized and parallelized automatically with
TRACO. We have studied only those loops for which the dependence analyser
of the Omega project, Petit [8], is able to carry out exact dependence analysis.
Petit fails to analyse loops containing the ”break”, ”goto”, ”continue”, ”return”
statements, and functions. From 38 loops of studied applications, Petit is able
to extract dependences for 28 loops. Table 1 presents the number of loops in
neural network programs for which TRACO is able to extract coarse-grained
parallelism, percentage of these loops, and compilation time for them (columns
3, 4, and 5).

4 Experiments

In this section, we present the performance of the following computatively heavy
ANNs loops:

– the Boltzman Machine - initialize and update weight loops,
– Elman networks - loops of feed forward and back-propagation functions,
– Back-propagation - initialize and update hidden layer loops.

Speed-up is a ratio of sequential and parallel program time execution,
S=T (1)/T (P), where P is the number of processors. Efficiency, E=S/P, tells us
about usage of available processors while parallel code is executed. Table 2 shows
time (in seconds), speed-up, and efficiency for loops produced with TRACO for
2, 6, and 12 processors. The experiments were carried out on an Intel Xeon
Processor E5645, 12 Threads, 2.4 GHz, 12MB Cache and 16GB RAM.
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Fig. 3. Speed-up of program loops for the various numbers of CPUs

Analysing data in Table 2, we may conclude that for all parallel loops produced
with TRACO, positive speed-up is achieved. Efficiency depends on the problem
size defined by loop index upper bounds and the number of CPUs used for
parallel program execution. For most cases, efficiency increases with increasing
the problem size. Figure 3 illustrates the positive speed-up presented in Table 2
in a graphical way.

5 Related Work

Various techniques have been developed to parallelize neural network algorithms,
for example, those presented in papers [16–18]. Many algorithms are dedicated to
parallel training and parallel back-propagation [19, 20]. Although the efficiency
of these solutions is satisfactory for many cases, parallel program development
is usually manual and time- consuming. TRACO allows developers to automat-
ically parallelize existing serial code without any modifications of sources.

The results of the paper are within the ISS framework introduced by Pugh
and Rosser [6]. That paper examines one of possible uses of ISS, namely how to
optimize interprocessor communication. However, the authors did not propose
how to find synchronization-free slices.

Different compilers based on the polyhedral model [21] have been developed to
extract coarse-grained parallelism available in loops. The affine transformation
framework (ATF), considered in papers [2, 3] unifies a large number of previ-
ously proposed loop transformations. ATF is implemented in the PLUTO project
[21], which transforms C programs from source to source for coarse-grained par-
allelism and data locality simultaneously. The core transformation framework
mainly works by finding affine transformations for efficient tiling and fusion, but
not limited to those.
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The CETUS tool provides an infrastructure for research on multi-core com-
piler optimizations that emphasizes automatic parallelization [22]. The compiler
targets C programs and supports source-to-source transformations. It performs
loop dependence analysis and generates parallel loop annotations. However CE-
TUS transformations are limited only to induction variable substitution, reduc-
tion recognition, and array privatization.

Table 1 presents the comparison of the TRACO, CETUS and PLUTO effec-
tiveness for studied ANNs loops. Although PLUTO produces parallel code in
the shortest period of time, it parallelizes only 44 % of loops. CETUS extracts
parallelism for 62 % of program loops and takes more than 13 seconds to pro-
duce parallel code for all ANNs. TRACO parallelizes 65 % of program loops and
takes in sum 3,71 seconds.

6 Conclusion

The paper presents applying Iteration Space Slicing implemented in TRACO
for automatic producing parallel code for tasks of neural network programming.
Loops computation are divided into multiple slices which are mapped to proces-
sors as threads. TRACO allows users to achieve significant speed-up of parallel
ANNs programs on shared memory machines with multi-core processors. The ef-
fectiveness of applying TRACO is better or comparable with that demonstrated
by the optimizing compilers CETUS and PLUTO.

In the future, we indent to study the parallelization of other ANNs applica-
tions, such as Kohonen Self-Organizing Maps, Adaptive Resonance Theory, and
Probabilistic Neural Networks. We consider also the implementation of source-
to-source locality optimization techniques in TRACO.
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Abstract. This paper discusses approaches to noise-resistant training of MLP
neural networks. We present various aspects of the issue and the ways of obtain-
ing that goal by using two groups of approaches and combinations of them. The
first group is based on a different processing of each vector depending of the like-
lihood of the vector being an outlier. The likelihood is determined by instance
selection and outlier detection. The second group is based on training MLP neu-
ral networks with non-differentiable robust objective functions. We evaluate the
performance of particular methods with different level of noise in the data for
regression problems.

1 Introduction

Multilayer perceptrons (MLP) are among the most popular approaches used to build
data-based models for various applications. They are usually considered as reliable and
easy-to-use tools. However, their performance strongly depends on the quality of the
training data [3, 18]. In this paper we present and test some state of the art methods,
which allows training the MLPs on contaminated datasets.

MLP networks are trained by minimizing an error function on the training set, to
make the network map the input data distribution to output space variables, which in
case of regression are real numbers. However, since the error is minimized to make the
network output for each vector as close as possible to the real vector output, it is crucial
that the training data is of a good quality. Good quality means that the data reflects the
underlying problem. If the data contains a lot of faulty measurements, other errors and
outliers it obviously does not match the problem well, so also the neural network trained
on that data will not.

In this paper we take into account two groups of methods to deal with the noisy data
problem. The first group of methods makes some adjustment to other neural network
itself, such as the error function, the neuron transfer functions and others to make the
network to process differently data points of different properties in such a way that it is
less sensitive to outliers. These methods are presented in section 2.

The second group uses outlier reduction methods, which are applied to the data prior
to the network training. Thus, the data is modified and a typical MLP network is then
trained on that data. This is discussed in section 3.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 131–142, 2014.
c© Springer International Publishing Switzerland 2014
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Finally we discuss the possibilities of joining the two groups of methods together.
The section 4 presents the experimental comparison of nine different methods from
all the three groups on seven regression tasks performed with various amount of noise
added to the data. Finally the section 5 concludes this work.

2 Data with Outliers and Robust Learning

An outlier can be defined as an observation distant from the bulk of the data. Such
observations may be caused by human mistakes, measurement or rounding errors, long-
tailed noise, etc. This is why outliers are usually considered as gross errors but they can
be also potentially meaningful. In typical raw data, the quantity of outliers ranges from
1% to 10% [11], however it is hard to predict how much outliers the data contain.

The feedfoward neural network trained to minimize MSE (mean squared error) builds
a model based on fitting training patterns as close as possible (according to the MSE
measure). Such approach is indeed optimal for data contaminated by errors generated
from zero-mean Gaussian distribution but when outliers appear in the training set, the
network model becomes unreliable [3, 18, 19]. This is why several robust learning al-
gorithms, to train neural networks on the data with outliers, have been proposed [3–
5, 18, 25]. Such methods, usually based on the robust statistical estimators, should be
reliable also when the training data quality is unknown.

One of the basic approaches to make a learning algorithm more robust to outliers
is to replace the MSE performance measure by another function. In this approach, the
robustness to outliers is achieved by reducing the impact of large training residuals, po-
tentially caused by outlying data points. Many such functions derived from robust sta-
tistical estimators can be found in the literature. New LMLS (Least Mean Log Squares)
error function was proposed by Liano [18]. Chen and Jain [3] applied the Hampel’s hy-
perbolic tangent with scale estimator β, determining residuals suspected to be caused
by outliers, Chunag and Su [4] added the annealing scheme to decrease the value of
β. Error functions based on the tau-estimators [19] and the MCD (Minimum Covari-
ance Determinant) [24] were also proposed. El-Melegy et al. presented the Simulated
Annealing for Least Median of Squares (SA-LMedS) algorithm [5], while Rusiecki
proposed the LTS (Least Trimmed Squares) [23] and LTA (Least Trimmed Absolute
Values) [26] algorithms. The RANSAC (random sample consensus) framework, known
from the area of image processing, was applied to the MLPs learning by El-Melegy
[6–8].

2.1 Trimmed and Median-Based Error Measures

In the previous research many modified performance functions have been examined and
the best results have been obtained with the quantile-based and trimmed performance
measures [5, 17, 25, 26]. Trimmed and quantile-based robust estimators are proved to be
outlier-resistant, so it is not surprising that they perform well also in network training.

The main problem is that such measures are not continuous and some approximations
of their derivatives in gradient-based learning must be used. An alternative approach is
to train the network with non-gradient methods. In this paper we use the Variable Step
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Search (VSS) Algorithm [14] to train the network with robust non-differentiable error
measures. The main idea of the VSS algorithm is to guess the optimal modifications of
single weights at each iteration based on their changes in previos iterations and then to
adjust the changes. Since change of a single weight does not change signal propagations
in the entire network, the signals (unlike in gradent-based methoods) are propagated
each time only through the recently changed fragments of the network. However, we
do not focus on the learning algorithm itself and use VSS with the same parameters
through all the tests. It is also not crucial to use VSS and it can be replaced with several
other MLP training methods.

3 LTA and ILMedS Algorithms

One of the desired properties of robust estimators is a high breakdown point. It is de-
fined as the smallest percentage ε∗ of contaminated data that can cause the estimator
to take on aberrant values [11]. Theoretically, for the least squares method the break-
down point ε∗ = 0. The least trimmed absolute value (LTA) and the least median of
squares (LMedS) are known in the robust statistics to be the classical high breakdown
point robust estimators (breakdown point close to ε∗ = 0.5). In fact, the breakdown
point ε∗ = 0.5 is the best that can be expected from any estimator [22]. Unlike robust
M-estimators, the LTA and LMedS do not change operations performed on single resid-
uals (such as squaring or taking absolute value), but replace the sum of residuals with
a trimmed sum or a certain statistical value as median. Hence, the LMedS estimator is
based on the Chebyshev (L∞) norm and the LTA is a trimmed version of L1 norm.

3.1 Least Trimmed Absolute Values

The least trimmed absolute value estimator (LTA) is one of the well-known robust lo-
cation estimators. Similarly to the least trimmed squares (LTS) [22] it does not change
operations performed on residuals. Hence, in this case, residuals are not squared but
their absolute values are taken. Then the summation is replaced with a trimmed sum.

Let us consider the general nonlinear regression model:

yi = η(xi, θ) + εi, i = 1, . . . , n, (1)

where yi denotes the dependent variable, xi = (xi1, . . . , xik) the independent input
vector, θ ∈ Rp is the underlying parameter vector, and εi denotes independent and
identically distributed (iid) random errors with a continuous distribution function. Now
we can define the least trimmed absolute value estimator:

θ̂ = arg min
θ∈Rp

h∑
i=1

(|r|)i:n, (2)

where (|r|)1:n ≤ · · · ≤ (|r|)n:n are the absolute residuals |ri(θ)| = |yi − η(xi, θ)|
sorted in ascending order. In the summation only h smallest absolute values of the
residuals are used. Setting the trimming constant h as n/2 < h ≤ n we can decide
what percentage of largest residuals will not affect the estimator.
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LTA Error Criterion. The new robust error criterion based on the LTA estimator was
introduced in [26] as:

ELTA =

h∑
i=1

(|r|)i:n, (3)

where (|r|)1:n ≤ · · · ≤ (|r|)n:n are ordered absolute network output residuals for each
training pattern.

This error measure should provide robustness to outliers excluding from the training
process patterns causing largest errors (assuming that these patterns are outliers). The
trimming constant h can be set empirically but in [26] a simple approach to estimate
the scaling factor was proposed. Calculation of h is based on a robust measure of scale,
namely the median of all absolute deviations from the median (MAD)[13]:

MAD (ri) = 1.483 median|ri −median(ri)|. (4)

The trimming parameter is then calculated as:

h = ‖{ri : |ri| < 3 ∗MAD(|ri|), i = 1 . . . n}‖. (5)

To determine h, errors obtained after initial training phase should be used.

3.2 Iterative Least Median of Squares

LMedS Estimator. The least median of squares estimator (LMedS) was originally
proposed by Rousseeuw [22] but it was informally used even earlier [13]. The LMedS
estimator acts on the squared residuals, replacing sum by the robust median, so it can
be defined as follows:

θ̂ = argmin
i

med ri2. (6)

Iterative LMedS. In the domain of robust neural network learning algorithms, the
LMedS error criterion was proposed by El-Melegy in [5], where simulated annealing
was employed to minimize the median error. The LMedS performance is defined as:

Emed = med ri2. (7)

For the error criterion given by 7, the following additional training procedure was
proposed [5, 25]. After an initial training phase, the robust standard deviation (RSD)[21]
is calculated as:

σr = 1.4826 ∗ (1 + 5

(N − p) )
√
E∗

med, (8)

whereE∗
med is the best achieved LMedS error value (N and p are the size of the training

set and the dimension of the input vector). Then all the training patterns associated with
residuals exceeding a threshold should be removed from the training set:

r2i ≥ 2.5 ∗ σ2r . (9)

These steps should be repeated iteratively several times. A detailed explanation of the
chosen threshold and methodology can be found in [5, 21, 25].

To train the network with LTA and ILMedS approaches we decided to use non-
gradient VSS algorithm [14] to cope with the problem of the performance function
non-differentiability.
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4 Outlier Reduction

4.1 Instance Selection

Using instance selection, the most of the outliers get removed from the training dataset
and the noise in the data is reduced. In general there may by also other reasons for in-
stance selection, as reducing the data size or improving generalization, but these topics
are out of scope of this work. A large survey of about 70 different instance selection
algorithms for classification tasks can be found in [27]. So far there were very few ap-
proaches in the literature to instance selection for regression problems. Moreover, the
approaches were verified only on artificial datasets generated especially for the purpose
of testing the algorithms. Zhang [31] presented a method to select the input vectors while
calculating the output with k-NN. Tolvi [28] presented a genetic algorithm to perform
feature and instance selection for linear regression models. In their works Guillen et
al. [10] discussed the concept of mutual information used for selection of prototypes in
regression problems.

Instance selection for regression problems is a more complex issue for two reasons.
First, in classification it is enough to determine the border between two classes, while
in regression the values in each point of the data are important. This results in a much
weaker data compression that can be achieved in regression tasks. And second, in clas-
sification we must only decide if a certain points belong to a given class or not. Thus
most of the instance selection algorithms are based on k-NN classification, where the
result of the classification determines if the given instance is preserved or rejected. In
regression problems, while comparing two instances, we consider the distance between
them, according to some (usually Euclidean) distance measure. Thus, the criterion to
decide whether a given instance should be rejected is some distance threshold. There
are a lot of options of how the threshold can be determined. It can be constant or pro-
portional to the local density of the data. In general the threshold should be determined
experimentally, but our experiments showed that in the regENN algorithm [15], the re-
jection threshold θ can be set to 2-8 standard deviations of the data for a broad range
of regression problems. The higher value can be used for a better quality data and the
lower for highly contaminated data.The reason for this is that in more contaminated
data there are more outliers that should be removed and there is a higher probability
that the some of the neighbors of the considered instance are also outliers. While in
a better quality data even the points that are far from their neighbors do not necessary
require rejection, as they may not contain any wrong values. Using θ proportional to the
standard deviation of k nearest neighbors of the instance xi, instead of proportional to
a standard deviation of the entire data allows, as the experiments showed, for obtaining
higher compression of the dataset while preserving the same prediction accuracy. We
developed the regENN algorithm from the ENN (Edited Nearest Neighbor) algorithm
[30] and presented it in [15]. The main idea of the regENN algorithm is to reject in-
stances if their output differs more than θ from a value predicted by the weighted k-NN
with k = 9, where the weight wi exponentially decreases with the distance di between
the given instance and its i-th neighbor xi. The predicted output y is expressed by the
following equation:
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y =

∑k
i=1 wiyi∑k
i=1 wi

(10)

where wi = 2−0.2di . As the regression model to predict the output Y (xi) we use
k-NN with k = 9 as the Model(T,xi) we also use k-NN with k = 9, although also
other methods can be used here, as neural network, regression trees, etc. (k = 9 was
evaluated experimentally to be a good choice for a broad range of problems [16]).

Algorithm 1. regENN algorithm
Require: T

m ← sizeof(T);
for i = 1 . . .m do

Ȳ (xi) =Model((T \ xi),xi);
S ← k-NN(T,xi)
θ = α · std (Y (XS))
if
∣∣Y (xi)− Ȳ (xi)

∣∣ > θ then
T ← T \ xi

end if
end for
P ← T
return P

4.2 Anomaly Detection

Anomaly detection deals with the outliers in a different way than instance selection;
it does not reject or keep them but it assigns an anomaly score to each instance. The
higher the score, the bigger outlier is the instance. There is a bunch of anomaly detec-
tion methods and a survey of them can be found in [2]. For the purpose of this work we
modified the k-NN Global Anomaly Score algorithm (k-NN GAS). The k-NN GAS as-
signs the anomaly scores prior to the network training and then the MLP error function
divides the error the network makes on the instance by the instance anomaly score. In
this way the more outstanding instances have weaker influence on the network training.
The advantage of anomaly detection over instance selection is that we do not have to
make a crisp decision about the instance. The k-NN GAS calculates the anomaly score
based on the k-NN algorithm. The outlier score of an instance is the average distance
between the instance and its k nearest neighbors (again we use k = 9 and Euclidean dis-
tance measure). However, for the purpose of labeled data, we had to modify the k-NN
GAS, including both distances: in the input space dx and in the output space dy . We
define the modified anomaly score Asc as:

Asc = dy/dx (11)
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5 Experimental Evaluation

5.1 Datasets

We performed the experiments on two groups of regression problems: the real-world
datasets and artificial datasets. We used the real-world datasets, which were first stan-
dardized so that the mean value of each attribute is zero and the standard deviation
is one to make result comparison easier. We started from the original datasets (δ=0
in the tables 5-7) and gradually were adding some random noise to outputs only to
the training subsets in the crossvalidation. δ=0.1 represents v=0.5 and f=0.20, δ=0.2:
v=1.0 and f=0.25, δ=0.3: v=1.5 and f=0.30, δ=0.4: v=2.0 and f=0.35, δ=0.5: v=2.5
and f=0.40. The noise was added to outputs with random frequency f and amplitude
v(2 − r ∗ r), where 0 < r < 1 is a random number. The artificial datasets (Function
A, Function B and Function C) and Building Benchmark were contaminated with so-
called Gross Error Model [3, 4, 18, 23] with additive noise: F = (1− δ)G+ δH , where
F denotes the error distribution, G ∼ N(0.0, 10.0) models small Gaussian noise, and
H ∼ N(0.0, 0.1) represents high value outliers. Hence, the probability of outliers is δ.
The datasets are available from [32].

Function A. The 1-D function to be approximated was proposed by Liano in [18] and
used to test many robust learning algorithms [3–5, 19, 26]. It is defined as:

y = |x|−2/3. (12)

A training set was prepared by sampling independent variable in the range [−2, 2] with
a step 0.01.

Function B. The second 1-D function was previously used in [3, 4] and defined as:

y =
sin(x)

x
. (13)

For a training set, the independent variable was sampled in the range [−7.5, 7.5] with a
step of 0.1.

Function C. Another function was a two-dimensional spiral defined as:{
x = sin y
z = cos y

(14)

Training data were generated by sampling the dependent variable y in the range [0, π]
with a step π/100. The network was trained to model y as a function of x and z (for the
given range it is a function).

Building. The first real-world training task was taken from the PROBEN 1 benchmark
collection [20]. The task was to predict building energy consumption based on 14 input
variables, such as the date, time, and weather conditions. Following [1], we trained a
network on the first 3156 observations to predict dependent variable over the next 1052
time steps of the test set.
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Table 1. MSE on training subset for Function A, 10 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.0038±0.002 0.11±0.006 0.44±0.008 0.49±0.08 0.59±0.09 0.81±0.09

ILMedS 0.0045±0.001 0.0057±0.003 0.0076±0.003 0.0059±0.002 0.015±0.005 0.021±0.01

LTA 0.0065±0.001 0.0041±0.001 0.011±0.005 0.0046±0.002 0.0063±0.002 0.0073±0.002

ENN-MSE 0.0039±0.002 0.0055±0.002 0.0077±0.003 0.013±0.030 0.014±0.033 0.018±0.028

ENN-ILMedS 0.0048±0.001 0.0061±0.002 0.0070±0.002 0.0071±0.002 0.0092±0.003 0.014±0.023

ENN-LTA 0.0039±0.001 0.0039±0.001 0.0048±0.002 0.0055±0.002 0.0059±0.002 0.0067±0.002

GAS-MSE 0.0033±0.002 0.0044±0.002 0.0048±0.002 0.0061±0.002 0.0087±0.002 0.017±0.004

GAS-ILMedS 0.0037±0.001 0.0042±0.002 0.0056±0.002 0.0088±0.002 0.021±0.005 0.067±0.019

GAS-LTA 0.0021±0.001 0.0020±0.001 0.0023±0.001 0.0027±0.001 0.0035±0.001 0.0068±0.002

Table 2. MSE on training subset for Function B, 10 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.0044±0.002 0.67±0.12 0.45±0.05 0.45±0.03 1.90±0.09 4.66±0.10

ILMedS 0.0045±0.002 0.046±0.017 0.024±0.011 0.056±0.035 0.11±0.03 0.15±0.09

LTA 0.0072±0.002 0.0056±0.002 0.0091±0.002 0.010±0.005 0.021±0.007 0.15±0.04

ENN-MSE 0.0034±0.001 0.0038±0.001 0.0055±0.002 0.0053±0.002 0.0081±0.002 0.027±0.007

ENN-ILMedS 0.0030±0.001 0.0040±0.003 0.0049±0.003 0.0056±0.002 0.0066±0.003 0.018±0.005

ENN-LTA 0.0038±0.001 0.0036±0.001 0.0040±0.002 0.0048±0.002 0.0076±0.003 0.015±0.004

GAS-MSE 0.0031±0.001 0.0049±0.002 0.0068±0.003 0.011±0.003 0.023±0.006 0.082±0.031

GAS-ILMedS 0.0042±0.001 0.0051±0.002 0.0067±0.003 0.013±0.003 0.034±0.011 0.18±0.06

GAS-LTA 0.0040±0.002 0.0043±0.002 0.0045±0.002 0.0045±0.002 0.0062±0.003 0.021±0.006

Table 3. MSE on training subset for Function C, 10 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.0025±0.001 0.19±0.02 0.60±0.05 1.62±1.77 2.58±0.48 4.16±0.30

ILMedS 0.0021±0.001 0.015±0.012 0.081±0.039 1.74±0.94 1.14±0.78 1.62±1.77

LTA 0.0008±0.001 0.0041±0.002 0.0045±0.002 0.014±0.009 0.011±0.004 0.057±0.031

ENN-MSE 0.0025±0.001 0.0041±0.002 0.0061±0.002 0.014±0.005 0.023±0.008 0.044±0.012

ENN-ILMedS 0.0020±0.001 0.0043±0.002 0.0087±0.003 0.017±0.006 0.022±0.005 0.039±0.01

ENN-LTA 0.0008±0.001 0.0018±0.001 0.0044±0.002 0.010±0.003 0.021±0.002 0.039±0.002

GAS-MSE 0.0022±0.001 0.0039±0.002 0.0056±0.008 0.015±0.004 0.044±0.009 0.1415±0.09

GAS-ILMedS 0.0024±0.001 0.0065±0.003 0.0077±0.003 0.013±0.003 0.092±0.035 0.34±0.01

GAS-LTA 0.0014±0.001 0.0035±0.001 0.0048±0.005 0.0042±0.002 0.0046±0.002 0.054±0.018

Concrete Compression Strength. There are 1030 instances with 7 input attributes
in the dataset reflecting the amount of particular substances in the concrete mixture,
such as cement, slag, water, etc. [29]. The task is to predict the concrete compressive
strength. There are 1030 instances in the database.

Crime and Communities. There are 318 instances with originally 120 input attributes
in the data set, describing various social, economical and criminal factors [29].
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Table 4. MSE on training subset for Building dataset, 10 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.0018±0.0003 1.013±0.030 3.85±0.06 8.29±0.13 15.6±0.2 24.3±2.2

ILMeds 0.0017±0.0003 0.036±0.019 0.16±0.06 0.25±0.13 0.41±0.18 15.2±1.5

LTA 0.0020±0.0004 0.0032±0.0006 0.0048±0.001 0.013±0.003 0.026±0.004 2.15±3.9

ENN-MSE 0.0018±0.0003 0.0039±0.0006 0.0060±0.012 0.018±0.004 0.034±0.006 0.24±0.05

ENN-ILMedS 0.0017±0.0003 0.0035±0.0006 0.0056±0.001 0.015±0.002 0.040±0.008 0.17±0.04

ENN-LTA 0.0020±0.0004 0.0035±0.0005 0.0081±0.002 0.014±0.002 0.029±0.005 0.21±0.05

However, after preliminary feature selection we used only 7 attributes. The value to
predict is per capita violent crime.

SteelC14. The dataset contains 2384 instances with 18 input attributes. The task is to
predict the amount of carbon that must be added in the steel-making process, given
various chemical and physical properties of the liquid steel in the furnace.

5.2 Experimental Setup

We implemented the algorithms in C#. The source code can be downloaded from the
SVN repository at [32]. The whole process in different configurations was run in 10-
fold crossvalidation loops. To be able to compare the results, we always measure and
report in the tables 1-7 the MSE error on the test sets, no matter which error function
was used for the network training. Also the MLP architecture was constant (the same for
each training method) for a given dataset (the numbers of hidden neurons are given in
the result tables). We run the tests on several forms of the datasets: the original datasets
and the datasets with various amount of random noise (see section 5.1) added to the
output variables. However, the noise was added only to the training data, while the test
data were left unchanged. That allowed us to determine how the methods can deal with
various noise levels.

5.3 Results

The results in the tables show MSE on the test subsets (always MSE on the test subset
is compared for any training method and any error function used during the training).
Analyzing results of the experiments, one may notice that the traditional method, min-
imizing MSE criterion perform well only for clean datasets without outliers. When the
data contains outlying patterns, the method breaks down. More interesting phenomenon
is that even for clean training data, different modified algorithms always obtained better
results (e.g. GAS methods in Table 1, or ENN and GAS methods in Table 2).

For contaminated training sets, all the enhanced algorithms performed better than the
traditional one. Only pure ILMedS method for several datasets (Tables 5, 6, 7) obtained
lager errors than the MSE. In general, the best performance was achieved for hybrid
algorithms combining ILMedS and LTA with ENN, or GAS approaches.
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Table 5. MSE on training subsets for Concrete dataset, 6 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.79±0.25 0.84±0.21 1.01±0.19 1.47±0.22 2.26±0.19 3.80±0.33

ILMedS 0.91±0.25 1.05±0.36 1.14±0.34 2.01±0.46 2.80±0.85 4.01±1.30

LTA 1.06±0.33 0.96±0.39 0.94±0.35 0.94±0.32 1.07±0.29 1.60±0.35

ENN-MSE 0.79±0.25 0.82±0.21 0.89±0.20 1.02±0.14 1.05±0.15 1.15±0.18

ENN-ILMedS 0.85±0.09 0.86±0.11 0.89±0.11 0.88±0.15 0.98±0.21 1.09±0.17

ENN-LTA 1.05±0.20 0.95±0.16 0.94±0.09 1.00±0.18 1.13±0.25 1.21±0.18

GAS-MSE 0.78±0.32 0.87±0.36 0.94±0.29 1.13±0.28 1.41±0.25 2.16±0.39

GAS-ILMedS 0.76±0.26 0.97±0.38 1.08±0.30 1.21±0.43 1.64±0.34 2.80±0.81

GAS-LTA 1.10±0.30 1.09±0.44 1.03±0.40 0.96±0.33 1.00±0.34 1.05±0.33

Table 6. MSE on training subsets for Crime dataset, 5 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.34±0.07 0.37±0.10 0.56±0.17 1.17±0.41 2.23±0.42 3.31±0.71

ILMedS 0.37±0.12 0.43±0.10 0.63±0.13 1.37±0.44 2.70±1.11 4.09±1.33

LTA 0.39±0.11 0.39±0.10 0.48±0.13 0.56±0.18 0.88±0.24 1.96±0.92

ENN-MSE 0.34±0.07 0.34±0.10 0.40±0.07 0.61±0.19 0.70±0.49 1.58±1.38

ENN-ILMedS 0.37±0.11 0.36±0.09 0.46±0.15 0.53±0.11 0.69±0.21 0.77±0.35

ENN-LTA 0.38±0.13 0.38±0.12 0.45±0.12 0.54±0.14 0.64±0.40 0.81±0.30

GAS-MSE 0.34±0.09 0.39±0.12 0.47±0.13 0.61±0.18 1.22±0.47 2.43±0.83

GAS-ILMedS 0.34±0.10 0.37±0.11 0.47±0.10 0.86±0.62 1.51±0.72 2.99±1.23

GAS-LTA 0.37±0.11 0.39±0.10 0.46±0.12 0.47±0.14 0.61±0.16 1.08±0.63

Table 7. MSE on training subsets for SteelC14, 5 hidden neurons, 12 training epochs

δ 0.0 0.1 0.2 0.3 0.4 0.5
MSE 0.071±0.018 0.10±0.03 0.27±0.02 0.70±0.08 1.61±0.12 3.14±0.16

ILMedS 0.082±0.035 0.17±0.04 0.55±0.14 1.07±0.41 2.06±0.86 2.58±1.05

LTA 0.071±0.045 0.069±0.038 0.093±0.034 0.11±0.05 0.15±0.04 0.27±0.07

ENN-MSE 0.069±0.016 0.072±0.031 0.92±0.10 0.10±0.04 0.14±0.04 0.22±0.06

ENN-ILMedS 0.070±0.014 0.098±0.023 0.21±0.03 0.55±0.02 0.78±0.18 1.13±0.56

ENN-LTA 0.068±0.015 0.111±0.029 0.24±0.03 0.60±0.02 0.12±0.03 0.21±0.07

GAS-MSE 0.073±0.045 0.084±0.021 0.121±0.010 0.27±0.05 0.69±0.08 1.30±0.32

GAS-ILMedS 0.071±0.034 0.110±0.050 0.221±0.140 0.60±0.25 0.68±0.20 1.31±0.41

GAS-LTA 0.073±0.054 0.074±0.036 0.074±0.043 0.078±0.04 0.09±0.04 0.15±0.05
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6 Conclusions

We described briefly some modifications of learning methods designed to deal with the
problem of noisy data for regression tasks. It is clearly evident that all the presented
approaches can be considered as more reliable than the traditional learning algorithms
minimizing the MSE criterion. This is particularly important when the quality of train-
ing data is unknown. Even for clean training patterns some of the modified methods
performed better than the MSE. For different testing problems and different amounts of
outliers the observed performances varied between tested methods. However, in most
cases, especially for the noisy data, ENN with LTA performed best. The future efforts
can be then directed at defining and choosing optimal algorithms for given conditions
(types of problems and quantities of outlying points).
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Abstract. Industrial energy consumption depends on social and eco-
nomic variables, and the way in which variables are selected is an im-
portant issue in causal forecasting. In this paper, we have developed a
method to select the input variables for the monthly forecasting of energy
consumption by artificial neural networks. The method consists of apply-
ing principal component analysis to reduce the dimensionality of data.
The forecasts obtained by applying the principal component analysis
were combined by a neural network and compared to the ones obtained
by selecting variables using a correlation analysis. An important contri-
bution of this work is the evidence that principal component analysis
reduces the number of variables in the input set and, consequently, the
error rate of neural networks in energy forecasting. The Mean Absolute
Percentage Error (MAPE) and Theil’s U statistic were used to provide
evidence of the predictive capability of the proposed method. The neural
network with variables selected via the first principal component analysis
obtained out of sample errors of that were approximately 15.4% lower
than the neural nets with input variables selected by correlation analysis.
In addition, the performance of the neural net, the input of which was
selected in the second principal component, has demonstrated a MAPE
that was 10.65% lower than the neural net fed with variables selected
using a correlation analysis. Completing the analysis, the combination of
forecasts exhibited errors that were approximately 0.93% lower than the
error obtained by selecting variables using a correlation analysis. The
neural net that was fed with variables selected in the third principal
component did not reach errors lower than the naive method. However,
the nets results were relevant to the combination of forecasts.

Keywords: Principal Component Analysis, Correlation Analysis, Neu-
ral Network, Electricity Energy Forecasting, Time Series.

1 Introduction

The energy consumption is usually assessed based on historical series and its
relation to other relevant variables, such as economic, demographic and climatic

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 143–154, 2014.
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indexes, as well as the energy price [8]. Variable selection, which is often the
initial step in the application of causal forecasting methods, is commonly used
empirically when it should occur as widely and unrestrictedly as possible. Corre-
lation analysis is used to select the variables for forecasting energy demand and
consumption [7][15][19][20]. However, this method can be an expensive activity
when handling a database with many variables.

Tsekouras, Elias, Kavatza and Contaxis [20] studied energy forecasting for in-
dustrial and residential classes. They assessed a regressive nonlinear multivariate
method that included a correlation analysis to select the input data. This selec-
tion method was even used by Tsekouras, Dyalinas, Hatziargyriou and Kavatza
[19] to limit the input variables to nonlinear functions on energy prediction in
Greece. The authors found adequate models for forecasting in small metropoli-
tan areas. Mohamed and Bodger [13] applied a correlation analysis to select the
demographic and economic variables for multiple linear regressions to predict the
energy consumption in New Zeland. The authors concluded that the accuracy
of their models would strongly depend on forecasting the input variables via a
simple regression. In addition to this study, correlation analyses were applied to
select the variables in energy prediction as previously shown [22].

According to Armstrong [2], the accuracy of the forecasting combining fore-
casts derived from different methods can be improved. The combination of fore-
casts was applied by Wichard [23] to build a method consisting of three types
of individual models: a nearest neighbor/trajectory ensemble model, the one-
year-cycle, including the Easter correction, and a neural network ensemble. This
approach was used to cope with the different seasonal features of a time series.

Several recent papers have addressed the selection of appropriate input vari-
ables for forecasts. Earlier research [6] has demonstrated that Principal Compo-
nent Analysis can reduce the errors in the forecasting with real data when applied
to the definition of a dynamic regression model. Muoz and Czernichow [14] stud-
ied the degree of significance in a subset of input variables based on the statistical
study of the output of the forecast method. According to the authors, the stan-
dardized inputs that are not used by the model to estimate its outputs are con-
sidered to have a low significance. The authors concluded that the inputs of the
model are the estimations of the input of the process if the inputs of a process are
an estimation from a set of samples of the training set. Magalhes and Wazlawick
[5] defined a model for short-term load forecasting in which the input variables
are optimized via genetic algorithms. The authors demonstrated that the fore-
casting errors could be reduced in a variety of nodes of an electrical system using
the genetic algorithm to support the definition of a neural network’s input layer
and parameters. Souza, Samohyl and Pereira [17] introduced an approach related
to the selection of input variables. The authors showed that the Principal Com-
ponent Analysis (PCA) for the selection of explanatory variables could improve
the prediction by combining regressive models compared to a simple correlation
analysis. The authors discussed the accuracy of two methodologies, PCA or corre-
lation analysis, to estimate the number of parameters that are larger than the size
of the sample. In this sense, this argument may be equally efficient when applied
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to studies involving models based on Neural Networks (NN). We have noticed that
the impact of PCA on the results of neural network forecasts has not been fully
analyzed, even though PCA is a well-known technique and NN is widely applied
to solve forecasting problems.

Neural Networks (NN) are a class of non-linear prediction models that have at-
tracted the interest of the research community for forecasting [1, 3, 4, 9–11, 18, 21].
This interest is justified because the NN is a universal approximator in certain
conditions [16]. Specifically, neural networks with a single hidden layer that con-
tain a finite number of hidden neurons and an arbitrary activation function can
approximate any function that is continuous on Rm.

2 Data Analysis

The time series were used in this study consisted of real data from the state of
Santa Catarina, Brazil from 2004 to 2011. Principal component analysis, corre-
lation analysis and neural networks were applied to the industrial energy con-
sumption historical data, including the economic and industrial indices.

Industrial processes are responsible for 40% of the total electrical energy con-
sumption in the State of Santa Catarina, and the time series were measured
monthly in Megawatt-Hour (MW h). The economical and industrial indices were
obtained from a public website (Time Series Management System (SGS)) main-
tained by the Central Bank of Brazil. We used all time series that met the study
period, which comprised a total of 30 variables, each with 90 steps. Despite the
relatively short size of the time series, 12 observations were separated for per-
formance analysis. These data were used as part of the process of setting the
weights of neural networks. The other 78 observations were used to train and
validate the models.

The data set was scaled by Eq. (1). In this normalization X ij represents the
observation j of the variable i. Each observation was subtracted of the mean μi
of the temporal series and devided by its standard deviation σi, resulting in a
newer observation Zij. This procedure avoids distortion in results of principal
component analysis.

Zij =
X ij − μi
σi

(1)

3 Principal Component Analysis Background

The Principal Component Analysis (PCA) is a mathematic method that trans-
forms a set of variables into a set of principal components with the same dimen-
sion as the original data. The principal components have the following features:
each component is a linear combination of the variables, the components are
orthogonal and they maintain a maximum amount of information related to the
variance of the original data ordered by estimate. The PCA proceeds via a di-
mensional reduction on a database with many variables to transform them into
a new coordinate system by rotating the axis of the original data.
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The analysis is based on the total variance of the data set. Specifically, a set of
p variablesX1, X2, . . . , Xp, which are represented in the matrix S. Each variable,
with n observations, will result in Z1, Z2, . . . , Zp non-correlated indices. The non-
correlation of the indices implies the measurement of different dimensions in the
variance of the principal components, such that V ar(Z1) ≥ V ar(Z2) ≥ . . . ≥
V ar(Zp).

The principal components are obtained by solving the equation of the covari-
ance matrix S, det[S − λI] = 0. Where I is the identity matrix and λ is the
vector of eigenvalues1.

S =

⎛⎜⎜⎜⎝
V ar(X1) Cov(X1, X2) . . . Cov(X1, Xp)

Cov(X2, X1) V ar(X2) . . . Cov(X2, Xp)
...

...
. . .

...
Cov(Xp, X1) Cov(Xn, X2) . . . V ar(Xp)

⎞⎟⎟⎟⎠
Let λ1, λ2, . . . , λp be the eigenvalues that solve the matrix S. Each of the

eigenvalues λi is related to an eigenvector α̃i, which is ortogonal to the others. Let
αi be the eigenvector related to the eigenvalue λi. the first principal component
Z1 represents the largest possible variability in the data. The first principal
component is given by the linear combination of Eq. (2), and its eigenvector is
given by α̃1 = [α11α12 . . . α1p]

Z1 = α11X1 + α12X2 + ...+ α1pXp (2)

The calculation is analogous until the p-th principal component, which is
calculated as follows (3):

Zp = αp1X1 + αp2X2 + ...+ αppXp (3)

The application of PCA may be summarized as the following steps:

1. Standardization of variables.
2. Calculation of the covariance matrix.
3. Calculation of eigenvalues and eigenvectors.
4. Discard the components that explain a small proportion of the variability of

the data.

The first three steps were performed in an automated application developed
in MatLab, and the last step was considered part of the interpretation in the
principal component analysis.

4 Forecast Consumption Industrial Electricity

We selected the most suitable set of variables to forecast the industrial con-
sumption electricity in the State of Santa Catarina using a principal component

1 Let T : V → V be a linear operation. If exists v ∈ V , v 	= 0 and λ ∈ R such that
T (v) = λ×v, λ is said to be an eingenvalue of T and v is an eigenvector of T related
to λ.



Principal Component Analysis to Reduce Forecasting Error 147

analysis. The study period ranged from April 2004 to November 2010, and the
forecasting horizon was one year ahead, from December 2010 to November 2011.

A Pearson correlation analysis and principal component analysis were applied
to the data. Through the correlation was extracted a set of variables which were
used as the input set to the neural networks. The PCA was applied in two steps:
first, three principal components were chosen and from each of them we selected
a set of variables to be used individually as input for neural networks. Second,
the obtained forecasts were used as the input variables in a new neural network
model. Fig. 1 illustrates the proposed method.

Fig. 1. Forecasting method of industrial energy consumption by combining neural net-
works

The neural networks (NN) adopted in this work are of the feed-forward class.
Aiming to improve the forecasting performance, the NN models were imple-
mented by varying the number of hidden layers between 1 and 2, each one vary-
ing its number of neurons from 1 to 30. The training set consisted of monthly
data between April of 2004 to June of 2009, and the validation set consisted of
data from July of 2009 to September of 2010. The forecasting was performed in
terms of the adhesion test to one year ahead, i.e., to September of 2011.

To evaluate the performance of NN with input selected by PCA and compare
it with results of NN with input selected by correlation, we employed the Mean
Absolute Percent Error (MAPE) (4). n is the number of forecasting observations,
Yi is the real value of industrially consumed electricity for period i and Ŷi is the
forecast by the respective forecasting method in the period i.

MAPE = 100× 1

n

n∑
k=1

∣∣∣Yi − Ŷi∣∣∣
Ŷi

(4)
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We also adopted the use of Theil’s U, which allows the evaluation of the
heuristics used in the forecast compared with the accuracy of the naive method.
Eq. (5) expresses Theil’s U, with which the method with the biggest errors can
be disregarded.

U = 2

√√√√√∑n−1
k=1 (

Ŷi+1−Yi

Yi
− Yi+1−Yi

Yi
)2∑n−1

k=1 (
Ŷi+1−Yi

Yi
)2

(5)

where n is the number of observations forecasted with the proposed method,
Yi the actual value of industral consumption electricity for period i, Yi+1 is the
next value of the industrially consumed electricity, Ŷi s the value estimated by
the respective forecasting method in the period i and Ŷi+1 the forecast in time
i + 1. For U < 1, the forecasting technique is better than neive method. For
U = 1, the technique is as good as the neive method. For U > 1, the forecasting
technique is worse than the neive method. The MAPE and Theil’s U enabled
benchmarking that supported this proposal.

The box-plots adopted in this work allowed the assessment of network con-
figurations with a better performance in predicting the consumption of electric
power by industry. In these graphs, the horizontal axis is the number of neurons
in each hidden layer, while the vertical layer is the value of MAPE. The tops of
the graphs show information about the number of hidden layers and the number
of neurons of the network with the smallest variation between the lowest and
highest MAPE.

4.1 Correlation Analysis

The Pearson correlation analysis adopted in this work represents the linear corre-
lation degree between two variables. The correlation index, r, is a dimensionless
measure that varies over the interval [−1, 1]. When r = 1, the two variables are
perfectly correlated. When r = 0 both variables are not correlated. r = −1 indi-
cates a perfect yet inverse correlation. Thus, the closer to 1 or −1 the correlation
index is, the more correlated the variables are.

The variables were selected based on the critical correlation coefficient to
samples with 90 observations. The statistical meaning of the correlation index
was verified with Students t-test. Let H0 be the null hypothesis, in which the
variables Xi and the industrial electricity are not correlated, and let H1 be the
alternative hypotesis. H0 is rejected when the correlation coefficient between
these parameters is larger than the critical correlation t, for N − 2 degrees of
freedom and 99% of confidence.

For the samples with 90 observations and 99% of confidence, the critical cor-
relation is t = 0.2702. The variables correlated with the Industrial Consumption
(IC), and their correlation indices r are presented in Tab. 1. The acronyms IVVV
and ICMS refer to the Index of Retail Sail in the State of Santa Catarina and
the Tax on Goods, respectively.

The variables selected by the correlation analysis were used to build forecast-
ing models of the industrial electricity consumption by neural networks. The
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Table 1. Table of varibles correlated to Industrial Energy Consumption

Variables Correlation

100 Industrial Consumption (IC) 1.000

102 Capacity Utilization 0.6019

1477 IVVV - Total 0.5327

1492 IVVV - Fuels 0.5085

1505 IVVV - Food, Beverages and Tabacco 0.4887

1518 IVVV - Tissues 0.4461

1531 IVVV - Furniture and Appliances 0.3248

1557 IVVV - Automobiles 0.7801

1570 IVVV - Hipermarkets 0.4817

4348 ICMS Collection 0.6767

4375 Revenue of States 0.4910

7646 ICMS - Primary Sector 0.6420

14025 Financial System Credits (PF) 0.7382

14052 Financial System Credits (PJ) 0.7107

14079 Financial System Credits (Total) 0.7247

15383 Economic Activity - Previews Methodology 0.8018

15884 Default of the Financial System (PF) 0.3601

17742 Regional Economic Activity 0.7888

20199 Retail Sale Amount- Expanded 0.6952

20200 Retail Sale - Pharmaceutical Goods 0.7213

20202 Retail Sale - Office Supplies 0.6283

20203 Retail Sale - Other Goods 0.4931

20204 Retail Sale - Building Material 0.7553

20442 Regional Economic Activity - Index 0.7321

20455 Regional Economic Activity - Sazonal Adjust 0.7873

relevant results showed MAPE and Theil’s U values below 1. The graphic in
Fig. 2 shows the change in the error reported by different architectures of neural
networks. This graphic shows the MAPE variability as a function of the number
of neurons in the hidden layer. The upper and lower values as well as the out-
liers above three standard deviation are presented, which are represented by the
symbol +.

For the prediction (tests in the sample), the network with 1 hidden layer and
12 neurons showed a lowest MAPE value of 0.7506% and highest value equal to
4.4350%. One outlier equal to 10.6780% was observed, and all values of Theil’s
U were below 1. The neural network performance out of the sample remained
between 1.1045 and 8.2199, and Theil’s U varied between 0.2097 and 1.4594.

4.2 Principal Component Analysis

The data scaled by Eq. 1 were applied to a PCA. The analysis resulted in the
eigenvalues of each principal component and an explanatory percentage, i.e., the
degree to which the variance of the original data can explain each component
and the cumulative percentage, which is the sum of explanatory percentage
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Fig. 2. Prediction errors in the correlation analysis

Table 2. Values obtained with application of PCA

Component Eigenvalues Explanatory Percentage Cumulative

1 19.1991 63.9970 63.9970

2 2.7375 9.1250 73.12

3 2.1558 7.1858 80.31

until such a component. These data are introduced in Tab. 2 for the three first
components. The first three principal components are responsible for 80.30%
of the total variance of the data, which justifies the use of these components
from which the input sets to the neural models were selected. This approach was
adopted by Mardia [12], who used the principal components that accumulate at
least 70% of the total variance.

The first principal component explains 63.9970% of the variability of data, the
second principal component is responsible for 9.1250% and the third principal
component represents 7.1858% of the remaining variance of data.

Once the relevant principal components were observed, the next step was the
selection of the variables with the strongest influence on the variability of the
component via the mean of each eigenvector according to Souza, Samohyl and
Pereira [17]. The variables whose contribution to the component was above the
mean of the eigenvectors were selected. Thus, we selected 21 variables in the
first component, 19 variables in the second principal component and 11 retained
variables in the third. These selected variables composed the input set to the
neural networks.

The variable sets obtained with the principal components were tested in dif-
ferent architectures of the neural network. The neural nets tended to be less
accurate when we used variables of the components beyond the last retained
component. Thus, the predictive ability of neural networks decreased with the
variance, which is explained by the last principal component retained. Three



Principal Component Analysis to Reduce Forecasting Error 151

Table 3. Table of results obtained by PCA and Neural Networks

CP Conf. MAPE Pred. U Pred. MAPE Forec. U Forec.

1 1-15 0.4257% 0.1367 0.9343% 0.2121

2 1-11 0.3564% 0.0707 0.9868% 0.1366

3 1-1 2.5634% 0.6704 3.7482% 0.6927

neural architectures could be highlighted that had the lowest MAPE and Theil’s
U values below 1 using the variables obtained in each of the three first principal
components.

We achieved an in-sample performance with a lower and upper MAPEs equal
to 0.4257% and 3.0897% in the architecture, respectively with the variables re-
tained in the first principal component [1 - 15]. This finding indicates 1 hidden
layer and 15 neurons in this layer. The performance out of the sample reached
a minimal MAPE equal to 0.9343% and maximum MAPE equal 6.7426%. No
outliers were observed.

The variables from the second principal component resulted in a smaller vari-
ability of the neural network [1 - 11] (1 hidden layer and 11 neurons) in the
sample. The minimal in-sample MAPE was 0.3564%, while the minimal MAPE
out of the sample was 0.9868%. Three outliers equal to 5.7797%, 6.5429% and
6.7126% were observed in this configuration. The values for the Theil’s U were
equal to 0.0707 and 1.0281. Comparing this result to those of the first princi-
pal component, the values for the MAPE and Theil’s U were lower. This is a
particularly interesting result because these neural nets had a bigger predictive
capability and the variables from the second principal component had a big-
ger explanatory capability than the first one even though the second principal
component had fewer retained variables than the first principal component.

The third principal component explained 7.1858% of the variability of the
data. This component retained 11 variables. The network with configuration
[1 - 1] reached a 2.5635% and 3.7482% minimal MAPE for the prediction and
forecasting, respectively. The values for Theil’s U of this neural network were
0.6704 in prediction and 0.6927 in forecasting.

The simplest configuration showed the lowest variability, because of that we
omited the graphic for third principal component. However, its predictive ca-
pacity did not exceed the performance of the neural networks with the variables
from the correlation analysis, first or second principal component. Nevertheless,
its predictions in-sample and forecasts were essential to the results of the com-
bination of forecasts, shown in the next section. Tab. 3 shows the values of the
MAPEs and Theil’s U discussed earlier.

4.3 Combination of Energy Consumption Forecasts

The results reached by the three principal components motivated the investiga-
tion of the electricity consumption via the combination of forecasts. We believe
that the neural networks can generate the predictive potential with variables



152 I.S. Sacramento, G.P. Souza, and R.S. Wazlawick

of each principal component via the combination of forecasts. The combination
was the method that reached the smallest MAPEs in the estimation of indus-
trial energy consumption in and out of the sample because each component adds
relevant information to the neural networks.

The data used as input to the combination model were the predictions and
forecasts obtained from variables selected through the principal components, as
illustrated in Fig.. A new neural network model was trained, validated and tested
while respecting the same proportion of data established in previous models and
its results were compared to results obtained with correction analyses. Fig. 3
shows the performance of the neural nets for the combination of forecasts.

Fig. 3. Prediction errors with combination of forecasts

The combination of forecasts was more precise than the selection of variables
by the correlation analysis. The neural network of the combination had a MAPE
equal to 0.3584% for the in-sample test and 1.0942% for the tests out of the
sample. These values are smaller than those achieved by the correlation analysis,
which were 0.45478% in-sample and 1.1045% out of sample. An expressive gain
in comparison to the lowest MAPE values with the principal component was not
observed, for which the best result was 0.3564% in the sample and 0.9868% out
of the sample. The values of the Theil’s U for combined forecasts were below
1 in and out of the sample, which indicates that the combination is a better
predictor than the naive model.

5 Conclusion

This report describes a method to predict the industrial energy consumption in
the State of Santa Catarina that considers the dimensional reduction of the input
data via a principal component analysis, which was compared to the Pearson
Correlation Analysis. The principal component analysis allowed the selection of
a set of appropriate variables to perform the prediction by neural networks. The
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industrial energy consumption was forecast by submitting these variables to dif-
ferent neural networks. Neural networks fed with data from the first and second
principal component were demonstrated to be more accurate compared to those
trained with variables selected by correlation analysis. These results motivated
the combination of forecasts. As such, we used the forecasts obtained by the
first three principal components. The model generated by the combination of
forecasts was more accurate than the models with input variables from the indi-
vidual principal component, which suggested that the method is an alternative
solution for variable selection in forecasting problems. Future studies related to
this study include assessing the performance via the application of the method
with competition data, such as NNG-C.
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Abstract. Weight elimination can be usefully interpreted as an assump-
tion about the prior distribution of the weights trained in the backprop-
agation neural networks (BPNN). Weight elimination based on different
scaling of weight parameters is of a general form, with the weight de-
cay and subset selection methods as special cases. The applications of
this method have been well developed, however, only few references pro-
vides more comprehensive theoretical analysis. To address this issue, we
investigate the uniform boundedness of the trained weights based on a
descriptive proof.

Keywords: backpropagation, neural networks, weight decay, weight
elimination, boundedness.

1 Introduction

The multilayer perceptron network trained by the backpropagation (BP) al-
gorithm is currently the most widely used neural network architecture. BP is
a specific training technique for implementing the gradient descent in weight
space. The first description of this algorithm was presented in 1974 [1]. It was
rediscovered independently in [2, 3] and then widely publicized. However, the
problem of perceptron network generalization has proven more challenging.

Penalization (or regularization) method is often used to achieve better gener-
alization in perceptron networks [4]. The error on the training set can become
very small, but when the test set is presented, the error is still large, thus indicat-
ing poor generalization. Insofar as the network design is statistical in nature, the
tradeoff between the fitting of the training data and the goodness of the model
for test data can be achieved by minimizing the total error with regularization
method. In the context of BP learning, or similar supervised learning proce-
dures, a common regularization strategy is to add an extra constraint (penalty
term) based on the complexity of samples and weights. The cost function for the
penalization inductive principle is expressed as follows

Rpen (w) = Remp (w) + λΦ [f(x,w)] . (1)

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 155–165, 2014.
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The first term Remp (w) of the total risk Rpen (w) is the standard performance
metric, which depends on the network model and the input samples. The second
term Φ [f(x,w)] is the complexity penalty, which is measured in terms of the
weights.

Two different classes of penalty functionals are used for peceptron networks:
nonparametric and parametric penalties [4]. Nonparametric penalties attempt to
evaluate the smoothness by using a differential operator, where the smoothness
can be defined in terms of the wiggliness of function measured in the frequency
domain [5]. In contrast, parametric penalties measure the complexity indirectly
by imposing constraints on the parameters of cost function. A general form is as
follows

Φ [f (x,w)] = Φ (w) . (2)

Two popular examples of penalty functions of this type are

Φr (w) =
∑
i=1

w2
i , “ridge” or “weight decay” (3)

Φs (w) =
∑
i=1

I(wi �= 0), “subset selection” (4)

where I(·) denotes the indicator function.
Due to the discontinuous property of the above indicator function, combina-

tional optimization is required to minimize (4). To effectively circumvent this NP
hard problem, the discontinuous penalty can be approximated by a continuous
one [6]. In the sequel, the following two complexity regularizations are presented.

Φp (w) =
∑
i=1

|wi|p , “bridge” (5)

Φq (w) =
∑
i=1

(wi/q)
2

1 + (wi/q)
2 � Φ (w) , “weight elimination” (6)

In this paper, we focus on the theoretical analysis of “weight elimination” (6),
where q is the scale parameter of the weights. Φ (w) is used instead of Φq (w)
throughout this paper for simplicity. For weight elimination, it approaches the
weight decay penalty as q → ∞ and approaches the subset selection penalty
as q → 0. The concept of weight elimination was first presented in [7]. More
variants and applications have been demonstrated in [8–13].

Boundedness of weights plays an important role in preventing divergence when
training and poor generalization after the training. In real applications, as in all
modeling problems, the smaller sized network is preferred when it can adequately
represent the training data. To the best of our knowledge, the boundedness anal-
yses for neural networks are mainly focused on weight decay (cf. (3)) under some
conditions [14–17]. The penalty term is defined as the squared norm of the weight
vector. Additionally, the convergence analyses (asymptotic and deterministic)
are discussed for different training modes such as batch and incremental modes.

To the best of our knowledge, there is no reference that discusses the bound-
edness of the weight sequence for weight elimination. The main contribution of
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this paper is in analysis of the property from mathematical view. On the basis
of the analytic procedure, we show the best choice for parameter q in (6) which
means the maximum interval of initial weights that can be chosen to guarantee
the bounded weight sequence during training.

2 Weight Elimination Procedure

Denote the numbers of the neurons of the input, hidden and output layers of
BP neural networks are p, n and 1, respectively. We do not consider the biases
in this network model since it does not influence the theoretical analysis in

this paper. Suppose that the training sample set is
{
xj , Oj

}J−1

j=0
⊂ Rp × R,

where xj and Oj are the input and the corresponding target output of the j -th
sample, respectively. Let w = (w1, w2, · · · , wr) ∈ Rr be the weight vector, where
r = p(n+ 1). Let f : R → R be the activation function for the neural network.
For any given input x ∈ Rp, the actual output is

y = f (w,x) . (7)

For fixed weights w, the output error is defined as

E(w) =
1

2

J−1∑
j=0

(Oj − f(w,xj))2 + λΦ (w)

= F
(
w,xj

)
+ λΦ (w) ,

(8)

where F
(
w,xj

)
= 1

2

∑J−1
j=0 (O

j − f(w,xj))2 and λ > 0 is the penalty coefficient.
The gradients of the error function with respect to wi(i = 1, · · · , p(n+ 1)) is as
follows

Ewi(w) = Fwi

(
w,xj

)
+ λΦwi (w)

= Fwi

(
w,xj

)
+ λ

2wiq
2

(q2 + w2
i )

2 .
(9)

Given an initial weight w0 ∈ Rp(n+1), the learning procedure with penalty
term (6) updates the weights iteratively by

wm+1
i = wm

i − ηEwi (w
m) , (10)

where η > 0 is the constant learning rate,

Ewi(w
m) = Fwi

(
wm,xj

)
+ λ

2q2wm
i

(q2 + (wm
i )2)

2 , (11)

where m ∈ N; i = 1, · · · , p(n+ 1); j = 0, 1, · · · , J − 1.
The concept of this algorithm is to add a novel penalty term to the usual

cost function and minimize the sum by BP [7]. The parameter q is the scaling
coefficient of the trained weights. λ represents the relative importance of the
penalty term with respect to the error F

(
w,xj

)
.
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3 Boundedness of Weights

To analyze the boundedness of the trained weights, the following assumptions
are needed:

(A1) The function f satisfies that f and f ′ are uniformly bounded on R;

(A2) The learning rate η satisfies that 0 < η < q2

2λ .

By (8) and (9), it is easy to prove that Fwi

(
wm,xj

)
is uniformly bounded on

R. That is, there exists a positive constant β subject to

Fwi

(
wm,xj

)
≤ β. (12)

Lemma 1. [18] Given the general quartic equation

ax4 + 4bx3 + 6cx2 + 4dx+ e = 0 (13)

with real coefficients and a �= 0, the nature of its roots is mainly determined by
its discriminant

Δ = I3 − 27K2, (14)

where

H = b2 − ac, (15)

I = ae− 4bd+ 3c2, (16)

G = a2d− 3abc+ 2b3, (17)

K =
4H3 − a2HI −G2

a3
, (18)

Then, if Δ < 0, the equation has two real distinct roots and two complex con-
jugate roots. In addition, the roots of this equation under this condition are as
follows

x1,2 =
1

a

(
−b− sgn (G)

√
t±

√
|G|√
t
− t + 3H

)
, (19)

x3,4 =
1

a

(
−b+ sgn (G)

√
t± i

√
|G|√
t
+ t− 3H

)
(20)

where sgn(·) stands for a sign function,

sgn (G) =

{
1, (G > 0).
−1, (G < 0).

(21)

t =
a

2

⎛⎝ 3

√
−K +

√
−Δ
27

+
3

√
−K −

√
−Δ
27

⎞⎠+H. (22)
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Remark: To analyze the boundedness of weight sequence in the training proce-
dure, it is necessary to discuss the relationship among the parameters q, λ and β.
Based on the training process of weight elimination, we need to solve a quartic
equation in the following Lemma, where the parameters q, λ and β are its coeffi-
cients. This Lemma demonstrates the solutions under some specific conditions.

Lemma 2. Consider the function P (x) = x4 + 2q2x2 − 2λ
β q

2x + q4, (x > 0),

where λ, β, q are the learning parameters of weight elimination. If q < 3
√
3λ

8β ,
then the equation

P (x) = 0 (23)

has two real distinct roots, x1, x2, where x1 and x2 are the functions of parameter
q for fixed λ, β. In addition, x1 is strictly concave function with the maximum
λ
2β when q = λ

2β , while x2 is strictly convex function with respect to variable q.

Proof. By Lemma 1, we know that the coefficients of equation (23) corresponding

to (13) are a = 1, b = 0, c = q2

3 , d = −
λ
2β q

2, e = q4, separately. Then we have

H = −q
2

3
, (24)

I =
4q4

3
, (25)

G = −q
2

2

λ

β
, (26)

K =
8q6

27
− q

4

4

(
λ

β

)2

, (27)

Δ = I3 − 27K2 =
λ2q8

16β4
(
64q2β2 − 27λ2

)
. (28)

Since P ′′(x) = 12x2 + 4q2 > 0, then P (x) is a strict convex function. Applying
the discriminant rule of Lemma 1, there are two distinct roots when Δ < 0, that
is,

0 < q <
3
√
3

8

λ

β
. (29)

For brevity, we first consider the special case with respect to λ
β = 1. Then we

extend the discussion on the general cases of parameter λ
β . In addition, the two

real distinct roots based on the formula (19) and (22) are as follows

x1 =
√
t−

√
q2

2
√
t
− t− q2, (30)

x2 =
√
t+

√
q2

2
√
t
− t− q2, (31)
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where t = 1
2

(
3

√
−K +

√
−Δ
27

)
− q2

3 . We note that the real roots x1 and x2 of

Eq. (23) depend on the parameter q, that is, x1(q) and x2(q) are functions with
respect to variable q.

In fact, the parameters λ, β and q here are identical to those of the weight
elimination algorithm (10), (11) and (12). Generally, the parameters λ and β are
fixed in the training. It is then essential to study the parameter q in discussing
the boundedness of weight sequence for weight elimination. The relationships
between the real roots of Eq. (23) and parameter q are as follows.

Λ

Β
� 1 x1

x2

0.1 0.2 0.3 0.4 0.5 0.6
q

0.1

0.2

0.3

0.4

0.5

0.6

x1 , x2

Fig. 1. Two real distinct roots of Eq. (23) for different q when λ
β
= 1

It can be seen from Fig. 1 that the two real roots function curves of Eq. (23)
varying with the parameter q. For each q, there are two corresponding real roots,
the continuous curve represents the bigger real ones x2(q), while the dashed curve
is the smaller ones x1(q). That is, the vertical axis of Fig. 1 shows the changing
values of the real roots of Eq. (23). Furthermore, Fig. 1 shows that the smaller
roots x1(q) of Eq. (23) are strictly monotone increasing, while the bigger ones
x2(q) are first monotone increasing and then monotone decreasing after reaching
the maximum, 0.5. We note that here λ

2β = 1
2 , and q =

1
2 (we consider the case

λ
β = 1 here).

Similarly, we can analyze the Fig. 2 with roots of Eq. (23) with different ratio
of λ

β ,
λ
β = 2 (cf. Fig. 2 a)) and λ

β = 1
2 (cf. Fig. 2 b)), separately. Comparing

Fig. 1 and Fig. 2, an intuitive observation is that the variation tendency of the
real roots is to have the same properties with respect to a different λ

β . Another

important property is that the maximum of the bigger roots is equal to λ
2β , and

q = λ
2β .
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Fig. 2. Two real distinct roots of Eq. (23) for different q, a) λ
β
= 2 and b) λ

β
= 1

2

Fig. 3. The first and second derivatives of x2(q) when
λ
β
= 1

Fig. 4. The first and second derivatives of x1(q) when
λ
β
= 1

To verify this supposition, Fig. 3 and Fig. 4 show the first and second deriva-
tives of the functions x2(q) and x1(q) for parameter λ

β = 1. We note that the

vertical axes represent the corresponding function values d
dqx2(q),

d2

dq2x2(q) and
d
dqx1(q),

d2

dq2x1(q), separately. For Fig. 3, it is interesting to note that the first
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derivative of function x2(q) is strictly monotone decreasing, and the zero point
occurs when q = λ

2β = 1
2 . The values of function d

dqx2(q) are greater than zero

when 0 < q < λ
2β = 1

2 and less than zero when 1
2 = λ

2β < q <
3
√
3

8
λ
β . Apparently,

the whole curve of the second derivative d2

dq2x2(q) is under the q axis. And like-

wise, Fig. 4 shows that the first and second derivatives of x1(q) are all greater
than zero.

Actually, we can get the corresponding graphs of the first and second deriva-
tives of x2(q) and x1(q) with different parameters λ

β . Furthermore, the functional
features are very similar with above analysis.

Theorem 1 (Boundedness). Assume the conditions (A1) and (A2) are valid,
parameter q depends on the penalization coefficient λ and the constant β in (12).
If q = λ

2β , then starting from an arbitrary initial weight w0
i ∈ (−q, q) or the m-th

weight wm
i ∈ (−q, q), (m ∈ N+), the learning sequence {wm} generated by (10)

and (11) is uniformly bounded, that is there exists a constant α > 0 such that

‖wm‖ < α. (32)

Proof. Employing the weight updating formula (10) and (11), we have

wm+1
i =

⎛⎜⎝1− 2ληq2(
q2 + (wm

i )2
)2
⎞⎟⎠wm

i − ηFwi

(
wm,xj

)
, (33)

where m ∈ N, i = 1, 2, · · · , p(n+ 1), and j = 0, 1, · · · , J − 1.
By the assumption (A2), it is easy to know that

1− 2ληq2(
q2 + (wm

i )
2
)2 > 0, m ∈ N. (34)

To show the whole proof clearly, we divide it into two parts:

Case 1. x1

(
λ
2β

)
≤ |wm

i | ≤ x2
(

λ
2β

)
= λ

2β .

let

Ā =

(
q2 +A2

)2
2λq2

Fwi

(
wm,xj

)
, (35)

where A = |wm
i |.

By Lemma 2 and (12), we have

Ā ≤
(
q2 +A2

)2
2λq2

β ≤ A. (36)
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By (33) and (36), we obtain that

∣∣wm+1
i

∣∣ ≤ (1− 2ληq2

(q2 +A2)
2

)
A+ η

2λq2Ā

(q2 +A2)
2

≤ A+ η
2λq2

(q2 +A2)
2

(
Ā−A

)
≤ A.

(37)

Case 2. |wm
i | < x1

(
λ
2β

)
.

On the basis of the above analysis, the boundedness of weight sequence can be

Λ

2 Β

x2
Λ

2 Β

x1
Λ

2 Β

Λ

2 Β

x1
x2

q

x1 , x2

Fig. 5. Two real distinct roots of Eq. (23) for different q when λ
β
= 1.

guaranteed once (See Fig. 5)

∣∣wm+1
i − wm

i

∣∣ ≤ x2( λ
2β

)
− x1
(
λ

2β

)
. (38)

By Lemma 2, we get the smaller root when q = λ
2β

x1

(
λ

2β

)
=

√
2(−2 + u+ v)−

√
−8− 2(u+ v) + 12

√
6

−2+u+v

4
√
3

λ

β
, (39)

u =
(
19− 3

√
33
) 1

3 and v =
(
19 + 3

√
33
) 1

3 . It is easy to compute that x1

(
λ
2β

)
≈

0.1478λ
β <

3
16

λ
β .
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∣∣wm+1
i − wm

i

∣∣ ≤ η ∣∣Fwi

(
wm,xj

)∣∣+ η 2λ |wm
i |

q2

≤ λ

8β
+ |wm

i | ≤
λ

8β
+ x1

(
λ

2β

)
≤ x2

(
λ

2β

)
− x1
(
λ

2β

)
.

(40)

Then we have ∣∣wm+1
i

∣∣ ≤ |wm
i |+

∣∣wm+1
i − wm

i

∣∣
≤ λ

8β
+ 2|wm

i | ≤
λ

8β
+ 2x1

(
λ

2β

)
≤ λ

2β
.

(41)

Considering the Case 1, 2 and the dimensional finiteness of weight vectors,
there exists a positive α subject to

‖wm‖ ≤ α. m ∈ N. (42)

This completes the proof.

4 Conclusions

In this paper, we discuss the boundedness of weight sequence for the case of
weight elimination, which is an extension form of weight decay and subset selec-
tion. We show that the training parameters such as learning rate and penalty
coefficient play an essential role in determining the initial interval of weights,
which can control the magnitude of weights in a bounded region. We show the
novel relationships among these parameters. Theorem 1 gives the best suggestion
for choosing the weight scaling coefficient q, which depends on the ratio between
the penalty coefficient λ and β, that is, q = λ

2β . It shows that the initial weights
can be randomized in a maximum bounded interval. There are still some open
questions to investigate in the future: the convergence analysis of this algorithm,
the strict theoretical proof of weights boundedness and how to choose the scaling
parameter q for numerical experiments.
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Abstract. In the paper a method to use the equivalent linearization
technique of the nonlinear state equation with the coefficients generated
by the fuzzy rules for current operating point is proposed. On the basis of
the evolutionary strategy and properly defined identification procedure,
the fuzzy rules are automatically designed to maximize the accuracy of
the resulting linear model.

1 Introduction

Nonlinear fuzzy correction modelling is an important issue from scientific and
practical point of view (see e.g. [56]-[57]). Models of various physical phenomena
are often used in practice. It is because a model is very useful in development
of the control system to build a failure detection and to extract knowledge con-
cerning intrinsic behaviour of the modelled dynamic objects. In daily practice
the physical dynamic systems, which are nonlinear in a typical case, are treated
as linear systems. This method offers several advantages, for example the ability
to use well developed methods of the control theory, which refer to the linear
models. Let’s consider the nonlinear state equation:

dx

dt
= f(x,u) = Ax+Bu+ ηg(x,u), (1)

where g(x,u) is a separate nonlinear part of the system and η is the influence
factor of the nonlinearities of the whole system. If we assume that η is small
and the system is weakly nonlinear then the linear approximation about an
equilibrium point will be useful in some strictly defined range. However, it should
be noted that such a model is often unsuitable for many practical applications
because of too low accuracy. This is especially true if the actual operating point
goes beyond the defined boundaries.

In this paper we propose the solution to increase accuracy of the method
described above by the method based on equivalent linearization technique [1].
In such a case the state equation (1) can be shown as follows:

dx

dt
= f(x,u) = Aeqx+Bequ+ e(x,u), (2)

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 169–180, 2014.
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where Aeq = A+PA, Beq = B+PB and e(x,u) is an error term. The correction
matrices PA,PB are estimated for current operating point. When we analyse a
small area around current operating point and the error term is small (i.e. it can
be neglected) then the state equation (2) can be treated as linear. To solve the
problem of a loss of accuracy when operating point is changing, in the paper it is
proposed to calculate the new values of the correction matrices PA,PB for each
new point of work. Moreover, instead of the complicated analytical calculation it
is proposed to estimate the values of matrices PA,PB coefficients with the help
of evolutionary strategy in a properly planned identification process. To enable
the adjustment of the state equation (2) to the current operating point (x,u),
the coefficients of correction matrices are generated by the fuzzy rules for each
new point of work.

Summing up, the expected result of the proposed solution is to achieve high
accuracy of the models with a simple description (e.g. by using a small number
of fuzzy rules). This paper is a continuation of our earlier works [3,47], except
that this time we focused to receive fuzzy rules characterized by a high degree
of interpretability.

2 Intelligent System for Nonlinear Modelling

In the proposed method the coefficients of the correction matrix PA(k) are
generated by multi-input, multi-output neuro-fuzzy system. Neuro-fuzzy systems
(see e.g. [32], [39], [48]-[55], [58]-[62]) combine the learning properties of neural
networks and the natural language description of fuzzy systems (see e.g. [4]-[9],
[18]-[21], [37]-[38]).

Each of the systems has a collection of N fuzzy IF−THEN rules in the form:

Rr : IF x1 is Ar
1 AND . . .ANDxn is Ar

n THEN y1 is Br
1 AND . . .AND ym is Br

m,
(3)

where x = [x1, . . . , xn] ∈ X ⊂ Rn is a vector of input signals, y = [y1, · · · , ym] ∈
Y ⊂ Rm is a vector of output values.Ar

1, . . . , A
r
n, B

r
1 , . . . , B

r
m, r = 1, . . . , N

are fuzzy sets characterized by the membership functions μAr
i
(xi), μBr

j
(yj), i =

1, . . . , n; j = 1, . . . ,m; r = 1, . . . , N . Each fuzzy rule (3) determines fuzzy set
B

r

j ⊂ Rm whose membership function is given by following formula:

μBr
j
(yj) = μAr→Br

j
(x, yj) = T

{
n

T ∗
i=1

(
μAr

i
(xi)
)
, μBr

j
(yj)

}
, (4)

where T and T ∗ are t-norms operators (not necessarily the same) [48]. When
we used singletons as the membership functions for output fuzzy sets then the
above formula can be simplified as follows:

μBr
j
(yrj) = μAr→Br

j
(x, yrj) =

n

T ∗
i=1

(
μAr

i
(xi)
)
. (5)

Assuming that the defuzzification is realized using the dependency:
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yj =

N∑
r=1

yrj · μBr
j
(yr)

N∑
r=1

μBr
j
(yrj)

(6)

and substituting (5) to formula (6) we finally get:

y =

N∑
r=1

yrj · T ∗n
i=1

(
μAr

i
(xi)
)

N∑
r=1

T ∗n
i=1

(
μAr

i
(xi)
) . (7)

Using fuzzy systems (see e.g. [24], [27], [36], [44]-[45]) to modelling real sys-
tems we want to meet two objectives: (a) achieving a high degree of accuracy
and (b) achieving a high degree of interpretability. The accuracy can be defined
as a similarity of the responses of the real systems and fuzzy systems. It can
be measured with root mean square error (RMSE). In a case of interpretability
it is difficult to find unambiguous definition what it means. We assume that
interpretability is the ease of understanding the operations of the actual system
through analysis of its model. Practice shows that these two objectives are con-
tradictory and combination of their fulfilment is very difficult. For this reason, in
creation of the fuzzy model we seek to achieve a compromise between accuracy
and interpretability (see e.g. [17], [26], [42]-[43]). As shown in [26] interpretabil-
ity can be analysed at various levels. In this paper we assumed that obtained
fuzzy model should be as accurate and simple as possible. We also assumed that
membership functions should be easily distinguishable. In order to fulfilled the
last condition we assumed that in a point of intersection of two membership
functions their membership should not be greater than 0.6.

3 Evolutionary Construction of the Fuzzy System

In order to create the interpretable fuzzy model of the dynamic nonlinear pro-
cesses we use the evolutionary algorithm (see e.g. [22], [40], [41], [46]). In partic-
ular we use the evolutionary strategy (μ+λ) see e.g. [11], [13], [25]. The purpose
of this is to obtain the parameters of the fuzzy system described in the previous
section. In the process of evolution we assumed that:

– In a single chromosome X all parameters of the fuzzy system are encoded in
a following way:

X =

⎛⎝xA1,1, σA1,1, · · · , xA1,n, σA1,n, yB1,1, · · · , yB1,m,· · · ,
xAN,1, σ

A
N,1, · · · , xAN,n, σ

A
N,n, y

B
N,1, · · · , yBN,m

⎞⎠ , (8)

where xAr,i and σAr,i are parameters of the input fuzzy setsAr
i , r = 1, . . . , N ; i =

1, . . . , n, and yBr,j is parameter of the output singleton fuzzy sets Br
j , j =

1, . . . ,M .
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– The goal of evolutionary strategy is to minimize the following fitness func-
tion:

fitness(X) = fAcc(X) + w · fInter(X), (9)

where: fAcc(X) is a function of determining the difference between output
signals x̂1 and x̂2 generated by the model created in the step k + 1 and
corresponding reference x1, x2 values:

fAcc(X) =

√√√√ 1

2 ·K

K∑
k=1

(
(x1(k + 1)− x̂1(k + 1))2+
(x2(k + 1)− x̂2(k + 1))2

)
, (10)

where K is a number of the reference values; w - is a scaling factor of the
interpretability component of the fitness function (in out experiments set as
0.1) and fInter(X) is a function of determining the interpretability condi-
tion:

fInter(X) =
n∑

i=1

ni−1∑
j=1

{
I(Ai

j ,A
i
j+1)
−maxμ whenI(Ai

j ,A
i
j+1)

> maxμ

0 inothercases,
(11)

where I(Ai
j ,A

i
j+1)

is a membership degree of the fuzzy sets Ai
j , Ai

j+1 in inter-
section point of their membership functions and is defined as I(Ai

j ,A
i
j+1)

=

maxmin(μAi
j
(x), μAi

j+1
(x)), and maxμ is a maximal membership value at

intersection point.
– Genes in chromosomes X were initialized according with the method de-

scribed in [13].

Detailed description of the evolutionary strategy (μ+λ), used to train neuro-
fuzzy systems (see e.g. [12]-[16], [23], [33]-[35]), can be found in [11], [13].

4 Experimental Results

The usefulness of our method will be demonstrated with two modelling problems
(1) well-known harmonic oscillator and (2) nonlinear electric circuit with a DC
motor supplied by a solar generator [2], [29]. The harmonic oscillator can be
defined by the following formula:

d2x

dt2
+ 2ζ

dx

dt
+ ω2x = 0, (12)

where ζ, ω are oscillator parameters and x(t) is a reference value of the mod-
elled process as function of time. We used the following state variables x1(t) =
dx(t)/dt and x2(t) = x(t). In such a case the system matrix A and the matrix
of corrections coefficients PA is described as follows:



New Method for Nonlinear Fuzzy Correction Modelling of Dynamic Objects 173

A =

[
0 ω
−ω 0

]
PA =

[
0 p12(x)

p21(x) 0

]
.

In our experiments the parameter ω was modified in simulation according
with a formula:

ω(x) = 2π − π

(1 + |2 · x|6) (13)

 3

 4

 5

 6

-1 -0.5  0  0.5  1 x

ω

Fig. 1. The value of ω parameter as a function of x(t)

to make the object nonlinear. The changes of ω as a function of x is presented
in Fig. 1.
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Fig. 2. Membership functions obtained during evolutionary process for harmonic os-
cillator problem
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Fig. 3. Membership functions obtained during the evolutionary process for the nonlin-
ear electrical circuit problem

In the second experiment the nonlinear electrical circuit with solar generator
and DC drive system was modelled. In this case the following state variables were
used: x1(k) = − Is

C e
−au(k) − 1

C i(k) +
Is+I0

C , x2(k) = 1
L i(k)−

Rm

L u(k)−
Kx

L Ω(k),
x3(k) =

Kx

L u(k)−
Kr

J Ω(k), where: u(k) is the generator voltage, i(k) is the rotor
current, Ω(k) is DC motor rotational speed. The parameters of the circuit were
chosen as in [29] and had values: Rm = 12.045Ω, L = 0.1H , C = 500μF , Kx =
0.5V s, Kr = 0.1V s2, J = 10−3Ws3, I0 = 2A, Is = 1.28 · 10−5A, a = 0.54V −1.
In this experiment we also assumed that the system matrix A and correction
matrix PA have values:

A =

⎡⎣−2163.86 2000.00 0.00
10.00 −120.45 −5.00
0.00 500.00 −100.00

⎤⎦ PA =

⎡⎣p11(x) 0 0
0 0 0
0 0 0

⎤⎦ .
The values of the matrix A were determined with Taylor’s series expansion

linearization method [30] in point [22.15, 0, 0]. In out method we assume that
the system matrix A is known, so the goal of the modelling was recreate the
unknown coefficient of the correction matrix PA in such a way that the model
reproduces the reference data as accurately as possible. In order to do this we
used multi-input, multi-output fuzzy system. As an input of the system the
measurable output signals of modelled processes were used. The outputs of the
fuzzy system were used as values of correction matrix coefficients. The accuracy
of the model was determined by comparing values of their output signals with
referenced values. The error was computed according to the formula (10).

In both experimental problems the correction matrix PB was not considered
and its coefficients were equal to 0.0. For both modelling problems the neuro-
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Fig. 4. Comparison between the reference and estimated data for the harmonic oscil-
lator problem

fuzzy systems with Gaussian and singleton membership functions for antecedents
and descendant of rules were used. In order to determine membership function
parameters we used evolutionary strategy (μ, λ) which is characterized by the
following parameters: μ = 50, λ = 300, pc = 0.7 and the number of generations
= 2000. The results of the simulations are presented in Fig. 4 - 3 and can be
summarized as follows:

- Neuro-fuzzy systems obtained as the results of evolutionary process are char-
acterized - in both cases - by 3 rules, 2 inputs (x̂1(k) and x̂2(k) and two
outputs p12(k) and p21(k) in harmonic oscillator problem and two inputs
û(k) and î(k) and one output p11(k) in nonlinear electrical circuit problem.

- The rules in obtained systems for harmonic oscillator problem can be written
as follows

R1 : IF x1 is around(− 0.91) AND x2 is around(0.7)
THEN p12 = −0.014 AND p21 = 0.16

R2 : IF x1 is around(− 0.14) AND x2 is around(− 1)
THEN p12 = −3.06 AND p21 = 0.268

R3 : IF x1 is around(0.84) AND x2 is around(− 0.04)
THEN p12 = −0.0 AND p21 = 0.23

.
- The rules in obtained systems for nonlinear electrical problem can be written

as follows
R1 : IF u is around(20.29) AND i is around(0.89) THEN p11 = 1199.99
R2 : IF u is around(21.22) AND i is around(0.03) THEN p11 = −515.03
R3 : IF u is around(23.79) AND i is around(1.5) THEN p11 = −1973.18

.
- The corresponding fuzzy sets are shown respectively in Fig. 2 and 3.
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Fig. 5. Comparison between the reference and estimated data for the nonlinear elec-
trical circuit problem

- The accuracy of nonlinear modelling obtained in our simulations are depicted
in Fig. 4 and 5. The average root mean square error has a value 0.007655 and
0.007616 respectively for harmonic oscillator problem and nonlinear electrical
circuit problem. It should be noted that better accuracy could be obtained
when we use more complicated fuzzy system structure or we abandon the
interpretability issues.

5 Conclusions

In the paper the method to create the linear model of the nonlinear phenom-
ena was proposed. To provide of high accuracy of the model in a wide range of
operating points the correction coefficients are generated by fuzzy rules. More-
over, the evolutionary strategy and properly defined identification procedure is
used to automatically design the fuzzy rules. The presented experimental results
proved the validity of the proposed method.
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Abstract. We present here a new classifier called an intuitionistic fuzzy decision
tree. The performance of the new algorithm is illustrated by providing an analysis
of well known benchmark data. The results are compared to some other well
known classification algorithms.

1 Introduction

Decision trees, with their well known advantages, are very popular classifiers which
recursively partition a space of instances (observations). Following the source Quinlan
the ID3 algorithm [21], many other approaches have been developed along that line (cf.
[25]).

Classical (crisp) decision trees were extended to fuzzy decision trees which turned
out to be more stable, and effective method to extract knowledge in uncertain classi-
fication problems (Janikow [16], Olaru et al. [20], Yuan and Shaw [38], Marsala [18],
[19]).

The next natural step is to take advantages of the intuitionistic fuzzy sets introduced
by Atanassov [1], [2], [3] (A-IFSs for short) while building the trees.

In this paper we propose a new intuitionistic fuzzy decision tree classifier. The data
is expressed by means of intuitionistic fuzzy sets. Also the measures constructed for the
intuitionistic fuzzy sets are applied while making decisions how to split a node while
expanding the tree. The intuitionistic fuzzy tree proposed here is an extension of the
fuzzy ID3 algorithm [6].

The potential of the new algorithm is illustrated by providing an analysis of well
known benchmark data. The results are compared to other commonly used algorithms.

2 A Brief Introduction to A-IFSs

One of the possible generalizations of a fuzzy set inX (Zadeh [39]) given by

A
′
= {< x, μA′ (x) > |x ∈ X} (1)

where μA′ (x) ∈ [0, 1] is the membership function of the fuzzy set A
′
, is an A-IFS

(Atanassov [1], [2], [3]) A is given by

A = {< x, μA(x), νA(x) > |x ∈ X} (2)
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where: μA : X → [0, 1] and νA : X → [0, 1] such that

0<μA(x) + νA(x)<1 (3)

and μA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-
membership of x ∈ A, respectively. (An approach to the assigning memberships and
non-memberships for A-IFSs from data is proposed by Szmidt and Baldwin [26]).

Obviously, each fuzzy set may be represented by the following A-IFS:
A = {< x, μA′ (x), 1 − μA′ (x) > |x ∈ X}.

An additional concept for each A-IFS in X , that is not only an obvious result of (2)
and (3) but which is also relevant for applications, we will call (Atanasov [2])

πA(x) = 1− μA(x) − νA(x) (4)

a hesitation margin of x ∈ Awhich expresses a lack of knowledge of whether x belongs
to A or not (cf. Atanassov [2]). It is obvious that 0<πA(x)<1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [27], [28], [30], entropy (Szmidt and Kacprzyk [29], [31]), sim-
ilarity (Szmidt and Kacprzyk [32]) for the A-IFSs, etc. i.e., the measures that play a
crucial role in virtually all information processing tasks.

Hesitation margins turn out to be relevant for applications - in image processing (cf.
Bustince et al. [14], [13]) and classification of imbalanced and overlapping classes (cf.
Szmidt and Kukier [33], [34], [35]), group decision making, negotiations, voting and
other situations (cf. Szmidt and Kacprzyk papers).

3 Intuitionistic Fuzzy Decision Tree - New Algorithm Description

The intuitionistic fuzzy decision tree proposed here has its roots in the soft decision
tree introduced by Baldwin et al. [6] which follow the source ID3 tree introduced by
Quinlan [21].

We consider numeric attributes but the methods presented here can be also easily
applied to the nominal attributes (the algorithm is even simpler then). We use here intu-
itionistic fuzzy sets for data representation. More, the new idea of deriving intuitionistic
fuzzy sets in each node was applied as potentially giving the most accurate results.

Splitting the nodes is the most important step in generating a decision tree. The
step demands to point out the best attributes for splitting. Proper picking up the at-
tributes influences accuracy of a decision tree, and its interpretation properties. In the
tree presented here intuitionistic fuzzy entropy was used (Szmidt and Kacprzyk[29]) as
a counterpart of “information gain” [21].

In the next sections the most important components of the algorithm are described.

3.1 Fuzzy Partitions of the Attribute Values (granulation)

The idea of a universe partition (granulation), i.e., replacing a continuous domain with
a discrete one has been extended to fuzzy sets by Ruspini [23]. The idea was used here
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Fig. 1. Illustration of symmetric fuzzy partitioning, and asymmetric fuzzy partitioning (on at-
tribute 2 “Plasma glucose concentration” of benchmark “Pima Diabetes” with 5 fuzzy sets)

to partition a universe of each attribute by introducing a set of triangular fuzzy sets such
that for any attribute value the sum of memberships of the partitioning fuzzy sets is 1.

More formally, the membership χj,k(oij) of the i-th observation (instance) oij in
respect to the j-th attribute to the triangular fuzzy sets k and k+1 (where k = 1, . . . , p)
is:

χj,k(oij) + χj,k+1(oij) = 1, k = 1, . . . , p− 1, (5)

and for the j-th attribute Aj we have oij ∈ Aj , i = 1, . . . , n, j = 1, . . . ,m.
In other words, the sum of the membership values for an observation oij is one (the sum
results from only two neighboring fuzzy sets).

Remark. Here, for the purpose of granulation we use symbol χ for the membership
values so to make a difference between membership values resulting from the attribute
granulation (χ) and the membership values of the intuitionistic fuzzy sets μ.

We use here symmetric, evenly spaced triangular fuzzy sets (symmetric fuzzy parti-
tions), and asymmetric, unevenly spaced triangular fuzzy sets (asymmetric fuzzy parti-
tions such that each partition contains equal number of data points) [4,23]. In Fig. 1 an
example is shown of symmetric fuzzy partitioning (symmetric granulation), and asym-
metric fuzzy partitioning (asymmetric granulation). The two kinds of partitioning are
illustrated on attribute 2 of the “PIMA Diabetes” problem with 5 fuzzy sets. Fuzzy par-
titioning (triangular fuzzy sets) is a starting point to assign nodes in a soft ID3 decision
tree - cf. Fig. 2.

3.2 Fuzzy ID3 Algorithm

In this section we present a fuzzy generalization of ID3 algorithm [6].
Consider the following database

T = {oi =< oi,1, . . . , oi,m > | i = 1, . . . , n}, (6)

where oi,j is a value of the j-th attribute Aj , j = 1, . . . ,m, for the i-th instance. We
assume that oi,j are crisp.
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Fig. 2. Fuzzy partitioning as a starting point to constructing nodes in a soft ID3 tree

At the beginning of generating a fuzzy ID3 decision tree from data, its root contains
all the instances (top down approach). Each node is split by partitioning its instances.
A node becomes a leaf if all the attributes are used in the path considered or if all its
instances are from a unique class.

Splitting the nodes in a decision tree can be represented by the rules. Assume that
Pj is a partition set of the attribute space Ωj (j = 1, . . . ,m), and that partition of each
attribute is via triangular fuzzy sets. Let Pχj,k

∈ Pj be the k-th partitioning fuzzy set
expressed by a triangle membership function χj,k being a component of the partition
of the j-th attribute. The following rule expresses conjunction of the fuzzy conditions
along the path from the root to a tree node

B ≡ Pχj1
∧ · · · ∧ PχjN

(7)

where Pχjr
are triangular fuzzy sets, and its set of indexes represented by the subse-

quence (jr) is in a considered rule a result of pointing up a pair: (1) a unique attribute
numbers j, and (2) one from the k triangle fuzzy sets for each attribute partitioning.
Formula (7) expresses a conjunction of the conditions which are to be fulfilled for an in-
stance oi so that it were present in a considered node. Database T = {oi, i = 1, . . . , n}
generates a support for B (7) given as:

w(B) =

n∑
i=1

∏
jr

Prob(Pχjr
|oi) (8)

where Prob(Pχjr
|oi) is a probability defined on the fuzzy set Pχjr

provided the obser-
vation oi. It is easily calculated using the membership function χjr(oi).

Let {Cl, l = 1, . . . , h} denotes a set of decision classes. Formula (8) is also used for
generating support for a given decision class, e.g., Cx in a given node, namely

Prob(Cx|B) =
w(Cx ∧B)∑h
l=1 w(Cl ∧B)

=
w(Cx ∧B)
w(B)

. (9)

Splitting a node (starting from a root) is related to the attributes’ abilities evaluation
to generate a next level with the child nodes. A potential possibility of an attribute A
for producing child nodes As, s = 1, . . . p is tested by calculating its classical entropy:
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I(As) = −
h∑

l=1

Prob(Cl|As) log(Prob(Cl|As)), s = 1, . . . p., (10)

The common entropy for an attribute A is the following weighted mean value:

I(A) =

∑p
s=1 w(As) · I(As)∑p

s=1 w(As)
(11)

In (10) and (11) it has been assumed that As represents a rule from the root to the s-th
child node.

Using the presented above formulas makes it possible to generate the nodes in a
fuzzy ID3 tree [6].

3.3 Deriving Intuitionistic Fuzzy Sets from Data

We will present now a modification of the soft ID3 approach (Section 3.2) by using
intuitionistic fuzzy sets.

Let assume that an attribute A, splitting a node into the child nodes As, s = 1, . . . p,
is tested. For simplicity we assume that only two decision classes C+ and C− are
considered. Support for these classes in each node is

for class C+ : w(C+ ∧ A1), w(C
+ ∧ A2), · · · , w(C+ ∧ Ap)

for class C− : w(C− ∧A1), w(C
− ∧ A2), · · · , w(C− ∧Ap).

(12)

Independently for each class their frequencies for the verified splitting are calculated
(proportions between support of a class in the child nodes and its cardinality in the
parent node)

p(C+|As) :
w(C+∧A1)
w(C+∧A) ,

w(C+∧A2)
w(C+∧A) , · · · ,

w(C+∧Ap)
w(C+∧A)

p(C−|As) :
w(C−∧A1)
w(C−∧A) ,

w(C−∧A2)
w(C−∧A) , · · · ,

w(C−∧Ap)
w(C−∧A) .

(13)

Having the relative frequencies p(C+|Ai) and p(C−|Ai) (13), we use the algorithm
given in [5,6] to construct independently fuzzy sets representing the classes C+, and
C−. The fuzzy sets obtained for C+, and C− are abbreviated Pos+ and Pos−, respec-
tively. In the fuzzy ID3 tree [6] the fuzzy sets Pos+(As) and Pos−(As), s = 1, . . . , p
are tested by a classical entropy (10) - (11) to assess the attributes.

In the algorithm proposed here we use the fuzzy model (expressed by Pos+ and
Pos−) to construct intuitionistic fuzzy model (details are presented in Szmidt and Bald-
win [26]). Intuitionistic fuzzy model of the data in the child nodesAs, s = 1, . . . p (due
to the algorithm in [26]) is expressed by the following intuitionistic fuzzy terms

π(As) = Pos
+(As) + Pos

−(As)− 1
μ(As) = Pos

+(As)− π(As)
ν(As) = Pos

−(As)− π(As).
(14)

This way each child node s is described by the following intuitionistic fuzzy set

< As, μ(As), ν(As), π(As) >, s = 1, . . . , p (15)
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where μ describes support for the class C+; ν describes support for the class C−; π
expresses lack of knowledge concerning μ and ν.

An instance oi characteristic at node As can be expressed as well in terms of intu-
itionistic fuzzy sets

χAs(oi)· < μ(As), ν(As), π(As) >, i = 1, . . . , n,

where χAs is a membership function at nodeAs expressed by the product in (8). Having
in mind the property (5) we can obtain full information value of an instance oi while
partitioningA and obtaining in result the child nodes {As, s = 1, . . . , p} :

χAs(oi)· < μ(As), ν(As), π(As) > +χAs+1(oi)· < μ(As+1), ν(As+1), π(As+1) > .
(16)

Both (15) and (16) may be used (alternatively) in the algorithm proposed for assessing
and choosing the attributes while splitting the nodes in the intuitionistic fuzzy decision
tree.

3.4 Selection of an Attribute to Split a Node

In the process of expanding a tree – a crisp, fuzzy or intuitionistic fuzzy tree, the crucial
step is splitting a node into children nodes. To split a node an attribute is selected on the
basis of its “information gain”. Different measures may be used to assess “information
gain”. We use here an intuitionistic fuzzy measure – intuitionistic fuzzy entropy [29].

Intuitionistic fuzzy entropy E(x) of an intuitionistic fuzzy element x ∈ A is given
as [29]:

E(x) =
min{lIFS(x,M), lIFS(x,N)}
max{lIFS(x,M), lIFS(x,N)} , (17)

whereM,N are the intuitionistic fuzzy elements (< μ, ν, π >) fully belonging (M ) or
fully not belonging (N ) to a set considered

M =< 1, 0, 0 >
N =< 0, 1, 0 >,

lIFS(·, ·) is the normalized Hamming distance [28,30]:

lIFS(x,M) = 1
2 (|μx − 1|+ |νx − 0|+ |πx − 0|)

lIFS(x,N) = 1
2 (|μx − 0|+ |νx − 1|+ |πx − 0|).

It is also possible to use other intuitionistic fuzzy measures to evaluate the attributes
(cf. [36], [37]) but due to the space limitation here we discuss entropy only.

Intuitionistic fuzzy entropy of an intuitionistic fuzzy set with n elements: X =
{x1, . . . , xn} is [29]:

E(X) =
1

n

n∑
i=1

E(xi). (18)
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To compute intuitionistic fuzzy entropyE(As) (17) in a child nodeAs, s = 1, . . . , p,
we make use of the intuitionistic fuzzy representations (12)–(15) of the possible child
nodes derived while testing attribute A.

Total intuitionistic fuzzy entropy of an attribute A is abbreviated E(WA) whereas
entropy of a child node – E(As). Total intuitionistic fuzzy entropy of A is a sum of the
weighted intuitionistic fuzzy entropy measures of all the child nodes As, s = 1, . . . , p,
with the weights reflecting supports (cardinalities) of the nodes:

E(WA) =

∑p
s=1 w(As)E(As)∑p

s=1 w(As)
. (19)

Instead of using (19) we may calculateE(WA) by applying a weighted intuitionistic
fuzzy representation of each instance oi (16) while partitioning an attribute A. Next,
using (18), a total intuitionistic fuzzy entropy is calculated for a chosen attribute. This
method was applied in the numerical experiments (cf. Section 4).

An attribute for which total intuitionistic fuzzy entropy is minimal is selected for
splitting a node.

A flowchart representing a process of generating intuitionistic fuzzy decision tree is
in Fig. 3.

3.5 Classification of the Instances

A leaf in a soft tree is described by a proportion of the classes considered. A single
instance usually belongs to several leaves. In result we need aggregated information
about total degree of membership of a single observation to each class.

To classify the instances we use here measure SUM which is a sum of the products
of the instance membership values at leafs and support for a class considered in these
leafs [6]. Total support of the observation oi, i = 1, . . . , n, for a class C is:

supp(C|oi)SUM =

L∑
j=1

supp(C|Tj) · χ(Tj |oi), (20)

where {Tj : j = 1, . . . , L} is a set of the leafs; L is the number of the leafs; supp(C|Tj)
is a support of the classes considered in the j-th leaf; χ(Tj |oi) is a membership value of
the observation oi (it is a result of the partitioning of the universe attributes), different
for each leaf, fulfilling:

∑L
j=1 χ(Tj |oi) = 1.

4 Results of the Numerical Experiments

We have verified classification abilities of the new intuitionistic fuzzy decision tree with
other well known algorithms.

The following measures were used to compare the behavior of the classifiers com-
pared:
– total proper identification of the instances belonging to the classes considered,
– the area under ROC curve [15].

Behavior of the intuitionistic fuzzy decision tree proposed here was compared espe-
cially with other decision trees, namely:
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Fig. 3. A flowchart representing a process of generating intuitionistic fuzzy tree
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Table 1. “Sonar” benchmark data – comparison of the intuitionistic fuzzy decision tree and other
classifiers

Classification accuracy (x̄± σ) [%]
Algorithm for both classes AUC ROC

intuitionistic fuzzy tree (asym) 80.80 ± 7.76 (∗) 89.81 ± 5.66 (∗)
RandomForest 80.41 ± 8.80 89.53 ± 7.58

MultilayerPerceptron 81.61 ± 8.66 88.48 ± 7.31
pruned intuitionistic fuzzy tree (asym) 78.63 ± 7.89 86.92 ± 6.29 (−)

LMT 76.27 ± 9.62 (−) 84.15 ± 8.55 (−)
NBTree 77.07 ± 9.65 (−) 83.10 ± 9.89 (−)

SDT (refitting) 73.28 ± b.d. (b.d.) b.d.
SDT (backfitting) 72.56 ± b.d. (b.d.) b.d.

Logistic 72.47 ± 8.90 (−−) 80.02 ± 8.78 (−−)
J48 (unpruned C4.5) 73.42 ± 9.36 (−) 79.37 ± 10.83 (−−)
J48 (pruned C4.5) 73.61 ± 9.34 (−) 79.31 ± 10.80 (−−)

– J48 – implementation of the crisp tree proposed by Quinlan C4.5 ([22]),
– LMT (Logistic Model Tree) – a hybrid tree building the logistic models at the leaves

([17]),
– NBTree – hybrid decision tree building the Bayes classifiers at the leaves,
– RandomForest – here consisting of 10 decision trees which nodes are generated on

the basis of a random set of attributes ([10]).

Besides the trees, also neural networks (MultilayerPerceptron), and logistic regression
(Logistic) were used for the evaluation. The evaluation of the above algorithms was
performed using WEKA (http://www.cs.waikato.ac.nz/ml/weka/). Next, the results ob-
tained by Olaru and Wehenkel [20] using Soft Decision Trees (SDT) are compared.

We present here the results obtained by intuitionistic fuzzy decision tree for “Sonar”
benchmark data (http://archive.ics.uci.edu/ml/datasets.html). The dataset contains 208
instances, 60 numerical attributes, 2 classes (111 – metal cylinder, and 97 instances –
rocks). We use simple cross validation method with 10 experiments of 10-fold cross
validation (giving 100 trees). For each experiment an average value of the accuracy
measures, and of their standard deviations were calculated. So to compare an average
accuracy of the new intuitionistic fuzzy decision tree with other classifiers, t-Student test
was used (Table 1). One minus in Table 1 means that the (worse) result was obtained
by a classifier while using classical t-Student test, two minuses mean using corrected
t-Student test (for cross validation).

Results obtained (Table 1 – accuracy, and Fig. 4 – ROC curves) show that the in-
tuitionistic fuzzy decision tree is the best concerning the area under ROC curve, and
the second one in respect of accuracy (a little worse than Multilayer Perceptron). In
other words, the new intuitionistic fuzzy decision tree turned out a better classifier for
“Sonar” benchmark data than other crisp and soft decision trees, even slightly better
than Random Forest, and almost as effective as Multilayer Perceptron.

Surprisingly enough, just for the “Sonar” benchmark data, the proposed classifier
turned out to be worse than the simplest k-nearest neighbor classifier. Due to space
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fuzzy decision tree and other classifiers (TP – True Positive, FP – False Positive rates [15])

Table 2. Comparison of the accuracy of k-NN classifier, trees.J48 and the intuitionistic fuzzy
decision tree for chosen benchmark data

Classification accuracy (x̄± σ) [%]
Data set k-NN for k=1 k-NN for k=3 trees.J48 (pruned) IFS tree

PIMA 70.62 ± 4.67 73.86 ± 4.55 74.49 ± 5.27 75.72 ± 4.37
Sonar 86.17± 8.45 83.76± 8.51 73.61 ± 9.34 80.80 ± 7.76

Ionosphere 87.10 ± 5.12 86.02 ± 4.31 89.74 ± 4.38 90.36 ± 4.50
Wine 95.12 ± 4.34 95.85 ± 4.19 93.20 ± 5.90 97.88 ± 3.53
Glass 70.30 ± 8.96 69.84 ± 8.61 67.61 ± 9.26 75.16 ± 6.21
Iris 95.40 ± 4.80 95.20 ± 5.11 94.73 ± 5.30 96.20 ± 4.37

limitation we do not present a detailed comparison of the proposed classifier for other
data sets (as for the “Sonar” data – Table 1), but results of the experiments with the k-
nearest neighbor classifier (Table 2) are added for several other benchmark data sets,
namely: “PIMA”, “Ionosphere”, “Wine”, “Glass”, “Iris” (http://archive.ics.uci.edu/ml/
datasets.html). It is easy to notice that the proposed classifier produces more accurate
results than the k-nearest neighbor classifier (the “Sonar” benchmark data is an excep-
tion). In other words, the proposed classifier may be not the best solution for all possible
data sets, but no other classifier can be, for obvious reasons! However, for the data sets
presented in Table 2 it turned out to be usually better, and certainly not worse than the
classifiers presented in Table 1. In addition, as a tree type classifier, it can be a properer,
if not the best choice, in many applications when comprehensibility and transparency to
the human being is relevant.
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5 Conclusions

We have proposed a new intuitionistic fuzzy decision tree which is an extension of
the fuzzy ID3 decision tree algorithm. The tree proposed was tested on a well known
benchmark examples. The results are very encouraging.
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Abstract. The article analyses a auto-tuning method for a fuzzy PID
controller based on the relay experiment. The algorithm was imple-
mented and tested on a real plant for redox agent stabilisation in a
paper mill. Experiments have discovered some unsolved, practical prob-
lems which were discussed in the paper i.e. determination of the ON-OFF
parameters, the non-shocked switching from the ON-OFF tuning algo-
rithm into a continues fuzzy PID algorithm.
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1 Introduction

One of the major problem in control systems is the tuning process of the specific
control algorithm. Tuning should optimise the performance of a control algorithm
for a given process. Plants incorrectly tuned become unstable, what is potentially
dangerous. A common reason for instability is exceeding the very narrow range
of acceptable values of adjustable parameters of control algorithms. It is diffi-
cult to perform tuning manually or semiautomatically (by an operator) mainly
according to non linearity of the controlled plant. From the plant’s operator
point of view the most convenient way of tuning is an ”one push button” solu-
tion. Fully automatic tuning methods are proposed in control literature for some
time now [6]. PLC and PAC controllers’ producers such as GE, Siemens, Ber-
necker&Reiner and others allow creating control systems with automatic tuning
(usually by using a functional block). The problem is that in most cases tuning
algorithms are so-called ”mixtures” base on one of the method given below and
heuristic algorithms, which usually aren’t given at all. There are two kinds of
experiments in the auto-tuning techniques [6]:

1. open-loop methods:

– Ziegler-Nichols’ Process Reaction Curve method (or the Ziegler-Nichols’
Open-Loop method) Ziegler and Nichols (1942)

– Hagglund and Åström’s Robust tuning method Hägglund and Åström
(2002)
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– Skogestad’s Model-based method (or: the SIMC method ( Simple Inter-
nal Model Control) Skogestad (2003, 2004)

2. closed-loop methods:
– Ziegler-Nichols’ Ultimate Gain method (or the Ziegler-Nichols’ Closed-

Loop method) Ziegler and Nichols (1942)
– Relay method (using a relay function to obtain the sustained oscillations

as in the Ziegler-Nichols’ method), Åström and Hägglund (1995)
– Tyreus-Luyben’s method (which is based on the Ziegler-Nichols’ method,

but with more conservative tuning), Luyben and Luyben (1997)
– Setpoint Overshoot method, Shamsuzzoha et al. (2010)
– Good Gain method; Haugen (2010)

Unfortunately applying them into a real time control system isn’t an easy task
because of several facts : a sophisticated methodology of the tuning preparation
- an process engineer has to establish many numerical factors, what demands a
detailed knowledge about a controlled process; there isn’t an universal method
for every plant i.e. every type of plant’s dynamic; usually a tuning process is a
long term experiment; some of those method aren’t suitable to apply them in a
real time control mainly because the fact, that calculation need more time than
one program cycle; some of those methods are to sensitive in case of disturbances
influence. As a result of those remarks we try to develop and implement a method
which is able to overcome those disadvantages. Most of these solutions are suit-
able for classic PID algorithms but not fuzzy PID algorithms, which have become
popular in practical applications. The fuzzy PID controller develops a nonlin-
ear control surface which is more suitable for nonlinear plants. Some problems
might occur in applications of fuzzy PID algorithms in industrial implementation
[7]. The tuning process is more complex due to qualitative synthesis i.e. the rule
construction, deciding on inference and defuzzification methods and quantitative
synthesis i.e. input and output scaling factors setting and membership functions
selection for both fuzzification and defuzzification. In the article a methodology
of fuzzy PID controller automatic tuning for scaling factors (equivalent to classic
PID algorithm parameters) is proposed.

The main idea is based on the relay experiment [2] that is an ON-OFF control
algorithm. The conversion from the Åström algorithm to a fuzzy PID algorithm
was proposed in [5]. The article analyses practical aspects of fuzzy PID algorithm
tuning using a PAC controller. Experiments on a real control plant for redox
agent stabilisation show that relay tuning for fuzzy PID algorithms needs to be
modified. Some ideas of relay tuning methodology are proposed.

2 State of the Art

The fundamental specifications of the tuning algorithm set by the authors are
minimum computation time and the ability to work on-line during normal opera-
tions of the system. Using the original idea presented in [5] had to be preceded by
overcoming a variety of implementing problems arising from practical phenom-
ena existing in real time control systems like dynamic and static nonlinearities,



An Industrial Fuzzy PID Autotuner 195

measuring noise and nonstationarity etc. Dynamic nonlinearities of real con-
trol plants result in changing the given SP value while the operational point is
transformed and can negatively influence control quality. Changing the SP value
actually brings the system out of equilibrium into the intermediate state. This
situation is critical to a real installation as it can destabilize the control system.
That is why when the operating point changes the control algorithm needs to be
tuned. Signal noise creates computing difficulties in creating the signal deriva-
tive or determining its minimum or maximum etc. Nonstationarity of the system
and automation devices (actuators) along with dynamic nonlinearities result in
operating condition changes, while these alterations arise from changing physical
properties of the system and actuators (i.e. aging process).

The relay method being safe and easy is often used when tuning PID algo-
rithms of the ISA and IND structure. This is especially important in industrial
practice where downtime and retooling time has to be minimized and stable
functioning is essential. More arguments for the relay method are connected
with technology parameters in process control systems:

1. a process in safe plant’s shutdown mode is controlled using the ON-OFF
method i.e. stabilizing the redox agent in paper mills, reactor temperature
etc. in this time the control signal amplitudes do not need to perfectly obey
technological requirements. It is usually sufficient to remain within a pre-
defined variability range. This perfectly matches initial tuning conditions of
the control algorithm for the tuning happens when the system is in shutdown
mode.

2. the tuning process needs to work online because in most cases production
capabilities and performance has to be kept up

3. the algorithm shall not require complicated preparatory activities like initial
manual parameter setup etc.

For many industrial installations a ON-OFF algorithm being the fundament
of the relay method, can be used only to tune settings of the proper PID con-
troller and be turned on when production performance could be low i.e when a
production is suspended but installation should be controlled. The information
gathered while operating in this mode can be used to gain settings for the PID
controller.

3 How the Autotuner Works

A novel digital controller uses auto-tuning algorithms for immediate controller
factors adjustment as a response to a dynamically changing process. The auto-
tuning procedure can be run automatically each time the amplitude of the given
value is changed. A proposed auto-tuning procedure based on the relay experi-
ment works as follows:
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Fig. 1. The tuning procedure of the fuzzy PID algorithm

The procedure runs as a state machine with the following states (Fig. 1):

Start — waiting for an action
ON-OFF algorithm — tuning ON-OFF algorithm, relay experiment conduc-

tion and factors calculation for a continuous algorithm.
Fuzzy PID algorithm — run the continuous algorithm (fuzzy PID algorithm

in this case)

and following transitions:

1 — launch the relay experiment – operator function
2 — launch the continuous algorithm – non-shock transition from the ON-OFF

algorithm to the continuous algorithm
3 — stop the continuous algorithm – a safe plant shutdown
4 — relaunch the relay experiment with changed operating point.

The tuning algorithm analyzes the control value (Fig. 2) that is obtained in
the closed-loop control system employing a ON-OFF algorithm (Fig. 3). The key
points are the amplitude of the oscillation (A) and the oscillation period (Tosc) of
the control signal. Based on them settings for the PID and PID-like algorithms
(e.g. a fuzzy PID algorithm) are calculated by using formulas presented in [6].
The main idea is to bring the control system to the quasi-critical state, as in the
Ziegler-Nichols method, but not to the limit of stability, which in general is not
safe.

The ON-OFF algorithm executes a periodic generation of a control value
u(t) composed of two values: CVmax and CVmin to the controlled plant caus-
ing the controlled value y(t) to oscillate within given limits: form minError to
maxError. Switching the u(t) signal to a CVmax is performed when the con-
trolled error e(t) is lower than maxError and the process is continued until the
e(t) amplitude will be equal tominError. Then the u(t) signal is switched to the
CVmin amplitude and is unchanged until the error e(t) is equal to maxError.
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Fig. 2. Control value (CV) and process value (PV) signals in the control system with
ON-OFF algorithm

Fig. 3. An idea of the autotuner in the control system with PID and PID-like algo-
rithms [3]

The cycle of switching is repeated as shown in Fig. 2. The switching frequency
and oscillation amplitude are dependent on the inner dynamic of the process
and the u(t) amplitudes in ON and OFF states.

The main problem with a practical implementation of the ON-OFF algorithm
(static characteristic of the algorithm: 4) is to specify the control value (CV )
amplitudes for ON (CVmax) and OFF ( CVmin) states guaranteeing safe opera-
tion of the controlled plant. Safety is ensured when the controlled signal (PV )
does not exceed the range between minError and maxError. Error values are
technological plant limitations and are given by a technologist. In the litera-
ture the only given method for setting CVmax and CVmin amplitudes is setting
them arbitrarily. If those values are incorrect in real implementations then the
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Fig. 4. A static characteristic of the ON-OFF control algorithm

upper range value i.e. minError never is reached or is exceeded. Moreover the
controlled value PV should spread symmetrically around the SP . The selection
of CVmax and CVmin amplitudes for a plant with given requirements is a non
trivial task. Unlike a system described in [5] real systems are highly dynamically
nonlinear (sensitive to switching the operating point that correspond to CVmax

and CVmin amplitudes).
In case of the ON-OFF algorithm implemented on the plant with unknown

dynamics a good solution is setting an CVmax amplitude to a small value e.g.
equal to an amplitude of a given value. Then the CVmax amplitude is increased
until the controlled signal reaches a steady state (CVmin state). A derivative of
the controlled value is applied for steady state detection. The derivative expresses
a tangent of the signal angle and when it is close to 0 the system begins to reach
a steady state. Experiments show that the application of a static gain to a given
steady-state for a default CVmax amplitude is advantageous. The static gain
value allows CVmax and CVmin amplitudes estimation resulting in the controlled
value spreading symmetrically around the given value. This estimation assumes
system linearity (Fig. 5).

When the ON-OFF algorithm is correctly tuned the next problem is to pre-
cisely specify the oscillation amplitude (Aosc) and the oscillation period (Tosc)
(Fig 2) for the controlled value that is generally mixed with a measurement
noise. The measurement noise might be a source of fault tuning in the presented
method and this aspect was omitted in [5]. Signal filtering (e.g. Kalman filter-
ing) used before the scaling factors of the continuous algorithm are set, can be
a solution to the problem.

A gain Ku and a period of time Tu can be calculated from Aosc and Tosc [5],
which are used to compute factors for the continuous algorithm:

Ku =
4Acv

πAosc
,

Tu =
2π

ωosc
,
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Fig. 5. Estimation of amplitudes CVmax and CVmin based on a static gain

where Aosc — oscillation amplitude, Acv — relay element hysteresis, ωosc —
oscillation frequency.

Formulas for the fuzzy PID scaling factors calculus [3] are presented in Table 1.

Table 1. Formulas for the fuzzy PID scaling factors calculus [3]

Base GE GCE GU GCU

Ku, Tu 1 1
4
Tu 0.3gKu 1.2g ku

Tu

The non-shocked switching to the continuous algorithm should be performed
after the scaling factors calculation. The control system with an ON-OFF algo-
rithm is in transition mode that makes the switching complicated. It is easy to
lead the system to a steady state when experiments start in initial conditions
i.e. all variables are equal to zero. Avoiding overshooting during switching is
a technological problem. Non shocked switching in the tuning algorithms is an
interesting area for further research.

4 FuzzyPID Algorithm Synthesis

The first idea for a fuzzyPID algorithm was a three input system. The conse-
quence was a three-dimensional rule base that is non intuitive and difficult to
define for a human expert. Li and Gatland (1996) proposed a solution that is
a combination of fuzzy PI and fuzzy PD. There are two separate parts for PI
and PD with a two inputs rule base each. One more advantage is that both rule
bases share the same inputs.
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The fuzzyPID algorithm project was created in Matlab-Simulink and tested
in the model in the loop mode. Than it was extended by the embedded functions
from B&R library to allow the fast prototyping procedure on the PAC controller
from B&R [4] (Fig. 6). A detailed description of this idea is given in [7].

Fig. 6. Model of the fuzzy PID algorithm with embedded functions

A fuzzification was performed on inputs using triangular membership func-
tions (Fig. 7 (a)). Before fuzzification input signals were scaled to the range
[−1, 1] using blocks GE and GCE. A center of gravity deffuzification method is
performed using triangular membership functions (Fig. 7 (b)).

(a) (b)

Fig. 7. (a) Membership functions in the fuzzy PID algorithm, (b) a defuzzification
function in the fuzzy PID algorithm

Rules are presented in the Table 2 where e — error, ce — error derivative.

5 Experiments on Auto-tuned FuzzyPID

5.1 Control Plant Description

The presented tuning algorithm was verified in the redox agent stabilizing system
i.e. dispensing of hypochlorite to the the circulating water tank intended for
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Table 2. Rules in fuzzy PID algorithm: inputs: e — error, ce — error derivative,
output: U

e/ce NEG OZ POS

NEG NEG NEG OZ

OZ NEG OZ POS

POS OZ POS POS

paper machines. The redox factor is the degree of circulating water oxidation.
Large quantities of water are consumed in wood and wood-free paper production.
Water is transported using pumps and the piping goes through a paper machine.
Kilometers of pipes, closed water circuits, high temperature and cellulose pulp
creates ideal conditions for either bacteria or fungal rapid growth. Some of these
organisms are neutral and do not affect the quality of the final product, however,
some of these can impair the quality of production, and even cause failures,
gaps and breaks in production. To limit the growth of bacteria it is necessary
to use strong oxidizing agents i.e. toxic biocides. Neutralization is particularly
important in closed water circuits.

Hypochlorites are very strong oxidizing agents. They react with many organic
and inorganic compounds. The reaction removes clots and microbial organisms.
The redox agent stabilizer consists of the following components (Fig. 8), accord-
ing to [1]:

1. redox sensor (QE),
2. redox converter (QT)
3. automatic control unit (FC),
4. controlled device (pump).

Fig. 8. A simplified diagram of the redox stabilization system with P&ID symbols
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5.2 Experimental Results

The maim experiment first tunes the fuzzy PID algorithm based on the method-
ology given in the article for a given set value SP and then tests the controlled
system with another set value SP. This approach should confirm the resistance
of the controlled system to changing dynamic plant properties via an operating
point switch. Fig. 9 shows that the tuning process lasts for about 10 minutes.
The reason is the large inertia of the process. It is worth noticing that at the
moment of switching form ON-OFF control to a continues fuzzy PID control
the Redox PV controlled signal amplitude drops significantly. The problem of
non-shocked switching is a handicap that should be taken into account in multi-
control systems.

Fig. 9. A tuning process of the fuzzy PID control agorithm

Fig. 10 presents a controlled signal Redox PV with a tuned fuzzy PID algo-
rithm with zero initial conditions. The system can be considered as recovered
after approximately 4 minutes.

In the Table 3 measured quality factors are presented.

Table 3. Quality factors gathered during experiments on the real plant

quality factors
Tn Tr Mp Mpp eu GE GCE GU GCU

48.3871 218.145 0.197 19.7 0 1 4.08 0.76 0.19

The next experiment tests the resistance of the controlled system to stochastic
disturbances. The PV signal disappearance was examined. Such a PV change can
simulate a sensor damage.
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Fig. 10. A step response of the real time plant in the control system with the fuzzy
PID algorithm

Fig. 11. A robustness test related to the introduction of a stochastic disturbance in
the control system with a fuzzy PID controller

After the Redox PV signal disappears for a short time the fuzzy PID algorithm
brings it again to the Redox SP set point. Summarizing it can be stated that the
fuzzy PID algorithm tuning based on the relay experiment allows for a factor
selection resulting in the controlled plant being stable.
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6 Conclusions

Based on the survey it was found that the fuzzy PID algorithm is an excellent
solution for systems where the emphasis is on small overshoot, and the recovery
time is not very important. In case of the redox agent stabilization it is a good
solution ensuring that the desired oxidation level is reached in the circulating
water without the risk of an excessive overshoot of the controlled signal.

The tuning fuzzy PID algorithm based on the relay experiment allows factors
adjustment i.e. scaling input and output factors in a way that ensures stable
operation and minimizes overshoot. The result of the research was a development
of an automated parameters selection for the ON-OFF algorithm i.e. the ON
and OFF states amplitudes of the control value. The ON-OFF algorithm is the
basis for the relay experiment. The only concern is a significant disruption in
the operation of the control system at the time of switching from tuning to
continuous control.
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Abstract. A new distance function for fuzzy sets is introduced. It is
based on the descriptive complexity, that is, the number of bits (on aver-
age) that are needed to describe an element in the symmetric difference
of the two sets. The value of the distance gives the amount of additional
information needed to describe either one of the two sets when the other
is known. We prove that the distance function is a pseudo-metric, namely,
it is non-negative, symmetric, it equals zero if the sets are identical and
it satisfies the triangle inequality.

Keywords: Fuzzy sets, descriptive complexity, entropy, distance,
triangle-inequality.

1 Introduction

The notion of distance between two objects is very general. Distance metrics and
distance functions have now become essential tools in many areas of mathemat-
ics and its applications including geometry, probability, statistics, coding/graph
theory, data analysis, pattern recognition. For a comprehensive source on this
subject see [1]. A fuzzy set is a class of objects with continuous values of mem-
bership and hence extends the classical definition of a set. To distinguish a set
from a fuzzy set we refer to the former as a crisp set. Formally, a fuzzy set
is a pair (E,m) where E is a set of objects and m is a membership function
m : E → [0, 1]. A crisp set A has for all x ∈ A, mA(x) ∈ {0, 1}. Fuzzy set theory
can be used in a wide range of domains in which information is incomplete or
imprecise, such as pattern recognition, decision theory. The concept of distance
and similarity is important in the area of fuzzy logic and sets. We now review
a few common ways of defining distance functions on fuzzy sets (see [2] and
references therein). We note in passing that this is by no means an exhaustive
review of all the different distance functions on fuzzy sets.

Classical distance functions measure how far two points are in Euclidean
space. For instance, the Minkowski distance between two points x and y in
Rn is defined as
� Corresponding author.
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dr(x, y) :=

(
n∑

i=1

|xi − yi|r
)1/r

, r ≥ 1. (1)

Let E be a finite set and let Φ(E) be the set of all fuzzy subsets of E. Consider
two fuzzy subsets A, B ∈ Φ(E) with membership functions mA,mB : E → [0, 1].
Then (1) can be extended to the following distance function,

dr(A,B) :=

(∑
x∈E

|mA (x) −mB(x)|r
)1/r

, r ≥ 1.

Based on (1) with r = 2, the Hausdorff distance between two non-empty compact
crisp sets U , V ⊂ R, is defined as

q (U, V ) := max

{
sup
v∈V

inf
u∈U

d2 (u, v) , sup
u∈U

inf
v∈V

d2 (u, v)

}
. (2)

This can be extended to fuzzy sets as follows: let A ∈ Φ(E) be a fuzzy set
and denote by Aα the α-level set of the fuzzy set A which is defined as Aα =
{x ∈ E : mA(x) ≥ α}. Then for two fuzzy subsets A, B ∈ Φ(E) the distance in
(2) can be extended to the following distance between A and B,

q(A,B) :=

∫ 1

0

q(Aα, Bα)dα.

Another approach is based on set-theoretic distance functions. For a fuzzy set
A ∈ Φ(E) define the cardinality of A as |A| =

∑
x∈EmA(x). Extend the inter-

section and union operations by defining the membership functions as is done in
[3],

mA∩B(x) := min {mA(x),mB(x)} (3)

and

mA∪B(x) := max {mA(x),mB(x)} . (4)

Then for fuzzy sets A, B ∈ Φ(E) we may define the distance function

D1(A,B) := 1− |A ∩B||A ∪B| = 1−
∑

x∈EmA∩B(x)∑
x∈EmA∪B(x)

.

A generalization and detailed analysis of cardinality-based similarity measures
for crisp and fuzzy sets is done in [4, 5]. The authors analyze similarity measures
which are formulated as rational expressions that involve set-cardinalities. The
general form for a similarity measure for fuzzy sets A and B in Φ(E) is given by

S(A,B) :=
α(a+ b − 2u) + βu + γ(|E| − a− b+ u)
α′(a+ b− 2u) + β′u+ γ′(|E| − a− b+ u)
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where α, α′, β, β′, γ, γ′ are fixed at the value 0 or 1 and

a := |A| =
∑
x∈E

mA(x), b := |B| =
∑
x∈E

mB(x), u =
∣∣∣A⋂B

∣∣∣ =∑
x∈E

m′
A∩B(x)

where m′
A∩B(x) = I(mA(x),mB(x)) and I : [0, 1]2 → [0, 1] is a generalization of

Boolean conjunction. They show that such similarity measures satisfy the same
transitivity properties as their crisp counterparts.

Another distance function is based on four features of a fuzzy set. Let the
domain of interest be R and consider a fuzzy set A in Φ(R). The power of A
(which extends the notion of cardinality) is defined as

power (A) :=
∫ ∞

−∞
mA(x)dx.

Let h(x) = −x lnx− (1− x) ln(1− x) then define the entropy of A as

entropy (A) :=
∫ ∞

−∞
h(mA(x))dx.

Define the centroid as

c(A) :=

∫∞
−∞ xmA(x)dx

power (A)

and the skewness as

skew (A) :=

∫ ∞

−∞
(x− c(A))3mA(x)dx.

Let v(A) = [power (A) , entropy (A) , c(A), skew(A)] then [6] defines the dis-
tance between two fuzzy sets A, B ∈ Φ(R) as the Euclidean distance
‖v(A) − v(B)‖.

A more recent work [7] investigates relationships between distance functions
[8], proximity measures [9] and entropy for fuzzy sets [10]. In [9] it is shown that
distances on fuzzy sets are equal to the negation of their proximity.

We now proceed to discuss the notion of distances that are based on descriptive
complexity of sets.

2 Information Based Distance Functions

A good distance function is one which picks out only the ‘true’ dissimilarities
and ignores factors that arise from irrelevant variables or are due to unimpor-
tant random fluctuations that enter the measurements. In most applications the
design of a good distance function requires inside information about the domain.
An example of this lies in the field of information retrieval [11], where the dis-
tance between two documents is influenced largely by words that appear less
frequently since the words which appear more frequently are less informative.
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Typically, different domains require the design of different distance functions
which take such specific prior knowledge into account. It can therefore be an
expensive process to acquire expertise in order to formulate a good distance.
Recently, a new distance function for sets was introduced [12] which is based on
the concept of descriptional complexity (or discrete entropy). A description of an
object in a finite set can be represented as a finite binary string which provides a
unique index of the object in the set. The description complexity of the object is
the minimal length of a string that describes the object. The distance function
of [12, 13] is based on the idea that two sets should be considered similar if
given the knowledge of one the additional complexity in describing an element
of the other set is small (this is also referred to as the conditional combinatorial
entropy, see [14] and references therein). The advantage in this formulation of
distance is its universality; it can be applied without any prior knowledge or
assumption about the domain of interest, that is, about the elements that the
sets contain. Such distance functions can be viewed as information-based, since
the conditional descriptional complexity is essentially the amount of information
needed to describe an element in one set given that we know the other set (for
more on the notion of combinatorial information and entropy see [14]). This idea
has been recently used to define a universal distance for images [15, 16].

In the current paper we introduce a distance measure between two general sets,
in particular, sets that can be crisp or fuzzy. Following the information-based
approach of [12, 13] we use entropy as the main operator that gives the measure
of dissimilarity between two sets. We use the membership of the symmetric
difference of two sets as the probability of a Bernoulli random variable whose
entropy is the expected description complexity of an element that belongs to
only one of the two sets. Thus the distance function measures how many bits
(on average) are needed to describe an element in the symmetric difference of
the two sets. In other words, it is the amount of additional information needed
to describe any one of the two sets given knowledge of the other.

On account of its being a description-complexity based distance, it is bestowed
with certain characteristics. For instance, the distance between a crisp set A and
its complement A is zero since there is no need for additional information in
order to describe one of these two sets when knowing the other. Knowledge of a
set A automatically implies knowing the set A and vice versa. They are clearly
not equal, but our distance function cleverly renders them as similar to each
other as any two sets can be (zero distance apart).

Unlike many of the measures of dissimilarity referenced in [17] which satisfy
the axioms of Liu [8], our distance satisfies a triangle inequality. This is a central
point of our paper. It is mathematically significant and we devote the majority
of the proof of the main theorem (Theorem 3) to it. A distance function for
fuzzy sets for which the triangle inequality is satisfied is not only important as
a mathematical fact in that it embeds any space of sets (fuzzy and crisp) with
a proper metric, but also from a practical perspective in many applications.

An important application area for a distance function that satisfies the trian-
gle inequality over sets is machine learning over spaces of concepts. A concept



Pseudo-metric for Fuzzy Sets 209

[18] is a subset of objects or events defined over a domain, for example, the
subset of ’people’ that constitute ’teachers’. Concepts that can be represented
in crisp sets are essentially boolean-functions over the domain. Concepts that
can be represented in fuzzy sets have an associated uncertainty, for instance,
the concept of ’beautiful’ over the domain of ’living beings’. Some living beings
belong to the concept ’beautiful’ only with a certain level of certainty. Learn-
ing classification over such concepts means to be able to infer a fuzzy set from
training examples, e.g., {bird, 0.2} , {dog, 0.8} , . . ., consists of living beings with
the values of membership in the set ’beautiful’. The importance of the triangle
inequality for machine learning comes from the fact that many machine-learning
algorithms learn by searching over a space of concepts. A proper metric enables a
more efficient searching strategy (see for instance [19]). Because fuzzy sets are a
natural way of describing concepts with uncertainty, our distance function is ap-
plicable also for conceptual clustering [20, 21] which is useful for fields as diverse
as knowledge management, information retrieval, data mining [22, 23, 24].

The next section formally introduces the distance function and in Theorem 3
we prove its metric properties.

3 New Distance Function

We write w.p. for “with probability”. Let [N ] = {1, . . . , N} be a domain of
interest. Let A ∈ Φ([N ]) be a set with membership function mA : [N ] → [0, 1].
We use x to denote a value in [N ]. Given two fuzzy subsets A, B ∈ Φ([N ]) with
membership functions mA(x), mB(x), as mentioned in section 1 we denote by

mA∪B(x) := max {mA(x),mB(x)}

and

mA∩B(x) := min {mA(x),mB(x)} .

Define by A � B = (A
⋃
B) \ (A

⋂
B) the symmetric difference between crisp

sets A,B. For fuzzy sets A, B ∈ Φ([N ]) we define it as

mA�B(x) := mA∪B(x)−mA∩B(x). (5)

Define a sequence of Bernoulli random variables XA(x) for x ∈ [N ] taking the
value 1 w.p. mA(x) and the value 0 w.p. 1 −mA(x). Define by H(XA(x)) the
Shannon entropy of XA(x),

H(XA(x)) := −mA(x) logmA(x)− (1−mA(x)) log(1−mA(x)). (6)

Other works on fuzzy sets [10] also use (6) to define a notion of entropy. Let

XA�B(x) :=

{
1 w.p. mA�B(x)
0 w.p. 1−mA�B(x),
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then we define a new distance function between A, B ∈ Φ([N ]) as

dist(A,B) :=
1

N

N∑
x=1

H(XA�B(x)). (7)

Remark 1. This definition can easily be extended to the case of an infinite do-
main, for instance, a subset of the real line. In that case, the distance function can
be defined as the expected value of EH(XA�B(ξ)) where ξ is a random variable
with some probability distribution P (ξ) with respect to which the expectation
is computed.

The next theorem shows that the distance function satisfies the metric prop-
erties.

Theorem. The distance function dist(A,B) is a pseudo-metric on Φ([N ]), i.e.,
it is non-negative, symmetric, it equals zero if A = B and it satisfies the triangle
inequality.

Remark 2. Note that the function dist(A,B) may equal zero even when A �= B.
We now prove Theorem 3.

Proof. Since the entropy function is non-negative (see for instance, [25]) then
for any two subsets A, B ∈ Φ([N ]) we have dist(A,B) ≥ 0. It is easy to see that
the symmetry property is satisfied since for every x ∈ [N ] we have XA�B(x) =
XB�A(x). For every subset A the value dist(A,A) = 0 since mA�A(x) = 0 hence
H(XA�A(x)) = 0 for all x.

Let us now show that the triangle inequality holds. Let A, B, C be any
three elements of Φ([N ]). Fix any point x ∈ [N ] and without loss of gen-
erality suppose that mA(x) ≤ mB(x) ≤ mC(x). Denote by p = mB(x) −
mA(x) and q = mC(x) −mB(x). Without loss of generality assume that p ≤ q.
Then we have mA�C(x) = p + q. Denote by H(p), H(q) and H(p + q) the en-
tropies H(XA�B(x)), H(XB�C(x)) and H(XA�C(x)) respectively. We aim to
show that H(p + q) ≤ H(p) + H(q). This will imply that for every x ∈ [N ],
H(XA�C(x)) ≤ H(XA�B(x)) +H(XB�C(x)) and hence it holds for the average
1
N

∑
xH(XA�C(x)) ≤ 1

N

∑
xH(XA�B(x)) +

1
N

∑
xH(XB�C(x)).

We start by considering the straight line function � : [0, 1]→ [0, 1] defined as:

�(z) :=
H(q)−H(p)

q − p z +H(p)− H(q)−H(p)

q − p p

which cuts through the points (z, �(z)) = (p,H(p)) and (z, �(z)) = (q,H(q)). For
a function f let f ′ denote its derivative. We claim the following,

Claim 1. H ′(z) ≤ �′(z) for all z ∈ [q, 1].
Proof : The derivative of H(z) is H ′(z) = log

(
1−z
z

)
. This is a decreasing

function on [0, 1] hence it suffices to show that H ′(q) ≤ �′(z) for all z ∈ [q, 1].
The derivative of �(z) is H(q)−H(p)

q−p . So it suffices to show that

log

(
1− q
q

)
≤ H(q)−H(p)

q − p .
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This is equivalent to

(q − p) log
(
1− q
q

)
≤ H(q)−H(p). (8)

The left hand side of (8) can be reduced to,

q log(1− q)− q log q − p log(1− q) + p log q. (9)

Adding and subtracting the term (1− q) log(1− q) and using H(q) = −q log q−
(1− q) log(1− q) makes (9) be expressed as

H(q) + p log q + (1 − p) log(1− q).

Substituting this for the left hand side of (8) and canceling H(q) on both sides,
gives the following inequality which we need to prove

p log q + (1− p) log(1− q) ≤ p log p+ (1− p) log(1− p).

It suffices to show that,

p log

(
p

q

)
+ (1− p) log

(
1− p
1− q

)
≥ 0. (10)

That (10) holds, follows from the information inequality (see Theorem 2.6.3 of
[25]) which lower bounds the divergence D(P ||Q) ≥ 0 where P ,Q are two prob-
ability functions and D(P ||Q) =

∑
x P (x) log

P (x)
Q(x) . Hence the claim is proved.

�
Next we claim the following:
Claim 2. H(p+ q) ≤ �(p+ q).
Proof : Consider the case that p ≤ q ≤ 1

2 . Since q ≤ 1
2 then H ′(z) evaluated

at z = q is non-negative. Hence both H(z) and �(z) are monotone increasing
on q ≤ z ≤ 1

2 and H(q) = �(q). By Claim 1, � increases faster than H on
[q, 1], in particular on the interval q ≤ z ≤ 1

2 . Hence, for all z ∈ [q, 12 ] we
have H(z) ≤ �(z). Now, if p+ q ∈ [q, 12 ] then it follows that H(p+ q) ≤ �(p+ q).
Otherwise it must hold that p+q ∈ (12 , 1]. But H is decreasing and � is increasing
over this interval. Hence we have �(z) > �(12 ) ≥ H(12 ) > H(z) for z ∈ (12 , 1], in
particular for z = p+ q hence �(p+ q) ≥ H(p+ q). This proves the claim. �

From Claim 2 it follows that

H(p+ q) ≤ H(q)−H(p)

q − p (p+ q) +H(p)− H(q)−H(p)

q − p p

= H(p) + q
H(q)−H(p)

q − p . (11)

It suffices to show that

q
H(q)−H(p)

q − p ≤ H(q)
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its equivalent being,
H(q)

q
≤ H(p)

p
. (12)

Letting f(z) = H(z)
z and differentiating we obtain

f ′(z) =
log(1− z)

z2

which is non-positive for z ∈ [0, 1]. Hence f is non-increasing over this interval.
Since by assumption q ≥ p then it follows that f(q) ≤ f(p) and (12) holds. This
completes the proof of the theorem.

4 Properties of the Distance Function

Let E be a finite set and let Φ(E) be the set of all fuzzy subsets of E and denote
by R+ := [0,∞). In [8] a set of axioms for a distance function on fuzzy sets are
defined as follows: let d : Φ2(E)→ R+ be a distance function then the following
axioms must hold in order for d to be a Liu-distance:

1. d(A,B) = d(B,A), for any A, B ∈ Φ(E)
2. d(A,A) = 0 for all A ∈ Φ(E)
3. d(D,Dc) = maxA,B∈Φ(E) d(A,B), for all crisp sets D ⊆ E
4. For all A, B and C ∈ Φ(E), if A ⊂ B ⊂ C then d(A,B) ≤ d(A,C) and
d(B,C) ≤ d(A,C).

We now show that our proposed distance function (7) is not a Liu-distance. First,
it does not satisfy axiom 3. To see that consider two sets A and its complement
A. Their membership functions satisfy the relation:

mA(x) = 1−mA(x)

hence the membership function for the symmetric difference is

mA�A(x) = max {mA(x), (1 −mA(x))} −min {mA(x), (1 −mA(x))} .

Note that for any x ∈ [N ] with a crisp membership value, i.e., mA(x) = 1, or
mA(x) = 0, we have mA�A(x) = 1 and hence in this case H(XA�A(x)) = 0. This
means that for a crisp set A our distance function has the following property
(we call this the complement-property):

dist(A,A) = 0 (13)

which is the ’opposite’ of axiom 3 in [8] since Liu’s axiom demands that the
distance between a crisp set and its complement be maximal over all possible
pairs of fuzzy sets.

From an information theoretic perspective, the property of (13) is expected
since the knowledge of a set A must provide full knowledge of its complement
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set. That is, there is no additional description necessary to describe A given the
knowledge of A and this is what dist(A,A) = 0 means.

Secondly, our distance does not satisfy axiom 4 as we now show. Consider
the sets A, B, and C with corresponding membership functions mA(x) = 0.1,
mB(x) = 0.5 and mC(x) = 0.9. Clearly, by definition of containment of fuzzy
sets [3] we have A ⊂ B ⊂ C however in this example dist(A,B) > dist(A,C)
and dist(B,C) > dist(A,C) which violates axiom 4.

Recalling the definition of fuzzy set intersection (3) and union (4) then in
[8] a σ-distance for fuzzy sets is defined as a distance function d such that for
any A, B ∈ Φ(E) and any crisp set D ⊆ E the following is satisfied, d(A,B) =
d(A ∩D,B ∩D) + d(A ∩Dc, B ∩Dc). We claim that our distance function (7)
is a σ-distance as is now show: we have,

dist(A ∩D,B ∩D) + dist(A ∩Dc, B ∩Dc)

=
1

N

∑
x∈D

[
H
(
X(A∩D)�(B∩D)(x)

)
+H
(
X(A∩Dc)�(B∩Dc)(x)

)]
+

1

N

∑
x∈Dc

[
H
(
X(A∩D)�(B∩D)(x)

)
+H
(
X(A∩Dc)�(B∩Dc)(x)

)]
. (14)

For any x ∈ E,

m(A∩D)�(B∩D)(x) = m(A∩D)∪(B∩D)(x)−m(A∩D)∩(B∩D)(x)

= m(A∪B)∩D(x)−m(A∩B)∩D(x) (15)

and

m(A∩Dc)�(B∩Dc)(x) = m(A∩Dc)∪(B∩Dc)(x)−m(A∩Dc)∩(B∩Dc)(x)

= m(A∪B)∩Dc(x)−m(A∩B)∩Dc(x). (16)

Now, for all x ∈ D we haveD(x) = 1 hence (15) equalsm(A∪B)(x)−m(A∩B)(x) =
mA�B(x) and (16) equals 0 and hence for x ∈ D the following holds,

H
(
X(A∩D)�(B∩D)(x)

)
+H
(
X(A∩Dc)�(B∩Dc)(x)

)
= H (XA�B(x)) . (17)

Similarly, for all x ∈ Dc we have Dc(x) = 1 and D(x) = 0 hence (15) equals
0 and (16) equals m(A∪B)(x) −m(A∩B)(x) = mA�B(x) and therefore (17) also
holds for x ∈ Dc. Therefore (14) equals

1

N

∑
x∈E

H(XA�B(x)) = dist(A,B)

which proves the claim. While our distance function does not satisfy axiom 4 of
[8] it satisfies a bona fide triangle inequality as shown in the proof of Theorem
3.

In the proof of Theorem 3 we assumed that mA�B(x), which when viewed
as a function g(mA(x),mB(x)) = max{mA(x),mB(x)}−min{mA(x),mB(x)},
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is a metric; in particular, for any real z, g(z, z) = 0 and for any real numbers
z ≤ r ≤ w, g satisfies the triangle inequality, g(z, w) ≤ g(z, r) + g(r, w). If we
replace the min and max with any t-norm T and t-conorm S, respectively, then
we obtain a generalized expression for mA�B(x), which we denote as

g(mA(x),mB(x)) = S(mA(x),mB(x)) − T (mA(x),mB(x)) (18)

and which may not be a metric. For instance, let T be the Lukasiewicz t-norm
T (x, y) = max{0, x + y − 1} then using the DeMorgan’s formula S(x, y) =
N(T (N(x), N(y))) with N the strict negation N(x) = 1−x we obtain S(x, y) =
min{1, x + y}. In this case the generalized form of (18) is min{1,mA(x) +
mB(x)} −max{0,mA(x) +mB(x) − 1} which for A = B gives min{1, 2mA(x)}
−max{0, 2mA(x)−1} and can differ from zero for some values of mA(x). There-
fore the generalized form is not a metric in this case.

With respect to the axioms of [17], our distance function satisfies axiom D3
which states that A = B implies dist(A,B) = 0 (this follows from Theorem 3).
It does not satisfy axiom D2, D3 of [17] which are axioms 3,4 of [8] (as shown
above). It satisfies the symmetry axiom G2 of [17].

5 Conclusion

This paper introduces a new distance function for fuzzy sets based on their
descriptive complexity. The distance function is shown to be a pseudo-metric
and as such it satisfies the triangle inequality. This fact makes it applicable to
machine learning applications which rely on search strategies in high dimensional
spaces and many of which require an input space with a proper metric in order for
the search to be efficient. In particular, our distance function is applicable in the
area of conceptual clustering as fuzzy sets are a natural way to represent concepts
that are less certain in nature. This is not the case for many other dissimilarity
measures on fuzzy sets. In fact, the triangle inequality is missing from the list of
axioms of [17] that most dissimilarity measures aim to satisfy. In comparison to
other existing distance-functions for fuzzy sets, our new distance function gives
a value which is proportional to the additional amount of information needed to
describe a fuzzy set A when fuzzy set B is known, or vice versa. It thus has a
natural information theoretic interpretation.
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Abstract. In this paper a new method for designing neuro-fuzzy sys-
tems for nonlinear modelling is proposed. This method contains a complex
weighted fitness function with interpretability criteria and new enhanced
tuning process for selecting parameters and structure of the system based
on a hybrid population-based algorithm (composed of evolutionary strat-
egy, genetic algorithm and bees algorithm). To evaluate this method, we
used a well-known dynamic nonlinear modelling problem.

1 Introduction

The analysis of technical issues aims at finding and understanding the essence
of the problem, it tries to create a model. The reason for this is the willingness
to ensure predictability, which guarantees safety, decreases costs and ensures
control. In the literature the following approaches to modelling are considered:
(a) White-box model. This approach uses phenomenological (theoretical) de-
scription of physical phenomena. For more details, see e.g. [9], [40]. (b) Black-
box model. In this approach the behaviour of the object is recreated on the
basis of observations of cause and effect of dependencies. For more details, see
e.g. [19]-[20], [25]-[26], [35]-[36], [51], [56]. (c) Grey-box model. This approach
is based on model structure derived from some laws and parameters tuned to
the data defining behaviour of the object. These methods include, among others,
multivariable non-stationary systems, hybrid solutions and systems of compu-
tational intelligence such as fuzzy systems, neuro-fuzzy systems etc. For more
details, see e.g. [6], [18], [21], [32]-[34], [40]-[41], [43]-[44].

There is still a search for such nonlinear modelling methods which will be
characterized by a good accuracy and possibility to interpret the knowledge
accumulated within it. The interpretability issue in the context of nonlinear
modelling is much harder than in case of classification (in the system the ex-
act value of the output signal is important). Each limitation put upon system
structure (used to increase the interpretability) has pronounced negative effect
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on the accuracy (and vice versa). In the literature there are different approaches
to increase the interpretability of fuzzy systems. It can be noted that these ap-
proaches are mainly based on a suitable structure of the fuzzy system (e.g. [1]-[5],
[10]-[13], [22]-[23], [27], [48], [52]-[55]) or on the use of specific training algorithm
(e.g. methods in the field of multiobjective optimization or evolutionary opti-
mization) (see e.g. [14], [17], [28]-[29], [38], [57]). In this paper we propose a
new method for designing neuro-fuzzy systems for nonlinear modelling (see e.g.
[30]). This method can be described as follows: (1) the parameters and also the
structure of the neuro-fuzzy systems are obtained in the learning process, (2) the
learning process takes into consideration accuracy of the system, complexity of
the system, and interpretability criteria, (3) presented criteria allow to obtain
clear and well-spread semantic of the rules of the system, (4) learning process
was based on hybrid population algorithm composed of evolutionary strategy
(μ, λ) (see e.g. [15]) and bees algorithm (see e.g. [37]). To evaluate performance
of our method we used well-known dynamic nonlinear modelling problem - Van
der Pol oscillator problem.

This paper is organized into 5 sections. Section 2 contains description of the
fuzzy system for nonlinear modelling. Description of the new method for design-
ing our system is given in Section 3. Simulation results are presented in Section
4. Conclusions are drawn in Section 5.

2 Description of the Fuzzy System for Nonlinear
Modelling

In our previous works we considered a new class of the neuro-fuzzy systems (see
e.g. [24], [47], [49]-[50]) - the flexible neuro-fuzzy systems (see [42], [59]-[62]).
Those systems have very high accuracy in the field on classification and approx-
imation problems. We consider multi-input, multi-output neuro-fuzzy system
mapping X→ Y, where X ⊂ Rn and Y ⊂ Rm. The flexible fuzzy rule base
consists of a collection of N fuzzy IF-THEN rules in the form

Rk :

[(
IF
(
x̄1 isA

k
1

) ∣∣∣wA
k,1 AND . . .AND

(
x̄n isA

k
n

) ∣∣∣wA
k,n

THEN
(
y1 isB

k
1

)
, . . . ,

(
ym isBk

m

) ) ∣∣wrule
k

]
, (1)

where x̄ = [x̄1, . . . , x̄n] ∈ X, y = [y1, . . . , ym] ∈ Y, Ak
1 , . . . , A

k
n are fuzzy sets

characterized by membership functions μAk
i
(xi), i = 1, . . . , n, k = 1, . . . , N ,

Bk
1 , . . . , B

k
m are fuzzy sets characterized by membership functions μBk

j
(yj),

j = 1, . . . ,m, k = 1, . . . , N , wA
k,i ∈ [0, 1], i = 1, . . . , n, k = 1, . . . , N , are weights

of antecedents, wrule
k ∈ [0, 1], k = 1, . . . , N , are weights of rules. In Mamdani

approach output signal ȳj , j = 1, . . . ,m of the neuro-fuzzy system is described
by the formula (for more details see our previous papers, e.g. [45]-[46])
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ȳj =

R∑
r=1

ȳdefj,r ·
N

S∗
k=1

{
T
{ n

T ∗
i=1

{
μAk

i
(x̄i) ;w

A
k,i

}
, μBk

j

(
ȳdefj,r

)}
;wrule

k

}
R∑

r=1

N

S∗
k=1

{
T
{ n

T ∗
i=1

{
μAk

i
(x̄i) ;w

A
k,i

}
, μBk

j

(
ȳdefj,r

)}
;wrule

k

} , (2)

where ȳdefj,r , j = 1, . . . ,m, r = 1, . . . , R, are discretization points, R is a number
of discretization points.

In the next section a new learning algorithm for evolution of flexible neuro-
fuzzy system (2) is proposed. The aim of the algorithm is the selection of the
parameters and structure of the neuro-fuzzy system for nonlinear modelling de-
scribed by equation (2) with the accuracy and interpretability taken into con-
sideration. In the process of evolution (evolution of parameters) we will find all
parameters of the neuro-fuzzy system (2). Moreover, in the process of evolution
(evolution of the structure) we will find number of inputs n, number of rules N ,
number of antecedents and consequents (number of fuzzy sets) and number of
discretization points R.

In the next section we are going to show the use of a new population based
algorithm used to select the structure and parameters of system (2) with the
accuracy and interpretability taken into consideration.

3 Description of the New Evolutionary Approach to
Choice of the System Structure and Parameters for
Nonlinear Modelling

As mentioned before, for selection of structure and parameters of system (2)
we have proposed a new evolutionary algorithm. The algorithm is based on the
Pittsburgh approach ([31], [42]), on the evolutionary strategy (μ, λ) for selecting
parameters of system (2), on the classical genetic algorithm for choosing struc-
ture of system (2) and on the bees algorithm for fixing parameters of reduced
systems (2). The evolutionary strategy (μ, λ) starts with a random generation
of the initial parents population P containing μ individuals. Next, a temporary
population T is created by means of reproduction, whose population contains λ
individuals, while λ ≥ μ. Reproduction consists in a multiple random selection
of λ individuals out of the population P (multiple sampling) and placing the se-
lected ones in temporary population T. Individuals of the population T undergo
crossover and mutation operations as a result of which an offspring population
O is created, which also has size λ. The purpose of the repair procedure of the
population O is to correct the parameters if they reach inadmissible values. The
new population P containing μ individuals is selected only out of the best λ
individuals of the population O. The bees algorithm mimics the food foraging
behaviour of honey bee colonies and it is used to tuning parameters of system
(2). The aim of using this algorithm is to tune the parameters of the systems
with recently reduced structure and to repair damaged accuracy. The behaviour
of the bees can be described as follows: (1) For every μ population chromosomes
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of P and μ chromosomes are generated (scout bees), (2) For every chromosome of
B a search territory area is calculated (as an area of solution explorations coded
in the population P). For every iteration of the algorithm the area of exploration
is decreased, (3) After this modification, chromosomes from B are repaired and
evaluated (analogically to evolutionary strategy (μ, λ)), (4) In the last step one
solution (with best fitness function value) is picked from each group of scout
bees and moved into the population P. More details about bees algorithm can
be seen in [37].

3.1 Coding of Parameters and Structure

The parameters of system (2) were coded in the following chromosome (Pitts-
burgh approach)

Xpar
ch =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄A1,1, σ
A
1,1, . . . , x̄

A
n,1, σ

A
n,1, . . .

x̄A1,Nmax, σ
A
1,Nmax, . . . , x̄

A
n,Nmax, σ

A
n,Nmax,

ȳB1,1, σ
B
1,1, . . . , ȳ

B
m,1, σ

B
m,1, . . .

ȳB1,Nmax, σ
B
1,Nmax, . . . , ȳ

B
m,Nmax, σ

B
m,Nmax,

wA
1,1, . . . , w

A
n,1, . . . , w

A
1,Nmax, . . . , w

A
n,Nmax,

wrule
1 , . . . , wrule

Nmax,
ȳdef1,1 , . . . , ȳ

def
1,Rmax, . . . , ȳ

def
m,1, . . . , ȳ

def
m,Rmax

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
=
{
Xpar

ch,1, . . . , X
par
ch,L

}
,

(3)
where L = Nmax · (3 · n+ 2 ·m+ 1)+Rmax, ch = 1, . . . , μ for the parent pop-
ulation or ch = 1, . . . , λ for the temporary population, Nmax is the maximum
number of rules, Rmax is the maximum number of discretization points. The
maximum number of rules Nmax should be selected individually to the problem
from the range [1, Nmax]. Analogously, the maximum number of discretization
points Rmax should also be selected to the problem individually from the range
[1, Rmax] ([7]). The purpose of the algorithm is also to select the number of an-
tecedents (from the range [1, n]) and consequents (from the range [1,m]) within
each rule from rule base. The reduction of the system is done with the use of
additional chromosome Xred

ch . Its genes take binary values and indicate which
rules, antecedents, consequents, inputs, and discretization points are selected.
The chromosome Xred

ch is given by

Xred
ch =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x1, . . . , xn,

A1
1, ..., A

1
n, ..., A

Nmax
1 , ..., ANmax

n ,
B1

1 , ..., B
1
m, ..., B

Nmax
1 , ..., BNmax

m ,
rule1, ..., ruleNmax,

ȳdef1,1 , ..., ȳ
def
1,Rmax, ..., ȳ

def
m,1, ..., ȳ

def
m,Rmax

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ =
{
Xred

ch,1, ..., X
red
ch,Lred

}
, (4)

where Lred = Nmax · (n + m + 1) + n + m · Rmax is the length of the chro-
mosome Xred

ch , ch = 1, . . . , μ, for the parent population or ch = 1, . . . , λ, for the
temporary population. Its genes indicate which rules (rulek, k = 1, . . . , Nmax),
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antecedents (Ak
i , i = 1, . . . , n, k = 1, . . . , Nmax), consequents (Bk

j , j =
1, ...,m, k = 1, ..., Nmax), inputs (x̄i, i = 1, . . . , n), and discretization points
(ȳr, r = 1, . . . , Rmax) are taken to the system. We can easily notice that the
number of inputs used in the system encoded in the chromosome ch can be
determined as follows

nch =

n∑
i=1

Xred
ch {xi}, (5)

where Xred
ch {xi} means gene of the chromosome Xred

ch associated with the input
xi (as previously mentioned, if the value of the gene is 1, the associated input is
taken into account during work of the system). The number of rules (Nch) used
in the system encoded in the chromosome ch may be determined analogously.
Implementation of the strategy (μ, λ) uses an additional chromosome

σparch =
(
σparch,1, . . . , σ

par
ch,L

)
, (6)

where ch = 1, . . . , μ for the parent population or ch = 1, . . . , λ for the temporary
population. This allows the implementation of the mechanism of self-adaptive
range of mutation. At the beginning of the operation of evolutionary strategy the
range is large, while during the convergence its gradual reduction is observed.
This results in a smooth transition from exploration (occurring at the beginning
of the algorithm) to exploitation of the promising areas.

3.2 Evolution of Parameters and Structure

This hybrid population-based method allows for tuning both structure and pa-
rameters of system (2) with interpretability criteria. It is worth mentioning that:
(a) An evolutionary strategy (μ, λ) was used for tuning the parameters of sys-
tem (2). It processes chromosomes Xpar

ch i σparch from the population P, T and
O. The details about crossover and mutation operators from this strategy can
be found in [42]. (b) For the structure evolution of system (2), a classic genetic
algorithm was chosen. It processes chromosomes Xred

ch from the population P, T
and O. The details about crossover and mutation operators from this strategy
can be found in [31]. It is important to mention that genetic algorithm works
together with evolutionary strategy (μ, λ), and it allows to reduce any element of
the system structure, such like antecedence, consequences, inputs, rules and dis-
cretization points. (c) For tuning parameters of system (2), a bees algorithm was
additionally used. It processes chromosomes Xpar

ch from the population B. The
purpose of use the bees algorithm is to search neighbourhood around chromo-
somes from population B (chromosomes with reduced structure of the system)
and replace them with fitter solutions. The details about bees algorithm can
be found in [37]. (d) The important mechanism of our method is a process of
evaluation of the chromosomes from the populations P, T, O and B described
in Section 3.3. It takes into consideration an accuracy-interpretability trade-off
and allows to obtain a balanced dependent from weights of the fitness function
components solutions (see e.g. [16], [58]).
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3.3 Chromosome Population Evaluation

Each individual Xch of the parental and temporary populations is represented
by sequence of chromosomes

〈
Xpar

ch , σ
par
ch ,X

red
ch

〉
, given by formulas (3), (4) and

(6). The genes of the two first chromosomes take real values, whereas the genes
of the last chromosome takes integer values from the set {0, 1}. The system aims
to minimize the following fitness function

ff (Xch) = T
∗
{
ffaccuracy (Xch) ,ffcomplexity (Xch) ,ffinterpretability (Xch) ;

wffaccuracy, wffcomplexity, wffinterpretability

}
,

(7)
where T ∗ {·} is the algebraic weighted t-norm (see e.g. [8]), wffaccuracy ∈ (0, 1] de-
noted weight of the component ffaccuracy (Xch) etc. The individual components
of the ff (Xch) are defined as follows:

The component ffaccuracy (Xch) determines the accuracy of system (2) i.e.
average normalized system error for all outputs and all data from learning se-
quence

ffaccuracy (Xch) =
1

mch

mch∑
j=1

1
Z

Z∑
z=1
|dz,j − ȳz,j|

max
z=1,...,Z

{dz,j} − min
z=1,...,Z

{dz,j}
, (8)

where mch is a number of outputs encoded in the chromosome ch, Z is the
number of samples of learning sequence, dz,j is desired value of output signal
j = 1, ...,m for input vector z = 1, ..., Z, ȳz,j is real value of the output signal
j = 1, ...,m for input vector z = 1, ..., Z. The purpose of the normalization of the
component ffaccuracy (Xch) was to ensure an influence on every component of
the function (7).

The component ffcomplexity (Xch) determines complexity of system (2) i.e.
a number of reduced elements of the system (rules, antecedents- input fuzzy
sets, consequents- output fuzzy sets, inputs, and discretization points) in rela-
tion to length of the chromosome Xred

ch (it allows to increase complexity-based
interpretability)

ffcomplexity (Xch) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

Xred
ch {xi} ·

Nmax∑
k=1

Xred
ch {rulek} ·Xred

ch

{
Ak

i

}
+

+
m∑
j=1

Nmax∑
k=1

Xred
ch {rulek} ·Xred

ch

{
Bk

j

}
+

+
m∑
j=1

Rmax∑
r=1

Xred
ch

{
ȳdefm,r

}

⎞⎟⎟⎟⎟⎟⎟⎟⎠
Nch · (nch +m) +m · Rmax , (9)

where n is a number of inputs, m is a number of outputs, Rmax is maximum
number of discretization points, Nmax is maximum number of rules, Xred

ch {xi}
means a gene of the chromosome Xred

ch associated with the input xi, etc.
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The component ffinterpretability (Xch) determines the semantic interpretabil-
ity of system (2) encoded in the tested chromosome (it allows to increase semantic-
based interpretability)

ffinterpretability (Xch) = T
∗

⎧⎨⎩
ffintA (Xch) ,ffintB (Xch) ,ffintC (Xch) ,
ffintD (Xch) ,ffintE (Xch) ,ffintF (Xch) ;
wffintA, wffintB, wffintC,wffintD, wffintE, wffintF

⎫⎬⎭ ,
(10)

where wffintA ∈ (0, 1] denotes weight of the component ffintA (Xch), etc. The
individual components of the formula (10) are defined as follows:
(a) The component ffintA (Xch) minimizes number of rules fired at the same
time in system (2) for the fuzzy sets

ffintA (Xch) = 1− 1

Z

Z∑
z=1

(
max

k=1,...,Nmax

{
Xred

ch {rulek} · τk (x̄z)
})2

Nmax∑
k=1

Xred
ch {rulek} · τk (x̄z)

, (11)

where τk (x̄z) is the flexible firing strength of the k-th rule, x̄z is a vector of
input signals learning sequence (z = 1, ..., Z).
(b) The component ffintB (Xch) maximizes the fit to the training data of input
fuzzy sets of system (2) encoded in the tested chromosome

ffintB (Xch) =

Z∑
z=1

n∑
i=1

Xred
ch {xi} ·

(
1− max

k=1,...,Nmax

{
Xred

ch {rulek} · μAk
i
(x̄z,i)

})
Z · nch

,

(12)
where μAk

i
(x̄z,i) is a membership function of the input fuzzy set Ak

i , x̄z,i is a
real value of the input signal i = 1, ..., n of the input vector x̄z, z = 1, ..., Z.
(c) The component ffintC (Xch) reduces the overlapping of the input and output
fuzzy sets of system (2) encoded in the tested chromosome

ffintC (Xch) =

1
4 ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

nch∑
i=1

noifs(i)
−1∑
k=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣cffintc − exp

(
−
(

Xsupp
ch {x̄A

i,k}−Xsupp
ch {x̄A

i,k+1}
Xsupp

ch {σA
i,k}+Xsupp

ch {σA
i,k+1}

)2
)∣∣∣∣∣+

+

∣∣∣∣∣− exp

(
−
(

Xsupp
ch {x̄A

i,k}−Xsupp
ch {x̄A

i,k+1}
Xsupp

ch {σA
i,k}−Xsupp

ch {σA
i,k+1}

)2
)∣∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

nch∑
i=1

(noifs(i)−1)

+

+

m∑
j=1

noofs(j)
−1∑
k=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∣∣∣∣∣cffintc − exp

(
−
(

Xsupp
ch {ȳB

j,k}−Xsupp
ch {ȳB

j,k+1}
Xsupp

ch {σB
j,k}+Xsupp

ch {σB
j,k+1}

)2
)∣∣∣∣∣+

+

∣∣∣∣∣− exp

(
−
(

Xsupp
ch {ȳB

j,k}−Xsupp
ch {ȳB

j,k+1}
Xsupp

ch {σB
j,k}−Xsupp

ch {σB
j,k+1}

)2
)∣∣∣∣∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

m∑
j=1

(noofs(j)−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(13)
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where Xsupp
ch stands for additional chromosome with list of non-reduced fuzzy

sets

Xsupp
ch =

⎧⎪⎪⎨⎪⎪⎩
x̄A1,1, σ

A
1,1, x̄

A
1,2, σ

A
1,2, . . . ,

x̄Anch,1, σ
A
nch,1, x̄

A
nch,2, σ

A
nch,2, . . . ,

ȳB1,1, σ
B
1,1, ȳ

B
2,Nch

, σB2,Nch
, . . . ,

ȳBm,Nch
, σBm,Nch

, ȳB2,Nch
, σB2,Nch

, . . .

⎫⎪⎪⎬⎪⎪⎭ =
{
Xsupp

ch,1 , ..., X
supp
ch,Lsupp

}
, (14)

where Lsupp = 2 ·
(

nch∑
i=1

noifs (i) +
m∑
j=1

noofs (j)

)
, stands for length of the chromo-

some Xsupp
ch , nch stands for the number of system inputs coded in the chromosome

ch (see formula (5)). Moreover, a number of i input fuzzy sets from equation (13)
can be reached using function noifs (i) defined as follows

noifs (i) =

Nch∑
k=1

Xred
ch {rulek} ·Xred

ch

{
Ak

i

}
, (15)

where Nch stand for number of rules of the system encoded in chromosome ch.
Analogically a number of j output fuzzy sets can be calculated.

The lists of parameters encoded in chromosome Xsupp
ch does not have specified

final elements - their amount depends on the structure of the chromosome Xred
ch .

It is worth to mention that the lists of parameters are sorted by the centres of
the fuzzy sets. Single rows from the Xsupp

ch contain parameters connected with
specified input and output fuzzy sets. Due to that this approach is different than
in case of approach using chromosome Xred

ch .
(d) The component ffintD (Xch) increases the integrity of the shape of the input
and output fuzzy sets associated with the inputs and outputs of system (2)
encoded in the tested chromosome

ffintD (Xch) =⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

Xred
ch {xi}·

√√√√√√√√√√√√Nmax∑
k1=1

Xred
ch

{rulek1}·

⎛
⎜⎜⎜⎜⎝

Xpar
ch

{
σAi,k1

}
+

−
Nmax∑
k2=1

Xred
ch {rulek2}·Xpar

ch {σA
i,k2}

Nch

⎞
⎟⎟⎟⎟⎠

2

Nch

nch
+

+

m∑
j=1

√√√√√√√√√√√√Nmax∑
k1=1

Xred
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2
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(16)

where Xpar
ch

{
σAi,k

}
stands for a gene of the chromosome Xpar

ch associated with the

parameter σAi,k (width of input Gaussian-type fuzzy set Ak
i used in simulations),
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Xpar
ch

{
σBj,k

}
means gene of the chromosome Xpar

ch associated with the parameter

σBj,k.
(e) The component ffintE (Xch) increases complementarity of the input fuzzy
sets of system (2) encoded in the tested chromosome

ffintE (Xch) =

Z∑
z=1

n∑
i=1

⎛⎝ Xred
ch {xi} ·

·max

(
1,

∣∣∣∣1− Nmax∑
k=1

Xred
ch {rulek} · μAk

i
(x̄z,i)

∣∣∣∣)
⎞⎠

Z · nch
.

(17)
(f) The component ffintF (Xch) increases readability of the antecedents and
weights of rules of system (2) encoded in the tested chromosome

ffintF (Xch) = 1−

⎛⎜⎜⎜⎜⎝
Nmax∑
k=1

Xred
ch {rulek} ·

⎛⎝ n∑
i=1

Xred
ch {xi}·μw(wA

i,k)

nch

⎞⎠+
+

Nmax∑
k=1

Xred
ch {rulek} · μw

(
wrule

k

)
⎞⎟⎟⎟⎟⎠

2 ·Nch
, (18)

where μw
(
wA

i,k

)
is a function defining congeries around values 0, 0.5 and 1 (in

simulations we assumed that a = 0.25, b = 0.50 i c = 0.75). This function is
described as follows

μw (x) =

⎧⎪⎪⎨⎪⎪⎩
a−x
a for x ≥ 0 and x ≤ a

x−a
b−a for x ≥ a and x ≤ b
c−x
c−b for x ≥ b and x ≤ c
x−c
1−c for x ≥ c and x ≤ 1

. (19)

4 Simulation Results

In our paper we considered the van der Pol oscillator ([63]) which is used in
the medicine as the model of the heartbeat. In our simulations three approaches
were assumed. In each of them different weights of fitness function (7) were cho-
sen. It is worth to mention that the function (7) is very elastic due to weights,
and allows to obtain solutions with different accuracy-interpretability trade-off.
Owing to the fact that we choose three specified cases (see Table 1): (a) "high
accuracy" case, where most important part of the (7) takes responsibility for
accuracy of system (2) (see column (a) in Table 1). (b) "high interpretability"
case, where the most important part of the (7) takes responsibility for inter-
pretability of system (2) (see column (b) in Table 1). (c) "good accuracy and
good interpretability" (balanced), where both accuracy component and inter-
pretability component weights in the function (7) were set to high values (2)
(see column (c) in Table 1). Supplemental properties of our simulations can be
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Table 1. Components of fitness function (7) and reduction level of system (2) for
different weights of (7) (for the best chromosomes): a) high accuracy case, b) high
interpretability case, c) high accuracy and interpretability case

Name of the component Case (a) Case (b) Case (c)
wffaccuracy 1.00 0.50 0.75

wffinterpretability 0.50 1.00 0.75
wffcomplexity 0.50 0.50 0.50

wffintA = wffintB = wffintE 0.20 0.20 0.20
wffintC = wffintD 1.00 1.00 1.00

wffintF 0.50 0.50 0.50
ffaccuracy (Xch) 0.0092 0.1531 0.0482

ffinterpretability (Xch) 0.3936 0.0001 0.0007
ffcomplexity (Xch) 0.5526 0.5789 0.9211

ff (Xch) 0.0050 0.0001 0.0688
RMSE 0.2212 0.7883 0.5218

Name of the reduced elements Case (a) Case (b) Case (c)
inputs 0/2 0/2 0/2

antecedents 2/6 2/6 3/6
consequences 7/12 6/12 7/12

rules 1/3 1/3 1/3
discretization points 12/20 14/20 13/20

summed up as follows: (1) For modelling dynamic objects the method presented
in our previous work [39] was used. In this method, every output of system (2)
generates one element of variable state matrix. (2) For system (2) a Gaussian
functions with algebraic triangular norms were used. (3) The following proper-
ties of evolutionary algorithm was assumed: the number of chromosomes in the
population was set to 100, the algorithm performs 10 000 steps (generations),
the crossover probability was set as pc = 0.8, the mutation probability was set
as pm = 0.2, the mutation intensity was set as σ = 0.3. (4) In interpretability
component (10) of the fitness function (7) following weights was set: ffintC (Xch)
(wffintC = 1.0), ffintD (Xch) (wffintD = 1.0) i ffintF (Xch) (wffintF = 0.5). Weights
of remaining components of function (10) was set as 0.2.

The conclusions from simulations can be summarized as follows: (1) Example
(a) allowed to obtain a system with very high accuracy and quite acceptable in-
terpretability. (2) Example (b) and (c) allowed obtain high readability of fuzzy
sets (see Fig. 1), high readability of weights of fuzzy sets and rules (see Fig. 2)
and good accuracy of the system (see Fig. 3). (3) Example (c) (as predicted)
allowed obtain better accuracy of the system than example b (b) with acceptable
compromise between semantic interpretability and complex-based interpretabil-
ity (see Table 1).
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Fig. 1. Inputs and outputs fuzzy sets of the neuro-fuzzy system (2) for the van der
Pol oscillator problem for three various settings of the function (7) (for the best chro-
mosomes): a) high accuracy case, b) high interpretability case, c) high accuracy and
interpretability case

Fig. 2. Weights representation in the neuro-fuzzy system (2) (dark areas correspond to
low values of weights and vice versa) for the van der Pol oscillator problem for different
weights configuration of the function (7) (for the best chromosomes): a) high accuracy
case, b) high interpretability case, c) high accuracy and interpretability case
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Fig. 3. Trajectories obtained for the van der Pol oscillator for three different weights
configuration of the function (7) (for the best chromosomes): a) high accuracy case,
b) high interpretability case, c) high accuracy and interpretability case

5 Conclusions

In this article we proposed a new method for designing fuzzy systems for nonlin-
ear modelling using different criteria of interpretability. Proposed interpretability
criteria consider both complexity of the system and semantic interpretability of
knowledge accumulated within it. Those criteria were used in the fitness function
of presented new hybrid population-based method which uses possibilities of ge-
netic algorithm, evolutionary strategy (μ, λ) and bees algorithm. This method
works in two phases, in the first the structure and parameters of the system are
chosen, in the second phase the system components are tuned. Our simulation
results affirmed effectiveness of the proposed approaches.
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Abstract. Intelligent and flexible spectrum access procedures and re-
source allocation methods are needed to build cognitive radio (CR) net-
works. Apart from the major objective to maximise spectra efficiency, the
goal of the CR network design is to rationalise the distribution of radio
resources and the cost of their usage. This paper proposes a new fuzzy
reinforcement learning method that allows for learning the best transmit
power control strategy that in turn enables cognitive secondary users
to achieve its required transmission rate and quality whilst minimising
interference. An example is presented to illustrate the performance and
applicability of the proposed method.

1 Introduction

Traditional spectrum management policies are challenged by increasing demand
for spectrum resources. The Federal Communications Commission (FCC) has
reported that spectrum shortage is caused by the current inefficiency of spectrum
usage rather than the physical spectrum scarcity. The report shows that ”for
the measurement period, typical channel occupancy was less than 15%, while
the peak usage was close to 85%,” [4]. Cognitive radio (CR) systems [14], [8]
have emerged as a potential technology to revolutionise spectrum utilisation.
Cognitive radio is defined as a radio system that continuously performs spectrum
sensing, dynamically identifying unused spectra and then operating in those
spectrum holes.

The main challenge to dynamic spectrum access (DSA) in the CR systems lies
in finding a balance with the conflicting goal of satisfying performance require-
ments for secondary (unlicensed) users (SUs), while minimising interference to
primary (licensed) users (PUs) and other secondary users. In particular, concur-
rent transmissions of PUs and SUs may occur only if the aggregate interference
caused by the SUs at the PUs is maintained below some acceptable threshold.
Thus, in order to achieve these tasks, SUs are required to recognise PUs, deter-
mine environmental characteristics and adapt their system parameters to flexible
radio channel changes over time and space according to the presence of PUs and
SUs as well as the infrastructure costs of the secondary networks.

Power control in CR networks has been analysed in various research studies.
In the paper by Hoang [9], a CR network is treated as a set of base stations
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that make opportunistic spectrum accesses to support fixed-location wireless
subscribers. A downlink power allocation scheme that maximises the number
of supported subscribers is obtained by solving a mixed-integer linear program-
ming problem. However, the solution proposed in Hoang [9] is not applicable
to cases where the PUs employ spread transmissions over multiple carriers. In
the paper by Wang et al. [15], the optimal power control in a CR network is
modelled as a concave maximisation, and an improved branch and bound algo-
rithm is proposed. Gatsis [7] suggests a utility function-based approach to the
power control problem in peer-to-peer CR networks. In the paper by Gao [6], the
energy efficiency maximisation is considered. Given the data rate requirements
and maximal power limits, a constrained optimisation problem is formulated for
each secondary user to minimise the energy consumption per bit over all selected
subcarriers, while avoiding interference to the existing users. However, none of
the above-mentioned papers have dealt with radio channel changes over time
and space according to the presence/absence of PUs or SUs.

Fuzzy logic system is one of the most effective methods that is able to simul-
taneously handle numerical data and linguistic knowledge. It can be also used
in partial-state systems. Therefore, fuzzy logic is often used in many research
problems in CR networks. Among others, in the paper by Matinmikko et al.
[13], a fuzzy logic system is proposed for cooperative spectrum sensing in CR
networks. In the model given by Le et al. [11], fuzzy logic is used for power con-
trol schemes in the CR network, in which some SUs transmitting simultaneously
as the PUs on the same band was modelled. A fuzzy logic to select the most
suitable SU to access the spectrum in the CR network was also studied by Le
et al. [12]. Recently, the problem of spectrum sharing in multi-service cognitive
networks has been studied using reinforcement learning by Alsarhan [1]. In this
paper, the machine-learning paradigm is presented as a means for extracting an
optimal control policy for spectrum sharing.

The main goal of this paper is to introduce a new method of power control in
CR networks based on the fuzzy reinforcement-learning algorithm. It allows us to
achieve its required transmission rate and quality, while minimising interference
to primary and secondary users. The proposed technique guarantees the balance
of the two requirements for the maximum acceptable SU transmission power
to satisfy interference constraints and the minimum transit power required by
SUs to satisfy a determined level of service. Moreover, the main possibility for
the proposed method lies in dynamic frequency selection and adaptive power
control.

This paper is organised as follows. Section 2 presents system model for the
CR network. Section 3 formulates the fuzzy reinforcement learning approach for
power control in the CR network. In section 4, we present the results of the
simulation experiments. The conclusion and future research are summarised in
the last section.
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2 Model System

In this section, we consider a system model based on the distributed power
control scheme.

We assume that the distributed power control scheme requires local link gain,
an estimated signal-to-interference plus noise ratio (SINR), a bit error rate, etc.
The presented scheme is based on the distributed power control model presented
by Foschini et al. [5]. According to this approach to the presented scheme, dis-
tributed power control is based on satisfying certain SINR thresholds in the
network [5]. Thus, the transmission power of the i-th link in the t-th time slot
is given by:

Pi(t+ 1) =
γi

SINRi(t)
Pi(t) (1)

where γi is the threshold of a lower SINR for each link i and SINRi(t) can be
defined as follows:

SINRi(t) =
GiiPi(t)∑

j �=iGijPj(t) +Ni
(2)

where Gij is the channel response from transmitter of the i-th link to the
receiver of the j-th link, and Ni is the power of the additive white gaussian noise
(AWGN). In the distributed manner, each user measures its current SINRi(t)
autonomously and makes its power decision for the next step in order to achieve
its target γi. This scheme is the standard distributed power control and it con-
vergences to the Pareto optimal, which is the minimal operational power point
for the network of links.

The proposed power control strategy is based on balancing the SU transmis-
sion power level with the required minimum value and the acceptable maximum
degree. The required minimum transmit power is established by adjusting it to
the demanded SINR by the SU receiver. The acceptable transmission power is
obtained by considering the admitted interference at the primary user’s receiver.
Thus, each cognitive SU tries to obtain the required SINR whilst minimising in-
terference to the PUs. We can indicate three possible cases in determining the
transmit power interferences:

a) If the sensing power is bellow the PU threshold level, the licensed PU cannot
be detected by the SU. Then, the SU can reduce its transmit power in order
to avoid interference to the PU receiver at unknown location.

b) If the sensing power is above the PU threshold level, the SU is not able to
transmit its data in the same area. Therefore, the transmission should be
delayed or the SU must stand some metres away from the PU coverage zone.

c) If the sensing power is well above the PU threshold level, the SU can transmit
with a lower power level without causing measurable disturbing interference
to the PU receiver. This situation allows for the realisation of short com-
munications between the SU transmitter and a receiver distant from PU
receiver.
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Fig. 1. Fuzzy sets for two-dimensional environment defining membership functions of
current SINR (a, b), required SINR (c, d), mobility (e, f); distance with respect to
nearest PU (g, h)

3 Fuzzy Reinforcement Learning Method for Power
Control in the CR Network

We assume that a single SU station is equipped in three sensors: one to detect
SINR, the second to indicate mobility degree, and the third to find the distance
between the SU and the nearest PU. For a two-dimensional environment, all the
information obtained by the j-th SU about the current SINR is defined by the
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membership functions μx, μy (see Figs. 1(a) and Fig. 1(b)). The required SINRs
at the SU are described by the membership functions given in Fig. 1(c) and Fig.
1(d). The mobility degrees are defined by the membership functions presented in
Fig. 1(e) and Fig. 1(f). The data from third sensor allows us to find the distance
to nearest PU. The membership functions are given in Fig. 1(g) and Fig. 1(h).

A membership value defining the fuzzy state of the j-th SU with reference to
the SINR and in respect to the k-th nearest PU is given by:

μ
(j)
state(current SINR

(k)) = μ(j)x (current SINR(k)) · μ(j)y (current SINR(k))
(3)

A membership function defining the fuzzy state of the j-th SU in respect of
the k-th required SINR for a two-dimensional environment is as follows:

μ
(j)
state(required SINR

(k)) = μ(j)x (required SINR(k)) · μ(j)y (required SINR(k))
(4)

A membership function defining the fuzzy state of the j-th SU defining its mo-
bility degree with respect to k-th nearest PU for a two-dimensional environment
is as follows:

μ
(j)
state(mobility

(k)) = μ(j)x (mobility(k)) · μ(j)y (mobility(k)) (5)

Similarly, the distance of j-th SU to the nearest k-th PU which also defines
the fuzzy state for a two-dimensional environment is computed as:

μ
(j)
state(distance

(k) = μ(j)x (distance(k)) · μ(j)y (distance(k)) (6)

The system model is described by the multidimensional membership function,
which can be treated as a multidimensional hypercube. The fuzzy state for the
j-th SU can be defined by the fuzzy pair (sn, an) for the n-th fuzzy variable,
where s and a are the state and action respectively. Using the aggregation of the
fuzzy state, we can achieve:

Q
(j)
state(s, a)← Q

(j)
state(s, a) +

N∑
n=1

α(j)
n · μ

(j)
state(sn, an) (7)

where N is the total number of fuzzy variables.
For the four exemplary fuzzy variables we have the Q-function for j-th SU,

namely

Q
(j)
state ← Q

(j)
state(s, a)

+

K∑
k=1

(α
(j)
k μ

(j)
state(current SINR

(k)) + α
(j)
k μ

(j)
state(required SINR

(k)))

+

L∑
l=1

(α
(j)
l μ

(l)
state(mobility

(l)) + α
(j)
l μ

(l)
state(distance

(l)) (8)
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Fig. 2. A block diagram for an agent system architecture in the case of data mining

where α
(j)
n is the learning rate for SU j with respect to n-th fuzzy variable,

K is the total number of SUs, L is the total number of PU.
Let the radio transmitting range of the SU be equal to R. Thus, we can again

define the Q-function value as follows:

Q
(j)
state(st+1, at+1)←

⎧⎪⎨⎪⎩
0 if j /∈ {J}
Q

(j)
state(st, at) + α

(j)
state(st, at) if j ∈ {J0<r≤0.5R}

Q
(j)
state(st, at) + β

(j)Q
(j)
state(st, at) if j ∈ {J0.5R<r≤R}

(9)
where {J} is the set of SUs and PUs in the range of the PU observation with

the radius equal to R, {J0<r≤0.5·R} and {J0.5·R<r≤R} are the sets of SUs and
PUs in the range of the SU observation with the radius equal to 0 < r ≤ 0.5 ·R
and 0.5 ·R < r ≤ R, respectively. β(j) are learning rate factors.

The state space in reinforcement learning can be treated as a stochastic prob-
lem. In the standard approach, we can generalise the Q-value across states using
the function approximation Q(s, a, f) for approximating Q(s, a), where f is the
set of all learned fuzzy logic mechanisms [2], [3]. To handle all the information,
we can use the data mining approach.

Fig. 2 presents the system architecture used for the data mining process of
a single SU station in the CR network. The data mining process referring to a
single SU is given by the following procedure:

Procedure 1

1) The SU by use its sensors fixes the current values of all the membership
functions. Further, it defines the actual value of state-action pair.
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2) The SU computes the learning rate α, which for the j-th SU is given as
follows:

α(j) =
1∑N

n=1 μ
(n)
state

(10)

where N is the total number of fuzzy variables. Above equation shows that
by increase of the number of fuzzy variables the learning rate becomes smaller.
3) The SU computes the Q-function for each fuzzy parameter. We applied the

selection procedure based on Kóczy-Hirot method presented a.o. by Joó [10].
This method computes a conclusion as a weighted sum of vague consequent
values bn, which is given by

C(bh) =

∑H
h=1 wh · dist(y0, bh)∑H

h=1wh

(11)

where wh is the weight inverse proportional to the vague distance of the
observation x from action a. For the h-th rule the weight is defined as

wh =
1

dist(x, a)
(12)

5) After the choice of the action by the SU the reward function rt(st, at) is
computed. Further, it upgrades the ΔQt and computes Qt(st, at).
6) The computation goes to step 1.

The function Q is computed by the Q-learning algorithm; this algorithm was
first introduced by Watkins [16], and Watkins and Dayan [17]. We recall that
the Q-function is given by:

Qt(st, at) = (1 − α)Qt(st, at) + α(rt + γ max
at∈A

Qt(s
′
t, a

′
t)) (13)

where A is the set of all the possible actions, α (0 ≤ α < 1) and γ (0 ≤ γ ≤ 1)
denote the learning rate and the discount parameter, Qt(s

′
t, a

′
t) is the value of

the Q function after the execution of action a′t. Fig. 3 shows the raw form of the

initialization t = 0, rT = (st, at) = 0;
for ∀ st ∈ S and at ∈ A do

begin
t := t+ 1; access the current state st;
at ← choose action(st, Qt);
perform action at;
compute: rt(st, at), st+1;

ΔQt ← (rt + γmaxat(Qt(st+1, at))−Qt(st, at);
Qt(st, at) ← (1− α)Qt(st, at) + αΔQt;

end;

Fig. 3. Q-learning algorithm estimates new state obtained by performing the chosen
action at each time step
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Q-learning algorithm. It can be seen that the Q-learning algorithm is an incre-
mental reinforcement learning method. The choice of the action does not show
how to obtain it. Therefore, the Q-learning algorithm can use other strategies
that it learns, irrespective of the assumed strategy. This means that it does not
need actions that would maximise the reward function.

4 Simulation Results

In this section, we give some simulation results of the proposed reinforcement
method.

In our simulation, we used an arrangement of 20 SU transmitter and receiver
pairs in an area equal 1 km × 1 km. We simulated 3000 samples of Rayleigh
faded received signals for each pair. In order to evaluate transmission power
control, the maximum power of the PU transmitter was equal to 30 dBm and
maximum power of the SU transmitter was set to 20 dBm. We assumed two
PU transmitters. The obtained transmit control power is obtained here as the
difference of the observed SINR value at SU receiver and the required SINR. For
the simulation, we generated 3000 randomly distributed Rayleigh faded signal
samples for the PU transmitter.

12 rules have been defined for the decision system of each SU, namely:
Each rule was associated with a weight. The rules concerning the SINR values

have a weight equal to 3. All rules concerned with SU mobility were assigned a
weight of 2. The weight equal to 1 used only for the distance to the nearest PU.
Initially, all the values of Q were the same and were equal to 0.5. The learning

Fig. 4. SINR difference in dependence on number of samples
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Fig. 5. SU transmit power in dependence on number of samples

rates are α = 0.1 and β = 0.06. We assumed that the radio transmitting range
of the SU was equal to 50 m.

Fig. 4 shows the obtained average difference between the required SINR and
the measured SINR at the SU for 500 samples. We assumed that in the simula-
tion, a Brownian-like mobility model is used.

Fig. 5 presents the obtained average transmit power at the transmitter of the
SU. We can see that the SU power is reduced for the smaller value of frequency.
It is caused by the lower degree of interferences from the other SU transmitters.

5 Conclusions

In this paper, we presented a fuzzy reinforcement learning for power control in
CR networks. A learning scheme based on the Q-learning algorithm, which com-
bines fuzzy sets for two-dimensional environments was developed for this model.
The proposed model introduces a multidimensional membership function into
the fuzzy logic system and provides a generalisation of the Q-value across states
on the system. As a result, we achieved a power control method allowing us
to obtain the required transmission rate by the secondary users. An example
was presented to demonstrate the application of the proposed technique. Fu-
ture research will focus on incorporating more system parameters, such as QoS
provisioning transmission and energy consumption.
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Abstract. In this paper, we focus on one of the most powerful comput-
ing methods for natural-language-driven representation of data, i.e. on
Yager’s concept of a linguistic summary of a relational database (1982).
In particular, we introduce an original extension of that concept: new
forms of linguistic summaries. The new forms are named ”Multi-Subject”
linguistic summaries, because they can handle more than one table or
more than one set of records/objects collected in a database, e.g. More
boys than girls play football well. Thanks to that, the generated linguis-
tic summaries – quasi-natural language sentences – are more interesting
and human-oriented. Finally, they new method is applied to a computer
system that generates natural language description of numeric data, that
makes them possible to be clearly presented to an end-user.

Keywords: Multi-Subjectivity in relational databases, linguistic sum-
maries of databases, Multi-Subject linguistic summaries, fuzzy sets.

1 Linguistic Summaries of Relational Databases: A Brief
Overview on Ideas and Related Literature

More than thirty years ago, R. R. Yager proposed the idea of a linguistic sum-
mary of a (relational) database [1], e.g. More than half of basketball players are
very tall. This simple concept appeared to be a direct answer to people’s needs
for quick and friendly receiving of large amounts of data and/or information.
What is the most important, the idea does not refer to any of terse statistical
method for aggregating data (the mean, variation, standard deviation, etc.) but
on fuzzy models of natural language expressions. Even if these expressions are
less precise than numbers, e.g. more than half of objects instead of 55.6% of ob-
jects or a very tall boy instead of 195cm-tall-boy, they are commonly understood
and provide knowledge on what the summarized data mean.

To be more precise, the concept of a linguistic summary is based on Zadeh’s
calculus of linguistically quantified propositions (statements) [2]. There are two
basic forms of linguistic summaries (based on two forms of linguistically quanti-
fied propositions, respectively) presented in the literature [1, 3–7]:

Q P are/have S [T ] (1)

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 243–255, 2014.
c© Springer International Publishing Switzerland 2014



244 A. Niewiadomski and I. Superson

e.g. Many boys are tall [0.83], and

Q P being W are/have S [T ] (2)

e.g.Many boys who are teenagers, are tall [0.63]. In both forms (1) and (2), Q is a
quantity in agreement, e.g. Many, More than 900, represented by an aggregation
operator, e.g. fuzzy quantifier or an OWA operator [8], P is the subject of the
summary, e.g. men, cars, or any other objects described in the summarized
database, and S is a summarizer – a linguistic expression for properties of the
objects, represented by a fuzzy set. TheW symbol, appearing only in form (2), is
a qualifier, represented by a fuzzy set, that determines additional and/or specific
properties of the objects that the summary deals with. T ∈ [0, 1] is a degree of
truth and it determines how good (how informative, how true) the summary
is; values of T are evaluated according to the Zadeh calculus of linguistically
quantified propositions and/or to another different methods of evaluating [5, 9].

Obviously, this paper is too short to present or even mention all methods
and applications of linguistic summarization of relational databases, e.g. [10–12].
Moreover, we are not able to enumerate all the concepts for data summarization
that are based on fuzzy sets but take into account assumptions different than
the Yager originals, e.g. [13–16]. What is to be done here is to introduce a
Multi-Subject Linguistic Summary of a relational database. That means that a
summary contains more than one subject P1, e.g. P1 and P2, and models of
imprecise linguistic expressions (summarizers, quantifiers, etc.) are built using
fuzzy sets.

Hence, the rest of the paper is organized as follows: in Section 3, the new
concept called a Multi-Subject Linguistic Summary of a relational database is
presented. We intend to construct and evaluate summaries related to more than
one subject P that is represented by tuples in the summarized database D, e.g.
to P1 and P2 or to P1 in comparison to P2. These two or more subjects are
represented by non-fuzzy sets of tuples collected in separated tables in D, or can
be, if necessary, results of some other selecting, querying and/or filtering tuples,
with respect to chosen values and/or attributes, e.g. male and female. Obviously,
these general explanations are explained in details and exemplified in Section 3.

Section 4 contains a brief description of the experiment (developing and ex-
ploring software) that helped us to present, determine and evaluate usefulness
and performance of Multi-Subject Linguistic Summaries of relational databases.
We show sample outputs of the program produced for a chosen database, and
how users (intermediate and advanced) may affect on summaries that are gen-
erated by the software.

Finally, there are conclusions on the usefulness of the concepts and the meth-
ods presented, drawn in Section 5.

2 Multi-subjectivity in Relational Databases: New
Possibilities of Data Linguistic Summarization

We refer to the traditional model of relational databases by Codd [17]. We assume
that a database consists of tables being sets of tuples (usually called ”records”),
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and one tuple is a representation of one real object (a child, person, car, trans-
action, etc.). Table D consists of tuples di, i = 1, 2, . . . ,m, and m ∈ N is the
number of tuples in D. Each tuple di consists of n ∈ N values of attributes
V1, . . . , Vn and the domains of the attributes are X1, . . . ,Xn, respectively. The
values of attributes express properties of objects, e.g. height, salary, price, date,
etc. and they are treated as ”columns” of the table. The value of attribute Vj for
object yi, is denoted as Vj(yi) ∈ Xj , i ∈ {1, 2, . . . ,m}, j ∈ {1, 2, . . . , n}. Hence,
the database D collecting information on elements from Y = {y1, . . . , ym} is in
the form of:

D = [d1, d2, . . . , dm]T (3)

where di = 〈V1(yi), V2(yi), . . . , Vn(yi)〉.
It is important to note here that objects {y1, . . . , ym} from set Y are the

subject of a linguistic summary, see (1) and (2). The introduced concept of a
multi-subject linguistic summary is based on possible splitting set Y into two
or more subsets but elements in these subsets are still described by the same
attributes (columns). So it is possible to make comparisons between subjects on
the base of linguistically expressed values of other attributes, e.g. splitting set
”children into subsets ”boys” and ”girls” makes it possible to compare height or
weight for these two subjects.

The process of ”splitting” dataset into two or more subsets representing se-
lected subjects is described as follows:

FOR i := 1 TO m

1. Select attribute Vj , j = 1, 2, . . . , n in D. This attribute determines whether
a given object is a member of one of subjects that are to be distinguished.

2. Get object yi
3. Get Vj(yi) and add object yi to the corresponding subset.

A sample database D in the form of (3) is shown in Table 1. It is a part of
a larger database, then summarized in the example presented in Section 4. The
table illustrates the possibility of extracting two sets of subjects for multi-subject
summaries; in this case, it is attribute ”Gender” and its two values: ”boy” and
”girl”, that allow us to ”split” the set of data into two subsets, exemplified by
Table 2 and Table 3, respectively:

It must be underlined that Table 2 and 3 do not represent real database ta-
bles stored separately in a database management system; such a storage could
be inefficient and non-optimal, especially, with respect to normal forms of re-
lational database tables, popular optimisation criteria for databases. The pre-
sented tables are only results of filtering operations performed on D (represented
by Table 1) with respect to values of a chosen attribute, here: ”Gender”, for both
”boys” and ”girls” values.

What is crucial for the main idea of the paper, i.e. for multi-subject linguistic
summaries, is that (at least) two separated sets of objects, previously stored
as one set in D, are now distinguished. These sets represent different subjects
P1, P2, . . . of multi-subject linguistic summaries that are now presented
in Section 3.
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Table 1. A sample database D collecting information on children in school age

ID Gender Age Height

1. girl 7 130
2. boy 8 120
3. boy 13 150
4. girl 8 140
5. girl 18 160

Table 2. The part of dataset D presented in Table 1, filtered for attribute ”Gen-
der”=”boy”

ID Gender Age Height

2. boy 8 120
3. boy 13 150

Table 3. The part of dataset D presented in Table 1, filtered for attribute ”Gen-
der”=”girl”

ID Gender Age Height

1. girl 7 130
4. girl 8 140
5. girl 18 160

3 New Forms of Summaries: Multi-subject Linguistic
Summaries

Note that none of the older forms of linguistic summaries, i.e. (1) and (2), is
able to represent the relations or associations between different groups of ob-
jects and/or their properties, e.g. between boys and girls in relation to their
height, age, etc. For those non-multi-subject methods, the only opportunity is
to generate summaries that includes the pre-selected set of objects, e.g. boys or
girls, as qualifier W , see (2), e.g. About half of BOYS are tall, where BOYS is
a qualifier.

On the other hand, these relations can be easily discovered and expressed
in an interesting way using multi-subject linguistic summaries. Four forms of
expressions that are linked to more than one subject (in the sense of ”subset of
objects/records/tuples”) are now presented.

3.1 The First form of a Multi-subject Linguistic Summary

The first form of a multi-subject linguistic summary is proposed:

Q P1 relatively to P2 are S1[T ] (4)
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where Q is a fuzzy quantifier, P1 and P2 are the subjects of the summary and
S1 is a summarizer, represented by a fuzzy set. The degree of truth of summary
(4) for is evaluated with formula (5):

T (Q P1 relatively to P2 are S1) =

= μQ

( 1
MP1

Σ-count(S1P1
)

1
MP1

Σ -count(S1P1
) + 1

MP2
Σ -count(S1P2

)

)
(5)

where:

Σ-count(S1P1
) =

m∑
i=1

{uS1(di) : di ∈∗ P1} (6)

and Σ-count(S1P2
) – analogously. The notation di ∈∗ P1 means that di is a

tuple representing P1 subject. MP1 and MP2 are numbers of tuples representing
subjects P1 and P2, respectively:

MP1 =

m∑
i=1

tiP1
(7)

where:

tiP1
=

{
1, if di ∈∗ P1

0, otherwise
(8)

For instance:

tiboys
=

{
1, if Vj(di) =”boy”

0, if Vj(di) =”girls”
(9)

and Vj = Gender.
An example of a summary in the form of (4) is now given:

Most of boys relatively to girls are tall [0.456] (10)

where Q =most of, P1 =boys, P2 =girls, S1 =tall.

3.2 The Second Form of a Multi-subject Linguistic Summary

The second form of a multi-subject summary proposed here is given:

Q P1 relatively to P2 being S2 are S1[T ] (11)

where S2 is a qualifier, cf. (2). The degree of truth of the summary is evaluated
via formula (12):

T (Q P1 relatively to P2 being S2 are S1) =

= μQ

( 1
MP1

Σ -count(S1P1
∩ S2P1

)

1
MP1

Σ-count(S1P1
∩ S2P1

) + 1
MP2

Σ -count(S1P2
∩ S2P2

)

)
(12)
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where Q is a relative quantifier, P1 and P2 are the subjects of the summary, S2
is a qualifier related to both P1 and P2 subjects, S1 is a summarizer,

Σ -count(S1P1
∩ S2P1

) =

=

m∑
i=1

min{μS1(di), μS2(di)}, di ∈∗ P1

(13)

and Σ-count(S2P1
), Σ-count(S2P2

), di ∈∗ P1 – analogously to (4).
An example of a summary in the form of (11) is now presented:

About two-third of boys relatively to girls being teenagers, are tall [0.390] (14)

where Q =about two-third, P1 =boys, P2 =girls, S1 =tall, S2 =teenagers.
Summaries in form (11) allow us to retrieve information about selected sub-

jects’ features S1, according to other subjects conditions (specific features that
both subjects must posses). It means that in this case, the tuples taken into
account represent boys and girls who are qualified by S2 as teenagers.

3.3 The Third Form of a Multi-subject Linguistic Summary

The third form of a multi-subject linguistic summary is proposed as:

Q P1 being S2 relatively to P2 are S1[T ] (15)

and its degree of truth is evaluated with formula (16).

T (Q P1 being S2 relatively to P2 is S1) =

= μQ̃

( 1
MP1

Σ -count(S1P1
∩ S2P1

)

1
MP1

Σ -count(S1P1
) + 1

MP2
Σ -count(S1P2

)

)
(16)

where Q is a relative quantifier, P1 and P2 are the subjects of the summary, S2
is a qualifier referring only to subject P1 and S1 is a summarizer.

An example of such a summary is given (15):

About half of boys being teenagers relatively to girls, are tall [0.256] (17)

where Q =about half, P1 =boys, P2 =girls, S1 =tall, S2 =teenagers.
Summaries in the form of (15) allows users to retrieve information on some

selected features of subjects, according to chosen conditions given for subject P1

only (i.e. some specific features that only subject P1 must fulfill). It means that
tuples taken into account by the summary represent both P1 and P2 subjects, i.e.
boys and girls, but only P1 is additionally qualified by S2 (here: as teenagers).
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3.4 The Fourth Form of a Multi-subject Linguistic Summary

The fourth form of a multi-subject summary is proposed:

More P1 than P2 are S1[T ] (18)

This form does not involve any quantifier. The degree of truth of the summary
is given by formula (19):

T(More P1 than P2 are S1) =
Σ-count(S1P1

)

Σ -count(S1P1
) +Σ -count(S1P2

)
(19)

where P1 and P2 are the subjects of the summary,MP1 andMP2 are the numbers
of tuples representing subjects P1 and P2, diP1

: di ∈∗ P1 ∧ diP2
: di ∈∗ P2.

An example of such a summary is given:

More boys than girls are tall [0.756] (20)

where P1 =boys, P2 =girls and S1 =tall.
Summaries in the form of (18) allow users to compare two different subjects

without using any additional measures or fuzzy models, e.g. quantifiers. This
method is useful for generating simple, quick and very intuitive summaries.

3.5 A Note on Differences between Multi-subject Forms and Classic
Forms of Linguistic Summaries

Note that none of the older forms of linguistic summaries, i.e. (1) and (2), is
able to represent the relations between different groups of objects and their
properties, e.g. boys and girls, and their height, age, etc. On the other hand,
these relations can be easily discovered and expressed in an interesting way
using multi-subject linguistic summaries. For older, non-multi-subject methods,
the only opportunity is to generate summaries that includes the pre-selected set
of objects, e.g. boys or girls, as qualifier W , see (2), e.g. About half of BOYS are
tall, where BOYS is a qualifier.

Now, in Section 4, we show results of an experiment: a database containing in-
formation on children medical examination is summarized using newly proposed
forms of linguistic summaries. The results are finally related to those obtained
via non-multi-subject forms, cf. (1) and (2) summaries.

4 Describing and Summarizing Databases Linguistically
via Multi-subject Summaries: An Application Example

4.1 Goals and Methods of the Application

The application created for testing purposes is based on the Java 1.7 SE Plat-
form. The database used in the experiment contains data of children in the age of
7 up to 18 years old. The data describes e.g. children height, mass, date of birth,
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(a) The membership function
of the MOST OF linguistic
quantifier

(b) The membership function
of the ABOUT TWO-THIRD
linguistic quantifier

Fig. 1. Fuzzy sets representing selected quantifiers

living conditions such as number of rooms in flat, number of people in family,
family financial situation, etc. The database contain data on 13 956 children,
including 6 991 boys and 6 965 girls.

In the experiment, generated summaries are assumed to discover how chil-
dren’s age and gender is related to their height. Two subjects taken into account
in multi-subject summaries are boys and girls. The process of logical splitting the
database into two separated sets of data describing boys and girls, respectively,
is exemplified by Table 1, 2 and 3, on Page 246). The relative quantifiers are
used in the experiment called most of, about two-third and about half to repre-
sent the quantities in agreement for selected subjects, and to evaluate degrees of
truth of the multi-subject summaries. The proposed membership functions for
the quantifiers most of and about two-third are presented in Figure 1a and 1b.

The generated summaries are based on qualifiers and summarizers represented
by fuzzy sets. Sample summarizers and qualifiers are:

– tall (height)
– short (height)
– in early school age (age)
– teenager (age)

The label tall is represented by fuzzy set TALL

TALL = {〈x, μTALL(x)〉 : x ∈ [150, 195], μTALL(x) ∈ [0, 1]} (21)

where

μTALL(x) =

⎧⎪⎨⎪⎩
2(x−150)

45 , if 150 ≤ x ≤ 150+195
2

2(195−x)
45 , if 150+195

2 ≤ x ≤ 195

0, if x ≤ 150 or x ≥ 195

(22)

the label short is represented by fuzzy set

SHORT = {〈x, μSHORT (x)〉 : x ∈ [103, 150], μSHORT (x) ∈ [0, 1]} (23)
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(a) The membership function
of the TALL fuzzy set

(b) The membership function
of the TEENAGE fuzzy set

Fig. 2. Fuzzy sets representing selected summarizers

where

μSHORT (x) =

⎧⎪⎨⎪⎩
2(x−103)

47 , if 103 ≤ x ≤ 103+150
2

2(150−x)
47 , if 103+150

2 ≤ x ≤ 150

0, if x ≤ 103 or x ≥ 150

(24)

Analogously, the label teenage is represented by fuzzy set

TEENAGE = {〈x, μTEENAGE(x)〉 : x ∈ [13, 18], μTEENAGE(x) ∈ [0, 1]} (25)

where

μTEENAGE(x) =

⎧⎪⎨⎪⎩
2(x−13)

5 , if 13 ≤ x ≤ 13+18
2

2(18−x)
5 , if 13+18

2 ≤ x ≤ 18

0, if x ≤ 13 or x ≥ 18

(26)

and the label early school age is represented by fuzzy set

EARLY SCHOOL AGE =

{〈x, μEARLY SCHOOL AGE(x)〉 : x ∈ [7, 12], μEARLY SCHOOL AGE(x) ∈ [0, 1]}
(27)

where

μEARLY SCHOOL AGE(x) =

⎧⎪⎨⎪⎩
2(x−7)

5 , if 7 ≤ x ≤ 7+12
2

2(12−x)
5 , if 7+12

2 ≤ x ≤ 12

0, if x ≤ 7 or x ≥ 12

(28)

The plots of the membership functions of fuzzy sets TALL and TEENAGE
are presented in Figure 2a and 2b.

4.2 Results and Their Interpretation

The output of the experimental software, i.e. the generated summaries, are col-
lected in Table 4. For each summary, the evaluated degree of truth (column T )
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Table 4. Sample multi-subject summaries illustrating relations between children age
and height

No. Summary [T ] Summary
form

1. Most of girls relatively to boys are in early school age 0.495

(4)

2. Most of boys relatively to girls are in early school age 0.505
3. Most of girls relatively to boys are teenagers 0.511
4. About half of boys relatively to girls are teenagers 0.994
5. Most of girls relatively to boys are tall 0.206
6. Most of boys relatively to girls are tall 0.298
7. Most of girls relatively to boys are short 0.249
8. About two-thirds of boys relatively to girls are short 0.043

9. Most of boys relatively to girls being in early school age, are
tall

0.004

(11)
10. Most of boys relatively to girls being teenagers, are tall 0.129
11. Most of girls relatively to boys being in early school age, are

short
0.124

12. About half of girls relatively to boys being teenagers, are
short

0

13. Most of girls being in early school age, relatively to boys are
short

0.101

(15)
14. Most of girls being teenagers, relatively to boys are short 0.004
15. Most of boys being teenagers, relatively to girls are tall 0.098
16. About two-thirds of boys in early school age relatively to

girls, are tall
0

17. More boys than girls are tall 0.534

(18)
18. More girls than boys are short 0.5
19. More boys than girls are teenagers 0.49
20. More girls than boys are teenagers 0.510
21. More boys than girls are in early school age 0.506

22. About half of children are girls 1
(1)23. Most of children are in early school age 0.32

24. About two-thirds of boys are tall 0

25. Most of boys being tall are teenagers 0.031 (2)

and the form of the summary (column ”Summary form”), are provided. The
”Summary form” refers to the number of equation in this paper, that means (4),
(11), (15), (18) refer to the first, the second, the third and the fourth form of
a multi-subject linguistic summary given in Section 3, respectively, and (1) and
(2) refer to the older forms of linguistic summaries.

According to expert’ opinion, the results are intuitively correct. The first eight
summaries 1.-8. are constructed according to the first form of a multi-subject
linguistic summary (4). Analysing their degrees of truth we can see that there
is no disproportion between information on boys or girls, e.g. summaries 1. and
2. are of very similar degree of truth.
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The next summaries, 9.-16., lead us to the conclusion that there are more tall
girls than tall boys in early school age: e.g. summary 9. contains the opposite
statement, i.e. boys relatively to girls in the early school age are tall, and it is of
the very low degree of truth. The situation changes for teenagers: there are more
tall teenager boys than teenager girls, summary 10. Also, it cannot be said that
in comparison to boys, major part of teenager girls are short, because it would
mean that there are many teenager girls from 103cm to 150cm height summary
10. (the reader must take into consideration that children in the dataset was
from 103cm to 195cm tall, so in this circumstances, a short child is more or less
between 103cm and 150cm tall).

Summaries from 17. to 20. confirm lack of substantial disproportion between
number of tall boys and tall girls and teenager boys and teenager girls. There
are not many more tall boys than tall girls, according to summaries 17. and 18
and there is only a few more teenager girls than teenagres boys, according to
summaries 19. and 20.. Summary 21. confirms that there are more teenager girls
(the number of early school aged boys is slightly bigger than early school aged
girls).

Using the older forms of the linguistic summaries, i.e. (1) and (2), provides
us with extensive information about the analysed dataset. Extending summa-
rizations set from Table 4 with summaries in known forms, 22.-25., completes
our knowledge on the summarized database. For example, information on pro-
portions between boys and girls, amount of tall boys, tall girls, teenager boys,
teenager girls, teenage boys which are tall, early school aged girl which are short,
are provided. The dedicated algorithm can evaluate degrees of truth, select the
best (the most informative) summaries and present tham in clear and intuitive
forms, e.g. About half of children are girls. Most of boys relatively to girls are
all. About two-third of girls being in early school age, relatively to boys are tall.
The last conclusion shows in particular, that newly proposed multi-subject sum-
maries of databases do not exclude the older forms, but can be used together
with them, to extend and improve the process of extracting and representing
knowledge from large datasets.

5 Conclusions

The goal of the research is to develope fuzzy-based methods that make it possible
to describe provided data in as human-friendly manner as possible, preferably:
with natural or quasi-natural language. In this paper, we present an original
concept that extends the known methods of data linguistic summarization and
representation: Multi-Subject Linguistic Summaries of relational databases. In
particular, we put emphasis on new and more interesting forms of linguistic
summaries, that were based on describing one subject P only, until now (for
bibliographical references, see Section 1). The new forms of linguistic summaries
are given by Equations (4), (11), (15), and (18), in Section 3. The details of
evaluating degrees of truth of the new forms are presented in Section 3, too.
From the point of view of an average user, the most important detail of the
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Multi-Subject Linguistic Summaries is that the output of the proposed method
remains texts/messages composed by a human. Sample application of Multi-
Subject Linguistic Summaries to a system providing users with natural-language-
information on a chosen set of data, is described in Section 4. We believe the
proposals here introduced, i.e. describing more than one subject by a summary,
may have potential to extend the summarization methods already known in the
scientific literature.
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Abstract. The paper concerns the architecture of a neuro-fuzzy classifier with
fuzzy rough sets which has been developed to process imprecise data. A raw
output of such system is an interval which has to be interpreted in terms of classi-
fication afterwards. To obtain a credible answer, the interval should be as narrow
as possible; however, its width cannot be zero as long as input values are impre-
cise. In the paper, we discuss the determination of classifier parameters using the
standard gradient learning technique. The effectiveness of the proposed method
is confirmed by several simulation experiments.

Keywords: fuzzy systems, rough sets, rough-fuzzy hybrid systems, imprecise
data, gradient learning.

1 Introduction

The fuzzy systems are frequently used for classification task, see eg. [23]. The imper-
fection of processed data is a problem in any real application. In general, data might
be unavailable, impresize and uncertain. Fuzzy systems can handle this problem since
they comprise the fuzzifier before the fuzzy inference mechanism. Our aim is to apply
a non-singleton fuzzification in order to enrich the structure of typical neuro-fuzzy sys-
tems, see eg. [16,26,28,45]. The motivation for this fuzzification arises in the rough sets
theory by taking into account the imprecision of the measurements. The application of
the non-singleton fuzzification affects the reduction of sensitivity to changes of input
values.

In our approach, the fuzzification is a mapping from the input space to a fuzzy set.
When we obtain, as a result of fuzzification, a fuzzy setA′ defined on some set V rather
than a membership grade at single point x, we mean the non-singleton fuzzification. Our
approach regards the non-singleton fuzzification as the mapping to a generalized mem-
bership function μA′(v, v̄) in order to analyze the whole spectrum of fuzzified v̄ values
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ahead of time of reasoning. A need of an a’priori knowledge about the imprecision of
inputs is crucial to determine an adequate fuzzification of membership functions.

In this paper, we will extend the idea of fuzzification in two dimensions. Firstly, we
generalize fuzzification of non-singleton types with the use of rough sets. Secondly, we
equip neuro-fuzzy systems with genuine implications to achieve neuro-fuzzy classifiers.

Although, fuzzy sets [46] and the rough sets [21] are quite different techniques for
representation of uncertain data, they can be used together in two known forms: of
rough fuzzy sets [3,18,19,40], and of fuzzy rough sets [8,10,12,13,25,41].

We will make the extensive use of fuzzy rough sets defined as follows [4,5]. If Φ is
a fuzzy partitioning of a universe U , fuzzy sets Fi are its partitions, and A is a fuzzy
subset ofU , i.e.,A ⊆ U . The fuzzy rough set is defined as a pair (Φ∗A,Φ

∗A), where the
set Φ∗A is a Φ–lower approximation of the fuzzy set A, and the set Φ∗A is its Φ–upper
approximation. Then, membership functions of fuzzy sets Φ∗A and Φ∗A are defined as
follows:

μΦ∗A(Fi) = sup
v∈U

min (μFi(v), μA(v)) , (1)

μΦ∗A(Fi) = inf
v∈U

max (1− μFi(v), μA(v)) . (2)

Eqs. (1) and (2) describe the widest and narrowest fuzzy sets as a composition of fuzzi-
fication and a fuzzy antecedent set with respect to the marginal t-norm and conorm, i.e.
min and max. Thus the first of these expressions is a particular case of non-singleton
fuzzification applied to Mamdani fuzzy logic systems. Surprisingly, the second equation
realizes the non-singleton fuzzification in logical-type fuzzy systems. Consequently, the
fuzzy rough set can be viewed as an extension to non-singleton fuzzification. Actually,
this approach may be considered as a new generation method for type-2 fuzzy sets in
fuzzy logic systems [44].

2 Fuzzy Rough Systems

In [20], we proposed a method to embed non-singleton fuzzification into the antecedent
part of a fuzzy logic system. Now, we can apply this result to the fuzzy rough approx-
imation of an antecedent fuzzy set Ak by assuming that the fuzzy partitioning Φ is
determined by imprecision of input data. This imprecision may be induced by a non-
singleton fuzzification, such that a premise fuzzy set A′ plays a role of a fuzzy partition
set Fi in the definition of the fuzzy rough set given by (1) and (2).

The shape of the membership function of A′ is known a priori depending on the
fuzzification method. Emphasizing that A′ is also an explicit function of v̄, we can
involve the information about fuzzification by substituting Φ–upper and Φ–lower ap-
proximations of Ak, denoted by A∗k and Ak

∗ , for a conventional compatibility between
a fuzzy premise A′ and a fuzzy antecedent Ak, i.e.,

μA∗k(v̄) = sup
v∈V

min (μA′(v, v̄), μAk(v)) . (3)

μAk∗(v̄) = inf
v∈V

max (1− μA′(v, v̄), μAk(v)) . (4)
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Consequently, the upper approximation together with the lower approximation
may be regarded as an extension of the conventional non-singleton fuzzification in
conjunction-type (Mamdani) fuzzy systems.

Let us assume that v̄ is independent of v. In order to find all the supreme minima
in equation (3), we have to vary μA′(v, v̄) in the whole spectrum of possible v̄ values.
For each v̄, an upper fuzzy rough grade is produced. Similarly, in order to find all the
lowest maxima in equation (4), we have to vary the fuzzy complement of μA′(v, v̄) in
the whole spectrum of possible v̄ values.

Gaussian Fuzzification of Gaussian Antecedents. Suppose we have two Gaussian
membership functions, μA′

i
and μAk,i

, and assume an aggregating t-norm to be the
algebraic product. The antecedent membership function embedding Gaussian fuzzifi-
cation by μA′

i
(v) can be evaluated as follows:

μÃk
(v̄i) = supvi∈Vi

(
μA′

i
(v̄i, vi)μAk,i

(vi)
)

= supvi∈Vi

(
exp

(
− 1

2

(
vi−v̄i
σi

)2)
exp

(
− 1

2

(
vi−ck,i

σk,i

)2))
= supvi∈Vi

exp

(
− 1

2

(
vi−v̄i
σi

)2
− 1

2

(
vi−ck,i

σk,i

)2)
,

(5)

where ck,i, σk,i are center and spread of Gaussian-type fuzzy set in antecedent of k-th
rule and i-th input, σi defines imprecision of i-th input.
Using differentiation, μA′

i
(vi, v̄i)μAk,i

(vi) attains its supremum at

v∗k,i =
(σi)

2
ck,i + (σk,i)

2
v̄i

(σi)
2 + (σk,i)

2 . (6)

We obtain the following membership function which remains Gaussian, i.e.,

μÃi
(v̄i) = exp

(
−1

2

(
v̄i − ck,i
σ̃k,i

)2
)
, (7)

where

σ̃k,i =

√
(σi)

2
+ (σk,i)

2
. (8)

The lower membership function then can be approximated by two pieces of Gaussian
functions interpolated at points (ck,i − σ̃k,i, ck,i, ck,i + σ̃k,i), i.e.,

μA∼k

(v̄i) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
− 1

2

(
vi−Mk,i

σ̃k,i

)2)
if v̄i < ck,i

exp

(
− 1

2

(
vi−Nk,i

σ̃k,i

)2)
otherwise,

where
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Mk,i = ck,i + σ̃k,i

√√√√√√√−2 ln
⎛⎜⎜⎝1−

σ2
i

σ2
k,i(

1 +
σ2
i

σ2
k,i

)(σk,i
σi

)2
+1

⎞⎟⎟⎠, (9)

Nk,i = ck,i − σ̃k,i

√√√√√√√−2 ln
⎛⎜⎜⎝1−

σ2
i

σ2
k,i(

1 +
σ2
i

σ2
k,i

)(σk,i
σi

)2
+1

⎞⎟⎟⎠. (10)

2.1 Fuzzy Rough Classifier

The membership of an object x to a class ωj (specified by the corresponding conse-
quent) is fuzzy (zkj = μωj (x)). Consequently, rules can be rewritten as

Rk : IF v1 is Ak
1 AND v2 is Ak

2 AND . . .
. . . AND vn is Ak

n THEN x ∈ ω1(zk1), x ∈ ω2(zk2), . . .
. . . , x ∈ ωm(zkm),

(11)

where observations vi of the object x are independent variables, k = 1, . . . , N is the
number of N rules, and zkj is the membership degree of the object x to the j–th class
(ωj) according to rule k.

An optimization procedure to obtain the maximum and minimum centroids for a
rough (or interval-valued) fuzzy set on the assumption that crisp memberships of ob-
jects to classes are given, i.e., the k-th rule consequent that object either belongs to the
j-th class or not is binary, zkj ∈ {0, 1}, was given in [18,19].

If we consider the neuro-fuzzy classifier defined by the equation

zj =

∑N
k=1

k : zk
j=1

Ãk

∑N
k=1 Ã

k
, (12)

where Ãk is a rough approximation of a fuzzy set Ak given by its upper and lower
approximations,Ak

∗ and Ak∗, respectively, and the single-rule membership of object to
the j-th class is binary

zkj =

{
1 if x ∈ ωj
0 if x /∈ ωj

(13)

for all rules k = 1, . . . , N and all classes ωj , j = 1, . . . ,m. Then, the lower and upper
approximations of the membership of object x to class ωj is given by

zj∗ =

N∑
k=1

k : zk
j=1

μAk
L
(v)

N∑
k=1

μAk
L
(v)

(14)
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and

z∗j =

N∑
k=1

k : zk
j=1

μAk
U
(v)

N∑
k=1

μAk
U
(v)

, (15)

where Ak
L and Ak

U are defined as follows

Ak
L =

{
Ak

∗ if zkj = 1

Ak∗ if zkj = 0
(16)

and

Ak
U =

{
Ak∗ if zkj = 1

Ak
∗ if zkj = 0 .

(17)

In the case of binary memberships of objects to classes, this result does not require
any arrangement of zkj [18,44]. Having rough approximations, the upper Ak

j∗ and the
lower Ak∗

j , of a binary set zkj ∈ {0, 1} representing the single-rule class membership
(13), where k is the index for rules k = 1, . . . , N and j is the index for classes j =
1, . . .m, the lower and upper approximations of the membership of an object to class
ωj is given by

z̄j∗ =

∑N
k=1A

k
j∗z

k
j∑N

k=1 A
k
j∗z

k
j +
∑N

k=1 A
k∗
j ¬zkj

, (18)

z̄∗j =

∑N
k=1A

k∗
j z

k
j∑N

k=1 A
k
j∗¬zkj +

∑N
k=1 A

k∗
j z

k
j

. (19)

The resulting neuro-fuzzy rough classifier architecture is presented in Figure 1.

Interpretation of Defuzzified Values. Let zj∗ be a lower membership grade of an
object x to a class ωj and z∗j be its upper membership grade in the form of equations
(14) and (15), respectively. In this case, we may fix two numbers (thresholds) zIN and
zOUT such that 1 > zIN ≥ zOUT > 0. Consequently, the crisp decision can be made in
the following way⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x ∈ ωj if zj∗ ≥ zIN and z∗j > zIN

x /∈ ωj if zj∗ < zOUT and z∗j ≤ zOUT

Perhaps x ∈ ωj if zIN > zj∗ ≥OUT and z∗j > zIN

Perhaps x /∈ ωj if zj∗ < zOUT and zOUT < z
∗
j ≤ zIN

undefined otherwise.

(20)
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Fig. 1. Fuzzy rough system for classifcation



262 B.A. Nowak et al.

If we assume for convinience that zIN = zOUT = 1
2 , formula (20) takes the following

form ⎧⎪⎨⎪⎩
x ∈ ωj if zj∗ ≥ 1

2 and z∗j >
1
2

x /∈ ωj if zj∗ < 1
2 and z∗j ≤ 1

2

undefined otherwise.

(21)

Potentially, other type reduction methods may be adapted [9].

3 Simulations

In simulations, we compared the rough neuro-fuzzy with the standard non-singleton
neuro-fuzzy classifiers. We used 3 rules per class. Both systems were initialized with
the use of the fuzzy c-means clustering algorithm, omitting potential existence of con-
cept drift [11,24]. Samples, for each class, were clustered separately. We performed 50
iterations of clustering and the back propagation gradient learning. The learning factor
was set to 0.001 and the momentum factor to 0.1. We applied the standard minimization
criterion, i.e.,

Q = 0.5 (zd − z̄∗)2 + 0.5 (zd − z̄∗)2 , (22)

where zd is desired value in {0, 1}.
The proposed method was evaluated using two measures. The first one describes how

often sample is misclassified into each class.

misclassified = 1− 1

m ∗M

M∑
s=1

m∑
j=1

⎧⎪⎨⎪⎩
1 if z̄∗s,j > 0.5 ∧ z̄s,j∗ > 0.5 ∧ xs ∈ ωj
1 if z̄∗s,j < 0.5 ∧ z̄s,j∗ < 0.5 ∧ xs /∈ ωj
0 else,

(23)

where m is the number of classes, M is the number of samples, xs is s-th test sample,
ωj is j-th class, z̄∗s,j and z̄s,j∗ are upper and lower approximation of membership of the
sample xs to ωj .

The second criterion for evaluation is the mean of samples that was neither unclassi-
fied nor classified to any class,

uncertain =
1

m ∗M

M∑
s=1

m∑
j=1

{
1 if z̄∗s,j ≤ 0.5 ∧ z̄s,j∗ ≥ 0.5

0 else.
(24)

The proposed solution was evaluated using different spreads for input values

σi = spread of input values ∗ (vi,max − vi,min) ∗ (2 log(2))−0.5, (25)

where spread of input values is a constant coefficient, vi,max, vi,min are respectively
maximal and minimal values of attribute vi. It is worth to mention that

e
−0.5

(
1

(2 log(2))−0.5

)2

= 0.5.
Note that the rate of misclassification in most of cases is close or equal to 0. This is

the advantage of our approach to derive a more reliable fuzzy classifier.
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Table 1. Classification rates

spread of input values
data base network measure 0 1.25% 3.75% 12.5%
dermatology NF misclassified 0.001 0.004 0.004 0.005

RNF misclassified 0.001 0.000 0.000 0.000
uncertain 0.000 0.326 0.617 10.000

glass (2 classes) NF misclassified 0.066 0.047 0.038 0.023
RNF misclassified 0.066 0.047 0.061 0.018

uncertain 0.000 0.005 0.014 0.126
ionosphere NF misclassified 0.034 0.046 0.031 0.029

RNF misclassified 0.034 0.023 0.017 0.011
uncertain 0.000 0.658 0.644 0.649

iris NF misclassified 0.004 0.004 0.009 0.013
RNF misclassified 0.004 0.004 0.004 0.000

uncertain 0.000 0.000 0.027 0.284
optdigits NF misclassified 0.014 0.014 0.012 0.010

RNF misclassified 0.014 0.000 0.000 0.000
uncertain 0.000 0.848 0.961 10.000

page-blocks NF misclassified 0.033 0.036 0.052 0.066
RNF misclassified 0.033 0.020 0.019 0.019

uncertain 0.000 0.425 0.529 0.578
parkinsons NF misclassified 0.391 0.281 0.205 0.160

RNF misclassified 0.391 0.602 0.226 0.036
uncertain 0.000 0.000 0.056 0.456

pendigits NF misclassified 0.004 0.004 0.005 0.006
RNF misclassified 0.004 0.003 0.002 0.004

uncertain 0.000 0.025 0.032 0.143
PID NF misclassified 0.236 0.236 0.217 0.236

RNF misclassified 0.236 0.169 0.087 0.010
uncertain 0.000 0.138 0.392 0.861

vowel NF misclassified 0.011 0.011 0.012 0.028
RNF misclassified 0.011 0.008 0.005 0.016

uncertain 0.000 0.007 0.051 0.295
wisconsin NF misclassified 0.043 0.043 0.043 0.037

RNF misclassified 0.043 0.039 0.039 0.024
uncertain 0.000 0.020 0.027 0.085

4 Conclusions

In the paper, the neuro-fuzzy classifier with rough sets has been used. For research pur-
poses, input values were non-singleton, namely Gaussian type, which resulted in rough
answer of the classifier. Obviously, other types of non-singleton fuzzy sets for inputs
values can be used. In the other papers (eg. [17,18]) concerning this type of classifiers,
the interval-type of input values were used for expression of missing values, and in [44]
— the triangle type of fuzzy sets. In these results, the use of non-sigleton inputs in most
of cases decreased the rate of improperly classified samples at the cost of uncertainty.
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The effectiveness of our classifier can be probably increased with the use of methods
reducing the base of rules. Presented simulations were performed using Neuro-fuzzy
classifier with rough sets, Mamdani-type reasoning and CA defuzzification; however,
similar tests can be directly performed for other types of networks, such as logical-type
fuzzy systems [18,27], modular fuzzy logic systems [14,15,43], flexible fuzzy systems
[1,2,33,37,39] or relational systems [42] or even systems with non-parametric defuzzifi-
cation [7,29,36]. Moreover, nonparametric approaches to pattern classification has been
presented in [6,30,34,35]. The proposed idea of learning can be adopted also to genetic
and evolutionary algorithms [22]. They can also be applied as a source of initial rules
as well as c-mean algorithm and decision trees [31,32,38].

Acknowledgments. The project was funded by the National Science Centre under
decision number DEC-2012/05/B/ST6/03620.
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Abstract. Ordered Fuzzy Numbers (OFN) were proposed about 10
years ago [7, 8] as a tool for the calculations of imprecise values rep-
resented by fuzzy numbers. Calculation methods based on this model
shall retain properties of operations known from real numbers. In ad-
dition, in contrast to the classic operations on convex fuzzy numbers,
making a series of operations in accordance with the OFN model is not
doomed to greater and greater imprecision of the results.
Apart from good computational properties, OFNs also offer new pos-

sibilities for imprecise information processing by using fuzzy systems.
[13, 14, 18] show examples of systems and the various proposals for meth-
ods based on the new model. There is a range of work [20, 21, 23], which
focus on implications or inference operators. In the works [10, 23, 24, 29]
various aspects of defuzzification were analyzed. Little attention has been
paid to aggregation of premises of rules based on OFN so far. Therefore,
the aim of this paper is to propose effective aggregation operator which
will generate good results as well as being intuitively consistent with
the idea of the new model. Moreover, the proposed solution maintains
the expected properties of the aggregate functions [6, 16], it takes into
account key idea of OFN the direction of components.

Keywords: aggregation operator, Ordered Fuzzy Numbers, direction in
aggregation, fuzzy system with Ordered Fuzzy Numbers.

1 Introduction

The theory of fuzzy sets [1, 2] is one of the popular and useful tools for the
processing of imprecise information. For example, it enables creating a precise
description of the situation modeled linguistically by using the general and im-
precise concepts. That may be due to the incomplete knowledge of the subject
as well as inaccuracy of the obtained data. An important part of the effective
use of such data is a tool for proper and intuitive representation. When inac-
curate quantitative data are processed fuzzy numbers are used (usually convex
fuzzy numbers). Unfortunately, common calculation mechanisms here are based

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 267–278, 2014.
c© Springer International Publishing Switzerland 2014

http://www.imis.ukw.edu.pl


268 P. Prokopowicz and S.M.M. Golsefid

on interval arithmetic and cause that the already small number of basic arith-
metic operations can easily lead to a drastic increase of the imprecise of results.
Therefore, its practical usefulness is lost.

The model of the Ordered Fuzzy Numbers is helpful here, as it introduces
convenient and flexible computing mechanisms eliminating main calculations
defect based on interval arithmetic. The new model takes into account the order
of the characteristic parts of a fuzzy number (hence the name contains the word
’Ordered’) giving the fuzzy number an additional feature - direction. Thanks to
the consideration of order when performing operations, we get the opportunity to
reduce the imprecision of the following operations. The new model has a number
of properties that were presented in the publications [7, 15, 25].

2 Ordered Fuzzy Numbers (OFN)

In the series of papers [7, 8, 14, 15, 17–19] were introduced and developed main
concepts of the idea of Ordered Fuzzy Numbers. Following these papers fuzzy
number will be identified with the pair of functions defined on the interval [0, 1].

Definition 1. The Ordered Fuzzy Number (OFN in short) A is an ordered pair
of two continuous functions

A = (fA, gA) (1)

fA and gA are called the up-part and the down-part, respectively, both defined on
the closed interval [0, 1] with values in R.

f

g

a)

f -1 g -1

b)

Fig. 1. a)Ordered Fuzzy Number from definition, b)Ordered Fuzzy Number as convex
fuzzy number with an arrow

If the both functions f and g are monotonic (Fig.1a), they are also invertible
and possess the corresponding inverse functions defined on a real axis with the
values in [0, 1]. Now, if these two opposite functions are not connected, we linking
them with constant function (with the value 1). In this case, we receive an
object which directly represents the classical fuzzy number. For the finalization of



Aggregation Operator for Ordered Fuzzy Numbers 269

transformation, we need to mark an order of f and g with an arrow on the graph
(see Fig.1b). Notice that pairs (f, g) and (g, f) are the two different Ordered
Fuzzy Numbers, unless f = g . They differ by their direction (or orientation). The
interpretations for this direction and its relations with the real world problems
are explained in the [17, 19]. It is worth to point out that a class of Ordered
Fuzzy Numbers (OFNs) represents the whole class of convex fuzzy numbers
with continuous membership functions (about classical convex fuzzy numbers see
[3, 5, 12]). Calculations on Ordered Fuzzy Numbers were analyzed and discussed
among others in the papers [11, 15, 25].

By adding direction to fuzzy numbers, the OFN model is slightly more gen-
eral than convex fuzzy numbers. An example of practical interpretation of the
new property is presented in [17, 19]. OFNs are considered there as the results
of observation in time, and the elapsed time is the natural interpretation of di-
rection, which is still independent from the value of membership degrees of the
fuzzy number. Introducing direction, however, has also other consequences. A
kind of discrepancy with the classical model of convex fuzzy numbers appears.
To some extent it is natural, because OFNs are becoming a specific extension
of the classical proposal and thus unprecedented elements appear - improper
OFNs. This element has been commented in [7, 8, 25]. However, thanks to the
new property, also new potential for the practical use of OFN appears. We get
a new quality associated with the direction. The work [26, 27] present the prac-
tical use of orientation of OFN in modeling financial data, and [28] in modeling
diversity of opinions in social networks.

3 Premise Part of Rule in the Fuzzy System

A popular and practical application of fuzzy set theory [1, 2] is rule-based fuzzy
system. A special feature of this system is the form of rules defining the system,
which can be described linguistically. This allows to describe the modeled values
by the use of everyday imprecise language. However, the imprecise information
processing using the fuzzy systems is not so intuitive. It is divided into several
phases, that involve the use of specific operations. There are many publications
such as [4, 9, 12] which discuss further how fuzzy systems work. In this study,
only aggregation of premises of the rules is introduced which is directly related
to the purpose of the study.

In the fuzzy systems if-then rules are often used, and a premise is as follows:

IF A1 is P1 AND A2 is P2 AND ... AND An isPn THEN... (2)

where Ai - fuzzy input, Pi - OFN from premise of rule, i = 1..n - the number of
input variables in the rule. The statement Ai is Pi means a fuzzy fact (sometimes
also called a fuzzy proposition), to which the truth value resulting from the
degree of compatibility of the two fuzzy sets should be assigned. The calculation
of these values is the goal of the first phase of the fuzzy system - the so-called
fuzzification (see more in [4, 9, 12]). The fuzzification of the popular singleton
type is a trivial task, because the input data are treated as crisp values and
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then instead of Ai set we have ai number, which is calculated as the value of
membership function of set Pi - just μPi(ai). In the following discussion we
assume that this level of compatibility of i-th elementary premise Ai is Pi, is
denoted as Si, and si is the argument of the i-th linguistic variable for which Si
is found. Indicatively, we can write it as

Truth(Ai is Pi) = Si = μPi(ai) (3)

In case of premise part (2) which consists of a number of fuzzy facts, as a
result of fuzzification phase we receive a number of truth values. The next step
is their aggregation.

4 Basic Properties of Aggregations

Generally speaking, aggregation operation is used in situations where a number
of data link to each other and we need to find a single value to represent all of
them. There are specifications various application areas which need aggregation
[16], such as, making decisions based on multiple criteria, or determining one
result from a variety of peer evaluations. Another important area of application
is the aggregation of rule premise in rule-based fuzzy system, where we have
a lot of input variables. Aggregation operation is a function that converts a
number of input data into a single value. Transformation depends on the chosen
method, but it is expected that in the process of determination of the result all
of the input data have been used in some way. Typically, aggregations where the
number of the input data is greater than one are considered. Moreover, in order
to be able to call the function an aggregation, it should have two elementary
properties [6].

1. Boundary conditions. If all input data are minimal (or maximal), the result
will also the minimal (maximal) value. In the case of aggregation of the
fuzzy sets the interval [0, 1] is used as range of values. That is, when all the
arguments are equal to 1, the result of aggregation is equal to 1 and similarly
for zeros. For aggregation A:

A(0, 0, ..., 0) = 0 and A(1, 1, ..., 1) = 1 (4)

2. Nondecreasing - function is nondecreasing against each input variable. This
means that the growth of any of the input data cannot cause a decrease of
the result of aggregation A.

∀i=2..nxi ≤ yi ∧ (x1, ..., xn) �= (y1..., yn)⇒ A(x1, ..., xn) < A(y1, ..., yn) (5)

Apart from these two elementary properties a number of other important prop-
erties such as continuity, symmetry (anonymity) and idempotency are pointed out
[6, 16, 22].

Continuity means that a small change in one input argument implies small
change of the result. In the context of engineering applications, continuity cor-
responds intuition which is related to the fact that a small error in the entry
cannot cause a large error in the output.
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Symmetry means the independence of result from the sequence of input data.
This property is also called anonymity, because based on the output it is not
possible to determine the values of input variables.

Idempotency means that if, for each independent input have the same value,
the particular value will be the result of aggregation. It may be noted that the
boundary conditions are really idempotency for the maximal and minimal values.

There are many different properties which can characterize an aggregation
operator [6, 16, 22]. However, those above-mentioned are the most essential and
desirable in practical applications.

5 Direction Parametrization in OFN

The key element of the new model of fuzzy numbers is the order between up-part
and down-part, which is independent from the real numbers. This can be also
called the direction or order. It is taken into account in the definitions of arith-
metic operations and their extensions, which make the calculations flexible and
unified and more importantly, their properties and relationships are consistent
with calculations on real numbers [25]. Therefore, it seems natural that infor-
mation processing methods based on OFNs also take into account the direction.
In this publication aggregation operator of rule premises of a fuzzy system that
meets this assumption will be proposed. To accomplish this, supporting struc-
tures facilitating the analysis and understanding of the problem will be useful.

5.1 Part Function

The PART function is a tool allowing to read the information about what part
of OFN the considered argument belongs to.

Definition 2. Let A is an OFN defined on the X. The PARTA : X → Y
function is determined as follows:

PARTA(x) = y ⇔ μA(x) ∈ y, (6)

where x ∈ X , y ∈ Y = {CONSTA, UPA, DOWNA, NONEA}, μA(x) – mem-
bership function of OFN A, CONSTA – a subset of X for which the membership
function of A number takes the values of 1, UPA – a subset of X for which the
inverse of the up-part has values, DOWNA – a subset of X for which the inverse
of the down-part has values, NONEA – a subset of X for which the membership
function of A number is 0.

To illustrate the effect of PART better, you can take a look at the draw-
ing shown in figure 2, we have the following results: PART (x1) = DOWN ,
PART (x2) = UP , PART (x3) = CONST , PART (x4) = UP , PART (x5) =
NONE

Since fuzzy numbers are considered over the space (or subspace) of real num-
bers, the sets UP, CONST and DOWN can be treated as numerical intervals.
Let’s assume the following denotations of their boundaries:

UP = (s, 1−) , CONST = [1−, 1+) , DOWN = [1+, e). (7)
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1

X1X3X4X2X5

UP DOWNCONSTNONE NONE

Fig. 2. Parts of the support of OFN

5.2 Direction Determinant

It is worth noting that the direction of the OFN is an additional property op-
posed to the classical fuzzy numbers and has a different meaning than the degree
of membership. Thus, if we want to aggregate all the information contained in
the OFN, a suggestion appears that the result of the aggregation should be
something more than just a level of activation. Here, the new parameter to facil-
itate consideration of direction in information processing will be introduced. It
is related to the support values of a given OFN and it is named the direction
determinant. The purpose of this parameter is to represent a kind of order ’in-
tensity’ of the argument. It is also used as a tool to communicate the aggregated
information about the order of individual components of premise part of rule.
The direction determinant is connected with a particular OFN and is defined
only for its support.

Definition 3. Let A denote the OFN, and x is an element of the support. Pro-
portional direction determinant of x in relation to A marked as dirAx is
calculated as a the result of directional function D : suppA → (−1; 1) for the
argument x in the following way:

dirAx = DA(x) =

⎧⎪⎨⎪⎩
0 : for PART(x) = CONST
(x−1−)
(1−−s) : for PART(x)= UP
(x−1+)
(e−1+) : for PART(x)= DOWN

(8)

Fig. 3. Proportional direction determinant calculations
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The above-mentioned determinant is called proportional, because it is calcu-
lated from the ratio of the position of support of the considered the argument in
relation to the whole fuzzy boundary of OFN, to which this argument belongs.
It is well illustrated on Fig.3. Such approach is justified in one of the useful
interpretations of the order [17]. It can be considered as a direction of passing
time. Then, the direction of a number depends on whether with the passage of
time, the values were decreased or increased.

At the same time partial membership at the fuzzy boundaries is connected
with determining the imprecise concept of ”now”. This imprecision usually is
intuitively symmetrical, which means that our fuzzy ”now”in the context includes
as much time forward as backwards. Hence, in this regard, UP and DOWN
in the scale of time (independently of the arguments) are equal. Thus, there is
reason for calculating the determinant of the element situated on UP orDOWN
to the proportion of the respective intervals and not only to the value.

It is worth noting that, if the degree of membership is equal to zero, the
direction determinant is undefined, because the argument is not a part of function
domain D (the value is outside the support OFN). It should also be noted that
for the arguments in the CONST interval, we have the direction determinant
that is equal to zero, what is justified, as these are the values about which we have
no doubt - their membership is full (equal to 1). According to this intuition we
should also expect (and this is taken into account) that, the closer the arguments
are to the kernel of fuzzy number, their direction ’intensity’ (that is the direction
determinant) is smaller.

5.3 Directed Aggregation Operator

In view of the previously adopted designations (8) we can now take a look at the
definition of aggregation operator OFN, which we will call Directed Averaging
Aggregation Operator - DAAO. The idea of averaging aggregation operator had
already been used for classical fuzzy sets (for example see [4]). The new proposal,
beside the level of activation, also generates the direction determinant dir.

Definition 4. Let’s assume the premise part of rule R is specified in (2).

IF A1 is P1 AND A2 is P2 AND ... AND An isPn THEN... (9)

where Ai - fuzzy input data, Pi - OFN from premise rule, i = 1..n - the number
of input variables in the rule. Let’s also assume that Si denotes a degree of
compatibility of the elementary premise Ai is Pi, while si denotes argument of the
i-th linguistic variable for which a level of Si compatibility was found. Calculation
the Directed Averaging Aggregation Operator proceeds as follows:

1. If any degree of compatibility is zero, the degree of activation of the rule is
equal to zero. We consider this rule as inactivated, and the direction deter-
minant is undefined.
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2. Otherwise, the level of activation of the rule LR is calculated as the arithmetic
mean of degrees of compatibility for all basic premises (elementary) in the
rule.

LR = Σn
i=1

Si
n

(10)

3. In addition, the direction determinant dirR is calculated as the arithmetic
mean of the determinants DP for the si – arguments of degrees of compati-
bility Si for the rule premises.

dirR = Σn
i=1

DPSi
(si)

n
(11)

The relationship between the Si and si is as follows:

Si = μPi(si) (12)

where μPi is a membership function of a fuzzy number Pi which is a model for
the i-th elementary premise.

In the case where the fuzzification of a singleton type is applied, a degree of
compatibility is calculated directly from the membership function. Then si is
simply an input data for the i-th input variable.

The proposed aggregation operator for OFN generates a result with two com-
ponents. For the calculation of each of them the arithmetic mean is used. Since
the arithmetic mean is a function meeting the above-mentioned basic criteria
of aggregation operators (see [6, 16, 22]), the Directed Averaging Aggregation
Operator also meets them. However, we are dealing with two different param-
eters: the degree of membership and the direction determinant. Therefore, it is
worth having a look at some important dependencies between them. The result
of zero indicates that the activation is not moved in any direction. Note that
this happens only in two cases:

1. when all degree of satisfaction of the premises will be equal to one, the degree
of rule activation will be equal to one,

2. when the resultant of degrees of compatibility of components on the UP side
will be precisely balanced with the resultant on the DOWN side, then degree
of activation will be greater than zero, and less than one.

Let’s take a closer look at the first case. The level of activation may be only
equal to one when the determinant is equal to zero. This means that in the
case of complete compatibility of premises the given data do not represent any
direction. This is especially important if we want to combine the concept of OFN
with the idea of classical fuzzy sets. Thanks to this the fundamental meaning of
full membership (also the full non-membership) coincides in both solutions.

To illustrate the effect of aggregation operator better, let’s take a look at
a specific example. The Fig.4 shows two convex fuzzy numbers, which will be
aggregated for the following values of their supports. For the calculations dis-
cretization of the arguments with the steps of 0.1 was used.
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1

2 51 3 4

1

2 51 3 4

Fig. 4. Fuzzy numbers for the aggregation

Fig. 5. Results of arithmetic mean aggregation

The fig.5 shows the result of the arithmetic mean as the degree of membership
of aggregation operator.

If we want to analyze the operation of DAAO we need to replace numbers from
Fig.4 with the OFNs. If the direction compatible with values of the argument
axis we call ”positive” and the opposite direction – ”negative”, then we have four
possible options:
a) both numbers are directed positively,
b) both number are directed negatively,
c) first is directed positively, the other - negatively,
d) first is directed negatively, the other - positively.
Results of the aggregation of degree of membership for each of the above variants
are identical to the results of convex fuzzy numbers as on Fig.5. The Fig.6 shows
the results when we aggregate the direction determinant. As you can see, each
has a different character, however, it is clear, that all results retain continuity
and that they are nondecreasing.

6 Summary

OFNs have a good mechanism for implementation of the calculations, allowing
the conversion of non-precision quantitative information in the same way as the
calculations on the real numbers. With this freedom of computing, a number
of new methods of processing imprecise information by using fuzzy system can
be proposed. There is a number of works covering different aspects of impre-
cise information processing based on OFNs: inference operators, accumulation
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a)

Fig. 6. Aggregation of direction determinant for two OFNs a)both positive, b)both
negative, c)positive-negative d)negative positive

of results of rules, and defuzzification. These include methods which take into
account the direction and also which ignore it. In this publication, aggregation
operator for OFN is proposed. An important element is the consideration of di-
rection. This is achieved by introducing an additional parameter - the direction
determinant. Its important advantage is that it is defined generally. Its usefulness
does not only need to be limited to the aggregation operations. It is a conve-
nient tool to include direction in other methods as well. The introduction of
an additional parameter has one more important advantage . It is connected to
compatibility with the processing methods based on classical fuzzy sets. If after
using the methods based on OFN, there is a need for using any of the conven-
tional methods, we can focus only on processing degrees of membership of fuzzy
numbers. We would lose the additional information represented by the direction,
but keep compatibility with conventional methods. What is also important, we
will maintain good computational properties since these do not depend directly
on the direction determinant.

Proposed method of aggregation for OFNs, certainly does not cover the topic.
Calculating the direction determinant based on the proportion of the argument
distance from the fuzzy number core to the relevant part of the support is the
exact solution only for the linear up-part and down-part. In the case of non-
linear parts of OFN, the current proposal is only an estimation of the expected
outcome, because it only regards the interval boundaries without considering all
degrees of membership. Thus, the direction determinant for two different OFNs
can be identical. In future, the direction determinant modification (increasing
the precision) is needed. It will be one of the next steps in research on aggregation
operators respecting direction.
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The next step in the study of fuzzy systems based on the OFNs leads to
developing a complete and coherent fuzzy system. Such system should respect
the direction in processing both rules premises and conclusions. Furthermore, it
should meet the expected properties such as continuity and monotonicity.
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Abstract. In modern industry a real-time Ethernet-based control sys-
tems are typically used instead of a centralized solution. This is due
to the economical reason and to allow easy expansion and moderniza-
tion of the machines. The distributed architecture enables i.a. the use
of hardware emulators instead of the real control object, in a manner
transparent to the whole system. This is an advantage because it can be
useful for the development of the control system. It will make that cheap
and safe testing of complex control systems will be available. The testing
process might be performed in a working control system in which part of
it (e.g. a control object) has been temporarily replaced by an emulator.
However, emulators typically need an increased performance of the real-
time communication interface to transfer a large amounts of the service
data. In this paper we propose a new method to create high performance
real-time, Ethernet-based communication solution which will be suitable
for the most demanding applications, for example for the development
process and connection with hardware emulators.

1 Introduction

Todays in the industry, the real-time Ethernet (RTE) based systems are com-
monly used because of their higher performance when compared to existing field-
buses. Unfortunately, at present there is not defined one common RTE standard
and many different and non-compatible solutions are used. It seems that the
full standardization in this area is not yet possible in the near future [26] and
research on real-time communication over Ethernet is still ongoing. In a real-
time communication the most important goal is to deliver messages from their
source to the destination in a deterministic time. Moreover, the delivery time
must be also as short as possible to meet the requirements of the control system.
Different systems have different requirements, so currently three basic categories
of the real-time systems (RT Class 1-3) are defined [42]. The standardization
of the RTE is especially hard to achieve [40] in the most demanded RT class 3
area. This is mainly because of the non-typical methods that are used in dif-
ferent solutions to improve their real-time performance. On the other hand the
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communication solutions based on a typical methods (in hardware and software)
allow usually easier standardization but unfortunately at the cost of quality in-
dicators [1]. As a result there is currently no existing one solution that will be
good enough for all types of applications. It seems likely that different RTE sys-
tems will coexist side by side at the factory level [61], connected via gateways
(Fig. 1). One of the possible future scenario is that an attempt to standardize
the communication between different RTE standards and/or the factory network
through the gateways will be undertaken. Next possible scenario is the existence
of universal multi-protocol network devices, which will be able to automatically
change the currently used protocol. Such versatility is possible, especially when
network devices are based on a field programmable gate array (FPGA) chips.

In this paper we propose a novel hard real-time Ethernet-based solution for in-
dustrial control systems with a master-slave control hierarchy. Proposed method
uses FPGA chip to process some data on the fly. It allows very efficient real-
time communication and better network efficiency than offered by competitive
solutions. It is designed to use as a hard real-time backplane bus for machine or
process control, however it is not fully compatible with the Ethernet standard.
In the presented system, the hard real-time domain is separated from the other
machines/processes in the factory. It is connected to the factory network (soft
real-time domain) through the gateway (Fig. 1). This enables to use different (i.e.
non-compatible) communication solutions in the factory. However, it is possible
to synchronize them when needed. Moreover, in such an approach the human to
machine interface is also built in the soft real-time domain, which allows to use
popular (and well known) operating systems like Windows, Linux etc. for these
purposes. In this paper, only some general information about the requirements
of interface to the neuro-fuzzy (see e.g. [14]-[19], [27]) emulator will be presented.
Neuro-fuzzy systems (see e.g. [36]-[38], [51]-[55]) combine the natural language
description of fuzzy systems (see e.g. [2]-[6], [21]-[24], [28]-[29], [62]-[64]) and the
learning properties of neural networks (see e.g. [8]-[13], [30], [35], [48], [56]). The
design and implementation of the emulator in the FPGA is an independent work,
undertaken in the context of other research. In this paper we propose to embed
the emulator, based on neuro-fuzzy and state variables theories [47], into the
FPGA. When the emulator is properly designed and implemented in the FPGA,
it is able to work in a real-time. Integration of such hardware emulator with the
real-time industrial network allows quite easily (and non-invasive to the rest of
the system) to replace the real control object by the emulator (Fig. 2). However,
the hardware emulator (typically used in a development process of a complex
controller of machine or industrial process) needs a large amount of data to be
transmitted synchronously to the controlled process, but without affecting it.
These data are in a typical case the inputs, state variables and outputs of the
model of the controlled object. For the development purposes these data must
be recorded in an local buffer of the emulator with very short sampling time.
The sampling time value depends on the physical phenomena modelled with the
emulator. In a typical case the sampling time (i.e. simulation time) has value in
a range from tens of μs to hundreds of ns or even less. Typical microprocessor
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system is not able to implement emulator, record sampling data and transmit it
through the real-time network (in a packets) in such a case. However, due to the
reasons listed above, the FPGA is well suited for this purpose, i.e. to implement
the emulator and to integrate it with the hard real-time industrial network. Es-
pecially two novel methods are proposed in this work: (a) Special (asymmetric)
node structure together with a proposed queuing technique to allow very effi-
cient full-duplex communication. (b) Bandwidth management to maximize the
efficiency of the non-real-time communication, which will be useful for the less
time-critical tasks, such as: monitoring, inspection, management, supervision,
fault-detection, servicing and development.

This paper is organized as follows: Section 2 presents an analysis of different
network architectures and their impact on communication performance. The
idea of a new method for the hard real-time full-duplex communication system
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is described in Section 3. In Section 4 the experimental results are presented and
finally conclusions are given in Section 5.

2 Analysis of the Different Network Architectures and
Their Impact on the Real-Time Communication
Performance

Currently on the market there exist many different real-time industrial networks
which are able to fulfil different requirements for different application areas.
However, their users want to increase functionality and diagnostics available for
the network. The development of the complex control systems needs sometimes
a large amount of data to be transmitted synchronously to the controlled pro-
cess, but without affecting it. The examples are: identification of controlled pro-
cess, connecting to hardware emulators, development new controller structure,
recording the data of rapidly changing phenomenon, etc. This makes research
on the improvement of RTE solutions to be still going on [7]-[20]. Todays RTE
is typically based on the high performance 100Mbit/s physical medium, which
currently appears to be sufficient for most of these increasing demands. However,
in some cases many of the theoretically available bandwidth is wasted because of
the inefficient message exchange model. Increasing the network baud rates to the
1 Gbit/s, i.e. migration from Fast Ethernet to the Gigabit Ethernet, improves
only part of the network parameters [33], [49] and at the same time generates
higher production and maintaining costs of such a system [50]. The most impor-
tant factors affecting the real-time network performance are: network message
exchange model (called "interaction model") and the method used for accessing
the shared medium.

2.1 Interaction Models

The main interaction models, i.e. the way in which the devices communicate
within the network, are: client-server, peer-to-peer, producer- consumer and
publisher-subscriber. Their basic properties are summarized as follows: (a) The
client-server model It is a traditional data exchange mechanism available in
most systems, where a client makes a request and waits for the response. The
server fulfils the request and sends a response. (b) Peer-to-peer It is the most
flexible network model. All devices (peers) are at the same logical level and
can communicate independently with any others. Each network node may re-
sponds to the request of any other. However, a special attention must be paid
to avoid collisions because each device can initiate a transaction to any other
at any time. The efficient collision avoidance mechanism is necessary in order
to ensure determinism of the communication system. (c) Producer-consumer
In this case one (or more) network device is the producer. It produces the data
and equips/encapsulates it with the identifier indicating the data content. Such
data are not addressed to specified network devices, but they are transmitted
via broadcast on the whole network system. Other (anonymous) network devices
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(called consumers) listen for the incoming data packets and if they recognize the
data identifier, they will consume the data. For many control systems, there are
some parameters which must be delivered to a number of network devices. That
data have to be transmitted only once and are consumed by multiple nodes at the
same time. This allows a more precise synchronization and more efficient use of
network bandwidth [34]. (d) Publisher-subscriber Similarly to the producer-
consumer; this is also the data oriented exchange model [41]. In this case there
are many subscribers who communicate with a publisher and request a data
identified by content. The publisher has a list of the requests of the subscribers
and disseminate the requested data via multicast addressing to the groups of
subscribers.

The producer-consumer, as well as the publisher-subscriber network model,
is characterized by high performance and efficient utilization of available band-
width. It is particularly well visible in the systems where the same real-time con-
trol data have to be available to many devices in the same time. These models
are preferable to be used in distributed control. On the other hand, the explicit
messaging used in other network models (i.e. the messages are not data-oriented
but they have their source and destination device address instead of data iden-
tifier) is more appropriate for configuration of the network devices, uploading
and downloading firmware, etc. In the real-time networks there are two types of
real-time data transport: synchronous (periodic) and asynchronous (aperiodic).
The periodic data transport is used for most critical real-time control (i.e. mo-
tion control) while aperiodic data transport is used for slightly less demanding
tasks like automation. Some real-time networks also support a non real-time
communication mode which can be useful for secondary and non-time-critical
tasks, like configuration, monitoring and servicing.

2.2 Media Access Methods

The communication solutions are built on the basis of the shared or switched
medium. Moreover, there are also specialized network solutions, such as for ex-
ample EtherCAT, Sercos III and Profinet IRT which are based on the dedicated
network devices [31], [50].

Switched Media Networks. Networks based on switched medium, which
utilizes multi-port switching devices (switches) offer great flexibility with respect
to the network topology. They allow to full-duplex communication and prevents
collisions. However, this solution does not offer the highest performance for real-
time communication. One of the main reason is the relatively long delay (latency
time) introduced by the switch. In the switched Ethernet, collisions do not occur
because of the used full-duplex communication and data queuing ability of the
switch device. Unfortunately, if too many network devices sent their data to the
same recipient at the same time, then part of them is lost. This is due to overflow
of the switch memory buffer (queue). As a result the switched network have poor
real-time performance when there is a heavy traffic [39]-[45].
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master-slave control hierarchy

Shared Media Networks. A second group are shared networks, which are
based on repeaters or hubs. Although in this case it is generally also possible
to build any network topology, for practical reasons a linear structure is mostly
used (Fig. 3a). This is because the repeating hubs are typically embedded into
each network device and are equipped with only three ports. Because all devices
in the network are working on a shared medium, the network can operate only
in half-duplex mode. Therefore the network bandwidth is used at most half, for
example 100Mbit/s instead of 2x100Mbit/s if we consider Fast Ethernet.

Popular technique for collisionless access to shared medium is master-slave
pooling mechanism. In such a solution the subordinate devices (slaves) one-time
gain access to the network in response to commands coming from the device man-
ager (master). The exchange of messages is divided into communication cycles
and synchronized by a special frame coming from the master device. Master-
slave pooling mechanism is used for example in the EPL v2 and in the VARAN
Bus solutions. The disadvantage of the master-slave pooling mechanism is the
introduction of additional delays resulting from the slave response time for re-
quest and response preparation time. If the slave functionality is provided by
the software, the delay can has a significant effect on overall network perfor-
mance degradation. The another aspect is that any network which is operating
on the basis of standardized Ethernet, has a major drawback: it adds a large
overhead for communication for small data packets. This overhead is related to
the minimum frame length equal to 64 bytes plus 8 bytes of preamble and start
frame delimiter (SFD) plus 12 bytes length of inter frame gap (IFG) defined by
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the IEEE 802.3, while typical message in the distributed control systems has,
for example, about 8 bytes of even less. As a result, available bandwidth (i.e.
100Mbit/s for Fast Ethernet) is used very inefficiently and it is equal to about
ten percent. It should be noted that in the Gigabit Ethernet the minimum frame
length has been increased to 512 bytes. In such a case the effective bandwidth
utilization in a standard Gigabit Ethernet will be about 1.5% only. The mini-
mum frame length, as well as required IFG, results from the slot time used for
collision detection mechanism CSMA/CD in the standardized Ethernet. It is
important to note that if the CSMA/CD mechanism is not used (because some
other mechanism is used to avoid collisions) then the limitation to minimum
frame length and IFG are not necessary, however they are still required by the
standard. The very low efficiency when using standard Ethernet frames is the
reason, why some of the RTE solutions do not meet standard Ethernet frame
limitation. One of the example is the VARAN Bus [57] which does not use the
standard MAC format and the minimum frame length is not maintained. More-
over the length of the Preamble, SFD and the IFG is greatly reduced. Thanks
to that the important increase in the network efficiency is obtained.

Networks with Dedicated Media Access. A effective method to handle
short messages in standardized Ethernet is to use so-called summation frames
and "on the fly processing" mechanism introduced by Beckhoff and used in
EtherCAT and Sercos III. Another very efficient method for a treatment of
short messages is used in Profinet IRT [46]. This method is called dynamic
frame packing (DFP). EtherCAT and Sercos III are a master-slave systems,
where the master device generates Ethernet frame (or frames) at a predetermined
rate. These frames are then used by all slaves for the data transport. Data
are read from and updated to a specified part of the long frame (summation
frame) on the fly by subsequent slaves. The frames are processed on-line fully
in hardware via FPGA or ASIC chip. Consequently, both of these two solutions
needs specialized hardware. Choosing the right part of the frame is made on
the basis of a proper mapping of logical addresses. As a result, this network
allows full-duplex communication, and short messages are not burdened with
high overhead. Summing up, the analysis presented above shows that existing
solutions do not fully exploit the possibilities offered by the Ethernet medium.
It is possible to develop new, more effective methods of communication, tailored
to the requirements of distributed real-time control systems.

3 A New Hard Real-Time Ethernet-Based Solution for
Master-Slave Control System

In this paper there is proposed novel, powerful hard real-time Ethernet-based
solution for a systems, which are based on a master-slave control hierarchy.
Master-slave structure is typical for the vast majority of applications. In pre-
sented solution the master device serves as a management unit both for process
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control and communication. As a result only master device can initiate an ape-
riodic, real-time asynchronous (RTA) transaction on a communication network.
While periodic, real-time synchronous messages (RTS) can be generated inde-
pendently by slaves or by a master at predefined communication cycles. More-
over, the non-real-time (NRT) messages can be generated by any device at every
communication cycles, however, only within defined time windows (i.e. based on
TDMA paradigm). Details of these mechanisms will be explained in the next
part of the paper. In the proposed system the master device generates the RTA
command (request) and sends it, via the network, to the slaves (distributed
nodes). An answer from the specified slave device is generated and comes back
to the master. This a priori knowledge about the messages flow and their size
(in the real-time communication) together with a proposed queuing technique
gives the possibility to very effective use of the full-duplex communication. This
results from the fact that the network device can be built with an asymmetric
structure (Fig. 3b) adapted to the presented model of the control hierarchy.

3.1 The Idea of the Asymmetric Network Structure

If we look at the proposed structure of the network device (Fig. 3b) we can see
that the number of collision points is reduced from three to only one, when com-
pared to the typically used structure shown in (Fig. 3a). Additionally, the pro-
posed structure allows for communication in the full-duplex mode. Thus formed
network structure is asymmetrical. A downstream communication (from master
down in hierarchy to the slave) is performed by repeating incoming data from
port PU to ports PD and PL. Communication in this direction is therefore col-
lisionless. An upstream communication (response from the slave up in hierarchy
to the master) is performed with the use of special queuing technique, which
prevents collisions (Fig. 4). This method is somewhat similar to that used in the
Profinet IRT solution [43], [46]. The queuing technique mentioned above, as well
as the next method of bandwidth management proposed in this paper, will be
presented now.

3.2 The Proposed Bandwidth Management Method

The upstream communication is done through fifo buffers (Fig. 4). However, the
appropriate bandwidth management controlled by the master device ensures that
there will never be a buffer overflow. It follows from the fact that for each trans-
mission cycle TC there is assigned a limited number of transmitted RTS, RTA
and NRT data. The TDMA mechanism is used to divide the upstream communi-
cation cycle into three stages: real-time synchronous TU , real-time asynchronous
TR and non-real-time TA (see Fig. 5).

We can see that the whole communication cycle TC is a sum of the three
values, as follows TC = TU +TP +TD, where TU is a time to deliver all periodic
messages (generated at the beginning of the cycle by active slaves) to the master.
While TP is processing time of received data in the master device. Furthermore
TD is a time to deliver all periodic messages generated by the master to all
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nodes. It is important to note that proposed communication procedure allows to
receive data from slaves, process it in a master device and then send processed
data back to the slaves (i.e. close the controllers loop through the network) in
one communication cycle. This significantly expands the applicability of such an
interface, because the controller cycle time of many practical control systems
must be as short as possible. Many of the competitive communication solutions
need at least two cycles for this purpose.

The values that define the time slices for two stages (TU and TR) are included
in the special sync/control (SC) frame (Fig. 6). The time slice for the third
(NRT) stage is calculated in each node as follows TA = TC − TU − TR. Because
the communication cycle time is constant, this calculation can be easily done.

The idea of high performance communication, proposed in this paper, is based
on the assumption that the slave devices can send upstream their RTS data at
the start of the communication cycle (see Fig. 5). The number of data to be
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sent by individual nodes are designed on the configuration stage of the dis-
tributed control system. Based on a knowledge of the number of frames and
data bytes sent at each cycle, master allocates the time interval TU for the first
(synchronous) stage. This value is then inserted into SC frame as a value of a
field TU . Secondly, any RTA transaction can be initiated only by the master
device. Each request (sent by the master) needs response (sent by the slave).
The master device knows in advance the size of an answer. As a result it can
allocate a proper interval of time for all the RTA answers (i.e. for all requests in
given communication cycle). This is the size of the time window TR, i.e. the size
of the last stage in a communication cycle. This value is then inserted into the
SC frame as the value of a field TR. In the third stage any node can send its
NRT data without request. However, in order to prevent NRT buffer overflow (if
many nodes send their data at the same time), the special filed ADL in the SC
frame (Fig. 6) is used. The ADL initial value is determined by the master and it
is inserted into this frame. The ADL field is read by each successive nodes (on
the fly - similar to the method used in EtherCAT), and at the same time a new
value is inserted into the ADL field in the SC frame. This is a value of free space
of the NRT input buffer (Fig. 4). Thanks to this mechanism, each node knows
the limitation of amount of NRT data that can be sent to the next (upstream)
node. If there is no space in the NRT buffer in the next node, the sending process
is delayed (to the next communication cycle) until the time when it is adequate
free space in the NRT buffer. This NRT flow control mechanism guarantees that
the buffer overflow (in any node) never occurs. To ensure that the whole ADL
field is correct the ADL field is equipped with its own few bits checksum. The
on-line processing of the ADL field is done fully in the hardware, so there is only
a small latency time for process of repeating data from the port RXU to TXD.
The frames scheduling is used in each node (Fig. 4) to transmits NRT data from
both (local an input) buffer to the outgoing port TXU (upstream) based on the
rule of First-Come-First-Serve (FCFS). This gives a similar latencies for NRT
communication for all devices in the network.

4 Experimental Results

In this section a very approximate calculation will be done to confirm the ef-
fectiveness of the presented method. Exact calculations are omitted, due to the
size limitations of the paper. In the presented example it was assumed that eight
distributed nodes (servo drives) have been connected through the real-time (Fast
Ethernet-based) network to the master device (reference trajectory generator in
the CNC machine tool). The control algorithm requires 12 bytes of data from
each servos at each control cycle. The control cycle and the communication cy-
cle have the same values equals to TC = 125μs. After the processing time TP is
completed, the results are sent back to the servos. In this example each servo
receives back 8 bytes of data. This scenario is executed in every communication
cycle. One of the distributed node was the neuro-fuzzy (see e.g. [59]-[60]) based
hardware emulator implemented in the FPGA. The electronic board derived
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Table 1. Performance of proposed real-time communication solutions
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from the existing servo-drive with an Xilinx XC3ADSP3400 FPGA was used as
the hardware platform (Fig. 7). As it was indicated in the Introduction, the de-
sign and implementation of the emulator in the FPGA is an independent work,
undertaken in the context of other research. Moreover, as it was mentioned at
the beginning of this paper a maximum possible bandwidth is required to ob-
serve and control the emulator. In the experiment at each communication cycle
almost four hundred of data bytes were received from the emulator, indepen-
dently to data received from- and transmitted to- the other distributed nodes.
These periodic real-time data were required to record the exact state of the em-
ulator (being under development) at each emulation cycle. The received data
were pre-processed in the master device and saved in a memory for future use
in off-line mode, for the development purposes. The requirements of distributed
control system with the emulator and the performance of the proposed method
were presented in Table 1.

Tests confirmed that the performance of the proposed solution allows to com-
municate with the hardware emulator and transmit a large amount of the data
in each cycle. Additionally, the efficient non real-time communication channel
was used for management and diagnostic of the emulated object. Particularly,
the ambient conditions were controlled fully independently (i.e. without inter-
fering with the action) from the ongoing control process of HSM machine tool.
The features of the proposed solution enables to control system development
in an convenient way. This allows to greatly improve the whole control system
in future and gives great versatility and the new possibilities for designing of
complex control systems.
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5 Conclusions

This paper presented a new solution for hard real-time communication over
the Ethernet, which offers great flexibility and high throughput (i.e. effective
bandwidth capacity) and is adequate for the most demanding applications. The
two most important features that distinguish this solution from other are: the
ability to work very effectively in a full-duplex mode (which allows the use of very
short communication cycle times) and the efficient non real-time communication.
The result is a powerful real-time communication network.
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Abstract. This paper presents possible application of hierarchical fuzzy logic
systems to control vehicles in computer games. The main idea is presented in
two ways, a current research referring to paper [14] and concerning the new ar-
chitecture of a fuzzy logic system as Hierarchical Fuzzy Logic Systems (HFLS),
and a brief look at the application of higher order fuzzy sets to these systems.
”Hierarchical” means that fuzzy sets produced as output of one of fuzzy con-
trollers are then processed as an input of another fuzzy controller. The use of such
a controller significantly enhances the possibilities of computational intelligence
methods in single-player games, i.e. where the ”enemy” is controlled by agents
simulating some real behaviour. The original proposal takes into account type-
1 fuzzy sets which are not able to model uncertainties. The proposal presented
in this paper models a type-2 hierarchical fuzzy logic system with uncertainties
support, built with fuzzy controllers (in the sense of Mamdani). The advantages
and disadvantages of HFLS in comparison to classical fuzzy systems with pre-
liminary discussion about type-2 hierarchical fuzzy logic system are enumerated
and commented on.

Keywords: fuzzy logic systems, hierarchical fuzzy logic systems, type-2 hierar-
chical fuzzy logic systems, hierarchical fuzzy controller, type-2 fuzzy sets, type-2
hierarchical fuzzy controller, simulation in computer games.

1 Introduction

This paper addresses issues of simulations in computer games. In particular, we are in-
terested in computational intelligence methods based on fuzzy logic systems that make
it possible to simulate an enemy in single-player games. The new solution proposed
here is to replace Type-1 Hierarchical Fuzzy Logic Systems (T1HFLS) with Type-2 Hi-
erarchical Fuzzy Logic Systems (T2HFLS). The main idea of this solution is to provide
uncertainties to our system, extending the currently used type-1 to type-2 fuzzy sets.
The main concept of the system is not changed with respect to [14] and the general
structure looks the same (see Figure 3). This concept says that outputs of one type-2
fuzzy controller (fuzzy or defuzzified) are then considered as input of another type-2
fuzzy controller and is discussed in detail in Section 3 and 4. Please note that not each
of the controlers used in T2HFLS must be the Type-2 Fuzzy Controller (T2FC), which
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Fig. 1. Example of two fuzzy controllers, based on type-1 fuzzy sets (a) and type-2 fuzzy sets (b)

means that T2HFLS could be consist of T2FC and Type-1 Fuzzy Controller (T1FC).
Also the mode of action is quite the same, except for some new mechanisms dedicated
for T2FC such as the type reduction block.

In general, fuzzy logic systems or fuzzy controllers are useful in case when a con-
trolled process is not linear and the use of traditional controllers may appear inefficient.
Type-2 fuzzy logic systems or type-2 fuzzy controllers are useful in case when addition-
ally we want to model uncertainty in our system or controller. Fuzzy controller (FC) is
a control unit based on fuzzy logic [18], which makes decisions based on knowledge
containing the rules like IF . . . THEN . . . ; with unspecified predicates [17]. Fuzzy con-
trolling based on type-1 FS includes three stages: fuzzification, inference and defuzzi-
fication. Using type-2 FS we get a fourth stage as a type of reduction placed before the
defuzzification block. Figure 1 shows schemes of those two controllers. There are two
general models of fuzzy controllers: Mamdani model and Takagi-Sugeno-Kanga model
(TSK) [17]. In this paper we refer only to the Mamdani model which operates on fuzzy
antecedents and fuzzy consequents using defuzzification of a fuzzy output to get crisp
value while TSK uses a bit different construction of rules to evaluate crisp output [9].

Moreover, we concentrate on proposals of architecture of Hierarchical Fuzzy Con-
trollers (HFC). The main difference between HFC and FC is that HFC is built of several
traditional FCs, and is one complex inference system. Figure 2 shows examples of two
controllers. The first one is a traditional fuzzy controller (A), and the other is sample
structure of a HFC (B). As it is shown in case of B, output of one of FCs becomes
input of another one in the HFC structure. This structure may contain traditional fuzzy
controllers of both Mamdani and TSK types.
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Fig. 2. Examples of two fuzzy controllers, simple (a) and hierarchical as HFLS (b)

In this paper we still operate on HFLS because it is a helpful tool for controlling.
Hierarchical structure allows us to significantly decrease the number of rules in the
inference block of the system and simplify the process of modelling and simulating the
behaviours of vehicles in comparison to classic FC. This proposal was firstly described
in [13] and then in [14]. Experiments were conducted on the basis of a game entitled
Tank 1990, in particular, its newer version, Tank 1990-2012, developed by the author.
The main new value added in this article is proposal of adjusting this system to work
on type-2 FS which gives us much more capabilities during designing and creating
hierarchical fuzzy logic systems.

The rest of the paper is organized as follows: Section 2 contains some literature
references about type-1 and type-2 HFLS. The main concepts of architecture of original
hierarchical fuzzy logic system for game purposes are given in Subsection 3.1 in detail.
Subsection 3.2 describes application of our HFLS to our specific problem and 4 contains
introduction to type-2 fuzzy sets and controlling with general perspectives about our
system extensions. In Section 5, tests of the designed system with tests proposals for
T2HFLS; and the results with preliminary discussion are described. The last Section 6
contains conclusions and some future directions of the research.

2 Literature References

At the start to better understand the HFC based on type-1 FS we could recall to
[6,15,10,16,5]. The authors of those papers introduce HFC for many different problems
such as controlling agricultural robots in a natural environment, truck backer-upper
system, grouping cars into platoons and controlling the velocity and the gap between
cars in single lane platoons, controlling mobile robots moving from point A to point B
avoiding obstacles and controlling an urban traffic network in rush hours.

Much less information can be found about type-2 HFC and their applications. The
author of [7] uses a hierarchical type-2 fuzzy logic control architecture for autonomous
robots, where the problem was modeled as two layered architecture. The first level (low
level) contains four interval type-2 FC responsible for different robot behaviours such
as avoidance, goal seeking, left and right edge following. The second level (high level)
contains an interval type-2 FC responsible for the coordination of low level controllers.
Paper [12] presents application of hierarchical interval type-2 fuzzy neural network to
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synchronization of uncertain chaotic systems. The authors of [3] describe a hierarchical
multi-agent type-2 fuzzy architecture for an urban traffic signal control. Unfortunately
there is not too much literature closely describing systems based on type-2 hierarchical
fuzzy controllers. Many papers describe hierarchical structure to build system based on
neural networks, genetic algorithms and agents using additionally type-2 fuzzy sets to
other tasks, not necessarily as the base of hierarchical control system.

3 Type-2 Hierarchical Fuzzy Logic System and 2D Vehicle
Simulation

3.1 The Architecture of Hierarchical Fuzzy Logic System

During the analysis of different problems solutions based on multistage inference we
could note that applied controllers usually do not use the hierarchical structure. Outputs
of such FCs are returned as independent values, without any connections between them
during inference.

Fig. 3. General diagram of designed HFLS structure

In contrast to them during last research, we proposed the newly HFLS structure. This
structure combines all of FCs into one system, where the output of one FC becomes the
input of another one. The final output of this system is one crisp value. Furthermore, not
each of combined controllers works during each iteration of inference. Figure 3 shows
the discussed structure.

We can see different locations of unit controllers, communicating with each other
in different ways in Figure 3. Application of this HFLS to a specific case is described
in Subsection 3.2 in detail. To maintain a certain level of abstraction, we can assume
that the system has 7 inputs denoted as x0, . . . , x6 assigned to different internal drivers,
which can additionally take other outputs as inputs, e.g. x7 and x8. The system could
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be started many times, for example m ∈ N times, i.e. we consider m iterations. In each
iteration, system can be started n times for different data sets. For example, controlling
a pluton of cars, inclusive n cars includes m iterations that has common elements for
each car. In each iteration, one can call the inference for each car (data set), that is to
say n times. FCs on a blue background (see Fig. 3) are run in each iteration for each
data set, so this is m · n times. FCs on the salmon background, Fig. 3, are some kind
of ”sub-controllers” managed by FC no. 3. For each m iterations FC 3 is running once,
making decision which of the FCs marked as 4a, . . . , 4c will be running for n next data
sets in actual iteration.

By using the proposed structure of HFLS, we can simplify tank control problem in
a computer game. In this game, HFLS manages a battalion of tanks. In this case we
can treat iteration as inference for the entire battalion. A single set of data concerns
a specific tank in this battalion. At the start of iteration, FC 3 selects the strategy on the
basis of the game (available strategies: defensive, offensive and mixed). FC 4a, . . . , 4c
correspond to the mentioned strategies chosen by FC 3. In the next step for each tank,
controllers No. 1 and 2 are activated, and one of next controller, 4a, 4b, or 4c, returns
the final system decision about action for a given tank.

3.2 Hierarchical Fuzzy Logic System in Controlling Tank Activity: Current
Research

The chosen issue to solve has been defined as controlling military vehicles during
clashes in computer games. General rules of the game were drawn from Tank 19901

developed by Namco [1].
Applying this HFLS has to show the simplicity of the proposed solution for control-

ling tanks by a HFLS in comparison to typical FC.

Input data and controller knowledge Input data for inference come from the simulator
and they are expressed by the following linguistic variables:

– opponent tanks count (x0)
– average force of opponent tanks (x1)
– distance to the nearest opponent tank (x2)
– force difference between our tank and nearest opponent tank (x3)
– number of allies – tanks that belong to our battalion (x4)
– average force of allies (x5)
– tank is being attacked (x6)

The fuzzy controllers are based on Mamdani’s model with fuzzy antecedents and
fuzzy consequents. To represent linguistic information in current state we used type-1
FS. Controller based on type-1 FS is much more simple to design, implement and is
much more effective during inference, but does not provide support for uncertainty. In
section 4 we describe our proposition of extending the current solution from type-1 to
type-2. Examples of rules are listed below.

1 Basic information about game Battle City, an earlier version of the game Tank 1990. [2]
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– strategy controller rules

RULE 1 : IF TANKS_COUNT IS SMALL AND AVERAGE_TANKS_FORCE IS SMALL

THEN STRATEGY IS DEFENSIVE;

...

– support controller rules

...

RULE 6 : IF ALLIES_COUNT IS BIG AND AVERAGE_ALLIES_FORCE IS MEDIUM

THEN SUPPORT IS BIG;

...

– action controller rules (offensive strategy)

RULE 0 : IF TANK_IS_BEING_ATTACKED IS YES THEN ACTION IS ATTACK;

RULE 1 : IF RISK IS ZERO AND SUPPORT IS ZERO

THEN ACTION IS PATROL;

...

The Simulator and The Use of HFLS Game Tank 1990-2012 was created as a simulator
for testing and demonstrating designed controller and rule base. This simulator has been
implemented in Java. Figure 4 shows two screenshots of this game.

Fig. 4. Screenshots of game Tank 1990-2012. Home page (on the left) and first stage during battle
(on the right).

The structure of used HFLS is shown in Figure 3. Inputs of this HFLS are described
in section 3.2. FCs 1 and 2 correspond to the controllers computing the level of risk x7

and support x8. These variables are transferred as an input to the tank action controller
4a, . . . , 4c. Only one of these FCs is activated in the current iteration depending on the
strategy chosen by the FC 3. Offensive, defensive and mixed strategies are allowed.
The controlling system selects actions for each tank in battalion. Final decision allows
to escape, attack, stay at the current position and to patrol the immediate surroundings.
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4 Type-2 Hierarchical Fuzzy Logic System: Perspectives

Tests and results obtained during solving problem using type-1 HFLS are satisfying.
The most interesting results and conclusions are presented in section 5, for more please
see [13,14]. Furthermore, we decided to extend our solution to type-2 HFLS. The
first reason is that type-2 HFLS is not popular in the literature. The second reason is
that fuzzy controllers based on type-2 FS make our solution much more realistic and
flexible.

Mendel in [11] enumerates four sources of uncertainties in type-1 fuzzy logic
systems:

– ,,words mean different things to different people” – the meanings of the words that
are used in the rules can be uncertain

– when knowledge is extracted from a group of experts who do not all agree, conse-
quents may have a histogram of values associated with them

– measurements that activate a type-1 fuzzy logic systems may be noisy and therefore
uncertain

– the data that are used to tune the parameters of a type-1 may also be noisy

Those four points are the best reason to modernize current HFLS to type-2 HFLS,
except for the fact that using type-2 FS computationals is more complicated than us-
ing type-1 FS. In subsection 3.2 we described inputs as linguistic variables which are
uncertain words, which could mean different things to different experts and that is one
of reaffirmations that our case belongs to problem group, that should be solved using
type-2 FS.

At the beginning, we present some basic notations for type-2 FS.

Definition 1 ([11]). A type-2 fuzzy set, denoted as Ã, is characterized by a type-2 mem-
bership function μÃ(x, u), where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = ((x, u), μÃ(x, u)) | ∀x ∈ X,∀u ∈ Jx ⊆ [0, 1] . (1)

in which 0 ≤ μÃ(x, u) ≤ 1.

x is primary variable, Jx is the primary membership of x. Simplifying we could say that
membership functions of type-2 fuzzy sets are themselves fuzzy and operate on domain
in [0, 1].

Definition 2 ([11]). Footprint of uncertainty (FOU) is the union of all primary mem-
berships, i.e.,

FOU(Ã) = ∪x∈X Jx . (2)

FOU in the primary memberships of a type-2 fuzzy set, Ã, consists of a bounded region,
see Figure 5.
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Fig. 5. FOUs with Gaussian membership function (a) and an interval type-2 fuzzy set (b)

Adjusting Hierarchical Fuzzy Logic System to Work With Type-2 Fuzzy Sets. Sub-
section 3.2 shows some example rules created for type-1 HFLS, to adjust our controller
to operate on type-2 FS we do not need to modify the prepared rules. This is because
the distinction between type-1 and type-2 fuzzy sets is about the nature of membership
function and is not related with the form of rules. The first thing that should be done is
to evaluate the type-1 FS to type-2 FS. We should modify actual fuzzy sets descriptions,
to get type-2 FS and choose the best class of those sets to our problem. The main do-
main of those class contains Gaussian type-2 FS, interval type-2 FS, sigmoidal type-2
FS, trapezoidal type-2 FS and triangular type-2 fuzzy set.

Moving on to the inference process we must say that in the type-2 case, our inference
looks quite the same. In a T1FC inputs are fuzzified to type-1 FS and then they are
mapped to type-1 fuzzy output. Antecedents in rules are connected by the t-norm and
multiple rules may be combined using t-conorm operations to get one fuzzy output.
Using type-2 FS all we need is to do unions and intersection (t-norms and t-conorms)
of type-2 fuzzy sets. The union of Ã and B̃ could be expressed as:

μÃ∪B̃(x) = Σu∈Ju
x
Σw∈Jw

x
fx(u) � gx(w)/u ∨ w ≡ μÃ(x) 
 μB̃(x) where x ∈ X . (3)

Symbol
 denotes the join operation,� denotes a t-norm (e.g., minimum, product, etc.).
The intersection could be expressed as:

μÃ∩B̃(x) = Σu∈Ju
x
Σw∈Jw

x
fx(u) � gx(w)/u � w ≡ μÃ(x) � μB̃(x) where x ∈ X . (4)

Symbol � denotes the meet operation and the ∨ represents the max t-conorm. [11,8]
During the inference process we get type-2 FS as output. Before the last stage as de-

fuzzification we need to do type reduction. General process of working T2FC is shown
on figure 1, scheme b. During type reduction process we get type-1 FS from type-2 FS,
and then this set could be defuzzified to obtain a crisp value as the output of our single
T2FC. This value could be the final output of our type-2 HFLS if it is produced by
the final controller in our system or could be an input to another T2FC. Type reduction
method could be called a defuzzification method [4]. Original defuzzification gives us
a crisp value which we could call type 0 (crisp) value from type-1 set. Type reduction
gives us a type-1 set from type-2 set. To type reduction we could use height type reduc-
tion, centroid type reduction, center of sums type reduction, center of sets type reduction
or many others.



Hierarchical Fuzzy Logic Systems 303

5 Tests and Results

”Tank 1990-2012”: a Current State. Tests The experiment is conducted on the basis
of the computer game entitled Tank 1990-2012 created by the author, and it is a newer
version of classic Tank 1990. Especially, the main difference is the use of HFLS, and
the rule base accessible to everyone, so it allows to do own tests2

Other tests must be done for the proposed extension of the current solution. Those
tests should be connected with the application of type-2 FS. The basic tests should test
different configurations of new controller in terms of different type-2 FS class, differ-
ent t-norms and t-conorms used during inference process and different reduction type
methods. The best configuration should be chosen and compared to current HFLS. This
comparison could be based on efficiency, time-consuming, speed and complexity of
computationals, general behaviours of tanks during the battle and playability, assessed
by players.

Current Results Table 1 shows results of the first test described in the paragraph above.
As it is shown in Table 1 it is quite easy to win playing Tank 1990 (43 losses, 59.7%).
On the other hand, this is almost impossible to win in newer Tank 1990-2012 (100.0%
losses); this is because the latter version of the game is equipped with much more intel-
ligent method of controlling tanks.

Table 1. Summary of losses during played games Tank 1990-2012 and Tank 1990 during 72 tests

Tank 1990-2012 Tank 1990

defeat 72 (100%) 43 (59.2%)

victory 0 (0%) 29 (20.3%)

The second test concerns time periods needed to achieve victory. Different configu-
rations of HFLS are tested and the best are minimum t-norm, Łukasiewicz s-norm and
the middle of maximum (MOM) as defuzzification method. Tank 1990 was tested in
NES console simulator. Average results are shown in the Table 2. As we can see, almost
identical results are achieved, and the difference is only 0.4 seconds.

2 We want to refer to the most interesting tests. The first one applies to general behaviour of
game and tanks controlled by HFLS. In this test case games Tank 1990 and Tank 1990-2012
were launched 72 times, counting losses in subsequent stages taking stage 11 as the last one.
The second test is more detailed comparing efficiency of different controller configurations.
Tank 1990-2012 was launched 50 times for each configuration and the best configuration was
selected. The same test was done with Tank 1990, launching the game 50 times and comparing
the average time with the time of the best configuration from Tank 1990-2012. During this test
user could not do any moves with the tank. Please note that test conditions were not the same,
for example the speed of vehicles in the original game was much higher. The last one we want
to mention is summary of HFLS rule base which has been made in comparison to single FC
rule base doing the same task. This comparison shows simpler and more efficient solution.
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Table 2. Average times necessary to win in Tank 1990-2012 and Tank 1990 [s]

Tank 1990-2012 Tank 1990

29.8s 29.4s

Table 3. Number of fired rules needed to infer for four battalions of 1, 5, 10 and 20 tanks in HFLS
and FC

number of tanks in battalion fired rules in HFLS fired rules in FC

1 44 1 458

5 184 7 290

10 359 14 580

20 709 29 160

Fig. 6. Number of fired rules during one inference for battalion of 1, 5, 10 and 20 tanks during
inference in HFLS and simple FC

Summarizing HFLS rule base, we count 7 + 2 = 9 linguistic variables (7 as input
and 2 as auxiliary). Counting created rules we get 9 + 9 + 9 + 3 · 17 = 78. During the
inference process, 9 rules decide about strategy, 9 rules about support, 9 rules about
risk, and 17 rules about the tanks action (each strategy uses a different set of rules to
select tank action, so that is why we have 3 · 17 = 51 rules). For example to do one
iteration of inference for battalion of 5 tanks, we must select strategy (9 rules) at the
start of iteration, then for each tank we must get risk and support value (9 + 9 = 18
rules) and at the end choose the final tank action (17 rules). So to do this task we must
fire 9 + 5 · (18+ 17) = 184 rules. The complexity of these rules is low: two antecedents
and one consequent.

To solve this problem using single layered FC, we should have to include all combi-
nations of those 7 input variables into this FC. In this case we need to create 9 ·9 ·9 ·2 =



Hierarchical Fuzzy Logic Systems 305

1458 rules (strategy, support, risk and info that tank is being attacked). Using this FC to
our sample battalion we need to fire 5 · 1458 = 7290 rules with 7 antecedents. Sample
forecasts are presented in Table 3.

The summary of this comparison is depicted by the graph shown in Figure 6.

6 Conclusions and Future Work

The tests run prove some positive effects of applying HFLS to control virtual vehicles
in games. The results of the first test, presented in Table 1, determine much higher
game difficulty, i.e. more intelligent behaviour of enemy tanks, controlled by HFLS,
with respect to the Tank 1990. The results of the second test, see Table 2, inform us
that the more time-consuming computations (mostly inferences) in case of HFLS do
not decrease the speed of the game; the lack of a negative effect is really important
observation here, mostly because of higher computational complexity of HFLS. We
also note that the use of HFLS has a positive impact on the tank control in the newer
version of the tested game, i.e. Tank 1990-2012. The vehicles move intelligently and try
to achieve clearly defined goals, while tanks in the older version, i.e. Tank 1990, move
chaotically and make irrational decisions.

From the point of view of a programmer/developer, HFLS make it possible to adapt
controllers easily to specific problems appearing in software, not necessarily in games.
The modular and hierarchical design of such a controller makes a problem easy to
understand and allows to find a simple solution to this problem. For instance, the HFLS
described in Section 3 requires only 78 unique inference rules, while the analogous
FC for the same purposes requires 1 458 (!). Furthermore, the rules of FC are more
complex, because of using 7 linguistic variables, while the HFLS uses only 2.

Using type-2 FS to describe antecedents and consequents should provide support
for uncertainty without any interference into rule base and general structure of current
HFLS. The negative aspect of application of type-2 FS is that we need to implement
more complicated unions and intersection methods and implement new block to provide
type reduction. Those new and modified methods will decrease the performance of the
controller which could have a negative impact to the speed of the game.

During feature research at the start we will implement the perspectives described in
this paper. All of the mentioned methods and solutions should be implemented, tested
which could let us give the first opinion about ratio of benefits of application type-2 FS
to negative impact and cost of additional work during implementation. Apart from the
positive or negative results we want to continue research focused on other classes of
type-2 FS and methods used during inference and defuzzification, to make our solution
much more powerful and flexible for different problems.

Our future research may also direct towards combining genetic and/or evolutionary
algorithms or artificial neural networks with HFLS. Other different direction of devel-
opment is the use of multi-agent systems to present type-2 HFLS with distributed archi-
tecture. Genetic and evolutionary algorithms, as optimisation methods, can be used to
find optimal route to the specified destination or object. Neural networks can be useful
in dynamic tuning knowledge bases of HFLS. Multi-agent systems seem to be perfect
tool to apply type-2 fuzzy controller with hierarchical structure to many problems in
unspecified and uncertain environment.
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Abstract. The paper presents certain aspects of application of model
of the Relational Fuzzy Cognitive Map (RFCM) for advanced analysis
of activity of complex dynamic systems. Intelligent models, including
various types of cognitive maps, are commonly used to study the effect
of the selected parameter on the others or to classification of objects
described by many parameters. RFCM model characteristics, in addition
to the above uses, allows to use it also for modeling the work of systems
with the internal dynamics. It follows that such a model can be used to
predict the state of the system in the future steps of a discrete time. In
the paper, selected results of testing just such a use of the RFCM model
are described.

Keywords: relational fuzzy cognitive map, intelligent modeling, fuzzy
relations, fuzzy numbers, arithmetic of fuzzy numbers, prediction.

1 Introduction

Modeling the work of the complex systems, characterized by uncertainty and
imprecision of the information has always been a difficult task. Uncertainty of
the information is associated with inaccurate knowledge of the structure of a
modeled system, which results that such a structure is difficult to describe with
the use of the system of equations (usually it is not possible). Imprecision of
the information stems from the way of obtaining data on the values of selected
parameters of the system. In many fields (such as economics, medicine, politics,
sociology, meteorology, and even some technical issues) the values are estimated
or recognized subjectively, may therefore be dependent on the observer (expert).
On the other hand, it is hard to resign from modeling, which is necessary pro-
cess for understanding many phenomena, and also significantly reduces the costs
of design and exploitation research. For many years, research continues on the
creation of methods which allow to skip a negative impact of both the uncer-
tainty and imprecision of the information. Uncertainty can be, to some extent,
mitigated by using so-called ”intelligent” modeling using neural or neural-like
structures (such as an artificial neural network). As for the imprecision, the an-
swer is to introduce into a model the fuzzy algebra [4, 7, 8, 13, 14].
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In this sense, special attention should be devoted to developed since 1986 [3]
structures called Fuzzy Cognitive Maps (FCM), because, in addition to the ba-
sic tasks of classification, they allow to consider the dynamic internal structure
of the modeled object. A model, constructed using the FCM technique, is a di-
graph, in vertices of which the main quantities of the object (called concepts),
selected by the expert, are placed, while the arches reproduce causal relations
between concepts. So it can be said that such a model is characterized by a
following pair:

< C,E > (1)

where: C = {c1, ..., cn} – set of concepts; E = {ei,j}i,j=1,...,n;i�=j – set of causal
relations between concepts; n – number of concepts.

In the basic form both concepts and links between them are linguistic quanti-
ties, and their values are expressed as the linguistic values [1–3, 9]. Such a form,
however, makes the model difficult to learn (which is an essential element of the
design process of intelligent model), and therefore in the majority of applica-
tions found in the literature (e.g. [5]) the following form of the FCM description
occurs:

< x,w > (2)

where: x = {x1, ..., xn} – set of normalized values of concepts expressed numeri-
cally; w = {wi,j}i,j=1,...,n;i�=j – the set of weights of causal connections between
concepts, expressed as numbers from the range [−1, 1]; n – number of concepts.

Form (2) facilitates the model learning (for this purpose mainly various
population-based methods [5] are used) and its application, but it is de facto
departure from the basic advantage of the classical FCM, which is the fuzzifica-
tion of values. For this reason, since 2008, the works are conducted on developing
such a method of modeling uncertain and imprecise systems, in which the fuzzi-
fication of parameters would be kept at all stages of the design and operation of
the model. Developed, as a result, method is based on the model of so-called Re-
lational Fuzzy Cognitive Map (RFCM) [10–12], which is in a sense an extension
of the existing approach to FCM. Model of RFCM is also digraph with concepts
and connections, but values of the concepts are represented by fuzzy numbers,
and the connections between them – by fuzzy relations. Such a model can be, in
general, described as follows:

< X,R > (3)

where: X = {X1, ..., Xn} – set of fuzzy values of concepts expressed by fuzzy
numbers; R = {Ri,j}i,j=1,...,n;i�=j – set (matrix) of fuzzy relations between con-
cepts; n – number of concepts.

Graphical visualizations of models (1), (2) and (3) are similar each other and
have a form like in Fig. 1.

The differences result from the way of the description of the model concepts
and from the way in which the model is taught and used. The object of this
paper is the RFCM model.

The fundamental task of any kind of a cognitive map is to identify the impact,
which a single, selected concept can exert on the others. Various attempts are
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Fig. 1. Visualization of general form of RFCM. Xk – general representation of fuzzy
values of concepts X5-Xn; Ri,j – general representation of fuzzy relations; n – number
of concepts of RFCM.

made to apply cognitive maps to predict future states of systems (such as in [6]),
but they relate to the standard FCM constructions that are based de facto on
the processing of real numbers. Moreover, in such approaches time waveforms
of selected parameters are not specially studied. The introduction of dynamic
structure of the RFCM extends the scope of applications of the cognitive models
with additional functionalities related to the direct modeling of system behavior
in transient states, including forecasting the waveforms of the selected concepts
of the system. In this paper, there is presented an example of just such a use of
RFCM.

2 The Design and Operation of the RFCM Model

There are various possible approaches to the construction of the RFCM models,
however, in the case of modeling systems with dynamic internal structure, it
seems to be the best the model that accounts a non-linear rate of change of
values of the concepts [10, 11]:

Xj(t+ 1) = Xj(t)⊕
n⊕

i=1
i�=j

[(Xi(t)%Xi(t− 1)) ◦Ri,j ] (4)

where: Xj(t) – fuzzy value of the considered (j-th) concept in a step t of discrete
time (represented by the fuzzy number); Ri,j – fuzzy relation between concepts i-
th and j-th; i, j = 1, ..., n; n – number of concepts; t = 0, 1, 2, ..., T – consecutive
steps of discrete time; T – considered interval (number of steps) of discrete time.

Exploitation of model (4) consists in calculating the fuzzy values of each con-
cept in the subsequent steps of discrete time. Operators occurring in (4) mean:
⊕ – fuzzy addition of fuzzy numbers; % – fuzzy subtraction of fuzzy numbers;
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◦ – fuzzy composition of fuzzy number and fuzzy relation. Closer description of
their actions is presented, among others, in [10].

Modeling using RFCM is based on three key phases of constructing the model:

– fuzzification of values of key concepts using fuzzy numbers,
– selection of type of the fuzzy relations, which represent causal connections

between concepts,
– selection of the method of the model learning, which will be used to the

adaptation of parameters of fuzzy relations.

Each of the above phases is characterized by special features unprecedented in
other approaches. A more detailed description of them can be found, among
others, in [10]. Below, their general characteristics will be presented.

2.1 Fuzzification of Values of the Concepts

The first step for fuzzifying the concepts is to determine the span of the support
and the number of linguistic values k, describing the concept. In the elaborated
method [10–12] it is assumed that the number of linguistic values is constant
for the entire model (for all concepts), and the support should provide sufficient
symmetry of membership functions associated with the individual concepts. Ex-
periments have shown that the sufficient span of the support is the range of
[−2, 2]. Then the general form of membership functions of fuzzy numbers rep-
resenting fuzzy values of concepts should be selected. They should have a sym-
metrical character (according to the class of Λ, π or G [10]). For example, the
membership function of class G of fuzzy value of the concept has a form:

μXi(s) = e
−
(

s−Xi
σi

)2

(5)

where: Xi – fuzzy value of the i-th concept; s – support; Xi – center (normalized
real value) of the i-th concept; σi – fuzziness coefficient of the i-th concept;
i = 1, ..., n; n – number of concepts.

On the support k evenly spaced sample points should be deposited. Fuzzifi-
cation consists in the determination of the center and then define a membership
function according to (5).

Another problem is the initial normalization of the real values of concepts. It
is always used in intelligent models to ensure even distribution of influence of
individual concepts and independence from the different scales used for measur-
ing the parameters. A commonly used max-min method converts input values
(irrespective of their original character) into normalized values falling within the
range [0, 1]. In dynamic systems signs of the processed values may be important,
and therefore for the needs of RFCM models there was developed a modified
method of normalization [10], described by the following equation:

x(t) = Sgn(x∗(t))
|x∗(t)|

max(|x∗|) (6)
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where: t – selected step of a discrete time, in which normalization is performed;
x∗(t) – real (input) value in step t of a discrete time; x(t) – normalized (output)
value in step t of a discrete time.

Values of concepts, normalized with the use of (6), are fallen within the range
[−1, 1].

2.2 Designing Fuzzy Relations

The method for creating RFCM is based on the assumption of a high degree
of automation of the process of building individual elements. It determines the
shape of the relations between the concepts. In essence the choice of the fuzzy re-
lations is crucial for the proper functioning of the model. Numerous studies and
trials have led to the development of a certain general functional form (member-
ship function) [10, 11], on the basis of which all the fuzzy relations of the model
can be designed:

μR(a, b) = fR

(
p1· b− p2· r(a)

p3·σ

)
(7)

where: a, b – adequate points of supports of fuzzy numbers A and B connected
with the relation R (in the RFCM models these supports are identical); fR –
the base function dependent on the selected membership function; σ – fuzziness
coefficient (dispersion); r(a) – functional coefficient of power of the fuzzy relation
R; p1, p2, p3 – coefficients dependent on the selected class of the membership
function.

For building fuzzy relations in RFCM models the best suitable functions are
of classes Λ, Π, π or G [4, 10]. The membership function of class G can be
defined in the following way:

μRi,j (si, sj) = e
−f2

(8)

where: f =
sj−ri,j(si)

σi,j
; μRi,j – the membership function of the fuzzy relation Ri,j

between concepts i-th and j-th; si, sj – supports of fuzzy values of concepts i-th
and j-th; ri,j(si) – coefficient of power of the fuzzy relation Ri,j (in a functional
form); σi,j – fuzziness coefficient of the fuzzy relation Ri,j .

The coefficient of power of relation ri,j(si), occurring in equation (8), is a
function of a support, and supports si and sj are sets of the same k points, so:
si = {si(1), si(2), ..., si(k)} = sj = {sj(1), sj(2), ..., sj(k)}, where k – the number of
the sampling points of the support.

The simplest form of the ri,j is a linear form (9):

ri,j(si) = ri,j · si (9)

where: ri,j – direction number of function of power of fuzzy relation between
concepts i-th and j-th.
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2.3 The Model Learning

Learning of the RFCM model is a supervised process, which requires the use of
a certain number of complete historical data. As mentioned earlier, in classical
FCM models there is used a method consisting in the conversion of values of all
fuzzy quantities into a numerical form, and then the population-based adapta-
tion of such arisen parameters of the map. In the RFCM model all operations,
including learning, are made on fuzzy quantities. Each relation is described with
several parameters, which means that the direct application of population-based
methods is impossible. So, therefore it has been developed an approach using ”al-
gorithm of successive approximations with variable step of parameter changes”
[10, 11]. Generally, the method is similar to conventional ones, i.e. it consists in
successive making minor changes of parameters of individual fuzzy relations and,
after each such change, analysis a certain criterion – the closeness coefficient:

J(Q) = Φ
(
‖Xi(t)− Zi(t)‖

)
⇒ min

Q
(10)

where: Φ() – selected optimization function (e.g. quadratic); Xi(t), Zi(t) – de-
fuzzified and crisp (reference) trajectories of changes of values of the i-th concept;
‖ ‖ – selected norm; t - discrete time.

Quantity Q, appearing in equation (10), is a vector of changed parameters.
For relations of type G it can take a form:

Q = [{ri,j}, {σi,j}, k]T (11)

where: k – number of the support sampling points; {ri,j} – directional numbers
of functional coefficients of powers of fuzzy relations Ri,j ; {σi,j} – fuzziness
coefficients of fuzzy relations Ri,j ; i, j = 1, ..., n; n – number of concepts in the
model.

In the algorithm of successive approximations with variable step of parameter
changes the randomness is abandoned in favor of planned changes of individual
parameters – with concomitant use of time-varying increments. All fuzzy rela-
tions are successively modified in accordance with the algorithm, which general
idea (for a single relation) is shown in Fig. 2.

Fig. 2 shows subsequent stages of a single adaptation step for a single fuzzy
relation. At each stage, the value of the closeness coefficient is verified. If it is less
than the current one, the change of the parameter (Δr or Δσ) is accepted, if not,
the change is withdrawn. Individual adaptation steps are repeated successively
for all relations until the ”Stop” condition is satisfied.

3 The Use of RFCM Model to Prediction Purposes

Prediction process involves designating the future, unknown states of the system
basing on the knowledge of its current behavior. Intelligent models, thanks to
various supervised learning techniques, work well in classification tasks. In ad-
dition, the models of RFCM kind, due to its multi-directional structure, may be
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Fig. 2. General idea of the algorithm of adaptation of a single fuzzy relation of class
G with linear function of power of the relation. +Δr, −Δr, +Δσ, −Δσ – changes of
values of the key parameters in the subsequent stages of the algorithm.

used to reproduce the operation of the dynamic system in certain circumstances
and to analyze the effect of changes of the selected concept on the other ones. As
it turns out, they are not all the possible applications. In certain circumstances,
such a model can be used for prediction. The rest of the paper will be devoted
to presentation of the results of tests of such a model work.

Predictive application of the RFCM model requires some modification to the
procedure of normalization of concept values. Into the method shown in (6) there
is introduced an additional scale coefficient, which takes into account the possible
values higher than those observed in the historical data. Then equation (6), for
selected, the i-th concept, takes the form (12):

xi(t) = ϕi· Sgn(x∗i (t))
|x∗i (t)|

max(|x∗i |)
(12)

where: ϕi ∈ [0, 1] – scale coefficient for the normalization of the i-th concept.
Normalization according to (12) is used at the stage of the model learning.

The model learns on chronologically earlier part of complete historical data,
while it’s tested on the full set of this data.

3.1 Modeled Object

For the purposes of test modeling there was chosen the object giving the ability
to easily obtaining reference data for various operating conditions. This object
is a simple RLC circuit shown in Fig. 3.

By using a system of differential equations a situation was modeled, in which
in the circuit from Fig. 3 the voltage E is turning on. Time courses of values of
individual quantities of the circuit were used as a source of historical data, which
was assumed that one step of a discrete time corresponds to 50ms of a real time.
The waveforms, obtained in this way, have been normalized according to (12),
with a scale coefficient ϕ = 0.8 equal for all concepts. Reference waveforms, for
30 consecutive steps of a discrete time, are shown in Fig. 4.
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Fig. 3. Diagram of the RLC circuit, which was a source of the reference data. R = 10Ω,
RL = RC = 0.01Ω, L = 0.08H, C = 0.05F, E = 10V.

Fig. 4. Reference waveforms – normalized historical data. t – discrete time.

Then, a model in the form of RFCM with a construction as in Fig. 1 was built,
which contains n = 7 concepts whose fuzzy values were denoted as follows: X1

– E, X2 – i, X3 – iC , X4 – iL, X5 – uC , X6 – uL, X7 – uR. It was assumed
that values of concepts will be fuzzified basing on the membership functions of
type (5), and fuzzy relations will be built according to equation (8). It was also
assumed common, for all concepts, fuzziness coefficient σi = 0.6. With regard
to the fuzzy relations there were assumed initial values of direction numbers of
power functions ri,j = 0 and fuzziness coefficients σi,j = 0.4.

The main problem during the RFCM learning is the duration of this pro-
cess (which results from the nature of discrete arithmetic operations on fuzzy
numbers and fuzzy relations). In this connection, it should be taking into consid-
eration possible low number of the support sampling points (linguistic values). It
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was assumed that on the support with a range [−2, 2] only 9 sample points will
be evenly spaced. Thus, the fuzzy value of each concept is represented by the
fuzzy number (fuzzy set) consisting of 9 fuzzy singletons. An exemplary form of
such a number (with a center equal to 0.5) is shown in Fig. 5.

Fig. 5. Graphical representation of a number fuzzyfied around the center = 0.5, rep-
resented by 9 fuzzy singletons on the support [−2, 2]. s – support.

Fig. 6. Graphical representation of the fuzzy relation between concepts 5 and 7, with
parameters: r = 0.43, σ = 0.53. s5 – the support of concept 5; s7 – the support of
concept 7 (s5 ≡ s7).

Fuzzy relation corresponding to such a support is of the shape shown in Fig. 6.
So designed structure of RFCM has been learning using the algorithm of suc-
cessive approximations with variable step of parameter changes, but, for the
learning purposes only the first 20 records from the reference set was used. The
result is a model with the parameters given in Table 1:
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Table 1. Final results of the RFCM learning process

r X1 X2 X3 X4 X5 X6 X7

X1 0.00 1.00 1.00 1.00 1.00 1.00 1.00

X2 0.00 0.00 1.00 0.65 0.04 -0.62 1.00

X3 0.00 -0.25 0.00 -0.32 0.7 0.71 -0.13

X4 0.00 0.63 -0.18 0.00 -0.36 -0.24 0.62

X5 0.00 0.39 1.00 -0.36 0.00 0.31 0.43

X6 0.00 -0.59 -0.29 0.51 0.03 0.00 -0.43

X7 0.00 1.00 1.00 -0.78 -0.79 -0.5 0.00

σ X1 X2 X3 X4 X5 X6 X7

X1 0.40 1.52 2.13 1.49 0.84 1.05 1.26

X2 14.86 0.40 0.51 0.68 0.06 0.63 0.68

X3 14.88 1.20 0.40 0.31 0.07 0.12 0.17

X4 14.89 0.16 1.32 0.40 0.19 0.15 0.16

X5 14.90 0.52 1.04 0.37 0.40 0.76 0.53

X6 14.90 0.87 1.17 0.15 0.53 0.40 0.37

X7 14.88 0.91 0.21 0.41 0.35 0.32 0.40

It is worth to note that the quantities r and σ were the main object of the
model learning. During this process, their values have been converted from the
initial (previously mentioned) to the final levels specified in Table 1.

Next, the work of the model was initiated, using the equations of type (4) to
determine the values of the concepts in the consecutive steps of a discrete time.

Fig. 7. Comparison of time courses of quantity uR: real one (reference) and obtained
by the RFCM model working in prediction mode. ”uR - ref.” – the reference waveform;
”uR - mod.” – the waveform calculated by the model.



Application of Models of RFCMs for Prediction of Work of Complex Systems 317

These values have been defuzzified (with weighted average method). The effect
of the model work for one selected quantity (uR), is shown in Fig. 7.

The area marked in gray in Fig. 7 is a prediction zone. The values in this
area have not been the subject of learning – they have been calculated by the
model. The waveforms for only one quantity are presented – to ensure clarity of
the image (for other quantities the results are similar).

As it is shown in Fig. 7, within the scope of direct learning (the model learning
was carried out on a data set covering the first 20 steps of a discrete time), the
model gives a very good representation of the reference values and such effects
were already shown in previous works (among others in [10–12]). However, as
also seen in Fig. 7, well-trained model can ”predict”the next values (gray area on
the chart). As the ”distancing” from the end of ”learning zone” the gap between
the results of prediction, and the behavior of the real object is growing, but even
then the model retains the trends in changes of concepts.

4 Conclusions

Relational Fuzzy Cognitive Map is a structure that meets several important
conditions. Firstly, the model created with the use of it retains fully fuzzy form.
Secondly, with its help one can get a good representation of the real time courses
of selected quantities of a complex dynamic system. Thirdly, for dynamic system
it is enough to have a knowledge of the part (the beginning) of time waveforms
of selected quantities and, on this basis, it is possible to predict (in a certain time
interval) the continuation of these waveforms. The results presented in this paper
have to some extent preliminary character, because the research on the issue of
prediction using RFCM is still conducted. However, even these incomplete results
confirm the potential of proposed method.
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Abstract. The paper concerns specific problems of color digital picture
recognition by use of the concept of fuzzy granulation, and in addition
rough information granulation. This idea employs information granules
that contain pieces of knowledge about digital pictures such as location
of objects as well as their size and color. Each of those attributes is de-
scribed by means of linguistic values of fuzzy sets, and the shape attribute
is also considered with regard to the rough sets. The picture recognition
approach is focused on retrieving a picture (or pictures) from a large
collection of color digital pictures (images) - based on the linguistic de-
scription of a specific object included in the picture to be recognized.

1 Introduction

The main idea of the fuzzy granulation approach to color digital picture recogni-
tion - developed and employed in this paper - is based on the concept introduced
by the authors in [15]. Some problems mentioned in the last section of [15], within
the context of further research, are considered in this paper. In particular, the
third dimension of the CIE chromaticity triangle (color model) - that is the lu-
minance - is included in our approach. Besides, in addition to the size attribute,
approximate shape of an object located in the picture to be recognized is taken
into account, and - apart from the fuzzy granules - application of the rough
granulation is proposed.

Nowadays we collect a lot of various color digital pictures, and the number
of such pictures are still growing. Moreover, the picture resolution increases,
so we need new methods for searching, recognition, and retrieving a particular
picture from a large collection of them. Let us imagine a problem of searching
for a picture based on a piece of knowlegde about a particular object that we
remember as located in this picture. Let us assume that we may roughly describe
the location as well as shape, size, and color of that object. In such a case, we
can employ the approach proposed in this paper, and it seems to be very useful.
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Two main attributes, considered in the linguistic fuzzy description of the
specific object included in the picture, are color and location. Other attributes,
such as shape and size are strictly related with the location, and concern the
same 2-dimensional space of pixels. The color attribute may refer to different
space of the color spaces, e.g. the following color models: the CIE chromaticity
triangle, RGB three-dimensional space, HSL (hue, saturation, lightness), and
similar HSV. More information about various color models can be found in [15]
and many other publications, including [3].

Color is a very important attribute of digital pictures. It carries significant
information that helps to distinguish, recognize, compare, and classify different
pictures or objects presented on various pictures. We can use only this attribute
in the case when we do not have any information about the specific object except
its color. Of course, with less knowledge, it is more difficult to find the proper
picture (or pictures).

In this paper, and in [15], the concept of fuzzy granulation, originally introduced
by Zadeh [17], is proposed to describe fuzzy location of pixels as well as fuzziness of
their color. In consequence, we can consider a color digital picture as a fuzzy set of
pixels or groups of pixels that we call macropixels, according to the fuzzy set theory
[16]. The attributes of the shape and size may be considered within the framework
of the rough sets (also calledPawlak sets) [4]. However,we can apply fuzzy sets rep-
resented by various types of membership functions; for details, see e.g. [10]. In par-
ticular, specific shapes of functions defined on two-dimensional space, expressedby
proper mathematical formulas are very useful as the membership functions, with
regard to both the location space and CIE color space.

It should be mentioned that some other authors combine fuzzy set and rough
set theories [2], [9] in different applications, e.g. [8]. Granulation approaches have
been developed within the framework of both fuzzy granulation [17] and rough
granulation [5]. Information granules are applied in pattern recognition and im-
age processing, e.g. [5] and [12], with fuzzy and rough granulation, respectively.

This paper developes the approach, introduced in [15], for solving the problems
of picture recognition based on the vague knowlegde about a specific object (or any
detail) included in the picture to be recognized and retrieved. The bigger is the
knowledge the easier to find the proper solution, however the algorithm is more
complicated because of processing more information. Thus, the special algorithm
depends on the knowledge about the picture we want to recognize and retrieve.

The paper is organized as follows. The next section describes the concept of
fuzzy granulation. In Section 3, a new algorithm is proposed and employed for
granulating a color digital picture (pixel space) into the so-called ”macropixels”.
Section 4 presents a new method for color space granulation. This is fuzzy granu-
lation of the CIE chromaticity triangle with the third dimension, i.e. luminance.
In Section 5, results from two previous sections are combined in order to ob-
tain fuzzy information granules concerning the color digital pictures. Moreover,
rough granules are also considered. Section 6 illustrates the problem of color
digital picture recognition based on the information granules. Conclusions and
final remarks are included in Section 7.
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2 Fuzzy Granulation

As emphasized at the beginning of Section 1, the idea of fuzzy granulation in
application to the color digital picture recognition, presented in [15], is considered
in this paper.

Image processing is one of examples where information granulation may be
applied and play an important role in pattern recognition [7]. In this case, the
similarity of objects that are candidats for grouping into a granule usually refers
to the closeness of pixels located spatially close to each other. In the concept of
information granulation, the granules can take a form of sets, fuzzy sets, rough
sets, etc., but most often are concentrated on the use of fuzzy sets. In this paper,
we also apply fuzzy granulation to digital color pictures. This is presented in
Sections 3 and 4. However, in Section 5, we propose to apply rough granulation.

The idea of macropixels, introduced in [15] and developed in Section 3, is
strictly related to the fuzzy granulation approach. As a matter of fact, the algo-
rithm proposed in Section 3, for creating the macropixels, realizes granulation of
the pixel space. In this case, the granules refer to the closeness of pixels located
spatially close to each other, and previously take a form of sets. Then, fuzzy
membership functions are defined, so the macropixels are viewed as fuzzy sets.

The fuzzy color areas of the CIE diagram, discussed in [15], are combined
with the luminance in Section 4, and considered as color space granulation. It
is worth emphasizing that in this way we granulate the 3D color space (CIE
chromaticity triangle with the luminance) that is the color model representing
colors as perceived by humans, unlike the RGB. The fuzzy regions of the CIE
chromaticity triangle are viewed as fuzzy sets, as well as the luminance intervals.
In [15], the granules as groups of points with similar pure color (hue) are applied
to the fuzzy granulation approach. In this paper, the luminance enriches the
information granules.

Both the fuzzy location of pixels and fuzzy color, considered in Sections 3 and
4, respectively, are considered in the framework of the fuzzy granulation. When
pixels of the same (or similar) color are located within a macropixel, we have
a granule of the same color and location. In addition, as mentioned in [15], the
third attribute, i.e. the size of the macropixels may be taken into account. Thus,
we can see a digital color picture as a collection of macropixels associated with
corresponding granules that carry information about color, location, and size.
This concept is especially useful with regard to the problem of color digital pic-
ture recognition discribed in Section 6. In this paper, we also introduce another
attribute, that is shape of an object to be recognized, and in this context we
propose to employ the rough granulation (see Section 5).

3 Algorithm of Pixel Space Granulation

As explained in Section 1, the shape and size attributes are strictly related with
the location that is considered in the 2-dimensional space of pixels. The color
digital pictures are composed of pixels belonging to this pixel space. The location
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of an object in a picture can be pointed by means of the ”macropixels” defined as
groups of pixels. The idea of the macropixels is introduced in [15]. As a matter
of fact, the macropixels can be treated as fuzzy granules, and the algorithm
- proposed to determine the macropixels - granulates the pixel space, i.e. the
digital picture area of pixels (smallest picture elements).

The algorithm that creates the macropixels - dividing the width and height
of the picture into intervals (what is a proces of granulation) - is introduced in
this section and illustrated in Fig. 1.

Fig. 1. Illustration of picture granulation into macropixels

Let Ω denotes a digital picture, composed of pixels, pi,j , for i = 1, ...,Mw, and
j = 1, ...,Ms. Thus, the number of pixels in the picture Ω equals M = MwMs

whereMw andMs determine height W and width S of the picture, respectively.
Figure 1 shows the digital picture, Ω, of size WS, with pixels pi,j ∈ Ω.

In addition, the macropixels, denoted as Ωw,s, where w = 1, ...,mw and s =
1, ...,ms are depicted. This means that mwms is the number of macropixels
Ωw,s in the picture Ω, and the following equation fullfils

Ω =
⋃

w=1,...,mw
s=1,...,ms

Ωw,s (1)

To create the macropixels, the height W and width S of the picture Ω are
divided into intervals, denoted as Ww and Ss, for the macropixel’s height and
width, respectively:

W = ∪mw
w=1Ww (2)
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and
S = ∪ms

s=1Ss (3)

The central intervals, denoted as Wwc and Ssc , may be of different sizes than
the rest ones that are intervals of the same height Ww and width Ss. This
is important and must be taken into account in the algorithm of creating the
macropixels. The central macropixel is denoted as Ωwc,sc in Fig. 1.

With regard to all the macropixels, for w = 1, ..., wc−1, wc, wc+1, ...,mw and
s = 1, ..., sc−1, sc, sc+1, ...,ms, where mw and ms are the number of intervalsWw

and Ss in the height W and width S of the picture, respectively, we have:

pi,j ∈ Ωw,s ⇔ i ∈Ww, j ∈ Ss (4)

Formally, we define the macropixels as Cartesian products of their heigth and
width:

Ωw,s =Ww × Ss (5)

The intervals Ww and Ss can be expressed as follows:

Ww = [bWw , ..., eWw ] (6)

Ss = [bSs , ..., eSs ] (7)

where bWw , eWw , and bSs , eSs , denote the begin and end of the intervals, respec-
tively.

Each macropixel Ωw,s forms the granule (5), and may be vieved in the same
way as the picture Ω. The number of pixels (4) in the macropixel Ωw,s equals:

Mw,s =M
w,s
W Mw,s

S (8)

where Mw,s
W and Mw,s

S define the number o pixels corresponding to the height
Ww and width Ss of the macropixel, given by (6) and (7), respectively, according
to the following formulas:

Mw,s
W = eWw − bWw + 1 (9)

Mw,s
S = eSs − bSs + 1 (10)

As mentioned earlier, all makropixels in Fig.1, except the central ones, are of
the same height and width that we denote dw and ds, respectively, and determine
as follows:

dw =Mw div mw (11)

ds =Ms div ms (12)

The width and height of central intervals, denoted as dwc and dsc , respectively,
are determined according to the following formulas:

dwc =Mw div mw + Mw mod mw (13)

dsc =Ms div ms + Ms mod ms (14)
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and
wc = mw div 2 + 1, sc = ms div 2 + 1 (15)

Now, let us present the algorithm that allows to obtain all the intervals Ww

and Ss that determine the height and width of the macropixels, respectively, for
w = 1, ..., wc−1, wc, wc+1, ...,mw and s = 1, ..., sc−1, sc, sc+1, ...,ms.

This algorithm is based on Equations (6) and (7), as well as (11) - (14); in
order to get the begin and end values of the Ww and Ss intervals, denoted as
bWw , eWw , and bSs , eSs , respectively.

For the first, W1 and S1, intervals, we have:

W1 : bW1 = 1, eW1 = bW1 + dw − 1 (16)

S1 : bS1 = 1, eS1 = bS1 + ds − 1 (17)

Then, because of the fact that the size of central macropixels may differ from
others, we consider two cases:

I - Let us notice, from (11) and (13), that if Mw mod mw = 0 then dw = dwc .
Analogously, from (12) and (14), if Ms mod ms = 0 then ds = dsc .

II - Otherwise, if Mw mod mw �= 0 then dw �= dwc , and if Ms mod ms �= 0
then ds �= dsc ; from (11), (13), and (12), (14), respectively.

In case I,
for w = 2, ...,mw

Ww : bWw = eWw−1 + 1, eWw = bWw + dw − 1 (18)

for s = 2, ...,ms

Ss : bSs = eSs−1 + 1, eSs = bSs + ds − 1 (19)

In case II,
for w = 2, ..., wc−1, wc+1, ...,mw use formula (18)
and for w = wc determine the central interval as follows:

Wwc : bWwc
= eWwc−1

+ 1, eWwc
= bWwc

+ dwc − 1 (20)

Analogously, for s = 2, ..., sc−1, sc+1, ...,ms use formula (19)
and for s = sc determine the central interval as follows:

Ssc : bSsc
= eSsc−1

+ 1, eSsc
= bSsc

+ dsc − 1 (21)

In this way, we obtain mwms macropixels that may be viewed as the granules
within the pixel space. These granules include information about location of
pixels in a digital picture.

As mentioned earlier, we can treat each makropixel Ωw,s like the picture Ω,
then implement the presented algorithm to the macropixels, and get more but
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smaller ones. The number of the makropixels at first level of recursion equals
msmw, and generally at level g, we get (msmw)

g macropixels. Of course, we can
modify the algorithm to obtain different number of the macropixels.

The algorithm proposed in this section performs crisp granulation. However,
the results may be viewed as the granulation with fuzzy boundaries between
the macropixels, so appropriate membership functions can be introduced for the
fuzzy granules (see [15] and Section 5).

4 Color Space Granulation

As mentioned in Section 1, we consider two main attributes: location and color.
The location attribute concerns the pixel space that is granulated according to
the algorithm proposed in Section 3. Now, we are interested in the color attribute
and color space granulation.

Color digital pictures are composed of pixels. In computers, the color attribute
associated with each pixel, is expressed as an RGB triplet (r, g, b). Every com-
ponent (RGB coordinate), in the RGB color model, can vary from zero to a
defined maximum value (e.g. 1 or 255). An RGB triplet (r, g, b) represents the
3-dimensional coordinate of the point of the given color within the cube created
by 3 axes (red, blue, and green). The triplets (r, g, b) are viewed as ordinary
Cartesian coordinates in the Euclidean space. The (r, g, b) coordinates can be
transformed into the CIE chromaticity triangle, i.e. to the color areas located on
the 2-dimensional space (of the CIE diagram) with (x, y) coordinates.

Mathematical formulas describing transformations between different color
spaces can be found in many publications, e.g. [3]. The transformation from
the RGB to CIE is also explained and the mathematical equations are included
in [14]. For considerations in this paper, it is sufficient to express the transfor-
mation in the following, general form:

x = f1(r, g, b), y = f2(r, g, b), Y = f3(r, g, b) (22)

where (x, y) denotes 2-dimensional coordinates in the CIE triangle, and Y is the
additional coordinate corresponding the luminance. Knowing the functions (22),
we can transform each (r, g, b) triplet assigned to particular pixels of a digital
color picture to the CIE chromaticity triangle, and also to the third dimension
that is the luminance. In this way, we can determine the proper color area of
the CIE diagram (that represents a pure color called hue) and the luminance to
every pixel of the digital picture. The hue with the luminance constitutes the
color that people perceive and recognize.

Now, let us denote, like in Section 3:
Ω – digital color picture,
M – number of pixels in the picture Ω,
but unlike in Section 3:
pj – j-th pixel in the picture Ω, where j = 1, ...,M ,
and additionally:
hj = (xj , yj) calculated from (22) for triplet (rj , gj, bj) = pj , where j = 1, ...,M
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lj – luminance of the pixel pj , for j = 1, ...,M .
cj = (hj , lj) – full color attribute of the pixel pj , for j = 1, ...,M .

Let ΔCIE denotes the CIE chromaticity triangle, and {H1, H2, ..., HN} - crisp
color areas (regions with sharp boundaries) of the ΔCIE . Hence, we have the
following equation:

ΔCIE =

N⋃
n=1

Hn (23)

The color areas (regions) of the CIE chromaticity triangle, {H1, H2, ..., HN},
may be treated as fuzzy regions, with fuzzy boundaries between them. This
means that the fuzzy color areas are fuzzy sets of points (x, y) belonging to
these regions with membership grades expressed by a value from the interval
[0.1]. The membership functions of the fuzzy sets may be defined in different
ways. An algorithm for creating such membership functions for the fuzzy color
areas of the CIE triangle is proposed in [14]. Like in [15], let us denote the fuzzy

regions of the CIE diagram as {H̃1, H̃2, ..., H̃N}. Other types of membership
functions, for the fuzzy CIE areas, may also be employed.

Table TP in Table 1 contains values of the membership functions concerning
the hue attribute of the pixels. This refer to the fuzzy sets {H̃1, H̃2, ..., H̃N}. Ta-
ble TL in Table 1 includes values of membership functions that define fuzzy
sets in the luminance space. The fuzzy sets {L̃1, L̃2, ..., L̃mL} can be repre-
sented by triangular or trapezoidal membership functions, with the meaning,
e.g. ”small”, ”medium”, ”large”, with regard to the luminance. Both the hue and
luminance attribute produce the color attribute of the pixels pj, for j = 1, ...,M .
Fuzzy granules are created, as the Cartesian product of corresponding fuzzy
sets {H̃1, H̃2, ..., H̃N} and {L̃1, L̃2, ..., L̃mL}. These granules contain information
about the color as the combination of the hue and luminance.

The luminance lj , for j = 1, ...,M , and the fuzzy sets {L̃1, L̃2, ..., L̃mL}, are
defined in the luminance space L = [0, ..., 255]. By use of formulas (22), the
(rj , gj, bj) values of every pixel, pj , for j = 1, ...,M , in the digital color picture
Ω, can easily be transformed to the corresponding point (xj , yj) in the ΔCIE

space defined by Equation (23). In addition, values of the luminance attribute can
be obtained as lj = Yj , for j = 1, ...,M . Hence, we can determine membership

values of hj to the fuzzy sets {H̃n}, for n = 1, ..., N , as μH̃n
(hj) = μH̃n

(xj , yj),

and membership values of luminance lj to fuzzy sets L̃t, for t = 1, ...,mL. In
this paper, we employ trapezoidal membership functions, μL̃t

(lj), defined in the
range of the luminance that is different for each CIE region Hn, for n = 1, ..., N .
However, as mentioned earlier, other types of the membership functions μL̃t

(lj)
can be applied. Assuming that mn denotes the number of the fuzzy sets (fuzzy

luminance intervals) associated with Hn, we have mL =
∑N

n=1mn fuzzy sets

L̃t in Table TL. For example, if we consider three fuzzy sets, defining ”small”,
“medium”, and “big” luminance, respectively, for each CIE region Hn, then
mL = 3N .
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Table 1. Membership table of color of pixels; hue (TP) and luminance (TL)

TP h1 h2 ... ... hj ... ... hM

H̃1 μH̃1
(h1) μH̃1

(h2) ... ... μH̃1
(hj) ... ... μH̃1

(hM )

H̃2 μH̃2
(h1) μH̃2

(h2) ... ... μH̃2
(hj) ... ... μH̃2

(h1)

...

H̃n μH̃n
(h1) μH̃n

(h2) ... ... μH̃n
(hj) ... ... μH̃n

(hM )

...

H̃N μH̃1
(h1) μH̃N

(h2) ... ... μH̃N
(hj) ... μH̃N

(hM )

TL l1 l2 lj lM
L̃1 μL̃1

(l1) μL̃1
(l2) ... ... μL̃1

(lj) ... ... μL̃1
(lM )

...

L̃t μL̃t
(l1) μL̃t

(l2) ... ... μL̃t
(lj) ... ... μL̃t

(lM )

...

L̃mL μL̃mL
(l1) μL̃mL

(l2) ... ... μL̃mL
(lj) ... ... μLmL

(lM )

5 Fuzzy and Rough Information Granulation

In the previous sections, new methods for fuzzy granulation of both pixel and
color spaces are presented. Now, we can use the granules produced by these
methods in order to obtain information granules about the color digital picture.
These granules may carry information concerning the location, size, shape, and
color of a specific object located on the picture. We can consider the fuzzy
information granules as well as rough granules.

The pixel and color space granulation, presented in Sections 3 and 4, respec-
tively, allows to create fuzzy granules that carry information about location, size,
and color of the granules.

With regard to the color, we obtain the following fuzzy granules:

– For the pure color (hue) — fuzzy CIE color areas, {H̃n}, for n = 1, ..., N ,
where e.g. N = 23, with the membership functions μH̃n

(hj), for j = 1, ...,M ;
see Table TP in Table 1

– For the luminance — {L̃t}, for t = 1, ...,mL, wheremL equals to the number
of fuzzy luminance intervals (fuzzy sets) defined for every CIE region Hn,
for n = 1, ..., N ; see Table TL in Table 1

Thus, for both the hue and luminance, we constract granules as the Cartesian
product of corresponding fuzzy sets {H̃n}, and {L̃t}, for n = 1, ..., N , and t =
1, ...,mL, where t is appropriate forHn, what means that the number of the fuzzy
luminance granules associated with Hn equals tomn. It should be explained that
the crisp granules Hn, for n = 1, ..., N , are viewed as α−cuts, i.e. crisp α− level
sets (see e.g. [11]) of the fuzzy sets H̃n, respectively, where α − level equals
0.5. The color granules are fuzzy sets, defined according to the definition of the
Cartesian product of fuzzy sets ((see e.g. [11]), as follows:
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μC̃t
(cj) = μH̃n×L̃t

(hj , lj) = min[μH̃n
(hj), μL̃t

(lj)] (24)

for j = 1, ...,M , where cj = (hj , lj), and C̃t = H̃n × L̃t is the Cartesian product

of fuzzy sets H̃n and L̃t, represented by membership functions μH̃n
(hj) and

μL̃t
(lj), respectively. Let us notice that the number of the color granules, C̃t,

equals to the number of the luminance granules, L̃t, that is mL; see Table 1.
The color granules are defined in the 3D color space, where every cj = (hj , lj),
for j = 1, ...,M , corresponds to a point given by formula (22).

Referring to the location, we consider granules as the fuzzy macropixels, taking
into account both their size and location in the color digital picture:

– For the location — Fig.1 shows the macropixels Ωw,s, for w = 1, ...,mw and
s = 1, ...,ms, located in the picture Ω; the location is determined by the in-
tervalsWw and Ss, defining the macropixel’s height and width. As mentioned
at the end of Section 3, fuzzy boundaries between the macropixels may be
expressed by appropriate membership functions. Hence, the macropixels are
viewed as fuzzy sets (fuzzy granules) defined e.g. by trapezoidal membership
functions as presented in [15].

– For the size — fuzzy sets with membership functions that describe size of
the macropixels Ωw,s, for w = 1, ...,mw and s = 1, ...,ms as e.g. ”small”,
”medium”, ”big” (3 fuzzy sets) or ”very small”, ”small”, ”medium”, ”big”,
”very big” (5 fuzzy sets), may be created as trapezoidal functions. The size
of macropixels obtained by use of the algorithm proposed in Section 3 may
be evaluated according to these membership functions.

In this way, we can construct fuzzy information granules, as the Cartesian
products of fuzzy sets corresponding to the location and size of the macropixels,
analogously to the color granules created according to formula (24). Thus, the
location attribute can be viewed in a wider sense, including both the location
and size - and information about this attribute is carried in the fuzzy granules.

Combining the location and color, in the same way, i.e. as the Cartesian
product of fuzzy sets, we may obtain fuzzy information granules that contain
information concerning fuzzy values of all the attributes considered with regard
to the location and color.

Now, let us focus our attention on another, additional attribut that can be
included into the information granules. With regard to color digital pictures, we
may be interested in shape of an object located in a picture (see Section 6).

Figure 2 illustrates a hat shape object located in the picture Ω. Its size and
location can easily be described by use of the fuzzy information granules above
discussed. This additional attribute - shape - may also be defined by a mem-
bership function in the 2-dimensional pixel space. The object’s shape can be
approximated by specific mathematical functions, similarly to the membership
functions of the CIE pure color regions.

However, with regard to the shape attribute, we propose to apply rough gran-
ulation, based on the rough set theory introduced by Pawlak [4], in addition to
the fuzzy approach. As we see in Fig.2, the shape of the object can easily be



Color Digital Picture Recognition 329

determined by the lower and upper approximations of the group of macropixels
corresponding to the object in the picture. The rough granularity, developed e.g.
in [5] and [8], may be employed in the problem of color digital picture recognition
considered in this paper (Section 6). According to Zadeh [17], the rough set the-
ory is one of the approaches that use crisp granulation. Thus, we apply the rough
granulation to the crisp granules (macropixels) obtained by use of the algorithm
presented in Section 3. Then, we create the information granules that contain
both the fuzzy and rough information about the color, location (including size),
and shape attributes.

Fig. 2. Rough localisation of shape of an object in a digital picture

6 Picture Recognition

Now, let us consider two problems of color digital picture recognition based on
the information granules described in Section 5.

Problem 1: Having a large collection of the pictures, we would like to find
a picture (or pictures) presenting an object characterized by three attributes –
size, color, and location – with fuzzy values (e.g. a big object of a color close
to red, located somewhere in the center). In order to recognize such a picture
(or a group of similar pictures), we can employ the idea of macropixels (created
by use of the algoritm proposed in Section 3), considered with regard to the
fuzzy location and size (Section 5), along with the fuzzy approach to the color
granulation (Section 4). The fuzzy granulation, considered in Section 5, with the
information granules that contain information about size, color, and location, is
especially useful with regard to this problem. Macropixels of different sizes and
the same (or similar) color and location may form the information granules.

Problem 2: Having a large collection of the pictures, we would like to find a
picture (or pictures) presenting an object characterized by the same three at-
tributes as in Problem 1 – size, color, location – but with the additional attribute
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i.e. shape. In this case, the rough aproach is proposed to be applied, as described
in Section 5. The rough granulation with regard to the shape, combined with
the fuzzy approach to the other attributes, may be employed to this problem.

The fuzzy granules discussed in Section 5 are multidimensional fuzzy sets
that represent fuzzy relations between color, location, and size (attributes of
the macropixels). In the fuzzy granulation approach, a digital color picture is
viewed as a composition of the fuzzy granules that carry information about the
color, location, and size, as well as interactions between them (expressed by the
fuzziness that results in overlapping of the granules).

Both classification problems can be solved by use of a fuzzy system with the
inference method based on fuzzy logic and fuzzy IF-THEN rules; for details see
e.g. [11], and also [15] where the fuzzy granules are considered. In general, the
rules of the following form may be employed:

IF G THEN class D (25)

where G is the fuzzy granule, and D is the class of pictures that suit to the
description of the attributes concerning the object. In this way, we expect to
obtain a group of pictures belonging to the specific class (e.g. with a big object
of a color close to red, somewhere in the center of the picture). Then, having
relatively small number of such a pictures (after the classification), it is much
easier to find this one that we are searching for. Of course, it is possible to get
just the only one picture from a large collection of others.

With regard to Problem 2, we may be interested, for example, in an object
of hat shape located in the right upper corner of the picture (as presented in
Fig.2), in addition to other attributes like size and color. Concerning the shape, a
user of the system can indicate these macropixels that fully belong to the shape,
and those that may belong (which means - belong partially); as Fig.2 shows.
The former corresponds to the lower approximation while the latter to upper
approximation, referring to the rough set terminology. However, the hat shape
object can be viewed as a fuzzy set, and we can define the membership function
of this set as follows: it equals 1 for the lower approximation area (inside the
hat shape), and 0.5 for the area of macropixels included the boundary of the
hat shape, and 0 for other area of the picture; see Fig.2. Thus, all the attributes
may be considered within a fuzzy granule. Hence, the fuzzy system based on the
rules of the form (25) can be employed.

7 Conclusions and Final Remarks

This paper concerns the concept of fuzzy granulation, and also combined with
the rough granulation, in application to digital color pictures. In particulary, we
consider a problem of picture recognition based on information granules that
contain a piece of knowledge about the specifc picture to be recognized.

Fuzzy granulation approach, as mentioned in Section 1, has been introduced
by Zadeh [17]. Some information one also can find in e.g. [11]. New ideas concern-
ing the fuzzy granulation approach have been developed by Pedrycz, especially
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with regard to neural networks (see e.g. [6]) but also to pattern recognition [7].
Rough granulation is presented and developed e.g. in [5] and [8].

In this paper, as well as in [15], we consider problems of color digital pic-
tures recognition that can be viewed as a special case of image processing and
image recognition. However, we are interested in a large collection of the color
digital pictures that are images, of course, but typical, taken by popular digital
cameras, not e.g. medical images. Therefore, we use the name ”picture” rather
that ”image”, in order to focus our attention on the application to usual photos.
Moreover, the important issue is that we are now not going to recognize the
exact image presented in the picture but only its specific part described by an
approximate color, location, and also shape.

It should be emphasized that the main idea concerning the problems consid-
ered in this paper is to describe a picture by linguistic terms that refer to color,
location, and size, i.e. the attributes of macropixels. Then, our task is to recog-
nize (and e.g. classify) pictures with specific features, expressed by the linguistic
description, such as ”a big object of a color close to red, located somewhere in
the center of the picture”. Thus, our aim is not to recognize details of the image
but only selected features characterized by approximate (fuzzy) values.

Further research on this subject may concern very interesting problems of
image understanding (see e.g.[13]), based on the fuzzy granulation approach,
also combined with the rough information granules discussed in Section 5.

Color and shape attributes may also be considered with regard to the content-
based image retrieval (see e.g. [1]), where shape representation techniques are
usually boundary-based and region-based.

It is important to note that our approach to image recognition does not re-
quire to process every pixel in particular pictures but only the area of selected
macropixels. Furthermore, we do not need to realize segmentation with crisp
boundaries, so we do not have to employ any algorithm for edge detection.

Of course, more practical experiments will be realized to illustrate perfor-
mance of the system proposed in this paper to solve the digital picture recog-
nition problems. In this way, we will be able to compare results of the picture
recognition depending on the information about attributes of the object pre-
sented in the picture to be recognized. It seems to be obvious, as mentioned in
Section 1, that the more information we have the better recognition results.
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Abstract. This paper proposes a new formulation of Artificial Bee
Colony (ABC) in order to address clustering problems. The proposed
algorithm models the inspector bee within the colony. It is tested for
some benchmarks and is adopted to a real-world problem in Transporta-
tion System domain. In particular, we propose a clustering problem for
the identification of vehicle usage in Poste Italiane by grouping together
those vehicles with same features as fuel economies, frequency and value
of refueling activities.

Keywords: Artificial Bee Colony, Soft Computing, Clustering, Intelli-
gent Transportation Systems.

1 Introduction

Reducing operational costs in industry is always a great challenge. In transporta-
tion domain, annual costs are expressed by fuel consumption, vehicle mainte-
nance, insurance policy and vehicle management. A significant part of these costs
is highly influenced by working conditions, followed routes, conditions found in
urban cycle (stop-start traffic), and which type of vehicle (e.g., Fiat Panda, Fiat
Punto, Fiat Doblò) is chosen for each delivery task. In order to implement a cost
reduction strategy, it is possible to adopt several solutions. We can choose to
decrease the use of expensive vehicles; to replace the old vehicles or to improve
the performance of high-cost vehicles; to increase the number of tasks associated
to top-ranked vehicles. Considering a huge vehicle fleet, it is difficult to detect
the best strategy.

Clustering vehicles on the basis of their performance can help to identify the
most suitable solution.

In this paper, we address the vehicle’s clustering task by means of a meta-
heuristic approach. In detail, we model an Artificial Bee Colony (ABC) with a
new bee role in the colony, performed by inspector bee. This model conforms
with real honey bee colony; indeed, in nature some bees among the foraging ones
are called inspectors because they preserve the colony’s history and historical
information related to food sources.

The proposed algorithm is adopted in order to opportunely define clusters of
vehicle according to their performance.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 335–346, 2014.
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The remainder of this paper is organized as follows: Section 2 describes Bee
Colony algorithm; Section 3 depicts the proposed formulation of ABC and de-
scribes the algorithm structure, Section 4 provides experimental results; Section
5 experiments the proposed algorithm for real-world clustering problems and
Section 6 outlines conclusions and future directions.

2 Artificial Bee Colony

Bee Colony optimization algorithm is a meta-heuristic approach that belongs
to the swarm intelligence algorithms. This approach has been recently adopted
in order to solve several combinatorial optimization problems [1]. Bee colony
optimization-based algorithms are inspired by the behavior of the real honey
bee colony.

Honey bees are social insects and live in large organized communities. The
provision of the food is one of the major activities within a colony. This activity
involves specific bees which collaborate among each other: the “employed bees”,
which research and communicate where the food sources are; the “onlooker bees”
which extract and carry the food.

The main task of an employed bee is to look for food. When the food source
has been found, the bee memorizes the spatial coordinates and communicates
the position and the quality of the source through a dance around the hive.
The main task of an onlooker bee is observing the employed bees dance outside
the hive. On the basis of the message expressed by the dance, the onlooker bee
chooses the food source that best fits its needs.

Inspired by nature, Karaboga [2] models three bee behaviors in the colony and
define Artificial Bee Colony (ABC) Algorithm, where the solutions represent the
food sources and the quantity of the nectar of the food sources corresponds to the
fitness of the associated solution. Employed bees whose solutions is not improved
after a fixed number of trials, defined limit, become scouts (i.e., the bees which
look for food sources in a random way) and their solutions are abandoned.

In other words, the general formulation of the ABC algorithm can be described
by the following phases: (i) Bee Initialization, (ii) Employed Bee Phase, (iii) On-
looker Bee Phase, (iv) Scout Bee Phase, (v) Memorization of the best solution
found. These last four phases are iterated until the stop criteria is met. Com-
monly the algorithm stops when a fixed maximum number of cycles is reached.
In recent years the literature has investigated different real world applications
of ABC algorithm [3].

2.1 Clustering and ABC

Clustering algorithms aim at grouping data into a number of clusters. Data in the
same cluster share a high degree of similarity while they are very dissimilar from
data of other clusters. Clustering algorithms aim at partitioning the population
into a fixed number k of classes, each of those being represented by an average
item named centroid.
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The clustering problem can be stated as the minimization of the sum of Eu-
clidean squared distance between each object xj and the center of the cluster
cj to which it belongs (i.e., centroids). The traditional clustering algorithm is
K-means [4] which has been applied to a wide range of problems in different
domains. However, K-means is sensitive to the initial states and can converge to
the local optimum solution. Recently, many methods have been proposed in or-
der to overcome this drawback [5,6]. Among them, evolutionary approaches are
adopted in different clustering problems (i.e., fixed or variable number of clusters,
centroid-based, medoid-based, label-based, tree-based or graph-based represen-
tation) as described by Hruschka et al.[7]. Furthermore, some ABC techniques
are recently proposed [8,9].

In particular, Karaboga and Ozturk [8] firstly introduced ABC for clustering
tasks, showing how ABC formulation outperformed Particle Swarm Optimiza-
tion (PSO) algorithm. Moreover the authors experimented ABC in classifica-
tion tasks, comparing it with traditional classification algorithms such as Neural
Networks (Multi Layer Perceptron), Bayesian Network, Radial Basis Function
(RBF) proving the benefits for a bee colony. A first hybrid approach is proposed
by Yan et al. [9] who present a Hybrid Artificial Bee Colony algorithm. The
authors consider a social learning between bees by means of cross-over operators
of Genetic Algorithm and apply the proposed algorithm to some classification
tasks proving some benefits in respect to traditional k-means, ABC and PSO
algorithm.

3 ABC with Inspector Bee

Our proposed algorithm is inspired by the Simple ABC given by Karaboga [2],
but it extends the colony modeling a fourth bee behavior, i.e., Inspector Bee.

In a real bee colony, inspection role was modeled by Biesmeijer and de Vries
[10], who introduced additional behavioral states for forager bees. In their work
they define the inspectors as foragers that retire from an unprofitable food source
but continue to make occasional trips to it, while reactivated foragers are bees
that stop inspecting after a certain period of time and return to wait for dances
to follow at the nest.

Granovskiy et al [11] studied the role of inspector bees. Their experiments
show that a bee colony is able to successfully reallocate its foraging resources in
dynamic environments even when dance language information is limited. Accord-
ing to the authors, it remains unclear in what foraging situations reactivation
and inspection are important and in what cases the dance language is the pri-
mary mechanism for communicating memory. The ability of the colony to react
to rapid changes in their environment can be justified by the inspector bees that
act as the colony’s short-term memory [10]. So that, these bees allow the colony
to quickly begin utilizing previously abandoned food sources once they become
profitable again.

Inspection can be considered an important mechanism for reallocating foragers
when food sources are hard to find: for these reasons we introduce inspector in
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Algorithm 1. ABCi: algorithm’s pseudo-code

1: Load training samples
2: Set the number of employed bees and onlooker bees
3: Generate the initial population zs, s = 1..SN with trial counter ts = 0
4: Evaluate the nectar amount (fitness function) of the food sources (∀s)
5: Inspector bee moves to the best food source
6: Set cycle to 1
7: repeat
8: for all employed bee assigned to solution s do
9: Produce new solution vs with ts = 0
10: Evaluate the fitness of the new solution vs
11: Apply greedy selection process for the identification of new population zs
12: end for
13: Calculate the probability values ps for the solutions zs, s = 1..SN
14: for all onlooker bee do
15: Select a solution zs depending on ps
16: Produce new solution vs with ts = 0
17: Evaluate the fitness of the new solution vs
18: Apply greedy selection process for the identification of new population zs
19: if greedy selection process preserves old solution then
20: Increment the trial counter ts associated to the solution zs
21: end if
22: end for
23: Inspector bee moves to the best food source and memorize it
24: if there is a solution with t > limit (scout bee) then
25: Generate a new solution according a randomized process
26: Memorize the new solution, replacing the abandoned one
27: end if
28: cycle = cycle+ 1
29: until cycle = MCN

the proposed Artificial Bee Colony. In our model, the Inspector Bee memorizes
the best solution across the different cycles, so that if a solution is abandoned by
bees and is not considered as the best solution for the next cycle, the inspector
preserves this information.

3.1 Algorithm Structure and Fitness Function

Pseudo-code of our Artificial Bee Colony with Inspector behavior (ABCi) is
outlined by Algorithm 1. The parameters of the proposed ABC algorithm as well
as Karaboga’s formulation are: the number of food sources (i.e., K), the number
of employed and onlooker bees, the value of the limit, and the maximum cycle
number (MCN).

In clustering problem the food sources are the cluster centroids, while the
solution is the position of food source which maximizes the nectar amount (the
position of centroids which minimizes the fitness function).
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In the initialization phase, the algorithm randomly generates a group of food
sources corresponding to the solutions in the search space. According to Eq.1,
the fitness of food sources is evaluated and for each food source a counter, which
stores each bee number of trials, is set to 0 in this phase.

fitness(s) =

N∑
i=1

K∑
j=1

wi,j ‖xi − cj‖2 (1)

where K is the number of clusters, N is the number of objects, xi is a generic
input to be clustered, cj is the jth centroid, and s is the solution (the position
of K centroids).

In the employed bees’ phase (see lines 8-13 in algorithm’s pseudo-code), each
employed bee is sent to the food source and finds a neighboring food source. The
neighboring food source is provided according to Eq.2 as follows:

vi,j = zi,j + φ (zi,j − zk,j) (2)

where k is a randomly selected food source different from i, j is a randomly
chosen centroid. φ is a random number between [-1,1]. The new food source v is
determined by changing randomly one dimension on jth centroid. If the produced
value exceeds its predetermined boundary, it will set to be equal to the boundary.
Then the new food source is evaluated. Therefore, a greedy selection is applied.
In other words, the employed bee produces a modification in the position (i.e.
solution) and checks the nectar amount (fitness value) of that source (solution).
The employed bee evaluates this nectar information (fitness value) and then
assigns to the food source a probability related to its fitness value according to
the Eq.3.

p(s) = f(s)

/
S∑

j=1

Nf(j) (3)

where SN is the number of food sources and f(s) = 1
1+fitness(s) , where fitness

is defined in Eq.1.
In the onlooker bees’ phase (see lines 14-23 in algorithm’s pseudo-code), the

onlooker bee selects a food source based on a probability of a source explored
by employed bees. Once the food sources have been selected, each onlooker bee
finds a new food source similarly to the employed bee (see Eq.2) and the greedy
selection process selects the new source. If this process preserves old solution,
the value of counter, which is associated to the employed bee, increases.

In scout bees’ phase (see lines 24-27 in algorithm’s pseudo-code), when the
value of the counter t of a food source is greater than limit, the food source
is abandoned, the inspector bee memorizes the source and the employed bee
becomes a scout. The scout bee generates a new solution according to Eq.4 and
sets the value of counter equal to 0, hence the bee memorizes the new solution
replacing the abandoned one.
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zj,d =
N
min
i=1

(xi,d) + rand(0, 1) ·
(

N
max
i=1

(xi,d)−
N
min
i=1

(xi,d)

)
(4)

where j = 1, 2, ...K and d = 1, 2, ..., D. N is the number of objects, K is the
number of clusters, and D is the number of features. xi,d represents the d-th
feature of the input data xi.

4 Experimentation

In this section we experiment the ABC algorithm for clustering problem.
In order to evaluate the performance of the proposed ABC approach, we

compare the results of the K-means, ABC, and the proposed ABCi for a clus-
tering task by comparing some datasets selected from the UCI machine learning
repository [12]. In particular we consider Credit Approval dataset containing
690 samples, which are different credit card applications, with 15 attributes
and Dermatology dataset consisting of 366 samples characterized by 34 features
which are 12 patient clinical attributes and 22 histopathological features. These
datasets have a good mix of attributes (continuous, nominal with small numbers
of values, and nominal with larger numbers of values) and data can be grouped
into two (approved or not approved transactions) and six class (according to the
specific disease) respectively.

Finally, our clustering problem consists in 11765 cars, 1700 vans and 825
trucks (14290 vehicles) and data refers to vehicle route, fuel consumption and
fuel transactions performed from January 1, 2013 to September 30, 2013.

4.1 Experimental Results

First of all, we run the algorithm 20 times with different limit values (i.e., 0, 5,
10, 20, 50, 100, 1000) in order to study quantitatively the convergence of the two
different ABC formulations. Each run considers 1000 cycles with a colony of 10
employer bees and from 10 to 100 onlookers.

Best solutions occur when limit value increases, as the exploitation behav-
ior becomes more relevant. However, we can notice how ABCi’s convergence is
not heavily affected by limit value if they range between 20 and 100, thus the
algorithm to be robust to this situation.

As depicted in Fig.1 and in Fig.2, limit value equals to 50 (black curve) could
be a good tradeoff, even if the optimal parameter value depends on the particular
problem. Indeed, the Dermatology dataset is more complex and needs a greater
colony size (110 bees) and seems not to converge with limit value equal to 0, 5
and 1000.

Investigating these results more deeply, we consider Mann-Whitney-Wilcoxon
test and we report results in Tab.1, where the average value of best fitness of 20
different trials per technique (i.e., ABC, ABC with inspector, k-Means) is consid-
ered. The null hypothesis is: the investigated techniques provide solutions which
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Fig. 1. Credit Approval dataset: Average fitness behavior by varying the limit

10
0

10
1

10
2

10
3

2000

2200

2400

2600

2800

3000

3200

3400

3600

Number of cycles

F
itn

es
s 

va
lu

e

 

 

limit 0
limit 5
limit 20
limit 50
limit 1000
limit 10
limit 100

(a) Inspector is not considered

10
0

10
1

10
2

10
3

2000

2500

3000

3500

Number of cycles

F
itn

es
s 

va
lu

e

 

 

limit 20
limit 100
limit 1000
limit 5
limit 50
limit 10
limit 0

(b) Inspector is considered

Fig. 2. Dermatology dataset: Average fitness behavior by varying the limit

belong to the same population entailing a comparable clustering performance;
while the alternative hypothesis is: the provided solutions differ statistically.

Assuming 0.05 as upper limit to reject the null hypothesis, we can affirm
that there is statistical difference between ABC and ABCi. We prove that ABCi
outperforms ABC because it provides a lower fitness value in most of the cases.
We cannot reject the null hypothesis with higher values of limit (i.e., limit equals
to 100 entails a p-value of 0.157 and 0.583 for Credit Approval and Dermatology
database respectively) and ABC and ABCi performance are comparable. Indeed,
considering a higher value of limit, the abandonment behavior of an employed
bee decreases and the benefit of an inspector bee is not estimable.

Instead, comparing k-means with ABC approach, we prove how a bee colony
can outperform when we consider a limit value greater than 50 for Dermatology
dataset and in all the cases for Credit Approval dataset.

Moreover, in order to study the effect of the number of onlookers for algo-
rithm’s convergence speed, we show in Fig.3 the average fitness behavior of 20
different runs. As we expected, the more the number of onlookers increases, the
more quickly the algorithm converges.
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Table 1.Wilcoxon paired test on Dermatology dataset (110 bees): Average fitness and
p-values

Limit
Average Best Fitness p-value

ABC ABCi k-Means ABC vs. ABCi
ABC vs.
k-Means

ABCi vs.
k-Means

0 3.437e+03 3.145e+03

2.068e+03

1.451e-11 6.644e-08 6.644e-08

5 2.922e+03 2.503e+03 1.407e-09 6.644e-08 6.644e-08

10 2.322e+03 2.125e+03 1.741e-10 6.644e-08 8.191e-05

20 2.079e+03 2.028e+03 1.758e-08 3.366e-01 1.938e-03

50 2.038e+03 2.021e+03 4.353e-10 4.372e-02 6.644e-08

100 2.020e+03 2.020e+03 5.831e-01 6.644e-08 6.644e-08

1000 2.020e+03 2.020e+03 6.715e-03 6.644e-08 6.644e-08
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Fig. 3. Dermatology dataset: Average fitness behavior by varying the number of on-
lookers (10 employers)

Finally, we experimented the vehicle clustering problem with ABCi. As de-
picted in Fig. 4, 50 onlookers within a colony size of 61 bees (10 employers and an
inspector bee) could represents a good trade-off between quality and algorithm
performance.

Indeed, considering these parameters we obtain an average best fitness after
100 cycles equals to 1037.53, while it is equal to 1057.33 when 20 onlookers are
considered. Performing the Mann-Whitney-Wilcoxon test, we prove a statistical
difference between these two configurations (p− value = 0.0038).

5 Assessing and Forecasting Vehicle Performance

Vehicle clustering aims at grouping together Poste Italiane vehicles with the
same behavior in terms of cost and fuel consumption. In this section we pro-
pose two predictive indicator (i.e., Vehicle Value and Refueling Activities) and
a retrospective index (i.e., Average Fuel Consumption Index ) in order to typify
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vehicle usage behaviors. In the last paragraph, we adopt these indicators for the
clustering task.

5.1 Estimating Vehicle Value

LifeTime Value is a dynamic financial indicator which is adopted in e-Commerce
domain, and it depends on the customer’s behavior. This indicator represents an
attractive metrics for the definition of marketing strategies because it provides
a forecast on future costs and revenues generated by the customer [13]. It rep-
resents the user value over its entire lifecycle and can be defined like the sum of
the retrospective value VR and the prospective value VP as expressed in Eq.5.

LV (u) = VR(u) + VP (u) (5)

where u is a customer; VR is the current value of the customer (calculated using
historical data); while VP is the future value that a customer will have, namely
the future earnings the customer will provide to the merchant; this is based on
the prediction of future purchases made by the customer through Sequential
Minimal Optimization (SMO), an iterative algorithm based on support vector
regression adopted for solving some optimization problems [14].

We apply lifetime value to Transportation System and define Vehicle Value as
the forecasting of the fuel amount for each vehicle. Comparing to e-Commerce
definition, the customer are replaced by vehicles and the purchasing by refueling.
The aim is to predict the future fuel cost of a vehicle according to its history.

5.2 Predicting Refueling Activities

We define an index called Refueling Activities which allows to assess the vehicle’s
usage by measuring the frequency and the number of refueling.

Knowing future activities of vehicles allow to plan a correct cost strategy and
support the outlier detection process (i.e., a low number of real refueling respect
to the predicted value, could indicate a misuse of the vehicle). In our approach



344 C. Birtolo et al.

we consider the number of refueling for each vehicle in a certain period of time.
We use BG/NBD model [15], widely used in the e-commerce domain in order
to predict the behavior of customers. This model assumes that after a purchase
process, there exists an inactivity period (without purchasing activity) in which
the customer uses the item. In our domain, the item is the fuel, the customer
is the vehicle, and so the purchasing is the refueling. High value of predicted
refueling activities expresses an intense usage or a misuse of refueling process.

5.3 Measuring Average Fuel Consumption Index

Fuel consumption index measures the vehicle’s cost and identify at the same
time the vehicle’s performance. Indeed, it considers the fuel demand related to
the followed route.

c (T ) =

T∑
t=1
L (t)−

∑
s

route(s)
fcn(s)∑

s

route(s)
fcn(s)

(6)

where T is the time interval, L is the number of liters in a refueling occurred at
time t, route expresses the number of km covered in a specified fuel consumption
figures s which are expressed as urban, extra-urban, highway, and combined.
Fuel consumption figures are measured in km/l and fcn indicates the type-
approval fuel consumption which differs for each vehicle according to the EC
Whole Vehicle Type Approval (ECWVTA).

5.4 Vehicle Clustering

We consider three different datasets: (i) car, (ii) van, and (iii) truck. For each
dataset we identify 9 clusters and adopt ABCi clustering in order to group
together in a same cluster those vehicles with the same delivery behavior. Ac-
cording to our experimentation in Section 4.1, the ABCi algorithm is setup with
the following parameters: MCN = 100, colony size = 61 (50 onlooker bees, 10
employed bees and 1 inspector), limit = 100.

For each dataset, we consider three features for clustering purpose: (i) average
monthly fuel consumption index which is evaluated as the mean of fuel consump-
tion index defined in Eq. 6, (ii) predicted Refueling Activities which are evaluated
considering 9 months for training and predict the usage of vehicle, and (iii) pre-
dicted Refueling Value which expresses the future fuel cost of the vehicle.

The proposed algorithm outperforms k-Means with an average fitness of
1398.70 and 1417.05 respectively (three features are considered).

In Fig. 5, we report a scatter plot with average monthly fuel consumption
index, predicted Refueling Activities, and predicted Refueling Value. We can
detect those vehicles with the highest predicted value and the highest fuel con-
sumption index. These cars are properly grouped in clusters which are suitable
for knowledge extraction processes and are useful to understand the reason of
the provided cars’ performances.
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Fig. 5. Vehicle Clustering Problem with ABC algorithm

6 Conclusions and Future Work

In this paper we presented a bee colony algorithm for clustering problems and
experimented a real-world dataset which consists of 14,290 Poste Italiane vehicles
and about 329,855 refueling transactions.

Our preliminary experimentation showed the impact in adopting inspector
bee within the colony, and the benefit is proved. Then, the algorithm is tested
for different clustering tasks and experimentation proves the ability of ABCi
algorithm in converging towards solutions with high fitness. Moreover, the al-
gorithm proved to provide better results as long as the colony size increases;
furthermore exploration and exploitation behavior is investigated as long as the
limit value changes. Then, we modeled the vehicle clustering problem by three
features which are Vehicle Value, Refueling Activities, and Fuel Consumption
Index and we addressed this problem by ABCi approach. As qualitative experi-
mentation shows, the algorithm is able to group together vehicles with the same
real fuel consumption behavior.

In future, we aim to extend the clustering problem in a wider time interval and
we want to evaluate how each vehicle changes performances through the year.
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To sum up, we can consider ABCi as a valid solution for knowledge extraction
in data analysis within Intelligent Transport System domain.
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Abstract. This paper presents an experimental study of the solutions
space generated by the mathematical model of the Water Distribution
Network Design Problem by using Two-Looped network benchmarks to
find the feasible solutions space. It shows how the performance of a typ-
ical Evolutionary Algorithm (EA) can be improved by considering the
importance of working with a feasible population and carrying out repeti-
tive mutations and crossovers to generate new feasible offspring with bet-
ter fitness. The replacement of parents represents the mortality index of a
population at each generation of EA. Aiming to compensate the mortality
index, EA is forced to maintain a constant population size by increasing
the number of descendants with the crossover operator. The experimental
results show both the feasible solutions space and the results of the algo-
rithm when using feasible solutions and varying population size.

Key words: EPANET Solver, Genetic Algorithm, feasible/unfeasible
solution.

1 Introduction

In life, there are problems with several solutions and one must be chosen. This
is the case for combinatory optimization problems[1].

An optimization problem has some important characteristics; it has an objec-
tive function to be optimized, a search space, and a subset of the search space.
The feasible solutions space for combinatory optimization problems is a discrete
set, or it can be reduced to a discrete set.

The Water Distribution Network Design problem (WDND) is an optimiza-
tion problem. It consists of finding the most efficient way to supply water to
consumers, within given constraints. For example pressure requirements must
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be reached to offer users an adequate service when satisfying their water re-
quirements. The WDND Problem has been widely studied by many researchers.
The first attempts to solve the problem were based on Lineal Programming
techniques. Alperovits and Shamir [2] proposed a linear programming gradient
method which has been adapted and improved by Quindry [3], Goulter et al. [4],
Fujiwara et al. [5], and Kessler et al. [6], among others. It is noteworthy that the
previously cited works present similarities in their mathematical formulation,
decision variables, and methods used to solve the problem. The mathematical
formulation was based on lineal programming models, the decision variables was
based on continuous variables, and the solution method for the problem was pri-
marily based on lineal programming methods. The design of the network tended
to be a branched layout. In the last decade, the WDND problem has gradually
been modified. It has been formulated as a non linear programming problem
and pipe diameters have been stated as discrete decision variables. The solution
method for the problem has generally been based on heuristic methods like Evo-
lutionary Algorithms (EAs), Simulated Annealing and others. The design of the
network has been a looped layout, and the network technique to supply water
to consumers has been gravity. Even though the problem has been referred to
as the WDND problem for three decades, there are some important differences
between the first two decades and last decade. These differences alter the prob-
lem slightly, and do not allow for direct comparison. They include mathematical
formulation, decision variables, topology (branched or looped), solution method,
and technique to feed the network (pumping or gravity).

According to the computational complexity theory, WDND is verified as an
NP-Complete problem by mapping it to the well-known Job Shop Scheduling
Problem [7]. It is classified in the set of NP-Hard problems [8], and has been
widely studied over 30 years by many researchers due to its practical applica-
tion. In order to solve this problem, several approaches have been applied. When
trying to solve the WDND problem, global optimization [9, 10], linear program-
ming [2, 3], non-linear programming [4, 5, 6, 11, 12] and many other heuristics
have been applied [13, 14, 15, 16]. When attempts are made to solve this problem
for real instances, it is extremely complex to find the optimum solution. Even for
small benchmarks of NP-Complete problems, finding the global optimum solu-
tion by using an exact method would take years [17]. A good alternative is the use
of heuristic methods. One of the most promising and commonly used methods
is the well-known EAs. These methods are stochastic search procedures, based
on evolution and natural selection [18, 19]. They suggest a satisfactory success
rate for identifying good solutions. They have successfully handled NP-Complete
problems [20, 21] for different fields, including the WDND problem [22, 23]. An
EA consists of 5 main components: 1) Solution Representation, 2) Initial Popu-
lation, 3) Evaluation Function, 4) Genetic Operators and 5) Parametric values
for population size, crossover and mutation probabilities, and number of gener-
ations. Recently, many works have focused on developing EAs. When working
with an EA to solve the WDND problem, some questions related to the com-
ponents of the EA arise: What percentage of the feasible solutions is included
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in the complete search space? How many solutions should be generated to find
a feasible solution? What must the size of the feasible initial population be in
order to have a representative sample of the search space? What method is used
to create an initial population?

In order to find the global optimal solution, it is important to know the size
of the feasible solutions space. The goal is to know if the size and characteristics
of the initial population help the Evolutionary Algorithm to converge earlier to
a better solution. These questions are addressed in this article.

In this paper, an EA, called EA-WDND, is presented. EA-WDND differs from
traditional EAs in four important aspects: 1) Initial population creation. It is a
subset of a feasible solutions space, all the individuals of the population can be
selected to generate offspring. 2) The population size of offspring generated is
bigger than the population size of parents. 3) For each generation, the population
is created by the best offspring; parents are combined to produce offspring and
then they die. Unfeasible individuals cannot survive. 4) EA-WDND algorithm
solves two models: the constraints satisfaction model by using Epanet Solver,
and the optimization model by evaluating the objective function.

The principal contribution of this work is the experimental study of the search
space of the WDND Problem. It helps determine how many solutions should be
generated, and the time needed to obtain different sizes of feasible populations.
The study shows the difficulty of finding a feasible solution in the complete so-
lutions space. An experimental study of an evolutionary algorithm, EA-WDND,
presented here, shows convergence by using different sizes of initial feasible
populations.

This paper is organized as follows: Section 2 explains the combined Mathe-
matical Model for the WDND Problem. Section 3 presents a description of the
Evolutionary Algorithm. Section 4 defines the Solutions Space for the WDND
Problem. Section 5 describes the experimental results of the solutions space. Sec-
tion 6 presents the conclusions and future investigations to provide continuity
to this work.

2 Water Distribution Network Design Problem (WDND)

The optimization of the looped water distribution networks is an important and
complex problem with applications in urban, industrial and irrigation water sup-
ply. It consists of minimizing the network investment cost with pipe diameters
as decision variables, while link layout, connectivity, and demands are imposed
as constraints [24]. The solution to the problem is the least cost optimum con-
figuration, which is a sequence of the necessary pipe diameters to convey water
from sources to all the network water users, satisfying their requirements.

Recently, the model that represents the WDND problem has been stated as a
non-programming lineal model, and hydraulic restrictions have been managed as
implicit restrictions [12]. In this work, the mathematical model represents looped
networks and has been divided into two models to classify design restrictions,
independent of operation restrictions: 1) the model of lineal programming in-
cludes network design restrictions which can be stated mathematically in terms
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of the cost of a pipeline and unit length for each pipeline (Table 1 and 2). The
constraints satisfaction model includes network operation restrictions.

Table 1. Model of lineal programming

Table 2. Constraints Satisfaction Model

Equation (1) is the objective function. It consists of minimizing the total
cost, Tc, of the water distribution network configuration, where n is the number
of pipes in the network. Tc is based on the sum of the costs of each pipe of
length Lijdk

. Cost Cijdk
is taken from a commercial diameters list and it de-

pends directly of the diameter of pipe used. The cost of a pipeline is assumed
to be linearly proportional to its length. The objective function is subject to
constraints set. Constraints in (2) indicate that one or more pipes Lijdk

in the
network can have the same diameter dk. At the same time, it indicates when a
diameter included in the set D of commercial diameters, is not being used for a
pipe in the network. D is the set of commercial diameters available for the water
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network design, D = d1, d2, , dn. Constraints in (3) indicate that each node i in
the network can be connected to pipes of length Lijdk

with the same or differ-
ent commercial diameter sizes. Constraints in (4) indicate that for each pipe,
of length, a single pipe diameter of the list of commercially available diameters
must be used. Restrictions in (5) define values that can be assigned to the set of
variables X . For example, when considering reference to (1), if a pipe connected
from node i to node j uses a diameter dk then Xijdk

= 1, otherwise Xijdk
= 0.

The constraints satisfaction model (Table 2) includes network operation re-
strictions. They refer to the necessary restrictions to operate a looped water
network properly. Constraint (6) represents the physical law of mass conserva-
tion on each of n nodes of the network, where Qin are the pipe flows into the
loop, Qout are the pipe flows away from the loop, and Qe is positive if it is an
external demand and negative if it is a supply. The flow entering a node must be
equal to the flow leaving the node. Constraint (7) refers to the law of conserva-
tion of energy in a mesh m; in this case m is a loop in the network. It indicates
that the sum of the frictional energy losses along pipe lengths belonging to the
hydraulic mesh should be zero if there are not power pumps in m. Constraint (8)
refers to the minimum and maximum pressure requirements to satisfy the users
water requirements while guaranteeing appropriate network operation. Pressure
requirements are verified at each demand node i of the network. Finally, con-
straint (9) is related to the limitation of flow velocity V in pipes. The minimum
velocity requirement is defined to avoid reducing the diameter of pipes because of
sediments. The maximum velocity requirement helps to reach required pressures.

3 Evolutionary Algorithm

Evolutionary Algorithms (EAs) are adaptive methods which attempt to imitate
the biological and genetic processes and can successfully be applied to optimiza-
tion problems. The main fields of application of EAs include problems such as
Water Distribution Networks, with high complexity, non-linear behavior, and
a high number of decision variables [25]. EAs are stochastic numerical search
procedures inspired by biological evolution allowing the individuals with better
fitness to survive and propagate their genes to successive generations. EAs deal
with a population of individuals, which experience constant changes by means
of genetic operators like reproduction, crossover, and mutation. EAs are gaining
popularity due to their capabilities in handling several real world problems in-
volving complexity, noisy environments, imprecision, uncertainty, and vagueness
[26].

In this work, for the WDND problem, the individuals of a population are
represented by a set of parameters (commercial diameters and lengths of pipes)
that describe a solution. Each solution is codified into a chromosome structure
to represent the analogy with the characters strings. They are evaluated with
respect to the objective function in (1) and ranked according to their fitness. The
best individuals for the problem are those individuals with least-cost. Generally,
the best individuals are more likely to be candidate solutions to reproduce,
having offspring that compose the next generation.
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Figure 1 shows the solution methodology used to solve the WDND problem
by using an evolutionary algorithm. The proposed algorithm in this work, called
EA-WDND, works in Linux platforms. It uses the well-known Epanet Solver [27]
version 2.0 [28] to verify hydraulic constraints, Table 2.

The solutions space SS, also known in the literature as search space, includes
all possible solutions to the problem. The size of the SS depends directly on the
input instance analyzed. Hence, for two-looped network instances, the search
space would include 1,875,000,000 possible solutions. SS includes feasible and
unfeasible solutions. Feasible solutions are those solutions that obey restrictions
of the lineal programming model and restrictions of the hydraulic model at the
same time (section 2). Unfeasible solutions are those solutions that do not obey
all constraints included in both models.

An instance of a WDND problem is defined by the function f : SS → R,
where SS is the finite set of solutions that defines the problem instance, R is
the set of real values that defines each solution in SS, and f is the objective
function. In a problem instance, it is necessary to find the solution s ∈ SS for
which f(s) ≤ f(y), ∀y ∈ SS, where s is feasible. The set R includes decision
variables which are discrete values; specifically it refers to pipe diameters. In
Fig. 1, FU = {}s|s ∈ SS, FU ⊆ SS() is a subset taken from SS. FU can contain
feasible and unfeasible solutions because restrictions of the hydraulic model are
not considered at this point. The set of feasible solutions space is represented
by FS = {s|s is feasible, FS ⊆ FU, FS �= FU}. The set FS considers both
the constraints of the lineal and the hydraulic model. FS is created by taking
solutions from FU and verifying them to determine whether they obey hydraulic
constraints. The verification is done using the EPANET Solver. Therefore, FS
can only include feasible solutions.

It is known that the initial feasible population, which is not necessarily the
best one, allows good individuals in next generations of the genetic algorithm to
be obtained. When generating the initial population, a question arises regarding
its optimal size. The selection operator used is ”the best“ (elitist) [29]. It consists
of taking the best individuals of the population FS. According to their fitness,
the operator the best selects an average of the best individual values from a
population. Then individuals are combined producing offspring that will com-
pose the next generation, called the Feasible Solutions Subset FSS, see Fig. (1),
FSS = {s|s ∈ FS, FSS ⊆ FS, FSS �= FS}. FSS has the same definition for
the feasible solutions space FS. The difference between FS and FSS is that FS,
in the first generation of the algorithm, contains feasible individuals randomly
generated. FSS contains offspring of individuals included into the FS set. For
the next generations, FS is created by replacing its individuals with offspring
that result from applying crossover and mutation operators. It is important to
mention that the number of crossover or mutations is directly related to the
population size. For each individual of the population, a crossover or mutation
is applied. Consequently, the number of feasible offspring individuals included
in FS is slightly larger than the size of FSS. Some descendants are eliminated
because they are not feasible when Epanet evaluates them. The feasible individ-
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Fig. 1. Solution methodology for the WDND problem

uals are kept in a temporary list and they are ranked according to their fitness.
The fittest offspring replace parents at each generation to constitute a new fea-
sible population set, FSS. The FSS set is used at each generation to carry out
crossover or mutation on its individuals.

The crossover operator is a function Cr(s1, s2)−→σ (s
′
1, s

′
2), it consists of ex-

changing σ chromosome information from the two parents s1, s2 to produce
an offspring pair (s

′
1, s

′
2) who inherits characteristics from the parents, then

FS = {(s1, s2)|(s
′
1, s

′
2) ∈ FS, (s

′
1, s

′
2) ∈ SS}. The crossover σ refers to the com-

bination of two feasible solutions, s1 and s2, to generate two new individuals, s
′
1

and s2. These new individuals are then verified in Epanet to determine whether
they are feasible solutions. The crossing strategy implemented in this work is
called one point cross-over [24]. It generates two offspring, the s

′
1 and s2 chro-

mosomes. To determine whether the offspring chromosomes are better than their
parents, their fitness has to be computed with the objective function, see (1).
In the EA-WDND algorithm, the parents are removed and replaced by the best
offspring to keep a stable population size. The result is a new generation, usually
with better fitness.

The mutation operator [24] involves randomly replacing a targeted gene. The
mutation operator is a functionM(s)−→α (s

′
). The mutation α, implemented in the

mutationmodule, consists of randomly replacing the targeted gene using a random
numberK ∈ [1, n], where n is the total number of genes in the chromosome. Each
gene represents a pipe diameter. It is replaced with a random integer K[d1, dn],
where n is the total number of commercial diameters. For each individual mutated,
an offspring chromosome is generated and a deterministic mutation α is carried
out. The mutation operator α involves randomly selecting a gene to be mutated,
using a random number K ∈ [1, n], where n is the total number of genes in the
chromosome. It is replaced with the gene of greatest diameter that is located in the
next position of the array (i+1). Another variation consists of randomly selecting
a gene to be mutated, using a random number K ∈ [1, n], where n is the total
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number of genes in the chromosome. The randomly selected gene is replaced with
the gene of smallest diameter located in the (i − 1) position of the array.

4 Solution Space

In order to have a representative sample of the population space, an experimen-
tal study was conducted. It consisted of generating solutions for the WDND
problem. The objective was to determine the percentage of feasible solutions for
this problem. The experimental study was carried out based on the Two-Looped
network benchmark [2, 12]. The Two-Looped network has seven nodes and eight
pipes arranged in two loops. The network is fed by the gravity technique. It
has a fixed head reservoir of 210 m. The pipes are 1000 m in length. The mini-
mum pressure limitation is 30 m above ground level for each node. There are 14
commercial diameters which can be selected. The nodal head and demands, the
cost per meter for each size of pipe, and other data are widely reported in many
previous works [2, 30, 31, 3, 32].

In the literature, information on how to define the size of initial population
for the WDND problem was not found. Some researches use various population
sizes, Table 3.

Table 3. Population size

(a) Before (b) After

Sample                 Feasible Time
Individuals      (sec.)

Sample                 Feasible Time
Individuals      (sec.)

15,000
30,000
60,000

120,000
240,000
480,000
960,000

1,920,00

144
293
589
1188
2374
4752
9509
19355

12
24
63
98

186
383
720

1500

5 Experimental Results

The experimental study for the WDND problem involved the generation of dif-
ferent population sizes to know the number of feasible individuals (verified in
Epanet) that can be obtained for each sample. Additionally, for each sample,
the time required to obtain feasible populations was measured. To generate a
feasible population, the algorithm was executed 30 times for each defined sample
population. Table 3, shows the results obtained from the executions of the algo-
rithm. After 30 executions were carried out, the average for a sample of 15,000
individuals was 144 feasible individuals generated in 12 seconds.

According to the obtained results, it can be noted that the feasible solutions
space is 0.01% of the complete solutions space for the benchmark Two-Looped
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network, Fig. 2a. Based on the experimental results, it can be deduced that
the time needed to generate the complete solutions space (1,475,800,000) should
be approximately 521 hours, Fig. 2b. The required time increases according to
the input instance, so the algorithm could spend years generating all possible
solutions for larger instances.

Feasible
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Fig. 2. Feasible solution space and time to generate feasible solutions

The EA-WDND algorithm was tested using different sized feasible popula-
tions. It was executed 30 times for each generated population. On each execu-
tion, EA-WDND carried out 20 iterations (generations), labeled 0 to 19. At each
generation, the EA-WDND applied the crossover and mutation operators with a
probability of 70% and 30% respectively. The population size was kept constant,
even when crossover and mutation operators generated more descendants than
the population size. Whatever the number of resulting offspring, the population
size was the same for all the generations. This was achieved by removing par-
ents and replacing them with the fittest offspring. The offspring were ranked
according to their fitness. The best individuals were selected at each generation
and they became parents. In some cases, mutations were carried out on them, so
they produced new feasible offspring (verified by Epanet) that composed the next
generation. It can be said that for each generation the population was created,
it was combined to produce feasible offspring (verified in Epanet), and then it
was replaced. Table 4 shows the experimental results obtained with EA-WDND
after carrying out 30 executions.

”Max. Iteration of Min Cost“ refers to the iteration for which the algorithm,
in the worst case, would find the minimum solution for the network cost. For the
first row, it means that in the worst case the algorithm would find the minimum
solution in iteration 19. Min. Cost is the least-cost value for the benchmark.
The best cost reported in the literature, for two-looped networks, is 419000. It
is the lowest value found in 20 iterations and 30 executions of the algorithm.
Max. Costs refers to the highest-cost value found in 20 iterations and 30 exe-
cutions of the algorithm. Media Iteration refers to the iterations in which the
EA-WDND algorithm finds the best values. It is the average for the iterations
of 30 executions. Media Cost refers to the average obtained from 30 executions
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Table 4. Experimental study of WDND feasible solution space

Population     Min. Itera-     Max. Itera-     Min. Cost     Max.          Media      Media     Number
Size          tion of Min    tion of Min                          Cost          Iteration     Cost       of Times

Cost               Cost

Population     Min. Itera-     Max. Itera-     Min. Cost     Max.          Media      Media     Number
Size          tion of Min    tion of Min                          Cost          Iteration     Cost       of Times

Cost               Cost

100
200
300
400
500
600
700
800
900

9
7
7
9
9
10
5
8
10

19
19
19
10
19
19
18
19
19

419000
419000
419000
419000
419000
419000
419000
419000
419000

450000
449000
437000
426000
437000
437000
428000
483000
423000

13
14
15
14
15
15
13
15
16

429400
422500
420566
419533
419966
419866
419666
421300
419233

9
17
22
25
23
27
26
27
28

Fig. 3. Best values found using different population sizes

of the algorithm; it is the cost for the network. Number of times refers to the
occurrences in which the algorithm finds the best solution. For the first row, it
means that the algorithm finds the Min. Cost (419000) in 9 executions. It can
be seen that for populations of 900 individuals, the Min. Cost was obtained 28
times. This means that the algorithm failed to find the Min. Cost in only 2 exe-
cutions, as shown in Table 4. For the best case, the minimum cost was found on
iteration number 10, which demonstrates the good convergence of the algorithm.
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Also, it can be seen that when working with populations of 700 individuals,
the EA-WDND algorithm found the minimum cost for the network, for the best
case on iteration number 5 and for the worst case on iteration number 18. It can
be seen that the media costs were 419666 and the media iterations was 13.

Figure 3 shows the experimental results obtained by the EA-WDND algo-
rithm. It can be seen that, as the population size increased, better solutions
were obtained. Most times, for populations of 900 individuals, the best value
known in the literature was obtained. It is important to point out that conver-
gence for this algorithm was reached quite quickly. The best solution known in
the literature was found approximately in 80% of the executions, except in the
case of populations of 100 individuals.

6 Conclusions and Future Works

This paper shows how the performance of a typical evolutionary algorithm can
be improved by considering the importance of the population size taken from
the feasible solutions space. It shows the experimental results obtained in the
solutions space for WDND Problem using a Two-Looped network benchmark.
The behavior of the EA is the same as in optimization problems. According
to the obtained results, it can be observed that the feasible solutions space for
the WDND problem is 0.01% of the complete solutions space for the benchmark
Two-Looped network. For each generation, the population was created, combined
to produce offspring, and then died (unfeasible solutions). It was replaced by the
best offspring (feasible solutions with Epanet). It was observed that the removal
of parents that had died and their replacement with the fittest offspring helped
the EA-WDND converge. It also helped to obtain the best values known in the
literature, in iteration number 5 in the best case and iteration number 20 in the
worst case. It can be said that the convergence rate and speed was superior for
this algorithm. Continuation of this work includes tests in parallel environments,
using larger instances such as the Hanoi and Balerma network.
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objective Optimization. PhD. Tesis, Almeŕıa, Spain (December 2006) (in Spanish),
http://www.ace.ual.es/~rbanos/CV.html (last date of access May 12, 2009)

[2] Alperovits, E., Shamir, U.: Design of optimal water distribution systems. Water
Resources Research 13(6), 885–900 (1977)

[3] Fujiwara, O., Jenchimahakoon, B.: A modified linear programming gradient
method for optimal design of looped. Water Resources Research 23(6), 977–982
(1987)

[4] Savic, D., Walters, G.A.: Genetic algorithms for least-cost design of water distri-
bution networks. Journal of Water Resources Planning and Management 123(2),
67–77 (1997)

[5] Abebe, A.J., Solomatine, D.P.: Application of global optimization to the design
of pipe networks. In: Proceedings of the International Conference on Hydroinfor-
matics, pp. 989–996. A. A. Balkema, Brookfield (1998)

http://www.ace.ual.es/~rbanos/CV.html


358 M.A. Cruz-Chávez et al.

[6] Montesinos, P., Garcia-Guzman, A., Ayuso, J.L.: Water distribution network op-
timization using modified genetic algorithm. Water Resources Research 35(11),
3467–3473 (1999)

[7] Cruz-Chávez, M.A., Ávila Melgar, E.Y., Juárez-Pérez, F., Torres-Sánchez, W.G.:
Empirical Transformation of Job Shop Scheduling Problem to the Hydraulic Net-
works Problem in a Water Distribution System. In: Electronics Robotics and
Automotive Mechanics Conference, CERMA 2009, pp. 76–81. IEEE-Computer
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Abstract. Interactive evolutionary computation (IEC) has a large po-
tential ability as a personalized optimization technique to search for pre-
ferred solutions. In IEC, evolution of a population is driven by human
user’s preference through his/her subjective fitness evaluation. As a re-
sult, different solutions are obtained by different users for the same prob-
lem. One important challenge in the design of an efficient IEC algorithm
is to decrease the human user’s burden in fitness evaluation. We have
proposed an idea of a (1+1)ES model of IEC with the minimum re-
quirement for human user’s fitness evaluation ability under the following
assumptions: (i) human users can evaluate only a single solution at a
time, (ii) human users can remember only the previously examined sin-
gle solution, (iii) the evaluation result is whether the current solution is
better than the previous one or not, and (iv) human users can perform
a prespecified number of evaluations in total. This model always has a
single archive solution, which is used as the final solution when its exe-
cution is terminated. In this paper, we generalize the (1+1)ES model of
IEC to a general (μ+1)ES model where μ is not a constant but a variable
control parameter. More specifically, the value of μ is controlled so that
only a single solution is obtained after the final generation (i.e., μ=1 at
the final generation whereas μ can be more than one in the other gener-
ations). We show how we can derive the upper bound on the value of μ
at each generation from the requirement of μ=1 at the final generation
and the above-mentioned four assumptions. We also examine the search
behavior of the (μ+1)ES model for various values of μ.

Keywords: Evolutionary algorithms, interactive evolutionary compu-
tation, human users, fitness evaluation, archive solutions, archive man-
agement.

1 Introduction

Since a well-known “Biomorph” simulation in “The Blind Watchmaker” by
Dawkins [1] in the 1980s, interactive evolutionary computation (IEC) has been
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actively studied to efficiently utilize human user’s subjective fitness evaluation
in the field of evolutionary computation (EC). In IEC, each solution is evalu-
ated by a human user based on his/her subjective preference. Thus IEC can be
viewed as a personalized optimization technique. Different solutions are obtained
by different human users for the same problem using the same IEC algorithm.
This is because the same solution is evaluated differently by different human
users. Such subjectivity in fitness evaluation is a clear characteristic feature of
IEC in comparison with many other EC algorithms. According to Takagi [2],
IEC is used in the following two meanings:

(1) EC based on subjective fitness evaluation by a human user.
(2) EC with an interactive human-computer interface.

The first meaning is narrow while the second one is broad. The second broad
meaning includes the first narrow one. Various applications of IEC in the narrow
meaning have been reported in the literature [3–9]. The second broad meaning is
usually related to decision making where “interactive” means the utilization of
the decision maker’s preference in decision making. It is interesting to note that
“interaction” is often used in the first narrow meaning in evolutionary single-
objective optimization whereas it is almost always used in the second broad
meaning in evolutionary multiobjective optimization [10–13]. In this paper, we
use IEC in the first narrow meaning. One advantage of IEC is its high applica-
bility to a wide variety of optimization tasks with no explicit objective functions
such as music composition and computer graphics in evolutionary art. Another
advantage is its personalized optimization ability. A population of solutions in
IEC is driven by a human user through his/her subjective fitness evaluation.
Whereas IEC can be viewed as a flexible personalized optimization technique
with high applicability to a wide variety of optimization tasks, its application
to real-world problems is not easy due to various limitations in human user’s
fitness evaluation (e.g., it is unrealistic to ask a human user to evaluate tens of
thousands of solutions). The execution of IEC is terminated after a small number
of fitness evaluations (e.g., 400 evaluations in 20 generations with 20 solutions
[7]). Thus it is important to decrease the burden of human users in the fitness
evaluation in IEC [14]. In some application tasks such as music composition,
human users can evaluate only a single solution at a time. It is impossible to
evaluate multiple pieces of music by listening to them simultaneously. We have
a number of similar situations in our everyday life such as choosing a pair of
glasses by wearing them and looking around. In almost all trial-and-error pro-
cesses, we can examine a single setting at a time. For example, before starting
to drive a rental car, we adjust the position of the seat and the angle of each
mirror by examining a single combination of mirror angles and a seat position
at a time. In such a trial-and-error process, we can compare the current set-
ting (e.g., the current combination of mirror angles and a seat position) only
with the previously examined one or two settings. As a result, some settings
are re-examined before a single setting is chosen. Based on these discussions, we
formulated a (1+1)ES model of IEC to search for the most preferred solution
under the following assumptions in our former study [15]:
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(i) Human users can evaluate only a single solution at a time.
(ii) Human users can remember only the previously examined single solution.
(iii) The evaluation result is whether “The current solution is better” or “The

previously examined solution is better” between them.
(iv) Human users can perform a prespecified number of evaluations in total.

The (1+1)ES model of IEC had a single archive solution as a candidate for
the single final solution. A new solution was generated by applying a mutation
operator to the archive solution. This means that no crossover was used in our
(1+1)ES model of IEC. In this paper, we generalize the (1+1)ES model of IEC
to a (μ+1)ES model where μ is the number of archive solutions, which are
candidates for the final single solution. The value of μ should be one at the final
generation whereas μ can be more than one in the other generations. The upper
bound on the value of μ at each generation is derived from the requirement of
μ=1 at the final generation and the above-mentioned four assumptions. This
paper is organized as follows: First we explain solution comparison under the
above-mentioned four assumptions in Section 2. Next we explain our (1+1)ES
model of IEC in our former study [15] in Section 3. Then we generalize the
(1+1)ES model to a (μ+1)ES model in Section 4. The behavior of each model is
illustrated by computational experiments in Section 5. Finally we conclude this
paper in Section 6.

2 Solution Comparison

Our four assumptions make it impossible to use almost all IEC algorithms due
to severely limited fitness evaluation ability of decision makers. For example,
decision makers in our four assumptions cannot give any fitness value to each
solution. They cannot choose good solutions from the current population, either.
They cannot perform even pair-wise comparison [16, 17] since they cannot eval-
uate two solutions simultaneously. A comparison of two solutions is performed
sequentially under our four assumptions as follows. First one solution (say x1)
is evaluated. Then the other solution (say x2) is evaluated. After the second
evaluation, we know whether “x1 is better” or “x2 is better” between x1 and
x2. This implementation looks the same as pair-wise comparison. However, we
need two evaluations whereas pair-wise comparison is usually viewed as being
a single evaluation in IEC. Moreover, decision makers remember only x2 after
the second evaluation. This means that further two evaluations are needed to
compare x1 with another solution (say x3) whereas x2 can be compared with x3

by an additional single evaluation (i.e., by evaluating x3 after x2).
Let us further explain our four assumptions using a simple task to choose the

best solution among four candidates x1, x2, x3 and x4. For explanation pur-
poses, we assume that x4 is the best, x3 is the second best, x2 is the third best
and x1 is the worst (i.e., x1 ≺ x2 ≺ x3 ≺ x4 where x1 ≺ x2 means “x2 is better
than x1”). If we can use the standard pair-wise comparison, we can find the
best solution x4 after three evaluations. That is, the best solution x4 is found by
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performing the standard pair-wise comparison three times independent of the
order of comparisons. For example, if we start with the comparison between x3

and x4 and then between x1 and x2, the best solution x4 is found by the third
comparison between x4 and x2. In the second comparison, it is possible to com-
pare x4 (the winner of the first comparison) with x2 instead of the comparison
between x1 and x2. In this case, the best solution x4 is found from the third
comparison between x4 and x1.

However, the number of required evaluations to find the best solution x4

depends on the presentation order of solutions to decision makers under our
four assumptions. Let us consider the presentation order “x1, x2, x3, x4”. First
x1 is evaluated. No evaluation result is available because no solution is evaluated
before x1. Next x2 is evaluated. The evaluation result of the second evaluation
is “x2 is better than x1”. Then x3 is evaluated. The evaluation result is “x3 is
better than x2”. Finally x4 is evaluated. The evaluation result is “x4 is better
than x3”. The best solution x4 is found after these four evaluations. We can also
find the best solution x4 after four evaluations when the presentation order is
“x4, x3, x2, x1”. In this case, we obtain the following evaluation results: “x4

is better than x3”, “x3 is better than x2”, and “x2 is better than x1”. Thus
we can see that x4 is the best solution. However, we need six evaluations when
the presentation order is “x4, x2, x3, x1”. In this case, we obtain the following
evaluation results: “x4 is better than x2”, “x3 is better than x2”, and “x3 is
better than x1”. From these results, we cannot say which is better between x3

and x4. Since the decision maker remembers only x1 after the fourth evaluation
on x1 is completed, x3 and x4 are evaluated again. As a result, the total number
of evaluations is six. The presentation order is “x4, x2, x3, x1, x3, x4” or “x4, x2,
x3, x1, x4, x3”. The number of evaluations can be decreased from six to five by
examining x4 (instead of x1) in the fourth evaluation. That is, five evaluations
are needed to find the best solution x4 when the presentation order is “x4, x2,
x3, x4, x1”.

3 Our (1+1)ES Model of IEC

Before explaining our (1+1)ES model of IEC in our previous work [15], we ex-
plain the concept of archive solutions. In this paper, we mean candidate solutions
by archive solutions. Let us examine the solution comparison in the presentation
order “x4, x2, x3, x1” again. When the first solution x4 is evaluated, only x4

is a candidate solution. Thus an archive includes only x4. After x2 is evaluated,
the archive still includes only x4 as a candidate solution because the evaluation
result is “x4 is better than x2”. After x3 is evaluated as “x3 is better than x2”,
both x4 and x3 are included in the archive as candidate solutions. After x1 is
evaluated as “x3 is better than x1”, the archive includes both x3 and x4. That
is, both x3 and x4 are candidates for the best solution. This is not a good situa-
tion since we need additional two evaluations to compare them with each other.
Such an undesirable situation can be avoided by evaluating x4 instead of x1 in
the fourth evaluation. After the evaluation of x4 in the fourth evaluation, the
archive includes only x4 since the evaluation result is “x4 is better than x3”.
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Our (1+1)ES model of IEC has only a single archive solution. In its simplest
version [15], the archive solution is presented to the decision maker to be exam-
ined again if the archive solution is not the previously examined solution. In this
manner, the current best solution is always kept in the memory of the decision
maker as the previously examined solution. If the archive solution is the same as
the previously examined solution, a new solution is evaluated. Let us check the
examination order “x4, x2, x3, x1” using this simplest version of our (1+1)ES
model. In the third evaluation, the previously examined solution x2 is not the
same as the archive solution x4. Thus x4 is examined in the third evaluation
again (whereas we know that x4 is better than x2). Then x3 is evaluated in
the fourth evaluation as “x4 is better than x3”. After the fourth evaluation, the
archive solution x4 is not the same as the previously examined solution x3, x4

is presented to the decision maker again to examine it in the fifth evaluation.
After that, x1 is examined. As a result, the examination order becomes “x4, x2,
x4, x3, x4, x1”.

As this example shows, the simplest version looks inefficient since the same
archive solution is repeatedly presented to the decision maker. In the modified
version [15] of our (1+1)ES model of IEC, the archive solution is presented to the
decision maker only when a new archive solution is added to the archive. That is,
when the size of the archive becomes two, the older archive solution is presented
to the decision maker. In this case, the new archive solution is the same as the
previously examined solution. Thus one of the two archive solutions is removed
after the comparison of the current solution (i.e., the older archive solution)
with the previously examined one (i.e., the new added archive solution). In this
manner, the archive size is decreased from two to one whenever it becomes two.
Let us use the examination order “x4, x2, x3, x1” again to illustrate the modified
version. After the second evaluation (i.e., evaluation of x2), the archive solution
x4 is not the same as the previously examined solution x2. However, x4 is not
presented to the decision maker since the archive includes only x4. Thus x3 is
examined in the third evaluation. After the examination of x3, the number of
solutions in the archive increases from one to two (i.e., x4 and x3). Thus the older
archive solution x4 is presented to the decision maker to compare it with the
previously examined solution x3 which is also the newly added archive solution.
Since the evaluation result of x4 is “x4 is better than x3”, x3 is removed from
the archive. That is, the archive includes only x4. Then x1 is examined (i.e.,
x1 is compared with the previously examined x4). As a result, the presentation
order becomes “x4, x2, x3, x4, x1”, which is more efficient than “x4, x2, x4, x3,
x4, x1” in the simplest version.

4 Proposed (μ+1)ES Model

Before generalizing our (1+1)ES model to a (μ+1)ES model, let us describe the
archive management mechanisms in the two versions of our (1+1)ES model of
IEC in a more formal manner. Let xt−1 and xt be the solutions presented at
the (t-1)th evaluation and the t-th evaluation, respectively. We also denote the
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archive (i.e., the set of archive solutions) by S. The archive S is updated in the
following manner after xt is evaluated.

Update Rules of Archive S: If xt is evaluated as being better than xt−1

(i.e., xt−1 ≺ xt), xt is added to S if xt is not in S. In this case (i.e., xt−1 ≺ xt),
xt−1 is removed from S if xt−1 is in S. If the evaluation result of xt is “xt−1 is
better than xt” (i.e., xt ≺ xt−1), no solution is added to S. In this case (i.e., xt

≺ xt−1), xt is removed from S if xt is in S.
From these archive update rules, we can see that the size of the archive S

increases only if the following three conditions hold:

(a) xt is evaluated as being better than xt−1,
(b) xt is not in S (i.e., xt is a newly generated solution),
(c) xt−1 is not in S (otherwise xt−1 is removed from S if (a) holds).

This means that S does not increase when xt−1 is in S (i.e., when the previ-
ously examined solution is the archive solution). Thus a new solution is generated
in the simplest version when xt−1 is the archive solution. Otherwise, xt is selected
from S to prevent the increase of the archive size. In this manner, the archive
size is maintained as one in the simplest version. From these discussions, the
archive management mechanism in the simplest version of our (1+1)ES model
of IEC can be written as follows:

Archive Management in the Simplest Version: If xt−1 is in the archive
S, a new solution is generated as the current solution xt. If xt−1 is not in the
archive S, an archive solution in S is presented to the decision maker as the
current solution xt.

From the above-mentioned archive update rules, the size of the archive S
decreases when the following three conditions hold:

(d) xt is evaluated as being better than xt−1,
(e) xt is in S (otherwise xt is added to S if (d) hold),
(f) xt−1 is in S (otherwise xt−1 cannot removed from S even if (d) holds).

or the following two conditions hold:

(g) xt−1 is evaluated as being better than xt,
(h) xt is in S (otherwise xt cannot be removed from S).

This means that the archive size does not decrease when xt is a newly gener-
ated solution. In other words, the selection of xt from S is needed to decrease
its size. We can also see from (d)-(f) that the size of S always decreases when
both xt−1 and xt are included in S at the time of the evaluation of xt.

From these discussions, the archive management mechanism in the modified
version of our (1+1)ES model of IEC can be written as follows:

Archive Management in the Modified Version: If S includes only a
single archive solution after the evaluation of xt−1, a new solution is generated
as the current solution xt. If the number of archive solutions in S increases from
one to two after the evaluation of xt−1, the older archive solution (which is not
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the newly added archive solution xt−1) is presented to the decision maker as the
current solution xt.

This archive management mechanism can be generalized to a (μ+1)ES model
as follows:

Archive Management in Our (μ+1)ES Model: If the number of archive
solutions in S is smaller than μ (i.e., |S| < μ) after the evaluation of xt−1, a
new solution is generated as the current solution xi. If the number of archive
solutions in S is equal to or larger than μ (i.e., |S| ≥ μ) after the evaluation of
xt−1, a solution in S except for xt−1 is randomly selected from S as the current
solution xt.

The modified version of the (1+1)ES model is the same as our (μ+1)ES model
with μ=2. In this paper, we refer to the simplest version and the modified version
of the (1+1)ES model in our former study [15] as the (1+1)ES model and the
(2+1)ES model, respectively.

Let us denote a prespecified number of evaluations as N . We also denote the
value of μ, the presented solution and the archive at the t-th evaluation (be-
fore the t-th solution evaluation) as μ(t), xt and St, respectively. An important
requirement in our (μ+1)ES model is that the archive includes only a single
solution after N evaluations. This requirement is written as |SN+1| = 1. The
point in our (μ+1)ES model is to specify μ(t) so that |SN+1| = 1 holds after N
evaluations.

Since the size of the archive can be decreased by choosing solutions from
the archive for two evaluations in a row (as we have already discussed in this
section), the size of the archive at the t-th evaluation (i.e., |St|) can be decreased
to |SN+1| = 1 if the following relation holds:

2(|St| − 1) ≤ N − t. (1)

From this relation, we have

|St| ≤ 1 + (N − t)/2. (2)

Thus μ(t), which is the allowable size of the archive, is specified by

μ(t) ≤ 1 + (N − t)/2. (3)

We also introduce the upper limit μMax of μ(t) as a pre-specified constant
parameter. The role of μMax is illustrated in computational experiments in the
next section. Using μMax and Eq.(3), we define μ(t) as follows:

μ(t) = min{μMax, 1 + (N − t)/2}. (4)

5 Computational Experiments

We perform computational experiments using an artificially generated test prob-
lem. So our computational experiments are not directly related to IEC applica-
tions. The aim of our computational experiments is to illustrate our (μ+1)ES
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model of IEC and the effect of μ(t) in Eq.(4) on the search behavior of our
(μ+1)ES model.

As a test problem, we use a 500-item knapsack problem with two constraint
conditions. This problem was generated from the following well-known two-
objective 500-item 0/1 knapsack problem of Zitzler & Thiele [18]:

Maximize f(x) = (f1(x), f2(x)), (5)

subject to

500∑
j=1

wijxj ≤ ci, i = 1, 2, (6)

xj = 0 or 1, j = 1, 2, ..., 500, (7)

where fi(x) =

500∑
j=1

pijxj , i = 1, 2. (8)

In this formulation, x is a 500-dimensional binary vector, pij is the profit of
item j according to knapsack i, wij is the weight of item j according to knapsack
i, and ci is the capacity of knapsack i. Each profit pij and each weight wij are
random integers in the interval [10, 100]. For details of the formulation, see
Zitzler & Thiele [18].

We generated a test problem using the sum of the two objectives in (5) as
follows:

f(x) = f1(x) + f2(x). (9)

We can use any test problem for examining the behavior of our (μ+1)ES
model. The use of the single-objective problem with (9) is to visually examine
the behavior in the original two-dimensional objective space and the future pos-
sible extension of our (μ+1)ES model to multi-objective interactive evolutionary
computation.
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Fig. 1. The number of archive solutions for randomly generated 500 solutions
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Fig. 3. The number of archive solutions when we used our (μ+1)ES model

First, we randomly generated 500 solutions to examine the characteristic fea-
ture of this test problem. In Fig. 1, we show how the number of archive solutions
increases with the number of evaluations (i.e., the number of randomly gener-
ated solutions). The best value among the examined solutions is shown in Fig.
2 where the same 500 solutions are used as in Fig. 1. Fig. 1 and Fig. 2 are av-
erage results over 100 experiments (i.e., random generation of 500 solutions was
iterated 100 times).

It should be noted that the best solution in Fig. 2 is not identified. For ex-
ample, as shown in Fig. 1, we have about 170 candidate solutions at the 500th
generation. That is, much more comparisons are needed in Fig. 2 to find a single
solution.

In Fig. 3, we show the number of archive solutions in our (μ+1)ES model
for some different specifications of μMax. New solutions in our computational
experiments are generated by mutation from archive solutions. As shown in Fig.
3, the number of archive solutions is well-controlled by μMax and μ(t) in Eq.(4).
The best objective value among examined solutions is shown in Figs. 4-5.
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(b) Archive size μMax = 5.

Fig. 4. The best objective value among the examined solutions at each generation
(μMax = 2 and μMax = 5)
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(a) Archive size μMax = 10.
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(b) Archive size μMax = 500.

Fig. 5. The best objective value among the examined solutions at each generation
(μMax = 10 and μMax = 500)

From these figures, we can see that good results were obtained from a very
small archive size. By increasing the archive size, the performance of our (μ+1)ES
model was degraded. When the archive size was specified between 2 and 10, much
better results were obtained from our model in Figs. 4-5 than those from random
sampling in Fig. 2.

However, when the archive size was actually unbounded (i.e., μMax = 500)
in Fig. 5 (b), experimental results from our model were similar to those from
random sampling in Fig. 2. As shown by the dashed line in Fig. 3, the number
of archive solutions was increased by generating new solutions through mutation
in the first 300 evaluations. In this search phase, the quality of archive solutions
was not significantly improved because no strong selection pressure was given
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(since there was no upper bound on the archive size). As a result, the quality
of generated solutions by mutation was similar to the case of random sampling.
Then, the number of archive solutions was decreased to one by re-examining
archive solutions in the last 200 evaluations. In this search phase, many new
solutions were not generated since many archive solutions were re-examined to
decrease the number of archive solutions. As a result, the performance was not
significantly improved in the last 200 evaluations whereas there was very strong
selection pressure.

6 Conclusions

In this paper, we generalized our (1+1)ES model of IEC to a (μ+1)ES model
where multiple solutions can be stored as archive solutions. Our (μ+1)ES model
has an archive management mechanism to find a single final solution. That is,
the archive size is controlled by a variable control parameter so that the archive
size becomes one after all evaluations are completed. Through computational ex-
periments, we examined the effect of the upper limit on the archive size. When
new solutions were generated from archive solutions by mutation, good results
were obtained from the archive size 2. The use of crossover to examine the advan-
tage of larger archives is an interest future research direction. Our preliminary
computational experiments towards this research direction show that the use
of crossover becomes beneficial when the total number of allowable evaluations
is large (e.g., tens of thousands as in many implementations of genetic algo-
rithms such as 500 generations of a population with 100 solutions). Of course,
the performance examination on more realistic or real-world problems is also an
important future research topic.
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Abstract. Differential evolution (DE) is one competitive form of evo-
lutionary algorithms. It heavily relies on mutating solutions using scaled
differences of randomly selected individuals from the population to cre-
ate new solutions. The choice of a proper mutation strategy is important
for the success of an DE algorithm. This paper presents an empirical in-
vestigation to examine and compare the different mutation strategies for
global optimization problems. Both solution quality and computational
expense of DE variants were evaluated with experiments conducted on a
set of benchmark problems. The results of such comparative study would
offer valuable insight and information to develop optimal or adaptive mu-
tation strategies for future DE researches and applications.

Keywords: Evolutionary Algorithm, Differential Evolution, Mutation
Strategies, Global Optimization Problem.

1 Introduction

Evolutionary algorithms (EAs) have been proved to be powerful means to solve
various optimization problems[1], [2], [3]. Generally, EAs are superior to tradi-
tional optimization techniques in two aspects. First, they require no derivative in-
formation of the objective function in deciding the search direction. Second, they
perform parallel population-based search and thereby exhibiting more chance to
find the global optimum in high dimensional problem spaces [4].

Differential evolution (DE) [5] presents one competitive class of evolutionary
algorithms. Unlike other EAs, DE modifies solutions by using the difference of pa-
rameter vectors of pair(s) of randomly selected individuals from the population.
The locations of the selected solutions decide the direction and magnitude of the
search. Therefore the mutation in DE is performed based on the distribution of so-
lutions in the population rather than a pre-specified probability density function.

Indeed there are quite a few alternative strategies to implement the mutation
operation in DE [6]. One specific mutation strategy specifies which solution to
modify (disturb) and how many difference vectors to use to create the distur-
bance. If the disturbance is made to a randomly selected solution, it implies that
the search direction is decided at random without bias. In contrast, when the
disturbance is executed on the best individual in the population, exploitation is
more favored in the search process. Hence different strategies of mutation can
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reflect different attitudes towards exploration and exploitation. More detailed
explanation of the various mutation strategies is given in Sections 2 and 3.

However, there is a lack of knowledge about the comparative performance
of the various mutation strategies for solving global optimization problems. In
practice it is most common to use a difference vector to mutate a random solu-
tion (termed as DE/rand/1 strategy) or the best individual from the population
(termed as DE/best/1 strategy). The DE/rand/1 strategy was accepted in pre-
vious works as starting point for improved mutation operators. The enhanced
mutation approach [7] assumed the usage of the DE/rand/1 strategy and sug-
gested a way to strategically select the three random individuals from the entire
space. The paper [8] proposed neighborhood-based mutation for multi-modal
optimization tasks. It is realized by employing the DE/rand/1 strategy in local
subgroups of the population. Moreover, the DE/rand/1 strategy was also com-
bined with many local search methods for further performance improvement,
see examples in [9], [10], [11]. More recently, random local search has been cou-
pled into DE using both DE/rand/1 and DE/best/1 strategies [12]. Nevertheless
none of the above mentioned works considered other mutation strategies than
DE/rand/1 and DE/best/1 for DE improvement.

This paper presents an empirical investigation to examine and compare the
different mutation strategies for global optimization problems. Both solution
quality and computational expense of DE variants were evaluated with exper-
iments conducted on a set of benchmark functions. The results of experiments
enable us to compare the relative performance of the alternative mutation meth-
ods, thereby acquiring valuable insight and information to develop optimal or
adaptive strategy for future DE researches and applications.

The remaining of the paper is organized as follows. Section 2 outlines the
general DE paradigm. Section 3 explains the alternative mutation strategies. In
Section 4 we discuss and compare the experiment results. Finally, Section 5 gives
the concluding remarks.

2 Basic Differential Evolution Algorithm

DE is a stochastic algorithm maintaining a population with Np individuals.
Every individual in the population stands for a possible solution to the prob-
lem. One individual in the population is represented by vector Xi,g with i =
1, 2,. . . ,Np and g referring to the index of the generation. A cycle in DE consists
of three consecutive steps: mutation, crossover and selection which are described
as follows:

MUTATION. Inspired from biological evolution, mutation is carried out in
DE to facilitate random perturbations on the population. For each population
member, a mutant vector is generated. In the basic version of DE, the mutant
vector is obtained by randomly selecting three different individuals in the popu-
lation and then adding a scaled difference of any two of the three vectors to the
third one. More precisely, this mutant vector is created according to Eq. 1

Vi,g = Xr1,g + F × (Xr2,g −Xr3,g) (1)
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where Vi,g represents the mutant vector, i stands for the index of the vector, g
stands for the generation, r1, r2, r3 ∈ { 1,2,. . . ,Np} are random integers and F
is the scaling factor in the interval [0, 2].

Fig. 1 shows how this mutation strategy works. All the variables in the figure
appear in Eq. 1 with the same meaning, and d is the difference vector between
Xr2,g and Xr3,g.

Fig. 1. Random mutation with one difference vector

CROSSOVER. This operation combines every individual in the actual pop-
ulation with the corresponding mutant vector created in the mutation stage.
These new solutions created are called trial vectors and we use Ti,g to represent
the trial vector corresponding to individual i in generation g. Every parameter
in the trial vector are decided in terms of Eq. 2

Ti,g[j] =

{
Vi,g [j] if rand[0, 1] < CR or j = jrand

Xi,g[j] otherwise
(2)

where j stands for the index of every parameter in a vector, Jrand is a randomly
selected integer between 1 and Np to ensure that at least one parameter from
mutant vector will enter the trial vector and CR is the probability of recombi-
nation.

SELECTION. This operation compares a trial vector and its parent solution in
the current population to decide the winner to survive into the next generation.
Therefore, if the problem of interest is minimization, the individuals in the new
generation are chosen using Eq. 3

Xi,g+1 =

{
Ti,g if f(Ti,g) < f(Xi,g)

Xi,g otherwise
(3)

where Ti,g is the trial vector, Xi,g is an individual in the population, Xi,g+1

is the individual in the next generation, f(Ti,g) represents the fitness value of
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the trial vector and f(Xi,g) stands for the fitness value of the individual in the
population.

The pseudocode for the basic DE is given in Fig. 2. First we create the initial
population with randomly generated individuals. Every individual in the popu-
lation is then evaluated with a pre-specified fitness function. After that we create
the mutant vectors using Eq. 1 and then we recombine such mutant vectors with
their respective parents to obtain a set of offspring. Finally we compare the par-
ents and offspring to select superior ones into a new, updated population. This
procedure with steps from 4 to 7 is repeated until the termination condition is
satisfied.

Fig. 2. Pseudocode Differential Evolution

3 Variants of Mutation in Differential Evolution

Various approaches have been proposed to implement mutation in DE [6]. The
mutation strategy introduced in the preceding section is termed as random mu-
tation, which is often used in classic DE. In order to distinguish different variants
of mutation strategies, the following notation is commonly used in the literature:

DE/x/y/z,

where x represents the vector to be mutated, y is the number of difference vectors
used in mutation and z denotes the crossover operator employed. We will skip z
here because we always use the binominal crossover which has been explained in
Section 2. Hence the random mutation strategy is notated as DE/rand/1. The
five other well Known approaches of mutation will be outlined in the following
subsections.
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3.1 Best Mutation Strategy with One Difference Vector

Best mutation strategy [13] attempts to mutate the best individual in the popu-
lation. When only one difference vector is employed in mutation, the approach is
represented by DE/best/1. A new, mutated vector is created according to Eq. 4

Vi,g = Xbest,g + F × (Xr1,g −Xr2,g) (4)

where Vi,g represents the mutant vector, i is the index of the vector, g stands
for the generation, r1, r2, r3 ∈ { 1,2,. . . ,Np} are randomly created integers,
Xbest,g represents the best solution in the population and F is the scaling factor
in the interval [0, 2].

The main idea of this mutation strategy (notated as DE/best/1) is to use
the scaled difference between two randomly selected vectors to mutate the best
individual in the population. Fig. 3 shows how a new mutant vector is generated
according to this strategy, where d is the difference vector between vectors Xr1,g

and Xr2,g.

Fig. 3. Best mutation with one difference vector

3.2 Random Mutation Strategy with Two Difference Vectors

Random mutation with two difference vectors [14] is similar to the DE/rand/1
strategy, but it uses two difference vectors and it is notated as DE/rand/2. A
mutant vector is created using 5 randomly selected vectors as follows:

Vi,g = Xr1,g + F1× (Xr2,g −Xr3,g) + F2× (Xr4,g −Xr5,g) (5)

where F1, F2 are the scaling factors in the interval [0, 2] and r1, r2, r3, r4, r5 ∈ {
1,2,. . . ,Np} are randomly created integers, and Vi,g stands for the mutant vector
i for generation g.
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3.3 Best Mutation Strategy with Two Difference Vectors

The strategy of best mutation with two difference vectors [5] is denoted as
DE/best/2. It uses two difference vectors in mutation of the best individual of
the population. The mutant vector is created in terms of Eq. 6 in the following:

Vi,g = Xbest,g + F1× (Xr1,g −Xr2,g) + F2× (Xr3,g −Xr4,g) (6)

where Vi,g stands for the the mutant vector, i is the index of the vector, g stands
for the generation, F1 and F2 are the two scaling factors in the interval [0, 2]
and r1, r2, r3, r4 ∈ { 1,2,. . . ,Np} are randomly created integers.

3.4 Current to Random Mutation Strategy

The current to rand mutation strategy is referred to as DE/current-to-rand/1.
It moves the current individual towards a random vector before being disturbed
with a scaled difference of two randomly selected individuals. Thus the mutant
vector is created according to Eq. 7 as follows

Vi,g = Xi,g + F1× (Xr1,g −Xi,g) + F2× (Xr2,g −Xr3,g) (7)

where Xi,g represents the current individual, Vi,g stands for the mutant vector, g
stands for the generation, i is the index of the vector, F1 and F2 are the scaling
factors in the interval [0, 2] and r1, r2, r3 ∈ { 1,2,. . . ,Np} are randomly created
integers.

Fig. 4 explains how the DE/current-to-rand/1 strategy works to produce a
mutant vector, where d1 is the difference vector between the current individual,
Xi,g, and Xr1,g, and d2 is the difference vector between Xr3,g and Xr2,g.

Fig. 4. Current to random mutation
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3.5 Current to Best Mutation Strategy

The current to best mutation strategy [14] is referred as DE/current-to-best/1.
It moves the current individual towards the best individual in the population
before being disturbed with a scaled difference of two randomly selected vectors.
Hence the mutant vector is created by

Vi,g = Xi,g + F1× (Xbest,g −Xi,g) + F2× (Xr1,g −Xr2,g) (8)

where Vi,g stands for the mutant vector, Xi,g and Xbest,g represent the current
individual and the best individual in the population respectively, F1 and F2 are
the scaling factors in the interval [0, 2] and r1, r2 ∈ { 1,2,. . . ,Np} are randomly
created integers.

Fig. 5 shows how the DE/current-to-best/1 strategy works to produce a mu-
tant vector, where d1 denotes the difference vector between the current individual
Xi,g, and Xbest,g, d2 is the difference vector between Xr1,g and Xr2,g.

Fig. 5. Current to best mutation

4 Experiments and Results

We tested the performance of the six variants of mutation strategies in DE on
a set of benchmark problems. Thirteen different mathematic functions from [15]
were used in our experiments, which are highlighted in Table 1. The dimensions
of all these functions are 30, with functions 1 to 7 being unimodal and functions
8 to 13 being multimodal.

4.1 Experimental Settings

The three control parameters for DE are: population size (Np), crossover rate
(CR) and the scaling factor (F ) for mutation. These parameters used in our
experiments were specified as follows: Np = 60, CR = 0.85 and F = 0.9 when
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Table 1. The thirteen functions used in the experiments

FUNCTION

f1(x) =
∑n

i=1 x
2
i

f2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi|
f3(x) =

∑n
i=1(

∑i
j=1 xj)

2

f4(x) = maxi{|xi|, 1 ≤ i ≤ n}
f5(x) =

∑n−1
i=1 [100 × (xi+1 − x2

i )
2 + (xi − 1)2]

f6(x) =
∑n

i=1(xi + 0.5)
2

f7(x) =
∑n

i=1 i× x4
i + random[0, 1)

f8(x) =
∑n

i=1 −xi × sin(
√

|xi|)
f9(x) =

∑n
i=1[x

2
i − 10× cos(2× π × xi) + 10]

f10(x) = −20× exp(−0.2×
√

1
n
×

∑n
i=1 x

2
i )− exp( 1

n
×

∑n
i=1 cos(2πxi)) + 20 + e

f11(x) = 1
4000

×
∑n

i=1 x
2
i −

∏n
i=1 cos(

xi√
i
) + 1

f12(x) = π
n
× {10sin2(πyi) +

∑n−1
i=1 ((yi − 1)

2[1 + 10sin2(πyi+1)]) + (yn − 1)2}+
+
∑n

i=1 u(xi, 10, 100, 4), where yi = 1 +
1
4
(xi + 1)

u(xi, a, k,m) =

⎧⎪⎨⎪⎩
k(xi − a)m, xi > a

0, −a ≤ xi ≤ a

k(xi − a)m, xi < −a

f13(x) = 0.1× {sin2(3πx1) +
∑n−1

i=1 ((xi − 1)2[1 + sin2(3πxi+1)])+
+(xn − 1)[1 + sin(2πxn)

2]}+
∑n

i=1 u(xi, 5, 100, 4)

only one difference vector is used and F1 = 0.3 and F2 = 0.7 when two differ-
ence vectors are involved (as in DE/rand/2 and DE/Best/2). The DE variants
(with different mutation strategies) were applied and tested on the benchmark
functions in attempts to find the best solutions for them. Every DE variant was
executed for each function 20 times to get a fair result for the comparison. The
terminate condition for the execution of the DE programs is that the error with
respect to the global optimum is below 10e-8 or the number of fitness evaluations
has exceeded 300, 000.

The results of experiments will be demonstrated in the following. First we
compare the performance (the quality of acquired solutions) of the DE variants
in the benchmark functions, and secondly we compare the convergence speed of
the DE variants in finding their optima solutions.

4.2 Comparison of the Quality of Solutions

First we consider the quality of solutions obtained by the DE variants. The
results obtained on the thirteen benchmark functions are showed in Table 2.
The first column corresponds to the test functions used for evaluation. All the
other columns are used to present the average error of the results obtained for
a certain function with respect to its global optimal value. A figure in boldface
means the lowest average error among those achieved by the DE variants.

We compare the quality of solutions on unimodal and multimodal functions
respectively. It can be seen from Table 2 that, in unimodal functions (functions



380 M. Leon and N. Xiong

Table 2. Average error of the found solutions

FUNCTION DE/rand/1 DE/best/1 DE/rand/2 DE/best/2 DE/ctor/1 DE/ctob/1

f1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 1.58E-08 4.70E-05 0.00E+00 5.00E-01 0.00E+00 0.00E+00
f3 5.81E+01 2.50E+02 1.69E-01 2.32E-07 8.73E-06 0.00E+00
f4 5.81E+00 1.58E-02 1.10E-02 9.08E-06 3.11E-02 2.35E-08
f5 2.66E+01 6.54E+00 6.86E-04 7.98E-01 0.00E+00 2.00E-01
f6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f7 1.12E-02 9.58E-03 5.73E-03 5.14E-03 2.63E-03 2.65E-03
f8 2.47E+03 3.24E+03 6.62E+03 3.29E+03 6.94E+03 2.59E+03
f9 1.09E+01 4.24E+01 1.72E+02 4.51E+01 1.53E+02 2.57E+01
f10 1.88E+01 1.40E+01 0.00E+00 2.05E+00 0.00E+00 0.00E+00
f11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f12 0.00E+00 9.85E-02 0.00E+00 5.71E-02 0.00E+00 0.00E+00
f13 0.00E+00 3.83E-03 0.00E+00 5.47E-03 0.00E+00 0.00E+00

1-7) , DE/current-to-rand/1 and DE/current-to-best/1 appeared as the strongest
alternative sine they reached the global optimum in four of the seven functions.
DE/best/2 and DE/rand/2 were also very good in the 7 unimodal functions, with
results very similar to those of the strongest candidates. The weakest approaches
here were DE/rand/1 and DE/best/1, as they produced significant error in some
cases such as function 3, 4, and 5, as shown in the table.

In multimodal functions (functions 8-13), DE/current-to-best/1 appeared as
the best choice, as it found the results similar to the best ones on functions 8
and 9 and the global optima on all the other functions. DE/rand/1 was also
attractive, as it found the best solutions on functions 8 and 9. In function 10,
DE/rand/1 and DE/best/1 got the worst performance with large error, while all
the other candidates acquired the optimum or near optimal solutions. Finally,
on functions 11, 12 and 13 all the approaches behaved equally well with optimal
or close to optimal results.

Based on the above analysis, we can point out that, for unimodal functions,
it is better to use DE/current-to-best/1 or DE/current-to-rand/1. But good
results can be achieved with DE/best/2 and DE/rand/2 as well. DE/rand/1 and
DE/best/1 are very weak in unimodal functions. In multimodal functions the
best results can be achieved with DE/current-to-best/1 and DE/rand/1, except
in function 10 for which the performance of DE/rand/1 is not good. DE/current-
to-rand/1 and DE/rand/2 can have very poor performance occasionally, such as
in functions 8 and 9.

4.3 Comparison of the Computational Cost

In this subsection we compare the numbers of fitness evaluations that were done
by the DE variants before the global optima were reached. We did this in the
following way: First we recorded the number of DE executions from which the
global optimum was reached. These numbers are given in Table 3. Then we
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calculated the average number of evaluations for every DE variant on each test
function, as listed in Table 4.

Table 3. Number of executions with acquired optimum

FUNCTION DE/rand/1 DE/best/1 DE/rand/2 DE/best/2 DE/ctr/1 DE/ctb/1

f1 20 20 20 20 20 20
f2 6 18 20 19 20 20
f3 0 0 0 0 0 18
f4 0 0 0 0 0 6
f5 0 0 0 16 19 19
f6 20 20 20 20 20 20
f10 0 6 20 17 20 20
f11 20 20 20 20 20 20
f12 20 15 20 17 20 20
f13 20 16 20 17 20 20

In Table 3 we can observe that DE/current-to-best/1 always got the highest
success rate. DE/current-to-rand/1 and DE/rand/2 got success rate similar to
that of DE/current-to-best/1 in many cases. No comparison was made on func-
tions 7, 8 and 9 since the DE variants never reached the global optima on these
functions. The worst algorithm in this comparison was DE/rand/1 because it
never found an optimum in seven functions and on function 2 its success rate
was very low.

Table 4. Mean number of evaluations conducted

FUNCTION DE/rand/1 DE/best/1 DE/rand/2 DE/best/2 DE/ctr/1 DE/ctb/1

f1 211008 103353 96315 57720 64494 54132
f2 299013 158205 166530 99303 115071 94536
f3 300000 300000 300000 300000 300000 287898
f4 300000 300000 300000 300000 300000 294825
f5 300000 300000 300000 240870 287796 206241
f6 212178 108045 96369 57819 64962 54189
f10 300000 260661 153717 132552 102117 86028
f11 177993 90879 81240 48219 54213 45786
f12 185953 157440 97425 132786 61422 51192
f13 208842 147054 104472 95055 67845 55629

From Table 4 it is clear that DE/current-to-best/1 was the fastest algorithm
on all the functions. Then we attempt to identify the second fastest alternative
from DE/current-to-rand/1 and DE/best/2. For this purpose we do comparison
on unimodal functions (functions 1 to 7) and multimodal functions (functions 8
to 13) respectively. On unimodal functions, DE/best/2 was better in all of the
four functions for comparison, but the difference was not so large. On multimodal
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functions, DE/current-to-rand/1 was better in three of the four functions with
large differences. Overall the worst algorithm was DE/rand/1 because it took
the most evaluations in all the 8 unimodal and multimodal functions (functions
3 and 4 are excluded in this comparison). Based on these results we can point out
that DE/current-to-best/1 is a faster DE variant while DE/rand/1 is a slower
one.

5 Conclusions

This paper presents an empirical study to compare six different mutation strate-
gies in optimization problems. All these mutation approaches have been tested
in a set of benchmark problems in terms of both the quality of solutions and
the computational expense, i.e. the number of fitness evaluations required. The
results of experiments have led to the recommendation of the DE/current-to-
best/1 strategy, which is not only computationally efficient but also superior in
guaranteeing the quality of solutions in a diversity of problems.

It is important to be aware of the relative performance of distinct mutation
strategies to develop competent DE algorithms. In future we will exploit the in-
formation acquired in this paper for construction of optimal or adaptive strate-
gies of mutation to tackle more complex and larger scale optimization tasks.
Moreover, we will also apply and test our new computing algorithms in real
industrial scenarios.
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Abstract. In fuzzy group decision making problems, we often use multi-
objective evolutionary optimization. The optimizers search through the
whole search space and provide a set of nondominated solutions. But,
sometimes the decision makers express their prior preferences using fuzzy
numbers. In this case, the optimizers search in the preferred soft region
and provide solutions with higher consensus. If perturbation in the de-
cision variable space is unavoidable, we also need to search for robust
solutions. Again, this perturbation affects the degree of consensus of the
solutions. This leads to search for solutions those are robust to their
degree of consensus. In this work, we address these issues by redefin-
ing consensus and proposing a new measure called robust consensus. We
also provide a reformulation mechanism for multiobjective optimization
problems. Our experimental results show that the proposed method is
capable of finding robust solutions having robust consensus in the spec-
ified soft region.

Keywords: Consensus, evolutionary algorithms, fuzzy group decision
making, multiobjective optimization, robustness.

1 Introduction

Most of the real world optimization problems have multiple conflicting objec-
tives. That is why, in the last few decades multiobjective optimization (MOO)
has drawn a lot of research interests. Multiobjective optimizers, e.g., genetic al-
gorithms (GAs), after completion of their search process, usually provide a set
of nondominated solutions, such that, without additional knowledge further re-
duction of the solution set is not possible. It is left to decision makers’ (DMs’)
choice to pick the right solution from the solution set.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 384–394, 2014.
c© Springer International Publishing Switzerland 2014



Robust Consensus 385

It is hard from DMs’ point of view to find the appropriate solution from a set
of nondominated solutions. Besides, we cannot rely on a single DM due to her
lack of knowledge about all the objectives. As an example, in an interview board,
a set of experts from different knowledge domains makes a consensus decision.
Another example is how a decision is made by an organization - here the board
of directors makes the decision. Group decision making (GDM), thus, is a point
of interest. In most cases, the DMs cannot express their specific choices a priori.
Rather they provide a rough idea about their choices. Fuzzy group decision
making (FGDM) is one of the popular ways to address this issue. A popular
FGDM strategy is that each DM expresses her approximate prior opinion by
providing a fuzzy reference point for each objective. Again, the weights of all
the DMs may not necessarily be the same. In this case, a suitable aggregation
operator is used to find the optimal solution.

In the above mentioned FGDM strategy, a problem associated with the DMs
is that their opinions often change. For example, the board of directors of a
company may change. Even, individual DM’s choice evolves depending on her
past experiences. In this case, it becomes important to find solutions, which will
be acceptable by the DMs even if some of DMs change their individual preference.
Consensus is a measure to address this issue. In FGDM, usually consensus is
used to find the closeness among the DMs’ choices [3], [18]. It is expected that
the set of solutions chosen finally should be as close as possible to the collective
decision.

There are several unavoidable circumstances when the solutions perturb in
decision variable space. In those cases, we prefer the solutions which are robust
to such perturbations. In the literature, there are several definitions of robustness
[4], [2] in multiobjective optimization. Robustness is defined either in objective
space or in variable space. In this work, we find solutions which are robust to their
perturbation in the variable space. Again, when a solution gets perturbed in the
variable space, it is likely to be shifted in the objective space. As a consequence,
the consensus of the solution also changes. So, we want to find solutions which
will be robust with respect to its consensus.

In this work, we assume that the DMs provide some soft constraints to the
multiobjective optimizer to restrict the search process to a set of specific regions
of the search space, and the optimizer provides robust solutions from this roughly
specified preference regions. We reformulate the optimization problem to obtain
robust solutions from these specified regions, and find solutions which are robust
with respect to their degree of consensus. For this purpose we define a new
measure called robust consensus.

2 Preliminary Concepts

2.1 Multiobjective Optimization

In a multiobjective optimization problem (MOP), we intend to optimize more
than one conflicting objectives, sometimes trying to satisfy also a set of equality
and inequality constraints. In this work, however, we consider only unconstrained
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MOPs (UMOPs). An UMOP can always be restated as an unconstrained mul-
tiobjective minimization problem (UMMP) and throughout this paper, unless
mentioned specifically, we always consider UMMPs. To be more specific about
UMMPs, below we formally define several basics of it.

Definition 1. Formally an UMMP can be defined as in ( 1).

minimize f(x) = (f1(x), f2(x), · · · , fm(x)), x ∈ Ω, (1)

where Ω ⊂ Rn is the variable space, f : Rn → Rm, and the functions fi(i =
1, 2, · · · ,m) are called objective functions.

Definition 2. A solution f(x1),x1 ∈ Ω, is said to dominate another solution
f(x2),x2 ∈ Ω, denoted by f(x1) ' f(x2), if ∀i, fi(x1)≤fi(x2), and ∃j, s.t.,
fj(x1)<fj(x2).

Definition 3. A solution f(x∗),x∗ ∈ Ω is called a Pareto optimal solution, if
�x ∈ Ω, s.t., f(x) ' f(x∗). A set of all such solutions in the objective space
is called Pareto front. The corresponding set of points in the decision variable
space is called the Pareto Set.

Definition 4. A set of solutions S is called a nondominated set of solutions, if
∀u ∈ S, �v ∈ S, s.t., v ' u.

There are many multiobjective evolutionary algorithms (MOEAs) in the lit-
erature to solve MOPs. SPEA2 [21], NSGA-II [5] etc. are some of the popular
MOEAs. The default goal of these algorithms is to provide the DMs a set of non-
dominated solutions, which is close to, and well spread along the Pareto front.
If the DMs want to provide some prior hard preferences, they represent them
as constraints. In many cases, however, the DMs want to search in a particular
region of the search space corresponding to some particular area of the Pareto
front. Sometimes, they want to stop searching much before the Pareto front is
reached. Again, DMs may like to search in robust regions, as well as the regions
where they have experiences. In these cases, the searching needs to be guided to
those specific regions. In our work, we address this issue by embedding consensus
in the search process.

2.2 Fuzzy Group Decision Making

Group Decision Making (GDM) has been proven to be useful in many disciplines,
like emergency management [20], situation assessment [16], product development
[15], and accident evaluation [14]. In most cases, GDM is performed in two steps
(processes): consensus process and selection process [18]. In consensus process,
the target is to find the maximum degree of agreement among the DMs. The
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selection process is used to obtain the solution set of alternatives in accordance
with the collective opinions of DMs. For this model it is desirable to obtain
the maximum degree of consensus before applying the selection process. In our
work, however, we propose an embedded model, where these two processes are
considered in an integrated manner.

The DMs often prefer to provide some prior soft preferences regarding their
choices. In fuzzy group decision making (FGDM), one way to represent DM’s
choices is to express their preferences by fuzzy numbers. Often these numbers
are far away from the Pareto front. In that case we need to restrict the search in
that specified region. Again, if there are perturbations in the decision variable
space, it is possible that though a solution is robust in objective space, its degree
of consensus varies highly. In this case, we want to get solutions those are robust
with respect to their consensus.

2.3 Related Works

There are few works on FGDM problems with consensus and/or robustness.
However, there is no work, as per our knowledge, that have incorporated ro-
bustness and consensus in an integrated manner in the FGDM using MOOs.
Works on robustness in MOEAs can be found in [2], [4]. Some works related
to consensus are there in [9], [10], [12], [13]. A work, somewhat similar to us,
can be found in [18]. Nevertheless, the authors, in [18], did not deal with ro-
bust consensus. They used another definition of robustness. At first their search
procedure would reach the Pareto front, and then, a solution selection scheme
based on robustness and consensus is used. It makes their system always trying
to provide some solutions from the Pareto front, which may not be the desir-
able solutions with respect to consensus as DMs’ preferences may be far away
from it. So, essentially they select consensus solution from the Pareto front. In
our work, we evolve solutions from the soft regions expressed by the DMs as
their preferred region in the objective space. In [18], the authors have worked on
preference robustness, which is defined by the minimum transition cost in the
decision space when a solution is perturbed in the objective space.

3 Problem Formulation

Let there be dDMs, denoted asDj (j = 1, 2, · · · , d). The weight vector associated

with the DMs is represented as w = (w1, w2, · · · , wd), s.t.
d∑

j=1

wj = 1. To express

their preferences, DMs provide reference points in the objective space, denoted
by Rj = (rj1, rj2, · · · , rjm), where rji (i = 1, 2, · · · ,m) is the reference value of
the ith objective provided by jth DM. In this work, we consider that the DMs
provide reference values as triangular fuzzy numbers [19], where each value is
represented as triplet, rji = (rlower

ji , rmost
ji , rupperji ). The membership value of a

point r is defined in ( 2).
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μrji(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(
r − rlower

ji

)(
rmost
ji − rlower

ji

) , rlower
ji ≤ r ≤ rmost

ji(
rupperji − r

)(
rupperji − rmost

ji

) , rmost
ji ≤ r ≤ rupperji

0, otherwise.

(2)

Here rlower
ji , rmost

ji , and rupperji are respectively the lower bound, most desirable
value, and the upper bound of the DM’s preference fuzzy number rji.

4 Robustness, Consensus, and Problem Reformulation

4.1 Robustness

In the literature, robustness has been defined in many ways according to the
application areas, such as life science, engineering, mathematics, statistics, op-
timization, and decision science [2]. In multiobjective optimization, two of the
major contributions on robustness can be found in [2], [4]. Among the several
definitions of robustness, in this work, we use the one defined in [18].

Definition 5. A solution x� is called a multiobjective robust solution, if it is a
Pareto optimal solution to the multiobjective minimization problem as defined
in ( 3).

minimize fe(x) = (fe1 (x), f
e
2 (x), · · · , fem(x)),x ∈ Ω,

subject to fej (x) =
1

|Bδ(x)|

∫
y∈Bδ(x)

fj(y)dy, j = 1, · · · ,m. (3)

The above formulation is defined with respect to a δ-neighborhood Bδ(x) of a
solution x. A solution which is robust as per the above definition, according to
the literature, is called multiobjective robust solution of type-I [4].

4.2 Consensus

There are several definitions of consensus in the literature [9], [11], [18]. The
drawback in the definition of consensus presented in [18] is that even if the
value of the objective function fi(x) matches exactly with rmost

ji , the peak of
the membership function ∀i and ∀j, then also there will be a substantial value
of dji (fuzzy distance between the solution and the reference point of the jth

DM on ith objective [18]) suggesting a mismatch between the computed solution
and preferred solution and thereby reducing the consensus. To overcome this
drawback, we define consensus in the following way.
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Definition 6. Let w = (w1, w2, · · · , wd) be the weight vector associated with d
DMs. Then consensus of a solution x ∈ Ω is defined in ( 4) as follows.

consensus(x) =

d∑
j=1

wj μ̂j(x), (4)

where μ̂j(x) is defined in ( 5).

μ̂j(x) = φ(μrj1 (f1(x)), μrj2(f2(x)), · · · , μrjm(fm(x))). (5)

Here, μ̂j(·) is basically a multidimensional membership function; m is the num-
ber of objectives; μrji( · ), i = 1, 2, · · · ,m, is already defined in ( 2); fi( · ), i =
1, 2, · · · ,m, is the ith objective function; and φ( · ) is a t-norm aggregation op-
erator which in this work is taken as the min(·).

There is a problem with this definition of consensus: it assumes that a robust
solution will always be robust to its degree of consensus. But, this may not always
be true. To demonstrate this scenario with an example, let us consider Fig. 1.
In this figure, a robust solution x ∈ Ω in the variable space and its mapping
f(x) in the objective space are shown respectively in the left panel and in the
right panel. The preference points in the objective space provided by two DMs,
D1 and D2, are shown by + symbol. Let, the weights of the DMs be w1 and w2

respectively, and w1 > w2. Since w1 > w2 and f(x) is closer to D1, the robust
solution x is also a solution with good consensus. But when x is perturbed, f(x)
no longer is a solution with good consensus. Note that the degree of consensus
is not only dependent on the weights but also on membership functions. The δ
neighborhood of x is shown in the left panel and the corresponding perturbation
in the objective space is shown in the right panel by the shaded regions. Due to
the perturbation of x the objectives get shifted towards D2’s reference point. In
this case, the consensus should decrease. In other words, although x is a robust
solution, it is not robust to its degree of consensus. To overcome this problem, we
need to find solutions which are robust to their degree of consensus. To address
this issue, we define a new measure, robust consensus, bellow in ( 6).

Definition 7. Robust consensus of a solution is defined in ( 6).

robust consensus(x) =
1

|Bδ(x)|

∫
z∈Bδ(x)

consensus(z)dz (6)

The above formulation is defined with respect to a δ-neighborhood (Bδ(x)) of a
solution x. Higher value of this measure indicates higher robust consensus of the
solution.

4.3 Problem Reformulation for MOEA-FGDM

We could use any multiobjective evolutionary algorithm (MOEA) [5], [6], [17],
[21], [22] for this task. We have, however, used NSGA-II [5] as the multiobjective
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Fig. 1. Showing a solution x, its δ neighborhood, its mapping (perturbed) in objective
space, and two DMs’ preferred reference points D1 and D2

optimizer. To find robust solutions, which are also robust consensus, we refor-
mulate the m objective UMMP defined in ( 1) as an (m + 1) objective UMMP
as described in ( 7).

minimize f̂e(x) = (fe1 (x), f
e
2 (x), · · · , fem(x),− robust consensus(x)),

subject to x ∈ Ω,
(7)

where fej (x)s are the same as in ( 3).

By solving this problem, we can obtain the desired robust solutions. There
is, however, a concern: how to computationally integrate the consensus over a
region? We address this problem in the following way. Let, x ∈ Ω be a solution.
A set of H random points xk (k = 1, 2, · · · , H) is chosen such that ∀k (k =

1, 2, · · · , H), ∀i(i = 1, 2, · · · , n),
(
x(i) − δ(i)

)
≤ x

(i)
k ≤

(
x(i) + δ(i)

)
, where, x

(i)
k is

the ith component of xk, δ
(i) ≥ 0 is the maximum allowed perturbation along ith

variable, and n is the number of variables. For simplicity, we consider ∀i, δ(i) = δ̃.
However, one can use different values of δ(i)s, and that may be more appropriate
for real life problems. For all randomly chosen points we compute the objective
(or consensus) values and find their arithmetic mean. With an increase in H the
accuracy level increases. To decrease computational cost, nonetheless, one can
choose smaller value of H . The δ(i)s are very important parameters. The results
vary significantly with the choice of this parameter value. When δ̃ = 0, the
proposed robust consensus reduces to consensus, and this problem formulation
will not provide robust solutions.

5 Test Problem, Experimentation, and Discussions

5.1 Test Problem

BINH [1] is a well known UMMP test problem defined in ( 8).

minimize f1(x1, x2) = x
2
1 + x

2
2,

minimize f2(x1, x2) = (x1 − 5)
2
+ (x2 − 5)

2
,

(8)
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Table 1. DMs’ fuzzy reference points for modified M-BINH problem

Decision Maker (Dj) rj1 rj2
D1 (10.0, 15.0, 20.0) (16.0, 21.0, 26.0)
D2 ( 8.5, 14.0, 19.5) (16.0, 22.0, 28.0)
D3 (11.0, 16.0, 21.0) (13.0, 20.0, 27.0)
D4 ( 8.0, 13.0, 18.0) (15.0, 19.0, 23.0)
D5 ( 9.0, 17.0, 25.0) (14.0, 18.0, 22.0)

where −5 ≤ x1, x2 ≤ 10. The authors [18] have modified this problem to make
it suitable for the robustness-consensus FGDM problem. They call it M-BINH.
We use the same modified formulation. It is described in ( 9).

xcp =
xmax
p + xmin

p

2
, r1,p = 0.2, r2,p =

xp
xmax
p

,

xp =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xp, if xp ≤ 1

xmin
p + floor

(
xp − xmin

p

r1,p

)
r1,p, if xp < x

c
p

xcp + floor

(
xp − xcp
r2,p

)
r2,p, else,

p = 1, 2,

minimize f1(x1, x2) = x
2
1 + x

2
2,

minimize f2(x1, x2) = (x1 − 5)
2
+ (x2 − 5)

2
,

(9)

where 0 ≤ x1, x2 ≤ 5, xmin
p and xmax

p (p = 1, 2) indicate respectively the lower
and upper bounds of the variable space.

We assume that there are five DMs and the corresponding weight vector is
w = (0.20, 0.20, 0.20, 0.20, 0.20), i.e., all the DMs are equally important. Their
fuzzy preference points are presented in Table 1. These parameters are not the
same as in [18]. We have changed them to make the problem more suitable to
show the effectiveness of our approach.

We reformulate the M-BINH problem in ( 10).

minimize f robustM-BINH(x) = (fe1 (x), f
e
2 (x),− robust consensus(x)) ,

where fe1 (x) =
1

|Bδ(x)|

∫
y∈Bδ(x)

f1(y)dy,

fe2 (x) =
1

|Bδ(x)|

∫
y∈Bδ(x)

f2(y)dy.

(10)

Here f1(x) and f2(x) are defined as in ( 9), and robust consensus is defined in
( 6).
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Fig. 2. Showing nondominated sets S0
1 , S0.5

1000, and S1
1000

5.2 Common Parameter Settings

We have set population size to 100. Simulated binary crossover (SBX) has been
used, where crossover probability pc = 0.95 and distribution index for crossover
ηc = 20. We have used polynomial mutation where mutation probability pm =
1/n and distribution index for mutation ηm = 10. Here n(= 2) is the number
of variables. We have executed NSGA-II for 1000 generations. The reason for
choosing such a high number of generations is to allow the searching algorithm
enough chance to converge. We have used jMetal 4.4 [7], [8] for the simulation
purpose.

5.3 Experiments, Results, and Discussions

At first we execute the algorithm for three pairs of (H, δ̃) parameter sets: (1, 0),
(1000, 0.5), and (1000, 1). Let us denote the sets of nondominated solutions ob-
tained for these three parameter sets by S01 , S0.51000, and S11000 respectively. When
H = 1, and δ̃ = 0, our problem searches for solutions which are not robust both
in terms of the objectives and the consensus. To reduce the error in computing
robustness, we have used a high value of H . It is worth mentioning that for
the parameter pair (1, 0), our problem formulation reduces to simple consensus
optimization problem, i.e., in that specific case, we are searching for consensus
solutions which may not be robust in terms of their objectives. However, to ob-
serve how the output changes with the change of δ̃, we plot the objective values
of S01 and S0.51000 in the left panel, and the objective values of S01 and S11000 in the
right panel in Fig. 2.

From Fig. 2, we observe that when δ̃ increases, the obtained set of solutions
moves away from the set S01 . Basically, with the increase of δ̃, i.e., when we
search for more robust solutions, the robust consensus of the solutions decreases.
In Fig. 2, we have also shown the most desirable points suggested by each DM.
Around the coordinate (15, 15) in the objective space, there is a region with more
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crowded solutions which is close to the region where most of the desirable points
suggested by the DMs lie. We observe that with the increase of δ̃, this region
becomes wider as well as one of the end points of the solution set gets drifted
towards the middle region. With the increase of δ̃, the system stops in a region
which is preferred by the soft choices of the DMs and the obtained solutions
are away from the Pareto front of the unaltered UMMP. When δ changes the
t-norm operator φ( · ) and the weight vector w also play important roles on the
direction of the drift of the solution sets.

6 Conclusions

In this work, we redefine consensus and define a new measure called robust con-
sensus, which indicates the robustness of a multiobjective solution with respect
to its consensus among the preferences provided by a set of DMs. We have also
shown a reformulation mechanism for multiobjective fuzzy decision making prob-
lems. It provides the DMs a set of solutions from their preferred search regions.
The DMs express their prior preferences by providing reference points for each
objective. Using the multiobjective genetic algorithm NSGA-II, we have suc-
cessfully solved a modified test problem, M-BINH and shown that the proposed
method is capable of providing solutions from the region desired by the DMs.
Further, we have shown that the proposed definition of robust consensus is sen-
sitive to its parameter δ. The effect of the formulation for different aggregation
operators is not studied in this work. We intend to do this in our future work.
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Fellowship (code no. IF120686).
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Abstract. In this paper, the novel concept of particle performance eval-
uation within the particle swarm optimization algorithm (PSO) is intro-
duced. In this method the contribution of each particle to the process
of obtaining the global best solution is investigated periodically. For the
particle with no contribution to the global best solution over a given
number of iterations the velocity calculation is changed; in the case of
this presented research, in order to improve its performance towards the
global trend.

Keywords: PSO, Swarm intelligence, Performance evaluation,
Optimization.

1 Introduction

Since it has been introduced [1], the original PSO algorithm [1], [2] has been
repeatedly studied in details (e.g. in [3]) and variously modified. [4] – [8]. The
“swarm intelligence” [2] employed within the algorithm has been becoming more
complex [4], [5], [7] and the behavior of the swarm as a whole has been analyzed
in the various learning and adaptive processes.

This preliminary study investigates on a different approach where the per-
formance of the each particle within the the swarm is analyzed separately and
the particles are treated with more individual approach. The swarm as a whole
maintains its basic initial settings during the whole optimization. The goal of
this study is to show some of the advantages, further to show a potential of such
approach and finally to prepare the new open tasks for the future research.
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2 Particle Swarm Optimization Algorithm

The original PSO algorithm was proposed in 1995 by Eberhart and Kennedy
[1]. The inspiration came from the natural behavior of fish and birds. The basic
principle is that each particle in the swarm is defined by “position”, which is
in general the combination of cost function (CF) parameters, and “velocity”.
The new position of the particle in the next generation is then obtained as a
sum of actual position and velocity. The velocity calculation follows two natural
tendencies of the particle: To move to the best solution found so far by the
particular particle (known in the literature as personal best: pBest or local best:
lBest). And to move to the overall best solution found in the swarm or defined
sub-swarm (known as global best: gBest).

According to the method of selection of the swarm or subswarm for gBest
information spreading, the PSO algorithms are noted as global PSO (GPSO) [8]
or local PSO (LPSO) [9]. Within this research the PSO algorithm with global
topology (GPSO) [8] was utilized.

In the original GPSO the new position of particle is altered by the velocity
given by (1):

vt+1
ij = w · vtij + c1 ·Rand · (pBestij − xtij) + c2 ·Rand · (gBestj − xtij) (1)

Where:
vi

t+1 - New velocity of the ith particle in iteration t+1.
w – Inertia weight value.
vi

t - Current velocity of the ith particle in iteration t.
c1, c2 - Priority factors (set to the typical value = 2 ).
pBesti – Local (personal) best solution found by the ith particle.
gBest - Best solution found in a population.
xij

t - Current position of the ith particle (component j of the dimension D) in
iteration t.
Rand – Pseudo random number, interval (0, 1).

The maximum velocity of particles in the GPSO is typically limited to 0.2
times the range of the optimization problem and this pattern was followed in
this study. The new position of a particle is then given by (2), where xi

t+1 is the
new particle position:

xt+1
i = xti + v

t+1
i (2)

Finally the linear decreasing inertia weight [6], [8] is used in the GPSO here.
Its purpose is to slow the particles over time thus to improve the local search
capability in the later phase of the optimization. The inertia weight has two
control parameters wstart and wend. A new w for each iteration is given by (3),
where t stands for current iteration number and n stands for the total number
of iterations. The values used for the GPSO in this study were wstart = 0.9 and
wend=0.4.

w = wstart −
((wstart − wend) · t)

n
(3)
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3 PSO with Particle Performance Evaluation (PSO with
PPE)

The novel approach proposed in this study is based on the simple premise that
all particles should take part in the process of finding and improving of the final
solution. The only way of communication among the particles in the GPSO de-
sign [1], [8] represents the shared knowledge of the position of the best globally
found solution (gBest). In other words: To be beneficial for the swarm, the parti-
cle has to update the gBest. Therefore the first step in the particle performance
evaluation (PPE) is the exact monitoring of the gBest updaters. A counter is
allocated to the each particle. Each iteration the counter is incremented by 1 and
is set to 0 when the particle triggers a gBest update. In this way, it is possible
to measure the number of iterations since the last gBest was found by particular
particle. The second step in the PPE approach is to alter the performance of
the particular particle when it has not triggered the gBest update for a given
maximum number of iterations.

In this initial research the simple constant c1 (1) is modified to vector
(see (4)).

vt+1
ij = w · vtij + c1i ·Rand · (pBestij − xtij) + c2 ·Rand · (gBestj − xtij) (4)

Where:
c1i – Priority factor 1 for the ith particle.

Subsequently when the particular particle does not trigger a gBest update for
1/10 of the total number of iterations, the c1 value for that particle is set to
0.05. The value of c1 is set back to 2 when the particle reaches the gBest update.

Through utilization of this very simple pattern it is possible to reduce the
number of particles with no gBest updates (triggers), further to reduce the num-
ber of iteration between gBest updates for the each particle and to improve the
overall performance of the PSO algorithm in some cases as it is presented in the
following sections. Furthermore in this modification the saturation of maximum
velocity is no longer required and the inertia weight can be set to a constant.
Thus the number of necessary variables and controlling parameters has been
decreased.

4 Test Functions

Following test functions were used in this preliminary study to represent the
simple and more complex optimization problems.

The Sphere function is given by (5).

f(x) =

dim∑
i=1

x2i (5)
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Optimum position for En: (x 1,x 2. . . xn) = (0,0,. . . , 0)
Optimum value for En: y = 0

Schwefel‘s function is given by (6).

f(x) =
dim∑
i=1

−xi sin(
√
|x|) (6)

Optimum position for En: (x 1,x 2. . . xn) = (420.969, 420.969,. . . , 420.969)
Optimum value for En: y = -418.983·dimension

5 Experiment Setup

Within all performance testing the two PSO versions were utilized. The first one
was the original canonical global PSO with linear decreasing inertia weight (as
described in the section 2), noted GPSO. The second version was the proposed
PSO with PPE, as described in the section 3 (noted PSO with PPE).

Within the performance tests, the benchmark functions, which are described
in the section 6, were used for both aforementioned versions of PSO algorithm.
For each version, totally 20 separate runs were performed and statistically ana-
lyzed.

Control parameters were set up based on the previous numerous experiments
and literature sources [1], [6], [8] as follows:

Population size: 30
Generations: 1000
Dimension: 40
Runs: 20
For GPSO:
vmax = 0.2·Range
wstart= 0.9
wend = 0.4
For GPSO with PPE:
vmax = 1·Range
w = 0.5

6 Experiment 1

Within the first experiment, totally 20 independent runs of each algorithm (PSO
version) for the Sphere function were analyzed. Statistical overview is given in
Table 1. The mean gBest history is depicted in Figures 1 and 2. Subsequently an
extensive analysis of a single run of both algorithms was carried out. The Fig.
3 depicts the number of iterations since the last gBest update for each particle.
Please note that the bar chart is sorted. In order not to confuse with indexes of
particles in the population the “individual” term is used. The first “individual”
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is the particle with the last gBest update and vice versa. Finally the Figures
4 and 5 depict the history of the personal best (pBest) for each particle in the
single run of the algorithm.

Table 1. Results for the Sphere function (dim = 40)

Dim: 40 GPSO PSO with PPE

Mean CF Value: 2.052E-04 1.996E-09
Std. Dev.: 2.108E-04 3.833E-09
CF Value Median: 1.342E-04 1.032E-09
Max. CF Value: 7.250E-04 1.654E-08
Min. CF Value: 2.513E-05 8.521E-11

200 400 600 800 1000
Iterations

5

10

15

20

25

30

35

gBest Value

Fig. 1. History of mean gBest value for 20 runs. Sphere Function. GPSO.

7 Experiment 2

In the second experiment the Schwefel’s benchmark function (6) represented the
example of more complex optimization problem. The presentation of results fol-
lows the similar pattern as in the previous section. Table 2 contains the statistical
overview of the results for 20 independent runs of both algorithms. Mean gBest
history is depicted in Figures 6 and 7. The analysis of number of iterations since
the last gBest update within the single run is depicted in Fig. 8. The histories
of pBest for all individuals and for both GPSO and PSO with PPE are depicted
in Figures 9 and 10. The discussion of results follows in the next section.
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Fig. 2. History of mean gBest value for 20 runs. Sphere Function. PSO with PPE.
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Fig. 3. Number of iterations since last gBest update for each particle (sorted). Sphere
Function – comparison. GPSO – blue, PSO with PPE - red.
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Fig. 4. History of pBest value for all individuals. Sphere function. GPSO.
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Fig. 5. History of pBest value for all individuals. Sphere function. PSO with PPE.
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Table 2. Results for the Schwefel’s function (dim = 40)

Dim: 40 GPSO PSO with PPE

Mean CF Value: -10100.1 -10525.2
Std. Dev.: 701 668.923
CF Value Median: -9996.4 -10491
Max. CF Value: -8959.12 -9276.91
Min. CF Value: -11605.4 -11508.2

200 400 600 800 1000
Iterations

�10 000

�8000

�6000

�4000

�2000

gBest Value

Fig. 6. History of mean gBest value for 20 runs. Schwefel’s Function. GPSO.

8 Results Discussion

According to the data presented in Figures 3 and 8, in both experiments the
PSO version with PPE managed to reduce very significantly the number of
redundant cost function evaluations. Moreover it fully ensured that all particles
take effective part in the whole optimization process. From Fig. 3, it can be
derived that in the end of optimization process the particle with the most distant
gBest update value has triggered the update value about 130 iterations before
the end of the process. However in the case of GPSO there is a particle with no
gBest update at all. Very similar trend can be observed from figure 8 for the
second experiment. Given the very different histories of gBest (Figures 1 and 2,
6 and 7) it is possible to say that the PPE has led to significant changes in the
behavior of the whole swarm and the process of gBest updating.
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Fig. 7. History of mean gBest value for 20 runs. Schwefel’s Function. PSO with PPE.
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Fig. 8. Number of iterations since last gBest update for each particle (sorted). Schwe-
fel’s Function – comparison. GPSO – blue, PSO with PPE - red.
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Fig. 9. History of pBest value for all individuals. Schwefel’s function. GPSO.
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Fig. 10. History of pBest value for all individuals. Schwefel’s function. PSO with PPE.

9 Conclusions

In this research a novel approach for evaluation of particles performances within
the PSO algorithm was described and preliminary tested. Data presented in
Table 1 and 2 show mild improvement in the quality of solution finding. The
PPE approach seems to be a valid design and it is our belief that with more
sophisticated behavior changes of the particles, the significant improvements of
the performance can be achieved and the future research will focus mainly in
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this direction. The first goal of reducing the number of redundant cost function
evaluation was achieved. The main purpose of this study was to inform about
this approach and to highlight the main ideas.
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Abstract. Integral-algebraic equations are an interesting method of
modeling real world problems with not too severe assumptions. We pro-
posed a simple numerical method of using differential evolution. Con-
straints in optimal control problems are handled using a method based
on the works of Fletcher and his co-workers’ filter.

Numerical results for typical benchmark problems are provided. The
efficiency of the proposed method occurred to be satisfactory.

1 Introduction

In [22] the method of solving constrained optimization problems using differential
evolution with Fletcher’s filter has been proposed. Our aim in this paper is to
propose an extension of this approach to optimal control problems and to test
the extended version on difficult problems of time-optimal control of systems
described by integral equations with additional state constraints.

Integral equations considered in this paper are confined to Volterra type II
equations. Other formulations are possible, like mixed Volterra equations or
Fredholm equations. The only difference is in the equations solving method.
Proposed methodology can be used as well for differential equations with one
remark. The right-hand side of ODE should be differentiable. When it is nec-
essary to use piecewise constant control this assumption does not hold. We can
try to overcome this by using differential equations also piecewise but integral
equations do not have such limitations.

An optimal control problem can be very generally formulated as follows

min
u
J = min

u

∫
J (t, y, u) (1)

additional constraints can be imposed on system control and state. The problem
will be stated in section 2.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 406–415, 2014.
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1.1 Differential Evolution

Differential evolution is a method proposed by Kenneth Price and Reiner Stron
in a technical report [17] in 1995 and later published in papers and books. From
that time the method has become increasingly popular as one of the most effi-
cient methods that retain evolutionary methods abilities to search for non-local
solutions while providing better results. However, in this paper we deal with
problems with constraints and for this reason we need to extend a differential
evolution by a method of handling constraints. Following [22] we consider here
the DE method in conjunction with Fletcher’s filter methodology.

Evolutionary computing methods are widely used in control problems like in
[24],[25].

1.2 Filter

The filter was proposed by Fletcher and his co-workers in 2001, firstly for se-
quential linear programming and then for sequential quadratic programming
in [4],[5],[6]. Today the Filter SQP method is considered as a state-of-the-art
method in classical constrained optimization.

We are convinced that the combined methodology of differential evolution and
the filter is much wider and can be useful in solving optimal control problems.

The filter, as a method of solving constrained optimization problems was
proposed in artificial inteligence field for evolutionary computing in [21] and
as a method supplementing differential evolution in [22]. Some modifications of
filter method were proposed in [20]. Differential evolution without constraints
was previously used for example in [26] or [13], methods using rudimentary
constraints handling techniques were investigated in [2]

2 Optimal Control Problem Formulation

After discretization, regardless of a result from a previously described method
or much more complicated one like those described in [1], [11] we obtain a sys-
tem of nonlinear equations. Now we can choose one of two ways of solving the
control problem. We decide to use nonlinear equations solver separetly from the
optimization method. This ensures that our results are correct in the sense that
resulting controls would provide exactly the same result when used directly on
the system without the optimization method. This does not compromise the
abilty to constrain a system state on selected points.

Typical, useful and still difficult is the problem of time optimal control. In this
problem we want the system to reach a desired state (usually 0) in the shortest
possible time. Commonly the fact that this point should be stable is omitted.

min tk
y(tk) = 0

(2)
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Usually control is constrained in some way.

H(y, u) = 0
|u(t)| ≤ 1

(3)

The simplest example can be a problem of stopping a pendulum or mass on
the spring. In this case y = [y1, y2] is a vector where y1 is speed and y2 is the
resulting position. We want both of them to be 0 which is the stable point for
this problem.

For this problem a theoretical solution does exist, so we add additional con-
straints like

y(tξ) = yξ (4)

can be added. We still use some part of analytical result, for example the fact
that control would be in a switched form so we can use only a few steps (we do
not expect and try to approximate continuous control function).

3 Integral Equations

3.1 Definition

Integral equations have been investigated for a long time. Their general classifi-
cation is as Volterra and Fredholm with two type each.

Ay(t) = y0 +

∫ b

a

F(y, t, τ)dτ (5)

Voltera equations have time t as an upper integral limit b = t and usually
zero as the lower one a = 0.

If A = 0 then an equation is of type I. In any other case A �= 0 is of type II.
Integral equations arise in many fields and problems. As is well known integral

equations can be obtained from differential equations by integrating them. This
fact is used in one of the proofs of existence and uniqueness of the ODE solution.

Integral equations can also occur as a natural description of a problem in many
cases e.g. when conservation laws are applied. One of the first cases of integral
equations was stated by Abel in 1823 when he was considering the problem of
tautochrone. In this problem we are looking for a curve that allows material
points sliding from it to arrive at the lowest point in the same time regardless
of said points’ starting position along the curve.

This equation is of the Volterra type and has the form

f(y) =

∫ y

0

Φ(y)√
y − Υ

dΥ (6)

Fredholm type integral equations arises for example in a case of boundary
value problem.
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3.2 Solution Methods

Some integral equations can be solved in an analytic way but it is usually dif-
ficult. Many numerical methods have been proposed. Most of them are based
on quadratures used for integration and are called the Nystrom method. Oth-
ers use collocation which can require solving systems of algebraic equations. In
case of linear integral equations we get a system of linear equations. Some other
techniques can be combined like polynomial spline collocation.

3.3 Integro-algebraic Case

Collocation methods resulting in algebraic equations are suited to expansion into
integro-algebraic equations.

4 Differential Evolution with a Fletcher Filter

Differential evolution is a meta-heuristic method of optimization. Instead of com-
puting gradient, two random agents from the population are selected and their
difference is used with some coeficient (F ) in lieu of gradient. The method could
be easily modified for different problems and using modern computational power
with parallelization. This method is called evolutionary. However it is different
then a typical biologically inspired evolution presented for example in [7], [8].
Previously, in [22] we have proposed a method of using the filter to handle con-
straints.Here, we review it briefly.

Other method of contrained optimization using differential evolution were
proposed [9], [10], [14], [15], [16], [23]

In a typical case differential evolution requires a population consisting of vec-
tors from Rn which is the domain of goal function f(x). Function h(g(x)) informs
us how much constraints are violated – 0 if none. In our case additional agents are
stored in the filter. The method require two parameters CR ∈ [0, 1], F ∈ [0, 2].

In this approach the differentiated elements come from the population and
the modified element from the filter, so the method is as follows.

– Choose parameters: for differential evolution CR ∈ [0, 1], F ∈ [0, 2] and for
the filter: size of population and (possibly) maximal size of the filter. Initialize
initial population and insert at least one element in the filter, possibly with
small constraint violation h.

– Until reaching a stop criterion, for each element in the population x
Step 1. Choose at random an element from the filter and denote it by a.

Choose two elements from the population b and c such that b �= c. Choose
a random number R from 1 . . . n (the current working dimension for all
vectors).

Step 2. For each dimension k = 1 . . . n
1. Choose random r from [0, 1]
2. If r < CR or k = R then yk = ak + F · (bk − ck)
3. else yk = xk
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Step 3. For resulting y calculate f(y) and h(g(y)). If pair (f, h) is acceptable
to the filter replace element x by y. Add triple (f, h, y) to the filter.
Otherwise do not change the population

5 Numerical Results

5.1 Problem Formulation

Let us consider a simple second order non-damped oscillating object with ω = 1
in form of an integral equations. As stated, using this form reduces complications
regarding nonsmoothness of controls that could result from optimization.

x1 = x01 +

∫ t

0

x2(t)dt (7)

x2 = x02 +

∫ t

0

[−x1(t) + u(t)]dt

We use typical constraints

|u(t)| ≤ 1

Here we propose a new method of control parametrization – generally

u(t) =
n∑

i=1

ui · si(t) (8)

where si(t) is a step. These steps can be of different length. For the sake of
making the optimization problem simpler we choose the following scheme

s1(t) =

{
1 for t ∈ [0, t1]
0 for t > t1

(9)

s2(t) =

{
1 for t ∈ (t1, t1 + t2]
0 otherwise

(10)

sn(t) =

{
1 for t ∈ [

∑n−1
i=1 ti,

∑n
i=1 ti]

0 otherwise
(11)

This kind of formulation has the following advantages:

– simple calculation of goal function
– simple constraints

So our problem is formulated as follows

J =

∫ tk

0

u(τ)dτ =

n∑
i=1

ui = Tk
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constraints regarding control

∀ui ∈ [−1, 1],

constraints regarding time
∀ti ≥ 0,

and required result (system stops at stable point)

y1(Tk) = 0,

y2(Tk) = 0.

As we perceive final points as more important so we multiply them by factor
M which results in the following equations

M · y1(Tk) ≤ 0
−M · y1(Tk) ≤ 0
M · y2(Tk) ≤ 0
−M · y2(Tk) ≤ 0

(12)

In order to get y1 and y2 integral equations 7 must be solved. As a method of
solving them a simple Nystrom method with trapezoid rule was chosen.

The ethod of problem parametrization that was chosen means that calcula-
tions time is variable but in most cases it is irrelevant. In more complicated cases
polynomial spline collocation can be used. It is well-suited here due to existing
subdivisions of interval.

Differential evolution has two general parameters F and CR. Their selection
is crucial to success in finding good solution.

5.2 No State Constraints Results

Firstly a typical time-optimal problem was investgated. Simulations were carried
out for different parameters.

Generally smaller values of both F and CR are preferred and lead to better
results. They do not differ then those used for typical constrained optimization
benchmarks. The additional, problem related, parameter M has a huge impact
on results. It changes constraints violation function h(g) so results are not easily
comparable. Generally best results were achieved forM = 5 or not much bigger.
Results can be seen on fig. 1 and resulting contron on fig, 2

Calculation time was about 50 seconds for 300 iterations and 35 elements in
population.

5.3 Additional State Constraints

A much more complicated case is when we add additional constraints. For ex-
ample we can add constraint

y1(0.2) = 1.2 (13)
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Fig. 1. State trajectory for M = 5
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Fig. 2. Control function for M = 5

It should be noted that trying to force a state to get closer to the desired state
is futile but we can try making the change slower by constraining point which
require trajectory change.

On the fig. 3 we can clearly see that the required point is nearly reached but
we are far from the desired final point resulting in further oscillations.

5.4 Pareto Front

Typically in multiobjective optimization, a Pareto front forms showing tradeoffs
between goal function and possible constraints violation (fig. 4). Previously (in
[21] it was discovered that for benchmark problems the Pareto front is form-
ing inside the filter. The filter ensures that only the front stays in the filter
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Fig. 3. System state trajectory and point constraint
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Fig. 4. Typical situation possible in the filter

(all elements are good in some sense: either smaller goal function or smaller
constraints violation).

In this optimal control case only one element exists in the filter. These results
come from simulations for different size of populations and it is consistent from
the beginning of calculations. The possible reason is that solutions are so difficult
to find that only one is found and then slightly improved.
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6 Concluding Remarks and Further Research

The optimization problem occured to be hard to solve. Filter approach and
differential evolution can be used for solving even difficult optimal control prob-
lems like time-optimal control. Interesting effects have been discovered during
simulation and need further research.

Calculations have been carried out using resources provided by
Wroclaw Centre for Networking and Supercomputing
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Abstract. This research deals with the initial investigations on the con-
cept of a multi-chaos-driven evolutionary algorithm Differential Evolu-
tion (DE). This paper is aimed at the embedding and alternating of set
of two discrete dissipative chaotic systems in the form of chaos pseudo
random number generator for DE. Repeated simulations were performed
on the selected test function in higher dimensions. Finally, the obtained
results are compared with canonical DE.
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1 Introduction

These days the methods based on soft computing such as neural networks, evolu-
tionary algorithms, fuzzy logic, and genetic programming are known as powerful
tool for almost any difficult and complex optimization problem. Differential Evo-
lution (DE) [1] is one of the most potent heuristics available.

This paper is aimed at the investigating the novel concept of multi-chaos
driven DE. Although a number of DE variants have been recently developed,
the focus of this paper is the embedding of chaotic systems in the form of chaos
pseudo random number generator (CPRNG) into the DE.
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Firstly, the motivation for this research is proposed. The next sections are
focused on the description of evolutionary algorithm DE, the concept of chaos
driven DE and the used test function. Results and conclusion follow afterwards.

2 Motivation

This research is an extension and continuation of the previous successful ini-
tial experiments with chaos driven DE [2], [3] with test functions in higher
dimensions.

In this paper the novel initial concept of DE/rand/1/bin strategy driven alter-
nately by two chaotic maps (systems) is introduced. From the previous research
it follows, that very promising results were obtained through the utilization
of Delayed Logistic, Lozi, Burgers and Tinkerbelt chaotic maps. The last two
mentioned chaotic maps have unique properties with connection to DE: strong
progress towards global extreme, but weak overall statistical results, like average
CF value and std. dev., and tendency to premature stagnation. While through
the utilization of the Lozi and Delayed Logistic map the continuously stable
and very satisfactory performance of ChaosDE was achieved. The idea is then
to connect these two different influences to the performance of DE into the one
multi-chaotic concept.

Recent research in chaos driven heuristics has been fueled with the predis-
position that unlike stochastic approaches, a chaotic approach is able to bypass
local optima stagnation. This one clause is of deep importance to evolutionary
algorithms. A chaotic approach generally uses the chaotic map in the place of a
pseudo random number generator [4]. This causes the heuristic to map unique
regions, since the chaotic map iterates to new regions. The task is then to select
a very good chaotic map as the pseudo random number generator.

The initial concept of embedding chaotic dynamics into the evolutionary al-
gorithms is given in [5]. Later, the initial study [6] was focused on the simple
embedding of chaotic systems in the form of chaos pseudo random number gen-
erator (CPRNG) for DE and SOMA [7] in the task of optimal PID tuning

Several papers have been recently focused on the connection of heuristic and
chaotic dynamics either in the form of hybridizing of DE with chaotic searching
algorithm [8] or in the form of chaotic mutation factor and dynamically chang-
ing weighting and crossover factor in self-adaptive chaos differential evolution
(SACDE) [9]. Also the PSO (Particle Swarm Optimization) algorithm with el-
ements of chaos was introduced as CPSO [10] or CPSO combined with chaotic
local search [11].

The focus of our research is the pure embedding of chaotic systems in the
form of chaos pseudo random number generator for evolutionary algorithms.

This idea was later extended with the successful experiments with chaos driven
DE (ChaosDE) [2], [3] with both and complex simple test functions and in the
task of chemical reactor geometry optimization [12].

The concept of Chaos DE has proved itself to be a powerful heuristic also in
combinatorial problems domain [13].
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At the same time the chaos embedded PSO with inertia weigh strategy was
closely investigated [14], followed by the introduction of a PSO strategy driven
alternately by two chaotic systems [15] and novel chaotic Multiple Choice PSO
strategy (Chaos MC-PSO) [16].

The primary aim of this work is not to develop a new type of pseudo random
number generator, which should pass many statistical tests, but to try to use and
test the implementation of natural chaotic dynamics into evolutionary algorithm
as a multi-chaotic pseudo random number generator.

3 Differential Evolution

DE is a population-based optimization method that works on real-number-coded
individuals [1]. For each individual xi,G in the current generation G, DE gen-
erates a new trial individual x′

i,G by adding the weighted difference between
two randomly selected individuals xr1,G and xr2,G to a randomly selected third
individual xr3,G. The resulting individual x′

i,G is crossed-over with the original
individualxi,G. The fitness of the resulting individual, referred to as a perturbed
vector ui,G+1, is then compared with the fitness of xi,G. If the fitness of ui,G+1

is greater than the fitness ofxi,G, then xi,G is replaced withui,G+1; otherwise,
xi,G remains in the population asxi,G+1. DE is quite robust, fast, and effective,
with global optimization ability. It does not require the objective function to be
differentiable, and it works well even with noisy and time-dependent objective
functions. Please refer to [1], [17] for the detailed description of the used DE-
Rand1Bin strategy (1) (both for Chaos DE and Canonical DE) as well as for
the complete description of all other strategies.

uj,i,G+1 = xj,r1,G + F · (xj,r2,G − xj,r3,G) (1)

4 The Concept of ChaosDE

The general idea of ChaosDE and CPRNG is to replace the default PRNG with
the discrete chaotic map. As the discrete chaotic map is a set of equations with
a static start position, we created a random start position of the map, in order
to have different start position for different experiments (runs of EA’s). This
random position is initialized with the default PRNG, as a one-off randomizer.
Once the start position of the chaotic map has been obtained, the map generates
the next sequence using its current position.

The first possible way is to generate and store a long data sequence (approx.
50-500 thousand numbers) during the evolutionary process initialization and
keep the pointer to the actual used value in the memory. In case of the using up
of the whole sequence, the new one will be generated with the last known value
as the new initial one.

The second approach is that the chaotic map is not re-initialized during the
experiment and no long data series is stored, thus it is imperative to keep the
current state of the map in memory to obtain the new output values.
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As two different types of numbers are required in ChaosDE; real and integers,
the modulo operators is used to obtain values between the specified ranges, as
given in the following equations (2) and (3):

rndreal = mod(abs(rndChaos), 1.0) (2)

rndint = mod(abs(rndChaos), 1.0) ×Range+ 1 (3)

Where abs refers to the absolute portion of the chaotic map generated number
rndChaos, and mod is the modulo operator. Range specifies the value (inclusive)
till where the number is to be scaled.

5 Chaotic Maps

This section contains the description of discrete dissipative chaotic maps used
as the chaotic pseudo random generators for DE. In this research, direct output
iterations of the chaotic maps were used for the generation of real numbers in the
process of crossover based on the user defined CR value and for the generation
of the integer values used for the selection of individuals. Following chaotic maps
were used: Burgers (4), and Lozi map (5).

The Burgers mapping is a discretization of a pair of coupled differential equa-
tions which were used by Burgers [18] to illustrate the relevance of the concept
of bifurcation to the study of hydrodynamics flows. The map equations are given
in (4) with control parameters a = 0.75 and b = 1.75 as suggested in [19].

Xn+1 = aXn − Y 2
n

Yn+1 = bYn +XnYn
(4)

The Lozi map is a discrete two-dimensional chaotic map. The map equations
are given in (5). The parameters used in this work are: a = 1.7 and b = 0.5 as
suggested in [19]. For these values, the system exhibits typical chaotic behavior
and with this parameter setting it is used in the most research papers and other
literature sources.

Xn+1 = 1− a |Xn|+ bYn
Yn+1 = Xn

(5)

5.1 Graphical Example – Lozi Map and Burgers Map

The x, y plots of the chaotic maps are depicted in Fig. 1 - left (Lozi map) and
Fig. 3 - left (Burgers map). The typical chaotic behavior of the utilized maps,
represented by the examples of direct output iterations is depicted in Fig. 1 -
right (Lozi map) and Fig. 3 - right (Burgers map).

The illustrative histograms of the distribution of real numbers transferred into
the range <0 - 1> generated by means of studied chaotic maps are in Figures 2
and 4.
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Fig. 1. x, y plot of the Lozi map (left); Iterations of the Lozi map (variable x) (right)
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Fig. 2. Histogram of the distribution of real numbers generated by means of the chaotic
Lozi map transferred into the range <0 - 1> – 5000 samples
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Fig. 3. x, y plot of the Burgers map (left); Iterations of the Burgers map (variable x)
(right)
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Fig. 4. Histogram of the distribution of real numbers generated by means of the chaotic
Burgers map transferred into the range <0 - 1> – 5000 samples

6 Benchmark Function

For the purpose of evolutionary algorithm performance comparison within this
initial research, the multimodal Schwefel’s test function (6) was selected.

f (x) =

D∑
i=1

−xi sin
(√
|xi|
)

(6)

Function minimum:
Position for En: (x 1, x 2. . . xn) = (420.969, 420.969,. . . , 420.969)
Value for En: y = -418.983·Dimension

7 Results

The novelty of this approach represents the utilization of discrete chaotic maps as
the multi-chaotic pseudo random number generator for the DE. In this paper, the
canonical DE strategy DERand1Bin and the Multi-Chaos DERand1Bin strategy
driven alternately by two different chaotic maps (ChaosDE) were used.

The previous research [2], [3] showed that through the utilization of Burgers
and Tinkerbelt maps the unique properties with connection to DE were achieved:
strong progress towards global extreme, but weak overall statistical results, like
average CF value and std. dev. Whereas through the utilization of the Lozi
and Delayed Logistic maps, the continuously stable and very satisfactory perfor-
mance of ChaosDE was achieved. The idea is then to connect these two different
influences to the performance of DE into the one novel multi-chaotic concept.
The moment of manual switching over between two chaotic maps as well as the
parameter settings for both canonical DE and ChaosDE were obtained analyti-
cally based on numerous experiments and simulations (see Table 1)

Experiments were performed in the combined environment of Wolfram Math-
ematica and C language, canonical DE therefore used the built-in C language
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Table 1. Parameter set up for Chaos DE and Canonical DE

Parameter Value

PopSize 75
F 0.8
CR 0.8
Dimensions 30
Generations 100·D = 3000
Max Cost Function Evaluations (CFE) 225000

pseudo random number generator Mersenne Twister C representing traditional
pseudorandom number generators in comparisons. All experiments used differ-
ent initialization, i.e. different initial population was generated within the each
run of Canonical or Chaos driven DE.

Within this initial research, one type of experiment was performed. It utilizes
the maximum number of generations fixed at 3000 generations. This allowed the
possibility to analyze the progress of DE within a limited number of generations
and cost function evaluations.

The statistical results of the experiments are shown in Table 2, which represent
the simple statistics for cost function values, e.g. average, median, maximum
values, standard deviations and minimum values representing the best individual
solution for all 50 repeated runs of canonical DE and several versions of ChaosDE
and Multi-ChaosDE.

Table 3 compares the progress of several versions of ChaosDE, Multi-ChaosDE
and Canonical DE. This table contains the average CF values for the generation
No. 750, 1500, 2250 and 3000 from all 50 runs. The bold values within the both
Tables 2 and 3 depict the best obtained results. Following versions of Multi-
ChaosDE were studied:

– Burgers-Lozi-Switch-500 : Start with Burgers map CPRNG, switch to the
Lozi map CPRNG after 500 generations.

– Lozi-Burgers-Switch-1500 : Start with Lozi map CPRNG, switch to the Burg-
ers map CPRNG after 1500 generations.

Table 2. Simple results statistics for the Schwefel’s function – 30D

DE Version Avg CF Median CF Max CF Min CF StdDev

Canonical DE -5822.8 -5754.4 -5443.23 -6500.44 226.4365
Lozi-No-Switch -11296.9 -11581 -7842.25 -12235.5 879.1985
Burger-No-Switch -11052.1 -11192.9 -8473.79 -12105 667.7065
Burger-Lozi-Switch-500 -11332.9 -11459.1 -7871.2 -12486.9 799.7749
Lozi-Burger-Switch-1500 -11475.5 -11489.6 -10354.5 -12279.7 373.059
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Table 3. Comparison of progress towards the minimum for the Schwefel’s function

DE Version Generation
No. 750

Generation
No. 1500

Generation
No. 2250

Generation
No. 3000

Canonical DE -5231.94 -5537.79 -5738.96 -5822.8
Lozi-No-Switch -5839.69 -7998.35 -9965.25 -11296.9
Burger-No-Switch -6075.91 -8854.6 -10564.1 -11052.1
Burger-Lozi-Switch-500 -6538.11 -8658.15 -10356.3 -11332.9
Lozi-Burger-Switch-1500 -5701.57 -7719.37 -10663.1 -11475.5
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Fig. 5. Comparison of the time evolution of avg. CF values for the all 50 runs of
Canonical DE, ChaosDE and Multi-ChaosDE. Schwefel’s function, D = 30.

The graphical comparison of the time evolution of average CF values for all
50 runs of ChaosDE/Multi-ChaosDE and canonical DERand1Bin strategy is
depicted in Fig. 5. Finally the Figures 6 - 8 confirm the robustness of Multi-
ChaosDE in finding the best solutions for all 50 runs.

Obtained numerical results given in Tables 2 and 3 and graphical compar-
isons in Figures 5 - 8 support the claim that all Multi-Chaos/ChaosDE versions
have given better overall results in comparison with the canonical DE version.
From the presented data it follows, that Multi-Chaos DE versions driven by
Lozi/Burgers Map have given the best overall results.

For the Burgers-Lozi-Switch-500 version the progressive Burgers map CPRNG
secured the faster approaching towards the global extreme from the very begin-
ning of evolutionary process. The very fast switch over to the Lozi map based
CPRNG helped to avoid the Burgers map based CPRNG weak spots, which
are the weak overall statistical results, like average CF value and std. dev.; and
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Fig. 6. Comparison of the time evolution of CF values for all 50 runs of Multi-ChaosDE
version: Burgers-Lozi-Switch-500
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Fig. 7. Comparison of the time evolution of CF values for all 50 runs of Multi-ChaosDE
version: Lozi- Burgers -Switch-1500
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Fig. 8. Comparison of the time evolution of CF values for all 50 runs of canonical DE
(blue) and Multi-ChaosDE versions: Burgers-Lozi-Switch-500 (magenta), Lozi-Burgers-
Switch-1500 (black)

tendency to stagnation. This version was able to reach the best individual mini-
mum CF value. The initial faster convergence (starting of evolutionary process)
and subsequent continuously stable searching process without premature stag-
nation issues are visible from Fig. 5 (magenta line), Fig. 6 and Fig. 8 (magenta
lines).

Through the utilization of Lozi-Burgers-Switch-1500 version, the strong
progress towards global extreme given by Burgers map CPRNG helped to the
evolutionary process driven from the start by mans of Lozi map CPRNG to
achieve the best avg. CF and median CF values. The moment of switch (at 1500
generations) is clearly visible from Fig. 5 (black line) and Fig. 7 and Fig. 8 (black
lines).

8 Conclusions

In this paper, the novel concept of multi-chaos driven DERand1Bin strategy was
tested and compared with the canonical DERand1Bin strategy on the selected
benchmark function in higher dimension. Based on obtained results, it may be
claimed, that the developed Multi-ChaosDE gives considerably better results
than other compared heuristics.

Since this was a preliminary study of the novel presented concept, only one sin-
gle benchmark function in higher dimensions was utilized to test and more deeply
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analyze the influence of alternating several CPRNGs to the performance of orig-
inal previous ChaosDE concept. Nevertheless the original concept of ChaosDE
itself was tested on huge set of both simple and complex benchmark functions
based mostly on the IEEE CEC 2005 benchmark set and with nine different
discrete dissipative chaotic systems. Thus based on the deeper analysis of re-
sults from the previous research the composition of the presented experiment
was prepared.

Future plans are including the testing of combination of different chaotic sys-
tems as well as the adaptive switching and obtaining a large number of results
to perform statistical tests.

Furthermore chaotic systems have additional parameters, which can by tuned.
This issue opens up the possibility of examining the impact of these parameters
to generation of random numbers, and thus influence on the results obtained by
means of ChaosDE.
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Abstract. When evolutionary algorithms for solving multi-modal op-
timization problems are applied, the crucial issue to be solved is main-
taining population diversity to avoid drifting and focusing individuals
around single global optima. A lot of techniques have been used here so
far. Simultaneously for last twenty years a lot of effort has been made in
the area of evolutionary algorithms for multi-objective optimization. As
the result at least several highly efficient algorithms have been proposed
such as NSGAII or SPEA2. Obviously, also in this case maintaining of
population diversity is crucial but this time, taking the specificity of op-
timization in the Pareto sense, there are built-in mechanisms to solve
this issue effectively. If so, the idea arises of applying of state-of-the-
art evolutionary multi-objective optimization algorithms for solving not
original multi-modal (but single-objective) optimization task but rather
its transformed into multi-objective problem form by introducing addi-
tional dispersion-oriented criteria. The goal of this paper is to present
some further study in this area.

1 Motivation

One of the most important issue regarding multi-modal optimization is the abil-
ity for discovering not only the global but also (as many as possible) local optima
(modes). When evolutionary solver is applied it is inseparably connected with
keeping population dispersed and not focusing individuals around the global
optima. Many techniques responsible for maintaining population diversity have
been proposed so far. It is enough to call techniques based on modification of
mechanism of selecting individuals for new generation (crowding model), mod-
ification of parent selection (fitness sharing, sexual selection), restricted appli-
cation of selection and/or recombination mechanisms (grouping individuals into
sub-populations, introducing environment with some topography etc.) [7] just
to mention a few. Each of them however has its own shortcomings and it is not
possible to point out a single diversity-maintaining technique giving evidently
the best results and to be used in all (or at least in the majority of) cases.
What is important their efficiency and the effectiveness depends often on the
optimization algorithm used.

For the last thirty years evolutionary multi-objective optimization algorithms
(EMOAs) have become more and more popular [4,11]. Historically, one tried
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to use classical EAs by combining all objectives in one single objective and
repeating algorithm runs with different weights assigned to particular objectives
to obtain different non-dominated solutions. The advantage of such an approach
is its simplicity, however it is pretty unnatural, slow (since the EA has to be
(re)run at least as many times as the number of solutions should be found)
and—what is the most important—depending on the definitions of the objective
functions (and their combination)—it often turns out that combining objectives
with different weights results with the same solution, what makes this approach
simply useless.

Also another techniques consisting in redefining multi-objective problem into
single-objective one (and then (re)running single-objective algorithms to find
consecutive non-dominated solutions, one in single algorithm’s run) turned out to
be useless in particular cases. It is enough to mention for instance ε—constrains
technique which is useless in the case of concave problems.

That is why a lot of effort has been made to develop efficient and effective
evolutionary (as general and population-based) algorithms for multi-objective
optimization. It has been performed successfully and such algorithms as SPEA-
II [20,19] or NSGA-II [14] are nowadays state-of-the-art EMOAs giving a really
high-quality results in most cases. Also, agent-based multi-objective evolutionary
algorithms (combining agent-based and evolutionary paradigms) were proposed
and they proved to be quite effective in some cases (for example in multi-objective
portfolio optimization problems) [5,6,8,9].

What is important, when the multi-objective optimization (and algorithms)
(in the Pareto sense) are being considered as one of the most important differ-
ence in comparison to single objective optimization (algorithms) is the fact that
the solution to be found is the whole set of non-dominated alternatives called
the Pareto set (or the Pareto frontier in the objective space). The crucial here
is the fact that using (weak) non-domination relation instead of simple mutual-
comparisons as a mechanisms responsible for distinguishing “better” and “worse”
alternatives—EMOAs are dedicated for looking for the whole set of solutions in
one single run. One has to remember that the goal of the multi-objective opti-
mization (in the Pareto sense) is to find (as-many-as-possible) non-dominated
solutions dispersed over the whole Pareto frontier. Since EMOAs are population-
based it is obviously the more so simple and natural but—what is crucial here—
they have natural, built-in mechanisms for maintaining population diversity as
well as the diversity of the solution itself.

The question thus arises if—in contrast to historical modifications of multi-
objective optimization problems into single-objective one(s)—the way for ob-
taining high-quality solutions of multi-modal optimization tasks is converting
multi-modal problems into multi-objective optimization problems by introduc-
ing additional objective responsible for maintaining population dispersed and
then applying for solving such a modified problem one of the state-of-the-art
efficient evolutionary multi-objective optimization algorithms.

Obviously such experiments have already been conducted. It is enough to
mention here the work of M. Preuss, G. Rudolph and F. Tumakaka [12] but it
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still seems to be only a putting a toe into the water and the goal of this paper
is to follow this research direction and to make some comparative assessment
of several dispersing-oriented objectives introduced as a second objective while
converting multi-modal single-objective optimization task into multi-objective
optimization problem with the special attention paid to clustering method.

The computing experiments presented in this paper may be treated as pre-
liminary results, planned to be adapted and ported to ParaPhrase1 agent-based
computing platform, which supplies hybrid CPU/GPU computing infrastructure
via dedicated virtualisation tools.

2 The Idea of Transformation of Multi-modal into
Multi-objective Optimization Problem

Typically, multi-objective (or multi-criteria) optimization problem (MOOP) is
formulated as follows ([1,19,4]):

MOOP ≡

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Min/Max : fl(x̄), l = 1, 2 . . . , L
Taking into consideration :
gj(x̄) ≥ 0, j = 1, 2 . . . , J
hk(x̄) = 0, k = 1, 2 . . . ,K

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2 . . . , N

The set of constraints, both equalities (hk(x̄)), as well as inequalities (gj(x̄)),
and constraints related to the decision variables, i.e. lower bounds (x(L)

i ) and
upper bounds (x(U)

i ), define so called searching space—feasible alternatives (D).
Because of space limitation it is enough to say in this place that in the course
of this paper multi-objective optimization in the Pareto sense is considered, so
solving of defined problem means determining of all feasible and non-dominated
alternatives from the set (D). Such defined set is called Pareto set (P) and in
objective space it forms so called Pareto frontier (PF).

Simultaneously, the multi-modal optimization task (assuming minimization)
means determining of all x+ ∈ D such as ∃ε > 0∀x ∈ D ‖ x − x+ ‖< ε ⇒
f(x) ≥ x+ [2].

So, proposed transformation of multi-modal (but single-objective) into multi-
objective optimization problem consists in formulating MOOP with original
multi-modal function and dispersing oriented function as the second objective
with preserving all original constraints and bounds of course.

MOOP ≡

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Min/Max : fm(x̄), original multi−modal function
Min/Max : fd(x̄), dispersing − oriented function
Taking into consideration :
gj(x̄) ≥ 0, j = 1, 2 . . . , J
hk(x̄) = 0, k = 1, 2 . . . ,K

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2 . . . , N

1 http://paraphrase-ict.eu

http://paraphrase-ict.eu
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It can be said that such transformation unnecessarily complicates a problem to
be solved because it makes multi-objective optimization problem from a single-
objective one. However solving multi-modal single-objective problem (finding
all global and local optima) is also not an easy task—there were lots niching
techniques for evolutionary algorithms proposed and none of them is simple and
perfect. Paradoxically converting such a problem into multi-objective one can
lead to constructing simple and efficient techniques for evolutionary algorithms,
especially that we utilize well established and very efficient evolutionary multi-
objective algorithms.

3 Variants of Dispersion–Oriented Objective

During our experiments following variants of the second objective have been
tested: fitness sharing, centroid method, weighted dispersion criteria and
clustering.

Fitness sharing is classical niching technique consisting in (artificial) de-
creasing the value of fitness function according to the (higher) number of direct
neighbors of given individual. Obviously there are some issues and decisions to
be made (e.g. determining the radius of the neighborhood, determining the dis-
tance metrics and making a decision if it is calculated in the objective or in a
decision variable space, determining how “density” is calculated and what is its
influence on the fitness function value).

Discussion regarding above aspects can be found for instance in [4]. In its most
popular version it is described according to the formula fFS(xi) =

f(xi)
mi

, where
mi is the sum of sharing function values defined as mi =

∑N
j=1 sh(d(xi, xj)) and

f(x) =

⎧⎨⎩1−
(

d(xi,xj)
σsh

)α

, x > 0

0 , x = 0
(1)

where σsh is a radius of the niche and α parameter determines the shape of the
fitness sharing function (usually equals 1).

Centroid based method is a simple in assumption and easy in implemen-
tation method for dispersing the population. The fitness value of the specimen
is increased according to its (increasing) distance to the population center of
gravity calculated as −→xc =

∑N
i=0

−→xi

N .
Weighted dispersion criteria technique tries to address one of the most

significant problems observed in evolutionary multi-modal optimization: con-
centration of the whole population (which is usually intensifying over the course
of time/iterations) around “strong” individuals, especially individuals located
nearby the global optima. As a consequence of this phenomena the loss of
the population diversity is observed and the chance for discovering (as many
as possible) local optima is lower and lower. So the question is if it is not a
good idea while introducing the second objective and converting multi-modal
single objective problem into multi-objective optimization problem introducing
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the second criteria as a function which value would be inversely proportional
to the value of the first criteria. In such a way strong individuals (from the
first—crucial objective perspective) will not be able to “dominate” and to at-
tract the rest of the population to their neighborhood. Simultaneously those
individuals will not be lost by the population since they are “strong” as regards
the first objective (so they won’t be dominated in the Pareto domination re-
lation). So assuming the first objective as a multi-modal function F (x) with a
global optima M = F (xmax) the second objective Sweighted can be defined as
Sweighted = α∗(F (xi)/F (xmax)∗S(xi), where: α is a weighting coefficient, S(xi)
is the original value of dispersing function, F (xi) and F (xmax) are current and
maximum values of the original (multi-modal) function (i.e. the first objective
in fact).

One of interesting and (especially taking presented in section 4 selected prelim-
inary results) promising technique is clustering. One of the fundamental ques-
tion that can be considered is whether any of dispersion-oriented technique (i.e.
the second objective after converting multi-modal into multi-objective optimiza-
tion task) should be applied globally or “locally” i.e. within windows dividing the
whole domain into sub-domain(s).When using clustering as a dispersion-oriented
technique firstly all clusters are identified and then the fitness of individuals that
are located outside or at the borders of the clusters is increased and the fitness
of individuals that are located inside clusters is decreased proportionally to their
distance from the center of the cluster.

Generally, research on clustering techniques and genetic algorithms was con-
ducted in two areas: using evolutionary algorithms as a clustering technique
[10,17,13,3] and using a clustering technique in evolutionary algorithm in order
to find multiple solutions of multi-modal (but single criteria) problems [16,15].
We used clustering technique together with evolutionary algorithm as the mech-
anism of dispersing individuals over the solution space (as the second objective)
during solving multi-modal problems converted into multi-objective ones.

For the purposes of making experiments unsupervised k-windows clustering
algorithm has been implemented and used [18]. It is using a window(s)-based
technique for determining possible clusters. Algorithm initializes a given number
of 2-dimensional windows over the set of individuals. Then, it is moving on
windows and enlarges them to cover existing clusters. Next, when all moving and
enlarging operations have been performed—consolidation is being performed. All
overlapping windows are either consolidated or skipped depending on the number
of individuals belonging to the overlapped windows. In the consequence, the
algorithm is able to reduce reasonably the (large) number of (possible) clusters
identified originally at the beginning.

Algorithm consists of two crucial functions: movement and enlargement. The
goal of movement function is setting the window as close to the center of the
cluster as possible. Movement function is performed iteratively as long as the
distance of the center of new window reaches the threshold value Θv (set exper-
imentally).
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The goal of enlargement operation is to improve the number of individuals
belonging to the particular window. The window is being enlarged by Θe value
in each dimension. Appropriate enlargement is the one assuring improving the
number of individuals belonging to the given window with the number higher
than Θc threshold value. If the number of new individuals belonging to the given
window is smaller than Θe value then the last step of enlargement function is
being withdrawn.

The crucial issue with using clusters is determining the number of clusters cov-
ering the whole population in the most appropriate way. In k-window algorithm
it is determined by the algorithm itself during its work. To achieve that effec-
tively, relatively the significant number of windows is needed at the beginning.
After performing moving and enlarging operation pretty big number of windows
are overlapping. So merging function is performed then. To do that—the number
of “common” i.e. belonging to overlapped windows individuals is determined and
then:

– if it is larger than the threshold value Θs windows are treated as parts of
the same cluster and the smaller one is being removed;

– otherwise both windows are merged;
– if windows overlap but neither merging nor eliminating threshold is achieved,

it is assumed that windows (their individuals) belong to different clusters.

Data: a, Θe,Θm,Θc,Θv ,k
Result: clusters c11, c12, . . .
begin

W ←− DetermineInitialWindows(k, a);
for wj ∈ W do

while The center or the size change do
movement(Θv, wj);
enlargement(Θe, Θc, Θv, wj);

end
end
merge(Θm, Θs,W )

end
Algorithm 1. Unsupervised k-windows clustering algorithm

There is a pretty big number of parameters influencing significantly the be-
havior of the algorithm i.e.:

– the ratio between the initial number of windows and the number of individ-
uals in population. It should be relatively high to spread windows among
all clusters. During experiments it was set to 10%. (For the population with
1000 individuals it was set to 100 windows);

– the initial size of the window—it was determined experimentally;
– the minimum distance between windows at the beginning. It is important

parameter to avoid overlapping windows during initialization;
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Data: k,a
Result: a set W of k d− ranges
begin

initialize k d-ranges windows wm1, . . . , wmk each of size a;
select k random points from the dataset and center the d-ranges at these
points

end
Algorithm 2. DetermineInitialWindows

Data: a, Θv,a d-range w
begin

while The distance between m and the previous center of w is greater or
equal to Θv do

find the patterns that lie within the d-range w ;
calculate the mean m of these patterns ;
set the center of w equal to m ;

end
end

Algorithm 3. Operation movement

Data: Θe,Θv ,Θc,a, d-range w
begin

while The increase in number of patterns is ≥ Θc% across every di do
for Each coordinate di do

while The increase in number of patterns across di is ≥ Θc% do
enlarge w across di
movement(Θv, w)

end
end

end
end

Algorithm 4. Operation enlargement

– the movement threshold (Θv)—it defines the minimum distance between
the new and the current gravity center of the window during its movement.
When this value is not achieved movement operation is finished;

– the enlargement increase ratio (Θe)—it is a percentage ratio between the
old and the new window size in consecutive steps of enlargement operation.
During experiments it was set to 10% for each dimension respectively.

– enlargement stop ratio threshold (Θc)—the factor defining the minimum
increase of the number of new individuals in the window when enlargement
operation is performed. During experiments presented in this paper it was
defined as enlargement_stop_threshold = enlargement_increase_ratio

init_window_population_ratio

– merge ratio (Θs) is the minimum number of common individuals belonging
to two windows to merge them. During experiments it was set to 80%;
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Data: Θm,Θs,a set W of d− ranges
begin

for Each not marked d− range wj ∈ W do
mark wj with label wj ;
if ∃ wi 	= wj ∈ W that overlaps with wj then

compute the number of points n that lie in the common part of
windows ;
if n/ | wi |≥ Θs and | wi |<| wj | then

disregard wj

end
if 0.5(n/ | wj | +n/ | wi |) ≥ Θm then

mark all wj labeled d-ranges in W with label wj

end
end

end
end

Algorithm 5. Operation merging

– merge disregard ratio (Θm) is the minimum ratio of common individuals
belonging to two windows to remove one of them (the smaller one). During
experiments it was set to 90%.

4 Experimental Results

As a multi-modal benchmarks Michalewicz’s, Rastrigin’s and Schwefel’s func-
tions have been used. As a second (dispersion related) objective: fitness sharing,
centroids and weighted centroids methods have been applied. As experimental
tool jEMO framework has been used2. Because of the space limitations only a
few experimental results are here presented.

First results obtained without clustering mechanism are presented. In table 1
there are listed the most important parameters of this experiment. As one may
see in figure 2 transforming classical multi-modal optimization problem into
multi-objective one and applying NSGA-II algorithm for solving such modified
problem with centroids as a dispersion-oriented second objective allows for ob-
taining pretty promising results. They differ of course depending on particular
parameters used but generally speaking results are promising.

For comparison in table 2 there are listed parameters of sample experiment
where dispersion was applied “locally” i.e. within clusters discovered by described
in section 3 k-window clustering algorithm. This time experiment was performed
with the use of Michalewicz benchmark and typical obtained results are pre-
sented in figure 1. As one may see obtained results are also promising and en-
couraging for further research.

2 code.google.com/p/jemo/

code.google.com/p/jemo/
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Table 1. Selected parameters taken in experiment 1

Parameter Value
Original function Rastrigin

Distribution function Centroid
Optimization algorithm NSGAII

Population size 1000
Number of generations 40

Mutation Radial mutation
Mutation probability 0.5

Strong mutation probability 0.15
Domain control type Move to domain border
Specimen repairing None

Recombination Radial crossover
Recombination probability 0.5

Domain control type Move to border
Specimen repairing None

Selection Classical tournament
Tournament size ratio 80%

Tournament probability 0.8
Clustering none

a) -2 -1  0  1  2

-2

-1

 0

 1

 2

-2 -1  0  1  2

-2

-1

 0

 1

 2

b) -0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

-0.6

-0.55

-2 -1.5 -1 -0.5  0

Fig. 1. Results obtained in experiment 1. Found solutions (a) and Pareto frontier (b).

b) 0  0.5  1  1.5  2  2.5  3
 0
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 1
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 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3
 0
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 1.5
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 2.5
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c)  0

 0.2

 0.4
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 0.8

 1

 0  0.5  1  1.5  2

Fig. 2. Results obtained in experiment 2. Found solutions of: (a) multi-modal problem
and (b) multi-objective problem
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Table 2. Selected parameters taken in experiment 2

Parameter Value
Original function Michalewicz

Distribution function Centroid
Optimization algorithm NSGAII

Population size 1000
Number of generations 40

Mutation Radial mutation
Mutation probability 0.5

Strong mutation probability 0.15
Domain control type Move to domain border
Specimen repairing None

Recombination Radial crossover
Recombination probability 0.5

Domain control type Move to border
Specimen repairing None

Selection Classical tournament
Tournament size ratio 80%

Tournament probability 0.8
Clustering yes

Initial window’s size [0.4][0.4]
Initial number of windows 500
Movement threshold (Θv) 0.1
Enlargement increase step 0.08

Enlargement stop ratio threshold (Θc) 0.2
Merge ratio (ΘS) 0.9

Merge disregard ratio (Θm) 1

5 Summary and Conclusions

When evolutionary algorithms for solving multi-modal optimization problems
are applied the crucial issue to be solved is maintaining population diversity
to avoid drifting and focusing individuals around single global optima. A lot of
techniques have been proposed and used here so far.

Simultaneously, for the last twenty years a lot of effort has been made in the
area of evolutionary algorithms for multi-objective optimization. As the result
at least several highly efficient algorithms have been proposed such as NSGAII
or SPEA2. Obviously, also in this case maintaining of population diversity is
crucial but this time taking the specificity of optimization in the Pareto sense
there are built-in mechanisms to solve this issue effectively.

If so, the idea arises of applying state-of-the-art evolutionary multi-objective
optimization algorithms for solving not originalmulti-modal (but single-objective)
optimization task but its transformed into multi-objective problem form by intro-
ducing additional dispersion-oriented criteria as it is discussed in section 2.
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One of important issues is the definition of the dispersion-oriented criteria.
In the course of this paper some of them, i.e. classical fitness sharing, centroids,
weighted centroids have been discussed.

On the basis of some observations taken during experiments the idea of ap-
plying the second objective not globally but locally within some areas of concen-
tration of individuals arose. To put this idea into practice k-window clustering
algorithm has been implemented and applied and then dispersion-oriented mech-
anisms have been applied not globally but within formed windows.

Because of the space limitations it is impossible to present comprehensive
review of obtained results especially that there are many parameters influencing
the behavior and effectiveness of the proposed approach. Nevertheless it can be
said for sure that preliminary results are promising and encourage for further
research in this area.

Acknowledgments. The research presented in the paper was partially sup-
ported by the European Commission FP7 through the project ParaPhrase: Par-
allel Patterns for Adaptive Heterogeneous Multicore Systems, under contract
no.: 288570 (http://paraphrase-ict.eu) and by Polish Ministry of Science
and Higher Education under AGH University of Science and Technology Grant
No. 11.11.230.015 (statutory project).

References

1. Abraham, A., Jain, L.C., Goldberg, R.: Evolutionary Multiobjective Optimization
Theoretical Advances and Applications. Springer (2005)

2. Byrski, A., Dreżewski, R., Siwik, L., Kisiel-Dorohinicki, M.: Evolutionary multi-
agent systems. The Knowledge Engineering Review (to be published, 2014)

3. Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. ACM, New York (2006)

4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley
& Sons (2008)

5. Dreżewski, R., Obrocki, K., Siwik, L.: Agent-based co-operative co-evolutionary
algorithms for multi-objective portfolio optimization. In: Brabazon, A., O’Neill,
M., Maringer, D.G. (eds.) Natural Computing in Computational Finance. SCI,
vol. 293, pp. 63–84. Springer, Heidelberg (2010)

6. Dreżewski, R., Sepielak, J.: Evolutionary system for generating investment strate-
gies. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp.
83–92. Springer, Heidelberg (2008)

7. Dreżewski, R., Siwik, L.: Techniques for maintaining population diversity in clas-
sical and agent-based multi-objective evolutionary algorithms. In: Shi, Y., van Al-
bada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part II. LNCS, vol. 4488,
pp. 904–911. Springer, Heidelberg (2007)

8. Dreżewski, R., Siwik, L.: Agent-based co-operative co-evolutionary algorithm for
multi-objective optimization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 388–397. Springer,
Heidelberg (2008)

http://paraphrase-ict.eu


Evolutionary Multi-modal Optimization 439

9. Dreżewski, R., Siwik, L.: Co-evolutionary multi-agent system for portfolio opti-
mization. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computa-
tional Finance. SCI, vol. 100, pp. 271–299. Springer, Heidelberg (2008)

10. Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., de Carvalho, A.C.P.L.F.: A
survey of evolutionary algorithms for clustering. IEEE Transactions on Systems,
Man, and Cybernetics, Part C, 39(2) (2009)

11. Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineer-
ing. Structural and Multidisciplinary Optimization 26(6) (2004)

12. Preuss, M., Rudolph, G., Tumakaka, F.: Solving multimodal problems via mul-
tiobjective techniques with application to phase equilibrium detection. In: IEEE
Congress on Evolutionary Computation. IEEE (2007)

13. Sarafis, I.A., Trinder, P.W., Zalzala, A.: Towards effective subspace clustering with
an evolutionary algorithm. In: Sarker, R., et al. (eds.) Proceedings of the 2003
Congress on Evolutionary Computation, vol. 2. IEEE Press (2003)

14. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)

15. Streichert, F., Stein, G., Ulmer, H., Zell, A.: A clustering based niching method
for evolutionary algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS,
vol. 2723, pp. 644–645. Springer, Heidelberg (2003)

16. Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Clustering in evolutionary algo-
rithms to efficiently compute simultaneously local and global minima. In: Congress
on Evolutionary Computation. IEEE (2005)

17. Tasoulis, D.K., Vrahatis, M.N.: The new window density function for efficient evolu-
tionary unsupervised clustering. In: Congress on Evolutionary Computation. IEEE
(2005)

18. Vrahatis, M.N., Boutsinas, B., Alevizos, P., Pavlides, G.: The new k-windows algo-
rithm for improving the k-means clustering algorithm. J. Complex. 18(1) (March
2002)

19. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and
applications. PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)

20. Zitzler, E.: Evolutionary algorithms, multiobjective optimization, and applications
(September 2003)



Aspects of the Selection
of the Structure and Parameters of Controllers
Using Selected Population Based Algorithms

Jacek Szczypta1, Krystian Łapa1, and Zhifei Shao2
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Abstract. In this paper we propose a new approach for selection of
the structure and parameters of the control system. Proposed approach
is based on the selected population-based algorithms. In this approach
we considered a combination of the genetic algorithm (it is used for
selection of structure of the control system) fused with one of the follow-
ing algorithms: evolutionary algorithm, firefly algorithm, gravitational
search algorithm, bat algorithm and imperialist competitive algorithm
(they are all used for the selection of parameters of the control system).
In experimental simulations a typical problem of the control process was
used.

1 Introduction

Automatic control is an important issue from scientific and practical point of
view (see e.g. [74], [75]). It has a significant impact on the quality and efficiency
of industrial processes and human safety. Key issue in process control domain is
selection of controller structure. In practice, selection of controller structure is
performed by the trial and error method. Moreover, controller structure selection
is a process which requires from the designer specific knowledge and experience.
In most cases selection of the controller structure is performed from a set of typ-
ical structures, then controller parameters are tuned. The selection mentioned
earlier is often very time-consuming. In the literature numerous attempts of
automatization of control system design are described. In automatization capa-
bilities of computational intelligence are used, such as: neural networks (see e.g.
[7]-[9], [28], [30], [33]-[36], [48], [51], [72]), fuzzy system (see e.g. [2]-[6], [16]-[19],
[23], [32], [39], [47], [70], [80]-[84]), neuro-fuzzy systems (see e.g. [10]-[14], [31],
[43], [44], [46], [53]-[55], [60]-[62], [66]-[69], [71]), evolutionary algorithms (see e.g.
[40], [41], [52]), decision trees (see e.g. [29], [49]-[50], [63]-[65]) etc.

In our previous paper we proposed a basic version of the evolutionary al-
gorithm for automatic selection of structure and parameters of control system

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 440–454, 2014.
c© Springer International Publishing Switzerland 2014
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consisting simple correction terms (see e.g. [73]). The results obtained in pre-
vious examination encouraged us to elaborate new methods using capabilities
of population-based algorithms. In this paper four new methods are proposed.
Every method was created from combination of genetic algorithm with one of
the following algorithm: firefly algorithm (see e.g. [15], [27], [78]), gravitational
search algorithm (see e.g. [26], [38], [56], bat algorithm (see e.g. [76], [77], [78])
and imperialist competitive algorithm (see e.g. [1], [42], [79]). Mentioned four
algorithms are used for selection of control system parameters, while genetic al-
gorithm is used for the selection of the control system structure. It is important
to mention that evolution of parameters and structure is performed concurrently.
It is also important that proposed algorithms are dedicated to work with auto-
matic control systems whose structure is built from correction terms. Moreover,
the algorithms are based on customizable fitness function evaluating individuals
from the population and they cooperate with the models of controller object,
which are precise enough. Alternative approaches to nonlinear modelling can be
found in [25], [59], [68].

This paper is organised into four sections. Section 2 presents a detailed descrip-
tion of the proposed approach to designing controllers. In Section 3 simulation
results are presented. Conclusions are drawn in Section 4.

2 Proposed Approach to Designing Controllers

Key remarks regarding approaches presented in the paper can be stated as fol-
lows: (a) Fig. 1 presents the controller structure which is initial point for ex-
ecution of evolutionary algorithm proposed by authors. Controller structure is
a result of generalization of typical controllers used in practice: PID controller,
cascaded PID controller with feed-forward signals and state-feedback controller.
It is important to remark that in generalization any controller can be taken
into consideration. (b) In Fig. 1 the connections that can be generated during
evolution were marked with dashed line. This remark applies to control system
structure (see Fig. 1.a) and its basic block (CB). Basic block (CB) consists of
proportional term (P ), integral term (I) and derivative term (D) (see Fig. 1.b).
Signal fbn, n=1, . . . , N , denotes feedback signal, signal ffm, m = 1, . . . , M ,
denotes feedforward signal. (c) Selection of the control system structure is per-
formed using genetic algorithm. Selection of the control system parameters is
performed using one of the chosen population-based algorithm. Selection of the
control system structure and parameters is performed concurrently during evo-
lution process. The evolution is performed on the basis of the knowledge about
controlled object and properly defined fitness function. It is important that pro-
posed approach eliminates the need of trial and error selection of the control
system. Usage of controlled object model, despite the advantage like elimination
of risk of damage of the controlled object, has its disadvantages. Primary disad-
vantage is need of knowledge about controlled object. Models of the controlled
object have to be not only precise enough and have the knowledge about typical
operational conditions of the controlled object (representing engine run under
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Fig. 1. Initial discrete controller structure (connections that can be obtained in evo-
lution process are marked with continuous line): a) considered, generalized control
system, b) CB definition idea (Ts stands for discretization constant in time domain)

load or idle state), but it also have to take into account an unusual operating
conditions (e.g., engine short circuit, engine state as a result of surge or overload
in supply circuit). It is important that when it is a need to design the control
system using classic methods (basing on the designer experience), only typical
operating conditions are taken into consideration. Moreover, development of pre-
cise model of the controlled object is not currently a big problem (see e.g. [37],
[57]).

2.1 Coding of the Structure and Parameters

In proposed method full controller (with its structure and parameters) is encoded
in a single chromosome Xch. The chromosome Xch (further called individual) is
described as follows:

Xch =
{
Xpar

ch ,X
red
ch

}
, (1)
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where Xpar
ch is a chromosome coding correction term parameters, Xred

ch is a chro-
mosome coding connection in general (proposed) structure of the control system
presented in Fig. 1. The chromosome Xpar

ch is described as follows:

Xpar
ch = (P1, I1, D1, P2, I2, D2, . . .) =

(
Xpar

ch,1, X
par
ch,2, . . . , X

par
ch,L

)
, (2)

where P1, I1, D1, P2, I2, D2, . . . , denote control system parameters values,
ch = 1, .., Ch, denotes index of the chromosome in the population, Ch denotes a
number of chromosomes in the population, L denotes length of the chromosome
Xpar

ch . The chromosome Xred
ch is described as follows:

Xred
ch =

(
Xred

ch,1, X
red
ch,2, . . . , X

red
ch,L

)
, (3)

where every gene Xred
ch,g ∈ {0, 1}, ch = 1, .., Ch, g = 1, .., L, decides if relevant

part of the control system occurs in control process (relevant gene Xred
ch,g = 1).

2.2 Evolution Process

The proposed approach for selection of the system structure and system pa-
rameters is based on fusion between genetic algorithm and one of the specified
population-based algorithms. It determines evolution process, in which the fol-
lowing (typical) steps can be shown: initialization of the population, evaluation
of the population, checking the stop criterion and presentation of the best in-
dividual, selection of the individuals for the use of the specified operators (to
assure exploration and exploitation of universe of discourse), population repair,
and selection of the individuals for new population (see e.g. [58]).

Genetic algorithm is a well-known method (see e.g. [22], [43], [45], [58]). In
our simulations it processes solely chromosomes (3) for selection of the control
system structure. On the other hand, population-based algorithms fused with ge-
netic algorithm process exclusively the parameters of the control system encoded
in the chromosome (2). The characteristics of the population-based algorithms
considered in our work can be described as follows: (a) Firefly algorithm was in-
troduced in 2008 ([78]). In this algorithm every firefly is assumed as unisexual. As
a result, every firefly attracts one another. Firefly attractiveness is proportional
to its brightness (which depends on fitness function value of individual) and
inversely proportional to distance to considered firefly. Dimmer firefly moves to
brighter and more attractive one (search space exploitation), the most attractive
firefly moves randomly (search space exploration). Main steps of the algorithm
are: (1) calculate attractiveness of every firefly on the basis of its fitness value
(2) move every firefly to a more attractive one or randomly (3) evaluate fitness of
every firefly. Specific parameter for this algorithm is light absorption coefficient.
More details for this algorithm can be found in [15], [27], [78]. (b) Gravitational
search algorithm was introduced in 2009 ([56]). This algorithm uses assumptions
of law of gravity, in which each particle attracts every other particle and the
gravitational force between two particles is directly proportional to the product
of their masses and inversely proportional to the distance between them. A heavy
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mass particle has a large effective attraction radius and hence a great intensity
of the attraction. Moreover, algorithm is using assumptions of law of motion,
in which the current velocity of any mass is equal to the sum of the fraction of
its previous velocity and the variation in the velocity. Variation in the velocity
or acceleration of any mass is equal to the force acted on the system divided
by mass of inertia. Therefore, agents with a higher performance have a greater
gravitational mass. The inertia mass is against the motion and make the mass
movement slow. Hence, agents with heavy inertia mass move slowly and search
the space more locally. In the algorithm, exploration of the search space passes
gradually into exploration along with decreasing of gravitational constant. Main
steps of the algorithm are: (1) calculation of agent masses (2) calculation of
agent acceleration and velocity (3) updating agent positions (4) evaluate fitness
of every agent. Specific parameters for this algorithm are: initial value of gravi-
tational constant and gravity decreasing exponential constant. More details can
be found in [26], [38], [56]. (c) The bat algorithm was introduced in 2010 ([78]).
This algorithm is based on the echolocation behaviour of microbats with varying
pulse rates of emission and loudness with purpose to detect and avoid obstacles.
In particular in this algorithm the bats can move randomly (exploitation of uni-
verse of discourse) and into direction of the best from the bats (based on fitness
function value) (exploration of universe of discourse). Consequently, the move-
ment of the best bat determines moves of the whole population. There is the
principle for each bat in the population that if it finds a better solution than the
solution found in previous steps, its frequency, loudness and pulse emission rate
are updated. It allows to control the dynamic behaviour of the swarm of bats,
and additionally the balance between exploration and exploitation of the pop-
ulation. Characteristic steps of the algorithm: (1) moving into direction of the
best bat, (2) searching area around the best bat, (3) random walk. Character-
istic parameters of the algorithm: population size, wavelength fmin, wavelength
fmax, pulse rate, loudness. More details about the bat algorithm can be found
in e.g., [76], [77], [78]. (d) Imperialist competitive algorithm was introduced in
2007 ([1]). It was inspired by human social evolution instead of natural genetic
evolution. In the initialization process a specified amount of imperialists (best
chromosomes from the initial population) is used to create empires (every chro-
mosome is used to create one empire). For every empire a calculated amount of
colonies is assigned randomly among rest of the initial population. Main part of
the algorithm is to assimilate colonies by imperialist of their empires (moving
colonies closer to the imperialist) (exploitation of the space of considerations
and its exploration due to a random element in the determination of movement
direction). If value of the fitness function of colonies is better than value of the
fitness function of imperialist in their imperium - a revolution process takes
places (colony became a new imperialist). The second part of the algorithm is
the competition of the empires. In each step all empires (based on their power)
can take over the weakest colony of the weakest imperium. The empire which
lost all its colonies is eliminated from further competition. Characteristic steps
of the algorithm: (1) assimilation, (2) revolution, (3) imperialist competition.
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Characteristic parameters of the algorithm: number of empires, maximum step
of moving into imperialist direction, maximum angle for randomize moving into
imperialist direction, weight of colonies power. More details about the imperialist
competitive algorithm can be found in e.g., [1], [42], [79].

2.3 Individuals Evaluation

Chromosome evaluation function was set to minimize: RMSE error, oscillations
of the controller output signal, controller complexity and overshoot of the control
signal. High number of oscillations of the controller output signal is a negative
phenomenon, because it tends to excessive use of mechanical control parts and
may cause often huge changes of the controller output signal value. This is very
important issue, because the overshoot of the control signal is not acceptable in
many industrial applications. The chromosome evaluation function is described
as follows:

ff (Xch) =
1

RMSEch + cch · wc + osch · wos+ ovch · wov
, (4)

where cch > 0 denotes the complexity of the controller structure and it is calcu-
lated by the formula:

cch =

L∑
g=1

Xred
ch,g, (5)

wc ∈ [0, 1] denotes a weight factor for the complexity of the controller structure,
osch ≥ 0 denotes oscillation count of controller output signal (in simulations its
value is calculated automatically), wos ∈ [0, 1] denotes a weight for the oscilla-
tions factor, ovch ≥ 0 denotes value of the greatest overshoot of the controlled s1
signal and finally wov ∈ [0, 1] denotes a weight for the overshoot factor. RMSE
error function of the chromosome ch is described by the following formula:

RMSEch =

√√√√ 1

N
·

N∑
i=1

εch,i2 =

√√√√ 1

N
·

N∑
i=1

(
s∗ch,i − s1ch,i

)2
, (6)

where i = 1, . . . , N , denotes sample index, N denotes the number of samples,
εch,i denotes controller tracking error for the sample i, s∗ch,i denotes the value
of the reference signal of the controlled value for the sample i, s1ch,i denotes its
current value for the sample i. In our method we maximize the function described
by formula (4).

3 Simulations Results

In our simulations a problem of designing controller structure and parameter
tuning for double spring-mass-damp object was considered (see Fig. 2). More
detail about this model can be found in our previous paper [73]).
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Fig. 2. Simulated spring-mass-damp object
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Fig. 3. Signal values s1, s∗ and output signal of the controller y in case of fusion be-
tween genetic algorithm with: a) evolutionary algorithm (GA+EA), b) firefly algorithm
(GA+FA), c) gravitational search algorithm (GA+GA), d) bat algorithm (GA+BA),
e) imperialist competitive algorithm (GA+IA)

Remarks about considering model can be summarized as follows: (a) Object
parameters values were set as follows: spring constant k was set to 10 N/m,
coefficient of friction μ = 0.5, masses m1 = m2 = 0.2 kg. Initial values of: s1,
v1, s2 i v2 were set to zero. (b) Simulation length was set to 10 s, a shape of
the reference signal s∗ (trapezoid) is presented in Fig. 3, a shape of test signal
s∗ (sinuous) is presented in Fig. 3. (c) Search range for genes coding controller
parameter were set as follows: P = [0,20], I = [0,50], D = [0,5]. (d) Output
signal of the controller was limited to the range y ∈ (−2,+2). (e) Quantization
resolution for the output signal y of the controller as well as for the position
sensor for s1 and s2 was set to 10 bit. (f) Time step in the simulation was equal
to T = 0.1 ms, while interval between subsequent controller activations were set
to twenty simulation steps.

For simulations an authorial environment (in C# language) was used. Param-
eters of the algorithms for the calculations were determined as follows: (a) Evo-
lutionary algorithm: the number of chromosomes in the population was set to
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Fig. 4. Structure of the controller obtained in the evolution process in case of fusion be-
tween genetic algorithm with: a) evolutionary algorithm (GA+EA), b) firefly algorithm
(GA+FA), c) gravitational search algorithm (GA+GA), d) bat algorithm (GA+BA),
e) imperialist competitive algorithm (GA+IA)

100, the algorithm performs 10 000 steps (generations), the crossover probability
was set as pc = 0.8, the mutation probability was set as pm = 0.3, the mutation
intensity was set as σ = 0.3. (b) Firefly algorithm: the number of individu-
als in the population was set to 100, light absorption coefficient was set to 10.
(c) Gravitational search algorithm: initial value of the gravitation constant was
set to 100, exponential constant of the decreasing gravitation constant was set
to 20. (d) Bat algorithm: wavelength fmin was set to 0, fmax was set to 20,
pulse rate was set to 0.9 and loudness was set to 0.9. (e) Imperialist competi-
tive algorithm: maximum step d for assimilation was set to 2, maxmin angle for
random value for assimilation was set to 0.1 rad, weight of the colony for the
empires competition was set to 0.2.

Observations obtained from results of the simulations can be summarized as
follows: (a) Signal values s1, s∗ and output signal of the control y are highly
acceptable (see Fig. 3). The smallest oscillations of the signals were obtained by
genetic-imperialist and genetic-firefly algorithms (see Fig. 3). The largest oscil-
lations were obtained by the genetic-gravitational algorithm. (b) The simplest
structure of the system was achieved with the use of the genetic-evolutionary
(see e.g. [20], [21], [22], [24]) and genetic-firefly algorithm (see Fig. 4). It is worth
to mention that, in every case presented in Fig. 4, the system structure is quite
simple (see Table 1), and it does not affect requirements of the fitness function (4)
(see Table 2). Obtaining a similarly simple structures using classic algorithms of
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Table 1. Number of correction terms obtained in evolution process in case of fusion be-
tween genetic algorithm with: a) evolutionary algorithm (GA+EA), b) firefly algorithm
(GA+FA), c) gravitational search algorithm (GA+GA), d) bat algorithm (GA+BA),
e) imperialist competitive algorithm (GA+IA)

Name Number of the correction terms
GA+ES GA+FA GA+GA GA+BA GA+IA

P 2 3 3 5 3
I 1 1 1 2 3
D 3 2 3 2 1
All 6 6 7 9 7

Table 2. Values of the components of the fitness function (4) obtained in evolution
process in case of fusion between genetic algorithm with: a) evolutionary algorithm
(GA+EA), b) firefly algorithm (GA+FA), c) gravitational search algorithm (GA+GA),
d) bat algorithm (GA+BA), e) imperialist competitive algorithm (GA+IA)

Name Parameters of the control systems
GA+ES GA+FA GA+GA GA+BA GA+IA

RMSE 0.0625 0.1276 0.1790 0.0901 0.1633
cch · wc 0.0060 0.000 0.0070 0.0066 0.0047
zch · wz 0.0350 0.0170 0.0170 0.0299 0.0138
ovch · wov 0.0001 0.0002 0.0005 0.0014 0.0001

ff 9.6525 6.6312 4.914 7.8125 5.4975

the selection of control systems would be difficult and time consuming. (c) The
structures and parameters of the control system obtained in the learning pro-
cess, which was performed on the trapezoid shape of the signal (see Fig. 4), were
tested additionally on the sinusoidal shape of the signal (see Fig. 4) and resulted
with good performance (generalization).

4 Conclusions

In our work a new approach for selection of the structure and the parameters
of the control system was presented. This approach implements a model and
allows to choose safe regulation model parameters without need to experiment
on real objects. Our method uses a fusion between genetic algorithm (for se-
lection the structure of the control system) and possibilities of specified algo-
rithms: evolutionary algorithm (for comparison), firefly algorithm, gravitational
search algorithm, bat algorithm, imperialist competitive algorithm (for selection
the parameters of the control system). Obtained (according to fitness function
components) simulation results allowed achieve non-complex control systems,
characterized by good accuracy, with acceptable infinitesimal oscillations.
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Abstract. In the paper we propose a new approach to control system
design. The approach is characterized by automated parameters tuning
and structure selection of the controller. Structure selection and parame-
ter tuning are performed using evolutionary algorithm and allow accurate
control with elimination or minimizing of unfavourable phenomena like
overshoot or harmonic distortion. Our method was tested on a model of
quarter car active suspension system.

1 Introduction

Automatic control is an important issue from scientific and practical point of
view (see e.g. [62]-[63]). In the literature, various approaches to design of param-
eters and the structure of control systems are considered. More of them are in one
of the following groups: (a) Controllers based on the combination of linear
correction terms: P, I, D. These terms can be coupled as e.g.: PI, PID, PI in
cascade, PI with feed-forward (see e.g. [1], [38]), PI or PID with additional low-
pass filter (see e.g. [38]), PID with anti-windup and compensation mechanism
(see e.g. [47]). In this group controllers based on state-feedback, in which the
current state vector (estimated or measured) of the controlled object is used for
proportional control (see e.g. [59]), are also included. It is important to remark
that the task of controller structure design (i.e. selection of the best configuration
of linear correction terms) requires from designer comprehensive knowledge sup-
ported by the experience. It should be noted that design of controller structure
and tuning of parameters are very time-consuming. (b) Controllers based on
computational intelligence. In this group, controller structure is not strictly
defined. Controller uses neural networks (see e.g. [7]-[10], [27]-[31], [41]-[42], [60]),
fuzzy systems (see e.g. [2]-[6], [18]-[21], [25], [32], [40], [57]-[58]), neuro-fuzzy sys-
tems (see e.g. [11]-[16], [33], [36]-[37], [52]-[55], [64]-[68]), etc. (c) Hybrid con-
trollers. In this group, controller combines approaches from other groups. In
hybrid controller we can distinguish correction term and additional supporting
mechanism (for example based on an artificial intelligence) for adaptive control
(see e.g. [17], [44]-[46], [55]-[56]).
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Fig. 1. Idea of the new method for controller design

In this paper a new method for designing control system based on combination
of linear correction terms is proposed. Our method is characterized by automa-
tion of both operations: structure selection and parameter tuning (see Fig. 1).
Concurrent parameter tuning and structure selection is important, because it
eliminates mentioned earlier control design problems. Our method also offers
strictly, but very flexibly, defined control criteria as a tool for control system
tuning, what allows to reach objective expected by its designer.

This paper is organised into four sections. Section 2 presents a detailed de-
scription of the new method for controller design. In Section 3 simulation results
are presented. Conclusions are drawn in Section 4.

2 Description of the New Method for Designing Optimal
Controllers

Presented method gives to designer the freedom of choice of controller blocks
(CB) number, connection and definition. In Fig. 2 initial controller structure
idea is presented: in Fig. 2.a CB connection idea for the MISO system is pre-
sented, in Fig. 2.b CB processing element idea is presented. Dashed lines in Fig.
2.a and in Fig. 2.b denote freedom of connection between CBs and simple correc-
tion terms. Existence or lack of connection depends on evolutionary algorithm
execution result. Signal fbn, n=1, . . . , N , denotes feedback signal, signal ffm,m
= 1, . . . ,M , denotes feedforward signal. CB connection idea (see Fig. 2.a) is a re-
sult of generalisation of PID controller, cascaded PID controller with feedforward
signals and state-feedback controller. CB definition idea (see Fig. 2.b) is combi-
nation of simple correction terms like P, I and D. There is a possibility to place
inside CB other processing elements like finite impulse response filter, infinite
response filter, saturation or nonlinear block. Generalised controller structure
(CB connection and definition) is initial point of evolutionary algorithm.

In proposed method full controller (with its structure and parameters) is en-
coded in a single chromosome Xch. Chromosome Xch is described as follows:

Xch =
{
Xpar

ch ,X
red
ch

}
, (1)
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Fig. 2. Initial controller structure idea: a)CB connection idea, b)CB definition idea

where Xpar
ch is a chromosome encoding correction term parameters, Xred

ch is a
chromosome encoding CB connection. Chromosome Xpar

ch is described as follows:

Xpar
ch = (P1, I1, D1, P2, I2, D2, . . .) =

(
Xpar

ch,1, X
par
ch,2, . . . , X

par
ch,L

)
, (2)

where P1, I1, D1, . . . , denote control system parameter values, ch = 1, .., Ch,
denotes index of the chromosome in the population, Ch denotes a number of
chromosomes in the population, L denotes length of the chromosome Xpar

ch . Chro-
mosome Xred

ch is described as follows:

Xred
ch =

(
Xred

ch,1, X
red
ch,2, . . . , X

red
ch,L

)
, (3)

where every gene Xred
ch,g ∈ {0, 1}, ch = 1, .., Ch, g = 1, .., L, decides if relevant

part of control system occurs in control process (relevant gene Xred
ch,g = 1).

The steps of the method used in this paper are the same as in typical evo-
lutionary algorithm (see e.g. [12], [22]-[24], [26], [34]-[35], [39], [43], [48]). The
evolutionary algorithm is a method of solving problems (mainly optimisation
problems) which is based on natural evolution. Evolutionary algorithms are
search procedures based on the natural selection and inheritance mechanisms.
Method steps are following: chromosomes initialisation, chromosomes evaluation,
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Fig. 3. Active suspension control system

stop condition checking, chromosomes selection, chromosomes crossover, mu-
tation and repair, offspring population generation. For more details see our
previous papers, e.g. [61].

3 Simulations Results

In the simulations a model of controller design for quarter car active suspen-
sion control system was considered (see e.g. [33], [59]). Alternative approaches
to nonlinear modelling can be found in [49]-[51]. Active suspension control sys-
tem is presented in Fig. 3. Assumed values of the parameters of the model are
presented in Table 1. Parameters of active suspension model are following: mu

denotes unsprung mass, ms denotes sprung mass, kt denotes tire stiffness, ks
denotes sprung stiffness, ds denotes sprung damping. Meaning of the rest of the
active suspension model parameters is following: zr denotes road profile, zt de-
notes tire compression, zu denotes displacement of unsprung mass, z denotes
suspension travel, zs denotes displacement of sprung mass. Aim of the controller
is to improve the passenger comfort and car handling, etc. We assume that im-
provement of ride comfort is more important that handling improvement.

In order to create model and perform simulations, following assumptions were
taken:

– Controlled object is modelled as follows:

ẋ = Ax+Bu+ f, (4)

where A is a state matrix in the form:

A =

⎡⎢⎢⎣
0 1 0 0

− ks

ms
− ds

ms

ks

ms

ds

ms

0 0 0 1
ks

mu

ds

ms
−ks+kt

mu
− ds

ms

⎤⎥⎥⎦ , (5)
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Fig. 4. Initial controller structure for active suspension controller

x is a state vector (initial values of state vector were set to zero) described
as follows:

x =

⎡⎢⎢⎣
x1
x2
x3
x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
zs
żs
zu
żu

⎤⎥⎥⎦ , (6)

B is an input matrix represented by the formula:

B =
[
0 1

ms
0 − 1

mu

]T
, (7)

u is an input vector from controller, f is an input vector from kinematic
extortion described by the following equation:

f =
[
0 0 0 − kt

mu

]T
zr. (8)

– The road profile is presented in Fig. 6.a. It represents the typical situations
which may occur on the road.

Table 1. Parameters of active suspension control system

name value unit
mu 48.3 kg
ms 395.3 kg
ks 30 010 N/m
kt 340 000 N/m
ds 1450 Ns/m

– Controlled object was discretized with the first order equation with time
step T = 0.1 ms as follows: x(i + 1) = Ad · x(i) + Bd · u(i) + fd, where
Ad = I+A · T , Bd = B · T and fd = f · T .

– Initial controller structure, directly derived from the structure shown in Fig.
2 on the basis on available feedback signals, is shown in Fig. 4 and equipped
with four CBs. Every CB is equipped with P, I, D processing elements.

– Feedback signals: fb1 and fb2 were set to -z̈s and -z̈u respectively.
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– Search range for controller parameter encoding gene in every control block
was experimentally set as follows: for term P : [0, 2000], for term I: [0,
200000], for term D: [0, 20].

– In order to model actuator constrains, output signal of the controller u was
limited to the range [−1000,+1000] (see e.g. [59]).

– In order to model sensor constrains, quantisation resolution for the output
signal u and feedback signals (fb1, fb2) was set to 0.0001.

– Simulation length T was set to 8 seconds. Simulation time step Ts was set
to 0.1ms, while interval between subsequent controller activations was set to
five simulation steps (Tr = 5T = 0.5 ms). This is reasonable value for the
implementation of the controller in real microprocessor system.

In order to design controller, following assumptions were taken:

– Fitness function was defined with elements improving operating conditions of
genetic algorithm (i.e. accelerating the search of the optimal solution). Those
elements are: reference to passive suspension system performance, unifica-
tion by adding 1 and respectively multiplying by 1000. Fitness function was
defined as follows:

ff(Xch) =

(
cfch · wcf + hdch · whd + stch · wst+
+cpch · wcp + osch · wos + cnch · wcn

)
, (9)

where

• cfch denotes passenger comfort and was defined as follows:

cfch = (1 + cfp)−

√√√√ 1

Z
·

Z∑
i=1

z̈2s,i, (10)

where cfp denotes, found by experiment, passenger comfort for passive
suspension value equal 0.861 (see Table 3), i = 1, . . . , Z, denotes sample
index, Z denotes the number of samples and was defined as follows:

Z =
T

Ts
. (11)

• wcf denotes weight of cfch and was set to 5.
• hdch denotes car handling and was defined as follows:

hdch = (1 + hdp)−

√√√√ 1

Z
·

Z∑
i=1

z2t,i, (12)

where hdp denotes, found by experiment, car handling for passive sus-
pension value equal 1.09 (see Table 3).
• whd denotes weight of hdch and was set to 1.
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Fig. 5. Evolutionary designed controller structure for active suspension system

• stch denotes suspension travel and was defined as follows:

stch =

(
(1 + stp)− 1000 · max

z=1,...,Z
{abs (zi)}

)
, (13)

where stp denotes, found by experiment, passive system suspension travel
value equal 50.9 (see Table 3).
• wst denotes weight of stch and was set to 0.01.
• cpch denotes controller structure complexity and was defined as follows:

cpch =

L∑
g=1

Xred
ch,g. (14)

• wcp denotes weight of cpch and was set to 0.5.
• osch denotes oscillation of controller output signal and was defined as

follows:

osch =
1

1 +
Z∑
i=1

{
1 forΔui > 200
0 otherwise

, (15)

where Δui = abs (u (i)− u (i− 1)).
• wos denotes weight of osch and was set to 0.01.
• cnch denotes average control force and was defined as follows:

cnch =
1

1 +

√
1
Z ·

Z∑
i=1

ui2

. (16)

• wcn denotes weight of cnch and was set to 0.1.
– Evolutionary algorithm parameters were set as follows: (a) the number of

chromosomes in the population was set to 20, (b) the algorithm performs
10 000 steps (generations), (c) the crossover probability was set as pc = 0.8,
(d) the mutation probability was set as pm = 0.3, (e) the mutation intensity
was set as σ = 0.3.

Simulation results can be summarised as follows: (a) Goal of significant pas-
senger comfort improvement and slight car handling improvement was achieved
(see Table 3). (b) Proposed method has automatically selected controller struc-
ture for control of quarter car active suspension system (see Fig. 5 and Table 2).
(c) In simulation two operation modes of suspension system were tested: active
and passive (see Fig. 6).
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Fig. 6. Simulation results: a) road profile, b) passenger comfort, c) car handling, d) sus-
pension travel, e) actuator force. In b)-d) grey line relates to the passive system and
the black line relates to the active system.

Table 2. Parameters of evolutionary designed controller structure

KP KI KD

CB1 reduced reduced reduced
CB2 reduced reduced reduced
CB3 343 45743 reduced
CB4 reduced reduced reduced

Table 3. Result comparison of evolutionary designed controller structure

name ff cf hd st
[m/s2] [mm] [mm]

passive 6.619 0.861 1.09 50.9
evolutionary 9.373 0.273 0.94 41.7

4 Summary

In this paper a new approach to designing controller based on linear correction
terms was proposed. During simulation it was possible to select controller struc-
ture and tune its parameters including diverse control criteria. Results presented
in the paper show that initial controller structure was significantly reduced - by
83% (see Table 2). Proposed method for controller design includes not only con-
trol accuracy, but also other control related criteria, e.g. harmonic distortion or
overshoot.
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Abstract. This paper presents optimization of router deployment based
on genetic algorithm for energy-constrained wireless sensor networks
which are used for wildfire monitoring. The router positions are opti-
mized so that the total communication distance is minimized to maxi-
mize the lifetime of the sensor network. To consider the real geographical
features of the target field, the elevation differences are included in fit-
ness evaluation. It is shown that one can reduce the total communication
distance as well as the number of disconnected sensors for both flat and
irregular terrains using the present optimization method.

Keywords: Router deployment, Wireless sensor networks, Genetic al-
gorithm, Digital elevation model.

1 Introduction

Development of highly reliable wireless sensor network (WSN) to monitor for-
est fires has strategic significance for many countries where forest fires occur
frequently. It has been shown that WSNs have great potential for wildfire moni-
toring[1]. A detection system for wildfire in Indonesia using WSNs and UAV has
been developed[2, 3]. Hefeeda et al. have proposed data aggregation scheme based
on FWI (Fire Weather Index) for WSNs[4]. This scheme can extend the lifetime
of WSNs because the data of interest, which can be determined from FWI, are
only aggregated. Son et al. have implemented FFSS (Forest-fires Surveillance
System) which contains the level risk of forest fires [5].

WSNs consist of sensors, routers and a base-station, which work together to
collect data about the status of the target field. The sensors perform periodic
measurement of environmental data such as temperature and humidity and send
them to the routers or directly to the base station node. The routers collect data
from the sensor nodes to send them to the base station. WSNs have several
functions such as sensing, data processing and communication, and work as a
platform for processing of distributed data collected from wide environment.
The sensors in WSNs operate with limited power and wireless communication
capability. Especially, energy usage is significant concern in WSNs placed in wild
environment since it is difficult to make frequent replacement of batteries in the
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sensors. To maximize the lifetime of the energy-constrained WSNs, communica-
tion protocols such as LEACH[6] and HEED[7] have been developed in which
the cluster heads are autonomously selected to share the energy loss in the sen-
sor nodes. The cluster head collects data from the sensors in its cluster to send
them to the base station.

On the other hand, the routers which play a role similar to the cluster heads
are a priori determined in Zigbee systems, which we will consider in this paper.
It is effective to reduce the communication distance between the sensor nodes
and routers to expand the WSN lifetime. In addition, it is expected to reduce
the communication errors due to noise by minimizing the distance. While the
position of the sensor nodes would be determined from the sensing coverage, the
router deployment should be determined so that the communication distance
is minimized. Because the communication distance depends on the topology of
WSNs, the distance cannot be differentiated with respect to the router posi-
tions. It is thus difficult to use gradient-based methods to optimize the router
deployment.

In this paper, we propose an optimization method based on genetic algorithm
(GA) of the router deployment. The heuristic methods such as simulated an-
nealing, genetic algorithm (GA), immune algorithm and particle swarm [8] have
not been applied to optimization of the router deployment in WSNs considering
irregular elevation in the target fields.

The proposed optimization method is not only applicable to WSNs for wildfire
monitoring but also to WSNs for security and health monitoring, etc. To test the
performance of the present method, the router deployment is optimized for flat
and irregular terrain. In the latter case, we employ the digital elevation model
(DEM) data [9] to consider the realistic geographical features of the target field.
The WSN topology will be formed avoiding the occlusion between the nodes.

The paper will be organized as follows: the related works will be described in
the next section. Then the optimization problem will be addressed and optimiza-
tion method will be described detail in the third section. In the fourth section,
optimization results for flat and irregular terrains will be shown and discussions
on the results will be made. Finally conclusions will be given in the last section.

2 Related Works

Wu et al. have optimized the sensor deployment on planar grid to maximize
the detection probability within a given cost using GA[10]. They showed that
their method outperforms a greedy sensor placement method. Bari et al. have
optimized the data-gathering schedule for the relay nodes, which are equiva-
lent to the routers, using GA[11]. Krishnamachari et al. have optimized the
data flow among WSNs to maximize the total information routed to the sink
node[12]. They showed that the maximum information which is extracted for a
fixed amount of energy decreases as the fairness requirement is reduced. Zhao
et al. have discussed optimal deployment of high-powered relay nodes in static
heterogeneous sensor networks[13]. The genetic algorithm for integer planning is
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adopted to optimally deploy the relay nodes so as to obtain the optimal energy
efficiency by minimizing the average path length. They consider the Manhattan
distance in the optimization because the nodes are placed at the planar grid
points.

In this work, we optimize the router deployment for WSNs where the sensors
are randomly distributed. We take irregular elevation in the target field which
affect communicability into account. We also make an attempt to reduce the
number of disconnected sensors outside the communication circles of the routers
by including it as a penalty in the objective function.

Fig. 1. Wireless sensor network in irregular terrain. The color represents elevation.

3 Model and Numerical Method

3.1 Model of Wireless Sensor Network Model

Let us consider the target field of D1 × D2 m2. Figure 1 shows an example of
WSN placed in a field with irregular elevation where D1=D2=1km. The base
station collects all the sensed data from the routers and sensor nodes. It assumed
that the base station has unlimited power for its operation. On the other hand,
the routers and sensor nodes are assumed to obtain power from the batteries
mounted on them so that they are energy constrained. The sensor nodes detect
environmental data such as temperature and humidity and send them to the
nearest routers or base station.

The routers collect data from the sensor nodes to send them to the base
station. Due to the limitation in the power transmission of the routers and sensor
nodes, they will use up the energy within the finite duration. It is necessary to
maximize their lifetime because the replacement of the batteries is expensive
especially when the sensors deployed in deep forest. The aim of this study is to
find optimal deployment of the routers which maximizes the lifetime of WSN.
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3.2 Optimization Problem

We introduce a grid on the elevation contour map generated from the digital ele-
vation model data [9]. We utilize a linear interpolation to estimate the elevation
values at arbitrary points. It is assumed that N sensors are deployed at random
location in the geographical map. The router and sensor node have communi-
cation radius Rr and Rs inside which they can communicate with other nodes.
The optimization problem is defined by

F =
1

N∑
i

d2i + P

→ max, (1)

where di is the Euclid distance between i-th sensor node and its nearest parent
node that is either router or base station. Moreover, P represents the penalty
term which is defined by

P = nD1D2 (2)

where n is the number of the disconnected sensor nodes. In the simulation, we
test communicability of the nodes, that is, if there is a point whose elevation
is above the line connected between two nodes then it is judged that the two
nodes cannot communicate with each other. When we consider the flat terrain,
there are no obstacles among the nodes. However, when we consider the irregular
terrain, the network topology must be constructed taking the communicability
into account. The present method can provide optimal network topology for both
flat and irregular terrain.

3.3 Real-Coded Genetic Algorithms

In this work, we employ the real-coded genetic algorithms (RGA) for the opti-
mization of router positions, whose algorithm is described below. The gene is
composed of the coordinates of M routers, that is (x1, x2, ..., xM ), so that the
degrees of freedom in the optimization is 2M . The optimization parameters in
RGA are summarized in Table 2. In particular, searching ability of RGA de-
pends on crossover operation largely. In this work, the Blend crossover (BLX-α)
is adopted for the crossover operator [14].

1. Initial population. Initial population which has a given population size is
generated.

2. Selection. In this paper, we use roulette wheel selection which implements
the proportional selection approach. In roulette wheel selection scheme which
resembles survival of the fittest in nature, the chance to be selected for the
reproduction of a chromosome is determined by its ratio of fitness value.

3. Crossover. The blend-crossover process (α) generates two offspring from
two individuals (parents). It randomly picks values that lie between two
points that contain the two parents, but may extend equally on either side
determined by a user specified parameter .
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4. Mutation. The coordinates x of the routers are replaced by (pD1, qD2)
where p and q are independent random numbers whose domain is [0, 1].

5. Optimal solution and terminal criterion. The process of fitness compu-
tation, selection, crossover, and mutation is executed for a maximum number
of iterations. To avoid possible elimination, a parent chromosome with the
highest fitness is always copied into the next generation.

4 Simulation Results

We choose the peat forest in Central Kalimantan, Indonesia for a case study
of the irregular terrain. The DEM of the location is obtained from the Shuttle
Radar Topography Mission (SRTM) FTP site [9]. The elevation ranges from
16m to 28m. We also consider the flat terrain for comparison. In both cases,
D1=D2=1 km. In this model, the sensor and initial router nodes are placed
randomly and the latter positions are optimized. We use the same random seed
for the optimizations.

Table 1. Simulation parameter

Parameter Values

Location of base station 113.8185, -2.3610
Number of nodes 50

Number of routers, M 2, 3, 4, 5
Communication radius Rs=Rr 50m,100m,200m,400m

Table 2. RGA parameter setting

Parameter Values

α 1.5
Population size 25

Crossover probability 100%
Mutation probability 20%
Number of generation 100

4.1 Optimization of WSN with Small Communication Radius

We first consider the WSN which has communication radius Rs = Rr =100m.
The number of routers, M , is set to five unless otherwise specified. Figures 2
and 3 show the optimized WSN deployment for flat and irregular terrain. In
both case, there are many disconnected nodes because the maximum covered
area MπR2

r is about 15 % of the area of the target field D1D2.
We can find that the communication paths are constructed so that there are

no obstacles among them in Fig.3. Figure 4 shows the optimization history where
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Fig. 2. Optimized topology for flat terrain, Rs = Rr=100m, M=5

we find that the fitness is monotonously improved. We also find in Fig.4 that the
converged fitness value for the flat terrain is better than that for the irregular
terrain. This is due to the fact that the communication paths in the irregular
terrain must be formed avoiding the obstacles.

4.2 Optimization of WSN with Large Communication Radius

We increase the communication radius up to 400m. Now the maximum covered
area MπR2

r is about 250% of the target area. Figures 5 and 6 show the opti-
mized WSN topologies. There are no disconnected sensor nodes in both cases
as expected. We find in Fig.6 that there are no communication paths which go
from valley to valley. Figure 7 shows the optimization history, which is similar
to Fig. 4. The converged value of the fitness for the flat terrain is larger than
that for the irregular terrain as expected.

4.3 Number of Disconnected Sensors

We next consider dependence of the number of disconnected sensor nodes on
the communication radius Rr and number of routers M . Figures 8 and 9 show
changes in the numbers of disconnected sensor nodes in the WSNs which are
optimized by the present method when Rr and M vary, while Figs. 10 and 11
shows them for non-optimized WSN where the routers are randomly deployed.

We can find from these results thatMπR2
r must be 200% and 250% at smallest

for the flat and irregular terrains to have full connections of the sensors when
WSNs are optimized. Note that the latter ratio depends on the terrain; we have
to increase the ratio for highly irregular terrains. We can estimate the necessary
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Fig. 3. Optimized topology for irregular terrain Rs = Rr=100m, M=5

Fig. 4. Optimization history when Rs = Rr=100m, M=5
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Fig. 5. Optimized topology for flat terrain, Rs = Rr=400m, M=5

Fig. 6. Optimized topology for irregular terrain Rs = Rr=400m, M=5
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Fig. 7. Optimization history when Rs = Rr=400m, M=5

Fig. 8. Number of disconnected sensor nodes for optimized WSN in flat terrain
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Fig. 9. Number of disconnected sensor nodes for optimized WSN in irregular terrain

Fig. 10. Number of disconnected sensor nodes for non-optimized WSN in flat terrain
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Fig. 11. Number of disconnected sensor nodes for non-optimized WSN in irregular
terrain

ratio using the present method. On the other hand, we cannot have the full
connections even when MπR2

r is about 250% for the non-optimized WSNs.It
is concluded that the present optimization can reduce the total communication
distance as well as number of disconnected sensor nodes.

5 Conclusions

In this paper, we have presented an optimization method for the router deploy-
ment in WSNs. We employ RGA for the optimization. We consider the irregular
elevation in the target field. It has been shown that we can have optimized
communication paths which avoid obstacles using the present method.

The total communication distance for the irregular terrain is longer than that
for the flat terrain. The maximum covered area MπR2

r must be 200% and 250%
of the whole area for the flat terrain and the exampled irregular terrain. The
necessary ratio ofMπR2

r to the whole target area can be computed by the present
method.The present optimization can reduce the total communication distance
as well as number of disconnected sensor nodes. In future, we plan to develop
the optimization method considering the effect of vegetation.
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Abstract. In this paper, problem of positioning and optimization of oper-
ation costs for finite-buffer queuing system with exponentially distributed
server vacation is investigated. The problem is solved using evolutionary
computation methods for independent 2-order hyper exponential input
stream of packets and exponential service time distribution. Different sce-
narios of system operation are analyzed, i.e. different values of parameters
of distribution functions describing evolution of the system.

1 Introduction

Queuing model with finite capacity is convenient tool for operation analysis
of different computer hardware components used in networking. Analysis of
stochastic characteristics of finite-buffer queues is useful in modeling of

• IP router in which queue of packets is connected with buffer of each output
interface;
• video (graphic) card with buffer of packets waiting for displaying;
• database servers with queue of requests from remote clients;
• network interface controller (network interface card, LAN adapter) etc.

Moreover, by using queuing models with finite capacities, many other real-life
phenomena can be investigated, i.e. manufacturing management or transport
optimization.

It is difficult to fit a Poisson process for describing single TCP flow of packets
arriving at IP router. Due to typical disturbances of such stream (like burstiness)
there are, in fact, two general approaches. We can try to fit one of
non-recurrentMAP-type processes describing arrival (input) stream (like MMPP-
Markov Modified Poisson Process or BMAP-Batch Markovian Arrival Process),
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but parametrization of such processes (basing on IP trace) is difficult. The other
possibility is to divide observation horizon on relatively short time intervals in
which arrival process is assumed to be recurrent but, of course, inter-arrival times
can have different distributions in different interval times. This conclusion is mo-
tivation for transient analysis and evolutionary positioning of finite-buffer queue
with general independent (GI) input flow of packets. In the paper we deal with
transient finite-buffer model with hyper exponential independent input stream
of packets and exponential service times. Hyper exponentially distributed server
vacation is being initialized immediately after the system becomes empty. Dur-
ing server vacation all arriving packets are buffered in the queue. After vacation,
transmission of packets begins normally.

Server vacation is one of tools (in addition to other, like repeated (multi-
ple) vacations or queued wake-up (N-policy) of the server) which can be used in
modeling of functioning of node of wireless sensor network (WSN) during energy
saving mode (see [10], [11] and [21]). Applying compact-form representation for
joint transform of first busy period, first idle time and number of packets trans-
mitted during first busy period (for details see [31]) and fixed values of unit
costs of server operation (in busy and idle modes) we solved positioning and
cost optimization problem using genetic algorithms (GA) with special evolu-
tionary strategy (ES) for different distributions of server vacation duration in
most common scenarios of network operation.

Evolutionary Computation (EC) methods show power of applying computa-
tional intelligence (CI) in situations where classic methods may fail. A review
of recent advances in CI methods and techniques is presented in [26]. Some as-
pects of applying reinforcement learning and machine learning methods for AI
systems is presented in [27] and [2] respectively. Randomness reduction effect of
extreme learning machine in discussed in [3]. Among EC methods one may point
GA, ES or heuristic algorithms (HA) as most effective techniques. EC methods
help to solve complicated models of differential or integral equations. For ex-
ample GA or ES find their application in positioning of technical systems (see
[25]), creating learning sets for artificial intelligence (AI) control systems (see
[5]) or queuing systems (QS) positioning (see [6]). EC is also efficient in analysis
or simulation of annealing processes in metallurgy (see [9]). EC methods find
application in dynamic, self-generated fuzzy inference systems (see [32]). Com-
putational intelligence help in modeling of networking systems. Source-to-sink
distance estimation in wireless sensor networks problem can be solved by CI,
please see [19]. While in [20] is presented analysis of peculiar distance estimation
methods in wireless sensor networks. Therefore we implemented EC methods to
simulate and position H2/M/1/N queuing model. Optimal values of parameters
of probability distributions of inter-arrival, service times, vacation duration and
minimal cost of functioning of the system during single vacation cycle are found
for different scenarios of system operation. Presented analysis is generalization of
the one presented in [4] or [31], where 2-Erlang inter-arrival times were assumed
for EC optimization.
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Classical linear cost structure of a QS is considered in [29]. To problem of
positioning and cost optimization are also devoted [12] and [18]. Queuing models
with server vacations are investigated in [7], [8], [23] and [24]. A review of results
can be found in [28] and [30]. Representation for joint transform of first busy
period, first idle time and number of packets completely served during first busy
period in GI/G/1-type system with batch arrivals and exponential single server
vacation is given in [16] (see also [15]). Transient characteristics of system with
single vacations with compound Poisson arrivals, generally distributed service
times and infinite buffers can be found in [17] and [14]. In [13] non-stationary
behavior of waiting time distribution in a finite-buffer queue with single server
vacations is investigated. For all those aspects EC can be efficiently applied using
object model and given service restrictions, for details please see [31].

2 Queuing Model

Examined object is a finite-buffer H2/M/1/N -type QS where inter-arrival times
are 2-order hyper exponentially distributed random variables with distribution
function

F (t) = p1
(
1− e−λ1t

)
+ p2
(
1− e−λ2t

)
, t > 0, (1)

where λi > 0 for i = 1, 2 and p1, p2 ≥ 0. Distribution of inter-arrival times is
mixture of two exponential distributions with parameters λ1 and λ2, which are
being “chosen” with probabilities p1 and p2 respectively. The system capacity
is N , i.e. there are (N − 1) places in buffer queue and one for packet in service.
System starts working at t = 0 with at least one packet present. After busy period
the server begins compulsory single vacation which is 2-order hyper exponentially
distributed random variable with distribution function

V (t) = q1
(
1− e−α1t

)
+ q2
(
1− e−α2t

)
, t > 0, (2)

Interpretation of parameters αi, i = 1, 2 and q1, q2 is similar to that for λi,
i = 1, 2 and p1 and p2. If at the end of vacation there is no packet present in the
system, the server is on standby and waits for first arrival to start service process.
If there is at least one packet waiting for service in buffer at the end of vacation,
the service process starts immediately and new busy period begins. More detailed
information of modeling input inter-arrival and vacation processes is presented
in [31]. During vacation, the service process is stopped. It is assumed that all
inter-arrival times, service times and server vacation are totally independent
random variables, where the symbols are

• τ1 — the first busy period of the system (starting at t = 0);
• δ1 — the first idle time of the system (consisting of the first vacation time
v1 and the first server standby time q1);
• h(τ1) — the number of packets completely served during τ1;
• X(t) — the number of packets present in the system at time t.
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2.1 Auxiliary Results

Let us define only simple equations here. The explicit formula with detailed
information for conditional joint characteristic functions of τ1, δ1 and h(τ1) is
presented in [31]. Therefore

Bn(s, !, z) = E{e−sτ1−�δ1zh(τ1) |X(0) = n}, (3)

where 1 ≤ n ≤ N, s ≥ 0, ! ≥ 0 and |z| ≤ 1. As defined in [31]

an(s, z) =

∫ ∞

0

(zμt)n

n!
e−(μ+s)tdF (t), n ≥ 0, (4)

Ψn(s, !, z) = −
(zμ)n

(n− 1)!

[∫ ∞

0

dF (t)

∫ t

0

xn−1e−(μ+s)x

×
(
e−�(t−x)V (t− x) +

∫ ∞

t−x

e−�ydV (y)
)
dx

]
. (5)

Moreover, sequence
(
an(s, z)

)
in (4) helps to recursively define

R0(s, z) = 0, R1(s, z) = a
−1
0 (s, z),

Rn+1(s, z) = R1(s, z)(Rn(s, z)−
n∑

k=0

ak+1(s, z)Rn−k(s, z)). (6)

With introduced following function

f(s) =

∫ ∞

0

e−stdF (t), s > 0 (7)

we finally have components of cost equation

D(s, !, z) =

N−1∑
k=1

ak(s, z)

N−k+1∑
i=2

RN−k+1−i(s, z)Ψi(s, !, z), (8)

G(s, !, z) = ΨN (s, !, z) +
(
1− f(μ+ s)

) N∑
k=2

RN−k(s, z)Ψk(s, !, z) (9)

and

H(s, z) =
(
1− f(μ+ s)

)
RN−1(s, z)−

N−1∑
k=1

ak(s, z)RN−k(s, z). (10)

Therefore for s ≥ 0, ! ≥ 0 and |z| ≤ 1

Bn(s, !, z) = E{e−sτ1−�δ1zh(τ1) |X(0) = n}

=
D(s, !, z)−G(s, !, z)

H(s, z)
Rn−1(s, z) +

n∑
k=2

Rn−k(s, z)Ψk(s, !, z), 2 ≤ n ≤ N.

(11)

where n ≥ 1 and an(s, z), Ψn(s, !, z),D(s, !, z), G(s, !, z) and H(s, z) are defined
in (4), (5), (8), (9) and (10) respectively (for more details see [4] or [31]).
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2.2 Cost Optimization Problem

Model of investigated computation network is described in [31]. However here
F (·) and V (·) are implemented as hyper exponential distribution functions to
investigate some different aspects of examined phenomena. Therefore in imple-
mented EC system for research was considered computation network system in
which inter-arrival times and vacation period have distribution functions de-
fined in (1) and (2), respectively. EC methods were applied to find optimal set
of parameters λi, pi, μ and αi to minimize operation costs rn(c1) considered in
different variants: under-load, critical load and overload. Here cost optimization
problem is defined in

rn(c1) =
Qn(c1)

En(c1)
=
r(τ1)Enτ1 + r(δ1)Enδ1

Enτ1 +Enδ1
, (12)

where the symbols are: r(τ1)-fixed unit operation costs during busy period τ1
and r(δ1)-idle time δ1, Enτ1-means of busy period τ1 and Enδ1-idle time δ1 on
condition that system starts with n packets present.

In this paper we present simulation of queuing model for computational net-
work by EC methods like GA with applied ES. Queuing systems have compli-
cated mathematical models therefore EC calculation is best way to solve cost
optimization problem. We present simulation results of H2/M/1/N finite-buffer
queue with single vacation policy. In the research was used dedicated evolution-
ary simulation system based on mathematical model described in section 2.1 with
(μ′, λ′) ES (for details of applied ES see [1], [6], [4] and [31]). In the research for-
mula (12) represents optimized operation cost. Therefore EC simulation system
was searching for best values of H2/M/1/N queuing model that make it work
with lowest costs in specified time unit. Research provide knowledge of proper
operation in some possible scenarios to help in tuning and evaluating examined
network.

3 Research Results

Research results help to predict possible response time and optimize service
cost rn(c1). In the research were performed EC experiments in series of 100
samplings. Presented optimal results are average values for each scenario with
following assumptions:

• Average service time: Tservice = 1
μ ,

• Average time between packages income into the system: Tincome = p1

λ1
+ p2

λ2
,

• Average vacation time: Tvacation = q1
α1

+ q2
α2

,
• Examined system size: N = buffer size +1.

Scenario 1
EC research was performed to find set of parameters for lowest cost of work. In
Table 1 are optimum values for all system parameters that affect server work.
In computer network we often need to provide service of incoming requests in
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Table 1. Optimal parameters μ, λi, αi, pi, qi for i = 1, 2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
3.07 2.43 0.97 0.42 1.45 1.20 6.13 5.10

μ 0.56 rn(c1) 0.32

Tservice Tincome Tvacation

[sec] 1.78 0.97 18.40

predefined time. Therefore parameters of the system must be set in peculiar
way. This also affects operation cost, which anyway should be possibly lowest.
Therefore we have also tried to simulate and optimize values of parameters in
few possible scenarios. Each scenario was defined for special time of service of
incoming requests, which represents possible situations of traffic in the system
we simulate and optimize. In each scenario there were series of EC optimization
experiments and results are given as average values.

Scenario 2
EC simulation was performed for Tservice = 1[sec], what means that the server
is able to service incoming request in 1[sec] and lowest possible cost. Research
results are shown in Table 2.

Table 2. Optimal parameters μ, λi, αi, pi, qi for i = 1, 2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
3.53 4.16 0.83 1.45 0.97 1.37 1.74 3.59

μ 1.00 rn(c1) 0.35

Tservice Tincome Tvacation

[sec] 1.00 0.60 4.57

Scenario 3
EC simulation was performed for Tservice = 2[sec], what means that the server
is able to service incoming request in 2[sec] and lowest possible cost. Research
results are shown in Table 3.

Table 3. Optimal parameters μ, λi, αi, pi, qi for i = 1, 2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
2.17 2.94 0.62 1.11 0.94 1.35 2.33 9.38

μ 0.5 rn(c1) 0.33

Tservice Tincome Tvacation

[sec] 2.00 0.89 12.17
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Scenario 4
EC simulation was performed for Tservice = 0.5[sec], what means that the server
is able to service incoming request in 0.5[sec] and lowest possible cost, what
represents fast server machine like those used for business purposes. Research
results with system positioning are shown in Table 4.

Table 4. Optimal parameters μ, λi, αi, pi, qi for i = 1, 2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
44.21 23.19 106.14 1.52 2.22 1.27 64.77 14.75

μ 2.00 rn(c1) 0.30

Tservice Tincome Tvacation

[sec] 0.5 0.10 10.33

In the article we present model with description of Tservice and Tincome, what
can also be very helpful in EC positioning. In real computer networks we often
need to position our system for peculiar incoming situations. Therefore we have
also simulated traffic in network with some different frequencies of incoming re-
quests. These situations with positioning are presented in following scenarios,
where each simulation was performed for only some EC optimized parameters
and the others calculated for lowest possible cost of work.

Scenario 5
EC simulation was performed for Tincome to be (if possible) 1[sec], what means
that requests are incoming to the server once in every second. Positioning is per-
formed to achieve also lowest possible cost of work. Research results are shown
in Table 5.

Table 5. Optimal EC calculated parameters λ1, λ2, p2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
5.30 5.96 0.89 1.51 3.86 1.38 2.24 3.50

μ 0.54 rn(c1) 0.34

Tservice Tincome Tvacation

[sec] 1.84 1.08 4.82

Scenario 6
EC simulation was performed for Tincome to be (if possible) 2[sec], what means
that requests are incoming to the server once in 2 seconds. Positioning is per-
formed to achieve also lowest possible cost of work. Research results are shown
in Table 6.
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Table 6. Optimal EC calculated parameters λ1, λ2, p2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
3.94 4.33 0.84 1.05 6.34 1.82 10.28 7.57

μ 0.25 rn(c1) 0.31

Tservice Tincome Tvacation

[sec] 3.95 2.03 19.41

Scenario 7
EC simulation was performed for Tincome to be (if possible) 0.5[sec], what means
that requests are incoming to the server 2 times in every second. This situation
is describing an extensively used networking system. Positioning is performed to
achieve also lowest possible cost of work. Research results are shown in Table 7.

Table 7. Optimal EC calculated parameters λ1, λ2, p2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
26.60 23.90 1.10 0.90 12.18 1.04 5.87 5.26

μ 0.76 rn(c1) 0.30

Tservice Tincome Tvacation

[sec] 1.32 0.50 11.16

Scenario 8
EC simulation was performed for Tincome to be (if possible) 1[sec], what means
that requests are incoming to the server once in every second. Positioning is per-
formed to achieve also lowest possible cost of work. Research results are shown
in Table 8.

Table 8. Optimal EC calculated parameters λ2, p1, p2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
7.27 2.52 1.22 1.63 2.74 1.18 1.76 5.78

μ 0.62 rn(c1) 0.36

Tservice Tincome Tvacation

[sec] 1.62 0.84 4.99

Scenario 9
EC simulation was performed for Tincome to be (if possible) 0.5[sec], what means
that requests are incoming to the server 2 times in every second. This situation
is describing an extensively used networking system. Positioning is performed to
achieve also lowest possible cost of work. Research results are shown in Table 9.
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Table 9. Optimal EC calculated parameters λ2, p1, p2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
14.59 3.96 1.03 6.34 2.18 0.64 4.48 2.97

μ 2.74 rn(c1) 0.33

Tservice Tincome Tvacation

[sec] 0.36 0.31 4.83

Scenario 10
EC simulation was performed for Tincome to be (if possible) 2[sec], what means
that requests are incoming to the server once in every 2 seconds. Positioning
is performed to achieve also lowest possible cost of work. Research results are
shown in Table 10.

Table 10. Optimal EC calculated parameters λ2, p1, p2 and lowest value of (12)

λ1 λ2 α1 α2 p1 p2 q1 q2
10.09 2.17 0.99 0.56 3.95 1.68 4.06 6.88

μ 3.74 rn(c1) 0.20

Tservice Tincome Tvacation

[sec] 0.27 1.16 16.33

3.1 Conclusions

Positioned network model was simulated in situations with predefined time of
service or time of income. It reflects situations when traffic in the network is
heavy and system must serve many requests. Presented EC research have given
results for positioning of simulated system in predefined situations with lowest
possible costs of work. Application of EC helps to solve and optimize even very
complicated mathematical models, like in this paper. Here the model of service
was built and solved using integral, differential and recursive equations, as pre-
sented in [4] and [31] in Wolfram Mathematica 9.0. Resulting equations were
used for EC simulation and positioning of system parameters in predefined situ-
ations of traffic represented in different operation times. EC is powerful tool to
solve complicated models where common methods are inefficient. They calculate
given criteria functions very fast with appropriate accuracy. Moreover they are
simple to implement in different programming languages (here in Java).

4 Final Remarks

In the article, we have examined newly proposed method for QS simulation and
positioning (see [4] or [31]). EC methods like GA or ES are useful in simulation
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or positioning of different types of objects. They help to collect representative
samples, which can be used by AI decision support systems. EC methods help
to simulate complicated objects and because of EC free design, calculations
are possible even in discontinuous spaces. Conducted experiments confirm EC
usefulness to simulate examined object in many possible scenarios represent-
ing common situations in reality. An important restriction is only to carry out
enough simulations to determine the best possible description of the object we
simulate. Next research will be performed to prepare and examine implemen-
tations of other EC methods, like heuristics or nature inspired algorithms, in
positioning of similar objects.
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490 M. Woźniak et al.

10. Jiang, F.C., Huang, D.-C., Yang, C.-T., Wang, K.-H.: Mitigation techniques for the
energy hole problem in sensor networks using N-policy M/G/1 queueing models.
In: Proceedings of the IET International Conference: Frontier Computing. Theory,
Technologies and Applications, Taichung, August 4-6 (2010)

11. Jiang, F.-C., Huang, D.-C., Yang, C.-T., Leu, F.-Y.: Lifetime elongation for wireless
sensor network using queue-based approaches. The Journal of Supercomputing 59,
1312–1335 (2012)

12. Kella, O.: Optimal control of the vacation scheme in an M/G/1 queue. Operations
Research Journal 38(4), 724–728 (1990)

13. Kempa, W.M.: The virtual waiting time in a finite-buffer queue with a single
vacation policy. In: Al-Begain, K., Fiems, D., Vincent, J.-M. (eds.) ASMTA 2012.
LNCS, vol. 7314, pp. 47–60. Springer, Heidelberg (2012)

14. Kempa, W.M.: On departure process in the batch arrival queue with single vacation
and setup time. Annales UMCS Informatica 10(1), 93–102 (2010)

15. Kempa, W.M.: Characteristics of vacation cycle in the batch arrival queuing sys-
tem with single vacations and exhaustive service. International Journal of Applied
Mathematics 23(4), 747–758 (2010)

16. Kempa, W.M.: GI/G/1/∞ batch arrival queuing system with a single exponential
vacation. Mathematical Methods of Operations Research 69(1), 81–97 (2009)

17. Kempa, W.M.: Some new results for departure process in the MX/G/1 queuing
system with a single vacation and exhaustive service. Stochastic Analysis and Ap-
plications 28(1), 26–43 (2009)

18. Lillo, R.E.: Optimal operating policy for an M/G/1 exhaustive server-vacation
model. Methodology and Computing in Applied Probability 2(2), 153–167 (2000)

19. Ma, D., Er, M., Wang, B., Lim, H.: A novel approach toward source-to-sink distance
estimation in wireless sensor networks. IEEE Communications Letters 14(5), 384–
386 (2010)

20. Ma, D., Er, M., Wang, B.: Analysis of Hop-Count-Based Source-to-Destination Dis-
tance Estimation in Wireless Sensor Networks With Applications in Localization.
IEEE T. Vehicular Technology 59(6), 2998–3011 (2010)

21. Mancuso, V., Alouf, S.: Analysis of power saving with continuous connectivity.
Computer Networks Journal 56, 2481–2493 (2012)

22. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, New York (1996)

23. Niu, Z., Takahashi, Y.: A finite-capacity queue with exhaustive vacation/close-
down/setup times and Markovian arrival processes. Queueing Systems 31, 1–23
(1999)

24. Niu, Z., Shu, T., Takahashi, Y.: A vacation queue with setup and close-down times
and batch Markovian arrival processes. Performance Evaluation Journal 54(3),
225–248 (2003)
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1 Introduction

The term “chaos” covers a rather broad class of phenomena whose behavior
may seem erratic, chaotic at first glance. Till now was chaos observed in many
of various systems (including evolutionary one) and in the last few years is also
used to replace pseudorandom number generators (PRGNs) in evolutionary algo-
rithms (EAs). Lets mention for example research papers like [4] (a comprehensive
overview of mutual intersection between EAs and chaos is discussed here), one
of the first use of chaos inside EAs [5], [6] - [8] discussing use of deterministic
chaos inside particle swarm algorithm instead of PRGNs, [12] - [13] investigating
relations between chaos and randomness or the latest one [14], [15], [11] and [10]
using chaos with EAs in applications, amongst the others. A lot of researchers
tried to less or more successfully replace PRGNs by different generators, usu-
ally based on deterministic chaos. For example research joining deterministic
chaos and pseudorandom number generator has been done for example in [12].
Possibility of generation of random or pseudorandom numbers by use of the
ultra weak multidimensional coupling of p 1-dimensional dynamical systems is
discussed there. Another paper [9] deeply investigate logistic map as a possible
pseudo-random number generator and is compared with contemporary pseudo-
random number generators. A comparison of logistic map results is made with
conventional methods of generating pseudorandom numbers. The approach used
to determine the number, delay, and period of the orbits of the logistic map at
varying degrees of precision (3 to 23 bits).

Used EAs (we do not discuss here special cases, modified for special experi-
ments) of different kind like genetic algorithms [20], differential evolution [17],
particle swarm [21], SOMA [16], scatter search [18], evolutionary strategies [19],
etc... do not analyze whether used pseudo-random numbers are really random
one and do not use information about its randomness. Random numbers are
only simply used. On the other side, as demonstrated in mentioned references,
EAs powered by deterministic chaotic systems (DCHS) gives the same or of-
ten better performance. Because DCHS can generate periodical series (upon to
the final numerical precision) it is obvious that EAs performance shall be from
certain numerical precision of DCHS comparable with performance of classical
EAs.

This publication is focused on use of n periodic deterministic series (generated
by deterministic chaos systems), that are used inside evolutionary algorithms in-
stead of pseudorandom number generator. The first set of proposed experiments
here is reported in [1] (periodicity of chaotic systems and its use with differen-
tial evolution has been demonstrated on Schwefel function), then in [2] (detail
description how periodicity is generated by chaos systems) and in [3] which is
extension of the [1] for SOMA algorithm. Also in in [26] is discussed extended
version of used of DCHS in EAs. this paper we used differential evolution (DE-
Rand1Bin) and SOMA (AllToOne) algorithms with functions Griewangk Ras-
trigin to more closely demonstrate convergence (based on our previous papers
[1], [2], [3] and [26]) of used EAs powered by non-random generators.
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2 Experiment Design

Experiments done in this research are based on [2] where it is reported how
existence of periodicity generated by deterministic chaos systems depends on
numerical precision (numbers behind decimal point) and are using n period-
ical time series generated by chaotic systems with given numerical precision
inside EAs instead of PRGNs. The test functions used for our experiments were:
Griewangk (Eq. (1)), (Rastrigin (Eq. (2)). Experiment with each function has
been repeated 20× and statistical properties were calculated. Part of them (due
to limited space of this paper) are reported in tables and one figure.

1 +

D∑
i=1

x2i
4000

−
D∏
i=1

cos(
xi√
i
) (1)

2D

D∑
i=1

x2i − 10 cos(2πxi) (2)

In this part the central object of this study is simple logistic equation (Eq.
3). Several experiments were performed and some figures, exhibiting results,
were generated, showing how depend periodicity of deterministic chaos system
on numerical precision, see for example [1] and extended versions in [2] and [3].
The table 1 show n periodicity of time series generated by deterministic chaos
systems. Also another chaotic generators of different mathematical description
can be used like Lozi ([2]), Henon, Ikeda or another like for example artificially
synthesized and reported in [4].

xn+1 = Axn (1− xn) (3)

The impact of the precision on the dynamics of logistic equation - map is such
that mapping function is ”converted” to the stepwise mapping function. That
is the source of the appearance of many periodic orbits, later on used in our
experiments [3].

Our experiments have been set so that periodical deterministic time series
based on deterministic chaos generators were used instead of PRNGs. Based
on the fact that numerical precision has impact on existence of periodicity in
deterministic chaos, we have selected logistic equation, Eq. 3, and data series
generated by this equation for numerical precisions from interval [1, 13] with
setting A = 4, see Tab. 1 which shows minimal and maximal period for cur-
rent setting and Fig. 1, Fig 2. Algorithms selected for our experiments were
differential evolution (DERand1Bin) [17] and SOMA [16].

2.1 Algorithm Setting

Setting of both algorithm is in Tab. 2. Based on this setting and algorithm
architecture it is easy to calculate how many times deterministic data series
(let call them pseudo-chaotic numbers - PCHNs) generated by DCHS have been
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Table 1. Periodicity dependance of Eq. 3 on various numerical precision. Table also
shows how many times was used n periodical series by DE and SOMA algorithm (up
to precision 13).

Numerical Precision Minimal Period Maximal Period Repeated in DE Repeated in SOMA

1 4 4 32500 43181
2 2 10 13000 17272
3 10 29 4482 5956
4 15 36 3611 4797
5 67 170 764 1016
6 143 481 270 359
7 421 758 171 227
8 1030 4514 28 38
9 2277 11227 11 15
10 2948 35200 3 4
11 9668 57639 2 2
12 65837 489154 0 0
13 518694 518694 0 0

used in EAs. Tab. 1 summarizes how many times were PCHNs repeatedly used.
All experiments were done in Mathematica 9, on MacBook Pro, 2.8 GHz Intel
Core 2 Duo. The main aim was not to compare mutual performance of
used algorithms but performance between the same algorithm using
PRNGs and PCHN, that is why we do not use cumber of cost function number
evaluations but simply migrations or generations.

Experiments were performed in an environment ofWolframMathematica, thus
we used the built-inMathematica software pseudo randomnumber generator. The
defaultMathematica SoftwarePRNG- extended cellular automaton generatorEx-
tended CA with default automatic setting was applied to represent traditional
pseudo-random number generator in comparisons, see http://reference.
wolfram.com/mathematica/tutorial/RandomNumberGeneration.html.

So in total 3120 (2 algorithms× 2 test functions × 20 repetitions× 13 different
numerical precisions) evolutionary experiments has been done. In each experi-
ment was PRNGs used on the start of Eq. 3 to set initial condition xstart ∈ [0, 1].
Remaining use of Eq. 3 was PRNGs free, i.e. PRNGs was not further in use.
Typical algorithm performance dependance on the precision is depicted on Fig.
3 and Fig. 4. It is visible that both algorithms are sensitive on precision up to
4-8 and then are comparable between themselves as well as between versions
with PRNGs and DCHS, see [1], [2] and [3].

3 Results

Here we discusses what impact n periodical time series generated by chaotic
systems (with given numerical precision) have inside EAs on its performance
and convergence and it is compared with EAs powered by PRGNs.
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Fig. 1. Periodical time series generated by DCHS (precision = 3) based on Eq. 3 for
A = 4, see Tab. reftablePeriodAlg.

Table 2. Algorithms setting

DERand1Bin SOMA AllToAll

NP 20 PopSize 20
Dimensions 20 Dimensions 20
Generations 500 Migrations 20
F 0.9 PRT 0.1
CR 0.3 PathLength 5

Step 0.11

Fig. 2. Periodical time series generated by DCHS (precision = 4) based on Eq. 3 for
A = 4, see Tab. reftablePeriodAlg.
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Fig. 3. An example: the performance
of DE and SOMA algorithms on
Griewangk’s function (Eq. (1)) with
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Fig. 4. An example: the performance of
DE and SOMA algorithms on Rastrigin’s
function (Eq. (2)) with dependance on
precision

Table 3. Summarization of all the best results of DE and SOMA algorithm

SOMA DE

Precision Griewangk Rastrigin Griewangk Rastrigin

1 7.99999. -376.187 8. -376.187
2 7.87547 1852.38 13.6861 2127.76
3 0.291183 -1927.14 1.56746 -1023.23
4 0.120748 -1949.25 1.23773 -920.347
5 0.0717273 -1961.73 0.437302 -1409.54
6 0.092951 -1965.82 0.274384 -1963.65
7 0.046194 -1990. 0.150767 1812.99
8 0.0865711 -1970.78 0.203421 -1994.35
9 0.0765879 -1969.65 0.112012 -1999.32
10 0.088343 -1981.46 0.106905 -1995.92
11 0.100957 -1990.46 0.134792 -1999.98
12 0.06444398 -1974.28 0.105057 -1999.98
13 0.0763352 -1971.21 0.16496 -1999.92

PRNGs 0.118099 -1953.17 0.1521 -1998.96

Results based on all experiments are reported in Tab. 3 and for demonstration
visualized, see example Fig. 3 and Fig. 4 for total overview. Tables contain the
best cost values and figures are selected for demonstration only. Results of the
DE and SOMA use are in the Table 3. The classical random case is reported
at the bottom of each table. In the figures 5 - 8 is depicted convergence of each
algorithm powered by PCHNs and can be easily compared to itself with PRGNs
version.
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Fig. 5. An example: the performance of DE algorithms on Griewangk’s function (Eq.
(1)) with dependance on precision.Solid (red) line is the behavior of DE powered by
non-random generator, dotted (black) is standard DE with pseudorandom number
generator.

0 5 10 15 20
0

1

2

3

4

5

6

Migrations

C
os
tV

al
ue

Precision 5

0 5 10 15 20
0

1

2

3

4

5

Migrations

C
os
tV

al
ue

Precision 6

0 5 10 15 20
0

1

2

3

4

5

Migrations

C
os
tV

al
ue

Precision 7

0 5 10 15 20
0

1

2

3

4

5

Migrations

C
os
tV

al
ue

Precision 8

Fig. 6. An example: the performance of SOMA algorithms on Griewangk’s function
(Eq. (1)) with dependance on precision.Solid (red) line is the behavior of DE powered
by non-random generator, dotted (black) is standard DE with pseudorandom number
generator.
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Fig. 7. An example: the performance of DE algorithms on Rastrigin’s function (Eq.
(2)) with dependance on precision.Solid (red) line is the behavior of DE powered by
non-random generator, dotted (black) is standard DE with pseudorandom number
generator.
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Fig. 8. An example: the performance of SOMA algorithms on Rastrigin’s function
(Eq. (2)) with dependance on precision.Solid (red) line is the behavior of DE powered
by non-random generator, dotted (black) is standard DE with pseudorandom number
generator.
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For the SOMA and DE use has been used numerical precision in DCHS to
generate PCHNs, see Tab. 1. In this Table 1 there is also recorded how many
times was n periodic series repeatedly used in each algorithm. It is visible that
in the frame of our experiments was enough to set numerical precision (bolded
in the Table 3) for SOMA and DE in order to get comparable results with
EAs powered by PRGNs. The bold values are the first appearance of the same
or better value. It is also visible that convergence speed is from precision 5-9
slightly better than convergence with EAs with PRNGs.

All results from both cases can be compared with EAs using only PRNGs.
When compared, then it is visible that PRNGs is less-more comparable with
deterministic process with suitable numerical precision. From Tab. 1 is visible
how many times was n periodic PCHNs used for given numerical precisions.

The results reported in Tab. 3 here are slightly different from [1], [2] and [3]
due to different algorithm setting.

4 Conclusion

The main motivation of the research in this paper is question it is possible to re-
place random number generators by deterministic periodic processes originated
in systems of deterministic chaos and what convergence of EA under investiga-
tion will be recorded. In this paper we have used deterministic generators inside
evolutionary algorithms (SOMA and differential algorithms) instead of pseudo-
random number generators and for comparison we used standard pseudo-random
number generator in WolframMathematica 9 in selected evolutionary algorithms
to compare efficiency of proposed and tested methods. Both algorithms were
tested on test functions: Griewangk (Eq. (1)) and (Rastrigin (Eq. (2)).

For different numerical precessions were generated periodic series; see Tab.
1, that were used instead of random ones. Based on the obtained results it
can be stated that at least in our case studies, all experiments exhibit fact that
random number generators can be replaced by deterministic processes with short
period (15 - 35200), with the repeated use in evolutionary algorithms with quite
big frequency (17272 - 4 times). Results of the best reached minimum of each
algorithm are also summarized in Tab. 3.

Despite the widely presumed fact that pseudo-random number generators has
to have as big period as possible (for example Mersenne twister with 219937− 1)
and such as the 232 common in many software packages, we demonstrate here
that deterministic periodical series, generated by DCHS, with period 67 - 11227
is enough for our experiments reported here.

Our further research is focused on more extensive and intensive testing on
another algorithms like scatter search [18], evolutionary strategies [19], genetic
algorithms [20], [24] or particle swarm [21]. Also novel algorithms will be tested
for its performance under our proposed approach in [22], [23] and alternative
methods of symbolic regression [25].

It is almost sure that better settings could be found for used algorithms in order
to get better results, but as written here, this paper was focused on performance of
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the same algorithm with different ”numerical engine” used to simulate or replace
random processes inside evolutionary algorithms.
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Abstract.  We propose a semantic kernel for Support Vector Machines (SVM) 
that takes advantage of higher-order relations between the words and between 
the documents. Conventional approach in text categorization systems is to 
represent documents as a “Bag of Words” (BOW) in which the relations be-
tween the words and their positions are lost. Additionally, traditional machine 
learning algorithms assume that instances, in our case documents, are indepen-
dent and identically distributed. This approach simplifies the underlying mod-
els, but nevertheless it ignores the semantic connections between words as well 
as the semantic relations between documents that stem from the words. In this 
study, we improve the semantic knowledge capture capability of a previous 
work in [1], which is called χ-Sim Algorithm and use this method in the SVM 
as a semantic kernel. The proposed approach is evaluated on different bench-
mark textual datasets. Experiment results show that classification performance 
improves over the well-known traditional kernels used in the SVM such as the 
linear kernel (one of the state-of-the-art algorithms for text classification sys-
tem), the polynomial kernel and the Radial Basis Function (RBF) kernel. 

Keywords: machine learning, support vector machine, text classification,  
higher-order paths, semantic kernel. 

1 Introduction 

Text categorization is a popular task which aims to label documents via using prede-
fined category labels. There are large amounts of textual data accumulated both in 
organizations and on the internet especially on social networks, microblogging sites, 
blogs, forums, new, etc. This huge set of documents continues to increase by the con-
tributions of millions of people every day. Automatically processing and extracting 
meaning from these increasing amounts of textual data is one of the most important 
problems for both research and commercial entities. The text classification plays a 
very important role in several popular and widely used applications such as document 
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filtering, sentiment classification, information extraction, summarization and question 
answering.When processing textual data, either in information retrieval or text classi-
fication; it is common to use the bag of words (BOW) feature representation. In this 
approach the documents are represented only by the occurrences or the frequencies of 
the words or terms independent from their positions in the document. Although this 
approach is very popular due to its simplicity, it has several drawbacks. First of all, it 
breaks multi-word expressions into pieces, secondly it treats synonymous words as 
different terms; and thirdly it treats polysemous words (i.e., words with multiple 
meanings) as one single component, as it is mentioned in [2]. However, in order to 
enhance the prediction capabilities of text classification algorithms, it is important  
to benefit from the semantic relations between the words and even between the  
documents.  

In this study, we introduce a new kernel for Support Vector Machines (SVM) 
called Normalized Iterative-Higher-Orders Semantic Kernel (N-IHOSK) which is 
based on higher-order paths between documents as well as the terms. Our approach is 
motivated by the studies of higher-order Naïve Bayes [3], [4] and Higher-Order 
Smoothing [5], [6] which makes use of the higher-order paths between terms, and 
recently introduced work of [7] which focus on the higher-order paths between docu-
ments. In this study, we improve the semantic knowledge capture capability of a pre-
vious work in [1], which is called χ-Sim algorithm and use this method in the SVM as 
a semantic kernel. Our target is to capture latent semantic information between the 
terms and between the documents. In our experiments, our proposed framework is 
compared with other traditional kernel methods for SVM such as linear kernel, poly-
nomial kernel and Radial Basis Function (RBF) kernel. It is important to note that 
SVM with linear kernel is one the state of the art algorithms for text classification [8], 
[9]. These traditional kernels can be considered as first-order methods since their 
context is a single document and they model just the first-order co-occurrences of the 
terms. However, N-IHOSK can make use of the higher-order paths that include sever-
al different terms and documents in the context of the whole dataset. Our experiments 
running the N-IHOSK on several benchmark datasets show that the classification 
performance of SVM improves considerably over the first-order kernels. 

The remainder of the paper is organized as follows: background information and 
related work including the SVM, semantic kernels and higher-order paths are summa-
rized in Section 2. Section 3 presents and analyzes the proposed kernel for text classifi-
cation algorithm. The experiment setup and corresponding results including some  
discussion points are given in Section 4. Finally, in Section 5 we provide the conclu-
sion and the future work.  

2 Background Information and Related Work 

2.1 Support Vector Machines for Classification Problem 

The SVM in general is a linear classifier which finds the optimal separating hyper-
plane between the classes. It is possible to use a kernel function in SVM which can 
map the data into a higher dimensional feature space if it is not possible to find a 
hyperplane in the original space [8]. We can consider a kernel function as a kind of 
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similarity function, which can give the similarity of data points in the original space. 
Therefore, defining a suitable kernel is a direct way of finding a good representation 
of these data points as it is mentioned in [2], [10] and [11]. The SVM algorithm which 
is first introduced by Vapnik, Guyon and Boser [12] in 1992, has become one of the 
popular algorithms in real-world-problems producing good accuracies even with  
high-dimensional and sparse data [8].  Although the SVM is a binary classifier by its 
nature, it can be used for multi-class categorization using “one-against-the-rest” or 
“one-against-one” strategies [13]. Because of these benefits the SVM with linear ker-
nel is one of the state of the art algorithms in text classification domain since textual 
data represented using BOW approach is very high-dimensional and quite sparse. 
Thus, considering the nature of the text classification (high-dimensional and sparse 
data), we decided to design a higher-order semantic kernel for SVM.  

2.2 Semantic Kernels for Text Classification 

According to the definition mentioned in [12], [10], and [2] and [14], any function in 
the following form (Eq.1) is a valid kernel function. 

= )(),(),( 2121 ddddk φφ                           (1) 

In Eq.1, d1 and d2 are input space vectors and φ  is a suitable mapping from input 
space into a feature space. 

In [10], Siolas et al. propose a semantic kernel which is based on WordNet [15], 
which could be seen as a semantic network, for getting the term similarity information. 
In their work an estimation of two words semantic relation is supplied by WordNet’s 
hierarchical tree structure. The authors in [10] have included this knowledge into the 
definition of Gaussian kernel. Their results show that the existence of semantic proximi-
ty metric increases the classification accuracy in SVM [10]. However, their approach 
treats multi-word concepts as single terms and does nothing to handle polysemy.  

Semantic kernels with super concept declaration were studied in [14]. The aim of 
their work is to create a kernel algorithm which includes the topological knowledge of 
their super concept expansion. They apply this mapping with the help of a semantic 
smoothing matrix Q that is shown to be composed of P and PT which includes super-
concept information about their corpus. The proposed kernel function is given in Eq. 2.  

     TT dPPdddk 2121 ),( ⋅⋅⋅=                            (2) 

Their results show that they get a coherent progress in performance for super-concept 
semantic smoothing kernels in those cases in which little training data exists or the 
feature representations are highly sparse [14]. However their experiments were kept 
introductory and did not use a word sense disambiguation strategy. [14] 

Similarly, in [16] the WordNet is used as a semantic information resource. But 
they ([10], [14] and [16]) stated that the coverage of WordNet is not sufficient and as 
a result, several following studies focused on information sources of wider coverage 
such as Wikipedia1. 

                                                           
1 http://www.wikipedia.org/ 



508 B. Altinel, M.C. Ganiz, and B. Diri 

Wang et al. [2] combined the background knowledge gathered from Wikipedia into 
a semantic kernel for enriching the representation of documents. The similarity value 
between two documents in their kernel function formed as in Eq.3 where S is a se-
mantic matrix which is created as a composition of the contributions from Wikipedia, 
d1 and d2 are term-frequency vectors of documents d1 and d2, respectively. This com-
posed S matrix consists of three measures. First of them is a content-based measure 
which is based on the BOW representation of Wikipedia articles. Second measure is 
the out-link-category-based measure which gives an information related to the out-link 
categories of two associative articles [2]. Third measure is a distance measure that is 
calculated as the length of the shortest path connecting the two categories of two ar-
ticles belong to, in the acyclic graph schema of Wikipedia’s category taxonomy [2]. 

2121 ),( dSSdddk T ⋅⋅⋅=                       (3) 

Their method is stated to overcome the shortages of the BOW approach. Their results 
demonstrate adding semantic knowledge into document representation by means of 
Wikipedia improves the categorization accuracy. 

2.3 Iterative Higher-Order Relations between Words and Documents 

Illustration of using the higher-order paths is given in Table 1. There are three docu-
ments, d1, d2 and d3 which include sets of terms {t1, t2}, {t3} and {t2, t3} are depicted. 
With a classical similarity measure which uses the number of shared terms (e.g. the dot 
product), the similarity value between documents d1 and d2 (in Table 1) is calculated as 
zero since they do not share any terms. But in fact these two documents are similar to a 
certain degree through d3. So using a higher-order approach, it is possible to obtain a 
similarity value between d1 and d2 which is larger than zero. We can explain this phe-
nomenon with the statement that two documents are written about the same topic using 
two different but semantically closer sets of terms. In this case the terms belonging to 
each set frequently co-occur in other documents relating to this topic, forming a connec-
tion pattern which can be revealed by using second-order paths. 

Table 1. Illustration of Higher-Order Paths  

D t1 t2 t3 

d1 1 1 0 

d2 0 0 1 

d3 0 1 1 

 
In our study we are motivated by the work of [4] which uses higher-order paths be-

tween terms to exploit latent semantics and by the work of [1] which builds iterative 
higher-order-paths between documents and terms. In [1], the authors devise an itera-
tive method to learn the similarity matrix between documents using similarity matrix 
between terms and vice-versa. They build a co-similarity algorithm which is called  
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χ-Sim. The document similarity matrix is generated iteratively using SR (a similarity 
matrix between documents) and SC (a similarity matrix between terms). The major 
steps of their algorithm are described below: 

1. Initialize the similarity matrices SR (documents) and SC (words) with the iden-
tity matrix I. This is a reasonable starting point since similarity between a document 
(or a term) and itself equals one and it equals to zero in the other cases. They denote 
these matrices as SC0 and SR0. [1] 

2. At each iteration t, they calculate a new similarity matrix between documents 
SRt  by using the similarity matrix between words SCt-1 previously computed. They 
use the Hadamard product (denoted by “•”) in order to multiply their similarity values 
with normalized weights by the normalization matrix NR. [1] 

Their SRt and SCt formulas are given as  

  NR   ) D . SC . (D =SR T
1)-(tt •   with 

jd.d

1
 nr

i

ji, =       (4)   

  NC   ) D . SR . (D =SC T
1)-(tt •  with 

jd.d

1
 nc

i

ji, =           (5) 

where D is the document corpus, DT is the transpose of D matrix, SR is row (docu-
ment) similarity matrix, SC is column (word) similarity matrix, and NR and NC are 
row and column normalization matrices, respectively. They state that they repeat SRt 
and SCt calculations for a limited number of times such as t=4 [1]. 

3 Methodology 

In our approach, Dt is the data matrix having r rows (documents) and c columns 
(words) formed from the training set. In this matrix dij shows the occurrence frequen-
cy of the jth word in the ith document; di = [di1 .. dic] is the row vector representing the 
document i and dj = [d1j ..drj] is the column vector corresponding to word j. 

We also tried several term weighting methods. First of them is TF-IDF (Term Fre-
quency- Inverse Document Frequency) which is a statistical measure used to evaluate 
the importance of a word for a document in a corpus [17]. The formula for TF-IDF is 
given in Eq. 6. 

n

N
pdtIDFTF td log),( ×=−                  (6) 

where ptd equals the number of times that t occurs in document d, N is the number of 
documents in the corpus and n is the number of documents that term t occurs. Another 
weighting approach we tried is from Dumais’s research in [19]. In this approach, 
terms are represented in a document after multiplying by a value that is the global 
weight of the term in the whole corpus. The local weight of a term t in a document d 
is calculated as taking the log value of the total frequency of t in d. The global weight 
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of a term is the entropy of that term in the corpus and according to [19] the entropy 
equals                                    

)log(

)log(
1),(

1 N

pp
dtEntropy tdtd

N

i


=

−=                 (7) 

where N is the number of documents and ptd equals the number of times that t occurs 
in d divided by the total number of times that t occurs. 

However, since we get better accuracies for linear kernel with the only TF (Term-
Frequency) schema without any weighting, we use TF instead of TF-IDF or Entropy 
weighting approaches in our experiments for both linear kernel and our algorithm. 

We use our term-frequency document corpus for χ-Sim’s SC and SR similarity 
matrix calculations. We calculate up to four iterations. Similar to [1], we calculate 
SR0, SC0, SR1, SC1, SR2, SC2, SR3, SC3, SR4, SC4 matrices and after that we use 
these SC matrices, which contain iterative higher-order relations between terms, into 
our kernel by using Eq. 8: 

   TT
IHOSK dSSdddk 2121 .),( ⋅⋅=                         (8) 

where KIHOSK (d1, d2) is the similarity value between documents d1 and d2 , S is a se-
mantic matrix which is gathered from the previously mentioned calculations of SC2  

and  d1 and d2 are term-frequency vectors of  the documents. The S is a semantic 
matrix is based on iterative higher-order paths between documents and between 
terms. This kernel function means that the transformation of a document vector from 
input space to a feature space can be done by multiplying it with a semantic matrix as 
given in Eq.9: 

    Sdd ⋅= 11 )(φ  and TT dSd 22 )( ⋅=φ                     (9) 

In Eq.9.  )( 1dφ and )( 2dφ are the transformations of document vectors d1 and d2 

from their original input space into the feature space as required in the definition of 
kernel which is mentioned in Section 2. 

After performing experiments up to four iterations of SC matrices, we conclude 
that the best results are obtained with the second iteration matrices (SR2, SC2). The 
following experimental results section reflects the results of our approach using these 
matrices. 

Since we work with textual datasets which are high dimensional and highly sparse, 
we think that it is possible to benefit from normalization methods which could be 
applied on the similarity matrices. We experiment with several matrix normalization 
methods including row-level normalization (dividing each value in a row by the max-
imum value in that row), column-level normalization (dividing each value in a col-
umn by the maximum value in that column), document-length normalization (dividing 
each term frequency in a row with the corresponding documents length) and several 
other techniques which are used and explained in [9] (e.g., complement, weight nor-
malization ) and also some common methods from the literature which are explained 
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in [18] such as z-score normalization, min-max normalization, etc. We obtained best 
accuracy results with length normalization which is defined in Eq.10.  

||.||

),(IHOSK 
),(IHOSK -...1,

ji

ji
ji dd

dd
ddNrji =∈∀  (10) 

In Eq. 10, r is the number of documents in our corpus, IHOSK is similarity value 
between documents di and dj, N-IHOSK is the normalized similarity value of these 
documents di and dj and |di| and |dj| are the lengths of these documents depending on 
the number of terms they have, respectively.  

Then, we use this kernel function in SVM by plugging in the SMO WEKA’s [21] 
implementation. In other words we built such a kernel function that is directly appli-
cable in Platt’s SMO (Sequential Minimal Optimization) [22] learner.  

4 Experiment Setup 

In order to examine the performance of N-IHOSK in SVM, we run it on several 
commonly used textual datasets. We use a variant of 20 Newsgroups dataset which is 
called 20News-188282. This dataset has hierarchical class labels consist of four main 
groups namely SCIENCE, POLITICS, RELIGION and COMP and a total of 20 
groups under them. We use the POLITICS and SCIENCE subsets of 20News-18828 
dataset which consist of 3 classes and 4 classes, respectively. These subsets are also 
used in [3] and [4] for evaluating another higher-order classifiers HONB and 
HOSVM. We also make our experiments with COMP and RELIGION subsets of 
20News-18828 dataset which are composed of 5 classes and 4 classes, respectively. 
Our third dataset is five-class version of the WebKB2 dataset, namely WEBKB5, 
which includes web pages collected from computer science departments of different 
universities. It is important to note that while 20News-18828 subsets include the same 
number of documents in each class, WebKB5 dataset has a highly skewed class dis-
tribution. Fourth dataset we use is Mini-NewsGroups3 dataset which has 20 classes.   
Properties of these datasets are given in Table 2. 

We apply stemming and stopword filtering to the datasets. Terms occur less than 
three times in the documents are filtered. Furthermore, we used Information Gain in 
order to select most informative 2000 terms. This preprocessing increase the perfor-
mance of the classifier models by reducing the noise.  

In order to observe the behaviors of our semantic kernel under different training set 
size conditions, we use the following percentage values for training set size; 5%, 
10%, 30%, 50%, 70%, 80% and 90%. Remaining documents are used for testing. 

                                                           
2 http:// www.cs.cmu.edu/~textlearning 
3 http://archive.ics.uci.edu/ml/ 
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Table 2. Properties of Datasets 

Dataset #classes #instances #features 

WEBKB5 5 4,336 12,841 
20NewsGroup    
    20News-SCIENCE   

  20News-POLITICS 
4 
3       

2,000 
2,500      

2,225 
2,478 

    20News-RELIGION  
    20News-COMP 
Mini-NewsGroups 

4 
5 
20 

1,500 
2,500 
2,000 

2,125 
2,478 
12,112 

 
One of the most important parameter of SMO [21] algorithm is misclassification-

cost (C) parameter. We performed a series of exhaustive optimization trials on all of 
our datasets with the values in the set of {10-2, 10-1, 1, 101, 102 }. For every training-
set value of our all datasets we performed these optimization experiments and we 
selected the best performing value of that training-set of the corresponding dataset. 
After getting best performing C values for linear kernel which is our baseline algo-
rithm at each training-set value we also use those C values for our proposed kernels of 
N-IHOSK, too. Optimized C values for each dataset are shown in Table 3. 

After running algorithms on 10 random splits for each of the training set percen-
tages with their corresponding optimized C values, we report average of these 10 
results as in [4] and [6].  This is a more comprehensive way of well-known classical 
k-Fold cross validation which divides the data into k sets and train on k-1 of them 
while the remaining used as  test set. However, the training set size in this approach 
is fixed (for instance it is %90 in 10-fold cross validation) and we cannot analyze the 
performance of the algorithm under scarce labeled data conditions. It is prohibitively 
expensive to obtain large amounts of labeled data in many real world applications and 
therefore it is important to develop methods that perform better with small training 
sets.    

Table 3. Optimized C Values for Our Datasets 

TS 
% 

Optimized C  
Values for 
20News  
SCIENCE 

Optimized C 
Values for 
20News  
POLITICS  

Optimized C 
Values for 
WEBKB5 

Optimized C  
Values for 
MINI- 
NEWSGROUP  

 5 
10 

1 
1 

10-1 

10-1 
1 
1 

1 
1 

30 1 10-1 1 102 
50 1 10-1 1 102 
70 1 1 1 102 
80 1 1 1 102 
90 1 10-1 1 101 
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We run our experiments using our experiment framework called Turkuaz which 
closely uses WEKA [21] library. The main evaluation metric in our experiments is 
accuracy and in the results tables we also provide standard deviations. Additionally, 
Students t-Tests for statistical significance are provided. We use α = 0.05 significance 
level which is a commonly used level. In order to highlight the performance differ-
ences between baseline algorithms and our approach we report performance gain 
calculated using the simple formula in Eq. 11;                      

 
x

xIHOSKN
IHOSKN P

PP
Gain

)( −= −
−   (11) 

where P N-IHOSK is the accuracy of SMO with N-IHOSK and Px stands for the accuracy 
result of the other kernels (linear, polynomial or RBF). The experimental results are 
demonstrated in Table 4, Table 5, Table 6 and Table 7. These tables include training 
set percentage (TS), the accuracy results of linear kernel, polynomial kernel, RBF 
Kernel and N-IHOSK. Also the last columns show the (%) gain of N-IHOSK over 
linear kernel calculated as in Eq. 11. 

5 Experiment Results 

According to Table 4, N-IHOSK outperforms our baseline kernel (linear kernel, 
which is one of the state-of-the-art kernels in text classification [8], [9]) by extensive 
boundaries in all training set percentages. For instance at training levels 30%, 50% 
and 70% the accuracies of N-IHOSK are 94.31%, 94.97% and 95.35% while the  
accuracies of linear kernel are 86.73%, 88.94% and 90.37% ,respectively. The per-
formance gain is obvious at all training set levels. It is important to note that high 
performance gains are especially visible at low training set levels. For instance at 
training levels 5%, and 10% N-IHOSK outperforms linear kernel with the gains of 
18.64% and 16.25%, respectively. As mentioned above, this performance is of great 
importance since usually it is difficult and expensive to obtain labeled data in real 
world applications.  

Table 4. Accuracy of Different Kernels on 20News SCIENCE Dataset with Varying Training 
Set Size 

TS  
% 

SMO-  
linear kernel 

SMO- 
polynomial kernel  

SMO-  
RBF Kernel 

SMO-       
N-IHOSK 

Gain 

 5 
10 

70.93±3.89 
77.74±3.52 

45.65±3.23  
55.77±4.73 

49.16±3.78 
51.72±4.64 

84.15±2.87  
90.37±0.81 

18.64 
16.25 

30 86.73±1.32 70.34±2.43 59.19±1.03 94.31±1.09 8.74 
50 88.94±1.16 76.42±0.99 63.60±1.80 94.97±0.90   6.78 
70 90.37±0.93 79.57±2.00 66.82±1.97 95.35±0.88  5.51 
80 91.25±1.56 81.60±2.13 68.15±1.78 96.23±1.19  5.46 
90 91.15±1.73 81.40±2.58 68.45±3.06 96.85±1.70  6.25 
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Table 5. Accuracy of Different Kernels on 20News POLITICS Dataset with Varying Training 
Set Size 

TS  
% 

SMO-  
linear kernel 

SMO- 
polynomial kernel 

SMO-  
RBF Kernel 

SMO-       
N-IHOSK 

Gain 

 5 
10 

78.33±3.40 
84.66±2.09 

56.69±6.79 
62.45±6.67 

55.74±6.43 
65.33±3.96 

82.27±4.60  
88.61±2.1 

5.03 
4.67 

30 91.98±1.24 83.30±4.57 80.34±4.05 93.61±1.08 1.77 
50 91.21±0.89 89.43±2.03 87.95±2.18 93.55±3.58 2.57 
70 92.29±1.22 91.02±1.50 87.84±1.79 93.24±3.08 1.03 
80 93.7±0.79 90.77±1.50 88.5±1.12 95.3±1.82 1.71 
90 93.69±2.04 92.2±1.81 89.8±2.18 95.8±2.28 2.25 

 
On 20News POLITICS dataset, N-IHOSK gives better accuracies than linear ker-

nel in all of the training levels which can be observable from Table 5.  
 Very similar situations are observed on the other subgroups of 20NewsGroup, 

namely RELIGION and COMP. In all training set levels N-IHOSK outputs higher 
accuracies compare to the baseline kernel. Since we got very similar and parallel out-
comes we cannot provide their result-tables based on the reality of the space limita-
tion here. 

Same trend can be seen for WEBKB5 dataset which has a highly skewed class dis-
tribution. In this dataset again our algorithm N-IHOSK outperforms than all of the 
kernels including linear kernel, polynomial kernel and RBF Kernel. This can be seen 
in Table 6. 

Table 6. Accuracy of Different Kernels on WEBKB5 Dataset with Varying Training Set Size 

TS 
 % 

SMO-  
linear kernel 

SMO- 
polynomial kernel 

SMO-  
RBF Kernel 

SMO-   
N-IHOSK 

Gain 

 5 
10 

72.77±1.43 
79.12±2.18 

60.63±2.90 
78.09±1.22 

49.05±1.39 
74.69±2.44 

76.12±1.39  
82.41±2.32 

4.60 
4.16 

30 86.10±1.52 85.21±1.16 81.67±1.53 88.27±1.62 2.52 
50 90.16±1.11 86.61±0.56 85.55±1.41 91.89±1.08 1.92 
70 90.60±1.93  87.20±1.52 86.07±1.36 92.31±1.41 1.89 
80 91.00±1.45 88.73±1.82 86.57±1.01 93.10±1.77 2.31 
90 91.93±2.52 90.00±1.86 88.33±2.34 93.13±1.54 1.31 

 
For us one of the most satisfactory results is observed in Mini-NewsGroups data-

set. This dataset has the largest number of classes. Again in all training levels starting 
from 5% up until 90% N-IHOSK gives higher accuracies than other kernels. This can 
be seen from Table 7. This is especially obvious at 5% training level; the performance 
gain of N-IHOSK on linear kernel is 17.79%  
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Table 7. Accuracy of Different Kernels on Mini-NewsGroups Dataset with Varying Training 
Set Size 

TS 
 % 

SMO-  
linear kernel 

SMO- 
polynomial kernel 

SMO-  
RBF Kernel 

SMO-   
N-IHOSK 

Gain 

  5 
10 

52.03±5.95 
59.31±4.58 

41.21±1.27 
51.31±2.37 

38.61±3.18 
50.21±4.48 

61.29±1.03 
64.15±0.54 

17.79 
 8.16 

30 72.61±4.23 68.33±3.23 66.33±4.13 75.51±0.31  4.00 
50 76.02±4.24 70.12±3.14 67.06±3.34 79.24±0.31  4.24 
70 77.61±2.76 75.80±2.66 70.40±1.26 79.73±0.45  2.73 
80 80.70±2.20 76.83±1.20 71.83±2.10 83.05±0.58  2.91 
90 83.25±4.05 77.55±4.65 72.15±2.35 85.38±1.28  2.56 

 
The particularly high accuracies of the proposed method on 20News-SCIENCE da-

taset may be explained with the less average sparsity of the documents of this dataset 
compare to the other datasets. It is possible that having more terms in documents of 
this dataset give us the opportunity to generate more higher-order paths between doc-
uments.  

At small training data levels first-order methods give zero as the similarity of two 
documents that do not contain common words. But by the use of higher-order paths 
the similarity between those two instances can be larger than zero. We think that this 
is the main reason that the difference between N-IHOSK and other first-order kernels 
(linear kernel. polynomial kernel and RBF Kernel) is most visible at small training 
levels like 5% and 10%. Through the experiments we observed remarkable gains such 
as 18.64%, 16.25%, and 17.79% at only using 5% and 10% of the labeled data as 
training set. This has important implications on real world applications where the 
labeled data is generally difficult to obtain. In many real world applications serious 
costs are associated with the labeling of the data. 

6 Conclusion 

It has been shown that higher-order co-occurrence relations between documents and 
terms catch “latent semantics” and result higher accuracies in text classification area 
[1], [3], [20] and [4]. Motivated by these studies, we propose a semantic kernel for the 
SVM named N-IHOSK. N-IHOSK exploits the semantic information in higher-order 
paths between documents as well as the higher-order paths between terms based on 
the methodology in [1]. We have performed detailed experiments on several popular 
textual datasets and compared N-IHOSK with traditional SVM kernels including state 
of the art linear kernel for text classification. Experiment results show that N-IHOSK 
outperforms the linear kernel, polynomial kernel, and RBF in all of our datasets under 
different training set size conditions. Our results show the usefulness of N-IHOSK as 
a semantic kernel for SVM in text classification. 

As future work, we want to analyze the improved performance of N-IHOSK. Espe-
cially, we would like to shed light into if and how our approach implicitly captures 
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semantic information such as synonyms and word sense disambiguation when calcu-
lating similarity between documents. Additionally, we plan to get more observations 
about under what type of conditions N-IHOSK performs better than other algorithms.  

Acknowledgments. This work is supported in part by The Scientific and Technologi-
cal Research Council of Turkey (TÜBİTAK) grant number 111E239. Points of view 
in this document are those of the authors and do not necessarily represent the official 
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Abstract. The article refers to the problem of regression functions es-
timation in the points situated near the edges but outside of function
domain. We investigate the model yi = R (xi) + εi, i = 1, 2, . . . n, where
xi is assumed to be the set of deterministic inputs, xi ∈ D, yi is the set
of probabilistic outputs, and εi is a measurement noise with zero mean
and bounded variance. R(.) is a completely unknown function. In the
literature the possible ways of finding unknown function are based on
the algorithms derived from the Parzen kernel. These algorithms were
also applied to estimation of the derivatives of unknown functions. The
commonly known disadvantage of the kernel algorithms is that the er-
ror of estimation dramatically increases if the point of estimation x is
approaching to the left or right bound of interval D. Algorithms on pre-
dicting values in the boundary region outside the function domain D are
unknown for the author, so far.
The main result of this paper is a new algorithm based on integral

version of Parzen methods for local prediction of values of the function R
near boundaries in the region outside domain. The results of numerical
experiments are presented.

1 Introduction

In literature various nonparametric algorithms have been proposed for mod-
elling and classification in stationary [2-5], [11], [31-32], [38-39], [42-44], quasi-
stationary [33], [36] and time-varying [12], [23], [34], [37], [45-46] environments.

The article refers to the problem of regression functions estimation in the
points situated near the edges but outside of function domain. We investigate
the model of type yi = R (xi) + εi, i = 1, 2, . . . n, where xi is assumed to be the
set of deterministic scalar inputs, xi ∈ D, yi is the set of probabilistic outputs,
and εi is a measurement noise with zero mean and bounded variance. R (.) is a
completely unknown function. There is no assumption neither on its shape (like
e.g. in the spline methods) nor on any mathematical formula depending on a set
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of parameters to be found (like in parametric approach). This article considers
an approach known from literature as a nonparametric estimation. One of the
possible approaches of finding unknown function is based on the Parzen kernel
[3], [8-9], [53] or methods derived from orthogonal series [30], [44]. There are
known some works using these algorithms for estimation of function derivatives
as well [9], e.g. for modelling of objects or processes described by spatial differen-
tial equations [4], [38]. Let us mention that the Parzen kernel methods are much
more often applied and analysed for estimation of probability density functions
and/or regressions with probabilistic inputs than for deterministic case.

Applications based on above method bring satisfying results when the es-
timate is taken in the interior of the function R (.) domain, i.e. the error of
estimation dramatically increases if the point of estimation x is approaching to
the left or right bound of interval D in which measurements of R were taken, de-
pending on some smoothing parameter an. This phenomenon could be explained
generally by insufficient amount of measurement information in the boundary
regions. Thus the condition (ii) in equation (2) (see Section 2) imposed on the
integral of the kernel function is not satisfied.

There are a lot of efforts to solve the above problem in the boundary re-
gions. The first are taken by Gasser et al. [8-9], followed by Müller [24] and
Schuster [53]. In the last years we may observe that several authors still try to
improve the previous results, e.g. Karunamuni et al. [15-16], Kyung-Joon et al.
[19], Poměnková-Dluhá [29], Chen [1], Hazelton et al. [13], Zhang et al. [58-59].
Original method of estimation of the function values exactly in the edge points
were proposed by Galkowski in [7].

The main result of this paper is an algorithm based on integral version of the
Parzen methods, combined with the work [7] and Taylor’s theorem (see e.g. [54]).
It can be used for the estimation of values of function R in the local boundaries
outside the domain D. This method may be applied for local extension and/or
prediction of functions, and could be helpful e.g. in the problem of forecast-
ing energy consumption or many economical issues. The numerical experiment
results have been presented.

2 Preliminaries

Nonparametric algorithms for estimation of unknown function R (.) based on
the Parzen kernel have the form:

R̂n (x) =
1

an

n∑
i=1

yi

∫
Di

K

(
x− u
an

)
du (1)

where K (.) is the kernel function described by (2), an is a smoothing parameter
depending on the number of observations n. Assume that the measurements
yi are taken from the interval D = [0, 1]. In the experiment the interval D is
partitioned into n disjunctive segments Di such that ∪Di = [0, 1] , Di ∩Dj = ∅
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for i �= j. The measurement points xi are chosen from Di, i.e.: xi ∈ Di. Kernel
function should be chosen to satisfy the following conditions:

(i) K (t) = 0, for t /∈ (−τ, τ) , τ > 0,
(ii)

∫ τ
−τ
K (t) dt = 1

(iii) |K (t)| <∞

⎫⎬⎭ (2)

In literature (see e.g. [2] [3] [8]) one may find theorems on convergence of
algorithm (1) - in the mean-square sense or with probability 1. One of the stan-
dard assumptions of these theorems is that max |Di| tends to zero if n tends to
infinity. This guarantees an uniform representation of function R in domain D
during the measurement experiment - in the presence of noise εi. Furthermore,
we trust that in the set of pairs (xi,yi) there is - encoded somehow - the in-
formation on properties of function R, like its smoothness, possible trends, etc.
Thesis of the theorems on convergence are formulated for the points x in the
open interval i.e. x ∈ D = (0, 1). Our aim is at first to propose the estimate
of function R in the edge point of the domain D - let it be the right bound
x = 1 (without loosing the generality of the method for the left bound). This
problem is strictly related to the boundary effect studied in literature by a few
authors e.g. [21], [24], [58-59]. To solve this problem author applies the original
algorithm suggested in previous works [6-7]. In the next section we present a
proposition, based on former method for estimation of the extension of function
R in the points placed in the near boundary - but behind it (x > 1), i.e. outside
the domain interval.

3 The Negative-Mirror-Shifted (NMS) Algorithm for
Estimation of Edge Values of Functions

The fundamental problem in forecasting of data outside the interval D is at first
to estimate the edge value in the point x = 1.

Several works describe methods of improving the boundary phenomenon.
Some of them are using artificially expanded set of data e.g. by multinomial
extension of function [58-59], or by mirrored reflection of data [21], [53], also by
using modified kernel functions in the boundary region [1], [8-9], [15-16], [19].
Mirrored reflection of data is equivalent to assumption that the estimated func-
tion has local extreme (minimum or maximum) in the edge point (x = 0 or
x = 1). Consequently that means that the first derivative of function R(.) is
equal to zero in the edge point. Of course, this is a strong limitation of class of
considered functions.

The main idea of the procedure is based on using of auxiliary set of points
obtained by the special method of reflection of data points relatively to the
edges. For better understanding, without loss of generality, at first we shall
construct the expansion of function R(.) in the left boundary (x = 0). In the next
section algorithm will be used in the analogous way in the opposite boundary
(x = 1) of the interval D - right-hand extension is better seen as a ”predicted” or
”extended” value. The reflection is named ”negative” and additionally ”shifted”
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with a properly selected constant. The negative-mirror-shifted (NMS) algorithm
is detailed in subsequent part.

Assume that function R(.) is extended beyond the left edge x = 0, in the
expanded interval [-1,1] by definition as follows:

R̃ (x) =

{
R(x) for x ∈ (0, 1]

−R(−x) + 2S for x ∈ [−1, 0] (3)

Let us mention that this expansion is similar to the odd expansion of a function
defined in finite interval in order to apply the Fourier series theorem.

The essential problem is to determine the shift value S. Let us define the
following loss function:

L (S) =
1∫

−1

[
R̂n (x, S)− R̃ (x, S)

]2
dx (4)

This function is a measure of distance between the expanded regression function
R̃ (x) and its estimate R̂ (x) taken in the expanded interval [-1,1], where

R̂n (x, S) =
1

an

+n∑
i=−n

yi

∫
Di

K

(
x− u
an

)
du (5)

For negative subscripts i we assign

y−i = −yi + 2S, x−i = −xi (6)

and, if Di = [di−1, di] then D−i = [−di,−di−1].
The problem is to minimize the loss function to find optimal S.

Unfortunately, the function R(.) is unknown so, it is impossible to calculate
the value of function (4) at this stage.

Moreover, because we can not use the true (exact) values of R(.), let us use the
measurements yi from experiment. Then the estimates R̂ (x, S) should be taken
in the points xi. To assure the independence of the estimate and the observation
yi, we should not put into integral (4) the elements yi while the estimate R̂ (.)
is calculated in the corresponding points xi (i.e. R̂ (xi)).

Let us define the auxiliary ”skip-one-out” estimator of function R̃ (.):

R̂n,j(x, S) =
1

an

+n∑
i = −n
i �= j

yi

∫
Di

K

(
x− u
an

)
du (7)

Let us replace the integral in (4) by the sum, use the defined above skip-one-out
estimator, and substitute the unknown values of R̃ (xi, S) with the measurements
yi, finally obtaining:

L̃(S) =
n′∑
j=1

[
R̂n,j(xj , S)− yj

]2
(8)
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where we assume that n′ = n.
Now the independence of estimator and observation is fulfilled. The problem of

finding S is now reduced to the problem of minimizing expression (8) with respect
to S. Such technique of using measurement data instead of true - but unknown
- values of function is known as a cross-validation method. The expression (8)
could be finally rewritten as:

L̃(S) =

n′∑
j=1

[P1j + 2 · S · P2j − yj ]2 (9)

where

P1j =
1

an

+n∑
i = −n
i �= j

sgn(i) · y|i|
∫
Di

K

(
xj − u
an

)
du (10)

and

P2j =
1

an

−1∑
i = −n

∫
Di

K

(
xj − u
an

)
du (11)

By differentiating expression (9) with respect to S, and by fulfilling condition
L̃′ = 0 one may obtain the estimate S∗:

S∗ =

n′∑
j=1

(yj − P1j) · P2j

2
n′∑
j=1

P 2
2j

(12)

We now apply the estimated value S∗ in the negatively mirrored expanded set
of measurements:[

(x−n, (y−n + 2S∗)) ,
(
x−(n−1), (y−(n−1) + 2S∗)

)
, ...

..., (x−1, (y−1 + 2S∗)) , (0, S∗) , (x1, y1) , ...
..., (xn−1, yn−1) , (xn, yn)]

(13)

New estimator of the regression function, working with the expanded data set
described by (13), is defined as follows:

R̂n(x) =
1

an

+n∑
i = −n

yi

∫
Di

K

(
x− u
an

)
du (14)

It works in the points arbitrarily close to the left edge of interval D.
For the right boundary the main differences in the construction of NMS algo-

rithm will be as follows:
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Function R(.) expanded beyond the right edge x = 1 is defined as:

R̃ (x) =

{
R(x) for x ∈ (0, 1)

−R(2− x) + 2S for x ∈ [1, 2)
(15)

Mirrored measurements numbered by index i = n+ 1, ..., 2n are:

yi = −y2n+1−i + 2S, xi = 2− x2n+1−i (16)

Finally the estimator of function R(.) based on the expanded data set is:

R̂n(x) =
1

an

2n∑
i = 1

yi

∫
Di

K

(
x− u
an

)
du (17)

Note that this estimate is valid only in the basic interval D = [0, 1].

4 The Algorithm of the Nonparametric Extension of
Regression Functions Outside Domain

The problem of prediction of future value and/or local extension of function for
the point lying in the near neighbourhood to the fixed point of known function
value is one of the classic approximation tasks. There is a great number of
publications in many engineering, economical, biological and others fields in
which such approximation is needed. The information of currently developed
methods and its practical application could be found in e.g. [10], [20], [22-23],
[25], [55-56]. In this work we propose a new algorithm helping in prediction of
unknown function value outside its domain - generally based on nonparametric
methods, which were not applied for this issue, so far.

In previous Section we obtain the tool for estimation of the edge value of
unknown regression function. The estimate S∗ is obtained by using equation (12).
Now we recall the Taylor’s theorem of degree 1. If T (.) has the first derivative
in the point a then the linear polynomial

Ta(x) = T (a) + T
′(a)(x− a) + ρ(x, a) (18)

is a natural linear approximation in point x near a, ρ(x, a) is the remainder of the
Taylor’s series. In our proposition this theorem will be applied to estimate the
value of regression function outside the domain, behind and near point x = 1.
Now the estimates of the first derivative of function R′(.) are needed.

4.1 Nonparametric Parzen Kernel Estimation of Function
Derivatives

In literature concerning Parzen-Rosenblatt methods there are also positions on
estimation of function derivatives. We could cite i.e. works [5], [9], [38]. Without
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presenting detailed theory we would recall the main result achievable under
adequate conditions imposed on function R(.) and sequence an in appropriate
convergence theorems (see e.g. [5], [9]). The estimator of the derivative of order
d of function R(.) has the form:

R̂(d)
n (x) = a−(d+1)

n

n∑
i=1

yi

∫
Di

K(d)

(
x− u
an

)
du (19)

Now we may apply this equation to estimate the first derivative (d = 1) of
regression function R(.) with the procedure described in Section 3, allowing us
to do it on the edge point x = 1.

4.2 Algorithm of Nonparametric Extension of Function

Having regard to the above considerations we propose the following estimator
for the extension of function R(.) in the point x+Δx, near the x:

R̂n(x+Δx, S
∗) = a−1

n

2n∑
i=1

yi

∫
Di

K

(
x− u
an

)
du+a−2

n

2n∑
i=1

yi

∫
Di

K ′
(
x− u
an

)
du ·Δx

(20)
where S∗ is the shift component calculated using procedure (12). The result still
holds in the points x in the initial interval D = (0, 1] under the assumptions
imposed in Section 3.

Finally we can choose the point of estimation behind the endpoint of the in-
terval D). Such approach in practice is equivalent to the problem of determining
the extension (or prediction) of the function value outside D, exactly in the point
x = 1+Δx, for small Δx. The analytical investigation of the error of estimation
is not undertaken in this article.

The author has made several testing simulations trying to observe how the
algorithm works. One of the remarks is that the estimation of derivatives is much
more sensitive to the input data set of measurements than estimator of function
itself. This was the reason not to use Taylor’s polynomial of higher order than 1.
In the next section some figures presenting results of simulations are presented.

5 Simulation Study

Simulation were made using as a model the function R(x) = 3x(x−0.4)−1 in the
interval D = [0, 1]. Choosing simple parabolic function allows us to better see
how the algorithm estimates its first derivative - of course it is a linear function.
Measurement noise was generated from the normal distribution with zero mean
and limited variance. Figure 1. shows function R(x) (continuous line), the set of
measurements yi with additive noise (points marked with +) and the estimates
obtained with unmodified algorithm (1) inside the region D (points marked with
circles). It is easy to see the boundary effect near the endpoints.
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Fig. 1. Regression function R(x) and its nonparametric estimates
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Fig. 2. Illustration of the idea of negative-mirror-shifted (NMS) algorithm

Figure 2. illustrates the idea of the Negative Mirror Shifted (NMS) method,
where the constant S∗ is calculated from equation (12). The algorithm is applied
for the right endpoint x = 1, determined from the set of noised measurements.
Value of shift estimate is equal S∗ = 0.7758.
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Fig. 3. Application of Taylor’s theorem to expanded set of input data
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Fig. 4. Estimation of local extension of function R(x) using NMS algorithm

In Figure 3. we can see a diagram presenting the idea of Taylor’s theorem for
extension of function R(x) at the point x = 1+Δx, for smallΔx, using expanded
by the NMS method set of measurements (magnified in the center of graph).
Figure 4. presents the final result of simulation experiment for calculation of
estimation of extension of R(x) in the point x = 1+Δx, for Δx = 0.05, applying
the equation (18) for the estimation of function R(1) and its first derivative R′(1)
at the right endpoint x = 1 - based on the NMS method. The first function
derivative is marked by triangles. The estimate of the extension R̂n(1.05) was
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determined by equation (20) and for given set is equal R̂n (1.05) = 1.0477 - while
the exact value of given parabola R(x) = 3x(x − 0.4) − 1 is equal R(1.05) =
1.0475. In the graph the local prediction estimate is marked with bold points.

6 Remarks and Extensions

The new algorithm based on the Parzen kernel for estimation of local extension
of regression function in deterministic case outside domain has been proposed.
By using procedure introduced in [7] with combination of Taylor’s theorem it is
possible to determine the estimate of the value of unknown function not only
exactly in the edge point of domain but also in the neighbourhood near outside
domain. The analogous method (NMS) for estimation of function derivatives in
the edge point has been proposed. The graphical results of simulation let us to
observe that the new algorithm offers a good accuracy. In future research we plan
to apply other techniques for nonparametric estimation including neuro-fuzzy
structures ([14], [17-18], [27], [47], [51-52]) and decision trees ([28], [48-50]).
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(eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)

53. Schuster, E.F.: Incorporating Support Constraints Into Nonparametric Estimators
of Densities. Communications in Statistics, Part A - Theory and Methods 14,
1123–1136 (1985)

54. Strang, G.: Calculus. MIT book, Wellesley-Cambridge Press (1991)
55. Vu Nam, T., Brdys Mietek, A.: Optimizing control by robustly feasible model

predictive control and application to drinking water distribution systems. Journal
of Artificial Intelligence and Soft Computing Research 1(1), 43–57 (2011)

56. Vilar, J.M., Cao, R., Aneiros, G.: Forecasting next-day electricity demand and price
using nonparametric functional methods. Electrical Power and Energy Systems 39,
48–55 (2012)

57. Zhang, J., Tan, Z.: Day-ahead electricity price forecasting using WT, CLSSVM
and EGARCH model. Electrical Power and Energy Systems 45, 362–368 (2013)

58. Zhang, S., Karunamuni, R.J.: On kernel density estimation near endpoints. Journal
of Statistical Planning and Inference 70, 301–316 (1998)

59. Zhang, S., Karunamuni, R.J.: Deconvolution boundary kernel method in nonpara-
metric density estimation. Journal of Statistical Planning and Inference 139, 2269–
2283 (2009)



Nonparametric Function Fitting

in the Presence of Nonstationary Noise

Tomasz Galkowski1 and Miroslaw Pawlak2

1 Institute of Computational Intelligence,
Czestochowa University of Technology, Czestochowa, Poland

tomasz.galkowski@iisi.pcz.pl
2 Information Technology Institute, University of Social Sciences, Lodz, Poland

Department of Electrical and Computer Engineering
University of Manitoba, Winnipeg, Canada

pawlak@ee.umanitoba.ca

Abstract. The article refers to the problem of regression functions esti-
mation in the presence of nonstationary noise. We investigate the model
yi = R (xi)+εi, i = 1, 2, . . . n, where xi is assumed to be the d-dimensional
vector, set of deterministic inputs, xi ∈ Sd, yi is the scalar, set of proba-
bilistic outputs, and εi is a measurement noise with zero mean and vari-
ance depending on n. R (.) is a completely unknown function. One of the
possible solutions of finding function R (.) is to apply non-parametric
methodology - algorithms based on the Parzen kernel or algorithms de-
rived from orthogonal series. The novel result of this article is the analysis
of convergence for some class of nonstationarity.We present the conditions
when the algorithm of estimation is convergent even when the variance of
noise is divergent with number of observations tending to infinity. The re-
sults of numerical experiments are presented.

1 Preliminaries and Algorithm

This article is concerned with the systems described by the following equation

yi = R (xi) + Zi, i = 1, ..., n (1)

where yi is the probabilistic scalar output, xi is the deterministic d-vector input,
Zi is the random measurement noise. There are two well-known nonparametric
algorithms for fitting unknown function R(.) for one- and multi-dimensional
case: the Parzen-Rosenblatt methods (see e.g. [1-6], [13]) and methods based
on orthogonal series expansions (see e.g. [16] [24-26], [28], [30]), or type-1 and
type-2 neuro-fuzzy structures [8-10], [14-15], [33-39]. In non-parametric approach
there is no a-priori assumption on mathematical form of unknown function R(.),
like in e.g. spline methods or linear regression. In literature one may find the
theorems on convergence of mentioned algorithms. The nonstationary situations
are investigated more rarely (e.g. [7], [19-20], [27], [31-32]). These algorithm have
been applied for identification of some classes of nonlinear dynamical systems
(e.g. [12], [21-23], [28-29]).
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Consider the d-dimensional space Sd =
{
x ∈ [0, 1]

d
}
. Let n1/d = N be an

integer and p = 1, ..., d; ip = 1, ..., N . Partition the unit interval [0, 1] on the p-th
axis into N subsets Δxip . Let us define the Cartesian product

Δxi1 ⊗Δxi2 ⊗ · · · ⊗Δxid = Sd,i.

Let Sd,i ∧ Sd,j = ∅ for i �= j and
N⋃
i=1

Sd,i = Sd. The inputs xi are selected to

satisfy xi ∈ Sd,i. The estimator of multivariate function R(x) in Sd is given by:

R̂ (x) =
N∑
i=1

yi

∫
Sd,i

b−d
n K

(
x− u
bn

)
du (2)

where 1 = [1, ..., 1] is 1× d vector. Function K(.) is chosen as follows:

K(u) =
d∏

m=1
G(um), m = 1, ..., d

G(t) ≥ 0 for t ∈ (−L,L), L = const
G(t) = 0 for t /∈ (−L,L)

L∫
−L

G(t)dt = 1

supG(t) <∞

(3)

The smoothing parameter bn is a sequence of positive constants such that

bn → 0 as n→∞ (4)

Note that procedure (2) is not a trivial extension of the one-dimensional
Parzen-Rosenblatt algorithm because of the construction of partition of set Sd. In
the following we shall denote the length of the interval Δxip , ip = 1, ..., N, p =
1, ..., d as

∣∣Δxip ∣∣ . The main result of this work is concerned with the extension
of algorithm (2) to handle non-stationary noise.

2 Convergence Properties

Assume that conditions (3) and (4) are satisfied, R(.) is continuous function in

[0, 1]
d
. Suppose that:

EZi = 0, i = 1, ..., n (5)

We shall show that under some conditions estimator (2) is convergent even if
the variance of measurement noise is divergent to infinity.

Theorem 1. (Mean Square Error Convergence): If

EZ2
n = σ2n = sn (6)
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Δn = max
1≤ip≤N

∣∣Δxip ∣∣ = O (n−1/d
)
, p = 1, ..., d (7)

and

snn
−1b−d

n → 0 (8)

then

E
[
R̂n(x) −R(x)

]2
→ 0 if n→∞ (9)

for every point x ∈ (0, 1)d .

Proof. Obviously

E
[
R̂n(x) −R(x)

]2
≤ varR̂n(x) + 2E

[
R̂n(x) −R∗

n(x)
]2

+ 2[R∗
n(x)−R(x)]

2

(10)
where

R∗
n(x) =

N∑
i=1

∫
Sd,i

R(u)b−d
n K

(
x− u
bn

)
du. (11)

By the Schwartz inequality we have the following bound for variance:

varR̂n(x) = var

{
N∑
i=1

yib
−d
n

∫
Sd,i

K
(

x−u
bn

)
du

}
=

[
N∑

i=1

b−d
n

∫
Sd,i

K
(

x−u
bn

)
du

]2

varyi ≤

≤ σ2
nb

−2d
n

N∑
i=1

∫
Sd,i

K
(

x−u
bn

)
du

N∑
i=1

∫
Sd,i

K
(

x−u
bn

)
du ≤

≤ const · snn−1b−d
n sup

w
|K(w)dw| ·

1∫
−1

K(w)dw ≤

≤ const · snn−1b−d
n

(12)

This results from the properties ofK(.), (3) and from fact that after substitution

w = x−u
bn

we obtain the limits of integral
[
−xp

bn
;
1−xp

bn

]
⊃ [−1, 1] for sufficiently

large n and xp ∈ (0, 1), p = 1, ..., d. For the second term in (10) we have bound∣∣∣ER̂n(x) −R∗
n(x)
∣∣∣ ≤ N∑

i=1

b−d
n

∫
Sd,i

|R(xi)−R(u)|K
(

x−u
bn

)
du · I{|xi−u|≤ε}+

+
N∑
i=1

b−d
n

∫
Sd,i

|R(xi)−R(u)|K
(

x−u
bn

)
du · I{|xi−u|>ε} ≤

≤ sup
|z−u|≤ε

|R(z)−R(u)|
1∫

−1

K(w)dw+

+2 sup
z
|R(z)|

N∑
i=1

b−d
n

∫
Sd,i

K
(

x−u
bn

)
du · I{|xi−u|>ε}

(13)
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The first term in the above inequality is arbitrarily small for ε small enough.
The second term could be rewrite

N∑
i=1

b−d
n

∫
Sd,i

K
(

x−u
bn

)
du · I{|xi−u|>ε} ≤

N∑
i=1

b−d
n

∫
Sd,i

K
(

x−u
bn

)
du · I{|xi−u|>ε−Δn} ≤

≤
∫

|w|≥ ε−Δn
bn

K(w)dw

(14)
Let observe that the above integral tends to zero if bn →∞ and ε is small enough.

Convergence of the third term in (10) results from continuity of function R(.)
in the point x

|R∗
n(x)−R(x)| =

∣∣∣∣∣ N∑i=1

b−d
n

∫
Sd,i

R(u)K
(

x−u
bn

)
du−R(x)

∣∣∣∣∣ ≤
≤

1∫
−1

K(w) |R(x− bnw) −R(x)| dw→ 0 if bn → 0.

(15)

This completes the proof.

3 Simulation Example

Figure 1. presents an example of simulation of nonparametric function fitting
using the Parzen kernel method. This Section refers to the case when the output
has a nonstationary additive noise. We assume that the smoothing parameter
bn is of type

bn = O
(
n−α
)
, α > 0 (16)

Moreover we assume that the sequence sn is of type

sn = O
(
nβ
)
, β > 0 (17)

Assuming x ∈ (0, 1)d, for sufficiently large n we have the bound

varR̂n(x) ≤ C1n
−1+dα+β, C1 = const (18)

This leads to the conclusion that the mean square convergence is assured now
by fulfilling the condition

dα + β − 1 < 0 (19)

The simulations were performed for unidimensional case d = 1. We performed
series of tests in 50 evenly spaced in (0, 1) points, for the number of generated
measurements growing up from n = 150 to n = 3500. The smoothing parameters
bn were chosen according to the formula (16), for α = 0.43, whereas the sequence
sn = nβ, β = 0.2. As the measure of performance we use the mean square error

Errn =
1

M

√√√√ M∑
m=1

(
R̂n(xm)−R(xm)

)2
(20)
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Fig. 1. Example of nonparametric function fitting
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Fig. 2. Mean square error graph for series of simulations

Figure 2. shows graphs of the mean square error Errn (marked with black dia-
monds), parameter bn (marked with pluses) and the variance of the noise bounds
sn (marked with triangles) - according to number n. Note that the graphs were
rescaled to obtain better view of their course. The irregularities in the graphs
course could arise because of the independent processes of noise generation for
each sample set.
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The simulations results confirmed the convergence of the mean square error
in practical situation, if the conditions of Theorem 1. hold.

4 Remarks and Extensions

The algorithm based on the Parzen kernel for function fitting in the presence of
nonstationary noise has been proposed. The theorem on the mean square error
convergence was formulated and proved. The algorithm is convergent even if
the noise variance is divergent to infinity. The graphical results of simulation
showing the calculated error from the series of experiments is presented. We
can observe that the error tends to zero when the number of observations n is
growing up. In the future research we plan to apply our estimator to optimal
control of dynamical systems (see e.g. [11]).
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Abstract. In this paper we address a problem arising from the clas-
sification of breast cancer malignancy data. Due to the fact that there
is much smaller number of patients which are diagnosed with high ma-
lignancy, data sets are prone to have a high imbalance between malig-
nancy classes. To overcome this problem we have applied state-of-the-art
methods for imbalanced classification to our data set and demonstrate
an improvement in the classification sensitivity. The achieved sensitivity
for our data set was recorded at 92.34%.

Keywords: one-class classification, classifier ensemble, pattern recog-
nition, image processing, imbalanced classification, breast cancer, nuclei
segmentation.

1 Introduction

Breast cancer is the most often diagnosed type of cancer among middle–age
women. Based on the data provided by the National Cancer Registry, there was
16534 diagnosed cases of breast cancer in Poland [1]. The number of diagnosed
cases is increasing every year and from 2009 to 2011 there was an increase of
782 cases. Such a large number of diagnoses also suggests a large death rate,
which was recorded to be 5437 deaths in 2011 and was larger that in 2009 by
195 cases. Most of these cases could be fully recovered if the diagnosis would be
made in the early stage of the disease. This is due to the fact that cancers are
vulnerable to treatment in the early stages while in their most advanced stages
they are usually almost impossible to treat. Looking at these statistics we can
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easily conclude that there is a need for a fast and reliable diagnostic tool that
would be able to assist a pathologist during the breast cancer examination. By
being able to perform a precise and objective decision, the high death rate can
be reduced. This is why we can propose a computerized method for cytological
image processing, which can be integrated as part of a diagnosis process [6].

Breast cancer diagnosis is a multi-step process that starts with a simple pal-
patory examination of a breast. If suspicious masses are found during that exam-
ination, a patient is sent to perform a mammography, which is a non–invasive
method typically used for screening purposes and not for a precise diagnosis.
This tool allows a radiologist to locate possible microcalcifications and other
indicators in the breast tissue. If a suspicious region is found, the patient is then
sent to a pathologist for a fine needle aspiration biopsy (FNA) examination. This
is an invasive method where a small tissue sample (biopsy) is extracted from the
suspicious region. Based on the FNA examination a pathologist describes in de-
tail the type of cancer, and its genealogy and malignancy. The determination
of the malignancy (i.e., malignancy grading) is essential when predicting the
progression of the cancer.

In the literature we can find numerous applications of computer vision ap-
proaches to medical images, as described in an extensive survey of computer
aided breast cancer classification in [12]. Some more recent research appears in
Filipczuk et al. [8]. As described in Section 2, in the data set used for our research
into malignancy grading there are more cases with intermediate malignancy than
high malignancy. In this paper we present an approach that classifies the ma-
lignancy based on the imbalanced data set without sacrificing data. A similar
problem was previously addressed in [15], where the highest achieved sensitivity
was 88.46%. Here, we were able to obtain the sensitivity as high as 92.34% (see
sec. 8.2).

2 Medical Data

For the purpose of this study we have collected a data set of fine needle aspirates
that where used for the breast cancer diagnosis. All of the slides were stained with
the Haematoxylin and Eosin technique (HE) which yielded purple and black stain
for nuclei, shades of pink for cytoplasm and orange/red for red blood cells. These
slides where digitalized with Olympus BX 50 microscope with mounted CCD–
IRIS camera connected to a PC computer with MultiScan Base 08.98 software at
the Department of Pathology of the Medical University of Wroc�law, Poland. The
resolution of the recorded images was 96 dots per inch (dpi) and their size was
764×572 pixels. The data set is constantly growing and, for the current paper,
consists of 341 images. There are two types of images each recorded at different
magnifications (see Fig. 1). Images recorded at low magnification (100×) are used
to define features related to the degree of structural differentiation (see Section
4) and images recorded at high magnification (400×) are used to calculate the
features that reflect cells’ polymorphy and mitotic count. The description of
these features is provided in Section 4.
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a) b)

Fig. 1. Example of case images in the data set. a) Low magnification. b) High magni-
fication.

There are 167 low magnification images and 174 images for high magnification.
The uneven number of slides is caused by the need to have two or three high
magnification images for one low magnification image. From the diagnostic point
of view this is caused by the fact that there is more than one suspicious region
in the 100× image. In this study images with more than one high magnification
per case were treated as separate cases. The images in the data set can also be
divided according to the malignancy grade they represent. In this case, we have
collected slides of intermediate (G2) and high (G3) malignancy grades. There
are 268 images belonging to the G2 class and 73 to the G3 class. The number of
images for each malignancy grade shows us the tendency of occurrence of each
class. This unbalanced number of cases makes the classification scheme more
difficult and was a motivation to perform these studies. The data set does not
contain any images of low malignancy cases (G1) due to the fact that these
cases are very rare and for the last 5 years there were no such cases at the
Department of Pathology and Oncological Cytology. The data set is courtesy of
ProfessorMicha�l Jeleń, the head of the Department of Pathology and Oncological
Cytology at the Wroc�law Medical University, Wroc�law, Poland.

3 Nuclei Segmentation

In computer vision, segmentation is a very crucial step that influences the fea-
ture extraction process and further the classification. Segmentation of the med-
ical data is never an easy task and therefore it is a very active field of research
[12, 14]. In our research on malignancy grading, we make use of two kinds of
images recorded at different magnifications (see Section 2). Each type of image
may require a different segmentation approach depending on the purpose of the
segmentation. Low magnification images are needed to extract features based on
the topology of nuclei and therefore they can be treated with a simple threshold-
ing. High magnification images will require a more advanced method that will
allow for precise nuclear shape representation. They will be used to determine
features describing cells’ polymorphy. For that reason two types of segmentation
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algorithms were applied. The first type was based on an automatic thresholding
technique that was described by Riddler and Calvard [19] and the second type
was a fuzzy c–means segmentation [23] that will allow us to retrieve the nuclear
information from fine needle aspiration biopsy (FNA) slides.

To segment the low magnification images we applied the method of Riddler
and Calvard to the image red channel. The red channel provides the best in-
formation about nuclear structures because during the staining process used for
the images in our data set, nuclei stain with shades of purple and when the red
channel is extracted all the nuclear features are preserved while the background
information is removed. A proposed method seeks a threshold T , represented by
a curve, within an image, that is restricted to have a bimodal histogram and
the final threshold level is calculated according to the equation T = (μ1 +μ2)/2
where μ1 and μ2 are the means of the components separated by T .

For segmentation of nuclei from the high magnification images a method based
on a fuzzy approach of Klir and Yuan [13] was applied. According to this algo-
rithm we partition a set of data X = {x1, x2, ..., xn} into c clusters with the
assumption that P = {A1, A2, ..., Ac} is known pseudo–partition where Ai is a
vector of all memberships of xk to cluster i. The centers of the c clusters are
calculated by the following equation [23]:

vi =

∑n
k=1[Ai(xk)]

mxk∑n
k=1[Ai(xk)]m

, i = 1, 2, ..., c (1)

wherem > 1 is the weight that controls the fuzzy membership. The memberships
are defined by equation 2 below if ‖xk − vi‖2 > 0 for all i ∈ {1, 2, ..., c}. If
‖xk − vi‖2 = 0 for some i ∈ I ⊆ {1, 2, ..., c} the memberships are defined as a
nonnegative real number satisfying equation 3 below for i ∈ I.

Ai(xk) = [
c∑

j=1

(
‖xk − vi‖2
‖xk − vj‖2

)
1

m−1 ]−1 (2)

∑
i∈I

Ai(xk) = 1 (3)

The clustering algorithm seeks a set P that minimizes the performance index
Jm(P ) defined by the following equation:

Jm(P ) =

n∑
k=1

c∑
i=1

[Ai(xk)]
m‖xk − vi‖2. (4)

The images segmented with the algorithms described in this Section are fur-
ther used for the determination of features as described in Section 4.

4 Feature Extraction

During the feature extraction step of the classification framework, a so-called
feature vector is constructed. This feature vector is then used for classification
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a) b)

Fig. 2. Illustration of segmentation. a) Low magnification. b) High magnification.

and therefore the proper selection of features is very important. The size of the
vector depends on the number of extracted features. Here, we have extracted 33
features, 3 for the low magnification images and 30 for high magnification. For
the low magnification images, we have calculated the Area (As) which is a total
number of nuclei pixels; the Number of Groups (NG) as the number of objects
in the segmented image; and Dispersion which is defined as a variation of group
areas.

Features extracted from the high magnification images describe features of
the nuclei and therefore they are more descriptive in their representation. This
led to the definition of additional 30 features that include 8 binary features, 7
moment based features, 5 histogram based features, 5 textural features, and 5
red channel histogram based features, each of which we describe in more detail.

The binary features were calculated based on the binary image (I). A set of
nuclei in the image, N = {N1, N2, ..., Nn}, can be defined as a collection of all
connected components and the nuclei Ni is a set of pixels that are contained in
the extracted nuclei. The binary features include the area of the nucleus (Ai)
which is calculated as the sum of all nuclei pixels; perimeter that is a measure of
the length of the nuclear envelope; convexity – the ratio of nucleus area and its
convex hull; eccentricity that allows us to track how much a segmented nucleus
differs from a healthy nucleus; centroid; orientation of the nuclei; and 2 projection
features – calculated as a sum of all pixels along rows and columns of the nucleus
image [24]. Summation of all the rows provides us with a horizontal projection
and summation of all the columns determines the vertical projection.

The second type of extracted features are the moment features. The use of
moments is justified by the fact that they allow for the extraction of features that
are rotation, scaling and translation (RST) invariant. Based on the normalized
central moments, we calculated 7 moment–based features (ϕ1 – ϕ7) [24].

The image histogram describes the occurrence frequency of intensity values
in the image. Features based on the histogram are considered to be statistical
features and the histogram is considered to be a probability distribution function
of grey level values in the image. In this study we extract 5 statistical features:
mean, standard deviation, skew, energy and entropy. These features were also
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used for the determination of the red channel features, where the new histogram
was calculated using only the red component of the RGB image.

The last type of features consists of a set of 5 textural features which mea-
sure the texture information of each nucleus [24]. To extract textural features,
a co–occurrence matrix is calculated, which provides the information about the
relation of pairs of pixels and their corresponding grey levels. The textural fea-
tures that were extracted in this study are: Energy, Entropy, Inertia, Inverse
Difference and Correlation.

5 Imbalanced Classification

A data set is imbalanced if the numbers of objects originating from each of classes
is not (approximately) equal. While classifiers are typically evaluated using clas-
sification accuracy, this is not appropriate when dealing with imbalanced data,
as it will lead to a bias towards the majority class. Consequently, a classifier can
display a poor recognition rate for the minority class, while at the same time
achieving a high overall accuracy. The uneven distribution of learning examples
between classes is however not the sole source of learning difficulties [20]. It has
been shown that when sufficient minority samples are available, the difference
between the number of training samples itself does not cause a significant drop
in recognition rate. However, an uneven class distribution is usually accompa-
nied by other difficulties such as class overlap, small sample size or small data
disjuncts.

Various approaches have been suggested to address class imbalance. Among
the most effective ones are classifier ensembles or multiple classifier systems
(MCSs), which are based on the principle of combining the decisions of several
base classifiers. Typically an MCS is combined with a technique dedicated to
dealing with imbalanced data [9].

One can distinguish three prominent approaches. i) Over-sampling approaches
introduce new, artificial objects on the basis of existing ones, in order to bal-
ance the distribution between classes. SMOTEBoost [4] is the most popular
examples using SMOTE. IIvotes [3] fuses a rule-based ensemble with a SPIDER
pre-processing scheme to achieve a more robust classifier with respect to atypical
data distributions in minority classes. ii) Under-sampling ensembles reduce the
number of objects in the training set to create an even distribution, and conse-
quently only original samples are used in the training process. The most popular
approaches are UnderBagging and Balanced UnderBagging [9]. EasyEnsemble
[18] is a hierarchical MCS, as it uses bagging as the primary learning scheme,
but for each of the bags AdaBoost is used as the base model. iii) Cost-Sensitive
ensembles assign a higher misclassification cost to samples belonging to the mi-
nority class in order to boost its recognition rate. Classifiers are constructed
in such a way that they minimize the overall misclassification cost, and thus
operate in favor of minority objects. Often, this is performed by object weight
adjustment in a boosting schema. Recently, a hybrid evolutionary approach for
forming cost-sensitive classification forests has been proposed [17].
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6 One-Class Classification

A One-Class Classifier (OCC) seeks to distinguish one specific class, known as
the target concept from the more broad set of classes (e.g., selecting carrot from
vegetables, medical pictures from an extensive image collection, or malicious
attacks from Internet activity recordings). The target class is considered as a
positive one, while all others are considered as outliers. An OCC may be consid-
ered as learning in the absence of counterexamples as the OCC aims at training
a classifier using only patterns drawn from the target class distribution. Its main
goal is to detect an anomaly or a state other than the one for the target class
[22]. It is assumed that only information of the target class is available.

The problem of building MCSs on the basis of one-class classifiers is an area of
research that still awaits proper attention. There are some papers dealing with
the proposals on how to combine one-class classifiers [25], but most of them are
oriented on practical applications, not on theoretical advances.

One-class boundary methods are based on computing the distance between
the object x and the description (decision boundary) that encloses the target
class ωT . To apply fusion methods we require the support function of object x
for a given class. We propose to use the following heuristic solution:

F̂ (x, ωT ) =
1

c1
exp(−d(x|ωT )/c2), (5)

which models a Gaussian distribution around the classifier, where d(x|ωT ) is an
Euclidean distance metric between the considered object and a decision bound-
ary, c1 is the normalization constant, and c2 is the scale parameter. Parameters
c1 and c2 should be fitted to the target class distribution.

7 Proposed Approach

In this paper, we propose to decompose the binary problem with a one-class
classifier ensemble. To each class a committee of one-class classifiers is assigned
and then their individual outputs are combined in order to receive a binary
classification decision. Hence, we apply a decomposition of a multi-class data set
with one-class classifiers. This raises the question, why use a one-class classifier
which does not use information about other classes when such data is available?

This can be explained by the difference in learning paradigms of binary and
one-class models. A binary dichotomizer tries to find a decision boundary that
will minimize the overall error. Hence in case of an imbalanced problem, such a
boundary will be strongly biased towards the majority class and this may result
in a poor minority class recognition rate. One-class classifiers try to capture the
unique properties of the target class, in order to be able to differentiate it from all
other examples.By training two one-class learners – one on theminority and one on
the majority class, we achieve a high sensitivity without sacrificing the specificity.

In our previous works, we shown that one-class classifier ensembles can signif-
icantly outperform single-model approaches [16]. We have proven that pruning
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ensembles with the respect to increasing their measure of dissimilarity leads to
more accurate OCC systems. We have also introduced several pairwise and non-
pairwise diversity measures dedicated to the specific problem of OCC. In this
paper, we use one of these measures – One-Class Energy Measure.

Energy approach is an effective measure of fuzziness, successfully implemented
in many practical applications such as ECG analysis [5]. Assume that there
are L classifiers in the pool, out of which S classifiers can correctly classify
a given training object xj ∈ X to ωT . Additionally a threshold λ ∈ [0, 1] is
introduced. Its role is to filter insignificant degrees of membership that may
otherwise contribute to decreasing the stability of the proposed measure. The
energy measure is described as follows:

DIVENoc(Π
l) =

∫
X

L∑
i=1

fλi(x)dx, (6)

where

fλi(x) = fi(x)⇔
∑L

k=1 δ(Ψ
M
ik
(x), Ψ∗(x))

L
> λ, (7)

and Ψ∗(x) denotes a classifier correctly classifying the object x, δ(ΨM
ik
(x), Ψ∗(x))

is a 0-1 loss function, M stands for M-th class under consideration (when us-
ing one-class ensembles for multi-class problems) and f(x) : [0, 1] → R+ is an
increasing function in interval [0,1] for f(0) = 0.

We propose to select OCC classifiers to the committee according to both the
ensemble accuracy and diversity, expecting that this will allow to preserve their
advantages while becoming more robust to unwanted properties of models in the
pool. To achieve this goal we employ a multi-objective optimization, conducted
with the usage of a memetic algorithm (MA) [10].

MAs may be seen as a hybrid solution that tries to blend together concepts
from different metaheuristics to gain advantage from combining their strong
points. The central philosophy of MAs resolves around the individual improve-
ment plus population cooperation. Unlike traditional Evolutionary Algorithms
(EA), MAs are tuned towards exploiting all available knowledge about the prob-
lem under study, therefore becoming less random and a more directed search
method. The formulation of the so-called No-Free-Lunch Theorem for optimiza-
tion have proven that the quality of the search algorithm is strictly connected
with the amount and quality of the knowledge about the considered problem
that is available. Therefore while EA relies on more or less random walking,
directed by tuning the mutation and cross-over operation procedures, MA uses
the advantages of this highly efficient approach, but improves it with a guided
search for finding better solutions in a shorter time.

In this paper we use an MA that is a hybrid approach using both EA and
tabu search to exclude re-visiting previously checked points in solution space.
Additionally to allow for searching simultaneously for classifiers with high accu-
racy and diversity we use a multi-objective MA, aiming at maximizing both of
these criteria. Let us formulate the multi-objective optimization criterion as:
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maximize g(Π l) = (Acc(Π l) + ENoc(Π
l)) (8)

where Π l is the given pool of classifiers that will undergo an ensemble pruning
procedure, Acc(Π l) stands for the overall accuracy of the given ensemble and
ENoc(Π

l) is the diversity of the considered ensemble expressed by the mentioned
One-class Energy Measure.

An individual in the MA population represents a classifier ensemble:

Ch = [Cmajority ][Cminority ], (9)

where component Cmajority represents L one-class classifiers at our disposal
trained on the majority class; and component Cminority represents K one-class
classifiers at our disposal trained on the minority class:

C = [Cmajority
1 , Cmajority

2 , ..., Cmajority
L ][Cminority

1 , Cminority
2 , ..., Cminority

K ],
(10)

and is a binary vector with 1s indicating the chosen individual classifiers (i.e., if
we have 5 classifiers assigned to each class, then [00101][10010] would indicate
that classifiers 3 and 5 are chosen for the minority class and classifiers 1 and 4
for the minority class).

For this MA standard operators for EAs such as individual selection, muta-
tion, cross-over etc. apply. Additionally a tabu search is applied at the end of each
iteration to additionally tune the available individuals. The control parameters
of the MA algorithm are as follows: Nc (the upper limit of algorithm cycles),
Np (the population quantity), β (the mutation probability), γ (the crossover
probability), Δm (the mutation range factor), V (the upper limit of algorithm
iterations without quality improvement), T (the size of the tabu list) and NT

(the number of cycles for improvement of individuals via the tabu search).

8 Experimental Investigations

The aims of the experimental investigations were to check the quality of the
proposed method on a large data set of medical images collected by the authors
and to compare the one-class decomposition with state-of-the-art ensembles ded-
icated to imbalanced classification.

8.1 Set-Up

For the experiment a Support Vector Data Description [21] with a polynomial
kernel is used as a base classifier. The pool of classifiers were homogeneous, i.e.,
consisted of classifiers of the same type. The pool of classifiers was created in a
fixed way to allow a proper exploitation of the properties of different classifier
selection criteria. It consisted in total of 10 models for each of the classes, build
on the basis of a Random Subspace [11] approach with each subspace consisting
of 60% of original features.
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The Error-Correcting Output Codes (ECOC) [7] framework was used as a
classifier fusion block due to its proven efficiency in reconstructing a multi-class
task from a set of binary classifiers. ECOC can be easily used for an OCCs
ensemble, as we can map the target class as +1 and the unknown, outlier class
by -1 [25]. The threshold parameter λ for One-class Energy Measure was set to
0.1 and a hyperbolic tangent was selected as the f(x) function. The parameters
used for the weight optimization were set as follows: Nc = 300,Np = 50, β = 0.7,
γ = 0.3, Δm = 0.2, V = 20, T = 7 and NT = 15. These parameters returned
the best classification results and were found using a grid-search procedure.

For testing, we used a statistical test to compare the results and judge if their
differences were statistically significant. For this purpose, we used a combined
5× 2 cv F Test [2], where preprocessing procedures were run independently for
each of the folds.

8.2 Results

The results of the experiment are presented in the Table 1. They show the clas-
sifiers’ sensitivity and specificity. Each classifier has assigned its index number
(in the row with classifier names). These indexes correspond with numbers in
the statistical test row and indicates in comparison with which other tested
classification methods (represented by their indexes) the considered classifier is
statistically superior.

Table 1. Results of the experiment

OverBagging1 SMOTEBoost2 IIVotes3 EasyEnsemble4 OCC ensemble5

Sensitivity 85.23 88.97 90.32 89.03 92.34
Specificity 92.37 91.80 92.10 92.24 94.23

Statistical test − 1 1, 2, 4 1, 2 1, 2, 3, 4

8.3 Discussion

From the results one may clearly see, that the proposed one-class decomposition
ensemble outperforms the other state-of-the-art methods dedicated to the im-
balanced classification in a statistically significant way. For reference methods
an improved sensitivity is connected with a drop of specificity, as the decision
boundary is forced towards the minority class. In case of better specificity, the
sensitivity drops as the bias towards the majority class is not reduced enough.

The proposed approach do not suffer from the bias problem, as for each class
a separate boundary is constructed. As it is independent from the other class, we
do not face the problem of imbalance. Therefore, we have two one-class enclosing
boundaries, each being a descriptor of its target class. Reconstructing an original
binary problem with ECOC combiner leads to a significantly better results.

Additionally, we improve our method by delegating an ensemble of one-class
classifiers. The memetic-based pruning procedure allows for the selection of clas-
sifiers with high individual accuracy that are mutually diverse to each other.
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This way, we maintain high generalization properties of our ensemble, despite
its being trained separately on both classes.

9 Conclusions

In this study a problem of classification of the imbalanced medical data was
addressed. In the opening sections it can be noticed that the image processing
of such images is not an easy problem either. After successful segmentation and
feature extraction we have constructed a 33–element feature vector that was
then introduced to the classifier. From the results section one can notice that
the problem of uneven classes has been eliminated and the presented methods
are suitable for the classification of this type of data. Out of all classifiers it can
be easily noticed, as already mentioned in previous section, the one-class decom-
position ensemble provided the best results. The highest achieved sensitivity was
92.34%. Looking at the data and the size of the feature vector we can assume
that applying a feature selection procedure may lead to a further boost in the
sensitivity of our classification. This issue will can be researched further to find
the optimal sensitivity level for breast cancer data.
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Abstract. In the paper the comparison of ensemble based methods ap-
plied to censored survival data was conducted. Bagging survival trees,
dipolar survival tree ensemble and random forest were taken into consider-
ation. The prediction ability was evaluated by the integrated Brier score,
the prediction measure developed for survival data. Two real datasets with
different percentage of censored observations were examined.
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1 Introduction

Methods for analysis of classification and regression problems are developing
to provide faster, more stable and more accurate prediction. The same goal
inspires also the researchers working on survival data. Very often new approaches
for classification or regression tasks are then adapted to data with incomplete
information. Such incomplete information is an integral part of censored data,
which contains observations with unknown failure times. For such data we only
know how long the observation has not experienced any failure, but the exact
failure time remains unknown.

Except statistical methods, which often require many strict assumptions, sur-
vival trees and survival ensembles belong to the most common non-parametric
methods for survival data analysis. The fast development of survival trees started
in the mid-1980s and lasted for the next ten years [3]. The survival ensemble is
quite a new branch of analysis of survival data. First methods were proposed in
2004 - bagging survival trees [8] and relative risk forests [10]. The consecutive
approaches were proposed by Kretowska [15], Hothorn [9], and Ishwaran [11].

In this paper the comparison of predictive ability of three ensemble methods
was conducted. Bagging survival trees [8] and random survival forest [11] are
implemented and available in R packages, while dipolar survival tree ensemble
[15] was implemented by the author in C++. In order to compare the predictive
ability of the models, the integrated Brier score [6] was applied. Experiments were
performed on two data sets with different percentage of censored observations.
The first data, Veteran’s Administration (VA) lung cancer study [4], contains

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 551–560, 2014.
c© Springer International Publishing Switzerland 2014
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6.5 percent of censored observations, while the other one - malignant melanoma
[1] - 72 percent.

The paper consists of six sections. In Section 2 the definition of survival data
as well as the survival time distribution functions are presented. Section 3 con-
tains introduction to survival ensemble and more detailed description of three
distinguishes ensemble methods. The definition of the integrated Brier score is
given in Section 4. Experimental results are presented in Section 5, while Section
6 summarizes the results .

2 Censored Data

Let T 0 denotes the true survival time and C denotes the true censoring time
with distribution functions F and G respectively. We observe a random variable
O = (T,Δ,X), where T = min(T 0, C) is the time to event, Δ = I(T ≤ C) is a
censoring indicator and X = (X1, ..., XN ) denotes the set of N covariates from a
sample space χ. We have a learning sample L = (xi, ti, δi), i = 1, 2, ..., n, where
xi is N -dimensional covariates vector, ti - survival time and δi - failure indicator,
which is equal to 0 for censored cases and 1 for uncensored cases.

The distribution of survival time may be described by several functions:

– survival function
S(t) = P (T > t) (1)

where P (•) means probability, S(0) = 1 and limt→∞ S(t) = 0
– density function

f(t) = lim
�t→0

P (t ≤ T < t+�t)
�t (2)

where f(t)dt is the unconditional probability of failure in the infinitesimal
interval (t, t+ dt).

– hazard function

λ(t) = lim
�t→0

P (t ≤ T < t+�t|T ≥ t)
�t (3)

where λ(t)dt is the probability of failure in the in infinitesimal interval (t, t+
dt), given survival at time t.

– cumulative hazard function

Λ(t) =

∫ t

0

λ(u)du = − logS(t) (4)

The estimation of survival function S(t) may be done by using the Kaplan-
Meier product limit estimator [13], which is calculated on the base of the learning
sample L and is denoted by Ŝ(t):

Ŝ(t) =
∏

j|t(j)≤t

(
mj − dj
mj

)
(5)
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where t(1) < t(2) < . . . < t(D) are distinct, ordered survival times from the
learning sample L, in which the event of interest occurred, dj is the number of
events at time t(j) and mj is the number of patients at risk at t(j) (i.e., the
number of patients who are alive at t(j) or experience the event of interest at
t(j)).

The Nelson-Aalen estimator of cumulative hazard function is defined as:

H(t) =
∑

j|t(j)≤t

dj
mj

(6)

The ’patients specific’ survival probability function is given by S(t|x) =
P (T > t|X = x). The conditional survival probability function for the new pa-
tient with covariates vector xnew is denoted by Ŝ(t|xnew). Similarly H(t|xnew)
means a conditional cumulative hazard function.

3 Ensembles of Survival Trees

An ensemble is a set of k single predictors, often trees. Depending on the data,
the ensemble may solve classification, regression or survival problems. In case
of censored survival data single predictors are usually survival trees, which have
the ability to cope with censored observations. Unlike the ensemble for classifi-
cation and regression problems, the ensemble of survival trees does not return
the exact predicted value. The outcome for a given observation is a distribution
function of survival time. Thus, analyzing such a function, the time intervals
with higher and smaller probability of failure occurrence may be distinguished
for the observation.

Each single tree is built on the base of bootstrap sample drawing with re-
placement from the learning data. A general algorithm of building and using the
ensemble is given as follows:

1. Draw k bootstrap samples (L1, L2, . . . , Lk) of size n with replacement from
L

2. Induct k single trees Ti based on each bootstrap sample Li, i = 1, 2, . . . , k
3. Having a new observation xnew, drop it down each of k single trees
4. On the base of the results of k single trees, calculate a function f(t|xnew),

being an outcome of the whole ensemble

Comparing various approaches to building the ensembles, the differences are
visible in steps 2 and 4 of the above algorithm.

3.1 Bagging Survival Trees

The approach was proposed by Hothorn et al. [8]. The authors did not focus on
special splitting criterion for single tree induction. They used a method previ-
ously proposed by LeBlanc and Crowley [16] which employed a measure based
on Poisson deviance residuals. They presented an original method of calculating
the function f(t|xnew), which takes a form of aggregated Kaplan-Meier survival
function: ŜA(t|xnew). Step 4 is here divided into two parts:
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4a Build aggregated sample LA(xnew) = {L1(xnew);L2(xnew), . . . , Lk(xnew)},
where Li(xnew) is a set of observations from the bootstrap sample Li that
reached the same leaf node of the tree Ti as the observation xnew .

4b On the base of aggregated sample LA(xnew), compute the Kaplan-Meier
aggregated survival function for a new observation xnew : ŜA(t|xnew)

3.2 Dipolar Survival Trees Ensemble

Unlike the bagging survival tree, which is an example of univariate tree, the single
dipolar survival tree [14] belongs to multivariate approaches. It means that each
internal node contains the split which is based not only on one variables (e.g
xi > c), but a linear combination of input variables is examined. The test takes
the form of a hyperplane:H(w, θ) = {x : wTx = θ}. If a given feature vector x is
situated on the positive site of the hyperplane the test returns the value greater
or equal to 0, in the other case the test returns the negative value. The values
of w and θ are calculated by the minimization of dipolar criterion function [2].

Dipolar survival trees ensemble [15] is build according to the general rules
presented above. Similarly to bagging survival trees, the result of the whole
ensemble for a new features vector xnew is calculated as an aggregated survival
function ŜA(t|xnew).

3.3 Random Survival Forest

Randon survival forest was proposed by Ishwaran et al. [11]. The method differs
from the previous ones, both in the induction process and in the way the results
are calculated. During the induction process the randomization is injected into
each node generation. It means that the best split is not chosen by the analysis
of the whole set of available variables but a subset of variables is selected. Then,
basing on this subset, the split that maximizes survival difference between two
child nodes is chosen.

The results of the whole ensemble is calculated as the average of cumulative
hazards functions received for each single tree. Step no. 4 is here divided into
three parts:

4a For each survival tree Ti, i = 1, 2, . . . , k, determine a set Li(xnew) containing
the covariates vectors from the bootstrap sample Li which belong to the same
leaf node as xnew

4b For each set Li(xnew) calculate the Nelson-Aalen estimator of CHF:
H∗

i (t|xnew), i = 1, 2, . . . , k

4c Calculate the average of CHF to obtain the ensemble CHF:

H(t|xnew) =
1

k

k∑
i=1

H∗
i (t|xnew) (7)
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4 Model Validation

In case of censored survival data where the exact failure time for a given subject
may be unknown, the classical validation measures used in regression problems
are not applicable. Indexes which are used in survival analysis do not calculate
the differences between the given and predicted failure times, they rather use the
differences between survival functions [6,5] or the order of predicted and given
survival times [7]. The integrated Brier score [6] belongs to the first types of
indexes. For a fixed time point t the contribution to the Brier score is divided
into three groups:

1. ti ≤ t and δi = 1
2. ti > t and (δi = 1 or δi = 0)
3. ti ≤ t and δi = 0

For the observations belonging to group 1 the failure occurred before t and the
event status at t is equal to 0, so in the Brier score we present this as (0 −
Ŝ(t|xi))

2 = Ŝ(t|xi)
2. The observations of group 2 do not experienced any event

at time t, hence the event status at t is equal to 1 and the contribution to the
Brier score is: (1− Ŝ(t|xi))

2. The contribution to the Brier score for observation
of group 3 can not be calculated, because the event status at t is unknown
for them. Since the observations of group 3 do not have any contribution to
the Brier score, the loss of information should be compensate by additional
weighting of the existing contributions. The observations in group 1 have the
weight Ĝ(ti)

−1 and those in group 2 the weight Ĝ(t)−1, where Ĝ(t) denotes the
Kaplan-Meier estimator of the censoring distribution. It is calculated on the base
of observations (ti, 1− δi). The definition of the Brier score is given as:

BS(t) = 1
n

∑N
i=1(Ŝ(t|xi)

2I(ti ≤ t ∧ δi = 1)Ĝ(ti)
−1 +

(1− Ŝ(t|xi))
2I(ti > t)Ĝ(t)

−1) (8)

where I(condition) is equal to 1 if the condition is fulfilled, 0 otherwise. The BS
equal to 0 means the best prediction.

The integrated Brier score is calculated as:

IBS =
1

max(ti)

∫ max(ti)

0

BS(t)dt (9)

5 Experimental Results

The comparison of three ensemble methods in application to censored survival
data was conducted. Experimental results were performed on the base of two
real data sets with different percentage of censored observations. The value of
the integrated Brier score, given in the paper, is the average value of the index
calculated for 20 runs of 10-fold cross-validation. The random survival forest
(RSF ) is implemented in R package ’randomForestSRC’ [12]. Since the package
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uses Harrell’s concordance index [7] as a prediction measure, package ’pred’
[17] was used to calculate the integrated Brier score. The second aggregation
technique is the bagging survival trees method (BST ) proposed by Hothorn et
al. [8], which is implemented in ’ipred’ package [18].

The first analyzed dataset contains the information from the Veteran’s Ad-
ministration (VA) lung cancer study [4]. In this trial, male patients with ad-
vanced inoperable tumors were randomized to either standard (69 subjects) or
test chemotherapy (68 subjects). Only 9 subjects from 137 were censored. De-
tailed description of the variables is given in table 1.

Table 1. Description of VA lung cancer data

Variable name Description

Variables assessed at the time of randomization
Treat Chemotherapy (0-standard, 1-test)
Cell Cell type (0-squamous, 1-small, 2-adeno, 3-large)
Prior Prior therapy (0-no, 1-yes)
KPS Karnofsky rating
DiagTime Disease duration
Age Age

Outcome variables
Time Survival time
Status Failure indicator (0- censored observation, 1- death)

In table 2 the integrated Brier scores (IBS) for VA lung cancer data are
presented. The experiments were conducted for the ensembles with different
number of single trees: 50, 100, 200, 500, 1000. The results for RSF do not
depend on the number of single trees, for 100 trees as well as for 1000 trees the
IBS equals 0.104. The best results are for bagging survival trees method, for
1000 trees IBS equals 0.098. The most visible influence of the number of trees is
for DST ensemble technique. For 50 trees the IBS equals 0.119, then decreasing
with increased number of trees, riches the value 0.104 for 1000 trees, what is
comparable with the IBS received for RSF.

Table 2. The integrated Brier scores received for VA lung cancer data

Number of trees RSF BST DST Ensemble

50 0.105 0.102 0.119

100 0.104 0.101 0.111

200 0.109 0.101 0.108

500 0.103 0.099 0.105

1000 0.104 0.098 0.104



Comparison of Tree-Based Ensembles in Application to Censored Data 557

Fig. 1. Survival functions for VA lung cancer data a) Treat=0, KPS=20; b)Treat=1,
KPS=20; c)Treat=0, KPS=80; d)Treat=1, KPS=80

In figure 1 the survival functions for VA lung cancer data are presented.
The functions were calculated for patients with standard or test chemotherapy
with Karnofsky rating equals 20 or 80. Disease duration and age were fixed as
their median values (5 and 62, respectively), Cell and Prior were fixed as 0.
For each observation the survival functions received as the results of BST, RSF
and DSTE are presented. In figure 1a) and 1b) the functions are quite similar
for all the examined methods. The differences exist for functions in figures 1c)

Table 3. Description of malignant melanoma data

Variable name Description

Variables assessed at the time of operation
Sex The patients sex (1-male, 0-female)
Age Age (years)
Thickness Tumour thickness (cm)
Ulcer Indicator of ulceration ( 0-absent, 1-present)

Outcome variables
Time Survival time (days)
Status Failure indicator (0- censored observation, 1- death from melanoma)
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Table 4. The integrated Brier scores received for malignant melanoma data

Number of trees RSF BST DST Ensemble

50 0.151 0.149 0.149

100 0.152 0.147 0.150

200 0.152 0.148 0.148

500 0.155 0.148 0.147

1000 0.153 0.150 0.146

Fig. 2. Survival functions for malignant melanoma data a) Sex=0, Thickness=0.97; b)
Sex=1, Thickness=0.97; c) Sex=0, Thickness=3.56; d) Sex=1, Thickness=3.56

and 1d). The survival function received for DSTE gives the most pessimistic
prediction, especially for time greater than 150 days. Comparing, for example,
the probability of survival for 200 days, BST and RSF give the value about 0.4,
while for DSTE the probability equals 0.2. Median survival times, also presented
in figure 1, are similar for three methods. Analyzing the graphs one could say
that the type of treatment does not influence the survival, while Karnofsky rating
has a great impact on patients survival.

The other data set contains the information on 205 patients (148 censored
cases) with malignant melanoma following radical operation. The data was
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collected at Odense University Hospital in Denmark by K.T. Drzewiecki [1].
Each patient is described by four variables presented in table 3.

Table 4 presents the integrated Brier scores received for malignant melanoma
data. The results for RSF do not depend on the number of trees and the inte-
grated Bries scores take the values from the range [0.151; 0.155]. For bagging
survival trees the best result is for 100 trees - IBS=0.147, while for 1000 trees
IBS equals 0.15. The best results are for DST ensemble and the minimal value
of IBS is equal to 0.146 for 1000 trees.

Figure 2 presents survival functions received for malignant melanoma data.
The influence of sex and tumor thickness was verified. Variable ”Thickness” was
fixed as its lower and upper quartiles: 0.97 and 3.56, respectively. The experi-
ments were conducted for 54 years old people without ulceration. As we could
see, sex do not influence the survival. The differences are visible between fig-
ures with different values of Thickness: the prediction is worse for patients with
greater tumor thickness. The results received for BST, RSF and DSTE show the
main tendency of survival changes in a similar manner, but the exact prediction
is slightly different for them.

6 Conclusions

In the paper the prediction ability of tree-based ensemble methods was verified.
The analysis covered the results of three techniques: bagging survival trees, ran-
dom survival forest and dipolar survival tree ensemble. The prediction ability
was tested by calculating the integrated Brier score. The analysis was conducted
on the base of two medical data sets. The analysis did not show that one method
outperformed the results of two others. The best value of the integrated Brier
score in case of VA lung cancer data was for bagging survival forest, in case
of the other data set - malignant melanoma - the best result was achieved by
dipolar survival tree ensemble.
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Abstract. In the paper a new algorithm of oblique decision rule induc-
tion is presented. It starts from dividing classes into subclasses which
is a clustering problem. Then, around each subclass the hyperrectan-
gle is built, which edges are parallel to PCA determined directions. Each
hyperrectangle represents single decision rule which conditions are hyper-
planes containing hyperrectangle sides. In order to simplify the obtained
model less important conditions are removed from the rule and then less
important variables are also eliminated from the hyperplane equations.
The algorithm was applied for real and artificial datasets.

Keywords: machine learning, rules induction, decision systems, Prin-
cipal Component Analysis, oblique rules, rules pruning.

1 Introduction

Data analysis is a very wide branch of algorithms. There are several ways to
organise all algorithms into groups. One of the popular divisions is based on the
knowledge of the pattern that we would like to describe. When no pattern is given
we say that an unsupervised learning is performed because there is no supervisor:
no independent criterion that says whether the results are correct or not. As
the example the clustering algorithms can be mentioned. On the other side,
there are algorithms that try to describe dependencies between known inputs
and known outputs in the data. That they belong to the group of supervised
learning techniques, because there is a known reference point. In this group all
algorithms of classification and regression must be mentioned.

The other way of data analysis are methods where data division is based on its
interpretability. In some situation the predicting model does not explain “why”
something happens but only “how”. Artificial neural networks are very popular
“black boxes” for the classification problem. Teaching the network may give very
satisfactory results saying “how” the model behaves. Similar approach present
Support Vector Machines in classification or regression. However, it is also very
common that we expect the model to describe the analysed process that is given
in the interpretable way.

Decision rule induction is a problem of supervised learning that gives inter-
pretable results. Generally, the problem of classification can be mathematically
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described as the mapping of the set of objects (x ∈ X) to the finite set of labels
(C):

f : X → C

This paper presents a new approach to induction of oblique decision rules
directly from the data. It is expected that single class can be divided into several
smaller subclasses and each of them should generate one decision rule. In this
approach subclustering of classes is performed with k−means algorithm and
single rule induction is performed with the PCA. Raw results (rules) are then
pruned in two aspects: in the first step only the most important conditions in
the rule are left and then small coefficients in the rule are trimmed to zero.

The paper is organised as follows: it starts from a short description of decision
rules and oblique rules; then the detailed description of all steps of oblique rule
induction is presented. Next part contains presentation of results of the compar-
ison of the new algorithm and two other well known methods. The paper ends
with a short discussion and some final conclusions and remarks.

2 Related Works

2.1 Decision Rules Generalisation

Decision rule can be considered as the logical formula in the following form:

IF cond1 ∧ cond2 ∧ . . . ∧ condn THEN class = c

where condi is a logical expression. This expression is usually one of the following:
a op A, op ∈ {=, <,≤, >,≥,∈}; a is a value of an attribute and A is a constant
(or the set, for the “∈” operator) and c is one of the labels from the finite set C.

As it was mentioned the main goal of rule induction algorithms is to generate
interpretable dependencies. It is also very important for the rule to have the
ability of generalisation. Rules that recognise only the object–generator are not
considered as interesting. From the other side, the small decrease of model accu-
racy due to its simplification is allowed. It might be shortening of the rules set or
rules itself. This is very common situation when obtained rules are postprocessed
[17].

There are several strategies in rules postprocessing. One of the most popular
is “from coverage” strategy and its modification. In the beginning the set of rules
is ordered with a given ranking. Then the best rule from the raw set to the final
result set is moved and the ranking for remaining rules is recalculated, taking
into consideration only objects non-covered by rules from the final result set.
Iterations are repeated as long as all objects are covered by the final result set.

More advanced methods base on rules shortening or joining. The rule short-
ening consists of removing elementary conditions or conditions either in the
exhaustive searching, the climbing strategy, or some heuristic approach. It is
also common to perform the rule shortening as long as the quality of the rule
remains on the same level [1].



Advanced Oblique Rule Generating Based on PCA 563

Rules joining requires at least two decision rules pointing to the same decision
class. Two elementary conditions in two rules can be merged in one condition
if all other elementary conditions of these rules are the same. The rules joining
means that ranges of the same attribute are joined. In the paper [15] the iterative
algorithm of this approach is presented. In the paper [9] very similar approach is
described: instead of the iterative way, rules are joined before the merging step.

Different approach of rules generalisation is presented in papers [13,18]: the
complex elementary conditions in rules premisions are introduced, which are the
linear combinations of attributes from elementary conditions of original rules
premises.

Rules can also be generalised in such a way that the less important conditions
or parameters in the condition are removed with the “from coverage” strategy.

2.2 Oblique Rules

It is a very common limitation of decision rule induction algorithms that they
generate only hyper-rectangle shaped rules what causes problem of describing
oblique-shaped dependencies. If there is a significant oblique border between two
classes it may occur that both of the classes will be described with big number
of rules. This remark leads to the definition of oblique criterion of belonging to
the class. Let’s consider the k−dimensional objects. Then the k−dimensional
separating hyperplane will be given as:

H1x1 +H2x2 + . . .+Hkxk +Hk+1 = 0

Now, let’s define the k−dimensional object o and define H(O) as:

H(O) =
k∑

i=1

Hioi +Hk+1.

With this notion the single conditional descriptor for the oblique rule can be
defined as one of the following:

H(O) < 0, H(O) ≤ 0, H(O) > 0, H(O) ≥ 0

There are also methods to generate this kind of rules from the results of other
algorithms like from the oblique decision trees [4,8,12], from linear SVM [2],
using the constructive induction [3,19], or directly from the data [11,14].

3 PCA Oblique Decision Rules

In order to build a system for oblique decision rules, it is necessary to divide
the decision space appropriately. In presented approach, the rules are based on
hyperplanes which determine the boundaries for every parameter. The original
solution (the ORG algorithm [11]) assumed a semi-exhausting search for optimal
parameters of separating hyperplanes. There, after some data transformation,
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the boundaries for every hyperplane parameter were determined. Next, for each
combination of parameters (in the parameter range with given step) the rules
were evaluated. The performance of this method was satisfactory, however, it was
characterised by very high complexity. Moreover, it was noticed that the system
does not work well in the situation when a class consists from several disjoint
subclasses. Therefore, the PCA ORG (called from now as ORG2.0 ) algorithm
was introduced [10], which enabled creation of separate hyperplanes for disjoint
subclasses. The hyperplanes were calculated basing on the data direction calcu-
lated with PCA. It improved the overall rules generation, however it was noticed
that the system performance diminishes for classes with smaller dimensionality.
Hence, this paper deals with the problem of hyperplane definition for class of
lower dimensionality.

3.1 PCA Overview

Finding the best fitting hyperplanes which divide the class data from the rest
of the space is possible when knowing the direction of data scattering. This
information can be achieved with principal component analysis (PCA) [16]. The
PCA is a statistical tool that transforms the coordinate system of the data that
the new system fits the data scattering direction in the best possible manner.
The first principal component reflects the direction in data of highest variance,
the second principal component corresponds to the direction, where the second
highest variance was noticed, and so on. It may happen that for some directions
the variance is equal to zero, because the data might be coplanar. That is the
advantage of this method for data dimension reduction, however when only the
direction are searched it becomes a disadvantage.

The PCA transformation is found using singular value decomposition or the
covariance method for a data set X . The data should be normalised with mean
value equal to zero. In order to calculate the covariance matrix, C, following
formula is applied: C = XXT . The eigenvectors matrix Evec with corresponding
eigenvalues vector Eval are achieved by solving the equation: E−1

vecCEvec = Eval.
In the final step, the Evec should be sorted according to the descending values in
Eval. This rearrangement sets the most important directions on the top of the
eigenvector matrix whereas the less important directions (with lower variation)
are on the bottom.

3.2 Disjoint Subclasses Defining

The hyperplanes which are calculated to find the borders of each class are defined
by the faces of a hyperrectangle which encloses the class data. Since the class
might have a disjoint data or the multidimensional shape of the data might be
very complex, the hyperrectangle is defined with some overabundance. Therefore,
it was suggested to try to divide the class into some subclasses that assure
the most tight fitting of the hyperrectangle to each subclass. It results in more
accurate description of class borders.
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The class subdivision is based on the k−means algorithm. This is a very easy
method which for a given k value divides the data into k subsets providing that
each element distance from the class centre is minimised. The drawback is the
necessity to know the number of expected subclasses. However, this parameter
can be found in adaptive way assuming some given range of search kmin ≤ k ≤
kmax. In order to estimate the k parameter the k−means algorithm is applied
for each k. Then the error metric is defined as an average distance from each
cluster element to its cluster mean. The definition of optimal value considers the
smallest possible error value as well as the smallest cluster number.

3.3 Hyperrectangle Estimation

For each subclass the hyperrectangle is calculated with the usage of the PCA
method. The faces are determined starting from the highest eigenvalue and ter-
minating on the smallest one. Each eigenvector (eigenvalue) determines two hy-
perplanes. Their directions are perpendicular to the direction given with eigen-
vector Eveci corresponding to its eigenvalue. The exact placement of each plane
results from the coefficients of the data point which has the smallest Vsm (for
the first of two hyperplanes) and greatest Vgr (for the second one) value in this
direction. The hyperplanes equation corresponding to each eigenvector is given
with the formula:

Hlowi = EveciVsm Hhighi = EveciVgr

When the datasets are divided, it happens that the resultant classes diminishes
its dimensionality. In that case the resulting hyperrectangle is created in space
with lower dimension, that implores less hyperplanes and complicates the task
of oblique rules generation. Therefore, a special routine was designed to add
the lacking dimensions. This approach assumes that the lacking hyperplanes
should be perpendicular to the existing ones. Although, the data in this direction
variation is equal to zero, a constant variation is set to ε = 0.0001 what allows
to define two additional faces for each lacking dimension.

Fig. 1 visualizes the examples of the problems concerning a hyperrectangle
estimation. The data points are marked with star, cross, and circle symbols.
The rectangles reflect the hyperrectangle, the dashed arrows correspond to the
eigenvectors. The first example, Fig. 1(a), shows a hyperrectangle estimated for
a class, which members are split into several clusters. One can see how inaccu-
rate is the description. On the other hand, Fig. 1(b) depicts the situation when
the subclasses were calculated and the hyperrectangle for each of them was cre-
ated. Here the hyperplanes fit the data very well. This picture presents also the
other problem - dimension reduction. In case of the data printed with circles it
was possible to calculate only one eigenvector (dashed arrow). However, it was
necessary to build the additional faces of hyperrectangle. In order to do so, the
epsilon rule was applied as shown on the figure.
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(a) One hyperrectangle for the class (b) Separate hyperrectangles for each sub-
class

Fig. 1. Example of the necessity of dividing classes to estimate adequate hyperrectan-
gles

3.4 Oblique Rules Induction

Subclass Rule Induction. The single class c is described by a set of hy-
perplanes. However, for classes with disjoint datasets there exist many hyper-
rectangles enclosing the data. In order to define the rule describing this class
a logical conjunction concerning all the hyperplanes must be generated in the
k-dimensional space. Let P be a point corresponding to the currently classified
object, then the decision rule R gives the following formula:

R :

k∧
i=1

Hlowi(P ) ≥ 0 ∧Hhighi(P ) ≥ 0→ class = c.

Fig. 2 depicts the single oblique rule induction. The data is presented by
the dots. The solid lines reflect the hyperplanes calculated on the basis of the
hyperrectangle enclosing the data. The faces of the hyperrectangle are perpen-
dicular to the eigenvectors, which directions are marked with dashed lines. One
can see that the distance between the parallel faces is minimal. Moreover, each
hyperplane has at least one data point that belongs to it.

Orientation of the Hyperplane. The k-dimensional hyperspace Rk is divided
into two separate spaces by each hyperplane. In this approach the hyperplane
H is interpreted as a boundary between these two subspaces. It is obvious, that
for a given point P one space satisfies the condition H(P ) > 0, whereas the
condition for the other space is H(P ) < 0. Moreover, it is assumed that the
boundary belongs to the first subspace. Hence, it is claimed that the hyperplane
H splits the hyperspace into two disjoint spaces:

H+ = {P ∈ Rk : H(P ) ≥ 0} and H− = {P ∈ Rk : H(P ) < 0}

It can be easily noticed that the orientation of the hyperplane H plays an
important role in oblique rules definition. Therefore, it is indispensable that for
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Fig. 2. Visualisation of the single PCA oblique rule induction

each hyperplane describing the class boundary the orientation is defined. Having
a point Q lying on the correct side of the hyperplane H it is said that Q ∈ H+.
Hence, if there exists a randomly selected point P on the incorrect side of any
hyperplane, the coefficients of the equation should be negated.

Rule Generalisation. The raw decision rule is generalised in two ways. Let
us assume the linearly separable two-class problem. Setting the k = 1 in the
step of subclustering classes will give us two decision rules, which accuracies will
be 1. Each of them will contain 2d oblique descriptors (hyperplanes) where d is
the dimensionality of the data. It is obvious that for this kind of data (linearly
separable) only one hyperplane is needed. This points out that it is worth to
take into consideration the filtration of descriptors. In the presented approach
the “from coverage” filtration with the additional parameter α is used. Starting
from the empty rule the coverage of each description is evaluated. Then the
descriptor with the highest class coverage is added to the rule and removed from
the set of considered descriptors. In the following iterations the current rule
is extended with every considered descriptor and its coverage is calculated. The
process of rule extending ends when the rule coverage is higher then the coverage
of the whole raw rule minus the α margin or all descriptors were added to the
final rule.

The second step of rule generalisation consists of removing the least significant
variables from the hyperplane equation. As PCA requires data normalisation we
can compare the coefficients of all variables in the hyperplane equation and very
small ones regard as needless. It is assumed that significant coefficients are with
their absolute value higher than the defined level β.

The Algorithm. The presented algorithm is the extension of the previous
version published in [10]. The description of the extended version is presented
with pseudocode of two main functions.
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function PCAORGv2.1(data)
cmax ← number of classes;
rules ← ∅;
for c = 1 to cmax do

% number of subclasses of the cth class
k ← FindK(cthclass);

% rules generated from cth class
c_rules ← ∅;
for s = 1 to k do

% find planes. . .
[k_pl, cent] ← Planes(sthsubcl, ε);
% . . . and orient them correctly:
% oriented as H(O) ≥ 0
k_pl ← OrientP lanes(k_pl, cent);
k_rl ← GenerateR(k_pl);
k_rl ← GeneraliseR(k_rl, α, β);
c_rl ← c_rl ∪ k_rl;

end for
rules ← rules ∪ c_rl;

end for
Q ← EvaluateR(rules, data);
return rules, Q;

end function

function Planes(subclass, ε)
items ← number of objects in the subclass;
d ← subclass dimensionality;
if items = 1 then

planes ← hyperplanes parallel to axes,
distant about ε from the item;

return planes;
end if
eigV ecs ← PCA(subclass);
e ← number of eigenvectors;
planes ← ∅;
if e < d then

for i = 1 to e do
planes ← planes ∪ two planes par-

allel to the ith eigenPlane ;
end for
for i = e+1 to d do

planes ← planes ∪ two planes dis-
tant about ε from the subclass, perpendicular
to existing planes ;

end for
else

for i = 1 to d do
planes ← planes ∪ two planes par-

allel to the ith eigenPlane ;
end for

end if
return planes;

end function

4 Experiments and Results

The new presented algorithm was compared with its predecessor (giving raw
results without rules pruning and generalisation) and with two algorithms of
decision rule induction from the Weka software: PART [7] and JRIP (Weka
implementation of RIPPER [5]). The first comparison was done to prove the
ability of rule generalisation without loosing their accuracy.

Experiments were performed on real and artificial data. Real and some of
artificial sets come from the benchmark repository [6]. Three artificial datasets
come from [18] and each of them contains 1000 objects from two classes. Two two-
dimensional sets (named 2d and d2d – double 2d) are almost balanced (562:438
and 534:466 respectively). The third one (3d) is three-dimensional and has two
unbalanced classes (835:165). Visualisation of sets is presented on the Fig. 3.
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Fig. 3. Visualisation of the synthetic datasets: 2d (left); d2d (center); 3d (right)
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The idea of two-dimensional sets is rather easy to interpret. For the third set
points from the smaller class are stored in one of the corners of the cube. All
points were randomly generated and their coordinates come from the uniform
distribution from the range [0, 1].

The first part of experiments were performed to compare the three original
versions of Oblique Decision Rule generators (ORG). As the ORG1.0 (or just
ORG) the algorithm from [11] is considered, the ORG2.0 means the first PCA
algorithm from [10] and as the ORG2.1 the new presented approach is consid-
ered. The result of the comparison is presented in the Table 1.

Table 1. Results on real datasets for all versions of algorithm

accuracy avg. rules total number
dataset avg (std) number of cond. elem.

ORG ORG2.0 ORG2.1 ORG ORG2.0 ORG2.1 ORG ORG2.0 ORG2.1

2d 96.0(1.5) 98.4(1.0) 98.8 (0.98) 2.0 2.0 3.0 3.0 16.0 8.0
d2d 84.3(3.1) 99.0(1.1) 99.3 (0.64) 3.0 2.0 2.0 6.0 16.0 6.0
3d 98.2(1.2) 98.3(1.6) 98.7 (1.27) 2.0 2.0 2.0 2.0 32.0 4.0
iris 94(4.6) 84(8.4) 90.7 (7.42) 3.1 3.0 4.5 5.2 96.0 28.4

balance 92(2.4) 80(4.2) 76.6 (4.7) 6.0 3.0 3.0 12.0 96.0 16.0
Ripley 81(8.4) 65(11.6) 74.4 (10.76) 2.0 6.6 5.2 4.0 28.8 15.0

breast w. 97(1.7) 92(3.0) 89.9 (4.86) 3.0 2.0 2.0 19.0 324.0 36.9

It can be easily observed that for all three artificial datasets the increase of
the algorithm version causes the increase of the mean classification accuracy and
the decrease of its standard deviation. It is hard to compare the number of con-
ditional descriptors for ORG1.0 and ORG2.X as they have different strategies
of search. Only the simplification of the model (expressed with the number of
elementary conditions) generated by the ORG2.1 versus ORG2.0 is visible.

As far as the accuracy is concerned the first version of ORG gives the best
result on the mentioned data. But it is occupied by the lack of ability of applica-
tion of this algorithm for more complex (with the higher dimensional) data. The
assumed level of the accuracy decrease (α = 0.05) is observed for two datasets
(balance and breast) but for other two (iris and Ripley) the rule generalisation
strategy caused the increase of the mean classification accuracy.

Further experiments were performed in two aspects. In the first aspect only
the rule generalisation by condition removing was done assuming α = 0.05. In
order to observe the influence of removing variables from hyperplanes equations
the experiment with the β increase was done (second aspect). β was varied from
0 to 1 with the step 0.01. α remained on the same level as in previous experiments
(α = 0.05).

The results of the first group of experiment are presented in Table 2. The
results of the second group of experiments are presented in the next part of the
paper.
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Table 2. Comparison of JRIP, PART and ORG2.1 results on artificial and benchmark
datasets

accuracy avg. rules total number
dataset avg (std) number of. cond. elem.

PART JRIP ORG2.1 PART JRIP ORG2.1 PART JRIP ORG2.1

d2d 93.6 95.5 99.3 (0.64) 14 9 3.0 37 18 8.0
3d 94.5 94.8 98.7 (1.27) 13 8 2.0 25 19 6.0
2d 96.3 95.5 98.8 (0.98) 10 10 2.0 22 18 4.0

Ripley 85.6 85.6 74.4(10.76) 5 2 5.2 7 1 15.0
balance 83.5 81.0 76.6(4.70) 47 11 3.0 147 30 16.0

breast w. 95.5 95.6 89.8(4.86) 11 6 2.0 21 10 36.9
iris 94.0 95.3 90.7(7.42) 3 3 4.5 3 4 28.4

vehicle 71.5 69.2 73.9(4.31) 29 16 7.9 108 40 1006.2

4.1 The Model Simplification

In this approach two levels of rule pruning were performed: removing oblique
descriptors (“from coverage” strategy) and trimming small coefficients to zero
(removing variables from the hyperplane equation). As the pruning level β values
from 0 to 1 with the step 0.01 were considered. For each dataset and each β
the classification accuracy and the complexity of the model (the total number of
elementary conditions) is observed. As it is difficult to present this kind of results
in the table, results are presented in charts 4(a)-4(h). The X axis represents
the increase of the pruning level. The line (and the left Y axis) is the mean
classification accuracy and bars (and the right Y axis) are the average total
number of elementary conditions (the model complexity).

4.2 Discussion

The comparison of the following algorithms on synthetic datasets shows two
tendencies: the increase of the model accuracy (with the decrease of its standard
deviation) and the decrease of the model complexity, understood as the number
of elementary conditions. It occurs that for two datasets (“iris” and “Ripley”)
the generalisation strategy not only simplifies the model but also improves its
accuracy. Models of two other datasets are shortened six and almost nine times
assuring the decrease of the model accuracy not greater then 5%.

When comparing ORG2.1 with PART and JRIP on synthetic oblique data
(first three rows in Table 2) it is very easy to notice the ability of data description
simplification possible to obtain with the new approach: the smallest number of
rules and the smallest number of elementary condition. Unfortunately, it is still
hard to state that it gives comparable results, regarding model accuracy, as
not oblique rules. The average accuracy is from 4.4% to 11.4% worse for the
ORG2.1. Only for the “vehicle” dataset the increase of the model accuracy is
observed (2.4% and 4.7%).
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(a) 2d dataset (b) 3d dataset

(c) d2d dataset (d) balance

(e) ripley (f) iris

(g) breast (h) vehicle

Fig. 4. Influence of level of pruning on classification accuracy and model complexity
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For three synthetic datasets it is observed that the increase of the β does not
influence on the accuracy and the complexity of the model. This behaviour im-
plies the nature of the data: even if the coefficients of hyperplanes are normalised
and are very different from zero (they are around 0.5) the model accuracy re-
mains on the same level as the influence of each variable is comparable. Only
high values of β (β > 0.5) makes the model worse. Finally, the accuracy of the
model is strongly connected to the number of objects in the largest class. Very
similar situation is observed for the “balance” dataset.

Completely different situation is observed for the “Ripley” data: it occurs that
the most expanded model has the worst classification accuracy. As the pruning
parameter β increases the complexity of the model decreases and the accuracy
increases. Only for β ≈ 1 the strong accuracy decrease is observed. In case of
the “iris” data the results are quite similar: as long as β < 0.8 the classification
accuracy remains on the comparable level while the model complexity decreases
about ten times.

For two last datasets very intuitive dependence can be observed: as the β
increases the model complexity and the model accuracy decrease. For the “breast”
dataset the end increase is caused by the assignment of all objects to the most
represented class. For the “vehicle” dataset it is clearly noticeable that with the
increase of the level of generalisation (β) the complexity of the model and its
accuracy decrease.

5 Conclusions and Further Works

This paper presents the next (third) approach for the problem of generating
oblique rules directly from the data. Like its predecessor it still has the problem
with overlapping classes but in the opposition to ORG2.1 gives the possibility of
the model generalisation so resulting rules set contains less elementary conditions
or decision rules. This ability was tested on real and artificial datasets. It can
be stated the ORG2.1 can find very good oblique decision rules if the nature of
the data is oblique.

The new algorithm requires to set the single hyperplane pruning level. Now
there is no methodology of finding the appropriate β for the dataset. However,
in the paper the way of searching its value was presented – the analysis of the
influence of the β on the model accuracy and complexity was given.

One of the most important aims in further works is to find an easy way of
suggesting the value of the β parameter. Also the idea of oblique rule induction
directly from the data is not exhaustively explored.
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Abstract. This paper formulates the problem of assessing the reflection
symmetry of a function f observed in the presence of noise. We consider
both univariate and bivariate characteristics representing signal and im-
age functions. First the problem of estimating a parameter defining the
reflection symmetry is examined. This is followed by the question of
testing the given symmetry type. The estimation/detection procedure is
based on minimizing the L2-distance between empirical versions of f and
its reflected version. For univariate functions this distance is estimated
by the Fourier series type estimate. In the bivariate case we utilize a class
of radial series represented by the Zernike functions. It is shown that the
symmetry parameter can be recovered with the parametric optimal rate
for all functions f of bounded variation.

Keywords: symmetry estimation and detection, noisy data, radial poly-
nomials, limit distributions, semiparametric inference.

1 Introduction

Symmetry plays an important role in signal and image understanding, compres-
sion and recognition. In fact, symmetric patterns are common in nature and
man-made objects and estimation and detection of a signal/image symmetry
can be useful for designing efficient algorithms for object recognition, robotic
manipulation, signal and image animation, and signal/image compression [5].
For signals represented by the finite energy waveform f(t) one can define a sym-
metry class as follows

S1 = {f ∈ L2(D) : f(t) = τθf(t), θ ∈ Θ}, (1)

where τθf(t) = f(2θ− t). Here, without loss of generality, Θ is a compact subset
of D = [0, 2π]. Hence, the class S1 defines all finite energy signals defined on D
being symmetric with respect to some θ ∈ Θ . In image analysis the bivariate
function f(x, y) characterizes the image grey level value at the pixel (x, y). In
this case there are only two basic symmetry types, i.e., reflection and rotational
symmetries. In this paper we focus on the former type of symmetry. Hence, we
say that an image reveals the reflectional symmetry if it belongs to the following
class

S2 = {f ∈ L2(D) : f(x, y) = τθf(x, y), θ ∈ Θ}, (2)

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 574–585, 2014.
c© Springer International Publishing Switzerland 2014
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where
τθf(x, y) = f(x cos(2θ) + y sin(2θ), x sin(2θ)− y cos(2θ))

is the reflection of the image f(x, y) with respect to the axis of symmetry defined
by the angle θ ∈ Θ ⊂ [0, π). Here D defines the image plane being a compact
subset of R2. Throughout the paper, without the loss of generality, we assume
that the center of mass of the image is known and is located at the point (x, y) =
(0, 0). It is also convenient to express the symmetry constrain in terms of polar
coordinates. Hence, let f̃(ρ, ϕ) = f(ρ cosϕ, ρ sinϕ) be the version of the image
function in polar coordinates. Then, one can easily show that the reflection of
the image f(ρ cosϕ, ρ sinϕ) in a line that makes an angle θ with the x axis is
given by τθ f̃(ρ, ϕ) = f̃(ρ, 2θ − ϕ). The symmetry class in (2) is then defined by
the requirement f̃(ρ, ϕ) = f̃(ρ, 2θ − ϕ) and this is fully analogous to (1).

A number of rather ad hoc algorithms have been proposed for automatic
estimation, detection and classification of reflectional symmetries for noisy free
signals and images see [5] and the references cited therein. Most of the known
symmetry detectors utilize the signal/image variability extracted from the deriva-
tive of the signal/image function. As such these methods may be very sensitive
to noise. Furthermore, the proposed methods assume that the signal/image un-
der examination is symmetric and that they have a certain parametric form.
In practice, however, we do not have access to such a knowledge as we merely
observe a noisy and digitized version of the original signal/image. In this paper
the following signal observational model is used

Zi = f(ti) + εi, ti ∈ D, 1 ≤ i ≤ n, (3)

where the noise process {εi} is an i.i.d. random sequence with zero mean and
finite variance σ2ε . We assume that the data are observed on the equally spaced
grid with the width Δ, i.e., ti − ti−1 = Δ. Note that Δ = 2π/n and ti = iΔ. In
the case of image data we have the following observation model

Zi,j = f(xi, yj) + εi,j , (xi, yj) ∈ D, 1 ≤ i, j ≤ n, (4)

where the data are observed on a symmetric square grid of edge width Δ, i.e.
xi − xi−1 = yi − yi−1 = Δ and xi = −xn−i+1, yi = −yn−i+1. Note that Δ is of
order 1/n and the sample size is n2.

The statistical nature of the observed data and the lack of any a priori knowl-
edge of the shape of underlying signals and images call for formal nonparametric
statistical methods for joint estimating and testing the existing symmetry in a
signal/image function, see [7] [2], [3] and [1] for some preliminary studies for
nonparametric estimation and detection of image symmetries. In this paper we
propose a systematic and rigorous statistical approach for joint estimating and
testing of the aforementioned reflection symmetry defined in (1), (2). To do so
we use the nonparametric orthogonal series estimate utilizing the Fourier series
for univariate objects and their natural bivariate extension relying on the con-
cept of radial functions [7], [9]. In the latter case we select the particular radial
basis commonly referred to as Zernike functions [4]. The Zernike functions de-
fine an orthogonal and rotationally invariant basis of radial functions on the unit
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disk. As such, the Zernike functions and their corresponding Fourier coefficients
(moments) have been extensively used in pattern analysis [6], [7], [9].

Our estimation and test statistics are constructed by expressing the symmetry
condition in terms of restrictions on Fourier coefficients of the classical Fourier
series (univariate case) or in terms of the Zernike moments for images. The
estimation procedure is based on minimizing over θ ∈ Θ the L2 distance between
empirical versions of f and τθf defining the symmetry classes in (1) and (2).
Hence, f and τθf are estimated using truncated Fourier or radial series with
empirically determined Fourier coefficients. The inherent symmetry property of
Fourier series and the radial Zernike functions results in a particularly simple
estimation procedure for θ. In fact, let f̂N and τθ f̂N denote the series estimates
of f and τθf , respectively based on the first N terms of the given orthogonal
expansion. Then, we estimate the true parameter θ0 of the reflection symmetry
by

θ̂n = argminθ∈Θ ‖ f̂N − τθ f̂N ‖2, (5)

where ‖ · ‖ is the L2 norm.

We argue in this paper that the estimate θ̂n converges to θ0 with the optimal√
n rate for all signals/images f that are functions of bounded variation. Further,

we establish asymptotic normality of θ̂n assuming additionally that f is Lipschitz
continuous. This asymptotic theory holds under the basic assumption that the
object f is invariant under some unique reflection, i.e., that there is θ0 ∈ Θ such
that f = τθ0f as it is defined in (1) and (2).

In the case when the observed object is not symmetric our estimate has an
interesting robustness property being converging to the value θ0 representing the
point of symmetry of the closest symmetric object, i.e., θ0 is characterized by

θ0 = argminθ∈Θ ‖ f − τθf ‖2 . (6)

The aforementioned estimation problem is closely connected to the problem of
symmetry detection based on the concept of the L2 minimum distance principle.
In fact, let us consider the hypothesized classes in (1) and (2), i.e., we wish to
test the null hypothesis

H0 : f = τθ0f (7)

for some θ0 ∈ Θ, against the alternative

Ha : f �= τθf (8)

for all θ ∈ Θ. The test statistic for verifying H0 has the form

TN =‖ f̂N − τθ̂n f̂N ‖
2, (9)

where θ̂n is the above introduced estimate with the pointed out robustness prop-
erty. The minimum distance property of θ̂n suggests the alternative form of TN ,
i.e., TN = minθ∈Θ ‖ f̂N − τθ f̂N ‖2, where for the properly selected truncation
parameter N this statistic only needs the numerical minimization with respect
to a single variable θ. Furthermore, due to Parseval’s formula we can evaluate
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the norm ‖ f̂N − τθf̂N ‖2 as the sum of the estimated Fourier coefficients. The
examined detector is of the form: reject H0 if TN > cα, where cα is a constant
controlling the false rejection rate for a pre-specified value α ∈ (0, 1). Hence, the
goal is to select the proper value of N such that for a given prescribed value
of false rejection rate the detector TN has the largest possible probability of
detection (power). We give the asymptotic distributions of TN both under the
null hypothesis of symmetry as well as under fixed alternatives. The former re-
sult is used to construct asymptotic level α tests for lack of symmetry, whereas
the latter result can be used to estimate the power of the tests, or to construct
tests for validating the approximate symmetry of the signal/image. Our results
model the performance of our estimates and tests on the grid which becomes
increasingly fine.

2 Nonparametric Function Estimation Using Fourier and
Radial Bases

To evaluate the L2 norm in (5) we will utilize the nonparametric Fourier series
estimate of the univariate signal f(t). It is well known that any function f ∈
L2(D), defined on D = [0, 2π] can be represented by the Fourier series f(t) =∑∞

k=−∞ ake
jkt, where ak = (2π)−1

∫
D f(t)e

−jktdt is the kth Fourier coefficient.
A natural nonparametric estimate of f(t) is the following truncated version of
the Fourier series

f̂N (t) =
∑

|k|≤N

âke
jkt, (10)

where âk is obtained from the data record in (3) as follows

âk = (2π)−1
n∑

l=1

Zle
−jktlΔ, (11)

where tl = lΔ, Δ = 2π/n. It is known that the estimate f̂N (t) converges to

f(t), i.e., ‖ f̂N − f ‖2→ 0 as n → ∞ if the truncation parameter N meets the
following restrictions N = N(n)→∞ and N(n)/n→ 0. We argue in this paper
that the symmetry estimation need not such optimal choice of the truncation
parameter N .

Our symmetry class S1 in (1) requires also estimation of the reflected and
shifted version of f(t). First, it is easy to show that the signal τθf(t) = f(2θ− t)
has the Fourier representation τθf(t) =

∑∞
k=−∞ bke

jkt with

bk = a∗ke
−jk2θ , (12)

where a∗k is the conjugate version of ak. Hence, τθf(t) can be estimated by

τθf̂N (t) =
∑

|k|≤N

b̂ke
jkt, (13)

where b̂k = â∗ke
−jk2θ .
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The contrast function introduced in (5) for obtaining an estimate of θ and
detecting the symmetry in f is

M̂N(θ) =‖ f̂N − τθ f̂N ‖2 . (14)

This criterion results from the fact that for any f ∈ L2(D) we have

infg∈S1

∫
D

(f(t)− g(t))2dt = 4−1

∫
D

(f(t)− f(2θ − t))2dt, (15)

where the closest symmetric function to f for a given θ ∈ Θ is g∗(t) = (f(t) +
f(2θ− t))/2. Minimization of the right-hand-side of (15) with respect to θ gives
the closest symmetric function to f within the class of all symmetric functions.

The above facts and due to Parseval’s formula allow us to rewrite the contrast
function in (14) as follows

(2π)−1M̂N(θ) =
∑

|k|≤N

|âk − b̂k|2. (16)

The right-hand-side of this formula provides the convenient form of our statistic
for both symmetry estimation and detection.

In image analysis it is important to represent an image function in terms of
orthogonal bases that can easily incorporate invariance properties of the image.
Such bases should be an extension of the Fourier series used above for represent-
ing and estimating symmetric functions. In [4] is is shown that a basis that is
invariant in form for any rotation of axes must be of the form

Vpq(x, y) = Rp(ρ)e
jqϕ, (17)

where the right-hand-side is expressed in polar coordinates (ρ, ϕ). Here, Rp(ρ) is
a radial orthogonal polynomial of degree p. There are various ways of selecting
Rp(ρ) and important examples are Fourier-Mellin, pseudo-Zernike and Zernike
radial bases [9], [6], [7]. Among the possible choices for Rp(ρ) there is only one
orthogonal set, the set of Zernike functions, for which Rp(ρ) = Rpq(ρ) is the
radial orthogonal polynomial of degree p ≥ |q| such that p − |q| is even [4].
Zernike functions are defined on the unit disk D and allow to represent any
f ∈ L2(D) as follows

f(x, y) =

∞∑
p=0

p∑
q=−p

λ−1
p ApqVpq(x, y), (18)

where λp = π/(p+1) is ‖Vpq‖2. Here and in the following the summation is only
taken over the admissible pairs (p, q). The Zernike coefficient (moment) Apq is
defined by

Apq =

∫∫
D

f(x, y)V ∗
pq(x, y) dx dy.
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Recalling the notation f̃(ρ, ϕ) we can conventionally express Apq in polar coor-
dinates

Apq = 2π

∫ 1

0

cq(ρ)Rpq(ρ) ρ dρ, (19)

where cq(ρ) =
1
2π

∫ 2π
0 f̃(ρ, ϕ)e−jqϕ dϕ.

In the following we shall work with a discretized version of the Zernike mo-
ments, since we observe the image function f in model (4) only on the discrete
grid. Hence, consider the weights

wpq(xi, yj) =

∫∫
Πij

V ∗
pq(x, y) dxdy, (20)

where Πij =
[
xi − Δ

2 , xi +
Δ
2

]
×
[
yj − Δ

2 , yj +
Δ
2

]
denotes the pixel centered at

(xi, yj). Consequently, the Zernike moment Apq is estimated by

Âpq =
∑

(xi,yj)∈D

wpq(xi, yj)Zi,j , (21)

where the weights are given by (20). A simple approximation for wpq(xi, yj) is
given by Δ2V ∗

pq(xi, yj). Let us also observe that along the boundary of the disk,
some lattice squares are included and some are excluded. When reconstructing
f , this gives rise to an additional error, called geometric error in [6], [7]. This
will be quantified in our considerations by the factor γ < 1.5, see [6], [7] for a
discussion of this important problem.

As a result, an estimate of the image function f(x, y) is given by

f̂N (x, y) =
N∑
p=0

p∑
q=−p

λ−1
p ÂpqVpq(x, y),

where N is a smoothing parameter which determines the number of terms in the
truncated Zernike series. The mean integrated square error properties of f̂N(x, y)
are discussed in [6].

3 Symmetry Estimation

A. Symmetry Estimation in Signals

We begin with the assumption that the signal f is symmetric with respect to
the unique value θ0 ∈ [0, π). Ignoring the factor 2π in (16) we can write the

theoretical version of M̂N (θ) as

MN(θ) =
∑

|k|≤N

|ak − bk|2, (22)

where bk = a∗ke
−jk2θ . Clearly, MN (θ0) = 0 for all N . An important question for

identifying θ0 is whether the solution of MN (θ) = 0 yields θ = θ0. The following
theorem gives the answer to this question.
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Theorem 1. Let f ∈ L2(D) be symmetric with respect to unique θ0 ∈ [0, π).
Then for sufficiently large N , θ0 is the unique zero of MN(θ) if MN(θ) contains
nonzero ak’s for which the greatest common divisor (gcd) of the k’s is 1.

The proof of this theorem is based on the following representation of MN(θ)

MN(θ) =
∑

|k|≤N

2|ak|2(1− cos(2αk + k2θ)), (23)

where ak = |ak|ejαk . This representation provides a useful characterization of
θ0, i.e.,

αk + kθ0 = lπ, l ∈ Z
for all k with |ak| �= 0. Hence, the form of MN (θ) yielding the unique identifica-
tion of θ0 is given by

MN(θ) =

r∑
i=1

4|aki |2(1− cos(2αki + ki2θ)), (24)

for k1, . . . , kr such that gcd(k1, . . . , kr) = 1, r ≤ N and |aki | �= 0, i = 1, . . . , r.
Fig. 1 illustrates the result described in Theorem 1 for a certain function being
symmetric with respect to θ0 = π. The contrast function MN(θ) is depicted
utilizing the terms with k1 = 1, k2 = 3 and k1 = 3, k2 = 9. The unique global
minimum of MN(θ) at θ0 in the former case is clearly seen. An estimate of θ0
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Fig. 1. (a) The contrast function MN (θ) utilizing the Fourier coefficients a1 and a3,
(b) The contrast function MN (θ) utilizing the Fourier coefficients a3 and a9

can be now obtained as the minimizer of M̂N (θ) being the empirical version of
MN(θ) in (22), i.e., where ak is replaced by âk. Hence, let

θ̂n = arg min
θ∈[0,π)

M̂N (θ) (25)

be the estimate of θ0. Note that θ̂n depends on the sample size n and the trunca-
tion parameter N . The following theorem summarizes the asymptotic properties
of θ̂n.
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Theorem 2. Let the conditions of Theorem 1 be satisfied. Suppose that f is a
function of bounded variation on D. Then, we have

θ̂n = θ0 +OP (n
−1/2).

Thus, under the above conditions the estimate θ̂n achieves the optimal
√
n rate

for virtually any signal functions. Surprisingly, one need not to select an optimal
N but merely to allow N to be large enough such that the conditions of Theorem
1 hold. Furthermore, if f(t) is not symmetric, then θ̂n converges to the value θ0
being now the point of the symmetry of the closest symmetric object, see (15).
Since, however, θ0 is not a zero of MN (θ), therefore Theorem 1 does not hold

and the convergence requires now that N →∞. This robustness property of θ̂n
allows us to estimate the closest symmetric function to f , see (15), by

ĝ∗N (t) = (f̂N (t) + f̂N(2θ̂n − t))/2. (26)

Next result gives the asymptotic normality of θ̂n under a slightly stronger as-

sumption on the signal shape. The notation
L→ stands for the convergence in

distribution and N (0, σ2) denotes the normal law with mean zero and variance
σ2. Moreover, (P ) denotes the convergence in probability.

Theorem 3. Let the conditions of Theorem 1 be satisfied. Suppose that f is
Lipschitz continuous. Then, we have

√
n(θ̂n − θ0) L→ N

(
0,

8σ2ε

M
(2)
N (θ0)

)
,

where M
(2)
N (θ0) = 8

∑
|k|≤N k

2|ak|2 is the second derivative of MN (θ) at θ = θ0.

The above theorem can be used to design an asymptotic confidence interval
for θ0. This requires estimation of the second derivative of MN(θ0) and noise

variance σ2ε . We may estimate M
(2)
N (θ0) by replacing ak by âk. This gives us a

consistent estimate M̂
(2)
N of M

(2)
N (θ0). On the other hand, σ2ε can be estimated

by an estimator based on differences of the observed data {Zi}, i.e.,

σ̂2ε =
1

2(n− 1)

n∑
i=2

(Zi − Zi−1)
2.

It is known that this is the
√
n consistent estimate of σ2ε . Using these estimates,

we obtain the following practical confidence interval for θ0 with the nominal level
α. [

θ̂n −Q1−α
2
√
2σ̂ε

√
n(M̂

(2)
N )1/2

, θ̂n +Q1−α
2
√
2σ̂ε

√
n(M̂

(2)
N )1/2

]
, (27)

where Q1−α is the 1− α quantile of N (0, 1).
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B. Symmetry Estimation in Images

Reflection symmetry estimation for images can be done in the analogous way
as for the univariate functions. Let f ∈ S2 in (2) for some θ0 ∈ [0, π). Hence,
let τθ0 f̃(ρ, ϕ) = f̃(ρ, 2θ0 − ϕ) = f̃(ρ, ϕ) be the unique reflection symmetry re-
quirement imposed on the image f . The invariance property of the Zernike basis
(resulting from (19)) yields

Bpq = e−2jqθA∗
pq, (28)

where Bpq is the Zernike moment of f̃(ρ, 2θ−ϕ) and Apq is the Zernike moment of
f . Owing to this and by Parseval’s formula we can form the theoretical contrast
function

MN(θ) =

N∑
p=0

λ−1
p

∑
|q|≤p

|Apq − e−2jqθA∗
pq|2. (29)

Similarly as in Theorem 1 the zero of MN (θ) uniquely identifies θ0 if one selects
N so large such that the sum definingMN (θ) contains nonzero Ap1,q1 , . . . , Apr ,qr

such that pi ≤ N , i = 1, . . . , r and

gcd(q1, . . . , qr) = 1. (30)

The estimated contrast function M̂N (θ) is defined as (29) with Apq replaced Âpq

derived in (21). Consequently, an estimate of θ0 is defined as

θ̂n = arg min
θ∈[0,π)

M̂N(θ).

For such defined estimate we have the following counterparts of Theorem 2 and
Theorem 3.

Theorem 4. Suppose that an image function f is of bounded variation on D.
Then for sufficiently large N such that the identifiability condition in (30) holds
we have

θ̂n = θ0 +OP (Δ).

Note that Δ is of order 1/n and n2 is the sample size.

Theorem 5. Let the conditions of Theorem 4 be satisfied. Suppose that f is
Lipschitz continuous. Then, we have

Δ−1(θ̂n − θ0) L→ N
(
0,

8σ2ε

M
(2)
N (θ0)

)
,

whereM
(2)
N (θ0) = 8

∑N
p=0 λ

−1
p

∑
|q|≤p q

2|Apq|2 is the second derivative ofMN (θ)
at θ = θ0.

Analogously as in (27) the result of Theorem 5 allows us to obtain the confidence
interval for θ0.
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)

θ

(b)

Fig. 2. (a) Reflection symmetric noisy image, (b) The contrast functions MN (θ) (solid

curve) and M̂N (θ) (dashed line) for N = 7

Fig. 2 (a) shows an example of the noisy version of the reflection symmetric

image of the size 25× 25. In Fig. 2 (b) the contrast functions MN(θ) and M̂N (θ)

for N = 7 are depicted. A global minimum of M̂N (θ) defines the estimate θ̂n.
Fig. 3 (a) shows the noisy version of the image being not reflection symmetric. In

Fig. 3 (b) the contrast functions MN(θ) and M̂N (θ) for N = 7 are depicted. The

minimum of M̂N(θ) gives the reflection axis angle θ̂n that defines an estimate of
the best symmetric approximation of the image. This optimal symmetric image
is estimated by (f̂N + τθ̂n f̂N )/2 and is shown in Fig. 3 (c).

(a)

θ

M
N
(θ
)

(b) (c)

Fig. 3. (a) A noisy image that is not reflection symmetric, (b) The contrast functions

MN (θ) (solid curve) and M̂N (θ) (dashed line) for N = 7, (c) An estimate of the best
symmetric approximation of the image

4 Symmetry Detection

In this section we discuss how to test that f ∈ L2(D) in the observation models
(3), (4) reveal the reflectional symmetry with respect to a certain reflection
point/direction θ. We will only focus on the problem of testing symmetry for
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images. Further, since the minimum L2-distance approach is invariant, see (9),
for the true value of the reflection angle θ0 we may consider, without loss of
generality, the reflection τπ/2 at the y-axis, i.e., τπ/2f(x, y) = f(−x, y). We will
denote this symmetry as τf = f . In polar coordinates, the symmetry τf = f is
equivalent to the following τ f̃(ρ, ϕ) = f̃(ρ, π − ϕ) = f̃(ρ, ϕ). Then, in view of
(28) we have Bpq = (−1)|q|A∗

p,q, where Bpq is the Zernike moment of τf . Now
consider the hypothesis that f is invariant under τ , i.e., H0 : f = τf which can
be expressed in terms of Zernike coefficients as Apq = (−1)|q|A∗

p,q. Hence, due
to Parseval’s formula the test statistic defined in (9) is given by

TN =
N∑

p=0

p∑
q=−p

λ−1
p

∣∣Âpq − (−1)|q|Â∗
p,q

∣∣2.
The following result presents the CLT for statistic TN under the hypothesisH0 as
well as under fixed alternatives. Let C2(D) denote a class of function possessing
two continuous derivatives on D.

Theorem 6. Under the hypothesis H0 : f = τf , if Δ → 0, N → ∞ such that
ΔN7 → 0, we have

TN − σ2Δ2a(N)

Δ2
√
a(N)

L→ N (0, 8 σ4ε), (31)

where a(N) = (N + 1)(N + 2).
Under a fixed alternative Ha : f �= τf , suppose that f ∈ C2(D). If ΔN5 →∞

and N3/2Δγ−1 → 0, where γ = 285/208 controls the geometric error [6], we
have

Δ−1
(
TN − ‖f − τf‖2

) L→ N (0, 16σ2ε‖f − τf‖2). (32)

Theorem 6 can be used to construct an asymptotic level α test for the hypothesis
H0. Indeed, fixing the Type I detection probability P{TN > c|H0} to the value
α yields the following asymptotic choice of the control limit c

cα = 2Q1−αΔ
2
√
2a(N)σ̂2ε +Δ

2a(N)σ̂2ε ,

where σ̂2ε is an estimate of σ2ε and the truncation parameter N can be specified
as N = Δ−α, where 0 < α < 1/7. Hence, H0 is rejected if TN > cα.

The result of Theorem 6 also reveals that under the alternative

TN →‖ f − τf ‖2 (P ) (33)

as n→∞. Consequently, we readily obtain thatN5ΔTN →∞ (P ) which implies
the following consistency result.

Theorem 7. Let Ha : f �= τf for f ∈ C2(D) hold. If ΔN5 → ∞ and
N3/2Δγ−1 → 0, then as Δ→ 0

P
{
N5ΔTN > c|Ha

}
→ 1 (34)

for any positive constant c > 0.
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Hence, the properly normalized decision statistic TN leads to the testing tech-
nique that is able to detect that the null hypothesis is false with the probability
approaching to one, i.e., the power of the test tends to one.

Furthermore, let us note that contrary to the symmetry estimation problem
the symmetry detection requires the optimal choice of the truncation parameter
N .

The condition ΔN7 → 0, used under the hypothesis, is rather restrictive, and
is due to the only approximate orthogonality of the discretized Zernike polyno-
mials. This condition can be relaxed if we assume a more accurate orthogonal
design. In fact, if we have exact discrete orthogonality, then ΔN2 → 0 is suffi-
cient for (31) to hold. Under a fixed alternative, the condition N3/2Δγ−1 → 0 is
equivalent to N4+βΔ→ 0, β = 0.0519 . . ., so that this condition and N5Δ→∞
can be fulfilled simultaneously.

5 Concluding Remarks

In this paper, we have introduced and examined the unified minimum L2-
distance approach for statistical assessing the signal/image symmetry. The prob-
lem of symmetry estimation can be regarded as a semiparametric estimation
problem, with θ as the target parameter, and the signal/image function as a
nonparametric nuisance component [8]. As such the semiparametric optimality
of our estimate of θ remains an open problem. There are numerous ways to refine
the results of this paper. This may include the statistical assessment of imperfect
symmetries and symmetries that only hold locally.
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Abstract. We consider a statistical decision problem as a tool for solv-
ing control problems with a camera in the loop. The first stage is features
extraction from images. Its role is to process images in order to extract
features relevant for the control problem. Then, they are fed as inputs
to the Bayesian decision problem. At the second stage a loss function,
which is a sum of squared deviations of decisions from true decisions
is considered. Finally, an approximation of the optimal decision rule is
proposed, using a learning sequence of decisions, which – together with
feature extracting algorithms – form the control system. The proposed
approach is illustrated by a system that is dedicated to control natural
gas burners.

Keywords: pattern recognition, ordered labels, control, image process-
ing, flame, burner.

1 Introduction

A camera in a control loop is a very rich source of information, in many cases
even too rich. In such a case a control system has to reduce information content.
Otherwise, very similar images are considered as different, which may lead to the
instability of the control loop. It seems that the Bayes decision theory is a good
source of general ideas on how to select proper decisions when an environment
is randomly changing (see [5] for fundamentals of general Bayesian decision the-
ory) and [4] or [7] for more specialized pattern recognition setting. However, we
have to point out that the Bayes decision theory has two points, which are not
compatible with applications in control theory. Namely,

1. the Bayes decision theory is static in the sense that the decision is taken only
once (an idea of using classifiers in a nonstationary environment has been
proposed in [18], [19]),

2. it assumes that we know all necessary a priori probabilities of an environment
states and all probability density functions of states from each class.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 586–597, 2014.
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In order to apply the Bayesian approach we have to start from assumptions
made in 2), but then we have to take a more realistic empirical approach that is
based on estimating these quantities from observations. Concerning 1), we have
to take into account that

– a decision can be changed when the next image is collected and processed,
– possible reasons for changing decisions include:
• disturbances in the process under control,
• a correction of the previous decision, even when disturbances were not
present,
• erroneously interpreted previous frames, resulting in incorrect decisions.

– processing of images should be sufficiently fast in order to ensure proper
behavior of the controlled process.

The last point, in turn, requires the extraction of features from images that are
relevant for process control. Thus, we arrive to the two stage approach. Namely,

1st stage consists of image acquisition and extraction of relevant features,
2nd stage consists of calculating decisions.

In this paper we assume that the process under control has no long memory. In
other words, its dynamics (transient process) can be neglected. If it cannot be
ignored, then the proposed approach can be extended, e.g., by assuming that
states of the process form a Markov chain, but this generalization is outside the
scope of this paper.

We also assume that for a proper process control it suffices to use a finite num-
ber, say l > 1, of decisions. In other words, we quantize a decision process. The
class of decisions can be arbitrarily large (in order to approximate an arbitrary
decision function), but it must be finite or at most countable.

In opposite to the classical setting of Bayes problems, in which labels of the
decisions are arbitrary and unordered, we consider the problem with decision
labels that are linearly ordered. There are practical reasons to take the above
point of view. Namely, when decisions are applied to the process under control
and we admit some errors in decisions, it is important to attach a larger loss
when instead of decision ”1” we take decision ”4” then if decision ”2” (closer to

”1”) is undertaken. We can assume that I def
= {1, 2, . . . , I}, I ≥ 2 is the set of

labels of our decisions. In practice, decision ”1” may mean, apply a force of 10
N to a controlled system, while decisions ”2” and ”3” correspond to applying
forces 15 N and 22 N, respectively. It is only of importance, that 10 N is closer
to 15 N, then to 22 N.

As an optimality criterion we take the expectation of the sum of differences
between the ”true” (mostly desirable) decision label and our decision. We shall
prove that the optimal decision rule is extremely simple in this case. Namely,
its the a posteriori mean (possibly ”rounded” to the nearest decision from the
above list).

As the next step, we discuss an empirical version of the controller, i.e., we
propose an algorithm, which approximates the optimal decision rule.
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It should be mentioned that different orderings were suggested in [20], [13],
but they were introduced in the feature space, while here, we consider ordering
in the space of labels. In [15] two dimensional class labels were considered and
applied to a fault location problem.

2 Decision Problem – Theoretical Setting

Let Y (t) denote an image of the process at time t. Y (t) is an r × c matrix,
where r is the total number of pixels that are stacked in a vector, c is the
number of colors, e.g., three in RGB format. Denote by Ω an operator (linear
or nonlinear) defined on the above described set of matrices with values in Rd,
i.e., X(t) = Ω(Y (t)) is d-dimensional vector. We shall interpret operator Ω as a
feature extractor which extracts features relevant to the controlled process and
forms a pattern X(t) that is sufficient for proper decision making. The form of
operator Ω is problem dependent and not discussed in this section.

2.1 Assumptions

1) For each t, X(t) ∈ Rd is a random vector, for which a correct decision, denoted
as i(t), is an element of I, labeled as 1, 2, . . . , I.

2) New pair (X, i) is a random vector representing features and a correct decision
i, which is unknown for a new feature vector X to be classified.

3) Probability distribution of (X, i) is unknown, but we also have a learning
sequence

(X(k) = X(tk), i
(k) = i(tk)), k = 1, 2, . . . , n

of observedX(k) ∈ Rd and the corresponding correct decisions i(k) ∈ {1, 2, . . . , I}.
We assume that (X(k), i(k))’s are independent, identically distributed random
vectors with the same probability distribution as (X, i).

4) Denote by 0 ≤ q(i) ≤ 1, a priori probability that for X a correct decision is

i, i = 1, 2, . . . , I,
∑I

i=1 q(i) = 1.
5) The next ingredient of the problem setting is a loss function, L(i, j) say, which
attaches loss L(i, j) if the correct decision for X is i, while our decision j ∈ I.
In this paper we take

L(i, j) = (i− j)2, i, j ∈ I (1)

as the loss function. It reflects our idea that it is reasonable to attach a larger
loss when incorrect decision j is far from the correct one, i.e., i.

Let EX denotes the expectation w.r.t. X , while P (i|X) is the a posteriori
probability that for new feature vectorX the correct decision is i. In other words,
P (i|X = x) is the conditional probability of the event that i is the correct label
of the decision for given vector of features X = x.
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2.2 Problem Statement

The aim is to find a decision function Ψ(X), which specifies a decision from I
for X and such that it minimizes the expected loss given by:

R(Ψ) = EX

[
I∑

i=1

(i− Ψ(X))
2
P (i|X)

]
, (2)

In other words, our aim is to minimize the risk R(Ψ), which is our loss that
is averaged of all possible feature vectors X , while averaging is done according
to the probability distribution of X . In order to ensure correctness of (2), we
have to assume that we are looking for minimizer Ψ∗(x), say, in the class of
measurable functions.

The above problem statement is a theoretical one, because we do not know
P (i|X)’s and probability distribution of X . However, it is reasonable to firstly
solve problem (2) as if these quantities were known (see the next Section) and
then, to estimate Ψ∗(x) from the sequence of past correct decisions. This ap-
proach can be named ”learning statistically optimal control”.

3 From Image Features to Optimal Decision Rule

The outer expectation in (2) is carried out with respect to a nonnegative prob-
ability measure corresponding to the distribution of X . Thus, it suffices to min-
imize the expression in the square brackets in (2) for each vector of feature X
separately. In other words, in order to minimize R(Ψ) it suffices to minimize the
conditional risk, which is defined as follows

r(ψ, x)
def
=

I∑
i=1

(i− ψ)2 P (i|X = x) (3)

with respect to ψ, which is a real variable, while x is treated as a parameter.
Notice that ψ∗ which minimizes (3) must depend on x and this dependence is
in fact our decision making unit Ψ∗, that can be also described as follow:

Ψ∗(x) = argmin
ψ
r(ψ, x) (4)

for all x ∈ Rd in the range of X .
Note that minimizing (4) we have to ensure that Ψ∗(x) is a positive integer

form the class of admissible decisions I.

3.1 Optimal Decision Rule

The decision rule Ψ∗(x), which minimizes (3), can be derived in two steps that
follows.
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Step 1. For fixed x we have to minimize the sum of (i − ψ)2 with weights,
which sum up to 1. The best ψ, which is further denoted as Ψ̃(x), is the a
posteriori mean:

Ψ̃(x) =

I∑
i=1

i P (i|X = x) (5)

It is worth explaining how formula (5) works in an idealized case. If the range
of random vectors (features) X can be divided into disjoint subregions Γi, each
corresponding to unique decision i, then P (i|X = x) = 1 exactly for x ∈ Γi and
P (j|X = x) = 0 for all j �= i. In this case Ψ̃(x) = i for x ∈ Γi.

In more realistic cases we have to perform the following step.
Step 2. In order to ensure that our decision is a positive integer we round it

as follows:
Ψ∗(x) = ROUND

(
Ψ̃(x)
)
, (6)

where ROUND(t) is an integer, which is closest to t.
Let us assume the existence of probability densities f(x|i), which describes

the conditional p.d.f. of X , provided that it corresponds to i-th decision from I.
Then, according to the Bayes rule, P (i|X = x) is given by

P (i|X = x) =
f(x|i) q(i)
f(x)

, i = 1, 2, . . . , I, (7)

f(x)
def
=

I∑
l=1

f(x|l) q(l) , (8)

which allows us to express the a posteriori probabilities in terms of probability
densities corresponding to i-th and all other decisions and a priori probabilities
that i-th decision is appropriate. Reasoning analogously as in the proof of The-
orem 1 in [16] the following result can be derived.

Theorem 1. For linearly ordered decision labels the expected loss (2) is mini-
mized by decision rule (5), (6).

3.2 Countable Decision Set and Exponential Family of Features

Here we illustrate the above theoretical derivations and simultaneously we shall
show that the above theory easily conveys to an infinite but countable set of
decisions.

Assume (in this section only) that we have only one feature x ∈ [0, ∞).
Probability densities have the form:

f(x|i) = n x
k

k!
exp(−nx), x ∈ [0, ∞), i = 0, 1, . . . , (9)

where n ≥ 1 is a selected integer. For convenience we have labeled classes from
0. We also assume that a priori probabilities that i-th decision is the proper one
are equal to qi = (1 − q) qi, i = 0, 1, . . ., 0 < q < 1. Then,
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f(x) =

∞∑
i=0

f(x|i) qi = n(q − 1)
(
−en(q−1)x

)
(10)

while ∞∑
i=0

i f(x|i) qi = n2
(
q2 − q

)
x
(
−en(q−1)x

)
(11)

Thus, we obtain the optimal decision rule Ψ∗(x) = ROUND(n q x).

4 Second Stage – Toward Empirically Tuned Controller

When P (i|X = x) and qi, i ∈ I are unknown, one can not apply Thm. 1 directly.
The well-established way of circumventing this difficulty consists of the following
steps:

1. Collect a learning sequence

Ln = (X(k), i(k)), k = 1, 2, . . . , n

that contains pairs: a feature vector X(k) and the corresponding proper de-
cision label i(k) (suggested by experts, which are assumed to provide proper
decisions).

2. Estimate P (i|X = x) and qi, i ∈ I from Ln
3. Insert the above-mentioned estimates into the optimal decision rule (5), (6)

and use it as an approximation of the optimal one.

The above way frequently leads to empirical decision rules that are asymptot-
ically (as n → ∞) as good as the optimal one (in the sense of the expected
loss).

Estimators of f(x|i) can be based on orthogonal expansions or the well-known
Parzen-Rosenblatt kernel estimator, partitioning estimators and many others
(see [6] and [7] for detailed discussions and extensive bibliographies). All these
approaches operate directly on the whole learning sequence, which has to be
stored and available for each pattern to be recognized. This feature is highly
undesirable when one needs to use an empirical decision rule on-line for a process
control.

4.1 Empirical Decision Rule

Therefore, we propose simplified estimators of f(x|i)’s that do not require the
storage of the whole learning sequence in order to make current decision. This
goal can be achieved by applying the well known neural nets with radial basis
functions.

Denote by K(t) ≥ 0, t ∈ R a kernel, which is such that∫ ∞

−∞
K(t) = 1,

∫ ∞

−∞
tK(t) = 0,

∫ ∞

−∞
t2K(t) <∞
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Define

I(i) = {(X(k), i(k)) : i(k) = i}.

I∑
i=1

Card(I(i)) = n,

where Card denotes the cardinality of a set. Let n(i) = Card(I(i)) denote the
number of decisions with the label i in the learning sequence.

The simplest task is estimating a priori probability that a decision has label
i. It suffices to set

q̂(i) =
n(i)

n
, i = 1, 2, . . . , I (12)

as the estimator of q(i).

As estimators f̂(x|i) of f(x|i) we take the following RBF net:

f̂(x|i) = 1

J(i)hd(n(i), i)

J(i)∑
j=1

K

(
||x− C(j)

i ||
h(n(i), i)

)
, i = 1, 2, . . . , I, (13)

where
– C

(j)
i ∈ Rd, j = 1, 2, . . . , J(i) are centers of RBF’s for estimating f(x|i),

– h(n(i), i) is i-th smoothing parameter that depends on n(i),
– ||.|| is a norm in Rd.

We refer the reader to rich bibliography and recent results on RBF’s contained
in [2], [4], [15], [16], [18], [19], [21], [22], [13], [10]. Define the second, composite,
RBF net as follows:

f̂(x) =

I∑
i=1

q̂i f̂(x|i). (14)

It consists of RBF nets (13) with weights q̂i.
In (13) and (14) the role of the learning sequence is not directly visible. It

is ”hidden” in selecting centers C
(j)
i ∈ Rd. Firstly, we select those (X(k), i(k))’s

that are contained in I(i) for given i. Then, they serve for selecting C
(j)
i j =

1, 2, . . . J(i) for the same i. We omit the discussion on selecting centers, since it
is well covered in the available literature.

Define the estimators p̂(i, x) of P (i|X = x) as follows

p̂(i, x) =
q̂i f̂(x|i)
f̂(x)

, (15)

Now, as the empirical decision rule Ψ̂ we take

Ψ̂(x) = ROUND

[
1

f̂(x)

I∑
i=1

i q̂i f̂(x|i)
]
. (16)
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4.2 Important Special Case

Training controllers (16) with f̂(x|i) given by (13) usually requires a long learning
sequence. In many cases one can simplify (13) by setting J(i) = 1, i = 1, , 2, . . . I

and properly selecting K(.) and C
(1)
i (further we use a simplified notation sim-

plified, namely Ci).
Then, (16) can be rewritten as follows:

Ψ̂(x) = ROUND

⎡⎣∑I
i=1 i q̂i h

−d(n(i), i)K
(

||x−Ci||
h(n(i),i)

)
∑I

i=1 q̂i h
−d(n(i), i)K

(
||x−Ci||
h(n(i),i)

)
⎤⎦ (17)

5 Example – A Control System for a Natural Gas Burner

In [11], [12], [1] monitoring gas burners by cameras have been discussed. As far
as we know, a control system based on a camera in the loop has been proposed
only in [14]. In this paper, a decision unit is based on learning an artificial neural
network. Our approach is based on (17), which can be interpreted as an RBF
net, but it differs from the one considered in [14] in that the structure of the
decision unit is the empirical version of the optimal decisions. Thus, also its
structure has some optimality advantages.

It is worth explaining why we need to control burners that are fed by a natural
gas. The reason is that natural gas contains varying amounts of methane and in
order to get a flame having reasonable properties we have to control the air supply
rate.

Our two-stage approach is sketched in Fig. 2 (left panel), where fat lines are
paths of a video stream, while thin lines are paths of transmitting signals varying
in time only.

5.1 Extraction of Features from Flames

As mentioned in the Introduction, we propose the two-stage approach. The first
stage consists of features extraction from a current flame. Algorithms dedicated
to feature extraction and state recognition will be developed elsewhere. Here we
use relatively simple features of flames. Namely, color i.e., the content of yellow
and blue parts of the flame (see Fig. 1) and shape of the flame that can
indicate laminar or turbulent flow of the gas and air mixture (compare images
in the bottom row of Fig. 1).

At each image in Fig.1 one can notice a rotameter with its float indicating the
air flow rate. The air flow rate is our input signal to the burner. Thus, the model of
our system to be controlled is very simple. It consists of an input signal u(t), which
represents the air flow rate at time t. The flow rate is scaled from 0 (the lowest
rotameter position, which corresponds to flow rate 3.5 m3/h) to 100% (maximal
air flow rate). The outputs of our system consists of two variables, namely,
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– x1(t) – the percentage of the blue color in the flame at time t,
– x2(t) – the percentage of the flame height, in which the flame burns in the
laminar way, i.e., it does not contain a turbulent flow.

Fig. 1 explains the meaning of x1(t) and x2(t). The flame in upper left panel
contains almost no blue color (x1(t) = 5%, say) and almost all the flame shape is
turbulent (x2(t) close to zero). Upper right and lower left panels show flames with
more blue color and more parts with laminar shape of the flame, i.e., x1(t) and
x2(t) are larger. Finally, the flame in lower right panel contains about x1(t) = 50-
60% of blue color and about x2(t) = 50-60% of the flame length burns in the
laminar way. The flame in lower right panel of Fig. 1 is considered as the reference

Fig. 1. Flames (rotated to save space corresponding to different air flow rates that are
measured by the rotameter shown at the bottom of each figure

image, i.e., the one that we would like to keep by increasing or decreasing the air
flow rate independently of the methane content in a natural gas. that is supplied
to the burner. One can select slightly different proportions as desired x∗1 and x∗2,
taking into account that if more air can mix with the gas before combustion, the
flame burns providing a higher temperature, which results in more blue color in
it. On the other hand, a smaller air supply rate leads to an incomplete reaction
that appears as a light yellow flame, which is cooler.

Analyzing the intense reactions zone of flame, the fuel undergoes pyrolysis
initially, as evidenced by the presence in the area of soot and compounds C2
and CH, as manifested by a yellow color of the flame zone. Next there is an
intensive zone of the oxidation reaction as the oxygen concentration increases,
as evidenced by the initial absence of visible light radiation, and then the blue
color of the area. This area is characterized by the highest concentrations of
radicals and the highest temperature.

5.2 Control Unit

At the second stage, vectors of extracted features x1(t) and x2(t) are supplied to
a control unit, where a control action, denoted as Ψ̂(x(t)), is calculated as follows.
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Table 1. Interpretation of decisions and their a priori probabilities

C =

⎡⎢⎢⎢⎢⎣
0.1 0.2
0.3 0.4
0.5 0.5
0.7 0.6
0.9 0.9

⎤⎥⎥⎥⎥⎦
Dec. Interpretation prior qi

dec1 increase u(t) by 40% 0.1

dec2 increase u(t) by 20% 0.2

dec3 keep previous u(t) 0.4

dec4 decrease u(t) by 20% 0.2

dec5 decrease u(t) by 40% 0.1

Fig. 2. Estimated optimal decision regions in Example 2 for h = 0.005

Consider (17) with I = 5 decisions, each based on x(t) = [x1(t), x2(t)] and
K(.) being the Gaussian kernel. Matrix of centers C is selected as shown in
Tab. 1 (left table).

Positions of centers correspond to the above-mentioned interpretation of
x1(t), x2(t), where the row [0.5, ] 0.5] reflects the desired state x∗1 and x∗2.

Interpretation of decisions and a priori probabilities of selecting them are
shown in Tab. 1 (right table). In other words, the image based controller works
as follows:

u(t) = u(t− 1)− (Ψ̂(x(t)) − 3) 20%, (18)

where u(t− 1) is our previous decision (it should be replaced by u(t−Δ) if the
time interval between decisions is Δ > 0). Finally, u(t) is sent to an actuator
that changes position of a valve that controls the air flow rate.

We do not present the results on selecting smoothing parameters h(n(i), i),
i = 1, 2, . . . , I, referring the reader to [17], in which it was demonstrated that
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in this case h = 0.005 provides acceptable results. For simplicity we set all
h(n(i), i)’s to be equal to each other. This common value will be denoted by h.

Summarizing, in Figure 2 (right panel) decision regions in the feature space
are shown. We provide this version in order to stress that having decision regions
one can implement the empirical decision rule as a fast controller, provided that
also feature extraction is sufficiently fast.

6 Conclusions

The usefulness of linear ordering of decisions was discussed. It was shown that
the minimization of the expected loss leads to a simple and interpretable decision
rule. A learning algorithm is proposed that is based on the sequence of proper
decisions for given stochastic states. This result is in sharp contrast with the
results when 0-1 loss is minimized (see [7]). As a consequence, building 0-1 loss
optimal decision rule for large number of labels is a difficult task (see, [3], [8],
[9]).

Here we have provided a simple decision rule that is expected to be useful
in control of industrial processes using cameras. In particular, its usefulness for
control of gas burners was sketched.
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Abstract. Agricultural activities could represent an important sector
for the economy of certain countries. In order to maintain control of
this sector, it is necessary to schedule censuses on a regular basis, which
represents an enormous cost. In recent years, different techniques have
been proposed with the objective of reducing the cost and improving au-
tomation, these cover from Personal Digital Assistants usage to satellite
image processing. In this paper, we described a methodology to perform
a crop classification task over satellite images based on the Gray Level
Co-Occurrence Matrix (GLCM) and Radial Basis Function (RBF) neu-
ral network. Furthermore, we study how different color spaces could be
applied to analyze satellite images. To test the accuracy of the proposal,
we apply the methodology over a region and we present a comparison by
evaluating the efficiency using three color spaces and different distance
classifiers.

Keywords: Crop classification, Gray Level Co-Occurrence Matrix, Ra-
dial Basis Funtion Neural Network.

1 Introduction

Remote sensing is a field in which aerial sensors are employed to obtain informa-
tion of the earths surface, and then a numerous amount of techniques are used
to identify objects among that information.

In some countries, agriculture is one of their principal economic activities.
Mexican agricultural sector employs about 5.2% of the active working popu-
lation. This is why it is important to generate statistics by a census. A census
provides a data set which allows to know several variables concerning to the pro-
duction volume, crop identification, location and all attributes conforming their
study. Thanks to this information it is possible to characterize the agricultural
sector structure and performance.

Automation in censuses has gained popularity in recent years, aimed to be
more agile and accurate. For that reason, satellite image processing as a method
for crop classification using remote sensing is a good option considering cost,
data actualization frequency and the possibility of becoming the process more
comprehensive. The crop classification problem has been around approximately

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 598–609, 2014.
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since 1972 with studies such as [8] and government initiatives in the United
States.

The problem of crop classification can be dissected in three essential steps:
the selection of the information source, the feature extraction process and the
classification process. Nowadays, there are a lot of applications using satellite
image in order to obtain crop characteristics. Different commercial companies
provide these satellite images which are multispectral. Spectral bands range
change from company to company. Usually, only some bands are used depending
the application. For example, in order to obtain the biomass and carbon stock
estimation of brazilian coffee crops GeoEye-1 satellite images was utilized with
RED, GREEN and NIR bands [9].

Images used in remote sensing can be of different natures depending on the
sensor employed to acquire the information. One of these sensors is the Synthetic
Aperture Radar (SAR), which captures dielectric characteristics of objects such
as their structure (size, shape and orientation). In [14] for instance a two band
approach is presented, using band C and L a success of 80 and 78% is achieved
when considered separately, and an 84% when both bands are combined. Another
study working with SAR is [7], where an uncommon SAR band, named X, is used
reaching an 84% of correct classification without any kind of image preprocessing.
The main disadvantage of this kind of images though, is they describe crops in
a very specific stage and in order to show good results it is commonly needed to
include multitemporal information, as shown in [12] and [15].

Previous studies have tackled the feature extraction stage using texture de-
scriptors as a mechanism to identify the class or crop to which one given pixel
or region belongs. One of most cited textural descriptors is the Gray Level Co-
Occurrence Matrix (GLCM), presented in [16], where the authors obtained a
60.72% of success in the classification of crops. In [11] GLCM was used as a sec-
ondary discrimination method and made the success rate to increase from 71.2%
to 83% when it was included in the process of differentiating between residential
districts, parking lots, highways, commercial districts, etc. in SAR images.

As for the classification algorithms, the authors in [13] have proposed the
approach of comparing a parametric with a non-parametric classifier previously
shown in other studies. For example, the Radial Basis Function Neural Network
(RBFNN) has been used for crop classification in [2], but only as a mean of
performance comparison against Support Vector Machines (SVM) in a study
classifying crops in Hyper-spectral images.

On the other hand, an assortment applications apply different color spaces,
for example in [4], where the authors use HSL space for apple classification with
satisfactory results. Another interesting example is described in [10], where the
authors use a L*u*v* model along with clustering data for wood segmentation in
vineyards; the proposed methodology allows a better classification rate working
with images taken in different climate conditions and natural lightening issues.
There exists an application in the wine growing area, which implements L*a*b*
model, as well as CMYK space, for leaves and bunches identification [3]. Al-
though there are several applications of different color spaces, their use has not
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been explored in crop classification due to satellite and hyper-spectral images
focus on NIR bands.

In this paper, we present an approach which focuses on satellite images ob-
tained from the visible electromagnetic spectrum, composed of only three bands
commonly known as the red, blue and green channels. These images are cheaper
than others compared with images that use channels out of the visible electro-
magnetic spectrum. Our main objective is to reduce the requirements imposed
on the characteristics of the information used for the classification process even
if some difficulties related to changes in lightness are present during image pro-
cessing. For solving these difficulties different color spaces have been evaluated.
After applying a color space transformation, the Gray Level Co-Occurrence Ma-
trix (GLCM) was used as a texture descriptor in the pre-processing phase. Then,
with the information obtained, a Radial Basis Function (RBF) neural network
was trained for classifying different crops. The accuracy of the proposal is tested
over a region of Mexico where five different crops were detected.

2 Color Spaces

Several color spaces has been designed in the last years. Among the most popular,
we could mention RGB, CIEXYZ, HSV, HSI, HSL, CMYK, YIQ, CIEL*a*b*,
CIEL*u*v, SCH and LCH. Every color space has certain characteristics about
the manner the color is measured into a geometric space. In this paper, we
compare the behavior of RGB, XYZ, HSV, HSI and HSL color spaces in the
task of crop classification.

2.1 CIEXYZ

The XYZ color space is the first mathematically defined color spaces created
by the International Commission on Illumination (CIE) in 1931. It is a linear
transformation of RGB color space. The standardized transformation is given
by (1). ⎡⎣XY

Z

⎤⎦ =

⎡⎣0.49018626 0.30987954 0.199934200.17701522 0.81232418 0.01066060
0.00000000 0.01007720 0.98992280

⎤⎦⎡⎣RG
B

⎤⎦ . (1)

2.2 HSI

HSI is a color space that measures the color within three components: Hue,
Saturation and Intensity. Where Hue is an angular measure respecting the red
axis as it can be seen on (2). Saturation is the proximity of a color point to the
white point reference W = (13 ,

1
3 ,

1
3 ) as seen on (4) and intensity is defined as

the average of the components A,B and C, see (5).

θ = cos−1

(
(R−G) + (R −B)

2
√
(R −G)2 + (R−B)(G −B)

)
. (2)
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If θ > 180 then (3) is applied.

H = 360− θ (3)

S = 1− 3

R+G+B
min(R,G,B) (4)

I =
1

3
(R+G+B) (5)

2.3 HSV and HSL

HSL, HSV, and related models can be derived via geometric strategies. HSV has
almost the same characteristics than HSI, except for the Value (V) component
showed in (6), which correspond to the normalization of the highest value of the
RGB channels.

V =
1

255
max(R,G,B) (6)

For the case of HSL, where, Luminance (L) is calculated as shown in (7).

L =
min(R,G,B) + max(R,G,B

2
(7)

3 Co-Occurrence Matrix

The Gray Level Co-Occurrence Matrix (GLCM), introduced in 1973 by Haralick
et al. [20] is a textural measure that describes some properties about the spatial
distribution of the gray levels in an image. This square matrix measure how
often a pixel value known as the reference pixel with the intensity value i occurs
in a specific relationship to a pixel value known as the neighbor pixel with the
intensity value j. The spatial relationship between two pixels can be specified
with different offsets and angles, for example between a pixel and its immediate
neighbor to its right.

To build a Co-Occurrence Matrix from a region of a images, it is necessary
to define a neighborhood relationship and window size. With this information,
we proceed to create a two dimensional histogram; a squared matrix with the
quantification of the image as length. Each of the cells of this histogram is filled
with the occurrence count of the given pixel relationship, so if we have that in
the analyzed window theres a pixel with a value of 42 and the neighbor pixel
has value of 3 then the value of the histograms cell (42,3) would have to be
incremented by one.

Once the whole histogram has been calculated, it needs to be transformed
into probabilities; the probability that a given relationship exists is computed
by (8).

Pij =
Vij∑N−1

i,j=0 Vij

(8)
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where each element of matrix Vij is the number of occurrences of the pair of
pixel with value i and a pixel with value j which are at a distance d relative to
each other.

After compute the probability that a given relationship exits, it is possible to
calculate a set of 8 properties describing characteristics of the evaluated region
such as contrast, dissimilarity, homogeneity, angular second moment (ASM), en-
tropy, energy, average and standard deviation. The result is a vector of eight char-
acteristics describing a region of the desired size. Using (9), (10), (11), (12) and
(13), the contrast, dissimilarity, homogeneity, angular second moment (ASM),
entropy, energy characteristics over a specific region can be computed.

c1 =

N−1∑
i,j=0

Pij (i− j)2 (9)

c2 =
N−1∑
i,j=0

Pij |i− j|2 (10)

c3 =

N−1∑
i,j=0

Pij

1 + (i− j)2
(11)

c4 =

N−1∑
i,j=0

P2
ij (12)

c5 =
N−1∑
i,j=0

Pij (−InPij) (13)

4 Radial Basis Function Neural Network

In this section, we present a Radial Basis Function Neural Network (RBFNN)
classification algorithm. RBFNN were introduced into the neural network liter-
ature by Broomhead and Lowe which is motivated by the locally tuned response
observed in biologic neurons [18]. RBFNN are a class of neural networks such
that RBF are included in a neuron layer, thus the problem space is transformed
from the original vector space to a new one, where the patterns are expressed in
terms of their belonging to the RBF neurons.

The behavior of this kind of network is similar to the Multilayer Perceptron,
since there is a set of layers joint together by weighted edges. To better un-
derstand how a RBFNN work a common topology of these type of networks is
presented in 1. A typical RBFNN is composed of an input layer, a hidden layer
and an output layer.

Neurons in the input layer do not have an activation function, all these neurons
do is to propagate the input value to the next neuron layer. Along with this,
weights Wij going from the input layer to the hidden layer have all a value of 1.
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Fig. 1. Common RBFNN topology

This merely means each input vector is presented horizontally to each neuron in
the hidden layer.

Neurons in the hidden layer have an RBF activation function, typically a
Gaussian function, although there are other possibilities. According to [18],the
RBF network has to perform a mapping from a continuous input space Rd into
a finite set of classes Y = {1, . . . , L}, where L is the number of classes. In
the training phase, the parameters of the network are determined from a finite
training set defined as in (14)

S =
{
(xμ, yμ) |xμ ∈ Rd, yμ ∈ Y, μ = 1, . . . ,M

}
(14)

where each feature vector xμ is labeled with its class membership yμ.
In the recall phase, further unlabeled observations x ∈ Rd are presented to the

network which estimates their class memberships y ∈ Y . The number of output
units corresponds to the number of classes, and the classmemberships y ∈ Y are
encoded through a 1-of-L coding into a binary vector z ∈ {0, 1}L through the
relation zμi = 1 iff yμ = i.

Using the 1-of-L encoding scheme an RBF network with K basis functions is
performing a mapping as:

Fi (x) =

K∑
j=1

wijh (‖x− cj‖) , i = 1, . . . , L (15)

where h (‖x− cj‖) = exp
(
−‖x− cj‖2 /2σ2

)
is a Gaussian function with

peak at center cμ ∈ Rd.
Outputs from the hidden layer represent how much the given pattern belongs

to the given Gaussian function present in the neuron. These outputs are for-
warded to the output layer, while forwarded these values are weighted with wjk.
Neurons from the output layer have a linear activation function, leaving the
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output of these neurons as a linear combination of the weighted inputs coming
from the previous hidden layer.

The number of the input and output layer neurons is rarely a theme of dis-
cussion, as the input layer almost always has the same number of neurons as the
number of characteristics of the input patterns. The output layer commonly has
as many neurons as different classes are present in the problem data set. Cate-
gorization is performed by assigning the input vector x the class of the output
unit with maximum activation.

The number of neurons in the hidden layer, the ones with RBF activation
functions, on the other hand is a topic by itself. In this work an unsupervised
method is used to determine the number of RBF neurons and at the same time
the parameters for describing each of the Gaussians.

4.1 Algorithm for Defining the Hidden Layer

It is worth however to notice that is not the version of the Gaussian function
used in the RBFNN presented in this paper. A more accurate version of what is
really used is computed with (16).

ϕ(x) = e−β‖x−μ‖2

(16)

From (16), it can be observed the whole 1
σ
√
2π

coefficient is removed. This term

normally controls the height of the Gaussian bell, but in this case the height of
the bell will be controlled by the output neurons and the weighted edges Wjk,
which will be adjusted during the training phase.

The second change to the original Gaussian function is the coefficient 1
2σ2 has

been replaced by a β constant. The replaced term usually is in charge of the
width of the Gaussian bell. But the β parameter can have the same effect.

Having defined what does the RBF look like it is possible to proceed to find
how many Gaussian functions are needed and what their parameters are. To find
how many neurons are required in the hidden layer the unsupervised algorithm
of KMeans is used. The training data set is separated into subsets of single
classes which are used to find clusters using KMeans. From each subset (each
composed of single classes) a number N of clusters is obtained, and from each of
these clusters a center can be identified. The centers of these clusters are used
as the parameter M of the Gaussian functions in the hidden layer. These means
that for each cluster identified for each class in the training data set a neuron in
the hidden layer is created.

The β parameter can be obtained from the distance of each pattern to the
center of the cluster as can be seen in equation (17).

β =
1

2σ2
(17)

4.2 Algorithm for Adjusting the Weights

Once the topology of the neural network has been completely defined the next
step is to train it. The training process consists of presenting the patterns in the
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input layer and adjusting the weights connecting the hidden and output layer so
the output is the closest to the desired class.

It is expected the outputs are not the closest to the desired class, but in
order to improve this a process of adjusting the weights Wjk is performed. This
adjustment is done by using a gradient descent algorithm as shown in equation
(18).

Wjk =Wjk + α ∗ ϕ ∗ ξ (18)

Where ϕ is the output of the hidden layer, α is a learning rate constant and
ξ is given by the equation (19), where δ is the desired output and ζ is the actual
output.

ξ = δ − ζ (19)

5 Methodology

In the present study, the data used for performing the experiments was obtained
from the Internet maps service Google Earth. The images contain data from
the visible part of the electromagnetic spectrum. This in contrast with tradi-
tional research projects where either multi-spectral, hyper-spectral or Synthetic
Aperture Radar images are used.

The image obtained from the maps service was manually segmented, by visual
inspection, into distinct classes defining polygons in the image. Each one of these
polygons belonged to a single class which made easier the feature extraction
process. Once segmented the region, the image was transformed into a different
color space.

For obtaining characteristics that describe the data in the image, the feature
extraction algorithm known as Co-Occurrence Matrix was used. This algorithm
provides descriptors representing textural information in the image. Using the
mentioned algorithm a database was created.

The classification process, for which the results are presented in the experi-
mentation section, was carried on using a RBFNN. The RBFNN topology was
determined by using the algorithm for selecting the number of neurons in the
hidden layer presented previously in this paper.

6 Experimental Results

To evaluate the accuracy of the proposed methodology, a test region was defined.
In Figure 2, a scaled version of the data used through this study is shown. The
original size of the image is 8000 pixels wide and 8000 pixels height. This image
was cropped from a bigger image of size 20000 pixels in each dimension. These
images was taken from the northwest region of Mexico, a region very active from
an agriculture point of view.

From this image, five classes were identified and a set of polygons over each
of these classes were drawn in the image. These polygons made the feature
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Fig. 2. Scaled image used for the experiments shown in the present study

extraction task easier to perform. From this information we built five datasets,
each one evaluated with a different color space for the experiment. Each dataset
is composed of 2752 patterns with 24 features (eight features for each space color
channel).

To validate the accuracy of the proposed method, 30 experiments over each
dataset were performed. It is important to notice that, for every experiment two
subsets were randomly generated from each dataset. The 50% of the samples
compose the training subset, and the remain the testing subset.

The topology of the RBFNN was composed of three layers. The hidden layer
is composed of 16 neurons; finally, the output layer is composed of five linear
neurons. The learning rate was set to 0.001 and the RBFNN was trained during
1000 epochs.

In Table 1, the average accuracy of the proposed methodology using the
RBFNN as a classification device is shown.

Table 1. Results of the experiment with 5 crop classes with the RBFNN classifier

Color Space Training Recognition Rate Testing Recognition Rate

RGB 0.8629 0.8409
HSI 0.9179 0.9049
HSL 0.9158 0.8977
HSV 0.9198 0.9022
XYZ 0.8337 0.8084

As can be observed, the results obtained during training and testing phases
are greater than 80%. For the case of the RGB color space, the results are near
of 85%. The XYZ color space provides a worse accuracy than RGB color space;
however, the obtained results were acceptable. Furthermore, the accuracy of the
proposed methodology increased when it was combined with HSI, HSL or HSV
color spaces. In general, the recognition rate for these color spaces was greater
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than 90%. These color spaces allow the methodology to be applied with images
that contain data from the visible part of the electromagnetic spectrum, even if
they present some illumination changes.

In addition to these experiments, the accuracy of the proposed methodol-
ogy was compared against different distance classifiers. The next three distance
classifiers were compared: Euclidean, Cityblock, Minkowski, Chebychev. This
distances are documented in the MathWorks Documentation Center [17].

Table 2. Average accuracy obtained with the classification method for the crop clas-
sification problem

Dataset Euclidean Cityblock Chebychev
Classifier Classifier Classifier

Tr. cr. Te. cr. Tr. cr. Te. cr. Tr. cr. Te. cr.
RGB 0.7515 0.7477 0.7358 0.7364 0.7700 0.7704
HSI 0.8753 0.8715 0.8662 0.8686 0.8281 0.8274
HSL 0.8507 0.8433 0.8384 0.8370 0.8069 0.8089
HSV 0.8745 0.8732 0.8632 0.8597 0.8254 0.8246
XYZ 0.7377 0.7380 0.7273 0.7276 0.7509 0.7534

Tr. cr = Training classification rate, Te. cr. = Testing classification rate.

As can be observed, the accuracy of the methodology diminished when the
RBFNN was replaced with the distance classifiers. The best results were obtained
with the euclidean distance classifier combined with the HSI, HSL, HSV color
spaces; however, the accuracy was not greater than 90% as with the RBFNN.

After evaluate these results, we observe that is possible to perform crop clas-
sification tasks with satellite images that contain data from the visible part of
the electromagnetic spectrum.

7 Conclusions

In this paper, we presented a methodology to perform a crop classification task
over satellite images that contain data from the visible part of the electromag-
netic spectrum. During the experiments, it was shown that the Gray Level Co-
Occurrence Matrix (GLCM) is a useful descriptor for performing crop classifica-
tion tasks. Furthermore, the combination of this descriptor with a Radial Basis
Function (RBF) neural network provides highly acceptable results, even when
distance classifiers are used.

Moreover, we study how different color spaces could be applied to analyze
satellite images. During the experimental results, we also observed that HSI,
HSL and HSV color spaces provide a better accuracy than RGB and XYZ color
spaces, reaching an accuracy of 90%.

These preliminary results suggest that the methodology could be applied to
different crop classification tasks using satellite images that contain data from



608 G. Sandoval et al.

the visible part of the electromagnetic spectrum and multi- and hyper-spectral
images.

Nowadays, we are evaluating different feature extraction technique combined
with different types of neural networks including spiking neural networks [19].
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Abstract. In this paper we present some new results concerning classi-
fication in small sample and high dimensional case. We discuss geometric
properties of data structures in high dimensions. It is known that such
data form in high dimension an almost regular simplex, even if covariance
structure of data is not unity. We restrict our attention to two class dis-
crimination problems. It is assumed that observations from two classes
are distributed as multivariate normal with a common covariance ma-
trix. We develop consequences of our findings that in high dimensions N
Gaussian random points generate a sample covariance matrix estimate
which has similar properties as a covariance matrix of normal distribu-
tion obtained by random projection onto subspace of dimensionality N .
Namely, eigenvalues of both covariance matrices follow the same distri-
bution. We examine classification results obtained for minimum distance
classifiers with dimensionality reduction based on PC analysis of a sin-
gular sample covariance matrix and a reduction obtained using normal
random projections. Simulation studies are provided which confirm the
theoretical analysis.

Keywords: small sample, classification in high dimensions, eigenvalues
of a sample covariance matrix, maximum likelihood ratio, normal random
projection, minimum distance rule.

1 Introduction

Analysis of high-dimension low-sample size classification is one of most impor-
tant problems both from theoretical and practical point of view. It often happens
that the dimension d of data vectors is larger than the sample size N and this
case is referred to as small sample size, high dimensional data. Microarrays, med-
ical imaging, text recognition, finance and chemometrics are examples of such
classification problems. On the other hand we know that in practice, statistical
methods based on very small sample sizes might not be reliable. Many results in
this area have been obtained in the asymptotic setting, when both dimension d
of the vector observations and the size of the data sample N is very large, with
d possibly much larger than N [2], [19], [4]. It is assumed that d and N grow
at the same rate, i.e. d/N → γ as d → ∞ [19]. Others focus their attention on
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the case that dimension d increases while the sample size N is fixed [1], [8], [10],
[9]. In [13] and [8] it was observed that data in high dimensions form an almost
regular simplex and distances between N < d random points are very close to
c
√
(2d).
Here we restrict our attention to two class discrimination problems. It is as-

sumed that observations from two classes are distributed as multivariate normal
with a common covariance matrix. We assume that the number of available sam-
ples equals N and consists of independent vector observations from both classes,
N0 and N1, respectively.

Using the very popular Fisher classifier LDA (linear discrimination analysis)
[5], [21], [16], [19] when the data are from the normal distribution with a common
covariance matrix: Xl ∼ N(ml, Σ) for l = 0, 1, we can estimate a single, pooled
covariance matrix as an estimate of the common covariance matrix:

S =
1

N − 2

⎛⎝ N0∑
j=1

(X0j − X̄0)(X0j − X̄0)
T +

N1∑
j=1

(X1j − X̄1)(X1j − X̄1)
T

⎞⎠ ,
where

X̄0 =

N0∑
j=1

X0j , X̄1 =

N1∑
j=1

X1j ,

and N = N0 +N1.
The Fisher classification rule is based on

D(X) = (X −M)S−1(X̄0 − X̄1), (1)

where M = (X̄0 + X̄1)/2. If D(X) > 0 classify X to class C0 (labeled by 0),
otherwise classify X to class C1 (labeled by 1).

The maximum likelihood ratio (MLR) rule [11], [19] classifies X to the class
C0 if

N0 + 1

N0
(X − X̄0)

TS−1(X − X̄0) ≤
N1 + 1

N1
(X − X̄1)

TS−1(X − X̄1). (2)

The MLR rule can be also used when covariances in the both classes differ.
Firstly, one estimates the covariance matrix of each class, based on samples
known to belong to each class. Then, given a new sample X , one computes the
squared Mahalanobis distance [12] to each class, i.e.,

(X − X̄l)
TS−1

l (X − X̄l), l = 0, 1

and classifies the new point as belonging to that class for which the (weighted by
Nl+1
Nl ) Mahalanobis distance is minimal. It is well known [22] (and easy to show)

that the MLR rule coincides with the Fisher method when numbers of samples
from both classes are equal to each other, i.e., N0 = N1. Mahalanobis distance
is also closely related to Hotelling’s T-square distribution used for multivariate
statistical testing [15]. It is, however, hard to implement the covariance based
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classification methods when dimensionality is high due to the difficulty of esti-
mating the unknown covariance matrix. Even if number of samples N is greater
than the dimension of the data it is advisable to reduce dimensionality due to
some near zero eigenvalues of S. Thus, it is proposed to drop zero or near zero
eigenvalues of S.

If the number of data samples is smaller than the dimension of the data space,
the sample based estimate of the covariance matrix is singular with probability
one. Srivastava [19] has proposed a sample-squared distance between the two
groups, using the Moore–Penrose pseudoinverse of the singular sample covariance
matrix S.

The Moore–Penrose pseudoinverse of a matrix A is unique and is defined as
matrix A+ satisfying the following four properties:

– AA+A = A,
– A+AA+ = A+

– (AA+)T = AA+,
– (A+A)T = A+A

The sample covariance matrix S is a symmetric positive semidefinite matrix.
Thus, it can be written as

S = QDQT ,

where D is diagonal with the positive eigenvalues of S, and Q ∈ Rd×N is orthog-
onal and consists of N eigenvectors of S connected to the positive eigenvalues of
S. This orthogonal decomposition is often called principal components analysis
(PCA). The sample covariance matrix provides the conventional estimator of
principal component analysis (PCA) through the eigenvalue-eigenvector decom-
position. For the covariance or correlation matrix, the eigenvectors correspond
to principal components and the eigenvalues to the variance explained by the
principal components. The MoorePenrose inverse of S is defined by

S+ = QD−1QT ,

where d − N principal components directions connected to zero (or close to
zero) eigenvalues are removed. For numerical matrices computations of their
pseudoinverses are based on singular value decomposition (SVD) [7].

In this paper we will show why in many cases it is more effective to use unit
diagonal matrix I and the Euclidean distance instead of Mahalanobis distance
based on the pseudoinverse of the sample covariance matrix S+ in the context of
small sample and high dimension classification problems. The analysis is followed
by some simulation experiments which indicate that the same phenomena one
can observe also in a relatively small dimension in comparison to many practical
high dimensional problems. The most important condition is that the number
of samples is smaller than the dimension of the data.

The starting point of the paper is the observation that in high dimensions
N Gaussian random points generate a sample covariance matrix estimate which
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has similar properties as a covariance matrix of normal distribution obtained by
random projection onto subspace of dimensionality N . Namely, eigenvalues of
both covariance matrices follow the same distribution. This property explains
why PC analysis of singular sample covariance matrix (for N < d) leads to the
similar results as dimensionality reduction made at random.

The next section describes geometric properties of small sample data in high
dimensions. Section 3 is concentrated on properties of both mentioned earlier di-
mensionality reduction methods. Section 4. shows some simulation results which
explain and confirm proposals and conclusions developed in the previous sec-
tions. In Section 5 we summarize the provided theoretical and simulation results.

2 Geometric Structure of Data in High Dimensions

It is well known that high dimensional data concentrates close to the surface
of a hypersphere. For example, if samples are drawn according to multidimen-
sional normal distribution in a high-dimensional space, the center region where
the value of the density function is largest is empty and almost all samples are
located close to the sphere of radius

√
(Trace(Σ)) = c

√
(d) (for detailed as-

sumptions see [8] or [1], [6]). Figure 1 (left panel) illustrates this phenomenon,
where diagram of the ordered lengths of 100 iid random observations taken from
normal distribution Nd(0, I) of dimensionality d = 20000 is depicted. Further-
more, as is indicated in [8], [3], the data in high dimension form an almost regular
simplex. The distances between random points are very close to c

√
(2d). Figure

1, right panel depicts a diagram of the Euclidean distances between the same
set of 100 points. Mean Euclidean distance between these points (iid normal
Nd(0, 1), for d = 20000) equals 199.69 with standard deviation 0.78.
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Fig. 1. Left) Diagram of the length of 20000 dimensional random vectors generated
independently according to multivariate normal distribution (100 samples). Right) Di-
agram of the Euclidean distances between the same set of points.

This means that the variability of the small sample of high-dimensional data
is contained only in the random rotation of this simplex. For random vector
X being the multivariate Gaussian distribution with identity covariance matrix
I it is known that ||X ||2 has χ2 distribution with d degree of freedom and
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furthermore ||X || follows χ distribution with the same degree of freedom. The
mean of χ distribution is √

(2)
Γ [(d+ 1)/2]

Γ [d/2]

and μ = E||X || →
√
(d) as d→∞ and its variance equals d− μ2.

In general the Euclidean norm of a multivariate normally distributed random
vector follows a noncentral χ distribution.

Ahn et al [1] have shown, using asymptotic properties of sample covariance
matrices, that the conditions for forming by a small data sample a regular sim-
plex are rather mild. More precisely, they have shown, that if eigenvalues of the
true covariance matrix Σ are all distinct and positive

λ1 > λ2 > . . . > λd > 0,

and if ∑d
i=1 λ

2
i

(
∑d

i=1 λi)
2
→ 0 (3)

as d→∞, then the nonzero eigenvalues of the sample covariance matrix behave

as if they are from diagonal matrix Trace(Σ)
N IN .

The similar phenomenon one can obtain for a uniform distribution. Figure
2 shows a diagram of the lengths of 20000 dimensional random vectors gener-
ated independently according to the uniform distribution from [0, 1]d cube (100
samples) and of the Euclidean distances between the same set of points. Mean
Euclidean distance between 100 points iid uniform from unit cube [0, 1]d, for
d = 20000 equals 57.74 with standard deviation 0.236. Mean vector‘s length
(averaged over 100 observations) equals 81.60 with standard deviation equal to
0.236.

0 20 40 60 80 100

81.2

81.4

81.6

81.8

82.0

1000 2000 3000 4000 5000

57.0

57.5

58.0

58.5

Fig. 2. Left) Diagram of the lengths of 20000 dimensional random vectors generated
independently according to the uniform distribution from [0, 1]d cube (100 samples).
Right) Diagram of the Euclidean distances between the same set of points.
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Fig. 3. Left) Diagram of the lengths of 20000 dimensional random vectors generated
independently according to the uniform distribution from [−1, 1]d cube (100 samples).
Right) Diagram of the Euclidean distances between the same set of points.

Further examples are given in Figures 3, 4 and 5.
Mean Euclidean distance between 100 points iid uniform unit cube [−1, 1]d,

for d = 20000 equals 115.49 with standard deviation 0.473. Mean vector’s length
(averaged over 100 observations) equals 81.64 with standard deviation equal to
0.236 (see Figure 3).
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Fig. 4. Diagram of the normalized lengths of 20000 dimensional random vectors gen-
erated independently according to the uniform distribution from [0, λ0.5

i ]d cube (100
samples). Right) Diagram of the Euclidean distances between the same set of points
with scaling factor 1/

√
(
∑

λ2
i /d) with λ2

i = i.

Mean vector‘s length (averaged over 100 observations) equals 8165 with stan-
dard deviation equal to 30.28. The adequate mean with rescaling factor

1/
√
(
∑

λ2i /d) ≈ 100



616 E. Skubalska-Rafaj�lowicz

equals 81.65. Mean Euclidean distance between 100 points iid uniform from unit
cube [0, i0.5]d, for d = 20000 equals 57.73 with standard deviation 0.284 (see
Figure 4).
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Fig. 5. Left) Diagram of the lengths of 20 dimensional random vectors generated in-
dependently according to the uniform distribution from [−1, 1]d cube (10 samples).
Right) Diagram of the Euclidean distances between the same set of points.

Even if a dimension of data is relatively small, the random observations form
a rather regular structure. The mean Euclidean distance between 10 points iid
uniform from unit cube [−1, 1]d, for d = 20 equals 3.56 with standard deviation
0.447 (see Figure 5).

Regular, close to simplex structure of the data indicate that the sample covari-
ance estimate for small sample size N < d will be in most cases rather regular
with rather uniform nonzero eigenvalues and corresponding eigenvectors will
form random subspace of the original data space. This problem will be analyzed
in more detail in the next section.

3 Random Projections and Eigenvalues of a Sample
Covariance Matrix

As previously we consider Gaussian data with positive definite covariance matrix
Σ, i.e., such that its eigenvalues are all distinct and strictly positive

λ1 > λ2 > . . . > λd > 0.

Suppose we have a data matrix Y ∈ Rd×N , where N ≤ d. For the sake of
simplicity we will assume that the class means are known. Let’s say that m0 = 0
and m1 = μ. Thus, without loss of generality we can assume that each column
of Y is iid normal Nd(0, Σ), since every observation from the class labeled by 1,
let say X , is replaced by X − μ.

It is well known [7] that the nonzero eigenvalues of S = Y Y T /N are also the
eigenvalues of Y TY/N . Srivastava observed [19] that if columns of d×N matrix
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Y are independent identically distributed observations of normal random vector
∼ Nd(0, Σ) then the eigenvalues of Y TY have the same distribution as the
eigenvalues of

UTΣU,

where U ∈ Rd×N is a random matrix with entries iid N(0, 1) (see also [1]).
When number of samples N is smaller than a dimension of a data, then

randomly chosen vector observations Y and vector 0 span a random subspace of
the original data space of dimensionality N . If means are not given and should
be estimated from data N centered vectors span (with probability one) N − 1
dimensional space.

The same effect of choosing random subspace of the original space one can
obtain using normal random projections [20], [17], [18], [3].

Let Z ∈ Rd×N be a random matrix with entries iid N(0, 1). We can project
matrix of observations onto N dimensional subspace using transformation V =
ZTY .

Each column of matrix V ∈ RN×N is iid zero mean normal random vector with
covariance matrix ZTΣZ. A normal random projection with projection matrix
Z transforms Nd(0, Σ) distribution onto NN (0, ZTΣZ). Thus, instead of xTS+x
we can analyze a random quadratic form in normal variables NN (0, ZTΣZ):

(ZTx)T (ZTSZ)−1(ZTx). (4)

It is easy to show that matrix Z can be decomposed into Z = RQ̃, where

Q̃ ∈ St(d,N) = {A ∈ Rd×N : ATA = IN}

consists of N columns of rotation matrix obtained from Z by the Gram–Schmidt
orthogonalization process and R ∈ RN×N is an adequate scaling matrix. So, (4)
equals

xT Q̃(Q̃SQ̃T )−1Q̃Tx. (5)

This formula is very similar to the previous one, proposed by Srivastava [19],
i.e.,

xTQD−1QTx, (6)

where QTx follows the normal distribution with zero mean and the covariance
matrix QTΣQ, and where D is random with respect to the matrix of learning
samples Y .

The precise connections between (6) and (5) are still open question. However
it is known, that the mean value of

Q̃(Q̃SQ̃T )−1Q̃T

with respect to Q̃ (taken uniformly, i.e., according to the Haar measure on the
compact Stiefel manifold St(d,N)) is equal to a pseudoinverse of S [14]. It is
hard, for the numerical reasons, to apply this property in practice.
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Notice that eigenvalues of covariance matrix ZTΣZ of a normal distribution
NN (0, ZTΣZ) obtained after random normal projection have the same distri-
bution as nonzero eigenvalues of Y Y T . This property is not asymptotic and it
holds for every N < d.

In the next section we will show experimentally that using only one N di-
mensional projection at a time leads to the same mean classification error as
the method MLR proposed by Srivastava when results are averaged over many
different learning samples.

4 Numerical Results

We had performed the following experiment. A two class Gaussian problem was
examined with different numbers of learning samples in dimensions d = 20.
The classes differ in the mean, i.e., m0 = (0, . . . , 0)T and m1 = (1, . . . , 1)T .
Eigenvalues of the common covariance matrix equal 1, 2, . . . , 20. It is easy to
check that such covariance structure fulfills assumption (3). For simplicity, we
have also assumed that there are available N0 = N1 samples from both classes
N0 = N1 = 5, 8, 10, 20, 40, 100, 200. 100 different learning samples were
drawn and both methods were performed on 2× 10000 testing samples ( 10000
for each class). Class means are also estimated from the data.

Figure 6 demonstrates a comparison of averaged classification accuracy ob-
tained using different classification methods, namely: Srivastava modification of
the MLR rule and the MLR rule applied to randomly projected data (using nor-
mal random projections) onto subspaces of dimension k = 5, 10 and 20. When
the number of samples was greater than the dimension of the problem, the orig-
inal version of the MLR rule was used and a pseudoinverse was replaced by the
inverse of the sample covariance matrix estimate. For projection of dimensional-
ity k = 20 which is in fact nonsingular the eigenvalues of the sample covariance
matrix were almost the same. Small differences occur due to numerical errors.
For N0 = N1 = 5 one of the estimated covariance matrices has the following
nonzero eigenvalues:

{56.8024, 41.7466, 30.6846, 28.181, 15.2784, 12.4807, 5.73685, 3.17399}

and the trace of these covariance matrices equals ≈ 194.1. When the dimension
of a projection was lower than 20, the eigenvalues of the estimated covariance
matrix were more spread. For example, for k = 10 (and the same learning
sample) we have obtained the following set of nonzero eigenvalues:

{49.1553, 39.4426, 31.963, 13.7017, 9.29589, 3.33462, 1.41191, 0.115814}.

Using unity covariance matrix I instead of estimated ones, i.e., the minimum
Euclidean distance classification rule (MEDC), results in 0.61 − −0.0.74 mean
classification accuracy. The true covariance matrix allows to obtain accuracy
changing from 0.684425 ( means are estimated from only 5 samples) to 0.82 ( for
N0 = N1 = 200). These results indicate that for small data samples estimation
of the covariance matrix was useless.
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Fig. 6. Averaged classification accuracy for two 20-dimensional Gaussian classes and
different number of learning samples N = N0 +N1. N = 10, 16, 20, . . . , 400.

Figure 7 shows magnificated part of Figure 6, which contains results obtained
when number of samplesN was smaller than the dimension d. This figure demon-
strates that both dimension reduction methods give the same mean recognition
errors providing that the dimension of the random projection is larger than the
number of samples.
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Fig. 7. Averaged classification accuracy for two 20-dimensional Gaussian classes and
different number of learning samples N = N0 +N1. N = 10, 16, 20, 30, 40.

The similar behavior we have observed for d = 80 and N0 = N1 = 30. As
previously the class means were m0 = (0, . . . , 0)T and m1 = (1, . . . , 1)T and
eigenvalues of the common covariance matrix equal 1, 2, . . . , 80. The averaged
classification accuracy was equal to 0.579 for Srivastava’s method and equals
0.583 for random projection of dimensionality k = 60. Using I (unity) covariance
matrix, i.e. MEDC rule, allows us to obtain better results of classification with
accuracy 0.63.
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5 Conclusions

The work in this paper is focused on minimum distance classification in high
dimension in the small sample context.

We have presented a classification scheme based on random projections and
have compared its efficiency to the recognition results obtained for the MLR
type rule introduced by Srivastava [19]. Both approaches are outperformed by
the minimum Euclidean distance classifier, when N < d. It is clear that even if
the number of learning samples is larger than the dimension of the classification
problems, the minimum Euclidean distance rule can perform better than the
MLR (or Fisher discriminant method). It should be noted that both methods
apply principal component analysis. The Srivastava method uses it for dimen-
sionality reduction. The random projection method starts from reducing the di-
mension of the problem. It allows us to diminish computational costs for PCA.
If small values of principal components occur, it is possible to reduce further the
dimension of the data.

It is an open question how large should be the learning sample in high di-
mension taking into account the regular structure of data in high dimension. In
other words one may ask where is the transition point between spherical and
non-spherical structure of data when a covariance matrix is not unity.

Another important problem is how to test classification results in a low sample
size context. It is known that in such a case the cross validation methods are
very unstable [1]. We can definitely not avoid a randomness introduced by a
small sample size.
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Abstract. In this paper, single correct and three defective states for
the cold headed fasteners production technological process are detected.
Computational intelligence methods are used for this purpose: single de-
cision tree, probabilistic neural network, support vector machine, multi-
layer perceptron, linear discriminant analysis and K–Means clustering.
The predictor variables are taken in time and frequency domain. The
row data sets consist of sampled signals of the real process collected in
fasteners manufacturing company. The prediction ability determined by
10-fold cross validation is investigated by means of accuracy, sensitivity
and specificity. The results show the superiority of probabilistic neural
network and support vector machine classifiers. The average accuracy is
over 98%.

Keywords: cold headed fasteners, cold forging process, computational
intelligence methods, accuracy, sensitivity, specificity.

1 Introduction

The industrial platform for production processes monitoring is created in coop-
eration between Rzeszów University of Technology (Department of Computer
and Control Engineering), ŻBIK company and Green Forge Innovation Cluster
[2] [3] [4]. The main assumption of the project is to design a relevant solution
for metal processing industry, which enables an iterative implementation of In-
telligent Manufacturing System (IMS) concept [4]. Additionaly it determines
the selection of extensible hardware platform, as well as preparation of soft-
ware modules open for communication purposes. The goal for the base version
of the platform is to monitor machines and operators work, as well as to trace
production orders realization and support auxiliary services, e.g. maintenance,
transport. Up to now, the platform has been successfully deployed in four man-
ufacturing companies in Poland (Subcarpathia province). The most important
testbed has been continuously working in a fasteners manufacturing company
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since 2009 [1] [2] [3]. Further descriptions in this paper will be referred to the
testbed.
The hardware platform consists of modern industrial automation equipment

used at shop-floor level, as well as typical computers and mobile data collectors.
For data acquisition and communication purposes, appropriate devices are in-
stalled on the factory floor, i.e. Programmable Automation Controllers (PACs)
with touchable screens. There is a separate PAC with input and output modules
installed for each machine. Dedicated software, that works on PAC, performs di-
verse tasks simultaneously, both in real-time and in a general purpose operating
system layer. The PAC’s real-time software (PLC - Programmable Logic Con-
troller level) automatically acquires data concerning machine states on the basis
of electrical signals from machine control systems. The application for Windows
CE operating system provides Human System Interface (HSI) [3] for machine
operator. It also communicates with PLC level, peripheral devices (e.g. barcode
reader, electronic caliper, etc.) and with the server layer. Ethernet is used for
communication between PACs and the server. Mobile data collectors are also
included in the platform to collect data from technological processes which are
not equipped with PACs or from auxiliary processes. The collectors communi-
cate with the main server using 802.11 g wireless network. PCs with touchable
screens are also used as extended operator interface, e.g. for browsing technical
documentation.
In the server layer the GlassFish application server is hosting business logic

components, as well as World Wide Web (WWW) applications for system end
users, i.e. production management board. Data is stored in PostgreSQL database
server and web services are used for communication with devices on a factory
floor. The hardware structure of the platform is shown in Fig. 1.
The platform functionality can be divided into a few areas [3] [4]. The first one,

covered by Efficiency module, is related to monitoring machines and operators’
work. The monitoring is performed on the basis of binary signals acquired from
machines control systems and data inputted by human operators via HSI. The
second module, named Start-Stop-End (SSE), registers the flow of production
orders between operations defined in the production technology. As the result,
products genealogy can be traced. Maintenance module currently supports the
process of signaling and reporting progress of fixing machines failures. There are
also other modules which support: scheduling production orders, quality control
procedures and communication between factory and its cooperating companies.
Currently, 70 machines and 6 production processes are covered by the system

in the fasteners manufacturing company [1]. Since May 2009, over 24 million of
events have been registered in the Efficiency module. It is planned to include
additional 37 machines in the system in 2014.
The base platform version has been recently extended for processes and ma-

chines condition monitoring. It is an important extension for Maintenance mod-
ule. In order to perform condition monitoring there is a necessity to register an
additional set of binary and analog parameters. The base version of the platform



624 T. Żabiński et al.

Fig. 1. Hardware structure of IMS platform

supports only acquisition of binary parameters. The main purpose of the exten-
sion is to enable analog parameters registration.
Due to this reason, modifications in the software layer of the system are im-

plemented (Fig. 2). In the real-time software level of PAC, a separate task for
reading data from analog input terminals is added. An analog signal connected
to a single input terminal is treated as a separate measurement channel. Signals
values from input terminals are temporarily stored in memory circular buffers.
A single record in the buffer contains: channel identifier, analog signal values
and timestamp. The application which runs under operating system of PAC
reads data from PLC buffers using Automation Device Specification (ADS) [7]
protocol. It serializes data into a form of byte-array and sends it to the server
application using Transmission Control Protocol (TCP) sockets via the Ethernet
network. The in-memory buffer mechanism is implemented to prevent data loss
during periods of troubles with the network communication. The server applica-
tion receives data from PACs and stores it as Comma Separated Values (CSV)
text files on a hard drive.
In the hardware layer, it is necessary to choose analog input modules com-

patible with the electrical standards for particular signals.
A sampling interval for a particular signal is a result of PLC task cycle time

and the type of analog input module. The lowest standard value of PLC task
cycle time for chosen hardware solution is 1 ms. However, computational power
of PAC, taking into account other running tasks and applications, can limit this
value. On the other hand, one of two types of analog input modules can be cho-
sen: module without oversampling (single probe per one PLC cycle) or module
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Fig. 2. Software structure of IMS platform for analog parameter acquisition

with oversampling (N probes per one PLC cycle, where N is an oversampling
factor). Currently, modules with oversampling factor N = 100 are available,
therefore sampling interval of 10μs can be achieved.
The main objective of this paper is to show how we can effectively use machine

learning methods in prediction of some failures in the cold forging technological
process on the basis of data registered by IMS platform.
This paper is composed of the following sections. Section 2 describes the cold

forging process and data acquisition system. In Section 3, the computational
intelligence methods used in this research are discussed. Section 4 shows the
results. Finally, in Section 5, the conclusions are formulated.

2 Cold Forging Process and Data Acquisition System

Cold forging (cold heading) is a high speed and efficient bulkmetal forming process
in which a force is used to create a destination workpiece shape at a room temper-
ature. During the process, a bulk of metal is placed within a die and a punch is
pressed into the workpiece. As a result, the workpiece takes the form of the punch
and the die. In contrast to machining, the cold forging process makes very efficient
use of material, producing little or no scrap.Modernmachines, called coldformers,
are very efficient and can produce hundreds of pieces per minute. Although origi-
nally cold forging was used to create heads for fasteners, currently many kinds of
parts, even with complex shapes, can be produced by cold forging.
Experiments described in the paper are conducted in the manufacturing com-

pany which produces cold headed fasteners [1]. The experiments are performed
on a typical one-die, two-punch coldformer machine. Two different punches (cone
punch, 2-nd punch) are used, one after the other, to create a correct geometry
of a fastener head. At first, a bulk of metal (wire) is automatically fed into the
machine from a large coil. Next, a precise length of the wire is cut off by the
machine’s built-in cut-off knife. In the next phase, the first strike makes an ini-
tial shape of the head, then a shifting mechanism replaces the cone punch with
the 2-nd punch. The second strike makes the final shape of the head. After the
second strike, the piece is pushed out of the die.
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The machine in the industrial testbed is equipped with one in-die piezoelectric
force sensor, one cut-off knife binary sensor and the main engine state binary
sensor. Significant disturbances in cold heading, i.e. any geometrical changes to
the tooling, changes to the workpiece surface and dimensions, lubrication defects,
etc., can be detected on the basis of force variations analysis [5] [6].
The exemplary piezoelectric sensor signal registered by the data acquisition

system for production of one correct part is shown in Fig. 3.

Fig. 3. Raw piezoelectric sensor signal for production of one correct part: force signal
and cut-off knife scaled signal

During the experiments, data from the sensor are collected using IMS platform
described in Section 1. A dedicated PAC controller and an analog input module
with oversampling (EL3702) from Beckhoff [7] is used for piezoelectric sensor
signal acquisition. PAC is responsible for signal acquisition and communication
with the server application. Collected data are stored on the separate hard drive
connected to the main server.
The sampling interval is configured to be as short as possible (10μs), taking

into account computational power of PAC and oversampling feature of the analog
input module.
Four different experiments are conducted in the testbed:

• correct part (new tools, quality control test passed),
• defective cone punch,
• defective 2-nd punch,
• no 2-nd punch.
The piezoelectric sensor signals patterns for the experiments are compared in
Fig. 4.
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Fig. 4. The piezoelectric sensor signals patterns for the experiments: 1 – correct part,
2 – defective cone punch , 3 – defective 2-nd punch, 4 – no 2-nd punch

In the analog data acquisition system, the same model of PAC as in the IMS
platform is applied. The system is integrated with the platform and has been col-
lecting data constantly since June 2013. Currently, additional output of a typical
industrial processmonitoring device installed in the testbed is registered. The out-
put signalizes an incorrect process run and can be used in the future to evaluate the
correctness of the condition monitoring system integrated with the IMS platform.

3 Computational Intelligence Methods Used in the Study

In this research we use the following classification algorithms: single decision
tree (SDT), probabilistic neural network (PNN), support vector machine (SVM),
multilayer perceptron (MLP), linear discriminant analysis (LDA) and K–Means
clustering (K–Means). All the models are well described in the literature, e.g. in
[9]. Therefore, only the short description is here presented.
SDT is a data classifier and a decision model originally described in [10].

The algorithm of SDT searches for all possible variables and values in order to
find the best split – the question that splits the data into two parts until some
stopping criterion is satisfied. In this study, Gini algorithm is applied to split
variables, maximum tree levels are set to 6.
PNN is a feedforward model proposed by Specht [11]. It is a direct implemen-

tation of Bayes classifier. The network is composed of four layers: an input layer,
a pattern layer, a summation layer, and an output layer. The neurons in the
pattern layer are activated by the radial basis transfer function which depends
on the smoothing parameter (sigma). The appropriate choice of sigma influences
the prediction ability of the model. We use single sigma for each attribute and
class. The conjugate gradient method is applied to train PNN.
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SVM is a classification algorithm which constructs an optimal separating hy-
persurface for the input vectors with associated class labels ±1. The equation of
this hypersurface is found by solving the quadratic programming problem. Two
types of SVM algorithms are considered in this work: C-SVM model [12] and
ν-SVM model [13]. In each case, radial basis and polynomial kernel functions are
utilized to perform training and classification of SVM. The grid search is used
in order to determine optimal parameters of this classifier.
MLP is the feedforward neural network [14]. It is composed of an input layer,

a number of hidden layers and an output layer. The neurons in the hidden and
output layer are activated by some transfer functions. The number of hidden lay-
ers along with the number of hidden neurons is an open problem which is usually
solved experimentally. In this research, MLP with single hidden layer is simu-
lated. The number of hidden neurons is taken from the set {2, 3, . . . , 20}. Both
hidden and output layer are activated using logistic transfer function. Scaled
conjugate gradient method is applied for MLP training.
LDA is a statistical algorithm which classifies objects into mutually exclusive

and exhaustive groups based on a set of object’s features. It was originally devel-
oped by Fisher [15]. The algorithm finds a linear transformation (discriminant
function) of the input variables that yields a new set of transformed values.
K–Means method (K–Means) is a clustering algorithm used to group records

based on similarity of values for a set of input fields [16]. The basic idea is to
try to discover k clusters, such that the records within each cluster are similar
to each other and distinct from records in other clusters. The grouping process
relies on the iterative minimization of the sum of squared distances computed
between input data and the cluster center. In the experiments, k is taken from
the interval {2, 3, . . . , 200}.

4 Results

The classification is performed for 530 signals which belong to four classes listed
in Section 2 and shown in Fig. 4. In particular, there are: 133 signals of class
”correct part” (labeled henceforth as 1), 131 signals of class ”defective cone
punch” and ”defective 2-nd punch” (labeled henceforth as 2 and 3, respectively)
and 135 signals of class ”no 2-nd punch” (labeled henceforth as 4).
Tables 1–6 show the classification results represented in form of accuracy

(Acc), sensitivity (Spe) and specificity (Spe) computed using 10-fold cross val-
idation procedure for SDT, PNN, SVM, MLP, LDA and K–Means algorithms.
The results are shown for all 530 signals with:

(a) 256 attributes representing the values of measured force signal from the
piezoelectric sensor in successive 256 discrete instances of time {1, 2, . . . , 256};

(b) 3 attributes extracted from the set {1, 2, . . . , 256} using the algorithm which
determines the importance of variables;

(c) single attribute found after applying discrete Fourier transform to the input
signals.
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Thus, first two above analyses are performed in time domain (TD). The last
one is determined in frequency domain (FD). In case of (a), all attributes are
involved in the classification. In case (b), the computation of the importance of
particular input variables from the set {1, 2, . . . , 256} is carried out by means
of DTREG software [17] and analysis of sensitivity. As the result, the most
important features are extracted which constitute the set {4, 48, 57}. In case
(c), after Fourier transform, we observe single dominating peak in the power
spectral density (PSD). Maximum value of PSD is chosen as the single predictor
for classification as mentioned above.

Table 1. The accuracy, sensitivity and specificity determined by SDT in the classifi-
cation of considered types of signals

Classes
256 attributes (TD) 3 attributes (TD) 1 attribute (FD)
Acc Sen Spe Acc Sen Spe Acc Sen Spe

1 97.36 94.74 98.24 98.30 96.24 98.99 93.40 91.73 93.95
2 97.92 94.66 99.00 98.87 99.24 98.75 95.85 92.37 96.99
3 99.06 96.95 99.75 99.43 98.47 99.75 96.98 92.37 98.50
4 96.98 96.30 97.22 98.87 97.04 99.49 96.04 88.15 98.73

Table 2. The accuracy, sensitivity and specificity determined by PNN in the classifi-
cation of considered types of signals

Classes
256 attributes (TD) 3 attributes (TD) 1 attribute (FD)
Acc Sen Spe Acc Sen Spe Acc Sen Spe

1 95.85 93.23 96.73 99.06 98.50 99.24 96.04 92.48 97.23
2 97.55 93.13 99.00 99.06 98.47 99.25 94.91 92.37 95.74
3 97.17 89.31 99.75 99.62 99.24 99.75 97.17 93.13 98.50
4 93.21 91.85 93.67 99.25 97.78 99.75 95.66 89.63 97.72

Table 3. The accuracy, sensitivity and specificity determined by SVM in the classifi-
cation of considered types of signals

Classes
256 attributes (TD) 3 attributes (TD) 1 attribute (FD)
Acc Sen Spe Acc Sen Spe Acc Sen Spe

1 98.68 96.24 99.50 98.87 97.74 99.24 95.85 85.71 99.24
2 99.25 98.47 99.50 99.06 98.47 99.25 93.96 96.95 92.98
3 99.06 96.95 99.75 99.25 97.71 99.75 96.60 93.13 97.74
4 97.74 97.78 97.72 98.68 97.78 98.99 96.60 90.37 98.73
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Table 4. The accuracy, sensitivity and specificity determined by MLP in the classifi-
cation of considered types of signals

Classes
256 attributes (TD) 3 attributes (TD) 1 attribute (FD)
Acc Sen Spe Acc Sen Spe Acc Sen Spe

1 97.17 96.99 97.23 97.74 96.99 97.98 96.04 85.71 99.50
2 98.68 97.71 99.00 98.68 97.71 99.00 93.96 98.47 92.48
3 98.49 94.66 99.75 98.87 96.95 99.50 96.79 93.13 97.99
4 97.36 94.07 98.48 97.92 94.81 98.99 96.98 90.37 99.24

Table 5. The accuracy, sensitivity and specificity determined by LDA in the classifi-
cation of considered types of signals

Classes
256 attributes (TD) 3 attributes (TD) 1 attribute (FD)
Acc Sen Spe Acc Sen Spe Acc Sen Spe

1 97.74 96.24 98.24 97.36 99.25 96.73 95.28 85.71 98.49
2 97.36 95.42 97.99 98.11 94.66 99.25 93.21 95.42 92.48
3 98.11 95.42 99.00 98.87 96.95 99.50 97.17 93.13 98.50
4 97.36 94.07 98.48 98.11 94.07 99.49 96.60 90.37 98.73

Table 6. The accuracy, sensitivity and specificity determined by K–Means in the
classification of considered types of signals

Classes
256 attributes (TD) 3 attributes (TD) 1 attribute (FD)
Acc Sen Spe Acc Sen Spe Acc Sen Spe

1 97.55 95.49 98.24 98.49 97.74 98.74 95.28 85.71 98.49
2 97.36 98.47 96.99 99.06 98.47 99.25 95.47 95.42 95.49
3 97.74 93.89 99.00 98.68 96.95 99.25 96.42 93.13 97.49
4 98.30 94.07 99.75 98.87 97.04 99.49 95.47 91.11 96.96

The results in Tables 1–6 can be summarized as follows:
In the classification of signals that consist of 256 attributes one can observe

that:

• for the class 1: the highest Acc is found for SVM (98.68%), the highest Sen
is determined for MLP (96.99%) and the highest Spe is computed for SVM
(99.50%);

• for the class 2: the highest Acc is found for SVM (99.25%), the highest
Sen is determined for SVM and K–Means (98.47%) and the highest Spe is
computed for SVM (99.50%);
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• for the class 3: the highest Acc is found for SDT and SVM (99.06%), the
highest Sen is determined for SDT and SVM (96.95%) and the highest Spe
is computed for SDT, PNN, SVM and MLP (99.75%);

• for the class 4: the highest Acc is found for K–Means (98.30%), the highest
Sen is determined for SVM (97.78%) and the highest Spe is computed for
K–Means (99.75%).

In the classification of signals that posses 3 features we notice that:

• for the class 1: the highest Acc is found for PNN (99.06%), the highest Sen
is determined for LDA (99.25%) and the highest Spe is computed for PNN
and SVM (99.24%);

• for the class 2: the highest Acc is found for PNN, SVM and K–Means
(99.06%), the highest Sen is determined for SDT (99.24%) and the high-
est Spe is computed for PNN, SVM, LDA and K–Means (99.25%);

• for the class 3: the highest Acc is found for PNN (99.62%), the highest Sen
is determined for PNN (99.24%) and the highest Spe is computed for SDT,
PNN and SVM (99.75%);

• for the class 4: the highest Acc is found for PNN (99.25%), the highest Sen
is determined for PNN and SVM (97.78%) and the highest Spe is computed
for PNN (99.75%).

In the classification of signals that are composed of a single variable, it can be
shown that:

• for the class 1: the highest Acc is found for PNN and MLP (96.04%), the
highest Sen is determined for PNN (92.48%) and the highest Spe is com-
puted for MLP (99.50%);

• for the class 2: the highest Acc is found for SDT (95.85%), the highest Sen
is determined for MLP (98.47%) and the highest Spe is computed for SDT
(96.99%);

• for the class 3: the highest Acc is found for PNN and LDA (97.17%), the high-
est Sen is determined for PNN, SVM, MLP, LDA and K–Means (93.13%)
and the highest Spe is computed for SDT, PNN and LDA (98.50%);

• for the class 4: the highest Acc is found for MLP (96.98%), the highest Sen
is determined for K–Means (91.11%) and the highest Spe is computed for
MLP (99.24%).

5 Conclusions

In this article, we identified one correct (normal) and three defective states of
the technological process for the production of cold headed fasteners. For this
purpose, we applied six methods of computational intelligence. As shown, PNN
and SVM were the classifiers which provided the best prediction ability deter-
mined by 10-fold cross validation. Namely, PNN achieved the highest accuracy,
sensitivity and specificity six, four and six times, respectively. In case of SVM,
the highest accuracy, sensitivity and specificity was obtained four, five and six
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times, respectively. The smallest number of best classification results was found
for LDA, MLP and K–Means models.
Regardless the number of predictors, we used the same settings for all the

algorithms. Therefore, the obtained results can be fairly compared. In case of
SDT, PNN and K–Means, the reduction of original 256 attributes down to 3
features improved the prediction ability of these models. For the remaining al-
gorithms (SVM, MLP and LDA), the improvement in the classification ability
was not observed.
It is worth noting that the representation of the input parameters by means

of the single feature in the frequency domain slightly decreased the prediction
ability of the compared classifiers.
Due to limited space of the article, we only provided the results of a selected

fragment of the technological process for the cold headed fasteners production,
i.e. ”2nd punch strike” period. For another fragment, called ”cone punch strike”,
we obtained slightly worse results, namely, the values for the three considered
indicators (Acc, Sen, Spe) were on average lower by about 4%. We believe that
the results will help us to build an early warning system, that will be able to
detect faults (classes 2, 3 and 4) on-line. Our studies show that in order to
achieve this objective in the real-time system, the implementation of PNN or
SVM algorithms is worth considering.
The results of the presented research will be used in the prediction of process

failures in the production of thinwalled aircraft engine components.
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Abstract. We propose an approach that propagates imperfection throu-
ghout a model of land cover change prediction. The proposed approach
is based on Polynomial Collocation method. The proposed approach es-
timates the imperfection in the output of the prediction model from the
imperfection in its inputs. It incorporates two steps:
1. Computing membership functions for input variables for the model
of land cover change prediction, and

2. Propagating imperfections of input variables throughout this model
and determining the effect of these imperfection in the model. A
probabilistic collocation method is used to propagate imperfection.

Experimental results show the effectiveness of the proposed approach
in improving both computation time and prediction of the land cover
change of the Saint-Denis region, Reunion Island.

Keywords: imperfection propagation, land cover change prediction,
probabilistic collocation method, satellite images, membership functions.

1 Introduction

Predicting land cover change provides an important knowledge that is useful
for decision management. However, this prediction is often marred by several
types of imperfections that affect the accuracy of decisions. In literature, most
works attempt to resolve this problem. These works disregard the imperfection
related to the input of their models and its propagation through their models. To
bridge this research gap, we propose a methodology that propagates imperfec-
tion throughout the model of land cover change prediction. We are interested in
random imperfections. A probabilistic collocation method is used to propagate
imperfection as it is a computationally efficient method for performing imper-
fection propagation on large complex models. A comparison with the traditional
Monte Carlo simulation showed good performances of the proposed approach.

2 Related Works

In the current paper, we focus in studying probabilistic uncertainty propagation
methods. Probabilistic methods have the advantage of being simple to represent.
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They have no restrictions on incoming attributes. The probability distribution
functions defining their attributes are assumed to be known.

Among probabilistic methods, we can list Monte Carlo method (MC). It is a
very common statistical and probabilistic method for propagating uncertainty. It
is based on calculating a large number of times. However, MC has two problems:
the computation time and complexity. In literature, many methods have been
developed to reduce the computational effort.

Another probabilistic method is Galerkin Polynomial Chaos method (GPC)
[5][2]. It is an intrusive uncertainty propagationmethod. Intrusive means that the
uncertainty propagation method requires modifying model in which uncertainty
propagation method will be applied.

Non-intrusive polynomial chaos methods (NIPCM) are proposed to overcome
the model modification problem as presented in [6] [13][16]. These methods use
model as a black-box. Both GPC and NIPCM methods use sampling to estimate
coefficients of the polynomial chaos expansion.

3 Proposed Approach

Figure 1 describes the proposed approach to propagate imperfection through
the model of land cover change prediction. The first step consists of estimating
the probability distribution of input parameters. Then, these distribution are
propagated through a model of land cover change prediction presented in [2].

Fig. 1. The proposed approach to study the propagation of imperfection throughout
the land cover change prediction model with collocation method

3.1 Review of the Module for Land Cover Change Prediction

In previous works [2],[3],[4], we presented an approach to predict land cover
change. In order to better understand the process of land cover change prediction,
let suppose that an object is extracted from a satellite image acquired at a date
t using previous work [4].This object can be a lake, vegetation zone, urban
area, etc. Five features are considered for this object which are: the radiometry,
geometry, texture, spatial relations, and acquisition context. Each feature is
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described through a set of attributes Ai(1 ≤ i ≤ N). We note by a state the set
of attribute values computed for the object at a given date.

The prediction process is divided into the three main steps. It starts by a
similarity measurement step to find similar states (in the object database) to a
query state (representing the query object at a given date). The second step is
composed by three sub-steps: (1) finding the corresponding model for the state,
(2) finding all forthcoming states in the model (states having dates superior to
the date of the retrieved state), and (3) for each forthcoming date, build the
spatiotemporal change tree for the retrieved state. The third step is to construct
the spatiotemporal change for the query state. Interested readers can refer to
[2],[3].

The module for the prediction of land cover changes allows taking into account
imperfection related to the prediction process. However, the propagation of the
input imperfection through this module is not considered.

3.2 Probabilistic Collocation Method (PCM)

The analysis proceeds through the steps as presented in [11],[8]. In our case,
the model to be analyzed has 20 parameters. The steps of the collocation ap-
proach are illustrated in Figure 2. First, the parameters must be identified and
their distribution of uncertainty must be determined. The determination of the
distribution may either be based on the designer’s experience, or be based on
statistical data. Second, the orthogonal polynomials distributions determined
for the previous step must be derived. If the approximation of the response of
the model should be of the order p, orthogonal polynomials up to order p+1
must be determined. Third, a polynomial expression is generated to represent
the performance or output variable based on orthogonal polynomials of random
variables (ξi1 , .., ξip).

This is called the extension of polynomial chaos. Since the model is a black
box, we can use a linear approximation in the first estimate.

Y ′ = y0 +
n∑

i1=1

y1Γ1(ξi1) +

n∑
i1=1

i1∑
i2=1

y2Γ2(ξi1 , ξi2) +

n∑
i1=1

i1∑
i2=1

i2∑
i3=1

y3Γ3(ξi1 , ξi2 , ξi3) +

n∑
i1=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

y4Γ4(ξi1 , ξi2 , ξi3 , ξi4 ) + ... (1)

Where yi are deterministic coefficients to be estimated, the Γp(ξi1 , .., ξip) de-
note the multidimensional Hermite polynomials of degree p, and ξ = (ξi1 , .., ξip)
is the set of random variables associated with reduced centered Gaussian random
variables that are used to represent input uncertainty.

The random inputs and outputs are approximated by the PC expansions.
These expansions contain unknown coefficients of the outputs which are calcu-
lated by solving a linear system of equations that uses a selected number of
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Fig. 2. Diagram of the polynomial collocation method to study the propagation of
imperfection throughout the land cover change prediction model proposed by [14]
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collocations points. For a problem with n random variables, the total number of
deterministic solutions required is:

T =
(p+ n)!

p!n!
(2)

where p is the PC order.
For example: if n=2 and p=2 then T=6, so:

Y ′ = y0 + y1Γ1(ξ1) + y2Γ1(ξ2) + y3Γ2(ξ1, ξ1) + y4Γ2(ξ1, ξ2) + y5Γ2(ξ2, ξ2) (3)

Collocation points can be selected from a number of methods. In this study,
the roots of the higher order polynomials were chosen as collocation points. The
roots of orthogonal polynomials are always real and distinct, and always lie in
the interval of support of the distribution.

Specifically, the N+1 roots of the (N+1)th order polynomial corresponding to
each parameter yk are used to define the collocation points. Because these roots
help to define the high probability region of each input parameter, we obtain
an approximation of Y that is particularly good within the most probable range
of values of the input parameters. Moreover, the roots of the (N + 2)th order
polynomials are used to define another set of collocation points that can be used
to estimate the error of the approximation which, again, takes account of the
actual probability distribution of the parameters.

After, we run the model for each of the input sets, and we have as a result
the corresponding yi. Then, by replacing each ξi, in the approximation of the
approximation, we can solve the three simultaneous equations for the unknowns:
y0, y1, y2, y3, ....

Before using the approximation, we need to check the error. We need to test
the quality of the adjustment. For this, a little more executions of simulations
are needed, and we compare the model results with the results of approximation.
We need more collocation points. In this work, we use the method of [14]. These
points are obtained from the next orders of the orthogonal polynomial, because
if the errors are too large, and we need a higher order approximation, we already
have the solutions of the model and we need to solve the approximation.

For each of these sets of input, we solve the real model Y through the approx-
imation of Y p

i . Then, the error term for each eApp is calculated as follows:

eApp =

√
1
T |
∑T

i=1 (Y
p+1
i − Y p

i )|
1
T

∑T
i=1 Y

p
i

(4)

Where T is the number of terms in the approximation Y P
i , equivalent to the

number of collocation points. Y
(P+1)
i is the value of Y for collocation points

for a (p + 1)th polynomial order approximation. Y P
i is the value of Y at the

collocation points for a for a (p + 1)th polynomial order approximation using a
pth polynomial order approximation.

Since the error is large, we have to add higher order terms to try to get a
better approximation. Then we need to check the error for this approximation.
We repeat this step and steps 4, 5 and 6 until you find a good approximation.
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Once we found a pretty good approximation, we can use it in the prediction
of land cover changes. Such a complex model can be reasonably approximated
by a simple polynomial.

4 Experimental Results

Experiments are made on the Saint-Denis region capital of the Reunion Is-
land. The region is located in the north-eastern in the Indian Ocean, east of
Madagascar.

Figure 3 depicts a satellite image acquired on June 18, 2008. This image is
conducted on SPOT5 satellite images and belong to the Kalideos1 database set
up by the CNES2 .

Fig. 3. Satellite image acquired on June 18, 2008

4.1 Validation of the Proposed Approach

In the current study, we are concerned by predicting urban changes. Let us
consider that an urban object is extracted after a segmentation of the image
in Figure 3 using previous work [4]. 20 attributes Ai(i=1..20) are considered to
describe the urban object work [4]. These attributes represent the input of the
proposed approach.

The first step in the proposed methodology is to estimate the membership
function for the urban attributes. These attributes are random attributes and
they can bere presented by probability distributions. Next, we derive a set of
orthogonal polynomials for each of these distributions.

In the proposed approach, urban attributes are represented by a normal dis-
tribution N(μ, σ) with a mean of μ, and a standard deviation of σ. The Hermite

1 http://kalideos.cnes.fr
2 Centre National d’Etudes Spatiales.

http://kalideos.cnes.fr
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polynomials are a set of polynomials which are orthogonal to the standard nor-
mal distribution. This allows using the same set of orthogonal polynomials for
all Gaussian distributions, instead of deriving the orthogonal polynomials for
each specific distribution.

Collocation points are selected from the roots of orthogonal polynomials of
next higher order for each uncertain parameter.In the current example, we need
21 collocation points. The goal is to find a good approximation in these point
with the smallest number of simulations. Collocation points are selected from the
roots of orthogonal polynomials of next higher order (n +1) for each uncertain
parameter, as mentioned in [14] and [7]. We run the model for each collocation
point for the approximation of Y at the order p and p+1. The approximation
can be used only when the values between the two orders p and p+1 are below
a certain threshold.

In our case, 1st order, 2nd order and 3rd order PCM models were evaluated.
An error of 47.5% is found for the first order. In order to reduce this error, we
pass to the second and third orders.

Figure 4.a describes the reduction of the approximation error by increasing the
order of the polynomial chaos approximation. Figure 4.b shows the reduction of
the error rate by increasing the polynomial order. By observing the two curves in
Figure 3, we can choose the order 3 as an approximation order for our polynomial.

Fig. 4. Approximation error variation (a) and the global error reduction (b) according
to the polynomial order

Figure 5 shows that for the propagation of imperfection based chaos poly-
nomial improves the calculated prediction rate. The average rate of predicting
changes for the urban area passes from 70.76% to 71.01% to 71.07% respectively
when the polynomial order passes from order 1 to order 2 and then to order 3.

After identifying the order of the PCM (in our case the order is 3), we return
to the probability distributions for the input parameters. Then, we determine the
optimal values of these parameters corresponding to the order 3. These values
are finally incorporated into the model presented in [2].



644 A. Bouatay, W. Boulila, and I.R. Farah

Fig. 5. Comparison of MC results and MCP with an order equal to 1, 2 and 3

4.2 Evaluation of the Proposed Approach

In order to evaluate the proposed approach in improving land cover change pre-
diction, we apply the proposed propagation method and the Monte Carlo method
to the prediction model presented in [2]. Then, we compare the proposed predic-
tion changes to the MC ones. In literature, Monte Carlo method is considered
as one of the most used methods for uncertainty propagation.

Fig. 6. Land cover change prediction for obtained by the approach of collocation (a)
and Monte Carlo (b) for the date 2012

Figure 6 depicts the prediction images at the date 2012 obtained after the
application of the proposed approach (Fig. 6.a) and Monte Carlo method (Fig.
6.b). In the current example, we use MCP with an order equal to 3. Prediction
changes between MCP and MC are compared according to an image presenting
the same region and acquired at the date 2012.

Table 1 depicts the error calculated between proposed and real urban changes.
As we note, when applying the two approaches to the prediction model presented



An Approach for Imperfection Propagation 645

Table 1. Error for the prediction of urban changes between MCP with an order equal
to 3 and MC between 2008 and 2012

Approach Prediction change rate

Monte Carlo Approach 0.79

Proposed Approach 0.72

in [2], the proposed approach provides a better results than the MC method in
predicting urban changes. This shows the effectiveness of our approach and its
performance in reducing the imperfection related to the prediction process.

Table 2 illustrates the percentage of change of the five objects (forest, water,
bare soil, non-dense vegetation and urban). Land cover changes between 2008
and 2012 are computed for the method presented in [2] (model without applying
the imperfection propagation process), the MC andMCP with an order equal to 3
and compared to real changes. Results show that applying an imperfection prop-
agation process to the land cover change model improves the prediction results.
It helps reducing the influence of the propagation of imperfection throughout
the prediction model.

Table 2. Comparison of percentage changes between 2008 and 2012 for the [2] method,
collocation approach and Monte Carlo approach

Forest Water Bare soil Non dense Urban

vegetation

Method proposed by [2] 69.80% 2.89% 66.43% 31.71% 40.15%

Monte Carlo approach 71.02% 3.42% 65.45% 32.98% 41.52%

MCP with an order=3 71.07% 3.52% 65.39% 33.25% 41.65%

Real 71.09% 3.61% 65.31% 33.80% 41.74%

In order to better evaluate performances of the polynomial collocationmethod,
20 experiments are performed. Twenty different periods are considered. Predicted
land cover changes for these 20 periods are estimated through the proposed ap-
proach. Then, real urban changes are evaluated based on images representing the
same dates in each period.

The Table 3, we note that of the 20 areas studied we have good results com-
pared to the Monte Carlo approach. Indeed, the proposed approach results are
better in improving land cover changes for 14 regions.

In addition to the improvement of the land cover changes prediction, we decide
to evaluate the performance of the proposed approach in term of processing time
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Table 3. Error prediction land cover changes for the proposed approach and the Monte
Carlo approach for 20 period tests

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

M.C 0,36 0,344 0,386 0,268 0,305 0,381 0,407 0,372 0,295 0,345

P.C.M 0,351 0,312 0,368 0,273 0,291 0,369 0,401 0,36 0,311 0,34

R11 R12 R13 R14 R15 R16 R17 R18 R19 R20

M.C 0,352 0,395 0,421 0,412 0,329 0,412 0,457 0,343 0,361 0,392

P.C.M 0,354 0,389 0,422 0,409 0,334 0,375 0,426 0,331 0,329 0,385

Table 4. Comparison of computation time between the approaches: Monte Carlo and
collocation method

Approach Poly. Order N.Total work Total time work

Collocation method 1 27 54sec

without sensitivity 2 378 756=12min 36sec

analysis 3 3654 7308=2h 1min 48sec

N=20 4 27405 15h 13min

5 169911 94h 23min

Monte Carlo - 10000 20000 = 6h 15min

method - 100000 200000= 55h33min

Fig. 7. Convergence of computing time for three methods: Monte Carlo and Polynomial
Collocation method
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Table 4 provides a comparison of computation time for two methods: Monte
Carlo approach and collocation approach (the proposed approach). The calcu-
lations are performed on a Dell i7- 2670QM (2.2 GHz 6MB cache and 6GB of
RAM).In Figure 7, we plotted the evolution of the computation time of the three
methods tested according to the order of the polynomial chaos expansion. As
we note, applying the MCP with an order less than 4 gives better computation
time than the MC method.

5 Conclusion

This paper presents a methodology for propagating imperfection throughout
a model for land cover change prediction. An approach based on Polynomial
Collocation method is presented.

The proposed approach is based on computing membership functions for in-
put features for a given land cover type. Then, these membership functions are
propagated through the land cover prediction model.

Our approach was compared on efficiency to Monte Carlo’s simulation. The
comparison depicts that the proposed approach helps reducing the effect of im-
perfection related to the model of land cover change prediction. This allows
obtaining more reliable decisions about prediction changes.

A big advantage of the PCM is that it is non-intrusive, which means that the
existing deterministic solvers can be used. It reduces the number of operations
and the computing time.

However, the number of variables is a major problem for PCM method. When
this number increases the application of the method becomes more difficult. This
problem will be will also be addressed in future studies.

References

[1] Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic
partial differential equations with random input data. SIAM Journal on Numerical
Analysis 123(1), 1005–1034 (2007)

[2] Boulila, W., Farah, I.R., Ettabaa, K.S., Solaiman, B., Ben Ghézala, H.: A data
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Abstract. In this paper we present an extensive analysis into our task of
expanding our Solar Dynamics Observatory (SDO) content-based image-
retrieval (CBIR) system query capabilities with region-based search fea-
tures. In this first-of-its-kind functionality, for solar physics, we will be
taking advantage of pre-computed image descriptors in order to gener-
ate region-based histogram-like signatures from our training set of pre-
viously identified solar events. With these signatures we then retrieve
new similar solar events solely based on these scale and rotation invari-
ant signatures. In this paper we present our proposed methodology and
our extensive experimental setup with retrieval results. Our multimedia
retrieval mechanism will be extensively tested with multiple variants of
our signatures, multiple similarity measures, and finally validated using
classification algorithms.

Keywords: Multimedia Indexing and Retrieval, Content-based
Retrieval.

1 Introduction

With over 70,000 solar images being sent to Earth on a daily basis by NASAs
Solar Dynamics Observatory (SDO) mission, most traditional solar image anal-
ysis techniques have been rendered obsolete. This is evidence that solar physics
has now entered a new era of big data mining [1]. While individual systems have
been developed for the SDO mission to help identify particular solar events
(flares, filaments, sigmoids, active regions, etc.) as indicated in [2], our ap-
proach has been to develop a more generalized event finding system capable
of finding multiple events at once using data mining techniques. Reaching a
milestone, called the SDO Content-Based Image Retrieval (CBIR) system, we
have utilized machine learning and information retrieval methodologies to pro-
vide an all-purpose tool capable of identifying solar events solely on their visual
characteristics [3–7]. A currently working version of said system is available at
http://cbsir.cs.montana.edu/sdocbir.

The most critical limitation of our current system is that it searches for similar
images in a full-disk manner (entire image as the query). With our methodology
initially introduced in [8], we have proceeded to expand the querying capabilities
to integrate region-of-interest based querying (outlined in Figure 1) to provide
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solar physics researchers with a highly-refined search of particular regions of
interest in solar images. In order to develop our approach, we will use pre-existing
solar event labels taken from the Heliophysics Event Knowledgebase (HEK) (and
its respective Feature Finding Team (FFT) modules) to build standard image
signatures for each identified solar event. Our image signatures are scale-and-
rotation invariant in order to allow us to query the extensive SDO dataset,
and other solar datasets, using images or image segments of any size, type, and
resolution covering any location on the sun.

The overall organization of this paper is as follows: after some background
information (Section 2), we will introduce our dataset (Section 3) and provide
a detailed outline of our methodology (Section 4). In Section 5 we present our
multiple experimental scenarios with results and some discussion. Finally, in
Section 6 we will highlight our general conclusions and the best performing
experiments, and in Section 7 we conclude the paper with an outline of our
future work.

2 Background

Massive image repositories are becoming more readily available for science ap-
plications as new technology and instruments evolve. One of the main issues of
such large image repositories is to be able to query them in an effective manner.
Most widely-used image search engines rely on comparing meta-data or textual
tags associated with the images [9]. Through the years, a number of content-
based image retrieval (CBIR) systems have facilitated these general purpose
querying tasks. Some systems, as Photobook [10] from MIT, allow users to re-
trieve images based on several different image features by reducing said images
to a smaller set of perceptually relevant coefficients and then computing basic
similarities between them. Other available software systems are based on low-
level image features, such as Candid [11], Chabot [12] and QBIC [13] from IBM.
These systems rely on features such as shape, color, or texture in a complete-
image manner, not particular areas of interest. Only Blobworld [14], developed
by University of California - Berkeley, is an example of a system based on finding
coherent image regions that are related to objects.

In our previous work, we have presented our steps into discovering image pa-
rameters and segmenting strategies that work for solar image data [4], and we
have analyzed dissimilarity measures [7] and dimensionality reduction strategies
to reduce numerosity for our solar data [3]. We then have tested multiple indexing
and retrieval mechanisms in order to create a working solar image CBIR system.
During our work we have released a framework to create general-purpose CBIR
systems [15] to facilitate this task for other researchers. This paper presents our
work into expanding said system capabilities to include region-based querying, a
task that is not as usual (but much needed) for CBIR systems. In the following
sections we present our signature image description generation and multiple ex-
perimental evaluations to fulfill this ambitious objective. For a more descriptive
state-of-the-art and solar image analysis perspective, please visit our previous
work [3–8].
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The general standard practice in solar physics was to rely on experts to hand-
label images - a task that is unfeasible now. Thus, this implies the need for an
automated system that allows researchers to perform this analysis in a scalable
and more feasible way. In the literature, histogram based query methods are often
utilized to facilitate the feature comparison among pixels (and descriptors) in
the region of interest. Our approach is motivated by the interrelation among
pixels in particular regions of interest. The benefits of our approach is that the
descriptors generated are invariant under rotation, translation and scaling, thus
allowing us to compare against regions of interest from different format images
and images scaled to bigger or smaller sizes, particularly useful for researchers
using solar event images from other solar missions.

3 Dataset

In this paper, we utilized solar images from the Atmospheric Imaging Assem-
bly (AIA) module of the SDO mission. This AIA module captures eight high-
resolution (4096-by-4096 pixels) images every 10 seconds (more information on
this can be found at [2, 16]). Using the work of Schuh et al. [17], our SDO test
dataset was constructed. This dataset spans a six-month period of data contain-
ing around 15,000 images in two wavebands that feature 24,000 event instances
of six different event types, which are listed in Table 1.

Table 1. Dataset Events and Labels

Label Event Type

AR Active Region
CH Coronal Hole
FL Flare
SG Sigmoid

In the next section we will describe the image parameter extraction from the
SDO dataset images in detail. These parameters will be used to construct our
descriptor signatures for retrieval.

4 Methodology

4.1 Feature Extraction

Our image data from Section 3 is presented in a pre-processed form and then
each image is segmented into a 64-by-64 grid of cells. Then ten image parame-
ters are extracted from each cell. In the work performed by Banda and Angryk
[4, 5], many possible parameters were tested for solar images based on factors
such as computational expense and classification accuracy, but it was observed
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that only the ten parameters selected were sufficient for the task. The ten im-
age parameters that we chose to use for characterization of solar images are:
entropy, fractal dimension, the mean intensity, the third and fourth moments,
relative smoothness, the standard deviation of the intensity, Tamura contrast,
Tamura directionality and uniformity. These image parameters and correspond-
ing formulas are listed in Table 2.

Table 2. Image Parameters Used

Label Image Parameter Formula

P1 Entropy E = −
L−1∑
i=0

p(zi) log2 p(zi)

P2 Fractal Dimension D0 = lim
ε→0

logN(ε)

log 1
ε

P3 Mean m = 1
K

K∑
j=1

zj

P4 3rd Moment (Skewness) μ3 =
L−1∑
i=0

(zi −m)3p(zi)

P5 4th Moment (Kurtosis) μ4 =
L−1∑
i=0

(zi −m)4p(zi)

P6 Relative Smoothness R = 1− 1
1+σ2

P7 Standard Deviation σ =

√
1
k

k∑
j=1

(zj −m)2

P8 Tamura Contrast *Tamura, Mori and Yamawaki [18]

P9 Tamura Directionality *Tamura, Mori and Yamawaki [18]

P10 Uniformity U =
L−1∑
i=0

p2(zi)

z represents an image cell, zi is the i-th gray level, m is the mean, p(zi) denotes the
gray scale histogram of the i-th gray level in the cell. zj is the value of each pixel of

the image, and j will go up to K where K is the number of pixels.

Please take into consideration that we selected each event and wavelength
based on what the current SDO Feature Finding Team (FFT) modules use to
identify the particular events as indicated in [2]. We selected these four different
types of events reported on AIA data for which the FFT modules provide bound-
ary outlines (chain codes) for them. With our configuration, we are now able to
build a training set of properly identified regions of interest for our selected the
images.

4.2 Descriptor Generation

Considered as the critical step in this work, our region-based retrieval is built
on the descriptor signatures. Said signature generation utilizes pre-existing solar
event label reported by FFT modules matched to the images in dataset [17]. This
allows our descriptor signature to be represented by a histogram-like structure
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with ten bins (for the basic case), one for each extracted image parameter based
on the average value of the image cells contained within said events boundary.
We describe this signature calculation procedure in Algorithm 1 (as previously
published in [8]. In our procedure we match each event to its corresponding cells
in our grid and then normalize the values of each parameter, on each selected
cell, with respect to the whole training dataset. We finally average the values
of all cells of the same parameter type creating a histogram bin for each av-
eraged value. Immediately after each descriptor signature is calculated, we will
have one ten-dimensional (for the general case) descriptor signature represent-
ing every reported event. With this step we achieve considerable dimensionality
reduction when compared to our previous approaches, were we had over 40 thou-
sand dimensions as we compared whole images against each other as described
in [3].

Algorithm 1. Steps for calculating descriptor signatures

1: Calculate the maximum Max(Pi) and minimum value Min(Pi) of each of the 10
parameters, for all cells in the dataset. Where Pi is the i-th image parameter value.

2: Match the boundary outline of each event to the corresponding image cells. For
each cell, find the parameter values.

3: Min-Max normalize each parameter value using: Pi =
Pi−Min(Pi)

Max(Pi)−Min(Pi)

4: Take the average of each parameter and use it as a bin, in a histogram representing
a given event.

4.3 Distance Measures

In order to match similar region-based solar events, we are going to compare
the descriptor signatures in a pair-wise manner. These sorted results will be the
nearest neighbor’s lists for each event we analyze. In order to provide a compre-
hensive analysis of different distance measures and how they would affect our
retrieval results, we selected 13 different measures. These distance measures used
to compare signatures are critical for a comprehensive query retrieval analysis.
For example, the cosine distance measures similarity based on the cosine of the
angle between two vectors, while the Euclidean distance calculates the pair-wise
distance between two elements. We have kept our list considerably reasonable
since we do not want to add too much computational costs or any factor that
would considerably slowdown our retrieval. Each of the measures selected are
widely used in other content-based image analyses as we can see in [6, 19, 20].
Each measure used is listed in Table 3, for the particular formula or a more
complete explanation of each measure we refer the reader to [7].

4.4 Retrieval Evaluation

In order to provide a clear and concise explanation on how we evaluate retrieval
precision, we present Algorithm 2.
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Table 3. Distance Measures

Label Distance Name

D1 Euclidean
D2 Standarized Euclidean
D3 Mahalanobis
D4 City Block
D5 Chebychev
D6 Cosine
D7 Correlation
D8 Spearman
D9 Hausdorff
D10 Jensen-Shannon divergence (JSD)
D11 χ2 Distance
D12 Kullback-Leibler divergence (KLD) A-B
D13 Kullback-Leibler divergence (KLD) B-A

In Euclidean distance xs and xt are the values of histogram bins. In cosine distance,
the cosine of the angle between histogram bins xs and xt is calculated. In the rest of

measures, A and B are a pair of histograms.

Algorithm 2. Retrieval precision calculation

1: Let Ei be the number of instances for the ith event type.
2: Calculate the top Ei nearest-neighbors of each event.
3: Determine how many of them are of the ith event type, called true positives (TP).
4: Divide TP over Ei and multiply by 100. This results in the final accuracy percentage
for that particular event.

In all our experiments we calculated all possible nearest neighbors for each
event in the dataset and calculated the retrieval precision using these numbers.
We theorize that if we adjust the number of nearest neighbors extracted, we
could increase our accuracy results this is something we will explore in the
future and is not part of the scope of this paper.

4.5 Validation Through Classification

In order to present our classification analysis, we used the WEKA data mining
package. Using this package we selected three of the most popular classification
algorithms: Naive Bayes, Random Forest, and Support Vector Machines (SVM).
These selected classifiers have been shown to produce solid results for solar data
in the past [4–6]. Naive Bayes and SVM (linear kernel) are our linear classifiers
and to provide a broader scope, we also selected our decision tree-based classifier:
Random Forest, which is very fast to train and highly effective for numerical data.
The SVM classifier, while expensive to train, is one of the most popular in the
literature due to its typically better performance than the rest. All classification
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experiments have been run five times using 10-fold cross validation, we presented
the averaged results.

5 Experiments and Results

5.1 Base-line Results

In this section we will present our initial base-line results for our three classi-
fication algorithms and our retrieval scenario. These results are intended to be
used as a baseline comparison since most of the changes and different scenar-
ios tested in the following sections are designed to improve upon them and/or
aggregate some of them. Please note the classification results are presented to
validate our retrieval experiments and not much time went into improving them
by fine-tuning the individual classifier options.

As we can see in Figure 1, we are performing adequately in finding the multiple
solar events on our dataset, with over 70% on average for at least 3 different
events. This Figure also shows how comparable our retrieval methodology is to
a classification environment, allowing us to use our retrieval mechanism with
the confidence that is performing up to par with more advanced and costlier
classification algorithms that required labeled data to be trained.

Fig. 1. Baseline classification accuracy and retrieval precision results for our Solar
dataset

5.2 Bounding Boxes Versus Chain-Codes

Our dataset includes two different types of labels: Maximal Bounding Boxes
(MBR) and chain-codes. MBRs provide a rectangular area that fully encom-
passes the solar event (Figure 2a). A chain-code will provide a pixel outline of
the exact solar event area as reported by the HEK (Figure 2b). While intu-
itively chain-codes should provide the better (and more precise) area of interest,
we present Figure 2 as a comparison between the two labeling methods.

As it is shown in Figure 3, the difference between MBR and Chain Codes, in
terms of classification accuracy and retrieval precision is less than one percent.
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Fig. 2. Solar image with an MBR defined on a), and a chain-code on b)

Fig. 3. Comparison of MBR and Chain-codes Classification Accuracy and Retrieval
Precision

If we add the computation expense of matching a chain code to a set of corre-
sponding image labels, and the fact that in practical terms the user will be able
to select a bounding-box like area to query on our system, we have validated
our decision of not using the chain codes in our system. We did not find enough
evidence to support that using the more intuitively precise chain codes will ac-
tually provide a dramatic increase in accuracy/precision to justify their added
computational expense. All experiments in the next sections will be performed
using MBRs of our labels only.

5.3 Multiple Distance Measure Experiments

Having shown that Euclidean distance is not always the best fit to find similarity
in our solar data [7, 21], we will extend our retrieval analysis to use more than
ten dissimilarity measures listed on Table 2. Expanding on our initial work [8],
we have selected measures that range from Minkowski-based metrics, histogram-
based measures, and measures that use different selection criteria (Mahalanobis,
Chebyshev, etc). In order to observe these distance measures in action and see
how they affect our retrieval results, we present Figure 4, note that we only
present retrieval results and not classification accuracy results due to the fact
that we do not want to adapt the similarity/distance functions in the classifiers
to use our different distance measures (this is not the scope of our work).
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Fig. 4. Retrieval Precision Results for the different distance measures

As seen in Figure 4, there best performing results are on average using the
Euclidean distance (D1). We do have other measures coming very close (D10 and
D6) but the improvements/advantages are minimal. On the other side, we do
have some measures that perform quite badly (D8 and D9) were we almost drop
50% of accuracy by using this. This is due to the fact that, as we have shown in
the past [7], they are not well suited for our image parameters. Also to note, the
histogram-based measures (D9 to D13) do not perform well in our experiments
with only one of them (D10 or JSD) being comparable to the Euclidean distance.
With the added computation overheard of some of the measures like D12 and
D13 and even for D10, we do not have any considerable precision results to
justify using any other measure than Euclidean distance. The remainder of our
retrieval experiments will use this distance.

5.4 Three-Number Summary Experiments

In order to try to better capture the distribution of our selected region of interest
when querying our repository, we will use a Five-Number summary[22] type of
approach labeled as the Three-Number summary (3NS). In order to avoid com-
putationally intense operations (if our region-of-interest is large), we will avoid
using the median, lower quartile, and upper quartile. Instead we will just use the
sample minimum, maximum and the average. Our 10-dimensional signature will
now grow to a 10 by 3 dimensional signature representing the region of interest.
Figure 5 shows the retrieval experiments using this complementary information.

In a very surprising result, we showed that for our best performing distance
measure the Three-Number approach is actually a lot worse than just using our
original average value of all the cells. We theorize that this is due to the fact
that the max and min actually create bigger differences between our signature
vectors thus making them harder to differentiate than by only using the average
value of the parameters in the region of interest. With the 3NS signature vector
being bigger to store and more computationally complex to evaluate, we are
quite relieved that our original simple approach provides the best results and
allows us to keep our computational expense to a minimum.
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Fig. 5. Retrieval Precision comparison between original average descriptor and 3-
Number Summary (3NS)

5.5 Retrieval Area Experiments

After extensively experimenting with most aspects of our region-based retrieval,
we are still not exploring the last avenue we have: do we divide our region
of interest by our grid cells or should we treat it as a whole cell? This is an
interesting question since we are averaging the values of all image cells up until
now, maybe using one complete big cell instead will provide better or similar
results.

While this might add computational overhead since we need to calculate the
10 image parameters for the arbitrary sized region on the fly, rather than just
matching the cells that we have stored on our database, we still think it is a
good avenue to explore. This approach will also allow us to test our approach
when a user submits a zoomed in image or an image of a different solar mission,
greatly enhancing the functionality of our system and benefiting the overall user
experience. In case the selected region of interest is too big, we will also add a
four cell comparison into our analysis, this means that we will be dividing the
selected region in 4 cells rather than just one (or matching it to our pre-existing
grid), Figure 6 contains our retrieval results.

In our experiment we have shown that we are able to have very similar retrieval
precision results when using four and even one cells to extract our parameters
from the selected region of interest. This leads to considerable processing time
savings when allowing users to upload their own images to query. This also
reduces the computational overhead of matching large selected regions of interest
to their equivalent cells in our gridding methodology. These findings are one of
the most important results of this work, since we have shown that regions of
interest can easily be identified by a single image descriptor and we have no
need to use multiple cells to describe them.
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Fig. 6. Retrieval Precision for Original, one cell, and four cell experiments

6 Conclusions

As we have shown through exhaustive experimentation in this work, we have
been able to successfully develop a methodology that allows us to add region-
based querying to our existing SDO CBIR system. In our experimental evalua-
tion we validated our signature generation using traditional classification
algorithms and demonstrated we can transfer these signatures into a traditional
image retrieval context without loss of retrieval precision / classification accuracy
(Sec. 5.1). We then demonstrated that using chain-codes does not provide any
significant advantage to our signatures, and the increases in retrieval precision /
classification accuracy are negible considering the added computational expense
of matching the chain-code to our grid cells (Sec. 5.2). In our experiments we
have concluded that Euclidean is the best distance measure to evaluate simi-
larity based on our image signatures, and performed extensive experimentation
in order to show this (Sec. 5.3). Once we had a distance measure selected, we
opted to test several aggregation methods for our region of interest cells and
observed that our intuitive choice of averaging parameter values for the cells
shown to be the best performing and most straightforward to compare against
our massive repository (Sec. 5.5). Lastly, in order to provide a fast and effi-
cient region-selection for user submitted queries, we experimented with several
parameter extraction methods (standard, one-cell, and four-cell) and observed
very little performance variations. This allows us to be able to switch between
using our cell matching, or the one and four cell approaches depending on the
size of the query region in order to speed up query processing on our server. All
the findings of each step have carried over to the next one, allowing the bene-
fits to transfer through our experiments and preparing our final approach to be
implemented into the live system.

In general, since we can use this approach for our parameters effectively, the
same methodology can transfer to the medical domain (as shown in [23]). We can
theorize that said approach would work very well for images with fuzzy objects
and very well defined foregrounds. However, we can surely say that this approach
will not be efficient for natural scene images with non-dominant objects in the
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scene, as we have shown our parameters not to be too effective for said type of
images.

7 Future Work

The initial pressing issue is to have the region-based querying implemented into
a new version of the SDO CBIR system as soon as possible. As for future work,
we want to be able to query more than one region of interest at a time, and
this is where our future efforts will be placed. We also want to make our tech-
nology available for researchers to try on different domains, where our selected
image parameters are applicable. Future extensions would involve making our
methodology available as part of imageFARMER to be tested and analyzed on
different sets of image parameters and allowing it to be seamlessly implemented
on research CBIR systems developed by said software package. We encourage
researchers that want our code and functionality to contact us for a pre-release
version of this code and inform us of the application and results they are achiev-
ing with our methodology.
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Abstract. In this paper a vision system for autonomous flying agents is
considered in the context of industrial inspection tasks performed by un-
manned aerial vehicles. A syntactic algorithm of a three-dimensional scene
representation is proposed. The algorithm of creating three-dimensional
single object representation has been tested by using artificial data. It has
turned out to be effective.

Keywords: autonomous flying agents, structure projection, 3D scene
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1 Introduction

The unmanned autonomous flying robots, in order to operate effectively, are
equipped with sensors that are used to collect information about surrounding
environment [6,8]. Beside the need to collect mission-specific data such infor-
mation enables the unmanned autonomous agent to find a collision-free path
between obstacles. Another typical challenge for the mobile agents is to identify
their location in space [4]. Therefore, vision systems play crucial role in various
types of robots [11,12]. In two previous papers the algorithm of two-dimensional
scene analysis was worked out [2,3]. The algorithm described there was based
on syntactic methods. It was the first stage in creating a visual-based system
for an autonomous flying agent system of the urban-type scene representation,
analysis and understanding in the context of navigation possibilities. The al-
gorithm of three-dimensional objects representation, which is presented in this
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paper, is the continuation of studies presented in [2,3] and is the second stage of
the unmanned autonomous vehicle vision system creation.

2 The Problem Foundation

Let us consider an UAV which is aimed at performing an inspection of an urban
object - building, chimney, bridge, tower etc. The robot is autonomous one.
It has to plan out the trajectory from the starting point to the mission area,
then to analyze the mission scene - to locate the recognized object and to plan
out the performing of the inspection task in the context of the structure of the
investigated object and the scene properties. The agent’s memory contains the
map which is given a priori, for instance as a preprocessed satellite image of an
urban environment. The robot is equipped with the mobile camera which is able
to point to the ground in order to take the pictures of the surface that it flies
above. The map that the robot carries presents the buildings extracted from the
base satellite image. The problem of preprocessing which, beside other problems,
consists of object extraction from the image, is out of the scope of this paper.
By referring to the given two-dimensional map and the two-dimensional image
from its senses - camera, radar - the agent orients itself in the environment, also
by using other pieces of information, for instance GPS. More precisely, in order
to find its location on the map the robot takes successive pictures of the ground
below. Then it compares the extracted shape of the building from the picture
and locate it in the bigger map. The method of the objects recognition has to be
rotation and scale invariant as the pictures of the ground are taken from different
altitudes and various directions of the robot’s flight. This problem belongs to the
group of tasks that consist in recognition and representing polygonal-type objects
by a robot sensory systems. The method is extended with the recognition of the
group of buildings. Then, the robot descends in order to explore the environment
directly by using camera and sensors. This allows the agent to create the three-
dimensional representation of the environment. Then, the environment should
be understood and the desired object should be found. Thus, the studies can be
divided in the following stages:

1. Creation a single, two-dimensional object representation, based on the cam-
era image taken from high height.

2. Creation of two-dimensional scene representation based on the high height
camera image. Then, the videoed scene should be recognized as a fragment
of the previously given map. The single desired object should be recognized.

3. Creation of a representation of the three-dimensional scene, based on the
worked out two-dimensional scene representation. The two-dimensional rep-
resentation allows us to locate the buildings. When their localization is
known, the robot can investigate individual objects in order to create their
three-dimensional representation.

4. Understanding the three-dimensional scene.

The points 1 and 2 were the topics of the papers [2,3]. The point 3 is the topic
of this paper.
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The algorithm described in following sections requires the examined structure
(building) to be of some class in order to obtain fully precise representation.
Basically, the structure has to have capability of being represented as a sum,
result of substraction or multiplication of some number of basic construction
elements: rectangular prism and pyramid.

3 The Problem Solution

To satisfy the requirements described in previous sections authors propose a
method of obtaining a 3-dimensional vector representation of urban structures.

The general idea is to construct the set of walls in 3-dimensional space that
will represent boundaries of a building. To enrich the representation and make
it more informative, suggested method also creates representation of holes in the
examined structure. To create 3-dimensional representation authors propose the
method based on the idea of composing the solid from projections that consists
of photographed and vectorised sides of a building.

Input to this method is composed of a set of vectorised pictures of a structure.
In such picture each element (either building projection or wall feature) is repre-
sented by the sequence of points in Euclidean space ((x1, y1), (x2, y2), ..., (xn, yn))
- where (x1, y1) = (xn, yn) as the sequence represents a closed solid. Description
of the method of obtaining vectorised picture, based on bordering algorithm,
can be found in [2,3]. Three of the pictures from this collection will be treated
as projections and will be used to obtain 3-dimensional representation of the
examined structure’s boundaries. Rest of the pictures will be used to reveal a
specific features of the building. A feature can be either window, indepth or a
hole piercing through the structure. The examples in this paper are limited to
the case of holes.

The set of vectorised pictures used as an input to the algorithm has to undergo
specific restrictions:

1. All pictures, from which vector representation is obtained, have to be taken
from the distance from which the overall shape of the building is revealed.
The idea is to avoid any distortion or high influence of perspective

2. One picture has to show the top side of the examined building [i, j])
3. Two of the pictures have to be taken from two sides with angle of 90◦ between

them. One should be taken aiming towards the longest dimension revealed
on the picture of the top side. Second one has to be taken aiming at the side
of the building (in the examples the right side of the building was taken into
account)

4. In order to reveal the features of the walls (holes), the input set has to
include pictures of half of the external side walls of the building (+n/2, -
where n is the number of external walls). To be specific, the building has to
be photographed aiming (horizontally) towards half of the sides represented
by the convex hull of the top side shape (see Fig.1)

The method of obtaining the representation mentioned above can be separated
into two steps:
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Fig. 1. Vectorised top side of a building showing directions from which the rest of the
pictures should be taken

1. Creating 3-dimensional representation of the structure boundaries.

2. Creating representation of walls’ features that consist of holes in the exam-
ined walls of the building.

3.1 Creating 3-Dimensional Representation

In the algorithm of obtaining 3-dimensional boundaries representation of the
structure three vectorised pictures are taken into account - top side, front side
and right side picture. This algorithm can be divided into three parts. In each
part one building projection is taken as reference and two other projections are
treated as models, part of which will be cut and transformed using the reference
to obtain final walls in 3-dimensional space.

Each of the three parts of the algorithm can be described in following steps:

1. Get two succeeding point from reference projection: A = (xi, yi), B =
(xi+1, yi+1), i ∈ 1, ..., n− 1. Such pair is called reference segment

2. reference segment is used to cut parts from two other projections and trans-
late obtained sequences of points as shown in Fig.2a, Fig.2b.

3. Obtained walls lie on the same plane, perpendicular to reference wall (right
in presented example), which inclination is defined by the reference segment.
Final step consists in calculating common part of walls (see Fig.2c)
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(a) (b) (c)

Fig. 2. Steps of creating walls, (a) - cutting from projections, (b) - projecting onto a
plane, (c) - intersection of intermediate walls

3.2 Creating Features Representation

For each projection on which features were discovered the algorithm creates a
3-dimensional representation of each feature. In the input set of vectorised projec-
tions features are represented in similar way as are vectorised shapes of structure
- as sequence of points in Euclidean space ((x1, y1), (x2, y2), ..., (xm, ym)) - where
(x1, y1) = (xm, ym). To obtain 3-dimensional representation a feature is sweeped
along the thickness of a building [13]. As a result we get a set of walls that
represent inside walls of a hole in a building. The idea of this method is depicted
in Fig.3.

Fig. 3. Process of feature sweeping

4 Sample Applications

In this section three test cases are presented. In each case vectorised projections
are shown along with the resulting 3-dimensional representation of the building
structure with features (if there were any). In presented tests vectorised projec-
tions were obtained basing on photographed paintings of buildings sides. As a
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vectorisation algorithm is not included in the scope of this paper, only first test
case is provided with the mentioned photographs to give a notion of how vector
representation was obtained.

Example 1. Triumphal Arch Structure

In the first test case the shape of building resembles a triumphal arch with two
ledges protruding out from the base shape. Note that vectorised shapes in Fig.5
were scaled and shifted with respect to those in Fig.4 in order to locate properly
corresponding vectors from different pictures for the algorithm of composing the
structure from projections. The created representation is shown in Fig.6.

(a) (b) (c)

Fig. 4. Raw photographs of the structure, (a) - top picture, (b) - front picture, (c) -
right picture

(a) (b) (c)

Fig. 5. Test case I vectorised pictures, (a) - top picture, (b) - front picture, (c) - right
picture

Example 2. Structure with Features on Each Side

This test scenario shows the structure with every wall having at least one hole.
The top view, front view and right-hand view are presented in Fig.7. The re-
sults show the complexity of the final 3-dimensional structure involving sweeped
features - see Fig.8.
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(a) (b) (c)

Fig. 6. Results I - view from different angle

(a) (b) (c)

Fig. 7. Test case II vectorised pictures, (a) - top picture, (b) - front picture, (c) -
right-hand picture

(a) (b) (c)

Fig. 8. Results II, (a) - 3-dimensional structure without features, (b) - 3-dimensional
structure including features, (c) - 3-dimensional representation of separated features

Example 3. Structure with Features in Multiple Side Walls

In this case each of the side walls of the building has a hole piercing through whole
structure. As the building has eight side walls, four ones has to be photographed
and processed in order to reveal the holes. The views of the object are presented
in Fig.9 - the top view with marked sides from which other pictures were taken
and views of four walls: front view, 45◦ angle view, right-hand view and 135◦

angle view. In Fig.10 the three-dimensional representation of the object is shown.
There is presented the three-dimensional structure without features, including
features and the three-dimensional representation that shows crossing of the
sweeped features inside the building structure.
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(a) (b)

(c) (d) (e)

Fig. 9. Test case III vectorised pictures, (a) - top picture with marked sides from which
other pictures were taken, (b) - front picture, (c) - 45◦ angle picture (d) - right picture,
(e) 135◦ angle picture

(a) (b) (c)

Fig. 10. Results III, (a) - 3-dimensional structure without features, (b) - 3-dimensional
structure including features, (c) - 3-dimensional representation showing crossing of the
sweeped features inside building structure

5 Concluding Remarks

In this paper the algorithm, based on syntactic methods for a single three-
dimensional object representation, has been presented directly. However, it should
be stressed, that the composition of the presented algorithm and the one de-
scribed in [2,3] gives us the three-dimensional urban-type scene representation.
The mentioned combination is trivial - the three-dimensional object should only
be assigned to the proper unit of the structure describing the two-dimensional
scene that corresponds to the satellite view.
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The introduced algorithm is based on syntactic approach. It should be men-
tioned that syntactic methods for scene analysis based on syntactic approach
have been considered [5] also in the context of aid them by probabilistic [9,10]
and fuzzy [1] methods. Parallel parsing has been studied as well [1].

It should be stressed that the obtained results, including the performed ex-
periments, have only computer scientific aspect - the software has not been
implemented on an embodied agent. However, the worked out three-dimensional
scene representation allows us to test an UAV equipped with the module of
vision analysis at the next stage of studies.

In the further perspective fully autonomous robots are planned to be used for
the unknown environment exploration. The inspection of industrial and urban
objects is a relatively simple task in the context of the scene analysis. If the
robot is used for exploring un unknown natural environment, for instance, the
Moon or planets [7], the agent’s scene understanding capabilities have to go far
beyond syntactic scene analysis. In a such case the agent should be equipped
with cognitive abilities.
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5. Flasiński, M.: On the parsing of deterministic graph languages for syntactic pattern
recognition. Pattern Recognition 26, 1–16 (1993)

6. Muratet, L., Doncieux, S., Briere, Y., Meyer, J.A.: A contribution to vision-based
autonomous helicopter flight in urban environments. Robotics and Autonomous
Systems 50, 195–229 (2005)

7. Pederson, L., Kortencamp, D., Wettergreen, D., Nourbakhsh, I.: A survey of space
robotics. In: Proceedings of the 7th International Symposium on Artificial Intelli-
gence, Robotics, and Automation in Space, Munich, Germany (2003)

8. Sinopoli, B., Micheli, M., Donato, G., Koo, T.J.: Vision based navigation for an un-
manned aerial vehicle. In: Proceedings of the International Conference on Robotics
and Automation ICRA, vol. 2, pp. 1757–1764 (2001)



Three-Dimensional Urban-Type Scene Representation in Vision System 671

9. Skomorowski, M.: Use of random graph parsing for scene labeling by probabilistic
relaxation. Pattern Recognition Letters 20, 949–956 (1999)

10. Skomorowski, M.: Syntactic recognition of syntactic patterns by means of random
graph parsing. Pattern Recognition Letters 28, 572–581 (2006)

11. Tadeusiewicz, R.: Vision Systems of Industrial Robots. WNT, Warszawa (1992)
12. Tadeusiewicz, R.: A visual navigation system for a mobile robot with limited com-

putational requirements. Problemy Eksploatacji 4, 205–218 (2008)
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Classification of Dynamic Sequences
of 3D Point Clouds
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Abstract. The subject of this article is 3D action recognition in point
cloud sequences. A popular approach to classification of point clouds
is the Bag-of-Words method, which classifies histograms of spatial fea-
tures (as described e.g. by Toldo et al. in “The bag of words approach for
retrieval and categorization of 3D objects”, 2010). This approach is, how-
ever, less effective when applied to action recognition of similar agents
(e.g. humans). We will compare a simple HMM-based classifier with the
well known Bag-of-Words scheme method, within sensible parameters for
3D point clouds close range acquisition methods. We then show that the
dynamic classifier performs better when applied to action recognition of
objects of the same type.

1 Introduction

With rapid development and popularization of commercial 3D image capturing
devices, the obtained scene data are often not images, but 3-dimensional clouds
of points. This does not only allow better 3D scene reconstruction, but also a
far more precise image analysis. With higher availability of 3D scanners (such
as KINECT), the acquired point clouds have become a common type of data.

There has been a significant increase in need for techniques of analysis of 3D
data. The problems that arose include filling the areas a scanner was unable
to track, object reconstruction or classification methods adjusted for 3D point
clouds. Those problems require a new set of tools that handle 3-dimensional
data.

Point clouds are now a vastly researched topic both from the perspective of
scene reconstruction and classification (see [1–4]). While classification schemes
for 2D work on 2D snapshots, or sequences of such snapshots, with 3D images it
is clear they have to be improved to meet the new type of datasets. There are now
several effective approaches to analysis of both static and dynamic sequences of
point clouds (e.g. [4] or [5]).

One of the most popular approaches is adapting the Bag-of-Words scheme,
which classifies objects using histograms of local features. This approach is suc-
cessfully applied to a static scene in [1, 2]. This scheme, however, while highly
successful in a static scene and in differentiating between various objects, proves
less effective when applied to classification of actions performed by relatively sim-
ilar objects (e.g. human action recognition). It is also usually a time-consuming
technique.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 672–683, 2014.
c© Springer International Publishing Switzerland 2014
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In this article, we consider motion sequences, describing dynamic actions per-
formed by 3D objects. We build a classification framework, containing the Hid-
den Markov Model (HMM) using two simple feature sequences – the size of an
ellipsoid containing an object and the length of vectors from the centre of mass
to extreme points.

We compare this framework with the Bag-of-Words selecting and classifying
static features of each frame (as described e.g. in [1], [4]) of the sequence and
combining those results into a global classification.

In our experiments, the constructed system gives better results (better classi-
fication effectiveness) than the reference technique. We show this by testing each
of them against real-life 3D sequence data and comparing their effectiveness.

This article is organized as follows: in Section 2 we discuss related work in the
subject of both 3D point clouds classification and motion classifiers for images.
In Section 3 we describe basic techniques we will use in the experiments, namely
HMMs and the Bag-of-Words model, in Section 4 we discuss the theoretical
foundations of our approach then we follow to Section 5.1 to discuss the used
data. Finally we present the experiments and their results in Section 5.

2 Related Work

3D point cloud classification has been widely researched since this type of data
has become commonly used and easily obtained, especially now, when acceptable
quality sensors for point clouds acquisition are commercially available.

The Bag-of-Words method, as a system adapted from text classifiers is often
used as an approach focusing mainly on classification of unordered sets of fea-
tures. The selection of those features varies, depending on expected use of the
classifier. In [2], Wu and Lin utilized the scheme to efficiently detect objects in
a point cloud scene. The Bag-of-Words scheme was also successfully used for
facial expression recognition by Xu and Mordohai in [6] who used histograms of
gradients as features for the classifier.

Toldo et al. in [4] proposed a multi-dictionary Bag-of-Words classifier, that
uses various different feature sets, such as density of points within regions or
shape index in the analysed region. They also handled the problem of parameters
by using several instances of a dictionary used paralelly before obtaining the final
feature set. Their work addresses the problem of relative location of visual words,
which is usually not an issue in the Bag-of-Words approach as it mainly focuses
on the mere presence of certain features. The same problem was addressed in [3],
where Li et al. proposed an advanced version of the usual scheme, by including
elements of relative position of detected features. Feature selection mostly focuses
on local object-perspective descriptors of particular points. Johnson, A.E. and
Martial in [1] used spin images of salient points as the features, the same was
applied by Wu in [2]. Toldo et al. in [4] used salient points as seeds for regions to
be used as the features while Głomb and Romaszewski in [7] proposed another
approach, involving translation of 3D mesh fragments directly to symbols from
a learned alphabet.
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Motion classification was researched separately, though some methods were
similar those applied applied to its static counterpart. A number of works refers
to various approaches from the field of 2D vision, such as Zhang and Wang
in [8] who analysed noisy information from traffic scene cameras or [9] which
contains an analysis of cheetah habitats made in order to recognize individuals
by motion characteristics. It also extends to 3D data methods included in [10],
where Li and Fukui proposed an approach to view-invariant human dynamic
action recognition based on the Hidden Markov Model.

3D information in motion recognition is obtained in various ways, which leads
to different input data. The most commonly used one is motion capture. Authors
of [11] use a combination of Gaussian Mixture Modelling and SVD to extract and
classify features of human behaviour, achieving high effectiveness rates. Barbič
et al. in [12] focused on the problem of data segmentation, detecting transition
from one motion pattern to another.

3D point clouds have recently become popular means of presenting 3D data,
mostly because they are easier to obtain with available equipment of various
types. Such equipment includes LiDARs, 3D sensors similar to KINECT and
others. Wei et al. in [13] segment and classify point clouds for LiDAR data
on traffic by utilizing 3D features such as point shape information and spatial
edges. Their work was further developed in [14]. LiDAR data is also analysed by
Steinhauser et al. in [5], in which the authors use gradient bounding to determine
the classification of points on the road.

3 Preliminaries

In our framework we will use a well-known and widely applied method for ac-
tion classification – the Hidden Markov Model, which is a tool of probabilistic
modelling of time sequences. We will test it against the Bag-of-Words scheme,
a classification method which was first used for text analysis and then extended
to visual data.

In this section we will describe some basics of their construction and use. For
a more detailed description, please refer to such works as [15] or [4]. We will
assume the following:

The set O = Ot ∪ Oc will be a set of point cloud sequences, where Ot will
represent the training dataset and Oc – the test dataset. Each sequence O ∈ O
contains l point clouds Oi, i = 1, . . . , l. Each sequence O belongs to one of the
c = 1, . . . , C classes. The class that O belongs to will be denoted as Cl(O).

3.1 Hidden Markov Model (HMM)

The Hidden Markov Model is a stochastic tool for modelling time sequences.
The HMM

λ = {S, T, π,L, E} (1)

where S = {S1, . . . , Sn} is a set of states, T ∈ Rn×n -a stochastic transition
matrix, L is an alphabet of symbols, π is the probability vector representing the
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starting state distribution, andE - n-dimensional vector of emission distributions
for each state.

Given HMM λ and the sequence of features fd(O), one can compute the log
likelihood log(P (fd(O)|λ)), the logarithm of probability of fd(O) having been
generated by λ. This can be done e.g. with Forward Algorithm [15]. Given a
set of HMMs {λi}mi=1 we can use the likelihood to determine the most probable
HMM associated with the sequence as

argmaxi log(P (fd(O)|λi)) . (2)

3.2 Bag-of-Words Scheme

The Bag-of-Words model was designed for documents classification, but its use
has been extended to visual data to aid with image categorization, such as tex-
ture recognition and content-based image retrieval. More recently it has been
introduced to 3D data classification. We use the very same approach as [2],
which describes a point cloud as an unordered set of features.

The classification scheme assigns histograms of features to objects (e.g. texts
are presented as histograms of features fs which are usually a specified word or
sequence of words). Those histograms are compared to class patterns allowing
classification by the Naive Bayes classifier.

The Bag-of-Words approach in our case first of all consists of generating a
set of features fs(O) from each sequence O ∈ Ot. This global set of features
{fs(O)}O∈Ot

is then clusterized into the pre-defined number of clusters K. This
clustering will be referred to as the visual dictionary D(Ot).

Finally, for each sequence O ∈ Ot, a histogram H(fs(O)) of features is con-
structed, which is then used to train the Naive Bayes classifier.

4 Approaches

Each sequence O ∈ O consists of l static point clouds {Oi}i=1,...,l, representing
a 3D snapshot of an object performing an action. Let then C be the number of
classes.

The goal of this approach is to correctly classify sequences O ∈ Oc of point
clouds representing an object’s movement during a specified action to one of C
pre-defined classes (e.g. ’Human squatting’), based on an analysis of sequences
from the training set o ∈ Ot.

To achieve this we will construct a combined classifier based on weighted votes
of two HMM classifiers γde and γds distinguishing the dynamics of two feature
sets. We will also describe the combination of Bag-of-Words classifiers {γsi }li=1

(as used in [1, 2]) which we will use as a reference.

4.1 Combined HMMs Approach

This approach combines two Hidden Markov Models γde and γds , each analysing
the dynamics of simple features. Their results are then used as input to the
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combined classifier (γc) which produces the final classification based on weighted
voting of those partials results.

Test data Oc

γs
i

γd
e

γd
s

γc

γs

Comparison

O ∈ Oc

O ∈ Oc

O ∈ Oc

Clde (O)

Clds (O)

voting Cls(O)

Clc(O)

Dynamic Classifiers γd
e and γd

s . Classification of motion patterns bases on
the Hidden Markov Model (HMM), which is a commonly used method for mod-
elling time sequences.

HMMs λxc , x ∈ {e, s} are built, each trained with sequences from a specific
class c ∈ C. The sequence O ∈ Oc is analysed by each of them and classification
depends on the resulting table γdx(O), x ∈ {s, e}.

Feature set: ellipsoid (γde ). The first set of features we will use will be the size of
an ellipsoid containing six points with the maximum and minimum coordinates
(which we will refer to as extreme points). This produces a sequence of three
dimensional vectors, illustrating size dynamics of the object’s 3D "frame".

In our approach we will use the length of three main axes of an ellipsoidal hull
containing all the extreme points of the point cloud Oi as a sequence of features
fde (O). By extreme points of the point cloud Oi, F (Oi) we understand six points
with the highest and the lowest x, y and z coordinates.

F (Oi) =
{
pjθ

}
j∈{0,1,2},θ∈{min(·),max(·)}

, (3)

so pjθ = {(p[0], p[1], p[2]) ∈ Oi : p[j] = θx∈Oix[j]}.
Feature sequence fde (O) will be a sequence of l 3-dimensional vectors, describ-

ing the dynamics of objects’ size changes over time.

Feature set: extreme points (γds ). Another set will illustrate the position of the
centre of mass of a point cloud as referred to the extreme points, by showing six
real numbers representing the distance between the centre and each of the six
extreme points. This produces information on an object’s behaviour within the
frame calculated by use of the ellipsoid feature.
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The sequence of features fds (O) will contain the lengths of segments from the
centre of mass of the point cloud

ρ =
∑
x∈Oi

x

|{x ∈ Oi}|
(4)

to the extreme points F (Oi) of the point cloud Oi.

fds (O) =
{
[|ρ− p1| , . . . , |ρ− p6|]T

}
i=1,...,l

if pk ∈ F (Oi). (5)

Feature sequence fds (O) will be a sequence of l 6-dimensional vectors repre-
senting positioning of a point cloud’s centre between extreme point coordinates.

Classification. Each dynamic classifier (containing C HMMs) will separately try
to recognize the class of a given object, according to the dynamics of its feature
set. Those will be used as partials for the combined classifier.

We use two classifiers, each consisting of a set of Gaussian HMMs λxc , c =
1, . . . , C, x ∈ {s, e} of sn states, where C is the number of classes.

Each HMM λc accepts input of a sequence fdx(O), x ∈ {s, e} of feature vectors.
It returns a score log(P (fdx (O)|λcx)).

Let
Oc

t = {O ∈ Ot : Cl(O) = c} (6)

be a set of all training sequences of class c. Then each HMM λcx is trained with
sequences from fdx(O)O∈Oc

t
.

For classification of an unknown sequence O ∈ Oc we calculate log(P (O|λix)).
The result of classification

γdx(O) = {log(P (fdx (O)|λcx))}c=1,...,C (7)

is a sequence of log likelihoods of sequence fdx (O) being generated by λcx, c =
1, . . . , C. Additionally, γdx classifies sequence O as

Cldx(O) = argmaxc=1,...,C log
(
P (fdx (O)|λcx)

)
(8)

Combined Classifier (γc). We combine the dynamic classifiers using voting
with dynamic weights of each vote. To accomplish this, we first measure the
effectiveness of two γds and γde against each class, by calculating

Ec(γ
d
x) =

Tc(γ
d
x)

Ac(γdx)
, x ∈ {s, e}, c = 1, . . . , C (9)

where Tc(γdx) is the number of correct classifications of objects of class c by γdx
and Ac(γ

d
x) is the total number of classifications of objects as class c by classifier

γdx.
Tc(γ

d
x) =

∣∣{O ∈ Ot : Cl(O) = c ∧ Cldx(O) = c}
∣∣ (10)

Ac(γ
d
x) =

∣∣{O ∈ Ot : Cl
d
x(O) = c}

∣∣ (11)
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In other words Ec(γ
d
x) ∈ 〈0, 1〉 measures the trustworthiness of classification

of sequence O as class c by γdx.
After this, we associate γds and γde with vectors {Eds

c }Cc=1, {Ede
c }Cc=1 which will

be used as weights of votes of those two classifiers.
Then, for each O ∈ Oc we assume

Clc(O) = argmax
{
Clde(O)Ede

Clde (O)
, Clds (O)Eds

Clds (O)

}
. (12)

4.2 Bag-of-Words Classifier γs

We will use the Bag-of-Words approach, as described in [1, 2], as a reference
classification of sequence O ∈ Oc. As described in 3.2, the approach analyses
the features of each point cloud Oi, i = 1, 2, . . . , l from sequence O ∈ Oc, con-
structing a histogram of its visual words H(O), according to a visual dictionary
D(Ot) created by use of all training sequences O ∈ Ot.

The H(O) histogram is an input to the Naive Bayes classifier, which returns
the classification result γs(O). The classifications of individual frames Oi are
then combined to obtain a sequence classification.

Feature Extraction. To extract features from a 3D point cloud Oi, we use
its salient points – a term we associate with points with the highest value of
the shape index. We use r of the highest shape indexes to determine the salient
points. The image features are spin images of those points similar to those pre-
sented in [2].

Definition 1. Shape index of point p, SI(p) is a value which determines if point
p lies on the sharp surface and has details around it. For point p it is calculated
as

SI(p) =
2

π
tan−1

(
κ1 + κ2
κ1 − κ2

)
, κ1 �= κ2 (13)

where κ1, κ2 are principal curvatures of point p.

What immediately follows

Definition 2. We will call point p of the point cloud oi, a salient point in oi
with range r or, simply speaking, a salient point if SI(p) is among r of the
highest SI(p)∀p∈oi

It is easy to see that saliency of a point strongly depends on point cloud Oi.
We will also denote the set of all salient points of point cloud Oi with range r as
SP (Oi, r). For each point p ∈ SP (Oi, r) we will then calculate its spin image.

The spin image is a surface representation technique used for analysing 3D
scenes. The main advantage of spin images is that it shifts perspective from
viewer-oriented (based on the observer’s viewpoint) to object-oriented (fixed
on the surface of an object). This allows description of an object in a view-
independent manner, i.e. not changeable when the viewpoint changes.
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For the training set of objects Ot, the visual vocabulary for the Bag-of-Words
approach is constructed by clustering the spin images of all salient points in
{fs(O)}O∈Ot into K clusters. For that we use K-means++ clustering. This clus-
tering will form the visual dictionary D(Ot).

The Bag-of-Words classifier is constructed as l Bag-of-Words frame classifiers
γsi , i = 1, . . . , l, one for each frame.

Classification of a Single Frame. For each O ∈ Ot, a histogram H(fs(O))
of its features (spin images of salient points) is constructed. Those features are
used to train the Naive Bayes classifier.

To classify a frame of sequence Oi,O ∈ Oc, we calculate its salient points and
their spin images, then assign them to clusters according to D(Ot) and construct
H(fs(O)). Then we use the Naive Bayes classifier to obtain its classification

γsi (Oi) =
{
P (c|H(fs(Oi)))

}
c=1,...,C

. (14)

Additionally, γsi classifies Oi as

Clsi (Oi) = argmaxc=1,...,C{P (c|H(fs(Oi)))} (15)

Classification of a Sequence. To classify sequence O ∈ Oc, we classify each
frame of the sequence Oi with γsi , obtaining an l- long sequence of classifications
S = {Clsi (Oi)}. The classification of sequence O is

Cls(O) = argmaxc=1,...,C{Sk : Sk = c, k = 1, . . . , l}. (16)

5 Experiments

Our goal was to compare a classifier combining two sets of features in the HMM
model and a combination of classifications of individual frames of a sequence
using the Bag-of-Words approach, which analyses only static features. To do
this, we have performed the following experiment:

1. We trained all three classifiers γs, γde , γds and the resulting γc with all se-
quences O ∈ Ot

2. We used γs, γc to classify all sequences O ∈ Oc

For the experiment we set parameters l = 7, C = 11, n = 12, Φ ∈ {0.002,
0.02, 0.1}, P s = 0.1, Psh ∈ {2, 3}, Psc = {0, 0.2}.

By the experiment result for classifier γx(Oc), x ∈ {s, de, ds, c} we will under-
stand

1. Classifier’s effectiveness on set Oc,

E(Oc) =
|{O ∈ Oc : Cl(O) = Clx(O)}|

|Oc|
(17)

2. Classifier’s confusion matrix T x(Oc) = [tij ]i,j=1,...C where

tij = |{O ∈ Oc : Cl(O) = i ∧ Clx(O) = j}| (18)
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5.1 Dataset

For our experiments we had chosen datasets provided by

1. "Mesh Data from Deformation Transfer for Triangle Meshes" by Robert W.
Sumner and Jovan Popovic (available in [16]) - which contains sequences of
objects in different motion patterns (from "pose", to "gallop" for animals,
"collapse")

2. Articulated Mesh Animation from Multi-view Silhouettes, by Daniel Vlasic,
Ilya Baran, Wojciech Matusik, Jovan Popović (available in [17]) - contain-
ing 3D clouds of people performing such activities as dancing, marching or
jumping.

From those two datasets we have selected C = 11 unique classes, 3 of animal
actions and 8 of human actions. This was done to allow us to observe the Bag-
of-Words classifier’s effectiveness in action recognition of objects of the same
type.

5.2 Data Preparation

From each dataset element d, we generate sequences O in the following way:

1. Each frame di ∈ d is randomly sparsed to P s of its original vertices.
2. Sequence O is randomly reduced to l point clouds
3. Each vertex v ∈ Oi, i = 1, . . . , l is then shifted and scaled with shift and

scale operators, calculated for every O in the following way:
(a) Shifted using formula vshift = v + Pshr1, where r1 ∈ R3 is uniformly

distributed random vector and r[i] ∈ 〈−0.5, 0.5〉, i = 1, 2, 3.
(b) vscaled = (1 + Psc)r2v, where r2 ∈ 〈−0.5, 0.5〉 is uniformly distributed

random variable.
4. Finally v ∈ Oi, i = 1, . . . , l is distorted by adding a normally distributed

noise φ bound by parameter Φ, where

Φ = sup

∣∣∣∣φ(v)v − 1

∣∣∣∣ (19)

Thus, experiment parameters are: l – length of the sequence, s ∈ 〈0, 1〉 –
sparsing of each frame, Psh as shift operator, Psc as scaling operator and
distortion Φ.

5.3 Results

The results of the experiments are shown in Table 1. What we can easily observe
is that the effectiveness of the combined classifier based on HMMs outmatches
the Bag-of-Words classification. Most classes we use are humans, therefore the
Bag-of-Words scheme has significant problems with distinguishing them from
one another. Overall, the static classifier based on Bag-of-Words provided re-
sults which can be perceived as expected. What we can also observe is the spike
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Table 1. Correct classification by class (for 40 objects of each class in the test set)
and overall scores achieved by classifiers for various sets of parameters
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of γs Bag-of-Words classifier’s effectiveness when dealing with classes that are
not human (9, 10, 11), which shows that when applied to actions of various ob-
ject types, the Bag-of-Words scheme works quite efficiently. Both HMM-based
classifiers γds and γde seem to obtain better results, since dynamics is the main
distinguishing property of analysed sequences.

What was found surprising was that applying the voting procedure to the
results of γsi partial Bag-of-Words classifiers did not significantly increase their
effectiveness, and γs did not yield significant advantage over γsi (even though it
is clearly visible).

Another thing worth noting is the effectiveness of γc which seems to not im-
prove the results of partial classifiers γde and γds . It is, however, an important
stabilizing element, and while it is indeed usually worse than the best of partial
classifications, it plays an important role in correcting problems of the one with
worse results. Since the experiments prove that it remains unknown which ele-
ment of the pair of γde and γds works better in an arbitrary case, the correction
value of γc is not to be underestimated.

6 Conclusion

This article presents an approach to classification based on the HMM scheme and
on combining two sets of features – one describing the size dynamics of an object
while performing an action and the other – positioning of the centre within an
object. This method is compared to the popular Bag-of-Words scheme, which is
often used for classification of point clouds. As we see in the experiment results,
the combined system achieves better results than a combination of Bag-of-Words
classifiers. One of the interesting results is that the obtained classifier is relatively
resistant to both scaling and shifting the image, as well as significant distortion
in analysed point clouds. We believe that this research on action recognition on
point clouds can be further improved by selecting additional sets of features to
enter the combined classifier as a weighted vote.

In view of proliferation of 3D imaging, the proposed method potentially has
a broad range of applications.
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Abstract. Texture features play an important role in image texture
classification. Inspired by Weber’s law, Weber Local Descriptor (WLD)
has been proposed for image texture classification. Orientation compo-
nent in Weber Local Descriptor is the gradient of an image, which does
not properly represent the local spatial information of an image. In this
paper for orientation component, we propose to compute the histogram
of gradient instead of the gradient of an image. The gradient of an image
is computed, then image is divided in to small spatial regions named
as cells and histogram of each cell is obtained. We have tested our pro-
posed scheme on publically available texture datasets named as Brodatz
and KTH-TIPS2-a, which shows that our proposed method can achieve
significant improvement as compared to the state-of-the-art method like
Local Binary Pattern, Local Phase Quantization and Weber Local De-
scriptor.

Keywords: Weber Local descriptor, Histogram of Gradient, Image Tex-
ture Classification.

1 Introduction

Texture image classification has been an active research topic in computer vi-
sion and image processing. It is used in many applications like object-based
image coding [1], image retrieval and remote sensing[2], Medical image analysis
and image retrieval [3]. With the increment of the texture image classification
applications, plenty of work has been done by researchers in last two decades.

For local features number of methods have been proposed. These local de-
scriptors are categorized into two classes that are sparse descriptor and dense
descriptor. The dense local descriptor extracts the features pixel by pixel from
given image. The typical examples of dense descriptor are Local Binary Pat-
tern (LBP) [4], Local Phase Quantization (LPQ) [5], Weber Local Descriptor
(WLD)[6] and Gabor wavelet[7]. The sparse descriptor first detects the inter-
est points in given image then samples a local patch and describes its invariant
features. The most popular examples of sparse descriptors are scale invariant
feature transform (SIFT) [8] and histogram of oriented gradients (HOG) [9].

� Corresponding author.

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 684–692, 2014.
c© Springer International Publishing Switzerland 2014



Texture Image Classification with Improved Weber Local Descriptor 685

Ojalaet et al. [4] proposed a method for texture image classification named
as LBP. This method recognizes the certain local binary patterns, termed as
“uniform”. It is the basic property of local image texture. LBP has a drawback
of losing global spatial information. A new texture descriptor named as LBP
variance (LBPV) has been proposed to characterize the local contrast informa-
tion into one dimensional LBP histogram. There is no need of quantization and
training [10]. A complete modeling of the local binary pattern (LBP) operator
is proposed by Guo et al. named as completed-LBP (C LBP) [11] in which local
region is represented by its central pixel and a local difference sign-magnitude
transform (LDSMT) collectively. The central pixels represent the image gray
level which is converted into binary value named as CLBP-Center (C LBPC).
The LDSMT have two parts, one is CLBP-Sign (C LBPS) and other is CLBP-
Magnitude (C LBPM).

A Monogenic-LBP (M-LBP) [12] is used to integrate the traditional Local
Binary Pattern (LBP) operator with the other two rotation invariant measures:
the local phase and the local surface type. These are computed by the 1st-order
and 2nd-order Riesz transforms, respectively. Soo and Kang [13] proposed the
feature extraction method by using wavelet packet frame decomposition and the
Gaussian-mixture-based classifier to assign each pixel to the class. Each subnet
of the classifier is modeled by a Gaussian mixture model and each texture image
is assigned to the class to which pixels of the image most belong. Zhang et al.
[14] proposed a new method to estimate the dominant orientations of textures
using Gabor filters, where it’s modified version is used to fit the multi-orientation
cases. The discrete wavelet transform is used as a feature extraction tool and
nearest neighbor method is used for classification.

Some statistical methods that are insensitive to blur, have been used for tex-
ture image classification, however these methods are not rotation invariant, like
Gabor filtering [7], wavelet frames [15], wavelet transform [16] and co-occurrence
matrix method [17]. Weijer and Schmid proposed a blur robust descriptor based
on color constancy [19]. Ojansivu et al. [5] proposed a descriptor for texture
image classification named as Local Phase Quantization (LPQ), in which short-
time Fourier Transform (STFT) is used to extract the image features. Dawood
et al. [19] proposed a method in which they consider the contrast information
in spatial domain and the phase information in frequency domain of the image.
They have used the joint histogram of the two complementary features, Local
Phase Quantization (LPQ) and the contrast of the image.

Chen et al. [6] proposed a Weber Local Descriptor (WLD) for texture image
classification, which consists of two components: orientation and differential ex-
citation. Where the orientation is the gradient orientation of the current pixel
and differential excitation component is the function of the ratio between two
terms, one is relative intensity differences and other is intensity of the current
pixel. A hybrid approach that combines the WLD with contrast information is
proposed by Dawood et al. [20] in which, the histograms of WLD and contrast
information are computed independently and then combined to get the robust
descriptor. The orientation component in the WLD is the gradient orientation
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of the current pixel. The computed features from orientation component, blur
the texture of an image, which leads to misclassification of images.

To overcome the aforementioned problem, we have proposed to compute the
gradient over an image. Then gradient image is divided into small spatial regions
“cells” and the histogram is computed for all small cells. In order to obtain the
neighbouring pixel information differential excitation is used with histogram of
gradients. Experiments conducted on Brodatz and KTHTIPS2-a datasets show
that our proposed method performs well in term of classification as compared to
the state-of-the-art feature extraction methods like LBP[4], LPQ [5],and WLD
[6] itself. Support Vector Machine (SVM) is used for the classification task.

The rest of this paper is organized as follows: In section 2, a brief introduction
of Differential excitation and gradients. In section 3, our proposed method is
described. The detailed experiments are presented in section 4, and finally we
provide the conclusions in section 5.

2 Related Work

In this section, we will briefly review the differential excitation and Histogram
of gradient.

2.1 Differential Excitation

Jian [21] stated that the ratio of the increment threshold to the background
intensity is a constant which is known as weber law, it can be expressed as

ΔI/I = k,

where ΔI represents the increment threshold (just noticeable difference for
discrimination), I represents the initial stimulus intensity, and k signifies that
the proportion on the left side of the equation remains constant despite variations
in the I term. The fraction ΔI/I is known as the Weber fraction.

In WLD [6], differential excitation ξ(xc) of a current pixel xc is calculated.
The differences between the center point and its neighbors is calculated by using
filter f00.

xs =

⎡⎣x1 x2 x3x8 xc x4
x7 x6 x5

⎤⎦

f00 =

⎡⎣+1 +1 +1
+1 −8 +1
+1 +1 +1

⎤⎦

f01 =

⎡⎣0 0 0
0 +1 0
0 0 0

⎤⎦
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v00s =

p−1∑
i=0

(Δx) =

p−1∑
i=0

(xi − xc) (1)

where xi(i = 0, 1, ..., p−1) denotes the ith neighbour of xc and p is the number
of neighbours. Following the hints in Weber’s law, by combining the two filters
f00 and f00, the ratio of the differences to the intensity can be computed. The
output v01s is the original obtained image.

Gratio(xc) =
v00s
v01s

(2)

The differential of the current pixel ξ(xc) is computed as

ξ(xc) = arctan

[
v00s
v01s

]
= arctan

[
p−1∑
i=0

(
xi − xc
xc

)

]
(3)

If the intensities of the neighbouring pixels is smaller than the current pixel,
the value of the differential excitation will be negative. From this, we can see that
instead of using the absolute value of ξ(x) the more discriminating information
is preserved. Intuitively, if ξ(x) is positive, then the surroundings are lighter than
the current pixel. if ξ(x) is negative, it simulates the case that the surroundings
are darker than the current pixel. ξ(xc) is defined in the range of [−π/2, π/2].

2.2 Histogram of Gradient

By computing the gradient of an image, we can observe that the image is chang-
ing rapidly. Gradient of an image has two kind of information, one is magnitude
and other is direction of the gradient. Magnitude gives the information of how
rapidly the image is changing and direction of the gradient tells us direction
image is changing more rapidly. The gradient of the image f(x, y) at location
(x, y) is defined as

∇f =

[
Gx

Gy

]
=

[
∂f
∂x
∂f
∂y

]
(4)

We can detect the edges in image by computing the magnitude of the vector,

∇f = mag(∇f) =
[
G2

x

G2
y

]1/2
(5)

And the direction of gradient can be computed as

α(x, y) = tan−1

[
Gy

Gx

]
(6)

Where the angle is measured with respect to x-axis and the edge direction at
(x, y) is perpendicular to the direction of the gradient vector at the point.
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3 Proposed Method

Fig. 1 shows flowchart of our proposed method. Differential excitation and gra-
dient of an image is computed independently. Dense texture feature for the
gradient image is obtained by partitioning the image into small spatial regions
and histogram is obtained for these spatial regions.

The shape and appearance of local object in an image is represented by local
intensity gradients or edge directions. The gradient is calculated over the com-
plete image, which gives complete information about the edges. Then image is
divided into small spatial cells, and histograms are calculated over those cells.
The overlapping of cells is used to make it more distinctive and powerful for iden-
tifying the edges, which provides the edge orientations and gradient directions
over the pixels of the cell. After getting the histograms from each cell, image is
formed from these histograms. Gradient of image provide the information that
how fast image is changing, however it does not define the relationship among
the neighboring pixels. So, we use the differential excitation to get the relative
intensity difference of a current pixel and its neighbor’s. Finally, the differential
excitation and gradient information is concatenated.

2D histogram of differential excitation and gradient orientation is computed
as follows:

Fig. 1. Flowchart of proposed method
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1. Compute the differential excitation and gradient of each pixel in cell.
2. Quantize the gradient information into 8 dominant orientations. Map the

differential excitation into 256 bins by[22].
3. Compute the histogram of each gradient orientation by accumulating the

differential excitation showing the same gradient orientation.
4. Cut the histograms of each gradient orientation into M=6 segmentation ob-

tained from step 3.
5. Assign the Weight to each segmented area as in [6].
6. Concatenate eight segmentations from eight dominant orientations into one

histogram. We can get 6 histograms.
7. Concatenate these M=6 histograms into one histogram, which is the final

histogram.

4 Results and Discussion

The experiments have been conducted on two datsets: Brodatz [4] and KTH-
TIPS2-a [7]. Brodatz data set contains 2,048 sample images. There are total 32
texture categories with 64 samples in each category. Some examples of Brodatz
textures used in our experiments are shown in Fig. 2. First row has the images of
size 256x256 pixels having 256 gray levels. The KTH-TIPS2-a database contains
4 physical, planar samples of each of 11 materials under varying illumination,
pose and scale. Some examples from each sample are shown in Fig. 2 (second
row) .The KTH-TIPS2-a texture dataset contains 11 texture classes with 4,395

(a) (b) (c)

(d) (e) (f)

Fig. 2. Some examples of images from data set KTH-TIPS2-a (first row) and Brodatz
(second row)
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KTH − TIPS2− a

Brodatz

Fig. 3. Some examples of images from data set KTH-TIPS2-a (first row) and Brodatz
(second row)

images. The images are 200x200 pixels in size, and they are transformed into
256 gray levels. The database contains images at 9 scales, under four different
illumination directions, and three different poses.

We have compared our method with state-of-the-art texture classification
methods like LBP [4], Local Phase Quantization (LPQ) [5] and WLD [6]. The
performance of proposed method has been evaluated in terms of accuracy,

Accuracy = correctly classified images/total number of images.

Texture classification is a basic problem in computer vision with a wide va-
riety of applications [23]. From Fig. 3, we can observe that for Brodatz dataset
proposed method performs well over the state-of-the-art methods. Also for KTH-
TIPS2-a dataset, where we have got eight, six and four percent better results as
compared to LBP [4], LPQ [5], and WLD [23] respectively.
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For the verification of our proposed method, experiments have been conducted
ten times with randomly selected training and testing images. The neighbour’s
values of LBP and LPQ has been used as in [4]. The correlation coefficient of
LPQ set to ρ = 0.9 in the experiments.

In WLD, the histogram of an image is obtained after computing the gradient
orientation of an image, which leads to lack of information in small spatial regions
while computing the histogram of complete image for classification. In proposed
method after computing the gradient information of the image, image is divided
into small spatial regions. Then the histogram of those small spatial regions is
computed, which defines the texture of the image at cell level effectively. At cell
level, information of edges is more compact, so it obtains strong local contrast
information and reduces the blurring. In WLD, the computation of the gradient
of an image did not cater the information of edges effectively, the local contrast
information is not sufficient and also blurs the edges of an image, results into
decrease the texture recognition rate.

5 Conclusion

In this paper, an improvement of Weber’s Local Descriptor has been proposed.
Orientation component of WLD has been computed by using Histogram of gradi-
ent of an image. At first, the image is partitioned into small spatial regions and
then histogram is calculated. By applying the histogram of gradient on small
spatial regions, the compact information of image texture is obtained. SVM
classifier is used for the classification. Our proposed method outperforms over
the state-of-the-art methods like LBP, LPQ and WLD in term of classification
accuracy.
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Abstract. This paper presents a successful connection of different se-
quence alignment algorithms with Bag of Visual Words concept for im-
age classification. In particular, sequences were created on the basis of
dense SIFT descriptors, for which different types of sequence orderings
were proposed. Then, the similarities between images were calculated
with two different sequence alignment algorithms. Finally, the SVM al-
gorithm was proposed as a classifier. The obtained results showed that
both sequence alignment algorithms obtain very similar results and that
the type of ordering affects the accuracy very slightly.

Keywords: Dense SIFT, Sequence Ordering, Sequence Alignment Al-
gorithms, Classification, SVM.

1 Introduction

The process of classification is one of the most frequently approached problems
of the machine learning field. The main aim of classification for the considered
object is to choose one of the predefined categories, which contains the most sim-
ilar elements to the queried one. The similarities between objects are calculated
on the basis of the set of object descriptors and in this paper, the visual features
of images are taken into account. We can distinguish global visual features like
color, edges, texture or shapes and local key point descriptors like SIFT [18],
SURF [2] or MSER [8]. After calculating object similarities, the classification
training is performed. There have been proposed a large variety of solutions for
classification which use different algorithms from many computer science fields.
In particular, in [16], [14], [15] authors proposed Rough-Neuro-Fuzzy Systems to
perform classification, in [10], [23] the Neural Networks are used while SVM and
its many variants were introduced in [25], [3], [11] or [6].

This paper extends the work undertaken in [7], where a novel method was pro-
posed, which combines the sequence alignment algorithm from the domain of bi-
ology with content based image retrieval. In particular, similarly to [7] we used
dense version of SIFT as a local descriptor [18] and the Bag of Visual Words con-
cept for Visual Dictionary creation.As image representationwe created a sequence
of visual words ordered in four different ways: vertical, horizontal, Z ordering and

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 693–702, 2014.
c© Springer International Publishing Switzerland 2014
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Hilbert ordering. We introduced these orderings to verify sensitivity of classifica-
tion accuracy on different arrangement of sequence elements, which describe the
geometrical relationships between SIFT descriptors. For the obtained sequences
we used Smith - Waterman Local Sequence Alignment Algorithm [24] to calculate
the similarities between all pairs of images and we compared it with the results ob-
tained for the Needleman - Wunsch Global Sequence Alignment Algorithm [21].
Finally, we used SVM algorithm for the classification process with 5-fold cross val-
idation. The obtained results indicate that in all cases the classification accuracy
reaches high level (from 95% to 99%) regardless the sequence alignment algorithm,
type of normalization or ordering choice. In SVM classification only the grid size
for the dense SIFT descriptor slightly affects accuracy.

The paper is organized as follows. The second section presents successful solu-
tions in CBIR domain which use spatial dependencies. Moreover, first attempts of
bridging sequence alignment with BoVW are highlighted. In section 3 we describe
the whole classification process with the use of sequence alignment algorithms in
detail. Section 4 is devoted to experiments comparing different orderings as well
as global and local sequence alignment algorithms. The last section concludes
the paper.

2 State of the Art

The main Bag of Visual Words (BoVW) idea is to represent visual objects using
feature vectors similarly to Information Retrieval domain. One issue still open
is finding such image descriptors that are able to grasp the visual difference of
images in machine learning problems. These descriptors should be invariant to
different image changes, such as: rotation, illumination, scale or translation. To
the authors knowledge, in the group of leading descriptors we can distinguish
MSER[8], SIFT[18], SURF[2] and ASIFT[19,26]. It should be noted that using
a vector of the descriptors as an image representation may not be sufficient,
since images are characterized by high impact of spatial information. It has been
shown in [22] that humans and computers perform equally when recognizing
jumbled images, where global spatial information is discarded. In contrast, cur-
rent algorithms fall short if global information is present, which is the case for
the vast majority of computer vision problems.

A lot of effort has been devoted to the development of efficient image repre-
sentations that capture global information in the image. For example, in [17] a
spatial pyramid of image keypoints is proposed. In this approach, the image is
partitioned recursively into finer subregions, and for each subregion an orderless
histogram of visual words is computed. A similar approach was presented in [4]
where PHOG image descriptor was proposed. In particular, an image is recur-
sively subdivided into a 4 subregions, as in a quadtree. For each subregion at each
level of the quadtree, the HOG vector is computed and the PHOG descriptor
for entire image is created by concatenating individual HOG vectors. Authors
of [5] took different approach by projecting local features to different directions
or points, so that a series of ordered bag-of-features are obtained. The projec-
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tions were designed to capture the invariance to object transformations (trans-
lation, scaling, rotation). Successively, a final bag-of-features is generated from
the projected bag-of-features by a using boosting-like method. In [27], Geometry-
Preserving Visual Phrases (GVP) are proposed which are defined as a number
Visual Words in a certain spatial layout, which are common for the two given
images. GVP are identified in the offset space and are capable of modeling local
and long range spatial information.

The first successful implementation of sequence alignment into content based
image retrieval was made be Hung-sik et al [12], [13], where authors used the
BLAST algorithm [1]. They represent image features as proteins and DNA al-
phabets for sequence alignment. It significantly limits the ability to use the algo-
rithm, since protein alphabet has only 23 letters and DNA only 4. Moreover, the
authors proposed a similarity matrix only with 1 for equal elements and -1 for
different, which does not reflect the differences between different image features.
The second work [7] overcomes these restrictions where Needleman - Wunsch
algorithm with a k-NN classifier is implemented. The similarity matrix is based
on distances between visual words from the created dictionary. The dictionary
can contain any number of elements.

This paper extends the work undertaken in [7]. The second sequence alignment
Smith Waterman algorithm was implemented, which searches for the best local
alignments. We also proposed different types of sequence orderings to study
their impact on classification accuracy. Moreover, we performed classification
process with the use of the SVM classifier, which is considered as one of the best
classification algorithm.

3 Classification with Sequence Alignment

This section presents the main contribution of this paper. In particular, the image
classification process based on Sequence Alignment algorithms and SVM classi-
fier is described in detail. There are proposed two different Sequence Alignment
methods: Needleman Wunsch Global Sequence Alignment and Smith Waterman
Local Sequence Alignment. As a classifier kernel we used the similarity matrix
obtained in previous phase.

3.1 Sequences of Visual Words

As a representation of the image, we decided to use one of the best and most
frequently used descriptors for visual objects, which is the SIFT. Many studies
have shown a very good adaptation of the SIFT to the classification process as
well as its resistance against various image changes and image distortion. More
specifically, there has been applied the dense version of the SIFT, in which each
of the processed image is divided into square areas with pre-defined size and for
each of these areas the SIFT descriptor is calculated. It should be noted that
the cells, for which the contrast of descriptors are very low, are eliminated. It is
done in order to exclude the background area and to examine only the object
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from the picture. On the basis of the obtained descriptors the k - visual word
dictionary is created. It is done with the use of the k-means algorithm, where
the value k indicates the number of visual words in the dictionary. Each cluster
generated by k-means corresponds to one visual word from the dictionary and
for each cell descriptor on the image, the most similar visual word is assigned.
In this manner the visual word representation is created. The whole process is
illustrated in figure 1.

(a) Original Shoe (b) Shoe with SIFT descriptors on a
dense grid

(c) Shoe with assigned visual words,
vocabulary size 50

Fig. 1. Procedure of creating sequences

For such grid image representation we create four different sequences for se-
quence alignment algorithms to verify if the order of visual words in the sequence
has any impact on classification accuracy. In particular, the following orderings
are proposed:

a) Vertical - the visual words are sequenced row by row from left to right.
b) Horizontal - the visual words are sequenced column by column from top to
bottom.
c) Z ordering - ordering is based on the letter Z. For details see [20].
d) Hilbert ordering - a continuous fractal space-filling curve. For details see [9].

3.2 Sequence Alignment Algorithms

Having obtained the sequences for all images from the dataset, one of the se-
quence alignment algorithm is executed in order to compute similarities between
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each pair of images. In DNA sequencing both algorithms are provided with a pre-
defined similarity matrix, which is inapplicable for our purposes. For this reason
we compute the similarity of visual words on the basis of k-means clusters. In
particular, the similarity between two visual words is given by the Euclidean
distance between two corresponding clusters. These distances are normalized to
the set < −1; 1 > where −1 indicates the maximum possible distance while the
value 1 is for distance 0.

The sequence alignment derives from the biological domain where the main
task was two find alignments between DNA, protein or nucleotide sequences.
In this paper we evaluate two different algorithms from which the first, the
Needleman Wunsch algorithm, finds the best possible global alignment for two
sequences. This algorithm is given by the following recursive formula:

Fi0 = p ∗ i, i ∈ {0, ..., n}, j = 0
F0j = p ∗ j, i = 0, j ∈ {0, ..., n}
Fij = max(Fi−1,j−1 + S(Ai, Bj), Fi,j−1 + p, Fi−1,j + p).

(1)

where Fij is the similarity score, S(Ai, Bj) is a similarity between visual words
Ai and Bj and p is defined as the penalty parameter and is subtracted from the
similarity score when a gap appears in the alignment. The final score is equal to
Fnm, where n and m are lengths of the sentences.

The Smith Waterman is the second of the introduced algorithms. Instead
of finding the best global alignment it searches for local similar regions of two
sequences for all possible sub-sequence lengths and optimizes the similarity mea-
sure. The following formula illustrates the work-flow of the algorithm:

Hi0 = 0, i ∈ {0, ..., n}, j = 0
H0j = 0, i = 0, j ∈ {0, ..., n}
Hij = max(0, Hi−1,j−1 + S(Ai, Bj), Hi,j−1 + p,Hi−1,j + p).

(2)

whereHij is a similarity score for sub-sequences A0...Ai and B0...Bj , while p and
S(Ai, Bj) are defined in the same way as for the Needleman Wunsch algorithm.

The main difference between these algorithms lies in the final score. The
Needleman Wunsch finds always the best possible alignment while Smith Water-
man finds local alignment which is close to optimal, but not necessary the best
globally. The second difference concerns the time of algorithm execution. Global
alignment is significantly more computationally intensive.

The final step involves the SVM classification with 5-fold cross-validation. As
the SVM kernel, the matrix of sequence alignment similarities is used. It was
observed that similarities highly depend on the sequence length and therefore
two different normalizations were performed. First, the similarity was divided by
sum of sequence lengths. It is illustrated by the formula:

SimA,B =
SimA,B

(length(A) + length(B))
, (3)

The second normalization is given by:

SimA,B =
SimA,B

(length(A)
∗ SimA,B

length(B))
. (4)
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Next section provides an evaluation of the proposed solution and discusses ex-
perimental results.

4 Experiment Results

This section evaluates the proposed methods for image classification. To be pre-
cise, we compare SVM classification accuracy for different sequence alignment
algorithms as well as verify the impact of different sequence orderings on image
classification accuracy. As sequence alignment algorithms, we implemented the
Needleman Wunsch global sequence alignment algorithm and the Smith Wa-
terman local sequence alignment algorithm. To investigate the importance of
sequence arrangement we proposed four different orderings: vertical, horizontal,
Hilbert and Z order. Moreover, for each combination of algorithm and order we
used different sizes of visual dictionary, which is k = 200, 500, 1000, 2000. We
chose such dictionary sizes since in the previous work [7] we proved that the
dictionary size under 200 significantly decreases the accuracy of classification.
Finally, we tested our method over two grid sizes: 16 and 32 pixels, since the
detailed experiments investigating the impact of grid size on classification ac-
curacy were provided in [7] and the penalty parameter p was set to 0.1, since
changes of p have a slight impact on the precision of classification.

For experiments, we provided a dataset of 200 shoe images, which was divided
into 5 distinctive categories(20, 29, 34, 58 and 59 images). Figure 2 presents
exemplary elements of each category.

Tables 1, 2, 3 and 4 summarize the obtained results, each table for different
orderings. In all tables the sign − means no normalization, the normalization
defined in equation 3 is labeled N1 and N2 represents normalization given by
formula 4.

In all cases, the differences between the Needleman - Wunsch and the Smith -
Waterman algorithms in accuracy are very small or even non-existent. The max-
imal reported difference between these two methods reaches 1%, which proves
that with the use of the SVM as a classifier, the choice between the global and
local sequence alignment algorithms has no impact on classification accuracy.
When considering various types of ordering, we can observe that the obtained
accuracies for horizontal and vertical orderings are slightly higher (from 0.5% to
2%) than for Z and Hilbert orderings, which shows that the ordering does not
affect classification effectiveness.

The biggest differences in accuracy, reaching up to 4%, can be perceived for
different values of the grid size parameter. Despite the fact that in almost every
case the results achieved for the denser grid are better, the differences are so
slight that it does not significantly affect classification accuracy.

When comparing this paper with the previous work [7], it should be noted
that in every case the obtained results for the SVM classifier are better than
for the k-NN. It can be seen precisely for grid size equal to 32, where the SVM
reaches 99% for horizontal ordering, while the best reported accuracy for the
k-NN classifier is 92%.
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(a) (b) (c) (d)

(e)

Fig. 2. Sample images from each of 5 shoe categories (a-e)

Table 1. SVM Classification Accuracy for Vertical Ordering

Vertical Ordering

Vocab. size
N-W algorithm S-W algorithm

16 32 16 32

- N1 N2 - N1 N2 - N1 N2 - N1 N2

200 0.985 0.99 0.99 0.965 0.965 0.965 0.985 0.99 0.99 0.965 0.96 0.965

500 0.99 0.99 0.995 0.975 0.975 0.97 0.99 0.99 0.995 0.97 0.975 0.96

1000 0.99 0.99 0.99 0.975 0.975 0.975 0.99 0.995 0.995 0.975 0.97 0.975

2000 0.99 0.99 0.995 0.975 0.975 0.975 0.99 0.995 0.995 0.975 0.97 0.98

Table 2. SVM Classification Accuracy for Horizontal Ordering

Horizontal Ordering

Vocab. size
N-W algorithm S-W algorithm

16 32 16 32

- N1 N2 - N1 N2 - N1 N2 - N1 N2

200 0.99 0.99 0.99 0.975 0.975 0.97 0.99 0.99 0.99 0.96 0.965 0.96

500 0.99 0.985 0.99 0.99 0.99 0.99 0.99 0.985 0.985 0.97 0.97 0.97

1000 0.995 0.99 0.995 0.98 0.98 0.98 0.995 0.99 0.99 0.985 0.985 0.985

2000 0.99 0.995 0.995 0.98 0.98 0.98 0.995 0.995 0.995 0.98 0.98 0.98

Table 3. SVM Classification Accuracy for Hilbert Ordering

Hilbert Ordering

Vocab. size
N-W algorithm S-W algorithm

16 32 16 32

- N1 N2 - N1 N2 - N1 N2 - N1 N2

200 0.98 0.98 0.98 0.965 0.965 0.965 0.975 0.98 0.98 0.965 0.965 0.965

500 0.98 0.98 0.98 0.975 0.975 0.975 0.98 0.98 0.98 0.98 0.975 0.98

1000 0.985 0.98 0.98 0.98 0.975 0.97 0.985 0.98 0.98 0.98 0.975 0.98

2000 0.985 0.985 0.985 0.965 0.955 0.955 0.985 0.985 0.985 0.955 0.95 0.96
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Table 4. SVM Classification Accuracy for Z Ordering

Z Ordering

Vocab. size
N-W algorithm S-W algorithm

16 32 16 32

- N1 N2 - N1 N2 - N1 N2 - N1 N2

200 0.985 0.985 0.985 0.95 0.97 0.975 0.985 0.985 0.985 0.96 0.96 0.955

500 0.985 0.98 0.98 0.975 0.97 0.975 0.985 0.98 0.98 0.955 0.96 0.97

1000 0.985 0.985 0.985 0.95 0.96 0.975 0.985 0.985 0.985 0.95 0.975 0.965

2000 0.98 0.98 0.98 0.97 0.97 0.98 0.98 0.98 0.98 0.96 0.96 0.95

5 Conclusion and Future Work

This paper compares different sequence alignment algorithms and different se-
quence orderings for image classification tasks. The obtained results, which vary
between 95% and 99.5% indicate that for the SVM classifier the choice of the
sequence alignment algorithm as well as ordering has very little impact on accu-
racy. Moreover, it was observed that the SVM reaches significantly better results
than the k-NN presented in [7]. The experiments have proven that bridging se-
quence alignment with content based image retrieval domains can be promising
for image classification.

As the next step in our research in this field, we plan to test our findings
over the state of the art imaginary datasets. We will also evaluate time of the
algorithm execution. Moreover, we are going to implement other, faster sequence
alignment algorithms (FASTA, BLAST).
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Abstract. We explore an original approach to represent boundaries of
objects based on mixture of densities in parametrized submanifolds em-
bedded in Rn. This method combines representation of boundary by
‘patchwork’ of surfaces and traditional mixture models to represent point
distributions within the surfaces. Specifically, this method could be used
for lossy compression/storage of point clouds, with significant data com-
pression factor. We present method description and experiments with
scanned objects.

Keywords: Point Cloud representation, Mixture Model, surface fitting,
part based representation, graphical models, Point Cloud compression.

1 Introduction

Methods for representing imaged objects form the base of computer vision. Both
2D planar images and 3D scanned scenes require digital representation. One
of the most popular ways to represent objects and scenes, recently growing in
applications like robotic vision, are point clouds (PC). A PC is an unordered set
of points, or vertices, coordinates sometimes accompanied by a color or normal
information. Usually a single PC is a result of scanning some scene with 3D
scanner, using techniques like time-of-flight or infra-red structured light.

Various technical conditions influence and limit precision of the acquisition
process, hence a PC can be viewed as a noisy sample of an object’s boundary. On
the other hand, it can oversample a simple object geometry, as it does not con-
sider the shape of the underlying surface; local object structure is often smooth
and this fact is often exploited [1,2] for efficient 3D data processing. Consid-
ering the probabilistic characteristics of the acquisition process (a single scan
viewed as a realization of a random process) and smoothness constraints, we
propose to represent the boundary as a parametrized point distribution. To ac-
count for smoothness constraints, we consider first the surface corresponding to
local vertex neighbourhood; then a distribution of points is approximated within
a submanifold defined by that surface. To represent the probabilities we use a
widely known and effective method for capturing unknown distributions, the
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Mixture Models (MM). Owning to the fact that the proposed approach amounts
to ‘mixing’ surface fragments, we name it ‘Surface Mixture Models’ (SMM).

We explore this representation with experiments. We use simple quadric sur-
face for local neighbourhood approximation, as they can effectively represent
elements of real-life 3D objects [3]. We model point probabilities with Gaussian
Mixture Models, with number of components established with Bayesian Infor-
mation Criteria. We propose an algorithm for converting a PC to SMM, and
investigate it’s performance on database scans of several physical objects. We
investigate errors (RMSE and Hausdorff) in this process, and analyse compres-
sion factor, as SMM requires much less coefficients to represent a given shape. We
finish experiments section with general discussion of quantitative and qualitative
results.

2 Related Work

A traditional area of applications of object description methods are 3D Com-
puter Graphics (CG) and Computer Aided Design (CAD), where techniques to
represent 3D models form the foundation of the discipline. Two main approaches
have been: used Constructive Solid Geometry (CSG), and Boundary Represen-
tation (BREP). With BREP, models are represented as boundaries defined with
vertices, edges and faces. Triangular meshes are by far most common, although
Non-uniform rational basis spline (NURBS) [4] are used for precise modeling of
complex parts (e.g. turbine blades).

The use of surfaces in vision has been supported from theoretical research
on foundations of psychophysics, e.g. [6] and recently discovered evidence for
specific neural circuit for surface representation in the brain at various stages
of visual processing pathway ([7, chap. 1]). Estimated surfaces have been suc-
cessfully applied to 3D vision processing tasks, e.g. in robot perception [1]. Of
many possible function types, quadric surfaces have been many times reported
as well performing tool; in particular, [3] reports that arbitrary shapes can be
represented by quadric primitives, [8] notes that the quadric fitting was found
best performing for estimation of local surface geometry, [9] uses quadrics to ef-
fectively estimate geometric properties, and number of others (see e.g. [10], [2])
report successful application.

As 3D data acquisition often is viewed as probabilistic in character, stochastic
methods have been successfully employed for 3D representation. In [11], stan-
dard approach of representing with octrees has been combined with probabilistic
occupancy model, resulting in highly effective representation of 3D environment
that can be easily extended when additional data is available. A changing struc-
ture of 3D robot working area has been modelled using Gaussian Mixture Models
[12] which allows for representation of acquired 3D space data and efficient nov-
elty detection. A probabilistic likelihood map framework [13] has been proposed
for resampling and merging a set of scans in presence of noise.

Segmentation and description of 3D objects in parts has been long advocated
as natural from semantic point of view (see i.e. functional relation between parts
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Fig. 1. Illustration of 3D digitalization process

[14] and the ‘geon’ approach [6]). A very interesting approach to describe shapes
with multiscale local descriptor, the ‘surflets’ is presented in [15], where piecewise
constant functions are used within a tree (e.g. an octree) framework. In another
approach [16], a set of basic shapes combined with efficient RANSAC-based
algorithm is used to provide total or partial decomposition of a point cloud.

3 Surface Mixture Models

Imagine the process of 3D digitalization of a physical object (Fig. 1). Using
a 3D scanner, we can acquire positions of selected points from object surface.
Our method deals with representation of such scans of objects’ boundaries. We
present the model, algorithm for its recovery, and evaluation procedure.

3.1 The Model

Scanning process works on the physical boundary of the object. We represent it
as a surface S defined by some unknown function f(·), embedded in R3:

S = {x ∈ R3 | x = f(u) with u ∈ R ⊂ R2}. (1)

Note that in this formulation the scanning process samples points u from
object surface. We can approximate this behavior by drawing a sequence of values
from random variable U with rangeR and unknown distribution P (U = u). This
distribution is dependent on object geometry and position/rotation in scanner
coordinate system. In a similar way, we can represent the acquired points x as
values from random variable that is a function of U , or X = f(U). If scanner
errors are considered, the points have an added noise component, x = f(u) + e.
X is no longer a function, but still dependent on U , a fact that can be represented
by a simple belief network (see Fig. 2a)

p(X = x) = p(X = x|U = u)p(U = u) (2)

The scanning result is a set of m points (also called the ‘point cloud’):

X = {x1, . . . ,xn}, xi ∈ R3, (3)
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which we can view as being sampled from the distribution defined above. The
simplest way to store scan data is to store X . However, one can view the storage
problem as an attempt to approximate and save both f(·) and the distribution of
U . Advantages of such approach (in relation to storing X ) would be to reduce the
number of coefficient needed to store the object boundary data, thus achieving
data compression; scanning noise could be excluded during the estimation stage,
and object geometry would be explicitly available for e.g. semantic application
like similarity search. One possible disadvantage would be that any reproduction
of the original X is performed by sampling from a distribution (akin to scanning
again), so X won’t be recovered exactly. Also, the nature of the recovery process
is necessarily approximate. In short, a method for storing shape and distribution
could produce lossy compression algorithm for point clouds.

As both f(·) and P (U = u) can be complex and thus difficult to represent
in whole, our approach is to use a number of simpler surfaces fi(·), suitably
parametrized by position, orientation and shape and corresponding elemental
distributions Ui, that can be approximated e.g. by Mixture Models. The scanning
model presented above is extended with a random index I (discrete random
variable that selects the surface and distribution to use), producing in noise free
case

X = f(U) =d fI(UI) =
∑
i

fi(Ui)�{I=i} (4)

where =d denotes equality in distributions. With noise included, the describing
belief network changes to (see Fig. 2b)

p(X = x) = p(X = x|Ui = u)p(Ui = u|I = i)p(I = i). (5)

U X
f

(a) Original

I Ui X
fi

(b) Using a sequence of surfaces

Fig. 2. Belief networks representing the scanning process

Aside from the change in parameters, the model is applicable in the same
way as before. Recovering the approximate X is done by sampling from the dis-
tribution, while model recovery from X involves estimating individual sequence
of (fi, Ui). As this model is conceptually similar to traditional Mixture Models,
but involves mixing surfaces and points on surfaces, hence the name ‘Surface
Mixture Models’.

3.2 The Model Recovery

The basic model recovery can be outlined as follows:
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1. Decide on the class of surfaces and distributions model to use and select
corresponding parameter recovery algorithm.

2. Partition the input point cloud X into individual parts or regions and per-
form recovery of surface and distribution parameters.

3. Optionally, optimize the model e.g. by iteratively alternating the steps of
partition and parameter recovery.

Our starting point, besides focusing on local description, was the concept of
fitting predefined model to an object fragment, with estimation of model pa-
rameters independently of position and orientation [17]. There exists a number
of options for parametric surface representations. While many classes could be
used here, we use quadrics, due to their potential for modelling diverse shapes
with relatively few parameters. Various algorithms for their parameters’ recovery
exist, however with most general ones the estimation process is computationally
intensive, e.g. [18] method that involves two levels of iteration. Since our ob-
jective is to model simple geometry of the small local region, we restrict the
quadric shape and propose an algorithm to compensate for that restriction. We
start with approximation of local point cloud Xj with a plane, using moment
matrix approach [19]:

M
Δ
=

⎡⎣mxx mxy mxz

myx myy myz

mzx mzy mzz

⎤⎦ (6)

mxy =
1

nj

nj∑
i=1

(xi − x̄)(yi − ȳ) xi =

⎡⎣xiyi
zi

⎤⎦ . (7)

where x̄ =
[
x̄, ȳ, z̄

]

is the local centroid. The normal vector n is obtained by

decomposing matrix M with SVD and choosing singular vector corresponding
to the smallest singular value. We then translate the local vertex cloud by −x̄
and rotate by the angle between n and versor k =

[
0, 0, 1

]

(rotation matrix

R) before fitting the surface coefficients. An algorithm for estimating rotation
matrix R given two vectors [20] is applied at this stage to improve effectiveness.
We use surface equation in the form

f(x, y, z) = a0 + a1x
2 + a2xy + a3y

2 − z (8)

The coefficient vector a =
[
a0, a1, a2, a3

]

is established as a solution to overde-

termined homogeneous linear equation set, again by using SVD decomposition
and choosing singular vector corresponding to the smallest singular value.

Given the center point x̄, rotation matrix R, and surface coefficients a, we
can compute images of X = {xi} in the surface parameters plane, U = {ui},
ui ∈ R2. We model this distribution of points in parameter space U with a
Mixture Model [21]

P (U = u) =

nm∑
i=1

wih(U = u|λi) (9)
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where h(·) is a suitable distribution, e.g. a Gaussian hi = N (μi;Σi), λi are
the distribution parameters, and wi a normalizing weight with

∑
i wi = 1. The

distribution modelling uses standard EM (Expectation-Maximization) approach.
To identify best number of mixtures nm for each region, a standard approach
with minimizing the Bayesian Information Criterion is used. Relative number
of points in regions is used to construct the distribution of region labels (the
independent I variable).

While the algorithm presented is conceptually straightforward and simple to
implement, it’s drawbacks are limited degrees of freedom for describing diverse
shapes. Rather that include a more complex surface type, we propose a region
growing segmentation to keep the regions within the surface/mixture describing
ability. The proposed algorithm is defined as follows:

1. Split initial point set X into disjoint regions with small number of points
each.

2. Estimate surface and mixture parameters for each region.

3. Prepare list of region pairs (i, j) for neighbouring regions.

4. Sort the list based on norm of coefficient vector ‖ai− aj‖, where i and j are
regions from the pair.

5. For the top np items from the sorted list, estimate the parameters from
region constructed from merging i with j.

6. Replace pair with the smallest error from step 5 with a single merged region.

7. If minimum number of regions is achieved, or last merging error is above
threshold, stop; else go to 3.

The selection of top np in step 5 is an optimization, based on initial experiments;
excludes very few cases where surfaces can be joined with small error, while at
the same time greatly reduces candidates to merge (and corresponding number
of calculations to be made).

3.3 Error and Performance Measure

We measure errors of the representation in two cases:

1. Surface representation error. We can compare the distances of points on
the fitted surfaces in the regions, to their original values. This describes the
fidelity of representation of surface component of our model. We denote this
by X → U → X ′. As this preserves point correspondence, root-mean-square
error (RMSE) is used

εR =

√√√√ 1

m

m∑
i=1

‖xi − x′
i‖2 (10)

2. Full representation error. Here, the points in X ′ are sampled back from the
cached distribution; as this removes 1:1 correspondence of points, a point set
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Fig. 3. Surface representation errors (RMSE, εR, dotted lines and Hausdorff εH , solid
lines) for different objects with varying number of regions. This corresponds to the error
component of approximation of the point cloud with surfaces. Left plot corresponds to
experiment ’A’, right to ’C’ (see text).

measure is appropriate here. We denote this situation by X → U → p(u)→
U ′ → X ′ and use the Hausdorff distance

εH = max{ sup
x′∈X ′

inf
x∈X
‖x− x′‖, sup

x∈X
inf

x′∈X ′
‖x− x′‖} (11)

Besides quantifying error, our performance measure is the estimated compres-
sion factor, describing potential space gains on using proposed representation.
We use the fraction of count of coefficients needed to represent this model, which
is

c =
ns
no

no = 3n ns = 10nr + 5

nr∑
i=1

nmi (12)

where no denotes the number of coefficients needed to represent original 3D point
set; n is the number of points in the original PC; nr is the number of regions;
nmi denotes number of mixture components at region i; while ns denotes the
total number of SMM model coefficients (for each region: center point d = 3,
rotation angles d = 3, surface coefficients d = 4, distribution parameters: mean
d = 2 and covariance matrix d = 3 for each distribution). The c can be viewed
as percentage fraction, the lower the better.

4 Experiments

In this section we present the results of an empirical investigation of the proposed
representation. The objective of performed experiments was to quantitatively
measure and qualitatively investigate the performance of the representation;
introduced errors and compression ratio.
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Data set for the experiment consisted of six scans of 3D objects (see Fig. 6, top
row). ‘Armadillo’ and ‘bunny’ were downloaded from the Stanford 3D Scanning
Repository1, while ‘ukl sc’, ‘chrzcielnica’, ‘Caro’ and ‘Sabines’ comprise a part
of Virtual Museum at IITiS PAN in Gliwice. The objects were acquired with
three different 3D scanners (Cyberware 3030 MS, Konica-Minolta VI-9i, Faro
LS 880 HE80), after scanning were subjected to data processing steps of scan
matching with shape reconstruction and decimation. The number of vertices
ranged from 25K to 172K. The object were chosen so as to present different
features, including variations of physical texture (esp. ‘chrzcielnica’, ‘Armadillo’,
‘Caro’), diverse basic shapes (esp. ‘ukl sc’ and ‘chrzcielnica’, that have a lot of
sharp edges vs ‘bunny’ and ‘Sabines’, with smooth curves), size (both in real life
and as a model) and basic type of surface features.

All of the models were subjected to the same experiment protocol. A list of
approximate number of regions was defined as nr ∈ {3000, 2900, . . . , 200, 100}.
For each nr value, number of points per region was decided as np = n

nr
. Then

initial segmentation was created by randomly picking out region center point
and points around it up to np. Actual number of regions for each nr thus varies
with object geometry and n. Value nr = 3000, producing smallest number of
points per region, produce most detailed representation (smallest errors and
worst compression ratio). Initialization (initial point split) was performed by
randomly separating input point set into disjoint regions. Each model was used
in two experiments:

1. Experiment ‘A’, where only one initialization was performed (nr = 3000),
then regions were merged one at a time using proposed algorithm.

2. Experiment ‘C’, where for each nr value separate initialization was per-
formed;

The purpose of different experiments were to evaluate the iterative merging
algorithm described in Sec. 3.2. and also to observe how representation errors
grow with region size.

Quantitative results of experiments are presented on Fig. 3, 4 and 5. Fig. 3
presents surface approximation errors: RMSE and Hausdorff errors for case 1
(see Sec. 3.3–distance between input points and their images on the surface).
Fig. 4 presents Hausdorff errors between input points and randomized from the
representation. In the latter case number of points was constrained to original
number of vertices in region, to enhance the readability of representation fidelity.
Error bars are signify minimum and maximum error over the course of n =
5 trials. Compression ratios are presented on Fig. 5. Left plots correspond to
experiment ‘A’, right to ‘C’.

Qualitiative results are presented on Fig. 6. Objects are arranged in columns,
in rows are presented: enlarged sample fragment from original point cloud; sur-
faces fitted at nr = 3000, corresponding to c ≈ 0.3; samples randomized from
representation at nr = 3000, 2000, 1000, corresponding to c ≈ 0.3, 0.1, 0.01.

1 http://graphics.stanford.edu/data/3Dscanrep/

http://graphics.stanford.edu/data/3Dscanrep/
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Fig. 4. Full representation errors (Hausdorff, εH) for different objects with varying
number of regions. Left plot corresponds to experiment ’A’, right to ’C’ (see text).

Fig. 5. Compression ratio c with varying number of regions. The value c measures the
fraction of the number of coefficients needed to store the model, in relation to original
point cloud. Left plot corresponds to experiment ’A’, right to ’C’ (see text).

The results confirm the validity of the method. While representation change
(from original PC to SMM) introduces some errors at the start, the perfor-
mance drop with successive merging steps is very small. Smooth objects, where
sampling (point) density is higher than feature density (’ukl sc’, ’Armadillo’,
‘bunny’, ‘Sabines’) can be represented with high fidelity with only 10% or less of
initial number of coefficients. The case of slightly undersampled objects (‘caro’,
‘chrzcielnica’) is more problematic, as even in initial situation regions are too
rich in features to be well represented by simple quadric surfaces, which leads to
observable errors. Even in this case, after small precision loss, mostly in details
in surface texture, the shape is well preserved throughout the nr range.

Additional experiments were prepared to confirm that for all objects, the high
precision representation is possible that preserves space gains in terms of com-
pression factor. Precise rate-distortion optimization (and individual best value
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Fig. 6. Visualization of point clouds. Different objects in columns, in rows: object
image; close up of fragment of original point set; surfaces fitted at c ≈ 0.3; close up of
points at c ≈ 0.3, 0.1, 0.01. Last row requires only ≈ 1% of number of coefficients to
store in relation to original point cloud. See text.

of nr) depends on individual application. As a possible extension, more ad-
vanced initial partition steps were considered (using K-Means and ‘mini-batch’
K-Means), but were found not to improve the performance. For given number of
regions, different initial random splits did not introduce a noticeable change to
the results. The only drawback observed was the occasional generation of out-
liers, especially near sharp corners. This is a result of using mixtures of Gaussians
to approximate highly non-Gaussian distribution.
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5 Conclusions

This paper presents an original approach to represent 3D scans of real-life ob-
jects. The algorithm produces a lossy representation of initial point cloud, effec-
tive in terms of compression factor. The basic principle applied combines local
quadric surface fitting and modelling of distributions of point projections on the
surface. Recovering point cloud from the representation can be quickly done by
sampling from cached distribution.

Beyond efficient storage, the method has various interesting properties. It
explicitly stores local object geometry, approximated with quadric surfaces. This
facilitates various processing tasks, e.g. subsampling, part matching, or semantic
map applications. The constrained nature of used surfaces and fitting process
could in many cases lead to denoising performed at the time of estimation. The
method also could be used for hole filling/inpainting applications. Representing
shapes as a distribution can lead to new approaches for measuring similarity of
3D shapes, by using distribution distances. The only problems observed relate
to occasional outliers and the necessity to set the number of regions individually
for an object, based on its feature detail to number of samples ratio.
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Abstract. The presented here paper describes a new approach to the video com-
pression problem. Our method uses the neural network image compression algo-
rithm which is based on the predictive vector quantization (PVQ). In this method
of image compression two different neural network structures are exploited in the
following elements of the proposed system: a competitive neural networks quan-
tizer and a neuronal predictor. For the image compression based on this approach
it is important to correctly detect scene changes in order to improve performance
of the algorithm. We describe the image correlation method and discuss its effec-
tiveness.

1 Introduction

Multimedia data transmission is widely spread nowadays. Most of the applications re-
quire effective data compression in order to lower the required bandwidth or storage
space. Various techniques of the data coding achieve this goal by reducing data redun-
dancy. In most of the algorithms and codecs a spatial compensation of images as well
as movement compensation in time is used. Video compression codecs can be found in
such applications as:

1. various video services over the satellite, cable, and land based transmission chan-
nels (e.g., using H.222.0 / MPEG-2 systems [1]);

2. by wire and wireless real-time video conference services (e.g., using H.32x [2] or
Session Initiation Protocol (SIP) [3]);

3. Internet or local area network (LAN) video streaming [4];
4. storage formats (e.g., digital versatile disk (DVD), digital camcorders, and personal

video recorders) [5].

Currently, many image compression standards are used. The most popular are JPEG
and MPEG. They differ in the level of compression as well as application. JPEG and
JPEG2000 standards are used for image compression with an adjustable compression
rate. There is a whole family of international compression standards of audiovisual data
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combined in the MPEG standard, which is described in more details in literature (see
e.g. [6]). The best known members are MPEG-1, MPEG-2, and MPEG-4. We used
a PVQ (Predictive Vector Quantization) algorithm in our work to compress a video
sequence. It combines a VQ (Vector Quantization) [7], [8] and DPCM (Differential
Pulse Code Modulation). More information on the techniques can be found in sources
[9], [10], [11]. To detect a scene change we used image correlation method. Then we
can change necessary parameters of the predictor and the codebook.

2 Video Compression Algorithm

The design of the compression algorithm described here is based on the existing algo-
rithm described in [9–11]. Selected algorithm due to neural network features presents
better adjustment to a frame and gives better compression. The extension includes a
scene change detection algorithm, which is based on the correlation between frames.
The diagram below (see Fig. 1) shows the proposed algorithm.

Fig. 1. Video compression algorithm

2.1 Neuronal Image Compression Algorithm

In the literature several methods for image compression have been proposed. Among
them the vector quantization (VQ) technique has emerged as an effective tool in this
area of research [12]. A special approach to image compression combines the VQ tech-
nique with traditional (scalar) differential pulse code modulation (DPCM) leading to the
predictive vector quantization (PVQ). In this paper, we develop a methodology where
the vector quantizer will be based on competitive neural network, whereas the predictor
will be designed as the nonlinear neural network.

We assume that an image is represented by an N1×N2 array of pixels X = [xn1,n2 ];
n1 = 1,2, . . . ,N1, n2 = 1,2, . . . ,N2. The image is portioned into contiguous small blocks
Y(k1,k2) = [ym1,m2 (k1,k2)] of the dimension M1×M2; m1 = 1,2, . . . ,M1, m2 = 1,2,
. . . ,M2:

Y(k1,k2) =

⎡⎢⎣ y1,1 (k1,k2) · · · y1,M2 (k1,k2)
...

. . .
...

yM1,1 (k1,k2) · · · yM1,M2 (k1,k2)

⎤⎥⎦ , (1)
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where we identify: k1 = 1,2, . . . ,K1 =
N1
M1

, k2 = 1,2, . . . ,K2 =
N2
M2

.
The arrays (1) will be represented by the corresponding vectors

V(k1,k2) = [v1 (k1,k2) , . . . ,vL (k1,k2)]
T , (2)

where: L = M1 ·M2, v1 (k1,k2) = y1,1 (k1,k2), vL (k1,k2) = yM1,M2 (k1,k2). It means that
the original image is represented by N1·N2

L vectors V(k1,k2). The successive input vec-
tors to the encoder V(t); t = 1,2, . . . ,K1 ·K2 correspond to vectors V(k1,k2) in the
line-by-line order.

The general architecture of the predictive vector quantization algorithm (PVQ) is de-
picted in Fig.2. This architecture is a straightforward vector extension of the traditional
(scalar) differential pulse code modulation (DPCM) scheme (see e.g. [9, 10]).
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Fig. 2. The architecture of the image compression algorithm

The block diagram of the PVQ algorithm consists of the following elements: en-
coder and decoder, each containing an identical neural-predictor, codebook and neural
vector quantizer. The successive input vectors V(t) are introduced to the encoder. The
differences E(t) = [e1 (t) ,e2 (t) , . . . ,eL (t)]

T given by the equation

E(t) = V(t)−V(t) (3)

are formed, where: V(t) = [v1 (t) ,v2 (t) , . . . ,vL (t)]
T is the predictor of V(t). Statisti-

cally, the differences E(t) require fewer quantization bits than the original subimages
V(t). The next step is vector quantization of E(t) using the set of reproduction vectors
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G = [g0,g1, ...,gJ] (codebook), where g j = [g1 j,g2 j, ...,gq j]
T (codewords). For every

L-dimensional difference vector E(t), the distortion (usually the mean square error)
between E(t) and every codeword g j, j = 0,1, . . . ,J− 1 is determined. The codeword
g j0 (t) is selected as the representation vector for E(t) if

d j0 = min
0≤ j≤J

d j, (4)

where we can take a measure d in expression (4) as e.g. the Euclidean distance. When
adding the prediction vector V (t) to the quantized difference vector g j0 (t) we get the

reconstructed approximation Ṽ(t) of the original input vector V(t), i.e.

Ṽ(t) = V(t)+ g j0 (t) . (5)

The predicted vector V(t) of the input vector V(t) is made from past observation of re-
constructed vector Ṽ(t− 1). In our approach, the predictor is a nonlinear neural network
specifically designed for this purpose. In future research we plan to employ orthogonal
series nonparametric estimates for the predictor design [13–15], neuro-fuzzy predictor
[16–19], and decision trees for mining data streams [20–25].

The appropriate codewords j0 (t) are broadcasted via the transmission channel to
the decoder. In the decoder, first the codewords j0 (t) transmitted by the channel are
decoded using codebook and then inverse vector-quantized. Next, the reconstructed
vector Ṽ(t) is formed in the same manner as in the encoder (see relation (4)).

2.2 Scene Detection

The parameters of the neural image compression algorithm are strictly determined bas-
ing on given compressed image. This comes from the fact that these parameters are
established through the learning process of the neural networks applied in this neu-
ral compression algorithm. In the case of the video compression, every frame of the
film will be processed as a separate image. Unfortunately, that a file containing our
compressed film will include an additional information about parameters of this com-
pression. To avoid this situation, we could assign the same compression parameters to
several consecutive compressed frame of the video. This concept is based on the as-
sumption that these frames are similar each to other in an acceptable level. Clearly, if
these frames are not similar we should use separately for every frame parameters de-
termined for a given frame. For instance, we observed this situation when a change of
the scene in the film is encountered. In our concept, we will try to detect the key frame
which separates neighboring scenes. Thanks to this idea, we save a space in the file
containing compressed film, assigning the same parameters to all frames from a given
scene, and we improve quality of the compressed film giving different compression
parameters for significantly different frames.

In this context, the scene detection is a crucial problem. Among many other ap-
proaches [26–28], the methods based on the correlation coefficient are worth consid-
eration. Correlation coefficient is the number indicating the level of the linear ratio
between two random variables. Cuts, gradual transitions, and motion can be distin-
guished in the video frames using this parameter. For the cuts, the difference between
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the two frames is large, and the correlation of these frames is low. For a gradual transi-
tion, pixel values of two adjacent frames are different, but are similar in the edges and
textures, so the correlation in the spatial domain is high [29]. A histogram of brightness
changes slightly for motion scenes that take place on the same background. However,
for scenes of gradual transition or cuts, it changes gradually or abruptly.

Differences between objects motion in the scene and the scene change can be ob-
tained by comparison of the key frames with subsequent frames. The key frame his-
togram Hk f can be defined as:

Hk f (rk) = nk, (6)

where rk is the k-th level of brightness, nk is the number of pixels in frame of the
brightness level rk.

For N frames in the video, we calculate the histogram Hi, i = 2,3, ..., N. The correla-
tion between Hk f and Hi can be defined as:

corr(Hk f ,Hi) =
∑m

j=0(Hk f ( j)− hk f )(Hi( j)− hi)√
∑m

j=0(Hk f ( j)− hk f )2 ∑m
j=0(Hi( j)− hi)2

, (7)

where m is the number of brightness scale levels rk; hk f , hi are mean values of Hk f and
Hi [30], respectively, and can be defined as:

hi =
1
m

m

∑
j=0

Hi( j). (8)

Then, the correlation value computed from Eq. (7) is compared with a threshold. If the
correlation value is lower than the assumed threshold, the algorithm determines a new
key frame. A diagram of the proposed scene change detection algorithm is shown in
Fig. 3.

if 
corr(Hkf,Hi) < 

treshold

Scene
change

detection

Movie 
frames

Calc. histogram
(Hkf) for 

the i-th frame 

Compute 
correlation 
between

Hkf and Hi

Calc. histogram
(Hkf) for 

the first frame 

Calc. histogram
(Hi) for i-th frame, 

i=2,..,N  

Fig. 3. Scene change detection algorithm

3 Experimental Results

The efficiency of the algorithm was tested on a set of frames extracted directly from a
video file of a 576x416 resolution with 256 levels of gray. Four tests were conducted.
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In the first and second tests, the frames were compressed within single scene (Fig. 4).
In the first test the frames were compressed with a separate codebook and predictor for
each of the frames (Fig. 5). For the second test, a single codebook and predictor were
used for all frames (Fig. 6).

Fig. 4. Original sequence (a); compressed sequence: test 1 (b); compressed sequence: test 2 (c)

Fig. 5. Difference between frames in the test 1

A transit frames between scenes were chosen for the third and fourth tests based on
the scene change detection algorithm (Fig. 7). In this algorithm each frame is compared
with the keyframe. When the new scene is detected the algorithm marks a new keyframe
(see Fig. 8).

In the test 3 the same codebook and predictor were used before and after the scene
change. As the results show, this approach is insufficient in case of a major scene change
(Fig.9). For the fourth test, the scene transition was detected and separate codebooks and
predictors were created for frames before and after the scene transition (Fig.10).
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Fig. 6. Difference between frames in the test 2

Fig. 7. Original sequence (a); compressed sequence: test 3 (b); compressed sequence: test 4 (c)

Fig. 8. Scene change detection
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Fig. 9. Difference between frames in the test 3

Fig. 10. Difference between frames in the test 4

4 Conclusions

The tests show that the scene change detection algorithm is especially useful for the
presented compression algorithm. It is apparent that without the scene detection a video
sequence compressed by our algorithm would exhibit a poor quality of frames after the
scene transition. On the other hand, the number of data resulting from including the
compression parameters for every frame would greatly impact on the output files size.
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Abstract. In this paper we propose a new iterative algorithm for image
reconstruction from projections problem. The reconstruction problem
is reformulated as a system of linear equations with a Toeplitz-block-
Toeplitz coefficient matrix. The structure of the matrix enables us to
use efficient methods for solving the system. We investigate the use of
gradient methods benefiting from fast FFT-based matrix-vector multipli-
cation for minimizing the quadratic form objective function. We present
and compare simulation results for the algorithm with different methods
for step size selection.

1 Introduction

Computed Tomography (CT) is a widely used imaging technique enabling a
non-invasive inspection of the inside of an object. The key scientific problem
emerging with regard to that technique is developing new, efficient algorithms
for image reconstruction from projections. In the present paper we concentrate on
the applications of CT in the discipline of medicine. It presents more challenges
than industrial CT, because of the detrimental influence of the x-ray radiation
on the human body, which needs to be taken into consideration.

The most widely used image reconstruction methods are algebraic recon-
struction techniques (ART) and analytical reconstruction methods, e.g. filtered
back-projection method (FBP) [1]. Also neural networks, especially recurrent
Hopfield-type networks, extensively used for numerous image processing tasks
(see e.g. [2,3,4,5]), find their application in image reconstruction (see e.g. [6,7]).
In recent years methods based on the statistical models of the projection acqui-
sition process are becoming increasingly popular.

In this paper we propose a new analytical, iterative algorithm based on the
approach described in papers [7,8,9,10].

2 Reconstruction Algorithm

The input to every reconstruction from projections algorithm consists of pro-
jections p̄(s, Ψ) acquired from a scanner of a given geometry from which it is

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 725–732, 2014.
c© Springer International Publishing Switzerland 2014
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possible to determine the unknown distribution of the attenuation coefficient
μ(i, j) at the cross section of the body.

We derive our approach assuming the parallel beam scanner geometry, but
it should be noted that it is possible to adapt it to different geometries, e.g.
fan-beam projections data, with rebinning techniques.

The first step of the reconstruction algorithm is the backprojection operation
described by the formula

μ̃ (i, j) ∼= Δα

Ψ−1∑
ψ=0

p̂ (sij , ψΔα) , (1)

where sij = iΔs cosψΔα + jΔs sinψΔα defines the position of a pixel (i, j) in
the coordinate system of the screen and ψΔα specifies the projection angle.

Because of the discrete nature of the projections data p̂, measured with a
raster Δs, performed during the backprojection operation, it is very unlikely for
any ray to pass exactly through a given point (i, j). The remedy for this is the
use of the interpolation function int (·) to specify how other pixels affect the
given pixel (i, j),

p̄ (sij , ψΔα) ∼= Δs

∑
l

p̂ (lΔs, ψΔα) · int (sij − lΔs) , (2)

As shown in [9], [10] the above relations make it possible to formulate the image
after backprojection μ̂ as a convolution of the original image with a geometrical
distortion term h.

μ̃(i, j) =

N−1∑
î=0

N−1∑
ĵ=0

μ∗(̂i, ĵ)h(i− î, j − ĵ) (3)

where μ∗(i, j) is the unknown image that we attempt to reconstruct and the
coefficients h are defined as

h(Δi,Δj) = Δα (Δs)
2 ·

Ψ−1∑
ψ=0

int (ΔiΔs cosψΔα +ΔjΔs sinψΔα) , (4)

where Δi = i− î, Δj = j − ĵ.

Equation (3) can be written in a matrix form as

μ̃ = Hμ∗ (5)

where the relation between the elements of the coefficient matrix H and coeffi-
cients h is as follows

Hi·N+j,̂i·N+ĵ = h(i− î, j − ĵ) (6)
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Image reconstruction algorithm can thus be formulated as solving the system of
linear equations (5) for μ∗.

MatrixH is invertible, symmetric and positive definite which makes it possible
to find the exact solution of the system. Also, as a deconvolution matrix of
the two dimensional signal, it exhibits a Toeplitz-block-Toeplitz structure. This
structure is characterized by identical blocks on each descending diagonal of the
matrix. Each of those blocks is in turn a Toeplitz (diagonally constant) matrix.
The structure of 256× 256 matrix H can be seen in Fig. 1.

Moreover, the condition number ofH is low enough to make it possible to allow
for finding a reliable solution of the system (5) without the need of regularization.
The relation between the condition number of H and its size is presented in Fig.
2. For 220×220 matrix, used for reconstruction of 1024×1024 image, the condition
number κ(H) will be approximately 2500. It means that for those dimensions we
can lose up to 3 decimal digits of accuracy, which for our purposes constitutes a
reliable solution.

However, the majority of direct methods for solving linear systems cannot
be used for this reconstruction problem, because the size of matrix H is too
large. Reconstruction of the N × N image requires the coefficient matrix H
of size N2 × N2. It means that 1024 × 1024 image reconstruction results in a
1048576× 1048576 linear system. Such a matrix with double precision elements
needs 8TB of memory and it can be easily seen that the problem would quickly
become intractable.

It is possible to avoid this problem by utilizing the special structure of the
matrix H and solving the system with a method that benefits from it. One of
possible methods suitable for our problem is a gradient descent method which,
with the efficient method for computing matrix-vector products, is a simple and
effective algorithm for solving the problem at hand.

Fig. 1. 256 × 256 coefficient matrix H
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Fig. 2. Condition number of the N2 ×N2 coefficient matrix H used for N ×N image
reconstruction

2.1 Solving of the Linear System

Taking into consideration the fact that matrix H is symmetric and positive-
definite it is possible to formulate the objective function as a following strictly
convex quadratic form

L(μ∗) = μ∗THμ∗ − μ̃Tμ∗ (7)

For the symmetric H the gradient of (7) can be written as

∇L(μ∗) = Hμ∗ − μ̃ (8)

As can be easily seen the minimum of (7) is the solution of our original system
of linear equations (5).

∇L = Hμ∗ − μ̃ = 0 =⇒ Hμ∗ = μ̃ (9)

This reformulates our problem as minimization of the objective function (7).
To minimize (7) we chose the gradient descent algorithm and we compared

three different methods for selecting the step size α, namely:

– constant α,
– exact line search,
– Barzilai and Borwein method (BB method)

A single iteration of a general gradient descent algorithm can be written as
follows

μ∗k+1 = μ∗k − αkgk (10)

where μ∗k is the kth approximation of the optimal solution, αk is a step size in
the kth iteration and gk = ∇L(μ∗k).
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The gradient descent method in which αk is determined with exact line search
is also known as the Steepest Descent method. The step size is chosen so as to
minimize the objective function value along the direction of the gradient at a
given point.

αSD
k = argmin

α
L(μ∗k − αgk) (11)

αSD
k =

gT
k gk

gT
k Hgk

(12)

The method proposed by Barzilai and Borwein in [11] is an efficient algorithm
for determining the step size for gradient method taking into consideration the
result of the previous iteration and approximating the secant equation. It is
computationally inexpensive in comparison with the exact line search, since the
procedure of step size determination does not require a matrix-vector multipli-
cation.

αBB
k = argmin

α
‖Δμ∗k − αΔgk‖ (13)

where Δμ∗k = μ∗k − μ∗k−1 and Δgk = gk − gk−1

The minimization of (13) results in the following formula for αk

αBB
k =

ΔgT
kΔμ

∗
k

ΔgT
kΔgk

(14)

For the gradient method as described above it is not required that the matrix
H should be explicitly stored in memory. The algorithm needs to be provided
only with a procedure performing matrix-vector multiplication.

Fig. 3. The MSE value as a function of the number of iterations
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Table 1. Simulation results after 200 iterations for gradient descent with different
methods for step size α selection a) original image b) constant α c) α determined with
exact line search d) α determined with the BB method

Image MSE Time

a) — —

b) 0.5771 173s

c) 0.5766 310s

d) 0.5763 192s
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Table 2. Intermediate simulation results for step size selection with the BB method

a) b) c)

Iter.: 10 20 30

MSE: 0.5815 0.5776 0.5770

It greatly simplifies our reconstruction problem because the structure of H
makes it possible to write such an operation as a convolution of a given vector
with a vector of coefficients h (4). This in turn enables us to use FFT and perform
the efficient convolution in the frequency domain, since convolution in the time
or space domain can be computed as multiplication in the frequency domain.

μ̃ = F−1{F{h} · F{μ∗}} (15)

Computational complexity of such a matrix-vector multiplication is then
O(M log2M) for the M ×M matrix.

3 Experimental Results

To test the presented approach we performed computer simulations reconstruct-
ing a mathematical model of the human head - the Shepp-Logan phantom. The
size of the reconstructed image was 1024 × 1024 pixels. Three different meth-
ods for selecting the step size α for gradient descent method were compared:
a) constant α, b) α determined with the exact line search and c) α determined
with the BB method as described above. For a constant α we chose the value
0.00018 which proved to be the largest value guaranteeing the convergence of
the algorithm.

The algorithm was implemented sequentially and executed on the 3.2 GHz
AMD Phenom machine.

The results for different methods after 200 iterations can be seen in Table 1
together with the original Shepp-Logan phantom. The behaviour of the MSE
metric with respect to the number of iterations of the algorithm was shown
in Fig. 3. Intermediate reconstruction results for the algorithm using the BB
method are shown in Table 2.
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4 Conclusions

As can be seen in Fig. 3 and Table 1 gradient methods with adaptive step size
significantly outperform the algorithm with a constant step size. The largest rate
of convergence is achieved for algorithm c), i.e. with the BB method for step size
selection and the smallest for the algorithm a) with constant α.

It is worth noting that in case of the algorithm c) the number of iterations
required for obtaining the image quality that is satisfactory for the human expert
is as low as 30 iterations.

The running time of a single iteration is approximately one second for the
sequential implementation of the algorithm which, in this setting, makes the re-
construction process reasonably fast. However the algorithm can be easily paral-
lelized and implemented for GPU which will result in a very significant decrease
in the reconstruction time allowing for a nearly real-time performance.
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Häıfa Nakouri1 and Mohamed Limam1,2

1 Institut Supérieur de Gestion, LARODEC Laboratory
University of Tunis, Tunisia
2 Dhofar University, Oman

nakouri.hayfa@gmail.com, mohamed.limam@isg.rnu.tn

Abstract. Random Indexing is a recent technique for dimensionality re-
duction while creating Word Space model from a given text. The present
work explores the possible application of Random Indexing in discover-
ing feature semantics from image data. The features appearing in the
image database are plotted onto a multi-dimensional Feature Space us-
ing Random Indexing. The geometric distance between features is used
as an indicative of their contextual similarity. Clustering by Committee
method is used to aggregate similar features. In this paper, we show that
the Feature Space model based on Random Indexing can be used effiec-
tively to constellate similar features. The proposed clustering approach
has been applied to the Corel databases and motivating results have
obtained.

1 Introduction

Most of the image analysis approaches consider each image as a whole, repre-
sented by a D-dimensional vector. However, the user’s query is often just one
part of the query image (i.e. a region in the image that has an obvious seman-
tic meaning). Therefore, rather than viewing each image as a whole, it is more
reasonable to view it as a set of semantic regions of features. In this context,
we consider an image feature as a relevant semantic region of an image that can
summarize the whole or a part of the context of the image.

In this work, we propose the Feature Space model similarly to the Word
Space model [10] that has long been used for semantic indexing of text. The
key idea of a Feature Space model is to assign a vector to each feature in the
high dimensional vector space, whose relative directions are assumed to indicate
semantic similarities or similar representations of the features. However, high
dimensionality of the semantic space of features, sparseness of the data and
large sized data sets are the major drawbacks of the Feature Space model.

Random Indexing (RI) [5, 9] is an approach developed to cope with the prob-
lem of high dimensionality in the Word Space model. It is an incremental ap-
proach proposed as an alternative to Latent Semantic Indexing (LSI) [6]. To the
best of our knowledge, no Random Indexing approaches have been used to deal
with image features in the Feature Space model especially for similar semantics
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discovery between features in image data sets. In this paper we aim to show
that a Feature Space model constructed using Random Indexing can be used
efficiently to cluster features, which in turn can be used to identify the repre-
sentation or the context of the feature. In a Feature Space model, the geometric
distance between the features is an indicative of their semantic similarity. The
interesting point in RI is that it enables finding relevant image documents even
if they do not contain the query key features and the whole procedure is in-
cremental and automatic. The fact that RI does not require an exact match to
return useful results fits perfectly with the scenario of feature image clustering.
Assume that there is a query image of a ’cat’ in the grass and the user is inter-
ested in finding all images in the database that contain a ’cat’. It is obviously
not a good idea to use exact match since no ’cat’ image would have exactly the
same low-level features with the query image itself. Hence, in the context of our
work, if we consider an image as a document, the ’cat’ object is then one of the
words in the document. The only difference is that the ’cat’ object is not a word
but a multidimensional feature vector. The objective of using the context vectors
computed on the language data is to map the features onto the Feature Space.

We used the Clustering by Committee (CBC) [8] method to agglomerate
similar features and each constellation represents a context of images. In this
work, we attempt to show that the Feature Space model based on Random
Indexing can be used efficiently to cluster features, which in turn can be used to
approximate the contexts represented by a feature.

The rest of this paper is organized as follows. Sect. 2 introduces the Feature
Space model and the Random Indexing approach. Sect. 3 presents the proposed
feature clustering process based on Random Indexing. Sect. 4 presents the ex-
perimental results of the proposed work.

2 Vector-Based Feature Analysis Using Random Indexing

Basically, vector-based semantic analysis is a technology for extracting semanti-
cally similar terms from textual data by observing the distribution and colloca-
tion of terms in text. The result of running a vector-based semantic analysis on
a text collection can be used to find correspondences across terms. The meaning
or representation of a term is interpreted by the context it is used in. By analogy
to the Word Space model which is a spacial representation of word meaning, we
consider a Feature Space model as a spacial representation of feature meaning.

2.1 Feature Space Model

In this model, the complete features of any image (containing n features) can be
represented in a n-dimensional space in which each feature occupies a specific
point in the space, and has a vector associated with it defining its meaning. The
features are placed on the Feature Space model according to their distributional
properties in the image, such that:
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1. The features that are used within similar group of features (i.e. in a similar
context) should be placed nearer to each other.

2. The features that lie closer to each other in the Feature Space represent the
same context. Meanwhile, the features that lie farther from each other in the
Feature Space model are dissimilar in their representation.

2.2 The Feature Space Model and Random Indexing

Random Indexing (RI) is based on Kanerva’s work [4] on sparse distributed
memory. It was proposed by Karlgren and Sahlgren [5, 9] and was originally used
as a text mining technique. It is a word-occurrence based approach to statistical
semantics. RI uses statistical approximations of the full word-occurrences data
to achieve dimensionality reduction. Besides, it is an incremental vector space
model that is computationally less demanding. The Random Indexing model
reduces dimensionality by, instead of giving each word a whole dimension, it
gives them a random vector with less dimensionality than the total number of
words in the text. Thus, RI results in a much quicker time and fewer required
dimensions.

Random Indexing used sparse, high-dimensional random index vectors to rep-
resent image features. Sparsity ensures that the chance of any two arbitrary index
vectors having an overlapping meaning (i.e. a cosine similarity [10] that is non-
zero) is very low. Given that each feature has been assigned a random index
vector, features similarities can be calculated by computing a feature-context
co-occurrence matrix. Each row in the matrix represents a feature and the fea-
ture vectors are of the same dimensionality as are the random vectors assigned
to images. Each time a feature is found in an image, that image’s random index
vector is added to the row of the feature in question. In this way, features are
represented in the matrix by high-dimensional semantic context vectors which
contain trances of each context the feature has been observed in.

This technique is akin to Latent Semantic Analysis (LSA) of Indexing (LSI)
[6], except that no dimension reduction (e.g. Singular Value Decomposition
(SVD)) is needed to reduce the dimensions of the co-occurrence matrix, since
the dimensionality of the random index vectors is smaller than the number of
images in the training data. This makes the technique more efficient that the
LSI methods, since SVD is a computationally demanding operation. The tech-
nique is also easier to scale and more flexible as regards unexpected data than
are methods which rely on dimension reduction. A new image does not require a
larger matrix but will simply be assigned a new random index vector of the same
dimensionality as the preceding ones and a new term requires no more than a
row in the matrix.

The size of the context used to accumulate feature-image matrix may range
from just few features on each side of the focus feature to the entire image data
consisting of more than hundred features [9].

In the context of our work, the context of a feature image is understood as the
visual surrounding of a feature. For instance, an ”umbrella” and ”surf board”
are two features representing the context ”beach”.
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A context vector thus obtained can be used to represent the distributional
information of the feature into the geometrical space. This is similar to each
feature being assigned a unique unary vector of dimension d, called index vector.
The context vector for a feature can be obtained by summing up the index
vectors of the features on the either side of it. In other words, all the features
representing the same context should have approximately equal context vectors.

Random Indexing accumulates context vectors to form the Feature Space
model in a two step process.

1. Each feature in the image is assigned a unique and randomly generated
d-dimensional vector called the index vector. Each feature is also assigned
an initially empty context vector which has the same dimensionality (d)
as the index vector. These index vectors are sparse, high dimensional, and
ternary (i.e. 1, −1, 0). In other words, the dimensionality (d) is in the order
of hundreds, and that they consist of all small numbers (ε) of randomly
distributed +1 and −1, with the remaining elements of the vector to 0. In
our work, we allocate each elements as follows:⎧⎨⎩

+1 for the probability (ε/2)/d
0 for the probability (d− ε)/d
−1 for the probability (ε/2)/d

2. The context vectors are then accumulated by advancing through the image
data set one feature taken at time, and then adding the context’s index vector
to the focus feature’s context vector. When the entire data is processed, the d-
dimensional context vectors are effectively the sum of the feature’s contexts.
Context vectors are produced by scanning through the images. As scanning
the image data, each time a feature occurs in a context, that context’s d-
dimensional index vector is added to the context vector of the feature. This
way, features are represented by d-dimensional context vectors that are the
sum of the index vectors of all the contexts in which the feature appears.

In further experiments, we used Random Indexing to index aligned features and
extract semantically similar features across image documents.

3 Feature Clustering

Figure 1 illustrates the overall procedure of the feature clustering process based
on Random Indexing. The clustering procedure is based on three steps: data
preprocessing, modelling the Feature Space using Random Indexing and the
feature clustering. More details are outlined in this Section.

3.1 Data Preprocessing

The preprocessing phase consists in the feature extraction from images. To this
end, we first need to perform an image segmentation and then extract the rele-
vant features. In our experiment, we choose to use the conventional Blob-world
[1] as our image segmentation method. Figure 2 shows an example of segmented
images using the Blob-world method and the extracted features.
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Fig. 1. Feature clustering approach based on Random Indexing

Fig. 2. Examples of segmented images

3.2 Feature Space Model Using Random Indexing

Once all relevant features are extracted, further analysis should be done to find
common contexts between features and create a proper context model for the
features clustering. Feature semantics are computed by scanning the features set
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and keeping a running sum of all index vectors for the features that co-occur.
Actually, a link exists between the occurrence of a feature and its semantics.
Finally, the set of generated context vectors represent the Feature Space model
corresponding to the image data set. Algorithm 1 summarizes the context vectors
generation procedure.

Algorithm 1. Context vector generation

INPUT: Features fi, i = 1, . . . , n.
OUTPUT: n× d context window A.

1. For each feature fi, obtain a d-dimensional index vector indi, i = 1, . . . , n where n
is the total number of features.

2. Scanning the feature set, for each feature fi appearing in the same context than an-
other feature, update its context’s vector ci by adding the feature’s corresponding
indi.

3. Create the feature-to image (n× d) matrix, also called the context window, where
each row is the context vector ci of each single feature.

3.3 Similarity Measure in the Feature Space Model

Basically, context vectors give the location of the word in the Word Space. Sim-
ilarly, we can assume that context vectors give the location of the feature in the
Feature Space model. In order to determine how similar the features are in the
context, a similarity measure has to be defined. Various schemes e.g. scalar prod-
uct or vector, Euclidean distance, Minkowski metrics [9], are used to compute
similarity between vectors corresponding to the features. However, the cosine
distance [9] might make sense for these data because it would ignore absolute
sizes of the measurements, and only consider their relative sizes. Thus, two flow-
ers that were different sizes, but which had similarly shaped petals and sepals,
might not be close with respect to squared Euclidean distance, but would be
close with respect to cosine distance. We have used cosine of the angles between
pairs of vectors xi and yi , i = 1, . . . , n of the context window A generated with
Random Indexing to compute normalized vector similarity. The cosine angle
between two vectors x and y is defined as:

sim∝(x, y) =
xy

abs(x)abs(x)
=

∑n
i=1 xiyi√

(
∑n

i=1 x
2
i )
√
(
∑n

i=1 y
2
i )

(1)

The cosine measure is the most frequently used similarity metric in vector space
research. The advantage of the cosine metric over other metrics is that it provides
a fixed measure of similarity, which ranges from 1 (for identical vectors) to 0 (for
orthogonal vectors) and −1 (for vectors pointing in the opposite directions).
Moreover, it is comparatively efficient to compute. Hence, a similarity index
between different features is defined, and a similarity matrix is generated from
the features appearing in the images data set. Each cell of the similarity matrix
contains the numerical value of the similarity between any pair of features.
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3.4 Clustering by Committee

Clustering by Committee (CBC) [8] has been basically designed for Natural
Language Processing purposes. the hard version of CBC , in which a word is
assigned to exactly one cluster, is typically used for document retrieval. We use
a soft version of CBC in feature sense/context disambiguation. The advantage
thus is that it allows fuzzy clustering, and thereby, the features are assigned to
more than one cluster. CBC consists of three phases:

Phase I: Generation of similarity matrix A similarity index, using the
cosine metric, is defined between features. Then, a similarity matrix generated
from the features appearing in the image data set, in which each cell contains
the numerical value of the similarity between each pair of features.

Phase II: Formation of committees The second phase of the clustering
algorithm takes in as input the list of features to be clustered and the similar-
ity matrix. It recursively finds tight clusters called committees, scattered in the
similarity space. Each committee can be thought of as the representation of a
context or a sense. Each committee is assigned a centroid vector which is the
average of the vectors of the features contained by them. The algorithm tries to
form as many committees as possible on the condition that each newly formed
committee is not very similar to any existing committee (i.e. the similarity should
not exceed a given threshold θ1). If the condition is violated, the committee is
discarded. The similarity between two committee is computed by determining
the cosine metric between the centroid vectors of the respective committees.
Next, it identifies the residue features that are not covered by any committee. A
committee is said to cover a feature if the feature’s similarity to the centroid of
the committee exceeds some high similarity threshold (i.e. greater than another
given threshold θ2). The algorithm than attempts to find recursively more com-
mittees among the residue features. The output of the algorithm is the union
of all committees found in each recursive step. Committees are the cores of the
clusters to which features are successfully added in Phase III as explained below.
The committees do not change after their formation.

Phase III: Assigning a feature to its most similar committee In the
final phase of the algorithm, each feature is assigned to its most similar cluster.
The feature is assigned to a cluster if its similarity to the committee that forms
the core of the cluster exceeds a given threshold γ. The cluster now represents
the context the feature has been used in. Once a feature has been assigned to a
cluster, the centroid of the committee is subtracted from the context vector of
the feature. This enables the algorithm to find the less frequent context of the
feature.

Once a feature is assigned to its most similar cluster, the centroid of the
committee is subtracted from the context vector of the concerned feature. The
context vector of the feature is the sum of all the contexts the feature may have
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appeared in the data set. If one of the contexts is removed from the context vector
of the feature, the similarity of the features with other committees increases thus
allowing the algorithm to discover other less frequent senses of the feature.

Algorithm 2. Soft Clustering By Committee Algorithm

1. Phase 1
Let F be the list of unique features (n) in the data sets
Let S be the similarity matrix (n× n)
Assign values to Sij by computing the cosine metric between Ei and Ej

2. Phase 2
Let S be the symmetric matrix generated from Phase 1 Let F be the set of features
to be clustered Let C be the list of committees.
discover − committees(S,F, α1, α2)
{ for each feature f ∈ F { cluster features for S using average link clustering }
for each discovered cluster c { Compute avgsim(c) // average pairwise similarity
between features in c
Compute score: | c | × avgsim(c) // | c | is the number of features in c }
Store the highest-scoring cluster in a list L
Store the clusters in L in descending order of their scores
Let C be a list of Committees.

For each cluster c ∈ L {
compute the centroid of c
c’s similarity to the centroid of each committee previously added to C is below a
threshold α1, add c to C. }
if L is empty, return C. else {

for each element f ∈ F { if e’s similarity to every committee in C is below threshold
α2, add e to a list of residues R } If R is empty, return c
else discover − committees(S,R, α1, α2) } }

3. Phase 3
Let X be a list of clusters initially empty
Let c be the list of Committees from phase 2
while S is not empty { Let c ∈ S be the most similar committee to e
if the similarity(e, c) < γ, exit the loop
if c is not similar to any cluster in C {
assign e to C
remove from e the centroid vector of c }
remove c from S }

4 Experiments

4.1 The Training Dataset

In this work, we used the Corel database [7] for training and constructing our
Feature Space model. The Corel image database contains close to 60, 000 general
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purpose photographs. A large portion of images in the database are scene pho-
tographs. The rest includes man-made objects with smooth background, fractals,
texture patches, synthetic graphs, drawings, etc. This database was categorized
into 599 semantic concepts. Each concept/category/context, containing roughly
100 images, e.g. ’landscape’, ’mountain’, ’ice’, ’lake’, ’space’, ’planet’, ’star’. For
clarification, general-purpose photographs refer to pictures taken in daily life in
contrast to special domain such as medical or satellite images.

4.2 Clustering Validity Measures

In order to evaluate the performance of the proposed clustering algorithm, we
use the CS index [3] that computes the ratio of Compactness and Separation. A
common measure of Compactness is the intra-cluster variance within a cluster,
named Comp:

Comp =
1

k

k∑
i=1

‖ γ(Ci) ‖, (2)

where γ(X) represents the variance of data set X . Separation is computed by
the average of distances between the centers of different clusters:

Sep =
1

k

∑
‖ zi − zj ‖2, i = 1, 2, . . . , k − 1, j = i+ 1, . . . , k (3)

It is clear that if the data set contains compact and well separated clusters, the
distance between the clusters is expected to be large and the diameter of the
clusters is expected to be small. Thus, cluster results can be compared by taking
the ratio between Comp and Sep:

CS =
Comp

Sep
. (4)

Based on the definition of CS, we can conclude that a small value of CS indicates
compact and well-separated clusters. CS reaches its best score at 0 and worst
value at 1. Therefore, the smaller it is the better the clusters are formed.

4.3 Parameter Settings

We experimented the impact of some key parameters and assigned initial values
to them.

Dimensionality: in order to evaluate the effects of varying dimensionality on the
performance of Random Indexing in our work, we computed the values of CS
with d ranging from 100 to 600. The performance measures are reported using
average values over 5 different turns. Figure 3 depicts the results and shows that
for d = 300 we get the smallest CS value. Therefore, we choose d = 300 as the
dimension of the index vectors for Random Indexing, which is way less than the
original D = 1000 (corresponding to total number of images in the data set).
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Fig. 3. The impact of diffierent d values to RI-based feature clustering

Sparsity of the index vectors: another parameter is crucial for the quality of our
indexing is the number of +1, and −1 in the index vectors ε. We use ε = 10 as
proposed in [2].

4.4 Clustering Results

As indicated above, the data consists of 59900 features and 599 contexts. For
the clustering results, most of the predicted clusters corresponding to the 599
different contexts have been correctly formed and Table 1 shows some of the
formed clusters/contexts and their assigned features. Note that some of the
features belong to more than one cluster, assuming that they are used in more
than one context.

Table 1. Some of the features and their discovered contexts

Description of the feature clusters/Contexts

Beach umbrella beach, ocean, people

Horse
context 1: horse, grass, animal

context 2: rural, people, animal, horse, landscape, grass

The Colosseum
context 1: Italy, Europe, historical building

context 2: landmark, historical building, landscape

London bus
context 1: London, historical building, sky, water, people

context 2: bus, man-made, car

We report the rest of the results using three other validation criteria: preci-
sion, recall and the F-measure. These three measures are widely used in pattern
recognition and information retrieval. According to our evaluation context, we
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slightly changed the definitions: Precision of a feature is defined as the ratio of
the correct clusters to the total number of clusters it is assigned to. The preci-
sion (P ) of a the algorithm is the average precision of all features. Recall of a
feature is defined as the ratio of the correct clusters of the feature and the total
number of contexts the feature is used in the data set. The recall (R) of the
algorithm is the average recall of the features. P and R range between 0 and 1.
The F-measure (F ) is the combination result of precision and recall and is given
by:

F =
2RP

R+ P
. (5)

The F -measure reaches its best value at 1 and worst score at 0. As stated in
[10], if the value of θ1 increases, the clustering becomes more and only features
with very high similarity index are clustered, cause the F -measures to decrease
when θ1 increases. For all context/sense discovery, a feature element is assigned
to a cluster if its similarity to the cluster exceeds a threshold γ. We tested the
clustering with a fixed γ = 0.5 and different values of θ1 varying from 0.25
and 0.45 with the features examples showed in Table 1 and the best F -measure
of these 4 examples is obtained with θ1 = 0.4. The value of γ does not affect
the first sense returned by the CBC algorithm for each feature because each
feature is initially assigned to its most similar cluster. We also experimented
with different values of γ ranging from 0.3 and 0.6 and θ1 = 0.4. With lower γ
value, features are assigned to more clusters causing a decrease in precision and
then in the F -measure. Nevertheless, at higher values of γ, the recall reduces
given that the algorithm ignores some relevant senses/contexts of features and
hence a decrease in F -measure is noticed. For the same examples showed in
Table 1, the best F -measure is obtained for γ = 0.45. On the other hand, we fix
θ2 = 0.5.

For the fixed values of θ1, θ2 and γ, Table 2 shows that the best results of the
proposed measures are given for dimension d = 300: the smallest Compactness
Separation (CS = 0.294) and accordingly the largest F -measure (F = 0.710).
The best formed clusters (e.g. with the least CS index) cause a decrease in pre-
cision and hence in F -measure. It can be observed from the results that Random
Indexing can improve the quality of features clustering and allows the construc-
tion of a high quality Feature Space model. For all context discoveries, a feature
is assigned to a cluster if its closer to this cluster’s center. Thus, a feature is
assigned to its most similar context. Nevertheless, we can notice that some cat-
egory of images is better classified than others. For instance, ’The Colosseum’
feature is used in two contexts: ’Italy, Europe, historical building ’ and ’land-
mark, historical building, landscape’ contexts. Thus, the context/sense of ’The
Colosseum’ can be clearly defined. However, a feature like ’Flower’ is used in 32
different contexts such as ’plant, flower, grass ’ and ’plant, art, flower, indoor ’,
which means that a ’Flower’ and a ’Painted Bird’ features are related with a
very small similarity index. Hence, this causes a poor clustering of features for
some category of images.
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Table 2. Results of RI-based clustering for values α1 = 0.4, α2 = 0.5 and γ = 0.45

Dimension d=200 d=300 d=400

Validation Measure CS P R F CS P R F CS P R F

RI-Clustering 0.49 0.534 0.378 0.442 0.29 0.817 0.628 0.710 0.31 0.617 0.514 0.560

5 Conclusion

In this paper, we have used a Random Indexing based approach, mergerd with
the Clustering by Committee technique to discover feature semantics from im-
ages. The approach works efficiently on the Corel database. At present, we do
not focus on computational complexity. We intent to perform a computational
analysis for the proposed algorithm in further works.
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Abstract. Complexity of sign language recognition system grows with
growing word vocabulary. Therefore it is advisable to use units smaller
than words. Such elements, called subunits, resemble phonemes in spo-
ken language. They are concatenated to form word models. We propose
a data–driven procedure for finding subunits in time series representing
signed expressions. The procedure consists in: (i) transformation of video
material to time series describing hand movements, (ii) using Piecewise
Aggregate Approximation (PAA) coefficients to represent subunits, and
(iii) applying Symbolic Aggregate Approximation (SAX), which is based
on PAA, to obtain appropriate symbolic description. Signed words repre-
sented by strings of SAX symbols are classified using nearest neighbour
method with Dynamic Time Warping (DTW) technique. We compare
the approach with whole–word recognition by presenting ten–fold cross–
validation tests on a Polish sign language (PSL) corpus of 30 words.
Recognition of new words using small number of examples is also con-
sidered. The experiments show superiority of the SAX based approach.

Keywords: Sign Language Recognition, Piecewise Aggregate Approxi-
mation, Symbolic Aggregate Approximation, Dynamic Time Warping.

1 Introduction

Development of gesture–basedhuman–computer interfaces recently become a pop-
ular trend due to the need of providing tools for more natural ways for giving
commands. It is also very important for the society of hearing impaired people
in helping them to overcome communication barriers of daily life. All gestures,
starting with a simple hand movement and ending with complex, mutual hands’
interaction, should be unequivocally interpreted. In order to make a system cor-
rectly recognising hand gestures one must go through many steps, and at each
choose an approach, which affects the results. The first step is acquisition of ob-
served gestures, and here the use of computer vision seems to be one of the most
attractive possibilities due to resemblance to human ability to see. After recording
a video material decision how to track hands must be made. In many approaches
skin colour regions are found on images and tracked [1, 2].

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 745–756, 2014.
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Kinect sensor [3] is an example of an active depth camera, which is insen-
sitive to most problems with scene lightning, which make skin colour tracking
solutions troublesome in changing light conditions. The sensor applies range
camera technology developed by PrimeSense [4], can interpret specific gestures
by using an infrared (IR) projector and a camera to track body movements of
individuals in three dimensions. Software development kit (SDK) attached to
the camera allows to obtain so-called skeletal image, which contains 3D position
of 20 most important body joints (or parts) connected together and forming
a kind of a skeleton. Moreover, it offers 3D information of every observed pixel
transforming the sensor to a depth camera. In the literature there are only a few
works applying Kinect to dynamic sign language gestures recognition. They use
the skeletal data [5–7] or utilise Kinect as the depth camera [8, 9].

Hidden Markov Models (HMMs) [10], neural networks [11] or applying the
nearest neighbour approach with Dynamic Time Warping (DTW) [2] are com-
mon, and state of the art, classifiers applied to sign language recognition. These
solutions use whole–word models approach, i.e. one word model represents one
sign. In order to provide better performance, especially with large sign vocab-
ulary [12] or provide more robust gesture representation, signs are modelled
using smaller units than words (subunits), which resembles modelling speech
by means of phonemes. Subunit models are concatenated to form sign models
[13]. In [10] HMMs and an iterative process of data-driven extraction of sub-
units were applied. Two state HMMs representing subunits were concatenated
to model single signs. The boundaries of subunits result from the alignment of
appropriate feature vector sequence to the states by the Viterbi algorithm. In
work [14] the subunit–based classifier for selecting discriminative features was
designed, but in this, also data–driven, solution adding new words to the vocab-
ulary will result in creation of the new classifier and losing previous knowledge
of subunits. Han et. al in [1] define subunits’ boundaries using hand motion
discontinuity and adapting temporal clustering by DTW to merge similar time
series segments. Finally a code book of possible exemplar trajectories was cre-
ated. The code book of symbols representing subunits was also obtained in our
previous work [2]. Here a data–driven procedure divided time series of signed
expressions into subsequences, which form homogeneous groups. Time series cut
points were found using evolutionary algorithm optimising a quality of resulted
clustering. That solution could be seen as an idea of changing time series into
strings of symbols, in which symbol denotes subunit.

Since all these solutions are data–driven, it means, that a different set of
learning data or even different run of the algorithm can produce a new set of
subunits and a new code book. This observation leads us to search in a direction
of a technique, in which time series will be unequivocally (i.e. always in the same
manner, disregarding other time series influence) transformed into smaller units
and then such units will obtain symbolic representation. Symbolic Aggregate
Approximation (SAX) [15, 16] is time series representation, it consists in cal-
culating Piecewise Aggregate Approximation (PAA) [17] coefficients and then
mapping them to symbols.
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SAX was successfully applied to human action recognition [18] and obtained
comparable accuracy on publicly available datasets to related works. In work
[19] indexed version of SAX was applied to create and select simple gestures
distinguishable from users’ normal movements.

The main contribution of our paper is that it presents experimental compari-
son of two approaches to recognition: one using whole–word model and the other
based on subunits obtained using SAX. Both methods are applied for two dif-
ferent sets of features: one based on Kinect’s skeletal images and the other using
a description of hands extracted as skin coloured regions. All experiments are
performed on real Polish sign language (PSL) 30 words corpus.

The rest of the paper is organised as follows. Section 2 gives preliminary infor-
mation concerning PSL and our gesture dataset. Features used for recognition
are discussed in Section 3. Section 4 is focused on subunits extraction method.
Recognition results are shown and compared in Section 5. Section 6 concludes
the paper and indicates future directions.

2 PSL Words Corpus

Number of people in Poland with hearing impairment, their relatives or super-
visors according to Polish Association of the Deaf [20] reaches 400 thousands.
They form a community with difficult communication problems, especially in
public places.

Sign language is the language of deaf people communicated by their deaf par-
ents [21]. It, similarly to the spoken language, has it’s own grammar and words
(signs). PSL signs are static or dynamic and mostly two-handed [22]. During
gesture performance hands often touch each other or appear against the back-
ground of the face. Hand can occur in 32 possible orientations (32 one-handed
and 1024 two-handed), but about 180 are utilised daily [22]. One can distinguish
37 places of articulation, i.e. the position of the hands in a specific place against
the body or in relation to each other - 17 against or near the face, 18 against
the chest, and 2 in against the lower half of the body. Each of these locations
may be offset to some extent from the body, while the portion of them (26) is
in contact with the body. Because the hand’s configuration, its orientation and
the position is related to static gestures or define a hand shape at the start of
a dynamic gesture, and most of the gestures (98%) in sign language gestures are
dynamic, one must also take into account the movement of the hand. Hand dur-
ing gesture performance changes its positions, orientations and configurations.
Sign gestures are both sequential and simultaneous [10]. Sequentiality indicates
that the order of shown hand shapes and places of execution is important. Simul-
taneity means that during gesture performance the features (e.g. hand position
and shape) can be changed in parallel, although not necessarily in synchrony.

Research on subunits in PSL undertaken by linguistics is on the stage of recog-
nising so-called minimal pairs of gesture components (configuration, orientation,
position, and movement) [21]. Change of such component in a gesture will be
followed by change of its meaning. Lack of general knowledge how to break down
signs into subunits additionally supports motivation for data–driven approaches.
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In cooperation with PSL interpreter we selected 30 common words that can
be used at the doctors’: obtain, write, bed, must, to rest, operation, meninges,
analysis, examine, be, want, cotton, tooth, inflammation, healthy, ill, lie down,
translucence, come, rescue, family, hearing, tablet, where, and, how much, other,
cost, blood, and drop. Since interpreters often take part in medical examination,
the patient’s privacy is obviously not sufficiently preserved and the future pur-
pose of our system addresses this problem. Each word was performed 10 times by
the PSL interpreter, the data have been registered with the rate of 30 frames/s
using Kinect TCP software [23].

3 Feature Extraction

Developers of Kinect based interfaces have access to colour and depth informa-
tion of observed scene with the resolution of 640×480 through the SDK. Skeletal
images of two tracked people consisting of 3D points estimating the joints of arms
and legs, the position of the head, hands and spine. Although known Kinect’s
tracking drawbacks [24] for gesture recognition we used 6 points representing
right and left hand, wrist and elbow (6 × 3 = 18 features in total). Since hand
shape plays important role in sign language, we proposed a set of features de-
scribing hand, which rely on Kinect’s depth stream and apart from 3D position
of the hand, which is only available in a case of using the skeletal image. Hands
are detected on colour images as skin coloured regions analysing RGB compo-
nents [25], i.e. sets of contiguous pixels in the skin colour forming region taking
into consideration the depth image. Pixels are assigned to the same region if
a depth difference between them is smaller than a threshold. This procedure
allows to distinguish occluding objects. If more than three objects (left, right
hand and face) are found procedure utilises knowledge from previous frame of
the video recording. The following hand features are calculated: the gravity cen-
tre with respect to the gravity centre of the face and depth difference between
mean depth of the hand and the face, area, compactness, eccentricity, and ori-
entation of the hand. Four features represent hand shape description, and three
its location. Feature selection was motivated by linguistic directions, i.e. every
sign language gesture can be analysed by specifying at least three components
[22, 26]: (i) the place of the body against which the sign is made, (ii) the shape
of a hand or hands, (iii) the movement of a hand or hands.

Exemplary execution of the word analysis (analysis 4 ) is shown on Fig. 1,
depth images with left and right hands and face are marked with colours, skeleton
is also shown (from left to right, from top to bottom). It is worth noticing that
skeletal image sometimes does not fit to the body posture.

Time series of the horizontal placement of the gravity centre of the right hand
with respect to the gravity centre of the face for executions of the word analysis
are shown on Fig. 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. Exemplary images from execution of sign analysis with hands and face iden-
tified. Colour pixels are aligned with pixels from the depth camera. Right hand, left
hand, face and skeleton are coloured: green, orange, white and red (respectively).

4 Subunits Obtained with Symbolic Aggregate
Approximation

SAX [15] is time series representation that reduces the dimensionality (length)
and lower bounds the distance functions. Lower bounding guarantees that the
distance between two SAX vectors (strings of symbols) is smaller than, or equal
to, the distance between these two vectors in the original space. It is advised
to normalise time series to have mean of zero and a standard deviation of one
(zscore) to meaningful comparison of them without offset or different ampli-
tudes. It is important for shape mining, but zscoring time series representing
sign language expressions can distort information carried by their amplitudes
(e.g. the same hand movement can have different meaning depending on where
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hand is placed). Therefore obtained feature values were normalised to the range
from zero to one. The SAX is performed in three following steps: (i) division
of time series into nseg segments of equal length, (ii) calculation of the mean
value of every obtained segment, (iii) creating a vector of Piecewise Aggregate
Approximation (PAA) coefficients (means) and assigning symbols to them. Num-
ber of symbols (nsym) is a parameter indicating how the time series values are
inserted into nsym equi-probable regions. Region is an area under a Gaussan
curve between breakpoints bi and bi+1 equal to 1/nsym. Due to applied normal-
isation we defined breakpoints dividing space between values 0 and 1 into nsym
equi–probable (univariate distribution) regions.

Time series have different lengths thus decision how many PAA coefficients
(nseg) should be produced is not trivial. Therefore we transformed a given time
series into SAX representation without dimensionality reduction with PAA and
calculated number of symbol changes. Obtained value was incremented by one
and assigned to nseg . Fig. 2.a shows time series of the horizontal placement
of the gravity centre of the right hand with respect to the gravity centre of
the face of ten executions of word analysis, their PAA representations are shown
on Fig. 2.b. For better understanding let time series of exemplary gesture (Fig.
2.c) serve as explanation of our approach. It was presented together with its
PAA representation. It has 109 values, which after transformation to SAX rep-
resentation is written as: lllkllkkkkkkkkkkkklllllmmmnnnnnmlllkjijjjkkkkkkkkmm-
mmllkkkjjiiiijjjkkklmmmnnnnlkkjjjjjjjjjjkklmmmmmmmmllllllk. In the string 31
symbol changes are detected what gives nseg = 32. After applying PAA the string
lkkkkllmnmkjkkllkjijlmnkjjklmmll is obtained. As one can see some outlying val-
ues (letters) were omitted and other, similar to their neighbours, were connected
under one symbol.

Since our subunit gesture representation is string of characters we can compare
gestures using distances designed for characters comparison (e.g. edit distance).
Edit distance [27] is a dynamic programming technique which calculates how
many changes are needed to transform one string of characters into the other.
It treats each character equally, and since obtained symbols can be ordered be-
cause their corresponding breakpoints can be ordered, we applied dynamic time
warping (DTW) for their comparison. Dynamic time warping is a technique for
time series comparison with different length [27]. In DTW two time series are
aligned to minimise their difference. A matrix containing Euclidean distances be-
tween each pair of data values is created and then, using dynamic programming,
path across the matrix is computed. Warping path indicate how to transform
compared time series in order to make them have equal length. After length-
ening Euclidean distance between them is reported as the DTW distance. In
many solutions DTW processing multidimensional time series treats attributes
together and use multidimensional Euclidean distance to calculate the matrix.
Since we are processing 14 or 18 dimensional time series representing gestures
we decided to compute DTW for each feature separately and finally sum DTW
values as a distance between two gestures. It yielded better recognition results
than the approach with features processed together.
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(a)

(b)

(c)

Fig. 2. Ten executions of the word analysis: the horizontal placement of the gravity
centre of the right hand with respect to the gravity centre of the face (a), their PAA
representations (b), and exemplary execution (analysis 4 ) with its PAA representation
(c)
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5 Results

To compare the described approaches to recognition of PSL words we performed
ten-fold cross-validation tests using the nearest neighbour classifier. Respective
datasets were divided into ten separable subsets, each subset with data repre-
senting one realisation of each of the 30 words. Two variants were considered. In
the first variant (A) nine subsets were used as training set and the remaining,
tenth subset as the test set. In the second variant (B) the training and the test
set were swapped to show how the classifier behaves if only one learning exam-
ple is available. Whole–word and subunit based recognition results for different
features are compared in Tables 1 and 2. Results obtained by subunit-based
classifier are generally better, especially in variant B, when only one learning
example is available (13% better with skin colour based features, 14% better
with Kinect’s skeleton features). The results confirm usability of subunit based
approach, especially with the small training set. Worse recognition results with
Kinect’s skeleton were caused by hand tracking errors [24] and inability to differ-
entiate hand shapes using one 3D point as hand representation. As one can see
subunits obtained with SAX, even with such limited hand description allowed
to obtain fairly good recognition results. On Fig. 3 we present how size of the al-
phabet in SAX affects the recognition rate. Results in tables had nsym = 20, but
values higher than 10 also yielded acceptable recognition rates.

Table 1. Cross–validation recognition tests for the nearest neighbour classifier with
feature vectors obtained with skin colour based approach (nsym = 20). Results are
given in %.

SAX subunits with DTW DTW

Test, Variant A B A B

1 100.0 91.5 100.0 82.6
2 100.0 93.3 100.0 80.4
3 100.0 96.3 96.7 70.4
4 100.0 98.9 100.0 87.4
5 100.0 97.4 100.0 88.1
6 100.0 95.2 100.0 83.7
7 100.0 98.1 100.0 86.3
8 100.0 96.7 96.7 88.9
9 100.0 96.3 100.0 84.4
10 100.0 98.1 100.0 77.8

Mean 100.0 96.2 99.3 83.0
Minimum 100.0 91.5 96.7 70.4
Maximum 100.0 98.9 100.0 88.9
StDev 0.0 2.3 1.4 5.7

It is worth considering a situation, in which some new words are recognised
on the basis of small set of examples. Such scenario lays behind motivation for
using subunit–based approach in extending word vocabulary. We used the same
dataset as before. Instead of preparing new data we randomly chose one word
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Table 2. Cross–validation recognition tests for the nearest neighbour classifier with
Kinect skeletal data features (nsym = 20). Results are given in %.

SAX subunits with DTW DTW

Test, Variant A B A B

1 90.0 80.4 90.0 63.0
2 90.0 81.9 90.0 67.4
3 90.0 81.5 90.0 58.5
4 100.0 86.7 96.7 71.9
5 100.0 88.5 100.0 75.6
6 100.0 85.6 93.3 70.0
7 100.0 90.7 96.7 71.5
8 100.0 90.7 96.7 78.1
9 93.3 84.8 100.0 70.7
10 100.0 86.7 86.7 60.4

Mean 96.3 85.7 94.0 68.7
Minimum 90.0 80.4 86.7 58.5
Maximum 100.0 90.7 100.0 78.1
StDev 4.8 3.7 4.7 6.4

Fig. 3.Mean of recognition rate (in %) of ten A and B cross-validation tests for diffierent
number of symbols (2-20) with skin colour based features
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(since then called new) from the dataset and omitted it from the process of
determining subunits. A small number w of examples of each new word was used
to create subunit–based models of these words. Remaining 10 − w examples of
the new word were used for testing. This experiment has been repeated 100 times,
each time with a randomly chosen new word and randomly chosen its example.
We repeated the experiment with whole–word models and nearest neighbour
classifier based on DTW distance. Figure 4 shows mean values of recognition
rates in relation to the number w of examples. As we can see, a relatively small
number of examples enables good recognition. Subunit based approach obtained
considerably better recognition rate due to more robust representation, which
tends to filtrate outlying data values and gathering them under one symbol.
What is interesting, our subunit-based solution yielded outstanding results with
richer hand description. In the case with skeletal image results of the classifier
are generally worse than those obtained with richer hand description.

Fig. 4. Recognition rate (in %) of new word vs number of w examples with the near-
est neighbour classifier with Kinect’s skeletal data and skin colour based rich hand
description features

6 Conclusions and Future Works

The paper presents comparison of classification of Polish sign language words
based on whole–word models with classification using units smaller than words.
The second approach based on subunits represented by PAA coefficients, which
are mapped by SAX into symbols, proved to be superior, particularly in the case
where only one learning example was available. Two sets of features obtained
with Kinect sensor were considered: (i) features based on Kinect’s skeletal im-
age and (ii) features describing hands as skin coloured regions. In the second
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case Kinect’s ability to extract person body from the background and to distin-
guish partially occluded, skin coloured objects on the basis of depth information
has been used. Due to better hand description proposed features led to better
recognition results. Future works will concern experiments with larger vocab-
ulary including words and sentences. Indexed version of SAX [19] seems to be
a promising approach to gesture spotting problem, in which place of a word
appearance in longer expression has to be detected.
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Abstract. This work presents an analysis of Higher Order Singular
Value Decomposition (HO-SVD) applied to reduction of dimensional-
ity of 3D mesh animations. Compression error is measured using three
metrics (MSE, Hausdorff, MSDM). Results are compared with a method
based on Principal Component Analysis (PCA) and presented on a set
of animations with typical mesh deformations.

1 Introduction

The goal of this paper is to provide an analysis of Higher Order Singular Value
Decomposition [1] (HO-SVD) applied to reduction of dimensionality of dynamic
animations. The paper includes an estimation of lossy reconstruction quality
using three error metrics and a comparison with a method based on Principal
Component Analysis (PCA).
A compression algorithm usually consist of elements including compensation

of motion (like in [2]), reduction of dimensionality and entropy encoding [3]. In
this work we will concentrate on HO-SVD-based dimensionality reduction with
only a simplified approach to frame aligning.
HO-SVD is a multi-linear generalization of Singular Value Decomposition.

It has been shown (e.g. in [4]) that HO-SVD is an efficient method for dimension-
ality reduction of data represented as tensors, also called N-way arrays. Consec-
utive frames of a 3D animation can naturally be represented as a 3-mode tensor
(a data cube), by stacking arrays of their vertices.
When using PCA-based compression, dimensionality reduction is often ap-

plied to animation frames (e.g. [5], [6]), reducing their number to a sequence
of significant key-frames. On the contrary, HO-SVD allows for multidimensional
reduction of the data tensor. In our experiment we truncated the number of com-
ponents obtained through tensor decomposition, associated with mesh vertices
and animation frames. Reduction of components associated with 3D coordinates
of vertices is not advised since it results in a significant loss of information and
low quality of reconstructed data.
For estimation of reconstruction quality we used three metrics. The Mean

Squared Error (MSE) and the Hausdorff distance are both widely used for mea-
suring 3D mesh distortions. Additionally, we decided to include a perceptual

L. Rutkowski et al. (Eds.): ICAISC 2014, Part I, LNAI 8467, pp. 757–768, 2014.
c© Springer International Publishing Switzerland 2014
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method, the Mesh Structural Distortion Measure (MSDM), since according to
[7], it correlates well with human perception of errors in 3D data. An example of
a distortion resulting from a lossy reconstruction of an animation using HO-SVD
is presented in Fig.1.
The article is organised as follows. In the two following subsections, the related

work and HO-SVD decomposition are presented. Definitions and methodology
of our experiments are presented in Section 2. Obtained results can be found in
Section 3, while a summary is presented in Section 4.

(a) (b) (c) (d)

Fig. 1. A fragment of a reconstructed animation sequence for Chicken animation. Panel
(a) presents an original model, in further panels the data tensor is compressed to (b):
5.1%, (c): 2.1%, and (d): 1.1% of its original size.

1.1 Related Work

Due to their amount, data generated by using 3D scanners or animation soft-
ware require effective compression methods for their storage, transmission, and
processing. Particularly, compression of dynamic animations is a subject to in-
tensive research. A dimensionality reduction for 3D animations using PCA was
introduced in [5] and refined in [6], where authors performed motion clustering
on an animation and applied PCA to its subsegments. PCA-based compression
solutions are presented in [8] and [9] while [2] and [10] employ information about
mesh connectivity.
Higher Order Singular Value Decomposition (HO-SVD) may be treated as a

natural extension of PCA for high-dimensional data. A survey of tensor proper-
ties as well as the description of higher-order tensor decomposition is provided
in [11]. Tensor decomposition was successfully applied to compression and clas-
sification of images [12], face recognition [13] or watermarking of videos [14]. In
[15] HO-SVD was applied to Level-of-Detail reduction in animation of human
crowds. [16] presented the decomposition of a motion tensor and applied it for an-
imation dimensionality reduction, denoising and gap filling. In [17], an approach
based on tensor decomposition and scalable hierarchical volume representation
of spatial data is used for fast 3D visualization.
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1.2 Higher Order Singular Value Decomposition

Higher Order Singular Value Decomposition, also called Tucker decomposition,
is a generalisation of SVD from matrices to tensors (N-way arrays). In this
section we recall basic facts about tensors and HO-SVD. We follow conventions
presented in [11].
To describe this decomposition, first we will recall basic notions regarding

operations on tensors. Let a tensor

T = {ti1,i2,...,in}
I1−1,I2−1,...,IN−1
i1,i2,...,in=0 ∈ RI1,I2,...,IN (1)

be given — we say that this tensor has n modes. Each of the indices corresponds
to one of the modes i.e. il to mode l.
By multiplication of tensor T by matrix U = {uild}

Il−1,D
il,d=0 ∈ RIl,D in mode l

we define tensor T ′ ∈ RI1,...,Il−1,D,Il+1,...,IN , such that:

T ′ = (T ×l U)i1...il−1d il+1...iN =

Il−1∑
il=0

ti1i2...il...iNuild. (2)

By unfolding tensor T in mode l we define matrix T(l) such that

(T(l))i,j = ti1...il−1j il+1...iN , (3)

where i = 1 +
∑N

k=1
l �=l

(ik − 1)Jk and Jk =
∏k−1

m=1
m �=l

Im.

Given tensor T , defined as in Eq. (1), a new sub-tensor Tin=α can be created
according to the equation with the following elements:

Til=α = {ti1i2...il−1il+1...in}
I1−1,I2−1,...,α,...,IN−1
i1=0,i2=0,...,il=α,...,in=0 ∈ RI1,I2,...,1,...,IN . (4)

The scalar product 〈A,B〉 of tensors A,B ∈ RI1,I2,...,IN is defined as

〈A,B〉 =
I1−1∑
i1=0

I2−1∑
i2=0

. . .

IN−1∑
iN=0

bi1,i2,...,inai1,i2,...,in . (5)

We say that if scalar product of tensors equals 0, then they are orthogonal.
The Frobenius norm of tensor T is given by ||T || =

√
〈T , T 〉.

Given tensor T , in order to find its HO-SVD, in the form of the so called
Tucker operator �C;U(1), . . . ,U(N)�, such that C ∈ RI1,...,IN and U(k) ∈ RIk,Ik

are orthogonal matrices, Algorithm 1 can be used.
Tensor C is called the core tensor and has the following useful properties.

Reconstruction: T = C×1U
(1)×2U

(2)×3 . . .×NU(N), whereU(i) are orthogonal
matrices. Orthogonality: 〈Cil=α, Cil=β〉 = 0 for all possible values of l, α and β,
such that α �= β. Order of sub-tensor norms: ||Cin=1|| ≤ ||Cin=2|| ≤ . . . ≤
||Cin=In || for all n.
Therefore, informally, one can say that larger magnitudes of a core tensor are

denoted by low values of indices. This property is the basis for the development
of compression algorithms based on HO-SVD.
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Input: Data Tensor T
Output: Tucker operator �C;U(1), . . . ,U(N)�
for k ∈ {1, . . . , N} do

U(k) = left singular vectors of T(k) in unfolding k;
end
C = T ×1 U

(1)T ×2 U
(2)T . . .×N U(N)T ;

return �C;U(1), . . . ,U(N)�;
Algorithm 1: HO-SVD algorithm

Formally T̃ = C̃ ×1 Ũ
(1) ×2 Ũ

(2) ×3 . . .×N Ũ(N), where

C̃ = {ci1,i2,...,in}
R1−1,R2−1,...,RN−1
i1,i2,...,in=0 ∈ RR1,R2,...,RN (6)

is a truncated tensor in such a way that in each mode l indices span from 0 to
Rl − 1 ≤ Il − 1 and Ũ(l) ∈ RRl,Il matrices whose columns are orthonormal and
rows form orthonormal basis in respective vector spaces.
Given (Rl)

N
l=1 one can form tensor T̃ that approximates tensor T in the sense

of their euclidean distance ||T̃ − T ||. This approximation can be exploited to
form lossy compression algorithms of signals that are indexed by more than two
indices. It should by noted that the choice of (Rl)

N
l=1 in a given application is

non-obvious and depends on the properties of processed signals.

2 Method

Our experiments aim to assess the effectiveness of HO-SVD for reduction of
dimensionality of 3D animations. We will present results using multiple error
metrics and compare them to a method based on PCA.

2.1 Input Data

Three-dimensional mesh will be treated as a K×J matrixM, with mesh vertices
vi ∈ RJ , i ∈ {0, . . . ,K−1} as rows, together with a set of triangle faces G defined
as three element tuples of vertex indices. We denote J = 3 as the number of
spatial dimensions. An animation consists of F successive frames enumerated
with k, each containing a meshMk, k ∈ {0, . . . , F − 1}, with the same topology,
but different coordinates of vertices. Therefore, input data can form tensor T =
ti,j,k ∈ RK,J,F while meshesMk, following the notation in [11], form frontal slices
T::i. A pair (T ,G) contains all available information about the animation. We
apply compression only to T , a set of faces G is used only for data visualization.

2.2 Dimensionality Reduction Testing Procedure

Steps of the procedure aimed at calculating the quality of mesh reconstruction
include: estimation and removal of rigid motion from an animation, perform-
ing HO-SVD dimensionality reduction and its reconstruction and determining
reconstruction quality.
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2.3 Rigid Motion Estimation

The first step of the algorithm follows the idea from [5] and applies a simple rigid
normalization of a dynamic animation. If a set of faces G of meshM is constant
through the animation, mesh state in frame i, can be described by the sum of
changes applied to M in each frame: Mi =

∑i
j=1(Mj −Mj−1) =

∑i
j=1ΔMj .

Assuming that animation is represented in homogeneous coordinates, the differ-
ence between two consecutive frames ΔMj = DjR

T
j , where Rj is a rigid trans-

formation between frames, and Dj corresponds to deformation of mesh vertices.
Therefore Mi =

∑
j DjR

T
j , where Rj is a rigid transformation between frames

0 and j.
The output of this step is sequence R = (R1, . . . ,RF ) of transformation

matrices between frame 0 and all consecutive ones, as well as a new, transformed
data tensor X : ∀iX::i = T::iRT

i .

2.4 Higher Order Singular Value Decomposition

For the purpose of our compression algorithm, data tensor X containing nor-
malised animation frames is decomposed using HO-SVD. The resulting Tucker
operator �C;U(1),U(2),U(3)� is passed to further steps of the algorithm.

2.5 Dimensionality Reduction and Reconstruction

Vertices of a 3D mesh form K×J matrixM, where J = 3. The number of mem-
ory units required to store or transmit an animation of F frames, not considering
a set of faces G, may be expressed as S = K×F ×J×ds, where ds is the size of
a single floating-point variable, e.g. ds = 4 bytes. HO-SVD allows to reduce the
amount of memory required to store an animation, by decomposing data tensor
T and storing only the truncated Tucker operator �C̃; Ũ (1), Ũ (2), Ũ (3)�. Theoret-
ically there are three compression parameters, corresponding to J dimensions of
T . However, since the reduction of mode-2 components heavily impacts the qual-
ity of the reconstructed mesh, we will only consider the reduction of K mode-1
and F mode-3 components. The amount of data required to store the Tucker op-
erator �C;U(1),U(2),U(3)� equals S(hosvd) = (v×K+J2+f×F+v×J×f)×ds,
where v corresponds to the number of mode-1 and f to mode-3 components kept.
Therefore

CR(hosvd) =
S(hosvd)

S
=
v ×K + J2 + f × F + f × F + v × J × f

K × F × J .

For visualization of results, space savings (SS) will be used in place of com-
pression rate, defined as SS = (1−CR)100%, so SS = 99% denotes only 1% of
data remaining after compression.
In addition, we need to store a set of transformation matrices R, obtained

during the first step of the algorithm. Its size is S(R) = 12 × F , and it will be
included in our results.
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2.6 HO-SVD Compression Parameter Estimation

Application of HO-SVD for 3D mesh compression requires choosing the pro-
portion of preserved components for each mode, resulting in the required CR.
Mode-1 components correspond to spatial information (vertices) and mode-3 to
temporal information (frames). If we denote the number of preserved mode-1
components as v and the number of mode-3 components as f , v

f is the Vertices-
To-Frames ratio (V TF ). In our experiments we obtain V TF by searching for a
pair (vmin,fmin) that gives the lowest reconstruction error for selected CR.

2.7 Reconstruction Error

Reconstruction errors were measured by using two standard metrics:

– Mean Squared Error: dMSE(v,v
′) = 1

n

∑n
i=1(v

′−v)2, where v is the original
data vector and v′ is its reconstruction.

– Hausdorff distance: dH(A,B) = max{sup
x∈A

inf
y∈B

de(x, y), sup
y∈A

inf
x∈B

de(x, y)},

where A is the original, B – a reconstructed data set and de denotes the
euclidean distance.

Since these metrics may not correspond well with human perception of qual-
ity for 3D objects, an additional, perceptual metric called Mesh Structural Dis-
tortion Measure (MSDM) described in [7] was applied. This metric compares
two shapes based on differences of curvature statistics (mean, variance, covari-
ance) over their corresponding local windows. A global measure between the
two meshes is then defined by the Minkowski sum of the distances over local
windows. Since the metric compares static meshes, the final result for dynamic
sequence is averaged between animation frames.

2.8 Comparison of HO-SVD and PCA Application for 3D
Animation Compression

In order to verify the performance of HO-SVD, we compared it with a simple
method of 3D animation dimensionality reduction. Following the idea from [5]
we performed experiments using PCA.
Principal Component Analysis [18] may be defined as follows. Let X =

[x1,x2 . . . ,xL] be a data matrix, where xi ∈ Rp are data vectors with zero empir-
ical mean. The associated covariance matrix is given by E = XXT . By perform-
ing eigenvalue decomposition of E = ODOT such that eigenvalues λi, i = 1, .., p
of D are ordered in a descending order λ1 ≥ λ2 ≥ . . . ≥ λp > 0, one ob-
tains the sequence of principal components [o1,o2, . . . ,op] which are columns
of O. One can form a feature vector y of dimension p′ ≤ p by calculating
y = [o1,o2, . . . ,op′ ]Tx.
In order to apply PCA, tensor T = ti,j,k ∈ RF,J,K must be unfolded according

to Eq. (3). Therefore mode-1 unfolding is performed so the data is flattened row
by row to form matrix XT ∈ RF,J×K .
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Compression is performed by storing only a limited number of principal com-
ponents of E. When reconstructing matrix X, the dimension of the desired fea-
ture vector p′ equals the number of principal components y = [o1,o2, . . . ,op′ ]Tx
used for its calculation and is the only parameter. The ratio of reduction depends
on number f ′ of the key-frames left. The compression rate for an animation of
a 3D mesh using PCA can be expressed as: CR(pca) = (V ×J+F )×f ′×ds

S

3 Results

Presentation of results is performed by using a set of well-known 3D animations,
summarised in Table 1. Chicken and Gallop are artificial sequences of moving
animal models. Collapse uses the same model as Gallop but the applied defor-
mation is an elastic, non-rigid transformation. Samba, Jumping, Bouncing are
motion capture animations of moving and dancing humans.

Table 1. An overview of animations used for visualization of results

Name Referenced as Vertices Frames Description
Chicken CrossingaChicken 3030 400 animation
Horse Gallopb Gallop 8431 48 animation
Horse Collapse Collapse 8431 48 animation
Sambac Samba 9971 174 motion capture sequence
Jumping Jumping 10002 149 motion capture sequence
Bouncing Bouncing 10002 174 motion capture sequence
a Chicken animation was published by Jed Lengyel (http://jedwork.com/jed)
b Gallop and Collapse animations, described in [19], were obtained
from the website of Doug L. James and Christopher D. Twigg
(http://graphics.cs.cmu.edu/projects/sma).

c Motion capture sequences were obtained from the website of Daniel Vlasic
(http://people.csail.mit.edu/drdaniel/mesh_animation).

The impact of proportion of mode-1 and mode-3 (VTF ratio) is presented
in Fig. 2. The reconstruction error drops sharply as the number of compo-
nents grows. For high SS values, mode-3 components, associated with animated
frames, tend to be more important than mode-1 ones, associated with mesh
vertices.
Frames from reconstructed animations are presented in Fig. 3 (Chicken),

Fig. 4 (Gallop) and Fig. 5 (Samba). Observable deformations for artificial ani-
mated meshes (Chicken, Gallop) are almost unnoticeable for SS ∼ 90% and only
minor ones are present for SS ∼ 95%. For motion capture sequences (Samba,
Jumping, Bouncing), major deformations are present for SS ∼ 95%, and only
minor ones for SS ∼ 85%, with unnoticeable distortions for SS ∼ 70%. Re-
construction errors are higher for the Collapse mesh, as its animation is hard
to describe using rigid transformations. Major deformations are observable for

http://jedwork.com/jed
http://graphics.cs.cmu.edu/projects/sma
http://people.csail.mit.edu/drdaniel/mesh_animation
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Fig. 2. An impact of HO-SVD parameter selection on MSE reconstruction for the
Chicken animation. Panel (a) presents the reconstruction error as a function of the
number of mode-1 (v) and mode-3 (f) components. Note that the distortion drops
sharply with only a few first components. Panel (b) presents Vertices-to-Frame ratio
as a function of SS.

(a) (b) (c) (d)

Fig. 3. Visualization of a reconstructed model for Chicken. (a): original, (b): SS=94.8%,
(c): SS=97.8%, (d): SS=98.8%.

(a) (b) (c) (d)

Fig. 4. Visualization of a reconstructed model for Collapse. (a): original, (b):
SS=69.9%, (c): SS=84.9%, (d): SS=97.9%.
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(a) (b) (c) (d)

Fig. 5. Visualization of a reconstructed model for Samba. (a): original, (b): SS=89.9%,
(c): SS=94.9%, (b): SS=97.9%.
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Fig. 6. A comparison of HO-SVD (solid line) and PCA (dashed line) reconstruction
errors for artificial animations. Distortion is presented in the logarithmic scale as a
function of SS. Lower values of distortion indicate higher reconstruction quality.
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Fig. 7. A comparison of HO-SVD (solid line) and PCA (dashed line) reconstruction
errors for artificial animations. Distortion is presented in the logarithmic scale as a
function of SS. Lower values of distortion indicate higher reconstruction quality.

SS ∼ 90%, minor ones are present up to SS ∼ 70%, and no noticeable distor-
tions for SS ∼ 50% were present.
A comparison of the reconstruction error occurring when using HO-SVD and

PCA is presented in Fig. 6 for Chicken, Gallop, Collapse and Fig. 7 for Samba,
Jumping, Bouncing. HO-SVD reduction gives better result for a majority of ani-
mations. Its advantage is visible especially for motion-capture sequences. Results
for Collapse show that both methods have problems with describing non-rigid
transformations, and their results are similar for high values of compression ratio
with HO-SVD introducing lower distortion for low values.

4 Conclusions

Our experiments show that HO-SVD allows to achieve good reconstruction qual-
ity when applied to reduction of dimensionality of 3D animations, and usually
outperforms the application of PCA. For most of the animated models and
motion-capture sequences, SS ∼ 90% produces a reconstruction similar to the
original, especially when lower Level-of-Detail is required.
The reconstruction error can be measured by using objective metrics, which

allows reliable control over compression parameters. Parameters related to the



Dimensionality Reduction of Dynamic Animations Using HO-SVD 767

proportion of preserved components in each mode, after performing data decom-
position, can be found by using the simple heuristic approach.

Acknowledgements. This work has been partially supported by the Pol-
ish Ministry of Science and Higher Education projects: M. Romaszewski by
NN516405137, P. Gawron by NN516481840, and S. Opozda by NN516482340.

References

[1] De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value de-
composition. SIAM Journal on Matrix Analysis and Applications 21(4), 1253–1278
(2000)

[2] Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3D anima-
tions of triangle meshes with fixed connectivity. In: Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 126–135. Eu-
rographics Association (2003)

[3] Sayood, K.: Introduction to data compression. Access Online via Elsevier (2012)
[4] Inoue, K., Urahama, K.: DSVD: a tensor-based image compression and recognition
method. In: IEEE International Symposium on Circuits and Systems, ISCAS 2005,
vol. 6, pp. 6308–6311 (2005)

[5] Alexa, M., Müller, W.: Representing Animations by Principal Components. Com-
puter Graphics Forum 19(3), 411–418 (2000)

[6] Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation
sequences. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, SCA 2005, pp. 209–217. ACM, New York (2005)
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[10] Váša, L., Skala, V.: Geometry-driven local neighbourhood based predictors for
dynamic mesh compression. Computer Graphics Forum 29, 1921–1933 (2010)

[11] Kolda, T.G., Bader, B.W.: Tensor Decompositions and Applications. SIAM Re-
view 51(3), 455–500 (2009)

[12] Shashua, A., Levin, A.: Linear image coding for regression and classification using
the tensor-rank principle. In: Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR 2001, vol. 1, p.
I-42. IEEE (2001)

[13] Wang, H., Ahuja, N.: Facial expression decomposition. In: Proceedings of the
Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 958–965
(2003)

[14] Abdallah, E.E., Hamza, A.B., Bhattacharya, P.: MPEG video watermarking using
tensor singular value decomposition. In: Kamel, M.S., Campilho, A. (eds.) ICIAR
2007. LNCS, vol. 4633, pp. 772–783. Springer, Heidelberg (2007)

[15] Mukai, T., Kuriyama, S.: Multilinear Motion Synthesis with Level-of-Detail Con-
trols. In: 15th Pacific Conference on Computer Graphics and Applications, PG
2007, pp. 9–17 (2007)



768 M. Romaszewski, P. Gawron, and S. Opozda

[16] Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.: Bilinear spatiotemporal
basis models. ACM Transactions on Graphics 31(2), 17:1–17:12 (2012)

[17] Suter, S.K., Makhynia, M., Pajarola, R.: Tamresh–tensor approximation multires-
olution hierarchy for interactive volume visualization. Computer Graphics Fo-
rum 32, 151–160 (2013)

[18] Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer (2002)
[19] James, D.L., Twigg, C.D.: Skinning Mesh Animations. ACM Trans. Graph. 24,
399–407 (2005)



 

 

 

 

 

 

 

Intelligent Methods  
in Databases 

 

 

 

 

 

 



Big Data Paradigm Developed in Volunteer Grid

System with Genetic Programming Scheduler

Jerzy Balicki, Waldemar Kor�lub, Julian Szymanski, and Marcin Zakidalski

Faculty of Telecommunications, Electronics and Informatics,
Gdansk University of Technology, Gdask, Poland

{balicki,julian.szymanski}@eti.pg.gda.pl, waldemar.korlub@pg.gda.pl,

mzakidalski@gmail.com

Abstract. Artificial intelligence techniques are capable to handle a large
amount of information collected over the web. In this paper, big data
paradigm has been studied in volunteer and grid system called Comcute
that is optimized by a genetic programming scheduler. This scheduler
can optimize load balancing and resource cost. Genetic programming
optimizer has been applied for finding the Pareto solu-tions. Finally,
some results from numerical experiments have been shown.

Keywords: big data, volunteer computing, genetic programming.

1 Introduction

It is estimated that 2.5 exabytes of digital data are captured per day. A collection
of large data sets requires some advanced database management tools based on
artificial intelligence techniques to allow decision making, discovery and process
optimization. Especially, big data sharing is a scientific and practical challenge
due to some rapid progresses in finance, business as well as web banking. It is
worth to mention that large data sets are gathered by ubiquitous smartphones,
tablets, and wireless sensor networks with cameras or microphones. In result,
the data store capacity has approximately doubled every three years since the
1980s. Moreover, data storage and also their visualization, analysis and search
are still considered as an open problem to solve, too [17].

Massively parallel software on thousands of servers is required and that is
why big data (an acronym BD) is not convenient to most relational database
management systems. In such systems as desktop statistics and visualization
packages, sizes of data are beyond the capability of commonly used tools within
a tolerable elapsed time. A single big data set consists of terabytes of data
and it can increase to achieve many petabytes for one volume. What is more,
progress in speed of data in and out gives an opportunity to take advantage
for big data development. Another criterion is wide variety data that is related
to a huge range of data types and sources. Above four criteria: high volume,
extraordinary velocity, great data variety, and veracity create the 4Vs model for
big data description [20].
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We can distinguish some differences between big data and business intelli-
gence as regards data use. Some nonlinear system identification methods and
inductive statistics are applied for BD to deduce causal effects, nonlinear rela-
tionships. We can use regressions to discover dependencies and to find behaviors
and predictions. On the other hand, some descriptive statistics can be developed
for business intelligence to identify quantity effects or trends.

Genetic programming starts from a goal to be achieved and then it creates an
application autonomously without explicitly programming [14]. To some extent,
it replies the question that has been formulated by Arthur Samuel - a founder of
machine learning - “How can computers be made to do what needs to be done,
without being told exactly how to do it?” [18]. This paradigm uses the principle
of selection, crossover and mutation to obtain a population of programs. It has
been successfully applied to some problems from different fields [15]. Especially,
multi-criterion genetic programming (MGP) can determine the Pareto-optimal
solutions [2].

In this paper, MGP has been applied as a multi-objective scheduler for efficient
using big data by volunteer grids. This scheduler optimizes both a workload of
a bottleneck computer and the cost of the system. Moreover, an immunological
system based procedure has been applied to handle admissible solutions. Finally,
some outcomes for numerical experiments have been presented.

2 Multiagent Approach to Big Data Acquisition and
Mining

Big data introduces a lot of issue in terms of data acquisition, storing and mining.
Data is often gathered from multiple sources, which may be heterogeneous and
spread geographically across the world. Moreover, the collected data may be
stored in multiple geographically spread facilities as well due to sheer requirement
of storage capacity, which cannot be fulfilled by a single outpost. Like in every
distributed system, possibilities of communication loss and node downtime are
undeniable and such occurrences need to be handled by software involved in
data mining. This problem is even more important in case of mobile settings
(e.g. mo-bile sources of data) as availability of data depends on time in such
environments. Because of that, connection losses are no longer an anomaly they
become a given trait of the system [5].

Multiagent systems are well suited for big data acquisition because of traits,
which are commonly assigned to agents. The most important is mobility, which
means the ability to move between different facilities. By doing that agents can
get closer to the source of data or closer to the data they are about to process. It
reduces bandwidth requirements and delays caused by network communication
over long distances [5].

The ability to react upon sudden changes of the environment and to act
proactively are other important traits, which an agent can take advantage of
to improve data mining efficiency. Those traits provide foundation for handling
changes in availability of data sources or collected data. Proactivity and auton-
omy translate to capability of an agent to set its own goals and act upon them
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without external influence or control. An agent can proactively decide to move
to another set of data or initiate communication with other agents when it sees
it feasible. It is especially important in case of big data mining, as the expected
results of the extraction of deeply concealed knowledge from the data set, which
is processed, cannot be pre-determined. This means that appropriate actions
and intermediate goals of the knowledge extraction cannot be predetermined as
well, so the agent needs to decide what to do on its own.

Other useful traits of agents include abilities to communicate and negotiate.
In agent-based data mining system it is possible to distinguish different roles
and groups of tasks that constitute the whole mining process [12]. Individual
roles can be then assigned to agents. Through communication and negotiation
working groups of agents can be established, each of them containing agents with
a unified incentive to fulfill goals of their group.

Agent-based approach can improve efficiency of data mining compared to cen-
tralized approaches [23]. It was applied in different domains showing promising
results for further research, e.g banking and finance domain [16] or resource
allocation in distributed environments [5].

3 Genetic Programming and Immunological Systems

Genetic programming permits discovering a game playing strategy and can be
applied in optimal control, planning and sequence induction [14]. Fig. 1 shows
an example of a tree as a model of the computer program performance. This tree
is equivalent to the parse tree that most compilers (parsers) construct internally
from a computer program source. A parse tree consists of branches and nodes:
a root node, a branch node, and a leaf node. A parent node is one which has at
least one other node linked by a branch under it. A child node is one which has
at least one node directly above it to which it is linked by a branch of the tree.

The size of the parse tree is limited by the number of nodes or by the number
of the tree levels. Nodes in the parse tree are divided on functional nodes and
terminal ones. A functional node represents the procedure randomly chosen from
the primary defined set of functions:

FFF = {f1, . . . , fn, . . . , fN} . (1)

Each function should be able to accept, as its arguments, any value and data
type that may possible be returned by the other procedure [14]. Moreover, each
procedure should be able to accept any value and data type that may possible
be assumed by any terminal in the terminal set:

TTT = {a1, . . . , am, . . . , aM} . (2)

So, each function should be well defined for any arrangement of arguments
that it may come across. Furthermore, the solution to the problem should be
expressed by the combination of the procedures from the set of functions and
the arguments from the set of terminals. For example, FFF = {AND,NOT} is
sufficient to express any Boolean function.
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Fig. 1. An example of a parse tree as a chromosome of an genetic algorithm

The biological immune system has distributed elements as well as some fea-
tures of artificial intelligence like an adaptation, learning, using memory, and
associative retrieval of information in recognition [11]. Especially, the negative
selection algorithm (NSA) can be applied for change detection because it uses the
discrimination rule to classify some trespassers [10]. Detectors can be randomly
generated to reduce those detectors that are not capable of recognizing them-
selves. However, detectors capable to distinguish intruders are kept to defense
an organism. In the NSA, detection is performed probabilistically [3].

An antigen can support an antibody generation by stimulation a reaction
against squatters. Besides, some positive viruses and bacteria cooperate with
antigens [13]. An antibody (an immunoglobulin) is a large Y -shaped protein
capable to recognize and deactivate external objects as negative bacteria and
viruses [22]. It is worth to underline that the NSA can manage constraints in an
evolutionary algorithm by dividing the population in two assemblies [6]. Anti-
gens belong to the feasible solution sub-population, and “antibodies” – to the
infeasible one.

The initial fitness for all antibodies in the current infeasible subpopulation is
equal to zero. Next, a randomly selected antigen G− from the feasible subpopu-
lation is compared to the some chosen antibodies. After that, the match measure
S between G− and the antibody B− is calculated due to the similarity at the
genotype level. This measure of genotype similarity for the chromosome integer
coding is, as follows [1]:

S(G−, B−) =
M∑

m=1

|G−
m −B−

m| , (3)

where:
M – the length of the solution,
G−

m - value of the antigen at position m, m = 1,M ,
B−

m - value of the antibody at position m, m = 1,M .
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The negative selection can be modeled by an evolutionary algorithm, which
prefers infeasible solutions that are similar to randomly chosen feasible one in
the current population. We assume that all random choices of antigens are based
on the uniform distribution.

The situation is different in the case of antibodies. If the fitness of the selected
winner is increased by adding the amount of the similarity measure, then an anti-
body may pass over because of the relatively small value of assessment (3). On
the other hand, some constraints may be satisfied by this alternative. What is
more, if a constraint is exceeded and the others are not, the value of a similarity
measure may be lower for some cases. One of two similar solutions, in genotype
sense, may not satisfy this constraint and another may satisfy it.

4 An Extended NSA*

To avoid above disadvantages, some similarity measures can be developed from
the state of an antibody B− to the state of the selected antigen G−, as below:

fn(B
−, G−) =

{
gk(B

−)− gk(G−), k = 1,K, n = k,
|hl(B−)|, l = 1, L, n = K + l,

n = 1, N,N = K + L (4)

where
gk(x) ≤ 0, k = 1,K,
hl(x) = 0, l = 1, L.

The distance fn(B
−, G−) between B− and G− is supposed to be minimized

for all constraint indexes n. If fn(B
−, G−) < fn(C

−, G−), then B− ought to be
preferred to C− due to the nth constraint. Moreover, if B− is characterized by
all shorter distances to the antigen than the antibody C−, then B− should be
preferred for all constraints. However, some situations may occur when B− is
characterized by the shorter distances for some constraints and C− is marked
by the shorter distances for the others. In this case, it is difficult to select an
antibody. So, a ranking procedure can be applied to calculate fitness of antibodies
and then to select the winner.

In a ranking procedure, distances between the chosen antigen and some anti-
bodies are calculated due to their ranks [2]. If B− is characterized by the rank
r(B−) such that 1 ≤ r(B−) ≤ rmax, then the increment of the fitness function
is estimated, as below:

Δf(B−) = rmax − r(B−) + 1 . (5)

Subsequently, some fitness values of selected antibodies are increased by their
given increments. Then antibodies are returned to the current population and
this process is repeated typically three times the number of antibodies. Each
time, a randomly chosen antigen is compared to the same subset of antibodies.

Afterwards, a new population is constructed by selection, crossover and muta-
tion without calculations of fitness. That process is repeated until a convergence
of population emerges or until a maximal number of iterations is exceeded. At
the end, the final population as outcomes from the negative selection algorithm
is re-turned to the external evolutionary algorithm.
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5 Optimization Model for Volunteer Grid

In the grid and volunteer computing systems like BOINC or Comcute, some
scientific projects are transformed to a set of the calculation tasks that are
executed concurrently by volunteer computers with a support of some levels
of the middle-ware modules. A society of scientists can use these systems for
extensive distributed calculations in some research projects. The 24-hour average
performance of the most popular volunteer system BOINC is 8.186TeraFLOPS.
Moreover, the number of active volunteers can be estimated as 238,412, and also
388,929 computers process data [4].

In the Comcute system, an application for the Collatz hypothesis verification
and another one for finding the 49th Mersenne number were applied to prove
the intense human interactions, scalability and high performance [7].

In the architecture of the volunteer grid Comcute (Fig. 2), we can distinguish
the Z -layer where the system client defines new tasks, starts instances of pre-
viously defined tasks, tracks statuses of running tasks and fetches results for
completed tasks. On the other hand, the W -server layer supervises execution of
tasks. For each task instance, a subset of W -servers is arranged that partitions
the task among its members. The tasks pass input data packets for the task in-
stance to connected S -servers beneath them as well as collect and merge results
obtained from the S -layer. S -server is a distribution server that is exposed to
clients who fetch execution code and subsequent data packets and return results
for these data packets. I -client level is an untrusted layer of volunteers fetching
and returning results to the system.

To test the ability of the MGP with NSA* for handling constraints, we con-
sider a multi-criterion optimisation problem for task assignment in a distributed
computer system [2]. Especially, MGP can minimize Zmax – the workload of
a bottleneck computer and C – the cost of machines, concurrently.

A set of parallel tasks {T1, . . . , Tv, . . . , TV } communicated with each other is
considered among the coherent computer network with hosts located at the pro-
cessing nodes from the given setW = {w1, . . . , wi, . . . , wI}. Let the task Tv be exe-
cuted on some hosts taken from the set of available sortsΠ = {π1, . . . , πj , . . . , πJ}.
The over-head execution time of the task Tv by the computer πj is represented by
an item tvj .

The first criterion is a total host cost, as follows:

C(x) =

I∑
i=1

J∑
j=1

κjx
π
ij (6)
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Fig. 2. Architecture of the Comcute system

where
x =
[
xm11, . . . , x

m
vi, . . . , x

m
V I , x

π
11, . . . , x

π
ij , . . . , x

π
IJ

]T
,

xπij =

{
1 if πj is assigned to the wi,
0 otherwise,

xmvi =

{
1 if task Tv is assigned to the wi,
0 otherwise,

κj – the cost of the host πj .
Another criterion is Zmax – a workload of the bottleneck host that is supposed

to be minimized. It is provided by the subsequent formula:

Zmax(x) = max
i∈1,I

⎧⎪⎨⎪⎩
J∑

j=1

V∑
v=1

tvjx
m
vix

π
ij +

V∑
v=1

V∑
u=1
u�=v

I∑
i=1

I∑
k=1
k �=i

τvuikx
m
vix

m
uk

⎫⎪⎬⎪⎭ , (7)
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where
τvuik – the total communication time between the task Tv assigned to the ith
node and the Tu assigned to the kth node.

Fig. 3 shows the workload of the bottleneck computer for the instance with
15 modules and two hosts. There are 30 decision variables and 7.394 admissible
module assignments. An optimal workload of the bottleneck host is 47 [TU]
versus the maximal one 102 [TU]. Even a small movement of a task to another
host or a substitution of host sort can cause a relatively big alteration of its
workload. What is more, there are two optimal solutions, as follows:
x*(1)=[1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 2, 2]
x*(2)=[2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1]

Fig. 3. Workload of the bottleneck computer for generated solutions

A host is supposed to be equipped with necessary capacities of resources. Let
the memories z1, . . . ,zr, . . . , zR be available in the volunteer system and let djr
be the capacity of memory zr in the host πj . We assume the task Tv holds cvr
units of memory zr during a program execution. The host memory limit cannot
be exceeded in the ith node, as bellow:

V∑
v=1

cvrx
m
vi ≤

J∑
j=1

djrx
π
ij , i = 1, I, r = 1, R . (8)
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Let πj be distributed independently according to the exponential distribution
with rate λj . Hosts and tasks like Z, W or S can be allocated to nodes to
guarantee the required reliability R, as below [1]:

V∏
v=1

I∏
i=1

J∏
j=1

exp
(
−λjtvjxmvixπij

)
≤ Rmin . (9)

Let (XXX , F, P ) be the multi-criterion optimization question for finding the rep-
resentation of Pareto-optimal solutions [6]. It can be established, as follows:

1. XXX - an admissible solution set

XXX = {x ∈ BBBI(V+J) |
V∑

v=1

cvrx
m
vi ≤

J∑
j=1

djrx
π
ij , i = 1, I, r = 1, R;

V∏
v=1

I∏
i=1

J∏
j=1

exp
(
−λjtvjxmvixπij

)
≤ Rmin;

I∑
i=1

xmvi = 1, v = 1, V ;

J∑
j=1

xπij = 1, i = 1, I}

where: BBB = {0, 1},
2. F - a vector quality criterion

F :XXX →RRR2 (10)

where:
RRR – the set of real numbers,
F (x) = [Zmax(x), C(x)]

T for x ∈XXX ,
Zmax(x) and C(x) are calculated by (7) and (6) respectively.

3. P - the Pareto relation [8].

To solve this problem we can apply the Strength Pareto Evolutionary Algo-
rithm SPEA [24] or the Adaptive Multi-Criterion Evolutionary Algorithm with
Tabu Mutation AMEA+ [1]. Moreover, some scheduling algorithms based on
tabu search studied in [21] can be combined with an evolutionary approach.

In AMEA+, a tabu search procedure was applied as the second mutation
operator to decrease the workload of the bottleneck computer. Moreover, we
introduced the NSA* to improve the quality of obtained solutions and the evo-
lutionary algorithm was denoted as AMEA*.

6 Numerical Experiments

For the instance with 15 tasks, 4 nodes, and 5 computer sorts, there are 80 binary
decision variables. An average level of convergence to the Pareto set is 17.7% for
the MGP* and 17.4% for the AMEA*. A maximal level is 28.5% for the MGP*
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and 29.6% for the AMEA*. For this instance the average number of optimal
solutions is 19.5% for the MGP* and 21.1% for the AMEA*. Fig. 4 6 shows the
process of finding efficient task assignment by MGP* for the cut obtained from
the evaluation space according to the cost criterion C and the workload of the
bottleneck computer Zmax. An average level of convergence to the Pareto set,
an maximal level, and the average number of optimal solutions become worse,
when the number of task, number of nodes, and number of computer types
increase. An average level is 37.7% for the MGP* versus 35,7% for the AMEA*,
if the instance includes 50 tasks, 4 nodes, 5 computer types and also 220 binary
decision variables.

Fig. 4. Pareto front determined by GMP*

Concluding Remarks

Multi-objective genetic programming is relatively new paradigm of artificial in-
telligence that can be used for finding Pareto-optimal solutions. A computer
program as a chromosome gives possibility to represent knowledge that is spe-
cific to the problem in more intelligent way than the data structure.

Our future works will focus on testing the other sets of procedures and ter-
minals to find the Pareto-optimal task assignments for different criteria and
constraints. Initial numerical experiments confirmed that sub-optimal in Pareto
sense task assignments can be found by genetic programming. That approach
permits for obtaining comparable quality outcomes to advanced evolutionary
algorithm. Us-ing volunteer model of computations based on our Comcute sys-
tem we plan implement large scale text classifier [9]. This task will allow us to
evaluate the proposed architecture for real life tasks. Also the implementation
will served as a proof of concept of an easy integration model for distributed
computational nodes.
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Abstract. In this paper we present a new algorithm for translating vi-
sual information into a semantic form. In our approach we try to combine
these two separate areas of computer since into one process. The main
goal is to achieve very good performance at searching for similar images.
In this paper we explain in details the design of the translation algorithm
which is only one part of the whole process, but the most important one.
This module is some kind of interface between information in the form
of digital image and the information represented by lexems. We will also
concisely demonstrate the structure of the whole SIA (Semantic Image
Analysis) project.

Keywords: semantic translation, image transformation, semantic im-
age analysis, CBIR.

1 Introduction

Nowadays we are surrounded by the immensity of information. Because of com-
puters and power of digital processing we are able to analyze more and more
information in a shorter period of time. Humans are already very good at search-
ing and analyzing information in a textual form, everyone of us is familiar with
using popular Internet search engines. In the area of digital image processing we
are still far away from the quality and effectiveness of text retrieval. Translation
of the information in the form of digital image into text is one of the most im-
portant parts of the SIA project [25]. To enable semantic analysis [25] on the
data representing the image we have to convert it into text and this conversion
has to be a deterministic and stable process [19]. Before we were ready to estab-
lish our translation algorithm we had had to prepare the whole preprocessing
module, which is responsible for filtering out some unimportant information and
noises from the image and fetching the most important one [3][13][14][21][24][27].
Fetched data are translated by our translation formula and saved in the database
in the form of the vector of lexems. Our approach is designed to be applied on
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Fig. 1. Simplified structure of the conversion process used by the proposed approach

every kind of images but it could be specialized to process only specific classes
of image objects [4] or to images with specific features [1][9][10][26] which may
be classified by multiple methods [5][6][7][8][16][17][20][22].

2 Image Processing Algorithm

As we see in Fig. 1, the whole process of the image conversion into the semantic
form consists in two general parts – preprocessing and processing. Results of
our research concerning each preprocessing step have been already described in
[24][27]. In this paper we are focused on our latest research about the translation
algorithms. This part of the process is also divided into stages what is described
in following subsections.

2.1 Division into Single Word Matrixes

The output from the preprocessing part is the grayscale image with marked
important parts, which were selected as significant areas of the image [2][15].
Relying on the information enclosed in that image, we need first to select the
ROI (Region Of Interest), which is a rectangle containing the significant areas
of the image and then restrict that rectangle by searching for a shape which is
the best pattern for areas representing the important parts of an image. The
selected shape has to be divided into areas, which we called SWM (Single Word
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Matrix). The question was how large these matrixes have to be. In our approach
we assumed that the number of rows and columns of the SWM will be equal to
5% of the height and width of the selected ROI. Thanks to this operation we
can keep our process robust for images containing the same objects in a different
scale.

2.2 Estimation of Constants

In the result, each SWM has to be represented by a single word, so we had
to find a method to convert a matrix of pixels into one word. What was very
important, this algorithm had to be stable, that means that conversion of the
matrix representing the same part of the image has to be always transformed
into the same word. Because of that we employed markers, which represent the
constant properties of that area. In the current implementation we used the
following markers:

1. Percentage amount of edges contained by the matrix,
2. Average value of the intensity of pixels contained by the matrix.

At the beginning of the research we decided that this part has to be generic,
which means, that adding new markers has to be feasible. That is why in the
next planed phase of our project we can combine diverse markers to achieve the
best selectivity of similar images.

2.3 Fuzzy Logic

We used fuzzy logic mechanisms by conversion the values of single SWM repre-
sented by array of markers. To each marker we assigned some number of levels,
to this levels we round every marker value to reduce diversity and the number
of possible combinations.

2.4 Translation

To translate the values of markers into single word, we used an English dictio-
nary. Each array of markers, which represents the single SWM is converted by
the SHA-1 algorithm into a hash code. Then the algorithm searches in the dictio-
nary if there exists already a word to which this hash code was exactly assigned,
if yes then the SWM becomes this word, if not, then to this value of hash code is
assigned the next free word from the dictionary. The whole image is represented
by the row of single word matrixes separated by the space characters.

3 Structure of the Conversion Mechanism

In this paragraph we present each step of the conversion. Description of each step
is connected with the input and output information, so the order of presentation
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Fig. 2. Original test image

Fig. 3. Image representing the result of the preprocessing phase

is very important. The original test image is shown in Fig. 2. As already men-
tioned, in this paper we are focused on the processing part of the approach. The
resulting image at the output of the preprocessing part is presented in Fig. 3.
Now we present the steps of the algorithm:

1. In the first step we have to divide the selected ROI into SWMs. The number
of rows and columns is equal to 5% of the height and width of the selected
ROI. Fig. 4 presents the image with marked ROI divided into single word
matrixes.

2. In the next part of the conversion we have to filter out these matrixes, which
do not contain any pixels which were marked as the significant and important
information. In our approach it is performed by finding the maximum value
of intensity of pixels included into matrix, when this maximum is equal 255,
then the whole matrix is selected as important one. Fig. 5 shows only these
matrixes, which were marked as containing significant information and were
selected for further computation.
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Fig. 4. Image representing the ROI divided into single word matrixes

Fig. 5. Image representing selection of important single word matrixes

3. Having selected list of SWMs we are ready to compute constant markers for
every matrix. Our algorithm was designed in such a way that adding new
markers is an easy and fast action, but in this situation we need to compute
values for every image in the database. In the current implementation we
used the percentage value of edges in the matrix and average intensity of
pixels. Thus, for one SWM these values can take values as follows:
- Percentage value of edges: 22
- Average value of intensity: 120

4. When we have already estimated values of constant markers for every SWM,
we have to compute the hashcode, which is going to be the representation
of these values. For this computation we use a SHA1 algorithm, e.g.:
SHA1(22,120) = 231151646136144130502039643226195140178156113132386

5. In the next step we need to find a word which will be the representation of
our hash code, if our hash code already exists in the database, then we will
take the word which is assigned to this hash code, otherwise we will take the
first one without assigned a word.
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At the end of the process, each SWM will have assigned a word. All the words
will be combined into a single text, separated by the space characters. Such pre-
pared text will be the textual representation of the image. But it is not the last
step of conversion, during adding the new image with the textual representation
to the database we call a trigger which converts the text into lexems. The name
of this form of data in PostgreSql database system is TS VECTOR. Below we
present an example of the structure with this form of information:

TS VECTOR = airfar 127 aisl 289 alarmist 346 albedo 304 alert 201,217

We see words followed by certain numbers. These words are not ordinary words,
but lexems, which are normalized words to make different variants of the same
word look similarly. Numbers following the lexems show the position of the lexem
occurrence.

4 Structure of the Research Environment

For our research we have developed the next version of the software which is re-
sponsible for the whole SIA [25] process. In this paper we are focused on the pro-
cessing part, so the following information concerns only this phase. Our software
called CBIR 4.0 is divided into server and database layers. CBIR 4.0 software
was written using C# .NET 4.0 and PostgreSQL 9.0 technologies. In addition,
for the purposes of image processing we use Emgu.CV-2.3.0 library. Because the
end result of the conversion mechanism is a database item, it is worth to describe
in details the database structure and functionalities. In Fig. 6 we presented the
main part of the database structure of the conversion system. As we see in Fig. 6,
the most important tables in the database are table “DICTIONARY” and ta-
ble “IMAGE”. Table “DICTIONARY” contains 109.583 rows, which represent
single words in English language (obtained from the SIL Organisation, available
at http://www.sil.org). Each item with filled field “HASHCODE” is already
assigned to specific values of constant markers. Data from this table are strongly
used and updated during the conversion of images into semantic form. Table “IM-
AGE” contains of course already transformed images, the most important field
of the table is “TSV BODY”, which contains data representing digital image in
the form of TS VECTOR, which is the sorted list of lexems. Database table “IM-
AGE” together with the trigger, the trigger function and the GIN index create
the independent fast text engine construction (PostgreSQL 9.1.2 Documenta-
tion, available at http://www.postgresql.org/). By each update or insert on
the table “IMAGE” the trigger is started, which calls the trigger function, while
the main task of this function is to convert data into TS VECTOR and save
them in silent mode inside table in the field “TSV BODY”.

http://www.sil.org
http://www.postgresql.org/


Novel Algorithm for Translation from Image Content to Semantic Form 789

Fig. 6. The most important parts of the database structure

5 Experimental Results

For tests of our algorithm and system we chose a set of images representing
different types of objects. Several of them represent different objects but of
the same type [12]. For example there are multiple images representing ants
in various scale, on diverse background and with other coexisting objects. By
performing these tests we wanted to check following properties of our approach:
determinism, performance and structure of converted data. Presented statistics
and properties describe our test on 100 of test images from Caltech 101 images
data base. Total number of words generated in dictionary is 109.583 with number
of distinct words used for conversion the first 100 images in amount of 5.536.
During conversion of first 100 images there were used 28.835 words. Average size
of processed images is 232 pixels height and 294 pixels width and disk size of
table containing 100 converted images in number 1264 kB. Average time used
for the whole process of conversion is 2686 ms.

It is worth to mention that we also tested that the same image converted twice
gives the same results. With this test we proved the deterministic behavior of
our algorithm. More than 90% of time used for conversion is the preprocessing
phase, the GrabCut algorithm is the the slowest part of the process.

6 Conclusions

With this paper we proved that the idea of conversion of images from pixels into
words is not only an idea but the real way to combine two important branches
of computer science. Because of usage of fast text search engine we obtained the
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possibility of very fast and effective analysis of data representing images. Because
of advanced database structure and functions we have also possibility of applying
fuzzy logic on the level of single table row, representing single words. It is possible
to establish the level of similarity between two words. By extending the function
we can achieve a connection between similarities of two words to similarity of
constant markers representing the single word matrix what is an exact area of
the image. This property gives us the possibility of effective applying fast text
search engine analytic functions. The proposed algorithm of translation fulfilled
all requirements, which we specified at the beginning of our research. The new
approach is stable, deterministic, fast and easy to extend, these properties allow
us to look in the future of the SIA with promising expectations. As already
mentioned this is one of the last parts of our broad SIA project, but also the
most important one. In the next step of our research we will develop new search
and rank functions. Also we noticed the opportunity to expand our algorithms
of SWMs classification by using neural networks [11][18][23] but it is one of
additional functionality of the SIA. Our novel algorithm of translation is an
important milestone on our way to establish fast and effective way to find similar
images to the one given on the input. Our alfa tests already provided satisfying
results and we hope that in a short period of time we will be ready to publish
results of the whole SIA mechanism.

Acknowledgements. The project was funded by the National Center for Sci-
ence under decision number DEC-2011/01/D/ST6/06957.
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Abstract. This paper presents a novel approach to recommendation
systems based on graph databases (e.g. LinkedData). Graph databases
contain large amounts of heterogeneous and interlinked data from many
sources, hence different algorithms to analyze these data are necessary.
Moreover, it must be said that these properties of collected data make
it impossible to store them in a relational data model. As for now, there
are few methods of intelligent data exploration from graph databases.

In this paper, we propose new methods of discovering, searching and
recommending objects in a graph database. The proposed methods can
be applied to many domains or semantics, e.g. books, movies, etc. Paths
in the graph (sequences of graph edges) have weights assigned, on the
base of a training set according to their semantic importance. Recom-
mended objects (vertices of the graph) may be found by analysing ex-
isting paths and where they lead to. Additionally, the method is able to
determine if a found object belongs to a given problem from the point
of view of a chosen semantics, hence only objects intuitively linked one
to each other, are recommended. The proposed method is verified in two
case studies, using an open graph database.

1 Introduction

This paper presents a new method of exploring graph databases. The graph
data model differs from the most known relational model by Codd (1970). In a
graph database, objects are stored in vertices of the graph, and edges (hence,
as the consequence, paths) of the graph are models of ”links” or ”connections”
between the objects described by vertices. These links or connections are deter-
mined within a given semantics which implies some similarity of given vertices.
Recommendations and new objects discovering are based mostly on similarity
of vertices, and the similarity is determined via analysis of paths connecting the
vertices. The proposed approach is based on semantic analysis of paths using
training sets. Paths found as important from the point of view of a given se-
mantics are used to search the database and to discover new objects, possibly
linked to objects already found. The proposed approach is able to face many
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problems related to graph data– incompleteness of data, unordered data, noised
or heterogeneous data1.

An example of a graph database is given in Fig. 1. As it is seen, this model
of data, apart from vertices (objects) and edges (relations), enables dealing with
additional abstraction layer: paths understood as sequences of edges between
vertices. For example, vertex V 3 is connected to vertex V 4 with a path V 3-I6-
V 1-I5-V 4. Such links between data objects are not possible to be shown if a
relational database is used.

Fig. 1. A sample graph database with vertices V 1, . . . , V 4 and edges I1, . . . , I6. Paths
are sequences of edges, e.g. I3-I1-I6

More and more data is easily available over the Internet in the form of graph
databases, cf. [1, 2]. Therefore, new exploration algorithms should be designed
to enable knowledge discovery from graph databases. It must emphasized that
such data are not only sets of objects and relations (edges), but links between
them are modeled – in the larger abstraction layer – with paths. That is why
we focus mostly on path analysis in graph databases. Analysis of paths provides
us with information and knowledge impossible or very difficult to be discovered
from traditional datasets.

Some of recent research on path analysis in graph databases [3–5]) is mostly
focused on evaluating semantic similarity. These methods are applied to recom-
mendations, since by analyzing large amounts of data available over the Internet,
recommendations can be made without the need of expensive item-tagging by
experts [6–8].

However, generating recommendations in graph databases (e.g. LinkedData)
is not a simple or straightforward task. The property that make these databases
interesting is that they contain large amounts of data related to different seman-
tics (topics, domains, contexts). This is an opposite to a typical approach, where
relational databases contain data closely related to a specific domain.

1 By heterogeneous we mean data from different sources, with different properties,
and about different subjects.
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The method for path analysis proposed in this paper is an original approach
to address problems of recommending and searching data in path analysis. Using
a training set, the paths that are relevant to a particular semantics are being
found and applied to search new objects related to provided set. These links are
then used for generating recommendations in a particular domain, e.g. in music,
movies, books, etc. The rest of the paper is organized as follows: Section 2 con-
tains an overview of path analysis methods in the recent literature. An original
method of path analysis with respect to as specific semantics is introduced in
Section 3. Section 4 presents details of generating recommendations from data
stored in a graph database. Two case studies for two different semantics are
presented in Section 5. Finally, the paper is concluded in Section 6.

2 An Overview of Path Analysis Methods

The authors of [9–11] propose various methods of evaluating semantic similarity
based on path analysis in graph databases. However, these methods compute
the similarity of two given graph vertices (with analysis of paths that connect
them), but do not provide means of searching for other obejcts in the databases.
The main advantage of the proposed methods is that based on initial analysis
relevant paths are found, which can be used to search the database (see Section
3).

The simplest method of path analysis is to calculate the similarity as a func-
tion of a length of a shortest path between two analyzed objects (vertices).
However such a simple analysis is not relevant to the characteristics of graph
database, in particular, to their ability of storing information on semantic simi-
larity, i.e. if two vertices belong to the same domain or not.

In many graph databases, this assumption does not hold, since evaluating
semantic similarity must differentiate if there is only one or more paths of the
same length for the same pair of vertices.

Another approach of evaluating semantic similarity is described in [2]. It is
based on the number of short paths between two objects. In its expanded form
(see [12]) paths are also weighted with real numbers to provide additional in-
formation on the similarity evaluated. Weights assigned to paths are related to
the frequency of their occurrence – if a certain path occurs (is used) rarely, it is
regarded as more important, and its weight is larger.

A method of determining informativeness of a path is also shown in [10]. The
authors propose to analyze and to rank paths using various heuristics originating
from information theory. Using these measures, paths between objects (vertices)
are ranked as more or less informative. Yet another approach of path analysis
is presented in [5]. The authors propose to assign weights to particular edges
of a graph database, and to evaluate similarity by summing weights on paths
connecting two objects. The major drawback of this approach is the necessity of
assigning weights to edges manually by a human.
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3 Evaluating Semantics-Specific Path Weights

The main focus of the proposed method is to determine which paths between
vertices of graph database are important for a particular problem domain, i.e. in
a given semantics. In contrary to existing approaches with manual assignment of
weights to paths (e.g. [5]), we propose to use a training set, and evaluate weights
in an adaptive way. The most important information that has to be given to
a system is: in what kind of relationship between vertices we are interested in?.
The training set is composed of pairs of objects, and values of their semantic
similarity.

3.1 Evaluating Semantic Similarity of Vertices Using Path Weights

The main goal of the proposed method is to find and distinguish relevant and not
relevant paths, and use them to evaluate semantic similarity of vertices. Thus, we
propose a function of similarity based on paths connecting the vertices, presented
in (1).

Sim(x, y) =

∑|Px,y|
i=1 w(pi)

|Px,y|
(1)

where: Px,y denotes the set of all paths between vertices x and y, |Px,y| denotes
the number of elements in set P (number of paths), pi denotes a particular path -
ith element of P, w(p) ∈ [0, 1] denotes the weight assigned to path, i = 1, ..., |Px,y|
The method of finding weights of paths w(pi) is presented in Section 3.2.

Illustrative Example. Assume, a music recommendation system is to be built.
Consider a graph database D, and three bands (vertices in D): A, B and C.
Now we have to instruct the system which connections are important to us, and
which are not. Say we are interested in connections that exist between bands
A and B, but not in connections that exisit between A and C. Let us denote
the set of paths between vertices A and B by PA,B. Paths that are common to
A-B and A-C (PA,B ∩ PA,C) are regarded as unimportant (since their presence
does not indicate that bands are related). On the other hand, paths that exist
only between A and B, but not between A and C (PA,B\PA,C) are regarded as
important, since their presence indicates that bands are related in a way that we
are interested in. Our method is a way to determine which paths are important,
and how much.

Hence the information required for performing the analysis is a set of pairs of
objects and their associated similarity. From the practical point of view, obtain-
ing this information may be straightforward - after user specifies the objects (e.g.
musical artists) he is interested in, he may be asked to choose a most and least
similar objects from the list. Another possibility would be to use the training
set given for a particular domain (e.q. music) by different user (or users).
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3.2 Determining Path Weights

This section describes the process of finding the proper weight of paths (w(p))
based on the provided training set.

Fuzzy Relation Training Set. The training set is a set of pairs with the
information that they are related or not. Hence, it is a binary relation. However,
a classic bi-valued relation is not sufficient to express more values of similarity
than 0 and 1. Therefore, we propose a training set which is a fuzzy relation
representing similarity between two objects/vertices. The fuzzy relation links
objects from set X – the set of all vertices in a graph database D:

U = {
〈
〈x, y〉, μU (x, y)

〉
: x, y ∈ X} (2)

where μU (x, y) : X×X → [0, 1] is the membership function of U representing
values of semantic similarity between vertices x and y.

Evaluating Path Weights from the Training Set. Path weights are evalu-
ated based on the analysis of the training set provided by the user. We analyze
which paths connect objects that are highly related, and which paths connect
objects that are not related.

Consider a database D and training set U . Each element (denoted Ui) of
the training set describes the similarity between two vertices, xi and yi (i =
1, ..., |U |). Between these two vertices there exist a set of paths, denoted Pi.
Each element of Pi, so each path connecting xi and yi, is assigned a weight
which we denote wi.

A path is a sequence of graph edges, and we say that two paths are the same,
iff they are composed of a sequence of the same graph edges. In a graph database,
the notion of edge is different that in case of a graph - we consider two edges in
a graph database as equal if they have the same label.

Hence, it is possible that a number of the same paths exist in set Pi. Also,
the same path may exists in in path sets P for different elements of the training
set U (so it is possible that Pi ∩ Pj �= ∅, i �= j). Hence, each path p may have
more than one wi associated with it.

In order to calculate the total weight of path p we propose to simply calculate
an average of all weights associated to it. Function for calculating w(p) is given
in (3).

w(p) =

∑|U|
i=1 wi(p) ∗ npi∑|U|

i=1 npi

(3)

where: U denotes the training set, |U | denotes the number of elements in the
training set, i = 1..|U | , wi(p) denotes the weight associated to path p by the
i-th member of U (so the μ(xi, yi) from (2)), ni(p) denotes the number of paths
of type p that exist between pair of vertices (xi, yi) (so in the path set Pi)
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4 Generating Recommendations Using Path Weights

After the analysis described in Section 3 , we have a set of paths and weights
associated with them. These weights may used to evaluate semantic similarity
between graph vertices, or may be used to search the database.There are two
types of recommendations that have to be clearly differentiated: recommending
from a known set of vertices, and discovering (that is searching) vertices based
on found paths.

An important distinction is that in the first case we have to know which ob-
jects (from the domain at hand) a given database contains. While this is obvious
in case of relational databases (in which in most cases tables are prepared espe-
cially for recommendations), it may become problematic in case of multi-pupose
heterogeneous open graph databases. To select all objects from a given domain
we have to rely on an ontology or some set of properties. For example, authors
in [13] selected movies from DBPedia using a complex SPARQL query (which
returned 1682 movies). The disadvantage of such approach is the possibility of
missing (or wrong) data, necessity for knowledge of how the data is represented
in the database (i.e. an ontology class for a given domain). In our approach based
on searching the graph database (using found paths) this preprocessing is not
necessary, paths are followed whereever they lead to. Graph nature of the data
is directly leveraged, on contrary to most methods were data originating from
graph is flattened to a different data structure and processed using non-graph
algorithms.

A second step for (content-based) recommendation is ewaluation of similarity
between a user object (or a set of objects, possibly with a grade) and all the other
obejcts that may be recommended. In our proposed method based on search-
ing the databases this is also not required. There is no need to look at every
object and ewaluate the similarity. Links are followed from the user objects, in
which way candidate objects are discovered (which are a small subset of whole
domain). In the movie recommendation example that follows, a condidate set
(where paths led to) consists usually of about 50 of 1682 movies, which shows
clearly how much the problem domain is reduced.

Recommending from a Known Set of Objects. A set of objects (graph
vertices) from which the recommendations are generated is given beforehand.
We denote this set as T . Recommendations are based on a set of of items (also
graph vertices) a user is interested in. We call this vertex set USER_SET . Note
that this set can be derived from the training set - the set of all x in U (see (2)).

To generate recommendations, for every vertex in T a vertex weight is calcu-
lated (denoted as w(Ti)). Vertex weight is a sum of its similarity (see (1)) to all
elements from the input set (USER_SET ). Hence vertices most similar to the
ones provided in the USER_SET will have the highest weight. Equation for
calculating vertex weight is given in (4).
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w(Ti) =

|USER_SET |∑
j=1

Sim(Ti, vj) (4)

where: T is the set from which the recommendations are generated, USER_SET
is the set of graph vertices important for a user, Sim(Ti, vj) is the seman-
tic similarity (see (1)) between i-th element of set T and j-th vertex from set
USER_SET ,j = 1..|USER_SET |

After calculating the vertex weight for all elements of T, n vertices (n is a
number of recommendations that is desired) from set T with the highest vertex
weight are recommended.

Discovering New Objects. This approach to recommendation system is based
on searching the graph database using paths found in the training phase.

However, in a heterogeneous database, these paths may lead to objects that
are not related to the desired domain. For example, in case of music recommen-
dation system, these paths may lead to objects that are not related to music.
Since our goal is to do recommendation using provided input set, is it also de-
sired to compute the vertex domain from the training set. In order to do this,
we analyze the properties of the vertex, which we denote properties(v).
We denote a set of properties that form a type definition by TU , where U indi-
cates that the type is defined for a particular training set U, and may be different
for each training set U. Also, this type defnition is different for each database.

TU = {property1, property2, ..., propertyn} (5)

And example of a type definition for music domain (rock music in particular)
for DBPedia database is given in Section 5.1.

The question is: which properties an object has to have to be regarded as a
member of a given type? The simplest answer to this question is that we take
properties that are common to all elements in a training set, so that: TD =
properties(v1)∩ properties(v2)∩ ...∩ properties(vi), where properties(v) is the
property set of a vertex v.

However, we also have to take into account the fact that data from graph
databases may be incomplete, hence only one vertex that does not have a par-
ticular property would make it disappear from the type definition. We propose
that properties that exist in most of the vertices in a training set (so the threshold
equals 50%) should be included in the type definition TU from (5).

During the discovery of vertices we check if an object is of the desired type, by
comparing its properties to the property set TU . Type compatibility is defined
in (6) (used in Algorithm 1).

cTU (v) =
|properties(v) ∩ TU |

|TU |
(6)
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where: TU is the type definition, so a set of properties, properties(v) are prop-
erties of vertex v

The more properties a new vertex has in common with the properties that
form type definition (defined in (5)), the higher the type compatibility.

In order to find new objects the set of paths and their weights is used (found
in Section 3). We sort the obtained path set according to their weight. In the
algorithm below, we denote the path set as PATHS. For recommendations, user
also has to provide vertex set as a recommendation base (so a set that describes
user taste). In the algorithm below, this set is denoted as USER_SET.

A path anchored in a given vertex leads to a set of other vertices, and the
value for each of these vertices is increased by w(p) (path weight) multiplied
by the type compatibility of a vertex (see next paragraph and (6)). This means
that if an important path (w(p) close to 1) leads us to a vertex with similar
type (cTU (v) close to 1, see (6)), the recommendation measure for this vertex is
increased significantly. After repeating this operation for some most important
paths, values for certain vertices continue increasing. The most related vertices
are recommended. This process is described in Algorithm 1.

Algorithm 1. Vertex discovery based on path weights
for p ∈ PATHS do

for u ∈ USER_SET do
u

p−→ vertices { see to which vertices path p lead to}
for v ∈ vertices do

w(v) = w(v)+w(p) ∗ cTU (v) { increase the weight of vertex v by path weight
times type compatibility (see (6)}

end for
end for
if w(v) > threshold then

recommend vertex v
end if

end for

5 Experimental Evaluation

In this section, we present the complete process of applying the proposed path
analysis method. We focus of the problem of recommending objects based on
new object discovery, because in such scenario our method presents most of its
merits.

5.1 Music Recommendation Using DBPedia

Used training set composed of the following elements:
U = {〈 Metallica, Megadeth, 1.0 〉,〈 Metallica, Lady Gaga, 0.0 〉,〈 Iron Maiden,
Slayer, 1.0 〉, 〈 Iron Maiden, Eminem, 0.0 〉}
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Table 1. The most informative paths found for music semantics

path length path weight of path w(p)

2 associatedBand− associatedBand 1
associatedMusicalArtist− 1
−associatedMusicalArtist

genre− genre 1
bandMember− formerBandMember 1

artist− artist 0.78
22− rdf − syntax− ns#type - 0.4

...
3 background− background 1

−formerBandMember
associatedMusicalArtist− 1

currentMembers− associatedActs
hometown− 0.9

hometown− associatedActs
...

It is important to emphasise the importance of the not related elements in the
training set (Metallica - Lady Gaga and Iron Maiden - Eminem). In the graph
database, many links may exists between these objects, since they represent the
same type. For example, in DBPedia all musical artists are connected with the
following paths (for readabality, we abbreviate the names):

wikiPageUsesT emplate→ Template : Refend← wikiPageUsesT emplate
wordnet_type→ synset−musician− noun− 1← wordnet_type
ontology/background→ ”group_or_band”@en← ontology/background

There are many such links between all musical artists. Adidtionally, some links
are shared between most objects in the database (for example the fact that both
objects are ’Things’). Hence, these not related input pairs are used to separate
such uninformative links are largely informative links.
Using (3), we have obtained the most informative paths that can be used for
recommendation. A small subset of these links is shown in the Table 1:

The type definition obtained for this training set U is composed of a large set
of properties, below we present just some of them.
TU = { Thing, Agent, Band, Organisation, Music Group, AmericanHardRock-
MusicalGroups, Category:Musical quartets, Category:American hard rock musi-
cal groups, Category:Elektra Records artists, Category:Grammy Award-winning
artists}

Using these paths we have searched the graph according to algorithm 1, where
USER_PATHS are two elements from the provided training set - Metallica and
Megadeth. Computed recommendation is shown in the Table 2.

Another important advantage of the proposedmethod is that the speed and pre-
cision of the recommendation process can be adjusted. If fast recommendations are
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Table 2. Recommended musical artists (input bands: Metallica,Iron Maiden)

Band Vertex weight w(v) type compatibility cTU (v)
(see Algorithm 1)

Ozzy_Osbourne 81.2 0.97
Anthrax 49 0.97

Black_Sabbath 45 0.99
ASAP 43 0.95
Samson 38 0.91

System_of_a_Down 35 0.87
...

required, we may just take a couple of important paths, preferably short. If we wish
to search deeper in the graph, or nothing is discovered using short paths, we may
use the longer paths.

Additionally, using the calibration obtained for the provided training set, we
may also compute more recommendation. Results of the experiments shown
below prove that the calibration for a given domain can be reused. Therefore, it
is not necessary for every user to provide a full training set - if the system already
has calibration data for a particular domain, we may use previously obtained
path weights for new recommendations.

1. Input Bands: Eminem, 2Pac, 50Cent
Recommendations: Dr.Dre, Snoop Dogg, Obie Trice, Busta Rhymes, Game,
Xzibit, G-Unit, Nate Dogg

2. Input Bands: Rihanna, Lady Gaga, Shakira
Recommendations: Akon, Nicki Minaj, T-Pain, Usher, Beyonce, Pitbull,
Christina Aguilera, Chris Brown

5.2 Movies Recommendation Using DBPedia

Second experiment we conducted concerned movies recommendation. We used
the following training set:
U = {〈 Terminator, RoboCop, 1.0 〉, 〈 Terminator, Annie Hall, 0.0 〉, 〈 Reservoir
Dogs, Goodfellas, 1.0 〉, 〈 Reservoir Dogs, Clerks, 0.0 〉 }

Obtained most relevant paths are shown in Table 3. Compared to Table 1,
we see a lot of differences. It is clear that the database has no information
about direct associations, which proves that paths have to be computed for each
problem domain separately.

Table 4 and points below show computed recommendations.

1. Input Movies: Toy Story, Shrek
Recommendations: Shrek the Third, Shrek Forever After, The Road to El
Dorado, Over the Hedge, Ratatouille, Wreck-It Ralph, Antz, Happy Feet
Two, How to Train Your Dragon
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Table 3. The most informative paths found for the movie semantics

path length path weight of path w(p)

2 starring − starring 0.44
type− type 0.55

3 subject − broader − subject 1
director − type− type 0.62
type− type− producer 0.58
type− type− country 0.48
writer − type− type 0.45

...

Table 4. Recommended movies (input movies: Terminator, Reservoir Dogs)

Movie Vertex weight w(v) type compatibility cTU (v)
(see Algorithm 1)

Jackie Brown 4.01 0.98
Confessions of a Dangerous Mind 3.23 0.93

Sin City 3.12 0.96
The Lookout 2.67 0.91
Quick Change 2.33 0.88

Payback 2.23 0.94
Memento 1.78 0.87

...

6 Conclusions

In this paper, we have presented a new method of generating recommendations
using path semantic analysis in graph databases. Graph databases contain var-
ious data that are unordered, noised or heterogeneous. Hence, methods for ex-
ploration of such data are different than in case of relational databases. In graph
database we take into account vertices and edges of the graph, but also paths
(sequences of edges) must be analyzed. The analysis of paths includes weights
assignment, and the weights describe how a given path is important from the
point of view of a given semantics, e.g. music or movies.

We show that the proposed method is able to find paths for two main purposes:
for determining semantic similarity between existing vertices of a graph and for
searching graph databases for recommendations generating. Using our approach,
there is no need to prepare a list of vertices which are sorted according to their
similarity to a given object set, because these objects are discovered during
the graph search process. By leveraging the fact that the data is a graph, the
problem size is greatly reduced - in case of movies in DBPedia from 1682 to
about 50. This feature makes the method – in comparison to those presented
in the literature, see Section 2 – more efficient and computationally less costly.
In addition, since the database may contain many types of objects, we have
shown how to select objects that are relevant to a given semantics. Experimental
evaluation proved that it suffices to perform calibration only once for a given
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recommendation domain, and there is no need to create a full training set each
time. All experiments were conducted using an on-line DBPedia endpoint. In this
experiment set up method scalability and performance could not be precisiely
measured. Setting up a local instances of a graph databases and performing a
thorough analysis is left for future work.
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Abstract. We examine properties of a peer to peer network comprising
several agents that store various types of local data and exchange them
through established communication channels. We propose a communica-
tion model applicable to a developed platform for data integration be-
tween various security agencies and we focus on analysis of consequences
of established channels, e.g. an unintended information leakage or a pres-
ence of data silos that can be an impediment for cooperation. To detect
such situations efficiently, we do not concentrate on exchanged data it-
self, but on a belief related to known classes of data. In the analyses we
use a model, in which communications and belief states are expressed as
matrix operations of linear algebra. We show that applying this model we
can efficiently reason about the data that can potentially be exchanged
between agents not linked directly and about the ranges, which can be
reached by the data during communication flows.

Keywords: peer to peer network, data integration, belief revision, linear
algebra.

1 Introduction

We analyze properties of a peer to peer network comprising several agents that
store various types of local data and exchange it through established communi-
cation channels.

The presented considerations stem from a practical problem related to spec-
ification and design of a platform enabling data integration based on secure
exchange of information between various security and law enforcement agencies
in Poland. The project is conducted within the Polish Platform for Homeland
Security.

An operational concept of the system is presented in Fig. 1. Several organi-
zations (A1 . . . An) are responsible for collecting data and keeping them in local
repositories. The information exchange between participants is subject to var-
ious restrictions having their origins in law regulations or bilateral contracts.
Typically, they specify which data object(or its part) and in which situation can
be provided for a given requester. In many cases getting access to data requires
following a certain workflow in which one institution issues a formal request for
information and obtains either positive or negative response.
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The main goal of the designed integration platform is to automate the com-
munication process, while respecting strictly the security and confidentiality re-
quirements, as well as the defined rules for information exchange.

A1 A2 Ai

An-1An

...

...

D1

D3

C

D2

Dj

Dk-1

Dk-2

Dk

Fig. 1. An operational concept of a platform for secure exchange of information

Setting up the platform in a real environment brings up two problems. The
first has rather technical implications. If an agent participates in an information
exchange, appropriate interfaces, e.g. web services, should be implemented at
its side. These interfaces reference data types that are either sent or received.
Hence, an agent should be aware of types of objects that can reach him after
flowing through the network (including readiness to accept incomplete records).

The second problem is related to the consequences of rules specifying infor-
mation flows. A set of communication channels established between participants
may result in unintended information leakage or, on the other side, create in-
formation silos or islands that can be an impediment for cooperation between
security agencies.

To solve those problems efficiently, we do not focus on exchanged data itself,
but on types of data (classes) that an agent is aware of. Moreover, it is assumed
that all data types belong to a global schema (ontology) and potential problems
related to definition of mappings between local ontologies and the global one
can be at this stage ignored. Hence, a statement that an agent Ai knows a
class Dj can be treated as a part of global belief state, which may be changed
due to defined information flows. In the analyses we use a relatively simple,
yet computationally efficient model, in which belief states and their updates
are expressed as matrix operations of linear algebra. We show that this model
allows for reasoning about the data, which can potentially be exchanged between
agents not linked directly and about ranges the data may reach during the
communication flows.

The paper is organized as follows: next Section 2 discusses various approaches
to data integration with a special focus on application to crime and intelligence
support, as well as on models for P2P integration approach. It is followed by
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Section 3, which discusses the model of communication and integration based
on linear algebra. Formal tools enabling reasoning are defined in Section 4. An
example of a communication system is discussed in Section 5. Section 6 provides
concluding remarks.

2 Related Works

Integration of data from heterogeneous data sources is an intensively researched
topic stimulated by growing demand from various domains. They include busi-
ness IT systems, which challenge the problem of interoperability between legacy
systems after company mergers or acquisitions, bioinformatics [1], coordination
of military systems [2], as well as crime and intelligence analysis [3].

The last domain encounters specific problems related to strict rules of data
ownership and privacy, legal regulations pertaining to data exchange, as well as
various impediments including lack of agreement between agencies responsible
for collecting, storing and disseminating criminal intelligence [4]. In consequence,
national or multinational security agencies often develop local repositories [5] and
dedicated data integration and analysis tools, e.g. Coplink in USA [6] or recently
LINK in Poland [7].

Basically, two approaches to the problem of data integration can be applied.
The first assumes migration of data from heterogeneous sources to a central
repository or a warehouse that can be queried referencing the terms in defined a
common schema. Nevertheless, solutions based on such architecture often occurs
too costly, moreover, they suffer from problems with data freshness and synchro-
nization between local sources and the warehouse. In many situations they are
also unfeasible and this is obviously the case for the considered application in
the security domain.

The second approach consists in building a platform allowing to query the data
in local repositories maintained by independent agents, e.g. company branches
or institutions. Integration architectures within this approach fall into two cat-
egories: they are either centralized or peer to peer (P2P) [8].

A centralized architecture relies on a mediator service [9] providing a uniform
interface to integrated data sources and referencing a global schema (or ontol-
ogy). Within this setting, the most discussed architectural decision is related to
the method of mapping between local and global schemas. It may follow either
Global as View (GaV) or Local as View (LaV) approach [10]. In GaV every
entity in a global schema is assigned with a set of mapping from local schemas.
In LaV each local schema is treated as a view of the global one.

In a P2P architecture [11,12] each peer represents an autonomous information
system with a local schema and the data integration is usually achieved by
defining separate mapping between pairs of agents. However, P2P systems may
also use a global ontology approach [13].

Epistemic logic [14] is a formal language that can be used to describe state of
communicating agents; it was used by Calvanese et al. [12] to define semantcis of
P2P data integration systems. A multi-agent modal logic capable of representing
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communications among agents was proposed by Pacuit and Parikh [15]. Liau
showed in [16] that belief reasoning, revision and fusion can be interpreted as
operations of matrix algebra.

This paper owns the most to the work [17] by Tojo, who proposed a linear
algebra model describing belief updates in a network of communicating agents.
We adapted this model to enable reasoning about types of data being exchanged
among agents under the assumption that their schema belongs to or can be
mapped to a global ontology.

3 Model of Communication System

We analyze a system comprised of a set of agents A = {A1 . . . An} linked by
channels c1, . . . cm. Agents may store and exchange various data objects. The
number of classes (types) of objects that can be used within the system is finite.
Hence, they can be enumerated as D1, . . .Dk. Let us denote D = {D1, . . . Dk}

Each agent Ai can store objects belonging to a set of classes DAi ⊆ D. It may,
however, expose only a part of its data. The restriction rules may concern both
particular classes and particular objects. Moreover, they can be established in-
dividually for each bilateral communication within a pair of agents Nevertheless,
in this work we are focused on modeling restrictions related to classes.

A communication channel is described as a tuple c = (Ai, Ds, Aj , Dr), where
Ai is a sender, Ds is a class of sent data, Aj is a receiver and Dr is a class of
received data. Hence, a data object o of class Ds while being transmitted by a
channel n can be transformed to an object o′ belonging to Dr.

3.1 Classes

LetA is a global set of attributes (relations) and V a set of values. Let v : A → 2V

be a function that assigns to an attribute a ∈ A a set of values.

Definition 1. A class is defined as a tuple D = (Ac, vc), where Ac ⊂ A and
vc ⊂ v satisfies: ∀a ∈ Ac : a ∈ dom vc ∧ vc(a) ⊂ v(a).

Speaking informally, a class is defined by giving a set of its attributes Ac and
possible attribute values.

Following Definition 1 an object o belonging to a class D can be interpreted
as a valuation function vo : A → 2V , satisfying: ∀a ∈ dom vo : vo(a) ⊂ v(a) and
∀a ∈ Ac : a ∈ dom vo ∧ vo(a) ⊂ vc(a).

Definition 2. A class D1 = (A1, v1) subsumes (is more general than) D2 =
(A2, v2), what is denoted by D1 - D2 if A1 ⊂ A2 and ∀a ∈ A1 : v1(a) ⊃ v2(a).

A child class may introduce additional attributes or restrict values of at-
tributes appearing in its supperclass. The definition allows to classify an object
based on valuation of attributes.

To give some examples: Person - PersonWithAddress, provided that
Person = ({forename, surname, age}, {(forename → string), (surname →



Belief Propagation during Data Integration in a P2P Network 809

string), (age → [0,∞]}) and PersonWithAddress = ({forename, surname,
address}, {(forename → string), (surname → string), (age → [0,∞]),
(address→ string)}).

Another example is Person - Adolescent, where Adolescent =
({forename, surname, age}, {(forename → string), (surname → string),
(age→ [12, 18]}).

3.2 Upcasting

If a condition D1 - D2 holds, then an object o2 of the class D2 can be upcast
to the class D1.

Let us assume that o2 is described by a valuation function v2. The upcast
object o1 should satisfy: v1 = v2 \ {(a, v2(a)) : a ∈ A2 \ A1}. Upcasting allows
to view an object of a child class D2 as belonging to its parent class D1. The
upcasting operation removes a number of attributes from the mapping v2. It
should be mentioned, that the sets of admissible attribute values, which are
restricted in child classes, do not need to be changed while upcasting.

Let D = {D1, . . . , Dn} be a set of classes, and - is a subsumption relation.
The relation - is a transitive closure if ∀(Di, Dj), (Dj , Dk) ∈- : (Di, Dk) ∈-.

Technically, a closure is stored by n × n matrix of boolean values U = [uij ]
called the upcast matrix. The value of an element uij is set to T if Ci - Cj

and F otherwise. If H is a matrix showing direct taxonomic relations (direct
subsumption), then U = H∗.

3.3 Definition of a Communication System

Let c = (Ai, Ds, Aj , Dr) be a communication channel between two agents. We
limit our considerations to upcasting channels, i.e. channels satisfying Dr - Ds.
Such assumption can be justified as follows: while an object is sent through a
channel it is not likely that its content will be extended, e.g. by setting additional
attributes. Rather an opposite direction is to be taken. Some attributes may be
hidden and removed due to legal restrictions related to information access.

To summarize the discussed concepts we give below the definition of a com-
munication system.

Definition 3. A communication system is defined as Γ = (A,D,-, C), where
A is a set of agents, D a set of data types (classes), - is a subsumption relation
and C ⊂ A×D×A×D) is a set of communication channels. It is assumed that all
channels are upcasting, i.e. the following condition holds: ∀(Ai, Dm, Aj , Dn) ∈
C : Dn - Dm.

4 Reasoning

In this section we reformulate definition of the communication system in terms
of linear algebra, as well as we provide formal tools enabling reasoning about its
properties.
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4.1 System State

The state of the system is described as an assignment of sets of classes to agents.
We do not focus on the data items that are known to an agents, but rather on
classes of objects which they store.

We assume that sets of classes D and agents A are ordered. System state is
a |D| × |A| matrix S = [sij ]. Its element sij is equal to T (true) if an agent Aj is
aware of the existence of a class Di.

4.2 Communication and Belief Propagation

The set of channels C ⊂ A × D × A × D is encoded as 4-dimensional matrix
E = [eljki] of size |D| × |A| × |A| × |D| containing boolean values T and F .

eljki =

⎧⎪⎨⎪⎩
T , if (Ai, Dj, Ak, Dl) ∈ C
T , if l = i and k = j

F , otherwise

(1)

It can be observed that elements at diagonals l = i and k = j are set to T .
They play the role of identity matrix I, hence each matrix E can be decomposed
into E′ + I, where E′ describes the true communications and I guarantees that
agents preserve the information gained.

Belief propagation is described by a state equation (2), where S(m) and S(m+
1) denote successive states and ◦ is an operator that takes on input a 4D and
a 2D boolean matrix and yields a 2D matrix, whose elements are calculated
according to formula (3). In each step agents propagate information on classes
of stored data to their neighbors. They also keep information on classes they
know.

Following the Einstein convention for tensors we omit conjunction and dis-
junction in the subsequent formulas defining matrix operators.

S(m+ 1) = E ◦ S(m) (2)

slk(m+ 1) =
∨
i

∧
j

eljkis
i
j(m) (3)

4.3 Reachable State

Applying the equation (2) multiple times we obtain a sequence of states.

Proposition 1. The sequence of states σ = S(0), S(1), . . . , S(n), . . . , where
S(i+ 1) = E ◦ S(i) converges.

Proof. From (1) the matrix E can be expressed as sum of (E′ + I), hence for
any i: S(i + 1) = E′ ◦ S(i) + S(i), thus σ is nondecreasing. As each state Si
is bounded above by a matrix Smax having all elements equal to T (true), the
sequence σ converges.
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Consequences of Proposition 1 are the following: if we assume, what an agent
knows, i.e. which types of data it stores, we may conclude how far this infor-
mation can be propagated in the network. This allows for detecting information
silos or islands of belief.

4.4 Closure of a Communication Graph

Let us define and operator ⊗ that multiplies two communication matrices E and
G. The resulting matrix F = E ⊗G id given by formula (4).

fklmn = eklijg
ji
mn (4)

Each i-th element S(i) of the sequence σ can be expressed applying the oper-
ator ⊗ as (E ⊗E ⊗ . . . E) ◦ S(0), where E component appear i times. This can
be denoted shortly as: S(i) = Ei ◦ S(0)

Proposition 2. The sequence ε = E,E2, . . . Ei . . . converges.

Proof. Observe that Ei⊗E can be expressed as (E′′+I)⊗ (E′+I) = E′′⊗E′+
E′′ + E′ + I, hence the sequence ε is nondecreasing, it is also bounded above,
thus converges.

As a consequence of Proposition 2, the E∗ matrix can be interpreted as a
transitive closure of the communication graph. To give an example, if there exist
two channels c12 = (A1, D1, A2, D2) and c23 = (A2, D2, A3, D3) represented as
appropriate elements in E, the matrix E∗ contains an element corresponding to
the derived channel c13 = (A1, D1, A3, D3) being a shortcut from A1 to A3. Such
derived channels can be identified by examination of E∗ − E.

4.5 Channel and Class Matching

Let us consider a situation where agents Ai and Aj are linked by a channel
n = (Ai, Cs, Aj , Cr) and the agent Ai is aware of a class Cs2 satisfying Cs - Cs2.
The channel specification does not match directly the class Cs2, hence objects
of this class cannot be transmitted trough the channel. However, they can be
upcast to Cs (by removing extra attributes appearing in Cs2) and then sent.

Following this observation, we introduce additional component to the state
equation (2), namely the upcast matrix U .

S(m+ 1) = E ◦ (US(m)) (5)

The formula (5) can be rewritten as (6), where � operator is defined by (7).

S(m+ 1) = (E � U) ◦ S(m) (6)

fklmj = e
kl
miu

i
j (7)
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Let us observe that an upcast operation can be also applied on arrival of
data through a channel, i.e. on left side of the state equation (2). With a set of
introduced operators it can be defined as (8).

S(m+ 1) = ((I � U)⊗ E) ◦ S(m) (8)

From now we will omit operators in presented formulas assuming that appro-
priate operator can be selected based on types of operands. It should be noted
that the data structures supporting E, S and U matrices and operators given
by (3), (4) and (7) were implemented in a prototype software that was used to
analyze the example presented in the next section.

5 Example

An example of a system comprising five agents linked by communication channels
is given in Fig. 2. Agents A1 . . . A5 are marked as circles, whereas channels as
rectangles. Each channel is attributed with two class names: the first is a class
of objects that are sent, the second class of objects received. The hierarchy of
classes referenced on the diagram is shown in Fig. 3. As it can be checked, all
channels are upcasting channels, i.e. classes on output subsume classes on input.

A1 A2

A3A5 A4

B B

D F

B

B

F

F

A B

D

E D

D

C D

A A

Fig. 2. Five agents A1 . . . A5 linked by communication channels

The upcast matrix for the class hierarchy in Fig. 3 is given by (9). As we are
not capable of presenting communication matrices, we will rather enumerate the
channels they define.

U =

⎛⎜⎜⎜⎜⎜⎜⎝
T T F F F F
F T F F F F
F F T T T T
F F F T T T
F F F F T F
F F F F F T

⎞⎟⎟⎟⎟⎟⎟⎠ (9)
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A

B

C

D

FE

Fig. 3. Example of a class hierarchy

5.1 Closures of Communication Graph

In order to reason about possible communications we calculate closures of the
communication graph. Table 1 gives the communication channels for E∗, E∗U ,
UE∗ and (EU)∗. The initial setting defines 9 channels. The first column related
to E∗ gives 17 information flows, that are obtained by direct class matching
(without upcasting). The second applies upcasting on the right side. The third
column corresponds to UE∗ (upcasting objects on arrival) and the fourth applies
upcasting each time the objects are sent. For the considered example E∗U fits the
best intuition, how the communication is performed. Calculation of the closure
(EU)∗ yields channels that apply upcasting on arrival, e.g. A1 → (D)→ (C)→
A4, whereas the initial channel specification is A1 → (D) → (D) → A4. This
can be explained by analysis of formula (10) showing the expanded chain of
matrix multiplications for (EU)∗. It can be observed, that actually for each
communication, apart the last one, upcasting on reception of data occurs.

(EU)∗ = EUEU . . .E(UEU) . . . EU (10)

Regardless of the closure applied, its analysis yields valuable information
about possible information flows. Returning back to the problem origins, each
implemented channel (described by E) is defined according to law regulations
or bilateral contracts. In the case where E∗ and E differs, e.g. the channel
A3 → (B) → (B) → A1 exists in E∗ and not in E, a contract between A3

and A1 can be proposed to shorten the communication path.
An interesting problem that can be examined is a possible specification of

forbidden communication channels. Such restriction may stem from legal reg-
ulations. For example, if a channel A3 → (F ) → (C) → A4 is forbidden (c.f.
Fig. 2), its presence in (EU)∗ can be considered a possibility of an unintended
information leakage violating current law regulations.

5.2 State Reachability

Another property that can be examined is state reachability. For the analysis
an initial state S0 defining, which classes are known by the agents is required.
Then, the state equation (2) or (5) can be applied multiple times giving infor-
mation about the data types that the agents eventually should be aware of. An
alternative method consists in calculating directly E∗US0 or (EU)∗S0.
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Table 1. Commnunication and its closures

E∗ E∗U UE∗ (EU)∗

1. A1 → (D) → (D) → A4
2. A1 → (D) → (C) → A5
3. A1 → (E) → (D) → A5
4. A2 → (B) → (B) → A1
5. A2 → (F ) → (D) → A1
6. A2 → (F ) → (D) → A4
7. A2 → (F ) → (C) → A5
8. A3 → (B) → (B) → A1
9. A3 → (B) → (B) → A2
10. A3 → (B) → (A) → A4
11. A3 → (B) → (A) → A5
12. A3 → (F ) → (D) → A1
13. A3 → (F ) → (F ) → A2
14. A3 → (F ) → (D) → A4
15. A3 → (F ) → (C) → A5
16. A4 → (A) → (A) → A5
17. A4 → (D) → (C) → A5

1. A1 → (D) → (D) → A4
2. A1 → (D) → (C) → A5
3. A1 → (E) → (D) → A4
4. A1 → (E) → (C) → A5
5. A1 → (E) → (D) → A5
6. A1 → (F ) → (D) → A4
7. A1 → (F ) → (C) → A5
8. A2 → (B) → (B) → A1
9. A2 → (F ) → (D) → A1
10. A2 → (F ) → (D) → A4
11. A2 → (F ) → (C) → A5
12. A3 → (B) → (B) → A1
13. A3 → (B) → (B) → A2
14. A3 → (B) → (A) → A4
15. A3 → (B) → (A) → A5
16. A3 → (F ) → (D) → A1
17. A3 → (F ) → (F ) → A2
18. A3 → (F ) → (D) → A4
19. A3 → (F ) → (C) → A5
20. A4 → (A) → (A) → A5
21. A4 → (B) → (A) → A5
22. A4 → (D) → (C) → A5
23. A4 → (E) → (C) → A5
24. A4 → (F ) → (C) → A5

1. A1 → (D) → (C) → A4
2. A1 → (D) → (D) → A4
3. A1 → (D) → (C) → A5
4. A1 → (E) → (C) → A5
5. A1 → (E) → (D) → A5
6. A2 → (B) → (A) → A1
7. A2 → (B) → (B) → A1
8. A2 → (F ) → (C) → A1
9. A2 → (F ) → (D) → A1
10. A2 → (F ) → (C) → A4
11. A2 → (F ) → (D) → A4
12. A2 → (F ) → (C) → A5
13. A3 → (B) → (A) → A1
14. A3 → (B) → (B) → A1
15. A3 → (B) → (A) → A2
16. A3 → (B) → (B) → A2
17. A3 → (B) → (A) → A4
18. A3 → (B) → (A) → A5
19. A3 → (F ) → (C) → A1
20. A3 → (F ) → (D) → A1
21. A3 → (F ) → (C) → A2
22. A3 → (F ) → (D) → A2
23. A3 → (F ) → (F ) → A2
24. A3 → (F ) → (C) → A4
25. A3 → (F ) → (D) → A4
26. A3 → (F ) → (C) → A5
27. A4 → (A) → (A) → A5
28. A4 → (D) → (C) → A5

1. A1 → (D) → (C) → A4
2. A1 → (D) → (D) → A4
3. A1 → (D) → (C) → A5
4. A1 → (E) → (C) → A4
5. A1 → (E) → (D) → A4
6. A1 → (E) → (C) → A5
7. A1 → (E) → (D) → A5
8. A1 → (F ) → (C) → A4
9. A1 → (F ) → (D) → A4
10. A1 → (F ) → (C) → A5
11. A2 → (B) → (A) → A1
12. A2 → (B) → (B) → A1
13. A2 → (F ) → (C) → A1
14. A2 → (F ) → (D) → A1
15. A2 → (F ) → (C) → A4
16. A2 → (F ) → (D) → A4
17. A2 → (F ) → (C) → A5
18. A3 → (B) → (A) → A1
19. A3 → (B) → (B) → A1
20. A3 → (B) → (A) → A2
21. A3 → (B) → (B) → A2
22. A3 → (B) → (A) → A4
23. A3 → (B) → (A) → A5
24. A3 → (F ) → (C) → A1
25. A3 → (F ) → (D) → A1
26. A3 → (F ) → (C) → A2
27. A3 → (F ) → (D) → A2
28. A3 → (F ) → (F ) → A2
29. A3 → (F ) → (C) → A4
30. A3 → (F ) → (D) → A4
31. A3 → (F ) → (C) → A5
32. A4 → (A) → (A) → A5
33. A4 → (B) → (A) → A5
34. A4 → (D) → (C) → A5
35. A4 → (E) → (C) → A5
36. A4 → (F ) → (C) → A5

A1 A2

A3A5 A4

A[A3]

B[A3]

C[A3]

D[A3] E[A3] F[A3]

Fig. 4. Reachable state from A3 for (EU)∗

Probably, the most valuable result can be obtained by analyzing a state that
can be reached assuming that only one agent is aware of several classes (e.g.
related to the data that are stored in its local database). Hence, the reachable
state describes the range, which information originating from a given agent can
reach.

Fig. 4 shows reachable states that can be computed applying (EU)∗. Classes
are marked as rectangles and are connected by edges with agents, who know
them. In the initial state S0 agent A3 knows classes from the set {E,F,B}. The
initial assignment is marked with the continuous bold lines.
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It can be observed, that A3 does not share information of type E with anyone,
i.e. behaves like a silo with respect to E, further, data objects of type F can
reach only A2 and for B the information is shared with A1 and A2.

The analysis of reachable states may indicate several clusters of agents, each of
them assigned with a certain class Di. Hence, no data object belonging to classes
in Di may leave the cluster, which constitutes in this way an island of belief.
Presence of islands may indicate a serious obstacle for integration of activities
of various security agencies.

6 Conclusions

The main contributions of this work are an extension of Tojo’s model of belief
update with the concept of upcasting operations and an idea of its application
to reason about a P2P data integration platform within the security domain.

Introduction of upcasting channels was indispensable to model schema map-
ping and partial information hiding during data transmission. As a distinction
is made between types of data that are sent and received, 4-dimensional tensors
were used to model communications. A new element of the model is also the idea
of applying upcasting operation before transmission (technically implemented by
an upcast matrix) to match a channel specification.

Mapping the concept of upcasting back to the Tojo’s belief revision model
related to logic propositions, we may consider an atomic proposition p as a
statement: an agent A knows (stores objects of) the class P . Hence, if a class Q
subsumes P , then such knowledge can be specified by an axiom p ⇒ q, which
should be globally satisfied by an underlying semantic model.

Although the formal tools used for analysis of communications between agents
are relatively simple, they occurred surprisingly very efficient and computation-
ally feasible. The size of the presented example is small, hence, it is possible
to reason about its properties by hand. As a real use case for the developed
platform, we may expect few dozen agents storing data belonging to about ten
categories, that can be further divided into about fifty subclasses. Even if the
expected structure of communication is rather sparse, we find that for systems
of such size, a manual analysis of their properties would be virtually impossible.
Hence, models and tools supporting automated analysis can be considered a very
useful aid during the deployment and the validation.
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Żabiński, Tomasz I-622
Z λabkowski, Tomasz II-570
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