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Abstract This chapter presents a Bayesian methodology for system-level uncer-
tainty quantification and test resource allocation in complex engineering systems.
The various component, subsystem, and system-level models, the corresponding
parameters, and the model errors are connected efficiently using a Bayesian
network. This provides a unified framework for uncertainty analysis where test data
can be integrated along with computational models across the entire hierarchy of
the overall engineering system. The Bayesian network is useful in two ways: (1) in
a forward problem where the various sources of uncertainty are propagated through
multiple levels of modeling to predict the overall uncertainty in the system-level
response; and (2) in an inverse problem where the model parameters of multiple
subsystems are calibrated simultaneously using test data. Test data available at
multiple data are first used to infer model parameters, and then, this information
is propagated through the Bayesian network to compute the overall uncertainty in
the system-level prediction. Then, the Bayesian network is used for test resource
allocation where an optimization-based procedure is used to identify tests that can
effectively reduce the overall uncertainty in the system-level prediction. Finally,
the overall Bayesian methodology for uncertainty quantification and test resource
allocation is illustrated using three different numerical examples. While the first
example is mathematical, the second and third examples deal with practical
applications in the domain of structural mechanics.
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1 Introduction

During the past 20 years, there has been an increasing need and desire to design
and build engineering systems with increasingly complex architectures and new
materials. These systems can be multi-level, multi-scale, and multi-disciplinary in
nature, and may need to be decomposed into simpler components and subsystems to
facilitate efficient model development, analysis, and design. The development and
implementation of computational models is not only sophisticated and expensive,
but also based on physics which is often not well understood. Therefore, when such
models are used to design and analyze complex engineering systems, it is necessary
to ensure their reliability and safety.

In order to facilitate efficient analysis and design, computational models are
developed at the component-level, subsystem-level, and system-level. Each individ-
ual model may correspond to isolated features, or isolated physics, or simplified
geometry of the original system. Typically, along the hierarchy of a multi-level
system, the complexity of the governing physics increases, and hence, the com-
plexity of the model increases, the cost of testing increases, and hence, the
amount of available experimental data decreases. At the system-level, full-scale
testing may not even be possible to predict the system performance under actual
operating conditions. It is essential to quantify the overall uncertainty in the system-
level prediction using the models and data available at all levels. The field of
“quantification of margins and uncertainties” (QMU) has the goal of enabling this
overall capability (Helton and Pilch 2011). This analysis is helpful to estimate the
reliability and adjudge the safety of the overall engineering system.

An important challenge in this regard is to efficiently connect all of the models
and experimental data available across the hierarchy of the entire system. This
is not straightforward because there are several sources of uncertainty—physical
variability, data uncertainty, and model uncertainty—at each level of the overall
system. Further, the issue is complicated by the presence of individual model
inputs, parameters, outputs, and model errors, all of which may be uncertain. It
is important to use a computational approach that can not only facilitate integration
across multiple levels but also provide a fundamental framework for the treatment
of uncertainty.

This can be accomplished through the use of a Bayesian network that serves
as an efficient and powerful tool to integrate multiple levels of models (including
inputs, parameters, outputs, and errors of each and every model), the associated
sources of uncertainty, and the experimental data at all different levels of hierarchy.
The Bayesian network is based on Bayes’ theorem, and can efficiently integrate all
of the aforementioned information using the principles of conditional probability
and total probability. It can be used for uncertainty propagation (forward problem),
where the system-level prediction uncertainty is quantified by propagating all the
sources of uncertainty at lower levels through the Bayesian network. The Bayesian
network is also useful for model parameter calibration (inverse problem), where the
data available at all levels can be simultaneously used to calibrate the underlying
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parameters at different levels of models. Different types of sampling techniques
can be used in conjunction with a Bayesian network; while Monte Carlo-sampling-
based approaches are often used for uncertainty propagation (forward problem),
Markov Chain Monte Carlo-based approaches are often used for model parameter
estimation (inverse problem). Since sampling methods require several hundreds
of thousands of evaluations of the system models that may be complicated to
evaluate, the Bayesian approach can also include cost-efficient surrogate models
like Gaussian process, as demonstrated by Kennedy and O’Hagan (2001). This
chapter explains the fundamentals of Bayesian methodology and illustrates the
use of Bayesian networks for uncertainty quantification in complex multi-level,
multi-physics engineering systems. Methods for uncertainty quantification, model
parameter estimation, and system-level uncertainty quantification are presented in
detail.

Finally, it is also illustrated as to how these capabilities of Bayesian networks can
be exploited to guide test resource allocation in hierarchical systems (Sankararaman
et al. 2013). Test data available at multiple levels of system hierarchy are used
for model parameter calibration, which in turn leads to a reduction of uncertainty
in the model parameters; this reduced uncertainty is represented through the
posterior distributions of the model parameters. When these posterior distributions
are propagated through the Bayesian network, the uncertainty in the system-level
response also decreases. Thus, testing can be used to evolve the system performance
prediction and a common concern is to select that test design which leads to
maximum reduction in the uncertainty (usually expressed through variance) of the
system performance prediction. The tests need to be selected and designed with
adequate precision (measurement error and resolution), and the simulations need
to be developed with adequate resolution (model fidelity) to achieve the project
requirements. This can be performed by embedding the Bayesian network within
an optimization algorithm where the decision variables correspond to the test data.
This formulation is very interesting because, in the past, model parameters have
been calibrated with available test data; the difference now is that it is required to
perform Bayesian calibration and assess the reduction in uncertainty in the system-
level response even before actual testing is performed.

Two types of questions are of interest: (1) what tests to do? and (2) how many
tests to do? Tests at different levels of the system hierarchy have different costs
and variance reduction effects. Hence, the test selection is not trivial and it is
necessary to identify an analytical procedure that helps in the optimum test resource
allocation. However, current practice for this is, at best, based on simplified analysis
and relevant experience, and at worst based on ad hoc rules, any of which may or
may not result in truly conservative estimates of the margin and uncertainty. For
multi-level systems, a rational test selection procedure should also incorporate the
information from component-level and subsystem-level tests towards overall system
level performance prediction. Recently, Sankararaman et al. (2013) developed an
optimization-based methodology to identify the tests that will lead to maximum
reduction in the system-level uncertainty, while simultaneously minimizing the cost
of testing. This methodology is presented in detail, towards the end of this chapter,
and illustrated using numerical examples.
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2 Fundamentals of Bayesian Methodology

The Bayesian methodology is based on subjective probabilities, which are simply
considered to be degrees of belief and quantify the extent to which the “statement”
is supported by existing knowledge and available evidence. This may be contrasted
with the frequentist approach to probability (classical approach to statistics), accord-
ing to which probabilities can be assigned only in the context random physical
systems and experiments. Uncertainty arising out of the model parameter estimation
procedure is expressed in terms of confidence intervals, and it is not statistically
meaningful to assign probability distributions to estimation parameters, since they
are assumed to be “deterministic but unknown” in the frequentist methodology.
This is a serious limitation, since it is not possible to propagate uncertainty
after parameter estimation, which is often necessary in the case of model-based
quantification of uncertainty in the system-level response. For example, if the
uncertainty in the elastic modulus had been estimated using a simple axial test,
this uncertainty cannot be used for quantifying the response in a plate made of the
same material. Another disadvantage of this approach is that, when a quantity is
not random, but unknown, then the tools of probability cannot be used to represent
this type of uncertainty (epistemic). The subjective interpretation of probability, on
which the Bayesian methodology relies upon, overcomes both of these limitations.

In the Bayesian approach, even deterministic quantities can be represented using
probability distributions which reflect the subjective degree of the analyst’s belief
regarding such quantities. As a result, probability distributions can even be assigned
to parameters that need to be estimated, and therefore, this interpretation facilitates
uncertainty propagation after parameter estimation; this aspect of the Bayesian
methodology is helpful for uncertainty integration across multiple models after
inferring the underlying model parameters.

For example, consider the case where a variable is assumed to be normally
distributed and it is desired to estimate the mean and the standard deviation based on
available point data. If sufficient data were available, then it is possible to uniquely
estimate these distribution parameters. However, in some cases, data may be sparse
and therefore, it may be necessary to quantify the uncertainty in these distribution
parameters. Note that this uncertainty is an example of epistemic uncertainty; the
quantities may be estimated deterministically with enough data. Though these
parameters are actually deterministic, the Bayesian methodology can calculate
probability distributions for the distribution parameters, which can be easily used
in uncertainty propagation. The fundamentals of Bayesian philosophy are well
established in several textbooks (Calvetti and Somersalo 2007; Lee 2004; Leonard
and Hsu 2001; Somersalo and Kaipio 2004), and the Bayesian approach is being
increasingly applied to engineering problems in recent times, especially to solve
statistical inverse problems. This section provides an overview of the fundamentals
of the Bayesian approach, and later sections illustrate the application of Bayesian
methods to uncertainty quantification in complex engineering systems.
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2.1 Bayes Theorem

Though named after the eighteenth century mathematician and theologian Thomas
Bayes (Bayes and Price 1763), it was the French mathematician Pierre-Simon
Laplace who pioneered and popularized what is now called Bayesian probabil-
ity (Stigler 1986, 2002). For a brief history of Bayesian methods, refer to Fienberg
(2006). The law of conditional probability is fundamental to the development of
Bayesian philosophy:

P.AB/ D P.AjB/P.B/ D P.BjA/P.A/ (1)

Consider a list of mutually exclusive and exhaustive events Ai (i D 1 to n) that
together form the sample space. Let B denote any other event from the sample space
such that P.B/ > 0. Based on Eq. (1), it follows that:

P.Ai jB/ D P.BjAi/P.Ai /
P

j

P.BjAj /P.Aj /
(2)

What does Eq. (2) mean? Suppose that the probabilities of events Ai (i D 1

to n) are known to be equal to P.Ai / (i D 1 to n) before conducting any random
experiments. These probabilities are referred to as prior probabilities in the Bayesian
context. Suppose that a random experiment has been conducted and event B has
been observed. In the light of this data, the so-called posterior probabilities P.Ai jB/

(i D 1 to n) can be calculated using Eq. (2).
The quantity P.BjAi / is the probability of observing the data conditioned on

Ai . It can be argued that event B has “actually been observed,” and there is
no uncertainty regarding its occurrence, which renders the probability P.BjAi /

meaningless. Hence, researchers “invented” new terminology in order to denote this
quantity. In earlier days, this quantity was referred to as “inverse probability,” and
since the advent of Fisher (Aldrich 2008; Jeffreys 1998) and Edwards (1984), this
terminology has become obsolete, and has been replaced by the term “likelihood.”
In fact, it is also common to write P.BjAi/ as L.Ai /.

2.2 Bayesian Inference

The concept of Bayes theorem can be extended from the discrete case to the contin-
uous case. Consider the context of statistical inference where a set of parameters
� needs to be inferred. All the current knowledge regarding this parameter is
represented in the form of a prior distribution denoted by f 0.�/. The choice of
the prior distribution reflects the subjective knowledge of uncertainty regarding the
variable before any observation. It is assumed that the prior distribution is able to
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explain the data with some degree of uncertainty; in other words, there exists a
nonempty set E such that 8 � 2 E, the prior probability density function (PDF)
and likelihood values evaluated 8 � 2 E are both nonzero.

Measurement data (D) is collected on a quantity which depends on the parameter
(�). This information is then used to update the distribution of � to arrive at the
posterior distribution (f 00.�/), as:

f 00.�/ D L.�/f 0.�/
R

L.�/f 0.�/d�
(3)

In Eq. (3), L.�/ is the likelihood function of � and is proportional to P.Dj�/, i.e.
probability of observing the data D conditioned on the parameter � . Typically, data
D is available in the form of independent, paired input–output combinations (xi

versus xi , where i varies from 1 to n), where the input X and output Y are related
to one another as:

y D G.x; �/ (4)

Considering an observation error � that is assumed to follow a Gaussian distribution
with zero mean and standard deviation � , the likelihood can be written as:

L.�/ D
nY

iD1

1

�
p

.2�/
exp �

�
.yi � G.xi ; �//2

2�2

�

(5)

Note that the above equation assumes that the numerical value of � is known. If
this quantity is unknown, � may be considered to be an argument to the likelihood
function and updated along with � . Equation (5) is substituted in Eq. (3), and the
posterior distribution (f 00.�/) can be computed.

Note that the denominator on the RHS of Eq. (3) is simply a normalizing constant,
which ensures that f 00.�/ is a valid PDF, i.e., the integral of the PDF is equal to
unity. So, Eq. (3) is sometimes written as:

f 00.�/ / L.�/f 0.�/ (6)

The posterior in Bayesian inference is always known only up to a proportionality
constant and it is necessary generate samples from this posterior for uncertainty
analysis. When there is only one parameter, the proportionality constant can be
calculated through one-dimensional integration. Often, multiple parameters may be
present, and hence, multi-dimensional integration may not be affordable to calculate
the proportionality constant. Therefore, a class of methods popularly referred to as
Markov Chain Monte Carlo (MCMC) sampling is used to generate samples from
the Bayesian posterior. In general, these methods can be used when it is desired to
generate samples from a PDF which is known only up to a proportionality constant.
The topic of MCMC will be discussed in detail later in this chapter, in Sect. 3.
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2.3 Notes on the Likelihood Function

The likelihood function is defined as the probability of observing data conditioned
on the parameters, i.e. L.�/ D P.Dj�/; note that, since the data (D) has actually
been observed, the terminology “probability of observing the data” is physically
meaningless. Therefore, as explained earlier in Sect. 2.1, this quantity was renamed
as “the likelihood.” The likelihood function does not follow the laws of probability,
and must not be confounded with probability distributions or distribution functions.
In fact, Edwards (1984) explains that the likelihood function is meaningful only up
to a proportionality constant; the relative values of the likelihood function are alone
significant and the absolute values are not of interest.

The concept of likelihood is used in the context of both physical probabilities
(frequentist) and subjective probabilities, especially in the context of parameter
estimation. In fact, Edwards (1984) refers to the likelihood method as the third or
middle way.

From a frequentist point of view (the underlying parameters are deterministic),
the likelihood function can be maximized in order to obtain the maximum likelihood
estimate of the parameters. According to Fisher (1912), the popular least-squares-
based optimization methodology is an indirect approach to parameter estimation
and one can “solve the real problem directly” by maximizing the “probability of
observing the given data” conditioned on the parameter � (Aldrich 1997; Fisher
1912). Further, it is also possible to construct likelihood-based confidence intervals
for the inferred parameters (Pawitan 2001).

On the other hand, the likelihood function can also be interpreted using subjective
probabilities. Singpurwalla (2006, 2007) explains that the likelihood function can be
viewed as a collection of “weights” or “masses” and therefore is meaningful only up
to a proportionality constant (Edwards 1984). In other words, if L.�.1// D 10, and
L.�.2// D 100, then it is 10 ten times more likely for �.2/ than �.1/ to correspond to
the observed data. The entire likelihood function can be used in Bayesian inference,
as in Eq. (3), in order to obtain the entire PDF of the parameters.

3 MCMC Sampling

The class of MCMC methods can be used to generate samples from an arbitrary
probability distribution, especially when the CDF is not invertible or when the PDF
is known only up to a proportionality constant. In Sect. 2.2, it was explained that
the latter is the case in Bayesian inference, where the objective is to compute the
posterior distribution. Therefore, MCMC sampling can be used to draw samples
from the posterior distribution, and these samples can be used in conjunction with
kernel density estimation (Rosenblatt 1956) procedure to construct the posterior
distribution.
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There are several algorithms which belong to the class of MCMC sampling
methods. Two such algorithms, the Metropolis algorithm (Metropolis et al. 1953)
and the slice sampling (Neal 2003) algorithm are discussed below.

3.1 The Metropolis Algorithm

Assume that a function that is proportional to the PDF is readily available, as f .x/;
this means that f .x/ is not a valid PDF because

R
f .x/dx ¤ 1. For the purpose of

illustration, consider the one-dimensional case, i.e. x 2 R. The following steps
constitute the algorithm in order to generate samples from the underling PDF.
Note that the function f .x/ is always evaluated at two points and the ratio is
only considered; the effect of the unknown proportionality constant is therefore
nullified.

1. Set i D 0 and select a starting value x0 such that f .x0/ ¤ 0.
2. Initialize the list of samples X D fx0g.
3. Repeat the following steps; each repetition yields a sample from the underlying

PDF.

(a) Select a prospective candidate from the proposal density q.x�jxi /. The
probability of accepting this sample is equal to f .x�/

f .xi /
.

(b) Calculate acceptance ratio ˛ D min
�
1;

f .x�/

f .xi /

�
.

(c) Select a random number u, uniformly distributed on [0, 1].
(d) If u < ˛, then set xiC1 D x�, otherwise set xiC1 D xi .
(e) Augment the list of samples in X by xiC1.
(f) Increment i , i.e. i D i C 1.

4. After the Markov chain converges, the samples in X can be used to construct the
PDF of X using kernel density estimation.

The common practice is to generate a few hundreds of thousands of samples and
discard the first few thousand samples to ensure the convergence of the Markov
Chain.

The Metropolis algorithm (Metropolis et al. 1953) assumes that the proposal
density is symmetric, i.e. q.x�jxi / D q.xi jx�/. A generalization of this algorithm
assumes asymmetric proposal density functions q1.x�jxi / and q2.xi jx�/; this
algorithm is referred to as Metropolis–Hastings algorithm (Hastings 1970). The only
difference is that the probability of accepting the prospective candidate is calculated
as f .x�/q2.xi jx�/

f .xi /q1.x�jxi /
.
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3.2 Slice Sampling

Consider the same function f .x/, i.e. the PDF of X , known up to a proportionality
constant. The steps of the slice sampling algorithm are as follows:

1. Set i D 0 and select a starting value x0 such that f .x0/ ¤ 0.
2. Draw a random number y from the uniform distribution [0, f .x/].
3. Consider the set f �1Œy; 1/; note that this set may not be convex, especially

when the target distribution is multi-modal. Select a sample which is uniformly
distributed on this set. Assign i D i C 1, and call this sample xi .

4. Repeat Steps 1–3 to generate multiple samples of X and construct the PDF of X

using kernel density estimation.

In contrast with the previously discussed Metropolis algorithm, the slice sampling
algorithm is not a acceptance–rejection algorithm.

3.3 MCMC Sampling: Summary

In addition to the above algorithms, other MCMC sampling algorithms such as
Gibbs sampling (Geman and Geman 1984), multiple-try Metropolis (Liu et al.
2000), and Metropolis-within-Gibbs (Roberts and Rosenthal 2006) are also dis-
cussed in the literature. One critical disadvantage of MCMC sampling approaches is
that they may require several hundreds of thousands of samples, and in turn, several
hundreds of thousands of evaluations of G in Eq. (4), which may be computationally
prohibitive. Therefore, it is common in engineering to replace G (which may be
a complicated physics-based model) with an inexpensive surrogate, such as the
Gaussian process surrogate model.

4 Gaussian Process Surrogate Modeling

The use of sampling techniques involves repeated evaluations of mathematical
models, which may be computationally intensive. One approach to overcome this
computational difficulty is to make use of surrogate models to replace the original
physics-based model. A few evaluations of the original model are used to train
this inexpensive, efficient surrogate model. Different types of surrogate modeling
techniques such as polynomial response surface (Rajashekhar and Ellingwood
1993), polynomial chaos expansion (Ghanem and Spanos 1990), support vector
regression (Boser et al. 1992), relevance vector regression (Tipping 2001), and
Gaussian process interpolation (Bichon et al. 2008; Rasmussen 2004; Santner et al.
2003) have been investigated in the literature.
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The Gaussian process interpolation is a powerful technique based on spatial
statistics and is increasingly being used to build surrogates to expensive computer
simulations for the purposes of optimization and uncertainty quantification (Bichon
et al. 2008; Rasmussen 2004; Santner et al. 2003). The GP model is preferred in
this research because (1) it is not constrained by functional forms; (2) it is capable
of representing highly nonlinear relationships in multiple dimensions; and (3) can
estimate the prediction uncertainty which depends on the number and location of
training data points.

The basic idea of the GP model is that the response values Y evaluated at different
values of the input variables X are modeled as a Gaussian random field, with a mean
and covariance function. Suppose that there are m training points, x1, x2, x3 : : : xm

of a d -dimensional input variable vector, yielding the output values y.x1/, y.x2/,
y.x3/ : : : y.xm/. The training points can be compactly written as xT vs. yT where
the former is a m � d matrix and the latter is a m � 1 vector. Suppose that it is
desired to predict the response (output values yP ) corresponding to the input xP ,
where xP is p � d matrix; in other words, it is desired to predict the output at n

input combinations simultaneously. Then, the joint density of the output values yP

can be calculated as:

p.yP jxP ; xT ; yT I ‚/ � N.m; S/ (7)

where ‚ refers to the hyperparameters of the Gaussian process, which need to be
estimated based on the training data. The prediction mean and covariance matrix (m
and S , respectively) can be calculated as:

m D KP T .KT T C �2
nI /�1yT

S D KPP � KP T .KT T C �2
nI /�1KTP (8)

In Eq. (8), KT T is the covariance function matrix (size m � m) amongst the input
training points (xT ), and KP T is the covariance function matrix (size p�m) between
the input prediction point (xP ) and the input training points (xT ). These covariance
matrices are composed of squared exponential terms, where each element of the
matrix is computed as:

Kij D K.xi ; xj I ‚/ D ��

2

2

4
dX

qD1

.xi;q � xj;q/2

lq

3

5 (9)

Note that all of the above computations require the estimate of the hyperparameters
‚; the multiplicative term (� ), the length scale in all dimensions (lq , q D 1 to
d ), and the noise standard deviation (�n) constitute these hyperparameters (‚ D
f�; l1; l2 : : : ld ; �ng). As stated earlier, these hyperparameters are estimated based
on the training data by maximizing the following log-likelihood function:
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log p
�
yT jxT I ‚

� D �yT
T

2

�
KT T C �2

nI
��1

yT � 1

2
log j�KT T C �2

nI
�j C d

2
log.2�/

(10)

Once the hyperparameters are estimated, then the Gaussian process model can be
used for predictions using Eq. (8). Note that the “hyperparameters” of the Gaussian
process are different from the “parameters” of a generic parametric model (e.g.,
linear regression model). This is because, in a generic parametric model, it is
possible to make predictions using only the parameters. On the contrary, in the
case of the Gaussian process model, all the training points and the hyperparameters
are both necessary to make predictions, even though the hyperparameters may have
estimated previously. For details of this method, refer to Bichon et al. (2008); Chiles
and Delfiner (1999); Cressie (1991); McFarland (2008); Rasmussen (1996, 2004);
Santner et al. (2003), and Wackernagel (2003).

An important issue in the construction of the Gaussian process model is the
selection of training points. In general, the training points may arise out of
field experiments or may be generated using a computer code. Model parameter
estimation considers the latter case and hence, there is no noise in the data, thereby
eliminating �n from the above equations. Adaptive techniques can be used to select
training points for the GP model, in order to construct the response surface to a
desired level of accuracy or precision. Since the GP model is capable of estimating
the variance in model output, a variance minimization algorithm proposed by
McFarland (2008) identifies the next training point at the input variable value
which corresponds to the largest variance. This selection algorithm is repeated
and training points are adaptively identified until the estimated variance is below
a desired threshold. Alternatively, another training point selection algorithm has
been developed by Hombal and Mahadevan (2011), where the focus is to select
successive training points so that the bias error in the surrogate model is minimized.

Once the training points are selected and the surrogate model is constructed,
it can be used for several uncertainty quantification activities such as uncer-
tainty propagation [through Monte Carlo simulation (MCS)], inverse analysis
and parameter estimation (through MCMC simulation), and sensitivity analysis.
It must be noted that the replacement of a complex computer simulation with
an inexpensive surrogate leads to approximations; therefore, it is important to
include the effect of this approximation in the procedure for overall uncertainty
quantification (Sankararaman 2012).

5 Bayesian Networks

The previous sections of this chapter discussed certain fundamental concepts of
the Bayesian methodology, in general. The Bayesian inference approach for model
parameter estimation was presented, and the use of MCMC sampling and the
importance of using Gaussian process surrogate models were explained. Most of
this discussion dealt with single-level models that may represent a component
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X1 Θ1 X2 Θ2

Y1 Y2

Z

DY2
DY1

Fig. 1 Bayesian network
illustration

or a subsystem. Since complex engineering systems consist of many components
and subsystems, it is important to integrate information across all components
and subsystems, in order to compute the overall uncertainty in the system-level
prediction. This goal can be accomplished through the use of a Bayesian network.

A Bayesian network (Heckerman 2008; Jensen 1996) is an acyclic, graphical
representation of conditional probability relationships between uncertain quantities.
Each uncertain quantity is represented as a node and successive links are connected
to each other using unidirectional arrows that express dependence in terms of
conditional probabilities. Disconnected nodes imply independence between the
corresponding random variables. Figure 1 shows a conceptual Bayesian network
that aids in uncertainty quantification across multiple levels of models and observed
data. Circles correspond to uncertain variables and squares represent observed data.
A solid line arrow represents a conditional probability link, and a dashed line arrow
represents the link of a variable to its observed data if available.

In Fig. 1, a system level output Z is a function of two subsystem level quantities
Y1 and Y2; in turn, Y1 is a function of subsystem-level input X1 and model parameter
‚1, and similarly, Y2 is a function of subsystem-level input X2 and model parameter
‚2. For example, in a beam deflection study, the applied force is an input, the elastic
modulus is a model parameter, while the deflection is measured and a model is built
to predict the same. Experimental data DY1 and DY2 are available for comparison
with the respective model predictions Y1 and Y2.

5.1 Uncertainty Propagation: Forward Problem

In the forward problem, the probability distributions of the inputs (X1 and X2) and
model parameters (‚1 and ‚2) are known or assumed, and these distributions are
used to calculate the PDF of Y1 and Y2, which in turn are used to calculate the PDF
of the system-level output Z, as:
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fZ.z/ D
Z

fZ.zjy1; y2/fY1.y1/fY2.y2/fY1.y1/fY2.y2/dy1dy2

fY1.y1/ D
Z

fY1.y1jx1; �1/fX1.x1/f‚1.�1/dx1d�1

fY2.y2/ D
Z

fY2.y2jx2; �2/fX2.x2/f‚2.�2/dx2d�2 (11)

Note that uppercase letters are used to denote random variables and the correspond-
ing lowercase letters are used to denote realizations of those random variables.
Equation (11) can be solved using methods of uncertainty propagation such as
MCS, first-order reliability method (FORM), and second-order reliability method
(SORM) (Haldar and Mahadevan 2000).

5.2 Inference: Inverse Problem

In the inverse problem, the probability densities of the model parameters (‚1 and
‚2 in Fig. 1) can be updated based on the observed data (DY1 and DY2) using Bayes’
theorem as:

f‚1;‚2.�1; �2jDY1; DY2/ D CL.�1; �2/f‚1.�1/f‚2.�2/ (12)

In Eq. (12), the prior distributions of the model parameters ‚1 and ‚2 are given by
f‚1.�1/ and f‚2.�2/, respectively. The choice of the prior distribution reflects the
subjective knowledge of uncertainty regarding the variable before any testing. It is
assumed that the prior distribution is able to explain the data with some degree of
uncertainty; in other words, there exists a nonempty set E such that 8 f‚1; ‚2g 2
E, the prior PDF (f‚1.�1/f‚2.�2/) and likelihood (L.�1; �2/) values evaluated at
f‚1; ‚2g are both non-zero.

The joint posterior density of the parameters is given by f‚1;‚2.�1; �2jDY1; DY2/.
The likelihood function L.�1; �2/ is calculated as the probability of observing the
given data (DY1; DY2), conditioned on the parameters being updated, i.e. ‚1 and
‚2. The likelihood function accounts for the uncertainty in the inputs X1 and X2.
For details of the likelihood function, refer to Edwards (1984), Pawitan (2001), and
Sankararaman (2012). As explained earlier in Sect. 3, Eq. (12) can be evaluated by
generating samples of model parameters (‚1 and ‚2) through MCMC sampling.

6 Test Resource Allocation

Typically, a multi-level, multi-physics system has several parameters that influence
the overall system-level output, and the uncertainty in these parameters can be
updated by tests at multiple levels of the system and multiple types of physics
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coupling. When the posterior distributions of the parameters are propagated through
the system model to calculate the overall system-level output, the posterior variance
of the overall system-level prediction can be computed. With more acquisition of
data, a decreasing trend can be observed in the variance of the system-level output.

Two types of questions need to be answered: (1) What type of tests to do (which
component, isolated physics, etc.)? and (2) How many repetitions of each type?
Each type of test has a different testing cost and an associated reduction in the
variance of system-level prediction. Further, the same type of test may need to be
repeated on nominally identical specimens of the same component or subsystem.
Such repetition is performed in order to account for the effect of natural variability
across nominally identical specimens; while each repetition may have the same
monetary cost, the associated reduction in the variance of system-level prediction
may be different.

The test conducted on one subsystem is assumed to be statistically independent
of another test on another subsystem; in other words, one type of test is independent
of any other type. Further, for a given type of test, the repetitions across multiple
replicas are also considered to be independent. It is assumed that a model is available
to predict the quantity being measured in each type of test; the model may have
several outputs but only that output which is measured is of concern. The overall
objective is to identify how many tests of each type must be performed so as to
achieve the required reduction in the variance of the system-level output. If there
are several system-level outputs, either an aggregate measure or the most critical
output can be considered. However, multi-objective optimization formulations to
simultaneously reduce the variance of more than one system-level output have not
yet been addressed in the literature.

6.1 Sensitivity Analysis

The method of sensitivity analysis has been used to quantify the sensitivity of model
output to parameters. While derivative-based methods only compute local sensitiv-
ities, the method of global sensitivity analysis (Saltelli et al. 2008) to apportion the
variance in the system-level output to the various sources of uncertainty, and thereby
guide in the reduction of system-level prediction uncertainty.

The first step of the resource allocation methodology is to use sensitivity analysis
and identify those parameters that have a significant influence on the variance of
the overall system-level prediction. Once the “important” parameters are identified,
only those tests that aid in reducing the uncertainty in these important parameters
can be performed. For example, consider a system-level output that is very sensitive
to the uncertainty in the parameters of sub-system-I but not sensitive to the
parameters of sub-system-II, then it is logical to perform more sub-system-I tests
than sub-system-II tests. Note that this procedure for test identification is only a
preliminary approach. This approach can answer the question—“which tests to do?”
In order to answer the question, “how many tests to do?”, it is necessary to quantify
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the decrease in variance that may be caused due to a particular test. The effect of a
particular test on variance reduction can be quantified by using Bayesian updating.
Therefore, the resource allocation methodology first uses sensitivity analysis for
selection of calibration parameters and then uses Bayesian updating to quantify the
effect of a test on the variance of system-level prediction.

6.2 Optimization Formulation

In order to solve the resource allocation problem and identify the number of tests
to be performed for each type, the optimization problem can be formulated in two
ways, as explained below.

In the first formulation shown in Eq. (13), the goal is to minimize the variance of
the system-level output subject to satisfying a budget constraint.

Minimize
Ntest

E.Var.R//

s:t:
qX

iD1

.Ci Ni / � Total Budget

Ntest D ŒN1; N2: : :Nq�

(13)

In Eq. (13), q refers to the number of different types of possible tests. The cost of
the i th (i D 1toq) type of test is equal to Ci , and Ni (decision variable) denotes
the number of repetitions of the i th type of test. Let Di denote all the data collected
through the i th type of test. Let Ntest denote the vector of all Ni ’s and let D denote
the entire set of data collected from all q types of tests.

Alternatively, the resource allocation problem can be formulated by minimizing
the cost required to decrease the variance of the system-level output below a
threshold level, as:

Minimize
Ntest

qX

iD1

.Ci Ni /

s:t: E.Var.R// � Threshold Variance

Ntest D ŒN1; N2: : :Nq�

(14)

Sankararaman et al. (2013) pursued the first formulation (Eq. (13)) because the
threshold level for the variance is assumed to be unknown. Using D, the model
parameters are calibrated and the system-level response (R.D/) is computed. The
optimization in Eq. (13) calculates the optimal values of Ni , given the cost values Ci ,
such that the expected value of variance of the system-level prediction (E.Var.R//)
is minimized, while the budget constraint is satisfied.
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This optimization formulation uses E.Var.R// as the objective function because
R is a function of D, which is not available before testing. Hence, random
realizations of the test data set (D) are generated; each random realization is used to
compute Var.RjD/, and the expectation over such random realizations is calculated
to be the objective function, as:

E.Var.R// D
Z

Var.RjD/f .D/dD (15)

where f .D/ is the density considered for the test data. Assuming that one type
of test is performed independent of the another (i.e., a subsystem-level test is
independent of a material-level test), Eq. (15) can be written as:

E.Var.R// D
Z

Var.RjD1; D2: : :Dq/f .D1/f .D2/: : :f .Dq/dD1dD2: : :dDq

(16)

where f .Di / is the density considered for the data obtained through the i th test.
Before any testing is done, all prior knowledge regarding the model parameters
and the mathematical models constitute the only information available for the
calculation of f .Di /. Therefore, f .Di / is calculated as:

f .Di / D
Z

f .yi j� i /f
0.� i /d� i (17)

where yi represents the output of the mathematical model corresponding to the
i th type of test, � i represents the underlying parameters, and f 0.� i / represents
the prior knowledge regarding those parameters. Note that Eq. (17) is simply an
uncertainty propagation problem, where the other sources of uncertainty (such as
physical variability in inputs, solution approximation errors, data uncertainty) can
also be included in the computation of f .yi j� i /.

Equations (15)–(17) are implemented using a numerical algorithm, where a finite
number of realizations of D are generated and E.Var.R// is computed over these
realizations. Then, E.Var.R// can be minimized using the optimization in Eq. (13),
and the ideal combination of tests can be identified.

Note that an inequality constraint (for the budget), and not an equality constraint,
is considered in Eq. (13). This means that the optimal solution which minimizes
E.Var.R// need not necessarily exhaust the budget. Consider the simple case where
there are two possible test types (C1 D 2 and C2 D 3), and the budget is equal to six
cost units. There are two test combinations which exhaust the budget: (1) [N1 D 3,
N2 D 0], and (2) [N1 D 0, N2 D 2]. Suppose that these two combinations lead to a
value of E.Var.R// which is greater than that achieved through the test combination
[N1 D 1, N2 D 1]. Then, obviously the combination [N1 D 1, N2 D 1] must be
selected because it achieves the goal of reducing E.Var.R// even though it may not
exhaust the budget.
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6.3 Solution of the Optimization Problem

Equation (13) is a complicated integer optimization problem, where Bayesian
updating and forward propagation need to be repeated for each random realization
of the test data in order to evaluate the objective function, thus increasing the
computational cost several fold. In spite of the use of Gaussian process surrogate
models to replace the expensive system model, high computing power is still needed
to solve the optimization problem.

Integer optimization is sometimes solved using an approximation method, where
the integer constraint is first relaxed, and the integers nearest to the resulting
optimal solution are used in further solution of the original (un-relaxed) problem.
Unfortunately, this approach is not applicable to the solution of Eq. (13), since the
objective function (system-level prediction variance) is defined and computed only
for integer-valued decision variables (number of tests). It is meaningless to have a
non-integer number of tests.

A multi-step procedure for solving the optimization problem was proposed
by Sankararaman et al. (2013). Within each step, the global optimal solution
is computed using an exhaustive search process, whereas across steps, a greedy
algorithm is pursued. The step size is chosen in cost units, and additional steps are
added until the budget constraint is satisfied.

Let the size of the first step be equal to �1 cost units; the globally optimal
testing combination for this cost (D �1) is denoted by N 1

test, and is calculated using
exhaustive search, as:

Minimize
N 1

test

E.Var.R//

s:t:
Pq

iD1.Ci N
1
i / � �1

N 1
test D ŒN 1

1 ; N 1
2 : : :N 1

q �

(18)

The optimization procedure in the second stage is dependent on the optimal
solution from the first stage, i.e. N 1

test. In general, the optimization for the j th stage,
given the solution in the previous stage (i.e., N

j �1
test ), is performed for cost = �j .

Note that
P

j

�j D Total budget. The j th optimization is formulated as:

Minimize
N

j;new
test

E.Var.R//

s:t:
P

.Ci N
j;new
i / � �j .i D 1toq/

N
j
test D N

j �1
test C N

j;new
test

N
j;new
test D ŒN

j;new
1 ; N

j;new
2 : : :N

j;new
q �

(19)

As seen in Eq. (19), the decision variables for the j th stage are N
j;new
test , i.e. those

tests which need to be performed in the j th stage; therefore the total number of
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tests is equal to the sum of N
j;new
test and N

j �1
test , i.e. the optimal number of tests in

the previous stage. The same procedure is repeated until no additional test can be
performed with the budget constraint satisfied.

The selection of step size for a given budget is an important issue. The true global
optimal solution can be calculated by considering one step whose size is equal to the
entire budget. However, due to the large number of possible testing combinations,
this approach may be computationally infeasible. In a practical problem, several
steps are considered, and the step sizes must be chosen judiciously based on (1)
the costs of each type of test; (2) time required for each Bayesian update; (3)
number of random realizations of data needed to compute E.Var.R//; and (4) the
test combinations that are suitable for the chosen step size; a very small step size
may not even include an expensive type of test.

6.4 Summary of the Optimization Methodology

The various steps of the optimization-based methodology for test resource allocation
are summarized below:

1. Construction of the Bayesian network: The first step is to identify the various
component-level, subsystem-level, and system-level models. Each model has an
output quantity and correspondingly, a test can be performed to measure this
quantity. All the models are connected through the Bayesian network, and the
data available across the nodes is also indicated. The model errors, if available,
can also be included in the Bayesian network. Though solution approximation
errors can be calculated prior to testing and included in the Bayes network, model
form error cannot be calculated before testing. It must be noted that the Bayesian
network, due to its acyclic nature, cannot account for feedback coupling between
models. When the system-level response is a coupled physics-based solution, the
overall coupled solution is directly included in the Bayesian network instead of
considering the individual physics separately.

2. Sensitivity analysis: The next step is to perform global sensitivity analysis
and identify the “important” parameters that significantly contribute to the
uncertainty in the system-level response. Then, those tests which can aid in
the reduction of uncertainty in these “important” parameters are selected for
consideration in the optimization for test resource allocation.

3. Bayesian updating: The next step is to perform Bayesian updating and calibrate
parameters for a particular realization of measurement data. Then, this needs
to be repeated by generating multiple realizations of measurement data in
order to compute the expected value of variance, as in Eq. (15). Due to the
required computational expense, the original physics models can be replaced
with Gaussian process surrogates. Though this does not lead to analytical
calculation of the posterior, it increases the computational efficiency several fold.
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4. Resource allocation optimization: The final step is to perform the resource
allocation optimization using the multi-step procedure developed in Sects. 6.2
and 6.3. It may be useful to verify that the resultant solution is actually optimal
by computing E.Var.R// for few other Ntest values.

The rest of this chapter illustrates the optimization-based test resource allocation
methodology using three different numerical examples. While Sect. 7 deals with a
simple mathematical example, Sects. 8 and 9 consider multi-physics and multi-level
engineering systems, respectively.

7 Illustration Using Mathematical Example

This subsection presents a simple illustrative example to illustrate the optimization-
based methodology for test resource allocation. In order to focus on this objective,
simple mathematical relationships are chosen (even the system-level response has
no coupling), and measurement errors are assumed to be negligible. Other features
such as coupled system response, measurements errors, and solution approximation
errors (while replacing the underlying physics-based model with a Gaussian process
approximation) are considered later in Sects. 9 and 8.

The Bayesian network for this problem is exactly the same as that in Fig. 1. There
are four independent quantities and three dependent quantities; the numerical details
of this problem are specified in Table 1. The notation N.�; �/ is used to represent
a normally distributed quantity with mean � and standard deviation � . Two types
of tests (on two different lower levels) can be done and this information is used to
update the uncertainty in the system-level response based on the tests.

Probability distributions are assumed to be available for the inputs X1 and X2; if
this information was not available, and only sparse and/or interval data was available
for the inputs, then the likelihood-based method developed in Sankararaman and
Mahadevan (2011) can be used to construct a probability distributions for them.

Table 1 Numerical details

Quantity Type Description

X1 (input) Independent N(100,5)
‚1 (parameter) Independent N(50, 10)
X2 (input) Independent N(10,1)
‚2 (parameter) Independent N(15, 4)
Y1 Dependent Model : y1 D x1 C x2

Y2 Dependent Model : y2 D x3 C x4

Z System-level response Model : z D y1 � y2

Quantity to measure Cost No. of tests

Y1 10 N1

Y2 5 N2
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Table 2 Resource
allocation: results

Cumulative cost N1 N2 E.Var.z//

$10 1 0 62.0
0 2 127.0

$20 2 0 53.0
1 2 46.6

$30 2 2 37.6
1 4 46.1

$40 3 2 34.0
2 4 37.6

$50 4 2 32.5
3 4 33.8
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Fig. 2 Variance vs. cost

The variance of the system-level response quantity Z before conducting any test
(i.e., by propagating the above distributions of X1, X2, ‚1, and ‚2 through the
models) is 142 units. The objective is calculate the number of tests on Y1 and Y2

(N1 and N2), that will lead to a minimum variance in Z, subject to a total budget of
$50 cost units. Since there are only two parameters, global sensitivity analysis is not
necessary, and hence, both ‚1 and ‚2 are chosen for calibration. The optimization-
based methodology discussed in Sect. 6 is used for this purpose; five different stages
are considered and the available budget in each stage is considered to be $10. The
results of test prioritization are given in Table 2 (the optimal value in each stage is
indicated in bold) and Fig. 2.

At the end of the optimization procedure, the optimal combination is found
to be four tests on Y1 and 2 tests on Y2. Further, this solution was verified by
considering all other combinations (exhaustive search) of N1 and N2 and computing
the corresponding E.Var.R//; for this illustrative example, this verification is
numerically affordable. However, for practical examples, a few random values of
Ntest D ŒN1; N2� (if not all) can be considered and it can be verified if the estimated
solution is really optimal.
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8 Numerical Example: Multi-Physics System

8.1 Description of the Problem

This coupled-physics thermal vibration example illustrates a laboratory experiment
which can be used to study and simulate the behavior in solar arrays of telescopes
and spacecraft booms (Thornton 1996). In this experiment, a thin walled circular
tube is rigidly attached at its top and supports a concentrated mass at its bottom.
The tube and the mass are initially at rest and a constant heat flux is applied on
one side along the length of the tube. The application of the heat flux causes an
increase in the temperature on the incident surface while the unheated side remains
at the initial temperature. The temperature gradient causes the beam to bend away
from the lamp, due to the thermal moment. The displacement of the beam, in turn,
changes the distribution of temperature along the length of the beam, leading to a
change in the temperature gradient and the thermal moment, which in turn affects
the flexural behavior. Thus the combination of heat transfer and flexural mechanics
leads to oscillations of the beam. The setup of this experiment is shown in Fig. 3.

The temperature at the tip mass (Tm) is given by the following differential
equation:

@Tm

@t
C Tm

	
D T �

	

�

1 � v.x; t/

ˇ�

�

(20)

In Eq. (20), v.x; t/ represents the displacement of the beam as a function of length
and time. Thornton (1996) explains how to calculate the parameters T �, 	 , ˇ� as a
function of the incident solar flux (S ).
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The displacement v.x; t/ can be related to the displacement of the tip mass
V.t/ as:

v.x; t/ D
 

3x2

2l2
� x3

2l3

!

V.t/ (21)

The tip mass displacement V.t/, in turn, depends on the forcing function as follows:

RV C 2
!0
PV C

 

!2
0 C 6g

5l

!

V D F.t/

m
(22)

In Eq. (5), 
 is the damping ratio, and !0 is the angular frequency. The forcing func-
tion F.t/ depends on the thermal moment which in turn depends on the temperature,
thereby casing coupling between the thermal equation and the structural equation.
These relations are shown in the following equations:

F.t/ D � 3

l3

Z l

0

Z x

0

M.u; t /dudx (23)

M.x; t/ D
Z

E˛Tm.x; t/cos.ˆ/ydA (24)

In Eq. (24), E is the elastic modulus, ˛ is the coefficient of thermal expansion, ˆ

is the angle of incident flux on the cross section, y is the distance from the center
of the cross section and the integral is over the area of the cross section A. Refer
Thornton (1996) for a detailed description of this problem.

The overall objective of test resource allocation is to minimize the variance of the
system-level output (R), which is defined to be the ratio of displacement amplitudes
at two different time instants for the coupled system when the incident solar flux
(S ) is 2,000 W/m2. If R < 1, the system is stable with oscillations diminishing as a
function of time. If R > 1, the system is unstable, commonly referred to as flutter,
an undesirable scenario. While a Gaussian process model is constructed to calculate
the multi-physics response R, individual physics predictions are performed using
the above described physics-based models.

There are several parameters (both thermal and structural) in the above equations
that can be calibrated using test data. The method of sensitivity analysis is used
to identify five parameters, which significantly contribute to the uncertainty in the
system-level prediction. The prior means are based on Thornton (1996), and the
assumed coefficients of variation (CoV) are tabulated in Table 3; note that the radius
being a geometric property has a lower CoV. The calibrated parameters are then used
to quantify the uncertainty in R.

The calibration parameters need to be estimated during test data; four different
types of tests are considered, as shown in Table 4. The total budget available for
testing is assumed to be $2,000. It is assumed that the entire multi-disciplinary
system cannot be tested.
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Table 3 Calibration
quantities: thermal vibration
problem

Symbol Quantity Property Prior CoV

E Elastic modulus Structural 0.1
c Independent Thermal 0.1

 Independent Structural 0.1
r Independent Geometric 0.03
e Dependent Thermal 0.1

Table 4 Types of tests: thermal vibration problem

Test type Physics Calibrate Input–Output Cost No. of tests

Material-level Thermal c Heat-Temperature rise $100 Nm1

Material-level Structural 
 Amplitude decay $100 Nm2

Subsystem-level Thermal c, e, r Heat-Temperature rise $500 NT

Subsystem-level Structural 
 , E Acceleration $500 NF

Temp

Temp

Temp

Temp

Heat

Amp

Amp

Disp

ξe

Accn

Accn

rS c

R

E

Material Level 1
Material Level 2

Thermal Subsystem Flexural Subsystem

System-level
Output

Fig. 4 Thermal vibration: Bayesian network

The calibration quantities, the model predictions, and the test data are connected
through a Bayesian network, as shown in Fig. 4.

In the Bayesian network in Fig. 4, “Temp” refers to temperature, “Accn” refers
to the acceleration, “Disp” refers to the displacement, and “Amp” refers to the
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Table 5 Resource allocation
results: thermal vibration
problem

E.Var.R//

Stage no. Nm1 Nm2 NF NT (in %)

No tests 0 0 0 0 100.0

Stage 1 : $500 1 4 0 0 74.6
Stage 2 : $1,000 1 4 1 0 51.4
Stage 3 : $1,500 1 4 1 1 44.8
Stage 4 : $2,000 1 9 1 1 44.2

amplitude of vibration. Measurement errors (�) are assumed to have a standard
deviation that is equal to 10 % of the model prediction. This Bayesian network is
used for uncertainty quantification, Bayesian updating and resource allocation.

8.2 Resource Allocation

The objective is to calculate the number of tests that lead to maximum reduc-
tion in variance in R. Let Ntest denote the number of tests, where Ntest D
ŒNm1; Nm2; NF ; NT �; where Nm1 is the number of material level temperature tests,
Nm2 is the number of material level pluck tests, NF is the number of flexural
subsystem tests, and NT is the number of thermal subsystem tests. Let D D
ŒDm1; Dm2; DF ; DT � denote the test measurements. The optimization problem for
resource allocation can be formulated as shown in Eq. (25)

Minimize
Ntest

E.Var.R//

s:t: 100.Nm1 C Nm2/ C 500.NF C NT / � 2000

Ntest D ŒNm1; Nm2; NF ; NT � (25)

The above optimization is solved using the multi-stage optimization procedure
discussed in Sects. 6.2 and 6.3. Four stages and a budget of $500 for each stage are
considered, thereby accounting for the total budget of $2,000. Each stage has eight
options (as against two in the mathematical example in Sect. 7); only the optimal
solution in each stage is shown.

Note that Table 5 expresses the expectation of variance of R in terms of
percentage of the variance before any testing; this variance is equal to 5:69 � 10�7;
since R is a ratio, this variance is dimensionless.

For a $2,000 budget, it is seen that one temperature test, nine pluck tests, one
thermal subsystem test and one flexural subsystem test are required to achieve the
maximum reduction in the variance of R. The results show that while it is useful to
do all the tests, repeating the pluck test which calibrates structural damping, is not
only cheap but also leads to effective decrease in the variance of R. The decrease of
variance with cost is shown in Fig. 5.
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Fig. 5 Decrease of variance with cost. (a) Variance with cost; (b) log(Variance) with cost

It is seen that the reduction in variance using the last $1,000 (i.e., from $1,000
to $2,000) was much smaller when compared to the reduction in variance using
the initial $1,000. Such information is very useful for budgeting purposes, since all
the above computation (and practical resource allocation) is done before any test is
actually conducted.

9 Numerical Example: Multi-Level System

9.1 Description of the Problem

A three-level structural dynamics developed at Sandia National Laboratories (Red-
Horse and Paez 2008) is considered as shown in Fig. 6.

The first level (component) consists of a single spring-mass-damper. Three such
spring-mass dampers are integrated to form a spring-mass-damper subsystem in
the second-level. In the third level, the integrated spring-mass-damper subsystem is
mounted on a beam to form the overall system.

The models to represent the first two levels are straightforward (Chopra 1995).
Red-Horse and Paez (2008) describe in detail the modeling and simulation of the
overall system (third-level). The overall objective is to test resource allocation
to minimize the variance of the system level output (R) which is defined to
be the maximum acceleration of mass m3, when a random force is applied as
specified in Red-Horse and Paez (2008). The first-level and second-level responses
are computed using physics-based models while the third-level and system-level
responses are computed by constructing two Gaussian process surrogate models.

In this numerical example, the stiffness values of the three masses, i.e. k1, k2, and
k3 are all the parameters that need to be calibrated with test data; since all parameters
are calibrated, sensitivity analysis is not used in this example. The numerical values
(in SI units) of three calibration parameters are summarized in Table 6.
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Fig. 6 Multi-level structural dynamics problem. (a) Level 1; (b) level 2; (c) level 3

Table 6 Model parameters: structural dynamics problem

Mass (m) Damping (c) Prior mean of stiffness Prior std. dev. of mean
Number (in kg) (in Ns/m) (�k) (in N/m) (�k) (in N/m)

1 0.012529 0.023466 5,600 560
2 0.019304 0.021204 11,000 1,100
3 0.035176 0.031216 93,000 9,300

The mass of the beam is taken to be 0.1295. Further numerical details of the beam
are given in Red-Horse and Paez (2008).

Data for calibration is assumed to be available through five different types of tests.
The details of these different types of tests are provided in Table 7. For each test, a
sinusoidal load (amplitude D 10,000 and angular velocity = 10 rad s�1) is used. For
the first and second level tests, the sinusoidal load is applied at the base; for the third
level test, the sinusoidal load is applied as specified in Red-Horse and Paez (2008).

The model predictions, experimental data, and the calibration quantities are
connected using the Bayesian network, shown in Fig. 7. The corresponding exper-
imental errors are denoted by �11, �12, �13, �2, and �3, respectively, and assumed to
be equal to 10 % of the prediction.

This Bayesian network can be used for uncertainty quantification, Bayesian
updating, and resource allocation, as explained below.
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Table 7 Model parameters: structural dynamics problem

Test type Description Model prediction Data Cost No. tests

Level-1 Only mass m1 Acceleration (x11) D11 $100 Nm1

Level-1 Only mass m1 Acceleration (x12) D12 $100 Nm2

Level-1 Only mass m1 Acceleration (x13) D13 $100 Nm3

Level-2 3-mass assembly Acceleration of m3 (x2) D2 $500 N2

Level-3 3-mass assembly on beam Acceleration of m3 (x3) D3 $1,000 N3

x11 x13x12

x2 x3

D11 D13D12

D2 D3

11 1312

2 3

k1 k2 k3

R

System
Output

Level 2 Level 3

Level 1
Fig. 7 Bayesian network

9.2 Resource Allocation

In the resource allocation problem, testing is yet to be done and hence realizations of
future experimental data are generated randomly. Then, E.Var.R// is computed so
as to identify which set of tests will lead to the maximum reduction in variance. Let
Ntest D ŒNm1; Nm2; Nm3; N2; N3�. The optimization problem for resource allocation
can be formulated as shown in Eq. (26).

Minimize
Ntest

E.Var.R//

s:t: 100.Nm1 C Nm2 C Nm3/ C 500N2 C 1000N3 � 1000

Ntest D ŒNm1; Nm2; Nm3; N2; N3� (26)

First, the resource allocation is solved for a budget of $1000. There are 54
possible testing combinations and out of these 54, ten testing combinations lead
to the same minimum variance of system-level output R, approximately 0.8 % of
the variance before testing. These combinations are given in Table 8. The value of
E.Var.R// for these ten cases are close enough that it is not possible to determine
whether the difference is due to reality or due to sampling/numerical errors.
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Table 8 Resource allocation
results: structural dynamics
problem

Nm1 Nm2 Nm3 N2 N3

0 1 4 1 0
0 4 1 1 0
0 3 2 1 0
0 2 3 1 0
1 1 3 1 0
3 1 1 1 0
1 3 1 1 0
1 2 2 1 0
2 1 2 1 0
2 2 1 1 0

It is a subjective decision as to which one of these ten test combinations is
selected. However, all ten combinations unanimously suggest that no tests are
needed for the overall system and one test is needed for the second level three
spring-mass-damper subsystem. The first four rows in Table 8 suggest that testing
is not needed for the first spring-mass-damper. However, it may be desirable to have
at least one test for each component, and hence one amongst the latter six options
may be preferred.

It was also found that an extra budget of $1,000 caused no further reduction in the
variance of R. If the available budget is $2,000, a subjective decision may be made
to conduct the full system test (which costs $1,000) in order to further improve the
confidence in uncertainty quantification.

10 Conclusion

This chapter presented a Bayesian methodology for uncertainty quantification
in complex engineering systems consisting of multiple physics behavior and
multiple levels of integration. The various component, subsystem, and system
models, and their inputs, parameters, and outputs, and experimental data were
efficiently connected through a Bayesian network. Further, the various sources
of uncertainty—physical variability, data uncertainty, and model uncertainty were
also included in the Bayesian network. The Bayesian network was used for three
different tasks: (1) calibrate the parameters of models at multiple levels using
all available test data from multiple levels; (2) propagate the various sources of
uncertainty (including the previously estimated model parameters) through the
Bayes network to predict the overall uncertainty in the system-level response; and
(3) aid in resource allocation for test selection, in order to identify the most effective
tests to reduce the overall uncertainty in the system-level prediction. The procedure
for test resource allocation required Bayesian calibration and assessment of system-
level prediction uncertainty even before actual testing was performed. This was
achieved by generating multiple samples of test data and estimating the expected
reduction in variance of the system-level prediction.
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The algorithm for test resource allocation leads to several insights. A lower level
test can easily isolate individual components and hence, the model parameters
can be effectively updated, leading to a significant reduction in the variance
of the system-level prediction. However, such a test would not account for the
interaction between the higher level models and the corresponding parameters. In
contrast, a higher level test would readily include the effects of interaction between
multiple subsystem-level and component-level models. However, the calibration of
parameters across multiple models may be difficult and may not lead to a significant
reduction in the variance of the system-level prediction. The optimization-based test
resource allocation procedure trades off between lower level tests and higher level
tests by accounting not only for the resultant reduction in variance of the system-
level prediction but also for the costs involved in testing.
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