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Abstract In order to ensure high reliability of complex engineered systems against
deterioration or natural and man-made hazards, it is essential to have an efficient
and accurate method for estimating the probability of system failure regardless of
different system configurations (series, parallel, and mixed systems). Since system
reliability prediction is of great importance in civil, aerospace, mechanical, and
electrical engineering fields, its technical development will have an immediate and
major impact on engineered system designs. To this end, this chapter presents
a comprehensive review of advanced numerical methods for system reliability
analysis under uncertainty. Offering excellent in-depth knowledge for readers, the
chapter provides insights on the application of system reliability analysis methods to
engineered systems and gives guidance on how we can predict system reliability for
series, parallel, and mixed systems. Written for the professionals and researchers,
the chapter is designed to awaken readers to the need and usefulness of advanced
numerical methods for system reliability analysis.

1 Introduction

Failures of engineered systems (e.g., vehicle, aircraft, and material) lead to signifi-
cant maintenance/quality-care costs and human fatalities. Examples of such system
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failures have been found in many engineering fields: DC-10-10 aircraft engine loss
(1979), the explosion of the Challenger space shuttle (1986), Ford Explorer rollover
(1998–2000), the interstate 35W bridge failure in Minneapolis, MN (2007), etc.
Today, US industry spends $200 billion each year on reliability and maintenance.
Many system failures can be traced back to various difficulties in evaluating and
designing complex systems under highly uncertain manufacturing and operational
conditions and our limited understanding of physics of failures. Thus, reliability
analysis under uncertainty, which assesses the probability that a system performance
(e.g., fatigue, corrosion, fracture) meets its marginal value while taking into account
various uncertainty sources (e.g., material properties, loads, geometries), has been
recognized as of significant importance in product design and development (Haldar
and Mahadevan 2000).

Reliability analysis involving a single performance function is referred to as
component reliability analysis. In engineering practice, it is also very likely to
encounter reliability analysis problems involving multiple performance functions
and these performance functions often describe different physical phenomena
(associated with system performances) that are coupled together via the common
random variables shared by the functions. We refer to this type of reliability analysis
as system reliability analysis. System reliability analysis aims at analyzing the
probability of system success while considering multiple system performances (e.g.,
fatigue, corrosion, and fracture). For example, the design of a truss structure requires
both the displacement at a critical node and the stress of a critical truss element
satisfy the reliability requirements. Here we have two performance functions in
reliability analysis, i.e., the nodal displacement and the elemental stress. This
example has two failure criteria, namely, displacement and stress. Another example
is the design of a lower control A-arm in a vehicle. In this example, even if we only
consider a single failure criterion (i.e., stress), we still need to deal with multiple
performance functions which are the stresses at multiple hotspots of the control
arm.

The task may become more challenging if we have different system configura-
tions (e.g., series, parallel, and mixed). In order to ensure high reliability of complex
engineered systems against deterioration or natural and man-made hazards, it is
essential to have an efficient and accurate method for estimating the probability of
system failure regardless of different system configurations (series, parallel, and
mixed systems). Although tremendous advances have been made in component
reliability analysis and design optimization, the research in system reliability
analysis has been stagnant due to the complicated nature of the multiple system
failure modes and their interactions, as well as the costly computational expense of
system reliability evaluation (Youn and Wang 2009; Wang et al. 2011). Since system
reliability prediction is of great importance in civil, aerospace, mechanical, and
electrical engineering fields, its technical development will have an immediate and
major impact on engineered system designs. This chapter is devoted to providing
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an in-depth discussion of the recently developed numerical methods for system
reliability analyses of series, parallel, and mixed systems with an aim to give insights
into the merits and limitations of these methods.

2 Overview of Reliability Analysis Under Uncertainty

The formal definition of reliability is the probability that an engineered system will
perform its required function under prescribed conditions (for a specified period of
time). We intentionally use a bracket in this definition to indicate the existence of
two different types of reliabilities: time-independent reliability and time-dependent
reliability. The former type is often used in designing an engineered system to
provide a high built-in reliability at the very beginning of operation (i.e., it generally
does not consider the health degradation during the life cycle); the later type is often
employed in supporting an engineered system to ensure a high operational reliability
(i.e., the health degradation during the life cycle is taken into account to estimate
the reliability). The discussion in this chapter only focuses on the time-independent
reliability which can be defined as the probability that the actual performance of an
engineered system meets the required or specified design performance under various
uncertainty sources (e.g., material properties, loads, geometric tolerances). This
section discusses the types of uncertainty and provides an overview of component
and system reliability analyses under uncertainty.

2.1 Types of Uncertainty

Uncertainty present in engineering applications can be formally classified into two
categories: aleatory uncertainty and epistemic uncertainty (Swiler and Giunta 2007).
Aleatory uncertainty characterizes the inherent uncertainty in a random input of the
performance function under study. Aleatory uncertainty is objective and irreducible
and is used when sufficient data on the random input are available. Aleatory
uncertainties can be characterized by using appropriate probability distributions.
Epistemic uncertainty, on the other hand, characterizes the lack of knowledge
on the appropriate value to use for an input that has a fixed value. Epistemic
uncertainty is subjective and can be reduced by gathering more data for the input.
Epistemic uncertainty reflects the degree of “belief” and can be represented by fuzzy
sets (Möller and Beer 2004), possibility theory (Youn et al. 2007), or imprecise
probability (Ferson et al. 2003).
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This chapter assumes that sufficient random input data are available and,
thereafter, only considers aleatory uncertainty. In engineering practice, the aleatory
uncertainty of a random input X can be characterized with three sequentially
executed steps (Xi et al. 2010):

• Step 1: Obtain optimal distribution parameters for candidate probability distribu-
tions using the maximum likelihood method. It can be formulated as

maximize L
�
X
ˇ̌
ˇ•
�

D
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h
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�
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ˇ̌
ˇ•
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(1)

where • is the unknown distribution parameter vector; xl is the lth random data
point (or realization) of X; L(�) is the likelihood function; K is the number of
random data points (or realizations); and f is the probability density function
(PDF) of X for the given •.

• Step 2: Perform the Chi-Square goodness-of-fit tests on the candidate distribu-
tion types with the optimum distribution parameters obtained in Step 1. It is
noted that, depending on the specific engineering application, the Kolmogorov–
Smirnov (K–S) test or the Anderson–Darling (AD) test may be more appropriate
than the Chi-Square goodness-of-fit test.

• Step 3: Select the distribution type with the maximum p-value as the optimal
distribution type for X.

2.2 Overview of Component Reliability Analysis

The (time-independent) component reliability can be defined as the probability that
the actual performance of an engineered system meets the required or specified
design performance under various uncertainty sources (e.g., material properties,
loads, geometric tolerances). This definition is often used in reliability-based design
of civil structural systems, mechanical systems, and aerospace systems. In order to
formulate the component reliability in a mathematical framework, random variables
are often used to model uncertainty sources in engineered systems. The time-
independent reliability can then be formulated as

R.X/ D P.G.X/ < 0/ D 1 � P.G.X/ � 0/ (2)

where the random vector X D (X1, X2, : : : , XN)T models uncertainty sources such
as material properties, loads, geometric tolerances; G(X) is a system performance
function and the system success event Esys D fG(X) < 0g. The uncertainty of the
vector X further propagates and leads to the uncertainty in the system performance
function G. In reliability analysis, equating the system performance function G
to zero, i.e., G D 0, gives us the so-called limit-state function which separates
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the safe region G(X) < 0 from the failure region G(X) > 0. Depending on the
specific problems, a wide variety of system performance functions can be defined
to formulate component reliabilities. The most well-known example is the safety
margin between the strength and load of an engineered system.

The concept of component reliability analysis in a two-dimensional case is
illustrated in Fig. 1. The dashed lines represent the contours of the joint PDF of
the two random variables X1 (operational factors) and X2 (manufacturing tolerance).
The basic idea of component reliability analysis is to compute the probability that
X is located in the safety region fG < 0g. Mathematically, this probability can be
expressed as a multidimensional integration of the performance function over the
safety region

R.X/ D P.G.X/ < 0/ D
Z

� � �
Z

�S
fX.x/dx (3)

where X D (X1, X2, : : : , XN)T models uncertainty sources such as material proper-
ties, loads, geometric tolerances; fX(x) denotes the joint PDF of this random vector;
the safety domain �S is defined by the limit-state function as �S D fX: G(X) < 0g.

Neither analytical multidimensional integration nor direct numerical integra-
tion is computationally affordable for large-scale engineering problems where
the numbers of random variables are relatively large. The search for efficient
computational procedures to estimate the component reliability has resulted in
a variety of numerical and simulation methods. In general, these methods can
be categorized into four groups: (1) expansion methods; (2) most probable point
(MPP)-based methods; (3) sampling methods; and (4) stochastic response surface
methods (SRSMs). In what follows we intend to give an overview of these methods.

Expansion methods obtain the second-moment statistics of the performance
function based on the first- or second-order Taylor series expansion of this function
at the mean values of the input random variables (Haldar and Mahadevan 2000).
Reliability can be computed by assuming that the performance function follows a
normal distribution. It can be seen, therefore, that expansion methods involve two
approximations, i.e., the first-order (linear) or second-order (quadratic) approxima-
tion of the performance function at the mean values and the normal approximation
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to the PDF of the performance function. The approximations lead to the fact that
these methods are only applicable for engineering problems with relatively small
input uncertainties and weak output nonlinearities.

Among many reliability analysis methods, the first- or second-order reliability
method, FORM (Hasofer and Lind 1974) or SORM (Breitung 1984; Tvedt 1984),
is most commonly used. The FORM/SORM uses the first- or second-order Taylor
expansion to approximate a limit-state function at the most probable failure point
(MPP) where the limit-state function separates failure and safety regions of a
product (or process) response. Some major challenges of the FORM/SORM include
(1) it is very expensive to build the probability density function (PDF) of the
response and (2) structural design can be expensive when employing a large number
of the responses.

The sampling methods include the direct or smart Monte Carlo simulation (MCS)
(Rubinstein 1981; Fu and Moses 1988; Au and Beck 1999; Hurtado 2007; Naess
et al. 2009). Assuming that we know the statistical information (PDFs) of the input
random variables, the direct MCS generally involves the following three steps:

• Step 1: The MCS starts by randomly generating a large number of samples based
on the PDFs of the random inputs.

• Step 2: In this step, the performance function is evaluated at each of the random
samples. Simulations or experiments need to be conducted for this purpose.
Upon the completion of this step, we obtain a large number of random values
or realizations of the performance function.

• Step 3: We extract from these random realizations the probabilistic characteristics
of the performance function, including statistical moments, reliability, and PDF.

Although the direct MCS (Rubinstein 1981) produces accurate results for
reliability analysis and allows for relative ease in the implementation, it demands
a prohibitively large number of simulation runs. Thus, it is often used for the
purpose of a benchmarking in reliability analysis. To alleviate the computational
burden of the direct MCS, researchers have developed various smart MCS methods,
such as the (adaptive) importance sampling methods (Fu and Moses 1988; Au
and Beck 1999; Hurtado 2007) and the enhanced MCS method with an optimized
extrapolation (Naess et al. 2009). Despite the improved efficiency than the direct
MCS, these methods are still computationally expensive.

The SRSM is an emerging technique for reliability analysis under uncertainty.
As opposed to the deterministic response surface method whose input variables
are deterministic, the SRSM employs random variables as its inputs. The aim
of the SRSM is to alleviate the computational burden required for accurate
uncertainty quantification (i.e., quantifying the uncertainty in the performance
function) and reliability analysis. This is achieved by constructing an explicit
multidimensional response surface approximation based on function values given at
a set of sample points. Generally speaking, uncertainty quantification and reliability
analysis propagation of input uncertainty through a model using the SRSM consists
of the following steps: (1) determining an approximate functional form for the
performance function (possible based on the statistical information of the input
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random variables); (2) evaluating the parameters of the functional approximation
based on function values at a set of sample points; (3) conducting MCS or numerical
integration based on the functional approximation to obtain the probabilistic charac-
teristics (statistical moments, reliability, and PDF) of the performance function. The
current state-of-the art SRSMs for uncertainty quantification include the dimension
reduction (DR) methods (Rahman and Xu 2004; Xu and Rahman 2004; Youn et al.
2008, Youn and Xi 2009), stochastic spectral methods (Ghanem and Spanos 1991;
Wiener 1938; Xiu and Karniadakis 2002; Foo et al. 2008; Foo and Karniadakis
2010), and stochastic collocation methods (Smolyak 1963; Grestner and Griebel
2003; Klimke 2006; Ganapathysubramanian and Zabaras 2007; Xiong et al. 2010;
Hu and Youn 2011).

2.3 Overview of System Reliability Analysis

System reliability analysis aims at analyzing the probability of system success while
considering multiple system performances (e.g., fatigue, corrosion, and fracture).
Figure 2 illustrates the concept of system reliability analysis with a simple series
system involving two performance functions (i.e., fatigue safety G1 and wear safety
G1) and two random variables (i.e., operational factors X1 and manufacturing
tolerance X2). We have two limit state functions G1 D 0 and G2 D 0 which divides
the input random space into four subspaces fG1 < 0 and G2 < 0g, fG1 < 0 and
G2 > 0g, fG1 > 0 and G2 < 0g, fG1 > 0 and G2 > 0g. Component reliability analysis
aims at quantifying the probability that a random sample x falls into the component
safety region (i.e., fG1 < 0g or fG2 < 0g) while system reliability analysis (assuming
a series system) aims at quantifying the probability that a random sample x falls
into the system safety region (i.e., fG1 < 0 and G2 < 0g). Clearly, the component
reliability (for fG1 < 0g or fG2 < 0g) is larger than the system reliability since the
component safety region has a larger area than the system safety region by the area
of an intersection region fG1 < 0 and G2 > 0g or fG1 > 0 and G2 < 0g.
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The aforementioned discussion leads to a mathematical definition of system
reliability as a multidimensional integration of a joint probability density function
over a system safety region, expressed as

Rsys D
Z

� � �
Z

�S
fX .x/ dx (4)

where X D (X1, X2, : : : , XN)T models uncertainty sources such as material proper-
ties, loads, geometric tolerances; fX(x) denotes the joint PDF of this random vector;
�S denotes the system safety domain. We can see that this formula bears a striking
resemblance to that of component reliability analysis. The only difference between
these two formulae lies in the definition of the safety domain. For component
reliability analysis, the safety domain can be defined in terms of a single limit-
state function as �S D fx: G(x) < 0g. For system reliability analysis involving nc
performance functions, the safety domains can be expressed as

�S D fx W \nc
iD1Gi .x/ < 0g series system

�S D fx W [nc
iD1Gi .x/ < 0g parallel system

�S D ˚
x W [np

kD1\i2Pk
Gi .x/ < 0

�
mixed system (5)

where Pk is the index set in the kth path set and np is the number of mutually
exclusive path sets.

It can be observed that a series system requires all the performance functions
satisfy the reliability requirements, resulting in the system safety events being an
intersection of component safety events, expressed as

Eseries D \nc
iD1Gi .x/ < 0 (6)

In this case, the system survives if and only if all of its constraints satisfy the
reliability requirements.

In contrast to a series system, a parallel system has multiple path sets with each
being its component safety event, expressed as

Eparallel D [nc
iD1Gi .x/ < 0 (7)

In this case, the component survives if any of its constraints satisfy the reliability
requirement. A comparison between a series system and a parallel system is
graphically shown in Fig. 3, where we observe that the safety domain of a parallel
system contains two more regions fG1 > 0 and G2 < 0g and fG1 < 0 and G2 > 0g,
resulting in a higher system reliability value.

The logic becomes more complicated for a mixed system. We often need to
describe the system success event of a mixed system in terms of the mutually
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exclusive path sets of which each path set Pathk is a series system with multiple
component safety events specified in Pathk. Thus, we have the following expression

Emixed D [np

kD1\i2Pathk
Gi .x/ < 0 (8)

In probability theory, two events are said to be mutually exclusive if they cannot
occur at the same time or, in other words, the occurrence of any one of them
automatically implies the nonoccurrence of the other. Here, system path sets are
said to be mutually exclusive if any two of them are mutually exclusive.

By employing the system safety event Esys, we can derive another important
formula for system reliability analysis as

Rsys D Pr
�
Esys

�
(9)

where Esys represents Eseries, Eparallel, and Emixed, for a series system, a parallel
system, and a mixed system, respectively.

We note that, in practice, it is extremely difficult to perform the multidimensional
numerical integration for system reliability analysis in Eq. (4) due to the high
nonlinearity and complexity of the system safety domain. In contrast to the
tremendous advances in component reliability analysis as discussed in Sect. 2.2,
the research in system reliability analysis has been stagnant, mainly due to the
complicated nature of the multiple system failure modes and their interactions, as
well as the costly computational expense of system reliability evaluation (Wang
et al. 2011).

Due to the aforementioned difficulties, most system reliability analysis methods
provide the bounds of system reliability. Ditlevsen proposed the most widely
used second-order system reliability bound method (Ditlevsen 1979), which gives
much tighter bounds compared with the first-order bounds for both series and
parallel systems. Other equivalent forms of Ditlevsen’s bounds were given by
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Thoft-Christensen and Murotsu (1986), Karamchandani (1987), Xiao and Mahade-
van (1998), Ramachandran (2004). Song and Der Kiureghian formulated system
reliability to a Linear Programming (LP) problem, referred to as the LP bound
method (Song and Der Kiureghian 2003) and latterly the matrix-based system
reliability method (Nguyen et al. 2010). The LP bound method is able to calculate
the optimal bounds for system reliability based on available reliability information.
However, it is extremely sensitive to accuracy of the available reliability informa-
tion, which is the probabilities for the first-, second-, or higher-order joint safety
events. To assure high accuracy of the LP bound method for system reliability
prediction, the probabilities must be given very accurately.

Besides the system reliability bound methods, one of the most popular approaches
is the multimodal Adaptive Importance Sampling (AIS) method, which is found
satisfactory for the system reliability analysis of large structures (Mahadevan
and Raghothamachar 2000). The integration of surrogate model techniques with
Monte Carlo Simulation (MCS) can be an alternative approach to system reliability
prediction as well (Zhou et al. 2000). This approach, which can construct the
surrogate models for multiple limit-state functions to represent a joint failure region,
is quite practical but accuracy of the approach depends on fidelity of the surrogate
models. It is normally expensive to build accurate surrogate models.

Most recently, Youn and Wang (2009) introduced a new concept of the
complementary intersection event and proposed the Complementary Intersection
Method (CIM) for series system reliability analysis. The CIM provides not only
a unique formula for system reliability but also an effective numerical method
to evaluate the system reliability with high efficiency and accuracy. The CIM
decomposes the probabilities of high-order joint failure events into probabilities
of complementary intersection events. For large-scale systems, a CI matrix was
proposed to store the probabilities of component safety and complementary
intersection events. Then, series system reliability can be efficiently evaluated by
advanced reliability methods, such as dimension reduction method and stochastic
collocation method. Later, the GCIM framework was proposed to generalize the
original CIM so that it can be used for system reliability analysis regardless of
system structures (series, parallel, and mixed systems) (Wang et al. 2011). In
the subsequent sections, we will review in details the most widely used system
reliability bound methods (Ditlevsen 1979) as well as the recently developed point
estimation method (Youn and Wang 2009; Wang et al. 2011).

3 System Reliability Analysis for Serial System

A series system succeeds only if all of its components succeed and, in other words,
the system fails if any of its components fails. Let us start with a simple series
system, namely, a steel portal frame structure shown in Fig. 4 (Ditlevsen 1979).
The structure is subjected to a vertical load V at the center of the top beam and
a horizontal load F at the hinge joint between the top and bottom-left beams.
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Fig. 4 Loading condition and three failure modes of the portal frame structure (Ditlevsen 1979).
(a) Loading condition, (b) beam failure, (c) sway failure, and (d) combined failure

These two loads are assumed to be Gaussian random variables. According to the
yield hinge mechanism theory, the frame structure has three distinct failure modes:
beam failure, sway failure, and combined failure, as shown in Fig. 4.

If we assume an identical yield moment My for all three beams, we then have the
following performance functions for the three failure modes

Beam W G1 D V l � 4My

Sway W G2 D F h � 4My

Combined W G3 D V l C F h � 6My

(10)

The limit-state functions for the three failure modes are graphically shown in
Fig. 5. The failure domain for each failure mode, or the component failure domain,
can be expressed as f(F, V)j Gi > 0g, for i D 1, 2, 3, as shown in Fig. 5. Since the
occurrence of any of the three failure modes causes system failure, the system failure
domain is a union of the component failure domains and has a larger area than any
of the component failure domain (see Fig. 5). If we define the failure event of the ith
failure mode as NE i, the probability of system failure for the portal frame structure
can be expressed as

pf s D P
�
E1 [ E2 [ E3

�
(11)

where pfs represents the probability of system failure. The above equation can be
further derived in terms of the probabilities of component and joint failure events,
expressed as



282 C. Hu et al.

F

V
Beam: G1 = 0

Sway: G2 = 0

0

Combined: G3 = 0

G1 > 0 G2 > 0 G3 > 0F

V

0 F

V

0 F
V

0

Fig. 5 Limit-state functions and system failure domain of the portal frame structure
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�
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(12)

where NE i \ NE j is the second-order joint failure event composed of the component
failure events NE i and NE j, for 1 � i < j � 3, and NE1 \ NE2 \ NE3 is the third-order joint
failure event composed of the component failure events NE1, NE2, and NE3.

As the number of component events increases, we may have fourth- and higher-
order joint events. Considering a series system with m components, the probability
of system failure can be expressed as

pf s D P

�
m[

iD1
Ei

�
D

nX
j D1

.�1/j C1Pj with Pj D
X

1�i1<���<ij �n

P

 
\

k2fi1;:::;ij g
Ek

!

(13)

where pfs represents the probability of system failure and NE i denotes the failure
event of the ith component. It can be observed that, to exactly analyze system
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reliability with m series connected components, we generally need to compute the
probabilities of joint events up to the mth order. Unlike the computation of the
probability of a component failure or safety event discussed earlier, the computation
of a joint failure or safety event is very difficult and even practically impossible
unless we employ the very expensive MCS or direct numerical integration. The
research efforts to alleviate the computational burden have resulted in a set of system
reliability bound methods, such as the first- and second-order bound methods, and
the point estimation method or the complementary intersection method (CIM) (Youn
and Wang 2009).

3.1 First- and Second-Order Bound Methods

The simplest system reliability bounds are the so-called first-order bounds. Based
on the well-known Boolean bounds in Eq. (14), the first-order bounds of probability
of system failure are given in Eq. (15).

max
i

�
P
�
Ei

�� � P

�
m[

iD1
Ei

�
�

mX
iD1

P
�
Ei

�
(14)

max
	
P
�
Ei

�
 � pf s � min

"
mX

iD1

P
�
Ei

�
; 1

#
(15)

The lower bound in Eq. (15) is obtained by assuming the component events are
perfectly independent and the upper bound is derived by assuming the component
events are mutually exclusive. Despite the simplicity (only component reliability
analysis required), the first-order bound method provides very wide bounds of
system reliability that are not practically useful. Thus, the second-order bound
method was proposed by Ditlevsen (1979) in Eq. (16) to give much narrower bounds
of probability of system failure.

P
�
E1

�C
mX

iD2

max

8
<
:

2
4P

�
Ei

� �
i�1X
j D1

P
�
Ei Ej

�
3
5 ; 0

9
=
; � pf s

� min

("
mX

iD1

P
�
Ei

� �
mX

iD2

max
j <i

P
�
Ei Ej

�
#

; 1

)
(16)

where E1 is the event having the largest probability of failure.
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Fig. 6 Statically determinate
truss structure system
(Ditlevsen 1979; Song and
Der Kiureghian 2003)

Case Study 1

Consider a statically determinate truss structure (Ditlevsen 1979; Song and Der
Kiureghian 2003) in Fig. 6. In this structure, the failure of any truss member leads to
the failure of the truss. Thus, the truss structure can be treated as a series system with
the seven truss members as its components. For this illustration, we assume the fol-
lowing probabilities of the component and joint failure events (with Pi D P( NE i), and
Pij D P( NE i \ NE j)): P1 D 1.88E�4, P2 D 1.88E�4, P3 D 1.88E�4, P4 D 1.88E�4,
P5 D 1.88E�4, P6 D 1.88E�4, and P7 D 1.88E�4, P12 D 5.73E�5, P13 D 4.35E�5,
P14 D 5.42E�5, P15 D 4.59E�5, P16 D 5.13E�5, P17 D 4.85E�5, P23 D 6.08E�5,
P24 D 7.79E�5, P25 D 6.47E�5, P26 D 7.42E�5, P27 D 6.87E�5, P34 D 5.75E�5,
P35 D 4.86E�5, P36 D 5.43E�5, P37 D 5.14E�5, P45 D 6.10E�5, P46 D 6.88E�5,
P47 D 6.48E�5, P56 D 5.76E�5, P57 D 5.44E�5, and P67 D 6.11E�5. Compute the
first- and second-order bounds for the probability of failure of the truss.

Solution Let us first compute the first-order bounds with Eq. (15) as:

max
	
P
�
Ei

�
 � pf s � min

"
mX

iD1

P
�
Ei

�
; 1

#

The lower and upper bounds can be computed as

max
	
P
�
Ei

�
 D 1:88E � 4

min

"
mX

iD1

P
�
Ei

�
; 1

#
D min Œ1:32E � 3; 1� D 1:32E � 3

Thus, the first-order bounds are [1.88E�4, 1.32E�3]. Then we compute the
second-order bounds with Eq. (16). The lower and upper bounds are computed as
4.02E�4 and 9.12E�4, respectively. Thus, the second-order bounds are [4.02E�4,
9.12E�4]. We can clearly see that, compared to the first-order bound method, the
second-order bound method gives much narrower bounds of probability of system
failure (and thus system reliability).
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3.2 Point Estimation Method

In reliability-based design, it is more desirable to have a unique point estimate of
system reliability than an interval estimate. In what follows, we introduce a recently
developed point estimate method (Wang et al. 2011), namely, the generalized
complementary intersection method (GCIM).

Since the probabilities of all events are nonnegative, the following inequalities
must be satisfied as

max
i

�
P
�
Ei

�� �
vuut

mX
iD1

	
P
�
Ei

�
2 �
mX

iD1

P
�
Ei

�
(17)

Based on Eqs. (16) and (17), the probability of system failure (pfs) of a series
system failure can be simplified to a unique explicit formula as

pf s Š P
�
E1

�C
mX

iD2

*
P
�
Ei

� �
vuut

i�1X
j D1

	
P
�
Ei Ej

�
2
+

(18)

It can be proved that this approximate probability lies in the second-order bounds
in Eq. (16). Based on Eq. (18), serial system reliability can be assessed as (1 � the
probability of system failure) and formulated as

Rsys D P .E1E2 � � � Em�1Em/ Š P .E1/ �
mX

iD2

*
P
�
Ei

� �
vuut

i�1X
j D1

	
P
�
Ei Ej

�
2
+

where hAi �
�

A; if A > 0

0; if A � 0 (19)

Note that the terms inside the bracket, h�i, should be ignored if it is less than
zero and Rsys should be set to zero if the approximated one given by Eq. (19) is
less than zero. It is noted that Eq. (19) provides an explicit and unique formula for
system reliability assessment based on the second-order reliability bounds shown in
Eq. (16) and an inequality Eq. (17).

Case Study 2

Consider an internal combustion engine for series system reliability analysis (Liang
et al. 2007). Five random variables are considered in this example: the cylinder
bore b, compression ratio cr, exhaust valve diameter dE, intake valve diameter dI,
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Table 1 Statistical information of input random variables for internal combustion engine

Random variable Mean Standard deviation Distribution type

b (mm) – 0.40 Normal
cr (mm) – 0.15 Normal
dE (mm) – 0.15 Normal
dI – 0.05 Normal
! (�10–3) – 0.25 Normal

Table 2 Eight different design points for system reliability analysis

Mean values for random variables

Design points B cr dE dI !

1 82.1025 35.8039 30.3274 9.3397 5.2827
2 82.3987 36.1754 30.4835 9.3684 5.5983
3 82.5511 36.3630 30.5676 9.3811 5.7550
4 82.6770 36.5187 30.6334 9.3920 5.8901
5 82.8234 36.7006 30.7121 9.4049 5.9498
6 82.8750 36.7655 30.7407 9.4096 5.9754
7 82.9204 36.8222 30.7657 9.4137 5.9772
8 82.9977 36.9197 30.8084 9.4204 5.9795

and the revolutions per minute (rpm) at peak power, !. From a thermodynamic
viewpoint, nine component safety events are defined as follows:

E1 D f1:2Ncb � 400 � 0g .min :bore wall thickness/

E2 D
n
Œ8V= .200�Nc/�

0:5 � b � 0
o

.max :engine height/

E3 D fdI C dE � 0:82b � 0g .valve geometry and structure/

E4 D f0:83dI � dE � 0g .min :value diameter ratio/

E5 D fdE � 0:89dI � 0g .max :value diameter ratio/

E6 D
n
9:428 � 10�5 Œ4V= .�Nc/�

�
!=dI

2
�

� 0:6Cs � 0
o

.max :Mech=Index/

E7 D f0:045b C cr � 13:2 � 0g .knock-limit compression ratio/

E8 D f! � 6:5 � 0g .max :torque converter rpm/

E9 D ˚
230:5Q�tw � 3:6 � 106 � 0

�
.max :fuel economy/

where

�tw D 0:85951
�
1 � c�0:33

r

� � Sv; V D 1:859 � 106 mm3

Q D 43;958 kJ=kg; Cs D 0:44; and Nc D 4

All the random variables are assumed to follow normal distribution with statis-
tical information presented in Table 1. Perform system reliability analyses at the
eight reliability-based optimum design points as listed in Table 2 using the first-
order bounds (FOB), second-order bounds (SOB), and GCIM methods (Wang et al.
2011).
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Table 3 Results of system reliability analysis with MCS, FOB using MCS, SOB using MCS, and
GCIM using MCS (M D 1,000,000)

System reliability level at each design

Analysis method 1 2 3 4 5 6 7 8

FOB Upper 0.9989 0.9899 0.9745 0.9495 0.8984 0.8742 0.8490 0.7988
Lower 0.9949 0.9506 0.8744 0.7432 0.5367 0.4318 0.3410 0.1513

SOB Upper 0.9949 0.9520 0.8822 0.7741 0.6224 0.5554 0.4987 0.3967
Lower 0.9949 0.9517 0.8798 0.7653 0.5929 0.5190 0.4418 0.3049

GCIM 0.9949 0.9518 0.8805 0.7674 0.6026 0.5312 0.4612 0.3371
MCS 0.9949 0.9520 0.8820 0.7731 0.6179 0.5476 0.4871 0.3748
GCIM error 0.0000 0.0002 0.0015 0.0057 0.0153 0.0164 0.0259 0.0377

Fig. 7 Results of system reliability analysis at eight different reliability levels (Wang et al. 2011)

Solution Equations (15), (16), and (19) are used to compute the first-order system
reliability bounds in the FOB, the second-order system reliability bounds in the
SOB, and the point system reliability estimate in the GCIM, respectively. The
probabilities of component and second-order joint failure events are computed with
the direct MCS. The results of system reliability analysis at the eight design points
are summarized in Table 3 and also graphically shown in Fig. 7 (Wang et al.
2011). From the results, it is found that the first-order bound method gives too wide
bounds to be of practical use. On the contrary, the second-order bound method gives
tighter bounds. It is expected based on the results that the GCIM can predict system
reliabilities accurately at various reliability levels and the estimation errors tend to
be lower at high system reliability levels (e.g., greater than 0.95), which are often
encountered in engineering practices, than those at low system reliability levels.



288 C. Hu et al.

This case study considers the first- and second-order joint failure events. The
GCIM produces numerical error because of the ignorance of the probabilities of
the third- or higher-order joint failure events. The effects of the third- or higher-
order joint failure events tend to increase as the system reliability decreases, simply
because the probabilities of joint failure events are usually bigger at low reliability
level than at high reliability level. This is also true for the reliability bound methods.
As can be observed from Table 3 and Fig. 7, the lower the system reliability, the
larger the GCIM estimation error and the wider the bounds produced by the FOB
and SOB. Thus for series systems, the GCIM produces smaller numerical error at a
high system reliability level than that at a lower level. This is valid only for series
systems. When only probabilities of the first- and the second-order joint events are
used for system reliability analysis, the GCIM will provide comparable results with
the average of SOBs. However, compared with SOBs, the GCIM provides system
reliability analysis formula with probabilities of any-order joint events.

3.3 Computation of Joint Events

In Case Study 2, we use the direct MCS to compute the probabilities of joint events
( NE i \ NE j D fG1 > 0 and G2 > 0g. In practice, however, the direct MCS requires an
intolerably large number of function evaluations. On the other hand, the component
reliability analysis methods (e.g., FORM/SORM, DR methods, stochastic spectral
methods, and stochastic collocation methods) discussed earlier cannot be directly
used to compute these probabilities since there are neither explicit nor implicit
performance functions associated with the joint events. Therefore, the primary
challenge in system reliability analysis lies in efficient and accurate determination of
the probabilities of joint safety events. In what follows, we review a newly developed
method to efficiently evaluate the probabilities of the second- or higher-order joint
safety events. This method is embedded in the aforementioned GCIM as a solver for
the probabilities of joint events (Youn and Wang 2009; Wang et al. 2011).

The second-order CI event can be denoted as Eij � fXjGi � Gj � 0g. The CI event
can be further expressed as Eij D NE i Ej [ Ei NE j where the component failure events
are defined as NE i D fXjGi > 0g, NE j D fXjGj > 0g. The CI event Eij is thus composed
of two events: Ei NE j D fXjGi � 0 \ Gj > 0g and NE i Ej D fXjGi > 0 \ Gj � 0g. Since
the events, NE i Ej and Ei NE j, are disjoint, the probability of the CI event Eij can be
expressed as (Youn and Wang 2009)

P
�
Eij

� � P .X j Gi � Gj � 0
�

D P
�
X
ˇ̌
ˇGi > 0 \ Gj � 0

�
C P .X j Gi � 0 \ Gj > 0

�

D P
�
Ei Ej

�C P
�
Ei Ej

�
(20)
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Fig. 8 Decomposition of a joint failure event into component safety and CI events

Based on the probability theory, the probability of the second-order joint safety
event Ei \ Ej can be expressed as

P
�
EiEj

� D P .Ei / � P
�
EiEj

�

D P
�
Ej

� � P
�
Ei Ej

�
(21)

From Eqs. (20) and (21), the probabilities of the second-order joint safety and
failure events can be decomposed as

P
�
Ei Ej

� D 1

2

	
P .Ei / C P

�
Ej

� � P
�
Eij

�

(22)

P
�
Ei Ej

� D 1 � 1

2

	
P .Ei/ C P

�
Ej

�C P
�
Eij

�

(23)

It is noted that each CI event has its own limit state function, which enables
the use of any component reliability analysis method. The decomposition of joint
failure events into component safety and CI events is graphically shown in Fig. 8.
We observe that a joint failure event without any limit-state function is decomposed
into two component safety events and one CI events, all of which have their own
limit-state function and thus allows for the use of any component reliability analysis
method.

We have discussed the definition of the second-order CI event. In general, this
definition can be generalized to any higher-order event. Let an Kth-order CI event
denote E12 : : : K � fXjG1 � G2 � : : : GK � 0g, where the component safety (or first-
order CI) event is defined as Ei D fXjGi � 0, i D 1, 2, : : : , Kg. The defined Kth-order
CI event is actually composed of K distinct intersections of component events Ei

and their complements NE j in total where i, j D 1, : : : , K and i ¤ j. For example,
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for the second-order CI event Eij, it is composed of two distinct intersection events,
E1 NE2 and NE1E2. These two events are the intersections of E1 (or E2) and the
complementary event of E2 (or E1).

Based on the definition of the CI event, the probability of an Nth-order joint safety
event can be decomposed into the probabilities of the component safety events and
the CI events as (Youn and Wang 2009)

P

�
N\

iD1
Ei

�

D 1

2N �1

2
6666666666666666666666664

NX
iD1

P .Ei / �
NX

i D 1I
j D 2I
i < j

P
�
Eij

�C
NX

i D 1I
j D 2I
k D 3

i < j < k

P
�
Eijk

�C � � � C

.�1/m�1

NX

i D 1I
j D 2I

:::

l D m

i < j < � � � < l

P

0
B@Eij � � � l„ƒ‚…

m

1
CAC � � � C .�1/N �1P .E12���N /

3
7777777777777777777777775

(24)

It is again noted that each CI event has its own limit state function, which
enables the use of any component reliability analysis methods. In general, higher-
order CI events are expected to be highly nonlinear. As a good trade-off between
computational efficiency and accuracy, the use of the first- and second-order CI
events in Eq. (24) is suggested for system reliability analysis of most engineered
systems. However, we still note that more terms in Eq. (24) can be obtained within
the same computational budget as advanced component reliability analysis methods
are developed in future.

Case Study 3

Consider the steel portal frame structure shown in Fig. 4. In the three performance
functions for the three failure modes in Eq. (10), the vertical load G and the
horizontal load F are assumed to be Gaussian random variables with means both
means being 35,000 N and standard deviations being 7,000 N. The other variables
in the performance functions are assumed to be deterministic and take the following
values: l D h D 5 m, and My D 60,000 Nm.
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1. Compute the probabilities of component safety events and second-order CI
events with the direct MCS.

2. Based on the results from (1), compute the probabilities of second-order safety
events.

3. Determine the first- and second-order bounds.

Solution (1) If we conduct a direct MCS with M random samples x1, x2, : : : , xM ,
the probabilities of component safety events can be computed as

P .Ei / D E .I .Gi .x/ < 0//

� 1

M

MX
kD1

I
�
Gi

�
xj

�
< 0

�
; for i D 1; 2; 3

The probabilities of second-order CI events can be computed as

P
�
Eij

� D E
�
I
�
Gi .x/ Gj .x/ < 0

��

� 1

M

MX
kD1

I
�
Gi .xk/ Gj .xk/ < 0

�
; for .i; j / D .1; 2/ ; .1; 3/ ; .2; 3/

We can conveniently write these probabilities in a CI matrix. For this example
with three components in total, the CI matrix can be defined as

CI D
2
4

P .E1/ P .E12/ P .E13/

� P .E2/ P .E23/

� � P .E3/

3
5

In the upper triangular CI matrix, the diagonal elements correspond to the
component reliabilities (or probabilities of the first-order CI events) and the element
on ith row and jth column corresponds to the probability of the second-order CI
event Eij if j < i. The CI matrix computed with a direct MCS with 1,000,000 random
samples reads

CI D
2
4

0:9686 0:0610 0:3891

� 0:9682 0:3891

� � 0:5811

3
5

It is noted that all the probabilities in the CI matrix (the probabilities of com-
ponent events and second-order CI events) can be computed using any component
reliability analysis method (e.g., FORM/SORM, DR, PCE) instead of the direct
MCS.

(2) Based on the CI matrix obtained from (1) and according to Eq. (23), we
can obtain the probabilities of second-order failure events as P( NE1 NE2) D 0.0011,
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P( NE1 NE3) D 0.0306, and P( NE2 NE3) D 0.0308. For example, the probability of the
second-order failure event P( NE2 NE3) can be computed as

P
�
E2E3

� D 1 � 1

2
ŒP .E2/ C P .E3/ C P .E23/�

D 1 � 1

2
Œ0:9682 C 0:5811 C 0:3891�

D 0:0308

(3) The first-order bounds can be computed with Eq. (15) as:

1 � min

"
mX

iD1

P
�
Ei

�
; 1

#
� Rsys � 1 � max

	
P
�
Ei

�


The lower and upper bounds can be computed as

1 � min

"
mX

iD1

P
�
Ei

�
; 1

#
D 1 � min Œ0:4812; 1� D 0:5188

1 � max
	
P
�
Ei

�
 D 1 � 0:4189 D 0:5811

Thus, the first-order bounds read [0.5188, 0.5811]. Note that the above bounds
are the first-order bounds of system reliability. The corresponding bounds of system
probability failure can be easily obtained by exchanging the lower and upper bounds
and subtracting both from 1. Then we compute the second-order bounds with
Eq. (16) as [0.5793, 0.5801]. We can again clearly see that, compared to the first-
order bound method, the second-order bound method gives much narrower bounds
of system reliability.

4 System Reliability Analysis for Parallel System

Unlike a series system whose success requires the success of all its components,
a parallel system succeeds as long as one of its components succeeds. In other
words, a parallel system fails only if all its components fail, and the probability of
system failure is the probability of the intersection of all component failure events,
expressed as

pf s D P

�
m\

iD1
Ei

�
(25)

Consider a 10-bar parallel system in Fig. 9 (Wang et al. 2011), where 10 brittle
bars are connected in parallel to sustain a vertical load applied at one end. Ten bars



Advances in System Reliability Analysis Under Uncertainty 293

1 2 10

F

… …

si

ef3ef2ef1 ef10

e

… …

1

2

3

10

… …

a b

Fig. 9 Ten brittle bar parallel system: (a) system structure model; (b) brittle material behavior in
a parallel system (Wang et al. 2011)

are all brittle with different fracture strain limits "fi, 1 � i � 10, which are sorted in an
ascending order. If the exerted strain " is between the (i – 1)th and ith fracture strain
limits, i.e., ni–1) � " < "fi, bar components with fracture strains below "fi will fail,
and the allowable load is then the sum of the strength of components with fracture
strains equal to or above "fi. Therefore, the strain level corresponding to the overall
maximum allowable load is among the 10 fracture strain limits.

Ten success scenarios where the tem-bar system can withstand the vertical load
are listed as (Wang et al. 2011):

• First success scenario (" D "f 1): No fracture occurs, and the system strength RT ,
as the sum of strength of all the 10 brittle bars, is larger than the load F. The
performance function can be expressed as

G1 D F �
10X

j D1

Rj

�
"f 1

� D F �
10X

j D1

�
Ej Aj

� � "f 1 (26)

where Rj represents the allowable load that can be sustained by the jth brittle bar,
Aj the cross section area of the jth brittle bar, and Ej the Young’s modulus of the
jth brittle bar.

• Second success scenario (" D "f 2): The first brittle bar fails due to the fracture
and no longer contributes to the overall system strength. The system strength RT ,
as the sum of strength of the other nine brittle bars, is larger than the load F. The
performance function can be expressed as

G1 D F �
10X

j D2

Rj

�
"f 2

� D F �
10X

j D1

�
Ej Aj

� � "f 2 (27)
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• Tenth success scenario (" D "f 10): The first nine brittle bars fail due to the fracture
and no longer contribute to the overall system strength. The system strength RT ,
as the sum of strength of the remaining one bar, is larger than the load F. The
performance function can be expressed as

G1 D F � R10

�
"f 10

� D F � .E10A10/ � "f 10 (28)

The brittle bar system fails to sustain the load F only if we have the
nonoccurrence of all the 10 success scenario or, in other words, the system
strength at any of the 10 fracture strains is smaller than the load F. Therefore,
this is a parallel system with 10 components, corresponding to the 10 fracture
strains.

4.1 First- and Second-Order Bound Methods

A parallel system reliability formula can be obtained based on the formula of series
system reliability by using the De Morgan’s law (Wang et al. 2011). According to
the De Morgan’s law, the probability of parallel system failure can be expressed as

P

�
m\

iD1
Ei

�
D 1 � P

�
m\

iD1
Ei

�
D 1 � P

�
m[

iD1
Ei

�
(29)

where NE i is the ith component failure event. Equation (29) relates the probability
of parallel system failure with the probability of series system safety (reliability). If
we treat Ei as the ith component failure event in a series system, the right side of
Eq. (29) is then the series system reliability.

Based on this relationship and the first-order bounds for a series system in
Eq. (15), the first-order bounds for a parallel system can be derived as

max

("
1 �

mX
iD1

P .Ei /

#
; 0

)
� pf s � min

	
P
�
Ei

�

(30)

The lower bound is obtained by assuming the component events are mutually
exclusive and the upper bound is derived by assuming the component events are
perfectly independent.

Similarly, based on the second-order bounds for a series system in Eq. (16), the
second-order bounds for a parallel system can be derived as
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(31)

where E1 is the event having the largest probability of failure.

4.2 Point Estimation Method

Based on the aforementioned relationship between a series system and a parallel
system, the probability of parallel system failure can be obtained from Eq. (19)
by treating the safe events in the series system as the failure events in the parallel
system as (Wang et al. 2011)

pf s Š P
�
E1

� �
mX

iD2

*
P .Ei / �

vuut
i�1X
j D1

	
P
�
EiEj

�
2
+
; hAi �

�
A; if A > 0

0; if A � 0

(32)

Finally, parallel system reliability can be obtained from Eq. (32) by one minus
the probability of system failure as

Rsys Š P .E1/ C
mX

iD2

*
P .Ei/ �

vuut
i�1X
j D1

	
P
�
Ei Ej

�
2
+
; hAi �

�
A; if A > 0

0; if A � 0

(33)

5 System Reliability Analysis for Mixed Systems

A mixed system may have various system structures as mixtures of series and par-
allel systems. The success and failure logics of such systems are more complicated
than those of series and parallel systems. Consider a cantilever beam-bar system
(Song and Der Kiureghian 2003; Wang et al. 2011) which is an ideally elastic–
plastic cantilever beam supported by an ideally rigid–brittle bar, with a load applied
at the midpoint of the beam, as shown in Fig. 10. There are three failure modes and
five independent failure events NE1– NE5. These three failure modes are formed by
different combinations of failure events as:
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Fig. 10 A cantilever
beam-bar system (Song and
Der Kiureghian 2003)

• First failure mode: The fracture of the brittle bar (event NE1) occurs, and
subsequently the formation of a hinge at the fixed point of the beam (event NE2).

• Second failure mode: The formation of a hinge at the fixed point of the beam
(event NE3) followed by the formation of another hinge at the midpoint of the
beam (event NE4).

• Third failure mode: The formation of a hinge at the fixed point of the beam (event
NE3) followed by the fracture of the brittle bar (event NE5).

The five safety events can be expressed as:

E1 D
n
X; T

ˇ̌
ˇ5X=16 � T � 0

o

E2 D
n
X; L; M

ˇ̌
ˇLX � M � 0

o

E3 D
n
X; L; M

ˇ̌
ˇ3LX=8 � M � 0

o

E4 D
n
X; L; M

ˇ̌
ˇLX=3 � M � 0

o

E5 D
n
X; L; M; T

ˇ̌
ˇLX � M � 2LT � 0

o

(34)

Considering these three failure modes, the system success event can be obtained
as (Wang et al. 2011):

ES D .E1 [ E2/ \ fE3 [ .E4 \ E5/g (35)

It is not possible to derive any bounds or point estimates of system reliability
based on the system success event in Eq. (35) which contains a mixture of
intersection and union logics.

One way to tackle this difficulty is to decompose the mixed system success event
into mutually exclusive success events or path sets (see an example in Fig. 11), of
which each is a series system. As a result, system reliability of this mixed system
can be expressed as a sum of the probabilities of these mutually exclusive series
events. This method is embedded in the GCIM (Wang et al. 2011).

Considering a mixed system with N components, the following procedure can be
proceeded to derive the mutually exclusive path sets and conduct system reliability
analysis in search for a point system reliability estimate (Wang et al. 2011).
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Fig. 11 Decomposition of a mixed system success event into mutually exclusive series system
success events
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SS-matrix =

1st row: component no.
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3rd row: end node

Fig. 12 Conversion of the
system block diagram to SS
matrix (Wang et al. 2011)

Step I: Constructing a System Structure Matrix

An SS matrix, a 3-by-M, can be used to characterize any system structural
configuration (components and their connections) in a matrix form. The SS matrix
contains the information about the constituting components and their connection.
The first row of the matrix contains component numbers, while the second and third
rows correspond to the starting and end nodes of the components. Generally, the
total number of columns of a SS matrix, M, is equal to the total number of system
components, N. In the case of complicated system structures, one component may
repeatedly appear in between different sets of nodes and, consequently, M could be
larger than N, for example a 2-out-of-3 system.

Let us consider the mixed system example shown in Fig. 11. The SS matrix for the
system can be constructed as a 3 � 4 matrix, as shown in Fig. 12. The first column
of the system structure matrix [1, 1, 2]T indicates that the first component connects
nodes 1 and 2.

Step II: Finding Mutually Exclusive System Path Sets

Based on the SS matrix, the Binary Decision Diagram (BDD) technique (Lee 1959)
can be employed to find the mutually exclusive system path sets, of which each path
set is a series system. As discussed in Chap. 2, two events are said to be mutually
exclusive if they cannot occur at the same time or, in other words, the occurrence of
any one of them automatically implies the nonoccurrence of the other. Here, system
path sets are said to be mutually exclusive if any two of them are mutually exclusive.
We note that, without the SS matrix, it is not easy for the BDD technique to automate
the process to identify the mutually exclusive path sets. The mixed system shown
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Fig. 13 BDD diagram and
the mutually exclusive path
sets (Wang et al. 2011)

in Fig. 12 can be decomposed into the two mutually exclusive path sets using the
BDD, which is shown in Fig. 13. Although the path sets E1E2E3E4 and E1E3E4

represent the same path that go through from the left terminal 1 to the right terminal
0 in Fig. 13, the former belongs to the mutually exclusive path sets while the latter
does not. This is due to the fact that the path sets E1E3E4 and E1E2 are not mutually
exclusive. We also note, however, that we could still construct another group of
mutually exclusively path sets, fE1E3E4, E1E2E3g, which contains the path set
E1E3E4 as a member. This is due to the fact that a mixed system may have multiple
BDDs with different configurations depending on the ordering of nodes in BDDs
and these BDDs result in several groups of mutually exclusive path sets, among
which the one with the smallest number of path sets is desirable. Another point
deserving of notice is that the mixed system considered here consists of only two
mutually exclusive path sets. In cases of more than two mutually exclusive path sets,
any two path sets are mutually exclusive. This suggests that the system path sets can
equivalently be said to be pairwise mutually exclusive.

Step III: Evaluating All Mutually Exclusive Path Sets
and System Reliability

Due to the property of the mutual exclusiveness, the mixed system reliability is the
sum of the probabilities of all paths as

Rsys D P

�
np[

iD1
Pathi

�
D

npX
iD1

P .Pathi / (36)
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Table 4 Statistical information of input random variables for the cantilever beam-bar
system

Random variable Mean Standard deviation Distribution type

L 5.0 0.05 Normal
T 1,000 300 Normal
M 150 30 Normal
X uX 20 Normal

1 2 3 4 5

1 1 2 2 3

2 2 4 3 4

SS-matrix =
E3

E4 E5

E1

E2

E3

E4 E5

E1

E2

Fig. 14 System block diagram and SS matrix for the cantilever beam-bar example (Wang et al.
2011)

where Pathi is the ith mutually exclusive path set obtained by the BDD and np is
the total number of mutually exclusive path sets. For the mixed system shown in
Fig. 12, the system reliability can be calculated as

Rsys D P

�
2[

iD1
Pathi

�
D

2X
iD1

P .Pathi /

D P .E1E2/ C P
�
E1E2E3E4

�
(37)

where the probability of each individual path set can be calculated using the point
estimate formula for the series system reliability given by Eq. (19).

Case Study 4

Consider the cantilever beam-bar system (Song and Der Kiureghian 2003; Wang
et al. 2011)) shown in Fig. 10. In the performance functions for the five component
safety events, random variables and their random properties are summarized in
Table 4. Compute the system reliability with the GCIM method at 10 different
reliability levels that correspond to 10 different loading conditions (X), 100, 90,
85, 80, 70, 60, 50, 40, 20, and 10.

Solution The reliability block diagram along with the SS matrix is shown in Fig. 14
(Wang et al. 2011). Based on this SS matrix, the BDD diagram can be constructed
as shown in Fig. 15. The BDD indicates the following mutually exclusive system
path sets as (Wang et al. 2011)

Path sets D ˚
E1E3; E1E2E3; E1E3E4E5; E1E2E3E4E5

�
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E1

E2

E3

E4

E5

10

Fig. 15 BDD diagram for
the cantilever beam-bar
example (Wang et al. 2011)

Table 5 Results of different system reliability analysis methods: GCIM and MCS
(ns D 1,000,000)

System reliability level at each design

Analysis method 1 2 3 4 5 6 7 8 9 10

ux 100 90 85 80 70 60 50 40 20 10
GCIM 0.3546 0.4981 0.5724 0.6444 0.7708 0.8666 0.9308 0.9681 0.9954 0.9995
MCS 0.3548 0.4982 0.5725 0.6445 0.7708 0.8667 0.9309 0.9681 0.9954 0.9995

The system reliability can be calculated as

Rsys D
4X

iD1

P .Pathi /

D P .E1E3/ C P
�
E1E2E3

�C P
�
E1E3E4E5

�C P
�
E1E2E3E4E5

�

We can then use Eq. (33) to compute the reliability of each path set to derive a
point system reliability estimate of this mixed system.

The system reliability analysis is carried out with 10 different loading conditions
(10 different ux values for the X) as presented in Table 5 (Wang et al. 2011). The
probabilities of component and second-order joint failure events are computed with
the direct MCS. The MCS is used for a benchmark solution and the results are also
summarized in Table 5. We expect based on the results that the GCIM can give
accurate system reliability estimates for mixed systems at various reliability levels.
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6 Conclusion

The chapter reviews advanced numerical methods for system reliability analysis
under uncertainty, with an emphasis on the system reliability bound methods and
the GCIM (point estimation method). The system reliability bound methods provide
system reliability estimates in the form of two-sided bounds for a series or parallel
system, while the GCIM offers system reliability estimates in the form of single
points for any system structure (series, parallel, and mixed systems). The GCIM
generalizes the original CIM so that it can be used for system reliability analysis
regardless of system structures. Four case studies are employed to demonstrate the
effectiveness of the system reliability bound methods and the GCIM in assessing
system reliability. As observed from the case studies, the GCIM offers a generalized
framework for system reliability analysis and thus shows a great potential to enhance
our capability and understanding of system reliability analysis.
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