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Foreword

The recent advances in materials, sensors, and computational methods have resulted
in a much higher reliability and safety expectations of infrastructures, products,
and services. This has been translated into expected longer lives for non-repairable
products such as satellites, longer warranty periods for both repairable and non-
repairable products such as automobiles, and longer residual lives of infrastructures
such as bridges, dams, and high-rising buildings. In order to accomplish these
expectations, the designers, engineers, and analysts need to incorporate the system
configuration, physics of failure of its components, and the scale and complexity
of the system. Therefore, testing begins at the components levels and subsystems.
Reliability and safety analyses are conducted at all levels considering different fail-
ure modes of the components and subsystems under different operating conditions.
Different numerical approaches are required at every aspect and step in the design
and implementation processes.

The chapters of this book cover three topics related to different aspects of
reliability and safety of complex systems. The first set of topics deals with generic
methods and approaches which include theoretical developments and quantification
of uncertainties which have effects on the expected lives and performance of the
products and structures, approaches for risk assessments due to environmental
conditions, methods for conducting and analyzing accelerated life testing, and use
of advanced design of experiments methods such as Latin Hypercube for estimating
the optimum parameters levels for reliability-based designs. The second set of
topics deals with applications and use of reliability as a criterion in the design
of civil engineering infrastructures such as blast wall structures, road pavements
operating under different environmental conditions and different traffic loads, and
other applications. The third set of topics is devoted to mechanical systems, their
designs and reliability modeling. They include optimum inspection periods for
aircraft structures subject to fatigue loadings and optimum repairs for mechatronics
systems.
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vi Foreword

The book is an excellent reference for the design of systems, structures, and
products for reliability and safety. The chapters provide coverage of the use of
reliability methods in a wide range of engineering applications.

Piscataway, NJ E.A. Elsayed



Preface

Reliability and safety analyses are important applications of modern probabilistic
methods and stochastic concept (reliability of systems, probability of failure,
statistics, and random variables/processes). These fields create a wide range of
problems but due to their practical importance, it gave rise to development of new
probabilistic methods and can contain interesting and fruitful mathematical settings.
The reliability of a structure is traditionally achieved by deterministic methods
using safety factors calculated generally under conservative estimators of influent
parameters. Structural reliability analysis methods use probabilistic approaches for
assessing safety factors or for optimizing maintenance and inspection programs.
These methods become essential in the frame of long-term maintenance or life
extension.

The main focus of this book is numerical methods for multiscale and multiphysics
in reliability and safety. Multiphysics problems are problems involving two or more
equations describing different physical phenomena that are coupled together via
the equations. Multiscale problems on the other hand are problems on large scales
that experience fine scale behavior, which makes them hard to solve using standard
methods. Instead of solving the entire problem at once the problem is rewritten into
many smaller subproblems that are coupled from each other.

This book includes 29 chapters, contributed by worldwide researchers and
practitioners from 16 countries, of innovative concepts, theories, techniques, and
engineering applications in various fields. It is designed to assist practicing engi-
neers, students, and researchers in the areas of reliability engineering, safety and
risk analysis.

Egaila, Kuwait Seifedine Kadry
Rouen, France Abdelkhalak El Hami

vii





Acknowledgments

We would like to thank the Springer editor and the book reviewers for their valuable
suggestions to make this quality book project happen and appear to service the
public.

ix





Contents

Part I Reliability Education

Mechanical System Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Raed Kouta, Sophie Collong, and Daniel Play

Part II Uncertainty Quantification and Uncertainty
Propagation Analysis

Likelihood-Based Approach for Uncertainty Quantification
in Multi-Physics Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Shankar Sankararaman and Sankaran Mahadevan

Bayesian Methodology for Uncertainty Quantification
in Complex Engineering Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Shankar Sankararaman and Sankaran Mahadevan

The Stimulus-Driven Theory of Probabilistic Dynamics . . . . . . . . . . . . . . . . . . . . 147
Agnès Peeters

The Pavement Performance Modeling: Deterministic vs.
Stochastic Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Md. Shohel Reza Amin

Probabilistic Considerations in the Damage Analysis of Ship Collisions . . 197
Abayomi Obisesan, Srinivas Sriramula, and John Harrigan

An Advanced Point Estimate Method for Uncertainty
and Sensitivity Analysis Using Nataf Transformation
and Dimension-Reduction Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Xiaohui H. Yu and Dagang G. Lu

xi



xii Contents

Part III Reliability and Risk Analysis

Risk Assessment of Slope Instability Related Geohazards . . . . . . . . . . . . . . . . . . 243
Mihail E. Popescu, Aurelian C. Trandafir, and Antonio Federico

Advances in System Reliability Analysis Under Uncertainty . . . . . . . . . . . . . . . 271
Chao Hu, Pingfeng Wang, and Byeng D. Youn

Reliability of Base-Isolated Liquid Storage Tanks under
Horizontal Base Excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
S.K. Saha and V.A. Matsagar

Robust Design of Accelerated Life Testing and Reliability
Optimization: Response Surface Methodology Approach . . . . . . . . . . . . . . . . . . . 329
Taha-Hossein Hejazi, Mirmehdi Seyyed-Esfahani,
and Iman Soleiman-Meigooni

Reliability Measures Analysis of a Computer System
Incorporating Two Types of Repair Under Copula Approach . . . . . . . . . . . . . . 365
Nupur Goyal, Mangey Ram, and Ankush Mittal

Reliability of Profiled Blast Wall Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Mohammad H. Hedayati, Srinivas Sriramula,
and Richard D. Neilson

Reliability Assessment of a Multi-Redundant Repairable
Mechatronic System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
Carmen Martin, Vicente Gonzalez-Prida, and François Pérès

Infrastructure Vulnerability Assessment Toward Extreme
Meteorological Events Using Satellite Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
Yuriy V. Kostyuchenko

Geostatistics and Remote Sensing for Extremes Forecasting
and Disaster Risk Multiscale Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
Yuriy V. Kostyuchenko

Time-Dependent Reliability Analysis of Corrosion Affected Structures . . . 459
Mojtaba Mahmoodian and Amir Alani

Multicut-High Dimensional Model Representation
for Reliability Bounds Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
A.S. Balu and B.N. Rao

Approximate Probability Density Function Solution
of Multi-Degree-of-Freedom Coupled Systems Under Poisson Impulses . . 511
H.T. Zhu

Evaluate Reliability of Morgenstern –Price Method in Vertical
Excavations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Shaham Atashband



Contents xiii

Probabilistic Approach of Safety Factor from Failure
Assessment Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
Guy Pluvinage and Christian Schmitt

Assessing the Complex Interaction and Variations in Human
Performance Using Nonmetrical Scaling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Oliver Straeter and Marcus Arenius

Markov Modeling for Reliability Analysis
Using Hypoexponential Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
Therrar Kadri, Khaled Smaili, and Seifedine Kadry

Part IV Decision Making Under Uncertainty

Reliability-Based Design Optimization and Its Applications
to Interaction Fluid Structure Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
Abderahman Makhloufi and Abdelkhalak El Hami

Improved Planning In-Service Inspections of Fatigued Aircraft
Structures Under Parametric Uncertainty of Underlying
Lifetime Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 647
Nicholas A. Nechval and Konstantin N. Nechval

Diffuse Response Surface Model Based on Advancing Latin
Hypercube Patterns for Reliability-Based Design Optimization . . . . . . . . . . . . 675
Peipei Zhang, Piotr Breitkopf,
and Catherine Knopf-Lenoir-Vayssade

The Stochastic Modeling of the Turning Decision
by Left-Turning Vehicles at a Signalized Intersection
in a University Campus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 707
Md. Shohel Reza Amin and Ciprian Alecsandru

Decision Making Behavior of Earthquake Evacuees:
An Application of Discrete Choice Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 721
Umma Tamima and Luc Chouinard

Preventive Maintenance and Replacement Scheduling
in Multi-component Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737
Seyed Ahmad Ayatollahi, Mirmehdi Seyyed-Esfahani,
and Taha-Hossein Hejazi

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 795





Contributors

Amir Alani School of Engineering, University of Greenwich, Chatham Maritime,
UK

Ciprian Alecsandru Concordia University, Montreal, Canada

Md. Shohel Reza Amin Department of Building, Civil and Environmental Engi-
neering, Concordia University, Montreal, QC, Canada

Marcus Arenius Fachbereich Maschinenbau Arbeits- und Organisationspsycholo-
gie, Universität Kassel, Kassel, Germany

Shaham Atashband Civil Engineering Department, Islamic Azad University,
Markazi, Iran

Seyed Ahmad Ayatollahi Department of Industrial Engineering and Management
Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

A.S. Balu Department of Civil Engineering, National Institute of Technology
Karnataka, Mangalore, Karnataka, India

Piotr Breitkopf Roberval Laboratory, University of Technology of Compiegne,
Compiegne, France

Luc Chouinard Department of Civil Engineering and Applied Mechanics, McGill
University, Montreal, Canada

Sophie Collong University of Technology of Belfort-Montbéliard, Belfort Cedex,
France

Abdelkhalak El Hami Laboratoire d’Optimisation et Fiabilité en Mécanique des
Structures, INSA Rouen, Saint Etienne de Rouvray, France

Antonio Federico Politecnico di Bari, Faculty of Engineering, Taranto, Italy

Vicente Gonzalez-Prida University of Seville, Seville, Spain

xv



xvi Contributors

Nupur Goyal Department of Mathematics, Graphic Era University, Dehradun,
Uttarakhand, India

John Harrigan Lloyd’s Register Foundation (LRF) Centre for Safety and Relia-
bility Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK

Mohammad H. Hedayati School of Engineering, University of Aberdeen,
Aberdeen, UK

Taha-Hossein Hejazi Department of Industrial Engineering and Management
Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Chao Hu University of Maryland College Park (Currently at Medtronic, Inc.),
Brooklyn Center, MN, USA

Therrar Kadri Beirut Arab University, Beirut, Lebanon

Seifedine Kadry American University of the Middle East, Egaila, Kuwait

Catherine Knopf-Lenoir-Vayssade Roberval Laboratory, University of Technol-
ogy of Compiegne, Compiegne, France

Yuriy V. Kostyuchenko Scientific Centre for Aerospace Research of the Earth,
National Academy of Sciences of Ukraine, Kiev, Ukraine

Department of Earth Sciences and Geomorphology, Faculty of Geography, Taras
Shevchenko National University of Kiev, Kiev, Ukraine

Raed Kouta University of Technology of Belfort-Montbéliard, Belfort Cedex,
France

Dagang G. Lu School of Civil Engineering, Harbin Institute of Technology,
Harbin, China

Sankaran Mahadevan Department of Civil and Environmental Engineering, Van-
derbilt University, Nashville, TN, USA

Mojtaba Mahmoodian School of Engineering, University of Greenwich,
Chatham Maritime, UK

Abderahman Makhloufi Laboratoire d’Optimisation et Fiabilité en Mécanique
des Structures, INSA Rouen, Saint Etienne de Rouvray, France

Carmen Martin Mechanics, Materials, Structure and Process Division, ENIT-
INPT, Toulouse University, Tarbes Cedex, France

V.A. Matsagar Department of Civil Engineering, Indian Institute of Technology
(IIT), New Delhi, India

Ankush Mittal Department of Computer Science and Engineering, Graphic Era
University, Dehradun, Uttarakhand, India

Nicholas A. Nechval University of Latvia, Riga, Latvia



Contributors xvii

Konstantin N. Nechval Transport and Telecommunication Institute, Riga, Latvia

Richard D. Neilson School of Engineering, University of Aberdeen, Aberdeen,
UK

Abayomi Obisesan Lloyd’s Register Foundation (LRF) Centre for Safety and
Reliability Engineering, School of Engineering, University of Aberdeen, Aberdeen,
UK

Agnès Peeters Institut Superieur Industriel de Bruxelles (ISIB)—Haute Ecole
Paul-Henri Spaak, Bruxelles, Belgium

François Pérès Decision making and Cognitive System Division, ENIT-INPT,
Toulouse University, Tarbes Cedex, France

Daniel Play INSA of Lyon, Villeurbanne Cedex, France

Guy Pluvinage Ecole Nationale d’Ingénieurs de Metz, METZ Cedex, France

Mihail E. Popescu Illinois Institute of Technology, Chicago, IL, USA

Mangey Ram Department of Mathematics, Graphic Era University, Dehradun,
Uttarakhand, India

B.N. Rao Department of Civil Engineering, Indian Institute of Technology Madras,
Chennai, India

S.K. Saha Department of Civil Engineering, Indian Institute of Technology (IIT),
New Delhi, India

Shankar Sankararaman SGT, Inc., NASA Ames Research Center, Moffett Field,
CA, USA

Christian Schmitt Ecole Nationale d’Ingénieurs de Metz, METZ Cedex, France

Mirmehdi Seyyed-Esfahani Department of Industrial Engineering and Manage-
ment Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran,
Iran

Khaled Smaili Lebanese University, Zahle, Lebanon

Iman Soleiman-Meigooni Department of Industrial Engineering and Management
Systems, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Srinivas Sriramula Lloyd’s Register Foundation (LRF) Centre for Safety and
Reliability Engineering, School of Engineering, University of Aberdeen, Aberdeen,
UK

Oliver Straeter Fachbereich Maschinenbau Arbeits- und Organisationspsycholo-
gie, Universität Kassel, Kassel, Germany

Umma Tamima Department of Civil Engineering and Applied Mechanics, McGill
University, Montreal, Canada



xviii Contributors

Aurelian C. Trandafir Fugro GeoConsulting, Inc., Houston, TX, USA

Pingfeng Wang Industrial and Manufacturing Engineering Department, Wichita
State University, Wichita, KS, USA

Byeng D. Youn Seoul National University, Seoul, South Korea

Xiaohui Yu School of Civil Engineering, Harbin Institute of Technology, Harbin,
China

Peipei Zhang School of Mechatronics Engineering, University of Electronic Sci-
ence and Technology of China, Chengdu, China

H.T. Zhu State Key Laboratory of Hydraulic Engineering Simulation and Safety,
Tianjin University, Tianjin, China



Part I
Reliability Education



Mechanical System Lifetime

Raed Kouta, Sophie Collong, and Daniel Play

Abstract We present, in three parts, the approaches for the random loading analysis
in order to complete methods of lifetime calculation.

First part is about the analysis methods. Second part considers modeling of
random loadings. A loading, or the combination of several loadings, is known as
the leading cause of the dwindling of the mechanical component strength. Third
part will deal with the methods taking into account the consequences of a random
loading on lifetime of a mechanical component.

The motivations of the present document are based on the observation that
operating too many simplifications on a random loading lost much of its content
and, therefore, may lose the right information from the actual conditions of use.
The analysis of a random loading occurs in several ways and in several approaches,
with the aim of later evaluate the uncertain nature of the lifetime of a mechanical
component.

Statistical analysis and frequency analysis are two complementary approaches.
Statistical analyses have the advantage of leading to probabilistic models (Demoulin
B (1990a) Processus aléatoires [R 210]. Base documentaire « Mesures. Généralités
». (*)) provide opportunities for modeling the natural dispersion of studied loadings
and their consequences (cracking, fatigue, damage, lifetime, etc.). The disadvantage
of these statistical analyses is that they ignore the history of events.

On the other hand, the frequency analyses try to remedy this drawback, using
connections between, firstly, the frequencies contained in the loading under con-
sideration and, secondly, whether the measured average amplitudes (studied with

R. Kouta (�) • S. Collong
University of Technology of Belfort-Montbéliard, 90010 Belfort Cedex, France
e-mail: raed.kouta@utbm.fr

D. Play
INSA of Lyon, 69621 Villeurbanne Cedex, France

S. Kadry and A. El Hami (eds.), Numerical Methods for Reliability and Safety
Assessment: Multiscale and Multiphysics Systems, DOI 10.1007/978-3-319-07167-1__1,
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4 R. Kouta et al.

the Fourier transform, FT) or their dispersions (studied with the power spectral
density, PSD) (Kunt M (1981) Traitement numérique des signaux. Éditions Dunod;
Demoulin B (1990b) Fonctions aléatoires [R 220]. Base documentaire « Mesures.
Généralités ». (*)). The disadvantage of frequency analyses is the need to issue
a lot of assumptions and simplifications for use in models of lifetime calculation
(e.g., limited to a system with one degree of freedom using probabilistic models
simplified for the envelope of the loading).

A combination of the two analyses is possible and allows a good fit between the
two approaches. This combination requires a visual interpretation of the appearance
frequency. Thus, a random loading is considered a random process to be studied at
the level of the amplitude of the signal, its speed, and its acceleration.

1 Random Loadings Analysis

1.1 Usual Conditions of a Mechanical System

Mechanical systems and mechanical components provide functions for action more
or less complicated. These actions are performed and controlled by one or more
users in a variety of conditions (Schütz 1989). The diversity of uses leads to a
large number of load situations. The challenge for designers of mechanical systems
and mechanical components integrates these actual conditions of use (Heuler and
Klätschke 2005). More generally, the challenge is to take into account the possibly
nondeclared or explicit wishes of the users. Practically, it is to consider the diversity
of loads and stresses applied to mechanical components. This condition is added
to the geometric optimization requirements and conditions of material strength
(Pluvinage and Sapunov 2006). It requires the development of a calculation tool
suitable for both to obtain a representative model of loads and to carry out design
calculations (Weber 1999).

Taking into account the actual conditions of use become a technological and
economic challenge. But it causes a profound change in attitude since the causes
are considered a probable way from assumptions used by a significant segment of
the population. And of course, the calculation of the effects will be presented in
terms of probability of strength and reliability (Lannoy 2004). This approach is
possible because the two parts of the modeling are now well understood. Firstly, the
effects of various loads applied to the components can be analyzed and calculated in
terms of dynamic loads (Savard 2004; Bedard 2000). Then, the physical behavior of
materials subjected to repeated stress is better known (Lu 2002; Rabbe and Galtier
2000). The design engineer can then develop methods for calculations reconciling
best current knowledge and objectives he must achieve. Upstream of the approach,
the loads from the conditions imposed by the users must be known. And downstream
of the approach, it is necessary to calculate the consequences of such loads.
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Fig. 1 Taking into account conditions of use

The variety of conditions is the major difficulty encountered in the integration
of real condition of use when designing a mechanical component. For example, an
equipments model is designed as a response to the needs of a user class (Fig. 1).
A user class or class of use (Heuler and Klätschke 2005; Lallet et al. 1995; Leluan
1992a; Ten Have 1989) is often determined based on a profile of life confirmed by
a market investigation. Despite the definition of multiple use classes, constructors
seek as much as possible on the operating parts of equipments, to make the offer
more overall that is to say, to find integrators resemblances between different classes
use. The simplest presentation of a class of use or a life profile in the field of
transport is by example to determine the number of kilometers traveled by an
average user will during a specified period. This number of kilometers is presented
as a sum weighted of a set of types of severity often called mission profiles or
slices of life (good road, bad road, roundabout, mountain, city, different climatic
conditions, etc.). Even if these simplified configurations, predictive calculations
of resistance and lifetime require a statement of simplifications and assumptions
that lead to the use of safety factors (Clausen et al. 2006) to reduce the risk
of defects. Indeed, a class of use (or life profile) is considered by the designer
of mechanical components, such as a homogeneous whole. Nevertheless, this
homogeneity is accompanied by uncertainties that require consideration in terms
of random information. Indeed, it is now proved (Osgood 1982) that a random
mechanical stress leads to a lifetime smaller than alternating stress which seems
broadly similar.
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1.2 Statistical Analysis or Counting Methods of Random Loads

We are interested here in the methods of interpretation of the characteristic param-
eters of time series (or a discrete graphics representation) to obtain a distribution
law of these parameters (Brozzetti and Chabrolin 1986a). From the viewpoint of
checking the fatigue of the mechanical components, the extent of variation of the
variable load is an essential parameter of the same value as the average stress.
Variable loads may come as external actions as internal stresses. In what follows, we
shall make no distinction knowing that it is possible to determine the stresses from
the variable actions applied to a structure or component, making either quasi-static
or dynamic mechanical calculations.

1.2.1 Load Event

The term “load event” (Grubisic 1994) gives rise to a history of stress (also
called trajectory). This load event is a load state of service, characteristic of the
mechanical system and generating within each component considered, a variation
of stimulations.

Examples Included in the transport sector are the following cases:

• Bridge-road: the passage of a vehicle characterized by mass, number of axles,
the speed, producing a bias at a particular point of the structure. The passage of
the vehicle being a function of several parameters (the surface irregularities of
the coating, the transverse position of the vehicle on the item, the weight of the
rolling load, speed, etc.).

• Road-chassis: the stresses on the chassis of a vehicle on a road section.
• Marine platform: the action of water depending on the status of storm character-

ized by the duration, the height, the period, the average direction of waves.

Know the statistical distribution of load events during the intended use of the
system or the mechanical component, then leads to the establishment of a statistical
distribution law given by the average number of occurrences of each type of event.
For a bridge, this distribution is that of the expected traffic; for the chassis of a
vehicle, are the driving conditions; and for a marine structure, it will be a weather
data on the frequency of storms.

When each load event is characterized by one or more parameters, the long-
term distribution is in the form of a histogram, easily representable for one or two
parameters (Rabbe et al. 2000a).

In some cases, experience and theoretical modeling used to have this distribution
analytically. The histogram obtained is then replaced by a continuous distribution
law. The majority of mechanical systems and mechanical components from simple
to more complicated are subject to loads distributions often represented by Weibull
laws (Chapouille 1980).
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For example in the field of land transport, this distribution may relate to severe
stresses in a car chassis such as:

p
�
Cs > c

�� D exp

�
�
�
c�

c0

���

and

p
�
c� � Cs < c

� C dc�� D �

c0

�
c�

c0

���1
exp

�
�
�
c�

c0

���
dc�

p(Cs> c*) represents the probability of exceeding a threshold c*; Cs is the random
variable representing a severe stress event which can be here a stress due to
the passage on a road in poor condition and shown in a significant stress c0 ;
p(c* � Cs< c* C dc*) represents the probability of being located around a thresh-
old. It is thus possible to assess the probability that this stress is between c* and
c* C dc*. For this example, the statistical knowledge of the total number of sections
of bad road then used to define a number of instances is to be associated with a given
state of stress.

The difficulty of estimating a statistical distribution load event is that any
statistical prediction as it relates to natural events (wind, wave, current, etc.) or in-
service use of a considered mechanical system or considered mechanical component
(traffic on a bridge, resistance of a frame, etc.). This prediction on the probability
distribution of load events can be challenged by the emergence of exceptional
causes.

Example We may not have anticipated increased traffic on a bridge for special
seasonal reasons. Similarly another example, it is always difficult to extrapolate
over the long term, the extreme value of a wave height, based on statistical values
of wave heights measured in a few months.

1.2.2 Load Spectrum (Grubisic 1994), Histogram

Example Acceleration recorded on the axle as it passes on a test section, the speed
of a gust of wind during a given period, etc.

From this trajectory, the problem is to obtain the information necessary to have at
a histogram, or a distribution law of stresses that is called the spectrum of loads
or stresses (Grubisic 1994), which is in reality only approximate representation
of all charges stresses applied. We also note that obtaining load spectrum reduced
information, in the sense that you lose the timing of the cycles of load variations.
Therefore, the subsequent calculation of the damage (presented in the third part)
may not consider any interaction between successive cycles of stress variations due
to these loads. It may, however, admit that many events are largely random and
it is unrealistic, at the stage of predicting the behavior of mechanical systems and
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components claim to have any knowledge of the precise order of appearance, e.g.,
values of variations ranges of stresses. It thus focuses on the study of the statistical
distribution of variations ranges of stresses. And for some applications, the average
stress of each cycle is sometimes used. Assume in the following presentation, the
overall average stress is zero on the duration of the path.

Statement of Characteristic Data of a Random Loading

Except for some special cases of process (periodic sinusoidal path, stationary narrow
band Gaussian process, that is to say with few excitation characteristic frequencies),
it is generally difficult to combine with a variations range of stresses of one cycle
(Fig. 2). In the case of a very irregular loading path, such as that of Fig. 2, the
secondary peaks are problematic. And any a priori definition of how to count
variations ranges of stresses may lead to differences in prediction compared to
reality, if it is not supported by experimental verification.

The laws of damage based on more or less simple models (Duprat 1997), and the
only way to tell if an identification of damaging cycles method is better than another
is to correlate the results with those of the studied model of experience where it is
possible to achieve (time scale and/or compatible cost, etc.). In fact, the existing
methods give results fairly dispersed compared to published (Chang and Hudson
1981) results. For these reasons, the extraction of information from a random stress
is to be performed with care. Different types of information to be extracted may
occur in the following three forms:

Global analysis: where all the amplitudes of the stress are considered regardless
the geometrical shape of the path (amplitude extreme, positive or negative slope,
curvature upwards or downwards). This analysis is done using the histogram of the
stress or by tracking specific amplitudes in the stress studied.

Local analysis: through the study of extreme values according to the geometrical
shape of the path. In this case, the extreme values are separated into four statistical
groups: the positive peaks, the trough positive, peaks negative, and trough negative.
Amplitudes that do not have a change of direction in the digitized signal are not
studied.

Analyses of stress tracts and/or of cycles: When the random stress is considered
a constraint, it is useful to think in tract or stress cycle. This definition is consistent
with what is done during fatigue tests under sinusoidal stresses that life is measured
by the number of cycles. In the case of a sinusoidal stress, a tract concerns only half
a cycle. In the case of random stress S(t), defining a cycle is less easy:

• Definition of a peak and a trough of stress
A stress peak SM (or a trough stress Sm) is defined as the value of a local

maximum (or local minimum) of the function S(t). This peak (or the trough) can
be positive or negative.
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Fig. 2 Viewing a solicitation provided actual use. (a) Temporal solicitation, (b) detail of signal,
(c) histogram

• Definition of a half cycle or one cycle of tract stress variation
A tract half-cycle variation of stress is defined by the time between two

successive local extreme values of SM and Sm (the tract of the variation of stress
is defined by S D SM � Sm) (Fig. 3a). A tract cycle of stress variation is defined as
the time between two successive local maxima whose value is the first SM and the
second is S

0

M (Fig. 3a), intermediate local minimum with a value Sm. The extent
of variation of stress associated with this cycle is not unique in this case, since it
may be taken as

S D jSM � Smj or S 0 D ˇ̌
S 0

M � Sm

ˇ̌
:

Another way to define a cycle, and that this is not linked to the counting of
the peaks and troughs of a path, is related to the time interval between two zero
crossings and by increasing value (or decreasing values) of the path (Fig. 3b).
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Fig. 3 Definition of characteristics of stress. (a) Half cycle definition, (b) series of cycles

The example of Fig. 3b with local peaks and local troughs shows the difficulty
in defining one cycle and the tract of variation of stress associated with this cycle.
Only the cycle no. 2 in the figure is used to define a single tract of variation of
stress associated with this cycle.

In summary, three pieces of information must be seen from a random loading:
the amplitudes that have imposed load considered (overall analysis), specific
amplitudes observed by zooming effect and that reflect the severity of loading
(local analysis), and finally tract or extracts cycles of loads studied. And counting
methods (Lalanne 1999a) can be divided into three groups: global methods, local
methods, and the methods of counting matrix.

Counting Global Methods

The main global counting methods (Lalanne 1999a) are: counting by class and
method count overruns levels. For each counting method, an application will be
presented around the stress shown in Fig. 4a.
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Fig. 4 Descriptive statistics of stress. (a) Realization of histogram, (b) definition of probability
density function

Histogram or Holding Time in a Class of Amplitudes

This method considers the digital signal recorded as a statistical sample not knowing
the temporal aspect. The sample is grouped into classes of amplitudes (Fig. 4a,
dashed horizontal lines). In this case, no distinction is made between the extreme
values and others. The advantages of this method reside in the immediate possibility
of statistical modeling and propose a model of probability density (right side of
Fig. 4a). Since between two successive points, there is a not predefined time by the
method of measurement, the number of points recorded in a class when multiplied
by the time step gives the total holding time of the stress studied in this class of
amplitudes. This counting method should be reserved only for homogeneous stress
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(or whose source is considered homogeneous) that is to say, if no significant change
in the nature of loading. Indeed, this method is very dependent on the speed (first
derivative of the curve considered on a path with a specific dynamic signature) and
the acceleration (second derivative) of the stress studied. In the case where the
stress has several types of information (related to the braking, cornering, various
loads, etc.), the signal loses its homogeneity and the counting class will be altered
by these class different uses which dynamic signature is not the same. Figure 4a
shows a digitized stress where 28 points and 9 classes of amplitudes are defined.
The counting class (from the class below) leads successively to 2, 7, 3, 5, 1, 2, 5, 1,
and 2 amplitudes per class.

Counting the Number of Level Crossing

This method, like the previous one, calls for predefined amplitude classes (Fig. 4b).
Counting, for a given level, is triggered when the signal exceeds a level with a
positive slope (hence the name level crossing). A count of the number of given
level crossing is only relevant if an attitude selection of small oscillations is defined.
These small oscillations can provide loads staffing (number) without interest from
the point of view of calculating the damage and calculating life. And for counting
the number of level crossing increment signal noted � is defined. It is often in
the case of a mechanical component, interval stress below a fatigue limit set to
a Wöhler curve (Leybold and Neumann 1963). This increment is considered � a
threshold reset in the counting process. Historically, several counting methods have
been proposed. The most interesting method has only one level if the stress has
already gone through at least once this threshold �, irrespective of nature of slope.
It should also be remembered that the counting is done with a digitized signal, and a
proximity rule should be implemented to count very close to the levels determined
amplitude. This counting method allows—as the previous one—to build a model
of probability density. The application of this method focuses on the levels defined
by the class boundaries. Count per level (with the solicitation of Fig. 4b, from low
level) leads successively to 0, 0, 2, 1, 0, 1, 1, and 2 level overruns.

Counting Local Methods (Local Events)

Extreme values (peaks and troughs) of a random stress occur from four different
families by:

• Positive maximum values preceded by a positive slope (peak> 0)
• Negative minimum values preceded by a negative slope (trough< 0)
• Negative maximum values preceded by a positive slope (peak< 0)
• Positive minimum values preceded by a negative slope (trough> 0)

Figure 5 illustrates these four families of amplitudes. As for the global analysis,
grouping into classes for each family gives the possibility to build a model of
probability density by type of extreme values. The result of this counting method
around the stress shown in Fig. 5 leads, starting from the low class of the nine
amplitude classes, to the results in Table 1.
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Fig. 5 Descriptive statistics with local events

Table 1 Local counting
method

Classes Trough< 0 Peak< 0 Trough> 0 Peak> 0

1a 1 0 0 0
2 4 0 0 0
3 2 2 0 0
4 0 1 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 2 1
8 0 0 0 1
9 0 0 0 1
aThe lowest class

Counting Matrix Methods

Matrix counting methods take into account the evolution of the mean stress and/or
involve the concept of stress cycle.

Counting Tract Between Peaks and Troughs

A tract (Fig. 6a) is defined as the difference between the given maximum and
minimum (negative range), or between a given minimum and maximum (positive
range). This method has half cycles. A variant of this method consists in associating
with each cycle, the average of the positive and negative tract (to create tract average
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Fig. 6 Counting tracts of stress. (a) Counting between peaks and troughs, (b) counting means
cycles

counts). The results of this counting method for the solicitation studied in this
paragraph are shown in Fig. 6a. Indeed, the values S�

1 , SC
1 , S�

2 , SC
2 , S�

3 , SC
3 , S�

4 ,
et SC

4 are the only tracts identified in this solicitation.

Counting Means Cycles

A cycle is defined by means the time between two zero crossings by increasing
value (positive derivative). The tract of variation of stress S for this mean cycle is
defined by the maximum of the local maxima and minimum of local minima inside
this mean cycle (Fig. 6b). Just as the previous method, the counting results of this
method are shown in Fig. 6b. Indeed, this counting method locates two identified
cycles by S1 and S2 tracts, respectively, corresponding to the values S�

2 and S�
3 of

the previous method.
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Fig. 7 Global cycle count of stress. (a) Rainflow method, (b) tanks method

“Rainflow” Method

This method takes into account all sequences of stress and in particular, it has
all the secondary stress variations of the trajectory. It takes into account the half
cycles and cycles by different, from that which was described in Sect. 2.3.3.1,
way. Its name comes from how to identify cycles by the flow of a drop of water
that slides along the path from top to bottom (Fig. 7a, vertical time axis to image
representation). Whenever a drop of water leaves the path, a new cycle is initiated
from the next summit. Counting cycle stops when the drop is blocked (the drop of
water cannot follow the same path a path previously followed by another drop). If
the end of the path is reached without blocking, there is only one half cycle. This
method is cumbersome to implement and it does not lend itself easily to statistical
mathematical modeling and the use of statistical properties of the trajectories of a
random process. In the case of Fig. 7a, three cycles are observed (2320, 6760, and
8980) and three half-rings (1–4, 5–10, 4–9).

Tank Method

This counting method is similar to the previous one. It also has the advantage of
taking into account all sequences tracts of stress variation. This method takes its
name from the hydraulic analogy it presents with emptying a tank. One can imagine
that all the pockets the water path is filled (Fig. 7b, now the time axis is shown
horizontally). Was identified by decreasing values all troughs and imagine that each
of these troughs has a drain valve. The tap of the lowest trough l is open, the tank
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Fig. 8 Construction of MARKOV matrix

empties, leaving the other pockets filled with water. It does so by opening the valve
of the next lowest trough and so on until you have emptied every pocket. You
identify for each difference in height of water, a tract of variation of stress. A tract
of variation of stress is cycle. For example, four reservoirs are detected on the stress
of Fig. 7b. Each tank defines a stress cycle. The detected tanks are:

• The tank defined by the level (a) and the trough (1)
• The tank defined by the level (d) and the trough (2)
• The tank defined by the level (c) and the trough (3)
• The tank defined by the level (e) and the trough (4)

This method gives results similar to those obtained with the previous method.
From the point of view of its mathematical formulation, it is easier to implement,
but it nevertheless has the same disadvantages as the previous one.

Method of Transition Matrix or MARKOV Matrix

This method facilitates the counting of half cycles of stress. It is easier to automate.
It leads to the construction of a transition matrix called MARKOV matrix (Lieurade
1980a; Kouta and Play 2006). The latter is obtained by the following steps (Fig. 8):

1. Temporal stress studied is divided into classes of amplitudes width �C. This
width is considered as a threshold for filtering because all fluctuations within
a class of amplitudes are ignored. The class width is often, in the case of a
mechanical component, in a range below a stress fatigue limit set to a Wöhler
curve (Leybold and Neumann 1963) (similar to the threshold � defined in Sect.
2.3.1.2).

2. Pour démarrer le comptage, la classe d’appartenance de la première amplitude
observée, est détectée. Cette classe est considérée comme une classe de départ.
La classe d’arrivée est déterminée quand le signal atteint un extremum.
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Fig. 9 Subdivision of
MARKOV matrix

3. Thus, the horizontal dimension (row i) of the transition matrix (right part of
Fig. 8) shows the starting classes and the vertical dimension has the arrival classes
(column j). Box crossing the line i and column j is used to indicate the number
n(i, j) times the transition stress was observed.

4. The MARKOV matrix is thus transitions to an extremum of another (S(i) ! S(j)).
The alternating amplitude Sa(i, j), the average amplitude Sm(i, j) of the transition,
and tract �S(i, j) D S(j) � S(i) can be calculated.

Sa D S.j / � jS.i/j
2

� Sm .ij /

Sm .i; j / D S.j /C jS.i/j
2

Figure 9 explains the transitions detected in the various subparts of a Markov
matrix. This particular figure shows that most of the severity of a stress (with
nonzero average value) is located in the top-left quadrant and the lower right quarter.
Figure 10 shows a MARKOV matrix obtained for the deflection of a right front axle
of the industrial vehicle. This stress is observed upon passage of the vehicle on a
specific test section with five concrete bumps.

Conclusion on the Counting Methods

The different counting methods give different results, by the type of path considered.
The method of counting of cycles means produces the same results for the three
cases of Fig. 11a. The method of counting the peaks gives the same results for the
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Fig. 10 MARKOV matrix for the deflection of the front right axle of a motor vehicle (Measured
on a section consists of five bumps in concrete)

case (2) and (3) of Fig. 11a. Drop of water counting method or tank counting method
and tracts between peaks and troughs give very different results for the two paths in
Fig. 11b.

Currently, we do not have a number of published experimental tests enough on
material fatigue under random stresses actual reasonably to conclude on the choice
of method. However, some laboratory studies (Société française de métallurgie
(Commission fatigue) 1981; Gregoire 1981; Olagnon 1994) show that in specific
cases the method of counting the peaks and the counting method of the drop of water
(counting method similar to the tank) give satisfactory results. So many regulations
on fatigue verification of structures, systems, and mechanical components currently
recommend, take the method of counting the drop of water. But it should take
precautions to extrapolation of complex industrial cases. Remember that it is not
enough to properly count the events, but it is also essential to develop approaches
to mathematical modeling, probability, and statistics. These models offer several
opportunities for engineers, for example:

• Objective classification of different types of stresses
• Possibility (after classification) build rules correlations between sources of

stresses
• Production significant bench tests and numerical calculations of fatigue repre-

sentative from actual conditions of use

Similarly, these models will be needed to establish predictive methods of
calculating lifetime or to perform reliability analyses.

The difficulties in this type of modeling with some counting methods (counting
of the drop of water or tanks, for example) lead to consideration of other methods
such as the level crossing or the matrix MARKOV (Klemenc and Fajdiga 2000;
Rychlik 1996; Doob 1953). When comparing different methods for counting a given
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Fig. 11 Different scenarios of stress. (a) Comparison of counting methods, (b) solicitations with
narrow or wide band

historical of use, it must examine the sensitivity of the methods taking into account
the following parameters:

• Number of cycles detected.
• Detection of major cycles.
• Consideration of small tract of stress variation.
• Taking into account the average values of each cycle.

Finally, in the context of a particular business, you must choose a representative
method load considered and that is consistent with the results of the experiment.
But also the choice of the method will be conditioned by the calculation methods
implemented in the future to perform the calculations lifetime. Representative path
stress event is similar to a random process which is not known a priori, the form that
its realization. The mathematical tools needed to solve these problems relate to the
theory of probability and statistical properties related to the trajectories of random
processes (Parzen 1962; Preumont 1990).
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1.3 Frequency Analysis

The frequency analysis (Arquès et al. 2000) provides the notion of Power Spectral
Density (PSD). Before developing the concept of PSD, some precautions are
necessary for the representation of developments. These precautions are about of
nature of stress to study. It is assumed that the path on the stress process X(t) satisfies
the following assumptions:

• The process X(t) is continuous over the observation time chosen equal to a time
unit that is referred to as the reference period.

• First PX.t/ and second derivatives RX.t/ of the path X(t) are continuous processes
on the observation time.

• The process X(t) is centered, that is to say the average M(X(t)) is zero. If X(t) is
not centered, the transformation is performed: X(t) ! (X(t) � M(X(t))).

• The process X(t) has independent statistical properties of time. The process is
stationary. Statistical properties by means of spectral moments (defined later in
the text) of (X(t)) of order 0, 2, and 4.

• The process X(t) is Gaussian, that is to say that the random variable (X(t1) and
X(t2), X(t3), : : : , X(tn)) on t1, t2, t3, : : : , tn follows a Gaussian distribution law.

• The statistical characteristics of the random variable at a time are the same as
those of the time stress.

1.3.1 Power Spectral Density

PSD is determined according to the frequencies that appear in the stress, following
a well-known process (Fig. 12a) (Plusquellec 1991; Borello 2006). This gives a
power spectrum. In addition, the quadratic mean of the amplitudes (or variance) is
defined. The latter is often called the intensity of the stress or RMS (Root Mean
Square). The determination of the PSD is considered material if it is known that
stress for a component at a given observation point is caused not only by external
forces but also by the interaction effects of the component studied with the different
elements system to which it belongs. For example, Fig. 12b (Buxbaum and Svenson
1973) shows the PSD of a record on a mechanical system in automotive signal. Two
characteristic frequencies of the frame and of the suspension are identified.

The determination of the power spectrum of a random stress observed in
the actual conditions of use of a mechanical component provides two types of
information:

• Distinction between the different sources of stress measured.
• Contribution of each frequency to the intensity of the stress, defined rms.

According to WIENER–KHINTCHINE (Max 1989), PSD of a stationary pro-
cess, as noted, is defined as the frequency distribution of the average energy of
a process X(t) where t represents time. ¿xx(�) is connected to its autocorrelation
function Rxx(� ).
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Fig. 12 Obtaining the Power Spectral Density (PSD). (a) Numerical procedures, (b) PSD example
(Max 1989)

For a stationary process, we have:

Rxx .�/ D
C1Z

0

x.t/ � x .t � �/ dt (1)

Thus,

¿xx .�/ D 1

2�

C1Z

�1
Rxx .�/ :e

�j�� d� (2)

and

Rxx .�/ D
C1Z

�1
¿xx .�/ :e

j�� d� (3)
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So for the same process, but with a zero mean, the expression of the variance (or
the RMS in this case) is obtained by imposing � D o in the following relationship:

Rxx.o/ D
C1Z

�1
¿xx .�/ d� D �2X D E

�
X2.t/

	 D RMS D m0 (4)

This last result is appointed first spectral moment. Two other spectral moments
are defined by

m2 D � RR.0/ and m4 D R.4/.0/

R(4) is the fourth derivative.
In the case of the process discussed here, m0, m2, and m4 are, respectively, the

same as the variance of the stress, of its first derivative and its second derivative as
follows:

m0 D V .X.t// ; m2 D V
� PX.t/� and m4 D V

� RX.t/�

In practice, the PSD is written as follows:

¿xx .�/ D lim
T ! 1

1

2�T

2

6
4

ˇ̌
ˇ̌
ˇ̌
ˇ

T=2Z

�T=2
X.t/:e�j�t dt

ˇ̌
ˇ̌
ˇ̌
ˇ

23

7
5 (5)

This relationship provides an interesting interpretation especially in the case of a
single measurement. In practice, the signal strength (stress) is determined by bands
of frequencies (the most selective possible). This intensity is represented by the area
bounded by the time signal curve for each frequency. In general, this is characterized
by intensity variations of the curvature of the signal-time trajectory. Figure 12a
diagrammatically shows the determination of the PSD. In this case for a real signal,
the autocorrelation function is real and even, it is the same to the PSD ¿xx(�).
Relations Eqs. (2) and (3) can be written:

¿xx .�/ D 1

�

1Z

0

Rxx .�/ cos .��/ d�

Rxx .�/ D 2

1Z

0

¿xx .�/ cos .��/ d� (6)

Figure 13a (Rice et al. 1964) shows various forms of random stress and their
associated PSD. The stress 1 is almost sinusoidal and the PSD is centered around
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Fig. 13 Example of PSD. (a) Different kinds of stresses, (b) PSD for stress of Fig. 10

of the main frequency, it is a very uniform stress. The two well-identified peaks of
DSPs of stress 2 and 3 are well explained by the presence of two frequencies that
appear on the requests presented. The highest amplitudes of DSPs 2 and 3 indicate
that these two frequencies are not the same energy signature for each stress. For four
and five solicitations, all observed frequencies have almost the same importance.
The stress 4 shows a frequency that differs from the other in the low frequency range.
The stress 5 has a practically constant energy level whatever the frequency and this
frequency range on a wide. And PSDs provide information on the statistical nature
of the studied stresses and are indispensable when it comes to a classification of
different mission profiles or classes of use of a component or a mechanical system.
Its importance is even greater than it is thanks to PSDs that testing laboratories to
reproduce test benches solicitations recorded in real conditions of use (Tustin 2001).

Figure 13b shows the PSD on the measurement of a movement, shown in Fig. 10.
We see that this is a scenario loading close enough stress 4 shown in Fig. 13a.
Indeed, despite the presence of a significant noise energy level, there is a frequency
that is distinct from the other and has a high energy level. Physically, this is
explained by the five shocks obtained when the vehicle passes over bumps of
concrete.
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Fig. 14 Example of extrem
response spectrum (ERS)
(a sinusoidal stress, b stress
Fig. 10)

1.3.2 Extrem Response Spectrum

Extrem response (ER) (Lalanne 1999b) is characterized by the quantity

ER D �
2:�:fp

�2
:Zm

Zm is the maximum response once met, the probabilistic sense, during the
duration of the random excitation. The Extrem Response Spectrum (ERS) is the
graph of changes in ER based on the natural frequency of the system with one degree
of freedom fp, for a given damping factor � . The extreme response is representative
of the largest stress Sm suffered by the component assuming Sm D K.Zm (K D spring
constant).

Figure 14a shows spectrum of the extrem response for a sinusoidal stress and
Fig. 14b shows the stress of the ERS shown in Fig. 10.

Obtaining spectrum extreme response requires the definition of the statistical
distribution of extreme values of the stress studied. This is the subject of a paragraph
of Part 2. The process of obtaining the ERS and applications are subject to Annex C
of Part 2.
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1.4 Conclusion

Statistical analysis is mainly represented by the counting methods. Frequency
analysis is mainly determined by consideration of the PSD and extreme spectral
response. The combination of the two analyzes can be considered a stress studied
as a random process. Indeed, the uptake of random stress a random path will allow
providing probabilistic modeling of a number of methods of numeric counts. These
probabilistic models can also include elements of the frequency analysis and in
particular PSD of the stress studied.

2 Random Loadings Modeling

The ultimate goal of these three parts is to develop essential methods and essential
tools to predicting the lifetime of mechanical components. In the first part, statistical
analysis and frequency analysis allowed to have a representation of the stresses
applied to a system or a mechanical component. This will allow the second part
to move from these representations for models with as ulterior objective to calculate
the lifetime. Two types of models will be discussed in this article. The first is based
on statistical and probabilistic approaches. The second incorporates an interaction
between statistical analysis and frequency analysis.

2.1 Probabilistic Modeling of the Histogram
of a Random Stress

The transition from the statistical analysis to a random stress probabilistic modeling
with mathematical analysis is always tricky. Indeed, the purpose of modeling
random loads is to determine a theoretical probability of occurrence of events, from
the observation of a series of values (xi)N of a random variable (X). If descriptive
statistics seeks to pass judgment on the random variable with respect to preselected
values, mathematical statistics seeks to make judgments about the probability of
different values. The histogram (Fig. 15a) becomes a “density estimator” and
accumulations diagram (Fig. 15b) is “probability estimator” (distribution function).
Whichever method of synthesizing a random stress, the information collected
can be probabilistic modeling (Saporta 1990). In the remainder of this section,
the modeling of the conventional histogram is presented. This can also apply
to all methods of unidimensional digital counting. Two-dimensional models are
not discussed in this article. Thus for stress studied, the probability of overrun
for any level is obtained. Similarly, after modeling the probability density fX(x)
and distribution function FX(x), all the basic statistical techniques may be applied
(including laws minimum and maximum).
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Fig. 15 Introducing the stress reference. (a) Example of stress, (b) definitions, (c) skewness, (d)
kurtosis

Probability .X < x/ D FX.x/ D
xZ

�1
fX.u/ du with

Z C1

�1
fx.x/ dx D 1 (7)

In practice, the distribution of X is continuous, the density fX(x) is obtained from
the observed series X1, : : : , xN . Call fN the function that maps x real, the number
fN(x)(Dfi) equal to the height of the rectangle which is relative to the class containing
x (Fig. 15a). The purpose of modeling is to say that for all x, the two values fN(x)
and fX(X) are “close.” Some fit tests are used with wariness in the interpretation
of a statistical test (	2, Kolmogorov tests (Fauchon J Probabilités et statistiques
INSA-Lyon)). Given the variety of histograms encountered during the processing
of random stress, two modeling approaches can be taken: modeling on the model of
K. Pearson (Guldberg 1920; Kendall and Stuart 1969) or modeling on the model of
Gram-Charlier and Edgeworth (Edgeworth 1916; Charlier 1914). The data to start
for these two approaches are shape indicators of stress studied. These indicators
are the minimum, maximum, average, standard deviation, asymmetry, and kurtosis
stress studied (Fig. 15c, d).



Mechanical System Lifetime 27

2.1.1 Shape Indicators of a Random Loading

Figure 15a shows schematically a random stress. xmin and xmax are, respectively, the
minimum and maximum values recorded:

xi D x .ti / ;

The amplitude xi is measured time ti knowing that:

tiC1 D ti C�t D ti C 1

fe

With �t time step; fe D 1
�t

sampling frequency.
All of these values are the stress studied. The considered average is the arithmetic

average:

x D 
1 D 1

n

nX

iD1
xi (8)

It is the center of gravity of digitized values. The considered standard deviation
is the mean of squared difference:

sx D p

2 D

vuut 1

n

nX

iD1
.xi � x/2 (9)

This is a calculation of the inertia of the stress dispersion studied about the
central tendency or its center of gravity. The asymmetry and kurtosis are defined
with respect to the law of Gauss.

The asymmetry factor for the law of Gauss is zero; the kurtosis factor is equal
to 3. Figure 15c shows a Gaussian distribution and the consequences of a nonzero
asymmetry. If the statistical distribution of random stress does not follow a Gaussian
distribution, the asymmetry factor indicates the spreading in the right or left of the
mean of the distribution.

The kurtosis factor indicates the crushing of the distribution or concentration
around a given amplitude (Fig. 15d). Table 2 presents the expressions of asymmetry
and kurtosis (Johnson and Kotz 1969).

Centered moment of order r: 
r, is obtained differently if the evaluation is done
from a random stress or a probability distribution. Table 3 presents the two methods
of calculation.

In the case of a random stress, a new form factor is defined and is called
irregularity factor I. This factor is the ratio of the number of zero crossings N0 of the
focus signal and the number of contained extrema Ne in the studied stress.
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Table 2 Expression of asymmetry (skewness) and kurtosis

Parameter Skewness Kurtosis

English literature ˇ1 D 
23





32
ˇ2 D 
4





22

French literature G1 D 
3



3=2
2

D signe .
3/ .ˇ1/
1=2 G2 Dˇ2 � 3

Table 3 Calculation of central moment of order r

Parameter From a random stress From a probability distribution fx(x)

Central moment of order r (
r) 
r D 1
N

NX

1

.xi � x/
r


r D R
(x � E(X))rfx(x) dxa

aE(X) D R
xfx(x) dx represents the expectation of the random variable X (or average x). Note that

these integrations are performed on the domain of definition of x

I D N0

Ne
I is between 0 and 1

More I nears 1, the more regular of the stress is important. Thus, almost each
extremum is always followed by a zero crossing (Fig. 16a). In this situation, the
measure in question is described as “stress narrowband.” When I nears 0, the
regularity of the stress becomes lower. Thus, between two zero crossings level,
the signal goes through many extrema on the same sign (Fig. 16b). In this situation,
the measure in question is described as “stress broadband.” The irregularity factor
gives an important indication of the temporal evolution of stress, what other form
factors completely unaware. In Appendix 4, factors of irregularity are defined. They
will have a liaison role between statistical modeling and frequency analysis of a
random stress.

2.1.2 Pearson Approach for Obtaining the Probability Density

In the study of shapes distributions frequently observed, normal or Gaussian
distribution occupies the place of “generator” function. Pearson (Kendall and Stuart
1969; Johnson and Kotz 1969) proposes a differential equation which includes in its
solutions a set of curves of probability density.

1

fX.x/

dfX.x/

dx
D x C a0

b0 C b1x C b2x2
(10)

With fx(x) probability density function of (denoted as p.d.f), a0, b0, b1, and b2

are parameters to be estimated and are dependent indicators shape of stress studied
(mean, standard deviation, asymmetry, and kurtosis).
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Fig. 16 Characterization
stresses depending on the
irregularity factor I. (a) Stress
with an irregularity factor
I Š 1, (b) stress with an
irregularity factor I Š 0

Different values of these give a series of “types” of solution (Jeffreys 1961) that
generate a set of distribution curves. Several solutions of Eq. (10) correspond to
conventional distribution curves with particular values of ˇ1 and ˇ2. Other solutions
take into account family values ˇ1 and ˇ2.

2.1.3 Introduction of the Pearson System Solutions

If a random variable X has an average mX and a standard deviation sX ,
Y D (X � mX)/sX is centered reduced random variable associated with X. The
average of Y is zero; the standard deviation of Y is 1.

For a random variable centered reduced, the Pearson system leads to seven types
of theoretical solutions. These solutions are defined in terms of asymmetry and of
kurtosis.

Figure 17 shows the chart of system solutions Pearson. The lines D1 and D4 give
the limits of the solutions obtained. Each limited area between two lines corresponds
to a probability density model. The lines D2, D3, D5, and D6 correspond to
particular probability laws. For ˇ1 D 0 and ˇ2 D 3, we find the Gaussian (or normal
distribution). The solutions obtained on straight D2, D3, D5, D6, or a particular
point N are cases very difficult to obtain figures in reality. Indeed, it is almost
impossible to find numerical values of ˇ1 and ˇ2 which are exactly the equations
straight. For this reason and in practice, the solutions of the Pearson system can
be reduced to three characteristics solutions: Beta1 law, Beta2 law, and Gamma
distribution.

The Beta1 law in the area between the straight lines D1 and D2. The Beta2 law in
the area between the lines D3 and D4. The Gamma distribution in the intermediate
zone between areas treated with Beta1 and Beta2 laws.
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Fig. 17 PEARSON abacus

Appendix 1 presents main solutions of the Pearson system and the laws of
probability alternatives that are easier to handle and which estimate their parameters
is easier.

Synthesis and Conclusion of the Pearson System

The Pearson system has the advantage of specifying that a random stress can be
modeled by three laws presented earlier. In the case where several random stresses
from the same environment use must be considered, it is easier to have to provide
a single model probability density. Thus, other modeling means are developed
with a representation of the distribution curves by the series expansion technique.
Gram-Charlier and Edgeworth (Kendall and Stuart 1969; Johnson and Kotz 1969)
have developed an expansion method which allows to obtain functions of arbitrary
distributions based on the technique of the series expansion, around a continue
and known distribution called generator function. The expansion of the normal
distribution using a series expansion of Taylor series category.
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2.1.4 Gram-Charlier–Edgeworth Approach for Obtaining the Probability
Density

Recall that if f (x) is a probability density function, a series function (Eq. (11))
defines a probability density if it justifies the two necessary conditions:

g.x/ � 0:0 and

C1Z

�1
g.x/ dx D 1:

In this case, g(x) has some pluralitings k1, k2, : : : (Kendall and Stuart 1969):

g.x/ D exp

2

4
1X

jD1
"j
.�1/j
j Š

Dj f .x/

3

5 : (11)

In practice, the representation of the serial function is taken as a series with few
terms. So, the model adopted is as follows:

g.x/ � ˛.x/

�
1C k3

6
H3.x/C k4

24
H4.x/C k23

72
H6.x/C � � �

�

G.x/ D
xZ

�1
g.t/ dt D ¿.x/ �

�
k3

6
H2.x/C k4

24
H3.x/C k23

72
H5.x/C � � �

�
˛.x/

(12)

With: x between �1 and t C 1, k3 D (ˇ1)1/2; k4 Dˇ2 � 3;

˛.x/ D 1p
2�

exp

�
�x

2

2

�
and ¿.x/ D

xZ

�1
˛.u/ du

H2 D x2–1I H3 D x3 � 3xI H4 D x4 � 6x2 C 3I

H5 D x5 � 10x3 C 15xI and H6 D x6 � 15x4 C 45x2 � 15

This model must verify the following conditions:
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Fig. 18 Results obtained with the GRAM-CHARLIER–EDGEWORTH model

C1Z

�1
g.x/ dxD1 knowing that

C1Z

�1
˛.x/Hj .x/ dxD0 and g.x/!0 if x!˙ /

The function f (x) taken into account is that of the Gaussian ˛(x). Hr(x) are the
Hermite polynomials. The coefficients kj depend on the asymmetry and kurtosis
which are expressed in terms of different moments 
r. When r> 4, these are known
for their unstable nature. For this reason, in practice, the order of development
does not exceed the term H6, and takes into account the terms 
3 and 
4. The
disadvantage of this model lies in the fact that the model is always defined between
�1 and C1. For a random variable (Y) which is defined with a mean (mY ) and a
standard deviation (sY ), any X is obtained by a reduction and centering such that:

X D .Y �mY / =sY : Thus mX D 0 and sX D 1:

Figure 18 shows different probability densities obtained according to the devel-
opment of GRAM, CHARLIER, and EDGEWORTH.
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2.2 Theoretical Modeling of the Local Events

The statistical models presented in the previous section unknown the intermediate
changes in random stress studied. Also to take into account a stress will be
represented as a series of ascents and descents. The succession of these changes
between peak and trough in the evolution of stresses is another approach to describe
the severity of excitatory stress systems and components studied. Thus, modeling is
focused on the most representative local events. These are the four families of events
(positive peaks, positive trough, negative peaks, and negative troughs) presented
in “Counting Local Methods (Local Events)” section. For random stress observed
under conditions of use, each type of local events forms a homogeneous sample.

The amplitudes of these four types of events are defined from zero. Thus, the
probabilistic modeling of the statistical distribution of these four types of events
should consider the following:

• Theoretical model must be defined from zero.
• Upper limit of variation can be considered as infinite because highest amplitudes

are much higher than zero.

The statistical distribution model of WEIBULL (Kouta and Play 1999) is used
for this kind of phenomenon as the events represent extrema. Appendix 2 presents
the technique for estimating the parameters of the WEIBULL distribution for each
type of local events. Statistical tests should be performed to ensure the adequacy of
proposed laws observed with histograms. Thus, four models of probability density
for the four types of local events are obtained. Figure 5 illustrates these four laws of
probability.

2.3 Probabilistic Modeling of the Level Crossing

Let X(t) D˛ level amplitude given, N˛ is the number of times this level was
exceeded for a small unit of time dt (Rice 1944). N˛ .dt is interpreted as the
probability that ˛ is exceeded in a time dt, knowing that ˛ may be exceeded if:

˛ � ˇ
ˇx0.t/

ˇ
ˇ dt < x.t/ < ˛ x0.t/ > 0

or

˛ < x.t/ < ˛ C ˇ̌
x0.t/

ˇ̌
dt x0.t/ < 0 (13)

Let gXX 0 .u; v/ the probability density of two random variables x(t) and x0(t) with
realizations u and v and

gXX 0 .u; v/ du dv D Prob
�
.x.t/ 2 uI u C du/ \ �

x0.t/ 2 vI v C dv
�	
:
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˛ crossing probability of is then:

N˛ dt D
0Z

�1
dv

˛CjvjdtZ

˛

gxx0 .u; v/ dv C
1Z

0

dv
Z̨

˛�jvjdt
gxx0 .u; v/ du (14)

After integration u and considering infinitesimal dt, then:

N˛ D
C1Z

�1
jvjgxx0 .˛; v/ dv (15)

If we write gXX 0 .u; v/ D gx0

x

.v=x D u/ gX.u/ with gx’

x

.v=x D u/ the

conditional probability x0(t), knowing x(t) D u and gX(u) the probability density of
x(t):

N˛ D gx .˛/ :

C1Z

�1
jvjgx’


x

.v=x D ˛/ dv D gx .˛/ :E
˚ˇ̌
x0 ˇ̌ =x D ˛

�
(16)

In the expression Efjx0j/x D˛g, slope (jx0(t))j) taken into account are those level
x(t) D˛. If this mathematical expectation is calculated for ˛D 0, the number N0

level 0 crossing is obtained:

N0 D gx.0/:E
˚ˇ̌
x0 ˇ̌ =x D 0

�
(17)

Similarly, the number of extreme values cannot be modeled but its determination
requires the study of curves (x00(t)) and zero slopes.

Let gX 0X 00 .v;w/, the probability density for two random variables x0(t) and x0(t).
Similarly Eqs. (16) and (17)

Ne D
C1Z

�1
jwjgx0x00 .0;w/ D gx0.0/:E

˚ˇ̌
x00 ˇ̌ =x0 D 0

�
(18)

For a stationary process differentiable (as a differentiable Gaussian process), the
cross-correlation function between two successive derivatives of a random variable
x(k)(t) and x(k C 1)(t) is zero. This has been verified in practice for the majority of
studied signals (Osgood 1982).

E
n
x.k/.t/x.kC1/.t/

o
D E

�
dk

dtk
x.t/:

dkC1

dtkC1 x.t/


D E

�
d

dt

1

2

�
x.k/.t/

	2


D d

dt

1

2
E
n�
xk.t/

	2o D d

dt
.constant/ D 0:
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Thus, Eqs. (16), (17), and (18) take a simple form

N˛ D gx .˛/ :E
˚ˇ̌
x0 ˇ̌� (19)

N0 D gx.0/:E
˚ˇ̌
x0 ˇ̌� (20)

Ne D gx0.0/:E
˚ˇ̌
x00 ˇ̌� (21)

These three relationships give theoretical estimates of the number (N˛) of level ˛
crossing, the number of level 0 crossing (N0), and the number of extreme values
(Ne). This evaluation depends on the probability density model adopted for the
studied stress on N˛ and N0 and the first derivative of the Ne. These probability
densities are weighted by the average slope EfjX0jg for N˛ and N0 and the mean
curvatures Efjx00jg for Ne.

Pearson model (Sect. 2.1.2) or its replacement laws as well as the model of Gram-
Charlier–Edgeworth (Sect. 2.1.3) fit well enough to model the probability densities
of X and of X 0 .gX.x/; gX.0/; gX 0.0//. EfjX0jg and Efjx00jg are global estimates
obtained from a theoretical and only for a Gaussian stress. To make the evaluation of
these elements closest to the specificity of each stress studied (Kouta 1994), we must
calculate the average slopes and curvatures for each amplitude histogram studied
class.

Thus, a more global modeling is defined. It allows an improvement of counting
the number of crossings of either a level, either extreme values, or the number of
level 0 crossing:

N˛ .ck/ D gx .˛/ :E

� ˇ̌
x0 ˇ̌ =x 2

�
˛ � �c

2
I˛ C �c

2

�
(22)

N0 .ck�/ D gx.0/:E

� ˇ̌
x0 ˇ̌ =x 2

�
��c
2

I �c
2

�
(23)

Ne .ck/ D gx0.0/:E

� ˇ̌
x00 ˇ̌ =x0 D 0x 2

�
˛ � �c

2
I˛ C �c

2

�
(24)

With ck: class k; ck� : class of center containing the amplitude 0; �c: class width.
Appendix 4 presents the theoretical modeling of the level crossing in the case

of a Gaussian stress. The relations Eqs. (22), (23), and (24) are obtained from the
probability densities of theoretical (gX or gX 0 ) and the information observed in the
studied random stress (average slopes or curvatures amplitude class). Figure 19
(for stress shown in Fig. 10) shows the difference between the counting results of
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Fig. 19 Comparison of results obtained with different counting methods

numerical level crossings and the results obtained with Eq. (22). In classes of the
most negative amplitudes, there are little effective digital values. However, these
amplitudes reflect the intensity of the impact when passing over bumps of concrete
in this particular case. From the point of view of fatigue of mechanical components,
these amplitudes have a significant importance. The product of the number of these
amplitudes by the average of their slopes can take into account the effect of these
amplitudes.

2.4 Envelope Modeling of a Random Loading

The model of extreme value distribution defines statistics of each extreme group
without taking into account their links with the rest of the signal. The objective of
this section is to define the probability of exceeding extreme of any level taking into
account their statistical distribution and contribution to the dynamics of the signal
by taking into account the slopes and curvatures, in the same spirit to that adopted
for the development of model exceeded level (2.3).

fM(˛)d˛ of the probability of occurrence of a maximum at time t with
˛ < x(t)<˛C d˛, this depends on the probability distribution triple gxx0x00 .u; v;w/
connecting the stress (x), its first derivative (x0), and its second derivative (x00):
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fM .˛/ d˛:NM dt D
0Z

�1

jwjdtZ

0

˛Cd˛Z

˛

gxx0x00 .˛; v;w/ du dv dw (25)

With NM: number of maximum values.
This formulation relates positive extremes. Similarly, the probability of appear-

ance of a minimum (negative extreme) between ˛ and ˛C d˛ during dt is fm(˛)
fDfM(�˛)g, an extreme appears in the following conditions:

˛ < x.t/ < ˛ C d˛; 0 < x0.t/ <
ˇ̌
x00.t/

ˇ̌
dt and x00.t/ < 0 .pics/

Then:

fM .˛/ D NM:

0Z

�1
jwjgxx0x00 .˛; 0;w/ dw (26)

and

fm .˛/ D Nm

1Z

0

jwjgxx0x00 .˛; 0;w/ dw (27)

Appendix 5 presents the modeling of envelope for a Gaussian stress.

2.5 Counting Matrix Methods

These methods include information on slopes and curves observed in a random
stress (Rice 1944).

The improved count of level exceeded by the consideration of slope provides
a global read of the nature of the severity that the studied mechanical component
undergoes during its use. The extreme spectrum response (or strength) presents
energy levels depending on the frequencies that constitute the stress studied. The
combination of these two types of analysis is done using the two-dimensional
representations of transition matrices (Markov, expanses-slopes, and extreme-
curvatures). These show the relationship between the local and global behavior.
The transition matrix (or Markov) presented in Sect. 1.2.3.2.5 is one of these
representations. This representation shows the evolution of the average of expanses
in stress studied. For example in the case where the stress is studied stress, the
evolution of the average stress influences, in an important way, on the life. Matrices
are presented here:
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• The matrix expanses-slopes. It gives the number of a given extended for a given
slope.

• The matrix extreme-curvatures. It gives the number of an extremum for
curvature.

These matrices are built from a clean signal (after grouping into classes of stress).
The expanses-slopes matrix is to group different slopes under which a transition
occurred between two extreme values. A frequency can be associated with each
term of the matrix. Thus, this matrix shows the frequency distribution by type of
transition. The matrix connecting the second derivative extrema is to bring together
the various extreme amplitudes according to the second derivative or curvature.
Figure 20a, b show diagrams of the construction of two matrices. For expanses-
slope matrix, the cells of the upper right and the lower ones left are empty because no
negative transition can have a positive slope as well as a positive transition can have
a negative slope. The top left quarter of the extended-slope matrix (Fig. 20a) shows,
from left, the distribution of negative slopes of the largest observed to the lowest.
Quarter of the bottom right indicates, always starting from the left, the distribution
of positive slopes of the lower to the higher. Thus, the part is on the far left quarter
of the top left and the one found on the far right of the bottom right quarter largely
explain the severity of stress. Figure 21a shows the matrix for expanses slope the
stress of Fig. 10 (Sect. 1). The matrix of extrema-second derivatives (Fig. 21b)
provides guidance concerning the regularity or irregularity of the stress studied.
Indeed, more the effective of the upper left quarter and the lower ones on the right
are important, more the stress is irregular and it contains transitions with nonzero
average. A stress has considerable regularity in the case where the top and bottom
right quarters of the left have large numbers. Note that the regularity of a stress
is synonymous with severity. Stress is regular when it has little or no fluctuation
between two successive extrema of opposite signs. Figure 21b shows the matrix of
extrema-second derivatives for the stress of Fig. 10, number 5 (2 C 2 C 1), on the
top right of the matrix reflects the five major shocks received by the vehicle during
its passage over five bumps of concrete.

2.6 Conclusion

Modeling random loads is based on statistical approaches and their interaction
with the dynamic behavior of the studied stresses. Statistical approaches include
the global approach and local approach. The global statistical modeling leads to a
probability distribution that assesses the risk of reach (or exceed) a given amplitude.
Local statistical modeling focuses on extreme events of stress studied. Deemed
of a random stress to a random path leads probabilistic models which include
information and the frequency analysis, in particular, data concerning the speed and
acceleration of the stress studied. Now, probabilistic models will help address the
fatigue design calculations as well as the definition of laboratory test conditions
based on actual conditions of use (Part 3).
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Fig. 20 Construction scheme
(a) range-slopes matrix and
(b) extreme-curvatures matrix
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Fig. 21 Example of (a)
range-slopes matrix and (b)
extreme-curvatures matrix
(stress Fig. 10)

Appendix 1: Main Solutions of the Pearson System
and Replacement Laws

Introduction of the Bêta 1 Law

This law takes into account all possible asymmetries between 0 and 1.8. Regarding
kurtosis, it takes into account the kurtosis between 1 and at most 5.8. This physically
means that this law is limited in its horizontal extension. In fact, this law is
theoretically defined on an interval. The standard form of the probability distribution
is expressed as follows:

fX.x/ D � .p C q/

�.p/�.q/
xp�1.1 � x/q�1 (28)

with: x between 0 and 1, �.t/ D
1Z

0

e�uut�1 du, p and q are the shape parameters

of the probability distribution. They are expressed in terms of the mean (mX) and
standard deviation (sX) of the random variable X.
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Fig. 22 Probability density function fx(x) of the Beta 1 law as a function of its parameters

p D �mx C 1 �mx

vx2
(29)

q D mx � 1
mx

:

�
mx C mx � 1

vx2

�

with vx D sx/mx coefficient of variation.
For a random variable which is defined between any two terminals (a and b), X is

obtained by the following change of variable:

X D .Y � a/ = .b � a/

Thus, mX D (mY � a)/(b � a) and sX D sY /(b � a).
Figure 22 shows different shapes of the probability law in function of p and q.

This type of probability distribution is used for random stress that is physically
defined between two terminals. Both terminals must be of the same order of
magnitude.
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Introduction of the Bêta 2 Law

This probability law takes into account the medium and high kurtosis. It also takes
into account all possible asymmetries between 0 and 1.8. For these reasons, the law
favors Beta 2 promotes kurtosis versus asymmetry. This law is theoretically defined
from a low left ı (named offset) and infinity. It is easier to work with the “standard
form” of this law. The “standard form” for a probability law which the variable
varies between a threshold and infinity is obtained by a change of variable which
leads to work with a probability density function which the variable varies between
0 (instead of ı) and infinity. The standard form of the probability distribution is
expressed as follows:

fX.x/ D � .p C q/

�.p/�.q/

xp�1

.x C 1/pCq (30)

with: x is between 0 and 1.
p and q are the shape parameters of the probability distribution. They are

expressed in terms of the mean (mX) and standard deviation (sX) of the random
variable X.

p D mx C mx C 1

vx2

and

q D 2C mx C 1

mx:vx2
(31)

with vx D sx/mx.
Figure 23 shows various shapes of the probability law in function of p and

q. For this chart, p is 3 and q is between 1 and 6. The variation of p leads
only to homotheties on the curves of probability density. This kind of probability
distribution is used for random stress which we observe (or we think) that physically
dispersion phenomena or kurtosis are more predominant than the phenomena of
asymmetry.

In the event that difficulties are encountered when handling this probability law,
then it can be replaced by a Log-Normal law which is easier to operate. The standard
form of the probability distribution is expressed as follows:

fX.x/ D 1

�
p
2�

1

x
: exp

 

�1
2

�
ln.x/ �m

�

�2!

(32)

with: x is between 0 and 1.
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Fig. 23 Probability density function fX(x) of the Beta 2 law as a function of its parameters

m D ln

 
mxp
1C vx2

!

and � D
p

ln .1C vx2/ (33)

For a random variable which is set between the infinite and ı, X is obtained by
the following change of variables: X D (Y � ı). Thus, mX D (mY � ı) and sX D sY .
Figure 24 shows the good approximation of the Beta 2 law by Log-Normal law.

Introduction of the Gamma law

According to the abacus of Pearson, the probability distribution is defined in the
intermediate zone between Beta 1 law and Beta 2 law. Thus, its contribution is
located mainly in consideration of asymmetry and less kurtosis. For this reason, the
Gamma law promotes asymmetry versus kurtosis. This law is theoretically defined
between a threshold ı and infinity. The standard form of the probability distribution
is expressed as follows:

fX.x/ D ap

�.p/
xp�1: exp .�ax/ (34)

with: x is between 0 and 1.
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Fig. 24 Comparison between Beta 2 law and Log-Normal

p and q are the shape parameters of the probability distribution. They are
expressed in terms of the mean (mX) and standard deviation (sX) of the random
variable X.

p D 1

vx2
and a D 1

mx:vx2
(35)

with vx D sx/mx.
Figure 25 shows different forms of the probability law function of a and p. For this

graph, a is set to 1 and p is between 0.5 and 5. Variation of a led only to homotheties
on the probability density curves. This kind of probability law is used for random
stress which is observed (or is thought) that physically, the important phenomena of
displacement of the medium or of asymmetry that are more predominant kurtosis
phenomena.

As for the Beta 2 law, the gamma distribution can be replaced by another law
easier to handle and well known is the Weibull distribution. The standard form of
this law is expressed as follows:

fX.x/ D ˇ

�

�
x

�

�ˇ�1
exp

(

�
�
x

�

�ˇ)

(36)

with: x is between 0 and 1.
With the expectation (or mean) and standard deviation, which are expressed as

follows:
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Fig. 25 Probability density function fx(x) of the Gamma distribution as a function of its parameters

E fXg D mX D ��

�
1C 1

ˇ

�

and

sX D �

s

�

�
1C 2

ˇ

�
�
�
�

�
1C 1

ˇ

��2
(37)

The ˇ factor is often called form factor � and the scale factor. For a random
variable which is set between the infinite and ı, X is obtained by the following
change of variable:

X D .Y � ı/ : Thus mX D .mY � ı/ and sX D sY :

Figure 26 shows the good approximation of Gamma law with a WEIBULL
law. Thus, WEIBULL law is the most appropriate model for modeling the random
dispersion of mechanical stresses that are defined from a given threshold and that
their asymmetry and kurtosis them put in the intermediate zone between the law
of the Beta 1 and the Beta 2. In addition, WEIBULL law is easy to handle and
estimation of its parameters methods is now well known.
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Fig. 26 Comparison between Gamma law and WEILBULL law

Appendix 2: Method of Estimate of the Weibull Law
Parameters Around the Four Types of Local Events

The separation of the four types of local events in four samples used to calculate
indicators for each sample form: mean D x, standard deviation D sX , asymme-
try D G1 (or ˇ1), and kurtosis D G2 or (ˇ2). X, a random variable with Weibull W
(ˇ, �; ıD 0). The formulation of the probability density function of X, expectation
(or its average) and standard deviation are given by the relations Eq. (37) of
“Introduction of the Gamma law” of Annex A. Table below gives the theoretical
expressions of the dispersion coefficient (vX), of the asymmetry G1 and of the
kurtosis G2 the Weibull distribution. These formulas are expressed exclusively in
terms of the form factor of the distribution (ˇ).

vx D sx

mx

D
�
�2 � .�1/2

�1=2

.�1/

G1 D �3 � 3�2�1 C 2.�1/
3

�
�2 � .�1/2

�3=2
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Fig. 27 Evolution of vX , G1 and G2 of the law the Weibull based on shape factor parameters ˇ

Fig. 28 Viewing the input torque to the front stabilizer bar of a motor vehicle

G2 D �4 � 3�3�1 � 3.�2/2 C 12�2.�1/
2 � 6.�1/4

�
�2 � .�1/2

�2 (38)

with �r D �
�
1C r

ˇ

�
.

Thus, the shape factor may be obtained ˇ by inverting one of three functions vx,
G1, or G2. Figure 27 shows the theoretical evolution of vx, G1, and G2. According
to ˇ which the vX D F1(ˇ), G1 D F2(ˇ), and G2 D F3(“). Given the shape of the
last three functions, the easiest way is to reverse (a numerical method) function G1.
Figure 28 shows a random stress representing the couple in an industrial vehicle
stabilizer bar when passing over a poorly maintained road. The recording time is
5 min.
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Table 4 Parameters of
Weibull laws

Parameter G1 ˇ

Peak> 0 1.25 1.36
Hollow< 0 0.812 1.76
Peak< 0 0.925 1.63
Hollow> 0 1.686 1.12

Fig. 29 Histograms peaks> 0 and hollow< 0 and probability distributions of four local events

Table 4 presents the values obtained for the different parameters of Weibull laws
for the four types of local events. Figure 29 shows the adequacy of the proposed
relationship with histograms experimentally observed laws.

Appendix 3: Extrem Response Spectrum for a Random
Loading

Extrem response ER is calculated from the maximum met once during the excitation
time response. For recording a duration T, the total number of peaks above z0 is
given by

N D NeTFM .u0/ (39)

With FM(u) D cumulative probability function given in E3 of Annex E and Ne is
the number of extreme values.

The largest peak for the duration T (on average) approximately corresponds to u0

level that is exceeded only once, hence:
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FM .u0/ D 1= .NeT / (40)

The level u0 is determined by successive iterations. Distribution FM(u) is a
decreasing function of u. We consider two values u, such that:

FM .u1/ < FM .u0/ < FM .u2/ (41)

and, at each iteration, the interval is reduced (u1, u2) until, for example:

FM .u1/ � FM .u2/
FM .u0/

� 10�2 (42)

Hence extrapolation:

zm � z0 D .V .X//1=2
�
Œu2 � u1�

FM .u1/ � FM .u2/
FM .u0/

C u1


(43)

and ER D (2 f0)2Zm.
With the same assumptions, the average number of threshold exceedances z D˛

response with positive slope during a recording period T for stress a Gaussian is
given by the relationship:

N C̨ D TN˛ D TN0 exp

 

� ˛2

2
p
V.X/

!

and N0 D 1

�

s
V .x0/
V .x/

(44)

Considering that the threshold ˛ is exceeded only once, is obtained by NC̨ D 1

˛ D
p
2V.X/ ln .N0T /

Whence

ER D 4�2f 2
0

p
2V.X/ ln .N0T / (45)

In the case of a random stress whose PSD is represented by several levels (Gi D˚

cf. Sect. 1) each of which is defined between two frequencies fi et fiC1, the various
components of ER are obtained as follows:

V.X/ D
1Z

0

G.f /:df D 1

.2�/4:f 3
0

�

4:�

X

i

Gi : ŒI0 .hi C 1/ � I0 .hi /� (46)
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V
� PX� D .2�/2:

1Z

0

f 2:G.f /:df D 1

.2�/2:f0

�

4:�

X

i

Gi : ŒI2 .hi C 1/ � I2 .hi /�

(47)

V
� RX� D .2�/4:

1Z

0

f 4:G.f /:df D f0:
�

4:�

X

i

Gi : ŒI4 .hi C 1/ � I4 .hi /� (48)

with G.f / D jH.f /j 2:G Rx.f /, hi D fi/f0 and hiC1 D fiC1/f0.

I0 D �

�:˛
: ln

�
h2 C ˛hC 1

h2 � ˛hC 1

�
C 1

�
:

�
Arctan

�
2:hC ˛

2:�

�
C Arctan

�
2:h � ˛
2:�

��

(49)

I2 D � �

�:˛
: ln

�
h2 C ˛hC 1

h2 � ˛hC 1

�
C 1

�
:

�
Arctan

�
2:hC ˛

2:�

�
C Arctan

�
2:h � ˛
2:�

��

(50)

I4 D 4:�

�
:hC ˇ:I2 � I0 (51)

˛ D 2:
p
1 � �2I ˇ D 2

�
1 � 2:�2

� I Q D 1= .2:�/ (52)

with �D damping factor
Thus:

Ne D 1

�

s
V .x00/
V .x0/

; N0 D 1

�

s
V .x0/
V .x/

and I D N0

Ne
(53)

In cases where the statistical distribution of peaks (trough respectively) is
modeled by a Weibull law W(ˇ, �, ı) with ˇ: shape factor, �; scale parameter and
ı: shift (often close to zero), we seeks probability �M(u0) exceeds a maximum for
any level u0 of the amplitude of the response. �M(u0) D 1 � FM(u0) with:

FM .U0/ D
u0Z

�1
p.u/ du
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and over a period of observation T, the mean number of peaks is greater than
u0 always N D nC

p . T�(u0). When N D 1, the corresponding level is defined by
�(u0) D 1/(nC

p . T).
with

� .u0/ D exp

 

�
�

u0
�

�ˇ!

and knowing the value of nC
p , it has

u0 D �:

"

ln

 RZeff:T

2�: PZeff

!#1=ˇ
(54)

While the extrem response becomes

ER D .2�:f0/
2:�:

"

ln

 RZeff:T

2�: PZeff

!#1=ˇ
(55)

Appendix 4: Theoretical Modeling of the Overrun of Level for
a Gaussian Loading

In the Gaussian case, x(t), x0(t), and x00(t) are Gaussian random variables with three
densities as successive probabilities:

gx.u/ D 1
p
2�V.x/

: exp

�
� u2

2V .x/


(56)

gx0.v/ D 1
p
2�V .x0/

: exp

�
� v2

2V .x0/


(57)

gx00.w/ D 1
p
2�V .x00/

: exp

�
� w2

2V .x00/


(58)

Thus, we have:

E
˚ˇ̌
x0 ˇ̌� D

C1Z

�1
jvjgx0.v/ dv D

r
2

�
V .x0/ (59)
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E
˚ˇ̌
x00 ˇ̌� D

C1Z

�1
jwjgx00.w/ dw D

r
2

�
V .x00/ (60)

Thus, in the case of a Gaussian process, Eqs. (19), (20), and (21) can be written

N˛ D 1

�

s
V .x0/
V .x/

: exp

�
�1
2

˛2

V .x/


(61)

N0 D 1

�

s
V .x0/
V .x/

(62)

Ne D 1

�

s
V .x00/
V .x0/

(63)

Hence expression of Gaussian irregularity factor

Ig D N0

Ne
D V .x0/
p
V.x/V .x00/

(64)

From this factor, the factor " is defined as the bandwidth of the studied process.
The last (as I and Ig) is between 0 and 1.

Bandwidth is expressed by the number of zero crossings by increasing values N0

and the number of local maxima Ne (positive or negative) of the observation time.
We put:

" D
q
1 � I 2g (65)

Notes:

1. The relation Eq. (65) is a definition and simply reflects the fact that, when a
process narrowband N0 D Ne (see Fig. 11a) and therefore "D 0, and when a
broadband process (Fig. 11b) Ne>N0, where Ne 	 N0 "! 1.

2. When "D 0, in the case of a trajectory narrowband cycle thinking has a precise
meaning, since N0 D Ne.

3. When "D 1, the notion of cycle is likely to various interpretations, the definition
of “number of cycles” depends on the counting method.
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Appendix 5: Envelope Modeling for a Gaussian Loading

For a Gaussian trajectory, correlation coefficient between the signal x(t) and its first
derivative x0(t) is zero. As follows:

gXX 0X 00 .u; v;w/ D gX 0.v/ gXX 00 .u;w/

Dual distribution gxx00 .u;w/ between the signal and its second derivative is
expressed in a bi-normal distribution:

gxx00 .u;w/ D 1

2�
p
k

exp

�
� 1

2k

˚
V
�
x00� u2 C 2V

�
x0� uw C V.x/w2

��
(66)

with k D V(x)V(x00) � [V(x0)]2

The probability density peaks (Eq. (26)) to be written:

fM .˛/ D Prob .˛ < Max � ˛ C d˛/ D
D

p
1�I 2gp
2�

: exp

�
� u2

2.1�I 2g /

�
C Igu

2
exp

�
� u2

2

�"

1C erf

 
Igu

q
2.1�I 2g /

!#
(67)

And the cumulative probability function is:

FM .˛/ D Prob .Max � ˛/

D 1
2

(

1 � erf

 
uq

2.1�I 2g /

!)

C Ig

2
exp

�
� u2

2

� (

1C erf

 
Igu

q
2.1�I 2g /

!)
(68)

with Ig D V .X 0/p
V.X/V .X 00/

Gaussian irregularity factor,

u D ˛
p
V.X/

and erf.x/ D 2p
�

xZ

0

e��2=2 d�:

For Ig � 1 ("D 0, stress narrowband), probability density becomes: fM(˛; Ig)
� u. exp(�u2/2). This approximation corresponds to the Rayleigh distribution.
Thus, we find that for a narrowband random stress, the distribution of maximum
values follow a Weibull distribution with shape factors of individual ˇD 2; � Dp
2V.x/; ı� 0.
The influence of three main variances V(x)V(x0) and V(x00) is studied on the

distribution of extreme values. This influence is observed through the irregularity
factor Ig. The difficulty of this study lies in the fact that evolutions of x, x0, and x00
are interdependent for a random trajectory.
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Fig. 30 Influence of the variance of the first derived and second derived on the modeling of the
envelope

To simplify the presentation, consider the assumption of a variance V(x) D 1.
Figure 30 shows the evolution of the extreme value distribution based on the irreg-
ularity factor Ig. The latter is directly proportional to V(x0). Increasing this variance
is due to the appearance of a variety of slopes increasingly important in the stress.
This results in a greater probability of observing extreme values to higher levels of
amplitudes and conversely lower probability amplitudes of fluctuations around the
middle of the path. Thus, the distribution of positive extreme and negative extreme
deviate from each other in the growth of the irregularity or the variance factor of the
second derivative. Significant dispersion of the variance of the curves or the second
derivative (V(x00)) indicates an occurrence of a wide variety of shapes for the peaks
and ridges on the random path. This dispersion occurs in all classes of amplitudes,
where a large irregularity (Ig decreases). Ig is inversely proportional to V(x00).

Study of the Random Loading Impact

Predictive calculating of the lifetime of a system or component mechanical,
operating in real conditions of use, is made from the fatigue of the materials of
the components studied.
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Material fatigue occurs whenever the efforts and stress vary over time. These
random stresses take very different looks (see Sects. 1 and 2). The rupture may well
occur with relatively low stress, sometimes less than a conventional limit called
“endurance limit” SD.

Material fatigue is approached in two ways.
The first is based on a global approach where the material is considered as a

homogeneous medium at a macroscopic scale. The mechanical properties of the
material are presented by the curves of fatigue; the most famous is the “Wöhler.”
The critical points of the components are defined by the points of the most damaging
stress, and lifetime calculations are made at these points.

The second approach to material fatigue based on a local approach which
characteristics are considered potential material defects (cracks). In these areas, the
stresses lead to the definition of a cracking speed and is obtained when the out of
crack length limit is reached.

These two approaches to the calculation of the fatigue lifetime of the systems or
mechanical components use the same distributions of random loads.

The presentation of this part will be limited to the global approach because this
approach for the strength of materials is widespread and based on a broad compe-
tence in the industry. A significant gain in the quality of forecasts is then expected
with the inclusion of random stress. Note, however, that the second approach is not
excluded and that all developments presented here can be extrapolated.

Principle of Predictive Calculating

Predictive calculating of the lifetime of a system or component mechanical,
operating in real conditions of use, is made from four elements:

• Knowledge of load (or stress) it undergoes (Fig. 31a, b). Figure 31a shows
the definition of measurement points over time (with predefined pace of time
constant �t). Figure 31b can recall the quantities considered thereafter.

• An endurance law (often based on the Wöhler) (Fig. 31c). Tests conducted for an
average stress S0

m zero and a stress Sa give results with different numbers of cycles
to failure. The distribution is represented by a sequence of points. The different
values of stresses are considered. Thereafter, the three curves can be derived
with, respectively, pr D 50 %, p0, and 1 � p0 of failure probability. Typically, p0

is between 1 and 10 %.
• A fatigue requirement that sets the limit resistance (Fig. 31d). When the mean

stress is not zero, the fatigue limit SD depends on the value of the mean stress
Sm, different models can then be used according to the stress Sm between 0 and
RE or Rm.

• A law of accumulation of damage to account for all the stresses applied to the
system or component. Generally, it is the law that is used Miner.
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Fig. 31 The four steps of predicting of the lifetime. (a) Random stress, (b) after counting, (c)
probabilized Wöhler’s curve, (d) fatigue criteria

Fatigue and Damage in the Lifetime Validation of a Mechanical Component

The results of the analysis of the stresses measured under actual conditions of use
should be exploitable by the steps of the method of calculating the lifetime. Thus,
we must find (Sect. 1) counting method for identifying a “statistical load event”
in a random loading history. For example, the event may consist of amplitudes of
grouped into classes, the extrema, stretches or “cycles” of the stress studied. Often,
they are extended or stress cycles which are operated to perform the calculation of
a lifetime.

To strengthen the capacity of prediction, calculation of lifetime must have a
probabilistic approach to announce reliability. Rather than events or extended cycle
type, the load events are grouped into classes where these are the extrema which are
better suited to probabilistic modeling (Sect. 2).
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Endurance Law or Wöhler Curve

A Wöhler curve (Fig. 31c) represents a probability p to rupture, the magnitude of
the cyclic stress ((Sa) considered average for a given stress Sm) based on the lifetime
N. Also known as curve S–N (Stress–Number of cycles).

The test conditions must be fully specified in both the test environment and the
types of stress applied. Rupture occurs for a number of cycles increases when the
stress decreases.

There are several models of these curves according to an endurance limit
implicitly or explicitly appears. Indeed, when a material is subjected to low-
amplitude cyclic stress, fatigue damage can occur for large numbers of cycles. Points
of the curve of Wöhler are obtained with the results of fatigue tests on specimens
subjected to cyclic loading of constant amplitude.

The curve is determined from which each batch of sample is subjected to a
periodic stress maximum amplitude Sa and constant frequency, the failure occurring
after a number of cycles N. Each sample corresponds to a point in the plane (Sa, N).

The results of the fatigue tests are randomly distributed, such that one can define
curves corresponding to given failure probabilities according to the amplitude and
the number of stress cycles.

This finding requires the construction of a model to the median (pr D 0.5, 50 %
of failures) observed lifetimes, curves at p0 and at (1 � p0) are then deducted p0

is often taken equal to 0.01 (1 % of failures). These curves are called the Wöhler
curves probabilized.

Wöhler curves are generally broken down into three distinct areas (Fig. 31c):

• Area I: Area of oligocyclic plastic fatigue, which corresponds to the higher
stresses above the elastic limit RE of the material. Breaking occurs after a small
number of cycles typically varying from one cycle to about 105 cycles.

• Area II: Area of fatigue or limited endurance, where the break is reached after a
limited number of cycles (between 105 and 107 cycles).

• Area III: Area of endurance unlimited or safety area under low stress, for which
the break does not occur after a given number of cycles (107 and even 1010),
higher the lifetime considered for the part.

In many cases, an asymptotic horizontal branch to the curve of Wöhler can be
traced: the asymptote is called endurance limit or fatigue limit and denoted SD.
The latter is defined at zero mean stress (S0

m D 0) and corresponds to a lifetime N0

(N0 D 107 cycles often).
In other cases, a conventional endurance limit may be set for example to 107

cycles.
Generally, you must use a model that approximates the curves to perform further

calculations. Various expressions have been proposed to account for the shape of the
curve of Wöhler (Lieurade 1980b). The most practical was proposed by Basquin and
she wrote as follows:
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Fig. 32 Influence of mean stress on the network Wöhler curves

NSb D C1 (69)

and

logN C b logS D C .C D log .C1// (70)

With N D number of cycles, S D amplitude of the stress, b D slope of the line
depends on the material, C D constant dependent right material and the average of
the alternating stress fatigue test performed.

In the following text, the coefficient C will be used.
Fatigue tests are usually long term and it is rare to have the results of experiments

conducted with a nonzero mean stress.
The increase in mean stress causes a reduction of the lifetime: a network of

Wöhler curves can be thought (Fig. 32). Thus, the endurance limit for a chosen
number of cycles (e.g., to N0 D 107 cycles) decreases. Then, for each nonzero
average stress, an endurance limit should be determined. Lacking often experimental
results, the calculation is based on a relationship called “fatigue requirement.”

Fatigue Requirements

A fatigue test is a threshold defined by a mathematical expression for a fixed
lifetime (N0) and a given material. The threshold separates the state where the part
is operating in the state where it is damaged by fatigue.

In general, a fatigue test was developed for cyclic loading with constant
amplitude.
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It is a relationship between the evolution of the Wöhler curve and the average
stress considered. Figure 31d shows the main criteria of fatigue. These graphs are
built with a lifetime N0 (often given as 107 cycles) and a given probability of failure
(pr D 0.5, 0.1, and 0.01). These different models are (Rabbe et al. 2000b):

Goodman model SD D S�
D :

�
1 � Sm

Rm

�
(71)

Soderberg model SD D S�
D :

�
1 � Sm

RE

�
(72)

Gerbermodel SD D S�
D :

 

1 �
�
Sm

Rm

�2!

(73)

With S*
D D SD(S0

m D 0; N0) endurance limit defined for zero mean stress and
number of cycles N0 selected.

Then, for a given cycle (amplitude, a range) having a nonzero mean, these
relationships allow to obtain approximate the endurance limit for the average stress.

Calculation of Fatigue Damage, of Damage Accumulation, and of Lifetime

The concept of damage represents the state of degradation of the material in
question. This condition results in a quantitative representation of the endurance
of materials subjected to various loading histories.

A law of accumulative damage is a rule to accumulate damage variable D (also
called “damage D”), itself defined by a law of damage.

As for the lifetime is defined by a number of cycles N which leads to breakage.
Thus, the application of n cycles (n<N) causes a partial deterioration of the

treated piece to the calculation. The assessment of damage at a given time is crucial
to assess the remaining capacity of lifetime.

Fatemi and Yang (Fatemi and Yang 1998) identified in the literature more than 50
laws of accumulated damage. The most commonly used today is the law of linear
cumulative damage to Palmgren–Miner remains the best compromise between ease
of implementation and the quality of predictions for large lifetimes (Banvillet 2001).
Miner’s rule is as follows:

di D ni

Ni
(74)
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Fig. 33 Basquin Model of the Wöhler curve for Steel A42FP (from Leluan (1992b))

With ni D the number of repetitions of a given cycle (with amplitude or extended),
Ni D the number of repetitions of the same cycle necessary to declare the failed
component (ni<Ni).

For different cycles of random stress studied, the global damage is obtained by
linear addition of the elementary damage:

D D
X

i

di D
X

i

ni

Ni
(75)

Fracture occurs when D is 1. The lifetime is equal to 1/D.

Introductory Examples

The different steps of the calculation will be presented with a A42FP case (Leluan
1992b) steel. Figure 33 shows the model Basquin concerning fatigue tests on this
steel with alternating stresses whose average is zero. Figure 34 shows the various
criteria of fatigue such as steel. An endurance limit calculated from the right
Soderberg is lower than those obtained with the right Goodman and the parabola
of Gerber.

This difference between endurance limits calculated using criteria of fatigue leads
to some significant differences on the calculated life.

Example 1 The first question in this introductory example is how to calculate
the damage suffered by the steel A42FP subjected to a stress of 1075 cycles, the
alternating stress (Sa) is 180 MPa, and mean stress (Sm) of 100 MPa, calculating
with a failure probability of 0.5. The second question is to determine the number of
repetitions of this stress must be applied for failure:
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Fig. 34 Criteria of fatigue for Steel A42FP

Step 1: Calculation of the new endurance limit, according to each criteria of fatigue:

Criteria of fatigue SD (Sm D 100 MPa; N D 107)

Gerber parabola 203 MPa
Goodman right 164 MPa
Soderberg right 151 MPa

Step 2: Calculation of the new constant C in the model Basquin:

Criteria of fatigue C(Sm D 100 MPa; SD) D N � (SD)b D 107(SD)b

Gerber parabola 2.45 � 1043

Goodman right 8.45 � 1041

Soderberg right 2.39 � 1041

Step 3: Calculation of the number of cycles to failure for the stress studied according
to the criteria of fatigue. In this case, the calculation is performed at 50 % of
probability of failure:

Criteria of fatigue N D C � (Sa)b

Gerber parabola 9.15 � 1078

Goodman right 3.16 � 1077

Soderberg right 8.93 � 1076

Step 4: Calculation of damage due to studied stress and the lifetime expectancy.
Determination of the number of repetitions to reach failure

Criteria of fatigue D D n/N D 1075/N Lifetimea D 1/D

Gerber parabola 1.093 � 10�4 9,150 times
Goodman right 3.16 � 10�3 316
Soderberg right 1.12 � 10�2 89
aThis result means that the stress will be able to repeat before reaching
failure D number of repetitions.
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Fig. 35 Distribution of
damage per area of the
Markov matrix (stress shown
in Fig. 10, part 1)

In the case of multilevel constraints, these four steps of calculation (Example 1)
are applied for each level and the total damage is obtained according to the rules of
linear cumulative damage Miner.

Example 2 It involves the stress of an axle front right of the vehicle. Figure 35
shows the distribution of damage per area of the Markov matrix for stress shown in
Fig. 10 (Kouta and Play 2007a). The total damage is 6.05 E-06 and the number of
repetitions of this stress before reaching failure is 165,273 times. The separation of
Fig. 35 in eight zones ((a)–(h)) allows to visualize the contribution of the elementary
stresses.

The nature of the stresses together in each area specified in Fig. 9. Fifteen percent
of damage in the area (a) of Fig. 35 can be explained mainly by effective stress that
are at the end of the Markov matrix (top right of Fig. 10).

Among a workforce of N D 15, a workforce of 5 (2 C 2 C 1) corresponds to the
five largest observed this stress extended. These result from extensive shocks when
moving the vehicle in five concrete bumps. A total of 17.7 % of the damage area of
the figure reflects the severity of the extended amplitude whose average is positive.
They reflect the effect of compression after passing on concrete bumps.

Contributions and Impact of a Statistical Modeling for Random Loading
in the Calculation of Lifetime

Principle of Damage Calculating

Data around which theoretical models of probability density are of three kinds
(part 1):
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• The amplitudes grouped into classes.
• Extreme amplitudes.
• Envelope of the stress.

Thus, three models of calculation will be presented in the following paragraphs.
The evolution of damage is always calculated from the model Miner. We write an
element of damage by fatigue dD is due to a stress element dn. Under the law of
Miner

dD D dn

N.S/
(76)

with dn number of amplitudes solicitation studied at the level between S and S C ds.

• For a given duration T,

dn D NT � fS.s/ ds;

with NT the total number of stresses and fS(s) probability density of the time
stress whose level is equal to S.

• To stress measured with a time step �t D 1/fe (fe sampling frequency), the total
number of stresses is equal to NT D fe � T. Thus, the global damage is the sum of
the partial damage for all values f S:

D D NT �
Z

�

fS.s/

N.S/
� ds (77)

with �D domain of definition of S.
• Where the Wöhler is regarded as the model Basquin:

In this case, (NSb D C, C is a constant depending on the level of stress), Eq.
(76) becomes:

D D NT

C
�
Z

�

sb � fS.s/ � ds (78)

If we set

u D s
p
V.S/

with V(S) variance S. Relation Eq. (78) is written:

D D ŒV .S/�b=2
NT

C
�
Z

�

ub � fU .u/ � du (79)
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Table 5 Calculation of damage according to the Pearson system (see Fig. 36)

Laws of probabilitya Damage D

Beta 1 (Fig. 36) D D ŒV .S/�
b=2 NT

C

�.pCq/�.bCp/
�.p/�.bCpCq/

(80)

Beta 2 (Fig. 36) D D ŒV .S/�
b=2 NT

C

�.q�b/�.bCp/
�.p/�.q/

(81)

Log-Normal (Fig. 36) D D ŒV .S/�
b=2 NT

C
exp

�
bmC b2ff 2

2

�
(82)

Gamma (Fig. 36) D D ŒV .S/�
b=a NT

C

�.bCp/
ab�.p/

(83)

Weibull (Fig. 36) D D ŒV .S/�
b=2 NT

C
�b�

�
1C b

ˇ

�
(84)

Normale (Fig. 36) D D ŒV .S/�
b=2 NT

C
p

2�
2
b
2 �1�

�
bC1
2

�
(85)

aSee also Appendix 1

Thus, the damage is D calculated for each amplitude family around which a
probabilistic modeling is proposed (Sect. 1). Firstly, the calculation can be done
according to the system of Pearson (Beta 1 law, Beta 2 law and Log-Normal law,
Gamma Law and Weibull law, Normal (or Gaussian) law. Calculation can also be
done using either the law of Gram-Charlier–Edgeworth or the law of the envelope
(or Rice).

Damage Calculating on the Basis of Laws Obtained by Pearson System

Table 5 gives the result of the relationship Eq. (79), obtained by the Pearson system
for each probability law or each equivalent law. The laws of probability so that their
parameters are given in Appendix 1.

Figure 36 shows the influence of parameters that define the laws of probability on
the global damage. It is clear that the damage D decreases with increasing exponent
b because when b increases (for a given C), the lifetime increases with the model
Basquin.

Damage Calculating on the Basis of the Gram-Charlier–Edgeworth Law

In this case, the calculation from Eq. (79) is performed with the probability density
function expressed with Eq. (11). Equation (79) leads to the following Eq. (86):

D D ŒV .S/�
b=2 NT

C
p
2�

8
ˆ̂
<̂

ˆ̂
:̂

�
�
.1Cb/

2

� �
1C .�1/b

�
:

8
<

:
2.

b�1
2 / C 2

�
bC1
2

�

�
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k23 b
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�
C
�
k23 b

2
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�
C
�
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�
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2
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�
2
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>>>=

>>>;

(86)
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Fig. 36 Evolution of damage
depending on the settings of
each probability distribution.
(a) Damage with Beta 1,
(b) damage with Beta 2,
(c) damage with gamma,
(d) damage with Weibull,
(e) damage with Log Normal,
(f) damage with Gauss

Figure 37 shows the evolution of the damage function of b, the skewness ˇ1, and
ˇ2 kurtosis of the stress distribution. All curves decrease with the increase of the
parameter b. For a given ˇ1 parameter when kurtosis ˇ2 increases, that is to say, the
dispersion of the stress distribution and damage increases, when the skewness ratio
increases, the damage also.
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Fig. 36 (continued)

Damage Calculating on the Basis of the Rice Law on the Envelope

The presented model of the envelope in Sect. 2.4 and Appendix 5 relates extrem
amplitudes, so the total number of stresses is equal to the number NT extrem
amplitudes Ne. In this case, the damage is determined by the relationship
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Fig. 37 Evolution of damage according to the law of Gram-Charlier–Edgeworth

Table 6 Calculation of damage to individual cases of irregularity factor I

I D 0 (stress broadband) I D 1 (stress narrowband)

D D ŒV .S/�
bC1
2 Ne

C

2
b
2 �1

�
�
bC1
2

�

p

�
.88/ D D ŒV .S/�

bC1
2 Ne

C
2
b
2 �1�

�
b
2

C 1
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.89/
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�
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>=

>;
(87)

With ˚ (x, 1, [b C 2]) is the cumulative probability function of Fischer–Snedecor
of x in the degrees of freedom with one and the integer part of (b C 2).

Note ˚(0, 1, [b C 2]) D 1 and ˚(1, 1, [b C 2]) D 0. The results for the particular
case of irregularity factor I are presented in Table 6:

The damage curves (Fig. 38) decrease as the parameter b is increased (slopes
substantially equal to the slopes Fig. 37). When the irregularity factor changes from
0 (broadband) to a value of 1 (narrowband), damage increases. This effect is due to
the increased number of cycles with a narrowband signal.

Applications (Brozzetti and Chabrolin 1986b)

Fatigue strength of a node type T “jacket” of an “offshore” structure must be
checked. Available records concerning the height of the waves beat structure; values
are based on the frequency of occurrence (Table 7). These records are related to a
reference time of 1 year.
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Fig. 38 Evolution of damage according to the law of the envelope of Rice

Table 7 Frequency of occurrence of solicitation for a T structure

No. Wave height H (m) Stress sizing 4� Annual number of waves D ni

1 0 0 4,482,356
2 1:52 6:45 2,014,741
3 3:05 14:87 759,383
4 4:57 24:15 281,009
5 6:10 34:16 104,059
6 7:62 44:61 38,765
7 9:14 55:49 14,558
8 10:67 66:81 5,516
9 12:19 78:39 2,108
10 13:72 90:34 812
11 15:24 102:48 314
12 16:76 114:87 122
13 18:29 127:56 47
14 19:81 140:39 18
15 21:34 153:50 7
16 22:86 166:71 3
17 24:38 180:00 1
18 25:91 193:74 : : :
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Fig. 39 Endurance curve (for
T type node jacket) of an
offshore structure

At each of these wave heights, the calculation of the structure leads to a stress on
the design of the T node (�� , in MPa, Table 7). This constraint sizing takes into
account a coefficient of stress concentration T node considered.

Fatigue curve at 50 % of the considered node failures is given by the expression
(Basquin deviation) as follows:

N��10 D 1010 or log.N / D �3 log .��/C 10 (90)

Fatigue curve 1 % failure is as follows: N��2.9 D 109.8. These curves are
presented in Fig. 39.

Calculation of cumulative damage to the node as well as its lifetime can be made
using the methods presented in the previous sections.

Calculation of Damage and Lifetime According to the Classical Method

Table 8 presents the calculation of cumulative damage by applying Miner’s rule
(“Calculation of fatigue damage, of damage accumulation and of lifetime” and
“Introductory examples” in Appendix E). The accumulated damage of the fatigue
curve with 50 % of failures provides a value D(0,5) D†(ni/Ni) D 0.0147 and the
lifetime of the node D 1/D D 68 years. The calculation with the fatigue curve gives
1 % damage D(0,01) D 0.0193 so a minimum lifetime of 52 years.

This approach to calculation is based on the observed numbers (ni) and the
lifetime limit estimated (Ni) for each level of the stress concerned. The statistical
nature of the distribution of staff (or the probability amplitudes of the stress studied)
is not taken into account. Moreover, this calculation of the global lifetime of
endurance depends on the model given in Eq. (90).
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Table 8 Damage and lifetime for a T structure

No Stress (MPa)
Number of waves
of height H (m) Ni n/Ni (�10�4)

1 3; 225 2; 467; 615 42; 112; 482; 458 0:5860

2 10; 660 1; 255; 358 1; 166; 080; 106 10:7656

3 19; 510 478; 374 190; 207; 743 25:1501

4 29; 155 176; 950 56; 998; 163 31:0449

5 39; 385 65; 294 23; 121; 045 28:2401

6 50; 050 24; 207 11; 266; 467 21:4859

7 61; 150 9; 042 6; 177; 470 14:6371

8 72; 600 3; 408 3; 691; 392 9:2323

9 84; 365 1; 296 2; 352; 410 5:5092

10 96; 410 498 1; 576; 281 3:1593

11 108; 675 192 1; 100; 553 1:7446

12 121; 215 75 793; 105 0:9456

13 133; 975 29 587; 393 0:4937

14 146; 945 11 445; 180 0:2471

15 160; 105 4 344; 180 0:1162

16 173; 355 2 271; 138 0:0738

17 186; 870 1 216; 462 0:0462

Sum 0:0153

Calculation of Damage and Lifetime by Statistical Modeling

The process of calculation, in this paragraph, incorporates the statistical nature of
the distribution of staff (or the probability amplitudes of the stress studied) and
uses the same model of endurance expressed by Eq. (90). In this case, the damage
is assessed from the following four elements:

• Law of distribution of wave heights in the long term
In this example, distribution of wave heights corresponds to a Weibull law:

H D H0 C pcte log.n/: (91)

With H0 is the maximum wave height recorded in the reference period (within
1 year); n is the number of wave heights greater than H0, pcte is a constant.

• Damage law (or curve of fatigue or S–N curve)

Let W N��b D C; let W N D C���b .same Eq: .90// (92)

With b D slope of the S–N curve, N D number of cycles associated with the
variation of the stress sizing �� , �� extent of stress variation in the node in T
of the structure.
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• Relationship between wave height H to the stress variation ��
The stress variation �� is laid as:

�� D ˛:Hˇ (93)

with ˛ and ˇ two coefficients that are obtainable by smoothing spots (�� , H).
If the value of �� given by the expression Eq. (93) in Eq. (92) is postponed,

we obtain:

N D C˛:
�
Hˇ

��b
(94)

Transformation of expression Eq. (91) gives:

n D n0: exp .2:3026H=pcte/ (95)

With n0 D 10�H0=pcte .
• Rule of damage cumulation

�D D dn=N (96)

Thus,

dn D .2:3026=pcte/ n0 exp .2:3026H=pcte/ dH (97)

We obtain:

�D D dn=N D ˛b .2:3026=C:pcte/ n0 exp .2:3026H=pcte/H
bˇ dH (98)

Let:

D D 2:3026n0˛
b

C:pcte

1Z

0

exp

�
2:3026 H

pcte

�
Hbˇ dH (99)

We recall that W
Z 1

0

tu exp .�vtw/ dt D �Œ.uC1/=w�
wv.uC1/=w ; � (t) is the gamma

function (see Eq. (28)) with u Dˇbv D 2.3026/pcte and w D 1, we obtain

D D 2:3026n0˛
�b

C:pcte

� .ˇb C 1/
�
2:3026
pcte

�.ˇbC1/ (100)

Example 3 From the data in Table 7, we obtain by smoothing:

H D 6:1C 0:913 log.n/ .H in meters/ �� D 3:9H1:2:
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Table 9 Summary of results for structure T application

Summary of results for structure T application Traditional approach Statistical modeling

Material distribution Yes Yes
Load distribution No No
50 % failure probability (reliability 0.5) LT D 68 years LT D 73 years
1 % failure probability (reliability 0.99) LT D 52 years LT D 49 years

Let: ˛D 3.9; ˇD 1.2; b D 3; pcte D 0/913; C D 1010; H0 D 6.1; n0 D 106.1/0.913.
Hence: � (bˇC 1) D � (4,6) D 13.38; ˛b D 59.32; 2.3026n0 D 11,053,226; pcte.

C D 0.913 � 1010.
Thus, damage: D D 0.0137.
So the lifetime is 1/D D 73 years.
With the model of endurance to 1 % failure (N��2.9 D 109.8), the lifetime is equal

to 49 years.
In summary for this application (see Table 9), the transition from a traditional

approach to statistical modeling provides a better prediction of behavior (7 %
saving). It is also noted that the increase of reliability of from 0.5 to 0.99 decreases
calculated lifetime to about 28 %.

Calculation of Damage and Lifetime on the Basis of Power Spectral Density
(Lalanne 1999b)

A system or a mechanical component has a response to applied stresses (PSD). This
response can be either measured on a prototype under tested qualification, either
calculated from a global mechanical model.

The expression Eq. (79) shows that the damage depends on the variance of the
amplitudes of the stress. The relation Eq. (46) gives the expression for the variance
of a random stress according to its PSD. It must be previously represented by several
levels (Gi). In this case, the relation Eq. (79) is then expressed as follows:

D D NT

C
ŒV .S/�

b=2

Z

�

ubfU .u/ du D NT

C
:

2

6666
4

�
4�

nX

iD1

Gi
�
I0
�
hiC1

�� I0 .hi /
	

.2:�/
4
f 3
0

3

7777
5

b=2

Z

�

ubfU .u/ du

(101)

• This expression is called “Fatigue Damage Spectrum” (Lalanne 1999b). The

terms
Z

�

ubfU .u/ du and NT
C

are two multiplicative constants of the term

expressed in the brackets of the expression Eq. (101). This term represents the
evolution of the variance of the stress according to the frequencies.
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Fig. 40 Fatigue damage spectrum depending on the frequency

• Figure 40 shows the next term NT
C
ŒV .S/�b=2 of the Fatigue Damage Spectrum

on the stress shown in Fig. 10. This graph is obtained for C D 107 and b D 12,
the value of b is given by (Lambert 1980) as an average value of the slope of
the line for Basquin steels. The failure probability is 1 %. In Fig. 40, there
is not a particular representative value to summarize the shape of the curve.
However, an average value may be deducted, equal to 7.77 � 10�9 (the minimum
is 5.89 � 10�41 and the maximum is 1.83 � 10�06).

• The value of the term
Z

�

ubfU .u/ du depends on the model probability density

which is adopted for the stress studied. In the case of a Gaussian distribution, this

sum is 2
b
2p
2�
�
�
bC1
2

�
(see relation Eq. (85)). The value here is equal to 18,425 (for

b D 12). Thus, the average damage Dav is 1.43 � 10�4 (with a minimum damage
equal to 1.09 � 10�36 Dmin and Dmax maximum damage equal to 3.37 � 10�2).
The lifetime (or the number of repetitions to failure 1/Dav) is equal to 6,993.

• This calculation of the lifetime by the PSD as takes into account all the
contributions of the stress on the frequency domain of stresses. The shape of
the Fatigue Damage Spectrum is thus brought into relationship with the shape
of the PSD (Power Spectral Density). The PSD of the stress studied (Fig. 13b)
is outlined in Fig. 40. Thus, the almost flat spectrum observed in the fatigue
damage in the area of transition nature (framed part in Fig. 40) is due to the
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transition between the two major contributions observed on the PSD. These two
are the two main modes, the stress observed studied.

• Note that the damage calculation by conventional method (described in “Cal-
culation of fatigue damage, of damage accumulation and of lifetime” and
“Introductory examples” in Appendix 5) gives damage Dconventional equal to
6.05 � 10�6. This level of damage is equivalent value NT

C
ŒV .S/�b=2 D 3:3�10�10,

value that is located in the terminals and mini max damage (Fig. 40).

However, conventional method gives a value of damage to a single class of
frequency (around 2 Hz) corresponding to the largest amplitudes of the PSD.
Lifetime (or the number of repetitions before failure 1/Dconventional) is then equal
to 165,273 repetitions. The difference between the result of the lifetime by PSD
and that obtained by the conventional method is now 95 %, results become very
different.

Result obtained with Fatigue Damage Spectrum allows differentiation the role of
each frequency band to obtain the damage. Damage results consequences of any
stresses represented by the spectral density PSD. Damage obtained by this method
takes into account all frequency levels that appear with their stress levels and their
respective numbers.

Plan of Validation Tests

The different models presented to assess the damage and the lifetime in real use
conditions based on different types of analysis of stresses measured on a system or
a mechanical component. These models also allow defining test environments that
must cause similar effects to those observed in the actual conditions of use.

• The experimental means perfect more and more to reproduce in laboratory the
stresses recorded in real conditions of use. These types of tests are designed to
validate models of mechanical calculation and are not intended to validate the
lifetime estimated by the models presented earlier. Such validation would require
too much time. Indeed, the need to reduce more and more the validation period
of a product required to do as much as possible, test duration shorter and shorter
and more severe than the stress level observed in the actual conditions of use.
Naturally, these severe tests shall show equivalent to those observed in real use
conditions consequences.

Damage is an equivalence indicator.
• Figure 41 illustrates the principle of equivalent damage. In the case of alternating

stresses and with a material whose curve of resistance to fatigue (Wöhler
curve) is known, the limit lifetime is expressed in terms of alternating stress of
solicitation. If we assume that the actual conditions of use are summarized in
nreal repetitions of a sinusoidal stress (Sa D Sreal) which is Nreal the limit lifetime
in these conditions of use (nreal<Nreal). In this case (according to Miner), damage
under real conditions of use is: dreal D nreal

Nreal
.
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Fig. 41 Schema of the principle of equivalent damage

• Conducting a test in more severe conditions and leads to the same level of damage
dreal is to define the number of times (nsevere) to be repeated a sinusoidal stress
(S

0

a D Ssevere) so that the damage dsevere is equal to dreal.
• For a mechanical component, the level (S

0

a D Ssevere) is determined depending
on the material which constitutes the studied and knowledge about limits
behavior component. The equivalence between damage (dsevere D dreal) leads to
the calculation of nsevere. As follows:

nsevere D Nsevere

Nreal
nreal (102)

According to the model Basquin N D CS�b, then

nsevere D
�
Ssevere

Sreal

��b
nreal (103)

Figure 42 illustrates the process of calculating the number of cycles required
to produce, under severe conditions, damage equivalent to that observed under
actual use conditions.

• A detailed analysis of behavior in endurance (long period) should help define
tests (short term) to perform in laboratory or on simulation bench. In this case, it
is advisable to retain only the critical stresses. Two selection criteria are possible:
take only the stresses that have contributed from a given percentage of the global
damage or take the stresses whose amplitude alternating (Sa, Fig. 31b) is greater
than the limit endurance.
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Fig. 42 Schema of the equivalent damage principle in the case of sinusoidal stresses

Fig. 43 Transition matrix of
the stress with distinction
parts of the alternating
stresses which amplitude is
less than the endurance limits
(see Fig. 10)

For the examples presented in the following, this is the second criterion that is
used.

– Figure 43 shows the transition matrix corresponding to the stress of Fig. 40
by specifying the boxes (with gray background) in which the associated
alternating stress is below the endurance limit. If these stresses are not
considered, the cumulative damage remaining 72 % of the global damage.
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– The remaining part of the transition matrix can be used for testing in the
laboratory. Of course, it is only the nonempty boxes of the matrix are taken
into account.

– In the case of this stress, the information obtained by the extended-slope
matrix (Fig. 21a) and the extreme-curves matrix (Fig. 21b) contributes to the
definition of the dynamic sinusoidal stresses considered for each nonempty
cell of the matrix of transition.

– In the top right quarter of the matrix linking extreme amplitudes and cur-
vatures (Fig. 21b), there is five number which summarizes the five extreme
amplitudes (negative) observed following the passage of the five concrete
bumps. Based on the transition matrix (Fig. 10), these five amplitudes are
the starting points of which types of stress do not have exactly the same end
point. But the information provided by the extreme-curvature matrix confirms
that these five amplitudes the frequency signature is identical.

– The frequency according to which occur these five amplitudes is calculated as:

frequence D 1

2�

sˇ̌
ˇ̌y

00
y

ˇ̌
ˇ̌ (104)

with y00 is the second derivative of the signal y of load plotted against time.
– This relationship can also calculate all the frequencies of stresses that must

be applied during laboratory tests. These are the quarters on up and right and
down left of the extremes-curvatures matrix which are favored because they
plot stresses whose sign of the amplitude of departure is different from the
amplitude of arrival, reflecting extent of high amplitude. The quarters up left
and down right plot intermediate fluctuations which are not important as long
as they remain concentrated around the center of the matrix.

• The transition matrix of Fig. 44a shows a stress history near a fillet weld on a
transport vehicle chassis (Kouta et al. 2002) in an actual path of usage of 464 km.
Figure 44b shows this same matrix in the form of Iso-curves (or level curves).
This second representation gives iso-level curves of log of numbers, for an easier
viewing. In red (center of the butterfly), there are more effective but they are the
least damaging. By against in blue, the lowest numbers are shown but the most
damaging. For this case of loading, figure is symmetrical with respect to the first
diagonal, and is offset slightly downwardly. Note also the existence of two small
separate areas from the main figure.

– A first failure on the ground was observed on this path of 464 km after
1E C 06 km (2,155 rehearsals). Endurance characteristics of the material
(Wöhler curve) were determined through laboratory tests on this type of
component. The calculation of lifetime through the approach presented earlier
(“Calculation of fatigue damage, of damage accumulation and of lifetime”
and “Introductory examples” in Appendix 5) leads to a calculated lifetime of
1.2E C 06 km, which was satisfactory.
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Fig. 44 Two representations (a stress history and b iso-curves) of a transition matrix for a fillet
weld of the bogie chassis (according to (Kouta et al. 2002))
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Fig. 45 Transition matrix corresponding to an endurance test obtained with a ratio of severity
equal to 2 from the matrix in Fig. 43 (Matrix obtained under the rule of equivalent damage, see Eq.
(102))

• The conditions of an endurance test of short-term representative of the actual
damage were defined from Eq. (103). Figure 45 shows the transition matrix
corresponding to an endurance test which is obtained with a ratio of severity
equal to 2 f(Ssevere/Sreal) D 2, amplitude �2c, C2dg. This matrix provides the
same damage as observed by considering the matrix in Fig. 44 but with a test
duration which corresponds to a distance of 5 km with a rehearsal. Thus, this new
matrix can be used to achieve a short-term endurance test in laboratory whose
consequences (analysis of cracks, probable failure, etc.) are representative of a
real long-term use.

Conclusion

The approach presented in three parts was motivated by the challenges of quality
requirements for mechanical systems and components. And more specifically,
lifetime and reliability (probability of no break) are two main features. All of
the tools can be naturally applied to all cases of random stresses in mechanical.
Engineers of design and development in mechanical have to know in detail:

• Actual conditions of use from users’ behaviors.
• Actual conditions of use from users’ behaviors.
• Behaviors (or responses) of studied systems.
• Models of material degradation.
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Thus achieve the provision of values lifetime is not an insurmountable task.
However, numerical results should always be viewed and analyzed the same time
as the assumptions that lead to their obtaining.

Different approaches for calculating lifetime were presented as well as interme-
diate hypotheses required to calculate:

• Approach with statistical modeling (“Contributions and Impact of a Statistical
Modelling for Random Loading in the Calculation of Lifetime” section in
Appendix 5) can now relay conventional approach (“Calculation of Fatigue Dam-
age, of Damage Accumulation and of Lifetime” and “Introductory Examples”
sections in Appendix 5) traditionally used in design departments. This approach
with statistical modeling provides a global indicator of damage, lifetime, and
reliability which remains easy to obtain while having improved the quality of
behavior prediction.

• Approach Fatigue Damage Spectrum with the use of the PSD is however
in conjunction with the actual conditions of use of mechanical systems and
components. Fatigue Damage Spectrum whose the method of obtaining has
been developed in “Calculation of Damage and Lifetime on the Basis of Power
Spectral Density (Lalanne 1999b)” in Appendix 5, allows to connect lifetime
(or damage) of a mechanical component with dynamic characteristics of stresses
sustained by the material. The use of PSD in this calculation allows taking into
account the dynamic behavior of the system which belongs to the mechanical
component studied. In addition, this approach allows taking into account the
nature of the statistical distribution of the solicitation.

• Validation of predictive calculations in systems and mechanical components
design also calls for the establishment of specific test procedures. Naturally,
market pressure requires test times which are compatible with the terms of
product development. In general, these periods have nothing to do with expected
lifetime in service. The obtained results allow constructing simple environments
of bench testing of similar severity to that observed in tests of endurance.
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Likelihood-Based Approach for Uncertainty
Quantification in Multi-Physics Systems

Shankar Sankararaman and Sankaran Mahadevan

Abstract This chapter presents a computational methodology for uncertainty
quantification in multi-physics systems that require iterative analysis between
models corresponding to each discipline of physics. This methodology is based
on computing the probability of satisfying the inter-disciplinary compatibility
equations, conditioned on specific values of the coupling (or feedback) variables,
and this information is used to estimate the probability distributions of the coupling
variables. The estimation of the coupling variables is analogous to likelihood-
based parameter estimation in statistics and thus leads to the likelihood approach
for multi-disciplinary analysis (LAMDA). Using the distributions of the feedback
variables, the coupling can be removed in any one direction without loss of
generality, while still preserving the mathematical relationship between the coupling
variables. The calculation of the probability distributions of the coupling variables
is theoretically exact and does not require a fully coupled system analysis. The
LAMDA methodology is first illustrated using a mathematical example and then
applied to the analysis of a fire detection satellite.

1 Introduction

Multi-physics or multi-disciplinary systems analysis and optimization is an
extensive area of research, and numerous studies have dealt with the various
aspects of coupled multi-disciplinary analysis (MDA) in several engineering

S. Sankararaman (�)
SGT Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA
e-mail: shankar.sankararaman@gmail.com

S. Mahadevan
Department of Civil and Environmental Engineering, Vanderbilt University,
Nashville, TN 37235, USA

S. Kadry and A. El Hami (eds.), Numerical Methods for Reliability and Safety
Assessment: Multiscale and Multiphysics Systems, DOI 10.1007/978-3-319-07167-1__2,
© Springer International Publishing Switzerland 2015

87

mailto:shankar.sankararaman@gmail.com


88 S. Sankararaman and S. Mahadevan

disciplines. Researchers have focused both on the development of computational
methods (Alexandrov and Lewis 2000; Cramer et al. 1994) and on the application
of these methods to several types of multi-physics interaction, for example,
fluid–structure (Belytschko 1980), thermal–structural (Thornton 1996), fluid–
thermal–structural (Culler et al. 2009), etc. Studies have considered these methods
and applications either for MDA or for multi-disciplinary optimization (MDO). The
coupling between individual disciplinary analyses may be one-directional (feed-
forward) or bi-directional (feedback). Feed-forward coupling is straightforward
to deal with, since the output of one model simply becomes an output to
another (Sankararaman 2012). On the other hand, the topic of bi-directional
(feedback) coupling is challenging to deal with, because the output of the first
model becomes an input to the second while the output of the second model
becomes an input to the first; therefore, it is necessary to iterate until convergence
between these models in order to analyze the whole system. Such analysis needs to
account for the different sources of uncertainty in order to accurately estimate the
reliability and ensure the safety of the multi-physics system.

Computational methods for MDA can be classified into three different groups
of approaches (Felippa et al. 2001). The first approach, known as the field
elimination method (Felippa et al. 2001), eliminates one or more coupling variables
(referred to as “field” in the literature pertaining to fluid–structure interaction) using
reduction/elimination techniques such as integral transforms and model reduction.
This approach is restricted to linear problems that permit efficient and evident
coupling. The second approach, known as the monolithic method (Felippa et al.
2001; Michler et al. 2004), solves the coupled analysis simultaneously using a
single solver (e.g. Newton–Raphson). The third approach, known as the partitioned
method, solves the individual analyses separately with different solvers. The well-
known fixed point iteration (FPI) approach (repeated analysis until convergence
of coupling variables) and the staggered solution approach (Felippa et al. 2001;
Park et al. 1977) are examples of partitioned methods. While the field elimination
and monolithic methods tightly couple the multi-disciplinary analyses together, the
partitioned method does not.

Two major types of methods have been pursued for MDO—single level
approaches and multi-level approaches. Single level approaches (Cramer et al.
1994) include the multi-disciplinary feasible (MDF) approach (also called
fully integrated optimization or the all-in-one approach), the all-at-once (AAO)
approach (also called simultaneous analysis and design (SAND)), and the
individual disciplinary feasible (IDF) approach. Multi-level approaches for MDO
include collaborative optimization (Braun 1996; Braun et al. 1997), concurrent
subspace optimization (Sobieszczanski-Sobieski 1988; Wujek et al. 1997), bi-level
integrated system synthesis (Sobieszczanski-Sobieski et al. 2003), analytical target
cascading (Kokkolaras et al. 2006; Liu et al. 2006), etc.

An important factor in the analysis and design of multi-disciplinary systems is
the presence of uncertainty in the system inputs. It is necessary to account for
the various sources of uncertainty in both MDA and MDO problems. The MDA
problem focuses on uncertainty propagation to calculate the uncertainty in the
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outputs. In the MDO problem, the objective function and/or constraints may become
stochastic if the inputs are random. The focus of the present chapter is only on
uncertainty propagation in MDA and not on optimization.

While most of the aforementioned methods for deterministic MDA can easily be
extended to non-deterministic MDA using Monte Carlo sampling (MCS), this may
be computationally expensive due to repeated evaluations of disciplinary analyses.
Hence, researchers have focused on developing more efficient alternatives. Gu
et al. (2000) proposed worst case uncertainty propagation using derivative-based
sensitivities. Kokkolaras et al. (2006) used the advanced mean value method for
uncertainty propagation and reliability analysis, and this was extended by Liu et al.
(2006) by using moment-matching and considering the first two moments. Several
studies have focused on uncertainty propagation in the context of reliability analysis.
Du and Chen (2005) included the disciplinary constraints in the most probable point
(MPP) estimation for reliability analysis. Mahadevan and Smith (2006) developed
a multi-constraint first-order reliability method (FORM) for MPP estimation. While
all the aforementioned techniques are probabilistic, non-probabilistic techniques
based on fuzzy methods (Zhang and Huang 2010), evidence theory (Agarwal et al.
2004), interval analysis (Li and Azarm 2008), etc. have also been studied for MDA
under uncertainty.

Similar to MDA, methods for MDO under uncertainty have also been investigated
by several researchers. Kokkolaras et al. (2006) extended the analytical target
cascading approach to include uncertainty. A sequential optimization and reliability
analysis (SORA) framework was developed by Du et al. (2008) by decoupling
the optimization and reliability analyses. Chiralaksanakul and Mahadevan (2007)
integrated solution methods for reliability-based design optimization with solution
methods for deterministic MDO problems to address MDO under uncertainty. Smith
(2007) combined the techniques in Mahadevan and Smith (2006) and Chiralak-
sanakul and Mahadevan (2007) for the design of aerospace structures. As mentioned
earlier, the focus of this chapter is only on MDA under uncertainty, and therefore,
aspects of MDO will not be discussed hereafter.

Review of the above studies reveals that the existing methods for MDA under
uncertainty are either computationally expensive or based on several approxima-
tions. Computationally expense is incurred in the following ways:

1. Using deterministic MDA methods with MCS (Haldar and Mahadevan 2000)
require several thousands of evaluations of the individual disciplinary analyses.

2. Non-probabilistic techniques (Agarwal et al. 2004; Li and Azarm 2008; Zhang
and Huang 2010) use interval-analysis-based approaches and also require sub-
stantial computational effort. Further they are also difficult to interpret in the
context of reliability analysis; this is an important consideration for MDO which
may involve reliability constraints.

Approximations are introduced in the following manner:

1. Probability distributions are approximated with the first two moments (Du and
Chen 2005; Kokkolaras et al. 2006; Liu et al. 2006; Mahadevan and Smith 2006).
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Fig. 1 A multi-disciplinary system

2. Approximations of individual disciplinary analyses may be considered using
derivative-based sensitivities (Gu et al. 2000) or linearization at MPP for
reliability calculation (Du and Chen 2005; Mahadevan and Smith 2006).

Some of these problems can be overcome by the use of a decoupled approach that
has been advocated by Du and Chen (2005) and Mahadevan and Smith (2006). In
this decoupled approach, Taylor’s series approximation and the first-order second
moment (FOSM) method have been proposed to calculate the probability density
function (PDF) of the coupling variables.

For example, consider the multi-disciplinary system shown in Fig. 1. Here x D
fx1; x2; xsg are the inputs, and u.x/ D fu12; u21g are the coupling variables. Note
that this is a not only a multi-disciplinary system, but also a multi-level system
where the outputs of the coupled analysis (g1 and g2) are used to compute a higher
level system output (f ).

Once the PDFs of the coupling variables u12 and u21 are estimated using
the decoupled approach, the coupling between “Analysis 1” and “Analysis 2”
is removed. In other words, the variable u21 becomes an input to “Analysis 1”
and the variable u12 becomes an input to “Analysis 2,” and the dependence
between the quantities u12, u21, and x is not considered any further. This “fully
decoupled” approach reduces the computational effort considerably by avoiding
repeated evaluations of the fully coupled system; however, this is still based on
approximations and more importantly, suitable only when the aim is to estimate the
statistics of g1 or g2.

In the case of a multi-level system, where the multi-disciplinary outputs (g1 and
g2 in this case) could be inputs to another model (Analysis 3 in Fig. 1), the fully
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decoupled approach will not be applicable for the following reason. In Fig. 1, for
a given x, there is a unique g1, and a unique g2; in addition, for a given u12, there
is a unique u21, and hence for a given g1, there is a unique g2. This functional
dependence between u12 and u21, and hence between g1 and g2, cannot be ignored
when estimating the probability distribution of f . In the fully decoupled approach,
the functional dependence between u12 and u21 is not preserved in subsequent
analysis; once the PDFs of u12 and u21 are estimated, independent samples of u12
and u21 are used to generate samples of g1 (using only Analysis 1) and g2 (using
only Analysis 2) which in turn are used to compute the statistics of f . This will
lead to an erroneous estimate of f , since g1 and g2 values are not related to each
other as they should be in the original system. This “subsequent analysis” need not
necessarily refer to a higher level output; this could even refer to an optimization
objective which is computed based on the values of g1 and g2 (or even u12 and u21).
Thus, if the objective is only to get the statistics of g1 and g2 as considered in Du and
Chen (2005) and Mahadevan and Smith (2006), then the fully decoupled approach
is adequate. But if g1 and g2 are to be used in further analysis, then the one-to-
one correspondence between u12 and u21 (and hence between g1 and g2) cannot be
maintained in the fully decoupled approach. Hence, one would have to revert to the
expensive Monte Carlo simulation (MCS) outside a deterministic MDA procedure
to compute the statistics of the output f . Thus, it becomes essential to look for
alternatives to the fully decoupled approach, especially when the complexity of the
system increases.

In order to address the above challenges, Sankararaman and Mahadevan (2012)
proposed a new likelihood-based approach for uncertainty propagation analysis in
multi-level, multi-disciplinary systems. In this method, the probability of satisfying
the inter-disciplinary compatibility is calculated using the principle of likelihood,
which is then used to quantify the PDF of the coupling variables. This approach for
MDA offers several advantages:

1. This method for the calculation of the PDF of the coupling variable is theoret-
ically exact; the uncertainty in the inputs is accurately propagated through the
disciplinary analyses in order to calculate the PDF of the coupling variable. No
approximations of the individual disciplinary analyses or the moments of the
coupling variable are necessary.

2. This approach requires no coupled system analysis, i.e. repeated iteration
between individual disciplinary analyses until convergence (FPI), thereby
improving the computational cost.

3. For multi-level systems, the difficulty in propagating the uncertainty in the
feedback variables to the system output is overcome by replacing the feedback
coupling with unidirectional coupling, thereby preserving the functional depen-
dence between the individual disciplinary models. The direction of coupling can
be chosen either way, without loss of generality. This semi-coupled approach is
also useful in an optimization problem where the objective function is a function
of the disciplinary outputs.
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The goal of this chapter is to explain this likelihood-based methodology for
uncertainty quantification in multi-physics systems in detail and illustrate its
application through numerical examples. The rest of this chapter is organized
as follows. Section 2 discusses a “sampling with optimization-based determin-
istic MDA” (SOMDA) approach, which is an example of using the partitioned
method along with MCS. Certain ideas explained in this section are used to
motivate the likelihood-based method. Then, the likelihood-based approach for
multi-disciplinary analysis (LAMDA) is explained in Sect. 3 and its numerical
implementation is discussed in Sect. 4. Section 5 illustrates the LAMDA method-
ology using a mathematical example and Sect. 6 uses the LAMDA methodology for
a three-discipline analysis of a fire detection satellite (Zaman 2010).

2 Sampling with Optimization-Based Deterministic MDA

Consider the multi-disciplinary system shown earlier in Fig. 1. The overall goal
is to estimate the probability distribution of the outputs g1, g2, and f , given the
probability distributions of the inputs x. As explained in Sect. 1, an intermediate
step is to calculate the PDFs of the coupling variables u12 and u21 and then use these
PDFs for uncertainty propagation.

First consider the deterministic problem of estimating the converged u12 and u21
values corresponding to given values of x. The conventional FPI approach starts
with an arbitrary value of u12 as input to “Analysis 2” and the resultant value of u21
serves as input to “Analysis 1.” If the next output from “Analysis 1” is the same
as the original u12, then the analysis is said to have reached convergence and the
inter-disciplinary compatibility is satisfied. However, if it is not, the conventional
FPI approach treats the output of “Analysis 1” as input to “Analysis 2” and the
procedure is repeated until convergence.

This search for the convergent values of u12 and u21 can be performed in an
intelligent manner by formulating it as an optimization problem. For this purpose,
define a new function G whose input is the coupling variable u12, in addition to x.
The output of “G” is denoted by U12, which is obtained by propagating the input
through “Analysis 2” followed by “Analysis 1,” as shown in Fig. 2.

U12

G

Analysis 1
A1(u(x), x)

Analysis 2
A2(u(x), x)

u21u12

Fig. 2 Definition of G
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Fig. 3 A multi-disciplinary system: unidirectional coupling

The multi-disciplinary constraint is said to be satisfied if and only if u12 D U12.
For a given x, the convergent value of the coupling variable u12 can be obtained by
minimizing the squared error E D .u12 � G.u12;x//2 for a given set of inputs x,
where G is given by:

U12 D G.u12;x/ D A1.u21;x/ where u21 D A2.u12;x/ (1)

Note that this is an unconstrained optimization problem. If the multi-disciplinary
compatibility is satisfied, then u12 D U12, and the optimum value of E will be equal
to zero. In the rest of the chapter, it is assumed that it is possible to satisfy inter-
disciplinary compatibility for each realization of the input x; in other words, the
MDA has a feasible solution for each input realization. Once the converged value of
u12 is estimated, then the bi-directional coupling can be removed and replaced with
a uni-directional coupling from “Analysis 2” to “Analysis 1” as shown in Fig. 3.

If there are multiple coupling variables in one direction, i.e. if u12 is a vector
instead of a scalar, then E is also a vector, i.e. E D ŒE1; E2;E3; : : : En�. If the
MDA has a solution, then the optimal value of the vector u12 will lead to Ei D 0 for
all i ’s. Since each Ei D 0 by definition, the optimal value of u12 can be estimated
by minimizing the sum of all Ei ’s (instead of minimizing each Ei separately), and
the minimum value of this sum will also be equal to zero.

This is a minor modification to the FPI approach; here the convergent value of
the coupling variable is calculated based on an optimization which may choose
iterations judiciously in comparison with the FPI approach. Hence, in terms of
uncertainty propagation, the computational cost is still very high. The input values
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need to be sampled and for each realization, this optimization needs to be repeated
and the entire distribution of the coupling variable needs to be calculated using many
such samples.

Hereon, this approach is referred to as SOMDA. Since this approach is still
computationally expensive, a likelihood-based approach for MDA (LAMDA) was
developed by Sankararaman and Mahadevan (2012). This LAMDA approach does
not require sampling and provides an efficient and theoretically accurate method for
uncertainty propagation in MDA.

3 Likelihood Approach for Multi-Disciplinary Analysis

The optimization discussed in the previous section is much similar to a least-
squares-based optimization; the difference being that a typical least squares opti-
mization is posed as a summation problem with multiple observed data whereas this
is not the case in the current optimization problem. The quantity to be estimated is
the convergent value of u12 for a given set of inputs x. When the inputs are random,
then the coupling variable u12 is also random and its probability distribution needs
to be calculated. This can be viewed similar to a statistical parameter estimation
problem.

Consider a typical parameter estimation problem where a generic parameter �
needs to be estimated based on some available data. According to Fisher (1912), one
can “solve the real problem directly” by computing the “probability of observing
the given data” conditioned on the parameter � (Aldrich 1997; Fisher 1912). This
quantity is referred to as the likelihood function of � (Edwards 1984; Pawitan 2001).
Singpurwalla (2006, 2007) explains that the likelihood function can be viewed
as a collection of weights or masses and is meaningful up to a proportionality
constant (Edwards 1984). In other words, if L.�.1// D 10, and L.�.2// D 100,
then it is 10 ten times more likely for �.2/ than �.1/ to correspond to the observed
data. While this likelihood function is commonly maximized to obtain the maximum
likelihood estimate (MLE) of the parameter � , the entire likelihood function can also
be used to obtain the entire PDF of � .

Now, consider the problem of estimating the PDF of the coupling variable u12
in MDA. This is purely an uncertainty propagation problem and there is no “data”
to calculate the likelihood function of u12 which is defined as the “probability of
observing the data.” Hence, the definition of the likelihood function cannot be used
directly.

However, the focus of the MDA problem is to satisfy the inter-disciplinary com-
patibility condition. Consider “the probability of satisfying the inter-disciplinary
compatibility” conditioned on u12 which can be written as P.U12 D u12ju12/. This
definition is similar to the original definition of the likelihood function. It is a weight
that is associated with a particular value of u12 to satisfy the multi-disciplinary
constraint. In other words, if the ratio of P.U12 D u.1/12 ju.1/12 / to P.U12 D u.2/12 ju.2/12 /
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is equal to 0.1, then it is 10 ten times more likely for u.2/12 than u.1/12 to satisfy the
inter-disciplinary compatibility condition. Thus, the properties of this expression are
similar to the properties of the original likelihood function. Hence, this expression
is defined to be the likelihood of u12 in this chapter, as shown in Eq. (2). Since the
likelihood function is meaningful only up to a proportionality constant, Eq. (2) also
uses only a proportionality sign.

L.u12/ / P.U12 D u12ju12/ (2)

Note that this definition is in terms of probability and hence the tool of likelihood
gives a systematic procedure for including the uncertainty in the inputs during the
construction of likelihood and estimating the probability distribution of the coupling
variables, as explained below.

Note that there is a convergent value of u12 for every realization of x. If x is
represented using a probability distribution, then one sample of x has a relative
likelihood of occurrence with respect to another sample of x. Correspondingly,
a given sample of u12 has a relative likelihood of being a convergent solution
with respect to another sample of u12, and hence u12 can be represented using
a probability distribution. It is this likelihood function and the corresponding
probability distribution that will be calculated using the LAMDA method.

For a given value of u12, consider the operation U12 D G.u12;x/ defined earlier
in Eq. (1). When x is random, an uncertainty propagation method can be used to
calculate the distribution of U12. Let the PDF of U12 be denoted by fU12.U12ju12/.

The aim is to calculate the likelihood of u12, i.e. L.u12/ as the probability of
satisfying the multi-disciplinary constraint, i.e. U12 D u12. Since fU12.U12ju12/ is a
continuous PDF, the probability that U12 is equal to any particular value, u12 in this
case, is equal to zero. Pawitan (2001) explained that this problem can be overcome
by considering an infinitesimally small window

�
u12 � �

2
, u12 C �

2

	
around u12 by

acknowledging that there is only limited precision in the real world.

L.u12/ / P.U12 D u12ju12/ D
Z u12C �

2

u12� �
2

fU12.U12ju12/dU12 / fU12.U12 D u12ju12/
(3)

Note that this equation is very similar to the common practice of estimating the
parameters of a probability distribution given observed data for the random variable.
In other words, if X is a random variable whose PDF is given by fX.xjP/ where
P refers to the parameters to be estimated, and if the data available is denoted
by xi (i D 1 to n), then the likelihood of the parameters can be calculated as
L.P/ / fX.xi jP/ where i varies from 1 to n. The maximizer of this expression
is referred to as the MLE of P . Details can be found in statistics textbooks (Haldar
and Mahadevan 2000; Pawitan 2001).

Note that the likelihood function L.u12/ is conditioned on u12 and hence the PDF
of U12 is always conditioned on u12. Once the likelihood function of u12, i.e the
probability of satisfying the multi-disciplinary compatibility for a given value of u12.
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is calculated, the PDF of the converged value of the coupling variable u12 can be
calculated as:

f .u12/ D L.u12/R
L.u12/du12

(4)

In the above equation, the domain of integration for the variable u12 is such
that L.u12/ ¤ 0. Note that Eq. (4) is a form of Bayes theorem with a non-
informative uniform prior density for u12. Once the PDF of u12 is calculated, the
MDA with uni-directional coupling in Fig. 3 can be used in lieu of the MDA with
bi-directional coupling in Fig. 1. The system output f can then be calculated using
well-known methods of uncertainty propagation such as MCS, FORM, and second-
order reliability method (SORM).

During the aforementioned uncertainty propagation, the converged u12 and x are
considered as independent inputs in order to compute the uncertainty in u21, g1, g2,
and f . However, for every given value of x, there is only one value of u12; this is
not a statistical dependence but a functional dependence. The functional dependence
between the converged u12 and x is not known and not considered in the decoupled
approach. If the functional dependence needs to be explicitly considered, one would
have to revert to the computationally expensive FPI approach for every sample of x.
(An alternative would be to choose a few samples of x, run FPI analysis on each of
them and construct a surrogate/approximation of the functional dependence between
x and u12, and explicitly use this surrogate in uncertainty propagation. Obviously,
the surrogate could also be directly constructed for any of the responses—g1, g2, or
f —instead of considering the coupling variable u12. However, replacing the entire
MDA by a surrogate model is a different approach and does not fall within the scope
of the decoupled approach, which is the focus of this chapter.)

The above discussion calculated the PDF of u12 and cut the coupling from
“Analysis 1” to “Analysis 2.” Without loss of generality, the same approach can be
used to calculate the PDF of u21 and cut the coupling from “Analysis 2” to “Analysis
1.” This method has several advantages:

1. This method is free from first-order or second-order approximations of the
coupling variables.

2. The equations of the individual disciplinary analyses are not approximated
during the derivation of Eq. (3) and the calculation of the PDF of the coupling
variables in Eq. (4) is exact from a theoretical perspective.

3. The method does not require any coupled system analysis, i.e. repeated iteration
between “Analysis 1” and “Analysis 2” until convergence.

Though the computation of the PDF of u12 is theoretically exact, two issues
need to be addressed in computational implementation. (1) The calculation of
L.u12/ requires the estimation of fU12.U12ju12/ which needs to be calculated by
propagating the inputs x through G for a given value of u12. (2) This likelihood
function needs to be calculated for several values of u12 to perform the integration in
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Eq. (4). These two steps, i.e. uncertainty propagation and integration, could make the
methodology computationally expensive if a Monte Carlo-type approach is pursued
for uncertainty propagation.

Therefore, the following section presents a methodology that makes the numer-
ical implementation inexpensive for the above two steps. From here on, there are
approximations made; note that these approximations are only for the purpose of
numerical implementation and not a part of the mathematical theory. Here, “theory”
refers to the derivation and use of Eqs. (3) and (4) for uncertainty quantification in
MDA, and “implementation” refers to the numerical computation of fU12.U12 D
u12ju12/ in Eq. (3).

4 Numerical Implementation

This section addresses the two issues mentioned above in the numerical implemen-
tation of the LAMDA method.

4.1 Evaluation of the Likelihood Function L.u12/

The first task is to calculate the likelihood function L.u12/ for a given value of u12.
This requires the calculation of the PDF fU12.U12ju12/. However it is not necessary
to calculate the entire PDF. Based on Eq. (3), the calculation of likelihood L.u12/
only requires the evaluation of the PDF at u12, i.e. fU12.U12 D u12ju12/. Hence,
instead of entirely evaluating the PDF fU12.U12ju12/, only local analysis atU12 D u12
needs to be performed. One method is to make use of FORM to evaluate this PDF
value. This is the first approximation.

The FORM estimates the probability that a performance function H D h.x/

is less than or equal to zero, given uncertain input variables x. This probability
is equal to the cumulative probability density (CDF) of the variable H evaluated
at zero (Haldar and Mahadevan 2000). In this approach, the so-called MPP is
calculated by transforming the variables x into uncorrelated standard normal space
u and by determining the point in the transformed space that is closest to the origin.
An optimization problem can be formulated as shown in Fig. 4.

Given PDFs of x

Minimize β = uT u

such that H ≡ h(x) = 0

where standard normal u = T (x)

P (H < 0) = Φ(−β)Fig. 4 Use of FORM to
estimate the CDF value
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The details of the transformation u D T .x/ in Fig. 4 can be found in Haldar
and Mahadevan (2000). This optimization can be solved by using the well-known
Rackwitz–Fiessler algorithm (Rackwitz and Flessler 1978), which is based on a
repeated linear approximation of the constraint H D 0. Once the shortest distance
to the origin is estimated to be equal to ˇ, then the CDF value is calculated in
FORM as:

P.H � 0/ D ˆ.�ˇ/ (5)

FORM can also be used to calculate the CDF value at any generic value hc ,
i.e. P.h.x/ � hc/ and the probability that h.x/ is less than or equal to hc
can be evaluated by executing the FORM analysis for the performance function
H D h.x/� hc . For the problem at hand, it is necessary to calculate the PDF value
at u12 and not the CDF value. This can be accomplished by finite differencing, i.e.
by performing two FORM analyses at hc D u12 and hc D u12 C ı, where ı is a
small difference that can be chosen, for example, 0:001 � u12. The resultant CDF
values from the two FORM analyses are differenced and divided by ı to provide an
approximate value of the PDF value at u12. This is the second approximation.

Hence, the evaluation of the likelihood function L.u12/ is based on two approx-
imations: (1) the PDF value is calculated based on finite differencing two CDF
values; and (2) each CDF value is in turn calculated using FORM which is a first-
order approximation (Eq. (5)).

4.2 Construction of PDF of u12

Recall that Eq. (4) is used to calculate the PDF of u12 based on the likelihood
functionL.u12/. In theory, for any chosen value of u12, the corresponding likelihood
L.u12/ can be evaluated, and hence the integral in Eq. (4) can be computed. For the
purpose of numerical implementation, the limits of integration need to be chosen.
The first-order estimates of the mean and variance of u12 can be estimated by
calculating the converged value of u12 at the mean of the uncertain input values
using FPI. The derivatives of the coupling variables with respect to the inputs can
be calculated using Sobieski’s system sensitivity equations (Hajela et al. 1990), as
demonstrated later in Sect. 4.1. These first order estimates can be then used to select
the limits (for example, six sigma limits) for integration.

For the purpose of implementation, the likelihood function is evaluated only at a
few points; a recursive adaptive version of Simpson’s quadrature (McKeeman 1962)
is used to evaluate this integral and the points at which the likelihood function needs
to be evaluated are adaptively chosen until the quadrature algorithm converges.

This quadrature algorithm is usually applicable only in the case of one-
dimensional integrals whereas in a typical multi-disciplinary problem, u12 may
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be a vector, where there are several coupling variables in each direction. Hence,
the multi-dimensional integral can be decomposed into multiple one-dimensional
integrals so that the quadrature algorithm may be applied.

Z
L.˛; ˇ/d˛dˇ D

Z � Z
L.˛; ˇ/d˛

�
dˇ (6)

Each one-dimensional integral is evaluated using recursive adaptive Simpson’s
quadrature algorithm (McKeeman 1962). Consider any general one-dimensional
integral and its approximation using Simpson’s rule as:

Z b

a

f .x/dx � b � a
6

�
f .a/C 4f

�aC b

2

�
C f .b/

�
D S.a; b/ (7)

The adaptive recursive quadrature algorithm calls for subdividing the interval of
integration .a; b/ into two sub-intervals (.a; c/ and .c; b/, a � c � b) and then,
Simpson’s rule is applied to each sub-interval. The error in the estimate of the
integral is calculated by comparing the integral values before and after splitting.
The criterion for determining when to stop dividing a particular interval depends on
the tolerance level �. The tolerance level for stopping may be chosen, for example
as (McKeeman, 1962):

jS.a; c/C S.c; b/ � S.a; b/j � 15� (8)

Once the integral is evaluated, the entire PDF is approximated by interpolating the
points at which the likelihood has already been evaluated.

This technique ensures that the number of evaluations of the individual disci-
plinary analyses is minimal. Would it be possible to approximately estimate the
number of disciplinary analyses needed for uncertainty propagation? Suppose that
the likelihood function is evaluated at ten points to solve the integration in Eq. (4).
Each likelihood evaluation requires a PDF calculation, and hence two FORM
analyses. Assume that the optimization for FORM converges in five iterations on
average; each iteration would require n C 1 (where n is the number of input
variables) evaluations of the individual disciplinary analysis (one evaluation for the
function value and n evaluations for derivatives). Thus, the number of individual
disciplinary analyses required will approximately be equal to 100.n C 1/. This
is computationally efficient when compared to existing approaches. For example,
Mahadevan and Smith (2006) report that for a MDA with 5 input variables, the
multi-constraint FORM approach required 69 evaluations for the evaluation of a
single CDF value, which on average may lead to 690 evaluations for 10 CDF
values. While the LAMDA method directly calculates the entire PDF, it also retains
the functional dependence between the disciplinary analyses, thereby enabling
uncertainty propagation to the next analysis level.

As the number of coupling variables increases, the integration procedure causes
the computational cost to increase exponentially. For example, if there are ten
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coupling variables, each with five discretization points (for the sake of integration),
then the number of individual disciplinary analyses required will approximately
be equal to 105 � 10 � .n C 1/. Alternatively, a sampling technique such as
Markov Chain Monte Carlo (MCMC) sampling can be used to draw samples of
the coupling variables; this method can draw samples of the coupling variable
without evaluating the integration constant in Eq. (4). Further, since this is sampling
approach, the computational cost does not increase exponentially with the number
of coupling variables. In each iteration of the MCMC chain, two FORM analyses
need to be conducted to evaluate the likelihood for a given value of u12 (which
is now vector), and several thousands (say, Q) of evaluations of this likelihood
function may be necessary for generating the entire PDFs of the coupling variables.
Thus, the number of individual disciplinary analyses will be approximately equal to
10� .nC 1/�Q. Currently, the LAMDA method is demonstrated only for a small
number of coupling variables. Future work needs to extend the methodology to field-
type quantities (temperatures, pressures, etc. in finite element analysis) where the
number of coupling variables is large.

5 Numerical Example: Mathematical MDA Problem

5.1 Description of the Problem

This problem consists of three analyses, two of which are coupled with one another.
This is an extension of the problem discussed by Du and Chen (2005), and later
by Mahadevan and Smith (2006) where only two analyses were considered. The
functional relationships are shown in Fig. 5. In addition to the two analyses given
in Mahadevan and Smith (2006), the current example considers a third analysis
where a system output is calculated based on g1 and g2 as f D g2 � g1. All the
five input quantities x D .x1; x2; x3; x4; x5/ are assumed to be normally distributed
(only for the sake of illustration) with unit mean and standard deviation equal
to 0:1; there is no correlation between them. The goal in Du and Chen (2005)
and Mahadevan and Smith (2006) was to calculate the probability P.g1 � 0/,
and now, the goal is to calculate the entire probability distributions of the coupling
variables u12 and u21, the outputs of the individual analyses g1 and g2, and the
overall system output f .

A coarse approximation of the uncertainty in the output variables and coupling
variables can be obtained in terms of first-order mean and variance using Taylor’s
series expansion (Haldar and Mahadevan 2000). For example, consider the coupling
variable u12; the procedure described for can be extended to u21, g1, g2, and f .

The first-order mean of u12 can be estimated by calculating the converged value
of u12 at the mean of the input values, i.e. x D .1; 1; 1; 1; 1/. The first-order mean
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Analysis 3
f = g2 − g1

u21

g1 g2

Analysis 1
u12 = x1

2 +2x2 − x3 +2

g1  

= 4:5 − (x1
2 +2x2 + x3 +x2e

−u21 )

u21

Analysis 2
u21 = x1x4+x4

2 +x5 + u12

g2 =   x1 + x4 + x5(0:4 x1)

Fig. 5 Functional relationships

values of u12, u21, g1, g2, and f are calculated to be equal to 8:9, 11:9, 0:5, 2:4, and
1:9, respectively. The first-order variance of u12 can be estimated as:

Var.u12/ D
nX

iD1

�du12
dxi

�2
Var.xi / (9)

where the first-order derivatives are calculated using Sobieski’s system (or global)
sensitivity equations (Hajela et al. 1990), by satisfying the multi-disciplinary
compatibility as:

du12
dxi

D @u12
@xi

C @u12
@u21

@u21
@xi

(10)

All the derivatives are calculated at the mean of the input values, i.e. x D .1; 1;

1; 1; 1/. The values of @u12
@xi

are 2, 2, �1, 0, and 0 (i = 1 to 5), respectively. The

values of @u21
@xi

are 1, 0, 0, 3, and 1 (i = 1 to 5), respectively. The value of @u12
@u21

is 1p
u21

,
evaluated at the mean and therefore, is equal to 0:29. Hence, using Eqs. (9) and (10),
the standard deviation of u12 is calculated to be 0:333.

The system sensitivity equation-based approach only provides approximations of
the mean and variance, and it cannot calculate the entire PDF of u12. The remainder
of this section illustrates the LAMDA approach, which can accurately calculate
the entire PDF of u12. Though the system of equations in Fig. 5 may be solved
algebraically by eliminating one variable, the forthcoming solution does not take
advantage of this closed form solution and assumes each analysis to be a black-box.
This is done to simulate the behavior of realistic multi-disciplinary analyses that
may not have closed form solutions. For the same reason, finite differencing is used
to approximate the gradients even though analytical derivatives can be calculated
easily for this problem.
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5.2 Calculation of the PDF of the Coupling Variable

In this numerical example, the coupling variable u12 is estimated for the sake of
illustration, and the arrow from “Analysis 1” to “Analysis 2” is severed. The PDF
of u12 is estimated using (1) SOMDA; and (2) LAMDA. In Fig. 6, the PDF using
the LAMDA method uses ten integration points for the evaluation of Eq. (4). The
resulting PDFs from the SOMDA method and the LAMDA method are compared
with the benchmark solution which is estimated using 10;000 Monte Carlo samples
of x and FPI (until convergence of Analysis 1 and Analysis 2) for each sample
of x. The probability bounds on MCS results for the benchmark solution are also

calculated using the formula CoV.F / D
q

.1�F /
F �N where F is the CDF value (Haldar

and Mahadevan 2000), and found to be narrow and almost indistinguishable from
the solution reported in Fig. 6. Since the benchmark solution uses FPI for each input
sample, it is indicated as SOFPI (sampling outside fixed point iteration) in Fig. 6.

In addition to the PDF in Fig. 6, the CDF of u12 is shown in Fig. 7. The CDF
is plotted in linear and log-scale. Further, the tail probabilities are important in the
context of reliability analysis; hence, the two tails of the CDF curves are also shown
separately.

It is seen that the solutions (PDF values and CDF values) from the LAMDA
method match very well with the benchmark (SOFPI) solution and the SOMDA
approach. Note that the mean and standard deviation of the PDF in Fig. 6 agree
well with the first-order approximations previously calculated (8:9 and 0:333).
Obviously, the above PDF provides more information than the first-order mean
and standard deviation and is more suitable for calculation of tail probabilities in
reliability analysis.

The differences (maximum error is less than 1 %) seen in the PDFs and the CDFs
from the three methods, though small, are accountable. The PDF obtained using
SOMDA differs from the benchmark solution because it uses only 1;000 Latin
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Fig. 7 Cumulative distribution function of u12. (a) Linear; (b) log-scale; (c) left tail; (d) right tail

hypercube samples (realizations of inputs) whereas the benchmark solution used
10;000 samples. The PDF obtained using LAMDA differs from the benchmark
solution because of two approximations—(1) finite differencing two CDF values
to calculate the PDF value, and (2) calculating each CDF value using FORM.

The benchmark solution is based on FPI and required about 105 evaluations
each of Analysis 1 and Analysis 2. The SOMDA method required 8;000–9;000
executions of each individual disciplinary analysis. (This number depends on the
random samples of the input, since for each sample, the number of optimization
iterations required for convergence is different.) Note that theoretically, the SOMDA
method would produce a PDF that is identical to the benchmark solution if the
same set of input samples were used in both the cases. This is because the SOMDA
approach simply solves the deterministic MDA problem and then considers sam-
pling in an outside loop. The solution approach in SOMDA is different from that
in the benchmark solution approach; however, the treatment of uncertainty is the
same. As discussed in Sect. 2, the SOMDA method is still expensive; replacing the
brute force FPI in the benchmark solution by an optimization did not significantly
improve the computational efficiency in this problem.

The LAMDA method treats the uncertainty directly in the definition of likelihood,
and was found to be the least expensive, as it required only about 450–500
evaluations of each disciplinary analysis for the estimation of the entire PDF of
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u12 in Fig. 6. The number of evaluations is given as a range because of three
sources of variation: (1) different initial guesses for FORM analyses may require
different numbers of function evaluations for convergence to MPP; (2) the number
of integration points used for evaluation of Eq. (4); and (3) the actual values of the
integration points used for evaluation of Eq. (4). In contrast, the multi-constraint
FORM approach developed by Mahadevan and Smith (2006) required about 69
evaluations for the calculation of the CDF at one particular value. If the entire PDF
as in Fig. 6 is desired, the multi-constraint FORM would take approximately 69�2n
function evaluations, where n is the number of points on the PDF and each PDF
evaluation would require two CDF evaluations.

5.3 Calculation of PDF of the System Output

Once the PDF of u12 is calculated, the scheme in Fig. 3 can be used for uncertainty
propagation and the PDF of the system output f is calculated. Note that this does
not require any MDA (iterative analysis between the two subsystems) and it is now
a simple uncertainty propagation problem. Well-known methods for uncertainty
propagation such as MCS, FORM, and SORM (Haldar and Mahadevan 2000) can
be used for this purpose. For the sake of illustration, MCS is used. The PDF of the
system output f is shown in Fig. 8.

As the coupling variable u12 has been estimated here, the “arrow” from Analysis
1 to Analysis 2 alone is severed, whereas the arrow from Analysis 2 to Analysis 1
is retained. Hence, to solve for the system output f , the probability distributions
of the inputs x and the probability distribution of the coupling variable u12 are
used first in Analysis 2 (to calculate u21), and then in Analysis 1 to calculate the
individual disciplinary system outputs g1 and g2, followed by the overall system
output f . As seen from Fig. 8, the solutions from the three different methods—
SOMDA, LAMDA, and the benchmark solution (SOFPI)—compare well against
each other.
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6 Three-Discipline Fire Detection Satellite Model

This section illustrates the LAMDA methodology for system analysis of a satellite
that is used to detect forest fires. First, the various components of the satellite system
model are described, and then, numerical results are presented.

6.1 Description of the Problem

This problem was originally described by Wertz and Larson (1999). This is a
hypothetical but realistic spacecraft consisting of a large number of subsystems with
both feedback and feed-forward couplings. The primary objective of this satellite is
to detect, identify, and monitor forest fires in near real time. This satellite is intended
to carry a large and accurate optical sensor of length 3:2m, weight 720 kg and has
an angular resolution of 8:8 � 10�7 rad. This example considers a modified version
of this problem considered earlier by Ferson et al. (2009) and Zaman (2010).

Zaman (2010) considered a subset of three subsystems of the fire detection
satellite, consisting of (1) Orbit Analysis, (2) Attitude Control, and (3) Power, based
on Ferson et al. (2009). This three-subsystem problem is shown in Fig. 9. There are
nine random variables in this problem, as indicated in Fig. 9.

As seen in Fig. 9, the Orbit subsystem has feed-forward coupling with both
Attitude Control and Power subsystems, whereas the Attitude Control and Power
subsystems have feedback or bi-directional coupling through three variables PACS,
Imin, and Imax. A satellite configuration is assumed in which two solar panels extend
out from the spacecraft body. Each solar panel has dimensionsL byW and the inner
edge of the solar panel is at a distance D from the centerline of the satellite’s body
as shown in Fig. 10.

The functional relationships between the three subsystems are developed in
detail by Wertz and Larson (1999) and summarized by Ferson et al. (2009) and
Sankararaman and Mahadevan (2012). These functional relationships are briefly
described in this section.

6.1.1 The Orbit Subsystem

The inputs to this subsystem are: radius of the earth .RE/; orbit altitude .H/; earth’s
standard gravitational parameter .
/; and target diameter .�target/.

The outputs of this subsystem are: satellite velocity .v/; orbit period .�torbit/;
eclipse period .�teclipse/; and maximum slewing angle .�slew/. The relationships
between these variables are summarized in the following equations:

v D
r




RE CH
(11)
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Fig. 9 A three-subsystem fire detection satellite
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�teclipse D �torbit

�
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RE CH

�
(13)

�slew D arctan
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�

1 � cos. �target

RE
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!

(14)

6.1.2 The Attitude Control Subsystem

The 23 inputs to this subsystem are: earth’s standard gravitational parameter (
);
radius of the earth (RE); Altitude (H ); maximum and minimum moment of inertia
of the spacecraft (Imax and Imin); deviation of major moment axis from local vertical
(� ); moment arm for the solar radiation torque (Lsp); average solar flux (Fs);
speed of light (c); reflectance factor (q); surface area off which solar radiation is
reflected (As); Slewing time period (�tslew); magnetic moment of the Earth (M );
residual dipole of the spacecraft (RD); moment arm for aerodynamic torque (La);
atmospheric density (�); maximum slewing angle (�slew); sun incidence angle (i );
drag coefficient (Cd ); cross-sectional surface area in the direction of flight (A);
satellite velocity (v); rotation velocity of reaction wheel (!max); number of reaction
wheels (n); and holding power (Phold), i.e. the power required to maintain the
constant velocity (!max).

The overall output of this subsystem is the total torque (�tot). The value of the
total torque is computed based on slewing torque (�slew), disturbance torque (�dist),
gravity gradient torque (�g), solar radiation torque (�sp), magnetic field interaction
torque (�m), and aerodynamic torque (�a), as shown in the following equations.

�tot D max.�slew; �dist/ (15)

�slew D 4�slew

.�tslew/2
Imax (16)

�dist D
q
�2g C �2sp C �2m C �2a (17)

�g D 3


2.RE CH/3
jImax � Iminj sin.2�/ (18)
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�sp D Lsp
Fs

C
As.1C q/ cos.i/ (19)

�m D 2MRD

.RE CH/3
(20)

�a D 1

2
La�CdAv2 (21)

Note that this subsystem takes two coupling variables (Imax and Imin) as input and
produces another coupling variable (Attitude control power: PACS) as output, as
given in the following equation.

PACS D �tot!max C nPhold (22)

This coupling variable is an input to the power subsystem, as described in the
following subsection.

6.1.3 The Power Subsystem

The 16 inputs to the power subsystem are: attitude control power (PACS); other
sources of power (Pother); orbit period (�torbit); eclipse period (�teclipse); sun
incidence angle (i ); inherent degradation of the array (Id ); average solar flux
(Fs); power efficiency (�); lifetime of the spacecraft (LT ); degradation in power
production capability in % per year (�deg); length to width ratio of solar array (rlw);
number of solar arrays (nsa); average mass density of solar arrays (�sa); thickness
of solar panels (t ); distance between the panels (D); and moments of inertia of the
main body of the spacecraft (IbodyX , IbodyY , IbodyZ).

The overall outputs of this subsystem are the total power (Ptot), and the total size
of the solar array (Asa), as calculated below.

Ptot D PACS C Pother (23)

Let Pe and Pd denote the spacecraft’s power requirements during eclipse and
daylight, respectively. For the sake of illustration, it is assumed that Pe D Pd D
Ptot. Let Te and Td denote the time per orbit spent in eclipse and in sunlight,
respectively. It is assumed that Te D �teclipse and Td D �torbit � Te . Then the
required power output (Psa) is calculated as:

Psa D
�
PeTe
0:6

C PdTd
0:8

�

Td
(24)
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The power production capabilities at the beginning of life (PBOL) and at the end of
the life (PEOL) are calculated as:

PBOL D�FsId cos.i/

PEOL DPBOL.1 � �deg/
LT

(25)

The total solar array size, i.e. the second output of this subsystem, is calculated as:

Asa D Psa

PEOL
(26)

Note that this subsystem takes a coupling variable (PACS) as input and produces the
other two coupling variables (Imax and Imin) as output, to be fed into the attitude
control subsystem described earlier.

The length (L), width (W ), mass (msa), moments of inertia (IsaX , IsaY , IsaZ) of
the solar array are calculated as follows:

L D
s
Asarlw

msa

W D
s

Asa

rlwmsa

msa D2�saLW t

(27)

IsaX D msa

�
1

12
.L2 C t 2/C

�
D C L

2

�2�
(28)

IsaY D msa

12
.t2 CW 2/ (29)

IsaZ D msa

�
1

12
.L2 CW 2/C

�
D C L

2

�2�
(30)

The total moment of inertia (Itot) can be computed in all three directions (X , Y , and
Z), from which the maximum and the minimum moments of inertia (Imax and Imin)
can be computed.

Itot D Isa C Ibody (31)

Imax D max.ItotX; ItotY ; ItotZ/ (32)

Imin D min.ItotX; ItotY ; ItotZ/ (33)
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Table 1 List of deterministic quantities

Variable Symbol Unit Numerical value

Earth’s radius RE m 6;378;140

Gravitational parameter 
 m3 s�2 3:986� 1014

Target diameter �target m 235;000

Light speed c m s�1 2:9979� 108

Area reflecting radiation As m2 13:85

Sun incidence angle i ı 0

Slewing time period �tslew s 760

Magnetic moment of earth M A m2 7:96� 1015

Atmospheric density � kg m�3 5:1480� 10�11

Cross-sectional in flight direction A m2 13:85

No. of reaction wheels n � 3

Maximum velocity of a Wheel !max rpm 6;000

Holding power Phold W 20

Inherent degradation of array Id – 0:77

Power efficiency � – 0:22

Lifetime of spacecraft LT Years 15

Degradation in power production capability �deg % per year 0:0375

Length to width ratio of solar array rlw – 3

Number of solar arrays nsa – 3

Average mass density to arrays �sa kg m3 700

Thickness of solar panels t m 0:005

Distance between panels D m 2

Moments of inertia of spacecraft body Ibody kg m2 Ibody;X D 4;700

Ibody;Y D 6;200

Ibody;Z D 4;700

6.2 Numerical Details

Some of the input quantities are chosen to be stochastic while others are chosen
to be deterministic. Table 1 provides the numerical details for the deterministic
quantities and Table 2 provides the numerical details for the stochastic quantities.
All the stochastic quantities are treated to be normally distributed, for the sake of
illustration.

6.3 Uncertainty Propagation Problem

As seen in Fig. 9, this is a three-disciplinary analysis problem, with feedback
coupling between two disciplines “power” and “attitude control.” It is required to
compute the uncertainty in three system output variables—total power Ptot, required
solar array area Asa, and total torque �tot.
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Table 2 List of stochastic quantities

Variable Symbol Unit Mean Standard deviation

Altitude H m 18;000;000 1;000;000

Power other than ACS Pother W 1;000 50

Average solar flux Fs W/m2 1;400 20

Deviation of moment axis � ı 15 1

Moment arm for radiation torque Lsp m 2 0:4

Reflectance factor q – 0:5 1

Residual dipole of spacecraft RD A m2 5 1

Moment arm for aerodynamic torque La m 2 0:4

Drag coefficient Cd – 1 0:3

Prior to the quantification of the outputs, the first step is the calculation of
the probability distribution of the coupling variables. The functional dependency
can be severed in either direction, either from “power” to “attitude control” or
from “attitude control” to “power,” and this choice can be made without loss of
generality. The probability distribution of PACS, i.e. the power of the attitude control
system is chosen for calculation, and then, PACS becomes an independent input to
the “power subsystem”; the functional dependency between “power” to “attitude
control” is retained through the two coupling variables in the opposite direction.
The following subsections present these results; Sect. 6.4 calculates the PDF of the
feedback variable PACS and Sect. 6.5 calculates the PDFs of the system outputs.

6.4 Calculation of PDF of the Coupling Variable

Similar to the mathematical example presented in Sect. 5, this section calculates the
PDF of the coupling variable PACS using sampling with SOMDA and the LAMDA.
These results are compared with the benchmark solution in Fig. 11. In Fig. 11, the
PDF using the LAMDA method uses ten integration points for the evaluation of
Eq. (4).

Similar to the mathematical example in Sect. 5, it is seen from Fig. 11 that the
results from SOMDA and LAMDA compare well with the benchmark solution
(SOFPI). In addition to the PDFs, the CDFs and the tail probabilities are also in
reasonable agreement. The benchmark solution is based on FPI and required about
200;000 evaluations each of the power subsystem and the attitude control subsys-
tem. The SOMDA method required about 20;000 evaluations whereas the LAMDA
method required about 900–1;000 evaluations. It is clear that the LAMDA approach
provides an efficient and accurate alternative to sampling-based approaches.
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6.5 Calculation of PDFs of the System Outputs

Once the probability distribution of the coupling variable PACS is calculated, the
system does not contain any feedback coupling and hence, methods for simple
forward uncertainty propagation can be used to estimate the PDFs of the three
system outputs total power (Ptot), required solar array area (Asa), and total torque
(�tot). MCS is used for uncertainty propagation, and the resulting PDFs are plotted
in Figs. 12, 13, and 14.

As seen from Figs. 12, 13, and 14, the PDFs of the system outputs obtained
using both SOMDA and LAMDA compare very well with the benchmark solution
(SOFPI).
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7 Conclusion

Existing methods for uncertainty propagation in multi-disciplinary system models
are based on (1) MCS around FPI, which is computationally expensive; and/or (2),
approximating the system equations; and/or (3) approximating the probability distri-
butions of the coupling variables and then decoupling the disciplinary analyses. The
fully decoupled approach does not preserve one-to-one correspondence between the
individual disciplinary analyses and is not suitable for further downstream analysis
using the converged MDA output.



114 S. Sankararaman and S. Mahadevan

The perspective of likelihood and the ability to include input uncertainty in
the construction of the likelihood function provided a computationally efficient
methodology for the calculation of the PDFs of the coupling variables. The MDA
was reduced to a simple forward uncertainty propagation problem by replacing the
feedback coupling with one-way coupling, the direction being chosen without loss
of generality.

The LAMDA method has several advantages. (1) It provides a framework
for the exact calculation of distribution of the coupling variables. (2) It retains
the functional dependence between the individual disciplinary analyses, thereby
utilizing the estimated PDFs of the coupling variables for uncertainty propagation,
especially for downstream analyses. (3) It does not require any coupled system
analysis (iterative analyses between the individual disciplines until convergence)
for uncertainty propagation.

The LAMDA methodology has been demonstrated for problems with a small
number of coupling variables. The methodology is straightforward to implement
when there is a vector of coupling variables as explained earlier in Sect. 4.2. (Recall
that the fire satellite example had two coupling variables in one of the directions.)
However, if the coupling variable is a field-type quantity (e.g., pressures and
displacements exchanged in a fluid–structure interaction problem at the interface of
two disciplinary meshes), further research is needed to extend the LAMDA method
for uncertainty propagation in such multi-disciplinary problems.

The likelihood-based approach can be extended to address MDO under uncer-
tainty. Further, this chapter considered only aleatory uncertainty (natural variability)
in the inputs. Future research may include different types of epistemic uncertainty
such as data and model uncertainty in MDA and optimization.
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Abstract This chapter presents a Bayesian methodology for system-level uncer-
tainty quantification and test resource allocation in complex engineering systems.
The various component, subsystem, and system-level models, the corresponding
parameters, and the model errors are connected efficiently using a Bayesian
network. This provides a unified framework for uncertainty analysis where test data
can be integrated along with computational models across the entire hierarchy of
the overall engineering system. The Bayesian network is useful in two ways: (1) in
a forward problem where the various sources of uncertainty are propagated through
multiple levels of modeling to predict the overall uncertainty in the system-level
response; and (2) in an inverse problem where the model parameters of multiple
subsystems are calibrated simultaneously using test data. Test data available at
multiple data are first used to infer model parameters, and then, this information
is propagated through the Bayesian network to compute the overall uncertainty in
the system-level prediction. Then, the Bayesian network is used for test resource
allocation where an optimization-based procedure is used to identify tests that can
effectively reduce the overall uncertainty in the system-level prediction. Finally,
the overall Bayesian methodology for uncertainty quantification and test resource
allocation is illustrated using three different numerical examples. While the first
example is mathematical, the second and third examples deal with practical
applications in the domain of structural mechanics.
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1 Introduction

During the past 20 years, there has been an increasing need and desire to design
and build engineering systems with increasingly complex architectures and new
materials. These systems can be multi-level, multi-scale, and multi-disciplinary in
nature, and may need to be decomposed into simpler components and subsystems to
facilitate efficient model development, analysis, and design. The development and
implementation of computational models is not only sophisticated and expensive,
but also based on physics which is often not well understood. Therefore, when such
models are used to design and analyze complex engineering systems, it is necessary
to ensure their reliability and safety.

In order to facilitate efficient analysis and design, computational models are
developed at the component-level, subsystem-level, and system-level. Each individ-
ual model may correspond to isolated features, or isolated physics, or simplified
geometry of the original system. Typically, along the hierarchy of a multi-level
system, the complexity of the governing physics increases, and hence, the com-
plexity of the model increases, the cost of testing increases, and hence, the
amount of available experimental data decreases. At the system-level, full-scale
testing may not even be possible to predict the system performance under actual
operating conditions. It is essential to quantify the overall uncertainty in the system-
level prediction using the models and data available at all levels. The field of
“quantification of margins and uncertainties” (QMU) has the goal of enabling this
overall capability (Helton and Pilch 2011). This analysis is helpful to estimate the
reliability and adjudge the safety of the overall engineering system.

An important challenge in this regard is to efficiently connect all of the models
and experimental data available across the hierarchy of the entire system. This
is not straightforward because there are several sources of uncertainty—physical
variability, data uncertainty, and model uncertainty—at each level of the overall
system. Further, the issue is complicated by the presence of individual model
inputs, parameters, outputs, and model errors, all of which may be uncertain. It
is important to use a computational approach that can not only facilitate integration
across multiple levels but also provide a fundamental framework for the treatment
of uncertainty.

This can be accomplished through the use of a Bayesian network that serves
as an efficient and powerful tool to integrate multiple levels of models (including
inputs, parameters, outputs, and errors of each and every model), the associated
sources of uncertainty, and the experimental data at all different levels of hierarchy.
The Bayesian network is based on Bayes’ theorem, and can efficiently integrate all
of the aforementioned information using the principles of conditional probability
and total probability. It can be used for uncertainty propagation (forward problem),
where the system-level prediction uncertainty is quantified by propagating all the
sources of uncertainty at lower levels through the Bayesian network. The Bayesian
network is also useful for model parameter calibration (inverse problem), where the
data available at all levels can be simultaneously used to calibrate the underlying
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parameters at different levels of models. Different types of sampling techniques
can be used in conjunction with a Bayesian network; while Monte Carlo-sampling-
based approaches are often used for uncertainty propagation (forward problem),
Markov Chain Monte Carlo-based approaches are often used for model parameter
estimation (inverse problem). Since sampling methods require several hundreds
of thousands of evaluations of the system models that may be complicated to
evaluate, the Bayesian approach can also include cost-efficient surrogate models
like Gaussian process, as demonstrated by Kennedy and O’Hagan (2001). This
chapter explains the fundamentals of Bayesian methodology and illustrates the
use of Bayesian networks for uncertainty quantification in complex multi-level,
multi-physics engineering systems. Methods for uncertainty quantification, model
parameter estimation, and system-level uncertainty quantification are presented in
detail.

Finally, it is also illustrated as to how these capabilities of Bayesian networks can
be exploited to guide test resource allocation in hierarchical systems (Sankararaman
et al. 2013). Test data available at multiple levels of system hierarchy are used
for model parameter calibration, which in turn leads to a reduction of uncertainty
in the model parameters; this reduced uncertainty is represented through the
posterior distributions of the model parameters. When these posterior distributions
are propagated through the Bayesian network, the uncertainty in the system-level
response also decreases. Thus, testing can be used to evolve the system performance
prediction and a common concern is to select that test design which leads to
maximum reduction in the uncertainty (usually expressed through variance) of the
system performance prediction. The tests need to be selected and designed with
adequate precision (measurement error and resolution), and the simulations need
to be developed with adequate resolution (model fidelity) to achieve the project
requirements. This can be performed by embedding the Bayesian network within
an optimization algorithm where the decision variables correspond to the test data.
This formulation is very interesting because, in the past, model parameters have
been calibrated with available test data; the difference now is that it is required to
perform Bayesian calibration and assess the reduction in uncertainty in the system-
level response even before actual testing is performed.

Two types of questions are of interest: (1) what tests to do? and (2) how many
tests to do? Tests at different levels of the system hierarchy have different costs
and variance reduction effects. Hence, the test selection is not trivial and it is
necessary to identify an analytical procedure that helps in the optimum test resource
allocation. However, current practice for this is, at best, based on simplified analysis
and relevant experience, and at worst based on ad hoc rules, any of which may or
may not result in truly conservative estimates of the margin and uncertainty. For
multi-level systems, a rational test selection procedure should also incorporate the
information from component-level and subsystem-level tests towards overall system
level performance prediction. Recently, Sankararaman et al. (2013) developed an
optimization-based methodology to identify the tests that will lead to maximum
reduction in the system-level uncertainty, while simultaneously minimizing the cost
of testing. This methodology is presented in detail, towards the end of this chapter,
and illustrated using numerical examples.



120 S. Sankararaman and S. Mahadevan

2 Fundamentals of Bayesian Methodology

The Bayesian methodology is based on subjective probabilities, which are simply
considered to be degrees of belief and quantify the extent to which the “statement”
is supported by existing knowledge and available evidence. This may be contrasted
with the frequentist approach to probability (classical approach to statistics), accord-
ing to which probabilities can be assigned only in the context random physical
systems and experiments. Uncertainty arising out of the model parameter estimation
procedure is expressed in terms of confidence intervals, and it is not statistically
meaningful to assign probability distributions to estimation parameters, since they
are assumed to be “deterministic but unknown” in the frequentist methodology.
This is a serious limitation, since it is not possible to propagate uncertainty
after parameter estimation, which is often necessary in the case of model-based
quantification of uncertainty in the system-level response. For example, if the
uncertainty in the elastic modulus had been estimated using a simple axial test,
this uncertainty cannot be used for quantifying the response in a plate made of the
same material. Another disadvantage of this approach is that, when a quantity is
not random, but unknown, then the tools of probability cannot be used to represent
this type of uncertainty (epistemic). The subjective interpretation of probability, on
which the Bayesian methodology relies upon, overcomes both of these limitations.

In the Bayesian approach, even deterministic quantities can be represented using
probability distributions which reflect the subjective degree of the analyst’s belief
regarding such quantities. As a result, probability distributions can even be assigned
to parameters that need to be estimated, and therefore, this interpretation facilitates
uncertainty propagation after parameter estimation; this aspect of the Bayesian
methodology is helpful for uncertainty integration across multiple models after
inferring the underlying model parameters.

For example, consider the case where a variable is assumed to be normally
distributed and it is desired to estimate the mean and the standard deviation based on
available point data. If sufficient data were available, then it is possible to uniquely
estimate these distribution parameters. However, in some cases, data may be sparse
and therefore, it may be necessary to quantify the uncertainty in these distribution
parameters. Note that this uncertainty is an example of epistemic uncertainty; the
quantities may be estimated deterministically with enough data. Though these
parameters are actually deterministic, the Bayesian methodology can calculate
probability distributions for the distribution parameters, which can be easily used
in uncertainty propagation. The fundamentals of Bayesian philosophy are well
established in several textbooks (Calvetti and Somersalo 2007; Lee 2004; Leonard
and Hsu 2001; Somersalo and Kaipio 2004), and the Bayesian approach is being
increasingly applied to engineering problems in recent times, especially to solve
statistical inverse problems. This section provides an overview of the fundamentals
of the Bayesian approach, and later sections illustrate the application of Bayesian
methods to uncertainty quantification in complex engineering systems.
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2.1 Bayes Theorem

Though named after the eighteenth century mathematician and theologian Thomas
Bayes (Bayes and Price 1763), it was the French mathematician Pierre-Simon
Laplace who pioneered and popularized what is now called Bayesian probabil-
ity (Stigler 1986, 2002). For a brief history of Bayesian methods, refer to Fienberg
(2006). The law of conditional probability is fundamental to the development of
Bayesian philosophy:

P.AB/ D P.AjB/P.B/ D P.BjA/P.A/ (1)

Consider a list of mutually exclusive and exhaustive events Ai (i D 1 to n) that
together form the sample space. LetB denote any other event from the sample space
such that P.B/ > 0. Based on Eq. (1), it follows that:

P.Ai jB/ D P.BjAi/P.Ai /P

j

P.BjAj /P.Aj / (2)

What does Eq. (2) mean? Suppose that the probabilities of events Ai (i D 1

to n) are known to be equal to P.Ai / (i D 1 to n) before conducting any random
experiments. These probabilities are referred to as prior probabilities in the Bayesian
context. Suppose that a random experiment has been conducted and event B has
been observed. In the light of this data, the so-called posterior probabilitiesP.Ai jB/
(i D 1 to n) can be calculated using Eq. (2).

The quantity P.BjAi/ is the probability of observing the data conditioned on
Ai . It can be argued that event B has “actually been observed,” and there is
no uncertainty regarding its occurrence, which renders the probability P.BjAi/
meaningless. Hence, researchers “invented” new terminology in order to denote this
quantity. In earlier days, this quantity was referred to as “inverse probability,” and
since the advent of Fisher (Aldrich 2008; Jeffreys 1998) and Edwards (1984), this
terminology has become obsolete, and has been replaced by the term “likelihood.”
In fact, it is also common to write P.BjAi/ as L.Ai/.

2.2 Bayesian Inference

The concept of Bayes theorem can be extended from the discrete case to the contin-
uous case. Consider the context of statistical inference where a set of parameters
� needs to be inferred. All the current knowledge regarding this parameter is
represented in the form of a prior distribution denoted by f 0.�/. The choice of
the prior distribution reflects the subjective knowledge of uncertainty regarding the
variable before any observation. It is assumed that the prior distribution is able to
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explain the data with some degree of uncertainty; in other words, there exists a
nonempty set E such that 8 � 2 E, the prior probability density function (PDF)
and likelihood values evaluated 8 � 2 E are both nonzero.

Measurement data (D) is collected on a quantity which depends on the parameter
(�). This information is then used to update the distribution of � to arrive at the
posterior distribution (f 00.�/), as:

f 00.�/ D L.�/f 0.�/
R
L.�/f 0.�/d�

(3)

In Eq. (3), L.�/ is the likelihood function of � and is proportional to P.Dj�/, i.e.
probability of observing the data D conditioned on the parameter � . Typically, data
D is available in the form of independent, paired input–output combinations (xi
versus xi , where i varies from 1 to n), where the input X and output Y are related
to one another as:

y D G.x;�/ (4)

Considering an observation error � that is assumed to follow a Gaussian distribution
with zero mean and standard deviation � , the likelihood can be written as:

L.�/ D
nY

iD1

1

�
p
.2�/

exp �
�
.yi �G.xi ;�//

2

2�2

�
(5)

Note that the above equation assumes that the numerical value of � is known. If
this quantity is unknown, � may be considered to be an argument to the likelihood
function and updated along with � . Equation (5) is substituted in Eq. (3), and the
posterior distribution (f 00.�/) can be computed.

Note that the denominator on the RHS of Eq. (3) is simply a normalizing constant,
which ensures that f 00.�/ is a valid PDF, i.e., the integral of the PDF is equal to
unity. So, Eq. (3) is sometimes written as:

f 00.�/ / L.�/f 0.�/ (6)

The posterior in Bayesian inference is always known only up to a proportionality
constant and it is necessary generate samples from this posterior for uncertainty
analysis. When there is only one parameter, the proportionality constant can be
calculated through one-dimensional integration. Often, multiple parameters may be
present, and hence, multi-dimensional integration may not be affordable to calculate
the proportionality constant. Therefore, a class of methods popularly referred to as
Markov Chain Monte Carlo (MCMC) sampling is used to generate samples from
the Bayesian posterior. In general, these methods can be used when it is desired to
generate samples from a PDF which is known only up to a proportionality constant.
The topic of MCMC will be discussed in detail later in this chapter, in Sect. 3.
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2.3 Notes on the Likelihood Function

The likelihood function is defined as the probability of observing data conditioned
on the parameters, i.e. L.�/ D P.Dj�/; note that, since the data (D) has actually
been observed, the terminology “probability of observing the data” is physically
meaningless. Therefore, as explained earlier in Sect. 2.1, this quantity was renamed
as “the likelihood.” The likelihood function does not follow the laws of probability,
and must not be confounded with probability distributions or distribution functions.
In fact, Edwards (1984) explains that the likelihood function is meaningful only up
to a proportionality constant; the relative values of the likelihood function are alone
significant and the absolute values are not of interest.

The concept of likelihood is used in the context of both physical probabilities
(frequentist) and subjective probabilities, especially in the context of parameter
estimation. In fact, Edwards (1984) refers to the likelihood method as the third or
middle way.

From a frequentist point of view (the underlying parameters are deterministic),
the likelihood function can be maximized in order to obtain the maximum likelihood
estimate of the parameters. According to Fisher (1912), the popular least-squares-
based optimization methodology is an indirect approach to parameter estimation
and one can “solve the real problem directly” by maximizing the “probability of
observing the given data” conditioned on the parameter � (Aldrich 1997; Fisher
1912). Further, it is also possible to construct likelihood-based confidence intervals
for the inferred parameters (Pawitan 2001).

On the other hand, the likelihood function can also be interpreted using subjective
probabilities. Singpurwalla (2006, 2007) explains that the likelihood function can be
viewed as a collection of “weights” or “masses” and therefore is meaningful only up
to a proportionality constant (Edwards 1984). In other words, if L.�.1// D 10, and
L.�.2// D 100, then it is 10 ten times more likely for �.2/ than �.1/ to correspond to
the observed data. The entire likelihood function can be used in Bayesian inference,
as in Eq. (3), in order to obtain the entire PDF of the parameters.

3 MCMC Sampling

The class of MCMC methods can be used to generate samples from an arbitrary
probability distribution, especially when the CDF is not invertible or when the PDF
is known only up to a proportionality constant. In Sect. 2.2, it was explained that
the latter is the case in Bayesian inference, where the objective is to compute the
posterior distribution. Therefore, MCMC sampling can be used to draw samples
from the posterior distribution, and these samples can be used in conjunction with
kernel density estimation (Rosenblatt 1956) procedure to construct the posterior
distribution.
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There are several algorithms which belong to the class of MCMC sampling
methods. Two such algorithms, the Metropolis algorithm (Metropolis et al. 1953)
and the slice sampling (Neal 2003) algorithm are discussed below.

3.1 The Metropolis Algorithm

Assume that a function that is proportional to the PDF is readily available, as f .x/;
this means that f .x/ is not a valid PDF because

R
f .x/dx ¤ 1. For the purpose of

illustration, consider the one-dimensional case, i.e. x 2 R. The following steps
constitute the algorithm in order to generate samples from the underling PDF.
Note that the function f .x/ is always evaluated at two points and the ratio is
only considered; the effect of the unknown proportionality constant is therefore
nullified.

1. Set i D 0 and select a starting value x0 such that f .x0/ ¤ 0.
2. Initialize the list of samples X D fx0g.
3. Repeat the following steps; each repetition yields a sample from the underlying

PDF.

(a) Select a prospective candidate from the proposal density q.x�jxi /. The
probability of accepting this sample is equal to f .x�/

f .xi /
.

(b) Calculate acceptance ratio ˛ D min
�
1;

f .x�/

f .xi /

�
.

(c) Select a random number u, uniformly distributed on [0, 1].
(d) If u < ˛, then set xiC1 D x�, otherwise set xiC1 D xi .
(e) Augment the list of samples in X by xiC1.
(f) Increment i , i.e. i D i C 1.

4. After the Markov chain converges, the samples in X can be used to construct the
PDF of X using kernel density estimation.

The common practice is to generate a few hundreds of thousands of samples and
discard the first few thousand samples to ensure the convergence of the Markov
Chain.

The Metropolis algorithm (Metropolis et al. 1953) assumes that the proposal
density is symmetric, i.e. q.x�jxi / D q.xi jx�/. A generalization of this algorithm
assumes asymmetric proposal density functions q1.x�jxi / and q2.xi jx�/; this
algorithm is referred to as Metropolis–Hastings algorithm (Hastings 1970). The only
difference is that the probability of accepting the prospective candidate is calculated
as f .x�/q2.xi jx�/

f .xi /q1.x�jxi / .
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3.2 Slice Sampling

Consider the same function f .x/, i.e. the PDF of X , known up to a proportionality
constant. The steps of the slice sampling algorithm are as follows:

1. Set i D 0 and select a starting value x0 such that f .x0/ ¤ 0.
2. Draw a random number y from the uniform distribution [0, f .x/].
3. Consider the set f �1Œy;1/; note that this set may not be convex, especially

when the target distribution is multi-modal. Select a sample which is uniformly
distributed on this set. Assign i D i C 1, and call this sample xi .

4. Repeat Steps 1–3 to generate multiple samples of X and construct the PDF of X
using kernel density estimation.

In contrast with the previously discussed Metropolis algorithm, the slice sampling
algorithm is not a acceptance–rejection algorithm.

3.3 MCMC Sampling: Summary

In addition to the above algorithms, other MCMC sampling algorithms such as
Gibbs sampling (Geman and Geman 1984), multiple-try Metropolis (Liu et al.
2000), and Metropolis-within-Gibbs (Roberts and Rosenthal 2006) are also dis-
cussed in the literature. One critical disadvantage of MCMC sampling approaches is
that they may require several hundreds of thousands of samples, and in turn, several
hundreds of thousands of evaluations ofG in Eq. (4), which may be computationally
prohibitive. Therefore, it is common in engineering to replace G (which may be
a complicated physics-based model) with an inexpensive surrogate, such as the
Gaussian process surrogate model.

4 Gaussian Process Surrogate Modeling

The use of sampling techniques involves repeated evaluations of mathematical
models, which may be computationally intensive. One approach to overcome this
computational difficulty is to make use of surrogate models to replace the original
physics-based model. A few evaluations of the original model are used to train
this inexpensive, efficient surrogate model. Different types of surrogate modeling
techniques such as polynomial response surface (Rajashekhar and Ellingwood
1993), polynomial chaos expansion (Ghanem and Spanos 1990), support vector
regression (Boser et al. 1992), relevance vector regression (Tipping 2001), and
Gaussian process interpolation (Bichon et al. 2008; Rasmussen 2004; Santner et al.
2003) have been investigated in the literature.
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The Gaussian process interpolation is a powerful technique based on spatial
statistics and is increasingly being used to build surrogates to expensive computer
simulations for the purposes of optimization and uncertainty quantification (Bichon
et al. 2008; Rasmussen 2004; Santner et al. 2003). The GP model is preferred in
this research because (1) it is not constrained by functional forms; (2) it is capable
of representing highly nonlinear relationships in multiple dimensions; and (3) can
estimate the prediction uncertainty which depends on the number and location of
training data points.

The basic idea of the GP model is that the response values Y evaluated at different
values of the input variables X are modeled as a Gaussian random field, with a mean
and covariance function. Suppose that there arem training points, x1, x2, x3 : : : xm
of a d -dimensional input variable vector, yielding the output values y.x1/, y.x2/,
y.x3/ : : : y.xm/. The training points can be compactly written as xT vs. yT where
the former is a m � d matrix and the latter is a m � 1 vector. Suppose that it is
desired to predict the response (output values yP ) corresponding to the input xP ,
where xP is p � d matrix; in other words, it is desired to predict the output at n
input combinations simultaneously. Then, the joint density of the output values yP
can be calculated as:

p.yP jxP ; xT ; yT I‚/ 
 N.m; S/ (7)

where ‚ refers to the hyperparameters of the Gaussian process, which need to be
estimated based on the training data. The prediction mean and covariance matrix (m
and S , respectively) can be calculated as:

m D KPT .KT T C �2nI /
�1yT

S D KPP �KPT .KT T C �2nI /
�1KTP (8)

In Eq. (8), KT T is the covariance function matrix (size m � m) amongst the input
training points (xT ), andKPT is the covariance function matrix (size p�m) between
the input prediction point (xP ) and the input training points (xT ). These covariance
matrices are composed of squared exponential terms, where each element of the
matrix is computed as:

Kij D K.xi ; xj I‚/ D ��
2

2

4
dX

qD1

.xi;q � xj;q/2
lq

3

5 (9)

Note that all of the above computations require the estimate of the hyperparameters
‚; the multiplicative term (� ), the length scale in all dimensions (lq , q D 1 to
d ), and the noise standard deviation (�n) constitute these hyperparameters (‚ D
f�; l1; l2 : : : ld ; �ng). As stated earlier, these hyperparameters are estimated based
on the training data by maximizing the following log-likelihood function:
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logp
�
yT jxT I‚� D �y

T
T

2

�
KT T C �2nI

��1
yT � 1

2
log j�KT T C �2nI

�j C d

2
log.2�/

(10)

Once the hyperparameters are estimated, then the Gaussian process model can be
used for predictions using Eq. (8). Note that the “hyperparameters” of the Gaussian
process are different from the “parameters” of a generic parametric model (e.g.,
linear regression model). This is because, in a generic parametric model, it is
possible to make predictions using only the parameters. On the contrary, in the
case of the Gaussian process model, all the training points and the hyperparameters
are both necessary to make predictions, even though the hyperparameters may have
estimated previously. For details of this method, refer to Bichon et al. (2008); Chiles
and Delfiner (1999); Cressie (1991); McFarland (2008); Rasmussen (1996, 2004);
Santner et al. (2003), and Wackernagel (2003).

An important issue in the construction of the Gaussian process model is the
selection of training points. In general, the training points may arise out of
field experiments or may be generated using a computer code. Model parameter
estimation considers the latter case and hence, there is no noise in the data, thereby
eliminating �n from the above equations. Adaptive techniques can be used to select
training points for the GP model, in order to construct the response surface to a
desired level of accuracy or precision. Since the GP model is capable of estimating
the variance in model output, a variance minimization algorithm proposed by
McFarland (2008) identifies the next training point at the input variable value
which corresponds to the largest variance. This selection algorithm is repeated
and training points are adaptively identified until the estimated variance is below
a desired threshold. Alternatively, another training point selection algorithm has
been developed by Hombal and Mahadevan (2011), where the focus is to select
successive training points so that the bias error in the surrogate model is minimized.

Once the training points are selected and the surrogate model is constructed,
it can be used for several uncertainty quantification activities such as uncer-
tainty propagation [through Monte Carlo simulation (MCS)], inverse analysis
and parameter estimation (through MCMC simulation), and sensitivity analysis.
It must be noted that the replacement of a complex computer simulation with
an inexpensive surrogate leads to approximations; therefore, it is important to
include the effect of this approximation in the procedure for overall uncertainty
quantification (Sankararaman 2012).

5 Bayesian Networks

The previous sections of this chapter discussed certain fundamental concepts of
the Bayesian methodology, in general. The Bayesian inference approach for model
parameter estimation was presented, and the use of MCMC sampling and the
importance of using Gaussian process surrogate models were explained. Most of
this discussion dealt with single-level models that may represent a component
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X1 Θ1 X2 Θ2

Y1 Y2

Z

DY2
DY1

Fig. 1 Bayesian network
illustration

or a subsystem. Since complex engineering systems consist of many components
and subsystems, it is important to integrate information across all components
and subsystems, in order to compute the overall uncertainty in the system-level
prediction. This goal can be accomplished through the use of a Bayesian network.

A Bayesian network (Heckerman 2008; Jensen 1996) is an acyclic, graphical
representation of conditional probability relationships between uncertain quantities.
Each uncertain quantity is represented as a node and successive links are connected
to each other using unidirectional arrows that express dependence in terms of
conditional probabilities. Disconnected nodes imply independence between the
corresponding random variables. Figure 1 shows a conceptual Bayesian network
that aids in uncertainty quantification across multiple levels of models and observed
data. Circles correspond to uncertain variables and squares represent observed data.
A solid line arrow represents a conditional probability link, and a dashed line arrow
represents the link of a variable to its observed data if available.

In Fig. 1, a system level output Z is a function of two subsystem level quantities
Y1 and Y2; in turn, Y1 is a function of subsystem-level inputX1 and model parameter
‚1, and similarly, Y2 is a function of subsystem-level inputX2 and model parameter
‚2. For example, in a beam deflection study, the applied force is an input, the elastic
modulus is a model parameter, while the deflection is measured and a model is built
to predict the same. Experimental data DY1 and DY2 are available for comparison
with the respective model predictions Y1 and Y2.

5.1 Uncertainty Propagation: Forward Problem

In the forward problem, the probability distributions of the inputs (X1 and X2) and
model parameters (‚1 and ‚2) are known or assumed, and these distributions are
used to calculate the PDF of Y1 and Y2, which in turn are used to calculate the PDF
of the system-level output Z, as:
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fZ.z/ D
Z
fZ.zjy1; y2/fY1.y1/fY2.y2/fY1.y1/fY2.y2/dy1dy2

fY1.y1/ D
Z
fY1.y1jx1; �1/fX1.x1/f‚1.�1/dx1d�1

fY2.y2/ D
Z
fY2.y2jx2; �2/fX2.x2/f‚2.�2/dx2d�2 (11)

Note that uppercase letters are used to denote random variables and the correspond-
ing lowercase letters are used to denote realizations of those random variables.
Equation (11) can be solved using methods of uncertainty propagation such as
MCS, first-order reliability method (FORM), and second-order reliability method
(SORM) (Haldar and Mahadevan 2000).

5.2 Inference: Inverse Problem

In the inverse problem, the probability densities of the model parameters (‚1 and
‚2 in Fig. 1) can be updated based on the observed data (DY1 andDY2) using Bayes’
theorem as:

f‚1;‚2.�1; �2jDY1;DY2/ D CL.�1; �2/f‚1.�1/f‚2.�2/ (12)

In Eq. (12), the prior distributions of the model parameters ‚1 and ‚2 are given by
f‚1.�1/ and f‚2.�2/, respectively. The choice of the prior distribution reflects the
subjective knowledge of uncertainty regarding the variable before any testing. It is
assumed that the prior distribution is able to explain the data with some degree of
uncertainty; in other words, there exists a nonempty set E such that 8 f‚1;‚2g 2
E, the prior PDF (f‚1.�1/f‚2.�2/) and likelihood (L.�1; �2/) values evaluated at
f‚1;‚2g are both non-zero.

The joint posterior density of the parameters is given by f‚1;‚2.�1; �2jDY1;DY2/.
The likelihood function L.�1; �2/ is calculated as the probability of observing the
given data (DY1;DY2), conditioned on the parameters being updated, i.e. ‚1 and
‚2. The likelihood function accounts for the uncertainty in the inputs X1 and X2.
For details of the likelihood function, refer to Edwards (1984), Pawitan (2001), and
Sankararaman (2012). As explained earlier in Sect. 3, Eq. (12) can be evaluated by
generating samples of model parameters (‚1 and ‚2) through MCMC sampling.

6 Test Resource Allocation

Typically, a multi-level, multi-physics system has several parameters that influence
the overall system-level output, and the uncertainty in these parameters can be
updated by tests at multiple levels of the system and multiple types of physics
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coupling. When the posterior distributions of the parameters are propagated through
the system model to calculate the overall system-level output, the posterior variance
of the overall system-level prediction can be computed. With more acquisition of
data, a decreasing trend can be observed in the variance of the system-level output.

Two types of questions need to be answered: (1) What type of tests to do (which
component, isolated physics, etc.)? and (2) How many repetitions of each type?
Each type of test has a different testing cost and an associated reduction in the
variance of system-level prediction. Further, the same type of test may need to be
repeated on nominally identical specimens of the same component or subsystem.
Such repetition is performed in order to account for the effect of natural variability
across nominally identical specimens; while each repetition may have the same
monetary cost, the associated reduction in the variance of system-level prediction
may be different.

The test conducted on one subsystem is assumed to be statistically independent
of another test on another subsystem; in other words, one type of test is independent
of any other type. Further, for a given type of test, the repetitions across multiple
replicas are also considered to be independent. It is assumed that a model is available
to predict the quantity being measured in each type of test; the model may have
several outputs but only that output which is measured is of concern. The overall
objective is to identify how many tests of each type must be performed so as to
achieve the required reduction in the variance of the system-level output. If there
are several system-level outputs, either an aggregate measure or the most critical
output can be considered. However, multi-objective optimization formulations to
simultaneously reduce the variance of more than one system-level output have not
yet been addressed in the literature.

6.1 Sensitivity Analysis

The method of sensitivity analysis has been used to quantify the sensitivity of model
output to parameters. While derivative-based methods only compute local sensitiv-
ities, the method of global sensitivity analysis (Saltelli et al. 2008) to apportion the
variance in the system-level output to the various sources of uncertainty, and thereby
guide in the reduction of system-level prediction uncertainty.

The first step of the resource allocation methodology is to use sensitivity analysis
and identify those parameters that have a significant influence on the variance of
the overall system-level prediction. Once the “important” parameters are identified,
only those tests that aid in reducing the uncertainty in these important parameters
can be performed. For example, consider a system-level output that is very sensitive
to the uncertainty in the parameters of sub-system-I but not sensitive to the
parameters of sub-system-II, then it is logical to perform more sub-system-I tests
than sub-system-II tests. Note that this procedure for test identification is only a
preliminary approach. This approach can answer the question—“which tests to do?”
In order to answer the question, “how many tests to do?”, it is necessary to quantify
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the decrease in variance that may be caused due to a particular test. The effect of a
particular test on variance reduction can be quantified by using Bayesian updating.
Therefore, the resource allocation methodology first uses sensitivity analysis for
selection of calibration parameters and then uses Bayesian updating to quantify the
effect of a test on the variance of system-level prediction.

6.2 Optimization Formulation

In order to solve the resource allocation problem and identify the number of tests
to be performed for each type, the optimization problem can be formulated in two
ways, as explained below.

In the first formulation shown in Eq. (13), the goal is to minimize the variance of
the system-level output subject to satisfying a budget constraint.

Minimize
Ntest

E.Var.R//

s:t:
qX

iD1
.CiNi / � Total Budget

Ntest D ŒN1;N2: : :Nq�

(13)

In Eq. (13), q refers to the number of different types of possible tests. The cost of
the i th (i D 1toq) type of test is equal to Ci , and Ni (decision variable) denotes
the number of repetitions of the i th type of test. Let Di denote all the data collected
through the i th type of test. Let Ntest denote the vector of all Ni ’s and let D denote
the entire set of data collected from all q types of tests.

Alternatively, the resource allocation problem can be formulated by minimizing
the cost required to decrease the variance of the system-level output below a
threshold level, as:

Minimize
Ntest

qX

iD1
.CiNi /

s:t: E.Var.R// � Threshold Variance

Ntest D ŒN1;N2: : :Nq�

(14)

Sankararaman et al. (2013) pursued the first formulation (Eq. (13)) because the
threshold level for the variance is assumed to be unknown. Using D, the model
parameters are calibrated and the system-level response (R.D/) is computed. The
optimization in Eq. (13) calculates the optimal values ofNi , given the cost valuesCi ,
such that the expected value of variance of the system-level prediction (E.Var.R//)
is minimized, while the budget constraint is satisfied.
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This optimization formulation uses E.Var.R// as the objective function because
R is a function of D, which is not available before testing. Hence, random
realizations of the test data set (D) are generated; each random realization is used to
compute Var.RjD/, and the expectation over such random realizations is calculated
to be the objective function, as:

E.Var.R// D
Z

Var.RjD/f .D/dD (15)

where f .D/ is the density considered for the test data. Assuming that one type
of test is performed independent of the another (i.e., a subsystem-level test is
independent of a material-level test), Eq. (15) can be written as:

E.Var.R// D
Z

Var.RjD1;D2: : :Dq/f .D1/f .D2/: : :f .Dq/dD1dD2: : :dDq

(16)

where f .Di/ is the density considered for the data obtained through the i th test.
Before any testing is done, all prior knowledge regarding the model parameters
and the mathematical models constitute the only information available for the
calculation of f .Di/. Therefore, f .Di/ is calculated as:

f .Di/ D
Z
f .yi j� i /f 0.� i /d� i (17)

where yi represents the output of the mathematical model corresponding to the
i th type of test, � i represents the underlying parameters, and f 0.� i / represents
the prior knowledge regarding those parameters. Note that Eq. (17) is simply an
uncertainty propagation problem, where the other sources of uncertainty (such as
physical variability in inputs, solution approximation errors, data uncertainty) can
also be included in the computation of f .yi j� i /.

Equations (15)–(17) are implemented using a numerical algorithm, where a finite
number of realizations of D are generated and E.Var.R// is computed over these
realizations. Then, E.Var.R// can be minimized using the optimization in Eq. (13),
and the ideal combination of tests can be identified.

Note that an inequality constraint (for the budget), and not an equality constraint,
is considered in Eq. (13). This means that the optimal solution which minimizes
E.Var.R// need not necessarily exhaust the budget. Consider the simple case where
there are two possible test types (C1 D 2 and C2 D 3), and the budget is equal to six
cost units. There are two test combinations which exhaust the budget: (1) [N1 D 3,
N2 D 0], and (2) [N1 D 0, N2 D 2]. Suppose that these two combinations lead to a
value ofE.Var.R//which is greater than that achieved through the test combination
[N1 D 1, N2 D 1]. Then, obviously the combination [N1 D 1, N2 D 1] must be
selected because it achieves the goal of reducing E.Var.R// even though it may not
exhaust the budget.
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6.3 Solution of the Optimization Problem

Equation (13) is a complicated integer optimization problem, where Bayesian
updating and forward propagation need to be repeated for each random realization
of the test data in order to evaluate the objective function, thus increasing the
computational cost several fold. In spite of the use of Gaussian process surrogate
models to replace the expensive system model, high computing power is still needed
to solve the optimization problem.

Integer optimization is sometimes solved using an approximation method, where
the integer constraint is first relaxed, and the integers nearest to the resulting
optimal solution are used in further solution of the original (un-relaxed) problem.
Unfortunately, this approach is not applicable to the solution of Eq. (13), since the
objective function (system-level prediction variance) is defined and computed only
for integer-valued decision variables (number of tests). It is meaningless to have a
non-integer number of tests.

A multi-step procedure for solving the optimization problem was proposed
by Sankararaman et al. (2013). Within each step, the global optimal solution
is computed using an exhaustive search process, whereas across steps, a greedy
algorithm is pursued. The step size is chosen in cost units, and additional steps are
added until the budget constraint is satisfied.

Let the size of the first step be equal to �1 cost units; the globally optimal
testing combination for this cost (D �1) is denoted by N1

test, and is calculated using
exhaustive search, as:

Minimize
N1

test

E.Var.R//

s:t:
Pq

iD1.CiN 1
i / � �1

N 1
test D ŒN 1

1 ; N
1
2 : : :N

1
q �

(18)

The optimization procedure in the second stage is dependent on the optimal
solution from the first stage, i.e. N1

test. In general, the optimization for the j th stage,
given the solution in the previous stage (i.e., Nj�1

test ), is performed for cost = �j .
Note that

P

j

�j D Total budget. The j th optimization is formulated as:

Minimize
N
j;new
test

E.Var.R//

s:t:
P
.CiN

j;new
i / � �j .i D 1toq/

N
j
test D N

j�1
test CN

j;new
test

N
j;new
test D ŒN

j;new
1 ; N

j;new
2 : : :N

j;new
q �

(19)

As seen in Eq. (19), the decision variables for the j th stage are Nj;new
test , i.e. those

tests which need to be performed in the j th stage; therefore the total number of
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tests is equal to the sum of Nj;new
test and Nj�1

test , i.e. the optimal number of tests in
the previous stage. The same procedure is repeated until no additional test can be
performed with the budget constraint satisfied.

The selection of step size for a given budget is an important issue. The true global
optimal solution can be calculated by considering one step whose size is equal to the
entire budget. However, due to the large number of possible testing combinations,
this approach may be computationally infeasible. In a practical problem, several
steps are considered, and the step sizes must be chosen judiciously based on (1)
the costs of each type of test; (2) time required for each Bayesian update; (3)
number of random realizations of data needed to compute E.Var.R//; and (4) the
test combinations that are suitable for the chosen step size; a very small step size
may not even include an expensive type of test.

6.4 Summary of the Optimization Methodology

The various steps of the optimization-based methodology for test resource allocation
are summarized below:

1. Construction of the Bayesian network: The first step is to identify the various
component-level, subsystem-level, and system-level models. Each model has an
output quantity and correspondingly, a test can be performed to measure this
quantity. All the models are connected through the Bayesian network, and the
data available across the nodes is also indicated. The model errors, if available,
can also be included in the Bayesian network. Though solution approximation
errors can be calculated prior to testing and included in the Bayes network, model
form error cannot be calculated before testing. It must be noted that the Bayesian
network, due to its acyclic nature, cannot account for feedback coupling between
models. When the system-level response is a coupled physics-based solution, the
overall coupled solution is directly included in the Bayesian network instead of
considering the individual physics separately.

2. Sensitivity analysis: The next step is to perform global sensitivity analysis
and identify the “important” parameters that significantly contribute to the
uncertainty in the system-level response. Then, those tests which can aid in
the reduction of uncertainty in these “important” parameters are selected for
consideration in the optimization for test resource allocation.

3. Bayesian updating: The next step is to perform Bayesian updating and calibrate
parameters for a particular realization of measurement data. Then, this needs
to be repeated by generating multiple realizations of measurement data in
order to compute the expected value of variance, as in Eq. (15). Due to the
required computational expense, the original physics models can be replaced
with Gaussian process surrogates. Though this does not lead to analytical
calculation of the posterior, it increases the computational efficiency several fold.
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4. Resource allocation optimization: The final step is to perform the resource
allocation optimization using the multi-step procedure developed in Sects. 6.2
and 6.3. It may be useful to verify that the resultant solution is actually optimal
by computing E.Var.R// for few other Ntest values.

The rest of this chapter illustrates the optimization-based test resource allocation
methodology using three different numerical examples. While Sect. 7 deals with a
simple mathematical example, Sects. 8 and 9 consider multi-physics and multi-level
engineering systems, respectively.

7 Illustration Using Mathematical Example

This subsection presents a simple illustrative example to illustrate the optimization-
based methodology for test resource allocation. In order to focus on this objective,
simple mathematical relationships are chosen (even the system-level response has
no coupling), and measurement errors are assumed to be negligible. Other features
such as coupled system response, measurements errors, and solution approximation
errors (while replacing the underlying physics-based model with a Gaussian process
approximation) are considered later in Sects. 9 and 8.

The Bayesian network for this problem is exactly the same as that in Fig. 1. There
are four independent quantities and three dependent quantities; the numerical details
of this problem are specified in Table 1. The notation N.
; �/ is used to represent
a normally distributed quantity with mean 
 and standard deviation � . Two types
of tests (on two different lower levels) can be done and this information is used to
update the uncertainty in the system-level response based on the tests.

Probability distributions are assumed to be available for the inputs X1 and X2; if
this information was not available, and only sparse and/or interval data was available
for the inputs, then the likelihood-based method developed in Sankararaman and
Mahadevan (2011) can be used to construct a probability distributions for them.

Table 1 Numerical details

Quantity Type Description

X1 (input) Independent N(100,5)
‚1 (parameter) Independent N(50, 10)
X2 (input) Independent N(10,1)
‚2 (parameter) Independent N(15, 4)
Y1 Dependent Model : y1 D x1 C x2
Y2 Dependent Model : y2 D x3 C x4
Z System-level response Model : z D y1 � y2

Quantity to measure Cost No. of tests

Y1 10 N1
Y2 5 N2
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Table 2 Resource
allocation: results

Cumulative cost N1 N2 E.Var.z//

$10 1 0 62.0
0 2 127.0

$20 2 0 53.0
1 2 46.6

$30 2 2 37.6
1 4 46.1

$40 3 2 34.0
2 4 37.6

$50 4 2 32.5
3 4 33.8
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Fig. 2 Variance vs. cost

The variance of the system-level response quantity Z before conducting any test
(i.e., by propagating the above distributions of X1, X2, ‚1, and ‚2 through the
models) is 142 units. The objective is calculate the number of tests on Y1 and Y2
(N1 and N2), that will lead to a minimum variance in Z, subject to a total budget of
$50 cost units. Since there are only two parameters, global sensitivity analysis is not
necessary, and hence, both ‚1 and ‚2 are chosen for calibration. The optimization-
based methodology discussed in Sect. 6 is used for this purpose; five different stages
are considered and the available budget in each stage is considered to be $10. The
results of test prioritization are given in Table 2 (the optimal value in each stage is
indicated in bold) and Fig. 2.

At the end of the optimization procedure, the optimal combination is found
to be four tests on Y1 and 2 tests on Y2. Further, this solution was verified by
considering all other combinations (exhaustive search) ofN1 andN2 and computing
the corresponding E.Var.R//; for this illustrative example, this verification is
numerically affordable. However, for practical examples, a few random values of
Ntest D ŒN1;N2� (if not all) can be considered and it can be verified if the estimated
solution is really optimal.
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8 Numerical Example: Multi-Physics System

8.1 Description of the Problem

This coupled-physics thermal vibration example illustrates a laboratory experiment
which can be used to study and simulate the behavior in solar arrays of telescopes
and spacecraft booms (Thornton 1996). In this experiment, a thin walled circular
tube is rigidly attached at its top and supports a concentrated mass at its bottom.
The tube and the mass are initially at rest and a constant heat flux is applied on
one side along the length of the tube. The application of the heat flux causes an
increase in the temperature on the incident surface while the unheated side remains
at the initial temperature. The temperature gradient causes the beam to bend away
from the lamp, due to the thermal moment. The displacement of the beam, in turn,
changes the distribution of temperature along the length of the beam, leading to a
change in the temperature gradient and the thermal moment, which in turn affects
the flexural behavior. Thus the combination of heat transfer and flexural mechanics
leads to oscillations of the beam. The setup of this experiment is shown in Fig. 3.

The temperature at the tip mass (Tm) is given by the following differential
equation:

@Tm

@t
C Tm

�
D T �

�

�
1 � v.x; t/

ˇ�

�
(20)

In Eq. (20), v.x; t/ represents the displacement of the beam as a function of length
and time. Thornton (1996) explains how to calculate the parameters T �, � , ˇ� as a
function of the incident solar flux (S ).
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The displacement v.x; t/ can be related to the displacement of the tip mass
V.t/ as:

v.x; t/ D
 
3x2

2l2
� x3

2l3

!

V.t/ (21)

The tip mass displacement V.t/, in turn, depends on the forcing function as follows:

RV C 2�!0 PV C
 

!20 C 6g

5l

!

V D F.t/

m
(22)

In Eq. (5), � is the damping ratio, and !0 is the angular frequency. The forcing func-
tion F.t/ depends on the thermal moment which in turn depends on the temperature,
thereby casing coupling between the thermal equation and the structural equation.
These relations are shown in the following equations:

F.t/ D � 3

l3

Z l

0

Z x

0

M.u; t /dudx (23)

M.x; t/ D
Z
E˛Tm.x; t/cos.ˆ/ydA (24)

In Eq. (24), E is the elastic modulus, ˛ is the coefficient of thermal expansion, ˆ
is the angle of incident flux on the cross section, y is the distance from the center
of the cross section and the integral is over the area of the cross section A. Refer
Thornton (1996) for a detailed description of this problem.

The overall objective of test resource allocation is to minimize the variance of the
system-level output (R), which is defined to be the ratio of displacement amplitudes
at two different time instants for the coupled system when the incident solar flux
(S ) is 2,000 W/m2. If R < 1, the system is stable with oscillations diminishing as a
function of time. If R > 1, the system is unstable, commonly referred to as flutter,
an undesirable scenario. While a Gaussian process model is constructed to calculate
the multi-physics response R, individual physics predictions are performed using
the above described physics-based models.

There are several parameters (both thermal and structural) in the above equations
that can be calibrated using test data. The method of sensitivity analysis is used
to identify five parameters, which significantly contribute to the uncertainty in the
system-level prediction. The prior means are based on Thornton (1996), and the
assumed coefficients of variation (CoV) are tabulated in Table 3; note that the radius
being a geometric property has a lower CoV. The calibrated parameters are then used
to quantify the uncertainty in R.

The calibration parameters need to be estimated during test data; four different
types of tests are considered, as shown in Table 4. The total budget available for
testing is assumed to be $2,000. It is assumed that the entire multi-disciplinary
system cannot be tested.
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Table 3 Calibration
quantities: thermal vibration
problem

Symbol Quantity Property Prior CoV

E Elastic modulus Structural 0.1
c Independent Thermal 0.1
� Independent Structural 0.1
r Independent Geometric 0.03
e Dependent Thermal 0.1

Table 4 Types of tests: thermal vibration problem

Test type Physics Calibrate Input–Output Cost No. of tests

Material-level Thermal c Heat-Temperature rise $100 Nm1
Material-level Structural � Amplitude decay $100 Nm2
Subsystem-level Thermal c, e, r Heat-Temperature rise $500 NT
Subsystem-level Structural � , E Acceleration $500 NF

Temp

Temp

Temp

Temp

Heat

Amp

Amp

Disp

ξe

Accn

Accn

rS c

R

E

Material Level 1
Material Level 2

Thermal Subsystem Flexural Subsystem

System-level
Output

Fig. 4 Thermal vibration: Bayesian network

The calibration quantities, the model predictions, and the test data are connected
through a Bayesian network, as shown in Fig. 4.

In the Bayesian network in Fig. 4, “Temp” refers to temperature, “Accn” refers
to the acceleration, “Disp” refers to the displacement, and “Amp” refers to the
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Table 5 Resource allocation
results: thermal vibration
problem

E.Var.R//
Stage no. Nm1 Nm2 NF NT (in %)

No tests 0 0 0 0 100.0

Stage 1 : $500 1 4 0 0 74.6
Stage 2 : $1,000 1 4 1 0 51.4
Stage 3 : $1,500 1 4 1 1 44.8
Stage 4 : $2,000 1 9 1 1 44.2

amplitude of vibration. Measurement errors (�) are assumed to have a standard
deviation that is equal to 10 % of the model prediction. This Bayesian network is
used for uncertainty quantification, Bayesian updating and resource allocation.

8.2 Resource Allocation

The objective is to calculate the number of tests that lead to maximum reduc-
tion in variance in R. Let Ntest denote the number of tests, where Ntest D
ŒNm1;Nm2;NF ;NT �; where Nm1 is the number of material level temperature tests,
Nm2 is the number of material level pluck tests, NF is the number of flexural
subsystem tests, and NT is the number of thermal subsystem tests. Let D D
ŒDm1;Dm2;DF ;DT � denote the test measurements. The optimization problem for
resource allocation can be formulated as shown in Eq. (25)

Minimize
Ntest

E.Var.R//

s:t: 100.Nm1 CNm2/C 500.NF CNT / � 2000

Ntest D ŒNm1;Nm2;NF ;NT � (25)

The above optimization is solved using the multi-stage optimization procedure
discussed in Sects. 6.2 and 6.3. Four stages and a budget of $500 for each stage are
considered, thereby accounting for the total budget of $2,000. Each stage has eight
options (as against two in the mathematical example in Sect. 7); only the optimal
solution in each stage is shown.

Note that Table 5 expresses the expectation of variance of R in terms of
percentage of the variance before any testing; this variance is equal to 5:69 � 10�7;
since R is a ratio, this variance is dimensionless.

For a $2,000 budget, it is seen that one temperature test, nine pluck tests, one
thermal subsystem test and one flexural subsystem test are required to achieve the
maximum reduction in the variance of R. The results show that while it is useful to
do all the tests, repeating the pluck test which calibrates structural damping, is not
only cheap but also leads to effective decrease in the variance of R. The decrease of
variance with cost is shown in Fig. 5.
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Fig. 5 Decrease of variance with cost. (a) Variance with cost; (b) log(Variance) with cost

It is seen that the reduction in variance using the last $1,000 (i.e., from $1,000
to $2,000) was much smaller when compared to the reduction in variance using
the initial $1,000. Such information is very useful for budgeting purposes, since all
the above computation (and practical resource allocation) is done before any test is
actually conducted.

9 Numerical Example: Multi-Level System

9.1 Description of the Problem

A three-level structural dynamics developed at Sandia National Laboratories (Red-
Horse and Paez 2008) is considered as shown in Fig. 6.

The first level (component) consists of a single spring-mass-damper. Three such
spring-mass dampers are integrated to form a spring-mass-damper subsystem in
the second-level. In the third level, the integrated spring-mass-damper subsystem is
mounted on a beam to form the overall system.

The models to represent the first two levels are straightforward (Chopra 1995).
Red-Horse and Paez (2008) describe in detail the modeling and simulation of the
overall system (third-level). The overall objective is to test resource allocation
to minimize the variance of the system level output (R) which is defined to
be the maximum acceleration of mass m3, when a random force is applied as
specified in Red-Horse and Paez (2008). The first-level and second-level responses
are computed using physics-based models while the third-level and system-level
responses are computed by constructing two Gaussian process surrogate models.

In this numerical example, the stiffness values of the three masses, i.e. k1, k2, and
k3 are all the parameters that need to be calibrated with test data; since all parameters
are calibrated, sensitivity analysis is not used in this example. The numerical values
(in SI units) of three calibration parameters are summarized in Table 6.
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Table 6 Model parameters: structural dynamics problem

Mass (m) Damping (c) Prior mean of stiffness Prior std. dev. of mean
Number (in kg) (in Ns/m) (
k) (in N/m) (�k) (in N/m)

1 0.012529 0.023466 5,600 560
2 0.019304 0.021204 11,000 1,100
3 0.035176 0.031216 93,000 9,300

The mass of the beam is taken to be 0.1295. Further numerical details of the beam
are given in Red-Horse and Paez (2008).

Data for calibration is assumed to be available through five different types of tests.
The details of these different types of tests are provided in Table 7. For each test, a
sinusoidal load (amplitude D 10,000 and angular velocity = 10 rad s�1) is used. For
the first and second level tests, the sinusoidal load is applied at the base; for the third
level test, the sinusoidal load is applied as specified in Red-Horse and Paez (2008).

The model predictions, experimental data, and the calibration quantities are
connected using the Bayesian network, shown in Fig. 7. The corresponding exper-
imental errors are denoted by �11, �12, �13, �2, and �3, respectively, and assumed to
be equal to 10 % of the prediction.

This Bayesian network can be used for uncertainty quantification, Bayesian
updating, and resource allocation, as explained below.
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Table 7 Model parameters: structural dynamics problem

Test type Description Model prediction Data Cost No. tests

Level-1 Only mass m1 Acceleration (x11) D11 $100 Nm1
Level-1 Only mass m1 Acceleration (x12) D12 $100 Nm2
Level-1 Only mass m1 Acceleration (x13) D13 $100 Nm3
Level-2 3-mass assembly Acceleration of m3 (x2) D2 $500 N2
Level-3 3-mass assembly on beam Acceleration of m3 (x3) D3 $1,000 N3

x11 x13x12

x2 x3

D11 D13D12

D2 D3

11 1312

2 3

k1 k2 k3

R

System
Output

Level 2 Level 3

Level 1
Fig. 7 Bayesian network

9.2 Resource Allocation

In the resource allocation problem, testing is yet to be done and hence realizations of
future experimental data are generated randomly. Then, E.Var.R// is computed so
as to identify which set of tests will lead to the maximum reduction in variance. Let
Ntest D ŒNm1;Nm2;Nm3;N2;N3�. The optimization problem for resource allocation
can be formulated as shown in Eq. (26).

Minimize
Ntest

E.Var.R//

s:t: 100.Nm1 CNm2 CNm3/C 500N2 C 1000N3 � 1000

Ntest D ŒNm1;Nm2;Nm3;N2;N3� (26)

First, the resource allocation is solved for a budget of $1000. There are 54
possible testing combinations and out of these 54, ten testing combinations lead
to the same minimum variance of system-level output R, approximately 0.8 % of
the variance before testing. These combinations are given in Table 8. The value of
E.Var.R// for these ten cases are close enough that it is not possible to determine
whether the difference is due to reality or due to sampling/numerical errors.
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Table 8 Resource allocation
results: structural dynamics
problem

Nm1 Nm2 Nm3 N2 N3

0 1 4 1 0
0 4 1 1 0
0 3 2 1 0
0 2 3 1 0
1 1 3 1 0
3 1 1 1 0
1 3 1 1 0
1 2 2 1 0
2 1 2 1 0
2 2 1 1 0

It is a subjective decision as to which one of these ten test combinations is
selected. However, all ten combinations unanimously suggest that no tests are
needed for the overall system and one test is needed for the second level three
spring-mass-damper subsystem. The first four rows in Table 8 suggest that testing
is not needed for the first spring-mass-damper. However, it may be desirable to have
at least one test for each component, and hence one amongst the latter six options
may be preferred.

It was also found that an extra budget of $1,000 caused no further reduction in the
variance of R. If the available budget is $2,000, a subjective decision may be made
to conduct the full system test (which costs $1,000) in order to further improve the
confidence in uncertainty quantification.

10 Conclusion

This chapter presented a Bayesian methodology for uncertainty quantification
in complex engineering systems consisting of multiple physics behavior and
multiple levels of integration. The various component, subsystem, and system
models, and their inputs, parameters, and outputs, and experimental data were
efficiently connected through a Bayesian network. Further, the various sources
of uncertainty—physical variability, data uncertainty, and model uncertainty were
also included in the Bayesian network. The Bayesian network was used for three
different tasks: (1) calibrate the parameters of models at multiple levels using
all available test data from multiple levels; (2) propagate the various sources of
uncertainty (including the previously estimated model parameters) through the
Bayes network to predict the overall uncertainty in the system-level response; and
(3) aid in resource allocation for test selection, in order to identify the most effective
tests to reduce the overall uncertainty in the system-level prediction. The procedure
for test resource allocation required Bayesian calibration and assessment of system-
level prediction uncertainty even before actual testing was performed. This was
achieved by generating multiple samples of test data and estimating the expected
reduction in variance of the system-level prediction.
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The algorithm for test resource allocation leads to several insights. A lower level
test can easily isolate individual components and hence, the model parameters
can be effectively updated, leading to a significant reduction in the variance
of the system-level prediction. However, such a test would not account for the
interaction between the higher level models and the corresponding parameters. In
contrast, a higher level test would readily include the effects of interaction between
multiple subsystem-level and component-level models. However, the calibration of
parameters across multiple models may be difficult and may not lead to a significant
reduction in the variance of the system-level prediction. The optimization-based test
resource allocation procedure trades off between lower level tests and higher level
tests by accounting not only for the resultant reduction in variance of the system-
level prediction but also for the costs involved in testing.
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The Stimulus-Driven Theory
of Probabilistic Dynamics

Agnès Peeters

Abstract Probabilistic Safety Assessments (PSA) are widely used to evaluate the
safety of installations or systems. Nevertheless, classical PSA methods—as fault
trees or event trees—have difficulties dealing with time dependencies, competition
between events and uncertainties. The Stimulus-Driven Theory of Probabilistic
Dynamics (or SDTPD) copes with these dynamics aspects. It is a general theory
based on dynamic reliability, supplemented by the notion of stimulus. Hence, each
event is divided into two phases: the stimulus activation (as soon as all the conditions
for the event occurrence are met) and a delay (before the actual occurrence of the
event), with a possible stimulus deactivation if the conditions are no more met. It
allows modeling in an accurate way the competitions between events. This chapter
presents the theory of the SDTPD as well as the solving of a simple example, using
the MoSt computer code.

1 Introduction

How to deal with dynamic systems, with strong interactions between their differen
components or sub-systems, with physical processes, with continuous evolutions
and discrete events, with uncertainties and with important timing aspects? The
theory presented in this chapter takes up the challenge!

This theory is quite general and can be applied to a large range of situations.
Nevertheless, the Stimulus-Driven Theory of Probabilistic Dynamics (or SDTPD) is
particularly required for large systems whose the evolution is governed by dynamics
phenomena.
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Fig. 1 Interactions involved
in a system evolution

Let us consider a large system S composed of several sub-systems, si , considered
as entities. This system is described by a set of process variables (physical or not)
and the evolution of these variables is modeled by a set of equations.

The values of these variables influence the evolution of the system and the state
of the system determines the way these variables evolve. Moreover some punctual
actions or events may change the system state and/or the variables evolutions. These
interactions are depicted in Fig. 1.

It is a big challenge to model all these interactions and to correctly combine their
effects, especially when timing aspects play a significant role.

The following of this section presents these difficulties and highlights the reasons
why the SDTPD was created.

Then, the second section of this chapter presents this theory and illustrates it via
a very simple test-case.

The third section describes how to apply the SDTPD to a tank issue and presents
some results obtained with the Monte Carlo computer code dedicated to the stimuli
approach, MoSt.

And, finally, the last section presents some conclusions.

1.1 Background

Before building a structure or starting a system, we have to be sure that the structure
will not collapse or that the system will work in a safe way. Consequently, the
conception or design phase was historically based on studies using deterministic
approaches, conservative parameters, safety margins and even enveloping scenarios
(i.e. for large systems). Nowadays this approach is completed by probabilistic
studies.

Probabilistic Safety Assessment (PSA) starts in 1975 with the WASH-1400
report (Rasmussen 1975) and has frequently demonstrated its usefulness and its
effectiveness. One of the major proofs of the value and benefits of the probabilistic
approach is the Three Mile Island accident (Rogovin and Frampton 1980), in 1979.



The Stimulus-Driven Theory of Probabilistic Dynamics 149

During this accidental transient, the nuclear power plant does not evolve as predicted
during the design phase and led to a worse situation than the conservative scenarios
considered in the deterministic studies.

PSA methodologies are based on a best estimate approach (rather than enveloping
scenarios), they try to be as close as possible to the actual evolution of the system.
They allow exploring in a systematic way the possible evolutions of a system,
starting from a specific configuration and evaluating the likelihood of each scenario,
while paying a particular attention to scenarios leading to a frightened event.
Moreover these studies highlight the main contributors to the final risk.

In order to identify the possible sequences and to evaluate the probability of a
specific event, several techniques or methodologies have been developed. The two
main approaches are the event trees and the fault trees.

An event tree (Meneley 2001; Rausand 2004; Zio 2002) is an inductive and
logical way to represent the different evolutions of a system by a succession of
successes or failures (binary events) and to quantify the frequency (or probability)
of each evolution.

The event tree starts with an initiating event that can be seen as the first significant
deviation from a normal situation (system failure, start of fire, etc.). Then, the
analyst has to list all the systems required to manage the consequences of the
initiating event and to rank them according to the time they are solicited. Each
system solicitation is represented by a node. For each node, there is an incoming
branch, which represents the plant evolution before the considered event, and two
outcoming branches, which represent the occurrence or success of the event, or its
non-occurrence or failure. Of course, the global system evolution on a given branch
is conditional to the success or failure of the previous systems.

Let us consider the example of a fire start in a room equipped with a fire detection
system, sprinklers and a fire alarm, presented in Rausand (2004).

The initiating event is the fire start. The first solicited system is the fire detection
system. If the fire is not detected, no other action is possible; if the fire is detected,
the sprinklers should work. If they start, the fire is extinguished; if they do not start,
a fire alarm has to sound in order to evacuate the room or building. If the alarm is
not activated, no other action is possible. If this alarm is activated but does not work,
the result will be the same. If this alarm is activated and works, a safe situation is
possible.

After the identification of all these possible scenarios, probabilities are associated
to each branch of the even tree. The results are presented in Fig. 2.

The frequency of the feared event is the sum of the frequencies of all the
sequences leading to this feared event:

Frequency D F3 C F4 C F5 (1)

D 0:9 � 0:15 � 0:99 � 0:999 C 0:9 � 0:15 � 0:01 C 0:1 (2)

D 0:00013C 0:00135C 0:1 (3)

D 0:10148 (4)
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Fig. 2 Event tree example, with frequencies (adapted from Rausand 2004)

On the basis of all the values introduced or calculated in the event tree, it is
possible to determine the sequences which are the most important contributors to
this event and the sequences may be ranked from the most dangerous to the less
dangerous. The main contributor to the risk in this fire example is the fire detection
system.

These data could then be used by analysts in order to improve the global safety.
Of course, an event tree has to be built for each considered initiating event.

For large systems, it leads to many trees and an explosion of the total number of
branches.

Unlike event trees, fault trees are a deductive and systematic way to represent the
different causes of an undesired event, thanks to logical gates.

The start point is the considered event, called top event, as a system failure.
Then, the next stage contains all the direct contributors to this top event. These
contributors could be sufficient to lead to the top event or have to be combined with
other contributors. In the latter case, all the involved contributors are linked to the
top event via an AND gate. For the second stage, each contributor identified in the
first stage has to be separately studied. It becomes the top event of a sub-fault tree,
which traces backward the causes of this contributor (of course, if the contributor is
a basic event, which cannot be further decomposed, the branch is stopped and the
basic event is represented by a circle). The construction of the tree goes on stage by
stage with further and deeper investigations and causal relations until each path is
ended by a basic event.

Let us consider the very simple hydraulic system presented in Avontuur (2003)
and illustrated in Fig. 3. A pump takes off water from barrel D and feeds barrel E
via two pipes.

The studied event is the lack of water in barrel E. It must be due to the fact that
no water goes out pipes B and C. If no water goes out pipe B, it could be due to the
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Fig. 3 Hydraulic system,
adapted from Avontuur
(2003)

Fig. 4 Fault tree associated
to the hydraulic system

fact either that no water enters pipe B or that pipe B is broken. If no water enters
pipe B, it is either because there is no water in barrel D or because pump A does not
work. The same analysis is performed for pipe C.

The resulting fault tree is presented in Fig. 4 and a simplified fault tree, obtained
thanks to Boolean algebra, is presented in Fig. 5.

Then, frequencies have to be assigned to each basic event and the frequency
of each (non-basic) event is calculated by combining the frequencies of its sub-
events according to the logical gates used in the tree (as long as there is no repeated
event in the tree and no dependencies between the considered events). In this way,
frequencies are brought up to the top event.

Like in event trees, it is possible to rank the contributors according to their
importance.
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Fig. 5 Simplified fault tree
associated to the hydraulic
system

Generally, fault trees are used to study and quantify the events involved in the
event trees. These two different methods are hence used in a complementary way.

1.2 Motivations

These methods are well known and used all over the world in different sectors (for
nuclear power plants of course but also for chemical industries or aerospace systems,
etc.). Nevertheless they are not adapted to dynamics systems and do not allow
evaluating the impact of assumptions or approximations on the accident progression
and on the final likelihood of the considered event.

Let us consider a very simple example, presented in Labeau and Izquierdo
(2005a) and Peeters and Labeau (2004). A combustion inside a containment leads to
a pressure increase. The undesired event is the containment failure if the pressure is
higher than a specific value, pc . In order to avoid such a situation, a pressure valve
is assumed to open if the pressure is higher than a specific value, pv.

The combustion duration belongs to the interval Œ0; tH � with a uniform distribu-
tion. The thresholds pv and pc , respectively, belong to intervals Œpmin

v ; pmax
v � and

Œpmin
c ; pmax

c � with uniform distributions (with pmin
v < pmin

c ).
The probability density functions associated to the combustion time, the valve

opening setpoint and the containment rupture pressure are, respectively, noted fH ,
fv and fc . The associated cumulative density functions are FH , Fv and Fc .

The pressure evolution due to the combustion is:

dp

dt
D c (5)

The pressure decrease when the valve is opened is governed by the following
equation:

dp

dt
D ��vp (6)
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Fig. 6 Event tree of the containment pressurization problem, based on Labeau and Izquierdo
(2005a)

Consequently, if the valve opens before the end of the combustion, the pressure
evolution is given by the sum of the contributions of both phenomena:

dp

dt
D c � �vp (7)

On the basis of this description, how can the system evolve?
The combustion may end before pressure reaches pv or pc . The valve does not

open and no containment rupture is possible (scenario A).
The combustion may end before the pressure reaches the value pv but after the

pressure reached the value pc (assuming that pc is lower than pv). In this case, the
valve does not open but the containment fails (scenario B).

If the combustion ends after the pressure reached the value pv, the valve opens
and several scenarios are possible. If the pressure decreases after the valve opening,
no rupture is possible (scenario C). In other cases, the pressure continues to increase
after the valve opening and a rupture is possible. If the combustion ends before
the pressure reaches the threshold pc , there is no combustion (scenario D). If the
combustion does not, the containment fails (scenario E).

All these scenarios are presented in the event tree of Fig. 6.
On this event tree, we can see that headers depend on the evolution of the

process variables, on uncertainties on the combustion duration and thresholds, and
on parameters (the velocity of the pressurization due to the combustion and the
velocity of the depressurization due to the valve opening).

The competition between the times the values pv and pc are, respectively,
reached is very important because it could lead to opposite situations (rupture of
the containment or safe situation).
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This example illustrates three important problems met while using event trees
to model dynamic systems: the time aspects, the competition between events, and
uncertainties.

Each of these three aspects can—separately or in combination—lead to a large
range of situations (from a certain safe state to the feared state). A correct and
accurate allowance of these aspects is thus of paramount importance.

The following sections show how it is possible to deal with these aspects thanks
to the SDTPD.

2 The SDTPD

2.1 SDTPD: Principles

The SDTPD (Labeau and Izquierdo 2005a,b; Peeters 2012, 2013a,b) is based on
the dynamic reliability concepts (Devooght and Smidts 1996; Marseguerra et al.
1998) and consequently describes the system evolutions as a succession of entries
in different dynamics (as shown in Fig. 7). Each dynamics corresponds to a specific
global state of the system and the evolution of this system is governed, in each
dynamics, by a specific set of equations. Dynamic transitions are due to a change
of the global state of the system as, for example, the failure of a component, the
start of a safety system, a human action, etc. Each transition between two dynamics
represents the occurrence of an event.

In the framework of the SDTPD, each event occurrence is divided into two
different phases. The first one corresponds to the time needed to fulfil all the
conditions required for the event occurrence. The second one corresponds to the
time elapsed between the time the conditions are met and the time of the actual
event occurrence (see Fig. 8).

But, during this time interval, the system continues to evolve and to change.
These changes could lead the system in a state where the event occurrence is no

Fig. 7 Representation of the system evolution within the dynamic reliability approach
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Fig. 8 The two phases of an event occurrence

Fig. 9 The two phases of an event occurrence, described by a stimulus

Table 1 Examples of events and their possible modeling by stimulus

Event Stimulus triggering Delay

The start of a system, on
the basis of a threshold

The crossing of the
threshold

The mechanical inertia
of the system

A human action if a
threshold is crossed

The crossing of the
threshold

Diagnosis and reaction

Combustion Flammable mixture Time before a spark

more possible. For example, in the case of an hydrogen combustion (Peeters and
Labeau 2007), even if the gas mixture becomes flammable, we have to wait the
ignition of the gases before the actual combustion. And before this ignition, a system
which reduces the hydrogen concentration (as recombiners) may start. Hence, the
gas mixture is no more flammable and no combustion is possible.

In the SDTPD formalism, an activation stimulus is associated to each event. The
first phase corresponds to the triggering of the activation stimulus and, then an
activation delay (long, short or even equal to zero; probabilistic or deterministic;
etc.), associated to this stimulus, starts to elapse. Once the activation delay has
elapsed, the event occurs (see Fig. 9). Hence, before the event occurrence, the
activation stimulus has to be triggered; no event occurrence is possible before this
triggering.

This delay can represent the inertia of a mechanical system, the uncertainty
associated to a threshold, the time needed to perform a diagnosis in case of a human
action, etc. Some examples are presented in Table 1.

If, during the elapsing of this activation delay, the system changes and prevents
the event from happening, the activation stimulus has to be deactivated. Indeed, the
activation stimulus can be seen as a flag, informing if an event is possible or not.

This deactivation process is also composed of two phases: the triggering of the
deactivation stimulus (when the conditions required for the deactivation are met)
and the elapsing of the deactivation delay (before the real deactivation).
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Fig. 10 Activation without deactivation

Fig. 11 Activation with triggering of the deactivation stimulus but occurrence of the event

Fig. 12 Activation with triggering of the deactivation stimulus and without occurrence of the event

After the triggering of an activation or deactivation stimulus, an activation or a
deactivation delay starts to elapse.

Of course, no triggering of a deactivation stimulus is possible before the
triggering of the activation stimulus associated to the same event. The elapsing
of an activation or deactivation delay may not start before the triggering of the
corresponding activation or deactivation stimulus.

On the basis of these descriptions, three situations are possible.
In the first situation, there is no deactivation (see Fig. 10). No deactivation is

possible or the deactivation conditions are not met. The event occurs.
In the second situation, the deactivation stimulus is triggered but the activation

delay is elapsed before the elapsing of a deactivation delay (see Fig. 11). The event
also occurs.

In the third situation, the deactivation stimulus is triggered and the deactivation
delay is elapsed before the elapsing of the activation delay (see Fig. 12). The event
is inhibited and does not occur.

Summarizing, a twofold stimulus has to be associated to each event: the first
part is dedicated to the activation (called activation stimulus) and the second one
is dedicated to the deactivation (called deactivation stimulus). Then a delay is
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Fig. 13 Transition between dynamics j and i at time t with process variables x

associated to each of these parts (called activation delay or deactivation delay); it
starts to elapse as soon as the corresponding stimulus is triggered and the associated
event (the actual event of the deactivation of the activation stimulus) occurs as soon
as the delay is elapsed. Depending on the modeled event, delays could be equal to
zero and a deactivation could be impossible. But the modeling of an event must at
least contains an activation stimulus.

2.2 SDTPD: Mathematical Formulation

This section presents the main equations related to SDTPD and shows how the
principles described in the previous section can be expressed with a mathematical
formalism (using the following semi-markovian assumption: each entry of the
system in a new dynamics is a regeneration point).

More details can be found in Labeau and Izquierdo (2005a).
The evolution of the process variable xj in dynamics i is described by:

xj .t/ D gji .t; x/ (8)

where x is the vector of process variables (and xj is the j th component of this
vector).

The system evolution depends on the succession of dynamics entered by the
system and we would like to calculate the ingoing density of the system into
dynamics i at time t with process variables x, '.x; i; t/.

To enter dynamics i at time t with process variables x, the system has to come
from another dynamics, j , and to undergo a transition from dynamics i to dynamics
j at time t with process variables x (as illustrated in Fig. 13).
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Fig. 14 Transitions at time � with process variables u and at time t with process variables x

In order to have this transition at time t with process variables x, the system has
had to evolve in dynamics j from its entry point u (at time � ) to point x during the
time interval t � � (see Fig. 14).

Dynamics j either has been entered at time � with process variables u and
with the ingoing density '.u; j; �/, or is the initial dynamics: the system starts
in dynamics j with process variables u and with the probability density function
�.u; j; 0/—assuming that �.x; i; t/ is the pdf of finding the system in dynamics i
at time t with process variables x.

In the first case, the ingoing density '.x; i; t/ is expressed by the following
equation:

'.x; i; t/ D '.u; j; �/ � ı.x � gj .t � �; u// � qji .t � �; u/ (9)

where the first factor expresses that the system enters dynamics j at � with u, the
second factor expresses that the system evolves in dynamics j from u to x in a
time t � � and the third one is the probability (per time unit) of a transition from
dynamics j to dynamics i , a time t � � after the entry of the system in dynamics j
with process variables u:

In the second case, we have:

'.x; i; t/ D �.u; j; 0/ � ı.x � gj .t; u// � qji .t; u/ (10)

Taking into account that the system may come from any dynamics j , entered at
any time � (between 0 and t ) and grouping both cases, we obtain:

'.x; i; t/ D X

j¤i

Z t

0
d�

Z �
�.u; j; �/� ı.�/C '.u; j; �/

	� ı.x � gj .t � �; u//� qji .t � �; u/ du

(11)
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Fig. 15 Chronology of a transition from j to i

Now we have to determine the probability per time unit qji .t; u/ of having a
transition from dynamics j to dynamics i at time t with process variables x.

In the SDTPD framework, transitions between dynamics are governed by stimuli.
No transition can occur before an activation delay has elapsed and no activation
delay can elapse without the preliminary triggering of an activation stimulus.

As several stimuli F (associated to mutually exclusive events) can lead to the
same dynamics transition from j to i , we have:

qji .t; u/ D
X

F

qFji .t; u/ (12)

where qFji .t; u/ is the probability per time unit of a transition between dynamics j
and i due to stimulus F a time t after entering dynamics j at point u.

First, we assume there is no deactivation and no stimulus other than F comes into
play.

If the system enters j at time 0 with process variables u (see Fig. 15), a transition
to i at time t with process variables x can occur only if

1. the activation stimulus F is triggered at time � (< t ) with process variables v
(� gj .�; u/)

2. the activation delay has elapsed at time t with process variables x (D gj .t �
�; v/ D gj .t; u/)

If f F
j .t; x/ is the probability density function of triggering activation stimulus

F (associated to an event which can occur in dynamics j and lead to the system
entry into dynamics i ) a time t after entering dynamics j at point x and hFj .t; x/
is the probability density function of elapsing of the activation delay associated to
stimulus F in dynamics j a time t after the triggering of the activation stimulus F
at point x, we can write:

qFji .t; u/ D
Z t

0

f F
j .�; u/ � hFj .t � �; v/ d� (13)

D
Z t

0

f F
j .�; u/ � hFj .t � �; gj .�; u// d� (14)
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If we also consider other stimuli, the transition from dynamics j to dynamics i is
due to stimulus F if no other stimulus G leads to a transition out of j (triggering of
this activation stimulus followed by the elapsing of its activation delay) before t .

Thus, we have:

qFji .t; u/ D
Z t

0

f F
j .�; u/ � hFj .t � �; gj .�; u// d�

�
Y

G¤F

�
1 �

Z t

0

dt 0
Z t 0

0

f G
j .�

0; u/ � hGj .t 0 � � 0; gj .� 0; u// d� 0
�

(15)

If we add a possible deactivation of stimulus F , we have to take into account that
the transition between j and i occurs only if F is not deactivated.

However, F is deactivated if its deactivation stimulus is triggered at time ��
(between � and t ) and if the deactivation delay is elapsed before t .

If kFj .t; x/ is the probability density function of triggering deactivation stimulus
F a time t after triggering the associated activation stimulus at point x in dynamics j
and lFj .t; x/ is the probability density function of elapsing of the deactivation delay
associated to stimulus F in dynamics j a time t after triggering the deactivation
stimulus F at point x, we can write:

qFji .t; u/ D
� Z t

0
f Fj .�; u/� hFj .t � �; gj .�; u//

� �
1�

Z t

�
d��

Z t

��

kFj .�
� � �; gj .�; u//� lFj .t

� � ��; gj .�
�; u// dt�

	
d�

�

� Y

G¤F

�
1�

Z t

0
dt 0

Z t 0

0
f Gj .�

0; u/� hGj .t
0 � � 0; gj .�

0; u// d� 0

�
(16)

if a deactivated stimulus is not allowed to be reactivated.
If we also consider that the other stimuli can be deactivated, they will not lead

to a transition if the activation delay has not elapsed at time t or if a deactivation
occurs before time t . So, we have:

qFji .t; u/ D
� Z t

0
f Fj .�; u/� hFj .t � �; gj .�; u//

� �
1�

Z t

�
d��

Z t

��

kFj .�
� � �; gj .�; u//� lFj .t

� � ��; gj .�
�; u// dt�

	
d�

�

� Y

G¤F

"

1�
Z t

0
dt 0
� Z t 0

0
f Gj .�

0; u/� hGj .t
0 � � 0; gj .�

0; u//

� �
1�

Z t 0

� 0

d� 00

Z t 0

�"
kGj .�

00 � � 0; gj .�
0; u//� lGj .t

00 � � 00; gj .�
00; u// dt 00

	
d� 0

�#

(17)
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Finally, the ingoing density of the system into dynamics i at time t with process
variables x has the following expression:

'.x; i; t/ D
X

j¤i

X

F

Z t

0

d�

Z
du � ��.u; j; �/ � ı.�/C '.u; j; �/

	

� ı.x � gj .t � �; u// �
� Z t

0

f F
j .�; u/ � hFj .t � �; gj .�; u//

� �
1 �

Z t

�

d��
Z t

��

kFj .�
� � �; gj .�; u//

� lFj .t� � ��; gj .��; u// dt�
	
d�

�

�
Y

G¤F

"

1 �
Z t

0

dt 0
� Z t 0

0

f G
j .�

0; u/ � hGj .t 0 � � 0; gj .� 0; u//

� �
1 �

Z t 0

� 0

d� 00
Z t 0

� 00

kGj .�
00 � � 0; gj .� 0; u//

�lGj .t 00 � � 00; gj .� 00; u// dt 00
	
d� 0

�#

(18)

It is possible to release the non-reactivation assumption if any deactivation point
is considered as a regeneration point.

2.3 Shocks

In probabilistic safety studies, the time durations of the considered phenomena can
be very different and vary from a few seconds to several days. In such situations,
short events could be considered as instantaneous in comparison with the transient
duration.

Consequently, the notion of shock has been introduced in the SDTPD.
The effect of a shock is to instantaneously change the value of the process

variables (without change the time value).
A shock acts in the following way, illustrated in Fig. 16. The system leaves

dynamics j at time t with process variables x and enters dynamics s (corresponding
to a shock) at the same time with the same values. Then, the system is instanta-
neously brought to point x�. Finally, the system enters dynamics i at time t with
process variables x�.

The way the ingoing density function has to be modified is explained in Labeau
and Izquierdo (2005a).
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Fig. 16 The notion of shock

2.4 A Pressurization Test-Case

In this section, the SDTPD will be applied to the containment pressurization issue
described in Sect. 1.2.

2.4.1 Problem Analysis

According to the description of this problem, there are four possible situations and
each of them corresponds to a specific pressure evolution law:

1. Pressurization
The combustion inside the containment leads to a linear pressure increase:

dp

dt
D c (19)

2. Equilibrium
The combustion inside the containment has stopped; the pressure value does not
change:

dp

dt
D 0 (20)

3. Pressurization and depressurization
The combustion goes on (and leads to a pressure increase) and the valve is opened
(and leads to a pressure decrease):

dp

dt
D c � �vp (21)

4. Depressurization
The valve is opened and the combustion has stopped:

dp

dt
D ��vp (22)
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Fig. 17 Scenarios leading to a containment rupture

During a transient, three events can occur:

1. end of combustion
2. valve opening
3. containment rupture

In this example, we are only interested in situations where c
�v

is greater than pmin
c

(in order to keep a pressure increase after the valve opening) and where pmin
c is lower

than pmax
v (otherwise no rupture is possible).

2.4.2 Analytical Solution (Without Stimulus)

There are three scenarios likely to lead to a containment rupture (see Fig. 17):

1. The combustion is going on and the valve remains closed.
2. The combustion is going on and the valve has been opened before reaching pmin

c .
3. The combustion is going on and the valve has been opened after reaching pmin

c .

Hence, the rupture probability is the sum of three terms:

Prupt.t/ D P1.t/C P2.t/C P3.t/ (23)

P1.t/ is the rupture probability associated to the first scenario and is given by:

P1.t/ D
Z pmax

c

pmin
c

fc.pc/�
�
1�FH

�
pc

c

��
�
�
1�Fv

�
pc

��
��
�
t�pc

c

�
dpc (24)

where pc is the rupture pressure.
P2.t/ is the rupture probability associated to the second scenario and is given by:

P2.t/ D
Z pmin

c

pmin
v

dpv fv

�
pv

�
� �

�
p

�
t jpv

�
� pmin

c

�

Z p
�
t jpv

�

pmin
c

dpc fc

�
pc

�
�
�
1 � FH

�
tc

�
pc jpv

���
(25)
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Table 2 Stimuli associated
to the pressurization test-case

Stimulus Event

0 End of combustion
1 Valve opening
2 Containment rupture

Table 3 Dynamics and evolution laws associated to the pressurization
test-case

Dynamics Description Pressure evolution

0 Pressurization dp

dt
D c

1 Equilibrium dp

dt
D 0

2 Pressurization and depressurization dp

dt
D c � �vp

3 Depressurization dp

dt
D ��vp

4 Rupture –

where pv is the valve opening pressure, p.t jpv/ is the pressure value at time t
given that the valve opened at pv

�
and at time tv D pv

c

�
and is given by solving

Eq. (21) from pv:

t � tv D 1

�v
ln

�
c � �vpv

c � �vp.t jpv/

�
(26)

and tc.pc jpv/ is the time pressure rupture is reached given that the valve opened
at time tv and pressure pv:

tc.pc jpv/ D tv C 1

�v
ln

�
c � �vpv

c � �vpc

�
D pv

c
C 1

�v
ln

�
c � �vpv

c � �vpc

�
(27)

P3.t/ is the rupture probability associated to the third scenario and is given by:

P3.t/ D �

�
t � pmin

c

c

�Z min
�
c
�v
;ct
�

pmin
c

dpv fv
�
pv
� Z p.tjpv/

pv

dpc fc
�
pc
�� �1�FH

�
tc
�
pc jpv

��	
(28)

2.4.3 Solution Using SDTPD

This problem can also be described and solved through the SDTPD formalism
(Labeau and Izquierdo 2005a).

Firstly, we have to associate a stimulus to each event; they are described in
Table 2.

Then, a dynamics has to be associated to each different pressure evolution (see
Table 3), with an evolution equation for each dynamics.

The event of which we want to evaluate the probability is the containment
pressure. So, we add a last dynamics corresponding to this rupture.
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Finally, we have to define the probability density functions of triggering of the
activation stimuli (for each dynamics) and of elapsing of the activation delays (for
each dynamics). No deactivation is possible.

f 0
0 .t; p

0/ D fH
�
t C p0

c

�

1 � FH
�
p0

c

� and h00.t; p
00/ D ı.t/ (29)

f 0
1 .t; p

0/ D ı.t � tAD/ (30)

f 0
2 .t; p

0/ D fH
�
t C p0

c

�

1 � FH
�
p0

c

� and h02.t; p
00/ D ı.t/ (31)

f 0
3 .t/ D ı.t � tAD/ (32)

f 1
0 .t; p

0/ D ı

�
t � pmin

v � p0

c

�
:�
�
pmin

v � p0� and h10
�
t; p00� D c:fv

�
p00 C ct

�

(33)

f 1
1 .t; p

0/ D ı.t � tAD/ (34)

f 1
2 .t; p

0/ W F2 has already been activated (triggering and delay)

as the system stays in dynamics 3

f 1
3 .t; p

0/ D ı.t � tAD/ (35)

f 2
0 .t; p

0/ D ı

�
t � pmin

c � p0

c

�
���pmin

c �p0� and h20
�
t; p00� D c fc

�
p00 Cct

�

(36)

f 2
1 .t; p

0/ D ı.t � tAD/ (37)

f 2
2 .t; p

0/ D �
�
pmin
c � p0� � ı

�
t � 1

�v
� ln

�
c � �vp

0

c � �vpmin
c

��
and (38)

h22.t; p
00/ D �

c � �vp
00� � e��vt � fc

�
c

�v
�
�
c

�v
� p00

�
e��vt

�
(39)

f 2
3 .t; p

0/ D ı.t � tAD/ (40)
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Fig. 18 Transitions involved
in the pressurization test-case

where

tAD is an upper bound of the maximum duration of the transient
p0 is the pressure value while entering the considered dynamics
p00 is the pressure value when the concerned stimulus has been triggered

On the basis of this description, we can conclude it is not possible to reach the
rupture pressure from dynamics 1 and 3. Indeed, these two dynamics correspond to
a pressure decrease (see Fig. 18).

As dynamics 0 is the initial dynamics and is entered at time t D 0 with the initial
pressure value p D 0, we have:

'.pc; 4; tc/ D �.0; 0; 0/ � ı.pc � c:tc/ � q04.tc; 0/

C
Z tc

0

dtv

Z
dpv'

�
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�
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�

� ı
�
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��v

�
tc� pv

c

�
�
�
1 � c

pv�v

�
C c

�v

�
(41)

where �.0; 0; 0/ D 1.
A transition from dynamics 0 to dynamics 4 is possible only thanks to stimulus 2.

So, we have:

q04.t; 0/ D q204.t; 0/ (42)

D
Z t

0
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0
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0
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0
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�
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d� 0

�

D
Z t

0

ı
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c
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�
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�
ct
�
d� (44)



The Stimulus-Driven Theory of Probabilistic Dynamics 167

�
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dt 0
Z t 0

0
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�
� 0�ı
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t 0 � � 0� d� 0

�

�
�
1 �

Z t

0

dt 0
Z t 0

0

ı

�
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v
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�
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�
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d� 0
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D fc.ctc/ � Œ1 � FH.tc/� � Œ1 � Fv.ctc/� (45)

Dynamics 2 can only be entered from dynamics 0 (entered at time t D 0, with
pressure p D 0). Hence, we have:

'.pv; 2; tv/ D �.0; 0; 0/ � ı.pv � c � tv/ � q02.tv; 0/ (46)

with �.0; 0; 0/ D 1.
A transition from 0 to 2 is possible only thanks to stimulus 1. So, we have:

q02.tv; 0/ D q102.tv; 0/ (47)

D
Z tv

0

f 1
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�
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D c fv.ctv/ � Œ1 � FH.tv/� � Œ1 � Fc.ctv/� (50)

A transition from 2 to 4 is possible only thanks to stimulus 2 and stimulus 1 has
no more to be considered (because it has already been activated). So, we have:

q24.tc � tv; pv/ D q224.tc � tv; pv/ (51)

While combining these different results and changing the integration variable, we
have the same expression as Prupt.t/, obtained by adding P1.t/, P2.t/ and P3.t/.
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3 Application: The Tank Issue

In the previous section, a very simple pressurization test-case has been presented.
This example concerns only one process variable (the pressure inside the contain-
ment) and no deactivation is possible. Moreover, the number of dynamics and events
are small (5 dynamics, including the containment rupture, and 3 stimuli). Hence, it
is quite easy to consider all the possible evolution of the system and to calculate the
associated probabilities.

Of course, for bigger or more complex systems (and real systems are much
more complex), it is not feasible. Consequently, a computer code, called MoSt,
has been developed (see Peeters 2012). It is dedicated to the probability evaluation
of a specific event, with, on the one hand, a probabilistic aspect based on a
combination of the SDTPD and the Monte Carlo simulations and, on the other hand,
a deterministic aspect associated to the process and physical variables evolutions. It
allows simulating the evolution of any system described with the SDTPD formalism.

The following subsections present a more complex (but still limited) issue
(Peeters 2013a) and the way this issue has been described using the SDTPD
formalism in order to be solved with MoSt. Some results are then presented.

3.1 General Description

Let us consider a tank with a volume V , used to supply water to a system S requiring
water according to three different flows. Each flow is required at a specific time of
the day:

• From 0:00 am to 6:00 am
No water is used (flow 1)

• From 6:00 am to 2:00 pm
The water flow is constant (flow 2)

• From 2:00 pm to 6:00 pm
The water flow is exponential (flow 3)

• From 6:00 pm to 0:00 am
The water flow is constant (flow 2)

This tank is filled in a continuous way thanks to the continuous feeding system
(CF ) and extra water is provided by the auxiliary feeding system (AF ) if a low
level in the tank is detected. A contrario, if a high level in the tank is detected, the
feeding systems are stopped. Moreover, if the auxiliary tank is used during the day,
it will be fulfil during the night (at midnight). The failure of the continuous feeding
system is taken into account.

The different parts of this issue are illustrated in Fig. 19.
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Fig. 19 Configuration of the tank issue

Table 4 Uncertainties on the
timing of the water needs

From To Pdfs values

0:00 am 5:00 am 0
5:00 am 5:55 am 0.0027
5:55 am 6:05 am 0.07
6:05 am 7:00 am 0.0027
7:00 am 1:30 pm 0
1:30 pm 2:30 pm 0.0167
2:30 pm 5:00 pm 0
5:00 pm 5:30 pm 0.0067
5:30 pm 6:30 pm 0.0083
6:30 pm 7:00 pm 0.01
7:00 pm 0:00 am 0

There are two situations to avoid: to be unable to supply water to the system, and
an overflowing tank (with possible damages to other installations). The likelihood
of these two situations will be studied as well as their evolution over time.

3.2 Uncertainties

Of course, uncertainties are linked to these situations.
The timing of the water needs may change from 1 day to another; the probability

density functions are constant on each time interval (see Table 4).
The level sensors are not perfect and the associated uncertainties are represented

by gaussian functions.
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Table 5 Description of the
14 dynamics

Nb CF AF F1 F2 F3

0 Off Off On Off Off
1 Off Off Off On Off
2 Off Off Off Off On
3 On Off On Off Off
4 On Off Off On Off
5 On Off Off Off On
6 Off On On Off Off
7 Off On Off On Off
8 Off On Off Off On
9 On On On Off Off
10 On On Off On Off
11 On On Off Off On
12 Overflow
13 Empty tank

Table 6 Evolution equations
of the levels according to
each dynamic

Dyn nb Tank level Aux. level

0 L.t/ D L0 l.t/ D l0
1 L.t/ D L0 � d � t l.t/ D l0
2 L.t/ D L0 � eb�t l.t/ D l0
3 L.t/ D L0 C c � t l.t/ D l0
4 L.t/ D L0 C .c � d/ � t l.t/ D l0
5 L.t/ D L0 � eb�t C c � t l.t/ D l0
6 L.t/ D L0 C a � t l.t/ D l0 � a � t
7 L.t/ D L0 C .a � d/ � t l.t/ D l0 � a � t
8 L.t/ D L0 � eb�t C a � t l.t/ D l0 � a � t
9 L.t/ D L0 C .aC c/ � t l.t/ D l0 � a � t
10 L.t/ D L0 C .aC c � d/ � t l.t/ D l0 � a � t
11 L.t/ D L0 � eb�t C .aC c/ � t l.t/ D l0 � a � t

3.3 SDTPD Formalism

3.3.1 Dynamics

As explained in Sect. 2.1, the ways the system evolves are described through
dynamics. Hence, a dynamics has to be associated to each kind of evolution of
the system. In the tank issue, fourteen dynamics (numbered from 0 to 13) have been
identified; they are described in Table 5. The two studied events (overflow and empty
tank) are, respectively, represented by dynamics 12 and 13.

Three variables are needed to describe the evolution of the system; they are: the
water level in the tank (L), the water level in the auxiliary tank (l) and the hour.
The hour evolves of course in the same way independently of the dynamics. The
evolution of the two other variables depends on the dynamics and is described in
Table 6.

The entry of the system in dynamics 12 or 13 stops the simulation. Consequently,
there is no evolution equation associated to these dynamics.
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Table 7 Description of the 11 stimuli

Stimulus Description Allowed transitions

Stimulus 0 Transition from flow 1 to flow 2 From dynamics 0 to dynamics 1
From dyn. 3 to dyn. 4
From dyn. 6 to dyn. 7
From dyn. 9 to dyn. 10

Stimulus 1 Transition from flow 2 to flow 3 From dyn. 1 to dyn. 2
From dyn. 4 to dyn. 5
From dyn. 7 to dyn. 8
From dyn. 10 to dyn. 11

Stimulus 2 Transition from flow 2 to flow 1 Opposite transitions to stim. 0
Stimulus 3 Transition from flow 3 to flow 2 From dyn. 2 to dyn. 1

From dyn. 5 to dyn. 4
From dyn. 8 to dyn. 7
From dyn. 11 to dyn. 10

Stimulus 4 Start of the continuous feeding system From dyn. 0 to dyn. 3
From dyn. 1 to dyn. 4
From dyn. 2 to dyn. 5
From dyn. 6 to dyn. 9
From dyn. 7 to dyn. 10
From dyn. 8 to dyn. 11

Stimulus 5 Normal stop of the continuous
feeding system

Opposite transitions to stim. 4

Stimulus 6 Start of the auxiliary feeding system From dyn. 0 to dyn. 6
From dyn. 1 to dyn. 7
From dyn. 2 to dyn. 8
From dyn. 3 to dyn. 9
From dyn. 4 to dyn. a 10
From dyn. 5 to dyn. 11

Stimulus 7 Stop of the auxiliary feeding system Opposite transitions to stim. 6
Stimulus 8 Tank overflow From any dyn. to dyn. 12
Stimulus 9 Empty tank From any dyn. to dyn. 13
Stimulus 10 Stop of the continuous feeding

system, due to a failure
Same transitions as stim. 5

3.3.2 Stimuli

The occurrence of an event is represented by an activation stimulus and the elapsing
of the delay associated to such a stimulus leads to a change of dynamics.

In this issue, the events are the start or stop (normal or accidental) of the
continuous feeding system, the start or stop of the auxiliary feeding system, a change
of flow, an overflow or an empty tank (combined with water needs). The 11 stimuli
associated to these events are presented in Table 7, with the transitions allowed after
the elapsing of their activation delays.

In order to complete the definition of each stimulus, we have to describe the
probability density functions associated to the triggering of the activation stimulus,
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the delay of the activation stimulus, the triggering of the deactivation stimulus and
the delay of the deactivation stimulus, respectively labeled f , h, k and l .

Stimulus 0 represents the transition from flow 1 to flow 2 and should occur
at six o’clock, with an uncertainty of ˙1u. Thus, the transition is possible since
five o’clock. Consequently, the activation stimulus is triggered at this time; it
corresponds to a threshold. The associated delay is given by the following function:

h0i D
8
<

:

0:15=55 if 5 W 00 < clock < 5 W 55
0:07 if 5 W 55 � clock < 6 W 05
0:15=55 if 6 W 05 � clock < 7 W 00

where i corresponds to any dynamics (the dynamics the system evolves does not
influence this probability density function).

Stimuli 1, 2 and 3 are described in a similar way.
Stimulus 4 represents the normal stop of the continuous feeding system and is

consecutive to a high level signal. This signal occurs when the water volume in the
tank is equal to 50 % of the tank volume. But the sensibility of the sensor leads to
an uncertainty modeled by the following gaussian function:

h4i D 1

0:02V
p
2�

� e� .L�0:5V /2

2.0:02V /2 (52)

if the water level in the tank is between 0:45V and 0:55V (and h4i D 0 otherwise).
This level could decrease due to the water flow to the system S or increase thanks

to the auxiliary feeding system. If the water level becomes too high before the end
of the activation delay, the associated deactivation stimulus has to be triggered and
its delay is equal to zero.

Other stimuli linked to the level sensors are described in a similar way.

3.4 Results

The MoSt program (presented in Peeters 2012) has been used to perform simu-
lations. This program is based on the SDTPD and on Monte Carlo simulations.
Hence, the accuracy of the final result depends on the number of histories used for
the simulations. Figures 20 and 21 show the fluctuations of these results. We can
see that simulations with a low number of histories lead to visible fluctuations. For
simulations with at least 100,000 histories, the fluctuations are negligible.

Figure 22 shows the succession of the dynamics entered by the system and
the timing of these dynamics changes. This is related to Fig. 23 which shows the
evolution of the water levels in the tank and in the auxiliary feeding system. The
first decrease of the tank level corresponds to the change from flow 1 to flow 2
(change from dynamics 0 to dynamics 1). Then, the auxiliary feeding system starts,
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Fig. 20 Evolution of the overflowing tank probability, for different numbers of histories in the
Monte Carlo simulations

Fig. 21 Evolution of the empty tank probability, for different numbers of histories in the Monte
Carlo simulations

the dynamics changes from 1 to 7 and the water level decrease is slowed. After
a specific time, the auxiliary tank is empty and the level in the tank decreases in
the same way as during the first phase. Then, the auxiliary tank is instantaneously
filled and its level reaches the maximal value. These figures are only one example
of the results obtained after a simulation, only one possible scenario. Indeed, MoSt
prints all the data (process variables evolutions, activation, deactivation, delays of
each stimulus, etc.) for a specific number of histories, randomly chosen before the
beginning of the simulation.
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Fig. 22 Dynamics entered by the system

Fig. 23 Evolution of the water levels in the tank (L.t/) and in the auxiliary feeding system (l.t/)

Moreover, MoSt uses a memorization technique whose purpose is to save
computation time. Indeed, each history starts with the same initial conditions and
keeps the same evolution until the first event. So, it is useless to repeat (and compute
again) the same system evolution at the beginning of each history of a simulation.
The first event that will occur during a history must be the triggering of an activation
stimulus. No triggering of a deactivation stimulus, no end of (de)activation delay
(and, consequently, no change of dynamics) is possible before the triggering of an
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activation stimulus, by definition of these events. Consequently, for each history, the
system evolution will be exactly identical until the first triggering of an activation
stimulus.

4 Conclusions

As shown in Sect. 1, current probabilistic safety assessment methodologies are very
useful to study systematic processes or system but are not adapted to correctly deal
with dynamics systems or phenomenological aspects. Indeed, in these last cases, the
time is of paramount importance and the chronology of the events is not so easy to
predict. Hence, new methodologies or approaches are needed.

This observation is the starting point of the Stimulus-Driven Theory of Prob-
abilistic Dynamics (SDTPD). This theory is a recent development of dynamic
reliability where transitions between dynamics (due to the occurrence of proba-
bilistic or deterministic events) are modeled by stimuli. This transition process is
divided into two phases (the triggering of an activation stimulus and the elapsing of
the corresponding activation delay) in order to be as close as possible to the actual
process progress. Moreover, deactivation of an activation stimulus is also possible
in case of change of the system state. Other techniques such as cell-to-cell mapping
can also be used to model the system evolution; this approach is presented in Labeau
and Izquierdo (2005b) and Peeters and Labeau (2004).

The SDTPD and the associated computer code MoSt are consequently really
powerful tools to evaluate the likelihood of feared events for complex systems and
to assess the safety of dynamic systems.

5 Variables and Functions Used in This Chapter

a Slope of the linear increase of the water level in the tank due to the
auxiliary feeding system (tank issue)

b Parameter of the exponential decrease of the water level in the tank in
case of flow 3 (tank issue)

c Slope of the linear pressure increase (pressurization test-case)
c Slope of the linear increase of the water level in the tank due to the

continuous feeding system (tank issue)
d Slope of the linear decrease of the water level in the tank in case of

flow 2 (tank issue)
fc Probability density function associated to the containment rupture

pressure (pressurization test-case)
Fc Cumulative density function associated to the containment rupture

pressure (pressurization test-case)
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fH Probability density function associated to the combustion time (pres-
surization test-case)

FH Cumulative density function associated to the combustion time (pres-
surization test-case)

f F
j .t; x/ Probability density function of triggering activation stimulus F a time

t after entering dynamics j with process variables x
fv Probability density function associated to the valve opening setpoint

(pressurization test-case)
Fv Cumulative density function associated to the valve opening setpoint

(pressurization test-case)
gji Evolution law of the j th process variable in dynamics i
hFj .t; x/ Probability density function of elapsing the activation delay associated

to stimulus F a time t after entering dynamics j with process
variables x

kFj .t; x/ Probability density function of triggering deactivation stimulus F a
time t after triggering the associated activation stimulus in dynamics
j with process variables x

l Water level in the auxiliary tank (tank issue)
L Water level in the tank (tank issue)
L0 Initial water level in the tank (tank issue)
lFj .t; x/ Probability density function of elapsing the deactivation delay associ-

ated to stimulus F a time t after triggering the deactivation stimulus F
in dynamics j with process variables x

p Pressure
pc Containment rupture pressure (pressurization test-case)
pmax
c Upper bound of the containment rupture pressure interval (pressuriza-

tion test-case)
pmin
c Lower bound of the containment rupture pressure interval (pressuriza-

tion test-case)
pv Valve opening pressure (pressurization test-case)
pmax

v Upper bound of the valve opening pressure interval (pressurization
test-case)

pmin
v Lower bound of the valve opening pressure interval (pressurization

test-case)
qji Probability per time unit of having a transition from dynamics j to

dynamics i
qFj i Probability per time unit of having a transition from dynamics j to

dynamics i due to stimulus F
t Time
tAD Upper bound of the maximum duration of the transient (pressurization

test-case)
tc Time of the containment rupture pressure (pressurization test-case)
tH Maximal duration of the combustion (pressurization test-case)
tv Time if the valve opening (D pv

c
) (pressurization test-case)

V Volume of the tank (tank issue)
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x Vector of the process variables
xj j th component of x
�v Parameter of the pressure decrease (pressurization test-case)
'.x; i; t/ Ingoing density function of the system into dynamics i at time t with

process variables x
�.x; j; 0/ Probability density function of finding the system in dynamics i at

time t with process variables x
�.x/ Heaviside function
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The Pavement Performance Modeling:
Deterministic vs. Stochastic Approaches

Md. Shohel Reza Amin

Abstract The pavement performance modeling is an essential part of pavement
management system (PMS). It estimates the long-range investment requirement and
the consequences of budget allocation for maintenance treatments of a particular
road segment on the future pavement condition. The performance models are also
applied for life-cycle economic evaluation and for the prioritization of pavement
maintenance treatments. This chapter discusses various deterministic and stochastic
approaches for calculating the pavement performance curves. The deterministic
models include primary response, structural performance, functional performance,
and damage models. The deterministic models may predict inappropriate pavement
deterioration curves because of uncertain pavement behavior under fluctuating
traffic loads and measurement errors. The stochastic performance models assume
the steady-state probabilities and cannot consider the condition and budget con-
straints simultaneously for the PMS. This study discusses the Backpropagation
Artificial Neural Network (BPN) method with generalized delta rule (GDR) learning
algorithm to offset the statistical error of the pavement performance modeling.
This study also argues for the application of reliability analyses dealing with the
randomness of pavement condition and traffic data.

1 Introduction

The appropriate and effective pavement performance curves are the fundamental
components of pavement management system (PMS), and ensure the accuracy of
pavement maintenance and rehabilitation (M&R) operations (Jansen and Schmidt
1994; Johnson and Cation 1992; Attoh-Okine 1999). The performance models
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calculate the future conditions of pavement based on which PMS optimizes several
maintenance treatments, and estimates the consequences of maintenance operations
on the future pavement condition during the life-span of the pavement (George et al.
1989; Li et al. 1997). Early PMSs did not have performance curves rather they
evaluated only the current pavement condition. Later, the simplified performance
curves were introduced based on the engineering opinions on the expected design
life of different M&R actions (Kulkarni and Miller 2002). The only predictive
variable of these performance curves was the pavement age. The development
of performance curve is explicitly complicated as the pavement performance is
subjected to a large number of parameters of pavement performance.

There are two streams of pavement performance modeling—deterministic and
stochastic approaches. The major differences between deterministic and stochastic
performance prediction models are model development concepts, modeling process
or formulation, and output format of the models (Li et al. 1996). This study
discusses various deterministic and stochastic approaches of pavement performance
modeling, and elucidates the advantages and disadvantages of these methods.

2 Deterministic Pavement Performance Modeling

The deterministic models include primary response, structural performance, func-
tion performance, and damage models (George et al. 1989). Three are different
types of deterministic models, such as mechanistic models, mechanistic-empirical
models, and regression models. The mechanistic models draw the relationship
between response parameters such as stress, strain, and deflection (Li et al.
1996). The mechanistic-empirical models draw the relationship between roughness,
cracking, and traffic loading. On the other hand, the regression models draw the
relationship between a performance parameter (e.g., riding comfort index, RCI) and
the predictive parameters (e.g., pavement thickness, pavement material properties,
traffic loading, and age) (Li et al. 1996). A large number of deterministic models
have been developed for regional or local PMSs such as traffic-related mod-
els, time-related models, interactive-time-related models, and generalized models
(Attoh-Okine 1999).

The general function of a deterministic pavement performance model can be
expressed by Eq. (1) (Li et al. 1996).

PCSt D f .P0;ESALst ; He or SN;MR; C;W; I / (1)

Where PCSt is the generalized pavement condition state (PCS) at year t, P0 is the
initial pavement condition state, ESALst is the accumulated equivalent single axle
loads (ESALs) applications at age t, He is the total equivalent granular thickness
of the pavement structure, SN is the structural number index of total pavement
thickness, MR is the subgrade soil resilient modulus, W is the set of climatic or
environmental effects, I is the interaction effects of the preceding effects, and C
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is the set of construction effects. The PCS represents RCI, present serviceability
index (PSI), pavement quality index (PQI), roughness, and cracking. The SN is also
known as pavement strength that can be calculated by

P
aihi C SNg, where ai is

the material layer coefficients and hi is the layer thicknesses. The SNg is a subgrade
contribution that can be calculated by 3.51 log CBR � 0.85(log CBR)2 � 1.43; CBR
is the in situ California bearing ratio of subgrade (Li et al. 1996).

The American Association State Highway and Transportation Officials (1985)
developed the PSI for the flexible pavement. The PSI and 18 kip ESALs are the
main factors of pavement performance along with other factors such as materials
properties, drainage and environmental conditions, and performance reliability
(Eq. (2)) (Abaza et al. 2001).

log10 .ESALt / D ZR � S0 C 9:36 � log10 .SN C 1/ � 0:2C log10
�
�PSI
4:2�1:5

	

0:40C 1094

.SNC1/5:19

C 2:32 � log10 .MR/ � 8:07
(2)

Where �PSI is the difference between the initial design serviceability index
(PSI0) and the serviceability index at year t (PSIt), and ZR and S0 are the
standard normal deviate and combined standard error of the traffic prediction and
performance prediction, respectively.

Lee et al. (1993) also developed the PSI for the flexible pavements shown in
Eq. (3) (Lee et al. 1993).

log10 .4:5 � PSI/ D 1:1550 � 1:8720 � log10SN C 0:3499 � log10t

C 0:3385 � log10ESAL (3)

The Ontario Pavement Analysis of Costs (OPAC) developed the deterministic
flexible pavement deterioration model of pavement condition index (PCI), which is
expressed by Eq. (4) (Jung et al. 1975; Li et al. 1997).

�PCI D PCI0 � .PT C PE/ D PCI0 � ��
2:4455‰ C 8:805‰3

�

C
�

PCI0 � PCI0
1C ˇw

� �
1 � e�˛t �

�
(4)

w D 9000 � 25:4
2Ms

�
0:9He

3

q
M2

MR

�r
1C 6:4

0:9He
3
q

M2
MR

and ‰ D 3:7238 � 10�6w6ESAL

Where w is subgrade deflection, PCI0 is as-built PCI, PT and PE are the traffic-
and environment-induced deteriorations of pavement condition, M2 is the modulus
of granular base layer, ˇ is the regional factor 1 (ˇD 60 in southern Ontario), and
˛ is the regional factor 2 (˛D 0.006 in southern Ontario).
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The Nevada Department of Transportation (NDOT) developed 16 deterministic
performance models for different pavement rehabilitation and maintenance treat-
ments in 1992 (Sebaaly et al. 1996). The factors of the performance models are
traffic, environmental, materials, and mixtures data in conjunction with actual
performance data (PSI). The performance model for the asphalt concrete (AC)
overlays is given by Eq. (5) (Sebaaly et al. 1996).

PSI D �0:83C 0:23 DPT C 0:19 PMF C 0:27 SN C 0:078 TMIN

C 0:0037 FT � .7:1e � 7 ESAL/ � 0:14 t (5)

Where DPT is the depth of overlay, PMF is the percent mineral filler, TMIN is the
average minimum annual air temperature (ıF), and FT is the number of freeze-thaw
cycles per year. The PSI was calculated by using a modified version (Eq. (6)) of the
AASHTO performance method (Eq. (1)) (Sebaaly et al. 1996).

PSI D 5 � e�0:0041�IRI � 1:38RD2 � 0:03.C C P /0:5 (6)

Where IRI is the international roughness index, RD is the rut depth, C is the
cracking and P is the patching. The IRI is a key property of road condition
considered in any economic evaluation of design and maintenance standards for
pavements, and also in any functional evaluation of the standards desire of road
users (Paterson 1987; Ockwell 1990). Haugodegard et al. (1994) derived that the
IRI function followed the parabolic distribution (Eq. (7)).

IRIt D IRIi C .IRI1 � IRI0/ �
�
Ad

A1

�1:5
(7)

Where IRIt is the predicted roughness at year t, IRI0 is the roughness just after
the latest rehabilitation, IRI1 is the latest recorded roughness, At is the age of the
pavement surface at year t, A1 is the age of the pavement surface when the latest
roughness recording made.

Saleh et al. (2000) developed a mechanistic roughness model relating the
roughness with the number of load repetitions, axle load, and asphalt layer thickness
(Eq. (8)). The model applied vehicle dynamic analysis to estimate the dynamic
force profile. The model also used the finite element structural analysis to estimate
the change of pavement surface roughness for each load repetition. The statistical
relationships in Eq. (8) show that initial roughness (IRI0) is the most significant
factor that affects roughness at later ages. The other important factors are axle load
(P), asphalt thickness (T), and the number of load repetitions (ESALs) (Saleh et al.
2000).

IRI D �1:415C 2:923
p

IRI0 C 0:00129
p

ESALs C 0:000113T

� 5:485 � 10�10P 4 � 10�3T
p

ESALs C 5:777 � 10�12P 4
p

ESALs (8)
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George et al. (1989) carried out various regression analyses to develop
empirical-mechanistic performance models for the highways in Mississippi based
on the pavement condition data during the period of 1986–1988. The constructed
performance models were evaluated based on the rational formulation, behavior of
the models, and statistical parameters. The exponential and power functions of both
concave and convex shapes were identified as the statistically significant functions.
The best-fit models for the performance prediction (PCIt) of the flexible pavement
with no overlay (Eq. (9)), with overlay (Eq. (10)), and composite pavement
(Eq. (11)) are given below (George et al. 1989):

PCItD90 � a �exp
�
t b
� � 1	 log

�
ESAL

SNc

�
8aD0:6349I b D 0:4203I C D 2:7062

(9)

PCItD90 � a �exp
�
t b
� � 1	 log

�
ESAL

SNc � T
�

8aD0:8122I bD0:3390I CD0:8082
(10)

PCIt D 90 � a
"

exp

 �
t

T

�b!

� 1
#

log ŒESAL�8a D 1:7661I b D 0:2826

(11)

The prediction models identified t, SN, and T as the most significant factors of
pavement performance. The computational accuracy along with the direct influence
of SN and T on the mechanistic parameters (e.g., stress, strain, and deflection)
were the reasons for their significance in the performance model (George et al.
1989). The attribute ESALs was identified as the less important factor of pavement
performance. George et al. (1989) argued that ESALs would be the weakest link
in the cumulative traffic computation because several questionable input parameters
(e.g., traffic count, traffic growth factor, and truck factor) are associated with the
ESALs estimation. George et al. (1989) applied the same argument for the exclusion
of the environmental loads which include thermal effects, subgrade movements in
the expansive clays, freeze-thaw effects, and bitumen aging.

Smadi and Maze (1994) determined the PCI for the Iowa Interstate 80 based on
the 10 years traffic data. The performance curve of PCI was a function of only the
total number of 18 kip ESALs that the pavement had experienced (Eq. (12)) (Smadi
and Maze 1994):

PCI D 100 � ˛ .ESALs/ ; ˛ is constant depends on surface type (12)

de Melo e Siva et al. (2000) proposed the logistic growth pavement performance
curve for local government agencies in Michigan. These agencies commonly use
a PMS called RoadSoft (de Melo e Siva et al. 2000). The model of de Melo
e Siva et al. (2000) was based on the Kuo’s pavement model considering the
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ascending distress index with different design service life values (Kuo 1995). In this
formulation, the starting distress index of a reconstructed or resurfaced pavement
was established as 0. The boundary condition of Kuo’s logistic growth model (Kuo
1995) is expressed by Eq. (13) (de Melo e Siva et al. 2000).

DI D ˛

�
.˛ C ˇ/

.˛ C ˇe�� t /
� 1

�
(13)

Where DI is distress index, ˛ is the potential initial of DI, ˇ is the limiting of DI,

t is the age (years), � D � 1
DSL ln

�nh
.˛Cˇ/
.˛CcDP/

i
� 1

o
˛
ˇ

�
is the deterioration pattern

index, DSL is the design service life, and cDP is the predetermined DI (de Melo e
Siva et al. 2000).

de Melo e Siva et al. (2000) argued that the parameter values, in the logistic
growth model, had to be inverted to meet the constraints of the PASER and RoadSoft
data. In the PASER and RoadSoft data, the values range from 1 to 10, and the starting
DI of a distress-free pavement (reconstructed or resurfaced) is 10. To reflect this, the
boundary condition was reconstructed as Eq. (14) (de Melo e Siva et al. 2000).

PASER Rating D ˛ � ˇ
�

.˛ C ˇ/

.ˇ C ˛e�� t /
� 1

�

8� D � 1

DSL
ln

���
.˛ C ˇ/

.˛ C ˇ � cDP/

�
� 1


ˇ

˛

�
(14)

Sadek et al. (1996) developed a distress index (DI), which was a composite index
reflecting severity and frequency of the observed distresses in the pavement surface.
This index is a function of average yearly ESALs, age (t) of the pavement and
thickness of the overlay (T) (Eq. (15)).

DI D 100 � 5:06 � t 0:48ESALs1:29T �0:20 (15)

Robinson et al. (1996) developed a sigmoidal form of the distress model for the
Texas Pavement Management Information System, where D1 predicted the punch-
outs per mile and D2 predicted the Portland cement concrete patches per mile
(Eq. (16)) (Pilson et al. 1999).

D1 D 101:517 exp �
�
538:126

t

�0:438
and D2 D 1293:840 exp �

�
399:932

t

�0:536

(16)

Pilson et al. (1999) developed the pavement deterioration model. The fundamen-
tal concept of this model is that the rate of the deterioration of one component of
a system is a function of the level of deterioration of itself and other components
in the system. The coefficients describing these functions can be summarized as an
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interactivity matrix (C) (Eq. (17)). The additional deterioration of surface (S) during
the current year (dS) is proportional to its own current level of deterioration and the
deterioration levels of the base (B) and subbase (Sb) (Eq. (18)) (Pilson et al. 1999).

C D

2

6
4

Cs0 Cs1 Cs2 Cs3
CB0 CB1 CB2 CB3
CSb0 CSb1 CSb2 CSb3

3

7
5 (17)

dS D Cs0 C Cs1S C Cs2B C Cs3Sb (18)

Where Cs0, Cs1, Cs2, Cs3 are the linear proportional constants for surface. The
effect of different maintenance actions on each component can be measured by
the same interactivity matrix. The assumption is that the maintenance actions will
reduce the deterioration level to a specific fraction of the current value (Pilson et al.
1999).

However, the deterministic approaches of performance model cannot explain
some issues such as (a) randomness of traffic loads and environmental conditions,
(b) the difficulties in quantifying the factors or parameters that substantially affect
pavement deterioration, and (c) the measurement errors associated with pavement
condition, and the bias from subjective evaluations of pavement condition (Li et al.
1997). For example, in Eq. (1), each of the factors of pavement performance index
can further be subdivided into a set of individual factors. Total equivalent granular
thickness of the pavement structure (He) is determined by the properties of pavement
materials, equivalent layer factors defined for the pavement materials, and construc-
tion quality. The effect of ESALs applied on the pavement for t years is not the same
because of the traffic growth rate, percentage of trucks, and traffic distribution on
the pavement (Li et al. 1997). These constraints of deterministic approaches broker
for the application of stochastic pavement performance modeling.

3 Stochastic Pavement Performance Modeling

The stochastic models recently have received considerable attentions from pavement
engineers and researchers (Wang et al. 1994; Karan 1977). Typically, a stochastic
model of pavement performance curve is represented by the Markov transition
process (Li et al. 1997). Knowing the “before” condition or state of pavement, the
Markov process predict the “after” state (George et al. 1989). The main challenge
for these stochastic models is to develop the transition probability matrices (TPMs).

Wang et al. (1994) developed the Markov TPMs for the Arizona Department
of Transportation by using a large number of observed pavement performance
historical data for categorized highways with several initial pavement condition
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states. The pavement probabilistic behavior is expressed by Eq. (19) for all i, j, l,
n, and 0 � v � N, 0 � n � N (Wang et al. 1994):

P
.n/
ij D

MX

kD0
P
.1/

ik P
.n�1/
kj 8n�v and P

.n/
ij D

MX

iD0

MX

kD0

�
P
.v/
ik � P .1/a

kl

�
P
.n�v�1/
lj 8n>v

(19)

Where P(n)
ij is the n-step transition probability from condition state i to j for

the entire design period (N), M C 1 is the total number of pavement condition
states, v is the period when the rehabilitation is applied; P(v)

ik is the v-step transition
probability from condition state i to k under the routine maintenance; P(1)a

kl is the
one-step transition probability from condition k to l at period v; and P(n � v � 1)

lj is
the (n � v � 1) step transition probability from condition l to j under the routine
maintenance (Wang et al. 1994).

The n-step transition probability matrix (P(n)) is given by Eq. (20) (Wang et al.
1994).

P .n/ D

2

6
4

P
.n/
00
:::

� � � P
.n/
0M
:::

P
.n/
M0 � � � P .n/

MM

3

7
5 D

(
P
.n/
routine n � v

P
.v/
ik � P .1/a

kl � P .n�v�1/
lj n > v

(20)

Where P(n)
routine is the n-step transition probability matrix before the rehabilitation

when n � v (Wang et al. 1994). Equations (19) and (20) can easily be expanded to
analyze pavement probabilistic behavior where more than one rehabilitation actions
are applied.

Karan (1977) developed pavement deterioration functions by means of Markov
process modeling for the PMS of the Waterloo (Ontario) regional road network. In
this study, the pavement performance deterioration versus age was modeled as a
time-independent Markov process (Eq. (21)).

V.n/ D V.0/ �Mn (21)

Where V(n) is the predicted condition state matrix at year n, V(0) is the initial
condition state matrix at year 0, and M is the one-step transition probability matrix
(Wang et al. 1994).

For the stochastic performance modeling for different pavement categories of
roads, a large amount of measured performance data for all pavement categories in
a road network have to be obtained and processed, which are time-consuming and
costly (Li et al. 1997).
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4 Transition from Deterministic to Stochastic
Performance Modeling

Since the deterministic methods are widely applied by different studies and organi-
zation for the pavement performance modeling, the provision of transitional process
from deterministic to stochastic modeling can be useful. Li et al. (1997) discussed
the principles of system conversion from a deterministic to a stochastic model. Li
et al. (1997) considered the AASHTO (Eq. (2)) and OPAC (Eq. (4)) deterministic
performance models to convert into stochastic models. Li et al. (1997) assumed that
the predicted actual traffic (ESALs) is normally distributed with ps.ESALs/t

.ESALs/

probability density function for a pavement section (s) in t years. The ESALs is
the mean value of the traffic (ESALs) that drives the pavement condition state to
deteriorate from the initial state i to state j. The (ESALs)s

ij, a random variable, can
be defined as the maximum numbers of ESALs that a pavement section s can carry
before it drops from condition state i to state j. The transition of (ESALs)s

ij from
deterministic to stochastic numbers can be expressed by Eq. (22) (Li et al. 1997).
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(22)

By applying Eq. (22) to each specific section of pavement in a road network, the
non-homogeneous Markov TPM for pavement section s at stage t can be calculated
by Eq. (23) (Li et al. 1997).

P s.t/ D

2

666
4

P s
10;10.t/ P
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10;9.t/ : : : P
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:::
:::

:::

P s
0;10.t/ P s

0;9.t/ � � � P s
0;0.t/

3

777
5

(23)

Traditionally, the TPMs have been assumed to be time independent through
the analysis period. Li et al. (1997) developed time-dependent nonhomogeneous
Markov transition process. The modeling process was governed by three compo-
nents: state, stage, and transition probability. First, stages were considered a series
of consecutive equal periods of time (e.g., each year). Second, states were used to
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measure pavement functional and structural deterioration in terms of PCS. Finally,
a set of TPMs was calculated to predict the pavement condition state (assuming 10
condition states) at year t (Eq. (24)) (Li et al. 1997).
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This nonhomogeneous Markov transition process can be applied to simulate the
probabilistic behavior of pavement deterioration in predicting pavement serviceabil-
ity level (Li et al. 1997).

5 Drawbacks of Markov Decision Process

The main drawback of Markov Decision Process (MDP) approach is that it does not
accommodate budget constraints (Liebman 1985). Another important drawback of
this approach is that pavement sections have to be grouped into a large number of
roughly homogeneous families based on pavement characteristics (Li et al. 2006).
A large number of families mean fewer sample of pavement sections in each
family, which compromises the reliability and validity of the TPMs generated for
each family (Li et al. 2006). There are equally large numbers of M&R treatments
for each family of pavement sections. It is suggested that all pavement sections
should be categorized into small numbers of families. As the MDP addresses the
performance evaluation of the pavement section as a group, it is not possible
to address the performance condition of individual pavement section. Similarly,
the optimization programming of M&R strategies are determined for a group of
pavement sections rather than an individual section under a given budget. Moreover,
the optimization programming of M&R strategies are calculated from the steady-
state probabilities. However, in reality, the pavements under a given maintenance
policy usually takes many years to reach the steady state and the proportion of the
pavements are changing year by year. Therefore, the use of steady-state probabilities
in the optimization objective function does not fully reflect reality, especially when
this transition period is very long (Li et al. 2006).
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6 Backpropagation Neural Network for Dealing
with Uncertainties

In reality, many uncertain factors are involved in pavement performance curves.
Ben-Akiva et al. (1993) developed the latent performance approach to report
the problem of forecasting condition when multiple technologies are used to
collect condition data. In that approach, a facility’s condition is represented by a
latent/unobservable variable which captures the ambiguity that exists in defining
(and consequently in measuring) infrastructure condition (Durango-Cohen 2007).
Unfortunately, this proposed model suffers from computational limitations. The
process of finding an optimal action for a given period involves estimating and
assigning a probability to every possible outcome of the data-collection process.
The number of outcomes, the number of probabilities, and the computational effort
to obtain M&R policies increases exponentially with the number of distresses being
measured (Durango-Cohen 2007).

Durango-Cohen (2007) applied the polynomial linear regression model to define
the dynamic system of infrastructure deterioration process. At the start of every
period, the agency collects sets of condition data (Xt), and decides to take an
action (At). The structure of deterioration process is determined by the material
and construction quality, environmental conditions, and so on. These factors are

represented by the vector
�!̌

t . The deterioration model is given in Eq. (25)
(Durango-Cohen 2007).

Dt

�
Xt ; At ;

�!̌
t

�
D gtXt C htAt C �!̌

t C "t (25)

This model assumed that "t accounted for the systematic and random errors in
the data-collection process. The relationship between the latent condition and the
distress measurements can be expressed by Eq. (26) (Durango-Cohen 2007). The
measurement error model not only included the condition data (Xt), but also includes
a set of exogenous (deterministic or stochastic) inputs captured in the matrices � t

(one vector associated with each distress measurement). The vector
�!
� t is assumed

to follow a Gaussian distribution with finite covariance matrix (Durango-Cohen
2007).

M .Xt ; �t / D HtXt C It�t C �!
� t (26)

The Durango-Cohen’s model cannot define the proportion of errors contributed
by each of the factors to the distress outcome. This study proposes the Back-
propagation Artificial Neural Network (BPN) method to estimate the pavement
performance for each year during the life-span of the pavement. The estimated
pavement performance for each year can, later on, be plotted with respect to
the pavement-age to determine pavement-deterioration during the life-span of the
pavement.
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The fundamental concept of BPN networks for a two-phase propagate-adapt
cycle is that predictive variables (e.g., traffic loads, structural number) are applied
as a stimulus to the input layer of network units that is propagated through each
upper layer until an output (e.g., PCI, IRI) is generated. This estimated output can
then be compared with the desired output to estimate the error for each output
unit. These errors are then transferred backward from the output layer to each
unit in the intermediate layer that contributes directly to the output. Each unit in
the intermediate layer will receive only a portion of the total error signal, based
roughly on the relative contribution the unit made to the original output. This
process will repeat layer-by-layer until each node in the network will receive an
error representing its relative contribution to the total error. Based on the error
received, connection weights will then be updated by each unit to cause the network
to converge toward a state allowing all the training patterns to be encoded (Freeman
and Skapura 1991).

Attoh-Okine (1994) proposed the use of Artificial Neural Network (ANN) for
predicting the roughness progression in the flexible pavements. However, some
built-in functions, including learning rate and momentum term of the neural network
algorithm, were not investigated properly. The inaccurate application of these
built-in functions may affect the accuracy capability of the prediction models
(Attoh-Okine 1999). Attoh-Okine (1999) analyzed the contribution of the learning
rate and the momentum term in BPN algorithm for the pavement performance pre-
diction using the pavement condition data from Kansas department of transportation
network condition survey 1993 (Kansas Department of Transportation 1993). In that
model, IRI was the function of rutting, faulting distress, transverse cracking distress,
block cracking, and ESALs (Attoh-Okine 1999).

Shekharan (1999) applied the partitioning of connection weights for ANN in
order to determine the relative contribution of structural number, age of pavement,
and cumulative 80-KN ESALs to the prediction of pavement’s present serviceability
rating (PSR) (Shekharan 1999). The output layer connection weights are partitioned
into input node shares. The weights, along the paths from the input to the output
node, indicate the relative predictive importance of input variables. These weights
are used to partition the sum of effects on the output layer (Shekharan 1999).

The built-in functions of ANN proposed by Attoh-Okine (1994) and the parti-
tioning of connecting weights of ANN applied by Shekharan (1999) may affect
the accurate capability of the prediction models. As we know, a neural network
is a mapping network to compute the functional relationship between its input
and output; and these functional relationships are defined as the appropriate set of
weights (Freeman and Skapura 1991). The generalized delta rule (GDR) algorithm
of BPN can deal with these problems. It is a generalization of the least-square-mean
(LMS) rule. This chapter discusses the GDR to learn the algorithm for the neural
network because the relationship is likely to be nonlinear and multidimensional.
Suppose we have a set of P vector-pairs in the training set, (x1,y1), (x2,y2),
: : : (xp,yp), which are examples of a functional mapping y D�(x) : x 2 RN , y 2 RM .
We also assume that (x1,d1), (x2,d2), : : : (xp,dp) is some processing function that
associates input vectors, xk (rutting, faulting distress, transverse cracking distress,
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block cracking, ESALs, and environmental conditions) with the desired output
value, dk (e.g., IRI). The mean square error, or expectation value of error, is defined
by Eq. (27) (Freeman and Skapura 1991).

"2k D �k D .dk � yk/2 D �
dk � wtXN

�2
where y D wtX (27)

The weight vector at time-step t is wt. As the weight vector is an explicit function
of iteration, R, the initial weight vector is denoted w(0), and the weight vector at
iteration R is w(R). At each step, the next weight vector is calculated according to
Eq. (28) (Freeman and Skapura 1991).

w .RC 1/ D w.R/C�w.R/ D w.R/ � 
r�k .w.R//
D w.R/C 2
"NXN8r� .w.R// � r� .w/ (28)

Equation (28) is the LMS algorithm, where �w(R) is the change in w at the Rth
iteration, and 
 is the constant of negative gradient of the error surface. The error
surface is assumed as a paraboloid. The cross section of the paraboloidal weight
surface is usually elliptical, so the negative gradient may not point directly at the
minimum point, at least initially. The constant variable (
) determines the stability
and speed of convergence of the weight vector toward the minimum error value
(Freeman and Skapura 1991).

The input layer of input variables distributes the values to the hidden layer units.
Assuming that the activation of input node is equal to the net input, the output of
this input node (Ipj) is given by Eq. (29). Similarly, the output of output node (Opk)
is given by Eq. (30), where the net output from the jth hidden unit to kth output units
is netpk (Freeman and Skapura 1991).

Ipj D fj
�
netpj

�
netpj D

NX

iD1
wj ixpi C �j (29)

Opk D fk
�
netpk

� 8netpk D
LX

jD1
wkj Ipj C �k (30)

Where netpj is the net input to the jth hidden unit, netpk is the net input to kth
output unit, wji is the weight on the connection from the ith input unit to jth hidden
unit, wkj is the weight on the connection from the jth hidden unit to pth output unit,
and � j is the bias term derived from Eq. (27). The weight is determined by taking
an initial set of weight values representing a first guess as the proper weight for
the problem. The output values are calculated applying the input vector and initial
weights. The output is compared with the correct output and a measure of the error
is determined. The amount to change each weight is determined and the iterations
with all the training vectors are repeated until the error for all vectors in the training
set is reduced to an acceptable value (Freeman and Skapura 1991).
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Equations (29) and (30) are the expressions of output of input and output nodes,
respectively. In reality, there are multiple units in a layer. A single error value (� k)
is not suffice for BPN. The sum of the squares of the errors for all output units can
be calculated by Eq. (31) (Freeman and Skapura 1991).

�pk D 1

2

MX

kD1
"2pk D 1

2

MX

kD1
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ypk �Opk
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@wkj
D � �ypk �Opk

� @

@wkj

�
Opk

�

D � �ypk �Opk
� @fk

@
�
netpk

�
@
�
netpk

�

@wkj
(31)

Combining Eqs. (29), (30), and (31), the change in weight of output layer can be
determined by Eq. (32) (Freeman and Skapura 1991).

@
�
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�
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D � �ypk �Opk

� @fk
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�
netpk

�
@

@wkj
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@
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D � �ypk �Opk
�
f 0
k

�
netpk

�
Ipj (32)

In Eq. (32), f
0

k(netpk) is the differentiation of Eq. (30); this differentiation
eliminates the possibility of using a linear threshold unit, since the output function
for such a unit is not differentiable at the threshold value. Following Eq. (32), the
weights on the output layer can be written as Eq. (33) (Freeman and Skapura 1991).

wkj .RC 1/ D wkj .R/C �
�
ypk �Opk

�
f 0
k

�
netpk

�
Ipj (33)

Where � is a constant, and is also known as learning-rate parameter. How-
ever, fk(netpk) needs to be differentiated to derive f

0

k. There are two forms of
output functions for paraboloid [fk(netjk) D netjk] and sigmoid or logistic functionh
fk
�
netjk

� D .1C e�netjk /
�1i. The sigmoid or logistic function is for binary

output units and the paraboloid function is for continuous output units. As the output
of this model (pavement condition index) is continuous, paraboloid function can be
applied for output function and can be expressed by Eq. (34) (Freeman and Skapura
1991).

wkj .t C 1/ D wkj .t/C �
�
ypk �Opk

�
Opk

�
1 �Opk

�
Ipj D wkj .t/C �ıpkIpj

(34)



The Pavement Performance Modeling: Deterministic vs. Stochastic Approaches 193

The estimated output, from connection weight, is compared to the desired output,
and an error is computed for each output unit. These errors are then transferred
backward from the output layer to each unit in the intermediate layer that contributes
directly to the output. Each unit in the intermediate layer receives only a portion of
the total error signal, based roughly on the relative contribution the unit made to the
original output. This process repeats layer-by-layer until each node in the network
has received an error that represents its relative contribution to the total error. Based
on the error received, connection weights are then updated by each unit to cause
the network to converge toward a state that allows all the training patterns to be
encoded. Reconsidering Eqs. (30), (31), and (34) for Backpropagation algorithm,
change of weights on hidden layer is expressed by Eq. (35) (Freeman and Skapura
1991).
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Equation (35) explains that every weight-update on hidden layer depends on
all the error terms (@pk) on the output layer, which is the fundamental essence
of the backpropagation algorithm. By defining the hidden layer error term as
ıpj D f

0

j(netpj)
P

M
k D 1@pkwkj, we can update the weight equations to become
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analogous to those for the output layer (Eq. (36)). Equations (34) and (36) have
the same form of delta rule (Freeman and Skapura 1991).

wj i .t C 1/ D wj i .t/C �ıxpi (36)

7 Reliability Analysis of the Traffic Data and Estimated
Pavement Deterioration

The BPN can properly deal with the statistical randomness. The uncertainty is not
only associated with the statistical analysis but also with the pavement condition and
traffic data. How can we confirm that the traffic data for each year are reliable? To
overcome these uncertainties, the reliability analysis (Ri) of the traffic data (ESALs)
can be performed. The reliability analysis of ESALs is expressed at Eq. (37) by
comparing the potential ESALs that the pavement structure can withstand before its
condition state drops to a defined level (ESALpcs(i)) and the actual predicted annual
ESALs (Li et al. 1996).

Ri.ESAL/ D P
��

log ESALpcs.i/ � log ESALt
�
> 0

	

D ˆ

2

6
4

log ESALpcs.i/ � log ESALtq
S2log ESALpcs.i/

C S2log ESALt

3

7
5 D ˆ.z/ (37)

Where ˆ(z) is the probability distribution function for standard normal random
variable, log ESALpcs.i/ is the mean value of log ESALpcs(i), log ESALt is the mean
value of log ESALt, and S2log ESALpcs.i/

and S2log ESALt
are the standard deviations of

log ESALpcs.i/ and log ESALt , respectively.

8 Conclusion

The pavement performance modeling is an essential part of pavement management
system (PMS) because it estimates the long-range investment requirement and the
consequences of budget allocation for maintenance treatments of a particular road
segment on the future pavement condition. This chapter discusses various determin-
istic and stochastic approaches for calculating pavement performance curves. The
deterministic models include primary response, structural performance, functional
performance, and damage models. The deterministic models may predict inap-
propriate pavement deterioration curves because they cannot explain some issues,
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such as: randomness of traffic loads and environmental conditions, difficulties in
quantifying the factors or parameters that substantially affect pavement deteriora-
tion, and the measurement errors. The stochastic performance models, usually apply
Markov transition process (MTP), predict the “after” state condition knowing the
“before” state condition of pavement. This chapter also shows the transition methods
from deterministic to stochastic pavement performance modeling. These stochastic
methods cannot address the performance condition of individual pavement section.
Another major drawback of stochastic models is that the optimization programming
of M&R strategies are calculated from the steady-state probabilities. However, in
reality, the pavements under a given maintenance policy usually takes many years
to reach the steady state, and the proportion of the pavements are changing year by
year. Therefore, the use of steady-state probabilities in the optimization objective
function does not fully reflect reality, especially when this transition period is
very long. This chapter proposes Backpropagation Artificial Neural Network (BPN)
method with generalized delta rule (GDR) learning algorithm to offset the statistical
error of pavement performance modeling. This chapter also suggests the application
of reliability analyses to deal with the uncertainty of pavement condition and traffic
data.
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Probabilistic Considerations in the Damage
Analysis of Ship Collisions

Abayomi Obisesan, Srinivas Sriramula, and John Harrigan

Abstract Ship collision events are often analyzed by following the approach of
internal mechanics and external dynamics. The uncertainties in collision scenario
parameters, which are used in the calculation of external dynamics, are usually
quantified during ship collision analysis. However, uncertainties in the material and
geometric properties are often overlooked during the analysis of internal mechanics.
Consequently, it may lead to overestimation or underestimation of ship structural
design capacity, which could impact on system performance.

This study aims to show a framework for assessing the reliability of ship hull
structures during collision events. Finite element analysis using ABAQUS software
and simplified analytical methods have been utilized to model the resistance of
ship hull plates against the impact from the bulbous bow of a striking ship. The
particulars of a general cargo vessel involved in a real-life collision have been used
in the study to determine the external force required for the considered hull plate to
resist. Based on Monte Carlo simulation, reliability analysis has been carried out to
model the uncertainties of hull plate displacement. Two thousand design sets of the
geometric and material properties were propagated through the simplified analytical
model to obtain the resulting displacement data. These data were subsequently
analyzed to obtain a probabilistic model for hull plate displacement, along with
the variable sensitivity.
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1 Introduction

Due to the increase in energy and commodity demand worldwide, there have been
an increase in sea transportation by Cargo and tanker vessels. The greatest risk
associated with sea transportation is loss of containment, which then poses a threat
to marine biodiversity, human lives, structural assets, and the reputation of the
companies involved. According to IHS Fairplay world casualty statistics for 2011
(IHS Fairplay 2012), 126 ships with a total of approximately 770,000 gross tonnage
were lost at sea in 2011. Approximately 19 % of the total ship losses were due to
ship collisions and contact. Despite the advancement in proactive measures such as
the ship navigation systems, ship collisions are still being recorded every year. This
reiterates the importance of analyzing the structural performance of ships during
collisions.

The two most common methods for analyzing ship collisions are external
dynamics and internal mechanics. External dynamics is concerned with the rigid
body motion of the striking ship and the struck ship as well as the energy dissipated
by the ship structures due to collision. External dynamics are calculated either
by numerical or analytical methods (Zhang 1999). Using an analytical approach,
closed-form expressions can be derived for the impact impulses and the kinetic
energy loss during ship collisions. With the application of the principles of
conservation of momentum and energy, the analysis is achieved by calculating the
deformation due to the body motion of the struck ship and the striking ship, based
on the assumption that the structural response comes from the local contact only.
Detailed discussion on the internal mechanics is provided in Sect. 2 of this study.

There are existing models which incorporate the processes of internal mechanics
and external dynamics for ship collision analysis. The most common approaches
in the literature are ALPS/SCOL (Paik and Pedersen 1996), DAMAGE (Simonsen
1999), SIMCOL (Chen 2000), and DTU (Lutzen 2001) models. The common
denominator for these models is the assigned stopping criteria which compare the
energy dissipation calculated from the external dynamics and the energy absorption
calculated from the internal mechanics. Once an equilibrium condition is met, these
models evaluate output parameters such as the maximum penetration and damage
length. External dynamics and internal mechanics are estimated either separately or
simultaneously in the models.

The outcome of the ship collision analysis provides input to decisions on
design specifications, for example, on the quality of steel or the appropriate
plate thickness to be used in shipbuilding. Improved understanding that leads to
design improvements can then reduce the risk to ship structures and the marine
environment. To improve our understanding, uncertainties that are inherent in the
analysis variables need to be considered. Models such as SIMCOL (Chen 2000)
and DTU (Lutzen 2001) quantified the uncertainties in collision scenarios during
the estimation of output characteristics of the external dynamics. The variables of
the collision scenario were identified as collision angle, speed, length, type, draught
of the striking ship and struck ship.
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However, the uncertainties associated with the internal mechanics of ship col-
lisions also need to be analyzed. The design strength of ship structures, which is
a major factor in the analysis of internal mechanics, possesses random behavior.
Such behavior could be attributed to the basic strength and geometry variables of
structural members. Unfortunately, these variables tend to be represented by their
deterministic or design values only, with possible variances often ignored. However,
these values are applied with the inclusion of a generalized safety margin between
the applied load and the strength of structural members, called safety factor. Due to
the nonflexible nature of the safety factor, safety margin of structural members may
not be able to accommodate possible changes to certain factors, such as strength
and load variability, possibility of correlation among load and strength parameters,
and uncertainties in structural analysis. It is important to understand how such
changes may affect the characteristics and reliability of structural members in order
to achieve optimal design.

Uncertainty quantification of basic random variables for reliability assessment
can contribute to the advancement and improvement of decisions made in ship
structural design procedures by providing new design measures and a reliability
framework that is applicable to both conventional and advanced ship structural
members. It is worth noting that the application of reliability assessment to ship
structures is not a new phenomenon in ship structural design. The study by
Nikolaidis et al. (1993) proposed a method for assessing the reliability of ship deck
panels to identify and rank the most important uncertainties and the most effective
design improvement. However, the assessment is limited to the type of ship assessed
as a result of the deterministic values assigned to the main geometric variables
of the deck panel. The study by Fang and Das (2005) assessed and compared the
reliability of damaged ships during collision and grounding scenarios by fitting
suitable distributions to model the uncertainties from load and strength variables. It
was concluded that the risk caused by collision is far greater than that of grounding
when a damaged ship continued en route.

Chowdhury (2007) assessed the failure probability of the mid-ship section
due to yielding by quantifying uncertainties from the load and strength bending
moments. The reliability assessment study by Khan and Das (2008) followed a
similar approach and identified that particular types of double hull tanker and bulk
carriers in two different service conditions (intact and damage) would have a higher
failure probability in sagging than in hogging during side collision and grounding
scenarios. They quantified the model uncertainties that are attributed to the variables
of the ultimate/residual strength of the mid-ship section and also to the load variables
such as still water, wave-induced vertical and horizontal bending moments.

The literature discussed earlier justified the necessity to consider various uncer-
tainties of ship collision analysis in a reliability framework. Failure of the ship
structure, such as buckling of hull girder members, can be defined and modeled
using the corresponding limit state functions. The functional relations can be solved
using structural reliability techniques such as First and Second Order Methods
(FORM/SORM) and Monte Carlo Simulation (MCS).
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In this study, it is intended to apply reliability assessment for the purpose of
improving existing knowledge on the performance of ship hull structures during
collisions. The uncertainties from the strength and geometry variables of ship
hull plating are quantified using data from existing literature. The probabilistic
characteristics of the strength and geometry variables are then propagated through
both the finite element and simplified analytical models using a suitable sampling
technique. Reliability and sensitivity assessment are then performed to model
the outcome: MCSs to analyze the structural performance and Sobol’s first-order
indices to determine the contribution of input variables on the model output
variation.

2 Internal Mechanics

The internal mechanics approach is concerned with the local deformation of the
structural members at the bow of the striking ship and at the side of the struck
ship and how they would respond during loading, in terms of energy absorption,
displacement, and failure load. The bow of the striking ship is usually modeled to
be perfectly rigid, hence internal mechanics mostly consider the deformation of the
structural members of the stuck ship.

The first step in the internal mechanics analysis is the identification of ship
structural members affected by the impact and the classification of their energy
absorbing deformation mechanisms. This is followed by the derivation of a closed-
form expression of their failure load and energy absorbed. Ship structural members
may be classified into basic elements as follows:

• The side shell panels, which are the outer and the inner shell panels.
• The web girders, such as longitudinal stringers, transverse frames, transverse

bulkheads, decks, and floors.
• The intersection elements, created at the junction between transverse and longi-

tudinal members.

Failure of these members is generally defined beyond material yield points, hence
failure and energy absorbing mechanisms are governed by a complex mixture of
buckling, folding, tearing, rupture, and crushing of the members.

In recent years, the finite element method and simplified method have been the
preferred technique employed to predict ship damage due to a collision. Due to its
costly nature, the experimental method is mostly used to have a better understanding
of the deformation process and to validate results from other methods. Computer
advancement has made finite element method a useful tool for ship collision
analysis. For example, Amdahl and Kavlie (1992), Kitamura (1997), and Paik and
Thayamballi (2003) have investigated the behavior of ship structures using nonlinear
finite element methods. However, due to the huge computational effort required for
FE analysis of ship collision problems, simplified methods are commonly employed
for the verification of ship impact resistance.
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Minorsky (1959) made the first attempt to derive a simplified expression for
collision resistance. An empirical equation was derived which relates the collision
energy absorbed with the material volume of the damaged ship structures based
on past history of collision cases. Good agreement was achieved for high energy
collision cases. Following this pioneering work, several authors have developed
improved analytical solutions. These solutions have produced closed-form expres-
sions that give a good prediction of the basic features of structural deformations.

Simplified analytical models assess the resistance of ship hull structures when
subjected to collision. The structural members that make up the hull structure are
outer shell plating, transverse frames, longitudinal stringers, transverse bulkhead,
and the inner shell plating. Several authors have developed simplified analytical
formulae for the resistance force during deformation of these members. The
resistance force is calculated from the consideration of the internal energy dissipated
due to a kinematically admissible deformation of a structural member. Common
assumptions in this method include:

• Structural members are independent of each other, but they can be combined to
derive the total collision resistance of the ship structure.

• Loading by the bow of the striking ship is normal to the hull structure; the
material of the structural member is rigid-perfectly plastic and rate independent.

• Most of the simplified analytical formulae from the literature consider the loading
regime for which ship structures deform in a quasi-static mode.

3 Simplified Analytical Formulae for Impact Resistance

The evaluation of the impact resistance of ship structures using simplified analytical
formulae is usually computed using energy conservation techniques. This involves
the application of idealized assumptions and empirical data.

The shape of the striking ship bow, which collides with the hull structure of
the struck ship is considered first in the evaluation of impact resistance. This is
particularly important when establishing the resistance and displacement relation-
ship for the hull shell plating. In the literature, the contact between the bow and
side panel has been idealized as a point load as well as a spherical or elliptical
paraboloid. Zhang (1999) and Buldgen et al. (2012) established a resistance formula
for a rectangular plate subjected to transverse and oblique impact, respectively, by a
point load. Simonsen and Lauridsen (2000) and Wang (2002) developed a resistance
formula for a circular plate impacted by a spherical-shaped indenter. Zhang (1999)
and Haris and Amdahl (2012) idealized the striking ship bow as elliptical paraboloid
and evaluated the resistance of a rectangular plate to the bow impact.

Zhang (1999) further simplified the bow shape into a circular paraboloid using
the assumption that vertical and horizontal radii are equal, but this idealization may
not be appropriate for all ship bulbous bows. Haris and Amdahl (2012) introduced
two parameters to their resistance formulae in order to consider the possibility of
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Fig. 1 An idealized model of
bulbous bow impact on shell
plate

unequal curvatures of the bow in the x- and y-directions. The resistance of a square
shell plate (see Fig. 1) to impact by an elliptical paraboloid is given as follows
(Zhang 1999):

Fp D 1:5396�0tpı
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where Fp is the external force, �0 is the plate material flow stress usually defined as
the average of the material yield stress and ultimate stress, tp is the plate thickness,
ı is the displacement, a represents the half-length and half-breadth of the square
plate, RL is the bulb length, and R is the bulb radius.

4 Numerical Analysis of Damage to Hull Structure

4.1 Finite Element Models

In this study, a square shell plate and the bulb section of a ship bow were modeled.
The dimensions applied to the two models are given in Table 1. The bulb was
idealized as a circular paraboloid (see Fig. 2) and modeled using the following
parametric equation:

x

RL
D y2 C z2

R2
; (2)

where x, y, and z are the coordinates of the bulb. The shell plate and the bulb were
modeled using Abaqus/CAE (ABAQUS 2011). Numerical analysis was carried out
using the nonlinear FE software, Abaqus/Standard. The shell plate was modeled by
a general-purpose shell element in order to incorporate changes in plate thickness
as the plate elements deform. Therefore, the shell plate was modeled using an S4R
element, which is a quadrilateral shell element with linear interpolation and reduced
integration. Frictionless contact was assumed between the bulb and plate.
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Table 1 Geometrical variables
for square plate impact

RL R a tp
8 m 2.83 m 10 m 0.04 m

Fig. 2 Geometry of the idealized bulb (Zhang 1999)

Table 2 Material properties
of the considered square plate

E � �y �u k "�u

210 GPa 0.3 400 MPa 600 MPa 400 MPa 0.5

4.2 Material Properties

Shipbuilding steel, suchas ordinary strength steel (NVA, ABS A, ASTM A36), was
considered as the material of construction for the shell plate.

The shell plate material was assumed to have linear isotropic hardening, which is
a simple and common form (Yaw 2012). The plastic stress was modeled using the
expression:

�
�
"p
� D �y C k"p; (3)

where �y is the yield stress, "p is the equivalent plastic strain, and k is the strength
index, which for linear hardening, can be defined as plastic modulus. Other key
materials are the ultimate stress (�u) and its equivalent plastic strain ."�u/ . The
elastic properties are the Young modulus (E) and Poisson ratio (�). The values of
the material properties used in the analysis are provided in Table 2.

4.3 Numerical Simulation

The plate deformation due to transverse loading by the bulb section of a bow is
largely governed by membrane action. This was observed on the plating when
the equivalent plastic strain distribution was analyzed, as shown in Fig. 3. Itwas
also observed that the largest strain occurs in a localized area of the plate, close
to the contact area. Figure 4 shows the simulation result of the finite element
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Fig. 3 Indentation of the square plate showing (a) plastic strain distribution and (b) the deforma-
tion of the plate
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Fig. 4 Force–displacement plot of square plate impact

method plotted alongside the result of the force–displacement relationship of the
simplified analytical method (Eq. (1)). The two methods show large differences after
approximately 1.0 m displacement.

The linear trend of the simplified method predicts the early load–displacement
behavior well. The simplified method diverges from the FE prediction at a displace-
ment of approximately 1.0 m. This is because, simplified models assume that plate
thickness is constant as the plate deforms, whereas the FE model captures the large
local strains in the contact area of the plate. This is illustrated in a deformed mesh
plot shown in Fig. 3a. This is accompanied by reductions in thickness in the contact
region. At this stage, damage (ductile failure) is not incorporated into either of these
models. Future investigations will incorporate a damage model in the FE analysis.
At present, the change in slope at 1.0 m displacement is assumed to correspond to
failure of the square plate.

5 Uncertainty Quantification

The outcome of most structural designs and their performances are largely governed
by expert judgments. These judgments are made with the qualitative and/or quan-
titative consideration of uncertainties that could be inherent in the design from the
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conceptual stage right through to the decommissioning stage. In the end, judgments
are made on the most advantageous option for the design. However, without a
complete understanding of the variability of performance, expert judgment could
lead to overestimation or underestimation of design capacity, which could impact
on the system reliability.

According to Lindley (1971), the choice of a course of action is largely controlled
by human activities which depend on the personality of the decision makers.
However, the decision taken can be positively influenced through quantitative
approach. Uncertainty is mostly introduced into a system through parameters which
take values within a number of ranges. Parameters with varying values, also called
variables, could be either from the load or strength factors and could also be
from both factors. The variables would therefore require single representations
when analyzing system performance and safety. These representations are currently
achievable by quantifying the variable probabilistic characteristics.

The structural strength and geometry variables of a ship shell plate are considered
in the study. The strength variables are Young’s modulus, yield strength, ultimate
strength, and the strength index. The geometric variables are the plate length,
breadth, and thickness. The quantification process of the variables from the two
classes usually involves data collection and analysis for the determination of
probabilistic characteristics such as probability distribution function (PDF), mean,
standard deviation, and coefficient of variation (C.O.V). Fortunately, this process
has already been performed for different kinds of shipbuilding steel and is available
in the open literature.

Hess et al. (2002) and Guo et al. (2012) compiled statistical information and
data for several shipbuilding steels. Collectively, the literature provided a data bank
with more than 10,500 tests carried out on 11 different steel grades used for marine
applications. However, the common steel types considered are ordinary, high tensile,
high-strength low-alloy (c), and high yield steels. Hess et al. (2002) achieved the
generalization of the compiled probabilistic characteristics using a normalization
technique called bias. The bias was calculated as the ratio of the variable mean value
to its nominal (or design) value. The recommended probabilistic characteristics were
derived by taking an average of the weighted values. The goodness-of-fit tests were
applied to the output of the 10,500 tests to identify suitable PDFs for the strength
and geometric variables. It was observed that normal and lognormal distributions
are valid choices for describing the considered variables.

The study by Guo et al. (2012) used the statistical information to develop
probabilistic models of geometric and material properties for the purpose of
determining the failure probability level for the corroding deck plate of aging
tankers. Their study provided the most up-to-date list of statistical information
for the following strength variables: Young’s modulus, yield strength, and plate
thickness. For the purpose of this study, the statistical information for mild steel
variables are used. The bias factors and ranges for probabilistic characteristics of
basic strength variables recommended by Hess et al. (2002) as well as the nominal
values specified in Tables 1 and 2 are applied to the finite element and simplified
models to carry out a reliability analysis on a square plate impacted by the bulb
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Table 3 Probabilistic
characteristics of strength
random variables (Hess et al.
2002)

Variable Distribution Mean C.O.V

E (GPa) Normal 0.987E 0.076
�y (MPa) Normal 1.3�y 0.124
�u (MPa) Normal 1.05�u 0.075
k (MPa) Deterministic 400 –
tp (m) Lognormal 1.05tp 0.044
a (m) Lognormal 0.988a 0.046

section of a striking ship bow. These characteristics are presented in Table 3 and their
application is discussed in the following sections. It is worth noting that the mean
of the strength random variables is from quoted values of the design steel material,
but multiplied by a bias factor, so that the probabilistic characteristics would be a
representative of a wide spectrum of steel used for shipbuilding.

6 External Force

The striking ship dissipates a considerable amount of kinetic energy during a
collision. The energy dissipated is calculated by taking the time integral of the force
exerted by the striking ship. However, the force value varies in terms of the striking
ship characteristics and sea condition at the moment of impact. The combination of
physical laws of motion and the energy absorbed by the deformation modes in the
structural components are used to predict the extent of the structural damage.

The external force is usually calculated for the xyz-coordinates of the striking ship
and in terms of the ship motion for each coordinate which are surge, sway, and yaw
motions. For simplicity, the surge motion is only considered in this study, and the
expression for the external force is given as:

F D M .1Cmx/ ax; (4)

where M is the mass of the striking ship, mx is the added mass coefficient, and ax

is the acceleration of the striking ship. The added mass coefficient represents the
effects of ship interaction with its surrounding waters. For the current study, a real-
life collision case is used to estimate the contact force between the two ships.

The collision event selected for this study is a 2013 collision event where the
general cargo vessel, Sulpicio Express Siete, impacted on a ferry with about 870
passengers on board. The accident, which claimed the lives of 55 people with 65
more passengers reported missing, happened outside a major port in Talisay. The
general cargo vessel which had approximately 160,000 L of hydrocarbon spilled a
considerable amount of oil into the sea (The Philippine Star 2013).

The main particulars of the striking vessel required for the study are provided
in Table 4. It should be noted that due to the unavailability of sufficient data for
the studied ship in the literature, assumptions were made for two ship parameters.
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Table 4 Main particulars for
Sulpicio Express Siete
(Marine Connector 2013;
Marine Traffic 2013)

Ship particular Value

Deadweight tonnage (DWT) 11,464 t
Length (L) 146 m
Breadth (B) 21 m
Draught (D) 6.8 m
Block coefficient (CB) 0.7
Lightship displacement (LD) 14,714.06 t
Ship mass (M) 26,178.06 t
Maximum speed recorded (v) 7.3 knots

These parameters are the ship acceleration and its block coefficient. However, the
assumptions were made from both ship guidelines and data from a similar vessel.
A block coefficient value of 0.7 was assigned to the vessel and this was used to
calculate the lightship displacement using the following expression:

LD D 1:008 � L � B �D � CB: (5)

The definition of the parameters in Eq. (5) is provided in Table 4. The total
mass of the ship is calculated by doing the sum of the DWT and LD. The added
mass coefficient usually takes a value ranging from 0.02 to 0.07. A value of 0.05
was assigned to the striking ship, based on the study by Zhang (1999). The ship
acceleration was calculated by taking an average of the acceleration at different
units of a cargo vessel, following the guideline for cargo stowage and securing (see
DNV 2004). For ships with lengths greater than 100 m, a correction factor should
be applied to the derived acceleration value. The correction factor (i) is calculated
from the expression (DNV 2004):

i D
�
0:345vp

L

�
C
�
58:62L � 1034:5

L2

�
: (6)

With the 146 m length of Sulpicio Express Siete general cargo vessel, a correction
factor of 0.56 was applied to the ship acceleration to give a value of 3.2 m/s2. The
external force was then calculated to be 87.96 MN.

7 Random Variable Generation and Propagation

Abaqus/CAE used in this study can be interfaced with the programming language
tool—Python (ABAQUS 2011). Python can be applied to an existing model through
one of two different methods, the Python scripting interface method and the
scripting parametric method. The use of scripting parametric method for the current
study would require the use of the minimum and maximum values of the random
variables to generate, execute, and derive results of multiple analyses. The method
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requires the development of a python script file (*.psf) and the creation of an input
file (*.inp) from Abaqus/CAE model. The method first generates multiple design
points for the variables by using one of the available sampling techniques. These
techniques are interval, number, reference, and values. The random values generated
for each variable are combined to generate design points that can be propagated one
by one through the model input file.

The second method is through the use of the python development environment
(PDE) which is accessible from the menu bar of Abaqus/CAE. Python scripting
command provides basic functions—random( )—for generating pseudo-random
numbers for various PDFs. The parameters required by the function are the
distribution type, mean, and standard deviation of the basic random variable. The
developed basic function for the random variables can be applied to the journal
file (*.jnl) of an existing model by using them to replace their corresponding
deterministic values to generate outputs of multiple analyses. This method was
adopted for propagating the strength and geometry variables through the finite
element model in this study.

The FE model was run with 2,000 sampled strength and geometry variable design
sets by using the Python script developed for the model. The reactive force across
the plate and the displacement of the reference nodal point were derived for each
design set. MCSs were performed by propagating the generated design sets for
the strength and geometry variables through the simplified model using MATLAB.
First, the model (Eq. (1)) was rewritten to make displacement the subject of the
cubic polynomial:

�
6
R2

RL

�
ı3 C

�
3a2

R2

RL

�
ı2 C a4ı � 0:406a4Fp

�0tp
D 0: (7)

This means that the resulting displacement value would be a vector with three
roots, which contains both real and imaginary values. Second, a MATLAB code
was written to propagate the design sets through the cubic polynomial. Complex
roots of Eq. (7) were rejected, leaving only the real numbers as possible solutions.
The results of the analysis are discussed in the following section. It is worth noting
that the displacement term used in this section and subsequent sections relate to the
local hull plate indentation and not the global ship displacement.

8 Stochastic Analysis

8.1 Determination of Displacement Probability Model

In order to understand the variation in the displacement values for the sampled
strength and geometry variable design sets, the values were represented using a
histogram plot, as shown in Fig. 5. It was observed that the displacement data from
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Fig. 5 Probability distributions fitted to the displacement frequency distribution

the MCS varied within the range of 1.7234 and 2.3386 m. Approximately 66 % of
the displacement data lied within the range of 1.9 and 2.1 m. The mean and standard
deviation of the displacement data were also calculated to be 2.018 and 0.0946 m,
respectively.

A statistical approach was implemented by investigating the distribution of the
displacement data. Several PDFs were fitted to the frequency distribution of the
displacement data. By visual observation, three distributions—Normal, Lognormal,
and Gamma distributions—provided good fits for the displacement data with
minimum parameter standard error, as shown in Fig. 5. The estimated mean and
standard deviation of the three distributions was similar to that derived from the
displacement data. Further verification was required to discern the probability
distribution model that would be plausible for the displacement data.

To this end, goodness-of-fit tests were used to statistically identify the validity
and superiority among Normal, Lognormal, and Gamma distributions for the
displacement data. There are several types of goodness-of-fit tests available in
the literature. Prominent among them are the Kolmogorov–Smirnov (KS) and the
Anderson–Darling (AD) tests, due to their applicability to both small and large
data sets. KS and AD tests both use the cumulative distribution function approach
to assess the suitable distribution of a data set (Romeu 2003). The AD test is
particularly useful because it is more sensitive to the tails of a distribution. However,
both KS and AD tests were applied to the displacement data using MATLAB. A
significance level of 5 % was considered for both tests. The results of KS and AD
tests showed that the null hypothesis that the displacement data could be represented
by either Gamma or Lognormal distributions should be rejected, while that of
Normal distribution should not be rejected at a significance level of 0.05.
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8.2 Sensitivity Analysis

Due to the presence of various uncertainties, uncertainty exists in the calculated ship
hull plate displacement. To characterize this, sensitivity analysis was carried out to
investigate the contribution or the importance of the input variables on the variance
in displacement values. The importance measure, Sobol’s first-order indices were
used to quantify the expected amount of variance reduction in the output data if a
deterministic value of an input factor was known (Wagner 2007). The approach was
implemented by defining a simplified model of displacement (ı) as a function of the
random variables:

ı D f
�
a; tp; �y; �u

�
: (8)

To measure how much the variance of ı would change by fixing a variable,
the variance of ı given that a variable is fixed was calculated. For example, the
contribution of a fixed value of tp on output variance would be quantified using the
sensitivity index:

Stp D
V
�
ı
ˇ
ˇ̌
tp

�

V .ı/
; (9)

where V(ıjtp) is the variance of ı for a known value of tp and V(ı) is the variance
of ı. However, assigning a fixed value for a random variable in the model can have
a strong influence on the model outcome. In the context of the present example,
the study by Saltelli et al. (2006) avoided the dependency of fixing a variable
on the model outcome by replacing the numerator of Eq. (9) with the variance of
the expected values of ı, obtained for each of the randomly generated values of
thickness, tpi . The new expression for the sensitivity index of tp was defined as:

Stp D
V
h
E
�
ı
ˇ̌
ˇtpi
�i

V .ı/
: (10)

The numerator of Eq. (10) was calculated by applying the law of total variance:

V .ı/ D V
h
E
�
ı
ˇ̌
ˇtpi
�i

CE
h
V
�
ı
ˇ̌
ˇtpi
�i
; (11)

whereE
h
V
�
ı
ˇ̌
ˇtpi
�i

is the average of the variance of ı which is calculated by fixing

tp with all its possible values. A graphical representation of the percentage influence
of all the variables on the displacement data is shown in Fig. 6. It was observed that
tp is the most sensitive of the variables. The variable a is the least sensitive to the
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Fig. 6 Sensitivity indices of random variables on displacement data

displacement data with a sensitivity index of approximately 7 %. This result means
that the variation in a is not significant and could be represented by a deterministic
value in the simplified model.

The results of the stochastic analysis can be used to develop a probabilistic
framework to predict the reliability index and failure probability of a ship hull plate
under different collision scenarios. For this purpose, a limit state function can be
developed to estimate the likelihood of a ship hull plate displacement exceeding a
chosen design displacement capacity.

9 Discussion and Conclusion

In this study, finite element analysis of a ship hull plate impacted by a bulbous
bow was combined with statistical and reliability techniques, in order to assess
the effect of random strength and geometry variables on the extent of the plate
deformation. The availability of Python scripting interface and sampling from
pseudo-random numbers in Abaqus/CAE makes it valuable to generate multiple
simulations. MATLAB was used to perform reliability assessments using MCS.

The analysis results provided knowledge and quantification of the variation in
the displacement of shell plates during collisions. Normal distribution was found
to be the best fit distribution to the displacement data. Parameters such as the
mean value and standard deviation were identified for the displacement variable.
Normal distribution and its identified parameters can then be used to represent the
displacement of shell plates in any probabilistic framework.
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The following are the conclusions from the reliability analysis of ship shell plate:

• The uncertainties of strength and geometry variables need to be considered
during ship collision analyses and structural reliability analyses.

• The most probable displacement value of a ship shell plate would lie within the
range of 1.9 and 2.1 m for the considered case study.

• Normal distribution is the best fit distribution to model the variation in displace-
ment of a shell plate.

• Variations in the thickness of the shell plate are observed to significantly effect
the hull plate displacement.

The presented study is being improved further by validating the probabilistic
characteristics of displacement through the application of other sampling and
reliability techniques.
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An Advanced Point Estimate Method
for Uncertainty and Sensitivity Analysis
Using Nataf Transformation
and Dimension-Reduction Integration

Xiaohui H. Yu and Dagang G. Lu

Abstract This article presents an advanced point estimate method (APEM) with
the purposes of estimating the moments of model outputs and identifying the
sensitivities of inputs variables. The APEM consists of four ingredients, i.e. (1)
Nataf transformation, (2) a generalized dimension-reduction method, (3) the Gauss–
Hermite integration (GHI), and (4) a global sensitivity index. Nataf transformation
enables the APEM to deal with the practical engineering problems generally involv-
ing the random variables often given the marginal distributions and correlations.
The generalized dimension-reduction method with the univariate and the bivariate
formulas is adopted to decompose a high-dimension function into several one-
and two-dimension functions, respectively. Consequently, the moments of the high-
dimension function are approximated by that of the decomposed low-dimension
functions, which are further calculated by the GHI. As a complement to the
APEM, a global sensitivity index is additionally proposed. Through three numerical
examples and two applications, the APEM shows good performance at estimating
the moments of random functions, and the global sensitivity index is validated for
defining the influence of a variable’s variation in standard normal space on model
responses.

1 Introduction

The probability-based design and performance evaluation of civil facilities has
been widely used. The use of probabilistic concepts in this context stems from
the recognitions that the applied loads from occupant usage and man-made and
natural hazards and the construction materials are uncertain in nature. Uncertainty
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propagation and analysis, therefore, provide necessary information and useful
insights to civil engineers. In mathematics, computation of probability moments
is a common problem in uncertainty analysis, which entails calculating a mul-
tidimension integral to determine the probabilistic outputs of a random model.
However, the large uncertainties and nonlinearities involved in the engineering
problems prevent such an integral to be evaluated analytically. As a consequence,
the approximate methods instead of the numerical or analytical integration methods
are often used. Current existing methods to approximate the probability moments of
random models can be roughly classified into three major categories: (1) sampling-
based methods, (2) Taylor series expansion methods (also referred as perturbation
methods), and (3) point estimate methods (PEMs).

The sampling-based methods, e.g., Monte Carlo simulation (Robinstein 1981)
and Latin Hypercube sampling (Olsson et al. 2003), are simple but useful tools
to derive the exact statistical results with high confidence by performing sufficient
simulations. However, the sampling-based methods are not attractive to civil
engineers since even performing one time of analysis is often time consuming for
a complex engineering system. In contrast, the perturbation methods, e.g., the first
and second order reliability methods (Fiessler et al. 1979; Madsen et al. 1996), are
highly efficient since they approximate a complex model by its first and second order
Taylor series expansions, respectively. Nevertheless, such methods cannot derive
moment estimation with adequate accuracy; moreover, they require the computation
of gradients of random functions. In reality, the gradient computation generally
imposes an additional calculation process known as the finite element sensitivity
analysis that is actually an intensive computational task (Haukaas 2003).

Firstly proposed by Rosenblueth (1975, 1981), the PEMs are a kind of moment
matching methods through replacing a continuous variable with a discrete one
having the same moments. Compared with the aforementioned two categories
of methods, the PEMs cost lower computational efforts than the sampling-based
method and avoid conducting finite element sensitivity analysis that is the indis-
pensable component of the Taylor series expansion methods. Over the past years, a
number of PEMs have been published, which will be reviewed in the next section.

For an optimum PEM, there are two main challenges: (1) how to efficiently
generate estimate points for the models involving a large number of uncertain
parameters; and (2) how to effectively deal with problems always involving the
variables submitting to nonnormal and dependent probability distributions. To
face the above two challenges, this study develops an advanced point estimate
point method (APEM) with the purposes of estimating the probability moments
of model responses and identifying the sensitivities of input variables to model
outputs. The APEM consists of four ingredients, i.e. (1) Nataf transformation (Liu
and Der Kiureghian 1986), (2) a generalized dimension-reduction method (Xu
and Rahman 2004), (3) the Gauss–Hermite integration (GHI), and (4) a global
sensitivity index. With Nataf transformation, the APEM is feasible to solve the
problems with known the variables’ marginal distributions and the correlations.
The generalized dimension-reduction method is adopted for coping with the com-
plex models usually in forms of the function involving a large number of variables.
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Considering computational efforts, only the univariate and bivariate dimension-
reduction formulas are employed, and the moments of a high-dimensional function
can be approximated by that of the decomposed one- and two-dimension functions,
which are further estimated by GHI in order to avoid solving nonlinear equations
to generate estimate points. To the best knowledge of the authors, nearly all the
existing PEMs only focus on estimating probability moments of random functions,
while they don’t attach sufficient importance to determining the sensitivities of
random variables to model responses. In this context, a global sensitivity index
is presented only using the estimated variances by the APEM without requiring
additional computations. Through three numerical examples and two engineering
applications, the performance of the APEM is investigated by comparing with seven
existing PEMs, and the validity of the presented sensitivity index is examined by
comparing with the widely used sensitivity index in FORM.

2 Reviews of Existing PEMs

2.1 PEMs for Univariate Functions

Given a real random and continuous variable X, a total of 2m nonlinear equations
derived by matching the first 2m � 1 moments of X are required to be solved for
generating the equivalent discrete variable with the corresponding probabilistic
mass function (PMF) of m concentrations (Hong 1998). Rosenblueth (1975) and
Gorman (1980) have provided the concentrations for the cases of only knowing
the first two and three moments of X, respectively. In general cases, the accuracy
of the methods with only two and three concentrations is quite low especially for
the performance functions with strong nonlinearities. To remove this weakness,
the following researchers naturally prefer to obtain more concentrations through
matching the higher order moments of X. However, the moments with the order
higher than two or three are seldom provided in practical engineering problems.
Even if they are given for X, it is not an easy task to solve the corresponding
nonlinear equations for defining the concentrations. In light of this, Zhou and Nowak
(1988) and Zhao and Ono (2000) recommended to use the GHI points for the normal
variable and then these points can be extended for the nonnormal variable through
probability transformation. Since GHI has been well studied, the corresponding
abscissas and weights can be found in many works [e.g., Davis and Rabinowitz
1983]. Consequently, the tedious process of solving nonlinear equations is avoided.
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It has been proven that the concentrations derived by the formulas in Rosenblueth
(1975) and Gorman (1980) are identical with that generated by GHI for a standard
normal variable (Christian and Baecher 1999). According to above description, this
study adopts GHI in the method to generate approximate points.

2.2 PEMs for Multiple Normal-Variate Functions

Consider a general multivariate performance function g(X), where X D X1,
X2, : : : , Xn is the collection of random variables. To approximate the moments of
g(X), Rosenblueth (1975, 1981) developed a PEM by assuming the joint probability
distribution function (JPDF) of X to be concentrated at each combination of one
standard deviation above and below the mean value of Xi. There are two major
limitations for this method. Primarily, only the first two moments of Xi are
considered, thus it has low accuracy to solve the complex problems involving a
large number of random variables. Secondly, 2n estimate points which also mean 2n

function evaluations are required. For engineering problems, one time of function
evaluation is one time of system analysis that is often time consuming, which will
lead to the unaffordable computational efforts.

To overcome the above two limitations, several alternative PEMs have been
presented. The proposed improvements aim at either incorporating higher order
moments of variables or reducing the needed 2n estimating points. Panchalingam
and Harr (1994) developed a PEM accounting for the skewness coefficients of
Xi; however, this method still requires 2n estimate points. Li (1992) presented an
explicit expression to assess the expected value of g(X). This expression considers
the kurtosis coefficients of Xi, while it only requires (n2 C 3n C 2)/2 evaluations of
g(X). Analogous to Li’s method, Tsai and Franceschini (2005) further derived the
formula to estimate the expectation of g(X) with the consideration of the skewness
coefficients of random variables. According to the generalized principle detailed
in Hong (1998), m � n concentrations can be determined by solving nonlinear
equations if the first 2m � 1 moments are given for Xi.

In fact, the concentrations of Rosenblueth method are located at the corners of
an n-dimensional hypercube in the space defined by X. To reduce computation
efforts, Lind (1983) suggested selecting points near the centers of the 2n faces of the
hypercube. While Harr (1989) defined a hypersphere that touches the corners of the
hypercube and then generated estimating points by passing the orthogonal vectors of
the correlation matrix of X with this hypersphere. To simplify computation process,
Chang et al. (1995) modified Harr’s method by selecting estimating points in the
standardized space of X that is determined through the rotational transformation.
According to the opinion in He and Sallfors (1994), it is an optimum option to
select points from the hypersphere that is located in the standardized space with a
radius equal to

p
n.
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2.3 PEMs for Multiple Non-normal-variate Function

Strictly speaking, the PEMs mentioned in Sect. 2.2 are totally limited to the
problems involving normal variables, because they don’t incorporate the variables’
probability distributions. In engineering applications, however, random variables
are commonly given with different nonnormal probability distributions. To handle
with this case, probability transformations are often adopted in the PEMs [e.g.,
Zhou and Nowak 1988; Zhao and Ono 2000; Chang et al. 1997; Wang and
Tung 2009]. The widely used probability transformations consist of Rosenblatt
transformation (Rosenblatt 1952) and Nataf transformation (Liu and Der Kiureghian
1986), in which the former is useful to deal with the random variables with the
known JPDF, while the other one is specially used for the case of incomplete
probabilistic information, only knowing the marginal probability density functions
(MPDFs) and the correlations. Due to the absence of statistical data and the nature
of engineering, JPDF is rarely given while the MPDFs and the correlations are
often provided. Therefore, Nataf transformation is more appropriate for practical
engineering applications than Rosenblatt transformation. Based on this recognition,
this study employs Nataf transformation in the presented method.

2.4 PEMs Using Dimension-Reduction Methods

Reducing estimating points while keeping accuracy is the permanent target pursued
by all the PEMs. As an effective tool, dimension-reduction methods have been used
to promote the computational efficiency. Rosenblueth (1975) presented a product
formula to approximate the first two moments of g(X), which decomposed the n-
variable function into n functions of a single variable. However, this product formula
is special for the uncorrelated normal variables. To circumvent this computational
disadvantage, Zhou and Nowak (1988) modified the Rosenblueth’s method by
use of the product formula in the standard normal space, and further extended it
to be suitable to the problems involving nonnormal variables through probability
transformations. Different from Zhou and Nowak (1988), Zhao and Ono (2000)
presented a new PEM by adopting a summation formula. Actually, if ln[g(X)] is the
function in question, the corresponding summation-expressed approximation can
be derived through making logarithmic transformation for the product formula of
g(X). From this viewpoint, the product formula can be viewed as a special case
of the summation formula. In fact, either the product formula or the summation
one is the special result of the univariate dimension-reduction methods that are not
sufficiently accurate to estimate the high-order moments of complex models. That
is the main reason why this study uses a generalized dimension-reduction formula
in the presented method.
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3 Advanced Point Estimate Method

3.1 Raw Moments and Central Moments
of Performance Functions

Let 
k and Mkg denote the kth raw and central moments of g(X), which can be
calculated by


k D E
n
Œg .x/�k

o
D
Z 1

�1
� � �
Z 1

�1
Œg .x/�kfX .x/ dx; k � 0 (1)

and

Mkg D E
n�
g .x/ � 
g

	ko D
Z �

g .x/ � 
g
	k
fX .x/ dx; k � 2 (2)

respectively, where E[�] is the expectation operator, fX(x) is the JPDF of X, and 
g

is the mean value of g(X), which is evaluated by


g D E Œg .x/� D
Z
g .x/ fX .x/ dx (3)

The central moment of g(X) can be determined by the corresponding raw
moments, yielding

Mkg D
0

@
kX

jD0
.�1/j

�
j

k

�

k�j 
k�j

j

1

A ; k � 2 (4)

In the following descriptions, for simplicity, the presented method is focused on
estimating the raw moments of random functions due to the relationships shown in
Eq. (4). In particular, the first four center moments of g(X) are determined by


g D 
1 (5a)

�g D
q

2 � 
21 (5b)

˛3g D �

3 � 3
2
1 C 2
31

�
=�3g (5c)

˛4g D �

4 � 4
3
1 C 6
2


2
1 � 3
41

�
=�4g (5d)

where 
g, �g, ˛3g, and ˛4g are the mean value, the standard deviation (std), the
coefficient of skewness, and the coefficient of kurtosis of g(X), respectively.
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Estimating 
k raises the problem of how to solve the multiple integral in
Eq. (1). That is actually not an easy task due to two major limitations: (1) the
JPDF fX(x) is rarely known; and (2) g(X) often has strong nonlinearities and large
uncertainties. To avoid these limitations, two corresponding measures are taken,
i.e. (1) employing Nataf transformation instead of Rosenblatt transformation to
transform the integral into the corresponding standard normal space (U space); and
(2) utilizing dimension-reduction method to decompose g(X) into a simple form
only involving lower dimension functions. The following two sections will describe
the above two measures in detail.

3.2 Calculation of Probability Moments of High-Dimension
Functions Using Nataf Transformation

Let TN(�) and T� 1
N (�) denote the operators of the forward and the inverse Nataf

transformations that are performed through

u D TN .x/ D L�1
0 ˆ

�1 ŒFX .x/� (6)

and

x D T �1
N .u/ D F�1

X Œˆ .L0u/� (7)

respectively, where FX(�) is the cumulative distribution function (CDF) of X with
the elements FX1 .�/ ; FX2 .�/ ; : : : ; FXn .�/ representing the CDFs of X1, X2, : : : , Xn,
respectively, ˆ� 1(�) is the inverse normal CDF, and L0 is the lower triangular
matrix obtained from Cholesky decomposition of the U space correlation matrix,
R0 D [�0,ij]. As noted by Liu and Der Kiureghian (1986), the correlation coefficient
�ij of Xi and Xj is not the same with �0,ij, which can be solved iteratively for given
FX1 .Xi / and �ij. To avoid such a tedious process, a set of semiempirical formulas
for the ratio F D �0,ij/�ij have been developed, which can be found in Melchers
(1999).

Substituting Eq. (7) into g(X), a new performance function is defined in U
space by

L .u/ D ˚
g
�
T �1
N .u/

	�k
(8)

and then the multiple integral in Eq. (1) is rewritten as


k D
Z
L .u/ 'U .u/ du D

Z
L .u/ 'U1 .u1/ � � �'Un .un/ du1 � � � dun (9)
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where 'U.�/ is the JPDF of vector U. Since the variables in the U space are
totally uncorrelated, thus 'U.�/ is equal to the product of the standard normal
PDFs 'U1 .�/ ; 'U2 .�/ ; : : : ; 'Un .�/ for U1, U2, : : : , Un, respectively. Compared with
Eq. (1), Eq. (9) avoids the process of determining fX(x) since Nataf transformation
is used to map the variables into U space.

3.3 Decomposition of High-Dimension Function
by Dimension Reduction Method

Xu and Rahman (2004) have derived a generalized dimension-reduction method
for high-dimension function. Through this method, an n-dimension function L(U)
can be expressed in a summation form involving a series of at most s-dimensional
functions, yielding

L .U/ Š Ls .U/ D
sX

iD0
.�1/i

�
n � s C i � 1

i

� nX

k1<���<ks�i
ys�i (10)

where s is less than n, Ls(U) is the s-dimensional approximation of L(U), and

ys�i D L
�
c0
1; : : : ; c

0
k1�1; Uk1 ; c

0
k1C1; : : : ; c

0
ks�i�1; Uks�i ; c

0
ks�iC1; : : : ; c

0
n

�
(11)

As seen from Eq. (11), ys�i is a general (s � i)-dimension function, in which the
variables without being treated as random ones are all assumed as the specified
values in terms of “reference point,” which is determined in U space by c0,

c0 D �
c0
1; c

0
2; : : : ; c

0
n

	 D TN .c/ (12)

where the vector c in the X space can be conveniently adopted as the means of Xi

for i D 1, 2, : : : , n.
Replacing L(U) with Ls(U), the n-dimension integral in Eq. (9) is approximated

by several no more than s-dimension integrals:


k Š
Z
Ls .u/ 'U .u/ du

D
sX

iD0
.�1/i

�
n � s C i � 1

i

� nX

k1<���<ks�i
E .ys�i /

D
sX

iD0
.�1/i

�
n � s C i � 1

i

� nX

k1<���<ks�i

Z C1

�1
� � �
Z C1

�1
y0
s�i 'Uk1 .uk1/

� � �'Uks�i .uks�i / duk1 � � � duks�i (13)
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In particular, the univariate and bivariate dimension-reduction formulas are
defined by

L .U/ Š L1 .U/ D
nX

iD1
Li .Ui / � .n � 1/L �c0� (14)

and

L .U/ Š L2 .U/ D
nX

i<j

Lij
�
Uij

� � .n � 2/
nX

i

Li .Ui /C .n � 1/ .n � 2/
2

L
�
c0�

(15)

respectively, in which the decomposed univariate and bivariate functions, Li(Ui) and
Lij(Uij), are expressed by

Li .Ui / D L
�
c0
1; : : : ; c

0
i�1; Ui ; c0

iC1; : : : ; c0
n

�
(16)

and

Lij
�
Uij

� D L
�
c0
1; : : : ; c

0
i�1; Ui ; c0

iC1; : : : ; c0
j�1; Uj ; c0

jC1; : : : ; c0
n

�
(17)

respectively.
It is valuable to note that Eq. (14) has a similar expression with the summation

approximation used in Zhao and Ono (2000) except for Rosenblatt transformation
instead of Nataf transformation was used. According to the above descriptions, it
is not difficult to find that the summation-formed approximation used in Zhao and
Ono (2000) is actually the univariate case of the generalized dimension-reduction
method.

Substituting L1(U) and L2(U) into Eq. (13) gives


k Š E ŒL1 .u/� D
nX

iD1

L1i � .n � 1/L �c0� (18)


k Š E ŒL2 .u/� D
nX

i<j


L2ij � .n � 2/
nX

i


L1i C .n � 1/ .n � 2/
2

L
�
c0� (19)

where 
L1i and 
L2ij are the raw moments of Li(Ui) and Lij(Uij), respectively.
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Table 1 Gauss points and
the corresponding weights

m zj wj

3 0 1.1816
˙1.2247 0.2954

5 0 0.9453
˙2.0202 0.0200
˙0.9586 0.3936

7 0 0.8103
˙2.6520 0.0010
˙1.6736 0.0545
˙0.8163 0.4256

3.4 Calculation of Probability Moments of Lower Dimension
Functions via Gauss–Hermite Integration

Consider an integral
Z C1

�1
y.x/e�x2dx, where y(x) is a general and real univariate

function. Using GHI, the integral with weight function e�x2 can be approximated
by (Davis and Rabinowitz 1983)

Z C1

�1
y.x/e�x2dx D

mX

jD1
wj y

�
zj
�

(20)

where zj and wj are the abscissas (also referred as Gauss points) and weights,
respectively, and m is the quadrature order (also referred as the number of Gauss
points). Table 1 lists the Gauss points and weights which will be used in the
following sections, where m D3, 5, and 7.

If y is a function of a single standard normal variable, then the corresponding
expectation can be approximated by

E.y/ D
Z
y.u/'U .u/du D

Z
y.u/

1p
�

e�u2=2du D
mX

jD1

wjp
�
y
�p

2zj
�

(21)

Since U space has a characteristics of rotational symmetry, Eq. (21) can be
extended to solve the expectation of a function involving n standard normal
variables by

E.y/ D
Z C1

�1
� � �
Z C1

�1
y .u1; : : : ; un/ 'U1 .u1/ � � �'Un .un/ du1 � � � dun

Š
m1X

j1D1
� � �

mnX

jnD1

wj1 � � � wjnp
�

y
�p

2zj1 ; : : : ;
p
2zjn

�
(22)
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where y(z1, : : : , zn) is the n-dimension function of standard normal variables,
z1, : : : , zn, m1, : : : , mn are the numbers of Gauss points used in z1, : : : , zn direc-
tions, zj1, : : : , zjn are Gauss points, and wj1, : : : , wjn are weights corresponding to
zj1, : : : , zjn.

Use Eq. (22) to approximate E(ys�i) and then we have


k Š
sX

iD0
.�1/i

�
n � s C i � 1

i

� nX

k1<���<ks�i
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Š
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0
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0
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0
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�

(23)

3.5 Computational Efforts

According to Eq. (23),
s�iY

iD1
mki function evaluations are required to estimate E(ys�i)

through GHI. Hence the total computational cost for the approximation of 
k can
be determined by

Ns D
sX

iD0

�
n � s C i � 1

i

� s�iY

iD1
mki (24)

where Ns is the number of function evaluations. If mk1 D mk2 D , : : : , D mkn D m,
then Eq. (24) can be rewritten as

Ns D
sX

iD0

�
n � s C i � 1

i

�
ms�i (25)

It is evident for the dimension-reduction formula in Eq. (10) that Ls(U) has
increasingly higher accuracy to approximate L(U) with s getting closer to n. As
a result, the required number of function evaluations Ns will increase rapidly.
Consider a general function involving ten variables. The corresponding values of
Ns are calculated in Table 2, where m D 3, 5, and 7, respectively.

As seen from this table, unaffordable numbers of function evaluations are always
required when s is more than 2. For example, a maximum of 3,675 function
evaluations are required for the case of s D 3 and m D 3, while this number is
reduced to 435 when s D 2 and m D 3. In engineering problems, finite element
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Table 2 Values of Ns for the
functions involving ten
variables

Ns

s m D 3 m D 5 m D 7

1 30 50 70
2 435 1,175 2,275
3 3,675 16,175 43,435
4 22,143 158,675 590,863
5 77,547 871,175 4,422,859
6 188,355 3,246,175 22,305,507
7 330,822 8,335,460 75,953,451
8 437,673 14,697,068 169,837,350
9 473,289 18,231,294 242,858,170

analyses are often needed to evaluate function values. If quite a large number of
function evaluations are required, then the presented method in this study will
be restricted to engineering applications and less attractive for engineers. On the
basis of this consideration, only the univariate and bivariate dimension reduction
formulas (Eqs. (14) and (15)) are used, and the corresponding computational costs
are calculated by

N1 D
�
n

1

�
�mC

�
n

0

�
�m0 D n �mC 1 (26)

and

N2 D
�
n

2

�
�m2 C

�
n

1

�
�mC

�
n

0

�
�m0 D n � .n � 1/

2
�m2 C n �mC 1

(27)

respectively.

3.6 Selection of Reference Points

Two algorithms are used to select reference points, namely, the mean-reference
algorithm and median-reference algorithm. Let �X and mX denote the mean
vector and the median vector of X, respectively. According to the mean-reference
algorithm, the reference points in U space are mapped from �X by

c0
Mn D �

c0
1;Mn; : : : ; c

0
n;Mn

	 D TN .�X/ (28)

where the subscript “Mn” is the abbreviation for “mean.”
Different from the mean-reference algorithm, mX is adopted in the median-

reference algorithm as the reference point in the X space. Through Nataf
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transformation, an n-dimension zero vector is derived to be the corresponding
reference point in the U space, yielding

c0
Md D �

c0
1;Md; : : : ; c

0
n;Md

	 D TN .mX/ D
2

40; : : : ; 0„ ƒ‚ …
n

3

5 (29)

where the subscript “Md” is the abbreviation for “median.”

In fact, the n-dimension zero vector
h
0; : : : ; 0„ ƒ‚ …

n

i
is not only the mapped vector of

mX in the U space but also the mean collection of the n-dimension standard normal
vector. From this aspect, the median-reference algorithm in the X space can also be
viewed as the mean-reference algorithm in the U space.

3.7 A Global Sensitivity Index

For complex engineering problems, it is necessary to investigate the sensitivities
of the input variables to the model outputs in order to simplify the process of
uncertainty propagation and analysis. For the variable with a quite small value of
sensitivity, it may well be treated as deterministic rather than random. In the recent
past, the literature has assisted to the fast growth of sensitivity analysis methods.
A variety of sensitivity analysis methods for solving different problems have
been developed, from local methods to nonparametric methods (Helton 1993), to
screening methods (Morris 1991), to variance-based methods (Saltelli and Tarantola
2002), to distribution-based (Borgonovo 2006). For the variation-based methods, the
Sobol’ sensitivity indices (Sobol’ 1990), which are in fact the global indices (Saltelli
et al. 2008), maybe are the mostly adopted measures (Dimov and Georgieva 2010;
Satelli et al. 2010; Nossent et al. 2011; Xu et al. 2012; Glen and Isaacs 2012).

Similar to the first-order Sobol’ sensitivity index, an measure denoted by �i is
used to define the sensitivities of Xi for i D 1, 2, : : : , n by

�i D �2i
�2g

i D 1; 2; : : : ; n (30)

where �2
i and �2

g are the estimated variances of Li(Ui) and L(U), respectively.
According to Eq. (18), it is not difficult to derive

�2g D
nX

iD1
�2i (31)
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Based on the above equation, �i satisfies

nX

iD1
�i D 1 (32)

Besides Eq. (32), there are three other useful properties for �i: (1) it can identify
the effect of the variation of a random variable in the U space on model outputs; (2) it
can consider the correlations between input random variables; and (3) it requires no
additional computational efforts, and thus it is easier to compute than the first-order
Sobol sensitivity index.

4 Numerical Examples

4.1 Performance Evaluation

Three numerical examples (Chang et al. 1995; Wang and Tung 2009) are adopted
herein to demonstrate the performance of the APEM. The tested models include:
(1) W1 DP

iXi (linear), (2) W2 DP
X2

i (quadratic), and (3) W3 DQ
Xi (multi-

plicative). These numerical examples mainly aim at investigating the effects of the
increasing model complexities on the performance of the APEM. For simplicity,
four variables are involved in the tested models, and they are assumed to follow the
identical lognormal distribution with the mean value and the standard deviation that
are equal to 1.0 and 0.3, respectively. In addition, the correlation coefficient between
Xi and Xj is set as �ij D 0.9ji�jj.

A total of 100,000 samples are generated according to the Nataf-transformation-
based multivariate MCS (Chang et al. 1994). The first four central moments from
the MCS are adopted as the “true values,” based on which seven different PEMs
are used as the comparisons for better examining the performance of the APEM. In
the following descriptions, the central moments are called moments for short. These
PEMs for comparison include Rosenblueth method (Rosenblueth 1975, 1981), Li
method (Li 1992), Harr method (Harr 1989), Modify–Harr method (Chang et al.
1995), Chang method (employing the median-expansion algorithm in Chang et al.
(1997)), He–Sallfors method (adopting 2n C 2n points in He and Sallfors (1994)),
and Zhou–Nowak method (adopting n C 1 points in Zhou and Nowak (1988)).

Two criteria are adopted to evaluate the accuracy of the PEMs. Let eM denote the
error of the estimated moments, which is described by

eM D �PEM � �MCS

�MCS
(33)

where �PEM and �MCS are the estimated moments by PEMs and MCS, respectively.
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The goodness of the fitted distributions is also compared to represent the
collective behaviors of different methods. Let !PEM and !MCS represent the fitted
distributions by the estimated moments �PEM and �MCS, respectively, and the error
eD of the fitted distribution is defined as

eD D
Z 1

�1
j!PEM.x/ � !MCS.x/j dx (34)

where !PEM and !MCS are derived through the maximum entropy method by use of
the estimated first four moments. The mathematical details of the maximum entropy
method can be found in Zellner and Highfield (1988).

Also it is necessary to examine the validity of the presented sensitivity index (�i

in Eq. (30)). To match this demand, the widely used sensitivity index ˛i in FORM
is used to compare with �i. This comparison is based on two similarities between ˛i

and �i. Firstly, ˛i also demonstrates the influence of a variable’s variation in the U
space on model response since it is calculated by Melchers (1999)

˛i D � @ui G .u
�/

k@ui G .u�/k i D 1; 2; : : : ; n (35)

where u* is the “design point” or the “check point” of the standardized limit state
function G(U) D 0.

Secondly, the summation of ˛2
i is also equal to one since ˛i represents the

direction cosine of G(U) D 0 at u*. During calculating ˛i, the limit state functions
Gj corresponding to the numerical models Wj for j D 1, 2, 3 are defined by

Gj D 
MCS;j �Wj j D 1; 2; 3 (36)

where 
MCS, j is the estimated mean value of Wj by MCS.

4.2 Moment Results

Tables 3, 4, and 5 compare the performances of various PEMs based on the results
of eM (see Eq. (33)) and eD (see Eq. (34)) for model W1, W2, and W3, respectively.
In the APEM, five Gauss points are employed; both the mean-reference algorithm
(see Eq. (28)) and the median-reference algorithm (see Eq. (29)) are used and
are shortly named “Mn” and “Md,” respectively; and both the univariate and the
bivariate dimension-reduction formulas are adopted and are abbreviated as “Uni”
and “Bi,” respectively.

For the linear model W1, Table 3 shows that different PEMs yield very close
estimations to the exact means. Rosenblueth method, Harr method, Modify–Harr
method, and Li method all can provide the stds with high accuracy, while these
methods cannot give good estimations of the coefficients of skewness and kurtosis.
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Table 3 Comparison of estimated moments and fit goodness of distributions for W1

eM (%)

Methods Function evaluations Mean Std Skewness Kurtosis eD (%)

Rosenblueth 16 0.15 0:37 100:00 76:88 150:93

Harr 8 0.15 0:37 100:00 76:88 150:93

Modify–Harr 8 0.15 0:37 100:00 56:10 38:11

Li 12 0.15 0:37 80:99 15:50 140:74

Chang 8 0.19 3:21 57:49 55:30 36:66

He–Sallfors 24 0.15 0:37 100:00 66:69 67:32

Zhou–Nowak 5 0.13 0:26 61:87 66:69 77:56

APEM (Mn C Uni) 21 0.15 0:96 16:01 8:55 3:76

APEM (Md C Uni) 0.17 1:53 15:34 8:25 3:59

APEM (Mn C Bi) 171 0.15 0:46 0:31 0:55 0:00

APEM (Md C Bi) 0.15 0:46 0:31 0:55 0:00

Table 4 Comparison of estimated moments and fit goodness of distributions for W2

eM (%)

Methods Function evaluations Mean Std Skewness Kurtosis eD (%)

Rosenblueth 16 0.36 13:16 100:00 91:21 153:51

Harr 8 0.36 13:16 100:00 90:17 124:15

Modify–Harr 8 0.36 10:82 44:35 61:16 14:58

Li 12 0.36 8:92 51:09 90:46 146:95

Chang 8 0.40 2:70 13:13 54:78 60:07

He–Sallfors 24 0.36 12:37 80:45 80:54 37:27

Zhou–Nowak 5 0.75 7:67 60:88 77:69 42:31

APEM (Mn C Uni) 21 0.20 4:98 27:87 36:84 6:10

APEM (Md C Uni) 0.14 6:82 26:08 35:43 5:57

APEM (Mn C Bi) 171 0.03 0:68 2:18 6:03 0:02

APEM (Md C Bi) 0.03 0:88 3:34 7:17 0:01

Table 5 Comparison of estimated moments and fit goodness of distributions for W3

eM (%)

Methods Function evaluations Mean Std Skewness Kurtosis eD (%)

Rosenblueth 16 5:88 49:39 99.05 99:72 195:54

Harr 8 5:38 47:59 98.22 99:74 210:64

Modify–Harr 8 4:24 27:66 79.44 98:61 107:72

Li 12 5:88 36:16 96.96 99:90 206:23

Chang 8 3:33 3:80 78.47 98:56 135:01

He–Sallfors 24 5:14 41:32 87.09 98:83 109:39

Zhou–Nowak 5 1:59 32:30 87.34 99:28 138:93

APEM (Mn C Uni) 21 2:25 18:27 57.90 92:69 78:32

APEM (Md C Uni) 3:87 20:79 57.03 92:51 77:14

APEM (Mn C Bi) 171 0:05 2:59 44.18 86:94 0:81

APEM (Md C Bi) 0:11 3:14 44.72 87:20 0:83
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In contrast, the APEM can provide not only the sufficiently accurate means and
stds but also the reasonably well estimated higher order moments. Consequently,
the APEM provides the better fitted distributions than the other PEMs. The good
performance of the APEM to estimate models’ high-order moments, especially
the coefficients of skewness and kurtosis, can also be observed in the comparison
results for the models of W2 (see Table 4) and W3 (see Table 5) although they have
increasingly larger nonlinearity than W1. In particular, for the most complex model
W3, only the APEM using the bivariate dimension-reduction method can provide
the relatively exact estimations of moments and corresponding fitted distributions.

It can also been seen from the above tables that reference points haven’t
shown significant influence on the estimated moments and the corresponding fitted
distributions. Actually, it is not difficult to predict that the APEM using more GHI
points can give more accurate estimation results. However, adopting more GHI
points means more extensive computational efforts. Actually five GHI points are
adequate for the APEM to provide sufficiently accurate estimation. Besides that it is
easy to understand that using the bivariate dimension-reduction formula will obtain
better estimated moments than using the univariate dimension-reduction formula.
But the univariate dimension-reduction formula can estimate the means and stds
of model outputs with acceptable accuracy as illustrated in the above tables. In
practical engineering applications, the first two moments of model responses are
often paid much more attention to than the other higher order moments. From this
aspect, the APEM using the univariate dimension-reduction formula is especially
useful for engineers since it requires favorable less computational efforts than the
bivariate dimension-reduction formula.

4.3 Sensitivity Results

Figure 1 shows the comparisons of the sensitivities of various random variables
defined by the proposed sensitivity index (�i in Eq. (30)) and that by the FORM
index (˛2

i in Eq. (35)). To calculate �i, five Gauss points and both the mean- and
median-reference algorithms are used in the APEM. Figure 1 reveals that the mean-
and median-reference algorithms generate almost the same results of sensitivity.
The APEM generates almost the same sensitivity data with the FORM through
comparing �i and ˛2

i . Such a consistence validates the presented sensitivity index at
measuring the influence of a variable’s variation in the U space on model responses.
Based on the results of �i and ˛2

i , we can give the same quantitative judgments of
variables’ sensitivities. However, the calculation of gradient that is necessary for ˛2

i
is avoided during determining �i.
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Fig. 1 Comparisons of the sensitivity results from the APEM and FORM for different models

5 Applications

In this section, two simple models to respectively predict the terminal velocity and
the potential scour depth around bridge piers are used for uncertainty and sensitivity
analysis with the consideration of the randomness of model input variables. The first
four moments of model outputs and the sensitivities of input random variables are
evaluated by the APEM. For further examination of the performance of the APEM,
the seven existing PEMs used in the numerical examples (Sect. 4) are also used
as comparisons through the two performance criteria in Eqs. (33) and (34), where
the exact results are calculated by the MCS involving 100,000 samples. For further
validation of the presented sensitivity index �i, it is also compared with ˛2

i , where
five Gauss points and both the mean- and median-reference algorithm are adopted
in the APEM, and the limit state functions needed by FORM are defined according
to Eq. (36).

5.1 Terminal Velocity Model

The concept of terminal velocity is an important aspect in several fields of
environmental engineering. Tsai and Franceschini (2005) used a probabilistic model
to perform uncertainty analysis for the terminal velocity vt. According to this model,
vt is predicted by

vt D
"
4g
�
�p � �f

�
d

3CD�f

#0:5
(37)
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Table 6 Random variables of the terminal velocity model vt

Probability moments

Variables Distribution Mean Std Skewness Kurtosis

d (cm) Lognormal 2.49 1.19 1.22 4.91
�p (g/cm3) Weibull 2.02 0.69 1.30 6.16
CD Lognormal 0.97 0.06 �0.13 2.77

Table 7 Comparisons of estimated moments and the corresponding distributions
of vt by various PEMs

eM (%)

PEMs Mean Std Skewness Kurtosis eD (%)

Rosenblueth 2.85 32:88 78.69 13.35 13:18

Harr 3.01 30:69 17.17 17.93 13:62

Modify–Harr 3.56 23:73 55.46 57.17 73:84

Li 1.47 55:31 7,311.65 8,772.78 199:98

Chang 2.99 9:17 100.00 70.35 151:29

He–Sallfors 3.33 26:34 76.90 47.25 40:78

Zhou–Nowak 0.65 11:70 22.71 56.53 81:92

APEM (Mn C Uni) 0.27 0:45 96.00 12.06 10:59

APEM (Md C Uni) 0.02 0:03 95.86 12.04 10:58

APEM (Mn C Bi) 0.05 1:42 51.73 0.57 0:02

APEM (Md C Bi) 0.05 1:43 83.71 0.70 0:04

Rosenblueth 2.85 32:88 78.69 13.35 13:18

Harr 3.01 30:69 17.17 17.93 13:62

Modify–Harr 3.56 23:73 55.46 57.17 73:84

Li 1.47 55:31 7,311.65 8,772.78 199:98

Chang 2.99 9:17 100.00 70.35 151:29

He–Sallfors 3.33 26:34 76.90 47.25 40:78

where the gravity acceleration g, the particle density �p, the particle density �f ,
the particle diameter d, and the drag coefficient CD are considered as the main
influence factors. According to Tsai and Franceschini (2005), g and �p are taken
as constant values: g D 981 cm/s2 and �p D 1 g/mm3, while �p, d, and CD are
considered as random with the corresponding distributions listed in Table 6. The
correlation coefficients for �p and d, �p and CD, and d and CD are assumed as �0.5,
�0.31, and 0.68, respectively.

Table 7 presents the comparisons of the estimated moments and the corre-
sponding distributions for vt by the APEM and the other PEMs. It is clear that
the APEM yields the best estimated mean, std, and the coefficient of kurtosis,
while Harr method gives the best estimation of the coefficient of skewness with
less than 20 error percentages. Nevertheless, the APEM yields the better fitted
distribution compared with the other PEMs. This observation demonstrates the
better performance of the APEM to estimate moments from a collective viewpoint.
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Fig. 2 Sensitivities defined by �i and ˛2
i for the variables, i.e., the particle density �p, the particle

diameter d, and the drag coefficient CD, which are involved in the probabilistic model of the
terminal velocity vt

The APEM using the bivariate dimension-reduction formula is more accurate
than the univarite dimension-reduction formula to estimate the coefficients of
skewness and kurtosis. That is the reason why the fitted distribution by the bivariate
dimension-reduction formula is more close to the exact distribution than that by
the univarite dimension-reduction formula. However, the estimated means and stds
by the bivariate dimension-reduction formula are almost identical with that by
the univariate dimension-reduction formula. In addition, the APEM adopting either
the mean-reference algorithm or the median-reference algorithm can give almost the
identical and accurate moments and the corresponding distributions.

Figure 2 illustrates the comparisons of the sensitivities of �p, d, and CD defined
by both �i and ˛2

i . It is evident that the �i-defined sensitivities either from the mean-
algorithm or from the median-algorithm are very close to that defined by ˛2

i . The
particle density �p has the most prominent influence on vt, while the variation of
drag coefficient CD illustrates negligent influence on vt. Therefore, we can view the
drag coefficient as a deterministic value rather than a random variable for further
performing uncertainty analysis by use of the probabilistic model in Eq. (37).

5.2 Pier Scouring Model

Bed scouring is a frequent phenomenon in a river caused by the interaction of flow
and the river bed. Hydraulic structures such as bridge piers are susceptible to failure
under long-term and continuous bed scouring. Therefore, it’s important to predict
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Table 8 Random variables for the pier scouring model Ds

Variables Distribution types Mean COV

� Lognormal 1.00 0.18
y Gamma 4.25 0.20
F Weibull 0.54 0.38
� Lognormal 4.00 0.20

Table 9 Correlation coefficients among random variables for the pier
scouring model Ds

Variables � y F �

� 1.00 0.00 0.00 0.00
y 0.00 1.00 �0.33 �0.79
F 0.00 �0.33 1.00 0.29
� 0.00 �0.79 0.29 1.00

Table 10 Comparisons of the estimated moments and the fitted distribu-
tions of Ds by various PEMs

eM (%)

PEMs Mean Std Skewness Kurtosis eD (%)

Rosenblueth 0.04 3.91 64:80 52:58 49:46

Harr 0.20 1.73 96:99 22:89 14:17

Modify–Harr 0.15 2.40 91:39 22:88 13:32

Chang 0.38 2.72 18:20 27:73 14:72

He–Sallfors 0.13 2.72 73:66 42:91 27:55

Zhou–Nowak 0.29 7.31 98:86 24:83 80:94

APEM (Mn C Uni) 0.06 0.14 42:85 6:34 6:09

APEM (Md C Uni) 0.05 0.07 41:61 6:21 5:92

APEM (Mn C Bi) 0.06 0.11 0:49 1:34 0:06

APEM (Md C Bi) 0.06 0.09 0:42 1:12 0:03

the potential scour depth around bridge piers. A simple probabilistic model has been
used to perform uncertainty analysis for the predicted scour depth Ds by (Chang
et al. 1994, 1997)

Ds D 2:02�y

�
b

y

�0:98
F 0:21��0:34 (38)

where the model correction factor �, the flow depth y, the Froude number F, and the
sediment gradation � are all considered as random variables, while the pier width
b is determined as a constant value of 2m. Table 8 presents the set of distributions
assumed for �, y, F, and � . All these random parameters except � are correlated and
the corresponding correlation coefficients are presented in Table 9.

Table 10 presents the error percentages of the estimated moments and the
corresponding distributions. It is found that the APEM yields better moments and
distributions than the other PEMs. In particular, the APEM with the bivariate
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Fig. 3 Sensitivities defined by �i and ˛2
i for the variables, i.e., the correction factor �, the flow

depth y, the Froude number F, and the sediment gradation � , which are involved in the probabilistic
model of the predicted scour depth Ds

dimension-reduction formula can greatly improve the accuracy of the estimated
coefficients of skewness and kurtosis and the distribution; however it requires
large computation efforts. Compared to the APEM using the bivariate dimension-
reduction formula, the method adopting the univariate dimension-reduction formula
needs less computation resource and can provide the mean and std estimations with
adequate accuracy. The estimated results by the mean-reference algorithm are nearly
identical with that by the median-reference algorithm.

Figure 3 shows the comparisons of sensitivities of �, y, F, and � by �i and ˛2
i . The

calculated values of �i are very close to the corresponding values of ˛2
i . According

to the defined sensitivities, the model correction factor � and the Froude number F
show the dominant influences on the predicted Ds, while the flow depth y and the
sediment gradation � can be treated as deterministic due to the corresponding quite
low sensitivities.

In fact, most conclusions from the observations of the above two applications are
also obtained in the numerical examples (see Sect. 4). However, the probabilistic
models in Eqs. (37) and (38) involve the random variables submitting to a collection
of different nonnormal distributions instead of the identical lognormal distribution
used in the numerical examples. From this point, these two applications again verify
the good performance of the APEM.

6 Conclusions

An advanced point estimate method (APEM) is presented for uncertainty and
sensitivity analysis. Three numerical examples and two practical applications are
provided to demonstrate the accuracy of the APEM from the estimated moments
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and the defined sensitivities. According to the results, several main conclusions are
drawn as follows:

• Compared with other PEMs, the APEM provides better estimated moments,
especially the higher order ones, i.e., the coefficients of skewness and kurtosis.
Correspondingly, the APEM gives the best fitted distributions from the estimated
moments. These results indicate the good performance of the APEM for estimat-
ing moments of random functions.

• The sensitivities defined by the presented index �i are very close to that defined
by the FORM index ˛2

i . Such a consistence verifies the validity of �i at measuring
the significances of a variable’s variation in the U space on model responses.
However, the calculation of �i only requires the estimated variance while without
needing to calculate the gradient always required by FORM to compute ˛2

i . As
a beneficial complement, the presented index �i enables the APEM to not only
estimate the model moments but also identify the sensitivities.

• In the APEM, selecting different reference points doesn’t illustrate significant
influence on the estimated results. Compared with the univariate dimension-
reduction formula, the bivariate dimension-reduction formula can greatly pro-
mote the accuracy of the estimated high-order moments. However, the univariate
dimension-reduction formula is sufficiently accurate to estimate the means and
the stds of random functions. This observation enhances the feasibility of
the APEM to employ the univariate dimension-reduction formula for practical
engineering problems, since the first two moments of model responses are often
paid much attention to, and the univariate dimension-reduction formula saves
reasonable computational efforts than the bivariate dimension-reduction formula.
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Part III
Reliability and Risk Analysis



Risk Assessment of Slope Instability Related
Geohazards

Mihail E. Popescu, Aurelian C. Trandafir, and Antonio Federico

Abstract The paramount importance of slope instability hazards assessment and
management is by and large recognized. The general mechanisms of slope insta-
bility processes are now fairly well understood but there remains the problem of
establishing the risks to lives and property. This is being tackled by relating the
local ground conditions to the regional geological surveys and integrating this with
site-specific information to produce a hazard potential estimate.

Herein lies the guiding principle of the current chapter, i.e., to describe slope
instability related geohazards and methods to estimate the associated risks in an
appropriate and effective way. A case study is presented to illustrate the need and
tools of a probabilistic framework for slope instability analysis and emphasize that
deterministic and probabilistic approaches can often be regarded as complementary.

1 Foreword

At present society is greatly concerned with both natural and man-made hazards and
the environmental impact of any engineering activity is considered to be extremely
important all over the world.

To cope with hazards, whether natural or man-made, it is necessary to understand
risk and try to quantify it. One site may be exposed to a spectrum of different
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hazardous events, such as storms, floods, earthquakes, rock avalanches, and debris
flows, which must be assessed separately, both in respect with their magnitude and
probability of occurrence.

Frequently occurring cyclic events, such as storms, floods, and earthquakes, can
be observed over a period of time to obtain statistical data. Hazard probability can
then be derived from an expected frequency. Some events, such as many landslides,
are noncyclic. Their probability of occurrence is not a frequency, but a measure of
uncertainty whether they will ever take place or not (Popescu and Zoghi 2005).

Risk engineering process includes (Boyd 1994):

1. Identification of hazards
2. Understanding the causes and sources of hazard
3. Assessing the consequences which might arise as a result of the hazard occurring
4. Assessing the probability of the hazard occurring
5. Developing precautions to minimize the risk or mitigate the consequences
6. Assessing residual risk and its tolerability

Landslides and slope instability phenomena are frequently responsible for con-
siderable losses of both money and lives (Petley 2012). The severity of the landslide
problem intensifies with increased urban development and change in land use.

In view of this consideration, it is not surprising that landslides are rapidly
becoming the focus of major scientific research, engineering study and practice,
and land-use policy throughout the world. International cooperation among various
individuals concerned with the fields of geology, geomorphology, and soil and
rock mechanics has recently contributed to improvement of our understanding of
landslides in recent years.

Landslides and related slope instability phenomena plague many parts of the
world. Japan leads other nations in landslide severity with projected combined direct
and indirect losses of $4 billion annually (Schuster 1996). The USA, Italy, and India
follow Japan, with an estimated annual cost ranging between $1 billion to $2 billion.
Landslide disasters are also common in developing countries and economical losses
sometimes equal or exceed their gross national products.

2 Risk Management Process

The risk management process comprises two components: risk assessment and risk
treatment.

Landslide and slope engineering has always involved some form of risk manage-
ment, although it was seldom formally recognized as such. This informal type of risk
management was essentially the exercise of engineering judgment by experienced
engineers and geologists.

Figure 1 shows the process of landslide risk management in a flow chart form
(Australian Geomechanics Society 2007). In simple form, the process involves
answering the following questions:
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Fig. 1 Process of landslide risk management (from Australian Geomechanics Society, 2007,
reprinted with permission)
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1. What might happen?
2. How likely is it?
3. What damage or injury may result?
4. How important is it?
5. What can be done about it?

There is a clear distinction between hazard, risk, and probability. Fell et al. (2008)
defines the hazard as a condition with the potential for causing an undesirable
economic, environmental or human safety consequence. When landslides are of
concern, the description of the landslide hazard should include the location, volume
(or area), classification and velocity of the potential landslides and any resultant
detached material, and the probability of their occurrence within a given period of
time.

Risk is a measure of the probability and severity of an adverse effect to health,
property or the environment. Risk is often estimated by the product of probability
and consequences. However, a more general interpretation of risk involves a
comparison of the probability and consequences in a non-product form.

Probability is the likelihood of a specific outcome, measured by the ratio of
specific outcomes to the total number of possible outcomes. Probability is expressed
as a number between 0 and 1, with 0 indicating an impossible outcome, and 1
indicating that an outcome is certain.

The intent of a landslide hazard assessment is to identify a region’s susceptibility
to landslides and their consequences based on a few key or significant physical
attributes comprising the previous landslide activities, bedrock features, slope
geometry, and hydrologic characteristics. In a development program (planning
process) concerning a landslide-prone area, one needs to determine the acceptable
risk. It is indispensable to recognize the vulnerability and degrees of risk involved
and instigate a systematic approach in avoiding, controlling, or mitigating existing
and future landslide hazards in a planning process. Accordingly, either a planner
shall avoid the landslide-susceptible areas if it is deemed appropriate, or else he or
she needs to implement strategies to reduce risk (Fell et al. 2000).

3 Landslide Hazard Identification

Landslide hazard identification requires an understanding of the slope processes
and the relationship of those processes to geomorphology, geology, hydrogeology,
climate, and vegetation (Courture 2011). From this understanding it will be
possible to:

• Classify the types of potential landsliding—the classification system proposed
by Varnes (1978) as modified by Cruden and Varnes (1996) constitutes a suitable
system. It should be recognized that a site may be affected by more than one type
of landslide hazard. For example, existence of deep-seated landslides occurs on
the site, whereas, rockfall and debris flow will initiate from above the site.
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• Assess the physical extent of each potential landslide being considered, including
the location, areal extent, and volume involved.

• Assess the likely causal factor(s), the physical characteristics of the materials
involved, and the slide mechanics.

• Estimate the resulting anticipated travel distance and velocity of movement.
• Address the possibility of fast-acting processes, such as flows and falls, from

which it is more difficult to escape (Hungr et al. 2007).

Methods which may be used to identify hazards include geomorphological
mapping, gathering of historic information on slides in similar topography, geology,
and climate (e.g., from maintenance records, air photographs, newspapers, review
of analysis of stability). Some forms of geological and geomorphological mapping
are considered to be an integrated component of the fieldwork stage when assessing
natural landslides, which requires understanding the site whilst inspecting it.

As stated by Varnes (1978): “The processes involved in slope movements
comprise a continuous series of events from cause to effect.” When assessing
landslide hazard for a particular site, of primary importance is the recognition of
the conditions which caused the slope to become unstable and the processes which
triggered that movement. Only an accurate diagnosis makes it possible to properly
understand the landslide mechanisms and thence to propose effective treatment
measures.

In every slope there are forces which tend to promote downslope movement and
opposing forces which tend to resist movement. A general definition of the factor
of safety of a slope results from comparing the downslope shear stress with the
available shear strength of the soil, along an assumed or known rupture surface.
Starting from this general definition, Terzaghi (1950) divided landslide causes into
external causes which result in an increase of the shearing stress (e.g., geometrical
changes, unloading the slope toe, loading the slope crest, shocks and vibrations,
drawdown, changes in water regime) and internal causes which result in a decrease
of the shearing resistance (e.g., progressive failure, weathering, seepage erosion).
However, Varnes (1978) points out that there are a number of external or internal
causes which may be operating either to reduce the shearing resistance or to increase
the shearing stress. There are also causes affecting simultaneously both terms of the
factor of safety ratio.

The great variety of slope movements reflects the diversity of conditions that
cause the slope to become unstable and the processes that trigger the movement.
It is more appropriate to discuss causal factors (including both “conditions” and
“processes”) than “causes” per se alone. Thus ground conditions (weak strength,
sensitive fabric, degree of weathering, and fracturing) are influential criteria but
are not causes. They are part of the conditions necessary for an unstable slope to
develop, to which must be added the environmental criteria of stress, pore water
pressure and temperature. It does not matter if the ground is weak as such—failure
will only occur as a result if there is an effective causal process which acts as
well. Such causal processes may be natural or anthropogenic, but effectively change
the static ground conditions sufficiently to cause the slope system to fail, i.e., to
adversely change the state of stability (Popescu 1996).
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Fig. 2 Probability distribution curves of the factor of safety (a) Probabilistic representation of
various slope stability stages and (b) Probability distribution curves of the factor of safety for
various slope instability processes

Seldom, if ever, can a landslide be attributed to a single causal factor. The process
leading to the development of the slide has its beginning with the formation of the
rock itself, when its basic properties are determined and includes all the subsequent
events of crustal movement, erosion, and weathering. The computed value of the
factor of safety is a clear and simple distinction between stable and unstable slopes.
However, from the physical point of view, it is better to visualize slopes existing
in one of the following three stages: stable, marginally stable, and actively unstable
(Crozier 1986). Stable slopes are those where the margin of stability is sufficiently
high to withstand all destabilizing forces. Marginally stable slopes are those which
will fail at some time in response to the destabilizing forces attaining a certain level
of activity. Finally, actively unstable slopes are those in which destabilizing forces
produce continuous or intermittent movement.

The three stability stages must be seen to be part of a continuum, with the
probability of failure being minute at the stable end of the spectrum, but increasing
through the marginally stable range to reach certainty in the actively unstable stage.
This is qualitatively illustrated in Fig. 2a by the probability distribution curve of the
factor of safety for any set of slopes in a specified environment. Figure 2b shows
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that in any one area, it is likely that more slopes will be subjected to minor forms
of mass movement, such as creep, than to large-scale displacements such as deep-
seated failures (Crozier and Glade 2005).

The three stability stages provide a useful framework for understanding the causal
factors of landslides and classifying them into two groups on the basis of their
function (WP/WLI 1994):

• Preparatory causal factors which make the slope susceptible to movement
without actually initiating it and thereby tending to place the slope in a marginally
stable state.

• Triggering causal factors which initiate movement. The causal factors shift the
slope from a marginally stable to an actively unstable state.

A particular causal factor may inflict either or both functions, depending on
its degree of activity and the margin of stability. Although it may be possible to
identify a single triggering process, an explanation of ultimate causes of a landslide
invariably involves a number of preparatory conditions and processes. Based on
their temporal variability, the destabilizing processes may be grouped into slow
changing (e.g., weathering, erosion) and fast changing processes (e.g., earthquake,
drawdown). In the search for landslide causes, attention is often focused on those
processes within the slope system, which provoke the greatest rate of change.
Although slow changes act over a long period of time to reduce the resistance/shear
stress ratio, often a fast change can be identified as having triggered movement.

4 Regional Landslide Hazard Assessment

A landslide risk assessment, whether regional or local, has to be preceded by a
corresponding landslide hazard assessment, from which it is then derived. The
ordinary landslide hazard assessment techniques include deterministic, statistical,
and heuristic approaches (Barredo et al. 2000). Deterministic approaches are based
on stability models and are utilized to map landslide hazards at large scales, typically
for construction purposes. These models, however, necessitate detailed geotechnical
and groundwater field data, which may not be always available.

The statistical approach, bivariate or multivariate, requires a large database,
obtained from combination of factors that have initiated landsliding in the past. This
model is generally useful for prediction of future landslides at medium scale and it
is less suitable for reactivated slides.

The heuristic technique, also known as the knowledge-driven approach, is
based on the analyst’s expertise in identifying the type and degree of hazard
for a designated area based on direct or indirect mapping. The direct method is
accomplished either by directly mapping the degree of hazard in the field or by
recording a geomorphic map. The indirect method utilizes an integration technique
by combining several parameter maps based on qualitative weighing values assigned
to each class of parameter map. This procedure is facilitated by compilation of
various parameter layers via GIS for establishing the hazard assessment.
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Before embarking on a regional landslide hazard assessment, the following
preparatory steps are to be taken (Hutchinson 2001):

1. Identify the user and purpose of the proposed assessment. Involve the user in all
phases of the program.

2. Define the area to be mapped and decide the appropriate scale of mapping. This
may range from 1: 100,000 or smaller to 1:5,000 or larger.

3. Obtain, or prepare, a good topographical base map of the area, preferably
contoured.

4. Construct a detailed database of the geology (solid and superficial), geo-
morphology, hydrogeology, pedology, meteorology, mining and other human
interference, history and all other relevant factors within the area, and of all
known mass movements including all published work, newspaper articles and
the results of interviewing the local population.

5. Obtain all available air photo cover, satellite imagery and ground photography
of the area. Photography of various dates can be particularly valuable, both
because of what can be revealed by differing lighting and vegetation conditions
and to delineate changes in the man-made and natural conditions, including slide
development.

Barredo et al. (2000) employed the preceding GIS-assisted direct and indi-
rect heuristic multicriteria evaluation procedure to evaluate the hazards from the
Barranco de Tirajana basin, composed of several large landslides. The aforemen-
tioned investigators revealed that the above techniques are relatively simple and
cost-effective for landslide hazard at medium scales, in particular when costly
geotechnical and groundwater data are not readily available.

Landslide hazard has been defined (Varnes and IAEG 1984) as “the probability of
occurrence within a specified period of time and within a given area of a potentially
damaging phenomenon.” Furthermore, Varnes and IAEG (1984) describe the
landslide risk assessment as “the expected degree of loss due to a landslide (specific
risk) and the expected number of live lost, people injured, damage to property and
disruption of economic activity (total risk).” As shown in Fig. 3, the integrated
assessment of landslide hazard and risk requires a broad-based knowledge from a
wide spectrum of disciplines including geosciences, geomorphology, meteorology,
hydrogeology, and geotechnical engineering (Chowdhury et al. 2001).

Landslide hazards are commonly delineated on inventory maps, which display
distributions of hazard classes and identify areas where potential landslides may
be generated. Inventory maps, exhibit the location and, where applicable, the date
of occurrence and historical records of landslides in a region. They are prepared
by different techniques and, ideally, provide information concerning the spatial and
temporal probability, type, magnitude, velocity, runout distance, and retrogression
limit of the mass movements predicted in a designated area (Nadim and Lacasse
2003). Details of inventory maps depend on available resources and are based on
the scope, extent of study area, scales of base maps, aerial photographs, and future
land use (Guzzetti 2003).
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Fig. 3 Methodology for landslide risk assessment (from Chowdhury et al. 2001, reprinted with
authors’ permission)

Evidently, the extent of information required concerning the landslide hazard
analysis would depend on the level and nature of proposed development for a region.
The negligence of incorporating the impact of potential landsliding on a project
or the prospects of new development on landslide potential may lead to increased
risk. The assessment of future landslide susceptibility in a region will require the
evaluation of relevant conditions and processes controlling landslides, thus causative
factors. These include historical events, slope geometry, bedrock characteristics, and
hydrologic features of the designated area.

Einstein (1997) has presented a comprehensive mapping procedure for landslide
management. Following are key features of mapping procedures proposed by
Einstein:

• State-of-nature maps—these maps, used to characterize site, present data without
interpretation, such as geologic and topographic maps, precipitation data, and
results of site investigation.

• Danger maps—are utilized to identify the failure modes involving debris flows,
rock falls, etc.
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• Hazard maps—exhibit the probability of failure related to the possible modes of
failure on danger maps. Alternatively, the results can be expressed qualitatively
as high, medium, or low.

• Management map—entails a summary of management decisions.

Furthermore, the International Association of Engineering Geology has outlined
the following scales of analysis for landslide hazard zonation (Soeters and van
Westen 1996):

• National Scale (<1:1 Million)—this is a low-level detail map intended to provide
a general inventory of nationwide hazard. It is used to notify national policy
makers and general public.

• Regional Scale (1:100,000–1:500,000)—since landslide hazards are considered
to be undesirable factors as far as the planners are concerned, the regional map-
ping scale is employed in evaluating possible constraints due to instability related
to the development of large engineering projects and regional development plans.
In general, these types of maps are constructed in early phases of regional
development projects with low level details and cover large study areas, on the
order of 1,000 km2 or more. They are used to identify areas where landsliding
could be a constraint concerning the development of rural or urban transportation
projects.

• Medium Scale (1:25,000–1:50,000)—this range is considered to be a suitable
scale range for the landslide hazard maps. As such, they are utilized to identify
the hazard zones in developed areas with large structures, roads, and urbaniza-
tion. Considerably greater level of details is required to prepare the maps at
this scale and the details should encompass slopes in adjacent sites in the same
lithology with possibility of having different hazard scores depending on their
characteristics. Furthermore, distinction should be made between various slope
segments, located within the same terrain unit, such as rating of a concave slope
as opposed to a convex slope.

• Large Scale (1:5,000–1:15,000)—these types of maps are generally prepared for
limited areas based on both interpretation of aerial photographs and extensive
field investigations utilizing various techniques applied in routine geotechnical
engineering, engineering geology and geomorphology.

Guzzetti (2003) makes the following recommendations concerning the prepara-
tion and use of landslide inventory maps. He states that the landslide cartography
should be increasingly utilized and landslide inventory maps should be created
for entire regions based on consistent and reproducible methods. On a regional
scale, Carrara and Guzzetti (1995) indicate, “the temporal dimension of landsliding
is essentially a function of the triggering mechanisms which are climatic (due to
extreme rainfall) or geodynamic (earthquakes) in nature.” Thus, it would be advan-
tageous to prepare landslide inventory maps following each landslide-triggering
event such as a rainstorm, a snowmelt event, or an earthquake for the entire affected
region. They will provide valuable information regarding type(s), extent and severity
of damage caused by the event and will help assessing the impact of the landslide
events on infrastructures in that region.
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It is important that the quality, reliability and sensitivity of landslide hazard
models and maps be carefully examined. Guzzetti (2003) suggests that the created
models need to be checked against high-quality inventory maps and reliable his-
torical catalogues of landslide events. Guzzetti (2003) also recommended that both
quantitative and qualitative methods should be increasingly performed regarding
total risk assessments at local and regional scales. There is a lack of sufficient
data and case histories for critical evaluation of techniques and models concerning
regional and local landslide risk assessments. Thus, there is a need for compilation
of relevant data that will help in comparison of the qualitative and quantitative risk
assessment procedures and outcomes. It is anticipated that the recent development
in statistical analyses utilizing GIS techniques will enhance analyses of spatial data
sets and, thus, quantitative representation of landslide potential along with graphical
depictions (Carrara and Guzzetti 1995).

5 Landslide Risk Assessment

By and large, the elements at risk involve property, people, services, such as water
supply or drainage or electricity supply, roads and communication facilities, and
vehicles on roads. The consequences may not, however, be limited to property
damage and injury/loss of life. Other factors include public outrage, political effects,
loss of business confidence, effect on reputation, social upheaval, consequential
costs, such as litigation (Australian Geomechanics Society 2007).

Many of these may not be readily quantifiable and will require consider-
able judgment if they are to be included in the assessment. Consideration of
such consequences may constitute part of the risk evaluation process by the
client/owner/regulator.

Risk estimation may be carried out quantitatively, semi quantitatively or qualita-
tively (Leroi et al. 2005). Wherever possible, the risk estimate should be based on a
quantitative analysis, even though the results may be summarized in a qualitative
terminology. Quantitative risk estimation involves integration of the frequency
analysis and the consequences.

A full risk analysis involves consideration of all landslide hazards at a designated
site (e.g., large, deep-seated landsliding, smaller slides, boulder falls, debris flows)
and relevant elements at risk. For total risk (in relation to property and/or life), the
risk for each hazard of each element is summed. As estimates made for an analysis
will be imprecise, sensitivity analyses are useful to evaluate the effect of changing
assumptions or estimates. Variation in the estimate of risk by one or two orders of
magnitude, or perhaps three orders of magnitude at low risks, will not be uncommon
(Einstein and Karam 2001). The resulting sensitivity may aid judgment as to the
critical aspects requiring further investigation or evaluation.
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6 Landslide Risk Treatment

Engineering community recognizes that the degree of inherent risk is significant in
any landslide project. By its nature, risk sometimes defies definition. Often the most
onerous risks are those that were not initially anticipated by anyone, including the
owner, the designer, and the contractor. Therefore our ability to identify and mitigate
risks ultimately defines a successful project.

The key to establishing a robust yet useful risk based approach for landslide
treatment is to find a proper balance between simplicity and methodological rigor.
Risk is the combination of the probability of an adverse performance outcome and
the consequences that ensue if that outcome is realized. It is becoming common in
industrial and regulatory applications of risk screening to portray information in a
“risk matrix” of the form shown in Fig. 4. The cells are ranked vertically according
to how likely it is that some adverse event would occur, and horizontally by how
severe the consequences would be if the event occurred. Events to the lower left are
low in probability and low in consequence, and thus of low risk. Those to the upper
right are high in probability and high in consequence, and thus of high risk. This
discrimination allows priority decisions to be made in a simple way.

Risk treatment is the final stage of the risk management process and provides the
methodology of controlling the risk. At the end of the evaluation procedure, it is
up to the client or policy makers to decide whether to accept the risk or not, or to
decide that more detailed study is required. The landslide risk analyst can provide
background data or normally acceptable limits as guidance to the decision maker
but should not be making the decision. Part of the specialist’s advice may be to

Fig. 4 Conventional risk matrix
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identify the options and methods for treating the risk. Typical options would include
Australian Geomechanics Society (2007):

• Accept the risk—this would usually require the risk to be considered to be within
the acceptable or tolerable range.

• Avoid the risk—this would require abandonment of the project, seeking an
alternative site or form of development such that the revised risk would be
acceptable or tolerable.

• Reduce the likelihood—this would require stabilization measures to control the
initiating circumstances, such as re-profiling the surface geometry, groundwater
drainage, anchors, stabilizing structures, or protective structures.

• Reduce the consequences—this would require provision of defensive stabiliza-
tion measures, amelioration of the behavior of the hazard or relocation of the
development to a more favorable location to achieve an acceptable or tolerable
risk.

• Monitoring and warning systems—in some situations monitoring (such as by
regular site visits, or by survey), and the establishment of warning systems may
be used to manage the risk on an interim or permanent basis. Monitoring and
warning systems may be regarded as another most efficient means of reducing
the consequences.

• Transfer the risk—by requiring another authority to accept the risk or to
compensate for the risk such as by insurance.

• Postpone the decision—if there is sufficient uncertainty, it may not be appropriate
to make a decision on the data available. Further investigation or monitoring
would be required to provide data for better evaluation of the risk.

The relative costs and benefits of various options need to be considered so that
the most cost effective solutions, consistent with the overall needs of the client,
owner and regulator, can be identified. Combinations of options or alternatives may
be appropriate, particularly where relatively large reductions in risk can be achieved
for relatively small expenditure. Prioritization of alternative options is likely to assist
with selection.

7 Levels of Effectiveness and Acceptability That May
Be Applied in the Use of Landslide Remedial Measures

Terzaghi (1950) stated that “if a slope has started to move, the means for stopping
movement must be adapted to the processes which started the slide.” For example,
if erosion is a causal process of the slide, an efficient remediation technique would
involve armoring the slope against erosion, or removing the source of erosion. An
erosive spring can be made non-erosive by either blanketing with filter materials or
drying up the spring with horizontal drains, etc.
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The greatest benefit in understanding landslide-producing processes and mecha-
nisms lies in the use of the above understanding to anticipate and devise measures
to minimize and prevent major landslides (Popescu and Schaefer 2008). The term
major should be underscored here because it is neither possible nor feasible, nor
even desirable, to prevent all landslides. There are many examples of landslides
that can be handled more effectively and at less cost after they occur. Landslide
avoidance through selective locationing is obviously desired—even required—in
many cases, but the dwindling number of safe and desirable construction sites may
force more and more the use of landslide—susceptible terrain.

Selection of an appropriate remedial measure depends on: (a) engineering
feasibility, (b) economic feasibility, (c) legal/regulatory conformity, (d) social
acceptability, and (e) environmental acceptability. A brief description of each
method is presented herein:

(a) Engineering feasibility involves analysis of geologic and hydrologic conditions
at the site to ensure the physical effectiveness of the remedial measure. An
often-overlooked aspect is making sure the design will not merely divert the
problem elsewhere.

(b) Economic feasibility takes into account the cost of the remedial action to the
benefits it provides. These benefits include deferred maintenance, avoidance of
damage including loss of life, and other tangible and intangible benefits.

(c) Legal-regulatory conformity provides for the measure meeting local building
codes, avoiding liability to other property owners, and related factors.

(d) Social acceptability is the degree to which the remedial measure is acceptable
to the community and neighbors. Some measures for a property owner may
prevent further damage but could be an unattractive eyesore to neighbors.

(e) Environmental acceptability addresses the need for the remedial measure to not
adversely affect the environment. De-watering a slope to the extent it no longer
supports a plant community may not be environmentally acceptable solution.

Just as there are a number of available remedial measures, so are there a number
of levels of effectiveness and levels of acceptability that may be applied in the
use of these measures. We may have a landslide, for example, that we simply
choose to live with; one that poses no significant hazard to the public, whereas it
will require periodic maintenance for example, through removal, due to occasional
encroachment onto the shoulder of a roadway. The permanent closure of the
Manchester—Sheffield road at Mam Tor in 1979 (Skempton et al. 1989) is well
known example of abandonment due to the effects of landslides where repair was
considered uneconomical.

Most landslides, however, must usually be dealt with sooner or later. How they
are handled depends on the processes that prepared and precipitated the movement,
the landslide type, the kinds of materials involved, the size and location of the
landslide, the place or components affected by or the situation created as a result
of the landslide, available resources, etc. The technical solution must be in harmony
with the natural system, otherwise the remedial work will be either short lived or
excessively expensive. In fact, landslides are so varied in type and size, and in
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most instances, so dependent upon special local circumstances, that for a given
landslide problem there is more than one method of prevention or correction that
can be successfully applied. The success of each measure depends, to a large extent,
on the degree to which the specific soil and groundwater conditions are prudently
recognized in an investigation and incorporated in design.

8 Monitoring and Warning as Tools of Landslide
Hazard Management

Monitoring of landslides plays an increasingly important role in the context of
living and coping with these natural hazards. The classical methods of land surveys,
inclinometers, extensometers, and piezometers are still the most appropriate ones.
In future, the emerging techniques based on remote sensing and remote access
techniques should be of primary interest (Popescu 2001).

DOE: Department of the Environment (1994) identifies the following categories
of monitoring, designed for slightly differing purposes but generally involving
similar techniques:

1. Preliminary monitoring involves provision of data on pre-existing landslides so
that the dangers can be assessed and remedial measures properly designed or the
site abandoned.

2. Precautionary monitoring is carried out during construction in order to ensure
safety and to facilitate redesign if necessary.

3. Post-construction monitoring in order to check on the performance of stabiliza-
tion measures and to focus attention on problems that require remedial measures.

Observational methods based on careful monitoring coupled with back analysis
methods (Popescu and Habimana 2010) are essential in achieving reliable and cost–
effective remedial measures.

Leroi (1996) defined the following four possible different stages of landslide
activity:

1. Pre-failure stage, when the soil mass is still continuous. This stage is mostly
controlled by progressive failure and creep

2. Onset of failure characterized by the formation of a continuous shear surface
through the entire soil or rock mass

3. Post-failure stage which includes movement of the soil or rock mass involved in
the landslide, from just after failure until it essentially stops

4. Reactivation stage when the soil or rock mass slides along one or several pre-
existing shear surfaces. This reactivation can be occasional or continuous with
seasonal variations of the rate of movement

Several methods have been proposed for the prediction concerning the time
of occurrence of landslides (Federico et al. 2012, 2014). In engineering practice,
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phenomenological methods, that infer the time to failure by means of the monitored
surface displacements, are preferred for a prediction, given that they remove all the
uncertainties involved in these problems.

When dealing with a slope of precarious stability and/or presenting a risk which
is considered too high, a possible option is to do nothing but install a warning system
in order to insure or improve the safety of people (Baum and Godt 2010). It is worth
noting that warning systems do not modify the hazard but contribute to reducing the
consequences of the landslide and thus the risk, in particular the risk associated to
the loss of life.

Various types of warning systems have been proposed and the selection of an
appropriate one should take into account the stage of landslide activity:

1. At pre-failure stage, the warning system can be applied either to revealing factors
or to aggravating factors. The revealing factors can be for example the opening of
fissures or the movement of given points on the slope; in such cases, the warning
criterion will be the magnitude or rate of movement. When the warning system
is associated to triggering or aggravating factors, there is a need to firstly define
the relation between the magnitude of the controlling factors and the stability
condition or the rate of movement of the slope. The warning criterion can be a
given hourly rainfall or the cumulative rainfall during a certain period of time,
pore water pressure, a given stage of erosion, a minimum negative pore pressure
in a loess deposit, etc.

At failure stage, the warning system can only be linked to revealing factors,
generally a sudden acceleration of movements or the disappearance of a target.

2. At post-failure stage, the warning system has to be associated to the expected
consequences of the movement. It is generally associated with the rate of
movement and run out distance.

Majority of the techniques, outlined above, could be cost-prohibitive and may
be socially and politically unpopular. As a result, there may be a temptation to
adopt and rely instead upon the installation of apparently cheaper and much less
disruptive monitoring and warning systems to “save” the population from future
catastrophes. However, for such an approach to be successful it is necessary to
fulfill satisfactorily each of the following steps (Hutchinson 2001):

(a) The monitoring system shall be designed to record the relevant parameters,
to be in the right places, to be sound in principle and effective in operation.

(b) The monitoring results need to be assessed continuously by suitable experts.
(c) A viable decision shall be made, with a minimum of delay, that the danger

point has been reached.
(d) The decision should be passed promptly to the relevant authorities, with a

sufficient degree of confidence and accuracy regarding the forecast place and
time of failure for those authorities to be able to act without the fear of raising
a false alarm.

(e) Once the authorities decide to accept the technical advice, they must pass
the warning on to the public in a way that will not cause panic and possibly
exacerbate the situation.
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(f) The public, who need to be very well informed and prepared in advance, to
respond in an orderly and pre-arranged manner.

In view of the preceding discussion, it is not surprising that, though there have
been few successes with monitoring and warning systems, particularly in relatively
simple, site-specific situations, there have been many cases where these have failed,
on one or more of the grounds (a) through (f) above, often with tragic and extensive
loss of life. It is concluded, therefore, that sustained good management of an area,
as outlined above, should be our primary response to the threat of landslide hazards
and risks, with monitoring and warning systems in a secondary, supporting role.

9 Probabilistic Risk Assessment of Slope Instability

The keyword in hazard assessment is uncertainty and hence probabilistic methods
are the most appropriate in both defining the areas at risk and analyzing the
mechanisms. The basis of a probabilistic framework is the recognition that the
estimated factor of safety reflects imperfect knowledge and is, therefore, a variable.

The most important probabilistic method used in geotechnical risks assessment is
the first order second moment method. One of the advantages of this method is that
one can derive moments of the dependent variable from moments of the independent
variables, without knowledge of probability density functions. The method is based
on the mean value and coefficient of variation only.

The statistics characterizing the soil variability and the variability of the spatial
average values are necessary inputs into probabilistic methods for quantifying risk
and reliability of soil structures. Soil properties should be modeled as spatially
correlated variables or “random variables.” The use of perfectly correlated soil
properties gives rise to unrealistically large values of failure probabilities for
geotechnical structures.

The stability of slopes is undoubtedly the most popular application of probabilis-
tic and reliability methods judging from the number of publications on this subject.
Slope stability mechanics and analysis procedures are felt to be so well understood
that variability of input parameters is considered to be the only significant unknown.
Statistical distribution of input data such as soil strength and pore-pressure is
analyzed to estimate failure probability. However, “ignorance factors” are more
important than natural variability, yet they are almost never accounted for in
probabilistic stability studies.

D’Appolonia (1977) proposed that an important consideration in a probabilistic
analysis was what he referred to as « unknown unknowns ». These might include
unanticipated geological conditions or some influence of the construction process.
It is likely that provision for this component should be greater for new types of
structures, new geological conditions and where either the structure or the geology
is highly complex.
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With the availability of friendly software, geotechnical reliability evaluations can
be greatly facilitated. Recent changes in both computer hardware and software allow
the responsible engineer to be now able to be more involved in personally running
analyses and at the same time to be more readily able to construct a reasonably
detailed model of the problem.

Current procedures for evaluating the safety of slopes consist in determining a
factor of safety which is compared with allowable values found to be satisfactory on
the basis of previous experience. The factor of safety suffers from the following:

1. Elements of uncertainty in analyses are not quantified when the factor of safety
is used.

2. The scale of the factor of safety is not known. For example, a slope with a factor
of safety of 3.0 is not necessarily twice as safe as another with a factor of safety
of 1.5.

3. Allowable values to be selected for the factor of safety are the result of
experience. In dealing with new or different problems for which there is no
previous experience, there is no allowable factor of safety.

There is much to be gained from applying concepts of risk analysis to supplement
conventional procedures for determining the factor of safety against shear failure of
soil slopes.

The reliability index of a slope can be defined in several ways on the basis of
the probability distribution of the random variable(s) governing the slope failure
mechanism(s). Thus considering the factor of safety, one of the simplest definitions
of the reliability index is:

ˇ D .E ŒF � � 1:0/ =� ŒF � (1)

in which E[F] is the best estimate of the factor of safety and � [F] is the standard
deviation of the factor of safety.

The reliability index provides a better indication of how close the slope is to fail-
ure than does the factor of safety alone. This is because it incorporates contributions
due to randomness of soil parameters, geometry, environmental loading, and other
physical effects as well as due to uncertainties in the computational method.

Slopes with large values of the reliability index are farther from failure than slopes
with small values of the reliability index, regardless of the value of the best estimate
of the factor of safety. This is illustrated in Fig. 5 by the example of two slopes with
different probability distribution functions for the factors of safety. The slope with
the higher E[F] has a larger probability of failure than the slope with the lower E[F]
though the conventional approach, as well as many regulations, would regard the
former slope as significantly safer than the latter.

A variety of techniques for evaluating the reliability index and the probability of
failure is available. Popescu et al. (1998) have used both Monte Carlo method and
the Point Estimate method to determine the probability of failure of simple slopes
and found a good agreement between the results obtained with the two methods.
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Factor of safety, F1.0

E1[F] > E2[F]

E2[F] E1[F]

Pf1 > Pf2

Pf = P (F<1)
s2[F] s1[F]

Pf1

Pf2

Fig. 5 Example of two slopes with different probability distribution functions of the factor of
safety

The Monte Carlo simulation method determines the mean and standard deviation
of a performance function of random variables by performing repeated computa-
tions with the randomly generated values for the component variables. There are
four stages in a Monte Carlo simulation:

1. Generate random numbers (i.e., independent random variables uniformly dis-
tributed over the unit interval between 0 and 1), transform the random numbers
from a uniform distribution to the distribution applicable to the component
variable and calculate values of all component variables based on the appropriate
random numbers.

2. Using the randomly generated values of the component variables, compute the
system performance function (i.e., factor of safety).

3. Repeat steps (1) and (2) a large numbers of times. The number of times depends
on the variability of the input and output parameters and the desired accuracy of
the output.

4. Create a cumulative distribution of the system performance function (i.e., factor
of safety) using the data obtained from the above simulations. Interpretation
of the distribution of the system performance function provides the mean and
standard deviation of the factor of safety.

The Monte Carlo simulation requires a high-speed computer so that a large
number of trials can be conducted. An alternative approach for calculating the
mean and standard deviation of the factor of safety is the Point Estimate method
(Rosenblueth 1975).

The basic principle of the Point Estimate method is illustrated in Fig. 6 where the
probability distribution function (pdf) of a random variable X is approximated by a
two-point probability mass function. The mass function consists of concentrations
PC and P� at XC and X�, respectively. If F(X) is a function of X, a two-point
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pdf (X)

X
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F=F(X)
Estimated pdf (F)

P+

P-

X-

P-

X+

P+

F+

F-
F-=F(X-)

F+=F(X+)

Fig. 6 Basic principle of the point estimate method

approximation of the pdf of F is obtained by evaluating the function F(X) at XC and
X� (FC D F(XC) and F� D F(X�)):

E ŒF � D PCFC C P�F� (2a)

EŒF �2 D PCF 2C C P�F 2� (2b)

� ŒF � D
q
E ŒF 2� � .E ŒF �/2 (2c)

In general if F is a function of N random independent variables, then 2N points
are needed to approximate the multivariate mass function and the entire procedure
can be summarized as follows:

E ŒF � D
X

.P1˙ � P2˙ � : : : PN˙/ F .X1˙; X2˙; : : : XN˙/ (3a)

E
�
F 2
	 D

X
.P1˙ � P2˙ � : : : PN˙/ F 2 .X1˙; X2˙; ::XN˙/ (3b)

For correlated random variables, additional adjustment must be made to the prob-
ability concentrations, Pi. Where symmetrically distributed variables are assumed,
the point estimates XiC and Xi� are taken at one standard deviation above and below
the expected value, respectively. The probability concentration or weighting factor P
for the case of uncorrelated random variables with symmetrical distribution is equal
to (1/2)N .

A major benefit of the probabilistic approach is that the sensitivity of the solution
to various parameters can be determined. The parameters of most relevance for slope
stability studies are the standard deviations of the cohesion, angle of internal friction
and pore-water pressure ratio.
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A guide of decision making and interpreting open-pit slope performance in the
context of a probabilistic framework is given in Table 1 according with Priest and
Brown (1983).

In the following, an example of probabilistic slope stability analysis using the
Point Estimate method is presented. The analysis addresses the stability of spoil
pile slopes of a strip coal mine located in southwestern Turkey that has been subject
to detailed geotechnical investigations reported by Ulusay et al. (1996). This case
history was selected for analysis because a large amount of geotechnical data was
available that allowed a statistical analysis of the shear strength parameters, required
in any probabilistic slope stability study. As seen in Fig. 7, the spoil pile geometry
is characterized by a height, H, of 20–50 m, and a slope angle, ˇ, of 30–50ı. The
slope failure mechanism consists of a biplanar wedge instability mode, with the
basal portion of the sliding surface located in a weak clay layer representing the
foundation material of the spoil pile, while the upper portion of the sliding surface
was located in the spoil material (Ulusay et al. 1996).

The input random variables considered for the probabilistic slope stability
assessment included the shear strength parameters in terms of effective stresses (i.e.,
c0—effective cohesion intercept and �0—effective friction angle) for the weak basal
clay layer (i.e., c

0

1 and �
0

1) and for the spoil material (i.e., c
0

2 and �
0

2), and the angle
relative to the horizontal of the basal (˛) and upper (ı) portions of the biplanar
sliding surface. The estimated correlation coefficient between parameters c0 and
�0 is �0.779, and the unit weight of the spoil material utilized in slope stability
calculations is 16.5 kN/m3.

The analysis was performed for a groundwater table coincident with the basal
sliding surface. Table 2 provides the best estimate and standard deviation values of
the input random variables considered in the present probabilistic study. A flowchart
of the probabilistic slope stability analysis is presented in Fig. 7. The analysis was
performed assuming that the input random variables are normally distributed. Point
estimates of the safety factor required in evaluations of the probability distribution
function pdf(F) were determined using a two-wedge limit equilibrium slope stability
model illustrated in Fig. 8.

Figure 9 displays the probabilistic analysis results, including best estimate values
of the safety factor (E[F]), probability of safety factor being less 1.0 (P(F< 1.0)),
and probability of safety factor being less 1.5 (P(F< 1.5)). These quantities are
plotted on three dimensional charts as functions of slope angle (ˇ) and slope
height (H) in order to assess the slope performance according to the probabilistic
slope design criteria falling under the slope category 1 in Table 1. As seen on
the probability chart in Fig. 9, all of the analyzed slope configurations violate the
probabilistic criterion P(F< 1.5) � 20 %, and only a few combinations of H and ˇ
parameters, with H not greater than 23 m and ˇ not greater than 34ı, satisfy the
probabilistic criterion P(F< 1.5) � 10 %. The shaded area located in the horizontal
(H, ˇ) plane on the E[F] chart comprises the slope configurations characterized
by E[F] � 1.3 thus satisfying the minimum F criterion from Table 1. Based on
the probabilistic analysis results from Fig. 9, slope configurations characterized
by combinations of H and ˇ falling outside the shaded area corresponding to
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b = 30…500

H = 20…50 m
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c’- E[ c’ ]

E[ ]
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Compute the point estimates of the input random variables
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Point Estimate Method
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d
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s

c’1 , f’1

c’2 , f’2

Fig. 7 Geometry of slope failure mechanism and flow chart for the probabilistic slope stability
analysis

Table 2 Best estimate and
standard deviation values of
the input random variables
considered for the example
probabilistic slope stability
analysis

Random variable Best estimate, E[] Standard deviation, �[]

�
0

1 (ı) 15.4 5.1
c

0

1 (kPa) 5.9 5.6
�

0

2 (ı) 33.0 5.0
c

0

2 (kPa) 8.9 3.6
˛ (ı) 7.4 5.2
ı (ı) 66.8 2.5

E[F] � 1.3 on the E[F] plot can be interpreted as potentially unstable, whereas slope
configurations falling inside the E[F] � 1.3 shaded area may still carry a certain level
of operational risk that could be mitigated by extensive monitoring activities.

10 Concluding Remarks

Assessing landslide hazard is a most important step in landslide risk management.
Once that has been done, it is feasible to assess the number, size and vulnerability of
the fixed elements at risk (structures, roads, railways, pipelines, etc.) and thence the
damage they will suffer. The various risks have to be combined to arrive at a total
risk in financial terms. Comparison of this with, for instance, cost-benefit studies of
relocation of populations and facilities, or mitigation of the hazard by engineering
countermeasures, provides a very useful tool for management and decision-making.
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Equations:

= 0

= 0

β = 30…500

H = 20…50 m

X = 15 m

c’2 , f’2

c’1 , f’1

Ground surface

Sliding surface

Unknowns:
N1 , T1 , N2 , T2 , P , F

1

P

x

y

2

P N2

2

F
T

F
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2

11
1

tan φ'
2u2N2c'

2 22

∑X

∑Y

1

f’2

f’2

d

a

N1

T1

W1

W2 T2

Fig. 8 Two-wedge limit equilibrium slope stability model for safety factor evaluation

Slope stability engineering is concerned with decision-making based on informa-
tion and analysis combined with observation. Concepts of statistics and probability
have been used from time to time but, as a formal basis for analysis, the use of
probabilistic framework has been advocated only in the last few decades.

Probabilistic slope stability is a developing field with various models including
different effects. A complete model for probabilistic analysis of a soil slope is still
some way off. Nevertheless even a simplified probabilistic analysis can add valuable
information to guide the slope design in decision making.

Much progress has been made in developing techniques to minimize the impact
of landslides, although new, more efficient, quicker and cheaper methods could well
emerge in the future. There are a number of levels of effectiveness and levels of
acceptability that may be applied in the use of these measures, for while one slide
may require an immediate and absolute long-term correction, another may only
require minimal control for a short period.

Whatever the measure chosen, and whatever the level of effectiveness required,
the geotechnical engineer and engineering geologist have to combine their talents
and energies to solve the problem. Solving landslide related problems is changing
from what has been predominantly an art to what may be termed an art-science. The
continual collaboration and sharing of experience by engineers and geologists will
no doubt move the field as a whole closer toward the science end of the art-science
spectrum than it is at present.



Risk Assessment of Slope Instability Related Geohazards 267
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Fig. 9 Computed mean safety factor (E[F]) along with probability of safety factor being less than
1.0 (P(F< 1.0)) and probability of safety factor being less than 1.5 (P(F< 1.5))
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Advances in System Reliability Analysis
Under Uncertainty

Chao Hu, Pingfeng Wang, and Byeng D. Youn

Abstract In order to ensure high reliability of complex engineered systems against
deterioration or natural and man-made hazards, it is essential to have an efficient
and accurate method for estimating the probability of system failure regardless of
different system configurations (series, parallel, and mixed systems). Since system
reliability prediction is of great importance in civil, aerospace, mechanical, and
electrical engineering fields, its technical development will have an immediate and
major impact on engineered system designs. To this end, this chapter presents
a comprehensive review of advanced numerical methods for system reliability
analysis under uncertainty. Offering excellent in-depth knowledge for readers, the
chapter provides insights on the application of system reliability analysis methods to
engineered systems and gives guidance on how we can predict system reliability for
series, parallel, and mixed systems. Written for the professionals and researchers,
the chapter is designed to awaken readers to the need and usefulness of advanced
numerical methods for system reliability analysis.

1 Introduction

Failures of engineered systems (e.g., vehicle, aircraft, and material) lead to signifi-
cant maintenance/quality-care costs and human fatalities. Examples of such system
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failures have been found in many engineering fields: DC-10-10 aircraft engine loss
(1979), the explosion of the Challenger space shuttle (1986), Ford Explorer rollover
(1998–2000), the interstate 35W bridge failure in Minneapolis, MN (2007), etc.
Today, US industry spends $200 billion each year on reliability and maintenance.
Many system failures can be traced back to various difficulties in evaluating and
designing complex systems under highly uncertain manufacturing and operational
conditions and our limited understanding of physics of failures. Thus, reliability
analysis under uncertainty, which assesses the probability that a system performance
(e.g., fatigue, corrosion, fracture) meets its marginal value while taking into account
various uncertainty sources (e.g., material properties, loads, geometries), has been
recognized as of significant importance in product design and development (Haldar
and Mahadevan 2000).

Reliability analysis involving a single performance function is referred to as
component reliability analysis. In engineering practice, it is also very likely to
encounter reliability analysis problems involving multiple performance functions
and these performance functions often describe different physical phenomena
(associated with system performances) that are coupled together via the common
random variables shared by the functions. We refer to this type of reliability analysis
as system reliability analysis. System reliability analysis aims at analyzing the
probability of system success while considering multiple system performances (e.g.,
fatigue, corrosion, and fracture). For example, the design of a truss structure requires
both the displacement at a critical node and the stress of a critical truss element
satisfy the reliability requirements. Here we have two performance functions in
reliability analysis, i.e., the nodal displacement and the elemental stress. This
example has two failure criteria, namely, displacement and stress. Another example
is the design of a lower control A-arm in a vehicle. In this example, even if we only
consider a single failure criterion (i.e., stress), we still need to deal with multiple
performance functions which are the stresses at multiple hotspots of the control
arm.

The task may become more challenging if we have different system configura-
tions (e.g., series, parallel, and mixed). In order to ensure high reliability of complex
engineered systems against deterioration or natural and man-made hazards, it is
essential to have an efficient and accurate method for estimating the probability of
system failure regardless of different system configurations (series, parallel, and
mixed systems). Although tremendous advances have been made in component
reliability analysis and design optimization, the research in system reliability
analysis has been stagnant due to the complicated nature of the multiple system
failure modes and their interactions, as well as the costly computational expense of
system reliability evaluation (Youn and Wang 2009; Wang et al. 2011). Since system
reliability prediction is of great importance in civil, aerospace, mechanical, and
electrical engineering fields, its technical development will have an immediate and
major impact on engineered system designs. This chapter is devoted to providing
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an in-depth discussion of the recently developed numerical methods for system
reliability analyses of series, parallel, and mixed systems with an aim to give insights
into the merits and limitations of these methods.

2 Overview of Reliability Analysis Under Uncertainty

The formal definition of reliability is the probability that an engineered system will
perform its required function under prescribed conditions (for a specified period of
time). We intentionally use a bracket in this definition to indicate the existence of
two different types of reliabilities: time-independent reliability and time-dependent
reliability. The former type is often used in designing an engineered system to
provide a high built-in reliability at the very beginning of operation (i.e., it generally
does not consider the health degradation during the life cycle); the later type is often
employed in supporting an engineered system to ensure a high operational reliability
(i.e., the health degradation during the life cycle is taken into account to estimate
the reliability). The discussion in this chapter only focuses on the time-independent
reliability which can be defined as the probability that the actual performance of an
engineered system meets the required or specified design performance under various
uncertainty sources (e.g., material properties, loads, geometric tolerances). This
section discusses the types of uncertainty and provides an overview of component
and system reliability analyses under uncertainty.

2.1 Types of Uncertainty

Uncertainty present in engineering applications can be formally classified into two
categories: aleatory uncertainty and epistemic uncertainty (Swiler and Giunta 2007).
Aleatory uncertainty characterizes the inherent uncertainty in a random input of the
performance function under study. Aleatory uncertainty is objective and irreducible
and is used when sufficient data on the random input are available. Aleatory
uncertainties can be characterized by using appropriate probability distributions.
Epistemic uncertainty, on the other hand, characterizes the lack of knowledge
on the appropriate value to use for an input that has a fixed value. Epistemic
uncertainty is subjective and can be reduced by gathering more data for the input.
Epistemic uncertainty reflects the degree of “belief” and can be represented by fuzzy
sets (Möller and Beer 2004), possibility theory (Youn et al. 2007), or imprecise
probability (Ferson et al. 2003).
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This chapter assumes that sufficient random input data are available and,
thereafter, only considers aleatory uncertainty. In engineering practice, the aleatory
uncertainty of a random input X can be characterized with three sequentially
executed steps (Xi et al. 2010):

• Step 1: Obtain optimal distribution parameters for candidate probability distribu-
tions using the maximum likelihood method. It can be formulated as

maximize L
�
X
ˇ̌
ˇ•
�

D
KX

lD1
log10

h
f
�
xl

ˇ̌
ˇ•
�i

(1)

where • is the unknown distribution parameter vector; xl is the lth random data
point (or realization) of X; L(�) is the likelihood function; K is the number of
random data points (or realizations); and f is the probability density function
(PDF) of X for the given •.

• Step 2: Perform the Chi-Square goodness-of-fit tests on the candidate distribu-
tion types with the optimum distribution parameters obtained in Step 1. It is
noted that, depending on the specific engineering application, the Kolmogorov–
Smirnov (K–S) test or the Anderson–Darling (AD) test may be more appropriate
than the Chi-Square goodness-of-fit test.

• Step 3: Select the distribution type with the maximum p-value as the optimal
distribution type for X.

2.2 Overview of Component Reliability Analysis

The (time-independent) component reliability can be defined as the probability that
the actual performance of an engineered system meets the required or specified
design performance under various uncertainty sources (e.g., material properties,
loads, geometric tolerances). This definition is often used in reliability-based design
of civil structural systems, mechanical systems, and aerospace systems. In order to
formulate the component reliability in a mathematical framework, random variables
are often used to model uncertainty sources in engineered systems. The time-
independent reliability can then be formulated as

R.X/ D P.G.X/ < 0/ D 1 � P.G.X/ � 0/ (2)

where the random vector X D (X1, X2, : : : , XN)T models uncertainty sources such
as material properties, loads, geometric tolerances; G(X) is a system performance
function and the system success event Esys D fG(X)< 0g. The uncertainty of the
vector X further propagates and leads to the uncertainty in the system performance
function G. In reliability analysis, equating the system performance function G
to zero, i.e., G D 0, gives us the so-called limit-state function which separates
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the safe region G(X)< 0 from the failure region G(X)> 0. Depending on the
specific problems, a wide variety of system performance functions can be defined
to formulate component reliabilities. The most well-known example is the safety
margin between the strength and load of an engineered system.

The concept of component reliability analysis in a two-dimensional case is
illustrated in Fig. 1. The dashed lines represent the contours of the joint PDF of
the two random variables X1 (operational factors) and X2 (manufacturing tolerance).
The basic idea of component reliability analysis is to compute the probability that
X is located in the safety region fG< 0g. Mathematically, this probability can be
expressed as a multidimensional integration of the performance function over the
safety region

R.X/ D P.G.X/ < 0/ D
Z

� � �
Z

�S
fX.x/dx (3)

where X D (X1, X2, : : : , XN)T models uncertainty sources such as material proper-
ties, loads, geometric tolerances; fX(x) denotes the joint PDF of this random vector;
the safety domain �S is defined by the limit-state function as �S D fX: G(X)< 0g.

Neither analytical multidimensional integration nor direct numerical integra-
tion is computationally affordable for large-scale engineering problems where
the numbers of random variables are relatively large. The search for efficient
computational procedures to estimate the component reliability has resulted in
a variety of numerical and simulation methods. In general, these methods can
be categorized into four groups: (1) expansion methods; (2) most probable point
(MPP)-based methods; (3) sampling methods; and (4) stochastic response surface
methods (SRSMs). In what follows we intend to give an overview of these methods.

Expansion methods obtain the second-moment statistics of the performance
function based on the first- or second-order Taylor series expansion of this function
at the mean values of the input random variables (Haldar and Mahadevan 2000).
Reliability can be computed by assuming that the performance function follows a
normal distribution. It can be seen, therefore, that expansion methods involve two
approximations, i.e., the first-order (linear) or second-order (quadratic) approxima-
tion of the performance function at the mean values and the normal approximation
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to the PDF of the performance function. The approximations lead to the fact that
these methods are only applicable for engineering problems with relatively small
input uncertainties and weak output nonlinearities.

Among many reliability analysis methods, the first- or second-order reliability
method, FORM (Hasofer and Lind 1974) or SORM (Breitung 1984; Tvedt 1984),
is most commonly used. The FORM/SORM uses the first- or second-order Taylor
expansion to approximate a limit-state function at the most probable failure point
(MPP) where the limit-state function separates failure and safety regions of a
product (or process) response. Some major challenges of the FORM/SORM include
(1) it is very expensive to build the probability density function (PDF) of the
response and (2) structural design can be expensive when employing a large number
of the responses.

The sampling methods include the direct or smart Monte Carlo simulation (MCS)
(Rubinstein 1981; Fu and Moses 1988; Au and Beck 1999; Hurtado 2007; Naess
et al. 2009). Assuming that we know the statistical information (PDFs) of the input
random variables, the direct MCS generally involves the following three steps:

• Step 1: The MCS starts by randomly generating a large number of samples based
on the PDFs of the random inputs.

• Step 2: In this step, the performance function is evaluated at each of the random
samples. Simulations or experiments need to be conducted for this purpose.
Upon the completion of this step, we obtain a large number of random values
or realizations of the performance function.

• Step 3: We extract from these random realizations the probabilistic characteristics
of the performance function, including statistical moments, reliability, and PDF.

Although the direct MCS (Rubinstein 1981) produces accurate results for
reliability analysis and allows for relative ease in the implementation, it demands
a prohibitively large number of simulation runs. Thus, it is often used for the
purpose of a benchmarking in reliability analysis. To alleviate the computational
burden of the direct MCS, researchers have developed various smart MCS methods,
such as the (adaptive) importance sampling methods (Fu and Moses 1988; Au
and Beck 1999; Hurtado 2007) and the enhanced MCS method with an optimized
extrapolation (Naess et al. 2009). Despite the improved efficiency than the direct
MCS, these methods are still computationally expensive.

The SRSM is an emerging technique for reliability analysis under uncertainty.
As opposed to the deterministic response surface method whose input variables
are deterministic, the SRSM employs random variables as its inputs. The aim
of the SRSM is to alleviate the computational burden required for accurate
uncertainty quantification (i.e., quantifying the uncertainty in the performance
function) and reliability analysis. This is achieved by constructing an explicit
multidimensional response surface approximation based on function values given at
a set of sample points. Generally speaking, uncertainty quantification and reliability
analysis propagation of input uncertainty through a model using the SRSM consists
of the following steps: (1) determining an approximate functional form for the
performance function (possible based on the statistical information of the input
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random variables); (2) evaluating the parameters of the functional approximation
based on function values at a set of sample points; (3) conducting MCS or numerical
integration based on the functional approximation to obtain the probabilistic charac-
teristics (statistical moments, reliability, and PDF) of the performance function. The
current state-of-the art SRSMs for uncertainty quantification include the dimension
reduction (DR) methods (Rahman and Xu 2004; Xu and Rahman 2004; Youn et al.
2008, Youn and Xi 2009), stochastic spectral methods (Ghanem and Spanos 1991;
Wiener 1938; Xiu and Karniadakis 2002; Foo et al. 2008; Foo and Karniadakis
2010), and stochastic collocation methods (Smolyak 1963; Grestner and Griebel
2003; Klimke 2006; Ganapathysubramanian and Zabaras 2007; Xiong et al. 2010;
Hu and Youn 2011).

2.3 Overview of System Reliability Analysis

System reliability analysis aims at analyzing the probability of system success while
considering multiple system performances (e.g., fatigue, corrosion, and fracture).
Figure 2 illustrates the concept of system reliability analysis with a simple series
system involving two performance functions (i.e., fatigue safety G1 and wear safety
G1) and two random variables (i.e., operational factors X1 and manufacturing
tolerance X2). We have two limit state functions G1 D 0 and G2 D 0 which divides
the input random space into four subspaces fG1< 0 and G2< 0g, fG1< 0 and
G2> 0g, fG1> 0 and G2< 0g, fG1> 0 and G2> 0g. Component reliability analysis
aims at quantifying the probability that a random sample x falls into the component
safety region (i.e., fG1< 0g or fG2< 0g) while system reliability analysis (assuming
a series system) aims at quantifying the probability that a random sample x falls
into the system safety region (i.e., fG1< 0 and G2< 0g). Clearly, the component
reliability (for fG1< 0g or fG2< 0g) is larger than the system reliability since the
component safety region has a larger area than the system safety region by the area
of an intersection region fG1< 0 and G2> 0g or fG1> 0 and G2< 0g.
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The aforementioned discussion leads to a mathematical definition of system
reliability as a multidimensional integration of a joint probability density function
over a system safety region, expressed as

Rsys D
Z

� � �
Z

�S
fX .x/ dx (4)

where X D (X1, X2, : : : , XN)T models uncertainty sources such as material proper-
ties, loads, geometric tolerances; fX(x) denotes the joint PDF of this random vector;
�S denotes the system safety domain. We can see that this formula bears a striking
resemblance to that of component reliability analysis. The only difference between
these two formulae lies in the definition of the safety domain. For component
reliability analysis, the safety domain can be defined in terms of a single limit-
state function as �S D fx: G(x)< 0g. For system reliability analysis involving nc
performance functions, the safety domains can be expressed as

�S D fx W \nc
iD1Gi .x/ < 0g series system

�S D fx W [nc
iD1Gi .x/ < 0g parallel system

�S D ˚
x W [np

kD1\i2PkGi .x/ < 0
�

mixed system (5)

where Pk is the index set in the kth path set and np is the number of mutually
exclusive path sets.

It can be observed that a series system requires all the performance functions
satisfy the reliability requirements, resulting in the system safety events being an
intersection of component safety events, expressed as

Eseries D \nc
iD1Gi .x/ < 0 (6)

In this case, the system survives if and only if all of its constraints satisfy the
reliability requirements.

In contrast to a series system, a parallel system has multiple path sets with each
being its component safety event, expressed as

Eparallel D [nc
iD1Gi .x/ < 0 (7)

In this case, the component survives if any of its constraints satisfy the reliability
requirement. A comparison between a series system and a parallel system is
graphically shown in Fig. 3, where we observe that the safety domain of a parallel
system contains two more regions fG1> 0 and G2< 0g and fG1< 0 and G2> 0g,
resulting in a higher system reliability value.

The logic becomes more complicated for a mixed system. We often need to
describe the system success event of a mixed system in terms of the mutually
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exclusive path sets of which each path set Pathk is a series system with multiple
component safety events specified in Pathk. Thus, we have the following expression

Emixed D [np

kD1\i2PathkGi .x/ < 0 (8)

In probability theory, two events are said to be mutually exclusive if they cannot
occur at the same time or, in other words, the occurrence of any one of them
automatically implies the nonoccurrence of the other. Here, system path sets are
said to be mutually exclusive if any two of them are mutually exclusive.

By employing the system safety event Esys, we can derive another important
formula for system reliability analysis as

Rsys D Pr
�
Esys

�
(9)

where Esys represents Eseries, Eparallel, and Emixed, for a series system, a parallel
system, and a mixed system, respectively.

We note that, in practice, it is extremely difficult to perform the multidimensional
numerical integration for system reliability analysis in Eq. (4) due to the high
nonlinearity and complexity of the system safety domain. In contrast to the
tremendous advances in component reliability analysis as discussed in Sect. 2.2,
the research in system reliability analysis has been stagnant, mainly due to the
complicated nature of the multiple system failure modes and their interactions, as
well as the costly computational expense of system reliability evaluation (Wang
et al. 2011).

Due to the aforementioned difficulties, most system reliability analysis methods
provide the bounds of system reliability. Ditlevsen proposed the most widely
used second-order system reliability bound method (Ditlevsen 1979), which gives
much tighter bounds compared with the first-order bounds for both series and
parallel systems. Other equivalent forms of Ditlevsen’s bounds were given by
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Thoft-Christensen and Murotsu (1986), Karamchandani (1987), Xiao and Mahade-
van (1998), Ramachandran (2004). Song and Der Kiureghian formulated system
reliability to a Linear Programming (LP) problem, referred to as the LP bound
method (Song and Der Kiureghian 2003) and latterly the matrix-based system
reliability method (Nguyen et al. 2010). The LP bound method is able to calculate
the optimal bounds for system reliability based on available reliability information.
However, it is extremely sensitive to accuracy of the available reliability informa-
tion, which is the probabilities for the first-, second-, or higher-order joint safety
events. To assure high accuracy of the LP bound method for system reliability
prediction, the probabilities must be given very accurately.

Besides the system reliability bound methods, one of the most popular approaches
is the multimodal Adaptive Importance Sampling (AIS) method, which is found
satisfactory for the system reliability analysis of large structures (Mahadevan
and Raghothamachar 2000). The integration of surrogate model techniques with
Monte Carlo Simulation (MCS) can be an alternative approach to system reliability
prediction as well (Zhou et al. 2000). This approach, which can construct the
surrogate models for multiple limit-state functions to represent a joint failure region,
is quite practical but accuracy of the approach depends on fidelity of the surrogate
models. It is normally expensive to build accurate surrogate models.

Most recently, Youn and Wang (2009) introduced a new concept of the
complementary intersection event and proposed the Complementary Intersection
Method (CIM) for series system reliability analysis. The CIM provides not only
a unique formula for system reliability but also an effective numerical method
to evaluate the system reliability with high efficiency and accuracy. The CIM
decomposes the probabilities of high-order joint failure events into probabilities
of complementary intersection events. For large-scale systems, a CI matrix was
proposed to store the probabilities of component safety and complementary
intersection events. Then, series system reliability can be efficiently evaluated by
advanced reliability methods, such as dimension reduction method and stochastic
collocation method. Later, the GCIM framework was proposed to generalize the
original CIM so that it can be used for system reliability analysis regardless of
system structures (series, parallel, and mixed systems) (Wang et al. 2011). In
the subsequent sections, we will review in details the most widely used system
reliability bound methods (Ditlevsen 1979) as well as the recently developed point
estimation method (Youn and Wang 2009; Wang et al. 2011).

3 System Reliability Analysis for Serial System

A series system succeeds only if all of its components succeed and, in other words,
the system fails if any of its components fails. Let us start with a simple series
system, namely, a steel portal frame structure shown in Fig. 4 (Ditlevsen 1979).
The structure is subjected to a vertical load V at the center of the top beam and
a horizontal load F at the hinge joint between the top and bottom-left beams.
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Fig. 4 Loading condition and three failure modes of the portal frame structure (Ditlevsen 1979).
(a) Loading condition, (b) beam failure, (c) sway failure, and (d) combined failure

These two loads are assumed to be Gaussian random variables. According to the
yield hinge mechanism theory, the frame structure has three distinct failure modes:
beam failure, sway failure, and combined failure, as shown in Fig. 4.

If we assume an identical yield moment My for all three beams, we then have the
following performance functions for the three failure modes

Beam W G1 D V l � 4My

Sway W G2 D Fh � 4My

Combined W G3 D V l C Fh � 6My

(10)

The limit-state functions for the three failure modes are graphically shown in
Fig. 5. The failure domain for each failure mode, or the component failure domain,
can be expressed as f(F, V)j Gi> 0g, for i D 1, 2, 3, as shown in Fig. 5. Since the
occurrence of any of the three failure modes causes system failure, the system failure
domain is a union of the component failure domains and has a larger area than any
of the component failure domain (see Fig. 5). If we define the failure event of the ith
failure mode as NE i, the probability of system failure for the portal frame structure
can be expressed as

pfs D P
�
E1 [E2 [E3

�
(11)

where pfs represents the probability of system failure. The above equation can be
further derived in terms of the probabilities of component and joint failure events,
expressed as



282 C. Hu et al.

F

V
Beam: G1 = 0

Sway: G2 = 0

0

Combined: G3 = 0

G1 > 0 G2 > 0 G3 > 0F

V

0 F

V

0 F
V

0

Fig. 5 Limit-state functions and system failure domain of the portal frame structure

pfs D P
�
E1

�C P
�
E2

�C P
�
E3

�

� P
�
E1 \E2

� � P �E2 \E3

� � P �E1 \E3

�

C P
�
E1 \E2 \E3

�
(12)

where NE i \ NE j is the second-order joint failure event composed of the component
failure events NE i and NE j, for 1 � i< j � 3, and NE1 \ NE2 \ NE3 is the third-order joint
failure event composed of the component failure events NE1, NE2, and NE3.

As the number of component events increases, we may have fourth- and higher-
order joint events. Considering a series system with m components, the probability
of system failure can be expressed as

pfs D P

�
m[
iD1Ei

�
D

nX

jD1
.�1/jC1Pj with Pj D

X

1�i1<���<ij�n
P

 

\
k2fi1;:::;ij g

Ek

!

(13)

where pfs represents the probability of system failure and NE i denotes the failure
event of the ith component. It can be observed that, to exactly analyze system
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reliability with m series connected components, we generally need to compute the
probabilities of joint events up to the mth order. Unlike the computation of the
probability of a component failure or safety event discussed earlier, the computation
of a joint failure or safety event is very difficult and even practically impossible
unless we employ the very expensive MCS or direct numerical integration. The
research efforts to alleviate the computational burden have resulted in a set of system
reliability bound methods, such as the first- and second-order bound methods, and
the point estimation method or the complementary intersection method (CIM) (Youn
and Wang 2009).

3.1 First- and Second-Order Bound Methods

The simplest system reliability bounds are the so-called first-order bounds. Based
on the well-known Boolean bounds in Eq. (14), the first-order bounds of probability
of system failure are given in Eq. (15).

max
i

�
P
�
Ei

�� � P

�
m[
iD1Ei

�
�

mX

iD1
P
�
Ei

�
(14)

max
�
P
�
Ei

�	 � pfs � min

"
mX

iD1
P
�
Ei

�
; 1

#

(15)

The lower bound in Eq. (15) is obtained by assuming the component events are
perfectly independent and the upper bound is derived by assuming the component
events are mutually exclusive. Despite the simplicity (only component reliability
analysis required), the first-order bound method provides very wide bounds of
system reliability that are not practically useful. Thus, the second-order bound
method was proposed by Ditlevsen (1979) in Eq. (16) to give much narrower bounds
of probability of system failure.

P
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mX

iD2
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)

(16)

where E1 is the event having the largest probability of failure.
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Fig. 6 Statically determinate
truss structure system
(Ditlevsen 1979; Song and
Der Kiureghian 2003)

Case Study 1

Consider a statically determinate truss structure (Ditlevsen 1979; Song and Der
Kiureghian 2003) in Fig. 6. In this structure, the failure of any truss member leads to
the failure of the truss. Thus, the truss structure can be treated as a series system with
the seven truss members as its components. For this illustration, we assume the fol-
lowing probabilities of the component and joint failure events (with Pi D P( NE i), and
Pij D P( NE i \ NE j)): P1 D 1.88E�4, P2 D 1.88E�4, P3 D 1.88E�4, P4 D 1.88E�4,
P5 D 1.88E�4, P6 D 1.88E�4, and P7 D 1.88E�4, P12 D 5.73E�5, P13 D 4.35E�5,
P14 D 5.42E�5, P15 D 4.59E�5, P16 D 5.13E�5, P17 D 4.85E�5, P23 D 6.08E�5,
P24 D 7.79E�5, P25 D 6.47E�5, P26 D 7.42E�5, P27 D 6.87E�5, P34 D 5.75E�5,
P35 D 4.86E�5, P36 D 5.43E�5, P37 D 5.14E�5, P45 D 6.10E�5, P46 D 6.88E�5,
P47 D 6.48E�5, P56 D 5.76E�5, P57 D 5.44E�5, and P67 D 6.11E�5. Compute the
first- and second-order bounds for the probability of failure of the truss.

Solution Let us first compute the first-order bounds with Eq. (15) as:

max
�
P
�
Ei

�	 � pfs � min

"
mX

iD1
P
�
Ei

�
; 1

#

The lower and upper bounds can be computed as

max
�
P
�
Ei

�	 D 1:88E � 4
min

"
mX

iD1
P
�
Ei

�
; 1

#

D min Œ1:32E � 3; 1� D 1:32E � 3

Thus, the first-order bounds are [1.88E�4, 1.32E�3]. Then we compute the
second-order bounds with Eq. (16). The lower and upper bounds are computed as
4.02E�4 and 9.12E�4, respectively. Thus, the second-order bounds are [4.02E�4,
9.12E�4]. We can clearly see that, compared to the first-order bound method, the
second-order bound method gives much narrower bounds of probability of system
failure (and thus system reliability).
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3.2 Point Estimation Method

In reliability-based design, it is more desirable to have a unique point estimate of
system reliability than an interval estimate. In what follows, we introduce a recently
developed point estimate method (Wang et al. 2011), namely, the generalized
complementary intersection method (GCIM).

Since the probabilities of all events are nonnegative, the following inequalities
must be satisfied as

max
i

�
P
�
Ei

�� �
vu
ut

mX

iD1

�
P
�
Ei

�	2 �
mX

iD1
P
�
Ei

�
(17)

Based on Eqs. (16) and (17), the probability of system failure (pfs) of a series
system failure can be simplified to a unique explicit formula as

pfs Š P
�
E1

�C
mX

iD2

*

P
�
Ei

� �
vuu
t

i�1X

jD1

�
P
�
EiEj

�	2
+

(18)

It can be proved that this approximate probability lies in the second-order bounds
in Eq. (16). Based on Eq. (18), serial system reliability can be assessed as (1 � the
probability of system failure) and formulated as

Rsys D P .E1E2 � � �Em�1Em/ Š P .E1/ �
mX

iD2

*

P
�
Ei

� �
vuut

i�1X

jD1

�
P
�
EiEj

�	2
+

where hAi �
�
A; if A > 0

0; if A � 0 (19)

Note that the terms inside the bracket, h�i, should be ignored if it is less than
zero and Rsys should be set to zero if the approximated one given by Eq. (19) is
less than zero. It is noted that Eq. (19) provides an explicit and unique formula for
system reliability assessment based on the second-order reliability bounds shown in
Eq. (16) and an inequality Eq. (17).

Case Study 2

Consider an internal combustion engine for series system reliability analysis (Liang
et al. 2007). Five random variables are considered in this example: the cylinder
bore b, compression ratio cr, exhaust valve diameter dE, intake valve diameter dI,
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Table 1 Statistical information of input random variables for internal combustion engine

Random variable Mean Standard deviation Distribution type

b (mm) – 0.40 Normal
cr (mm) – 0.15 Normal
dE (mm) – 0.15 Normal
dI – 0.05 Normal
! (�10–3) – 0.25 Normal

Table 2 Eight different design points for system reliability analysis

Mean values for random variables

Design points B cr dE dI !

1 82.1025 35.8039 30.3274 9.3397 5.2827
2 82.3987 36.1754 30.4835 9.3684 5.5983
3 82.5511 36.3630 30.5676 9.3811 5.7550
4 82.6770 36.5187 30.6334 9.3920 5.8901
5 82.8234 36.7006 30.7121 9.4049 5.9498
6 82.8750 36.7655 30.7407 9.4096 5.9754
7 82.9204 36.8222 30.7657 9.4137 5.9772
8 82.9977 36.9197 30.8084 9.4204 5.9795

and the revolutions per minute (rpm) at peak power, !. From a thermodynamic
viewpoint, nine component safety events are defined as follows:

E1 D f1:2Ncb � 400 � 0g .min :bore wall thickness/

E2 D
n
Œ8V= .200�Nc/�

0:5 � b � 0
o

.max :engine height/

E3 D fdI C dE � 0:82b � 0g .valve geometry and structure/
E4 D f0:83dI � dE � 0g .min :value diameter ratio/
E5 D fdE � 0:89dI � 0g .max :value diameter ratio/

E6 D
n
9:428 � 10�5 Œ4V= .�Nc/�

�
!=dI

2
�

� 0:6Cs � 0
o

.max :Mech=Index/

E7 D f0:045b C cr � 13:2 � 0g .knock-limit compression ratio/
E8 D f! � 6:5 � 0g .max :torque converter rpm/
E9 D ˚

230:5Q�tw � 3:6 � 106 � 0
�

.max :fuel economy/

where

�tw D 0:85951
�
1 � c�0:33

r

� � Sv; V D 1:859 � 106 mm3

Q D 43;958 kJ=kg; Cs D 0:44; and Nc D 4

All the random variables are assumed to follow normal distribution with statis-
tical information presented in Table 1. Perform system reliability analyses at the
eight reliability-based optimum design points as listed in Table 2 using the first-
order bounds (FOB), second-order bounds (SOB), and GCIM methods (Wang et al.
2011).
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Table 3 Results of system reliability analysis with MCS, FOB using MCS, SOB using MCS, and
GCIM using MCS (M D 1,000,000)

System reliability level at each design

Analysis method 1 2 3 4 5 6 7 8

FOB Upper 0.9989 0.9899 0.9745 0.9495 0.8984 0.8742 0.8490 0.7988
Lower 0.9949 0.9506 0.8744 0.7432 0.5367 0.4318 0.3410 0.1513

SOB Upper 0.9949 0.9520 0.8822 0.7741 0.6224 0.5554 0.4987 0.3967
Lower 0.9949 0.9517 0.8798 0.7653 0.5929 0.5190 0.4418 0.3049

GCIM 0.9949 0.9518 0.8805 0.7674 0.6026 0.5312 0.4612 0.3371
MCS 0.9949 0.9520 0.8820 0.7731 0.6179 0.5476 0.4871 0.3748
GCIM error 0.0000 0.0002 0.0015 0.0057 0.0153 0.0164 0.0259 0.0377

Fig. 7 Results of system reliability analysis at eight different reliability levels (Wang et al. 2011)

Solution Equations (15), (16), and (19) are used to compute the first-order system
reliability bounds in the FOB, the second-order system reliability bounds in the
SOB, and the point system reliability estimate in the GCIM, respectively. The
probabilities of component and second-order joint failure events are computed with
the direct MCS. The results of system reliability analysis at the eight design points
are summarized in Table 3 and also graphically shown in Fig. 7 (Wang et al.
2011). From the results, it is found that the first-order bound method gives too wide
bounds to be of practical use. On the contrary, the second-order bound method gives
tighter bounds. It is expected based on the results that the GCIM can predict system
reliabilities accurately at various reliability levels and the estimation errors tend to
be lower at high system reliability levels (e.g., greater than 0.95), which are often
encountered in engineering practices, than those at low system reliability levels.
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This case study considers the first- and second-order joint failure events. The
GCIM produces numerical error because of the ignorance of the probabilities of
the third- or higher-order joint failure events. The effects of the third- or higher-
order joint failure events tend to increase as the system reliability decreases, simply
because the probabilities of joint failure events are usually bigger at low reliability
level than at high reliability level. This is also true for the reliability bound methods.
As can be observed from Table 3 and Fig. 7, the lower the system reliability, the
larger the GCIM estimation error and the wider the bounds produced by the FOB
and SOB. Thus for series systems, the GCIM produces smaller numerical error at a
high system reliability level than that at a lower level. This is valid only for series
systems. When only probabilities of the first- and the second-order joint events are
used for system reliability analysis, the GCIM will provide comparable results with
the average of SOBs. However, compared with SOBs, the GCIM provides system
reliability analysis formula with probabilities of any-order joint events.

3.3 Computation of Joint Events

In Case Study 2, we use the direct MCS to compute the probabilities of joint events
( NE i \ NE j D fG1> 0 and G2> 0g. In practice, however, the direct MCS requires an
intolerably large number of function evaluations. On the other hand, the component
reliability analysis methods (e.g., FORM/SORM, DR methods, stochastic spectral
methods, and stochastic collocation methods) discussed earlier cannot be directly
used to compute these probabilities since there are neither explicit nor implicit
performance functions associated with the joint events. Therefore, the primary
challenge in system reliability analysis lies in efficient and accurate determination of
the probabilities of joint safety events. In what follows, we review a newly developed
method to efficiently evaluate the probabilities of the second- or higher-order joint
safety events. This method is embedded in the aforementioned GCIM as a solver for
the probabilities of joint events (Youn and Wang 2009; Wang et al. 2011).

The second-order CI event can be denoted as Eij � fXjGi � Gj � 0g. The CI event
can be further expressed as Eij D NE i Ej [ Ei NE j where the component failure events
are defined as NE i D fXjGi> 0g, NE j D fXjGj> 0g. The CI event Eij is thus composed
of two events: Ei NE j D fXjGi � 0 \ Gj> 0g and NE i Ej D fXjGi> 0 \ Gj � 0g. Since
the events, NE i Ej and Ei NE j, are disjoint, the probability of the CI event Eij can be
expressed as (Youn and Wang 2009)

P
�
Eij

� � P .X jGi �Gj � 0
�

D P
�
X
ˇ
ˇ̌
Gi > 0 \Gj � 0

�
C P .X jGi � 0 \Gj > 0

�

D P
�
EiEj

�C P
�
EiEj

�
(20)
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Fig. 8 Decomposition of a joint failure event into component safety and CI events

Based on the probability theory, the probability of the second-order joint safety
event Ei \ Ej can be expressed as

P
�
EiEj

� D P .Ei/ � P �EiEj

�

D P
�
Ej
� � P �EiEj

�
(21)

From Eqs. (20) and (21), the probabilities of the second-order joint safety and
failure events can be decomposed as

P
�
EiEj

� D 1

2

�
P .Ei/C P

�
Ej
� � P �Eij

�	
(22)

P
�
EiEj

� D 1 � 1

2

�
P .Ei/C P

�
Ej
�C P

�
Eij

�	
(23)

It is noted that each CI event has its own limit state function, which enables
the use of any component reliability analysis method. The decomposition of joint
failure events into component safety and CI events is graphically shown in Fig. 8.
We observe that a joint failure event without any limit-state function is decomposed
into two component safety events and one CI events, all of which have their own
limit-state function and thus allows for the use of any component reliability analysis
method.

We have discussed the definition of the second-order CI event. In general, this
definition can be generalized to any higher-order event. Let an Kth-order CI event
denote E12 : : :K � fXjG1 � G2 � : : : GK � 0g, where the component safety (or first-
order CI) event is defined as Ei D fXjGi � 0, i D 1, 2, : : : , Kg. The defined Kth-order
CI event is actually composed of K distinct intersections of component events Ei

and their complements NE j in total where i, j D 1, : : : , K and i ¤ j. For example,
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for the second-order CI event Eij, it is composed of two distinct intersection events,
E1 NE2 and NE1E2. These two events are the intersections of E1 (or E2) and the
complementary event of E2 (or E1).

Based on the definition of the CI event, the probability of an Nth-order joint safety
event can be decomposed into the probabilities of the component safety events and
the CI events as (Youn and Wang 2009)

P
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2N�1

2
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(24)

It is again noted that each CI event has its own limit state function, which
enables the use of any component reliability analysis methods. In general, higher-
order CI events are expected to be highly nonlinear. As a good trade-off between
computational efficiency and accuracy, the use of the first- and second-order CI
events in Eq. (24) is suggested for system reliability analysis of most engineered
systems. However, we still note that more terms in Eq. (24) can be obtained within
the same computational budget as advanced component reliability analysis methods
are developed in future.

Case Study 3

Consider the steel portal frame structure shown in Fig. 4. In the three performance
functions for the three failure modes in Eq. (10), the vertical load G and the
horizontal load F are assumed to be Gaussian random variables with means both
means being 35,000 N and standard deviations being 7,000 N. The other variables
in the performance functions are assumed to be deterministic and take the following
values: l D h D 5 m, and My D 60,000 Nm.
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1. Compute the probabilities of component safety events and second-order CI
events with the direct MCS.

2. Based on the results from (1), compute the probabilities of second-order safety
events.

3. Determine the first- and second-order bounds.

Solution (1) If we conduct a direct MCS with M random samples x1, x2, : : : , xM ,
the probabilities of component safety events can be computed as

P .Ei/ D E .I .Gi .x/ < 0//

� 1

M

MX

kD1
I
�
Gi
�
xj
�
< 0

�
; for i D 1; 2; 3

The probabilities of second-order CI events can be computed as

P
�
Eij

� D E
�
I
�
Gi .x/Gj .x/ < 0

��

� 1

M

MX

kD1
I
�
Gi .xk/Gj .xk/ < 0

�
; for .i; j / D .1; 2/ ; .1; 3/ ; .2; 3/

We can conveniently write these probabilities in a CI matrix. For this example
with three components in total, the CI matrix can be defined as

CI D
2

4
P .E1/ P .E12/ P .E13/

� P .E2/ P .E23/

� � P .E3/

3

5

In the upper triangular CI matrix, the diagonal elements correspond to the
component reliabilities (or probabilities of the first-order CI events) and the element
on ith row and jth column corresponds to the probability of the second-order CI
event Eij if j< i. The CI matrix computed with a direct MCS with 1,000,000 random
samples reads

CI D
2

4
0:9686 0:0610 0:3891

� 0:9682 0:3891

� � 0:5811

3

5

It is noted that all the probabilities in the CI matrix (the probabilities of com-
ponent events and second-order CI events) can be computed using any component
reliability analysis method (e.g., FORM/SORM, DR, PCE) instead of the direct
MCS.

(2) Based on the CI matrix obtained from (1) and according to Eq. (23), we
can obtain the probabilities of second-order failure events as P( NE1 NE2) D 0.0011,
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P( NE1 NE3) D 0.0306, and P( NE2 NE3) D 0.0308. For example, the probability of the
second-order failure event P( NE2 NE3) can be computed as

P
�
E2E3

� D 1 � 1

2
ŒP .E2/C P .E3/C P .E23/�

D 1 � 1

2
Œ0:9682C 0:5811C 0:3891�

D 0:0308

(3) The first-order bounds can be computed with Eq. (15) as:

1 � min

"
mX

iD1
P
�
Ei

�
; 1

#

� Rsys � 1 � max
�
P
�
Ei

�	

The lower and upper bounds can be computed as

1 � min

"
mX

iD1
P
�
Ei

�
; 1

#

D 1 � min Œ0:4812; 1� D 0:5188

1 � max
�
P
�
Ei

�	 D 1 � 0:4189 D 0:5811

Thus, the first-order bounds read [0.5188, 0.5811]. Note that the above bounds
are the first-order bounds of system reliability. The corresponding bounds of system
probability failure can be easily obtained by exchanging the lower and upper bounds
and subtracting both from 1. Then we compute the second-order bounds with
Eq. (16) as [0.5793, 0.5801]. We can again clearly see that, compared to the first-
order bound method, the second-order bound method gives much narrower bounds
of system reliability.

4 System Reliability Analysis for Parallel System

Unlike a series system whose success requires the success of all its components,
a parallel system succeeds as long as one of its components succeeds. In other
words, a parallel system fails only if all its components fail, and the probability of
system failure is the probability of the intersection of all component failure events,
expressed as

pfs D P

�
m\
iD1Ei

�
(25)

Consider a 10-bar parallel system in Fig. 9 (Wang et al. 2011), where 10 brittle
bars are connected in parallel to sustain a vertical load applied at one end. Ten bars
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Fig. 9 Ten brittle bar parallel system: (a) system structure model; (b) brittle material behavior in
a parallel system (Wang et al. 2011)

are all brittle with different fracture strain limits "fi, 1 � i � 10, which are sorted in an
ascending order. If the exerted strain " is between the (i – 1)th and ith fracture strain
limits, i.e., ni–1) � "< "fi, bar components with fracture strains below "fi will fail,
and the allowable load is then the sum of the strength of components with fracture
strains equal to or above "fi. Therefore, the strain level corresponding to the overall
maximum allowable load is among the 10 fracture strain limits.

Ten success scenarios where the tem-bar system can withstand the vertical load
are listed as (Wang et al. 2011):

• First success scenario ("D "f 1): No fracture occurs, and the system strength RT ,
as the sum of strength of all the 10 brittle bars, is larger than the load F. The
performance function can be expressed as

G1 D F �
10X

jD1
Rj

�
"f 1
� D F �

10X

jD1

�
EjAj

� � "f 1 (26)

where Rj represents the allowable load that can be sustained by the jth brittle bar,
Aj the cross section area of the jth brittle bar, and Ej the Young’s modulus of the
jth brittle bar.

• Second success scenario ("D "f 2): The first brittle bar fails due to the fracture
and no longer contributes to the overall system strength. The system strength RT ,
as the sum of strength of the other nine brittle bars, is larger than the load F. The
performance function can be expressed as

G1 D F �
10X

jD2
Rj

�
"f 2

� D F �
10X

jD1

�
EjAj

� � "f 2 (27)
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• Tenth success scenario ("D "f 10): The first nine brittle bars fail due to the fracture
and no longer contribute to the overall system strength. The system strength RT ,
as the sum of strength of the remaining one bar, is larger than the load F. The
performance function can be expressed as

G1 D F �R10
�
"f 10

� D F � .E10A10/ � "f 10 (28)

The brittle bar system fails to sustain the load F only if we have the
nonoccurrence of all the 10 success scenario or, in other words, the system
strength at any of the 10 fracture strains is smaller than the load F. Therefore,
this is a parallel system with 10 components, corresponding to the 10 fracture
strains.

4.1 First- and Second-Order Bound Methods

A parallel system reliability formula can be obtained based on the formula of series
system reliability by using the De Morgan’s law (Wang et al. 2011). According to
the De Morgan’s law, the probability of parallel system failure can be expressed as

P

�
m\
iD1Ei

�
D 1 � P

�
m\
iD1Ei

�
D 1 � P

�
m[
iD1Ei

�
(29)

where NE i is the ith component failure event. Equation (29) relates the probability
of parallel system failure with the probability of series system safety (reliability). If
we treat Ei as the ith component failure event in a series system, the right side of
Eq. (29) is then the series system reliability.

Based on this relationship and the first-order bounds for a series system in
Eq. (15), the first-order bounds for a parallel system can be derived as

max

("

1 �
mX

iD1
P .Ei /

#

; 0

)

� pfs � min
�
P
�
Ei

�	
(30)

The lower bound is obtained by assuming the component events are mutually
exclusive and the upper bound is derived by assuming the component events are
perfectly independent.

Similarly, based on the second-order bounds for a series system in Eq. (16), the
second-order bounds for a parallel system can be derived as
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where E1 is the event having the largest probability of failure.

4.2 Point Estimation Method

Based on the aforementioned relationship between a series system and a parallel
system, the probability of parallel system failure can be obtained from Eq. (19)
by treating the safe events in the series system as the failure events in the parallel
system as (Wang et al. 2011)

pfs Š P
�
E1

� �
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*
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t
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+

; hAi �
�
A; if A > 0

0; if A � 0

(32)

Finally, parallel system reliability can be obtained from Eq. (32) by one minus
the probability of system failure as

Rsys Š P .E1/C
mX

iD2

*

P .Ei/ �
vuu
t

i�1X

jD1

�
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�
EiEj

�	2
+

; hAi �
�
A; if A > 0

0; if A � 0

(33)

5 System Reliability Analysis for Mixed Systems

A mixed system may have various system structures as mixtures of series and par-
allel systems. The success and failure logics of such systems are more complicated
than those of series and parallel systems. Consider a cantilever beam-bar system
(Song and Der Kiureghian 2003; Wang et al. 2011) which is an ideally elastic–
plastic cantilever beam supported by an ideally rigid–brittle bar, with a load applied
at the midpoint of the beam, as shown in Fig. 10. There are three failure modes and
five independent failure events NE1– NE5. These three failure modes are formed by
different combinations of failure events as:
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Fig. 10 A cantilever
beam-bar system (Song and
Der Kiureghian 2003)

• First failure mode: The fracture of the brittle bar (event NE1) occurs, and
subsequently the formation of a hinge at the fixed point of the beam (event NE2).

• Second failure mode: The formation of a hinge at the fixed point of the beam
(event NE3) followed by the formation of another hinge at the midpoint of the
beam (event NE4).

• Third failure mode: The formation of a hinge at the fixed point of the beam (event
NE3) followed by the fracture of the brittle bar (event NE5).

The five safety events can be expressed as:

E1 D
n
X; T

ˇ̌
ˇ5X=16 � T � 0

o

E2 D
n
X;L;M

ˇ
ˇ̌
LX �M � 0

o

E3 D
n
X;L;M

ˇ̌
ˇ3LX=8 �M � 0

o

E4 D
n
X;L;M

ˇ
ˇ̌
LX=3 �M � 0

o

E5 D
n
X;L;M; T

ˇ̌
ˇLX �M � 2LT � 0

o

(34)

Considering these three failure modes, the system success event can be obtained
as (Wang et al. 2011):

ES D .E1 [E2/ \ fE3 [ .E4 \E5/g (35)

It is not possible to derive any bounds or point estimates of system reliability
based on the system success event in Eq. (35) which contains a mixture of
intersection and union logics.

One way to tackle this difficulty is to decompose the mixed system success event
into mutually exclusive success events or path sets (see an example in Fig. 11), of
which each is a series system. As a result, system reliability of this mixed system
can be expressed as a sum of the probabilities of these mutually exclusive series
events. This method is embedded in the GCIM (Wang et al. 2011).

Considering a mixed system with N components, the following procedure can be
proceeded to derive the mutually exclusive path sets and conduct system reliability
analysis in search for a point system reliability estimate (Wang et al. 2011).
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Fig. 11 Decomposition of a mixed system success event into mutually exclusive series system
success events
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SS-matrix =

1st row: component no.

2nd row: starting node

3rd row: end node

Fig. 12 Conversion of the
system block diagram to SS
matrix (Wang et al. 2011)

Step I: Constructing a System Structure Matrix

An SS matrix, a 3-by-M, can be used to characterize any system structural
configuration (components and their connections) in a matrix form. The SS matrix
contains the information about the constituting components and their connection.
The first row of the matrix contains component numbers, while the second and third
rows correspond to the starting and end nodes of the components. Generally, the
total number of columns of a SS matrix, M, is equal to the total number of system
components, N. In the case of complicated system structures, one component may
repeatedly appear in between different sets of nodes and, consequently, M could be
larger than N, for example a 2-out-of-3 system.

Let us consider the mixed system example shown in Fig. 11. The SS matrix for the
system can be constructed as a 3 � 4 matrix, as shown in Fig. 12. The first column
of the system structure matrix [1, 1, 2]T indicates that the first component connects
nodes 1 and 2.

Step II: Finding Mutually Exclusive System Path Sets

Based on the SS matrix, the Binary Decision Diagram (BDD) technique (Lee 1959)
can be employed to find the mutually exclusive system path sets, of which each path
set is a series system. As discussed in Chap. 2, two events are said to be mutually
exclusive if they cannot occur at the same time or, in other words, the occurrence of
any one of them automatically implies the nonoccurrence of the other. Here, system
path sets are said to be mutually exclusive if any two of them are mutually exclusive.
We note that, without the SS matrix, it is not easy for the BDD technique to automate
the process to identify the mutually exclusive path sets. The mixed system shown

http://dx.doi.org/10.1007/978-3-319-07167-1_2
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Fig. 13 BDD diagram and
the mutually exclusive path
sets (Wang et al. 2011)

in Fig. 12 can be decomposed into the two mutually exclusive path sets using the
BDD, which is shown in Fig. 13. Although the path sets E1E2E3E4 and E1E3E4

represent the same path that go through from the left terminal 1 to the right terminal
0 in Fig. 13, the former belongs to the mutually exclusive path sets while the latter
does not. This is due to the fact that the path sets E1E3E4 and E1E2 are not mutually
exclusive. We also note, however, that we could still construct another group of
mutually exclusively path sets, fE1E3E4, E1E2E3g, which contains the path set
E1E3E4 as a member. This is due to the fact that a mixed system may have multiple
BDDs with different configurations depending on the ordering of nodes in BDDs
and these BDDs result in several groups of mutually exclusive path sets, among
which the one with the smallest number of path sets is desirable. Another point
deserving of notice is that the mixed system considered here consists of only two
mutually exclusive path sets. In cases of more than two mutually exclusive path sets,
any two path sets are mutually exclusive. This suggests that the system path sets can
equivalently be said to be pairwise mutually exclusive.

Step III: Evaluating All Mutually Exclusive Path Sets
and System Reliability

Due to the property of the mutual exclusiveness, the mixed system reliability is the
sum of the probabilities of all paths as

Rsys D P

�
np[
iD1Pathi

�
D

npX

iD1
P .Pathi / (36)



Advances in System Reliability Analysis Under Uncertainty 299

Table 4 Statistical information of input random variables for the cantilever beam-bar
system

Random variable Mean Standard deviation Distribution type

L 5.0 0.05 Normal
T 1,000 300 Normal
M 150 30 Normal
X uX 20 Normal

1 2 3 4 5

1 1 2 2 3

2 2 4 3 4

SS-matrix =
E3

E4 E5

E1

E2

E3

E4 E5

E1

E2

Fig. 14 System block diagram and SS matrix for the cantilever beam-bar example (Wang et al.
2011)

where Pathi is the ith mutually exclusive path set obtained by the BDD and np is
the total number of mutually exclusive path sets. For the mixed system shown in
Fig. 12, the system reliability can be calculated as

Rsys D P

�
2[
iD1Pathi

�
D

2X

iD1
P .Pathi /

D P .E1E2/C P
�
E1E2E3E4

�
(37)

where the probability of each individual path set can be calculated using the point
estimate formula for the series system reliability given by Eq. (19).

Case Study 4

Consider the cantilever beam-bar system (Song and Der Kiureghian 2003; Wang
et al. 2011)) shown in Fig. 10. In the performance functions for the five component
safety events, random variables and their random properties are summarized in
Table 4. Compute the system reliability with the GCIM method at 10 different
reliability levels that correspond to 10 different loading conditions (X), 100, 90,
85, 80, 70, 60, 50, 40, 20, and 10.

Solution The reliability block diagram along with the SS matrix is shown in Fig. 14
(Wang et al. 2011). Based on this SS matrix, the BDD diagram can be constructed
as shown in Fig. 15. The BDD indicates the following mutually exclusive system
path sets as (Wang et al. 2011)

Path sets D ˚
E1E3; E1E2E3; E1E3E4E5; E1E2E3E4E5

�
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E1

E2

E3

E4

E5

10

Fig. 15 BDD diagram for
the cantilever beam-bar
example (Wang et al. 2011)

Table 5 Results of different system reliability analysis methods: GCIM and MCS
(ns D 1,000,000)

System reliability level at each design

Analysis method 1 2 3 4 5 6 7 8 9 10

ux 100 90 85 80 70 60 50 40 20 10
GCIM 0.3546 0.4981 0.5724 0.6444 0.7708 0.8666 0.9308 0.9681 0.9954 0.9995
MCS 0.3548 0.4982 0.5725 0.6445 0.7708 0.8667 0.9309 0.9681 0.9954 0.9995

The system reliability can be calculated as

Rsys D
4X

iD1
P .Pathi /

D P .E1E3/C P
�
E1E2E3

�C P
�
E1E3E4E5

�C P
�
E1E2E3E4E5

�

We can then use Eq. (33) to compute the reliability of each path set to derive a
point system reliability estimate of this mixed system.

The system reliability analysis is carried out with 10 different loading conditions
(10 different ux values for the X) as presented in Table 5 (Wang et al. 2011). The
probabilities of component and second-order joint failure events are computed with
the direct MCS. The MCS is used for a benchmark solution and the results are also
summarized in Table 5. We expect based on the results that the GCIM can give
accurate system reliability estimates for mixed systems at various reliability levels.
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6 Conclusion

The chapter reviews advanced numerical methods for system reliability analysis
under uncertainty, with an emphasis on the system reliability bound methods and
the GCIM (point estimation method). The system reliability bound methods provide
system reliability estimates in the form of two-sided bounds for a series or parallel
system, while the GCIM offers system reliability estimates in the form of single
points for any system structure (series, parallel, and mixed systems). The GCIM
generalizes the original CIM so that it can be used for system reliability analysis
regardless of system structures. Four case studies are employed to demonstrate the
effectiveness of the system reliability bound methods and the GCIM in assessing
system reliability. As observed from the case studies, the GCIM offers a generalized
framework for system reliability analysis and thus shows a great potential to enhance
our capability and understanding of system reliability analysis.
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Reliability of Base-Isolated Liquid Storage
Tanks under Horizontal Base Excitation

S.K. Saha and V.A. Matsagar

Abstract Reliability of base-isolated liquid storage tanks is evaluated under
random base excitation in horizontal direction considering uncertainty in the isolator
parameters. Generalized polynomial chaos (gPC) expansion technique is used to
determine the response statistics, and reliability index is evaluated using first order
second moment (FOSM) theory. The probability of failure (pf) computed from the
reliability index, using the FOSM theory, is then compared with the probability of
failure (pf) obtained using Monte Carlo (MC) simulation. It is concluded that the
reliability of broad tank, in terms of failure probability, is more than the slender tank.
It is observed that base shear predominantly governs the failure of liquid storage
tanks; however, failure due to overturning moment is also observed in the slender
tank. The effect of uncertainties in the isolator parameters and the base excitation on
the failure probability of base-isolated liquid storage tanks is studied. It is observed
that the uncertainties in the isolation parameters and the base excitation significantly
affect the failure probability of base-isolated liquid storage tank.

1 Introduction

Liquid storage tanks are one of the most important structures in several indus-
tries, such as oil refinery, aviation, chemical industries, power generation, etc.
Failure of such tanks may lead to enormous losses directly or indirectly. Several
researchers reported the catastrophic failure of liquid storage tanks during past
earthquakes, leading to loss of human lives as well as massive economic loss
(Haroun 1983a; Rammerstorfer et al. 1990). To safeguard such important structures
against devastating earthquake, base isolation is considered as an efficient technique
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(Kelly and Mayes 1989; Jangid and Datta 1995a; Malhotra 1997; Deb 2004;
Shrimali and Jangid 2004; Matsagar and Jangid 2008). Several international design
guidelines (AWWA D-100-96 1996; EN 1998-4 2006; API 650 2007; AIJ 2010)
are available which take into account the seismic action for analysis and design
of liquid storage tanks deterministically. However, the reliability evaluation of
structures under dynamic loading has drawn significant attention over the recent
years (Chaudhuri and Chakraborty 2006; Gupta and Manohar 2006; Padgett and
DesRoches 2007; Rao et al. 2009). Few studies were carried out on seismic fragility
analysis of ground-supported fixed-base and base-isolated liquid storage tanks under
base excitation due to earthquake (O’Rourke and So 2000; Iervolino et al. 2004;
Saha et al. 2013a). However, only limited studies were reported on the reliability
assessment of the base-isolated liquid storage tanks, under base excitation (Mishra
and Chakraborty 2010). On the other hand, the current design codes are gradually
shifting toward the reliability-based design philosophy, which requires probabilistic
analysis of structures. It therefore mandates systematic reliability analysis of liquid
storage tanks.

Herein, a detailed methodology for seismic reliability analysis of base-isolated
liquid storage tanks, under base excitation in horizontal direction, is proposed
duly accounting for uncertainties. Failure modes for the liquid storage tanks are
considered from earlier research works in accordance with international guidelines.
The uncertainties of the base isolator characteristics parameters are also considered
in the evaluation of the seismic reliability. Generalized polynomial chaos (gPC)
expansion technique is used to determine the response statistics under random
horizontal base excitation considering the uncertainties in the isolation parameters.
First order second moment (FOSM) theory was used to carry out probabilistic
analyses of structures in several research works (Shinozuka 1983; Ayyub and Haldar
1984; Bjerager 1990). The FOSM theory is used here for reliability assessment of
base-isolated liquid storage tanks. Monte Carlo (MC) simulation is also carried out
to compare applicability of the FOSM theory to estimate the probability of failure
of base-isolated liquid storage tanks.

The major objectives of this book chapter are: (1) to formulate the reliability of
base-isolated liquid storage tanks under base excitation in horizontal direction; (2)
to compare the effectiveness of the FOSM theory, with the MC simulation, to deter-
mine the reliability of base-isolated liquid storage tanks; and (3) to investigate the
effect of the uncertainties in the isolator and the excitation parameters on the reliabil-
ity of base-isolated liquid storage tanks under base excitation in horizontal direction.

2 Reliability Analysis of Structures

In structural design and analysis, reliability (R0) is conveniently described as the
complement of the probability of failure (pf). Reliability is defined as the probability
that a structure will not exceed a specified limiting criterion during considered
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reference period or life of the structure (Ranganathan 1999). In mathematical form
it is expressed as,

R0 D 1 � pf: (1)

Let the resistance (capacity or strength) is represented by Cap and the demand
(action of the load, i.e., shear force, moment, etc.) is represented by Dem. The
objective for the design is to achieve an acceptable condition, i.e., Cap � Dem.
Hence, the probability of failure is written as the probability of the case when
Dem>Cap, in mathematical form,

pf D P .Dem > Cap/ : (2)

Considering Cap and Dem both as random variables, the probability of failure
can be computed as (Ranganathan 1999),

pf D 1 �
1Z

�1
f1.Cap/F2.Cap/ d.Cap/ D

1Z

�1
f2.Dem/F1.Dem/ d.Dem/ (3)

where, f1 and f2 denote the probability density functions (PDF), and F1 and F2

denote the cumulative distribution functions (CFD) of the capacity and demand,
respectively. However, in real life situations, obtaining solution of such integrals
may be intractable. Moreover, many times proper identification of the PDF of
the demand or capacity may not even be possible. Therefore, several numerical
techniques are developed over the years to estimate the reliability of structures when
a closed form analytical solution is unavailable.

2.1 First Order Second Moment (FOSM) Theory

The reliability evaluation procedures are divided into three levels (Ranganathan
1999), namely (1) 1st level procedure, where the reliability is defined simply in
terms of safety factors; (2) 2nd level procedure, where safety checks are carried
out at the selected points on the failure boundary or the failure surface to estimate
the reliability; and (3) 3rd level procedure, also known as higher order reliability
analysis, where all the points on the failure surface or failure boundary are
considered. The higher order reliability analyses are capable of estimating the
reliability of structures most accurately. Nevertheless, the FOSM theory, which is
categorized as 2nd level procedure, is widely used for its simplicity.

In the FOSM theory, the failure function [F(Cap, Dem)] is defined in terms of the
safety margin (Sm) as,

Sm D F .Cap;Dem/ D Cap � Dem: (4)
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The reliability is estimated in terms of first and second moments of the failure
function (i.e., mean and variance of Sm). It is also to be noted that when F(Cap, Dem)
is a nonlinear function, made up of several basic input variables, then the first order
approximation is used to evaluate the mean and variance of Sm. Because of this
reason, the method is known as the first order second moment (FOSM) theory. In
this theory, the reliability is commonly expressed in the form of reliability index
(ˇ). Cornell (1969) defined the reliability in terms of the reliability index (ˇ) as the
ratio of the mean .
Sm/ to the standard deviation .�Sm/ of the safety margin as,

ˇ D 
Sm

�Sm

: (5)

The probability of failure can be computed as,

pf D ˆ�1 .�ˇ/ (6)

where, ˚� 1 is the inverse of the standard normal density function. For normally
distributed random variables and linear failure function, this relation (Eq. (6))
calculates accurate probability of failure. Moreover, this relation gives a preliminary
estimation of probability of failure for other types of distributions as well.

2.2 Monte Carlo (MC) Simulation

In many cases, the probability of failure determined from the reliability index, using
the FOSM theory, provides a reasonable estimate. However, the actual distribution
of the demand may not be sufficiently represented by the first and second moment,
i.e., the mean and standard deviation. In those cases, in the absence of the higher
order reliability theory, the MC simulation is invariably used for variety of reliability
analysis problems. Although this technique is not computationally efficient, with
the help of the modern computing facilities the MC simulation is a widely used
technique in risk and reliability engineering. In the MC simulation, a large number
of sample points are generated from the predefined probability distributions of
input random variables. Failure function is formulated in terms of the demand and
capacity, which consists of several input random variables. Response of the structure
is obtained deterministically for each set of the input variables to check the safety.
The reliability analysis procedure using the MC simulation is summarized in the
following steps.

1. The failure function (F) is written in terms of n input random variables (Xi) as,

F D f .X1;X2;X3; : : : ; Xn/ (7)

where, the probability distribution of each random variable is known.
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2. Realization (xik) of each input variable is generated from its distribution, and by
substituting it in Eq. (7), Nsim number of realizations of F is obtained. The kth

realization, Fk is obtained as,

Fk D f .x1k; x2k; x3k; : : : ; xnk/ (8)

where, k takes the values from 1 to Nsim.

3. The failure criterion is checked for each set of input random variables, and the
cases for which the failure occurs are counted, say Nfail. Then the probability of
failure is computed as,

pf D Nfail

Nsim
: (9)

Total number of the simulations (i.e., Nsim) depends on the required accuracy and
the size of the problem. If sufficient computational facilities are available, and the
probability distributions of the input random variables are known, then practically
any reliability problem can be solved by the MC simulation.

Herein, the probability of failure (pf) of base-isolated liquid storage tank is
estimated from the reliability index (ˇ) using the FOSM theory and compared
with the probability of failure obtained using the MC simulation. Based on the
distribution and statistics of the input random variables, the mean and standard
deviation of the demand are computed using the gPC expansion technique. Sub-
sequently, the reliability index for the base-isolated liquid storage tank is computed
and the probability of failure is estimated. However, when the failure function is
not linearly related to the input parameters, and not normally distributed, the FOSM
theory may not provide accurate estimate of the probability of failure. In such cases,
it is necessary to compare the probability of failure estimated using the FOSM
theory with the probability of failure evaluated using other higher order reliability
theory or the MC simulation. Here, the MC simulation is carried out using the same
distributions and statistics of the input random variables, as considered in the gPC
expansion technique, to evaluate and compare the probability of failure.

3 Reliability Analysis of Base-Isolated Structures

Stochastic response and the reliability analysis of base-isolated structures have
received considerable attention among the research community (Jangid and Datta
1995b; Pagnini and Solari 1999; Jangid 2000; Jacob et al. 2013). To study the
reliability problem of a hysteretic system, Spencer and Bergman (1985) developed
a procedure using Petrov-Galerkin finite element method for the determination
of statistical moments. They compared the statistical moments obtained using the
proposed method with direct MC simulation, however the reliability evaluation was
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not carried out. Pradlwarter and Schuëller (1998) carried out reliability analysis
of multi-degree-of-freedom (MDOF) system equipped with hysteresis devices
such as isolators, dampers, etc. They used direct MC simulation to compute the
reliability and proposed a controlled MC simulation to reduce the sample sizes
with better accuracy of the reliability estimate. Scruggs et al. (2006) proposed an
optimization procedure for base isolation system with active controller, considering
the system reliability under stochastic earthquake. They optimized the probability of
failure considering the uncertain earthquake model parameters. Mishra et al. (2013)
presented a reliability-based design optimization (RBDO) procedure considering
the uncertainty in the earthquake parameters as well as in the isolation system. They
observed significantly higher probability of failure in case of the RBDO approach, as
compared to the deterministic approach, due to uncertainty involved in the system
parameters. They concluded that the optimum design parameters obtained using
deterministic approach overestimate the structural reliability.

Buildings remained the major concern while analyzing the reliability of base-
isolated structures in most of the previous research works. However, only lim-
ited studies reported the reliability analysis of liquid storage tanks. Mishra and
Chakraborty (2010) investigated the effect of uncertainties in the isolator parameters
on the seismic reliability of tower mounted base-isolated liquid storage tanks. They
concluded that the uncertainty in the earthquake motion dominates the variability
in the reliability; however, the uncertainties in the isolator parameters also play a
crucial role in the reliability estimation. Saha et al. (2013c) presented stochastic
analysis of ground-supported base-isolated liquid storage tanks considering the
uncertain isolator parameters under random base excitation. They used generalized
polynomial chaos (gPC) expansion technique to consider the uncertainty in isolation
parameters and base excitation, and compared the probability distributions of
the peak response quantities. They demonstrated the necessity of considering the
uncertainty in the dynamic analysis of fixed-base and base-isolated liquid storage
tanks.

4 Failure of Steel Liquid Storage Tank

Selection of failure mechanism of the structure and defining the limiting criteria
are important steps in any reliability analysis. Typical earthquake induced failures
observed in cylindrical steel liquid storage tanks are: (1) buckling of the tank wall,
(2) rupture of tank wall in hoop tension, (3) tank roof failure, (4) sliding and up-
lifting of tank base, (5) failure of base plate, (6) anchorage failure, and (7) failure of
connecting accessories.

Out of all the above-mentioned failure modes the buckling of tank wall received
most attention in the research works, and the international guidelines differ in
many ways to address this issue. Buckling of liquid filled thin walled steel tanks,
under horizontal component of earthquake, is categorized into two types (EN 1998-
4 2006), namely (1) elastic buckling and (2) elasto-plastic buckling. The elastic
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Fig. 1 (a) Diamond shape and (b) elephant foot buckling of tanks (source: NISEE e-Library)

buckling is also referred to as diamond buckling which mainly occurs under severe
vertical stress induced by the overturning moment and other vertical loads. When
diamond shape buckling occurs in a tank wall, the buckled region generally bends
inward, forming several wrinkles in circumferential direction on the wall surface
(Fig. 1a). This kind of buckling mainly occurs when the hoop tension in the tank
wall is less. Such type of tank wall buckling is more common in case of slender
tank, i.e., height to radius ratio is high (Niwa and Clough 1982).

Outward bulging of the tank wall under the horizontal earthquake excitation is
known as elephant foot buckling (Fig. 1b). Niwa and Clough (1982) concluded from
their experimental studies that elephant foot buckling occurs due to the combined
action of hoop stress and axial compressive stress. When the axial compressive
stress exceeded the axial buckling stress, at the same time the hoop stress was
close to the material yield strength, elephant foot buckling was observed (Niwa and
Clough 1982). Later, Akiyama (1992) also validated this observation by conducting
a set of experiments on steel tanks. Elephant foot buckling was predominantly
observed in broad tanks, i.e., for low height to radius ratio (Hamdan 2000). Such
kind of tank wall buckling is classified as elasto-plastic buckling in EN 1998-4
(2006).

Some design guidelines relate the buckling of the tank wall to the axial
compression developed due to the overturning moment (AWWA D-100-96 1996;
API 650 2007). However, studies are reported which relate the buckling of the
tank wall to the base shear in horizontal direction. Okada et al. (1995) presented
a method to evaluate the effect of the shear force on the elasto-plastic buckling of
cylindrical tank. Tsukimori (1996) examined the effect of interaction between the
shear and bending loads on the buckling of thin cylindrical shell. Some of the present
tank design guidelines provide checks for the shear buckling, along with the axial
buckling (AIJ 2010).

The elastic buckling stress of a thin cylindrical tank is given by Timoshenko and
Gere (1961),

�cr D 1

Œ3 .1 � �2/�0:5
Ests

R
(10)
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where, the Poisson’s ratio and modulus of elasticity of the tank wall material are
denoted by Es and �, respectively; ts is the tank wall thickness; and R is the radius
of the tank wall. For steel tank wall (�D 0.3) the expression becomes,

�cr D 0:605
Ests

R
: (11)

The elastic shear buckling stress is given by,

�cr D 0:07708
�2Es

.1 � �2/
5.

8
q

H
R

�
R

ts

��5
.

4
(12)

where, H is height of the liquid column. The limiting overturning moment (Mb,cr)
and base shear (Vb,cr), based on the elastic buckling stresses, are respectively written
as (Okada et al. 1995),

Mb;cr D �cr�R
2ts (13)

and

Vb;cr D �cr�Rts: (14)

5 Modeling of Base-Isolated Liquid Storage Tank

Appropriate modeling of base-isolated liquid storage tank is essential for dynamic
analysis and response evaluation. Several international codes and design guidelines
(AWWA D-100-96 1996; EN 1998-4 2006; API 650 2007; AIJ 2010) recommend
the lumped mass mechanical analog to model cylindrical liquid storage tank. The
lumped mass mechanical analog is also recommended for seismic analysis of liquid
storage tanks using response spectrum approach. Simplified representation of the
liquid storage tank is always required for using it routinely in the design offices.
Haroun and Housner (1981) proposed a mechanical analog, with three degrees-of-
freedom (DOF), for the dynamic analysis of liquid storage tanks. As per the analog,
the liquid column is discretized into three lumped masses, namely (1) convective
mass (mc), lumped at height Hc above the base; (2) impulsive mass (mi), lumped at
height Hi above the base; and (3) rigid mass (mr), lumped at height Hr above the
base. The lumped mass model of a base-isolated liquid storage tank is shown in
Fig. 2a. The lumped masses (mc, mi, and mr) are computed from the total mass of
the liquid column (D�R2H), neglecting the mass of the tank wall. The deterministic
dynamic behavior of liquid storage tanks, using this model, was validated with
experimental results by Haroun (1983b). The model was widely used in earlier
research works (Shrimali and Jangid 2002, 2004; Saha et al. 2013b) for the dynamic
analyses of base-isolated liquid storage tanks. Here, laminated rubber bearing (LRB)
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Fig. 2 (a) Model of base-isolated liquid storage tank and (b) laminated rubber bearing (LRB) with
its force-deformation behavior

is considered as the isolator in the base-isolated liquid storage tank system. The
linear force-deformation behavior of the LRB is shown in Fig. 2b, where Fb is the
restoring force and xb is the isolator level displacement, relative to the ground.

The matrix form of the equations of motion for the base-isolated liquid storage
tank is written as,

M
˚ RX�C C

˚ PX�CK fXg D �M frg Rug (15)

where, fXg D fxc xi xbgT is the displacement vector; xc D (uc � ub), xi D (ui � ub)
and xb D (ub - ug) are the relative displacements of the convective, impulsive, and
rigid masses, respectively; and frg D f0 0 1gT is the influence coefficient vector.
Here, uc, ui, and ub represent the absolute displacements of the convective mass, the
impulsive mass, and the isolator level, respectively. The uni-directional horizontal
base acceleration is denoted by Rug. The mass matrix (M ), the damping matrix (C ),
and the stiffness matrix (K) are expressed as follows.

M D
2

4
mc 0 mc

0 mi mi

mc mi M

3

5 (16)

where, M D mc C mi C mr.

C D
2

4
cc 0 0

0 ci 0

0 0 cb

3

5 (17)
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where, cc, ci, and cb are damping of the convective mass, the impulsive mass, and
the base isolator, respectively.

K D
2

4
kc 0 0

0 ki 0

0 0 kb

3

5 (18)

where, kc, ki, and kb are stiffness of the convective mass, the impulsive mass,
and the base isolator, respectively. The LRB is characterized by its viscous
damping (cb D 4�M�b/Tb), where �b is the damping ratio and isolation time period�
Tb D 2�

p
M=kb

�
.

Saha et al. (2013c) presented stochastic modeling of the base-isolated liquid
storage tank using the gPC expansion technique. For simplicity, the base excitation
is represented by a uni-directional sinusoidal acceleration input with random
amplitude and frequency. Apart from the base excitation, the randomness in the
characteristic parameters of the isolator is also considered in the stochastic modeling
of the base-isolated liquid storage tank. Considering the uncertain parameters, the
dynamic equations of motion (Eq. (15)) are rewritten in the matrix form as,

M
n RX

�
t; �
�o

C C .�c/
n PX

�
t; �
�o

CK .�k/
n
X
�
t; �
�o

D �M frg Rug

�
t; �g

�

(19)

where,
n
X
�
t; �
�o

is the unknown displacement vector which is random in nature;

�c and �k represent the randomness in the damping and stiffness of the base-
isolation system, respectively; and the vector �g represents the randomness in the

base excitation. The vector � represents all the random variables involved in the
system response.

6 Solution of the Stochastic Equations of Motion

Truncated gPC expansions are used to represent the uncertain damping and stiffness
matrices as given by Saha et al. (2013c).

C
�
�c

�
D

N1X

i1D0
ci1 i1 .�c/ (20)

K
�
�k

�
D

N2X

i2D0
ki2 i2 .�k/ (21)
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where, ci1 and ki2 are deterministic unknown coefficient matrices;  i1 .�c/ and
 i2 .�k/ are the stochastic basis functions for damping and stiffness, respectively.
Similarly, the random base acceleration and the unknown displacement vector are
modeled as random fields and represented by the truncated gPC expansions as,

Rug

�
t; �g

�
D

N3X

i3D0
ugi3

.t/ i3

�
�g

�
(22)

n
x
�
t; �
�o

D
N4X

i4D0
xi4 .t/ i4

�
�
�

(23)

where, at a particular time instant, ugi3
.t/ represents the deterministic unknown base

excitation coefficient, and xi4 .t/ represents the deterministic unknown response
coefficient vector. The stochastic basis functions for the excitation and the response

are defined by  i3

�
�g

�
and  i4

�
�
�

, respectively. Here, the uncertain stiffness (kb)

of the LRB is represented in terms of the isolation time period (Tb). The base
excitation in horizontal direction is assumed as sinusoidal acceleration as,

Rug

�
t; �g

�
D Am .�a/ sin Œ! .�!/ t � (24)

where, random amplitude and frequency of the base excitation is denoted by Am(�a)
and !(�!), respectively.

Substitution of these expansions (Eqs. 20–23) in Eq. (19) yields an approximated
stochastic form of the system equations. The stochastic approximation error,

denoted by "
�
t; �
�

, is defined as,

"
�
t; �
�

D M

N4X

i4D0
Rxi4 .t/ i4

�
�
�

C
N1X

i1D0
ci1 i1 .�c/

N4X

i4D0
Pxi4 .t/ i4

�
�
�

C
N2X

i2D0
ki2 i2 .�k/

N4X

i4D0
xi4 .t/ i4

�
�
�

CM frg
N3X

i3D0
ugi3

.t/ i3

�
�g

�
: (25)

To solve the stochastic equation of motion, the stochastic basis function  
�
�
�

of

each input random variable must be known or defined.
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Once the  
�
�
�

s are defined, the solution of the equations is reduced to the

determination of the unknown displacement vector xi4 .t/ by minimizing the error

"
�
t; �
�

. The error is deterministically equated to zero at specific points using a

nonintrusive method. The nonintrusive method is same as the method of collocation
points. The collocation points are generally chosen from the roots of the similar
polynomials as used for the basis function. When more numbers of collocation
points are required, roots of the higher order polynomials are chosen.

The response quantities of the base-isolated liquid storage tank, under base
excitation in horizontal direction, are considered as the base shear (Vb) and the
overturning moment (Mb). Deterministically, the base shear and the overturning
moment are computed as,

Vb D mc Ruc Cmi Rui Cmr Rub (26)

and

Mb D .mc Ruc/Hc C .mi Rui/Hi C .mr Rub/Hr: (27)

Here, all the input random variables are assumed to be normally distributed and
uncorrelated. Using 3rd order Hermite polynomial, the uncertain response quantities
(Vb and Mb) are written in the following forms (Saha et al. 2013c).

Vb .�; t/ D yv
0 .t/C yv

1 .t/� C yv
2 .t/

�
�2 � 1�C yv

3 .t/
�
�3 � 3�� (28)

and

Mb .�; t/ D ym
0 .t/C ym

1 .t/� C ym
2 .t/

�
�2 � 1�C ym

3 .t/
�
�3 � 3�� (29)

where, yv
i (t) and ym

i (t) are the unknown deterministic coefficients at each time step
corresponding to the base shear and the overturning moment, respectively.

Once the polynomial coefficients are determined, they are substituted back into
Eqs. (28) and (29). Now, the response of the base-isolated liquid storage tank is
expressed in terms of the uncertain input random variables, at each time step, and
the response statistics are obtained. The mean and standard deviation of the base
shear (
Vb and �Vb ) are calculated using the following equations (Sepahvand et al.
2010).


Vb D yv
0 (30)

and

�Vb D
vuut

3X

iD1

�
yv

i

�2
h2i (31)
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where, h2
i is the norm of the polynomial. For one-dimensional Hermite polynomial,

with normally distributed uncertain parameters, h2
1 D 1, h2

2 D 2 and h2
3 D 6.

Similarly, equations to calculate the mean and standard deviation of the overturn-
ing moment (
Mb and �Mb ) are given as,


Mb D ym
0 (32)

and

�Mb D
vu
ut

3X

iD1

�
ym

i

�2
h2i : (33)

7 Numerical Studies

The reliability of base-isolated liquid storage tank under base excitation in hori-
zontal direction is assessed through analysis of ground-supported cylindrical steel
tanks with different slenderness ratio (S D H/R). The geometrical and material
properties of the broad and slender tanks are summarized in Table 1, where
�s and �w denote the mass density of the tank wall material and the liquid,
respectively. The damping, corresponding to the convective mass and the impulsive
mass, is assumed as 0.5 % and 2 %, respectively (Haroun 1983b). The type of
distribution and statistics of the input parameters, considered in the present study,
are presented in Table 2. The duration of the base excitation is considered as
15 s, with time increment 0.02 s, whereas the amplitude and the frequency are
considered uncertain (Table 2). The uncertain parameters, which are assumed to be
independent and normally distributed, are represented by the Hermite polynomial.
Galerkin projection technique is used to represent the input parameters in terms

Table 1 Geometrical and material properties of tanks

Configuration S ts/R H (m) Tank wall material Contained liquid

Broad 0.6 0.001 14.5 Steel:
�s D 7,800 kg/m3;
Es D 2 � 105 MPa

Water:
�w D 1,000 kg/m3

Slender 1.85 0.001 11.3

Table 2 Considered distribution and statistics of input parameters

Uncertain parameter Distribution Mean (
) Standard deviation (�)

Isolation damping (�b in %) Normal 0.1 0.02
Isolation time period (Tb in sec) Normal 2.5 0.50
Excitation amplitude (Am in m/sec2) Normal 3.6 0.72
Excitation frequency (! in rad/sec) Normal 10 2
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Fig. 3 Time history of the gPC expansion coefficients

of their mean and standard deviation. Nine collocation points (0, ˙0.742, ˙2.334,
˙1.3556, and ˙2.875) are chosen from the roots of the 4th and 5th order Hermite
polynomials. Nine sets of the uncertain input parameters are generated from these
collocation points using the Galerkin projection technique. Deterministic analyses
are carried out, by numerically solving Eq. (15) using Newmark’s-“ method, to
obtain the response of the base-isolated liquid storage tanks for the nine sets of
the uncertain input parameters. Regression analysis is performed to determine the
unknown coefficients of the base shear and the overturning moment (Eqs. (28)
and (29)).

Figure 3 shows the time histories of the polynomial coefficients for the peak
base shear and peak overturning moment, both for the broad and slender tank
configurations. The coefficient y0 represents the mean, whereas the coefficient
y1 largely contributes to the deviation of the response from the mean response.
Convergence in the response calculation using the gPC expansion technique is
achieved when the higher order coefficients (i.e., y2 and y3) are smaller in amplitude
as compared to y0 and y1. If desired convergence in the response calculation is
not achieved, then higher order approximating polynomial is to be considered.
Moreover, large amplitudes of the higher order coefficients also signify the nonlinear
relation between the response and the input parameters. It is observed that the
coefficients y0 and y1 are comparable in both the response quantities for the broad
and slender tank configurations. This shows the significance of the considering
uncertainty in the input parameters for the dynamic analysis of base-isolated liquid
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Table 3 Statistics of tank response quantities using gPC expansion

Base shear (W) Overturning moment (W-m)

Configuration 
Vb �Vb Capacity 
Mb �Mb Capacity

Broad (S D 0.6) 0.09 0.03 0.19 0.58 0.18 14:89

Slender (S D 1.85) 0.11 0.04 0.11 0.58 0.20 3:84

storage tanks. Moreover, the lower contributions from the higher order coefficients,
y2 and y3, indicate that even with 3rd order Hermite polynomial, convergence
of the response calculation can be achieved in the gPC expansion technique.
Nevertheless, nonzero y2 and y3 indicate the nonlinear relation between the peak
response quantities of the base-isolated liquid storage tanks and the considered input
parameters.

7.1 Computation of Reliability Index (ˇ)

The peak of the mean base shear (
Vb ) and mean overturning moment (
Mb ) are
determined from the time history of the response quantities, and the respective
standard deviations (�Vb and �Mb ) are computed at the corresponding time instant.
The mean and standard deviation of the response quantities, computed using the gPC
expansion technique, and the corresponding limiting values (capacity) are presented
in Table 3. The limiting values are computed from Eqs. (13) and (14). The response
quantities and the capacities are presented in normalized form with respect to the
total weight (W D Mg), where g is the gravitational acceleration. The safety margin
is expressed in terms of two criteria based on the limiting base shear and limiting
overturning moment as,

Sm D Vb;cr � Vb (34a)

or

Sm D Mb;cr �Mb: (34b)

The limiting base shear (Vb,cr) and limiting overturning moment (Mb,cr) are
considered as deterministic, therefore the mean of the safety margin .
Sm/ is
computed as,


Sm D Vb;cr � 
Vb (35a)

or


Sm D Mb;cr � 
Mb : (35b)
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Table 4 Reliability index
(ˇ) and probability of failure
(pf) using FOSM theory

Based on Vb Based on Mb

Configuration ˇ pf ˇ pf

Broad (S D 0.6) 3:157 0.0008 79.748 No failure
Slender (S D 1.85) �0:015 0.5080 16.462 No failure

The standard deviation of the safety margin .�Sm/ is given by,

�Sm D �Vb (36a)

or

�Sm D �Mb : (36b)

Once the first and second moment (i.e., the mean and standard deviation) of the
safety margin are known, the reliability index (ˇ) is computed using Eq. (5).

The reliability indices for the broad and slender tanks are computed and presented
in Table 4. The reliability index corresponding to the exceedance of the base shear
is considerably low which results in a high probability of failure in both the broad
and slender tank configurations. However, the reliability index corresponding to the
exceedance of the overturning moment is observed significantly high. Nevertheless,
the probability of failure, under base excitation in horizontal direction, is more in
slender tank as compared to the broad tank.

7.2 Computation of Probability of Failure (pf)
using MC Simulation

A set of realizations is generated from the considered distribution of the input
parameters, as given in Table 2. For each set of the input parameters, the tank
model is analyzed deterministically to obtain the peak response quantities. The peak
response quantities (Vb and Mb) are then compared with the limiting base shear
(Vb,cr) and limiting overturning moment (Mb,cr). The total number of the simulations,
when the demand exceeds the capacity is counted as Nfail. The probability of failure
is computed as the ratio between the numbers of failures to the total number of
simulations (Eq. (9)). The number of simulations plays a crucial role in accurate
estimation of the probability of failure; hence, a convergence study is carried out
to find out the sufficient number of simulations. The probabilities of failure (pf)
with respect to the number of simulations are presented in Table 5. To investigate
the critical failure mode, number of failures due to exceedance of the limiting base
share (nv) and limiting overturning moment (nm) are also counted and presented
in Table 5. It is observed from Table 5 that the base shear criterion governs the
failure in both the broad and slender tank configurations. Figure 4 also shows the
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Table 5 Convergence of probability of failure (pf) using MC simulation

Broad (S D 0.6) Slender (S D 1.85)

No. of simulations pf nv nm pf nv nm

10 0.1 1 0 0.6 5 0

100 0.06 6 0 0.46 46 0

1,000 0.079 79 0 0.517 517 9

2,000 0.0807 164 0 0.5065 1,013 11

5,000 0.0832 426 0 0.5058 2,529 33

10,000 0.0827 827 0 0.5173 5,173 86

50,000 0.0826 4,130 0 0.517 25,850 569
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Fig. 4 Convergence of probability of failure using (pf) MC simulation

convergence of the probability of failure with number of simulations. It is observed
that with 10,000 simulations, estimation of the probability of failure converges
for both broad and slender tank configurations. Further, it is observed that the
probability of failure (0.0008), estimated using the FOSM theory for broad tank,
is much lesser as compared to the probability of failure (0.0826) obtained from the
MC simulations. However for slender tank, probability of failure estimated using
the FOSM theory (0.508) is similar to the probability of failure obtained from the
MC simulations.

To explain this observation, the probability distribution of the peak base shear
is plotted from the peak response computed using 50,000 MC simulations and
compared with the distribution obtained through the gPC expansion technique. To
obtain the probability distribution of the base shear using the gPC expansion, 50,000
standard normal variates are generated, and the response time history of the base
shear is generated using Eq. (28). Figure 5 shows the comparison of the probability
distributions of the base shear for both the broad and slender tank configurations.
The limiting base shears (capacities) of the broad and slender tanks are also plotted
for comparison purpose. It is observed that the overall distribution of the peak
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Fig. 5 Comparison of capacity and peak base shear distribution using gPC expansion and MC
simulation

base shear, obtained using the gPC expansion technique closely matches to that
predicted by the MC simulation. The computed limiting base shear (capacity) of
the broad tank is significantly higher than the peak base shear demand, providing
a higher safety margin. Furthermore, ordinates of the probability density for the
broad tank, obtained from the MC simulation, differ from that obtained using the
gPC expansion technique, specifically near the peak region and beyond the base
shear capacity. Beyond the base shear capacity, the MC simulation distribution
curve has considerably lower ordinates, as compared to the distribution curve using
the gPC expansion technique. As the peak responses, greater than the capacity,
are only considered in the computation, the deviation in the distribution in this
region significantly influences the failure probability estimation. Hence, significant
difference in the probability of failure estimation, using the FOSM theory and the
MC simulation, for the broad tank, is observed.

On the other hand, in case of the slender tank the probability distributions of
the peak base shear, obtained using the FOSM theory and the MC simulation,
are matching closely near the peak region. Moreover, the base shear capacity of
the slender tank is close to the demand with lesser safety margin. Hence, the
marginal deviation in the peak response distribution, beyond the capacity, does not
significantly increase the numbers of failures due to base shear exceedance. Owing
to this fact, similar failure probability estimations are obtained, by the FOSM theory
using the gPC expansion technique and the MC simulation, for the slender tank. It
is concluded that the accuracy in estimating the probability of failure, for a base-
isolated liquid storage tank, largely depends on the actual distribution of the peak
response quantities and the available safety margin. Probability of failure estimated
from the mean and standard deviation, using the FOSM theory, may not provide
reasonable accuracy for base-isolated liquid storage tanks. Therefore, only the MC
simulation is used to estimate the probability of failure in the following studies.
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Table 6 Influence of individual uncertain parameter on probability
of failure (pf) using MC simulation

Probability of failure (pf)

Uncertain parameter Broad (S D 0.6) Slender (S D 1.85)

Isolation damping (�b) 0 0.809
Isolation time period (Tb) 0.0200 0.5207
Excitation amplitude (Am) 0.0668 0.5323
Excitation frequency (!) 0.0174 0.519

7.3 Effect of Individual Parameter Uncertainty
on Probability of Failure (pf)

The effect of uncertainty in each parameter on the probability of failure of the
base-isolated liquid storage tanks is investigated. The peak response quantities are
obtained considering uncertainty in one parameter only at a time, while the other
parameters are considered deterministic. The values of each uncertain parameter,
taken in the analysis, are presented in Table 2. The mean values are taken as the
deterministic inputs, while the standard deviations of the parameters are taken as
zero, except for the parameter under consideration. The MC simulation is used to
obtain the probability of failure (pf) with 10,000 realizations of the input variables.
The number of simulations is considered 10,000 to avoid unnecessary computational
effort since reasonable convergence of the probability of failure (pf) is observed in
Fig. 4. Table 6 presents the variation of the probability of failure with respect to
the individual uncertain parameters. It is observed that the effect of the individual
uncertain parameters is significant on the probability of failure (pf) of the tanks. It
is also observed that for the broad tank, probability of failure, estimated considering
uncertainty only in the isolation damping, is lower as compared to the probability
of failure when uncertainty is considered in the other input parameters. However
for the slender tank, probability of failure, estimated considering uncertainty only
in the isolation damping, is higher as compared to the probability of failure when
uncertainty is considered in the other input parameters.

To explain this disparity, the distribution of the peak base shear is plotted in Fig. 6
for broad and slender tank configurations. It is observed that the simulated values of
the peak base shear are distributed around the deterministic peak value (0.098 W).
However, the effect of the uncertain damping is insignificant on the distribution
of the peak base shear, and the simulated peak responses are distributed within a
narrow band. For the broad tank, base shear capacity (0.19 W) is considerably higher
than the mean peak base shear (0.099 W) when uncertainty is considered only in
the isolation damping. Therefore, no failure is observed in case of the broad tank.
However for the slender tank, the base shear capacity is same as the deterministic
peak base shear (0.11 W). The maximum probability density of the peak base shear
(with the mean value as 0.112 W) is also observed around the deterministic value for
the slender tank when the uncertainty is considered only in the isolation damping.
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Fig. 6 Comparison of capacity and peak base shear distribution for uncertainty in individual input
parameter using MC simulation

With marginal variation in the isolation damping, most of the peak responses
exceed the capacity. Consequently, the probability of failure in case of the uncertain
damping is evaluated to be significantly higher in case of the slender tank. Therefore,
it is concluded that when the capacity is significantly more than the demand, the
effect of uncertainty in the isolation damping is negligible. However, when the
demand is marginally more than the capacity, uncertainty in the isolation damping
significantly affects probability of failure.

7.4 Effect of Level of Uncertainty on Probability of Failure (pf)

The effect of the level of uncertainty on the probability of failure of the base-
isolated liquid storage tanks is also investigated. The standard deviation, in terms
of the % mean, is used to quantify the levels of uncertainty in each parameter.
The range of the standard deviation is taken as 5–20 %, with an increment of 5 %,
simultaneously for all the input parameters. In Fig. 4, it is shown that 10,000 MC
simulations are sufficient to obtain convergence in the evaluation of probability of
failure (pf). Therefore, the MC simulation is used to obtain the probability of failure
(pf) with 10,000 realizations of the input variables at each level of the uncertainty
for broad (S D 0.6) and slender (S D 1.85) tank configurations. Table 7 presents the
variation in the probability of failure of the base-isolated broad and slender tanks
with increasing level of uncertainty. It is observed that the probability of failure in
the broad tank increases with the increase in the uncertainty, whereas the probability
of failure in the slender tank decreases with increase in the uncertainty. The
distributions of the peak base shear for the broad and slender tank configurations,
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Table 7 Effect of uncertainty level on probability of failure (pf) using MC simulation

Probability of failure (pf)

Uncertainty level (all parameters, in % mean) Broad (S D 0.6) Slender (S D 1.85)

5 0 0.5643
10 0.0032 0.5283
15 0.0367 0.5177
20 0.0827 0.5173
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Fig. 7 Comparison of capacity and peak base shear distribution for different levels of uncertainty
in input parameters using MC simulation

at different levels of uncertainty in the input parameters, are shown in Fig. 7 to
explain the observation. In case of the broad tank, with increase in the uncertainty
level, more number of times the peak base shear exceeds the capacity which leads
to increase in the probability of failure. It is also observed that with increasing
uncertainty level in the isolator and the excitation parameters, the peak region of
the peak base shear distribution shifts toward lower value, disturbing the symmetry
of the distribution. Moreover, for the slender tank base shear capacity is same as
the deterministic peak base shear (0.11 W). Owing to this fact, higher uncertainty
in the input parameters leads to lesser numbers of cases, when the base shear
demand exceeds the capacity. As a result, lower probability of failure is observed
with increasing uncertainty in the input parameters for slender tank. Therefore, it
is concluded that the higher level of uncertainties in the isolator and the excitation
parameters disturb the symmetry of the peak base shear distribution of base-isolated
liquid storage tanks. It is also concluded that the effects of the level of uncertainty
on the probability of failure of the base-isolated liquid storage tanks depend on the
difference between the designed capacity and demand (or safety margin) for the
tanks.
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8 Summary and Conclusions

The first order second moment (FOSM) theory, in combination with the generalized
polynomial chaos (gPC) expansion technique, is used to determine the reliability
of base-isolated liquid storage tanks under base excitation in horizontal direction.
The failure of the ground-supported cylindrical steel tanks is defined in terms of the
limiting base shear and overturning moment in the elastic range. The effectiveness
of the FOSM theory to estimate the seismic reliability is compared with the MC
simulation. It is concluded that the accuracy in estimating the probability of failure,
for base-isolated liquid storage tank, largely depends on the actual distribution of
the peak response quantities and the available safety margin. Probability of failure
estimated using the FOSM theory may not provide reasonable accuracy for base-
isolated liquid storage tanks. The effect of uncertainties in the isolator and excitation
parameters on the probability of failure (pf) of base-isolated liquid storage tanks is
also investigated using the MC simulation.

It is concluded that the probability of failure (pf) is more in slender tank as
compared to broad tank which indicates that the reliability of broad tank is more
than the slender tank. The base shear predominantly governs the failure in both
broad and slender tank configurations. The uncertainty of the isolation time period
and the base excitation significantly influence the failure probability of the base-
isolated broad and slender tanks. Further, it is concluded that when the demand is
marginally more than the capacity, failure probability increases with the increase
in isolation damping uncertainty. However, when the capacity is significantly more
than the demand, the effect of uncertainty in the isolation damping is negligible.
It is observed that the higher level of uncertainties in the isolator and excitation
parameters disturb the symmetry of the peak base shear distribution of base-isolated
liquid storage tanks. It is concluded that the effects of the level of uncertainty on the
probability of failure of the base-isolated liquid storage tanks depend on the safety
margin available for the tanks.
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Abstract Due to cost and time savings and improving reliability, accelerated life
tests are commonly used; in which some external stresses are conducted on items
at higher levels than normal. Estimation and optimization of the reliability measure
in the presence of several controllable and uncontrollable factors becomes more
difficult especially when the stresses interact. The main idea of this chapter is
employing different phases of response surface methodology to obtain a robust
design of accelerated life testing. Since uncontrollable variables are an important
part of accelerated life tests, stochastic covariates are involved in the model. By
doing so, a precise estimation of reliability measure can be obtained. Considering
the covariates as well as response surface methodology simultaneously are not
addressed in the literature of accelerated life test. This methodology can be used
on the conditions that a broad spectrum of variables is involved in the accelerated
life test and the failed units have a massive cost for producers. Though considering
covariates in the experiments, the optimization of reliability can generate more
realistic results in comparison with noncovariates model. For the first step of this
study, experimental points using D-optimal approach are designed to decrease the
number of experiments as well as the prediction variance. The reliability measure is
estimated under right censoring scheme by Maximum likelihood estimator (MLE)
assuming that lifetime data have an exponential distribution with parameter, �,
depending on the design and stress variables as well as covariates. In order to
find the best factor setting that leads to the most reliable design, response surface
methodology is applied to construct the final mathematical program. Finally, a
numerical example is analyzed by the proposed approach and sensitivity analyses
are performed on variables.
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1 Introduction

In the recent years, various industries are encountered with a tremendous growth
in competition. In this regard, producers have paid a worthy attention to develop
and design new products that satisfy the consumers’ expectations. Producers should
consider different characteristics in their products to increase their share in the
market. Reliability is one of the most important quality dimensions and plays
a pivotal role in increasing lifetime of products, reducing warranty costs, and
achieving expected product’s functions. Therefore, manufacturers have focused
their attention to design products with high quality and reliability to decrease the
number of failures in the warranty period. For this purpose, various tests should
be applied and many constraints would be considered in this field such as the high
cost of products that fail tests, test duration, and material limitations. Accelerated
life testing (ALT) is a well-grounded method to save cost and achieve lifetime
data in a shorter time period. Units in ALT are subjected to higher stress levels,
and the output data of ALT are used for the estimation of product life at normal
conditions. ALT can generate many opportunities for manufacturers, such as a
proper maintenance scheduling for products to be kept in an acceptable level of
reliability and determining a reasonable warranty period to reduce the warranty costs
(Smith 1983).

Reliability can be defined as a probability of expected performance of a unit in
a normal and operating condition as well as a predefined time interval. Reliability
improvement is a vital part of product quality development. Although quality can be
illustrated in quite a few ways, one statement which always is acceptable among the
definitions is: a not reliable product is not a high quality one. Reliability function is
defined as Eq. (1)

R.t/ D 1 � F.t/ (1)

where F(t) is the cumulative distribution function of lifetime. Several methods have
been applied to predict and evaluate the various aspects of product’s reliability.
The mentioned methods collect different data and use them to estimate and analyze
reliability measurements.

One of the most important issues in reliability analysis is the use of historical or
experimental data to estimate product’s lifetime. Due to the mentioned constraints
such as long time needed for running the test and high cost of failed units,
accelerated life test has been introduced to overcome the problems. Accelerated
life testing is based on the principle that products have the same behavior in both
conditions of high stress in short time and low stress in longer time. The aim of
such testing is to quickly obtain failure data which, properly modeled and analyzed,
yield desired information on product life or performance under normal use (Nelson
2009). It can be inferred from the definition of ALT that in the first phase examiner
specifies the lifetime of units at the high stress condition and in the second phase
estimates the lifetime of units at the normal condition. It is clear that the key point
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in designing an optimal ALT is to construct a robust and appropriate relationship
model between estimated life time in tests and the normal conditions. With all
these taken into account, in order to design an adequate ALT considering some
prerequisites, namely types of stress loading, relationships between life and stress,
types of variables, censored data, and types of estimation methods are absolutely
essential. In this regard, in the next subsections a brief review on the mentioned
topics is presented.

1.1 Stress Loading

To begin with, in order to construct an ALT a broad spectrum of loads can be
considered. The different types of stress loading can be categorized into two main
classes with respect to dependency of stresses to time factor. The first class includes
those types of stresses loading which are independent from time, in more precisely
definition, in Constant Stress ALT (CSALT), items are tested at a specified constant
stress level which does not vary during the experiments. Since these tests are
simple to perform and have many merits such as available models, CSALT is
widely used in reliability tests. Tang et al. (2002) considered two alternative ways
of planning CSALT with three stress levels which optimize both stress levels and
sample allocations. In Fig. 1 a constant stress accelerated life test is shown.

In second class, the stresses on the units are dependent on time and increase in a
discrete way. In other words, at the initial time of test, units are subjected to a low
stress level and when a specific time period is passed, the stress level is increased
to a higher value. This process can be continued based on practical constraints of
experiments. This type of ALT is called Step Stress ALT (SSALT). Firstly, Geol in
1971 introduced the implication of step stress partially accelerated life test.
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Miller and Nelson (1983) presented the optimal design of simple SSALT
with considering some assumptions, namely, one stress variable, complete data,
and exponential lifetime distribution. Khamis (1997) proposed optimal design of
accelerated life test by considering K stress variables and M levels. It is assumed that
lifetime has an exponential distribution and a complete information about life–stress
relationship has been existed. Li and Fard (2007) proposed an optimum step-stress
accelerated life test for two stress variables which include censored data. Fard and Li
(2009) derived a simple Step-stress ALT (SSALT) model to determine the optimal
hold time at which the stress levels changed; they assumed a Weibull distribution
for failure time. In Fig. 2 a SSALT is demonstrated.

The last class of stress loading is Progressive Stress ALT (PSALT). In PSALT
units are exposed under a stress which is a nondecreasing continuous function of
time. In Fig. 3 a PSALT is shown.

1.2 Relationship Between Stress and Life

After determining the type of stress loading, experimenters should make a very
important decision about the relationship between stress and life. In fact, in this
phase of designing an accelerated life test and to achieve an accurate estimation
of life time, practical conditions of problem should be considered in the model.
Hence, selecting a proper relationship model between stress and life is the core of
ALT design. Therefore, verification of other computations would be dependent on
the validation of this model. Two main steps should be completed to construct such
a relationship model. In the first step an appropriate lifetime distribution should
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be determined for units based on the practical conditions and experts’ opinions.
At the second step the appropriate relationship between stress variables and the
parameter(s) of lifetime distribution is derived. It should be considered that the
parameter(s) of lifetime is a function of stress and not the own lifetime. In Fig. 4 a
relationship between lifetime and stress is demonstrated. According to this figure,
by increasing the stress the lifetime will decrease. Through a change to logarithmic
scale, Fig. 5 is obtained.

Some of the most common models for the relationship between stress and life are
summarized in Table 1.
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1.3 Types of Variables

In order to find an appropriate relationship model between stress and life, variables
of model should be chosen with respect to experts’ ideas and historical data.
Classification of variables can be viewed from different aspects. In a point of view,
some of the variables are input variables and some of them are output variables
(responses) which are dependent on the inputs. However, this classification should
be studied more precisely. In the one hand, some variables are known, controllable,
and are of interest so should be set at ideal levels to optimize response variables. On
the other hand, some variables are not of interest as a factor but exist in the model,
which are called nuisance variables. These variables are very common in practical
conditions and ignoring them may generate a noticeable inaccuracy in the model.
Montgomery (2005) has categorized such variables into the following three groups.

1. In the first group, variables are known and controllable but are not of interest
as a factor in model. Different techniques are available to handle these kinds
of variables such as blocking method. These statistical techniques can eliminate
effects of such variables on the results of experiments. The variation generated
through changing the shifts of workers is an example of such variables.

2. In the second group, variables are known and uncontrollable. This type of
variables is usually called covariates, which have a significant effect on the
results of model. It should be noted that the value of such variables is measured
during the experiments. Considering covariates and whose interactions with other
variables have a profound impact on improving the modeling of responses.
The chemical and physical properties of raw materials are examples for such
variables.
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3. In the last group, variables not only are unknown but also are uncontrollable. This
type of variables is not detectable and their levels randomly change during the
experiment. The randomization technique is the main approach used to decrease
the effects of such variables on the outputs. Humidity and climate variables are
examples for this group of nuisance variables.

1.4 Censored Data

Through considering three last implications, a parametric relationship model
between stress and life can be constructed. However, the parameters of this basic
model are to be estimated. In an ideal condition, models’ parameters (coefficients)
are estimated using complete life data. The term of complete indicates that the
failure data for all of test units are available. However, due to quite a few practical
constraints such as time and cost limitation often a few number of failure data are
missed. These missed data are called censored data (Chenhua 2009). Censored
data play a crucial role in reliability testing, in general, and ALT, in particular.
Therefore, removing censored data from the analysis will decrease the validity of
estimations and accuracy of the results. Considering the mentioned reasons, it is
clear that censored data should be considered in a model to reach a better design
and optimized accelerated life test. Through considering the censored data a proper
modification can be performed on estimation methods, which are introduced in next
subsection, based on the types of censored data. These modifications significantly
affect the accuracy of estimation in a model. In this regard, some important types of
censored data will be presented as follows (Nelson 2009; Lewis 1987).

1. Left censoring: A failure time is lower than a point of inspection so it cannot be
determined.

2. Right censoring: Some units are not failed in the experiment period. Right
censoring is most common censoring scheme in reliability testing. The reasons
for right censoring are as follows: (a) units exit from experiment for any reasons
before that failure occurs. (b) In the end of test some units work correctly. (c)
Units exit from experiment due to failure modes out of the purpose of the study.

3. Interval censoring: Time is missed because the units fail between two specific
inspection times.

Ling et al. (2011) presented a SSLAT for two stress variables to find optimal
times for to change stress levels based on type-censoring plan. In the type-censoring
the censoring scheme has a predetermined termination time. They supposed that
lifetime has an exponential distribution and used MLE as the estimator method. Ng
et al. (2012) studied the estimation of three-parameter Weibull distribution under
progressively type II censored samples. In the type censoring the experiment will
be terminated after occurrence of a specific number of failures. To obtain reliable
initial estimates for iterative procedures they also proposed application of censored
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estimation technique with one-step bias correction. Wang et al. (2012) presented
a step-stress partially accelerated life tests to estimate the parameters of Weibull
distribution which considered multiply censored data.

1.5 Methods of Estimation

In the last step, the approximate relationship model between responses and inde-
pendent variables should be constructed. An adequate regression model such as
first and second order based on the aforementioned criteria should be selected and
the unknown parameters are estimated. The following three methods are prevalent
for obtaining the point estimator: (a) method of moments, (b) Bayes method,
and (c) method of maximum likelihood (Ramachandran and Tsokos 2009). The
most important and common method of point estimation is maximum likelihood
estimation (MLE). MLE has many suitable properties and can be applied for a
vast area of models and data. MLE such as other estimation methods has a simple
and effective theorem behind their often massive computations. In MLE method
the likelihood function of the occurred events is maximized. Although MLE has a
specific algorithm to obtain estimations, a great number of techniques and methods
can be used in its different phases. The process of MLE can be divided into two
main phases. In the first phase, the likelihood function is demonstrated by the
occurrences’ probability of observed events and in the second phase the obtained
function is maximized with respect to unknown parameters of the distribution
function. The maximization process can be done through a wide range of techniques.
In the following section, the mentioned process will be illustrated more precisely.

2 Problem Definition

2.1 Purposes of Study

The main purpose of this study is to obtain a precise estimation of reliabil-
ity measurements considering stochastic covariates. To explain in more details,
covariates are mostly ignored in ALT models, and this problem can drastically
decline the quality of models’ estimations. With respect to the mentioned reason,
it can be inferred that covariates should be considered in ALT models with an
equal importance as other variables. In addition, quite a few number of issues
are involved in constructing a robust accelerated life test such as censored data,
interaction between variables, high cost of failed units, and too name but a few.
To satisfy these objectives quite a few of methods and techniques are used in the
presented methodology and most of practical conditions of ALT are considered in
the model. In order to cope with the mentioned problems in this study, Response
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Surface Methodology is applied to design ALT models. In normal situations units
perform whose functions in presence of more than one stress variable. However,
the mentioned operational condition is ignored due to difficulty of computations
in estimation process usually in researches. As a result, considering more than one
stress variable in the model can develop the design of ALT to practical conditions. In
addition, in the proposed approach ALT is designed with considering the censored
data. By accepting this as a true that due to the lengthy time of many experiments,
censored data is not avoidable, paying attention to censored data has a significant
effect on accuracy of predictions. Through performing different phases of RSM a
significant improvement in results of estimation and a noticeable decrease in number
of tests will be achieved. Moreover, an optimal region that minimizes the prediction
variance of estimations will be obtained using optimal designs in the first phase of
RSM. In Sect. 3, the steps of RSM are explained and some examples are shown for
more illustration.

2.2 Model Assumptions

Quite a few of assumptions are considered in the proposed approach to design
an optimal ALT. Some of which are principal assumptions that the validation of
model is dependent on these. One of the most important problems in designing
an ALT is extrapolation errors result from the difference between the operational
stress and accelerated stress. In order to overcome this error, some notions should
be considered before designing ALTs. To begin with, the relationship between
stress and life should be modeled with respect to experts’ opinions as well as
physical properties of units. In this regard, various information about the failures
mechanism of units should be collected and analyzed by the experts. Furthermore,
some essential assumptions should be considered to design ALTs. First, the life
time distribution is known and remains unchanged for any level of stresses. Second,
the obtained model for failure data in accelerated levels has the same behavior in
operational level. As a result, the extrapolation for data in operational levels has
an acceptable validation for calculated parameters. The other aspect that should be
noticed to design ALTs would be the dependency of lifetimes’ parameter to time.
To explain in more details, units or products have a life cycle based on their failure
rate. The cycle is divided into three periods. In “burn-in” period, the failure rate will
be decreased with passage of time. In the “useful life” period, units have a constant
failure rate. In fact, the failure rate in the useful life period is independent of time.
In the last period, which is called wear out, with passage of time the failure rate will
be increased.

The duration of useful life period is much greater than burn-in and wear-out
periods. In addition, the failures that occur in burn-in period are due to initial
problems and mistakes in design of product. Usually by a proper redesign process
the mentioned failures can be removed after passing a short time. The wear-out
period includes units approaching to the end of life. In this regard, designing
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reliability tests in burn-in and wear-out periods has less importance than in useful-
life period. Hence, mostly the designs of ALT models are performed in useful life
period. Therefore, accepting the assumption that failure rate is independent of time
is a reasonable hypothesis.

In addition to the mentioned principal assumptions, this study includes additional
assumptions on the conditions of experiments. To begin with, it is assumed that
stresses are constant during running of the experiment. In other words, the model
is a constant stress accelerated life test, in which stresses do not vary with passage
of time. A right censoring plan is assumed for data regarding the censoring scheme.
In addition, it is assumed that the lifetime parameters are a function of design and
stress variables, as well as covariates.

The proposed approach has the advantage that is not dependent on the lifetime
distribution and according to condition of problem different distributions can be
chosen for lifetime data.

3 Methodology

With respect to mentioned issues in the last section, an effective approach to design
an accelerated life test is proposed in this section. In the presented approach to
design an optimized ALT, three main steps should be performed. The steps can
be explained as follows: firstly an appropriate approximate relationship among
the response (parameters of lifetime distribution) and input variables (design and
stress variables as well as covariates) should be modeled. Secondly, the unknown
parameters in the approximate relationship should be estimated. In the last step, an
optimization process should be conducted on the obtained relationship with respect
to input variables. In this regard, the RSM is an absolutely well-designed method for
covering and handling the mentioned steps. RSM is a collection of mathematical and
statistical techniques which are applied to construct a proper functional relationship
between response and input variables (Myers et al. 2004). Moreover, RSM is a
powerful tool for improving and optimizing the response variables. Initial works in
the field of RSM were proposed in 1950. At the mentioned years RSM was widely
applied in the chemical industries. However, in recent years the applications of RSM
have a tremendous growth in a broad spectrum of systems and processes (Myers
et al. 2011). This methodology consists of three major phases that are consistent
with ALT design phases. At first step, a design of experiment should be selected
to run the tests. The aim of this phase is to select design points where response
variable should be evaluated. Through applying the first phase two major advantages
come up to design ALT. Firstly by choosing a statistical design to conduct the
experiment, the numbers of test unit which might be failed during the test would be
significantly decreased. Secondly, by considering the best set of design points to run
the experiments, the prediction error of unknown parameters would be reduced. As a
result, the accuracy of estimations would be meaningfully increased. At second step,
the unknown parameters in the designed relationship between response and input
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variables would be estimated by using an appropriate method. By doing so, lifetime
of the units can be predicted using the obtained relationship model. In the last step of
the methodology, an optimization method would be applied with respect to different
objectives such as improving the reliability of units and involved constraints in the
practical condition of experiments. The main three steps are illustrated by simple
examples in the following subsections.

3.1 Design of Experiments

The basic model to design a relationship between response(s) and input variables
can be defined as Eq. (2).

y D f 0.x/ˇ C – (2)

where D (x1, x2, : : : , xk)0, y is the response variable, and f (x) is a P-elements
vector function, which contains powers and Cartesian products of x1, x2, : : : , xk. In
addition, ˇ is a p-element vector of unknown coefficients related to input variables
and – is the experimental random error, which is assumed to have a zero mean. With
respect to presented model, it is clear that the value of f 0(x)ˇ is the expected value
of response variable (y). In other words, f 0(x)ˇ is the mean of response variable and
can be shown as 
 (x). Two useful and important equations that are commonly used
in response surface methodology are first order and second order equations. These
equations are shown in Eqs. (3) and (4).

y D ˇ0 C
kX

iD1
ˇixi C – (3)

y D ˇ0 C
kX
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ˇixi C
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iD1
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2
i C – (4)

In order to achieve the mentioned goals in the last section for first phase of
response surface methodology, initially a number of experiments should be conduct
on units. By doing so, the values of input variables and its response variable can be
determined. The input variables can be presented in a design matrix as follows.

D D
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x11 x12 � � � x1k
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xn1 xn2 � � � xnk
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777
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5



Robust Design of Accelerated Life Testing and Reliability Optimization: : : 341

where Xui is the Uth design set of input variable Xi (i D 1, 2, : : : , k; u D 1, 2, : : : , n).
Each row of this matrix presents a design point. If y be a response that is obtained
by applying Uth design point, it can be calculated through Eq. (5)

y D f 0 .xu/ ˇ C –u; u D 1; 2; : : : ; n (5)

where –u presents the error of Uth design point. Equation (5) can be rewritten as
Eq. (6).

y D Xˇ C – (6)

where yu D (y1, y2, : : : , yn)0, X is a n � p matrix in which Uth row is f 0(xu), and
–D (–1, –2, : : : , –n)0. The elements of the first column are valued by 1 s to enable
fitting with nonzero intercept. This is assumed that the mean of � is zero and its
variance is �2In (Rencher and Schaalje 2008). In this regard, OLS can provide a
linear estimator of unknown parameters as shown in Eq. (7)

b̌D �
X 0X

��1
X ’y (7)

with the following variance–covariance matrix.

Var.b̌/ D �2
�
X 0X

��1
(8)

Accordingly, Eq. (9) estimates the response mean at the design point u.

b
 .xu/ D f 0 .xu/ b̌; u D 1; 2; : : : ; n (9)

In addition, by considering the mentioned point at the previous section, this is
clear that f 0 .xu/ b̌ is the value of response prediction. On the whole, in each design
point in region of experiment, the prediction of response can be achieved as Eq. (10).

by.x/ D f 0.x/b̌; x 2 R (10)

where R is the feasible region of experimental factors.
Since b̌ is a unbiased estimator for B,by.x/ is a unbiased estimator for f 0(x)ˇ. As

a result, the variance for by.x/ can be obtained by applying Eq. (11) (Díaz-García
et al. 2005).

Var Œby.x/� D �2f 0.x/
�
X 0X

��1
f .x/ (11)

As shown earlier, we can only decide on X0X since other elements are supposed
to be fixed, constant, or predetermined. Therefore, values in the design matrix have
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Fig. 6 Classification of design methods

a meaningful effect on the variance of prediction. The vital point of first phase of
response surface methodology is to construct the proper design matrix. With respect
to Eq. (11), it can be inferred that by choosing a proper design matrix that satisfy
some criteria, a relevant decrease in prediction variance would be obtained, and as
a result a significant improvement in accuracy of estimations would be provided.

In order to reach the mentioned purposes, the design matrix should have some
features, among which orthogonality and rotatability have a more importance in
comparison to others. If the matrix X0X be a diagonal, then the design matrix is
orthogonal. The great merit of orthogonal matrix is that the elements of b̌ will
be uncorrelated. The ability of rotation can be defined in terms of the constant
prediction variance for each design point. In simple words, each design point in
a matrix with the ability of rotation has a same distance from the design center. The
main merit for such a matrix is that the prediction variance remains unchanged under
any rotation of axes. Since the prediction variance is constant and different responses
can only be compared based on their mean values, the process of comparison among
them can become easier than normal condition (Ai and Mukhopadhyay 2010).

Various types of design can be categorized into two main classes: classic and
optimal designs. Figure 6 shows these two main groups and their subgroups.

To begin with, in classic RSM design various methods for first order designs are
available, among which 2k factorial, Plackett–Burman, and simplex design are the
most prevalent ones. In a 2k factorial design each input variable is set at two levels,
coded by C1 and –1. By doing so, a design matrix will be constructed including all
possible combinations of input variables. Thus, this design requires to run n D 2k.
For example, suppose the lifetime of a lamp depends on two factors, namely, voltage
and temperature. The condition of experiments is as follows: The voltage is set at
120 and 220 V and the temperature falls into 30 or 40 ıC. By scaling process the



Robust Design of Accelerated Life Testing and Reliability Optimization: : : 343

mentioned values can be converted to 1 and �1. The required number of runs for this
example equals to 22 D 4. The design matrix for this example has been shown below.

2

66
4

1 1

1 �1
�1 1

�1 �1

3

77
5

The 2k factorial designs result in an orthogonal matrix. However, by increasing
the number of input variables the number of required design points grows drasti-
cally. Hence, a significant increase in cost will be generated. By considering this
matter of fact that in a first order model only k C 1 unknown parameters should
be estimated, to overcome the mentioned problem the 2k factorial design can be
conducted by a fraction of design such as half or one-fourth fraction design which
is greater than k C 1. The last design is called fractional factorial design and is
very common in design of experiments. The other method in this subgroup is
Plackett–Burman designs which have a vast application in design of experiments.
Plackett–Burman designs such as 2k factorial designs assume two levels for each
input variables but require fewer number of design points (precisely n D k C 1)
compared to 2k factorial design. Therefore, Plackett–Burman designs can reduce
cost of experiments. The last design is simplex in which k C 1 design points
are required. Although the simplex designs based on aforementioned note are
economical, because of its difficult computations usually are not of interest. All
the mentioned designs are orthogonal and it is crystal clear that orthogonal design
matrix provides best results for estimation of unknown parameters.

The most prevalent designs for second order models are, namely, the 3k factorial
designs, the Central Composite Design (CCD), and Box–Behnken designs. The 3k

factorial designs have a same procedure like 2k factorial designs but set variables
in three levels, namely, 1, 0, �1. Because of the mentioned reasons in the last
section fractional factorial designs are considered in these designs. The minimum
number of design points which are required in a second order model like Eq. (4) is
h D 1 C 2k C 1

2
k .k � 1/. Probably, the most applicable design for second order

models is CCD. CCD has well-organized steps to construct design matrix. In the
first part CCD, 2k design points are selected based on first order model. Hence,
the first part is complete by using first order model information. In the second part
of CCD, more details about the second order model are added to design matrix.
Finally, Box–Behnken designs need a small part of a 3k factorial design. Therefore,
this design has a great cost benefit and is adequate for real industrial problems (Ai
and Mukhopadhyay 2010).

The other subgroup for classic designs is Taguchi design that mainly deals with
nuisance factors or dynamic environments. Due to a simple procedure, this group
of design is very applicable for practitioners. According to Taguchi’s viewpoint of
robustness and minimum variations in quality issues, these designs are constructed
with a special focus on orthogonality measure (Taguchi et al. 2005).
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Optimal designs are another important class of design matrix. This type of design
is based on some optimality criteria. The various criteria have a same goal which is
the closeness of the estimated response to the mean response (Atkinson et al. 2007).
In other words, such criteria consider the confidence region of unknown coefficient,
B, and try to minimize this region in different indices. The confidence region is a
general form of a confidence interval in a multidimensional space. Commonly, this
region has an ellipsoid shape near the estimated point. Each point in the confidence
region has a probability to occur. Therefore, by minimizing the area of this region
the accuracy of estimation would be improved. All the different optimality criteria
using different methods try to make this region as small as possible. By doing the
last step, the response prediction variance would be minimized and a proper design
matrix will be obtained. To explain in more details, the variance–covariance matrix
of predicted unknown parameters vector, b̌, is presented as follows.

X
b̌D

0

B
BB
@
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�
bB0

�
� � � Cov

�
bB0;bBk

�

:::
: : :

:::
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�
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�
bB0

�

1

C
CC
A

As can be seen from the variance–covariance matrix of b“, the main diagonal
elements are the variances of estimated coefficients. Hence, the minimizing process
should be performed on these elements. With respect to Eq. (8) if it supposed
that the value of �2 is one, then for minimizing the predicted variance of model
coefficient only the (X0X)�1 must be considered. The inverse of variance–covariance
matrix is called information matrix (Goos and Jones 2011). Information matrix
presents the available information of the model. It is crystal clear that by more
information the accuracy of estimation will increase. If a criterion is defined to
minimize the predicted variance of factors, it can have their application to maximize
the information in the information matrix. Therefore, it can be claimed that all
optimality criteria can be defined in two different ways that have same target.

Now that the aim of optimal designs is illuminated, different optimality criteria
will be introduced. Probably, the most popular optimality criterion is D-optimality.
The D is a clue of determinant. In a D-optimal design the determinant of (X0X)�1

would be minimized. In other words, the determinant of information matrix should
be maximized. The D-optimality criterion has a logical assumption by which,
minimization of the determinant of (X0X)�1 leads to smaller variances in the
prediction step. It should be considered that if (X0X)�1 be a diagonal matrix, then the
determinant of (X0X)�1 is equal to product of diagonal elements of this matrix. This
case makes the last mentioned assumption easy to understand. In addition, when
(X0X)�1 is orthogonal the unknown parameters can be estimated independently.
However, the orthogonally assumption for (X0X)�1 might be violated in real–world
situations especially where some nuisances are to be included in the statistical
model. In this regard, one of the most prominent advantages of optimal designs
is that such designs are robust against not satisfying of orthogonally assumption.
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Fig. 7 Coordinate exchange
algorithm steps

In fact, optimal designs will remain a proper method for nonorthogonal matrices.
Although nonorthogonal matrix might generate inaccuracy in model by variance
inflation as well as covariance among estimated parameters, optimal designs obtain
best combinations of factors among available designs so that the violation would be
small as possible. Compared to the factorial design, optimal design would consider
the variance of prediction by assuming some relationships models between response
and factors. Therefore, the design points are determined so that the variance of
prediction is minimized.

A great number of algorithms are available to obtain D-optimal designs, one of
which is coordinate exchange algorithm. Coordinate exchange algorithm is a useful
algorithm with clear steps to minimize the determinant of the variance–covariance
matrix and has a wide application in constructing of D-optimal designs. The steps
of coordinate exchange algorithm are shown in Fig. 7.
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For the mentioned reasons, in this study the coordinate exchange algorithm
has been used for constructing a D-optimal design. The details of these steps are
explained as follows.

1. To begin with a random design matrix should be constructed. Before starting to
construct a random design matrix a recommended prerequisite which is factors
scaling should be introduced. Although scaling of variables is not an absolute
necessity for generating an optimal design, this process brings some merits to
coordinate exchange algorithm. By doing so, the continuous variables are set
between –1 and 1. In addition, categorical variables which have two levels can
be set at –1 and C1. The other kinds of categorical variables can also be coded
based on the condition of experiment. Scaling of variables has an advantage
for comparing factors’ effect. For instance, when two factors X1 and X2 have
a same scale and the model coefficient of which are B1 D 3 and B2 D 6, it can be
inferred that X2 has a twice impact than X1 on the response variable. By taking all
these into account, to construct a random design matrix random values between
�1 and C1 must be assigned to the controllable scaled variables. In addition
to controllable variables, the design matrix is contained covariates which might
have a stochastic behavior. Commonly in practice a specific distribution function
such as normal distribution is defined for covariates. Hence, a random value with
respect to the mentioned distribution function should be generated for covariates.
By doing so, a random design matrix is constructed and the others steps would
be performed on this matrix.

2. Since the optimality criterion is to minimize the determinant of variance–
covariance matrix, firstly the information matrix should be calculated. In this
regard, the model matrix X would be generated. The model matrix is obtained
through using design matrix. In fact, each row of the model matrix represents the
value of each term in the model for a specific design point. After obtaining the
model matrix, the information matrix can be constructed through the mentioned
method. This should be considered when the computation of determinant for
a small information matrix is simple but for more complicated matrices these
calculations become very time consuming. Therefore, this process must be
performed by using computer programs. By obtaining the determinant of initial
information matrix a start point for algorithm is created. The rest of the algorithm
includes replicating steps designed to maximize the mentioned determinant.

3. In third step, every possible change in design matrix would be performed.
For any unique design matrix the determinant of information matrix should
be calculated and saved. To do so, an element-by-element process should be
applied. In this regard, when a change occurs in an element the other elements
should be remained constant to make possible the comparison and evaluation
of each change in design matrix. This must be considered when covariates are
not controllable variables. Thus, the effects of such variables should be removed
from the determinant of information matrix. In this regard, for every change
in design matrix a sufficient number of random values would be generated for
each covariate. By considering the mentioned point, for each change in design
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matrix a great number of design matrices with different covariate column would
be obtained. Now the determinant measure for the obtained design matrix must
be computed. The sample average of these determinants can be proposed as the
determinant of the information matrix for every change. By doing so, the effect
of covariates will be justified in the computations. Note that the updating process
of covariates should be performed equal to a sufficient number for every change
in design matrix. This process would be continued till all the possible changes
in design matrix terminate. It is worthy to note that this procedure is a kind of
Monte-Carlo approach. The design matrix associated to the maximum value of
determinant of information matrix would be chosen as the best combination
of factors for running the experiments.

4. The obtained solution from the last step is a local optimum solution. To explain
in more details, this solution is the best one among the neighborhood of this
point. However, it can be possible that by starting with a different initial random
design matrix a better solution is obtained. In this regard, to achieve the global
optimum solution the last three steps should be repeated for a sufficient number
of runs. It is like a mountain climber who has climbed a hill, by looking around
the hill he cannot come to the conclusion that it is the highest point in that
mountain. However, to find the highest point in that mountain he should try
climbing different hills. This action should be repeated until the highest hill in the
mountain can be recognized. By doing so, the global optimum solution is likely
to be a design matrix which will obtain the greatest determinant of information
matrix among all the repeated loops in the algorithm. The final solution of
algorithm is the best combination of factors for conducting the experiments.

3.2 Parameter Estimation

In order to achieve an appropriate relationship between response and factors in an
accelerated life test model, an adequate method of estimation should be selected.
More precisely, after obtaining the best design points for constructing the model,
the unknown coefficients of model must be estimated through a point estimator.
Since the process of estimation is performed in the obtained design from the last
step, the predicted variance of response variable becomes as small as possible.
With respect to aforementioned methods of point estimation, in this subsection four
main methods of point estimation are introduced, namely, least square error (LSE),
the method of moments, MLE, and Bayes method. To begin with LSE is a useful
method to minimize the difference between the real value of response variable and
the estimated value of it. This difference can be called as error, because the ideal
estimated points are those of ones which are nearest to the real value of response
variables.

The other main method of estimation is the method of moments. The method
of moments is one of the oldest methods of estimation. This method contains
some equivalency equations between the initial moments of sample and population.
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The number of equations is equal to the number of unknown parameters that must
be estimated in the model. For instance, the number of equations to estimate the
mean and variance of a normal distribution is two. The method of moments has a
broad application in statistical and other fields of science.

Bayesian estimators are applied when prior information about the unknown
parameters is available. The risk of a bad estimation is defined by some loss function
such as mean square/absolute errors. The estimation has a minimum expected loss
function over the prior distribution of the parameters (El and Casella 1998).

The last but the most prominent method of estimation in reliability analysis
is MLE. The MLE has a probabilistic basis for computations. In the MLE a
likelihood function would be constructed. The likelihood function is a relationship
that demonstrates the occurrence probability of real response variable values. An
illustrative example is presented to explain the process of constructing the likelihood
function. For example, in ALT parts which are conducted in stress levels have a
Bernoulli distribution with P as the probability of failures. In this test five parts
are conducted in an accelerated life test. In the inspection stations two first parts
are failed. Hence, the probability of happening the mentioned situation (likelihood
function) is as follows.

L D p .x1 D 0; x2 D 0; x3 D 1; x4 D 1; x5 D 1/

D P .x1 D 0/P .x2 D 0/P .x3 D 1/P .x4 D 1/P .x5 D 1/ (12)

where if xi D 0 the part i is failed and reversely. Since the parts have a Bernoulli
distribution the likelihood function can be rewritten as follows

L D .1 � P / .1 � P / .1 � P / .P /.P / D .1 � P /2P 3 (13)

The obtained likelihood function demonstrates the occurrence probability of
observed results in the sample. Therefore, the implication of likelihood function
can be understood by the mentioned example.

The next step in the MLE method is to maximize the obtained likelihood function
with respect to unknown parameters of distribution. By doing so, the estimated
parameters achieve the best prediction for response variables. In other words, the
value that maximizes the likelihood function estimates the unknown parameters
of model based on observed results of experiments. Thus, the response variables
estimated by these parameters are properly estimated. To explain in more details,
the mentioned example is extended to the second step. In this step, the likelihood
function should be maximized. Therefore, the obtained likelihood function should
be derived with respect to P and the result would be equal to zero. In this regard the
following equation is achieved.

@L

@P
D P 2

�
5P 2 C 8P C 3

� D 0 (14)
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By solving the above-mentioned equation, the P is estimated by 0.6. It can
be claimed that if P D 0.6 then the occurrence probability of observed events is
maximum. Therefore, the best possible estimation would be achieved.

Although two main steps of MLE are constant and clear, some details can
be varied in the method with respect to the problem conditions. In the case of
constructing an accelerated life test, experimenters are confronting with two major
issues. First, commonly ALT involves censored data which have a profound impact
on estimation of unknown parameters. Second, due to a great number of unknown
parameters in the relationship between response variable and input variables, which
are contained stress and design variables as well as covariates, the system of
equations for maximization step in MLE become very large. In these regards, to
make an adequate estimation for an ALT some additional steps should be considered
in the two main steps of MLE.

By considering the type of censored data which are discussed in the previous
section, a proper likelihood function should be constructed for available data as well
as censored data. To achieve this objective, depending on the type of censored data
the probability of each event is evaluated in the likelihood function. Right censored
data can be seen in a broad spectrum of accelerated life tests. In this regard, in this
study assumed that data are right censored. As mentioned in the previous section,
the failure time of a right censored observation is not available for estimation of
parameters. If censored data are ignored or analyzed similar to complete data a
significant error in estimations will be generated. In order to cope up with this
problem, the censored data should be considered in a model with a proper likelihood
function. When a failure time is censored from right side, it is clear that the lifetime
of the part is equal or greater than the censoring time. By accepting this fact as
true the mentioned part is not failed before censoring time. Hence, the cumulative
distribution function is a proper representative term for right censored data in
likelihood function. More precisely, cumulative distribution function demonstrates
the summation of probabilities before a specific value, which in the case of right
censored data in ALT is equal to censoring time. If f (t) presents the lifetime
distribution function of the parts, then the lifetime cumulative distribution function,
F(t), for censoring time can be obtained through Eq. (15).

F .t D T / D p .t � T / D
Z T

0

f .t/dt (15)

where T is the censoring time. In view of these considerations, the likelihood
function can be constructed for an accelerated life test model with the right censored
data as Eq. (16).
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Fig. 8 Lifetime cycle

where i D 1, : : : , n , n is the number of experiments, and m is the number of right
censored observations. In addition, �p is the parameter of distribution functions and
k is the number of these unknown parameters. It is clear that in this step the lifetime
distribution function is required to be known. In the design of experiments step, the
process can be performed by applying LSE which is independent of the lifetime
distribution of parts. In this regard, a great number of choices are available, among
which log-normal, Weibull, and exponential distribution have more applications in
accelerated life testing and reliability analysis. Some notes should be considered
before choosing the life time distribution. Firstly, the region of interest in accelerated
life tests commonly located in useful time period. In the useful period that are shown
in Fig. 8 the failure rate is approximately constant and this not dependent on time.
Therefore, because of features of negative exponential distribution, it is a proper
choice for lifetime of parts. In addition, this choice simplifies the future calculations
for estimating process.

Although the proposed methodology has not any limitations about the type
of lifetime distributions, based on the mentioned reasons considering exponential
distribution for parts in the next section is a logical choice. If the lifetime distribution
has only one unknown parameter, then the likelihood function can be rewritten as
Eq. (17).
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where Ft is the cumulative distribution function for exponential distribution. As
mentioned in the previous sections, in an accelerated life test the unknown param-
eters of lifetime distribution are a function of input variables. In fact, although the
unknown parameter of lifetime distribution is not dependent on time, it is dependent
on stress and design variables as well as covariates.
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where S, X, and C represent the stress variables, design variables, and covariates,
respectively. In addition, S, X, and C are the number of stress variables, design
variables, and covariates. The vector of coefficients B D (B0, : : : , Bw), where w
is equal to summation of main effects and first order interactions, is the unknown
parameters of model. Therefore, using the MLE method these unknown parameters
should be estimated. Before constructing the likelihood function one point should be
considered that the type of relationship between the parameters and input variables
should be selected based on features which are described in previous section.
Thus, the first order interaction model chosen for this study is an arbitrary choice
which can be varied depending on the purpose of the research. However, in the
proposed first order interaction model the interaction between covariates and other
controllable variables is considered which can improve the accuracy of estimation,
because some of deviations from the mean of response variable are based on these
terms in the model. All in all, to construct the likelihood function for proposed
problem the relationship for distribution parameter should be located in Eq. (14).
By doing so, the likelihood function would be depending on the coefficients stress
variables, design variables, covariates, and their interactions. By doing so, the
likelihood function would be constructed and the second step of MLE method will
be started.

The aim of this step is to maximize the value of likelihood function. The usual
method in this step is to analyze the derivations of likelihood function with respect
to vector B and find its roots. Broad spectrums of methods are provided to solve this
system of equations. In the one hand, some methods such as Gradient methods and
Simlex (Nelder–Mead) are methods which will obtain local optimum solutions. On
the other hand, Simulated Annealing (SA) and Genetic algorithm are methods which
will obtain global optimum solutions. In addition, the first group is not effective
for large-scale models with a great number of parameters, while the second group
contains methods that are appropriate for the mentioned models. More precisely,
by increasing the number of unknown parameters in the likelihood function, the
number of equations in the system of equations will increase. Hence, solving the
system of equation becomes a major problem. In this situation using the second
group of methods is more appropriate.

Hence, to overcome the mentioned problem about difficulty in calculation for
maximization of likelihood function, the second group and particularly SA algo-
rithm can be used in this study and an optimization model can be constructed. It is
clear that the objective function of this model is to maximize the likelihood function.
However, due to the simplicity in calculations a natural logarithm of likelihood
function is usually used as the objective function. This should be considered that the
optimization process should be performed in the region obtained in the design of
experiments phase. Hence, the design variables, stress variables, and covariates set
in their design points value for each run and the lifetime of parts will be calculated
for every design point. The estimation process is performed based on these design
points value and the related responses.
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In order to solve this optimization model, a meta-heuristic algorithm which is
called Simulated Annealing is applied in this study. Simulated Annealing (SA)
is a local optimization method for solving hard optimization problems. Firstly
ideas about this method were proposed by the work of Kirkpatrick et al. (1983)
who applied some similarities between simulating the annealing process of solids
in optimization problems. Afterwards, SA has been used to optimize variety of
problems in areas such as locational analysis, image processing, molecular physics
and chemistry, and job shop scheduling (Eglese 1990).

The main steps of SA in analyzing the optimization problem can be expressed as
follows.

• Define set, S, of feasible solutions
• Calculate objective function f (s) for each solution
• Define a neighborhood structure which can be obtained by making a move in the

current solution, a move being the change in value of one or more variables.
• Do the following iterative steps

– Starting with an initial solution s generated by other means
– Repeatedly move to a neighboring solution that meet one of the following

conditions:

• Having a better objective function
• Having a worse objective function but the neighborhood solution meets

certain probability. The probability of accepting an uphill move is normally
set to exp (��/T) where T is a control parameter which corresponds to
temperature in the analogy with physical annealing, and� is the change in
the objective function value.

– Update the parameters such as T.

• Stop algorithm when one of the following criteria are met

– Specified number of iterations
– Specified change in two successive objective function
– Specified process time

After solving the optimization model by SA algorithm the most accurate possible
estimations of coefficient of models vector B would be obtained. Hence, locating this
vector in the failure rate relationship, the estimation of failure rate will be created.
By doing so, in different times the reliability of parts can be estimated. Therefore,
the first main goal of this study is satisfied. In this study the MATLAB optimization
toolbox is used for solving the optimization model by SA algorithm. Hence, more
information about the steps of this algorithm can be found in software. More detailed
for this section is presented in numerical example.
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3.3 Multiobjective Optimization

In this phase, a multiobjective optimization model has been proposed to maximize
the expected value of the predicted response variable and to maximize the proba-
bility of the covariates. After obtaining the proper life–stress relationship, by a few
converts the reliability function can be constructed. It is clear that the improvement
of reliability is the most important aim of this study. Hence, firstly the proper model
for this optimization problem should be designed. Secondly, the adequate method to
solve the obtained optimization model will be selected. By considering this matter
of fact as a true that the reliability is a function of lifetime, the reliability function
simply will be generated by using the obtained lifetime model from the last step. The
other objective of the proposed optimization model is to maximize the probability
of covariates. Since the covariates are stochastic and uncontrollable variables, the
second objective improves the region of optimization process. In other words, by
applying the second objective, results would be given with more likely values for the
covariates. It is accepted as a true that considering the real experiment conditions
in optimization process will develop the quality of results. All in all, the goal of
the proposed optimization model is to maximize the reliability, while it is tried to
consider the most probable region of the stochastic covariates.

The reliability R(t, ‚) is depended to the time in lifetime distribution, which t is
the time and ‚ is the parameter of lifetime distribution for parts. In addition, based
on the aforementioned discussions in the previous sections the lifetime is a function
of stress and design variables as well as covariates. Thus, the reliability function can
be rewritten as R(t; S, X, C), which S, X, and C are representatives of variables and
defined in the previous section. Consider the reliability function given below (Smith
1983):

R .t;‚/ D
1Z

t

f .t;‚/ d.t/ (19)

where f (t,‚) is the lifetime distribution function. One might be interested in
analyzing the reliability by available information about the failure rate. In this case,
failure rate is a function of stress variables, design variables, covariates, and time.
By considering the implication of failure rate the reliability function can be rewritten
as equation given below (Smith 1983).

R .t; s; x; c/ D e
�
Z t

0

� .t; s; x; c/ dt
(20)

which should be maximized as the first objective function of the optimization model.
A decision about the distribution of covariates should be made to construct the

second objective. In this regard, a broad spectrum of distributions can be assigned
to the covariates. Hence, to select best distribution for such variables different
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aspects of the covariates should be evaluated. With respect to the mentioned points
about the covariates, the second objective can be constructed as maximization of
probability distribution function of covariates (Hejazi et al. 2011; Salmasnia et al.
2013). In addition to objective functions, the model contains some constraints about
the acceptable region and limitations for stress variables, design variables, and
covariates. Therefore, the optimization model can be constructed as follows

maximize 

�
bR
�
.t; s; x; c/ D e

�
Z t

0



�
b� .t; s; x; c/

�
dt

maximize f .Ct / 8t D 1; 2; : : : ; l

Subject to W
L < X < U

S fixed in specified use stress
C 2 �

(21)

where 

�
bR
�

and 

�
b� .t; s; x; c/

�
are the means of estimated reliability and failure

rate. In addition, L is the lower bound and U is the upper bound for design variable
X and � is the feasible region for covariates.

To explain the constraints of model, the first constraint defines acceptable limits
for the design variables. The design variables should be fallen between their lower
and upper bounds. This interval is specified with respect to the operational condition
of problem and the experimental design. The second constraint is about the stress
levels. In an ALT stress variables are set at some accelerated levels. Therefore, to
optimize the reliability function these variables should change to the operational
or design condition. The last constraint refers to acceptable region of covariates.
The mentioned region is determined with respect to domain of the covariates’
distribution function.

Stress variables are fixed at their use levels in the model. In addition the nature of
covariates, which is stochastic, does not allow control of such variables. Therefore,
optimization should be performed with respect to design variables. In the first
objective the reliability function, which can be obtained in the last section by using
the estimated lifetime, would be maximized with respect to design variables. In this
regard, by using the obtained information from the accelerated life test and locating
the stress variables in their use levels the reliability in operational condition can be
optimized. The second objective causes that the stochastic condition consider in the
problem. In simple words, by increasing the occurrence probability of covariates the
problem will approach to their stochastic condition. To provide more analyses on the
effects of the occurrence probability of covariates on the results, some constraints
can be added so that the reliability optimization will be conducted as near as possible
to the real condition of problem.

After constructing the optimization model a proper approach to solve the model
should be selected. Since the optimization model contains two different objectives,
the multiobjective optimization methods are adequate tools to solve the model.
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The objectives in the presented model have conflict with each other. It is crystal
clear that by increasing the occurrence probability of covariates the reliability
will be decreased. Through increasing the occurrence probability of covariates
the optimization region of the model becomes small and smaller. Therefore, the
available points to optimize the reliability function would be limited and a decrease
in reliability will be provided. Multiobjective methods are commonly used in
such situations. These methods handle quite a few of conflicting objectives in
an optimization model to achieve a satisfactory solution. The weighted p-norm,
displaced ideal method, goal programming, global criterion, neutral compromise
solution, weighted method, –-constraint method, value function, loss function,
and desirability are the methods that are frequently applied for multiobjective
optimization (Ardakani and Wulff 2013).

Bounded objective method is one of the well-grounded approaches of multiobjec-
tive optimization which can be used to get more information and sensitivity analysis
to the above-mentioned problem. In this method, the main objective function
is maximized while the others considered in constraints with some satisfactory
bounds. Since in the mentioned problem the main goal is maximization of reliability,
the probability of covariate can be bounded by proper constraints. The key point in
this approach is the evaluation of the bound associated to the covariates’ occurrence
probability. Thus, a sensitivity analysis should be performed on this factor. The
optimization model for this approach is demonstrated in Eq. (22).

Maximize Z D 

�
bR
�
.t; s; x; c/

Subject to W
f .c/ � !

L < X < U

S fixed in specified use stress
C 2 �

(22)

where ! is the lower bound for constraint of covariate probability. This bound could
be expressed by the decision maker as a minimum acceptable confidence of results
(Hejazi et al. 2011).

4 Numerical Example

In this section a hypothetical example is studied to illustrate the applications of the
proposed approach. An exponential distribution with mean 120 h is assumed for
the lifetime probability. With respect to the aforementioned reasons the exponential
distribution is adequate ones for lifetime data (Eq. (23)).

f .t/ D �e��t (23)
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where t is the lifetime and � is the parameter of lifetime distribution which is called
failure rate. In this case the response variable � is considered to be a function of
one design variable, two stress variables, and one covariate. The covariate is also
assumed to follow a standard normal probability distribution. In addition, stress and
design variables are located between –1 and 1. It has also been assumed that the
relationship between inputs and outputs is expressed by linear and interacts effects
as follows:

�i D B0 C B1S1i C B2S2i C B3Xi C B4Ci C B5S1iS2i C B6S1iXi C B7S1iCi

C B8S2iXi C B9S2iCi C B10XiCi CEi (24)

where i is the index of observations, S1 and S2 are stress variables, X is design
variables, and C is the covariates. In addition, the vector B D (B0, B1, : : : , B10) is a
vector of unknown coefficients. Finally, E is the modeling random error. According
to the proposed approach, in the first step the optimum design points for conducting
the experiments are obtained by modified exchange algorithm described in the
previous sections. To do so, firstly an initial solution for the algorithm should be
generated. Hence, all the stress and design variables are located in their lower
bounds and covariates would be generated using the standard normal distribution.
After obtaining the initial solution all the possible changes should be performed
on the initial design matrix and the D-optimality criterion would be evaluated for
each different design matrix. In this regard, element-by-element changes would be
conducted on design matrix and best possible solution will be obtained. To reach the
global solution this process should be repeated for a sufficient number of runs, for
example, 1,000 runs. The design table and related response variable are presented
in Table 2.

Assuming that the experiment was to be terminated after 120 h, observations that
show lifetimes greater than 120 h have been censored.

In the next step likelihood function constructed as below:

L .�/ D
17Y

iD1
�ie

��i ti
20Y

iD18
e��i ti (25)

Because of the mentioned reasons in the last sections, a natural logarithm
is performed on aforementioned equation. SA algorithm is a powerful method
for mathematical optimization problems. In order to find the constraints for this
optimization model some notes should be considered. Since the failure rate cannot
get negative value a limitation will be imposed in optimization model. In order to
avoid assigning a negative value to failure rate �, natural logarithm is performed on
the relationship between failure rate and input variables and the objective function
is maximized with respect to it. The developed likelihood function is maximized
using this algorithm in Matlab mathematical software package (Global Optimization
Toolbox) with following parameters setting (Table 3).
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Table 2 Design table and related responses for numerical example

Number of
observations

Design
variable, X

Stress
variable, S1

Stress
variable, S2 Covariate, C Response, t

1 1.0000 1.0000 1.0000 –0.5688 599.248
2 1.0000 1.0000 –1.0000 0.3793 315.6477
3 0.4921 –1.0000 –1.0000 2.2987 127.7357
4 0.5531 –1.0000 –1.0000 0.2241 99.2245
5 0.5472 0.0006 0.5108 0.9217 89.8678
6 0.0319 –1.0000 0.0524 1.9916 98.8301
7 0.1317 0.0660 –1.0000 –1.2066 98.9784
8 –1.0000 –1.0000 –1.0000 0.1919 70.1959
9 0.4374 –1.0000 0.3851 0.6947 47.5488
10 0.0705 –1.0000 0.9022 –0.8877 36.0969
11 –1.0000 1.0000 –1.0000 –0.4162 38.9341
12 0.3135 0.7381 0.0404 0.5055 44.2734
13 0.3871 0.5501 0.2439 1.6344 32.5114
14 –1.0000 0.3541 1.0000 –1.0601 16.0658
15 0.0750 0.5073 0.4156 1.8357 22.4051
16 1.0000 0.1897 0.0920 0.2532 17.8965
17 0.6292 0.0224 1.0000 0.0706 29.177
18 0.0407 0.1193 1.0000 –0.3146 4.2173
19 –1.0000 0.9231 0.1504 2.0359 1.5249
20 –1.0000 0.8537 –1.0000 0.8313 0.7068

Table 3 Parameter setting of SA algorithm performed in MATLAB

Parameter
Function
tolerance Annealing function

Temperature
updating Initial temp.

Setting 1e� 6 Boltzmann function Exponentially Default: 100

In order to avoid assigning a negative value to failure rate �, natural logarithm
function is performed on Eq. (24) and likelihood function is maximized.

Ln
�
b�1
�

D B 0
0 C B 0

1S1i C B 0
2S2i C B 0

3Xi C B 0
4Ci

C B 0
5S1iS2i C B 0

6S1iXi C B 0
7S1iCi

C B 0
8S2iXi C B 0

9S2iCi C B 0
10XiCi CE 0

i (26)

The resulted MLE of B0 is presented as Table 4.
After the statistical model was being estimated, values of stress variables related

to the normal use condition should be utilized for freezing the variables S. Therefore,
Eq. (26) would be only a function of the design variables and the covariate.

The goal of this problem is maximization of the reliability. Reliability can be
obtained from formula that become in the next.

R.t/ D exp �
Z t

0

�.t/dt (27)
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Since in an exponential distribution, parameter lambda is constant, Eq. (27) could
be rewritten as an exponential distribution like Eq. (29). Obviously, the minimum
point of the lambda function corresponds to the maximum point of the reliability
function.

P.t/ D � exp .��t/ (28)

exp

�
�
Z t

0

�dt

�
D exp

�
��
Z t

0

�dt

�
D exp .��t/ (29)

For the mentioned example, stress variables can be replaced by predetermined
operational levels and consequently the relationship between natural logarithm of
� and design variable and covariate would be constructed. For this purpose, stress
variables assigned to �2 and using Eq. (24) and Table 2, Eqs. (30) and (31) can be
obtained

Ln .�i / D �5:45068 � 0:44539Xi � 1:5631Ci C 0:25823XiCi CEi (30)

and consequently,

E
�

Ln
�
b�i
��

D �5:45068 � 0:44539Xi � 1:5631Ci C 0:25823XiCi

E
�
bR.t/

�
D exp .�t .exp .Ln .�5:45068 � :44539X

�1:5631C C 0:25823XC/// (31)

Above equations represent the life parameter and the related reliability function
at normal use condition. For mentioned situation, � is a function of design variable
and covariate. Figure 9 shows this relationship.

As shown in Fig. 9, by increase of design variable to their upper bound, � has been
decreased. Thus, estimation of reliability in region of upper bound is reasonable. If
X is fixed in 1, reliability is a function of covariate and time so can be obtained from
Eq. (32).

R.t/ D exp .�t .exp .Ln .�5:89607 � 1:30487C //// (32)

In order to simplify the calculations, time unit is changed from hour to day. So
Eq. (33) is obtained (Fig. 10).

R.t/ D exp .�t .24 exp .Ln .�5:89607 � 1:30487C /// (33)
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Fig. 9 Failure rate of exponential distribution as a function of the design factor and the covariate

Fig. 10 A plot of reliability function with respect to time and covariate
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Table 5 Probabilities of
covariate and related mean of
lifetimes

Minimum probability
value of covariates

Maximum
mean lifetime

0.26 585.58
0.3 577.15
0.35 537.55
0.39 454.34
0.4 Infeasible

In next step the mathematical model of the optimization problem can be
formulated as follows.

maximize 

�
bR
�
.t; s; x; c/ D e

�

tZ

0
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�
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D e
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maximize f .C /

Subject to W
�1 < X < 1

S1 D S2 D �2
C 2 �

(34)

where
�
bB0; : : : ;bB10

�
are estimated unknown parameters. The optimum results of

this model are obtained using generalized reduced gradient method of optimization
built in Microsoft Excel 2010 software. By solving this model the desired probabil-
ity value for covariate is obtained at 0.26. In addition, according to the results the
maximum mean of expected value for lifetime is 585.57 h and the design variable is
equal to one that is upper bound of X. By using the obtained value for lower bound
of covariate probability the later sensitivity analysis will be performed on this value
and its effect on the results. In this regard, the second approach to solve the problem
should be performed.

As it can be seen in Table 5 with an increase in the probability values of covariate
the mean of lifetime decreases. In addition, when this value exceeds from 0.4
the problem does not have a feasible solution. Therefore, the cost of increase in
probability of covariates is to reduce the reliability of products so manufacturer
should make an important decision about this matter to hold the reliability in the
desired goal whereas the probability of covariates locate in an acceptable range.
The probability values of covariates and related mean of lifetimes are presented in
Table 5.
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Table 6 A comparison between optimization model considering and not consider-
ing occurrence probability of covariate

Maximum
mean of
lifetime

Occurrence
probability
of covariate

Maximum mean
of expected value
for lifetime

Proposed model 2,252 0.26 585.58
Non covariate

constraints model
15,358 0.0044 68.06

Now, a model in which covariates are not considered is constructed to make a
comparison between an ALT with covariate probability constraint and ones without
any covariate probability constraint. This model is shown in Eq. (35).

Maximize 

�
bR
�
.t; s; x; c/

Subject to W
�1 < X < 1

�3 � C � C3
(35)

As it can be seen from the recent model, the only objective function is maximizing
the expected value of reliability. In addition, there is no constraint for covariates;
since the covariate has a standard normal distribution 99 % of data are located
between �3 and 3. Hence, the covariates can assign any value between the
mentioned values. In the recent model covariates can get values with a very low
probability of occurrence. Therefore, it can be predicted that a significant increase
in the value of reliability will be provided. However, by solving the recent model
the covariate is set at 3 that has a very low occurrence probability. As a result, if
the constraint of covariate probability is not considered, then the solutions would be
located in regions which have a few chances to occur. Hence, the proposed approach
obtains more logical and realistic solutions than the recent model. Table 6 presents
the differences between two mentioned approaches.

The cases, which are claimed in Table 6, are based on the fact that by limiting
the region of optimization process to the most probable region of covariates, a
significant decrease in the maximum mean of lifetime will be provided logically.
On the other hand, a noticeable increase in the maximum mean of the expected
value for lifetime will be provided. Since in the noncovariate constraints model,
covariates can get value, which have a very low probability of occurrence, it is clear
that the obtained results have a logical guarantee.

5 Conclusion

Reliability functions and related measures in complex systems should be derived
with respect to operational/technical factors as well as environmental variables. For
this purpose, several statistical and computational algorithms have been suggested.
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Among them, response surface methodology as a mathematical-statistical approach
enables finding an optimal operational condition after it was estimated. In this
chapter a constant accelerated life test has been developed to find the settings of
variables that optimize the reliability of products when the stochastic covariate
is affecting the performance. In this model interactions between covariate and
other variables are considered. This model consists of censored data and MLE
method used for parameters estimation. Afterwards, a mathematical program was
constructed to maximize the reliability of the estimated life performance and to
maximize the probability of covariate’s occurrences. This approach would take the
best settings of design variables and consider the reliability measure as well as the
stochastic covariate as an unavoidable part of the experiments. The results show the
superiority of the proposed approach either in process identification by proposing
new design construction method or in reliability optimization by considering the
stochastic covariates that affect the performance.

References

Abdel-Ghaly AA, Attia AF, Abdel-Ghani MM (2002) The maximum likelihood estimates in step
partially accelerated life tests for the weibull parameters in censored data. Commun Stat Theory
Methods 31(4):551–573. doi:10.1081/Sta-120003134

Ai K, Mukhopadhyay S (2010) Response surface methodology. Wiley Interdisc Rev Comput Stat
2(2):128–149

Ardakani MK, Wulff SS (2013) An overview of optimization formulations for multiresponse
surface problems. Qual Reliab Eng Int 29(1):3–16. doi:10.1002/Qre.1288

Atkinson A, Donev A, Tobias R (2007) Optimum experimental designs, with SAS. Oxford
University Press, Oxford, New York

Chenhua L (2009) Optimal step-stress plans for accelerated life testing considering reliability/life
prediction. Northeastern University, Boston, MA

Díaz-García JA, Ramos-Quiroga R, Cabrera-Vicencio E (2005) Stochastic programming methods
in the response surface methodology. Comput Stat Data Anal 49(3):837–848

El L, Casella G (1998) Theory of point estimation, vol 31. Springer, New York
Eglese RW (1990) Simulated annealing: a tool for operational research. Eur J Oper Res 46(3):

271–281. doi:10.1016/0377-2217(90)90001-R
Fard N, Li C (2009) Optimal simple step stress accelerated life test design for reliability prediction.

J Stat Plan Inference 139(5):1799–1808
Goos P, Jones B (2011) Optimal design of experiments: a case study approach. Wiley, New Delhi
Hejazi TH, Bashiri M, Noghondarian K, Atkinson AC (2011) Multiresponse optimiza-

tion with consideration of probabilistic covariates. Qual Reliab Eng Int 27(4):437–449.
doi:10.1002/Qre.1133

Khamis IH (1997) Optimum M-Step, step-stress design with K stress variables. Commun Stat
Simul Comput 26(4):1301–1313

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220(4598):671–680. doi:10.1126/Science.220.4598.671

Lewis EE (1987) Introduction to reliability engineering. Wiley, New York
Li C, Fard N (2007) Optimum bivariate step-stress accelerated life test for censored data. IEEE

Trans Reliab 56(1):77–84. doi:10.1109/Tr.2006.890897
Ling L, Xu W, Li M (2011) Optimal bivariate step-stress accelerated life test for type-I hybrid

censored data. J Stat Comput Simul 81(9):1175–1186

http://dx.doi.org/10.1081/Sta-120003134
http://dx.doi.org/10.1002/Qre.1288
http://dx.doi.org/10.1016/0377-2217(90)90001-R
http://dx.doi.org/10.1002/Qre.1133
http://dx.doi.org/10.1126/Science.220.4598.671
http://dx.doi.org/10.1109/Tr.2006.890897


364 T.-H. Hejazi et al.

Miller R, Nelson W (1983) Optimum simple step-stress plans for accelerated life testing. IEEE
Trans Reliab 32(1):59–65

Montgomery DC (2005) Design and analysis of experiments, 6th edn. Wiley, Hoboken, NJ
Myers RH, Montgomery DC, Vining GG, Borror CM, Kowalski SM (2004) Response surface

methodology: a retrospective and literature survey. J Qual Technol 36(1):53–78
Myers RH, Montgomery DC, Anderson-Cook CM (2011) Response surface methodology: process

and product optimization using designed experiments. Wiley, New York
Nelson WB (2009) Accelerated testing: statistical models, test plans, and data analysis. Wiley,

New York
Ng H, Luo L, Hu Y, Duan F (2012) Parameter estimation of three-parameter weibull distribution

based on progressively type-II censored samples. J Stat Comput Simul 82(11):1661–1678
Ramachandran KM, Tsokos CP (2009) Mathematical statistics with applications. Elsevier (Online)
Rencher AC, Schaalje GB (2008) Linear models in statistics, 2nd edn. Wiley-Interscience,

Hoboken
Salmasnia A, Baradaran Kazemzadeh R, Seyyed-Esfahani M, Hejazi TH (2013) Multiple response

surface optimization with correlated data. Int J Adv Manuf Technol 64(5–8):841–855.
doi:10.1007/S00170-012-4056-9

Smith CO (1983) Introduction to reliability in design. R.E. Krieger, Malabar, FL
Taguchi G, Chowdhury S, Wu Y (2005) Taguchi’s quality engineering handbook. Wiley, New York
Tang L-C, Tan A-P, Ong S-H (2002) Planning accelerated life tests with three constant stress levels.

Comput Ind Eng 42(2–4):439–446. doi:10.1016/S0360-8352(02)00040-2
Wang F-K, Cheng Y, Lu W (2012) Partially accelerated life tests for the weibull distribution under

multiply censored data. Commun Stat Simul Comput 41(9):1667–1678

http://dx.doi.org/10.1007/S00170-012-4056-9
http://dx.doi.org/10.1016/S0360-8352(02)00040-2


Reliability Measures Analysis of a Computer
System Incorporating Two Types of Repair
Under Copula Approach

Nupur Goyal, Mangey Ram, and Ankush Mittal

Abstract In this chapter, the authors have studied the reliability characteristics of a
home or office based computer system constructed with hardware connectivity. The
system contains multi possible stages that can be repaired. The designed system is
studied by using the Markov process, supplementary variable technique, Laplace
transformation, and Gumbel–Hougaard family of copula to obtain the various
reliability measures such as transition state probabilities, availability, reliability, cost
analysis, and sensitivity.

1 Introduction

Reliability theory has become a great anxiety in recent years, because high-tech
industry processes, computer networking with increasing levels of sophistication
comprise most engineering systems today (Verma et al. 2010; Ram 2013). Reliabil-
ity can be defined as the probability that it will produce correct outputs up to given
time period, according to McClusky and Mitra (2004). Reliability is enhanced by
features that help to avoid, detect, and repair hardware faults. A reliable system
does not mutely continue and deliver results that include corrupted data.

In the field of reliability theory, the remarkable work has been done by many
researchers. Soi and Aggarwal (1980) discussed the future trends in the digital
communication system and presented a system analysis model in the form of
a state diagram to study the overall availability behavior of next generation
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digital communication system. Goel et al. (1993) investigated a model for satellite
based computer communication network system. In that work, a master station is
connected to the remote micro earth stations in the country. A micro earth station
fails due to a transient fault. Azaron et al. (2005) discussed reliability evaluation and
optimization of dissimilar component cold standby redundant system which was the
combination of series–parallel subsystems combination. They applied the shortest
path technique for reliability evaluation. Elyasi-Komari et al. (2011) described
the techniques and basic principles of dependable development and deployment
of computer networks that are based on the results of FME(C)A (Failure Modes
and Effects (Criticality) Analysis) analysis. Further, Nagiya and Ram (2013) inves-
tigated the various reliability characteristics of a satellite communication system
which includes the earth station and terrestrial system and found the important
reliability analysis.

In the context of computer systems, it is a universal purpose of device that can be
planned to carry out every work in daily life. In today’s fast life, everything depends
on computer based systems. Now-a-days, it is quite impossible to overestimate
the importance of computer systems in the environment around us. Embedded
computer systems can be found in many devices around the home. Televisions,
refrigerators, washing machines, telephones, just the few names. As a source of
communication, computer plays a very crucial role. Information can be shared by
anyone in the rest of the world and email has made written communication with
anyone in the world potentially instantaneous. Usually, a computer system consists
of at least one processing element, a central processing unit (CPU), and some form
of memory. The processing element carries out arithmetic and logic operations, and
a sequencing and control unit that can change the order of operations based on stored
information. Peripheral devices allow information to be retrieved from an external
source, and the result of operations saved and retrieved (Rajaraman 2010).

In computer hardware, availability refers to the overall uptime of the system.
Reliability in general is likelihood of a failure occurring in a running system. A
perfectly reliable system will also enjoy perfect availability within an intended
period of time. The industry uses the concept of “high availability” to refer
the systems and technologies specially engineered for reliability, availability, and
sensitivity such systems include redundant hardware. By Lyu (1996), the demand for
complex hardware systems has increased for more speedily than the ability to design
implement, test, and maintain them. When the requirements for and dependencies
on computer increases, the possibilities of calamities from computer failure also
increase. The impact of these failures ranges from inconvenience, economic,
damages, to loss of life. Hence the reliable performance of the computer systems
has become a major concern. Hardware reliability can be described by exponential
distribution. Also, hardware reliability decreases with time. The hardware reliability
theory relies on the analysis of stationary processes because only physical faults are
considered.

In the field of reliability-copula concept, Ram and Singh (2008, 2010a, b)
studied the reliability indices of complex systems under two types of failure and
repair using Gumbel–Hougaard family copula. Recently, the authors (Singh et al.
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2013a, b) studied the complex systems under k-out-of-n types, which consist of
two subsystems in series configuration using Gumbel–Hougaard family copula
distribution in repair. Although they have done a good work by applying the copula
approach, they did not think about the home or office based computer system
performance under copula approach, which is a very important issue in today’s work
culture.

The present chapter reflects the performance of a home or office based computer
system constructed with hardware connectivity under the concept of Gumbel–
Hougaard family copula. The designed system is studied by using the Markov
process, supplementary variable technique, and the Laplace transformation to obtain
the various reliability measures.

2 Brief Introduction of Gumbel–Hougaard Family Copula

Several authors, including Nelsen (2006), have studied the family of copulas
extensively. The Gumbel–Hougaard family copula is defined as:

C� .u1; u2/ D exp

�
�
�
.� log u1/

� C .� log u2/
�
�1=��

; 1 � � � 1

For � D 1 the Gumbel–Hougaard copula models independence, for � ! 1 it
converges to comonotonicity.

Gumbel–Hougaard family copula gives the good results, when the system is in
the complete failure mode. The best policy is to repair the failed system as soon as it
is possible by Gumbel–Hougaard family copula when two distributions are coupled.

3 Mathematical Model Details

3.1 Nomenclature

Notations associated with work are shown in Table 1.

3.2 System Description

This chapter represents the reliability based mathematical modeling of a home
or office based computer system under copula technique. Although the problem
looks like general in daily routine, but here authors applied Gumbel–Hougaard
family copula, makes the problem interesting. A general computer system has been
converted into multi-states, which are good, degraded, and failed. The system has
two types of failure, namely minor and major. From the good state after minor
failure, the system goes to degraded state and after major failure, the system goes
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into a complete failure mode. Minor failure means any component of the system
failed partially and the system could be worked with less efficiency while the major
failure means the failure of any important component of the system, without which
system could not be workable. After repairing, the system comes back in good state.
A failed state could be repaired with the help of Gumbel–Hougaard family copula
(Ram and Singh 2008, 2010; Ram 2010; Ram et al. 2013). The configuration and
state transition diagram of the designed system have been shown in Fig. 1a, b.

3.3 State Description

All the states of the state transition diagram are described in Table 2.

3.4 Assumptions

The following assumptions are associated with the model

1. Initially, all the components are working that means system is in good state.
2. At any time, the system can cover from degraded or failed states.
3. All the components can be repaired.
4. Sufficient repair facilities are available.
5. After repair, the system works like a new one.

Power Supply Outlet

CPU

UPS
Monitor

Keyboard Mouse

a

Fig. 1 (a) System
configuration. (b) Transition
state diagram
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Fig. 1 (continued)

6. The failure and repair rate are constant. The value of different failure and repair
rates are based on previous literature and work experience.

7. The expression for the joint probability distribution of repair of the complete
failed states SP, SST and degraded state SKMS are computed with the help of
Gumbel–Hougaard family copula.

3.5 Formulation and Solution of Model

On the basis of the transition state diagram by the consideration of possible
transition state, we can obtain the following set of differential equations for the
present model after applying Markov process:
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Table 1 Notations

t Time scale
s Laplace transform variable
Si Transition state for i D 0, 1, 2, 3, 4
P .s/ Laplace transformation of P(t)
�C/�ST/�P/�U/�MN/�MS/�K Failure rates for control unit/storage unit/power

supply/UPS/monitor/mouse/keyboard

(y) Repair rates for the state when control unit, UPS, monitor,

mouse, and keyboard unit has been failed
PU(t)/PCU(t)/PMS(t)/PK(t)/PKMS(t) The probability of the stage at time t when UPS/control

unit/mouse/keyboard/keyboard and mouse have failed
PP(x, t)/PST(x, t)/PMN(y, t) The probability density function that the system is in the

state, when power supply/storage unit/monitor is failed,
at epoch t and has an elapsed repair time of x/y,
respectively

u1 D ex, u2 D®(x) The joint probability (failed state SP, SST, SKMS to normal
state SS) according to Gumbel–Hougaard family is

given as exp
h
x� C flog'.x/g�

i 1
�

Ep (t) Expected profit during the interval [0, t)
C1, C2 Revenue and service cost per unit time, respectively

Table 2 State description of the system

State Description

SS All units are in good working condition
SU State of the system when UPS has failed
SCU State of the system when control unit has failed
SMS State of the system when mouse has failed
SK State of the system when the keyboard has failed
SKMS State of the system when keyboard and mouse both have failed
SST State of the system when storage unit has failed
SP State of the system when the power supply has failed
SMN State of the system when the monitor has failed

�
@

@t
C �C C �ST C �U C �MN C �MS C �K

�
PS.t/ D 
.y/

�
PCU

�
t
�C PU.t/

C PMS.t/C PK.t/
	C exp

�
x� C flog'.x/g� 	 1� PKMS

�
t
�

C
1Z

0

PMN .y; t/ 
.y/dy C
1Z

0

PST .x; t/ exp
h
x� C flog'.x/g�

i
1
� dx

C
1Z

0

PP .x; t/ exp
h
x� C flog'.x/g�

i
1
� dx

(1)
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�
@

@t
C �ST C 
.y/

�
PCU.t/ D �CPS.t/ (2)

�
@

@t
C �P C 
.y/

�
PU.t/ D �UPS.t/ (3)

�
@

@t
C �K C 
.y/

�
PMS.t/ D �MSPS.t/ (4)

�
@

@t
C �MS C 
.y/

�
PK.t/ D �KPS.t/ (5)

�
@

@t
C exp

h
x� C flog'.x/g�

i 1
�

�
PKMS.t/ D �KPMS.t/C �MSPK.t/ (6)

�
@

@t
C @

@x
C exp

h
x� C flog'.x/g�

i 1
�

�
PST .x; t/ D 0 (7)

�
@

@t
C @

@x
C exp

h
x� C flog'.x/g�

i 1
�

�
PP .x; t/ D 0 (8)

�
@

@t
C @

@y
C 
.y/

�
PMN .y; t/ D 0 (9)

Boundary conditions

PST .0; t/ D �ST ŒPS.t/C PCU.t/� (10)

PP .0; t/ D �PPU.t/ (11)

PMN .0; t/ D �MNPS.t/ (12)

Initial condition

PS.0/ and other state probabilities are zero at t D 0 (13)

Solving Eqs. (1–12) with the help of Laplace transformation, and using Eq. (13),
we obtain
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Œs C �C C �ST C �U C �MN C �MS C �K� P S.s/ D 1C 
.y/
�
P CU

�
s
�

C P U.s/C PMS.s/C P K.s/ �C expŒ x� C flog'.x/g�
i
1
� P KMS

�
s
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C
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1
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P P .0; s/ D �PP U.s/ (24)

PMN .0; s/ D �MNP S.s/ (25)
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Solving Eqs. (14–22) with the help of Eqs. (23–25), we get

P S.s/ D 1

D.s/
(26)

P CU.s/ D �C

s C �ST C 
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P S.s/ (27)
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where

D.s/ D
�
.s C C1/ � 
.y/

�
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.s C C2/
C �U

.s C C3/
C �MS

.s C C4/
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.s C C5/

��
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i 1
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�
�
�ST C �ST�C
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�

� 
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fs C 
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C1 D �C C �ST C �U C �MN C �MS C �K; C2 D �ST C 
.y/;

C3 D �P C 
.y/; C4 D �K C 
.y/; C5 D �MS C 
.y/

The Laplace transformation of the probabilities that the system is in upstate (i.e.,
either good or degraded):

P up.s/ D P S.s/C P CU.s/C P U.s/C PMS.s/C P K.s/C P KMS.s/

D

8
ˆ̂<

ˆ̂
:
1C �C

.s C C2/
C �U

.s C C3/
C �MS

.s C C4/
C �K

.s C C5/

C �K�MS

s C exp
h
x� C flog'.x/g�

i 1
�

�
1

.s C C4/
C 1

.s C C5/

�
9
>>=

>>;
P S.s/

(35)

The Laplace transformation of the probabilities that the system is in downstate
(i.e., failed):
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P down.s/ D P P.s/C P ST.s/C PMN.s/
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i 1
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�
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s

�
1 � 
.y/

s C 
.y/

�
9
>>=

>>;
P S.s/

(36)

4 Particular Cases and Numerical Computations

4.1 Availability Analysis

4.1.1 When the System in Comprehensive State

Initially, the system works properly, for this, setting the value of different failure
and repair rates as �C D 0.2, �ST D 0.3, �U D 0.2, �MN D 0.1, �MS D 0.5, �K D 0.4,
�P D 0.3, ®(x) D 1,
(y) D 1 in Eq. (35), one can obtain the availability of the system

Pup.t/ D
n
0:08747435461 e.�2:903649803t/ cos

�
0:3135682026t

�

� 0:3968940408 e.�2:903649803t/ sin .0:3135682026t/

C 0:0007440467225 e.�1:458316302t/ C 0:01570933388 e.�1:018061332t/

C 0:003352035390 e.�1:334602761t/ C 0:8927202294
o

(37a)

4.1.2 When No Failure in Control and Storage Unit

The control and storage units are perfect, i.e., no failure occurrence in both the units,
putting other failure and repair rates as �U D 0.2, �MN D 0.1, �MS D 0.5, �K D 0.4,
�P D 0.3, ®(x) D 1, 
(y) D 1 in Eq. (35), we have,

Pup.t/ D ˚
0:03538863784 e.�2:660026210t cos .0:6818499005t/

C0:2778239624 e.�2:660026210t/ sin .0:6818499005t/

C0:0007092452156 e.�1:455748534t/ C 0:01988553985 e.�1:021910991t/

C0:002616287337 e.�1:320568054t/ C 0:9414002897
�

(37b)
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4.1.3 When No Failure in Power and Monitor

The power and monitor of the system are in perfect working condition, then
setting different failure and repair rates as: �C D 0.2, �ST D 0.3, �U D 0.2, �MN D 0,
�MS D 0.5, �K D 0.4, �P D 0, ®(x) D 1, 
(y) D 1. Substituting all these values in
Eq. (35), one can obtain

Pup.t/ D
n
0:5785670001 e.�2:850684518t/ cos

�
0:2437004362t

�

� 0:5523608006 e.�2:850684518t/ sin .0:0:2437004362t /

� 0:002282954416 e.�1:040489494t/ C 0:002044908119 e.�1:320708716t/

C 0:00009129208258 e.�1:455712754t/ C 0:9422900542
o

(37c)

4.1.4 When No Failure in Keyboard and Mouse

When keyboard and mouse have no failure, putting the value of different failure and
repair rates as �C D 0.2, �ST D 0.3, �U D 0.2, �MN D 0.1, �MS D 0, �K D 0, �P D 0.3,
®(x) D 1, in Eq. (35), one can obtain

Pup.t/ D
n
0:1110157824 e.�3:038692672t/ C 0:0206201604 e.�1:745678579t/

C 0:02578659225 e.�1:033908748t/ C 0:8425774650
o

(37d)

Varying the time unit t from 0 to 20 in each case of availability, the computed
value in all four cases of availability is shown in Table 3 and demonstrated by the
graphs in Fig. 2, respectively.

4.2 Reliability Analysis

The reliability of the design system can be found by fixing the repair rates equal to
zero.

4.2.1 When the System in Comprehensive State

When the system is fully functioning, taking the value of different failure rates as
�C D 0.2, �ST D 0.3, �U D 0.2, �MN D 0.1, �MS D 0.5, �K D 0.4, �P D 0.3. Substi-
tuting all these values in Eq. (35), one can obtain the reliability of the system

R.t/ D 0:1848739496 e.�1:7t/ C 0:5294117647C 0:2857142857 e.�0:3t/ (38a)
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Table 3 Availability as
function of time

Availability Pup (t)

Time (t) 37a 37b 37c 37d

0 1.00000 1.00000 1.00000 1.00000
1 0.89730 0.95257 0.93759 0.86066
2 0.89456 0.94437 0.94146 0.84672
3 0.89349 0.94239 0.94217 0.84386
4 0.89300 0.94175 0.94226 0.84301
5 0.89282 0.94152 0.94228 0.84273
6 0.89275 0.94144 0.94229 0.84263
7 0.89273 0.94142 0.94229 0.84260
8 0.89272 0.94141 0.94229 0.84258
9 0.89272 0.94140 0.94229 0.84258
10 0.89272 0.94140 0.94229 0.84258
11 0.89272 0.94140 0.94229 0.84258
12 0.89272 0.94140 0.94229 0.84258
13 0.89272 0.94140 0.94229 0.84258
14 0.89272 0.94140 0.94229 0.84258
15 0.89272 0.94140 0.94229 0.84258
16 0.89272 0.94140 0.94229 0.84258
17 0.89272 0.94140 0.94229 0.84258
18 0.89272 0.94140 0.94229 0.84258
19 0.89272 0.94140 0.94229 0.84258
20 0.89272 0.94140 0.94229 0.84258
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4.2.2 When No Control Unit and Storage Unit Are failed

The control unit and storage unit are not failed, then their corresponding failure
rates are zero, and other rates as �C D 0, �ST D 0, �U D 0.2, �MN D 0.1, �MS D 0.5,
�K D 0.4, �P D 0.3. Putting all values in Eq. (35), we have

R.t/ D 0:02777777778 e.�1:2t/ C 0:75C 0:2222222222 e.�0:3t/ (38b)

4.2.3 When No Power and Monitor Are failed

Taking the value of different failure rates as �C D 0.2, �ST D 0.3, �U D 0.2, �MN D 0,
�MS D 0.5, �K D 0.4, �P D 0. Substituting all values in Eq. (35), we can obtain the
reliability of the system as

R.t/ D 0:1586538462 e.�1:6t/ C 0:6875C 0:1538461538 e.�0:3t/ (38c)

4.2.4 When No Keyboard and Mouse Are failed

The keyboard and mouse are not failed, setting the value of different failure rates as
�C D 0.2, �ST D 0.3, �U D 0.2, �MN D 0.1, �MS D 0, �K D 0, �P D 0.3,. Putting all
the values in Eq. (35), we can obtain the reliability of the system as:

R.t/ D 0:2 e.�0:55t/ .5: cosh.0:25/C 3: sinh .0:25t// (38d)

Varying the time unit t from 0 to 20 in each case of reliability, the computed
numeric values are given in Table 4 and correspondingly shown the graph of
reliability with respect to time in Fig. 3.

4.3 Expected Profit

For an organization and an official point of view, the expected profit during the
interval [0, t) is given as

EP.t/ D C1

tZ

0

Pup.t/dt � tC2 (39)

Using Eq. (37a) for a the comprehensive state only in Eq. (39), the cost for the
same set of parameters is obtained as
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Table 4 Reliability as
function of time

Reliability R (t)

Time (t) 38a 38b 38c 38d

0 1.00000 1.00000 1.00000 1.00000
1 0.77485 0.92299 0.83350 0.68252
2 0.69238 0.87448 0.77840 0.47943
3 0.64670 0.84111 0.75135 0.34340
4 0.61567 0.81716 0.73410 0.24910
5 0.59320 0.79965 0.72188 0.18217
6 0.57665 0.78675 0.71294 0.13389
7 0.56440 0.77722 0.70634 0.09870
8 0.55533 0.77016 0.70146 0.07291
9 0.54861 0.76494 0.69784 0.05391
10 0.54364 0.76106 0.69516 0.03990
11 0.53995 0.75820 0.69317 0.02954
12 0.53722 0.75607 0.69170 0.02187
13 0.53520 0.75450 0.69061 0.01620
14 0.53369 0.75333 0.68981 0.01200
15 0.53259 0.75247 0.68921 0.00889
16 0.53176 0.75183 0.68877 0.00658
17 0.53115 0.75135 0.68844 0.00488
18 0.53070 0.75100 0.68819 0.00361
19 0.53037 0.75074 0.68801 0.00268
20 0.53012 0.75055 0.68788 0.00198
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Fig. 3 Reliability as function of time
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Table 5 Expected profit as function of time

Ep(t)

Time (t) C2 D 0.1 C2 D 0.2 C2 D 0.3 C2 D 0.4 C2 D 0.5

0 0.00000 0.00000 0.00000 0.00000 0.00000
1 0.82155 0.72155 0.62155 0.52155 0.42155
2 1.61707 1.41707 1.21707 1.01707 0.81707
3 2.41104 2.11104 1.81104 1.51104 1.21104
4 3.20425 2.80425 2.40425 2.00425 1.60425
5 3.99714 3.49714 2.99714 2.49714 1.99714
6 4.78993 4.18993 3.58993 2.98993 2.38993
7 5.58267 4.88267 4.18267 3.48267 2.78267
8 6.37540 5.57540 4.77549 3.97540 3.17540
9 7.16812 6.26812 5.36812 4.46812 3.56812
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Fig. 4 Expected profit as function of time

EP.t/ D C1

n
�0:01518745908 e.�2:903649803t/ cos

�
0:3135682026t

�

C 0:1383280947 e.�2:903649803t/ sin .0:3135682026t/C 0:3363993984

� 0:0005102094254 e.�1:458316302t/ � 0:002511635288 e.�1:334602761t/

C 0:8927202294t � 0:01543063604 e.�1:018061332t/
o

� tC2
(40)

Setting C1 D 1 and C2 D 0.1, 0.2, 0.3, 0.4, 0.5, respectively, in Eq. (40), we get
the Table 5 and obtained results are demonstrated by Fig. 4.
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Fig. 5 Availability sensitivity as function of time

4.4 Sensitivities

Sensitivity of a function is explained as the partial derivative of the function
with respect to their input factors. Sensitivity analysis, also called importance
analysis (Henley and Kumamoto 1992; Andrews and Moss 1993), help detect which
parameter contribute most to system performance and thus would be good ones for
elevate. Sensitivity to a factor is defined as the partial derivative of the function with
respect to input parameters. Here, these input parameters are the failure rates of the
system.

4.4.1 Availability Sensitivity

Availability sensitivity can be obtained by partial differentiation of Eq. (35) with
respect to the failure rates of control unit, storage unit, UPS, monitor, mouse,
keyboard, power supply, respectively after taking unity as the repair rates. Using the
values of the failure rates as �C D 0.2, �ST D 0.3, �U D 0.2, �MN D 0.1, �MS D 0.5,
�K D 0.4, �P D 0.3, we have obtained the values of partial derivatives @Pup.t/

@�C
, @Pup.t/

@�ST
,

@Pup.t/

@�U
, @Pup.t/

@�MN
, @Pup.t/

@�MS
, @Pup.t/

@�K
, @Pup.t/

@�P
. Taking the time unit from 0 to 20, we obtain the

Table 6 and correspondingly Fig. 5.
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Table 6 Availability sensitivity as function of time

Ep(t)

Time (t)
@Pup.t/

@�C

@Pup.t/

@�ST

@Pup.t/

@�U

@Pup.t/

@�MN

@Pup.t/

@�MS

@Pup.t/

@�K

@Pup.t/

@�P

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 �0.00038 �0.32766 �0.00038 �0.29998 0.04550 0.04550 �0.02768
2 �0.01070 �0.34680 �0.01070 �0.30581 0.06289 0.06289 �0.04100
3 �0.01570 �0.34746 �0.01569 �0.30379 0.06647 0.06647 �0.04366
4 �0.01730 �0.34706 �0.01730 �0.30310 0.06726 0.06726 �0.04396
5 �0.01776 �0.34683 �0.01776 �0.30291 0.06746 0.06746 �0.04392
6 �0.01789 �0.34673 �0.01789 �0.30286 0.06751 0.06751 �0.04387
7 �0.01793 �0.34669 �0.01793 �0.30284 0.06753 0.06753 �0.04384
8 �0.01793 �0.34668 �0.01793 �0.30284 0.06753 0.06753 �0.04384
9 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
10 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
11 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
12 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
13 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
14 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
15 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
16 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
17 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
18 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
19 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383
20 �0.01794 �0.34667 �0.01794 �0.30284 0.06753 0.06753 �0.04383

4.4.2 Reliability Sensitivity

Sensitivity of reliability can be analyzed by partial differentiation of Eq. (38a)
with respect to the failure rates of control unit, storage unit, UPS, monitor, mouse,
keyboard, power supply, respectively. Using the values of the failure rates �C D 0.2,
�ST D 0.3, �U D 0.2, �MN D 0.1, �MS D 0.5, �K D 0.4, �P D 0.3, we have obtained
the values of @R.t/

@�C
, @R.t/
@�ST

, @R.t/
@�U

, @R.t/

@�MN
, @R.t/
@�MS

, @R.t/
@�K

, @R.t/
@�P

. Taking the time unit from 0
to 20 units, one can obtain the Table 7 and corresponding Fig. 6.

5 Result Discussion

From Fig. 2, we have analyzed that when the system is in the comprehensive state,
the availability of the system first decreases quickly and then becomes constant.
When control and storage unit are not failed, then availability of the system
decreases quickly and then becomes constant. But in this case, availability is high
as compare to comprehensive state. In the same manner, when power supply and
monitor are not failed, availability first decreases sharply and coincide with the
availability of the system when control and storage unit are not failed. Further, when
the keyboard and mouse are not failed, availability of the system is lowest. Firstly,
it decreases quickly and then becomes constant.
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Table 7 Reliability sensitivity as function of time

Reliability sensitivity

Time (t) @R.t/

@�C

@R.t/

@�ST

@R.t/

@�U

@R.t/

@�MN

@R.t/

@�MS

@R.t/

@�K

@R.t/

@�P

0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
1 �0.00354 �0.45108 �0.00354 �0.40221 0.07857 0.07857 �0.04887
2 �0.05039 �0.52276 �0.05039 �0.41856 0.15005 0.15005 �0.10421
3 �0.10858 �0.52801 �0.10858 �0.39463 0.19002 0.19002 �0.13338
4 �0.15879 �0.51463 �0.15879 �0.37314 0.21444 0.21444 �0.14149
5 �0.19781 �0.49367 �0.19781 �0.35704 0.23108 0.23108 �0.13663
6 �0.22713 �0.47000 �0.22713 �0.34518 0.24304 0.24304 �0.12482
7 �0.24895 �0.44638 �0.24895 �0.33642 0.25182 0.25182 �0.10996
8 �0.26514 �0.42435 �0.26514 �0.32993 0.25830 0.25830 �0.09442
9 �0.27713 �0.40468 �0.27713 �0.32513 0.26310 0.26310 �0.07954
10 �0.28602 �0.38762 �0.28602 �0.32158 0.26666 0.26666 �0.06604
11 �0.29260 �0.37314 �0.29260 �0.31895 0.26929 0.26929 �0.05419
12 �0.29748 �0.36105 �0.29748 �0.31699 0.27124 0.27124 �0.04405
13 �0.30109 �0.35108 �0.30109 �0.31555 0.27269 0.27269 �0.03552
14 �0.30377 �0.34294 �0.30377 �0.31448 0.27376 0.27376 �0.02846
15 �0.30575 �0.33636 �0.30575 �0.31369 0.27455 0.27455 �0.02267
16 �0.30722 �0.33107 �0.30722 �0.31310 0.27514 0.27514 �0.01797
17 �0.30831 �0.32685 �0.30831 �0.31266 0.27557 0.27557 �0.01418
18 �0.30911 �0.32349 �0.30911 �0.31234 0.27589 0.27589 �0.01115
19 �0.30971 �0.32084 �0.30971 �0.31210 0.27613 0.27613 �0.00874
20 �0.31015 �0.31875 �0.31015 �0.31192 0.27631 0.27631 �0.00683
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Figure 3 shows the reliability of the system. When the system is in a comprehen-
sive state, the reliability of the system first decreases smoothly and then becomes
constant. Similarly, when storage and control unit are not failed, and power supply
with the monitor are not failed, reliability of the system first decreases smoothly
and then becomes constant, but the reliability of the system in case when storage
and control unit are not failed, is highest. When keyboard and mouse are not failed
reliability of the system is lowest. In this case also, reliability first decreases, quickly
in the shape of a curve and then becomes constant.

Figure 4 shows the expected profit, when the revenue per unit time fixed at one
and varying service cost from 0.1 to 0.5. It is clear from the graph that the profit
decrease as the service cost increase.

From Fig. 5, availability sensitivity of the system decreases swiftly (as a straight
line) and then becomes constant as time increases with respect to the failure rates of
storage unit and monitor. Availability sensitivity with respect to the failure rate of
keyboard and mouse increase, but after a short curve, it becomes constant as time
increase. With respect to the failure rate of power supply, UPS and control unit, it
decreases shortly and then becomes constant. From Fig. 6, reliability sensitivity of
the system with respect to the failure rate of the monitor and storage unit, are first
to decrease as a straight line but again after some increment, it becomes constant.
With respect to the failure rate of power supply, reliability sensitivity decreases in
the form of a smooth curve and then it comes back to near zero and then becomes
constant as time increases. Reliability sensitivity with respect to the failure rate
of keyboard and mouse increases and after some times, it also becomes constant.
Reliability sensitivity with respect to the failure rate of UPS firstly becomes constant
for a very short time after that, this decrease as time unit increases in the form of the
hyperbola and becomes constant.

6 Conclusion

In this chapter, we have analyzed the availability, reliability, cost, and sensitivity of
the home or office based computer system by introducing a mathematical model.
The availability, reliability, and sensitivity become constant over a certain period
of time. The system based profit decreases as service cost increases. It is also
noticeable, the system could make less sensitive by controlling its failure rates.
With the help of this developed model, one can conclude that the results achieved in
this work are valuable in the study of improving the performance of the computer
systems that contain multi-stages. Hence the present work evidently shows the
importance of copula repair modeling, which seems very much to be possible at
home or office based computer systems. The future work in this area can be keen to
the elaboration of more complexities for specific computer networks.
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Reliability of Profiled Blast Wall Structures

Mohammad H. Hedayati, Srinivas Sriramula, and Richard D. Neilson

Abstract Stainless steel profiled walls have been used increasingly in the oil
and gas industry to protect people and personnel against hydrocarbon explosions.
Understanding the reliability of these blast walls greatly assists in improving the
safety of offshore plant facilities. However, the presence of various uncertainties
combined with a complex loading scenario makes the reliability assessment process
very challenging. Therefore, a parametric model developed using ANSYS APDL
is presented in this chapter. The significant uncertainties are combined with an
advanced analysis model to investigate the influence of loading, material and
geometric uncertainties on the response of these structures under realistic boundary
conditions. To review and assess the effects of the dynamics and nonlinearities, four
types of analyses including linear static, nonlinear static, linear transient dynamic,
and nonlinear transient dynamic are carried out. The corresponding reliability of
these structures is evaluated with a Monte Carlo simulation (MCS) method, imple-
menting the Latin hypercube sampling (LHS) approach. The uncertainties related to
dynamic blast loading, material properties, and geometry are represented in terms of
probability distributions and the associated parameters. Dynamic, static, linear, and
nonlinear responses of the structure are reviewed. Stochastic probabilistic analysis
results are discussed in terms of the probability of occurrence, the cumulative
distribution functions (CDFs), and the corresponding variable sensitivities. It is
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observed that using the approach taken in this study can help identify the important
variables and parameters to optimize the design of profiled blast walls, to perform
risk assessments, or to carry out performance-based design for these structures.

1 Introduction

In modern structural engineering design, it is always recommended to assess the
performance of complex structures, such as blast walls, under the effects of material,
loading, and geometric uncertainties. The existence of these uncertainties cannot be
avoided in many stages of structural integrity assessments or design and it may not
be possible to justify some of the design decisions without considering them. If the
randomness of a variable is relatively small, it can be considered as a deterministic
variable. In the real world, most design variables have inherent uncertainties and it is
required to consider them properly in assessing the structural performance, either in
terms of random variables or random processes. The traditional safety factor-based
design may not capture the structural behavior appropriately.

Stainless steel profiled walls are widely used in offshore facilities for protec-
tion against hydrocarbon explosions (Louca and Boh 2004). Understanding the
reliability of these blast walls greatly assists in improving the safety of offshore
personnel and facilities. However, the presence of various uncertainties combined
with a complex dynamic loading scenario make the reliability assessment process
very challenging. In recent years, probabilistic analysis methods have increasingly
been studied (Haldar and Mahdavan 2000) and implemented to provide a new
tool with which inherent uncertainties and variations in complex systems such as
offshore structures can be considered. Nevertheless, there are various immature
areas, methods and approaches that need to be developed and enhanced.

At the start of this research, a preliminary reliability approach was conducted
implementing a static approach to perform finite element reliability analyses on
profiled barrier blast walls (Hedyati and Sriramula 2012). It was observed that
the response variables have been influenced strongly by pressure and depth of
section to the same extend. Then a reliability study was developed considering the
dynamic effects and nonlinearities in geometry and material properties (Hedayati
et al. 2013). It was noticed that considering the dynamic and nonlinearity effects, the
correlation sensitivity results are not similar at different time steps. Consequently,
more investigations and studies were carried out on linear dynamic analysis, without
implementing any nonlinearity effects, to review and understand linear dynamic
behavior of profiled blast walls under explosion loading (Hedayati et al. 2014).
In the previous studies associated with this research, it was found that performing
linear, nonlinear, static, and dynamic analyses are crucial to assess dynamic and
nonlinearity effects while implementing reliability approach. Accordingly, linear
static (SLMG), nonlinear static (SNMG), linear dynamic (DLMG), and nonlinear
dynamic (DNMG) analyses were carried out and the associated results are reviewed
and discussed in this chapter. MG indicates variation of material and geometry
during the analysis runs.
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This chapter presents the reliability analysis of a blast wall profiled barrier,
under explosion (pressure) loading, using a parametric model developed with the
ANSYS Parametric Design Language (APDL), with and without consideration
of the dynamics and any nonlinearity. By defining the uncertainties in different
properties as random variables, it is possible to efficiently implement simulation
strategies in assessing the structural performance. The response parameters can be
obtained by linking the simulated values with the finite element models. These
values can be used to perform reliability analysis directly or by considering an
implicit performance function (e.g., using response surface methods). In the present
study, a Latin hypercube sampling (LHS) approach has been used to study the
performance of blast walls. This study will later be extended to consider implicit
performance functions to implement in a stochastic finite element framework.

2 Design of Profiled Blast Wall Structures

Compared to other possible ways of protection against explosions, blast walls have
lower cost/strength ratio and can be installed very quickly (Haifu and Xueguang
2009). Blast wall structures can be formed of stiffened or unstiffened panels;
however, stainless steel profiled walls have increasingly been used in the offshore
industry because of their excellent energy absorption and temperature-dependent
properties (Brewerton 1999; Louca and Boh 2004).

In general, considering the deterministic response of profiled barrier structures,
two approaches are usually recommended for the design of blast wall structures: the
traditional single degree of freedom (SDOF) approach or the more sophisticated
multi degree of freedom (MDOF) approach. The simplified SDOF approach is
widely used in the offshore industry for predicting the dynamic structural response
by implementing the Biggs method (Biggs 1964). This is a simple approach which
idealizes the actual structure as a spring mass model and is thus very useful in
routine design procedures to obtain accurate results for relatively simple structures
with limited ductility (Louca and Boh 2004). The SDOF approach is a useful
technique for conceptual or basic design of the profiled barrier structures under
explosion loadings, whereas, the MDOF method, which is based on a finite element
analysis (FEA) approach, provides a detailed analysis of the blast wall and is more
accurate compared to the SDOF approach, but is computationally very intensive
and, as a result, more expensive. However, with recent developments in computing
technology, performing FEA is easier and faster than it was in the past. There have
also been some preliminary studies to verify SDOF results against MDOF results
(Liang et al. 2007).

The Design Guide for stainless steel blast walls, known as the Technical Note
5 (TN5) (Brewerton 1999), prepared by the Fire and Blast Information Group
(FABIG) and API Recommended Practice 2FB (API 2FB 2006) are the two
common technical industrial guidelines for the design of profiled blast walls based
on the SDOF method.
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Fig. 1 Geometry of considered section (mm)

A

A

A - A 

Fig. 2 Finite element representation

In the present study, in accordance with the design guidance from TN5, a profiled
wall section that satisfies the geometric limits to be an appropriate structural element
is considered. The geometry of the considered profiled barrier section is shown
in Fig. 1. As mentioned earlier, the maximum capacities and deflections of these
sections are of interest. The stainless steel section considered is assumed to have
a Young’s modulus of 200 GPa, Poisson’s ratio of 0.3, and material density of
7,850 kg/m3. The end plate thickness is 12.5 mm and the wall has a span, X,
6,000 mm as shown in Fig. 2 (Louca and Boh 2004).

3 Monte Carlo Simulation

Reliability analysis based on Monte Carlo simulation (MCS) is widely used because
of the ease of implementation and the ability to handle complex engineering
problems. It is particularly amenable to finite element-based studies when the
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performance functions are not readily available in closed form. However, when the
associated probabilities of failure are very small, the computational effort increases
significantly. In such cases, depending on the performance function, it is possible
to reduce the required number of simulations by using an appropriate variation
reduction scheme such as importance sampling, LHS, or directional simulation
(Choi et al. 2006).

It is possible to implement different sampling methods within ANSYS (ANSYS
2012; Reh et al. 2006). In the present study, an LHS scheme is used. A major
advantage of LHS is that it avoids repeated sample reliability evaluations (ANSYS
2012), thus drastically reducing the number of simulations. LHS also considers the
tails of the distributions more accurately. This is very important for most structural
engineering applications where extreme values are essential.

The LHS technique was first introduced by McKay et al. (1979). Later on, further
developments were explained by other researchers, for example Iman et al. (1981).
A typical LHS selects n different values from each of the k variables X1 : : : Xk as
per the following routine (Wyss and Jorgensen 1998):

• The range of each variable is divided into n non-overlapping intervals on the
basis of equal probability.

• One value from each interval is selected at random with respect to the probability
density in the interval.

• The n values thus obtained for X1 are paired in a random manner (equally likely
combinations) with the n values of X2. These n pairs are combined in a random
manner with the n values of X3 to form n triplets, and so on, until n k-tuplets are
formed; these n k-tuplets are the same as the n k-dimensional input vectors.

It is convenient to think of this Latin hypercube sample (or any random sample
of size n) as forming an (n � k) matrix of inputs where the ith row contains specific
values of each of the k input variables to be used on the ith run of the computer
model. A more detailed description of LHS and the associated computer codes and
manuals are given by Wyss and Jorgensen (1998).

This scheme has been further developed for different purposes by several
researchers, e.g., Helton and Davis (2003) and Olsson et al. (2003).

4 Model Uncertainties and Probability Distributions

In assessing the reliability of profiled barrier blast walls, different types of uncer-
tainties can be introduced. These uncertainties have various sources which may be
grouped as follows:

• Uncertainties associated with the blast loadings including peak pressure, shape,
and duration of the loading.

• Uncertainties due to imperfections and idealizations made in the physical model
formulations.
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• Uncertainties related to mechanical properties such as elastic modulus, minimum
yield stress, ultimate tensile strength, and elongation.

• Uncertainties associated with the model geometry.
• Uncertainties in connectivity and boundary conditions, including support

connections.

In addition to the above uncertainties, while implementing the probabilistic
approaches, the following uncertainties can also be added:

• Uncertainties in the choices of probabilistic or reliability methods
• Uncertainties in the choices of probability distribution types.

In this research study, some of the above uncertainties including pressure blast
loadings, duration of loading, geometric properties such as dimensional imperfec-
tions and thickness and material properties are considered in the reliability analyses
by modeling the variables as random variables. These random variables have been
represented by probability distributions. Reliability analysis results can be sensitive
to the tail of the probability distribution and therefore, an adequate approach/method
to select the proper distribution type is necessary (DNV 1992). However, in this
study, except for profiled barrier thickness, Tw, for all other random variables, the
normal or Gaussian distribution is assumed, for demonstrative purposes.

5 Finite Element Probabilistic Modeling

5.1 Geometry and Meshing

A parametric model was developed using the APDL available in ANSYS. A four-
node quadrilateral shell element type, SHELL181 was used for modeling the
profiled barrier. This element has six degrees of freedom at each node: translations
in the x, y, and z directions, and rotations about the x-, y-, and z-axes. This type
of element is well suited to linear, large rotation, and/or large strain nonlinear
applications (Haifu and Xueguang 2009), when change in shell thickness is taken
into account. In the element domain, both full and reduced integration schemes
are supported and SHELL181 accounts for follower (load stiffness) effects of
distributed pressures.

The corrugated profile shown in Fig. 1 and the connecting end plates were
modeled by means of first-order shell elements. Figure 2 gives an overall view of
the finite element model of the profiled barrier. It can be seen that two corrugation
bays were modeled for the probabilistic analysis.

As the validity of the results obtained from a finite element model depends on the
mesh capturing the real system characteristics accurately, a set of mesh sensitivity
studies were carried out. This was to identify initially the minimum size of the mesh
required before starting a probabilistic analysis. From the results of this analysis, the
maximum mesh or element size is limited to 60 mm with a maximum aspect ratio
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tr td

P0

F(t)

t

Fig. 3 Triangular blast
pressure load
pulse—(tr D td/2)

of 1.5. The size of the mesh is variable for each set of analysis run, as the dimension
of the element is one of the considered random variables. On average, 12,500 shell
elements were generated in each of the simulation cycles.

5.2 Explosion Loading

In the past decades, many theoretical developments, and research studies associated
with the dynamic behavior of structures under load pulse or explosion loadings have
been discussed, e.g., in Biggs 1964; Clough and Penzien 1995; Chopra 1995; Beards
1996; and Li and Chen 2009.

Dynamic pressure loading generated by explosions varies with time, and the
resulting response of the structure is therefore time dependent (Louca and Boh
2004; Brewerton 1999). This loading causes the structure to vibrate at its natural
period and large intensity loading can cause large deformation of the structure
(Biggs 1964). Therefore, in this study, for the dynamic analyses, as a comprehensive
approach for probabilistic analysis, full transient dynamic explosion loadings have
been applied to the structure. Consequently, the dynamic responses including
deflection, strain, and stresses are expected to be more accurate and reliable than
those determined by applying the peak load statically.

For the dynamic analyses, a triangular load pulse with a peak dynamic pressure
(P0) of 2.0 bar is used. The total time duration (td) for this load pulse is 0.15 s.
The analyses are continued up to 2 td, i.e., 0.3 s. In other words, the time for free
vibration is between 0.15 and 0.3 s. The peak pressure load pulse and the time are
both introduced as variable inputs for the probabilistic analysis. Figure 3 shows a
typical explosion loading shape used in this study.

For the static analyses, a peak pressure load (P0) of 2.0 bar is considered and
applied to the structure; however, this pressure load is introduced as a variable input
for the probabilistic analysis.

It should be noted that the maximum response of a structure under a load pulse
is reached in a very short time. As such, damping does not absorb much energy
from the structure and consequently can be ignored for load pulse or blast loadings
(Clough and Penzien 1995) for dynamic analyses. Therefore, no damping effect is
considered in this study.
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Before performing reliability analyses, two sets of studies, including modal and
linear dynamic analyses, were carried out to verify the baseline dynamic model.
The mean values of input variables, shown in the Table 1, were considered to
check model accuracy. Figure 4 presents the first dynamic mode shape of structure.
The natural period of the structure for this mode is 0.03064 s (or a frequency of
32.6328 Hz), which is 0.2 td (or 0.4 tr).

Figure 5 also shows the transient displacement and highlights that the maximum
response is at 0.08 s, close to 0.5 td (tr D td/2).

5.3 Material Nonlinearity

Stress–strain curves are an extremely important graphical measure of a material’s
mechanical properties (Roylance 2001), and all structural engineers will have to deal
with them, especially for advanced structural design or assessments. In this study,
for the nonlinear analyses, the material behavior of a profiled barrier is described
by a bilinear stress–strain curve, starting at the origin with positive stress and strain
values. The initial slope of the curve is taken as the elastic or Young’s modulus
of the material. At the minimum yield stress, Fy, the curve continues along the
second slope defined by the tangent modulus Et (having the same units as the elastic
modulus). The tangent modulus can be neither less than zero nor greater than the
elastic modulus (ANSYS 2012).

To calculate Et, initially true stress and true strain should be determined imple-
menting tensile strength and elongation and then, elastic strain needs to be specified
based on Fy and elastic modulus. Finally, Et can be developed and calculated
using true stress, true strain, and Fy. Average yield stress can also be replaced for
the minimum yield stress; however, in this study minimum yield stress has been
used. Since ultimate tensile strength, minimum yield stress, elongation, and elastic
modulus are defined as random variables, Et is changed for each individual run or
analysis. In fact, for each run, there is a material curve with random stress–strain
inputs. This provides a more accurate and realistic condition for the probabilistic
assessments. For the linear analyses, only a Young’s modulus (E) of 200 GPa
is considered as representative of material. However, this Young’s modulus is
introduced as a variable input for the probabilistic analysis. Figure 6 gives an
overview on bilinear stress–strain curved used for the nonlinear analyses (SNMG
and DNMG), considering the mean values of input variables, shown in the Table 1.

It should be noted that in all nonlinear analyses the effects of geometry nonlin-
earity are also included.
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5.4 Probabilistic Models

The deterministic baseline model has eight parameters that are regarded as random
input variables. However, for the linear and static analyses only some of these
random variables are implemented. For instance, for linear assessments, only
Young’s modulus (E) is considered as a material characteristic.

The variables along with the assumed distribution models and parameters are
given in Table 1. The random input variables are assumed to be statistically inde-
pendent. Typical probability density function and cumulative distribution function
(CDF) of peak pressure are shown in Fig. 7.

6 Reliability Analysis

In this study, before performing any probabilistic analyses, some sensitivity studies
were carried out to make sure that the model inputs were correctly defined and
to have a better understanding of the structural behavior under general loads
and boundary conditions. Five hundred simulation loops were considered for the
analyses. The maximum deflection of the profiled barrier is considered as the
limiting property.

After performing probabilistic analyses, it is crucial to review the statistical
results to check that the simulation loops are adequate. If the number of simulations
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is sufficient, the mean value plots for random output variables converge (i.e., the
curve flattens out). Figure 8 presents the level of satisfaction of the number of
loops considered with regard to mean values of maximum deflections, for dynamic
analyses. It can be seen that the values are converging.

For the assessment purposes including structural integrity and risk, it is useful
to identify the probability that the maximum response (e.g., Maximum deflection,
strain, or stress) remains below a specified limit or value. Furthermore, for design
purposes, it is always useful to determine the probability corresponding to the
occurrence of maximum response that satisfies the design requirements. This
information can be readily obtained from the CDFs of the variables of interest.

Figure 9 shows the CDFs associated with maximum deflection at mid-span,
respectively, for the dynamic analyses. The probability of having a specific response
can be identified using CDFs plots. For instance, the probability of having a
maximum displacement up to 16 mm (absolute) is 99 and 99.50 % for linear
and nonlinear dynamic analyses, respectively. Similar figures can be produced for
studying maximum strain and stress.

Table 2 presents a sample of the probability of having a maximum response,
displacement greater than specified values including 20, 30, and 40 mm. As can
be seen, the probability of having a response greater than 20 mm, for all types of
analyses, including SLMG, SNMG, DLMG, and DNMG, are very close. In fact,
it can be concluded that the effects of nonlinearity and dynamics is negligible,
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Table 2 Probability of maximum response exceeding specified values

Maximum response (displacement) > Analysis Probability lower bound Upper bound

20 mm SLMG 0.8847 0.8548 0.9107
SNMG 0.8825 0.8523 0.9087
DLMG 0.8727 0.8416 0.9000
DNMG 0.8936 0.8646 0.9186

30 mm SLMG 0.2822 0.2439 0.3227
SNMG 0.3404 0.2998 0.3827
DLMG 0.2764 0.2384 0.3167
DNMG 0.3423 0.3016 0.3846

40 mm SLMG 0.0471 0.0309 0.0680
SNMG 0.0933 0.0699 0.1209
DLMG 0.0475 0.0312 0.0685
DNMG 0.0989 0.0748 0.1270

whereas, for having a response greater than 30 mm, the associated probabilities are
not similar. Comparing the nonlinear and linear static results, SLMG (2.82E-01) and
SNMG (3.40E-01), there is about 20 % difference between the probability results.
Undertaking a similar comparison for the response greater than 40 mm, there is
around 98 % difference between the probability results.

This gives a good understanding of dynamic and nonlinearity effects on responses
including deflections, stresses, strains, and support reactions. Table 2 also presents
lower and upper bounds of probabilities.

6.1 Sensitivity Analysis

The next step is to quantify the sensitivity of the output variables with respect to
the variability of the input parameters. By generating scatter plots of the output
variables as a function of the most important random input variables, it is possible
to determine the correlation coefficients between the output and input variables. The
evaluation of the probabilistic sensitivities is based on the correlation coefficients
between all random input variables and a particular random output parameter. The
correlation coefficients could be represented either in terms of the widely used
Pearson linear correlation or in terms of the Spearman rank correlation coefficient.
For this study, it is observed that the maximum response of the structure is within
(0.4–0.6) td; as such, the sensitivity results associated with this time domain are
similar. Therefore, the correlation sensitivities related to 0.5 td are presented in this
chapter. Figure 10 presents the correlation sensitivities associated with the input
variables and output response (maximum deflections), for nonlinear static (SNMG)
and nonlinear dynamic (DNMG) analyses. It can be seen that the response variable
is dependent significantly on depth of the barrier section (H) and the pressure load
applied (P0). However, Fig. 10 also highlights that the maximum response is not
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sensitive to duration of loading. Moreover, from the correlation sensitivities, it can
be seen that the maximum response is not very sensitive to thickness and even less
sensitive to elastic modulus.

Correlation scatter plots can also be implemented to find out the relation between
an input variable, such as blast loading, and the maximum response. Figure 11
shows two typical correlation scatters between the dynamic peak pressure load and
maximum deflection. Nonlinear analysis shows wide range of parameters compared
to linear analysis.

This correlation information can also be used to generate response surfaces
(i.e., to develop implicit performance functions) to be implemented in structural
reliability framework.

7 Conclusions

This chapter presents an approach for the reliability analysis of a profiled barrier
under dynamic blast loading by implementing LHS in APDL. A profiled barrier with
two corrugation bays is analyzed probabilistically by considering linear, nonlinear,
static, and dynamic responses. For the reliability analyses, the maximum response
in terms of deflection is used as a limiting factor and the results are discussed in
terms of the corresponding variable sensitivities. These sensitivities are evaluated
based on the correlation coefficients between considered random input variables
and a particular random output variable.

For this case study, it is found that the maximum response is not very sensitive to
thickness and even less sensitive to elastic modulus. To understand the influence of
dynamics and nonlinearity, probability of occurrence of specified or target responses
are reviewed and discussed. Based on the probability results and discussions, it
can be concluded that the effects of nonlinearities are crucial to be considered in
the assessments. It is also noticed that there is no profound difference between
probabilistic responses for static and dynamic analyses. This indicates that the
dynamic effects on the responses are less influential than the nonlinearity effects.

Based on the studies which have been carried out so far for this research and
presented in this chapter, it has been noticed that further investigations are also
necessary to consider different types of materials, section sizes, and panel heights.
Moreover, strain-rate effects can also be considered in the assessments as these
effects are disregarded in the current study due to complexity of combining dynamic
and nonlinearity effects into a stochastic finite element reliability approach. As
such, further investigations and assessments have been planned to be carried out
implementing these considerations.
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Reliability Assessment of a Multi-Redundant
Repairable Mechatronic System

Carmen Martin, Vicente Gonzalez-Prida, and François Pérès

Abstract The reliability modelling of redundant systems is an important step to
estimate the ability of a system to meet the required specifications. Markov chains
have characteristics making it very simple the graphic representation of this type of
model. They however have the disadvantage of being quickly unworkable because
of the size of the matrices to be manipulated when systems become complex in
terms of number of components or states. This issue, known as of combinatorial
explosion is discussed in this chapter. Two methods are proposed. The first one uses
the concept of decoupling between phenomena driven by different dynamics. The
second is based on a principle of iteration after cutting the model into classes of
membership. Both are based on the principles of approximating the exact result
by reducing the scale of the problem to be solved. A case study is eventually
carried out, dealing with the reliability modelling and assessing of a mechatronic
subsystem used for an Unmanned Aerial Vehicle flight control with a triple modular
redundancy. Results are discussed.
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1 Introduction

The growing complexity of industrial systems is mainly due to the increasing variety
of technologies involved in their implementation, e.g. mechanical, electronic and
software components. Therefore, the reliability analysis, one of the most important
problems for industrial systems, becomes extremely difficult.

Redundancy incorporated into systems generally leads to increased reliability.
Hardware redundancy is widespread in areas where dependability is critical to
people and environment safety as in aerospace, space, defence or nuclear industries.
Generally, real systems consist of several components and have several failure
modes. Such systems are called complex and their analysis can become difficult
when the number of components increases.

The calculation of reliability based on Markov model has been largely used
by scholars and research institutions. However the inclusion of multi-resource
systems quickly leads to complex Markov models, difficult to be carried out
by conventional means of calculation. When analysing the system for the study
of its asymptotic behaviour, it can be made, through the application of certain
assumptions, adjustments to the treatment model to reduce the size of calculation.

We present in this chapter methods to reduce the complexity of the reliability
assessment issue by separating the global solving system in different independent
subsystems of reduced size whose particular results are aggregated to give an
approximate value of the original problem.

2 Problem Issue

The requirements for the reliability and the availability of technological systems
may be very high. Within this context, redundancy is a technique widely used to
improve the reliability and the availability of a system (Vujosevic and Meade 1985).
The principle of redundancy leads to use several resources to perform a single
function or a single task.

A redundant system improving the dependability of a given architecture is based
on parallel structures: a system consisting of n redundant elements is reliable or
available if at least one of its elements works properly (Nourelfath et al. 2012).
Two types of redundancy can be implemented: active (warm) redundancy when
the means are implemented simultaneously and, in case of failure of the main
component, the redundancy is able to take over; and passive (cold) redundancy when
the means are implemented on request and, in case of failure of the main component,
the redundancy is committed to do the task (Amari and Dill 2010).

Different configurations can be established by combinations of serial, parallel or
hybrid structures.

The study of the reliability and availability of complex systems, with recon-
figuration capabilities and redundancy or other types of dependencies between
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components requires the use of behavioural models. The characterize the ran-
dom process making the system evolve until it reaches an undesirable outcome
(Godichaud et al. 2012).

Within this modelling context, Markov processes are an ideal support for
mathematical developments. Their ease of use and processing and their computing
power make it a very effective tool for dependability assessment. There is an
extensive scientific literature on the subject (White 1993).

A finite state space Markov process can be entirely defined by a matrix of real
numbers such as the product aij dt of the term i,j of the matrix by dt represents
the probability that the process goes from state i to state j within a time dt.
These processes may be characterized through graphic representation called Markov
graph or Markov chain. Most often the Markov chain is used to represent the
states in which the system will be during the observation period and to assess the
corresponding occupation probability at a given time (transient conditions) or when
reaching an equilibrium (steady-state conditions).

The use of Markov chain is convenient as long as the number of states to
be considered does not exceed a certain value. Unfortunately, as many other
tools, Markov chains suffer from the problem of combinatorial explosion which
corresponds to the situation where the dimension of Markov transition matrix
increases exponentially along with the growing number of redundant components.

To deal with this problem, the Monte Carlo simulation which is a method very
general and insensitive to the number of states can be carried out. However, the
results can be imprecise and ask for prohibitive calculation time for highly reliable
systems (Diaconis 2008; Andrieu et al. 2010; Godichaud et al. 2010).

This limitation of the simulation explains why analytical calculations on Markov
graphs, which are all the more effective as systems are more reliable, still have a
great interest. Consequently, to keep using Markov chains to assess complex system
reliability, some modelling techniques allowing the reducing of the matrix sizes
must be performed. We present here below two methods for that.

3 “Product-Form” Calculation

When a weak interaction between concurrent processes acting on the system is
established, the model can be divided into subsystems treated separately for the
calculation of internal states by solving the equilibrium distribution of the reduced
Markov chain. Regardless of these calculations, the conditions of the overall balance
between subsystems are considered and the asymptotic probabilities associated with
the state occupation are assessed by applying product-form calculation (Buchholz
2008; Gupta and Albright 1992; Papazoglou and Gyftopoulos 1977).

These results have been established for models with a certain regularity of struc-
ture that allows easy expression of the equilibrium equations between subsystems
(transitions of all states of one subsystem to another subsystem being identical).
Such models accept submerged chains. We extend the method to systems that do not
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have this property by providing an appropriate expression of the transitions between
subsystems. The approach is as follows:

• Isolate the different subsystems by removing transitions between states on which
applies the hypothesis of decoupling: E D fE1, E2 : : : Eng, where E is the state
space of the complete model and Ei the state space of subsystem i

• Process every subsystem separately by establishing the state occupation proba-
bilities of each subsystem in steady-state conditions by resolution of:

PEi :ƒii D 0 8i 2 f1; 2; : : : ; ng (1)

• Determine the transition rates between subsystems by aggregating in a same
expression, the sum of each rate connecting two subsystems, weighted by the
occupation probability of their state of origin:

TIJ D
X

ei2EI

2

4Pei :
X

ej2EJ

tij

3

5

with tij D transition from state ei to state ej and I; J 2 1; 2; : : : ; n

• Calculate the occupation probability of each subsystem:

PK:ƒKK D 0 with PK D ŒP1; P2; : : : ; Pn� and ƒKK D rate matrix tIJ
(2)

• Infer the final state occupation probabilities by multiplying the matching state
occupation probability inside the subsystem to which it belongs (resulting of
Eq. (1)) by the occupation probability of the corresponding subsystems (resulting
of Eq. (2))

Applied to non-standard models, this calculation gives approximate results. The
accuracy of the approximation is strongly dependent on the ratio between the inter-
nal dynamics of each subsystem and the dynamic evolution between subsystems.
When the internal balance (subsystems) is reached before the external balance
(between subsystems), the method gives excellent results. When the dynamics are
similar, the method still works, but the accuracy is difficult to quantify. In the case of
very mixed internal and external dynamics, the method can lead to large deviations.

An illustration of this is given on a three-state model represented in (Fig. 1).
On (Fig. 2) a comparison between exact and approximate methods is made by

estimating the state occupation probability for several ratios between � and ˇ. The
application corresponds to the following data: ˛D 20, ˇD 4, 
D 0.2. The dynamic
is dependent on �. The calculation using the approximate methods is based on a
separation between, on the one hand, states E1 and E2, and, on the other hand, state
E3. The results are convincing, our approach (referred to as CPM) being consistently
better than that of the conventional product form (referred to as CP).
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Fig. 1 Three state model

Fig. 2 Exact versus approximate methods

Kemeny and Snell (1967) a long time ago suggested some tests to assess the
ability of a chain to accept partitions but the specific characteristics of each situation
make this test not sufficient to validate the choice of a decoupling mode. Gupta
and Albright (1992) propose from the spectral analysis of the full model transition
matrix and a pre-established partition, a value criterion t (unitless), describing the
relationship between internal and external dynamics. Three cases were considered.
If the ratio does not exceed a certain threshold s1, the method is considered to be
directly applicable. If the ratio exceeds a threshold s2, it is necessary to reverse the
dynamics (the internal dynamics becoming external and vice versa). If the ratio is
between s1 and s2, the two previous solutions are combined by introducing a weight
depending on the degree of remoteness of t from s1 and s2.

Finally, Balakrishnan and Reibman (1993) denounced the lack of common
criterion of convergence accuracy f related to this kind of methods. They proposed
a criterion for evaluation of the error based on the comparison between a state
occupation probability inside a subsystem (in internal equilibrium) and a ratio
between the number of visits of the same state and the number of visits of the
subsystem. If the difference is 0, the Markov model is said to be decomposable
otherwise it gives a measure characterizing the inaccuracy of the approximation.
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The model specificity and the complexity of combinations prevent however to
define a generic framework ensuring, in compliance with certain conditions that the
results obtained have a minimum level of precision. In some (few) situations where
the dynamic partition is made difficult by the mix of heterogeneous form processes,
we emphasized that this form of calculation approach could lead to significant
accuracy deviations. It is then necessary to complete the method by other treatments.

4 Iterative Method

This method developed in (Nahman 1984) is all the more rapid if there is an a priori
knowledge of the behaviour of the modelled system. Nevertheless we will note that
ignorance of the system is not an obstacle to the accuracy of the results but affects
the convergence speed. The principles are as follows:

• Decompose the system into classes corresponding to the group of states whose
occupation probabilities are, if possible, of similar order (hence the importance of
this method to be associated with the product-form calculation). E D fE1, E2 : : :

Eng, with E D state space of the full model and Ei class i of dimension Ni

• Order the matrix A of the model with A D [˛ik] where:

˛ik D 1 for i D 1

˛ik D �ik for i D 2; : : : ; N I k D 1; 2; : : : ; N I with i ¤ k and N
number of states of the full model

˛ik D �
NX

j D 1

j ¤ i

�ik for i D 2; : : : ; N and i D k

• Calculate the initial occupation probabilities of the states of the first class from:

pE1 D ��1
11 :ˇ1 �

nX

iD2
��1
11 :�1i : QpEi (3)

with:

Œ�uv� D Œ˛ik� for i D a; : : : ; aCNu�1I k D b; : : : ; b CNv�1I
and a D 1C

u�1X

hD0
NhI b D 1C

v�1X

hD0
Nh and N0 D 1

ˇ1; vector of equal size number of state N1 of class i;with ˇ1 D .1; 0; : : : ; 0/

Qp; vector p calculated at the previous iteration . QpEi D vector null in the first
iteration/
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• Calculate the occupation probabilities of the states of the other classes from

pEk D �
k�1X

iD1
��1
kk :�ki :pEi �

nX

iDkC1�n
��1
kk :�ki : QpEi (4)

• Repeat calculations from (Eqs. (3) and (4)) until a convergence criterion is
reached

Equations (3) and (4) greatly reduce the dimension of the system of equations to
be solved. When an initial estimate allows the identification of classes by grouping
states of equal probability, the method converges very quickly. If this is not the case,
there are two options. Either the classes are modified taking into account the values
of the first iteration and the method is resumed at the beginning or the calculations
corresponding to the following iterations are performed until convergence which,
nevertheless, appears relatively quickly.

5 Case Study

The case study will deal with a component of a drone long-range, long-dwell
dedicated to direct operational control by army field commanders (Fig. 3). Its
mission set includes wide-area Intelligence Surveillance, Reconnaissance (ISR),
convoy protection, Improvised Explosive Device (IED) detection and defeat, close
air support, communications relay and weapons delivery missions. For such a
system, reliability is a key factor. To reach this objective, the drone features a

Fig. 3 UAV: unmanned aerial vehicle (drone)
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Fig. 4 VME card 6U

Fig. 5 VME card reliability
block diagram

fault-tolerant control system and a triple-redundant avionic system architecture
which meets and exceeds manned aircraft reliability standards (Andrews et al.
2013).

The system under study is a mechatronic component controlling through the on-
board computer architecture the flight control unit. Three VME (Verso Module
Europa) cards, specifically dedicated to critical applications in harsh environment
are used in active redundancy (Fig. 4). Each one is itself based on three processors
offering a triple-redundant device securing the implementation of deterministic
applications (running in parallel on three CPUS) with the possibility of an immedi-
ate resynchronization of the data in the event of failure of one of the processors.

Taking into account the possible failure of a processor to start (represented by
a switch component which would collapse), the reliability of one card and the
corresponding Markov chain are given in (Fig. 5) and (Fig. 6).
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Fig. 6 VME card Markov
chain

Fig. 7 Full system Markov chain

Related to the system made of three VME cards the corresponding Markov chain
is given in (Fig. 7).

Each state is given a number whose digits represent, respectively, the type
and number of operative processors. The nominal situation corresponds to state
“3000” (the three main processors of the corresponding VME cards are operative).
State “1101” would imply for instance that among the three VME cards, one card is
running on the main processor, the second card has switched on the first redundancy
and the third card is disabled.



416 C. Martin et al.

Fig. 8 Super-state inner Markov chain

Because it is not the object of the chapter we will not comment the meaning of the
transition rates. One will understand however that a rate may aggregate the failure
of a processor with the impossibility to switch on the following redundancy.

5.1 Product-Form Calculation

The principle of the approximate method based on “Product-form” calculation
requires to separate processes according to their relative dynamics (Taylor 1992;
Strelen 1997). Applied to the system, the high reliability of the second switch and
the third processor (to prevent the complete system breakdown) leads to consider the
value of rate ı1 as lower than the other rates. Based on this assumption, we will then
separately consider four Markov chains representing the evolution of the system
when, respectively, 0, 1, 2 or 3 VME cards are out of order. The corresponding
model is given in (Fig. 8).
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Fig. 9 Super-state outer
Markov chain

Each subsystem can be associated to a super-state. The model combining the
different subsystems is given in (Fig. 9). We can then calculate the occupation
probability of each super-state and eventually determine, by simple product, the
state occupation probability vector corresponding to the whole chain. Rates between
subsystems are as follows:

a D P0003: .�1 C ˛2 C �2/

b D P0012:
2 C P0102:ı2 C P1002:ı1

c D .P0012 C P0102 C P1002/ : .�1 C ˛2 C �2/

d D 
2 .P0021 C P0111 C P1011/C ı2 .P0111 C P0201 C P1101/

C ı1 .P1011 C P1101 C P2001/
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Table 1 State occupation probability

State
Pei Exact
result

Pei “Product-form”
calculation
(1 decomposition)

Pei “Product-form”
calculation
(2 decompositions)

3000 0.075230 0.075422 0.074818
2100 0.224645 0.224941 0.224455
2010 0.002795 0.002801 0.002794
2001 0.000810 0.000777 0.000366
1200 0.335458 0.335435 0.336883
1110 0.008345 0.008354 0.008383
1101 0.002323 0.002318 0.001099
1020 0.0000104 0.000104 0.000104
1011 0.000030 0.000029 0.000001
1002 0.000009 0.000009 0.000004
0300 0.333947 0.333470 0.336683
0210 0.012461 0.012457 0.012575
0201 0.003413 0.003457 0.001649
0120 0.000310 0.000310 0.000313
0111 0.000088 0.000086 0.000041
0102 0.000026 0.000026 0.000001
0030 0.000004 0.000004 0.000004
0021 0.000001 0.000001 0.000000
0012 0.000000 0.000000 0.000000
0003 0.000000 0.000000 0.000000

e D .P0021 C P0111 C P1011 C P0201 C P1101 C P2001/ : .�1 C ˛2 C �2/

f D 
2 .P0030 C P0120 C P1020 C P0210 C P1110 C P2010/

C ı2 .P0120 C P0210 C P1110 C P0300 C P1200 C P2100/

C ı1 .P1020 C P1110 C P2010 C P1200 C P2100 C P3000/

The proposed approach can be applied recursively. If there is a weak interaction
between some other internal processes, each super-state can itself be decomposed
and processed on the same way. To illustrate this, we propose a second internal
decomposition. The results are presented for both decompositions in (Table 1).

The application corresponds to the following data: ˛1 D 3, ˛2 D 0.5, ˇ1 D 1,
ˇ2 D 0.5 ı1 D 0.005, ı2 D 0.001, �1 D 0.125, �2 D 0.001, �1 D 0.01, �2 D 0.001,

1 D 0.33, 
2 D 0.001.

In this table, we associate with each state of the full model, the exact state
occupation probability as well as the corresponding results when proceeding to one
or two partitions. The full model calculation requires to deal with a (20 � 20) matrix.
This complexity is halved when considering one partition (10 � 10) and reduced by
4 when taking into account a second form of decomposition (4 � 4).

Dispersion between approximate and exact results is low. For a single decompo-
sition, the mean relative error is 5.7 %. It is less than 1 % if the last four values
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corresponding to the states with the lowest occupancy probability are not taken into
account. In the case of two successive decompositions, differences are overall more
important but the results remain, for the most significant states, in the same order of
accuracy of 1 % up to 2 %.

It is worth noting however, that the model characteristics were not very favourable
to the application of the decomposition principles since the full model makes appear
a maximum connection and the dynamics between the values of the different rates
remain limited.

Sensitivity studies show that the precision of the product-form calculations is,
of course, all the greater as the evolution dynamics within the subsystems is high
compared to the one between subsystems.

5.2 Iterative Method

For the calculation by iteration, we have grouped the states into classes according
to the number of out of order VME cards. Consequently E D fE1, E2, E3, E4g
with: E1 D f3000, 2100, 1200, 0300g, E2 D f2010, 2001, 1110, 1101, 0210, 0201g,
E3 D f1020, 1011, 1002, 0120, 0111, 0102g, E4 D f0030, 0021, 0012, 0003g and:

˛ D

h
˛jk

i
DD

2

6666
66666666666
666666666666
66666666666
66666666
4

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

˛1 a22 2ˇ1 0 
1 ˛2 ˇ2 �1 0 0 0 0 0 0 0 0 0 0 0 0

0 ˛1 a33 3ˇ1 0 0 
1 ˛2 ˇ2 �1 0 0 0 0 0 0 0 0 0 0

0 0 ˛1 a44 0 0 0 0 
1 ˛2 0 0 0 0 0 0 0 0 0 0

�2 �1 0 0 a55 �2 ˇ1 0 0 0 ˇ2 �1 0 0 0 0 0 0 0 0

ı1 ı2 0 0 
2 a66 0 ˇ1 0 0 0 ˇ2 �1 0 0 0 0 0 0 0

0 �2 2�1 0 ˛1 0 a77 �2 2ˇ1 0 
1 ˛2 0 ˇ2 �1 0 0 0 0 0

0 ı1 ı2 0 0 ˛1 
2 a88 0 2ˇ1 0 
1 ˛2 0 ˇ2 �1 0 0 0 0

0 0 �2 3�1 0 0 ˛1 0 a99 �2 0 0 0 
1 ˛2 0 0 0 0 0

0 0 ı1 ı2 0 0 0 ˛1 
2 a1010 0 0 0 0 
1 ˛2 0 0 0 0

0 0 0 0 �2 0 �1 0 0 0 a1111 �2 0 ˇ1 0 0 ˇ2 �1 0 0

0 0 0 0 ı1 �2 ı2 �1 0 0 
2 a1212 �2 0 ˇ1 0 0 ˇ2 �1 0

0 0 0 0 0 ı1 0 ı2 0 0 0 
2 a1313 0 0 ˇ1 0 0 ˇ2 �1

0 0 0 0 0 0 �2 0 2�1 0 ˛1 0 0 a1414 �2 0 
1 ˛2 0 0

0 0 0 0 0 0 ı1 �2 ı2 2�1 0 ˛1 0 
2 a1515 �2 0 
1 ˛2 0

0 0 0 0 0 0 0 ı1 0 ı2 0 0 ˛1 0 
2 a1616 0 0 
1 ˛2

0 0 0 0 0 0 0 0 0 0 �2 0 0 �1 0 0 a1717 �2 0 0

0 0 0 0 0 0 0 0 0 0 ı1 �2 0 ı2 �1 0 
2 a1818 �2 0

0 0 0 0 0 0 0 0 0 0 0 ı1 �2 0 ı2 �1 0 
2 a1919 �2

0 0 0 0 0 0 0 0 0 0 0 0 ı1 0 0 ı2 0 0 
2 a2020

3

7777
77777777777
777777777777
77777777777
77777777
5

with:

akk D �
X

j¤k
�kj

The results for the first two iterations of the method are presented in (Table 2).
Approximate values in (Table 2) are close to the exact values from the first

iteration. A priori knowledge of the behaviour of the system proves to be very
influential in the speed of convergence of the method (Peres and Martin 1999).
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Table 2 State occupation
probability

State Pei Exact result Pei Iteration 1 Pei Iteration 2

3000 0.075230 0.0760979 0.0752189
2100 0.224645 0.2287500 0.2245980
2010 0.002795 0.0028195 0.0027940
2001 0.000810 0.0008045 0.0008098
1200 0.335458 0.3452980 0.3353520
1110 0.008345 0.0084543 0.0083428
1101 0.002323 0.0023102 0.0023217
1020 0.000010 0.0001040 0.0001038
1011 0.000030 0.0000300 0.0000302
1002 0.000009 0.0000088 0.0000086
0300 0.333947 0.3498540 0.3337670
0210 0.012461 0.0126954 0.0124569
0201 0.003413 0.0034075 0.0034112
0120 0.000310 0.0003120 0.0003099
0111 0.000088 0.0000875 0.0000876
0102 0.000026 0.0000250 0.0000255
0030 0.000004 0.0000039 0.0000038
0021 0.000001 0.0000012 0.0000012
0012 0.000000 0.0000003 0.0000003
0003 0.000000 0.0000001 0.0000001

6 Discussion

Back to the method of product calculations. As we said previously, a certain
dispersion can be observed when the dynamics of the model do not lend themselves
to the decoupling principles. From the rates of the previous model, we progressively
change the dynamic between subsystems. Each step corresponds to a new series of
rates obtained by multiplying the external rate dynamics (between subsystems) by a
constant. Gradually, the relationship between the internal and external dynamics is
reversed. For each series of rates, the probability of occupation of each state of the
model is calculated.

We present on (Fig. 10) the difference between exact and approached values
(curves of same grey level) for several ratios between dynamics. Only the most
significant states (in the sense of the greatest occupation probability) are here
considered.

The last step of calculation corresponds to the following set of values: ˛1 D 3,
˛2 D 256, ˇ1 D 1, ˇ2 D 0.5 ı1 D 2.56, ı2 D 0.512, ı1 D 64, �2 D 0.512, �1 D 0.01,
�2 D 0.001, 
1 D 0.33, 
2 D 0.512.

This set of values corresponds to a multiplication by 500 of the rates between
subsystems. For these values, the application of the product form method provides
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Fig. 10 Dispersions noted on the results achieved by product-form calculations
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inaccurate or even erroneous results.1 The use of the iterative method allows then the
compensation for the shortcomings of the first approach. (Eqs. (3) and (4)) stopped
after only six iterations give quite acceptable results. The comparison between exact
and approximate values by both methods is presented in (Fig. 11) for the most
significant states. Note that the distribution into classes was not influenced by the
results of the first method. If that were the case, the convergence would have been
even faster.

1It would be logical in such a case, to reverse the process decoupling but our intention here was to
observe the behaviour of the iterative method when product calculations do not give satisfactory
results. Let us note that the rates considered here are meaningless.



422 C. Martin et al.

7 Conclusion

For many systems, reliability is of great importance to ensure the performance of
duties or tasks for which they were designed. In practice, the easiest way to increase
the dependability of a system is to add redundancy that is to say to make several
identical systems in parallel.

To assess the level of reliability achieved and therefore the risk of not being able to
meet these objectives, various tools exist. Among them, Markov processes and their
graphical representation under the form of chains do not have to prove themselves.
However, when the system is complex due to the number of components to consider
or because of the many states that may describe the component condition, Markov
chains face the classic problem of combinatorial explosion.

We have presented in this chapter two methods to tackle this problem by
decreasing the matrix size corresponding to the mathematical issue to be dealt
with. The first method of product-form calculation is based on the demonstration
of a decoupling from the observation of a difference in dynamics between the
events making evolve the system over time. The second relies on an iteration-based
approach.

When the respective conditions for the deployment of these approaches are met,
the results are very similar to those obtained by the complete calculation. When the
dynamic gap is not sufficient, the product calculation method can lead to significant
deviations.

The iterative method comes then as reinforcements of the product-form calcula-
tion method, but it can also be an excellent test of applicability of the latter. The
results of product-form calculation method can indeed be taken over by the iterative
method. If the product-form calculation method is applicable, the iterative method
should converge to the same results from the first iteration (the classes composed
of the states of same probability levels being deduced from the results of the first
method). If it is not the case, the process decoupling in the product-form calculation
method is not suitable.

References

Amari SV, Dill G (2010) Redundancy optimization problem with warm-standby redundancy.
Reliab Maintainab Symp (RAMS), 2010 Proc—Annu. doi: 10.1109/RAMS.2010.5448068

Andrews JD, Poole J, Chen WH (2013) Fast mission reliability prediction for unmanned aerial
vehicles. Reliab Eng Syst Saf 120:3–9. doi: http://dx.doi.org/10.1016/j.ress.2013.03.002

Andrieu C, Doucet A, Holenstein R (2010) Particle Markov chain Monte Carlo methods. J R Stat
Soc Ser B Stat Methodol 72:269–342. doi:10.1111/j.1467-9868.2009.00736.x

Balakrishnan M, Reibman A (1993) Characterizing a lumping heuristic for a Markov network
reliability model. FTCS-23 twenty-third international symposium on fault-tolerant computing.
doi: 10.1109/FTCS.1993.627308

Buchholz P (2008) Product form approximations for communicating Markov processes. 2008 Fifth
international conference on the quantitative evaluation of systems. doi: 10.1109/QEST.2008.23

http://dx.doi.org/10.1109/RAMS.2010.5448068
http://dx.doi.org/10.1016/j.ress.2013.03.002
http://dx.doi.org/10.1111/j.1467-9868.2009.00736.x
http://dx.doi.org/10.1109/FTCS.1993.627308
http://dx.doi.org/10.1109/QEST.2008.23


Reliability Assessment of a Multi-Redundant Repairable Mechatronic System 423

Diaconis P (2008) The Markov chain Monte Carlo revolution. Bull Am Math Soc 46:179–205.
doi:10.1090/S0273-0979-08-01238-X

Godichaud M, Pérès F, Tchangani A (2010) Disassembly process planning using Bayesian
network. Engineering Asset Lifecycle Management. Springer, London, pp 280–287

Godichaud M, Tchangani A, Pérès F, Iung B (2012) Sustainable management of end-of-life
systems. Prod Plann Contr 23:216–236. doi:10.1080/09537287.2011.591656

Gupta A, Albright SC (1992) Steady-state approximations for a multi-echelon multi-indentured
repairable-item inventory system. Eur J Oper Res 62:340–353, doi: http://dx.doi.org/10.1016/
0377-2217(92)90123-Q

Kemeny JG, Snell JL (1967) Excessive functions of continuous time Markov chains. J Comb
Theory 3:256–278, doi: http://dx.doi.org/10.1016/S0021-9800(67)80074-7

Nahman JM (1984) Iterative method for steady state reliability analysis of complex Markov
systems. IEEE Trans Reliab. doi:10.1109/TR.1984.5221880

Nourelfath M, Châtelet E, Nahas N (2012) Joint redundancy and imperfect preventive maintenance
optimization for series–parallel multi-state degraded systems. Reliab Eng Syst Saf 103:51–60.
doi:10.1016/j.ress.2012.03.004

Papazoglou IA, Gyftopoulos EP (1977) Markov processes for reliability analyses of large systems.
IEEE Trans Reliab. doi:10.1109/TR.1977.5220125

Peres F, Martin C (1999) Design methods applied to the selection of a rapid prototyping resource.
1999 7th IEEE international conference on emerging technologies and factory automation
proceedings, ETFA’99 (Cat No. 99TH8467). doi: 10.1109/ETFA.1999.815386

Strelen JC (1997) Approximate product form solutions for Markov chains. Perform Eval 30:
87–110, doi: http://dx.doi.org/10.1016/S0166-5316(96)00053-3

Taylor PG (1992) Algebraic criteria for extended product form in generalised semi-Markov
processes. Stoch Process Their Appl 42:269–282, doi: http://dx.doi.org/10.1016/0304-
4149(92)90039-S

Vujosevic M, Meade D (1985) Reliability evaluation and optimization of redundant dynamic
systems. IEEE Trans Reliab. doi:10.1109/TR.1985.5221983

White DJ (1993) A survey of applications of Markov decision processes. J Oper Res Soc 44:
1073–1096. doi:10.1057/jors.1993.181

http://dx.doi.org/10.1090/S0273-0979-08-01238-X
http://dx.doi.org/10.1080/09537287.2011.591656
http://dx.doi.org/10.1016/0377-2217(92)90123-Q
http://dx.doi.org/10.1016/0377-2217(92)90123-Q
http://dx.doi.org/10.1016/S0021-9800(67)80074-7
http://dx.doi.org/10.1109/TR.1984.5221880
http://dx.doi.org/10.1016/j.ress.2012.03.004
http://dx.doi.org/10.1109/TR.1977.5220125
http://dx.doi.org/10.1109/ETFA.1999.815386
http://dx.doi.org/10.1016/S0166-5316(96)00053-3
http://dx.doi.org/10.1016/0304-4149(92)90039-S
http://dx.doi.org/10.1016/0304-4149(92)90039-S
http://dx.doi.org/10.1109/TR.1985.5221983
http://dx.doi.org/10.1057/jors.1993.181


Infrastructure Vulnerability Assessment
Toward Extreme Meteorological Events
Using Satellite Data

Yuriy V. Kostyuchenko

Abstract In the chapter is discussed some aspects of the theoretical and
methodological basis for using of remote sensing data of snow cover for hazards
assessment related to meteorological, climatic, hydrological, and hydrogeological
risks over urban areas. Main focus is on the urban infrastructure risk assessment
toward extreme snowstorms using satellite data. A method for determining the
snow cover parameters on remote sensing data base (in particular MOD10A1 and
SWE products, normalized index of snow depth (NDSI), and local meteorological
observations) has been proposed. A method for data integrating from various
sources on the basis of the modified Ensemble Transform Kalman Filter (ETKF)
and Kernel Principal Component Analysis (KPCA) of data distributions has been
proposed. It is shown that the proposed approach has quite high relative accuracy
in comparison with existing methods, algorithms, and products (if MOD10A1 and
SWE products have been used separately) with application for urban agglomeration.
As an example, the approach have been used for analysis of extreme snowfall
in Kiev (March 21–23, 2013). Quantitative assessments of risk indicators and
vulnerability parameters of municipal infrastructure under emergency effects have
been proposed.
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1 Introduction: General Methodological Remarks

Satellite observation for quantitative risk assessment is essentially new research
direction. Existing wide range of sensors with different spectral, spatial, temporal,
and radiometrical resolution provide a near real-time information on whole Earth
system and infrastructure. Validity and reliability of data is quite high with using
of ground calibration data. Considering methodological variety of data sources the
approach to multi-source data coupling is required.

Satellite observation, ground calibration, and modeling data may be represented
in framework of formalization “information—response” in security management
systems. This formalization includes variable I—information obtained from direct
ground measurements and modeling, and HI(ij� )—probability distribution function
of I, where �—state of observed system or object. In general case this state cannot be
determined with full reliability, so we should consider probability distribution Ó(� )
and function HI(ij� ) to describe a priory incompleteness of existing information.
Decision making could be formalized as the reaction to input information by
decision function d(I).

With indeterminate state � or under observed changes of this state the losses could
be formalized as l(d(I), � ). For decision function d the expected losses or risks could
be defined through minimization of optimal decision function, for example, Bayes’
function, d*(I). Risks in this case are determined by implementation of decisions d
from strategy A, based on information received.

Therefore we analyze set of data I (ground and modeling data) and i*—
information, which optimize decision function d to d*, and so minimize correspond-
ing risk. So this additional (in our case—information from satellite observations)
made information I nominally full (I*).

General definition of risk in these terms might be presented as:

R
�
I �; d�� D

Z
min
a2Al .a; �/ p .�/ d� (1)

where l .b; � .i�// D min
a
l .a; � .i�//, and d * (i *) D b, � (i*)—state of observed

system, when HI(ij� ) ¤ 0.
So for optimal security management we need correct models of surface objects

and processes, ground point measurements data and satellite observations.
Using this general formalization we able to construct applied tool for risk analysis

for different cases.
Description here aimed to demonstration of possibility to developing of suitable

theoretic and methodological framework for quantitative estimation of parameters
of meteorological, hydrological, hydrogeological, and climatic related risks in urban
agglomerations using satellite observations of snow cover.

Urban areas are high vulnerable toward varied impacts through uncertain hetero-
geneities of infrastructure, population, buildings distribution, and its dynamic. So
the highest risks measures are characterizing the urbanized agglomerations.
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Natural disasters in such territories influencing to the interlinked spatially
distributed objects and subsystems. Therefore the optimal disaster control system
requires the quick access and updating of spatial data.

Spatially integrated, independent, and external data sources such as the remote
sensing data allows to analyze risk parameters more effectively and so to optimize
disaster mitigation strategies.

The approach presented is aimed to propose the methodologically correct
algorithm for coupling of satellite observation data, snow cover modeling, ground
calibration measurement, and meteorological data to snowstorm risks parameters
estimation in urban agglomerations.

2 Case Study

Studying of the risks associated to emergencies with hydrological, meteorological,
and climatic origin is quite well-known problem. But in the cases of the vulnerability
analysis over the large urban areas, in particular over urban agglomerations, there
are certain methodological features that must be considered for successful decision
of tasks of safety.

It is obvious that emergencies, influence areas of which cover the areas of
mass dwelling of people, infrastructure conglomerations and industrial objects, in
particular large urban agglomerations, have the highest level of risks.

During 22–24 of March 2013 in Kyiv fell a record amount of snow (over
600 mm). The average depth of snow cover in the city during the second half of
the March 22 to end of March 23 was about 50 cm. In parks it was about 35–45 cm,
within built-up area 35–55 cm. There were numerous 65–85 cm height snowdrifts.
After snow removal, 1.2–1.4 m height snow heaps had been accumulated. This was
cause of significant obstacles for the vehicles and pedestrians. In the evening on
March 22 this led to public transport stoppage, local energy interrupting, appreciable
disruptions in provision of local food shops, in particular by bakeries products. And
23rd March this led to the full traffic collapse in the city.

Such course of events led to deterioration in the quality and conditions of citizens
life, namely to deterioration in the quality of nutrition, increasing the number of
hypothermia and injury cases, referrals to hospitals with cold symptoms and exac-
erbations of chronic diseases caused by synoptic stress, dangerous accumulation of
domestic waste, uncontrolled use of reagents for snow melting. Integral impact of
these processes on urban ecosystem is uncertain.

There are possibility to assess as level of risks from the current emergency and
the effectiveness of risk management at the regional level using a set of objective
quantitative indicators. Scilicet we can assess the level of efficiency for regional
strategies of emergency risk management, preparedness of regional systems of
emergency risk management, provision of timely assistance to victims and so on.
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3 Problem-Oriented Model of Snow Cover

Risks are defined by burden indicators of excessive precipitation for engineer
networks, life support systems, and transport infrastructure of the city. In the
simplest case, it is possible to calculate the weight of snow and thus determine
the resources to clean it up, estimate the mass of water that can be formed after
melting, and so on. The total weight of the snow is a dynamic value which depends
on the density of the snow cover. Dynamic density of the snow cover during the
observation interval can be defined as:

�snow D

X

i

.�i�zi C �0�z0/

�zsnow
(2)

where �i, �zi—density and depth of snow cover recorded during the observation
period i; �0, �z0—density and depth of snow cover at the beginning of the
observation period. In this case, dynamic of density defined by set of meteorological
parameters recorded during the observation period i:

�i D �min
i C �

1 �Qp

f max
l

(3)

Here �min
i —initial level of precipitation; �—empirical coefficient (usually is

assumed to be 181); Qp—thermal functional of precipitation depend on temperature,
atmospheric pressure, and humidity; f max

l —maximum precipitation water content
(for predictive calculations is assumed 0.5).

A set of empirical coefficients are determined by the complex of field measure-
ments. Changes of local meteorological parameters are calculated using meteoro-
logical measurements, and spatial distributions of parameters can be calculated by
remote sensing.

In this case, the weight of snow Mij
snow for period i and definite area Sj can be

calculated as:

Mij
snow D

X

ij

zij �ij Sj (4)

Water equivalent of accumulated snow Wij also should be calculated based on
current and forecasted weather conditions, as well as the spatial heterogeneity of
snow cover distribution. In the simplest case it can be represented as:

Wij D �wHs

cs

X

ij

d cc
ij�

0
ıC � T s

ij

� (5)
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where �w—water density; Ts
ij—snow cover temperature; Hs—latent heat of

snow cover (assumed 80 cal/g); cs—snow diathermancy (generally is assumed
0.5 cal/g ı´); dcc

ij —depth of solid cover.
For the calculation of the whole catchment area, it can be used the integrated form

of the water equivalent equation. According to the above equations, and by analogy
with (Anderson 1976), the general equation for catchment areas is:

Wtot D
�
1 � A0
Ai � A0 .Wi �W0/

�
CW0 (6)

In this equation Wtot—total moisture content in the snow cover (water equivalent
of snow cover); W0—the water equivalent of snow cover up to melting; Wi—water
equivalent of snow cover during the observation period i; A0—snow cover area up to
snow melting; Ai—current snow cover area (at the observation period i). So the key
variables are the snow cover area and parameters that determine the water equivalent
of snow cover during the observation period.

In above described approach is used four-component model of snow cover. This
model describes snow cover as a set of ice, water, air, and water vapor fractions. This
model provides more accurate forecasts for dynamic spatial–temporal scenarios,
in contrast to two-component (ice and air) and three-component (ice, water, air)
models. This model can be used for remote sensing, but it should be calibrated by
ground-based measurements.

4 Remote Sensing for Snow Cover Detection and Analysis

The problem of snow cover analysis within urban areas is more complicated than
estimation of snow cover parameters within natural and agricultural landscapes.
Usually there are two key issues: efficiency and spatial resolution. Requirements to
efficiency of information depend on the problem formulation. For standard cases
set of daily parameters of snow cover distribution is enough. But for analysis
of the situation in the city, information should be provided with 5–8 h intervals.
Meteorological satellites provide such efficiency, but they don’t provide a set of
snow cover parameters. In addition, such survey rate supposes measurement of
snow cover parameters during snow accumulation. But it is impossible with using
of optical sensors because dense clouds.

Another problem is the low resolutions (spatial and spectral) of sensors used to
analyze the snow cover parameters. Spatial resolution in several hundred meters
is quite suitable for nature and agriculture landscapes. But urban areas require
higher resolutions (50–150 m). Spectral resolution should provide robustness of
recognition algorithm, i.e., the ability to detecting the snow-covered areas with
significant changes of snow reflectance because human activities (clearing of
snowdrifts, for example).
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Currently there aren’t sensors which can solve these problems and provide
satisfactory outcomes. In this case, the solution is involving data from many sources,
using of ground calibration data and combination of observations with the results of
generate hazards processes modeling, namely energy and mass exchange in natural
systems (in our case it is snow accumulation and melting processes). These data
should be calibrated and properly spatial, temporal, and energy mutually agreed.

The main issues of snow cover assessment using remote sensing traditionally
associated with meteorology and climatology, hydrology, and agriculture. This
range of tasks defines sets of sensors and algorithms used for snow cover analyzing.
MODIS (Hall et al. 2006a) and AMSR-E (Tedesco et al. 2004) products are
most helpful for most applications. So MOD10A1 (Hall et al. 2006b) product of
MODIS sensor provides the daily snow cover parameters with 5-day and monthly
averaging, and with 500 m spatial resolution. SWE product of AMSR-E sensor
provides snow cover water equivalent with 25 km spatial resolution and 5-day
time resolution (Tedesco et al. 2004). These data are well verified, the sensors are
properly calibrated and algorithms allow to calculate the snow cover parameters
distribution with high reliability. Reliability is limited only spatial and temporal
resolutions. They can have disagreements in data distribution.

Above mentioned algorithms are most commonly used for analysis of snow
cover. But their spatial resolution is big obstacle for their using for the analysis of
urban areas. Furthermore, MOD10A1 and SWE products algorithm isn’t robust with
respect to significant changes in snow cover radiation parameters, which are typical
for urban agglomerations because human activities. Therefore, we need additional
sources of information with sufficient spatial resolution (comparable with spatial
scale of urban areas) and with possibility to control parameters of recognition.

By analogy of (Zhang et al. 2008), considering the known trends in the radiation
parameters of the snow cover at different stages of snowmelt (Dozier 1989; Ramsay
1998), and parameters of different types of snow defined by a set of ground-based
measurements, we can offer snow cover normalized index:

NDSI D RŒ0:55�0:65� �RŒ0:75�0:85�
RŒ0:55�0:65� CRŒ0:75�0:85�

� RVIS �RNIR

RVIS CRNIR
(7)

where R is reflection in a certain part of the spectrum.
Based on the analysis of snow reflectance distributions derived from series

of observations, models, ground measurements, and data presented by other
researchers (Zhang et al. 2008) we can determine the threshold value of NDSI
index for areas with snow cover. It is 0.32–0.36 for open areas and 0.28–0.31
for areas covered by dense vegetation. For dense built-up areas index varies in
0.18–0.33 range. It depends on the density of buildings, anthropogenic impact level
(snow cover pollution, snow compactness, etc.), and sensor type. Hence we can set
a rule: if the pixel xij has NDSI index value greater than or equal to the limit value
we refer this pixel to the area Ai covered by snow with maximum reliability. Ratio
of NDSI value and snow cover depth is required for estimation of water equivalent
and can be determined using calibration measurements on a local level.
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Thus we introduce an optical index for determination of snow cover problem-
oriented parameters (which determine the distribution of the relevant variables in the
energy and mass exchange models) to the complex of indicators in microwave and
infrared ranges that exist in the issues of integrated assessment of snow cover using
remote sensing. Of course, the addition of the index does not solve the problem of
information collection during sedimentation, but using of one allow us involve for
analyze the data with any spatial resolution. And it contributes to solve the problem
with improving spectral and spatial resolutions for analysis of snow cover.

5 Data Integration Approach

Next issue is integration of data obtained from different sources, simulation outputs,
meteorological observations, and ground measurements into a single harmonized
data set suitable for analysis of risks. This issue is solved using approach for
harmonization of data distribution. After initial data processing from observations,
measurements, and models we obtain a set of normalized distributions:

�t D At f .xt /C �t (8)

where t is time (modeling step for a set of model data and data set measure for distri-
butions of the meteorological observations). Henceforth we offer analyze data from
modeling, observations, and measurements using the modified Ensemble Transform
Kalman Filter (ETKF) (Wang and Bishop 2003). Using of Kalman Filter to identify
risk parameters is well developed at the NSAU-NASU Space Research Institute.
In particular, effectiveness of this approach for parameters determination of the
hydrological and meteorological hazards is proved in publication (Kravchenko et al.
2008; Kussul et al. 2008].

We assume that the true system state vector x at time k are defined by general
law:

xt D Ftxt�1 C Btut C wt (9)

where Ft—matrix of the system evolution, i.e., simulated impacts on vector xt–1

at time t – 1; Bt—matrix of control measured effects ut the vector x; wt—random
process with covariance matrix Qt. Thus we enter the description of model
distributions Fx and observational data Bt.

Let’s define the extrapolation value of true system state vector using state vector
from the previous step:

bx
t

ˇ
ˇ̌
t�1

D Ftbx
t�1
ˇ
ˇ̌
t�1

C Btut�1 (10)
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General view of covariance matrix for this extrapolation value is:

P
t

ˇ
ˇ̌
t�1

D FtP
t�1
ˇ
ˇ̌
t�1

FT
t C Qt�1 (11)

The difference between the estimated (extrapolation) value of the true system
state vector and obtained one at the appropriate step of modeling can be esti-
mated as:

�bxt D �t � Atbx
t

ˇ̌
ˇt�1

(12)

and covariance matrix of deviation is:

St D AtP
t

ˇ̌
ˇt�1

AT
t C Rt (13)

Next, let’s enter the matrix of optimal factors of Kalman strengthening based on
the covariance matrixes of the extrapolation vector of state and measurements:

Kt D P
t

ˇ̌
ˇt�1

AT
t S�1

t (14)

Now let’s correct extrapolation vector values of the true system state:

bx
t

ˇ
ˇ̌
t

Dbx
t

ˇ
ˇ̌
t�1

C Kt�bxt (15)

Herewith we enter georeferenced filter for distribution of vector xij, which depend
on geographically referenced coordinates (i, j) and doesn’t depend on time t:

�
xij
�
t

D �
xij
�˛
t

D �
xij
�
t
˛ij (16)

The coefficients ˛ are defined by KPCA algorithm (Lee et al. 2004) using rule of
assess of optimal balance for mutual validation function:

CF v D 1

N

NX

jD1
ˆ
�
xj
�
ˆ
�
xj
�T�

NX

iD1
˛iˆ .xi / (17)

where nonlinear function of input data distribution · satisfies the conditions:

NX

kD1
ˆ .xk/ D 0 (18)
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According to (Scheolkopf et al. 1998), and Qkt—averaged values of Kernel
matrix K 2 RN (where [K]ij D [k(xi, xj)]). This matrix consists from the Kernel
vectors kt 2 RN , while [ki]j D [kt(xt, xj)]. Kernel matrix is calculated according to
the modified rule (Christianini and Shawe-Taylor 2000):

kt .xi ; xt / D
D
�
xj
j;t

�
1 � �j;i

�xj
E

(19)

where �—empirical parameters chosen according to the model of the phenomena
(Villez et al. 2008).

If the filter is used with mutual coordination of data sets, we can propose a matrix
Pa for the analysis of actual errors based on a errors matrix of extrapolated value of
the system state vector Pf and covariance matrix of observational data R:

Pa D Pf � Pf AT
�
APf AT C R

��1
APf (20)

So we get a tool for optimized calculation of Kalman strengthening optimal
coefficients matrix and correction of extrapolation values of the true system state
vector based on aggregate modeling and observations data.

After implementation of data integration procedure we recalculate the parameters
using algorithm:

x
.ij /
t D

nX

mD1
wij

�
bxmt
�
xmt (21)

where wij
� Qxmt

�
—weighting factor is determined by the minimum (Cowpertwait

1995):

min

8
<

:

nX

mD1

X

xmt 2Rm
wij

� Qxmt
��
1 � xmt

bxmt

�2
9
=

;
(22)

where m—the number of the experiments; n—number of data sources; xm
t —

distribution of observations; Rm—data set; bxmt —corrected extrapolation values of
the true system state vector based on aggregate modeling and observations data.

Thereby we get a regular spatial distribution of measured parameters over a local
area based on remote sensing, the model simulation and regional meteorological and
ground calibration measurements with a grid that corresponds to the distribution of
measured data and have significantly better resolution than the original grid.

6 Risk Assessment Method

Indicators of the spatial distribution of snow and ice mass accumulated within the
urban area, their water equivalent, indicators of transport infrastructure burden, and
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Fig. 1 Dynamic of transport infrastructure burden (Ltran)

their temporal dynamics can be considered as a measures of risk and which can be
quantitatively assess by remote sensing.

In the proposed approach, infrastructure burden, for example, transport infras-
tructure Ltran

i , can be defined as the ratio of the snow mass Mij
snow accumulated

within area during a time interval to the transport network density in a given area
(km/km2) Rj:

Ltran
i D Mij =Rj (23)

The dynamic of transport infrastructure burden is presented in Fig. 1.
Thus, we transform the burden indicators to the spatial and temporal distributions

of parameters which can be determined by remote sensing with ground validation
and meteorological measurements.

Spatial distribution of snow cover and its integrated density and depth can be
assessed using remote sensing. Similarly, we can use remote sensing for clarify the
distribution of urban infrastructure, in particular the spatial distributions of Rj, which
determines the density of the transport network.

According to the algorithms we calculated set of indicators and estimated total
snow amount that created obstacles for the Kyiv city infrastructure. This amount
is about 61.7 million tons. Considering total length of transport infrastructure
(1675 km) (excluding yard passages and pedestrian areas) and its area (868 km2)
with significant heterogeneity (transport infrastructure density ranges from 1.43 to
2.76 km/km2 and average is about 1.85 km/km2), transport infrastructure burden
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Fig. 2 The distribution of snow water equivalent (Wtot) accumulated during March 22–24 snowfall

was 2,742,100 tons totally or 1,700 tons of snow per 1 km (approximately 9.6 m3 of
snow per meter of road including curbs, sidewalks, etc.). So we had one of the most
extreme meteorological and climate emergencies in Kiev in the all observations
history.

Approximately 45–50 % of transport infrastructure burden had been reduced till
the second half of March 24 (i.e., within 48 h since emergence begun and 4–6 h
after active phase of impact ended. Generally it is a good. But acceptable level
of impact reducing (<12–15 % of the peak) (NDRF 2011; NIPP 2009] had not
been achieved in 3 days. Thus necessary conditions for recovering of the normal
society functioning had not been created. For example, during 4 days (till active
snow melting) snow hadn’t been removed outside the city in adequate quantities. It
created additional threats of flooding and urban drainage systems overloading. This
shows absence of adequate and/or imperfection of available mitigation strategies.

Also it should be noted that after March 22–24 snowfall it has been accumulated
snow amount with approximately 44.5 million m3 water equivalent (see Fig. 2) or
51.5 thousand tons of water per km2. It creates significant threats for a drainage
systems and flood safety. The first problems in urban drainage systems have been
fixed on March 28, i.e., on the fifth day after emergency begun and on the second
day of active snow melting.

Generally the presented data agree with the data of daily observations by AMSR-
E/Aqua sensor (Daily L3 Global Snow Water Equivalent) (Tedesco et al. 2004)
(42.5 million tons for March 24–25) and with data of averaged 5-day distributions
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AMSR-E/Aqua (5-Day L3 Global Snow Water Equivalent) (Tedesco et al. 2004)
(36.5 million tons including drainage, melting, and evaporation). Thereby relative
error (difference) for mean of our estimate is 4–6 % compared to daily measure-
ments of AMSR-E and 18–20 % compared to the 5-day averaging. It has some
differences with average estimates of errors and disagreements based on snow
cover normalized index (NDSI) and MOD10A1 and SWE products described in
(Zhang et al. 2010). According to its data, the average disagreement in estimates
for China ranges from 2.5 to 15 % depending on averaging. But this disagreement
in estimates (2.5 and 4.6 %) is clear because our estimates have been carried out
for the urban agglomerations and estimates for China mainly for landscapes and
farmland. Differences related to land cover changes are reduced because averaging
multiday sets, but the overall difference related to the low resolution remains
large. Thereby, the method for assessing the snow cover parameters based on
complex using of remote sensing, including MOD10A1 and SWE products, snow
depth normalized index NDSI, local meteorological observations, ground-based
calibrations is characterized by high relative accuracy in comparison to existing
methods, algorithms, and products (if MOD10A1 and SWE products have been
used separately) for the urban agglomeration analysis.

Separately we should consider the methodology for assessing the overall risk of
studied events. Let’s consider parameters of events frequency depending on a fixed
frequency, spatial and temporal heterogeneity of processes that are cause of threats
and levels of dangerous impacts. The typical approach estimates event probability
based on average frequency of its occurrence 
 defined by the set of all available
observations i:


 D
nX

i

�i

n
! p (24)

In this case, the average estimated probability will be from 0.007 to 0.01 (i.e.,
event recurrence ranges within once in every 100–140 years). We propose to use a
more sophisticated approach based on modified Omori’s law (Ogata 1983). It takes
into account the complex interdependence of spatial and temporal distributions of
the phenomena:

� .t; x; y/ D 
C
X

j;t

 
F 0j .x; y/�
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�p C
�
x � xj Iy � yj

� � Sj
�
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�
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�
˛Lj

� C d

!q

! p

(25)

In this equation p, q, ˛—empirical coefficients; L—event impacts (e.g., extreme
amount of precipitation caused by unpredictable untypical meteorological condi-
tions for this season) at the point of area Sj with coordinates x, y at time t; F0

j (x, y)—a
stationary distribution of stress burden based on long-term observations; d—scaling
factor defined by scale of risk generating processes (e.g., cyclone scale which can be
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determined by remote sensing). Using this approach we estimated event probability
in range from 0.039 to 0.052 (i.e., event recurrence ranges within once in every
19–25 years). Also such assessments should consider climate changes not consid-
ered in our case.

7 Concluding Remarks

Satellite observation can be correct source of data for quantitative risk analysis.
Spatially integrated, independent, and external data sources such as the remote
sensing data allows to analyze risk parameters more effectively and so to optimize
disaster mitigation and security management strategies.

Analysis of urban agglomeration requires new algorithms for correct data
fusions from various sources: simulation, ground measurements and meteorological
observations to obtain operational reliable situational and predictive estimations of
risks with corresponding spatial and temporal resolutions.

Remote sensing data can be and should be used for control and monitoring of
hazards over urban areas through improving of security management efficiency.
Using problem-oriented algorithms for remote sensing data interpretation combined
with meteorological observations, energy and mass exchange simulation and ground
calibration measurements provide high accuracy. For risk assessments (e.g., urban
infrastructure vulnerability, urban landscapes burden, moisture capacity assessment)
this accuracy is higher compared with traditional approaches (Groisman and Lyalko
2012).

Emergency risks (e.g., hydrological, meteorological, and climatic emergency)
and urban infrastructure vulnerability indicators currently are significantly underes-
timated. It leads to absence of adequate and/or imperfection of available mitigation
strategies as at national and local levels. Discrepancy in preparation, risk manage-
ment, and mitigation of emergency impacts with real complex risks can lead to
“network” disasters (Kostyuchenko et al. 2012), which are caused by the systemic
nature of the risks (Ermoliev and von Vinterfeldt 2012).

The above emergences show inefficiency of simplified decisions based on simple
balance assumptions when input data and expected results have non-normal distri-
bution (what we usually observe in extreme cases). Only an integrated modeling of
entire set of deterministic and stochastic phenomena and processes relationships
as risk generators can be useful for developing of effective risk management
strategies. Only complex of strategic decision “ex-ante” (e.g., various engineering
and structural measures) and adaptive decision “ex-post” (e.g., insurance and
financial vehicles) provides flexible robust solutions (Ermoliev et al. 2000).
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Abstract The method of analysis of multisource data statistics is proposed for
extreme forecasting and meteorological disaster risk analysis. This method is
based on nonlinear kernel-based principal component algorithm (KPCA) modified
according to specific of data: socioeconomic, disaster statistics, climatic, ecological,
infrastructure distribution. Using this method the set of long-term regional statistics
of disasters distributions and variations of economic activity has been analyzed. On
these examples the method of obtaining of the spatially and temporally normalized
and regularized distributions of the parameters investigated has been demonstrated.
Method of extreme distribution assessment based on analysis of meteorological
measurements should be described. Analysis of regional climatic parameters distri-
bution allows to estimate the probability of extremes (both on seasonal and annual
scales) toward mean climatic values change. The way to coherent risk measures
assessment based on coupled analysis of multidimensional multivariate distributions
should be described. Using the method of assessment of complex risk measures
on the base of coupled analysis of multidimensional multivariate distributions of
data the regional risk of climatic, meteorological, and hydrological disasters were
estimated basing on kernel copula semi-parametric algorithm.
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1 Introduction

Complex analysis of disaster distributions is necessary for correct assessment of its
impact to vulnerability of socioeconomics and socio-ecological security.

Analysis and mapping of spatial and temporal distributions of heterogeneous dis-
asters is very complicated problem, as well as the direct comparison of distributions
is not correct approach. First, the different types of disasters have different long-
term trend. Second, drivers of different disasters have different spatial and temporal
scales and variability.

Problem of construction of correct techniques of complex regional risk assess-
ment requires to estimate an integral threat of all disasters in the area studied.
It requires to determination of measure of statistical distributions of observations
(units of frequency of the investigated phenomena), which would be invariant
toward data properties.

Problem of data analysis in context of disaster-induced socio-ecological risks
is often connected with lack of reliable long-term series of catastrophic events
observations, socio-ecological parameters, and natural systems state (Bartell et al.
1992; Kostyuchenko and Bilous 2009). According the general estimations based
on satellite observations and statistical assessment the official data reliability on
separate fields are: land-use 88–92 % (on the subregional and local scale 92–97 %),
agricultural crop distribution 72–80 %, water use 92–95 %, fertilizer use 50 %
(on the subregional and local scale 60–70 %), frequency and intensity of disasters
85 % (on the subregional and local scale 89–93 %). This level, and especially
these variations of reliability, is not sufficient for correct integrated assessment. So,
correct and regular parameter statistics is important for construction of adequate
risk function and also for risk management strategies development (Kostyuchenko
and Bilous 2009). Demonstration of way of observation data regularization for
normalization of data reliability is the purpose of first item of this chapter.

Forecast based on multiscale analysis is another problem discussed. Main
problem of local and regional climate analysis and predictions is the how the climate
parameters mean values change is reflected in its extreme values distribution. We
need a correct algorithm to calculate the most probable local extreme variations
toward the distribution of mean values known from climate models, and based on
geo-referred long-term observations. Deterministic approach based on climate mod-
els requires huge sets of heterogeneous data about climate system on regional scale.
This data usually is unavailable and these types of models usually characterizes by
high uncertainties. Our understanding of climate system and its local features is
incomplete, so it is possible to calculate adequate only the mean values distributions
with low spatial resolution (Romdhani et al. 1999).

Long- and mid-term variations of mean values of climatic parameters (first
of all, the mean air temperature) we able to calculate with sufficient confidence
using multiscale climate models and multidimensional sets of the observation data
(meteorological measurements, satellite observations) (Romdhani et al. 1999; Villez
et al. 2008). At the same time regional disaster risk depends on extreme values
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distribution. Therefore the analysis of stable correlations between well-calculated
mean values distributions and extreme values is necessary for regional disaster risk
analysis. So, regional and local analysis of behavior of extreme climatic values
distributions is one of core elements of climate-related disaster risk analysis.

Multivariate character of multidimensional distributions of climate parameters
generates high uncertainties, which makes impossible to use deterministic models.
The system is not ergodic in rigorous sense. So the using of parametric methods is
also limited.

To estimate a regional risk measure we need an approach to understand the
complex systemic interrelations between distributions of mean and extreme
values of climatic parameters and disasters frequency and intensity. Therefore
development of alternative ways of analysis of multivariate distributions is the next
core element of regional climate-related disaster risk analysis.

Here we propose to calculate the most probable distributions of extreme values of
climate parameters toward the mean values change on regional scale using modified
kernel-based nonlinear principal component analysis (KPCA) algorithm (Global
Summary of the Day NOAA/NESDIS; Scheolkopf et al. 1998). Further, using the
method of assessment of complex risk measures on the base of coupled analysis of
multidimensional multivariate distributions of data, we try to estimate the regional
risk of climatic, meteorological, and hydrological disasters basing on kernel copula
semi-parametric algorithm.

2 Regional Risk Analysis Based on Multisource Data
Statistics of Disasters

As the first step the approach to regional risk analysis based on multisource data
statistics of disasters should be described. The method of analysis of multisource
data statistics is proposed. This method is based on nonlinear kernel-based principal
component algorithm (KPCA) modified according to specific of data: socioeco-
nomic, disaster statistics, climatic, ecological, infrastructure distribution.

Using this method the set of long-term regional statistics of disasters distributions
and variations of economic activity has been analyzed. On these examples the
method of obtaining of the spatially and temporally normalized and regularized
distributions of the parameters investigated has been demonstrated.

Therefore the robust technique of observation data regularization for normaliza-
tion of data reliability is proposed. The technique utilize data from different sources,
different nature, and with different metrics. This approach allows to calculate
regularized distributions in units invariant toward data properties and quality. We
can analyze simultaneously different types of disasters and driving forces, regardless
of spatial and temporal scales and heterogeneities using this approach.

Multiscale analysis of regional disaster distribution trends has been done for
separate areas: using approach proposed the natural and technological disaster
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statistic for period 1960–2010 was analyzed. On this statistics some trends were
demonstrated. In particular, detected changes of frequency and intensity of natural
disasters probably connected with impact of climate and environmental change both
on global and regional levels. Determination of regional features of global climate
impacts through disaggregation of the climate models is the direction of separate
calculation using advanced stochastic approaches and algorithms.

The important vulnerability indicator is the socioeconomic reaction to increasing
of dangerous impacts, which may be assessed by integrated indicative parame-
ters. As the indicative decision-oriented parameters the indexes of damage (IoD)
and vulnerability (IoV) have been proposed, calculated and analyzed. Index of
damage reflects disasters losses related to regional economic parameters. Index
of vulnerability includes also population distribution change. Distribution of these
indexes shows that sustainable economic growth and implementation of adequate
risk assessment and management strategies allow to reduce vulnerability of society
toward natural catastrophes even with increasing of its frequency, intensity, and
direct losses. Conclusions on efficiency of risk management regional strategies
have been done. In particular, the case study demonstrates urgent necessity of
implementation of systemic strategies of assessment and management of disaster
risks.

2.1 Methodological Remarks

Correct statistical analysis requires the set of data xi with controlled reliability,
which reflects distribution of investigated parameters over study area during whole
observation period (taking into account variances of reliability of observation and
archive data xt). Set of observation data xt (xt 2 Rm) consists of multi-source data:
historical records, archives, observations, measurements, etc., including data with
sufficient reliability xj (xj 2 Rm), where j D 1, : : : , N. The set xt includes also
satellite observed and detected indicators. Problem of determination of controlled
quality and reliability spatial–temporal distribution of investigated parameters xi

might be solved in framework of tasks of multivariate random processes analysis
and multidimensional processes regularization (Raiffa and Schlaifer 1968).

2.2 Data Regularization Algorithm

Required regularization may be provided by different ways. If we able to formulate
stable hypothesis on distribution of reliability of regional archives data in the frame-
work of defined problem we may to propose relatively simple way to determine
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investigated parameters distributions x(x,y)
t towards distributions on measured sites

xm
t basing on (Fowler et al. 2003):

x
.x;y/
t D

nX

mD1
wx;y

� Qxmt
�
xmt (1)

where weighting coefficients wx;y
� Qxmt

�
determined as:

min

8
<

:

nX

mD1

X

xmt 2Rm
wx;y

�
Qxmt
��
1 � xmt

Qxmt

�2
9
=

;
(2)

according to (Cowpertwait 1995). Here m—number of records/points of mea-
surements or observations; n—number of observation series; xm

t —distribution
of observations data; Rm—set (aggregate collection) of observations; Qxmt —mean
distribution of measured parameters.

This is the simple way to obtain a regular spatial distribution of analyzed
parameters over the study area, on which we can apply further analysis, in particular
temporal regularization.

Further regularization should take into account both observation distribution
temporal nonlinearity (caused by imperfection of available statistics) and features of
temporal–spatial heterogeneity of data distribution caused by systemic complexity
of studied phenomena—natural and technological disasters. According to Mudelsee
et al. (2001), Lee et al. (2004), and Villez et al. (2008) the kernel-based nonlinear
approaches are quite effective for analysis of such types of distributions.

Proposed method is based on modified kernel principal component analysis
(KPCA) (Scheolkopf et al. 1998; Mika et al. 1999; Romdhani et al. 1999). In
the framework of this approach the algorithm of nonlinear regularization might be
described as following rule:

xi D
NX

iD1
˛ki

Qkt .xi ; xt / (3)

In Eq. (3) the coefficients ˛ selected according to optimal balance of relative
validation function and covariance matrix, for example, as (Lee et al. 2004):

CF v D 1

N

NX

jD1
ˆ
�
xj
�
ˆ
�
xj
�T �

NX

iD1
˛iˆ .xi / (4)

where nonlinear mapping function of input data distribution · determined as
(Scheolkopf et al. 1998):

NX

kD1
ˆ .xk/ D 0 (5)
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and Qkt—is mean values of kernel-matrix K 2 RN ([K]ij D [k(xi, xj)]). Vector com-
ponents of matrix determined as kt 2 RN ; [ki]j D [kt(xt, xj)]. Matrix calculated
according to modified rule of (Christianini and Shawe-Taylor 2000) as: kt .xi ; xt / DD
�
xj
j;t

�
1 � �j;i

�xj
E
, where �—empirical parameters, selected according to the classi-

fication model of study phenomena (Villez et al. 2008).
Using described algorithm it is possible to obtain regularized spatial–temporal

distribution of investigated parameters over whole observation period with rectified
reliability (Mudelsee et al. 2001).

2.3 Regularized Data: Analysis of Distributions

Proposed regularization algorithm has been applied to analysis of disaster statistics
and obtaining of smoothed distributions of frequency of disasters, climatic and
socioeconomic parameters for period 1960–2010 over study area (Ukraine) during
the observation period (1960–2010).

It makes possible to calculate spatially and temporally regularized distributions of
the parameters studied, to analyze interlinks and correlations between disaster dis-
tributions and, therefore, to assist a regional security and to calculate corresponding
risk parameters.

For the area studied for period 1960–2010 has been analyzed wide group of
natural disasters. Was used international classification of disasters according to
(Guha-Sapir et al. 2011) with some minor variations caused by national classifi-
cation features and data availability. For analysis were used data from international
surveys and national reports (Global Summary of the Day NOAA/NESDIS; USSR
National Economy 1970, 1981; State Budget of USSR 1987, 1989; National report
2004, 2006, 2010; Guha-Sapir et al. 2011).

On the Figures 1 and 2 presented calculated according the described algorithm
resulting distributions of mean probability of various types of disasters per year per
1,000 km2 during observation period.

The distributions presented may be analyzed as the multidimensional multivariate
statistical distributions, and the relevant correlations might be calculated.

From viewpoint of risk assessment it is important to determinate the losses
caused by disasters. Analysis of time-series of regularized geo-referred data makes
possible to calculate few interesting distributions. First of all it is the distribution of
direct losses from natural disasters in Ukraine, World and Europe (EU-27 region1),
calculated in USD per square km (Fig. 3).

1EU-27: Austria, Belgium, Bulgaria, Cyprus, the Czech Republic, Denmark, Estonia, Finland,
France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, the
Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, and the United
Kingdom.
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Fig. 1 Natural and technological disasters probability distribution over study area compared with
average world distributions

The distribution presented demonstrates essential increasing of the losses, which
is connected with registered increasing of frequency and intensity of disasters,
as well as with increasing of the damaged infrastructure cost. Aiming to risks
assessment and to include economic values, it is interesting to calculate relative
indexes (Fig. 4).

This index (Fig. 4) was calculated using evident algorithm:

.IoD/i D hLdnii =.pCGDP/i (6)

where i—time step (in our case—calculated year); <Ldn>—estimated direct losses
form disaster d of separate type n; pCGDP—per capita GDP (World Bank 2013).
The distribution presented demonstrates that relative natural disasters damage
(calculated per 1,000 km2) during 1990 is slightly increasing, which is prob-
ably connected with impact of climate change. Common trend in world and
Europe demonstrates decreasing of IoD, which is connected with economic grows
(increasing of economic sustainability toward catastrophic events) and successful
implementation of risk management strategies. At the same time on the territory of
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Fig. 2 Distribution of probability of separate types of natural disasters

Ukraine since 1980s and especially since 1990s IoD is increasing dramatically. It is
connected with economical degradation and absence of adequate systemic strategies
of risk management.

Also interesting to analyze separately the dimensionless index of vulnerability,
which reflects losses related to GDP and population changes. This index can be
calculated by simple formula:

.IoV /i D hLdnii =.pCGDP/i .PS/i (7)

where i—time step (in our case—calculated year); <Ldn>—estimated direct losses
form disaster d of separate type n; pCGDP—per capita GDP (World Bank 2013);
PS—population density (per square S) (State Statistics Service of Ukraine 2007).

The distribution presented is more evidently reflects the fact that sustainable
economic growth and implementation of adequate risk assessment and management
strategies allow decrease vulnerability of society toward natural catastrophes even
with increasing of its frequency, intensity, and direct losses. Distribution of IoV for
Ukraine demonstrates the necessity of implementation of systemic strategies of risk
assessment and management (Fig. 5).
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Fig. 3 Distribution of estimated direct losses of natural disasters

2.4 Discussion and Analysis

Approach proposed allows to calculate regularized distributions in units invariant
toward data properties and quality. Using this approach it is possible to analyze
simultaneously different types of disasters and driving forces, regardless of spatial
and temporal scales and heterogeneities.

Number of natural disasters both average in the world and in separate regions is
increasing. Mean probability of natural disaster calculated for square is increased
during last 60 years to two times, and during last 20 years approximately to 60 %.
Mean world losses is increased to two times, and to 70 % during last 20 years. In
Ukraine the disaster losses is increased during last 20 years to 68 %. So intensity
of natural disasters impacts is increased as over the world as well over Ukraine.
Detected changes of frequency and intensity of natural disasters probably connected
with impact of climate and environmental change both on global and regional levels
(Groisman and Lyalko 2012). Determination of regional features of global climate
impacts through disaggregation of the climate models is the direction of further
investigations using advanced stochastic approaches and algorithms (Warga 1972;
Ermoliev and Hordijk 2006; Guha-Sapir et al. 2011; Ermoliev and Winterfeldt
2012).
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Fig. 4 IoD (index of damage): distribution of the estimated losses related to per capita GDP

The important indicator is the reaction to increasing of dangerous impacts, which
may be assessed by indexes of damage and vulnerability. Index of damage reflects
disasters losses related to regional economic parameters. Index of vulnerability
includes also population distribution change. Distribution of these indexes shows
that sustainable economic growth and implementation of adequate risk assessment
and management strategies allow to reduce vulnerability of society toward natural
catastrophes even with increasing of its frequency, intensity and direct losses.
Ukrainian case demonstrates urgent necessity of implementation of systemic strate-
gies of assessment and management of disaster risks.

3 Coherent Risk Measures Assessment Based on the Coupled
Analysis of Multivariate Distributions of Multisource
Observation Data

As the next step of analysis the coherent risk measures assessment based on the
coupled analysis of multivariate distributions of multisource observation data we
propose to describe.
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Fig. 5 IoV (index of vulnerability): distribution of the estimated losses related to per capita GDP
and population density

First of all the method of extreme distribution assessment based on analysis of
meteorological measurements should be described. Basing on KPCA the method
of long-term regional analysis of statistics of meteorological measurements and
climatic parameters has been demonstrated. The spatially and temporally normal-
ized and regularized distributions of the parameters investigated have been obtained.

Further analysis of regional climatic parameters distribution allows to estimate
the probability of extremes (both on seasonal and annual scales) toward mean
climatic values change. Therefore the most probable distributions of extreme values
of climate parameters toward the mean values change have been calculated on
regional scale.

Next the way to coherent risk measures assessment based on coupled analysis of
multidimensional multivariate distributions should be described. Using the method
of assessment of complex risk measures on the base of coupled analysis of
multidimensional multivariate distributions of data the regional risk of climatic,
meteorological, and hydrological disasters were estimated basing on kernel copula
semi-parametric algorithm.
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3.1 Extreme Distribution Assessment Based on Analysis
of Meteorological Measurements

Existing climate models, including reanalysis, has a spatial resolution 300–500 km
(Kalnay et al. 1996; Parry et al. 2007). However for regional and local risk analysis
we need resolution less than 100 km: about 40–70 km (Pflug and Roemisch 2007).
Downscaling algorithms allow to obtain correct mean values distribution with
necessary spatial grid, but not extreme values distributions. At the same time the
density of meteorological stations and measurement points is about 30–50 km in
developed regions and populated areas. So we have enough data for correct analysis.
The problem is to construct a correct approach directed not to global but to regional
and local analysis of data.

So this consideration directed to determination of explicit form of corresponding
between known mean and studied extreme values of climatic parameters. In this case
we should analyze probability distribution of set of data of meteorological measure-
ments. So for every interval [a, b] should be assessed probability Pr[a � X � b] of
random value X will be belong to [a, b]. Let use the non-descending probability
function F(x) of simple event p(xi):

F.x/ D Pr ŒX � x� D
X

xi�x
p .xi / (8)

lim
x!�1F.x/ D 0; lim

x!1F.x/ D 1 (9)

The task in this case may be formulated as determination of probability
distribution:

P.x/ D Pr .X > x/ (10)

And the corresponding probability distribution function F(x), with Ø ! 1.
For this purpose the distributions of meteorological measurements have been

analyzed using the KPCA algorithm (Kostyuchenko et al. 2013b). Analysis was
directed to determination of relationships between mean and extreme values
distributions.

The area studied includes 15 meteorological stations in the site 250 � 250 km
with center on 50.5N, 26E (Northern-West part of Ukraine, Ukrainian Polissya:
Prypiat River basin), for the period 1979–2010. Mean max and min detected values
of daily air temperature have been analyzed, as well as the monthly distributions of
precipitation.

As the analysis demonstrates, over the whole 30-year period average annual
distribution of extremes toward mean temperatures is close to normal. This is
obvious result, which is interesting for strategic planning of adaptation, but is
not useful for local disaster risk analysis. Climate-related disaster drivers have a
seasonal nature, so extremes should be analyzed on the seasonal scale. The results
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Fig. 6 Distribution of changes of max and min winter (December–February) air temperatures
toward the change of mean air temperature in the study area 1990–2010

obtained (Figs. 6, 7, 8, 9) demonstrate significant deviation of seasonal distributions
from the normal low. Most part of extremes distributions could be described by
exponential distributions, and separate cases (for example, in spring season) are
close to Pareto distribution.

Therefore we obtain a relation for determination of distribution of most probable
values of temperature extremes toward known mean values. So it makes possible to
estimate corresponding risks more correctly.

3.2 Coherent Risk Measures Assessment Based on Coupled
Analysis of Multidimensional Multivariate Distributions

For assessment of regional climate-related disaster risk measures we propose to use
the analysis of statistics of climate mean and extreme variations and multisource
disasters records.

The main issue of such type of analysis is the quantitative estimation of risk
measure in multidimensional multivariate case. It requires the correct assessment
of every components of loss function distribution (Venter 2002). But risks in
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Fig. 7 Distribution of changes of max and min spring (March–May) air temperatures toward the
change of mean air temperature in the study area 1990–2010

complex multi-component systems could not be described by linear superposition
of scalar functions on the quite long time intervals (Ermoliev and Hordijk 2006).
The complex temporal–spatial heterogeneities and significant uncertainties should
be analyzed (Ermoliev and Hordijk 2006).

For analysis of the studied phenomena on intervals, in which its behavior differs
essentially from normal, we propose to use a following copula (Genest et al. 1998):

C .u1; u2/ D exp

�
�V

�
� 1

log u1
;� 1

log u2

��
(11)

V .x; y/ D
1Z

0

max

�
!

x
;
1 � !
y

�
dH .!/ (12)

where

H .!/ D
8
<

:

0 ! < 0

1=2.! .1 � !//�1�˛ .!�˛.1 � !/�˛/ 1
˛�2 d! 0 � ! < 1

1 ! � 1

(13)
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Fig. 8 Distribution of changes of max and min summer (June–August) air temperatures toward
the change of mean air temperature in the study area 1990–2010

For analysis of interdependent (or weak dependent) phenomenon, for example,
hydrological disasters, we can use form 0 �! < 1.

This formalization allows better understand interdependencies between climatic
parameters and disaster distribution on regional scale, and additionally allows to
integrate regularization algorithms for uncertainty reducing (Juri and Wuthrich
2002).

For further analysis of behavior of risk measure dependent of number of
climatic, ecological, etc., independent heterogeneous parameters we propose other
algorithm. This method based on approach to coupled nonparametric analysis of
multidimensional multivariate distributions by kernel copulas (Chen and Huang
2010). Using this approach it is possible to reduce uncertainties and errors connected
with differences of measurement intervals, and to smooth gaps in data distributions
(Embrechts et al. 2003).

If Ku,h(x) is kernel-vector for u 2 [0; 1] on interval h> 0 we can propose according
(Chen and Huang 2010):

Ku;h.x/ D K.x/ .a2 .u; h/ � a1 .u; h/ x/
a0 .u; h/ a2 .u; h/ � a21 .u; h/

(14)
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Fig. 9 Distribution of changes of max and min autumn (September–November) air temperatures
toward the change of mean air temperature in the study area 1990–2010

al .u; h/ D
u
hZ

u�1
h

t lK.t/dt ; l D 0; 1; 2 (15)

Also in this case can be defined functions Gu,h(t) and Tu,h:

Gu;h.t/ D
tZ

�1
Ku;h.x/dx (16)

Tu;h D Gu;h

�
u � 1
h

�
(17)

Distribution function of the complex parameter will be determined by distribution
functions of studied parameters X1, X2, : : : , Xn using copula C:

F .x1; x2; : : : ; xn/ D C .F1 .X1/ ; F2 .X2/ ; : : : ; Fn .Xn// (18)
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Table 1 Correlation between number of disasters Nd and climatic
parameters: mean air temperature Tmean, max detected air tempera-
ture Tmax and the “reduced max temperature” Tred on different time
intervals (Kostyuchenko et al. 2013a)

Climate parameters

Observation periods Tmean Tmax Tred

1960–1990 0.7 0.88 0.95
1990–2010 0.73 0.9 0.98
1960–2010 0.69 0.85 0.95

Distribution of extremes of studied parameters will be described by distribution
functions Fi(x) corresponding to threshold xi> ui as:

bF i.x/ D 1 � Nui

n

 

1Cb�i
x � ui
b̌
i

!� 1

b�i
; i D 1; 2 (19)

where �—smoothing parameter, ˇ—interdependence parameter (ˇ 2 [0, 1]; ˇD 0
for independent distributions, and ˇD 1 for absolutely dependent distributions).

In this case the optimal kernel copula estimator may be presented as (Kalnay et al.
1996; Kostyuchenko et al. 2013a):

bC .u; v/ D n�1
nX

iD1
Gu;h

 
u � bF 1 .Xi1/

h

!

Gu;h

 
v � bF 2 .Xi2/

h

!

� .uTu;h C vTu;h C Tu;hTv;h/ (20)

For the area studied on the base of multi-year statistics it was determined an
“optimal correlator” between air temperature and disaster frequency: “reduced max
temperature” (Kostyuchenko et al. 2013a):

Tred D

0

B
BBBB
@
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1
N

NX

nD1
Tn
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1

C
CCCC
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0
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nD1
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1

C
CCCC
A

(21)

Here N—number of meteorological measurements, Tn—measured air tempera-
ture, Tmax—max registered air temperature.

Average correlation coefficients of Tred with quantity of disasters lie in interval
0.95–0.98, and is higher than correlation with mean temperature (0.69–0.73), and
max temperature (0.85–0.9) for the period 1960–2010. Correlation coefficients are
presented in Table 1.
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Therefore the approach proposed is more correct relative to analysis with
traditional values. Depending on time interval the multi-component correlation
obtained allows increase accuracy of assessment of disasters frequency up to 22 %
(11–34 %). This is essential value for mid- and long-term regional forecasting.

4 Concluding Remarks

Using multiscale approach it may be proposed an algorithm to calculate regularized
distributions in units invariant toward data properties and quality. Using this
approach it is possible to analyze simultaneously different types of disasters and
driving forces, regardless of spatial and temporal scales and heterogeneities.

The results obtained are demonstrate the possibility of determination of explicit
form of extremes distributions (which could be interpreted in terms of probability)
on the base of spatial–temporal analysis of meteorological data. Basing on the
results of climate modeling and reanalysis, and using the formalizations proposed it
is possible to analyze disaster drivers and calculate multiscale regional risks.

Basing on existing ensemble of observation data it is possible to suppose that
extremes distributions could be described by exponential distributions (Schmidt and
Makalic 2009). In separate cases (for example, in spring season) this distribution is
degenerates (Lawless and Fredette 2005) to Pareto distribution (Arnold 1983).

Such form of long-term approximations nonetheless not allows to conclude that
observed processes are ergodic. It amount that capability of parametric methods for
disaster analysis and forecasting is essentially limited, and we should focusing on
non-parametric and semi-parametric approaches (Buhlmann 1970; Goovaerts et al.
2003; Kostyuchenko et al. 2013a).

The studied shifts of extreme values distribution toward mean values change
is not linear and non-normal on regional scale. For example, increasing of mean
air temperature to 1 ıC leads to increasing of max temperature to 2.5–4 ıC
correspondingly. This is essential driver for disasters (Parry et al. 2007). Besides,
this is important factor of environmental and socio-ecological security (Schmidt
and Makalic 2009; Grigorieva and Matzarakis 2011; Kostyuchenko et al. 2013a).

Also important to note that in view of current regional temperature change about
0.91 ˙ 0.27 ı´, we entering to zone of increasing of risks: we still in period of high
risk of spring season, entering into high risks of autumn and winter seasons, and
closely to zone of max risk of summer season. It should be considered in policy
making.
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Time-Dependent Reliability Analysis
of Corrosion Affected Structures

Mojtaba Mahmoodian and Amir Alani

Abstract Incorporating the effect of corrosion into the reliability analysis of
a structure is of paramount importance. Since deterioration due to corrosion is
uncertain over time, it should ideally be represented as a time-dependent proba-
bilistic (i.e. stochastic) process. For a more accurate reliability analysis and failure
assessment, the multi-failure mode analysis of structures is explained in this chapter.

Sensitivity analysis is also discussed as a key part of reliability analysis from
which the effect of different variables on service life of the structure can be
investigated.

Worked examples of some structures such as cast iron water mains, concrete
sewers and post-tension concrete bridges will also be presented and the results are
discussed.

1 Introduction

Structures are required to withstand particular environmental hazards in addition
to structural loads. Material corrosion in concrete and steel structures is the most
common form of deterioration and should be considered in both strength and
serviceability analyses of structures. To that effect, incorporating the effect of
corrosion into the reliability analysis of a structure is of paramount importance.
There are several parameters which may affect corrosion rate, and hence reliability.
In considering the uncertainties and data scarcity associated with these parameters,
various studies on the probabilistic assessment of corrosion affected structures have
been undertaken (Kleiner et al. 2005; Davis et al. 2008; Guo et al. 2011; Salman and
Salem 2012; Mahmoodian et al. 2012; Mahmoodian and Alani 2013a).
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Since deterioration due to corrosion is uncertain over time, it should ideally be
represented as a stochastic process. A stochastic process can be defined as a random
function of time in which for any given point in time the value of the stochastic
process is a random variable depending on other basic random variables. Therefore
a perfect method for the reliability analysis and service life prediction of corrosion
affected structures is a time-dependent probabilistic (i.e. stochastic) method which
considers the randomness of variables involving uncertainties in a period of time.

In most of the literature, failure and reliability assessment has been carried out
by considering one failure mode (Davis et al. 2005; De Silva et al. 2006; Moglia
et al. 2008; Yamini 2009; Zhou 2011). However in reality, even in simple cases
composed of just one element, various failure modes such as flexural failure, shear
failure, buckling and deflection may exist. To familiarise ourselves with a more
accurate reliability analysis and failure assessment, the multi-failure mode analysis
of structures is also discussed in this chapter.

For a comprehensive reliability analysis, evaluation of the contributions of
various uncertain parameters associated with reliability can be carried out by using
sensitivity analysis techniques. Sensitivity analysis is conducted as a key part of
reliability analysis from which the effect of different variables on service life of the
structure can be investigated. Sensitivity analysis is the study of how variation in
the output of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation (Saltelli et al. 2004).

Worked examples of some structures such as cast iron water mains, concrete
sewers and post-tension concrete bridges will be presented and the results are
discussed.

2 Corrosion in Structures and Infrastructure

2.1 Corrosion in Iron-Based Elements

Aging and deterioration of iron-based structures and infrastructure are major
problems facing asset managers. Steel pipes in the oil and gas industry and cast
iron pipes in water networks are good examples of corrosion affected iron-based
infrastructure which are suffering from significant corrosion worldwide.

Over 50 % of the USA’s oil and gas pipeline system is over 40 years old.
Some 20 % of Russia’s oil and gas system is near the end of its design life and
in 15 years’ time, 50 % of their pipeline will be at the end of its design life.
In the USA, corrosion has caused 23 % of failures of oil pipelines and 39 %
of gas pipelines. The consequence of the failure of these pipes can be socially,
economically and environmentally devastating, causing, e.g. enormous disruption
of daily life, massive costs for repair, widespread pollution and even human injuries
(Anon 2002).
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Iron-based pipelines have also been used in water distribution systems for many
years. Data from different countries in the world shows that cast iron pipes were
widely used in water distribution networks before the 1960s (Rajani and Kleiner
2004). The American Water Works Association (AWWA) estimated, based on a
survey of 337 water utilities, that in the USA about 40 % of water mains are
cast iron (Lillie et al. 2004). More than 60 % of water mains in the UK are
estimated to comprise cast iron pipes. This corresponds to a length of 200,000 km
of pipelines (Water UK 2007). The average age of cast iron pipes in existing
networks is around 50 years (Misiunas 2005). Due to their long-term use, aging and
deterioration of the pipes are inevitable and indeed many failures have been reported
worldwide (Misiunas 2005; Rajani and Tesfamariam 2007; EPA/600 2012). It has
been established (e.g. Yamini and Lence 2009; EPA/600 2012) that corrosion is the
most common form of deterioration of pipes, which is a matter of concern for both
the safety and serviceability of the pipes.

The predominant deterioration mechanism of iron-based pipes is electrochemical
corrosion with damage occurring in the form of corrosion pits. The damage to iron
is often identified by the presence of graphitisation, a result of iron being leached
away by corrosion. Either form of metal loss represents a corrosion pit that grows
with time and reduces the thickness and mechanical resistance of the pipe wall.
This process eventually can lead to the collapse of the element. Typically, internal
and external corrosion pits are observed to occur in many irregular shapes and sizes
with characteristic depths, diameters (or widths) and lengths (Rajani and Kleiner
2013). They can develop randomly along any segment of pipe and tend to grow with
time at a rate that depends on environmental conditions in the immediate vicinity of
the pipeline (Rajani and Makar 2000).

The corrosion rate of in-service cast iron pipes is believed to be higher in the
beginning and then to slow down over time, as corrosion products have an inhibiting
effect (Shreir et al. 1994). Furthermore, due to the variation of service environments
it is rare that the corrosion occurs uniformly along the pipe but more likely locally
in the form of a corrosion pit.

A number of models for corrosion of steel and cast iron pipes have been proposed
to estimate the depth of corrosion pit (e.g. Sheikh et al. 1990; Ahammed and
Melchers 1997; Kucera and Mattsson 1987; Rajani et al. 2000; Sadiq et al. 2004).
For example, Sheikh et al. (1990) suggested a linear model for corrosion growth in
predicting the strength of cast iron pipes.

There are debates in the research community as to whether the corrosion rate can
be assumed linear or otherwise. A widely used model of corrosion as measured by
the depth of corrosion pit is of a power law that was first postulated for atmospheric
corrosion by Kucera and Mattsson (1987) and expressed in the following form:

a D ktn (1)

where t is the exposure time and k and n are empirical coefficients which in practice
are obtained by fitting the model to experimental data.
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Fig. 1 Progress of corrosion depth in cast iron pipes (reproduced from Marshall 2001)

Fig. 2 A section of one of London’s Victorian water mains: (a) external corrosion, (b) internal
corrosion

For underground corrosion, the coefficients typically are functions of local
conditions including soil type, availability of oxygen and moisture and properties of
pipeline material. In many cases it may be possible to use past experience to derive
estimates for the two constants in Eq. (1), but with somewhat more effort than would
be necessary to estimate a constant corrosion rate as used conventionally (Ahammed
and Melchers 1997).

An example of field data that shows the rate of internal and external corrosion
for cast iron pipes has been illustrated in Fig. 1 (Marshall 2001). It can be
concluded from this data that external corrosion progresses more speedily than
internal corrosion especially during the early stages. In Fig. 2, a sample of a cast
iron pipe taken from London’s water mains in Victorian times (i.e. 1800–1900) also
shows the severity of external corrosion compared with internal corrosion.



Time-Dependent Reliability Analysis of Corrosion Affected Structures 463

As the regression of available data fits a power law very well, the corrosion can be
modelled, for both external and internal corrosion, in a power law format as follows
(Li and Mahmoodian 2013):

a D 2:54t0:32 for external corrosion (2a)

a D 0:92t0:4 for internal corrosion (2b)

2.2 Reinforcement Corrosion in Concrete Structures

Reinforcement corrosion is the predominant factor in the premature degradation
of reinforced concrete (RC) structures, leading to ultimate structural failure (Chaker
1992). The ingress of chloride ions into concrete may cause corrosion in RC bridges.
The risk of this mode of corrosion is quite high when RC bridges are located in
coastal regions and exposed to aggressive environmental conditions. Because of the
penetration of chloride ions into structural members, the chloride content of concrete
increases gradually, and as the concentration of chloride ions in the pore solution
within the vicinity of reinforcing bars reaches a threshold value, chloride-induced
corrosion is initiated (Mahmoodian and Li 2012).

Deterioration of concrete bridges is one of the most important concerns of
infrastructure managers. There are thousands of in-service concrete bridges in the
world (over 350,000 in the USA) which encounter corrosion as a predominant form
of deterioration. Corrosion may significantly influence the long-term performance
of pre-stressed concrete bridges, particularly in aggressive environments.

The rate of bridge deterioration appears to be increasing. In the northern USA
the use of de-icing salts has increased from less than one million tons per year in
the early 1950s to approximately 15 million tons per year in the 1990s (Baboian
1995). An aggressive chloride environment exists also for bridges sited in a marine
environment within 1–2 km from the sea (e.g. Fitzpatrick 1996).

Corrosion of tendons in pre-stressed elements is a complex phenomenon that con-
sists of several different (but interrelated) mechanisms, such as uniform corrosion
and pitting corrosion. The effects of corrosion on structural behaviour in reinforced
and pre-stressed concrete structures are different, with the latter having less concrete
cracking but more serious structural collapses. Pitting corrosion is the main form of
pre-stressing steel corrosion in aggressive environments. The corrosion rate of pre-
stressing steel tendons in concrete rises with the increase of the level of stresses
applied. Therefore the corrosion of pre-stressing steel in concrete structures poses
a higher risk to the structure than that of reinforcing steel in terms of structural
collapse (Li et al. 2011).

Reliability of the corrosion models is essential to predict the service life of
corrosion affected RC and/or pre-stressed bridges and to instigating maintenance
and repairs for the structures.
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Numerous studies with regard to corrosion models have been made and will not
be repeated here. Enright and Frangopol (1998) studied the resistance degradation
of RC bridge beams under uniform corrosion, and the corrosion initiation time
was predicted with a probabilistic model. Val and Robert (1997) developed a time-
dependent corrosion model for the reliability analysis of RC slab bridges, including
localised corrosion (pitting corrosion). This model was improved in research
by Stewart (2004). Accelerated pitting corrosion tests have been used to obtain
spatial and temporal maximum pit-depth data for pre-stressing strands (Darmawan
and Stewart 2007). Further studies carried out by Stewart (2009) examined the
mechanical behaviour of pitting corrosion of flexural and shear reinforcement and
its effect on structural reliability.

A direct consequence of reinforcement corrosion is the cross-sectional area loss
of reinforcement. The diameter of a corroding reinforcing bar D(t) and its net cross-
sectional area, Ar(t) at time t can be presented as (Val and Robert 1997):

D.t/ D D0 � 0:0232 .t � ti/ icorr (3)

Ar.t/ D �

4

h
D.t/2

i
(4)

where D0 is the initial diameter of the reinforcing bar (cm), icorr is corrosion current
density (�A/cm2) and ti is time of corrosion initiation (year).

The process of uniform corrosion, which is generally a macrocell corrosion
process, is slower than pitting corrosion in a chloride environment. The maximum
penetration of pitting is about four to eight times that associated with uniform
corrosion (González et al. 1995). In the case of pitting corrosion, the reinforcement
is more susceptible to failure due to stress concentration. For high pre-stressed
stranded wires, the pitting corrosion process may be accelerated (Vu et al. 2009)
and brittle rupture of the stranded wires may occur earlier than expected (Guo et al.
2011). According to Val’s work, the radius of the pit at time t can be estimated as

p.t/ D 0:0116 .t � ti/ icorrR (5)

where R is the penetration ratio between the maximum and average penetration. The
time of corrosion initiation ti can be predicted by the following equation (Enright
and Frangopol 1998):

ti D X2

4Dc

�
erf�1

�
Co � Ccr

Co

���2
(6)

where X represents concrete cover (cm), Dc is the chloride diffusion coefficient
(cm2/year), Co is the chloride concentration at the concrete surface (% weight of
concrete) and Ccr denotes threshold chloride concentration (% weight of concrete).
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Fig. 3 Corrosion pit
configuration (adapted from
Val and Robert 1997)

For pitting corrosion, the net cross-sectional area of a corroded rebar, Ar(t) at time t
is calculated by the following equations (Stewart 2009):

Ar.t/ D

8
<̂
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0
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2
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�
a
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�
(7d)

Figure 3 illustrates the relationship between Ar(t) and p(t).
Experimental results have indicated that the yield stress on the net cross-sectional

area is reduced by corrosion as follows (Guo et al. 2011):

fy.t/ D Œ1 � ˛:Pcorr.t/� :fyo (8)

Pcorr.t/ D Ao � Ar.t/
Ao

� 100 (9)

where fy(t) is deteriorated yield strength at time t, fyo corresponds to its original
value and ˛ is an empirical coefficient which has a value of 0.0054 for reinforcing
bars and 0.0075 for stranded wires (based on the regression analyses of Du et al.
(2005) and Vu et al. (2009)). Pcorr(t) is the percentage of corrosion loss at time t,
which can be obtained from Eqs. (4) or (7a), (7b), (7c), (7d) in terms of area loss.
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As mentioned earlier, maximum wire stress (Sw(t)) increases as the cross-
sectional area decreases due to corrosion.

Sw.t/ D Tw

Ar.t/
(10)

where Tw is the maximum possible tension in a wire due to the most critical loading
combination.

2.3 Concrete Corrosion

The corrosion mechanism of concrete sewers: the deterioration of sewer pipes occurs
at different rates depending on specific local conditions and is not determined
by age alone. There have been numerous cases of severe damage to concrete
pipes, where it has been necessary to replace the pipes before the desired service
life has been reached. There are many cases in which sewer pipes designed to
last 50–100 years have failed due to H2S corrosion in 10–20 years. In extreme
cases, concrete pipes have collapsed in as few as 3 years (Pomeroy 1976). The
most corrosive agent that leads to the rapid deterioration of concrete pipelines in
sewers is H2S. Approximately 40 % of the damage in concrete sewers can be
attributed to biogenous sulphuric acid attack. Sulphide corrosion, which is often
called microbiologically induced corrosion, has two distinct phases as follows:

• The conversion of sulphate in wastewater to sulphide, some of which is released
as gaseous hydrogen sulphide.

• The conversion of hydrogen sulphide to sulphuric acid, which subsequently
attacks susceptible pipeline materials.

The surface pH of new concrete pipe is generally between 11 and 13. Cement
contains calcium hydroxide, which neutralises the acids and inhibits the formation
of oxidising bacteria when the concrete is new. However, as the pipe ages, this
neutralising capacity is consumed, the surface pH drops, and the sulphuric acid-
producing bacteria become dominant. In active corrosion areas, the surface pH can
drop to 1 or even lower and can cause a very strong acid attack. The corrosion rate
of the sewer pipe wall is determined by the rate of sulphuric acid generation and
the properties of the cementitious materials. As sulphides are formed and sulphuric
acid is produced, hydration products in the hardened concrete paste (calcium silicon,
calcium carbonate and calcium hydroxide) are converted to calcium sulphate, more
commonly known by its mineral name, gypsum (ASCE No. 69 1989). The chemical
reactions involved in sulphide build-up can be explained as follows.

Sulphate, generally abundant in wastewater, is usually the common sulphur
source, although other forms of sulphur, such as organic sulphur from animal waste,
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can also be reduced to sulphide. The reduction of sulphate in the presence of waste
organic matter in a wastewater collection system can be described as follows:

SO4
�2 C Organic matter C H2O !

Bacteria
2HCO3

� C H2S (11)

The H2S gas in the atmosphere can be oxidised on the moist pipe surfaces above
the water line by bacteria (Thiobacillus), producing sulphuric acid according to the
following reaction:

H2S C O2 !
Bacteria

H2SO4 (12)

As sulphides are formed and sulphuric acid is produced, hydration products in the
hardened concrete paste (calcium silicon, calcium carbonate and calcium hydroxide)
are converted to calcium sulphate. The chemical reactions involved in the corrosion
of concrete are:

H2SO4 C CaSi ! CaSO4 C 2HC (13)

H2SO4 C CaCO3 ! CaSO4 C H2CO3 (14)

H2SO4 C Ca.OH/2 ! CaSO4 C 2H2O (15)

Gypsum does not provide much structural support, especially when wet. It is
usually present as a pasty white mass on concrete surfaces above the water line.
As the gypsum material is eroded, the concrete loses its binder and begins to
spall, exposing new surfaces. This process will continue until the pipeline fails or
corrective actions are taken. Sufficient moisture must be present for the sulphuric
acid-producing bacteria to survive, however; if it is too dry, the bacteria will become
desiccated, and corrosion will be less likely to occur. Figure 4 shows the process of
sulphide build-up in a sewer system.

Concrete corrosion rate: The rate of corrosion of a concrete sewer can be
calculated from the rate of production of sulphuric acid on the pipe wall, which is
in turn dependent upon the rate that H2S is released from the surface of the sewage
stream. The average flux of H2S to the exposed pipe wall is equal to the flux from
the stream into the air multiplied by the ratio of the surface area of the stream to
the area of the exposed pipe wall, which is the same as the ratio of the width of the
stream surface (b) to the perimeter of the exposed wall (P

0

). The average flux of H2S
to the wall is therefore calculated as follows (Pomeroy 1976):

ˆ D 0:7.su/3=8j ŒDS�
�
b=P 0� (16)

where s is pipe slope, u is velocity of stream (m/s), j is pH-dependent factor for the
proportion of H2S and [DS] is dissolved sulphide concentration (mg/L). A concrete
pipe is made of cement-bonded material, or acid-susceptible substance, so the
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Fig. 4 Process occurring in a sewer under sulphide build-up conditions (ASCE No. 69 1989)

acid will penetrate the wall at a rate inversely proportional to the acid-consuming
capability (A) of the wall material. The acid may partly or entirely react. The
proportion of acid that reacts is variable (k), ranging from 100 % when the acid
formation is slow, to perhaps 30–40 % when it is formed rapidly. Thus, the average
rate of corrosion (mm/year) can be calculated as follows:

c D 11:5kˆ .1=A/ (17)

where k is the factor representing the proportion of acid reacting, to be given a value
selected by the judgement of the engineer, and A is the acid-consuming capability,
alkalinity, of the pipe material, expressed as the proportion of equivalent calcium
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carbonate. A value for granitic aggregate concrete ranges from 0.17 to 0.24 and
for calcareous aggregate concrete, A ranges from 0.9 to 1.1 (ASCE No. 60 2007).
Substituting Eq. (16) into Eq. (17):

c D 8:05k � .su/3=8j: ŒDS� � b

P 0A
(18)

Therefore the reduction in wall thickness in elapsed time t, is:

d.t/ D c:t D 8:05k:.su/3=8j: ŒDS� � b

P 0A
:t (19)

3 Time-Dependent Reliability Analysis

3.1 Background

As the corrosion of structures and infrastructure is a time-variant phenomenon
with uncertainties in affecting parameters, the most viable approach to predict
a structure’s reliability or its service life under future performance conditions is
through probability-based techniques involving time-dependent reliability analyses.

By using these techniques, a quantitative measure of structural reliability is
provided to integrate information on design requirements, material and structural
degradation, damage accumulation, environmental factors, and non-destructive
evaluation technology. The technique can also investigate the role of in-service
inspection and maintenance strategies in enhancing reliability and extending service
life. Several non-destructive test methods that detect the presence of a defect in
a structure tend to be qualitative in nature in that they indicate the presence of a
defect but may not provide quantitative data about the defect’s size, precise location
and other characteristics that would be needed to determine its impact on structural
performance. None of these methods can detect a given defect with certainty.
The imperfect nature of these methods can be described in statistical terms. This
randomness affects the calculated reliability of a component.

Structural loads, engineering material properties, and strength-degradation mech-
anisms are random. The resistance, R(t), of a structure and the applied loads, S(t),
both are stochastic functions of time. At any time, t, the safety limit state, G(R, S, t),
is (Melchers 1999):

G .R; S; t/ D R.t/ � S.t/ (20)

Making the customary assumption that R and S are statistically independent
random variables, the probability of failure resulting from Eq. (20), Pf(t), is
(Melchers 1999):

Pf.t/ D P ŒG.t/ � 0� D
Z 1

0

FR.x/fS.x/ dx (21)
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Fig. 5 Schematic time dependent reliability problem (Melchers 1999)

in which FR(x) and fS(x) are the probability distribution function of R and density
function of S, respectively. Equation (21) provides a quantitative measure of struc-
tural reliability and performance, provided that Pf can be estimated and validated.

The probability that failure occurs for any one load application is the probability
of limit state violation. Roughly, it may be represented by the amount of overlap
of the probability density functions fR and fS in Fig. 5. Since this overlap may vary
with time, Pf also may be a function of time.

3.2 Methods for Time-Dependent Reliability Analysis

As mentioned earlier, for the reliability and safety analysis of corrosion affected
structures, probabilistic time-dependent methods need to be used. The common
methods include the first passage probability method, the gamma process concept
method and the Monte Carlo simulation method.

3.2.1 First Passage Probability Method

The service life of a structure is a time period at the end of which the structure stops
performing the functions it is designed and built for. As already stated, to determine
the service life, a limit state function (G(t) D R(t) � S(t)) is introduced, where S(t)
is the action (load) or its effect at time t and R(t) is the acceptable limit (resistance)



Time-Dependent Reliability Analysis of Corrosion Affected Structures 471

for the action or its effect. With the limit state function of Eq. (4.1), the probability
of structural failure, pf, can be determined by:

Pf.t/ D P ŒG.t/ � 0� D P ŒS.t/ � R.t/� (22)

where Pf(t) is greater than the maximum acceptable risk in terms of the probability
of failure, Pa, the pipe becomes unsafe or unserviceable and requires replacement
or repairs. This can be determined from the following:

Pf .TL/ � Pa (23)

where TL is the service life for the pipe for the given assessment criterion and
acceptable risk. In principle, the acceptable risk, Pa, can be determined from a
risk-cost optimisation of the pipeline system during its whole service life (Li and
Melchers 2005). This is beyond the scope of this chapter and will not be discussed
herein but can be referred to in Mann and Frey (2011) and Dawotola et al. (2012).

Equation (22) represents a typical up-crossing problem in mathematics. Structural
failure depends on the time that is expected to elapse before the first occurrence of
the action process S(t) up-crossing an acceptable limit (the threshold) L(t) sometime
during the service life of the structure [0, TL]. Equivalently, the probability of the
first occurrence of such an excursion is the probability of failure Pf(t) during that
time period. This is known as “first passage probability” and can be determined by
Melchers (1999):

Pf.t/ D 1 � Œ1 � Pf.0/� e
�
Z t

0

�d�
(24)

where Pf(0) is the probability of structural failure at time t D 0 and � is the mean rate
for the action process S(t) to up-cross the threshold R(t). In many practical problems,

the mean up-crossing rate is very small (e
�
Z t

0

�d� Š 1 �
Z t

0

�d� ), so the above

equation can be approximated as follows:

Pf.t/ D pf.0/C
Z t

0

�d� (25)

The probability of failure due to corrosion at t D 0 is zero, that is pf(0) D 0;
therefore:

Pf.t/ D
Z t

0

�d� (26)
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The up-crossing rate in the above equation can be determined from the Rice
formula (Melchers 1999):

� D �C
R D

Z 1

R

� PS � PR� fS PS
�
R; PS� d PS (27)

where �C
R is the up-crossing rate of the action process S(t) relative to the threshold

R, PR is the slope of R with respect to time, PS.t/ is the time derivative process of S(t)
and fS PS . / is the joint probability density function for S and PS .

The solution for fS PS
�
R; PS� for the special case when S(t) is a stationary normal

process is given by:

fS PS
�
R; PS� D 1

2��S� PS
exp

(

�1
2

"�
R � 
S
�S

�2
C

PS2
�2PS

#)

(28)

in which S(t) is normal distributed N(
S, �2
S) and PS.t/ is N(0, �2

S). The mean of PS.t/
is zero for a stationary process. Noting that:

Z 1

0

PS exp

 

�
PS2
2�2PS

!

d PS D �2PS (29)

and substituting Eq. (28) into Eq. (27) and integrating produces (Melchers 1999):

�C
R D 1

2�

� PS
�S

exp

"

� .R � 
S/2
2�2S

#

(30)

For non-normal processes, the joint probability density function fS PS ./ usually
will be much less amenable to definition and integration. Such processes arise,
for instance, in river flows, mean hourly wind speeds and when normal processes
are transformed non-linearly. It is sometimes suggested that for such processes the
up-crossing rate may be approximated by Eq. (30). It should be noted that this
approximation can be seriously in error (Melchers 1999).

3.2.2 Gamma Process Concept

To deal with data scarcity and uncertainties, the use of a stochastic process concept
for the time-dependent reliability analysis of corrosion affected structures and
infrastructures can be considered. In order to model the monotonic progression
of a deterioration process, the stochastic gamma process concept can be used for
modelling the corrosion progress. The gamma process is a stochastic process with
independent, non-negative increments having a gamma distribution with an identical
scale parameter and a time-dependent shape parameter.
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A stochastic process model, such as the gamma process, incorporates the
temporal uncertainty associated with the evolution of deterioration (e.g. Bogdanoff
and Kozin 1985; Nicolai et al. 2004; van Noortwijk and Frangopol 2004).

The gamma process is suitable to model gradual damage monotonically accu-
mulating over time, such as wear, fatigue, corrosion, crack growth, erosion,
consumption, creep, swell and a degrading health index. For the mathematical
aspects of gamma processes, see Dufresne et al. (1991), Ferguson and Klass (1972),
Singpurwalla (1997) and van der Weide (1997).

To the best of the authors’ knowledge, Abdel-Hameed (1975) was the first to
propose the gamma process as a model for deterioration occurring randomly in
time. In his chapter he called this stochastic process the “gamma wear process”. An
advantage of modelling deterioration processes through gamma processes is that the
required mathematical calculations are relatively straightforward.

Problem formulation: The mathematical definition of the gamma process is given
in Eq. (31). Given that a random quantity d has a gamma distribution with shape
parameter ˛ > 0 and scale parameter �> 0 if its probability density function is
given by:

Ga
�
d
ˇ̌
ˇ˛; �

�
D �˛

� .˛/
d˛�1e��d (31)

let ˛(t) be a non-decreasing, right continuous, real-valued function for t � 0, with
˛(0) � 0. �(˛) denoting the gamma function of ˛ with the mathematical definition
of �(˛) D (˛� 1) !. The gamma process is a continuous-time stochastic process
fd(t), t � 0g with the following properties:

1. d(0) D 0 with probability one;
2. d(� ) � d(t) Ga(˛(� ) �˛(t),�) for all � > t � 0;
3. d(t) has independent increments.

Let d(t) denote the deterioration at time t, t � 0, and let the probability density
function of d(t), in accordance with the definition of the gamma process, be
given by:

fd.t/.d/ D Ga
�
d
ˇ̌
ˇ˛.t/; �

�
(32)

with mean and variance as follows:

E .d.t// D ˛.t/

�
(33)

Var .d.t// D ˛.t/

�2
(34)

A corrosion affected structure is said to fail when its corrosion depth, denoted
by d(t), is more than a specific threshold (a0), assuming that the threshold a0 is
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Table 1 Typical values for exponential parameter, b, in different deterioration types

Deterioration type
Exponential
parameter, b Reference

Degradation of concrete due to
reinforcement corrosion

1 Ellingwood and Mori (1993)

Sulphate attack 2 Ellingwood and Mori (1993)
Diffusion-controlled aging 0.5 Ellingwood and Mori (1993)
Creep 1/8 Cinlar et al. (1977)
Expected scour-hole depth 0.4 Hoffmans and Pilarczyk (1995) and

Noortwijk and Klatter (1999)

deterministic and the time at which failure occurs is denoted by the lifetime T. Due
to the gamma distributed deterioration, Eq. (31), the lifetime distribution can then
be written as:

F.t/ D Pr .T � t / D Pr .d.t/ � a0/ D
Z a0

0

fd.t/.d/dd D � .˛.t/; ao�/

� .˛.t//
(35)

where �(�, x) D R 1
t D xt�� 1e� t dt is the incomplete gamma function for x � 0

and � > 0.

To model corrosion in a structural element, in terms of a gamma process, the
question that remains to be answered is how its expected deterioration increases
over time. The expected corrosion depth at time t may be modelled empirically by
a power law formulation (Ahammed and Melchers 1997):

˛.t/ D ctb (36)

for some physical constants c> 0 and b> 0.
Because there is often engineering knowledge available about the shape of the

expected deterioration in terms of the exponential parameter b in Eq. (36), this
parameter may be assumed constant. It should be noted that the gamma process
is not restricted to using a power law for modelling the expected deterioration over
time. As a matter of fact, any shape function ˛(t) suffices, as long as it is a non-
decreasing, right continuous and real-valued function.

The typical values for b from some examples of expected deterioration according
to a power law are presented in Table 1.

The reliability analysis approach, which is developed in this section by using the
gamma process concept, is entitled the “Gamma Distributed Degradation, GDD”
model.

In the event of expected deterioration in terms of a power law (i.e. Eq. (36)), the
parameters c and � can be estimated by using statistical estimation methods. The
estimation procedure is discussed for the two scenarios, including a case where
corrosion depth data is available and a case where corrosion depth data is not
available.



Time-Dependent Reliability Analysis of Corrosion Affected Structures 475

Corrosion Depth, d

Time0 t t

Inspec-
Failure Level

Life time, Tc
a

Fig. 6 Time-dependent
degradation model in the
cases of two inspections

(a) Gamma Distributed Degradation Model with Available Corrosion Depth Data
This section discusses the use of the GDD model for the reliability analysis of
corrosion affected structures in cases where corrosion depth data is available.
The data of corrosion depth can be achieved by periodical inspections.

To model the corrosion as a gamma process with shape function ˛(t) D ctb

and scale parameter �, the parameters c and � should be estimated. For this
purpose, statistical methods are suggested. The two most common methods that
can be used for parameter estimation are the maximum likelihood and method
of moments. Both methods for deriving the estimators of c and � were initially
presented by Cinlar et al. (1977) and were developed by Noortwijk and Pandey
(2003).

(i) Maximum Likelihood Estimation
In statistics, maximum likelihood estimation (MLE) is a method of estimating
the parameters of a statistical model. When applied to a dataset and given a
statistical model, MLE provides estimates for the model’s parameters.

In general, for a fixed set of data and underlying statistical model, the
method of maximum likelihood selects values of the model parameters to
produce a distribution that gives the observed data the greatest probability (i.e.
parameters that maximise the likelihood function). Given that n observations
are denoted by x1, x2, : : : , xn, the principle of maximum likelihood assumes
that the sample dataset is representative of the population. This has a
probability density function of fx(x1, x2, : : : , xn; � ), and chooses that value for
� (unknown parameter) that most likely caused the observed data to occur. In
other words, once observations x1, x2, : : : , xn are given, fx(x1, x2, : : : , xn; � ) is
a function of � alone, and the value of � that maximises the above probability
density function is the most likely value for � .

A typical dataset consists of inspection times ti, i D 1, : : : , n where
0 D t0< t1< t2< � � � < tn, and corresponding observations of the cumulative
amounts of deterioration di, i D 1, : : : , n are assumed to be given as inputs of
the model. Figure 6 schematically shows a time-dependent degradation model
in the case of two inspections with a deterministic path.
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The maximum likelihood estimators of c and � can be determined by
maximising the logarithm of the likelihood function of the increments. The
likelihood function of the observed deterioration increments ıi D di � di � 1,
i D 1, : : : , n is a product of independent gamma densities (Noortwijk and
Pandey 2003):

l
�
ı1; : : : ; ın

ˇ̌
ˇc; �

�
D
Yn

iD1fd.ti /�d.ti�1/ .ıi /

D
Yn

iD1
�cŒt

b
i �tbi�1�

�
�
c
�
t bi � t bi�1

	�ı
cŒtbi �tbi�1�
i e��ıi (37)

To maximise the logarithm of the likelihood function, its derivatives are set to
zero. It follows that the maximum likelihood estimator of � is:

b� D bctbn
dn

(38)

wherebc must be computed iteratively from the following equation:

Xn

iD1
�
t bi � t bi�1

	 ˚
 
�
bc
�
t bi � t bi�1

	� � log ıi
� D t bn log

�
bctbn
dn

�
(39)

where the function  (x) is the derivative of the logarithm of the gamma
function:

 .x/ D
K�.x/
�.x/

D @ log�.x/

@x
(40)

(ii) Method of Moments
In statistics, the method of moments is a method of estimation of population
parameters such as mean and variance by equating sample moments with
unobservable population moments and then solving those equations for the
quantities to be estimated. Assuming transformed times between inspections
as wi D tb

i � tb
i � 1, i D 1, : : : , n, the method of moments estimates that c and �

can be found from Noortwijk and Pandey (2003):

bc
b�

D
Xn

iD1ıiXn

iD1wi
D dn

tbn
D ı (41)

dn

b�

0

B
@1 �

Xn

iD1w
2
i

hXn

iD1wi
i2

1

C
A D

nX

iD1

�
ıi � ıwi

�2
(42)
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Identify the time variant formula-
tion of the degradation process,

(Equation (36))
Determination of at
least two corrosion

depth measures within
time of serviceParameter approximation by using one

of the methods (MLE or method of
moments), to find shape parameter a
and scale parameter l by using Equa-

tions (38) and (39) or (41) and (42)

Calculation of probability
of failure, (Equation (35))

Identifying the thresh-
old, ( )

Fig. 7 Gamma distributed degradation (GDD) model in cases where corrosion depth data is
available

The first equation from both methods (i.e. Eqs. (38) and (41)) are the same
and the second equation in the method of moments is simpler since it does not
necessarily require iterations to find the unknown parameter .bc/.

The flowchart in Fig. 7 illustrates the GDD model in cases where corrosion
measurements are available.

(b) Developing Gamma Distributed Degradation Model in Cases Where Corrosion
Depth Data is not Available
In practice, it is typical during the reliability analysis of corrosion affected
structures for data such as corrosion depth to not be available. Therefore, a
method should be developed for such cases to use the GDD model. As mentioned
in the previous section, in order to calculate the probability of failure over elapsed
time (Eq. (35)), the parameters corresponding to shape and scale parameters
(˛ and �) should be estimated. The steps for this purpose are:

(a) Determining the approximate moments (mean and variance).
(b) Estimating values for ˛ and � by using Eqs. (33) and (34).

Assuming X1, X2, : : : , Xn as basic random variables, moment approximation
(i.e. step (a)) can be carried out by expanding the function Y D Y(X1, X2, : : : , Xn)
in a Taylor series about the point defined by the vector of the means
.
X1; 
X2; : : : ; 
Xn/. By truncating the series, the mean and variance are
(Papoulis and Pillai 2002):

E.Y / � Y .
X1; 
X2; : : : ; 
Xn/C 1

2

Xn

iD1
Xn

jD1
@2Y

@Xi@Xj
cov

�
Xi ;Xj

�
(43)
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Identify the time variant formula-
tion of the degradation process,

(Equation (36)) Determination of statis-
tical parameters of basic
random variables, based

on monitoring data
Moment approximation of the degra-
dation parameter, (Equations (43) and
(44), to calculate E(d(t)) and Var(d(t)) )

Calculation of gamma distribution
parameters, (shape parameter a
and scale parameter l) by using

Equations (33) and (34)

Calculation of probability
of failure, (Equation (35))

Identifying the thresh-
old, ( )

Fig. 8 GDD model in cases where corrosion depth data is not available

var.Y / �
Xn

j

Xn

j
ci cj cov

�
Xi ;Xj

�
(44)

where var and cov are variance and covariance, respectively.
The flowchart in Fig. 8 illustrates the GDD model for use in cases where

corrosion measurements are not available.

3.2.3 Monte Carlo Simulation Method

Monte Carlo simulation has been successfully used for the reliability analysis of
different structures and infrastructure (e.g. Camarinopoulos et al. 1999; Sadiq et al.
2004; Yamini 2009; Mahmoodian and Alani 2013b).

Monte Carlo simulation techniques involve sampling at random to artificially
simulate a large number of experiments and to observe the results. To use this
method in structural reliability analysis, a value for each random variable is selected
randomly .bxt / and the limit state function .G .bx// is checked. If the limit state
function is violated (i.e. G .bx/ � 0), the structure or the system has failed. The
experiment is repeated many times, each time with randomly chosen variables. If N
trials are conducted, the probability of failure then can be estimated by dividing the
number of failures to the total number of iterations:

Pf � n .G .bx/ � 0/

N
(45)
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The accuracy of Monte Carlo simulation results depends on the sample size
generated and, in cases when the probability of failure is estimated, on the value
of the probability, Melchers (1999) (the smaller the probability of failure, the larger
the sample size needed to ensure the same accuracy). The accuracy of the failure
probability estimates can be checked by calculating their coefficient of variation
(e.g. Melchers 1999).

In order to improve the accuracy of estimating the probability of ultimate strength
failure, while keeping the computation time within reasonable limits, variance
reduction techniques (e.g. importance sampling, Latin hypercube and directional
simulation) can be employed. However, in cases where the main emphasis is on
serviceability failure, which can be estimated by a crude Monte Carlo simulation
with very good accuracy within a relatively short computation time, such techniques
are not necessary (Val and Chernin 2009).

Importance sampling is a variance reduction technique that can be used in the
Monte Carlo method (Melchers 1999). The idea behind importance sampling is that
certain values of the input random variables in a simulation have more impact on the
parameter being estimated than others. If these “important” values are emphasised
by sampling more frequently, then the estimator variance can be reduced. Hence,
the basic methodology in importance sampling is to choose a distribution that
“encourages” the important values. The use of “biased” distributions will result in a
biased estimator if it is applied directly to the simulation. However, the simulation
outputs are weighted to the correct use of the biased distribution, and this ensures
that the new importance sampling estimator is unbiased.

The fundamental issue in implementing importance sampling simulation is the
choice of the biased distribution that encourages the important regions of the
input variables. Choosing or designing a good biased distribution is the “art” of
importance sampling. The rewards for a good distribution can be significant run-
time savings; the penalty for a bad distribution can be longer run times than for a
general Monte Carlo simulation without importance sampling.

Details of the Monte Carlo method including sampling techniques can be found in
Ditlevsen and Madsen (1996), Melchers (1999) and Rubinstein and Kroese (2008).

4 Sensitivity Analysis

The effect of variables on the failure of a structure can be analysed by conducting a
comprehensive sensitivity analysis. In view of the variables that affect the corrosion
process and the failure function, it is of interest to identify those variables that affect
the failure most so that more research can focus on those variables.

Variability and sensitivity analysis should be carried out to provide quantitative
information necessary for classifying random variables according to their impor-
tance. These measures are essential for the failure assessment of deteriorating
materials and structures.

estimator
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The variability in the probability of failure is investigated by evaluating the
effect of a relatively large variation in the mean of each random variable on the
probability of failure. Sensitivity analysis can also be performed for the same group
of random variables by estimating the relative contribution and assessing the effect
of coefficient of variation of each major random variable on the failure probability.

Variability: The variability analysis is performed for the probability of failure
with respect to change in the mean value of random variables. The new mean of
each random variable 
Xi is:


Xi D 
Xi C ��Xi (46)

where 
Xi and �Xi are original mean and standard deviation of the random variable
Xi, respectively; and � is a multiplier of the standard deviation �Xi . The baseline
state corresponds to �D 0.

Relative contribution: A sensitivity index that can be used in a comprehensive
failure assessment is the relative contribution of each variable in failure function.
The relative contribution (˛2

x) of each random variable (x) to the variance of the
failure function is introduced as follows (Ahammed and Melchers 1994):

˛2x D
�
@G
@x
�x

�2

�2G
(47)

Variables with higher values of ˛2
x contribute more in failure function than other

variables; therefore more focus and study needs to be carried out to determine the
accurate values for such variables.

5 Worked Examples

5.1 Reliability Analysis of a Corrosion Affected
Bridge—Ynys-y-Gwas Bridge

To practice using time-dependent reliability analysis methods for corrosion affected
concrete bridges, an example adopted from Mahmoodian and Li (2012) is presented
in this section. Ynys-y-Gwas bridge was a single span segmental pre-stressed
structure which was built in 1953 and carried a minor road over the River Afan
6 km north-east of Port Talbot in the UK. In 1985 the bridge deck collapsed leaving
only the edge beams in position. It had a simply supported segmental post-tensioned
deck with a clear span of 18.3 m. The nine internal beams of the deck consisted of
eight precast I-sections, with a web stiffener on one end, stressed together both
longitudinally and transversely (Fig. 9).
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Fig. 9 Cross section of Ynys-y-Gwas bridge (Woodward and Williams 1988)

Fig. 10 Transverse collapse
line in Ynys-y-Gwas bridge
(Woodward and Williams
1988)

The deck suffered failure of all nine internal beams. A transversal line of failure
evidenced the tearing off of the longitudinal tendons (Fig. 10). The edge beams
and block work parapets remained standing and apparently unaffected, despite the
inward and downward forces exerted by the top transverse pre-stressing tendons as
the central deck failed.

It was evident from a site visit that the pre-stressing tendons were severely
corroded at both longitudinal and transverse joints, indicating that this had been
the cause of collapse (Fig. 11). Some wires in fully grouted ducts had lost more
than 90 % of their cross-sectional area (Woodward and Williams 1988).

An investigation by Woodward and Williams (1988) on the effect of loss of
tendons showed that the loss of one complete tendon within the central I-beam
increased the mid-span bending moment on each beam by only 10 kNm. Similarly
the loss of one complete tendon within an outer I-beam increased the bending
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Fig. 11 Corrosion of
longitudinal tendons at joint
(Woodward and Williams
1988)

moment on that beam by 30 kNm and the failure of all the tendons in an outer
I-beam increased the bending moment on the adjacent beam by about 40 %. This
would overstress it and cause progressive failure of the structure.

Therefore, the criteria for the collapse of the bridge can be set as the time when
all tendons have failed. This definition confirms that for reliability analysis of the
bridge it is appropriate to consider a pre-stressed I-beam as a parallel system. Then
by using the formulation of system reliability analysis, the probability of failure of
the bridge during its service life can be estimated.

Problem formulation: The limit state function which is considered in this example
is bending moment limit state. Hence, it is assumed that failure happens when the
maximum bending moment acting on the bridge beam (Mu) exceeds the bending
capacity of the beam (Mn). The well-known limit state function G(R, S, t) can be
expressed as:

G .Mn.t/;Mu; t / D Mn.t/ �Mu (48)

where Mu is the bending moment acting on the bridge beam (load effect) and Mn(t)
is the bending strength of the beam cross section at time t (structural resistance or
capacity). The tendon cross section decreases with time due to the propagation of
tendon corrosion; therefore the bending strength (Mn(t)) decreases. With the limit
state function presented in Eq. (48), the probability of failure due to corrosion of
tendons can be determined from:

Pf D P ŒG .Mn.t/;Mu; t / < 0� D P ŒMn.t/ < Mu� (49)

The failure probability of a pre-stressed concrete I-beam can be determined using
the methods of systems reliability. There are basically two systems in the theory of
systems reliability. One is known as the series system in which the failure of one of
the system components constitutes the failure of the system. The other is known as
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the parallel system in which the system fails only when all components of the system
fail. For a pre-stressed concrete element, the failure can be defined when all strands
in a tendon are failed or when all tendons in a section are failed. Therefore the
tendon bearing capacity can be modelled as a parallel system consisting of generally
n elements (n strands), in which all n elements have to fail in the specific system
failure mode before the entire structure is defined to be in a state of failure.

In this example the Monte Carlo simulation method is used for reliability analysis
of the pre-stressed concrete beams in Ynys-y-Gwas bridge.

Model of bending strength: According to ACI 318M 2008, the bending strength
of a pre-stressed concrete element can be obtained from:

Mn D Apfps

�
dp � a

2

�
C Asfy

�
ds � a

2

�
(50)

where As: area of non-pre-stressed tension reinforcement, mm2; Ap: area of pre-
stressing steel, mm2; Mn: nominal bending strength at section, N mm; a: depth of
equivalent rectangular stress block, mm; ds: distance from compression face to cen-
troid non-pre-stressed tension reinforcement, mm; dp: distance from compression
face to centroid pre-stressing tendons, mm; fps: stress in pre-stressing steel as a
portion of steel ultimate strength, MPa; fy: yield strength of reinforcing bars, MPa.

The parameters in Eq. (50) can be calculated by using Eqs. (3), (4), (5), (6), (7a),
(7b), (7c), (7d), (8) and (9). The system reliability analysis is applied to assess the
possibility of an accurate prediction of the time of collapse of the bridge in the case
of having required data about the condition of corroded tendons. To determine the
failure probability of Ynys-y-Gwas bridge due to corrosion of tendons, the limit
state function in Eq. (48) is used as the failure criteria in the Monte Carlo method.
With the values of random variables given in Table 2, the probability of failure was
computed and the results are shown in Fig. 12.

It is already known that the bridge failed 32 years following construction. The
corresponding probability of failure determined from Fig. 12 for t D 32 years is
Pf D 0.017. Considering the following definition for reliability index (Melchers
1999), this means a reliability index of ˇD 2.12 for the bridge at t D 32 years:

Pf D ˆ.�ˇ/ I ˇ D ˆ�1 .Pf/ (51)

While the reliability index for designing a bridge should be more than 3.5, it
is obvious that if an accurate reliability analysis had been carried out before the
collapse of Ynys-y-Gwas bridge, it would have clearly shown that after 32 years,
the reliability index had decreased considerably and the bridge needed special
care for the maintenance and repair of corroded tendons. As mentioned earlier,
this prediction would have required data about the condition of tendons, such as
corrosion rate, which were not available in 1985 (when the bridge collapsed).
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Fig. 12 Probability of failure of Ynys-y-Gwas bridge due to corrosion of tendons

Table 3 Statistical data for
basic random variables

Basic
variables Units Mean

Standard
deviation

K – 0.8 0.1
j – 0.2 0.04
DS mg/L 1 0.5
u m/s 0.6 0.1
b/P

0

– h/D D 0.2 0.11
b/P

0 D 0.36
h/D D 0.4 0.18
b/P

0 D 0.55
h/D D 0.6 0.23
b/P

0 D 0.71
A – 0.2 0.06

5.2 Reliability Analysis of Corrosion Affected Concrete Sewers

In this example, the time-dependent reliability analysis of a concrete sewer pipeline
with 500 mm diameter and 25 mm of internal concrete cover was conducted. To
incorporate the effect of increments in populations of residents and essentially the
increase in the flow rate during the system’s lifetime, the modelling assumes flow
rates corresponding to relative depths (depth/diameter) of 0.2, 0.4 and 0.6, each
occurring over a period of 25 years. Values for basic random variables which were
used in the model are presented in Table 3.

According to ASCE manual No. 69 (1989), one of the performance criteria
related to the stability of concrete sewers is control of the wall thickness reduction
under an acceptable limit (normally concrete cover). In the theory of structural
reliability this criterion can be expressed in the form of a limit state function as
follows:

G .dmax; d; t/ D dmax.t/ � d.t/ (52)
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Fig. 13 Probability of failure from the gamma degradation method and Monte Carlo simulation
method

where: d: reduction in wall thickness due to corrosion, mm; dmax: maximum
permissible reduction in wall thickness (structural resistance or limit), mm; t:
elapsed time (year).

dmax may change over time although in most practical cases it has a constant value
prescribed in design codes and manuals.

With the above limit state function, the probability of failure of the concrete pipe
due to the reduction of its wall thickness can be determined by:

Pf.t/ D P ŒG .dmax; d; t/ � 0� D P Œd.t/ � dmax.t/� (53)

To calculate Pf(t), the gamma distribution concept is employed.
Figure 13 shows the results obtained for the probability of pipe failure by using

method (b) in Sect. 3.2.2 presented by the flowchart in Fig. 8. To compare the
results with other common methods of reliability analysis, the figure also includes
the results of using the Monte Carlo simulation method applied in Eq. (53).

For repair and rehabilitation planning analysis of the pipe, the time for the pipe
to be unserviceable, i.e. Tc, can be determined for a given acceptable probability
of failure, Pa. For example, using the graph for the gamma degradation method in
Fig. 13, it can be obtained that Tc D 42 years for Pa D 0.1. If there is no intervention
during the service period of (0,42) years for the pipe, such as maintenance and
repairs, Tc represents the time for the failure of the pipe, based on the reliability
analysis. The information of Tc (i.e. time for interventions) is of practical importance
to structural engineers and infrastructure managers with regard to planning for
repairs and/or rehabilitation of the pipeline. An optimum funding allocation for the
pipeline system can be concluded by conducting a cost analysis for the repair and
replacement of those corroded pipes with a higher risk of failure.
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Fig. 14 Variability in the probability of failure due to the (a) increasing and (b) decreasing mean
of each random variable by two standard deviations

Applying the method explained in Sect. 3, Fig. 14a, b show the variability in the
probability of failure with respect to the six random variables considering � takes the
values 2.0 and �2.0, respectively. Assuming a Gaussian distribution for the random
variables, this range corresponds to 95.4 % of the possible values of the variable.

It is concluded that alkalinity A and the ratio of surface width of the stream to the
perimeter of the exposed wall (b/P

0

) are the most influential variables. It should be
noted that for a given cross section, (b/P

0

) can geometrically be related to relative
depth of the stream, h/D.

Figure 15 illustrates sensitivities (˛2) or the relative contribution of variables to
the variance of the failure function calculated based on the definition in Eq. (47). It
is obvious from the results that the relative contribution of some of the variables is
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k, 0.1 u, 0.8

j, 8.2

[DS], 51.2
b/P', 21.4

A, 18.3

Fig. 15 Relative
contributions of random
variables in the probability of
failure of the pipe

considerably lower than other variables. These variables include the acid reaction
factor (k) and stream velocity (u). This indicates that the inclusion of these as
variables has little influence on the probability of failure of the pipeline system.
Therefore, in any future analysis, it would not be inaccurate to treat these variables
as deterministic variables with constant quantities.

Among the variables, the analysis shows the particular significance of the
concentration of dissolved sulphide ([DS]) in the probability of failure of the
pipeline, indicating that this variable is the most significant variable on the failure
of concrete sewers. Consequently, in order to achieve a more accurate failure
assessment and service life prediction of sewers, infrastructure managers must note
the importance of monitoring data surrounding this particular parameter.

5.3 Reliability Analysis of Corrosion Affected Cast
Iron Water Pipes

In this example multi-failure mode assessment is practised through time-dependent
reliability analysis methods for a corrosion affected cast iron water pipe. Experimen-
tal data from Marshall (2001) is used for the preparation of statistical properties of
basic random variables. The values presented in Table 4 are the means and standard
deviations of an example of a cast iron pipeline in the UK with a diameter of 305 mm
and a wall thickness of 9.5 mm. The pipe is made of cast iron with the fracture
toughness of KIC D 11.4 MPa/m0.5.

Different operational and environmental conditions can cause the failure of the
pipe. The failure can be due to interaction of the different failure modes. Each
mode of failure can be represented by a failure function, and the probability of a
pipe system failure can be calculated by using the methods of system reliability
analysis. For a pipe, the occurrence of one failure mode will incorporate its total
failure. Therefore a series system is appropriate for the failure assessment of pipes.
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According to the theory of systems reliability, the failure probability of a series
system (Pfs ) can be determined from (Melchers 1999):

Pfs D 1 �
Yn

tD1 Œ1 � Pfi � (54)

where Pfi is the probability of failure due to the ith failure mode of the pipe (can
be determined by Eq. (35)) and n is the number of failure modes considered in the
system.

For an underground cast iron pipe subjected to corrosion, the action process
is the progression of the stress intensity factor at crack pits. For fracture assess-
ment, the failure function of most interest to pipe engineers and infrastructure
managers is the high stress intensity in the pipe wall under a combination of stress
and corrosion.

The stress intensity factor of a corrosion affected cast iron pipe is a very random
phenomenon, depending on time-dependent factors such as depth of corrosion pit
and stress condition. It is justifiable to model stress intensity factor as a time-
dependent process. If Kc is defined as the critical stress intensity factor, known
as fracture toughness, beyond which the pipe cannot sustain the pit crack, the
probability of pipe collapse (failure) can be determined from the following equation:

Pf.t/ D P ŒKc < KI.t/� (55)

In the practical application of Eq. (55) to the service life prediction of cast iron
pipes, the main effort lies in developing a model of stress intensity factor KI, i.e.
the action process, since the fracture toughness Kc is a material property (ASTM-
E1820-01 2001).

According to the theory of fracture mechanics, stress intensity factor KI is a
function of far-field stress level � and the size of the pit a. This relationship can
be expressed as follows (Hertzberg 1996):

K D f .�; a/ (56)

where the functionality depends on the configuration of the crack pit and the manner
in which the loads are applied. According to Laham (1999), the stress intensity
factor for a crack pit in a pipe under hoop stress is as follows:

KI�h D p
�a
X3

iD0�ifi .a; c; d;R/ (57)

and the stress intensity factor for a crack pit in a pipe under axial stress:

KI�a D p
�a

�X3

iD0�ifi .a; c; d;R/C �bgfbg .a; c; d;R/

�
(58)

where
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KI � h D stress intensity factor for longitudinal cracks in Mode I, caused by hoop
stress; KI � a D stress intensity factor for circumferential cracks in Mode I, caused
by axial stress; a D depth of the crack, i.e. corrosion pit; � i D stress normal to the
crack plane; fi and fbg D geometry functions, depend on ˛, c (half-length of crack),
d and R (inner radius of pipe); �bg D the global bending stress, i.e. the maximum
outer fibre bending stress.

For internal and/or external crack pits, the difference in formulations of stress
intensity factor (Eqs. (57) and (58)) lies in geometry functions (i.e. fi and fbg), which
have been presented in different tables by Laham (1999). Due to the propagation of
corrosion, a changes with time so the stress intensity factors are time variant.

Two typical scenarios of corrosion pits exist: (1) external corrosion; and (2)
internal corrosion. For a comprehensive assessment, the two types of stresses (hoop
and axial) that lead to Mode I fracture need to be considered in the study. Therefore
four failure functions (i.e. failure modes) will be considered in determining the stress
intensity factor of cast iron pipes.

Failure Mode 1, internal surface pit under hoop stress: The internal surface
corrosion pit can be assumed to be semi-elliptical with length 2c and radial depth a
as shown in Fig. 16a. fi, the geometry functions for the ith stress distribution on a
crack (pit) surface, depend on the geometry of the pits and the pipe as represented
by a, c, d and R. The discrete values of fi for a semi-elliptical external surface pit
with given geometric parameters can be obtained from tables presented in Laham
(1999). The probability of failure due to internal surface pit caused by hoop stress
within life time would be:

Pf1 D P
�
Kc < K.I�h/int :

.t /
	

D P

�
Kc <

�p
�a.t/

X3

iD0�i .t/fi .a.t/; c; d; R/
��

(59)

Failure Mode 2, external surface pit under hoop stress: Figure 16b shows an
idealised section of a cast iron pipe with external corrosion pit which is assumed to
be semi-elliptical. In Fig. 2b, 2c is the length of the semi-elliptical pit, a is the radial
depth of the pit through the pipe wall, R is the inner radius, d is the thickness of
the pipe wall and the angle � is used to describe the position around the semi-
elliptical pit which varies between 0 � � �� . The stress intensity factor for the
Mode I fracture of a semi-elliptical surface pit KI can also be determined by using
Eq. (57). Similar to the situation in failure Mode 1, the probability of failure due to
external surface pit caused by hoop stress within time is:

Pf2 D P
�
Kc < K.I�h/ext:

.t /
	

D P

�
Kc <

�p
�a.t/

X3

iD0�i .t/fi .a.t/; c; d; R/
��

(60)

Failure Mode 3, internal surface pit under axial stress: The internal surface
corrosion pit can be assumed to be semi-elliptical with length 2c and radial depth
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Fig. 16 (a–d) Geometry of all possible semi-elliptical crack pits in a pipe wall surface pit of a pipe

a as shown in Fig. 16c. In this case, the stress intensity factor for an internal
semi-elliptical surface pit can be determined from Eq. (58). Considering the time
dependency of the stress intensity factor, the probability of failure due to internal
surface pit caused by axial stress within life time is:

Pf3 D P
�
Kc < K.I�a/int :

.t /
	

D P

"

Kc <

s

�a

�X3

iD0�i .t/fi .a.t/; c; d; R/C �bg.t/fbg .a.t/; c; d; R/

�#

(61)

Failure Mode 4, external surface pit under axial stress: A typical example of this
case is a pipe under internal pressure (e.g. water) and subjected to external corrosion.
Figure 16d shows an idealised section of a cast iron pipe with external corrosion pit
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which is assumed to be semi-elliptical. In this figure, 2c is the length of the semi-
elliptical pit, a is the radial depth of the pit through the pipe wall, R is the inner
radius, d is the thickness of the pipe wall and the angle � is used to describe the
position around the semi-elliptical pit which varies between 0 � � �� . In this case,
the stress intensity factor for a Mode I fracture of a semi-elliptical surface pit KI1

can also be determined by Eq. (58). Similar to failure Mode 3, the probability of
failure due to external surface pit caused by axial stress within time:

Pf4 D P
�
Kc < K.I�a/ext:

.t /
	

D P

�
Kc <

p
�a

�X3

iD0�i .t/fi .a.t/; c; d; R/C �bg.t/fbg .a.t/; c; d; R/

��

(62)

In a comprehensive reliability analysis of a cast iron pipe, all four modes of failure
should be considered by using Eq. (63):

Pf;s D 1 �
Y4

iD1
�
1 � Pf;i

	
(63)

To estimate the mean and standard deviation of each stress intensity factor, the
Monte Carlo simulation method is used. For this case study, the simulation is run for
200 years (t D 1, 2, 3, : : : , 200). In each time step, random values for basic random
variables are selected and stress intensity factors are calculated. This is repeated
10,000 times and at the end, the mean and standard deviation of the simulated values
is calculated for that year.

By having the trend of the mean and standard deviation of each stress intensity
factor with respect to time, the time-dependent format of the statistics of the stress
intensity factors can be presented in Table 5. Shape and scale parameters in Table 5
for each type of stress intensity factor are also calculated by using Eqs. (33) and (34).

With this preparation, the probability of failure for the four different cases of
failure can be calculated by Eqs. (59)–(62). Finally, the time-dependent probability
of pipe collapse considering all four modes of failure can be calculated using
Eq. (63). An illustration of the estimated probabilities of failure has been presented
in Fig. 17.

From this figure the probability of failure for pipes with external corrosion can
be compared to those with internal corrosion. It is concluded that the probability
of failure for pipes with external corrosion is much higher than that for pipes
with internal corrosion. This is due to the faster progression of external corrosion
compared to internal corrosion.

As an example, while for an acceptable probability of failure of 50 % (Pa D 0.5),
the service life of a pipe under hoop stress and subjected to internal corrosion is 48
years, for external corrosion, it reduces to 14 years (more than three times less).

It can also be seen from Fig. 17 that the probability of pipe failure is greater
when multi-failure modes are considered as a system than when each failure mode
is considered individually. It is also seen that the probability of pipe failure due
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Fig. 17 Probability of pipe failure for individual failure modes and system failure mode

to hoop stress is much larger than that due to axial stress. It is clear from Fig. 17
that considering each failure mode individually in the reliability analysis of pipes
is unjustifiable which may pose undue risks to the public and cause subsequent
disastrous consequences.

The result obtained in Fig. 17 can also be used for estimation of the safe service
life of the pipe (T). It can be determined for the given assessment criterion and
acceptable probability of failure Pa. For example, using the criteria of system
failure, it can be obtained from Fig. 17 that T D 13 years for Pa D 0.5. If there
is no intervention during the service period of (0, 13) years for the pipe, such
as maintenance and repairs, based on the criteria considered in system reliability
analysis (KI>Kc), the pipe will not be serviceable after t> 13 years. Having
knowledge of T (i.e. time for intervention or service life) is of practical importance
to structural engineers and asset managers with regard to planning for repairs and/or
rehabilitation of the pipe networks. It can also help to achieve an optimum funding
allocation for the repair and replacement of corroded pipes with higher risk of
failure.
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Multicut-High Dimensional Model
Representation for Reliability Bounds
Estimation

A.S. Balu and B.N. Rao

Abstract The structural reliability analysis in presence of mixed uncertain
variables demands more computation as the entire configuration of fuzzy variables
needs to be explored. The existence of multiple design points plays an important
role in the accuracy of results as the optimization algorithms may converge to
a local design point by neglecting the main contribution from the global design
point. Therefore, in this chapter, a method for estimating the reliability bounds of
structural systems involving multiple design points in presence of mixed uncertain
variables is presented. The proposed method involves weight function to identify
multiple design points, multicut-high dimensional model representation for the limit
state function approximation, transformation technique to obtain the contribution of
the fuzzy variables and fast Fourier transform for solving the convolution integral.

1 Introduction

The Reliability analysis taking into account the uncertainties involved in a structural
system plays an important role in the analysis and design of structures. Due to the
complexity of structural systems the information about the functioning of various
structural components has different sources and the failure of systems is usually
governed by various uncertainties, all of which are to be taken into consideration for
reliability estimation. Uncertainties present in a structural system can be classified
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as aleatory uncertainty and epistemic uncertainty. Aleatory uncertainty information
can be obtained as a result of statistical experiments and has a probabilistic
or random character. Epistemic uncertainty information can be obtained by the
estimation of the experts and in most cases has an interval or fuzzy character
(Balu and Rao 2012a). When aleatory uncertainty is only present in a structural
system, then the reliability estimation involves determination of the probability that
a structural response exceeds a threshold limit, defined by a limit state function
influenced by several random parameters. Structural reliability can be computed
adopting probabilistic method involving the evaluation of multidimensional integral
(Breitung 1984; Rackwitz 2001).

In first-order or second-order reliability method (FORM/SORM), the limit state
functions need to be specified explicitly. Alternatively the simulation-based methods
such as Monte Carlo techniques require more computational effort for simulating the
actual limit state function repeated times. The response surface concept was adopted
to get separable and closed form expression of the implicit limit state function
in order to use fast Fourier transform (FFT) to estimate the failure probability
(Sakamoto et al. 1997). The high dimensional model representation (HDMR)
concepts were applied for the approximation of limit state function at the most
probable point (MPP) and FFT technique to evaluate the convolution integral for
estimation of failure probability (Rao and Chowdhury 2008). In this method, efforts
are required in evaluating conditional responses at a selected input determined by
sample points, as compared to full scale simulation methods.

Further, the main contribution to the reliability integral comes from the neigh-
borhood of design points. When multiple design points exist, available optimization
algorithms may converge to a local design point and thus erroneously neglect the
main contribution to the value of the reliability integral from the global design
point(s). Moreover, even if a global design point is obtained, there are cases for
which the contribution from other local or global design points may be significant
(Au et al. 1999). In that case, multipoint FORM/SORM is required for improving
the reliability analysis (Der Kiureghian and Dakessian 1998). In the presence of only
epistemic uncertainty in a structural system, possibilistic approaches to evaluate the
minimum and maximum values of the response are available (Briabant et al. 1999;
Penmetsa and Grandhi 2003).

All the reliability models discussed above are based on only one kind of uncertain
information; either random variables or fuzzy input, but do not accommodate a
combination of both types of variables. However, in some engineering problems
with mixed uncertain parameters, using one kind of reliability model cannot obtain
the best results. To determine the failure probability bounds of a structural system
involving both random and fuzzy variables, the entire configuration of the fuzzy
variables needs to be explored (Adduri and Penmetsa 2008; Balu and Rao 2014).
Hence, the computational effort involved in estimating the bounds of the failure
probability increases tremendously in the presence of multiple design points and
mixed uncertain variables (Balu and Rao 2012b).

The HDMR techniques are efficient to estimate the failure probability if the limit
state function exhibits a single design point. For the functions with multiple design
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points, the concepts of HDMR is extended in this paper by exploring the potential
of coupled Multicut-HDMR (MHDMR)-FFT technique to evaluate the reliability
of a structural system in presence of mixed uncertain variables. Comparisons of
numerical results have been made with direct MCS method to evaluate the accuracy
and computational efficiency of the present method.

2 Multicut-HDMR

HDMR is a general set of quantitative model assessment and analysis tools for
capturing the high dimensional relationships between sets of input and output model
variables (Rabitz et al. 1999; Rao and Chowdhury 2008). Since the influence of the
input variables on the response function can be independent and/or cooperative,
HDMR expresses the response as a hierarchical correlated function expansion in
terms of the input variables. The expansion functions are determined by evaluating
the input–output responses of the system relative to the defined reference point along
associated lines, surfaces, subvolumes, etc. in the input variable space.

The main limitation of truncated cut-HDMR expansion is that depending on the
order chosen sometimes it is unable to accurately approximate the response, when
multiple design points exist on the limit state function or when the problem domain
is large. In this section, a new technique based on multicut-HDMR (MHDMR) is
presented for approximation of the original implicit limit state function, when multi-
ple design points exist. The basic principles of cut-HDMR may be extended to more
general cases. The MHDMR is one extension where several cut-HDMR expansions
at different reference points are constructed, and the original implicit limit state
function g(x) is approximately represented not by one, but by all cut-HDMR
expansions. In the present work, weight function is adopted for identification of
multiple reference points closer to the limit surface.

Let d1;d2; : : : ;dmd be the md identified reference points closer to the limit state
function based on the weight function. MHDMR approximation of the original
implicit limit state function is based on the principles of cut-HDMR expansion,
where individual cut-HDMR expansions are constructed at different reference
points d1;d2; : : : ;dmd by taking one at a time as follows:
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where k D 1, 2, : : : , md. The original implicit limit state function g(x) is approxi-
mately represented by blending all locally constructed md individual cut-HDMR
expansions as follows:
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There are a variety of choices to define �k(x). In the present study, the metric
distance ˛k(x) from any sample point to the reference point dk; k D 1, 2, : : : , md

˛k .x/ D
"

NX

iD1

�
xi � dki

�2
# 1
2

(3)

is used to define
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mdX
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where

�k .x/ D
mdY

sD1Is¤k
˛s .x/ (5)

The coefficients �k(x) determine the contribution of each locally approximated
function to the global function. The properties of the coefficients imply that the
contribution of all other cut-HDMR expansions vanish except one when x is
located on any cut line, plane, or higher dimensional (�l) subvolumes through that
reference point, and then the MHDMR expansion reduces to single point cut-HDMR
expansion. As mentioned above, the l-th order cut-HDMR approximation does not
have error when x is located on these subvolumes. When md cut-HDMR expansions
are used to construct a MHDMR expansion, the error free region in input x space is
md times that for a single reference point cut-HDMR expansion, hence the accuracy
will be improved. Therefore, first-order MHDMR approximations of the original
implicit limit state function with md reference points can be expressed as
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The most important part of MHDMR approximation of the original implicit limit
state function is identification of multiple reference points closer to the limit state
function. Among the limit state function responses at all sample points, the most
likelihood point is selected based on closeness to zero value, which indicates that
particular sample point is close to the limit state function. The weight corresponding
to each sample point is evaluated using the following weight function.

wI D exp
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jg .x/jminj
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(7)
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3 Reliability Bounds

Let the N-dimensional input variables vector x D fx1, x2, : : : , xNg, which comprises
of r number of random variables and f number of fuzzy variables be divided
as, x D fx1, x2, : : : , xr, xr C 1, xr C 2, : : : , xr C f g where the subvectors fx1, x2, : : : , xrg
and fxr C 1, xr C 2, : : : , xr C f g respectively group the random variables and the fuzzy
variables, with N D r C f. Then the first-order approximation of Qg .x/ can be divided
into three parts, the first part with only the random variables, the second part with
only the fuzzy variables and the third part is a constant which is the output response
of the system evaluated at the reference point c, as follows

Qg .x/ D
rX

iD1
g
�
xi ; c

i
�C

NX

iDrC1
g
�
xi ; c

i
� � .N � 1/ g .c/ (8)

The joint membership function of the fuzzy variables part is obtained using
suitable transformation of the fuzzy variables and interval arithmetic algorithm. The
fuzzy variables part of the nonlinear limit state function is expressed as a linear
combination of intervening variables by the use of first-order HDMR approximation
in order to apply an interval arithmetic algorithm, as follows

NX

iDrC1
g
�
xi ; c

i
� D z1 C z2 C � � � C zf (9)

where zi D (ˇixi C � i)� is the relation between the intervening and the original
variables with � being order of approximation taking values �D 1 for linear
approximation, �D 2 for quadratic approximation, �D 3 for cubic approximation,
and so on. The steps involved in the proposed method for failure probability
estimation is as follows:

1. If u D fu1, u2, : : : , urgT 2 <r is the standard Gaussian variable, let uk * D fuk *
1 ,

uk *
2 , : : : , uk *

r gT be the MPP or design point, determined by a standard nonlinear
constrained optimization. The MPP has a distance ˇHL, which is commonly
referred to as the Hasofer–Lind reliability index. Construct an orthogonal
matrix R 2 <r � r whose rth column is ˛k * D uk */ˇHL, i.e., R D [R1j˛k *] where
R1 2 <r � r � 1 satisfies ˛k * TR1 D 0 2 <1 � r � 1. The matrix R can be obtained, for
example, by Gram–Schmidt orthogonalization. For an orthogonal transformation
u D R v.

2. Let v D fv1, v2, : : : , vrgT 2 <r be the rotated Gaussian space with the associ-
ated MPP vk * D fvk *

1 , vk *
2 , : : : , vk *

r gT . The transformed limit state function g(v)
therefore maps the random variables along with the values of the constant
part and the fuzzy variables part at each ˛-cut, into rotated Gaussian space v.
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First-order HDMR approximation of g(v) in rotated Gaussian space v with
vk * D fvk *

1 , vk *
2 , : : : , vk *

r gT as reference point can be represented as follows:
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3. In addition to the MPP as the chosen reference point, the accuracy of first-order
HDMR approximation in Eq. (10) may depend on the orientation of the first
r � 1 axes. In the present work, the orientation is defined by the matrix R. In Eq.
(10), the terms gk(vk *

1 , : : : , vk *
i � 1, vi, vk *

i C 1, : : : , vk *
r ) are the individual component

functions and are independent of each other. Equation (10) can be rewritten as,
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where ak D � (r � 1)g(vk *).

4. New intermediate variables are defined as

yki D gk
�

vi ; vk�i� (12)

The purpose of these new variables is to transform the approximate function
into the following form

Qgk .v/ D ak C yk1 C yk2 C � � � C ykr (13)

5. Due to rotational transformation in v-space, component functions yk
i in Eq. (13)

are expected to be linear or weakly nonlinear function of random variables vi. In
this work both linear and quadratic approximations of yk

i are considered.
6. Let yk

i D bi C ci vi and yk
i D bi C ci vi C ei v2

i be the linear and quadratic
approximations, where coefficients bi, ci, ei 2 < are obtained by least-squares
approximation from exact or numerically simulated conditional responsesn
gk
�

v1i ; v
k�i
�
; gk

�
v2i ; vk�i

�
; � � � ; gk

�
vni ; vk�i

�oT
at n sample points along

the variable axis vi. Then Eq. (13) results in
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and

Qgk .v/ � ak C yk1 C yk2 C � � � C ykr

D ak C
rX

iD1

�
bi C ci vi C ei v2i

�
(15)

7. The global approximation is formed by blending of locally constructed individual
first-order HDMR approximations in the rotated Gaussian space at different
identified reference points using the coefficients �k.

Qg .v/ D
mdX

kD1
�k Qgk .v/ (16)

8. Since vi follows standard Gaussian distribution, marginal density of the interme-
diate variables yi can be easily obtained by simple transformation.

pYi .yi / D pVi .vi / jdvi =dyi j (17)

9. Now the approximation is a linear combination of the intermediate variables yi.
Therefore, the joint density of Qg .v/, which is the convolution of the marginal
density of the intervening variables yi, is expressed as follows:

p QG . Qg/ D pY1 .y1/ � pY2 .y2/ � � � � � pYr .yr / (18)

10. Applying FFT on both sides of Eq. (18), leads to

FFT
�
p QG . Qg/	 D FFT ŒpY1 .y1/� � FFT ŒpY2 .y2/� : : : FFT ŒpYr .yr /� (19)

11. By applying inverse FFT on both sides of Eq. (19), joint density of Qg .v/ is
obtained.

12. The probability of failure is given by the following equation

PF D
0Z

�1
p QG . Qg/ d Qg (20)

13. The membership function of failure probability can be obtained by repeating
the above procedure at all confidence levels of the fuzzy variables part.
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4 Numerical Examples

To evaluate the accuracy and the efficiency of the present method, comparisons
of the estimated failure probability bounds, both by performing the convolution
using FFT in conjunction with linear and quadratic approximations and MCS on
the global approximation, have been made with that obtained using direct MCS.
When comparing computational efforts by various methods in evaluating the failure
probability, the number of original limit state function evaluations is chosen as the
primary comparison tool in this chapter. This is because of the fact that, the number
of function evaluations indirectly indicates the CPU time usage. For direct MCS,
the number of original function evaluations is same as the sampling size. While
evaluating the failure probability through direct MCS, CPU time is more because it
involves a number of repeated actual finite-element analyses.

4.1 Parabolic Performance Function

The limit state function considered is a parabola of the form:

g .x/ D �x21 � x2 C x3 (21)

where x1 and x2 are assumed to be independent standard normal variables, and x3

is a fuzzy variable with triangular membership function [5.0, 7.0, 9.0]. The initial
reference point c is taken as respectively the mean values and nominal values of the
random and fuzzy variables.

The first-order HDMR approximation, which is constructed over the initial
reference point, is divided into two parts, one with only the random variables, and
the other with the fuzzy variables. The joint membership function of the fuzzy
part of limit state function is obtained using suitable transformation of the fuzzy
variables. In this example, the joint membership function is same as the membership
function of the fuzzy variable x3. As shown in Fig. 1, the limit state function is
symmetric about x2 for given value of x3, and has two design points. The two actual
design points of the limit state function shown in Fig. 1, obtained using recursive
quadratic programming (RQP) algorithm are (2.54, 0.49) and (�2.54, 0.49) with
reliability indices ˇ1 Dˇ2 D 2.588.

After identification of the two reference points (2, 0) and (�2, 0), local individual
first-order HDMR approximations of the original limit state function are constructed
at the two reference points by deploying n D 5 sample points along each of the
variable axis. Local approximations of the original limit state function are blended
together to form global approximation. The bounds of the failure probability are
obtained both by performing the convolution using FFT in conjunction with linear
and quadratic approximations, and MCS on the global approximation.
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Fig. 1 Limit state function

Fig. 2 Membership function
of failure probability

Figure 2 shows the membership function of the failure probability estimated both
by performing the convolution using FFT, and MCS on the global approximation, as
well as that obtained using direct MCS. In addition, effect of SF sampling scheme on
the estimated membership function of the failure probability is studied. The effect
of the number of sample points is studied by varying n from 3 to 9. It is observed
that n D 7 provides the optimum number of function calls with acceptable accuracy
in evaluating the failure probability with the present method.

4.2 Cantilever Steel Beam

A cantilever steel beam of 1.0 m with cross-sectional dimensions of (0.1 � 0.01) m
is considered as shown in Fig. 3, to examine the accuracy and efficiency of the
proposed method for the membership function of failure probability estimation.
The beam is subjected to an in-plane moment at the free end and a concentrated
load at 0.4 m from the free end. The structure is assumed to have failed if the square
of the von Mises stress at the support (at A in Fig. 3) exceeds specified threshold
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Fig. 3 Cantilever steel beam

Vmax. Therefore, the limit state function is defined as

g .x/ D Vmax � V .x/ (22)

where V(x) is the square of the von Mises stress, expressed as a quadratic operator
on the stress vector.

In this example, loads x1 and x2, modulus of elasticity of the beam E and threshold
quantity Vmax are taken as uncertain variables. The variations of E and Vmax are
expressed as E D E0(1 C " x3) and Vmax D Vmax0(1 C " x4). Here, " is small determin-
istic quantity representing the coefficient of variation of the random variables and
are taken to equal to 0.05, E0 D 2 � 105 N/m2 denotes the deterministic component
of modulus of elasticity and Vmax 0 D 6.15 � 109 N/m2 denotes the deterministic
component of threshold quantity. All variables are assumed to be independent. The
mean values of random variables x1 and x2 are 1 and 0 respectively, with the standard
deviation of 1. The variables x3 and x4 are triangular fuzzy numbers with [0.0 2.0
4.0] and [0.0, 0.1, 0.2] respectively.

The limit state function given in Eq. (22) is approximated using first-order
HDMR by deploying n D 5 sample points along each of the variable axis and
taking respectively the mean values and nominal values of the random and fuzzy
variables as initial reference points (1.0, 0.0, 2.0, 0.1). The approximated limit
state function is divided into two parts, one with only the random variables along
with the value of the constant part, and the other with the fuzzy variables. The
joint membership function of the fuzzy part of approximated limit state function
is obtained using suitable transformation of the fuzzy variables. Using FF sampling
scheme the sample point d D (1, � 2) is identified as reference point closer to the
limit state function producing maximum weight.

Figure 4 shows the membership function of the failure probability estimated
both by performing the convolution using FFT in conjunction with linear and
quadratic approximations, and MCS on the global approximation, as well as that
obtained using direct MCS. It is observed that n D 7 provides the optimum number
of function calls with acceptable accuracy in evaluating the failure probability with
the present method.
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Fig. 4 Membership function
of failure probability

5 Summary and Conclusions

A novel uncertain analysis for estimating the membership function of the reliability
of structural systems involving multiple design points in the presence of mixed
uncertain variables is presented in this chapter. The method involves MHDMR
technique for the limit state function approximation, transformation technique to
obtain the contribution of the fuzzy variables to the convolution integral and FFT
for solving the convolution integral. Weight function is adopted for identification
of multiple reference points closer to the limit surface. Using the bounds of the
fuzzy variables part at each confidence level along with the constant part and the
random variables part, the joint density functions are obtained by (i) identifying
the reference points closer to the limit state function and (ii) blending of locally
constructed individual first-order HDMR approximations in the rotated Gaussian
space at different identified reference points to form global approximation, and (iii)
performing the convolution using FFT, which upon integration yields the bounds
of the failure probability. As an alternative the bounds of the failure probability
are estimated by performing MCS on the global approximation in the original
space, obtained by blending of locally constructed individual first-order HDMR
approximations of the original limit state function at different identified reference
points. An optimum number of sample points must be chosen in approximation of
the original limit state function.
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Approximate Probability Density Function
Solution of Multi-Degree-of-Freedom Coupled
Systems Under Poisson Impulses

H.T. Zhu

Abstract A solution procedure is proposed to approximate the probability density
function (PDF) solution of high-dimensional non-linear systems under Poisson
impulses. The PDF solution yields the generalized Fokker–Planck–Kolmogorov
(FPK) equation. First a state-space-split method is proposed to reduce the high-
dimensional generalized FPK equation to a low dimensional equation. After
that, the exponential–polynomial closure method is further adopted to solve the
reduced FPK equation for the PDF solution. In order to show the effectiveness
of the proposed solution procedure, a two-degree-of-freedom coupled pitch–roll
ship motion system and a 10-degree-of-freedom mass–spring–damper system are
investigated, respectively. Compared to the simulated results, the proposed solution
procedure is effective to obtain the PDF solution, especially in the tail region which
is very important for reliability analysis.

1 Introduction

The accurate estimation on the random response of systems is a critical issue in the
field of science and engineering. In this field, the excitation model for wind, sea
wave, earthquake ground motion is mostly treated as either Gaussian white noise
or Poisson white noise (i.e., Poisson impulses). Under such random excitations, the
probability density function (PDF) and statistical moment of the system have to be
obtained in reliability analysis. However, the PDF solution is much more difficult
to be accessed and much work is devoted to the evaluation on the response of
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single-degree-of-freedom (SDOF) systems. Even in the case of the SDOF systems,
only a few stationary PDF solutions have been obtained in some special cases by
solving the associated Fokker–Planck–Kolmogorov (FPK) equation (Caughey and
Ma 1982; Dimentberg 1982; Lin and Cai 1988; Vasta 1995; Proppe 2002a, 2003).
Most problems need some approximation methods, such as perturbation method
(Roberts 1972; Cai and Lin 1992), finite element method (Langley 1985), Petrov–
Galerkin method (Köylüoğlu et al. 1994), cell-to-cell mapping (path integration)
technique (Köylüoğlu et al. 1995; Di Paola and Santoro 2008), and finite difference
approach (Wojtkiewicz et al. 1999). Comparatively, the relevant problem of high-
dimensional systems is more challenging (Cai and Lin 1996). Furthermore, if
some type of non-linearity is considered, the problem becomes much more com-
plicated. For the problem of multi-degree-of-freedom (MDOF) systems, equivalent
linearization (EQL) method was widely employed for obtaining statistical moments
(Caughey 1963; Atalik and Utku 1976; Spanos 1981; Proppe 2002b; Roberts and
Spanos 2003; Socha 2008). The accuracy of the EQL method heavily is limited
to the non-linearity degree and excitation type. Another conventional technique is
Monte Carlo simulation which is a versatile method for MDOF systems (Shinozuka
1972; Muscolino et al. 2003; Proppe et al. 2003). When the tail of the PDF is
considered, a high computational effort is needed with Monte Carlo simulation.
Besides, a C-type Gram-Charlier series expansion method was also developed for
approximating the response PDF of MDOF structural systems under Poisson white
noise (Muscolino and Ricciardi 1999). In this method, the evaluation of the response
cumulants up to a given order is needed and the method was applied to the case of
linear systems. Recently, the PDF of MDOF dissipated Hamiltonian systems under
Poisson white noises were investigated with a perturbation method (Wu and Zhu
2008a, 2008b). The numerical examples on two coupled non-linear oscillators were
studied in numerical analysis.

From the above description, the PDF solution of high-dimensional non-linear
systems under random excitation is less addressed, especially for the tail of the
PDF solution in the problem of high-dimensional systems. This chapter adopts a
solution procedure to approximate the stationary PDF solution of high-dimensional
non-linear systems under Poisson impulses. First Sect. 2 introduces the state-space-
split (SSS) method to reduce the high-dimensional generalized FPK equation to a
low-dimensional equation (Er 2011; Er and Iu 2011). After that, the exponential–
polynomial closure (EPC) method is further adopted to solve the reduced FPK
equation for the PDF solution in Sect. 3 (Er 1998; Zhu et al. 2009). In order
to evaluate the effectiveness of the solution procedure, a two-degree-of-freedom
coupled pitch–roll ship motion system and a 10-degree-of-freedom non-linear
system are investigated in Sect. 4. The applications presented in Sect. 4 are gradual.
The first one is more theoretical while the second one is more practical. Comparison
with the simulated results is made in the same section. According to the numerical
analysis, some conclusions are drawn in the last section.
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2 State-Space-Split Method

A non-linear MDOF system under Poisson impulses can be expressed as

d

dt
Xi D fi .X/CWi.t/; .i D 1; 2; : : : ; nx/ (1)

where nx is the number of the components of X; X is a vector containing Xi and PXi ,
the responses of the non-linear system; PXi is the first derivative with respect to time
t. fi(X) is generally a non-linear function of X, and it is assumed to be deterministic
and of polynomial type. Wi(t) is the ith Poisson impulse process which is formulated
as follows

Wi.t/ D
N.T /X

kD1
Ykı .t � �k/ (2)

where N(T) is the total number of impulses that arrive in the time interval (�1, T].
Yk is the amplitude of the kth impulse arriving at time � k for Wi(t). ı(�) is the Dirac
delta function. In this chapter, N(T) is a count process yielding the Poisson law
with a constant impulse arrival rate �i. The impulse amplitudes Yk are independent
identically distributed (i.i.d.) random variables with zero mean for Wi(t), and also
independent of the impulse arrival time � k.

Subjected to Poisson impulses, the PDF solution p(x, t) is governed by the
generalized FPK equation. In this chapter, only the stationary response is considered
and the stationary PDF solution p(x) is determined by the following generalized
FPK equation (Wu and Zhu 2008a, 2008b)

0 D � @

@xi
ffi .x/ p .x/g C 1

2Š
�i ıijE

�
YiYj

	 @2p .x/
@xi@xj

� 1

3Š
�i ıij ıikE

�
YiYj Yk

	 @3p .x/
@xi@xj @xk

C 1

4Š
�i ıij ıikıilE

�
YiYj YkYl

	 @4p .x/
@xi@xj @xk@xl

C � � � (3)

where Yi is a random amplitude of Poisson impulses associated with Wi(t); ıij is
the Kronecker delta. Furthermore, p(x) is assumed to satisfy the below boundary
conditions

lim
xi!˙1p .x/ D 0 (4)
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and

lim
xi!˙1

n
� fi .x/ p .x/C 1
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�i ıijE
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YiYj

	 @p .x/
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o

D 0 (5)

It means that the probability and probability flow vanish at infinite boundary.
According to the state-space-split (SSS) method (Er 2011; Er and Iu 2011),

the state variables x are divided into two subspaces x1 2 Rnx1 and x2 2 Rnx2 .
x D fx1, x2g. In analysis of a second-order dynamical stochastic system, for instance,
x1 contains pairs of displacement and its first derivative (i.e., the corresponding
velocity).

The PDF of x1 is defined as p1(x1), which is obtained by integrating (3) over the
subspace of Rnx2 as

Z

Rnx2
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dx2 D 0 (6)

where xi ; xj ; xk; xl ; � � � 2 Rnx .
Considering (4), (5), and (6) can be further reduced as
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dx2 D 0 (7)

where xi ; xj ; xk; xl ; � � � 2 Rnx1 .
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In (7), only xi ; xj ; xk; xl ; � � � 2 Rnx1 are retained from (6). Consequently,
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where xi ; xj ; xk; xl ; � � � 2 Rnx1 .
and

Z

Rnx2
p .x/ dx2 D p1 .x1/ (9)

The non-linear function in (1) can be further expressed as

fi .x/ D f I
i .x1/C f II

i .x/ (10)

Equation (8) is reformulated as
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(11)

where xi ; xj ; xk; xl ; � � � 2 Rnx1 .
In general, f II

i (x) is a function of a few state variables and it can be expressed as
f II

i (x1, zk), zk 2 Rnzk  Rnx2
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where xi ; xj ; xk; xl ; � � � 2 Rnx1 .
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pk(x1, zk) is the joint PDF of x1 and zk. It can be expressed as

pk .x1; zk/ D p1 .x1/ qk
�

zk
ˇ̌
ˇx1
�

(13)

qk(zkjx1) is the conditional PDF of zk given with x1.
Accordingly,
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where xi ; xj ; xk; xl ; � � � 2 Rnx1 .
qk(zkjx1) is unknown and it can be approximated by the result of EQL method.
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where xi ; xj ; xk; xl ;1 � � � 2 Rnx1 and qk
�

zk
ˇ̌
ˇx1
�

is the conditional PDF given by

EQL method and Qp1 .x1/ is the approximate PDF solution of x1.
Let

Qfi .x1/ D f I
i .x1/C

Z

R
nzk

f II
i .x1; zk/ qk

�
zk
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ˇx1
�
dzk (16)

Finally, the high-dimensional generalized FPK equation can be approximated by
a low-dimensional FPK equation as follows
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� @

@xi

n Qfi .x1/ p1 .x1/
o

C 1

2Š
�i ıijE

�
YiYj

	 @2 Qp1 .x1/
@xj @xj

� 1

3Š
�i ıij ıikE

�
YiYj Yk

	 @3 Qp1 .x1/
@xi@xj @xk

C 1

4Š
�i ıij ıikıilE

�
YiYj YkYl

	 @4 Qp1 .x1/
@xi@xj @xk@xl

C � � � D 0 (17)

where xi ; xj ; xk; xl ; � � � 2 Rnx1 .
If x1 only includes one or two state variables, e.g., displacement and velocity in

some degree of freedom, the approximate FPK equation is two-dimensional FPK
equation for a single-degree-of-freedom system. According to Zhu et al. (2009),
the exponential–polynomial closure (EPC) method can be adopted to solve the
approximate FPK equation.

3 Exponential–Polynomial Closure Method

When x1 contains a pair of displacement and velocity of some degree of freedom,
i.e., x1 D fx; PxgT, the reduced FPK equation is two-dimensional FPK equation for
a single-degree-of-freedom system.

Letting x D x1; Px D x2 and considering the presence of one external Poisson
white noise in that degree of freedom, the above Eq. (17) is formulated as
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where Qf1 .x1; x2/ D x2; � is the impulse arrival rate of the Poisson white noise; Y is
the amplitude of the kth impulse of the Poisson white noise. It should be noted that
x1 and x2 are two new redefined variables denoting x and Px, respectively. They do not
represent the variables in (1) any more in the following content. Furthermore, only
the terms up to fourth-order derivative is retained for (17) for analysis on assumption
that the contribution of high order terms is small to the whole equation.

The approximate PDF Qp .x1; x2I a/ solution to (18) is assumed to be

Qp .x1; x2I a/ D CeQn.x1;x2Ia/ (19)
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where C is a normalization constant. a is an unknown parameter vector containing
Np entries. The polynomial Qn(x1, x2; a) is formulated as

Qn .x1; x2I a/ D
nX

iD1

iX

jD0
aij x

i�j
1 x

j
2 (20)

which is a complete nth degree polynomial of x1 and x2.
Because Qp .x1; x2I a/ is only an approximation, substituting Qp .x1; x2I a/ into (18)

leads to the following residual error
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Substituting (19) into (21) leads to

�.x1; x2I a/ D �x2 @ Qp
@x1

� @

@x2

n Qf2 .x1; x2/ Qp
o

C 1

2Š
�E

�
Y 2
	 @2

@x22
Qp

� 1

3Š
�E

�
Y 3
	 @3

@x32
Qp C 1

4Š
�E

�
Y 4
	 @4

@x42
Qp

D F .x1; x2I a/ Qp .x1; x2I a/ (22)

If Y is Gaussian with zero mean,
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Because Qp .x1; x2I a/ ¤ 0 and usually F(x1, x2; a) ¤ 0, another set of mutually
independent functions Hk .x1; x2/ that span space RNp can be introduced to make
the projection of F(x1, x2; a) on RNp vanish, which leads to

Z C1

�1

Z C1

�1
F .x1; x2I a/Hs .x1; x2/ dx1dx2 D 0 s D 1; 2; : : : ; Np (24)

Selecting Hs(x1, x2) as:

Hs .x1; x2/ D xk�l
1 xl2f1 .x1/ f2 .x2/ (25)

where k D 1, 2, : : : , n; l D 0, 1, 2, : : : , k; and s D 1
2
.k C 2/ .k � 1/C lC1; Np non-

linear algebraic equations in terms of Np unknown parameters can be formulated.
Numerical experience shows that a convenient and effective choice for f1(x1) and
f2(x2) are the PDFs obtained with equivalent linearization or Gaussian closure under
Gaussian excitation with spectral intensity �E[Y2].

4 Illustrative Examples

In order to show the effectiveness of the proposed solution procedure, a two-degree-
of-freedom coupled pitch–roll ship motion system and a 10-degree-of-freedom
mass–spring–damper system are investigated, respectively. The results given by
Monte Carlo simulation, the EQL method and the SSS-EPC method are presented
and compared. The sample size of Monte Carlo simulation is 2 � 107. In the
presented figures, the result given by Monte Carlo simulation is denoted as MCS
and the one given by the EQL method is denoted as EQL. The result given with
the SSS-EPC solution procedure is denoted as EPC (n D 6) when the polynomial
order equals 6 in the EPC method. As well known, the EQL method is based on an
important assumption that the response of systems is Gaussian. Therefore, the result
of the EQL method has a Gaussian PDF distribution. Comparison with EQL shows
that how the response of the above examined systems differs from being Gaussian.

4.1 Two-Degree-of-Freedom Coupled Pitch–Roll
Ship Motion System

Non-linear coupled pitch–roll ship motion under excitations is given as

Ru1 C c1 Pu1 C k1u1 C ˛1u1u2 D W1.t/ (26)

Ru2 C c2 Pu2 C k2u2 C ˛2u
2
1 D W2.t/ (27)
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where u1 and u2 are the roll and pitch modal amplitudes; c1 and c2 are the modal
damping coefficients; k1 and k2 are the linear stiffnesses of the roll and pitch modes;
˛1 and ˛2 are non-linear coefficients; W1(t) and W2(t) are external Poisson impulses.

According to (1), the generalized FPK equation can be formulated governing the
PDF of pitch and roll amplitudes and velocities. In this chapter, only stationary
PDF solutions are considered. First, u1 and Pu1 are considered, the generalized FPK
equation is integrated with u2 and Pu2 by the SSS method. After that, the high-
dimensional generalized FPK equation to a low-dimensional equation only about
u1 and Pu1. In terms of the reduced generalized FPK equation, the EPC method is
employed to solve the low-dimensional equation for the PDF solution of u1 and Pu1.

For u2 and Pu2, the solution procedure is conducted in a similar manner. The
original generalized FPK equation is integrated with u1 and Pu1 using the SSS
method. After that, the high-dimensional generalized FPK equation to a low-
dimensional equation only about u2 and Pu2. In terms of the reduced generalized
FPK equation, the EPC method is employed to solve the low-dimensional equation
for the PDF solution of u2 and Pu2. It also should be noted that u2 has a non-zero mean
due to the presence of the even order term in (27) while other variables have zero
means. The proposed solution procedure is also applicable in the case of non-zero
mean PDF solution.

The parameters in (26) and (27) are given as c1 D 0.1, c2 D 0.05, k1 D 2, k2 D 1,
˛1 D 0.2, ˛2 D 0.3, �1 D 2, �2 D 1, �1E[Y2] D 0.1, and �2E[Y 02] D 0.05. Both Y and
Y 0 are Gaussian with zero mean. In Monte Carlo simulation, a sample size of 2 � 107

is adopted.
The results obtained from Monte Carlo simulation (MCS), equivalent lineariza-

tion method (EQL), and the proposed SSS-EPC method (EPC) are compared in
Fig. 1. The numerical results show that the result of the EPC method with n D 2 is
same as that given by equivalent linearization method. For the roll amplitude u1, the
results of MCS, EQL, and EPC (n D 6) are close to each other as shown in Fig. 1a, b.
However, there is a significant difference in the tail region of the PDF of u1 as shown
in Fig. 1b. Similar observation is also found in the case of Pu1 as shown in Fig. 1c, d.

For the pitch amplitude u2, Fig. 2a, b show that EQL and EPC (n D 6) are both
close to MCS. Because EQL denotes a Gaussian PDF distribution, this indicates that
the pitch amplitude is nearly Gaussian. Furthermore, EPC (n D 6) can provide an
improved result for the tail region as shown in Fig. 2(b). This improvement exhibits
that the pitch amplitude is not Gaussian in the tail region.

In the case of Pu2, Fig. 2c, d exhibit EQL and EPC (n D 6) are in agreement with
the simulated results. EPC (n D 6) is much close to the simulated result for the tail
region as shown in Fig. 2d. This shows that the PDF of Pu2 is nearly Gaussian but
the tail of its PDF becomes non-Gaussian. Comparison shows that the proposed
SSS-EPC method is effective for the PDF solution of non-linear coupled pitch–roll
ship motion.
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a b

c d

Fig. 1 Comparison of PDFs of (u1, Pu1) of the coupled pitch–roll ship motion system. (a) PDFs
of u1. (b) Logarithmic PDFs of u1. (c) PDFs of Pu1. (d) Logarithmic PDFs of Pu1

4.2 Ten-Degree-of-Freedom Mass–Spring–Damper System

Consider a 10-degree-of-freedom non-linear system with cubic non-linearity in
displacement given by Fig. 3. The non-linear system can be mathematically
expressed as

8
ˆ̂<

ˆ̂:

m1 Ry1 C c1 Py1 C k1y1 C k2 .y1 � y2/C �1y
3
1 C �2 .y1 � y2/ 3 D W1.t/

mi Ryi C ci Pyi C ki .yi � yi�1/C kiC1 .yi � yiC1/
C �i .yi � yi�1/3 C �iC1 .yi � yiC1/ 3 D Wi.t/; .i D 2; : : : ; 9/

m10 Ry10 C c10 Py10 C k10 .y10 � y9/C �10 .y10 � y9/ 3 D W10.t/

(28)

The parameters of the system are given as follows: mi D 1, ci D 0.1, ki D 1,
�i D 2, �i D 1, �iE[Y2

i ] D 2, i D 1, 2, : : : , 10. Furthermore, Wi(t) are independent
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a b

c d

Fig. 2 Comparison of PDFs of (u2, Pu2) of the coupled pitch–roll ship motion system. (a) PDFs
of u2. (b) Logarithmic PDFs of u2. (c) PDFs of Pu2. (d) Logarithmic PDFs of Pu2

Fig. 3 A 10-degree-of-freedom mass–spring–damper system
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a b

c d

Fig. 4 Comparison of PDFs of (y1, Py1) of the 10-degree-of-freedom mass–spring–damper system.
(a) PDFs of y1. (b) Logarithmic PDFs of y1. (c) PDFs of Py1. (d) Logarithmic PDFs of Py1

identically distributed with zero mean, and they are also independent of the impulse
arrival time � k. In this chapter, the PDF solutions of the first-, fifth-, and tenth-
degree-of-freedom vibration are presented to representatively show the effectiveness
of the solution procedure. It is because the first-degree-of-freedom mass is located
at the bottom. The fifth-degree-of-freedom mass is located in the middle and tenth-
degree-of-freedom is located at the top. The PDFs of y1, Py1, y5, Py5, y10, and Py10 are
given with each method, which is shown in the following figures. �yi and � Pyi denote
the standard deviations of yi and Pyi given by EQL method, respectively.

Figure 4 compares the PDFs of y1 and Py1 in Example 2. For the PDF of y1,
Fig. 4a shows that EQL differs significantly from the result of Monte Carlo
simulation. The difference is more significant in the tail region as shown in Fig. 4b.
This indicates that the PDF distribution of displacement is highly non-Gaussian.
Comparatively, EPC (n D 6) presents good agreement with the simulated result. The
non-Gaussian behavior is formulated due to the fact that the first-degree-of-freedom
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a b

c d

Fig. 5 Comparison of PDFs of (y5, Py5) of the 10-degree-of-freedom mass–spring–damper system.
(a) PDFs of y5. (b) Logarithmic PDFs of y5. (c) PDFs of Py5. (d) Logarithmic PDFs of Py5

spring frequently enters the non-linear region. This is because the overall external
excitations have to be endured by this spring leading it to show a highly non-linear
behavior.

For the velocity, both EQL and EPC (n D 6) are close to MCS as shown in
Fig. 4c, d. A little difference exists in the tail region. Therefore, the PDF distribution
of velocity is very close to being Gaussian.

Figure 5 presents the comparison on the PDFs of y5 and Py5 in Example 2. For
displacement, EQL and EPC (n D 6) are close to MCS as shown in Fig. 5a, b.
This means the PDF distribution of displacement approaches to be Gaussian. The
displacement behavior is obviously different from the case of y1 and Py1. For the
fifth-degree-of-freedom spring, the external excitations below and above it are all
random, the total resultant force is much smaller than that of the first-degree-of-
freedom spring. Therefore, the fifth-degree-of-freedom spring scarcely enters the
non-linear region, which fifth-degree-of-freedom spring mostly maintains a linear
behavior.
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a b

c d

Fig. 6 Comparison of PDFs of (y10, Py10) of the 10-degree-of-freedom mass–spring–damper
system. (a) PDFs of y10. (b) Logarithmic PDFs of y10. (c) PDFs of y10. (d) Logarithmic PDFs
of y10

In the case of velocity, both EQL and EPC (n D 6) agree with the simulated result
in Fig. 5c, d with a little difference in the tail region. Therefore, the PDF distribution
of velocity is very close to being Gaussian.

Last Fig. 6 gives the PDFs of y10 and Py10 in Example 2. The similar conclusions
are drawn as the case of y5 and Py5. EQL and EPC (n D 6) are close to MCS in the
case of displacement as Fig. 6a, b show. For the 10th-degree-of-freedom spring,
only one external force acts on it. This leads the spring to mostly reside in the linear
region showing a nearly Gaussian distribution.

In the case of velocity, both EQL and EPC (n D 6) are in agreement with the
simulated result in Fig. 6c, d. An improvement is made by EPC (n D 6) showing
that the PDF distribution of velocity is becoming a little non-Gaussian. Comparison
shows that the proposed SSS-EPC method is also effective for the PDF solution of
the 10-degree-of-freedom mass–spring–damper system.



526 H.T. Zhu

5 Conclusions

A solution procedure is developed to obtain the PDF solution of MDOF non-
linear systems under Poisson impulses. The PDF solution yields the generalized
FPK equation. The state-space-split (SSS) method is developed to reduce the high-
dimensional generalized FPK equation to a low dimensional equation. The reduced
FPK equation is further solved by the exponential–polynomial closure (EPC)
method. In order to evaluate the effectiveness of the proposed solution procedure, a
two-degree-of-freedom coupled pitch–roll ship motion system and a 10-degree-of-
freedom non-linear system are investigated, respectively. Numerical analysis shows
that the PDF obtained with the proposed SSS-EPC solution procedure agrees with
the simulated result, even in the tail region of the PDF solution. The comparison
further shows that the PDF of displacement exhibits a non-Gaussian behavior when
the restoring force with displacement is much larger. The PDF of velocity is close
to being Gaussian in the case that only linear damping exists in the systems.
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Evaluate Reliability of Morgenstern–Price
Method in Vertical Excavations

Shaham Atashband

Abstract Considering force and moment equilibrium equations simultaneously,
Morgenstern–Price’s method is more well mannered than other computational
algorithms in slope stability field. On the other hand, because of its simplification,
Rankine’s theory has its particular fans in handy calculations and pre-estimations
of safe depth in vertical self-stable excavations, classically and academically. To
have a comparison of abovementioned methods’ results, in this study, a variety
of analyses have been performed using the Morgenstern–Price’s algorithm with
SLIDE software in which the cohesion factor of soil changes over a range between
5 and 95 kPa and the inner friction angle is applied less than 40ı. The analyses
results including self-stable excavation depths between 1 and 8 m and related
factors of safety (1–3) are derived and collected in a 90ı slope. Moreover, using
Rankine’s formula in the same geometry, the determination of safe vertical self-
stable excavation depth is performed in various factors of safety. Finally, a relation
between two methods is presented as a correlation as well as a reliability evaluation.

1 Introduction

Nowadays, the importance of a safe excavation is an undeniable fact in every earthy
construction project.

As a primary simple economic solution, a self-stable slope is proposed for an
excavation in the absence of neighborhood limits. As a matter of fact, a vertical
slope (approximately 90ı) is much optimum in comparing with other angles due
to preparing much space in the excavation. However, reaching a vertical excavation
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needs enough strength and stability in the soil (e.g., cohesion and somewhat friction)
and it limits the depth of the excavation, consequently.

In order to ensure enough safety in every excavation, various methods have been
proposed for slope stability analyses (e.g., Sarma, Bishop, Ordinary, Janbu, Spencer,
Morgenstern–Price) and controlling the lateral pressure of soil using or without
retaining structures (e.g., Rankine, Coulomb) by extending various theories which
have presented suitable results in practical experiences.

In this chapter, first of all, a review of slope stability analysis basics using limit
equilibrium is presented and then a focus on Rankine theory and Morgenstern–Price
method is done. Secondly, effective parameters in modeling are defined. Thirdly,
collected analysis output is demonstrated and summarized in graphs. Finally, a
comparison between Rankine’s and Morgenstern–Price’s method is presented as
well as defining a correlation function of the factors of safety to evaluate the
reliability of the methods.

2 Slope Stability Basics

2.1 General Definition of Safety Factor

The task of the engineer charged with analyzing slope stability is to determine the
factor of safety. Generally, the factor of safety (FS) is defined as Eq. (1) (Das 2010).

FS D �f

�d
(1)

where � f is average shear strength of the soil and �d is average shear stress developed
along the potential failure surface.

The shear strength of a soil consists of two components, cohesion and friction,
and may be written as Eq. (2) (Das 2010).

�f D C 0 C � 0 tan'0 (2)

where C0 is [effective] cohesion, ®0 is [effective] friction angle of the soil, and � 0 is
[effective] normal stress on the potential failure surface.

In a similar manner, the average shear stress developed along the potential failure
surface (�d) can be defined as Eq. (3) (Das 2010).

�d D C 0
d C � 0 tan'0

d (3)

where C
0

d and ®
0

d are, respectively, the [effective] cohesion and the [effective] angle
of friction that develop along the potential failure surface.
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Fig. 1 Two principle types of
slope stability analyses: (a)
infinite slope; (b) finite slope

Moreover, two more factors of safety are defined in the literature, with respect to
cohesion (Fc0) and the factor of safety with respect to friction (F®0).

2.2 Classification of Vertical Excavation Analyses

In general, slope stability analyses include two principle types depending on the
slope geometry: infinite slopes and finite slopes (see Fig. 1).

Infinite slope analyses are useful when a thin layer of soil overlies a much
harder strata or bedrock, and also may be used to evaluate the potential for shallow
flowslides which are sometimes called surficial slumps (Coduto 2008).

A vertical excavation problem can be categorized as a finite analysis.

2.3 Morgenstern–Price Method Principles

The methods of slices have become the most common methods due to their ability to
accommodate complex geometrics and variable soil and water pressure conditions
(Tekzaghki and Peck 1967).

Morgenstern–Price is a general method of slices developed on the basis of limit
equilibrium. It requires satisfying equilibrium of forces and moments acting on
individual blocks. The blocks are created by dividing the soil above the slip surface
by dividing planes.

Forces acting on individual blocks are displayed in Fig. 2.
The following assumptions are introduced in the (Morgenstern-Price) method

to calculate the limit equilibrium of forces and moment on individual blocks
(Morgenstern 1965):

• Dividing planes between blocks are always vertical (see Fig. 2).
• The line of action of weight of block Wi passes through the center of the ith

segment of slip surface represented by point M.
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Fig. 2 Static diagram of a schematic slope in Morgenstern–Price method (Finesoftware 2010)

Fig. 3 Half-sine function used in Morgenstern–Price method (Finesoftware 2010)

• The normal force Ni is acting in the center of the ith segment of slip surface, at
point M.

• Inclination of forces Ei acting between blocks is different on each block (ıi) at
slip surface end points is ıD 0.

The only difference between Spencer and Morgenstern–Price method is shown in
the above list of assumptions. Choice of inclination angles ıi of forces Ei acting
between the blocks is realized with the help of Half-sine function—one of the
functions in Fig. 3 is automatically chosen. This choice of the shape of function has a
minor influence on final results, but suitable choice can improve the convergency of
method. Functional value of Half-sine function f (xi) at boundary point xi multiplied
by parameter � results the value of inclination angle ıi (Morgenstern 1967).

The factor of safety FS is determined by employing the following iteration
process (Zhu et al. 2005):

Step 1: The initial value of angles ıi is set according to Half-sine function
(ıi D� * f (xi)).

Step 2: The factor of safety FS for a given value of ıi follows from Eq. (4), while
assuming the value of EnC1 D 0 at the end of the slip surface
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EiC1 D

Œ.Wi � Fyi / � cos˛i � .Kh �Wi � Fxi / � sin˛i � Ui CEi
� sin .˛i � ıi /� � tan'i

FS
C ci

FS
� bi

cos˛i
� .Wi � Fyi /

� sin˛i � .Kh �Wi � Fxi / � cos˛i CEi � cos .˛i � ıi /
sin .˛i � ıiC1/ � tan'i

FS
C cos .˛i � ıiC1/

(4)

Step 3: The value of ıi is provided by Eq. (5) using the values of Ei determined
in the previous step with the requirement of having the moment on the last
block equal to zero. Functional values f (xi) are same all the time during the
iteration, only parameter � is iterated. Equation (5) does not provide the
value of znC1 as it is equal to zero. For this value the moment equation of
Eq. (6) must be satisfied.

ZiC1 D

bi
2

� ŒEiC1 .sin ıiC1 � cos ıiC1 � tan˛i /
CEi � .sin ıi � cos ıi � tan˛i /�CEi � zi � cos ıi
�M1i CKh �Wi � �yM � ygi

�

EiC1 � cos ıiC1
(5)

EiC1 � cos ıiC1
�

ziC1 � bi

2
tan˛i

�
�EiC1 � sin ıiC1 � bi

2

�Ei � cos ıi

�
zi � bi

2
tan˛i

�
�Ei � sin ıi � bi

2

CM1i �Kh �Wi

�
yM � ygi

� D 0 (6)

Step 4: Steps 2 and 3 are then repeated until the value of ıi (resp. parameter �) does
not change.

Moreover, it is necessary to avoid unstable solutions for successful iteration
process. Such instabilities occur at points where division by zero in Eqs. (4) and
(5) takes place. In Eq. (5), division by zero is encountered for ıi D� /2 or ıi D –� /2.
Therefore, the value of angle äi must be found in the interval (–� /2;� /2).

Division by zero in Eq. (4) appears when:

FS D tan'i � tan .ıiC1 � ˛i / (7)

Another check preventing numerical instability is verification of parameter m˛—
following condition must be satisfied:

m˛ D cos˛i C sin˛i � tan'i
FS

> 0:2 (8)

Therefore before iteration run it is required to find the highest of critical values
(FSmin) satisfying abovementioned conditions. Values below this critical value FSmin
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are in area of unstable solution, therefore iteration begins by setting FS to a value
“just” above FSmin and all result values of FS from iteration runs are higher
than FSmin.

3 Classical Theories on Lateral Earth Pressure

3.1 Rankine’s Theory of Active Pressure

The phrase plastic equilibrium in soil refers to the condition where every point
in a soil mass is on the verge of failure. The Scotsman W.J.M. Rankine (1857)
investigated the stress conditions in soil at a state of plastic equilibrium (Das
2010). Actually, he approached the lateral earth pressure problem with the following
assumptions (Coduto 2008):

• The soil is homogeneous and isotropic.
• The most critical shear surface is a plane. In reality, it is slightly concave up, but

this is a reasonable assumption (especially for the active case) and it simplifies
the analysis.

• The ground surface is a plane (although it does not necessarily need to be
leveled).

• The wall moves sufficiently to develop the active or passive condition (in this
case, active).

• The resultant of the normal and shear forces that act on the back of the wall is
inclined at an angle parallel to the ground surface (Coulomb’s theory provides a
more accurate model of shear forces acting on the wall).

For preliminary theoretical analysis, let us consider a frictionless retaining wall
represented by a plane AB as shown in Fig. 4. If the wall AB rotates sufficiently
about its bottom to a position A0B, then a triangular soil mass ABC0 adjacent to the
wall will reach Rankine’s active state (Das 2010).

Ultimately, a state will be reached when the stress condition in the soil element
can be represented by the Mohr’s circle b (Fig. 5), the state of plastic equilibrium,
and failure of the soil will occur. This situation represents Rankine’s active state, and
the effective pressure on the vertical plane (which is a principal plane) is Rankine’s
active earth pressure (Das 2010).

Because the slip planes in Rankine’s active state make angles of ˙(45 C®0/2)ı
with the major principal plane, the soil mass in the state of plastic equilibrium
is bounded by the plane BC0, which makes an angle of (45 C®0/2)ı with the
horizontal. The soil inside the zone ABC0 undergoes the same unit deformation
in the horizontal direction everywhere, which is equal to 4La/La. The lateral earth
pressure on the wall at any depth z from the ground surface can be calculated by
using Eq. (9) (Das 2010).

Because the slip planes in Rankine’s active state make angles of ˙(45 C®0/2)ı
with the major principal plane, the soil mass in the state of plastic equilibrium



Evaluate Reliability of Morgenstern–Price Method in Vertical Excavations 535

Fig. 4 Rotation of
frictionless wall about the
bottom based on Rankine’s
theory (Das 2010)

Fig. 5 Variation of Mohr’s circle from Atrest (a) to active (b) state (Das 2010)

is bounded by the plane BC0, which makes an angle of (45 C®0/2)ı with the
horizontal. The soil inside the zone ABC0 undergoes the same unit deformation
in the horizontal direction everywhere, which is equal to 4La/La. The lateral earth
pressure on the wall at any depth z from the ground surface can be calculated by
using Eq. (9) (Das 2010).

� 0
a D � � z � tan2

�
45 � '0

2

�
� 2C 0 � tan2

�
45 � '’

2

�
(9)

HC D 2C ’

�
p
Ka

(10)

where Ka is defined as tan2(45 –®/2).
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Fig. 6 Distribution of active
horizontal soil pressure (�h)
along excavation depth, crack
height, and self-stable depths
(Hc and 2Hc) based on
Rankine’s theory

3.2 Crack Height and Self-Stable Depth

Based on Rankine’s theory (Rankine 1857), the soil crack height (Hc) can be
calculated as Eq. (10) and 2Hc applied with a factor of safety (FSR) is considered as
the self-stable depth of a vertical excavation (Fig. 6)

4 Analyses Details

4.1 Modeling Equilibrium Limit Analysis with SIDE

In this study, several models were made by SLIDE software in which various
excavation depths (i.e., 1–8 m) was considered made in soil with Mohr–Coulomb
behavior (linear strength type). The strength parameters vary according to Table 1,
because no water table is considered, C D C0 and ® equal to ®0. In addition, the unit
weight of soil is constant in all analysis (� D 18 kN/m3).

A center point grid with interval number 40 (one interval is equal to 0.5 m) in
both directions (i.e., x and y) was made to assess various radiuses of sliding surfaces
(Fig. 7). In addition, no surcharge was considered in the models.

SLIDE software is a user-friendly program which makes easy to check the equi-
librium limit stability using circular wedges with various radiuses in Morgenstern–
Price method. It also shows the value of general safety factor against overturning in
the slope using colors to show the variation to help user to finding the convergence
(Fig. 8).

Based on above noted considerations, several combinations of c and ® have
applied to find relative factor of safety against overturning in excavation depth
1–8 m in the absence of water table. Consequently, the results could be presented as
Figs. 9, 10, 11, 12, 13, 14, 15, and 16 in which the factor of safety curves are moved
along friction angle and cohesion axis.
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Table 1 Soil strength
parameters values and ranges
considered in the model

Strength parameter Value

C: Cohesion (kPa) 5–95
®: Friction angle (ı) 0, 10, 20, 30, 40

Fig. 7 A vertical excavation model using SLIDE software

Fig. 8 A slope stability analysis output with Slide software
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Fig. 14 Contours of equal
factors of safety for depths
H D 6 m
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Fig. 15 Contours of equal
factors of safety for depths
H D 7 m
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Fig. 16 Contours of equal
factors of safety for depths
H D 8 m

Fig. 17 Normalized contours
of factor of safety for depths
H D 1 m

To normalize the effect of unit weight, cohesion and height of excavation in
equilibrium limit analyses output, the c� /H phrase is used in Figs. 17, 18, 19, 20,
21, 22, 23, and 24.

To illustrate the difference between analyses output in different depths, Fig. 25 is
prepared.
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Fig. 18 Normalized contours
of factor of safety for depths
H D 2 m

Fig. 19 Normalized contours
of factor of safety for depths
H D 3 m

Fig. 20 Normalized contours
of factor of safety for depths
H D 4 m

To summarize abovementioned graphs, some best-fit trend lines were searched
which formulas are presented in Table 2. Although two types of trend/regression are
compared in the table (i.e., linear and polynomial with order 6), the linear one is
selected to apply in the rest of this study (the dark lines in Fig. 26).
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Fig. 21 Normalized contours
of factor of safety for depths
H D 5 m

Fig. 22 Normalized contours
of factor of safety for depths
H D 6 m

Fig. 23 Normalized contours
of factor of safety for depths
H D 7 m

4.2 Handy Calculation Using Rankine’s Equation

To calculate the factor of safety in stable depth for vertical excavation (H), the
abovementioned equation of Rankine was used. The results are presented in Fig. 26
to reach 2Hc according to Eq. (11).
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Fig. 24 Normalized contours
of factor of safety for depths
H D 8 m

Fig. 25 The summarized SLIDE’s output for normalized contours of friction angle in H D 1–8 m

FSR D 2Hc

H
D 4C 0

�H
p
Ka

(11)

The variation of FS against c� /H in different ® (and relevant Ka) is shown by
light lines and are compared with Morgenstern–Price’s ones in Fig. 26 (i.e., the
dark lines).

In Fig. 26, a significant difference between Morgenstern–Price’s output and
Rankine’s is obvious, especially for greater ®. To have a comparison between two
methods, a correlation coefficient (i.e., SAMP/R) is defined by the author in this
chapter as Eq. (12) which makes easy transferring FS values.

FSMP D SAMP=R � FSR (12)
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Fig. 26 Summarized SLIDE’s output for normalized contours of friction angle in H D 1–8 m

Fig. 27 Variation of SAMP/R (the correlation coefficient between Rankine and Morgenstern–Price
results) against c� /H for ®D 0–40ı

where FSMP and FSR are the general stability factor of safety derived from
Morgenstern–Price and Rankine analysis or calculations, respectively. It is useful
to have a correlation/transferring coefficient between two methods results when a
calculation using Rankine is performed and it is asked to have an estimation of
the computational method (i.e., Morgenstern–Price). This process can be performed
using a graph like Fig. 27. In the next section, there is an example which illustrates it.
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5 An Example

In this section, an example is presented to clarify the situation of transferring
procedure with SAMP/R.

The request is to calculate factor of safety against overturning for a soil (with unit
weight 20 kN/m3, cohesion 50 kPa and friction angle 30ı) using both Rankine and
Morgenstern–Price methods in the absence of any equilibrium limit software usage.

Answer: We know that Ka D 0.33 for ®D 30ı so we can use Eq. (11) to calculate
FSR:

FSR D 4C ’

�H
p
Ka

D 4 � 50
20 � 5 � p

0:33
� 3:5

Now, we use Fig. 27 and derive SAMP/R D 0.73 approximately, for ®D 30 and
c� /H D 0.5. Therefore FSMP D 2.55 using Eq. (12). This estimate has less than 0.5%
error (FSMP D 2.56 using SLIDE software). Fortunately, this difference does not
significantly affect the final engineering decision.

6 Conclusions

The following conclusions may be drawn from the study reported in this chapter.

• According to the final graph, in soils with ®D 0, there is a negligible difference
between factors of safety obtained from two described methods (i.e., Rankine,
Morgenstern–Price) which results SAMP/R D 1 approximately.

• In soils with ®¤ 0, this chapter recommends using SAMP/R presented in final
graph to estimate the factor of safety obtained from computational solution (e.g.,
Morgenstern–Price) using the simple classical handy approach (e.g., Rankine).

• In a constant c� /H, soils with greater ® cause much difference between factors of
safety obtained from two described methods (i.e., Rankine, Morgenstern–Price).
It means, in such cases, SAMP/R is more significant.

• In the range c� /H D 0.15–0.25, the difference between factors of safety obtained
from two mentioned methods is negligible so it results SAMP/R near to 1. But in
order to transfer the factor of safety of Morgenstern–Price from Rankine in the
ranges c� /H< 0.15–0.25 and c� /H> 0.15–0.25, a coefficient (SAMP/R) greater
and less than 1 is needed, respectively.

For more studies, it is recommended the following

• To evaluate effects of having a surcharge at top of the excavation, a similar study
using both computational and handy solutions may produce a useful correlation
coefficient.
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• It is possible to model ground water table and have a comparison between
various methods’ results to assess the pore water pressure and effective strength
parameters on the formulas and equations.

• Moreover, numerical modeling (e.g., finite element) can be used to evaluate the
reliability of available methods and offer suitable correlation coefficients.
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who implanted the idea of searching for differences between Morgenstern–Price’s and Rankine’s
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Probabilistic Approach of Safety Factor
from Failure Assessment Diagram

Guy Pluvinage and Christian Schmitt

Abstract Global and partial deterministic safety factors are defined through a
failure assessment diagram to evaluate the failure risk of a structure or a component.

The use of a failure assessment diagram is extended to evaluate the safety factor
and the security factor of a conventional probability of failure. The safety factor is
defined from the failure assessment curve which has a probability of failure equal
to unity. The security factor is defined from an isoprobability failure curve. Three
examples of this method are described concerning gas and water pipes and boiler
tubes.

1 Introduction

The earliest information about the use of the safety factor is given in the code of
Hammurabi (Codex Hammurabi). The best preserved ancient law code was created
in 1760 BC (middle chronology) in ancient Babylon. It was enacted by the sixth
Babylonian king, Hammurabi. At the top of a basalt stele is a bas-relief image of a
Babylonian god (either Marduk or Shamash), with the king of Babylon presenting
himself to the god, with his right hand raised to his mouth as a mark of respect.
The text covers the bottom portion with the laws written in cuneiform script.
It contains a list of crimes and their various punishments, as well as settlements
for common disputes and guidelines for citizen conduct. It is mentioned that an
architect, who built a house which collapsed on its occupants and caused their
deaths, is condemned to capital punishment (Fig. 1).

In addition, it is noted that “when a stone is necessary to build a palace, the
architect has to plan to use two stones.”
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Fig. 1 View of the stele of
the code of Hammurabi
(Louvre Museum Paris
France)

Until the nineteenth century, all constructions were mainly conceived and carried
out empirically. The invention of steel construction involved developing the strength
of materials. The principle of safety initially adopted consisted of making sure that
the maximum effort in the most critical section of the construction remained lower
than the service load obtained by dividing the material resistance by the safety
factor, conventionally fixed and usually noted fs. The method is usually determined
by ensuring that permissible stresses � ad remain within the limits through the use of
a safety factor and the strength limit is generally the yield stress Re for conservative
reasons.

�ad D Re

fs
(1)

Global safety factor (fs) can mean either the fraction of structural capability over
that required, or a multiplier applied to the maximum expected load (force, torque,
bending moment, or a combination) to which a component or assembly will be
subjected. The two senses of the term are completely different in that the first is a
measure of the reliability of a particular design, while the second is a requirement
imposed by law, standard, specification, contract, or custom. Careful engineers refer
to the first sense as a safety factor, or, to be explicit, a realized factor of safety, and
the second sense as a design factor (DF), but usage is inconsistent and confusing,
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Table 1 Typical safety factors

Safety factor (fS) Applied structure loads Structure stresses Material behavior

1 � fS � 2 Regular and well known Known Known after test
2 � fS � 3 Regular and known Relatively known Known
3 � fS � 4 Not well known Not well known No tests

Uncertain Unknown and uncertain Not very well known

so engineers need to be aware of both. The safety factor is given to the engineer as
a requirement. The DF is calculated by the engineer. The safety factors are defined
by the “state of the art” for each field, possibly codified in standards. It is equal
to or higher than 1, and if it is as much higher as the system is badly defined then
the service loads are badly controlled (Pluvinage 2007). Typical values of the safety
factor are given in Table 1.

Appropriate safety factors are based on several considerations. Prime considera-
tions are the accuracy of the load, strength, and wear estimates, the consequences
of engineering failure, and the cost of over engineering the component to achieve
that safety factor. For example, components whose failure could result in substantial
financial loss, serious injury or death can usually use a safety factor of four or higher
(often ten) (Pluvinage 2007).

Buildings commonly use a safety factor of 2.0 for each structural member. The
value for buildings is relatively low because the loads are well understood and most
structures are redundant. Pressure vessels use 3.5–4.0, cars use 3.0, and aircraft and
spacecraft use 1.4–3.0 depending on the materials. Ductile metallic materials use
the lower value while brittle materials use the higher values. The field of aerospace
engineering uses generally lower DFs because the costs associated with structural
weight are high. This low DF is why aerospace parts and materials are subject to
more stringent quality controls.

Many codes require the use of a margin of safety (MS) to describe the ratio of the
strength of the structure to the requirements.

Design factor D Failure load=Design load

Margin of safety D .Failure load= .Design load � fs// –1

For a successful design, the DF must always equal or exceed the required safety
factor and the safety margin is greater than zero.

2 Safety Factor from Fracture Mechanics

Fracture mechanics assumes that fracture is induced by a precursor (material, defect,
crack, or notch). Fracture mechanics theories therefore give a relationship between
the critical gross stress �g,c and defect size a. The well-known Griffith (1921) linear
elastic fracture mechanics predict that the product of the critical gross stress and the
square root of the critical gross stress are constant.
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Fig. 2 Definition of global
safety factor on fracture
diagram

Table 2 Safety factors used
for determination of
admissible defect size aad for
brittle materials using linear
fracture mechanics

Partial safety
factors f K

s f a
s f �s

Case 1 1.0 2.0 1.0
Case 2 1.0 1.1 1.2
Case 3 1.2 1.4 1.4

The definition of global safety factor is given directly in the diagram of critical
gross stress versus defect size as the ratio of the distance from the origin to the
assessment point A and the distance from the origin to the intercept point B.
This definition will be used later in the failure assessment diagram (FAD) method
(Fig. 2).

fg;s D OB

OA
(2)

The use of a partial safety factor has been extended for the determination of the
admissible defect size aad for brittle materials using linear fracture mechanics. For
this, three partial safety factors are used:

f K
s the partial safety factor on fracture toughness

f a
s the partial safety factor on applied stress

f a
s the partial safety factor on defect size

The admissible defect size is then given by the following relationship:

f a
s aad D 1

�

�
KIc

f K
s

�2�
1

f �
s �g;ap

�2
(3)

where KIc is the material fracture toughness and �g,ap is the applied gross stress.
According to the degree of knowledge of the material properties and applied

loads, the following safety factors are used (see Table 2):
Partial safety factors for fracture toughness, defect size, and applied loads are also

defined in the FAD as we will see later.
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3 Probabilistic Safety Factor

Engineers gradually realized the insufficiencies of this safety design, and this
awakening brought about the development of the concept of reliability from a prob-
abilistic angle. According to the probabilistic approach, a structure is considered
sure if its probability of failure is lower than a conventional value, a value which
depends on many factors like the expected life of the structure, the consequences
generated by its ruin, the risks of obsolescence and certain economic criteria such
as the value of replacement, maintenance costs, and so forth. Generally, a failure
probability of 10�4 is used. When there is risk to human life (gas pipes, nuclear
pressure vessels, etc.), a failure probability of 10�6 is recommended. The choice of
a very low failure probability is limited by economic considerations and sometimes
by the weight of the structure. One says: if the failure probability decreases by one
order of magnitude, the price increases by two orders. The probabilistic approach
introduces safety factors such as the quantitative criterion of a weak probability of
rupture.

When using a probabilistic design approach, the designer no longer thinks of
each variable as a single value or number. Instead, each variable is viewed as a
probability distribution. The main characteristics of these distributions are the mean
and standard deviation of a random variable x denoted x and sx, respectively.

Generally, after statistical data processing, it appears that the mean and the
standard deviation of a random variable x are constant and independent of the
distribution shape.

The coefficient of variation is an excellent indicator of the homogeneity of
the sample. This one will be declared homogeneous if CV< 1/3. Concerning the
properties of the materials, if the mechanical tests were carried out carefully, the
coefficient of variation is an excellent indicator of the process quality. According to
Haugen (1980), the coefficients of variation of material mechanical properties have
the range given in Table 3.

Thus, the production of a low carbon steel led to a coefficient of variation
cV,x D 0.1 with Rm the ultimate resistance. From a general point of view, one can
estimate that for structural components the concept of a continuous medium is
hardly applicable for cV,x< 0.2.

For the Weibull distribution, Weibull modulus can be estimated by the following
empirical relationship (Sapounov et al. 1996):

m D c
�1;09
V;x (4)

Table 3 Coefficient of
variation of material
mechanical properties
(Mankovsky et al. 1999)

Range of
variation

Recommended
adoptive values

Ultimate strength 0.05–0.10 0.05
Yield stress 0.05–0.10 0.07
Young’s modulus 0.03 0.03
Fracture toughness 0.05–0.13 0.07
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From this perspective, probabilistic design predicts the flow of variability through
a system. By considering this flow, a designer can make adjustments to reduce the
flow of random variability and improve quality. Proponents of the approach contend
that many quality problems can be predicted and rectified during the early design
stages and at a much reduced cost and weight.

The safety factor is then defined as the ratio of the ultimate strength which
corresponds to the mean value of the strength distribution over the admissible stress.
The admissible stress is the failure stress associated with a low and conventional
probability of failure PF*(10�4 or 10�6 if there is risk to human life).

If the ultimate strength follows Weibull distribution, the probability of failure is
given by the following relationship:

p�
f D exp �

�
� .1C 1=m/

fs

�m
(5)

and the safety factor is:

fs D � .1C 1=m/
�

Ln
1

P �
s

�1=m (6)

We can see that the safety factor increases considerably when Weibull modulus
decreases, that is, the scatter of the material strength increases.

4 Failure Assessment Diagram

The basic fracture mechanics relationship associates three parameters, defect size a,
applied gross stress �g, and fracture toughness R, into a failure criterion expressed
by the following equation.

F
�
�g; a; R

� D 0 (7)

R is fracture toughness in general and, according to the used fracture criterion, it
can be the critical stress intensity KIc, the critical J, integral JIc, or the critical crack
opening displacement ıc (Pluvinage 1989).

Another presentation of the failure criterion can be made using a two-parameter
relationship:

kr;c D f .Lr/ (8)

where kr,c is the non-dimensional critical crack driving force and Lr the non-
dimensional load. Equation (8) represents the failure curve.
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Any loaded structure with a defect is represented by an assessment point in the
plane kr, Lr.

kr D Kap

KIc
D
s
Jap

JIc
D
s
ıap

ıc
I Lr D F

Fc
(9)

where Kap, Jap, and ıap are the applied stress intensity factor, the J integral or the
COD. KIC, JIc, and ıc are the fracture toughness for given conditions of constraint,
F applied load and FC critical load.

Initially, the failure curve kr,c D f (Lr) was obtained from a plasticity correction
given by Dugdale’s model (1960). This approach considers that any kind of failure
from a purely brittle fracture to plastic collapse is derived from the brittle fracture
by a plasticity correction. Lr is also defined as a non-dimensional stress described
as the ratio of the gross stress �g over flow stress (chosen as the yield stress �Y,
ultimate stress �U, or classical flow stress Rc D (�Y C �U)/2).

Lr D �g

Rc
(10)

Several failure assessment curves have been proposed in the literature. Currently,
as with engineering tools, this failure curve has been established from full scale
tests and using the lower bound of results and is different according to the codes.
Currently, the following methods are used: EPRI in the USA (Kumar et al. 1981),
R6 in the UK (R6 1998), RCC-MR in France (Moulin et al. 1993), and SINTAP in
the EU (SINTAP 1999).

The failure curves are similar for these different methods but not identical. The
SINTAP procedure can be generally simplified to several distinct levels according
to the no yield point elongation assumptions. The mathematical expressions of
the SINTAP procedure used with the aforementioned assumption for “level 1”
is presented below where f (Lr), Lr, Lmax

r , �Y, 
, E, �U, N, "ref and � ref are
the interpolating function, non-dimensional loading or stress-based parameter,
maximum value of non-dimensional loading or stress-based parameter, yield stress,
first correction factor, modulus of elasticity, ultimate stress, second correction factor,
reference strain, and reference stress, respectively.

f .Lr/ D
�
1C L2r

2

��1
2 h
0:3C 0:7 � e.�0:6�L6r /

i
;

for 0 � Lr � 1 where Lmax
r D 1C

�
150

�Y

�2:5
(11)

In the FAD method, a failure curve is used to assess the failure zone, the
safety zone, and the security zone. In Fig. 3, a typical FAD is illustrated. In
this FAD, the failure curve f (Lr), interpolating brittle fracture to plastic collapse,
separates the safety zone from the failure zone. The security curve is obtained by
dividing the failure curve by the global safety factor. It separates the safety zone
from the security zone.
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Fig. 3 Typical presentation
of the failure assessment
diagram (FAD)

As a consequence of the definitions of Lr and Kr, the loading path OC is linear
when the load increases from 0 to the critical load Fc. Under service conditions, a
structure or component with a defect under service load and for a given material
is represented by an assessment point A of the coordinates Lr* and kr*. If this
assessment point is inside the safety zone, no failure occurs, if the assessment point
is on the assessment curves or above, critical conditions are reached.

The equation of the failure curve divided by the safety factor defines a security
curve where the structure is safe with a safety factor greater than the conventional
design and ensures a proper design according to the codes.

The safety factor associated with the structure situation is simply defined by the
relationship:

fs D OC

OA
(12)

The proper design is generally evaluated by comparing the obtained safety factor
with the conventional value (often fs D 2).

In a probabilistic approach, two isoprobability failure curves (Pr D 1 and
Pr D level 1 or 2) divide the FAD into three zones: the unsafe zone above the
failure curve (Pr D 1); the safe zone with maintenance P*r >10�4 or 10�6; and the
safe zone without maintenance P*r <10�4 or 10�6, see Fig. 4.

Any assessment point of the coordinates (Lr*�kr*) is situated on an isoprobability
curve Pr* and the safety factor keeps the same definition as for a deterministic FAD
(Adib et al. 2007).

The criticality of the situation of a structure is evaluated with better accuracy by
introducing the real scatter of the parameters defining the crack extension force on
the defect (load, defect size, fracture toughness). It is not based on an empirical and
unique safety factor for all materials and situations but on the acceptable risk from
an economic and societal definition of the risk.
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Fig. 4 Typical presentation
of a probabilistic failure
assessment diagram (PFAD)

5 Monte Carlo and FORM/SORM Methods

Monte Carlo (MC) is a simple method that uses the fact that the failure probability
integral can be interpreted as a mean value in a stochastic experiment (Rubinstein
1981). An estimate is therefore given by averaging a suitably large number of
independent outcomes (simulations) of this experiment. The basic building block
of this sampling is the generation of random numbers from a uniform distribution
(between 0 and 1). This random number can be used to generate a value of the
desired random variable with a given distribution. Using the cumulative distribution
function F(X), the random variable would then be given as:

X D F �1
X .u/ (13)

Then, to calculate the probability of failure, a multidimensional integral has to be
evaluated:

PF D Pr Œg.X/ < 0� D
Z

g.X/>0

fx.x/dx (14)

where g(X) is a limit state function and fx(x) is a known joint probability density
function of the random vector X (Madsen et al. 1986).

To calculate the failure probability, one performs N deterministic simulations
and determines whether the component analyzed has failed (i.e., if g(X)< 0) after
every simulation. For a count of the number of failures, NF, an estimate of the mean
probability of failure is:

PF D NF

N
(15)

The FORM (First Order Method) and SORM (Second Order Method) methods
are based on the notion of reliability index. Many indexes are defined: the
Rjanitzyne-Cornell index (Cornell 1969), the reliability index of first order (Madsen
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et al. 1986), the Hasofer and Lind index (Hasofer and Lind 1974), and Ditlevsen’s
(Ditlevsen and Madsen 1996) generalized index. Hasofer and Lind (1974) showed
that the measurement of the reliability index should be taken in a normalized
Gaussian variable space. For uncorrelated variables of any law, the principle of this
transformation is to write the equality of distribution functions:

ˆu D Fx.x/ ) x ! u D ˆ�1Fx.x/: (16)

The resulting transformation of the relationship is called isoprobabilistic trans-
formation and is denoted by T in the following. The change in the variable is made
in a new space of statistically independent Gaussian variables of mean zero and unit
of standard deviations.

Jallouf (2006) extended this T transformation with other distributions.
First- and second-order reliability methods are general methods of structural

reliability theory (Pluvinage and Sapounov 2007). The first- and second-order
probabilities of failure estimates PF,1 and PF,2 are given by:

PF;1 D ˆ.�ˇ/

PF;2 � ˆ.�ˇ/
YN�1

iD1 .1 � �iˇ/�1=2 (17)

� i’s are the principal curvatures of the limit state surface at the design point but
other cumulative distributions can be used. FORM/SORM are analytical probability
computation methods. Each input random variable and the performance function
g(x) must be continuous.

6 Example 1: Steel Pipe With a Semielliptical Defect. Surface
Failure Probability Versus Internal Service Pressure

In this example, the failure probability of a gas pipe subjected to internal pressure
is computed using probabilistic fracture mechanics coupled with the SINTAP
procedure. Two methods are used: MC and FORM/SORM. These methods are
compared; their advantages, inconveniencies, and limitations are presented.

Figure 5 shows an example of failure of a pipe under internal pressure.

6.1 Parameters Introduced in Probabilistic
Fracture Mechanics

In probabilistic fracture mechanics, load, defect size, and fracture toughness are
randomly distributed. Distributions are chosen according to the best fit of the
experimental data associated with a confidence test such as Kolmogorov–Smirnov
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Fig. 5 In spiral failure of a
gas pipe

and therefore they are not the same for each parameter. These random parameters
are treated as not correlated. They can follow a normal, log normal, Weibull, or
exponential distribution.

The manufacture of low carbon steel leads to an upper bound of the coefficient
of variation CV D 0.1, for ultimate strength, yield stress, and fracture toughness
(Pluvinage and Sapounov 2007). The pressure distribution obeys the same CV value.
We note that for exponential distribution the coefficient of variation is necessarily
taken as a unit. The presentation of the method will be arrived at with the value of
the coefficient of variation.

Defect size a distribution is taken as an exponential distribution and therefore the
coefficient of variation is necessarily taken as a unit. The fracture toughness KIC is
assumed as Weibull distribution.

Yield stress � y, ultimate strength, and load or pressure are assumed to follow
a normal distribution. For yield stress, ultimate strength and fracture toughness of
steel, an upper bound of the coefficient of variation CV D 0.1 is used. The pressure
distribution obeys the same CV value.

6.2 Pipe Under Internal Pressure

In a pipe, stresses occur in two directions: along the circumference (the so-called
circumferential stress) and longitudinally in the axis (referred to as longitudinal or
axial stress). Cracks initiate from a surface or metallurgical defect and generally
grow along the axial direction and perpendicularly to the direction of principal
tensile stress, which is the circumferential stress. This direction of growing obeys
the principle of less energy. For conservative reason, a defect which promotes pipe
failure is assumed to be a semielliptical or semispherical surface crack of depth a
and length 2c, see Fig. 6.
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Fig. 6 Crack detection results in a pipeline from an ultrasonic intelligent pig and the correspond-
ing crack pattern in the pipeline

For such a defect, the applied stress intensity factor is given by the following
relationship:

Kap D pRm

B

p
�aF

�
Ri

B
I a

B
I 2c

a

�
(18)

where p is the internal pressure; Rm and Ri are, respectively, the mean internal radius;
and B the thickness of the pipe wall. F is a geometry correction which is given in
(R6 1998).

Figure 7 shows a real defect distribution provided by the French gas company Gaz
de France. This distribution is described by three types of distribution (exponential,
normal, and beta). Figure 7 indicates that the best fit is obtained by exponential
distribution which is used further.

In the following, the crack aspect ratio is taken as a/c D 1 (semispherical defect).
The internal pressure in a gas pipe fluctuates continuously. It may vary depending
on the rate of gas injection into the network and the service of delivery points
downstream. Pipeline operators often cannot control these flows.

To characterize the pressure of a gas pipeline, one must consider three factors:

• The maximum pressure applied.
• The range of fluctuation of the pressure and the minimum pressure.
• The rate of pressure change (change almost instantly in some cases, over several

days in others).

These fluctuations are commonly expressed by the R ratio which is the ratio of
the minimum pressure to the maximum. In this study, the R ratio has been given by
the gas company and is equal to 4/7. The lower limit pressure is 40 bar and an upper
limit pressure is about 70 bar.

This ratio is kept constant when the maximum pressure fluctuates with a
coefficient of variation of CV D 0.1. The fluctuations are normally distributed.

The Weibull distribution describes the scatter of fracture toughness and the
normal distribution the scatter of yield stress and ultimate strength. For conservative
reason, a lower bound of the coefficient of variation has been used (CV D 0.1).
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Fig. 7 Cumulative distribution of real defect depth in a natural gas network

Table 4 Parameters introduced in the probabilistic fracture mechanics analysis
of a gas pipe

Parameters Distribution
Variational
coefficient Mean

Fracture toughness Weibull 0.1 116 MPa
p

m
Yield stress Normal 0.1 410 MPa
Ultimate strength Normal 0.1 528 MPa
Defect size Exponential 1 3 mm
Internal pressure Normal 0.1 55 bar

6.3 Data

A summary of distribution, mean, and coefficient of variation of the five parameters
introduced in probabilistic fracture mechanics are given in Table 4.

These randomly distributed parameters are introduced in the MC and
FORM/SORM methods associated with the failure criterion given by the SINTAP
procedure.

Figure 8 gives the results of the failure probability given by the MC or
FORM/SORM methods for a given maximum pressure converted into circumfer-
ential stress ��� . Two security levels are associated: level 2 associated with a
conventional failure probability 10�6 and risk to human life and level 1 associated
with a conventional failure probability 10�4 and no risk to human life. One notes
that for the assessment point associated with a maximum service pressure of 70 bar
or a circumferential stress of 125 MPa, the failure probability is less than 10�6 and
the pipe with a surface defect is working in the security zone.
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Fig. 8 Evolution of failure
probability of a pipe with a
surface semispherical defect
with circumferential stress
(Al Laham 1999)

The two methods give similar results for high values of failure probability but for
low values the difference in the results is of two orders of magnitude.

We note that the MC method:

• Is generally applicable to all types of distributions method.
• Does not require special conditions on the failure functions.
• Is accurate for a number of simulations N which tends to C1 and then the

method converges to the exact result.
• Is an effective and easy to implement method.

From the point of view of efficiency, the time associated with the MC increases
with the decrease in the probability of failure and the increase in the dimension of
the space variables.

This method is not economic in computational time for a failure probability
greater than 10�6
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The FORM/SORM methods have the following characteristics:

• The effectiveness of these methods is especially great in cases of small
probabilities.

• The calculation time is independent of the level of probability.
• The errors in the results of these methods are difficult to estimate.

7 Example 2: Steel Pipe With a Semielliptical Surface Defect
and Subjected to Internal Service Pressure. Influence
of Temperature on Probabilistic Security Factor

In this example, the failure probability of a boiler pipe subjected to internal pressure
is computed using probabilistic fracture mechanics coupled with the SINTAP
procedure. The hoop failure stress ��� ,c for a probability of failure of 10�6 (level
2) is computed using the FORM/SORM method and its evolution with service
temperature is determined.

Values of critical hoop stress ��� ,c are used to determine assessment points.
These assessment points are plotted into an SINTAP diagram associated with two
isoprobability failure curves (PF D 1 and PF D 10�6). This latter iso probabilistic
failure curve is used to determine the security factor.

7.1 Failure of Boiler Tubes

Boilers, gas turbine engines, and ovens are some of the systems which have
components exposed to creep. Creep occurs under load at high temperature.
An understanding of the behavior of high temperature materials is beneficial in
evaluating systems failures in these systems. Failures involving creep are usually
easy to identify due to the large deformation that occurs. Failures may appear to be
ductile or brittle. Cracking may be either transgranular or intergranular. While creep
testing is done at a constant temperature and constant load, system components may
be damaged at various temperatures and loading conditions.

Figure 9 shows an example of boiler and Fig. 10 shows a failure in a boiler pipe.
The first Boiler and Pressure Vessel Code (1914 Edition) was published in 1915;

it consisted of a 114-page book, measuring 5 � 8 in. Today there are 28 books,
including a dozen dedicated to the construction and in-service inspection of nuclear
power plant components, and two Code Case Books.
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Fig. 9 Example of a boiler
with the different tubes

Fig. 10 Longitudinal failure in a boiler pipe

Table 5 Parameters
introduced in probabilistic
fracture mechanics analysis
of a boiler tube pipe

Parameters Distribution CV Mean

Fracture toughness Weibull 0.1 F(T)
Yield stress Normal 0.1 F(T)
Ultimate strength Normal 0.1 F(T)
Defect size Exponential 1 3 mm
Hoop stress Normal 0.1 55 bar

7.2 Data

The studied boiler tubes are made of steel, for which the tensile properties (yield
strength � y and ultimate tensile strength �u) and plane strain fracture toughness KIc

at five different temperatures are given in Table 5.
Boiler tubes have an external diameter of 273 mm and a wall thickness of

24 mm. The tube is butt welded and it is assumed that the welded joint contains
a longitudinal semielliptic surface crack (depth a D 2.25 mm, length 2c D 15 mm,
and aspect ratio a/2c D 0.15).
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Fig. 11 Evolution of the
failure probability with the
applied hoop stress. Influence
of temperature. Boiler tube
made in steel (Jallouf et al.
2005)

Under the effect of internal pressure, a hoop stress of 77 MPa is produced in
the pipe at a normal service temperature of 400 ıC. Three emergency situations are
considered where the service temperature reaches 520, 540, or 560 ıC. The stress
intensity factor for a semielliptic surface crack is given in the SINTAP code and is
given by Eq. (18)

The value of the geometrical correction for this defect is equal toF
�
Ri
B
; 2c

a
; a
B

�D
1:445. A small change in a produces only a small change in F, which is therefore
considered as a constant in the present study.

Failure probability for five different temperatures (20 ıC; 400 ıC; 520 ıC; 540 ıC;
560 ıC) has been computed using the FORM/SORM methods. Distribution, mean,
and coefficient of variation values for each of the five parameters used in this
analysis are reported in Table 5.

Yield strength, ultimate tensile strength, and plane strain fracture toughness are
temperature dependent; hoop stress and defect size are independent of temperature.

7.3 Results and Security Factor

Figure 11 shows that the failure probability decreases with increasing temperature
at constant hoop stress.
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Fig. 12 Security domains where the probability of failure is less than the conventional value of
10�6. Boiler tube made in steel

Fig. 13 Definition of
(global) and partial security
factors in the security domain
of a FAD

The isoprobability failure curve defines the inside of the plane (Lr, kr), a domain
where the failure probability PF is less than a conventional value PF

*, PF< PF
*.

This domain is called the security domain, except for PF* D 1 which determines the
safety domain.

Isoprobability failure curves are sensitive to temperature because kr is sensitive to
temperature through its denominator KIC, as is also Lr through its denominator Rc.

Figure 12 indicates security domains where the probability of failure is less than
the conventional value of 10�6 for three different temperatures (20 ıC, 520 ıC, and
560 ıC). One notes that the size of the security domain decreases with temperature.

The security domain defines the security factor associates where the failure
probability is less than a conventional value PF* and it is written FS;P�

F
.

When the assessment point is inside the security domain, the (global) security
factor is given by (Fig. 13):

FS;P�

f
D 0ˇ

0˛
: (19)
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Table 6 Safety factor Fs, determinist security factor FS,2, the security factor FS;P�

fF
,

and the partial security factor on applied stress FS,� ,f for the five studied temperatures

Temperature (ıC) 20 400 520 540 560

Fs 6.22 5.29 4.9 4.63 4.39
FS,2 3.11 2.6 2.4 2.3 2.20
FS;P�

F
1.94 1.55 1.43 1.3 1.16

FS;�;P�

F
1.94 1.42 1.29 1.23 1.16

The partial security factor on applied stress by (Fig. 13):

FS;�;P�

f
D 00ı
0˛
: (20)

The security factor is also determined in a deterministic way by dividing the
failure assessment curve by a conventional safety factor (generally 2) and is denoted
as FS,2.

In Table 6, the safety factor Fs, the determinist security factor associated with a
safety factor of 2, FS,2, the security factor FS;P�

f
and the partial security factor on

applied stress, FS;�;P�

f , are reported for the five studied temperatures.
One notes that the safety factor is relatively high but decreases by 30 % when the

temperature increases from 20 to 560 ıC. The deterministic security factor decreases
more for the same range of temperature (41 %) but remains higher than 2.

The probabilistic security factor is less than the determinist and decreases also
with temperature according to:

FS;10�6 D 2:789 T�0:1167 (21)

The partial probabilistic security factor is less than the global and decreases
similarly with temperature.

8 Example 3: Water Pipes With a Semielliptical Surface
Defect and Subjected to Water Hammer. Influence
of Material on Probabilistic Security Factor

In this example, the failure probability of a water pipe submitted to a water hammer
is computed using probabilistic fracture mechanics coupled with the SINTAP
procedure. The MC method is used.

Stochastic assessment points are introduced to the SINTAP diagram which is
modified by the introduction of failure domains defined by their failure angles. The
influence of the material on the statistical distribution of the safety factor is studied.
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8.1 Water Hammer

Water hammer is a pressure surge or wave resulting when a fluid in motion is forced
to stop or to change direction suddenly (Carlier 1972). Water hammer commonly
occurs when a valve is instantaneously closed at one end of a pipeline system. Then,
a pressure wave is formed and propagates in the pipe with a celerity C. The wave
undergoes reflections at the other end of the pipe (a reservoir, for example) and at
the valve. The time period for a complete cycle is T D 4L/C, where L is the pipe
length. The time T0 D 2L/C is called the critical time (the propagation time for a
pressure wave to travel the length of the pipe and return back). Water hammer can
be analyzed by two different approaches, the column mass oscillation theory which
ignores fluid compressibility and pipe wall elasticity, or transient wave analysis
including compressibility and elasticity. The second approximation is appropriate
when the time of closure tc of the valve is such that tc<T0. In this case, considering
elasticity is necessary and the pressure at the valve will be the same as that for
instantaneous closure.

The maximum magnitude of the water hammer pulse, assuming a valve that
closes instantaneously, can be estimated from the Joukowsky equation:

�p D �C�V (22)

where �p is the magnitude of the pressure wave (Pa), � is the density of the fluid
(kgm�3), C is the pressure wave celerity in the pipe (ms�1), and �V is the change
in the fluid’s velocity (ms�1). The pulse comes about due to Newton’s law and the
continuity equation applied to the deceleration of a fluid element.

More explanations about water hammer can be found in Wylie et al. (1993).

8.2 Characteristics of the Studied Water Network

The present study concerns a simple water network which consists of five pipe
sections, a reservoir, and a pump. Each pipe section is connected at two nodes. The
reservoir is located at node 6, the pump at node 1.

Each pipe section has the same diameter (D D 575.6 mm) and the same thickness
(w D 20.7 mm). The pipe characteristics and discharges are shown in Table 7.

The schema of the water network is given in Fig. 14 with pump, reservoir, and
pipe section locations. The pump is located at node # 1 and its characteristics are
given in Table 8. The reservoir is located at node # 6 and its characteristics are given
in Table 9.
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Table 7 Characteristics of each pipe section

Pipe
Length
L (m)

Diameter
D (mm)

Flow rate
Q (m3/s)

Wall thickness
T (mm)

1 834.3 575.6 0.306 20.7
2 626.2 575.6 0.306 20.7
3 3,986.8 575.6 0.306 20.7
4 1,732.7 575.6 0.306 20.7
5 831.7 575.6 0.306 20.7

Fig. 14 Schema of the studied network with five pipe sections, one pump and one reservoir

Table 8 Pump
characteristics

Node # 1
Flow rate (m3/s) 0.306
Head rate (m) 121.84
Rated pump speed (rpm) 1,450
Rated efficiency % 90
Coefficient of variation 0.1
Standard deviation (m) 12.1

Table 9 Reservoir
characteristics

Node # 6
Head level (m) 326.69
Coefficient of variation 0.2
Standard deviation (m) 65.2
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Fig. 15 Example of a head height-times curve at node 1

Fig. 16 Head height-times curves for different node locations

8.3 Water Hammer Maximum Pressure

For each node, the software provides the head height-times curve. An example of
such a curve is given in Fig. 15 for a steel pipe and for node 1. We note a series of
pressure pulse of about 18 s which increases with time and a maximum pressure of
1.89 MPa, see Fig. 15. The results were obtained for a head level of 121 m for the
pump and 326.9 m for the reservoir.

The head height-times curves are different according to the node location: they
are very similar for nodes #1, #2, and #3 but differ strongly for nodes #4, #5, and
#6, as can be seen in Fig. 16.

The water hammer maximum pressure pmax is defined on the first pulse, after its
amplitude decreases due to damping.
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Table 10 Input and output coefficients of variation in the water network

Rotated
pump rate

Reservoir
head level

Circumferential
stress

Distribution Normal Normal Normal
Coefficient of variation (CV) 0.1 0.2 0.438 (cast iron)

0.38 (polyethylène)

The pipe diameter, rated pump speed, and head level are identical for each case
studied, the friction coefficient is 0.0153 for cast iron and maximum pressure is
2.01 MPa.

Using an MC method, we generated several coupled values of reservoir head level
and rotated pump rate; two parameters distributed according to a normal distribution
with a coefficient of variation CV D 0.1. This induces an overpressure due to the
random distribution of the water hammer and consequently a random distribution of
circumferential maximum stress ��� ,max according to the following relationship:

���;max D pmaxD

2w
(23)

We can note in the table that the resulting distribution of maximum circumferen-
tial stress has a considerably increasing coefficient of variation which is close to 0.4
for the two pipe materials (Table 10).

The ��� ,max distribution parameters have a mean of 41.53 MPa and a standard
deviation of 18.21 (MPa). These results are introduced later to establish the FAD.

8.4 Data

Failure is assumed to be initiated by a longitudinal semielliptical crack-like defect
with a notch angle of ‰D 0ı and a notch radius of �D 0.25 mm. The stress
intensity factor was calculated by introducing the circumferential maximum stress
and geometry of the defect in Eq. (18). The obtained value of the stress intensity
factor is low compared to the notch fracture toughness and consequently we are in
elastic loading conditions. Pipe and defect geometries are given in Fig. 17.

In the past, water pipes were generally made of cast iron. Its mechanical
properties and their distributions are shown in Table 11.

The current trend is to replace cast iron pipes which are relatively brittle.
Polyethylene is an interesting material with a high performance index Kc/E (

p
m)

and the possibility of using long sections without connections. The mechanical
properties and their distributions are shown in Table 12.

The parameters of the maximal pressure distribution are extracted from Table 13.
Coefficient of variation values is relatively high for both materials
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Fig. 17 Defect geometries:
the defect depth is a D 2 mm
for cast iron with an aspect
ratio c/a. It is 4.5 mm for
polyethylene with the same
aspect ratio

Table 11 Mechanical properties of cast iron and their distribution

Mechanical
properties

Yield
strength

Ultimate
strength Hoop stress

Fracture
toughness Defect

Mean 300 MPa 420 41.53 MPa 14.9 MPa
p

m 2 mm
CV 0.1 0.1 0.44 0.1
Distribution Normal Normal Normal Weibull Exponential

Table 12 Mechanical properties of polyethylene pipe and their distribution

Mechanical
properties

Yield
strength Re

Ultimate
strength Hoop stress

Fracture
toughness Defect

Mean 30 MPa 30 MPa 25.37 MPa 4 MPa
p

m 0.5 mm
CV 0.1 0.1 0.384 0.1
Distribution Normal Normal Normal Weibull Exponential

Table 13 Parameters of the
circumferential maximum
stress distribution for the two
pipe materials

Cast iron PVC

Mean 
 (MPa) 41:53 25:37

Standard deviation � (MPa) 18:21 9:76

Coefficient of variation 0:438 0:38

9 Results

Using the MC method, many assessment points (40–50) were generated using
the characteristic parameters of the distribution. The different FADs obtained are
presented in Fig. 18. For these FADs, an average assessment point A is calculated
from the mean values of all the variable parameters. Coordinates of the assessment
point A for each pipe material and associated isofailure probability are given in
Table 14. One notes that isofailure probability for polyethylene is higher. This is
due to the low fracture toughness of this material.
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Fig. 18 Probabilistic FADs and assessment points generated by the MC method

Table 14 Coordinates of the
assessment point for each of
the two pipe materials and
associated failure probability

Material kr Lr PF*

Cast iron 0.0168 0.1139 3 � 10�3

Polyethylene 0.0377 0.833 1.7 � 10�2

Fig. 19 Definition of brittle fracture, elastoplastic failure, and plastic collapse zones in the FAD
and definition of domain angles �1 and �2

The assessment point associated with mean values of kr and Lr, and PF*, the
associated probability of failure, are reported in this figure and in Table 14. One
notices that the probability of failure is higher for polyethylene.

Domain Angle The FAD can be presented in polar coordinates (Lr, � ) see Fig. 19.
Two particular values are noted in this polar diagram: �1 and �2. The first polar
angle �1 corresponds to the angle of the intercept of the failure curve at abscissa
Lr D 0.62 and is associated with a conventional value of gross failure stress of 62 %
of the yield stress. The second polar angle �2 corresponds to the intercept of the
vertical line of Lr,max abscissa.
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Table 15 Mean values and standard deviation for the safety factor fS*
of the two materials

Material Cast iron Polyethylene

Mean (
) 10:40 1.62
Standard deviation (�) 1:58 0.19
Coefficient of variation (CV) 0:12 0.12
fs,L 8:92 1.2

Table 16 Kolmogorov–Smirnov parameter values for Weibull, log
normal, and normal safety factor distributions of safety factors in a cast
iron pipe

Weibull Log normal Normal

Cast iron 0.093354 0.053378 0.075910
Steel 0.12948 0.096424 0.11876
Polyethylene 0.060350 0.095256 0.072409

These two angles determine three domains in the FAD diagram:

If � < �1 brittle fracture
If �1<� <�2 elastoplastic fracture
If � > �2 plastic collapse

If we consider that we have pure plastic collapse for � D 0, we define the safety
factor associated with limit load fs,L

fs;L D OB�=OA� (24)

The values of �1 and �2 are, respectively, �1 D 55 and �2 D 22. Muhammed et al.
(2000) have shown that the emerging general trend is that, on average, the MS in
the FAD is at a minimum in the middle (elastic–plastic) region, slightly higher in
the “plastic collapse” region and at a maximum in the “brittle” region.

Statistical Distribution of the Safety Factor. Evolution of the safety factor with the
� angle indicates that this angle is in the range (0–15ı) for cast iron and (0–4ı) for
polyethylene. All data are in a narrow scatter band of the range [
� 3� ; 
C 3� ]
and also reported in the region of plastic collapse indicated by the safety factor fs,L

computed from the ultimate pressure achieved by code ASME B31G (American
National Standard Institute (ANSI)/American Society of Mechanical Engineers
(ASME) 1984) (see Table 15). The safety factor distribution is well represented
by a Weibull distribution as indicated by a Kolmogorov–Smirnov test (see Table 16)
which is significant at 74 % for cast iron and 93 % for polyethylene.

We note that polyethylene has the lowest safety factor and that the coefficients of
variation CV are similar for the two materials. The fs mean value for polyethylene is
not acceptable for safety because fs< 2. The safety factor computed for fully plastic
collapse is less than the mean value of fs for each material. This can be explained by
the fact that fs is a global safety factor and fs,L is a partial one.
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Fig. 20 Distribution of the safety factor with the � domain angle for a cast iron pipe

Fig. 21 Evolution of the mean safety factor with coefficient of variation

The scatter on the probabilistic safety factor is relatively moderate as can be seen
in Fig. 20. One notes that the majority of the data is in the range [
� 3� ; 
C 3� ].

Influence on Coefficient of Variation of Safety Factor. The mean safety factor has
been computed for the fracture toughness coefficient of variation which varies in the
range (0.03–0.2). It can be noted that the safety factor varies from 9.8 to 8.4, that is,
a relative decrease of 15 % (Fig. 21). Failure probability increases from 6.10�3 to
1.8.10�2. The difference in safety factor computed with Haugen’s (Haugen 1980)
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recommended value (0.07) and Sapounov et al.’s (Sapounov et al. 1996) is 2 %. The
safety factor is practically constant when the coefficient of variation on yield stress
varies in the range (0.03–0.2) (see Fig. 18). This is probably due to the low value of
the Sr parameter. In this case, it is reasonable to keep the simple value CV D 0.1.

Under stochastic water hammer overpressure, the safety factor is distributed
randomly according to the Weibull distribution. It has been seen that the Weibull
modulus of the material distribution is about 10 which is a value relatively high and
the confidence interval of the safety factor has a satisfactory value.

A recommended value of 0.1 for the coefficient of variation for fracture toughness
and yield stress is proposed. It has been noted that the mean safety factor has a small
variation when the coefficient of variation varies in the range (0.03–0.2).

10 Conclusions

The classical deterministic global safety factor has been used for a long time,
particularly its traditional value of two. Few engineers know that it was introduced
39 centuries ago. For designs against brittle fracture, it is necessary to introduce
partial safety factors for each of the involved parameters, fracture toughness, load
and defect size.

It has been seen that global and local safety factors for the design of a structure
or a component can be easily determined using the FAD.

Due to the progress in material science and the consecutive reduction of scattering
in mechanical properties, it appears that the use of the deterministic safety factor
induces conservatism and increases in weight and costs. Therefore, a conventional
low failure probability is targeted. The current value of a failure risk of 10�6 is
used and it seems difficult for economic reasons to reduce this value. The MC
and FORM/SORM methods are powerful tools in evaluating the security factor
associated with this conventional value.

Design codes currently maintain the classical deterministic safety factor, gen-
erally by means of design curves or design values. The probabilistic approach of
failure risk is only admitted as an additional method at the highest level of design
(level 3). One notes that in Eurocode 5, the design stress is defined in a probabilistic
way as the 5th percentile of the material strength distribution. This can be considered
as a first step in introducing the probabilistic approach of the safety factor.
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Assessing the Complex Interaction
and Variations in Human Performance
Using Nonmetrical Scaling Methods

Oliver Straeter and Marcus Arenius

Abstract Human reliability and human performance in safety-critical systems is
driven by various influences of complex interactions with the situational conditions
under which the human needs to operate. Human reliability assessment methods
(HRA methods) often do only consider these interrelations insufficiently, because
they are missing a clear mathematical treatment of such interactions. Only simplified
mathematical calculations like addition of the effects or simple dependency models
are used to represent such interrelations. Better treatment of such interrelationships
would require a multidimensional approach which also meets the mathematical
constraints of data available for human reliability assessment. Typical constraints
are for instance: adaptive change of weights and parameters relevant for human
interactions in the course of a safety-critical interaction, multi actor environments,
or individual styles of decision making.

At the department of human and organizational engineering and systemic design
of the University Kassel/Germany, a method is being developed to overcome the
constraints of HRA and herewith make human reliability assessment a key for
the success of a resilient system. The method is built on the approach of the
mathematical algorithm of NMDS (nonmetrical multidimensional scaling) and is
applied to HRA issues in various industries such as nuclear, rail, aviation, or air
traffic management. The section will outline the use of the method to enhance
HRA for resilience engineering and will show examples of application in the
industrial settings. It will conclude with an outline towards better inclusion of human
contributions into reliability and safety.
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1 Importance to Model Multi-causal Relationships
for Human Reliability and Safety

Human reliability is an essential part of system reliability assessment. A variety of
methods exist, often distinguished into first generation HRA methods and second
generation HRA methods. While first generation HRA methods focus on the task
related behavior of operating crews, second generation HRA methods also take into
account the goal-conflicts in safety relevant scenarios and intentions of operating
crews that might deviate from achieving a safe state of the system, so called errors
of commission. Critical are three difficulties, which call for a multidimensional
approach to solve them. These difficulties will be described in the following.
Section 2 then describes the method to address them and Sect. 3 will provide
examples of applications.

1.1 Factoring PSF Dependencies

The correct assessment a human error probability (HEP) depends on the correct
modeling of the PSF (performance shaping factors) which modify the human error
potential. Typical PSF formulated in literature can be categorized according to
Park (2014) into environmental influences, HMI, organization, procedures, and task
complexity. Obviously, the influences are not independent from each other (e.g.,
a complex task needs to be accomplished under noisy environmental conditions
with poor procedures).

The question for such complex interrelations is how much this will influence
the HEP. Typically a monotone increasing function is assumed to increase the
error potential given a certain impact of a PSF. As an example let us assume the
basic HEP for a task might be P1. Then the HEP given P1jPSF1 is increased
by certain factor f (e.g., f 1 D 5 if PSF1 has a criticality of 5). The resulting
HEP is then P1jPSF1 D P1 * 5. If two PSFs are valid and f 2 D 6, then P1jfPSF1;
PSF2g D P1 * (5 C 6).

As the example shows, PSFs are considered to have an independent and linear
causal relationship to increase a HEP. Some methods make extensive use of additive
factored assessments like HEART-related methods (HEART, NARA, etc., Kirwan
et al. 2004). In such methods one easily comes to mathematically nonsense-results
(e.g., if P1 D 0, 1 in the above example then P1jfPSF1; PSF2g> 1. Such methods
therefore request that the assessor needs to correct the additive calculation by own
implicit experience in order to come to a reasonable result (Sträter et al. 2006).

In particular for second-generation HRA methods, a mathematically correct
representation of PSF interrelations is required because of the manifold multi-
causal relationships to be assessed (Reason 1990; Hollnagel 2006). This needs to
be reflected in the factors and interrelationships of PSF modeling.
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For a resilient assessment and design therefore the multi-relational nature of
the common impact of PSFs needs to be mathematically described and modeled
(Hollnagel 2006). A resilient method has to be able to assess conditional HEP given
multiple PSFs and their interrelations.

The role of the NMDS for the calculation of PSF interrelationships will be
demonstrated in Sect. 3.1.

1.2 Functional Fit of Automated Functions
and Normal Behavior

In order to lower the (human) error probability of the system, replacement of human
work by automation is often seen as the preferred solution. Main reasoning behind
this conclusion is that the error probability of machines usually outmatches the error
probability of human operators.

A large body of research has shown the flaws and pitfalls associated with this
simplistic approach to reducing errors (Bainbridge 1983; Parasuraman and Wickens
2008; Parasuraman and Riley 1997; Sarter et al. 1997). One of the main challenges
stems from the issue that the replacement of the human by a technical component
is associated with an elimination of both the negative contribution as well as the
(invisible) positive contribution for system safety. The latter of which ensures the
flexibility of the system. Due to the elimination of the positive contribution of
the human, new risks are introduced to the system that may compensate or even
outweigh the gains from the elimination of the negative contribution (Hollnagel
2009). Thus, a key challenge for the design of safe automation is to ensure that
the automation both eliminates the negative contribution of the human operator and
ensures that the positive contribution is kept intact.

To achieve this, methods are needed that show how human operators contribute
both positively to the creation of safety and how the same behavior may be
associated with breakdowns in performance. Research has suggested, that this can
only be achieved if models of normal behavior are created, that represent the
functions that humans actually perform in order to conduct work (de Carvalho 2011;
Dekker and Nyce 2012; Hollnagel 2012).

A proper human and automation strategy needs to fit the automated functions
with the normal behavior of the Human, to stay safe and reliable. A misfit between
the normal behavior and the functional allocation usually ends up in an error of
commission due to decision errors, which is a typical second generation HRA issue.

In order to create models of normal performance, it is necessary to extract
the functions that people define during work. This is done under the premise,
that the functions that people perform during work are subjectively plausible to
them. Thus, this subjective view is always rational from the point of view of the
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involved humans, given the resource constraints in terms of available time for
actions and the amount of information that can be processed in that timeframe
(Woods et al. 2010).

The role of the NMDS for the identification of user concepts will be demonstrated
in Sect. 3.2.

1.3 Identification of Dynamic Influences of PSF
on Normal Behavior

The key for a resilient system is its ability to continuously maintain operations when
facing a variety of threats and disturbances (Hollnagel 2006). Human decisions
and actions change, triggered by the change of performance shaping factors in
the working environment and depending on the fit between their approximate
adaptations and the contextual conditions that are present.

Safety assessments regarding human performance are often only made based
as a static representation of such triggers in a scenario. The dynamics are usually
covered in a simple manner using event-trees describing the accident development.
This approach is suitable for first generation HRA methods, which deal mainly with
errors of omission. In second generation HRA methods, errors of commission are
modeled (e.g., due to a wrong decision, pilots switch off the wrong engine in case of
a turbine failure). Errors of commission do modify the event-tree of the scenario and
hence are difficult to be reflected in the event-tree technique. Ideally these require a
dynamic risk modeling approach (Mosleh and Chang 2004).

A misfit between a situational context (i.e., a set of PSFs) and the user concepts
at the specific time represents the potential for an error of commission. Prerequisite
for a proper dynamic risk model is therefore the analysis of performance data over
time to detect the potential trigger for the dynamic risk model.

The role of the NMDS representation for the representation of dynamic user
concepts will be demonstrated in Sect. 3.3.

2 Modeling Multiple Interrelations

2.1 Statistical Requirements to Model Interrelations

All three issues outlined above require a method that enables to depict interrelations
between situational conditions (PSF), user concepts, and the interaction of user
concepts under certain situational conditions. Several statistical methods exist to
deal with interrelations of parameters. The most known one is probably the factor
analysis, which depicts the loads between different variables and expresses the
interrelation as a correlation between the parameters.
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Unfortunately factor analyses will not be appropriate for the calculation of
the interrelations described above as one would need a statistical basis where
correlations can be calculated. That means one needs several datasets where the
parameters were systematically extracted, e.g. using an experimental setting, to then
calculate higher relationships using cluster analyses or factor analysis, which are
then tested using an ANOVA.

In HRA often the required data to perform such calculations is missing due to
two aspects. (1) In HRA situations need to be assessed which are rare, unique, and
non-repetitive. The correlation between the parameters is often not stable (e.g., an
operator making an error due to bad ergonomic design during time stress at the
beginning of a simulator session will adapt to the situation and be able to work error
free after some trials. (2) Usually the interrelations are observable in events, where
an accident came into existence. Hence most data on relevant PSF-interactions
comes from event reports. However these only provide frequencies of common
appearance but cannot be used to calculate correlations (event 1 is dissimilar to
event 2 and hence both cannot be treated as one statistical variable which is needed
for a factor analysis).

As correlations cannot be calculated for most interrelations of PSFs, potential
other methods for analyzing interrelations of parameters are the multidimensional
scaling methods (MDS) and in further development the nonmetrical multidimen-
sional scaling methods (NMDS). See Borg and Groenen (2005) for an overview.

Both, MDS and NMDS perform an iterative algorithm to come to a picture about
the interrelations. The MDS and NMDS both generate a 2- or n-dimensional graph
showing the interrelations as distances in a scatterplot (NMDS graph). The closer
the relation of two parameters is, the closer the points are located in the graph. The
calculation is generally performed in the following steps:

First a matrix C representing the coherencies is required.

C D

0

B
@

c11 � � � c1j
::: � � � :::

ci1 � � � cij

1

C
A (1)

Second a matrix of randomly spread points P is generated.

P D

0

B
@

r11 � � � r1j
::: � � � :::

ri1 � � � rij

1

C
A (2)

From both a distance-matrix D is calculated.

D D C � P D

0

B
@

d11 � � � d1j
::: � � � :::

di1 � � � dij

1

C
A (3)
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Given these distances, a new matrix P0 is generated which moves the points of
matrix C towards minimizing D. Based on this new P0 a new D0 is generated and so
on. This iteration proceeds until the sum of the absolute values of all dij reaches a
minimum or a solid baseline. This baseline depicts the uncertainty in the data and
is usually called “stress” (s) or sometimes alienus. If s D 0 then the ideal fit of R to
C is found. The greater the s is, the less the solution of matrix R fits to the set of
matrix C (s is comparable to the standard deviation in parametric statistics).

While the MDS needs data on a relative scale (e.g., PSF1 is twice as important as
PSF2), the NMDS only needs a rank of the PSFs (e.g., PSF1 is more important
as PSF2). Therefore the data requirement for an NMDS is much simpler and
hence more robust for the practice. Experts can for instance much easily rank the
importance of PSF rather than assess the distance between them. Despite using
ranks, an NMDS is able to generate data on the relative scale level or on the level of
factor analyses (Borg and Staufenbiel 1989).

As the NMDS has the least requirements on the data quality and reveals equal
results than the other multidimensional methods, it is the preferable approach for
assessing interrelations of PSFs.

2.2 NonMetrical Multidimensional Scaling
with Thermal Variation

MDS and NMDS have one disadvantage in using an iterative approach to find the
solution. The solution is reconstructed from the randomly generated matrix which
is then optimized regarding the distances known between the different parameters.

This approach bears the risk that finding a solution which is better than the
original randomly chosen matrix for P is not necessarily the real optimum for P.
These states are called local minima solutions.

To tackle the problem of local minima, the proposed solution is a temperature-
dependent variation of a NMDS. Such algorithms for avoiding ending up in local
minima are known from physics or biology. The idea is to overcome the local
minima by randomly introducing an impacting energy (temperature). In physics this
is known in the “potential gradient theory” for instance. Figure 1 illustrates the idea
of the temperature effect on local minima.

Arrows symbolize the energy required (in the form of temperature) to overcome a
minimum. Due to the energy, the ball “jumps” in all possible directions, the direction
itself is random. Slowly the system cools down (i.e. from iteration to iteration)
and the probability that the ball “lands” in absolute minima when cooled down
completely is maximized. A local minimum can be overcome.
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Fig. 1 The temperature effect to avoid local minima

A mathematical solution to the problem of local minima in NMDS is to define a
random factor r that consists of a random number rnd calculated for each iteration i
divided by the number of iterations multiplied by a weighting factor (0.005).

r D
�

rndi
i � 0:005

�
(4)

This random factor r can be used to increase the distortions in matrix D in the
first iterations and then to cool down the distortions with an increasing number of
iterations.

The distortion can further be amended by introducing a direction in which the
points of matrix P will be moved. Best results could have been achieved introducing
the direction rd which is applied to all columns of matrix P:

rd D
�
100j rnd � 0:5 > 0

� 100j rnd � 0:5 � 0


(5)

p�j ’ D rd � r C p�j (6)

with p• j is the column j of matrix P, p• j
0 the revised value in column j of matrix P, i

the number of Iterations of the NMDS, rnd the random number between 0 and 1, rd
the random direction of the move, and r the amount of the move.

A further optimization is to weight matrix C by the relative frequency of
observations of the interrelation between two parameters (e.g., one knows from
incident analyses that the factor “poor interface design” was mentioned 10 times
in 100 events (hi D 0, 1) and the factor “time pressure” 20 times in 100 events
(hi D 0, 2). Weighting strategies are:

p�j ’’ D p�j 0 � w and w 2
(

1

hi C hj
I 1

hi � hj I 1

min
�
hi Ihj

� I 1

max
�
hi Ihj

�

)

(7)
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2.3 Example of the Algorithm

The algorithm was implemented as a piece of software that enables to perform a
temperature driven optimization of an NMDS. The following example from Borg
and Staufenbiel (1989) demonstrates the gain in validity of the software: given is the
matrix C that describes the ranks of proximities of towns (in the example: German
speaking towns) as shown in Table 1 (rank 1 means for instance these towns are
compared to all other distances closest to each other; 2 s closest, etc.).

Now the matrix R is produced with the first random point distribution. The
following Fig. 2 shows how the temperature-triggered algorithm optimized the
results in the next step. First in Fig. 2a one can see the classical approach without
any temperature algorithm used. Dots move along a line and order themselves to the
optimal setting of points. However, the algorithm ended up in a local minimum and
placed Hamburg and Munich both in the lower right corner. In fact both towns are
far more remote to each other as the final result in Fig. 2d shows. Now temperature is
introduced to distort the points (Fig. 2b); one can see that dots move almost across
the entire graph and are slowly cooled down (Fig. 2c) to then come to the valid
result of the landscape of German speaking towns. The distances between the towns
are equidistant. That means if one knows one true distance, one can calculate the
remaining true distances proportionally.

Figure 3 shows the stress combined with the different states. Figure 2a is at the
first minimum around iteration 10; Fig. 2b is about the iteration step 100 and Fig. 2c
at 200 and the final result of Fig. 2d at 400C iterations. The “mountain” crossed
between iteration 50 and 150 is a typical behavior of the temperature curve showing
that the algorithm achieved to overcome local minima and to find the absolute
minimum.

3 Application of NMDS in Safety and Reliability Engineering

3.1 Factoring PSF Dependencies Based on Incident Analysis

3.1.1 NMDS of PSFs Based on Incidents

Due to the fact, that events are multi-causal they show different PSFs as well as
their common appearance. This information can be used to calculate interrelations.
Table 2 shows for instance, a table reflecting coinciding performance shaping factors
in 143 railway events (from Arenius et al. 2013). The table shows the frequency of
PSF interrelations. A high frequency signifies a high similarity of the PSFs in terms
of their negative effect on human performance.

These frequencies can be directly used to calculate interrelations using an NMDS.
Figure 4 illustrates the NMDS representation of the coinciding PSF from Table 2.
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Fig. 2 Point calculation of matrix P (a) without temperature, (b) on temperature peak, (c) while
cooling down, and (d) final result

The closer the PSFs are located, the more they tend to coincide in the event data and
commonly to contribute to human errors. The more distant the points are, the more
independent the PSFs are.

As evident from the illustration, human errors were associated with the coinci-
dence of deficiencies in signal monitoring, the effect of distractions in the driver
cabin and irregularities regarding other actors in the work environment (other
delayed trains, unexpected change in tracks, etc.). The cluster of PSFs indicated
by the dashed line in the figure therefore shows the vulnerabilities of the system that
are associated with breakdowns in human performance.

Based on this NMDS representation, the analyst is able to explore and uncover
the narratives associated with specific sets of coinciding PSF and therefore to detect
the nature of the vulnerabilities of the system regarding the psf.
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Fig. 3 Stress (alienus) curve for the temperature driven NMDS

3.1.2 Dependency-Measure Between PSFs

As discussed in Sect. 1, a dependency model is required if a combination of different
PSFs is to be assessed. The NMDS graph can easily be used to calculate the
dependencies between PSFs.

Because the NMDS graph delivers equidistant information, the factor of depen-
dency is directly dependent of the distance in the graph. Two fixed points are known.
If two dots lie on exactly the same position, then the dependency is 1 and the two
most remote dots have the dependency of zero. Given this the dependency between
two points can be expressed as:

fij D dmax � dij
dmax

(8)

with fij is the dependency-factor between PSF i and PSF j, dij the distance between
PSF i and PSF j, dmax the maximal diameter of the NMDS graph.

In the above NMDS “signal monitoring” and “distraction” are very close and
“time pressure” is comparable remote from “signal monitoring”. Given dmax D 16,
dsignal monitoring distraction D 0.8 and dsignal monitoring time pressure D 8, the following factors
can be calculated:

fsignal monitoring distraction D 0:95 and fsignal monitoring time pressure D 0:5
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Fig. 4 NMDS of most important performance shaping factors for 143 events in railways (from
Arenius et al. 2013)

Given one knows the HEP in a Task 1 given a PSF i then the additional effect of
another HEP given PSF j can be calculated as outlined in the following example:

HEPTask1
ˇ̌˚
PSFi IPSFj

� D HEPTask1
ˇ̌
PSFi C �

1 � fij
� �HEPTask1

ˇ̌
ˇPSFj

(9)

with PSFi is the leading PSF for assessment (e.g., “signal monitoring”), PSFj the
additional PSF (e.g., “distraction” or “time pressure”).

3.2 Functional Fit of Automated Functions and Normal
Behavior in a Process Control Environment

3.2.1 User Concepts and System Safety

The NMDS yields a representation that allows the analyst to look at the structure
or underlying dimensions behind humans perception as reflected in a given metric
(Borg and Groenen 2005). This means that, given the appropriate set of data for an
NMDS analysis, the user concept of the human operators can be uncovered in order
to generate models of normal performance.

A study conducted for the mining industry demonstrates how a NMDS can be
applied to eye-tracking data of human bucket-wheel excavator operators in order to
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Fig. 5 Areas of interest
(AoIs) of the bucket-wheel
excavator control room

extract user concepts. Bucket-wheel excavators are large scale and highly automated
machines used for surface coal mining operations. The human operators of these
machines are located in a control room attached to excavator with a good view on
the bucket-wheel that excavates the coal. Eye-tracking data is analyzed in terms on
gaze location in the work place. These gaze locations are termed areas of interest
(AoI) and denote objects of interest for the tasks to perform; an AoI can be anything
from windows, to display and controls, etc. The control room and attached AoIs are
presented in Fig. 5.

As a next step, the distribution of the gaze on the different AoIs can be represented
by means of their relative cumulative proportion over the recording time. Figure 6
shows the result of such calculation.

When rotating the cumulative graphs of the figure clockwise 45ı, the graphs show
a vertical flow related to the x-axis. This flow then can be used to correlate the AoI-
graphs. The resulting matrix shows positive and negative correlations between the
areas of interest which serve as an input to the NMDS algorithm (Table 3).

Based on this matrix, a NMDS graph of the AoIs can be calculated as shown in
Fig. 7a. By applying the NMDS to the correlation of the scanning of information
sources (the AoIs) it was revealed, that there was a misfit between the way that the
information displays were arranged in the control room (shaded boxes in Fig. 7b)
and the way that the operators actually used them during normal work. Or, in more
technical terms, the structure behind the perceived similarity of displays by the
human operators did not match the actual physical placement of the displays in
the control room. This hidden structure behind the perceived similarities of display
represents the user concept (white boxes in Fig. 7b).

The NMDS produced by this study was based on data of the gaze distribution
on displays. However, the same approach could be applied for the analysis of gaze
distributions on individual elements of graphical displays, in order to reveal the best
reconfigurations that fit the user concepts for a given scenario.
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Fig. 6 Cumulative gaze distribution on areas of interest over time in control room

Table 3 Matrix C of proximities of AoIs of mining operators

Correlation
Disturbance
information Camera

Power
parameters GPS

Outside
view

Disturbance information –
Camera 0.06 –
Power parameters – 0.06 – 0.77 –
GPS – 0.35 – 0.45 0.41 –
Outside view – 0.41 0.41 – 0.66 – 0.31 –

3.2.2 Calculating the Fit of User Concepts to Functional Arrangements

Based on the results of the NMDS representation, the information sources in the
control room were rearranged in order to ensure a better mapping between how the
operators visually scanned the display (the user concept) and the way that they were
placed in the control room. Based on the results, it was possible to

• See what is happening: reveal the user concept, the hidden structure behind the
distribution of the gaze on the information sources (areas of interest, AoI). The
user concept shows how the information sources should be arranged in order
to minimize transition times and ensure that linked information is found as
efficiently as possible by the operators.



594 O. Straeter and M. Arenius

Fig. 7 Using the NMDS representation to fit control rooms to user concepts (design before—
shaded, after NMDS redesign—white boxes)

• Implement a direct mapping and quick fixes: Map the NMDS representa-
tion directly into the physical working environment. Furthermore, due to the
application of isotonic transformation (i.e. scaling and rotating of the NMDS
representation), solutions can be found that fit the engineering and space
constraint of the information-dense control room of the bucket-wheel excavator.

Based on this approach, the NMDS representation of performance data can
be used in order to improve the fit between user concept and actual working
environment. The misfit mf is simply expressed by the total distance of all elements
of the AoI matrix of the workplace arrangements (in the NMDS Matrix C) and the
AoI matrix of the user concept (in the NMDS matrix P).

mf D
Xˇ̌

ˇ dij
ˇ̌
ˇ (10)

Using an NMDS this is the absolute distance in the residual matrix D. The higher
the misfit, the less fit is between the user concept and the working environment and
the higher is the potential for a safety-critical impact of user concepts.

3.3 Identification of Dynamic Influences of PSF
on Normal Behavior

3.3.1 Change of User Concepts Due to Trigger Events

The following NMDS shows changes in user concepts during the interaction of
anesthetists with technology and team members in a highly critical and dynamic
situation during a simulated operation in a high fidelity simulator.
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Fig. 8 NMDS representation of focused (left) and unfocused (right) user concepts in anesthesia

The left-hand NMDS-representation (Fig. 8a) shows the user concept of the
anesthetist before the operating team was complemented with a senior team member
and while she was being stressed by the team to diagnose the problem. Clusters of
information sources are clearly visible (highlighted in red). These clusters reflect
the user concept of the anesthetist during that particular time period: as one member
of the operating team was pushing the anesthetist to actively diagnose the reason
behind a dramatic decline in O2-saturation of the patient, the gaze of the anesthetist
often shifted between this stress-inducing team member and the display showing
the vitality parameters of the patient. Furthermore, the gaze of the anesthetist shifted
regularly between the body parts of the patient that can be used to determine signs of
respiration (head and torso) and the health record of the patient, where the medical
history and information of the patient is located which is critical for diagnosis.

However, this active role changed radically when the senior medical staff member
entered the operating theater and took control over the scenario (Fig. 8b). The
anesthetist adapted to this change by altering her monitoring strategy to a more
heterogeneous and unfocused global monitoring of information sources, as evident
from the approximate equidistance of the information displays in the NMDS
representation. Thus, she exhibited a passive user concept that supplemented the
senior medical staff member with information when requested.

Thus, the NMDS representation provides a very parsimonious representation of
coping strategies that human operators make during work. If several measurements
are done, gradually models of normal performance can be constructed and set into
relation to the outcome of the applied user concepts, that is, which user concepts
that prove efficient and which user concepts that lead to adverse outcomes.

This can also be done for scenarios in any given system where PSFs have been
collected. For event data in railways e.g. PSFs could be analyzed in terms of their
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Fig. 9 Identification of dynamic changes of user concepts triggered by change of situational
conditions

NMDS representation. If clusters of safety-critical PSF emerge, then these can in
turn be tested empirically in terms of their effect on the user concepts and coping
strategies of the human operators. Based on this, measures can be derived that target
the specific coping strategies uncovered in the NMDS analysis of performance data.

3.3.2 Detection of Changes in User Concepts

The analysis of the eye-tracking data revealed that there was a difference in the
NMDS representation depending on the presence or absence of additional expertise
in the staff and regarding the influence of stressful interaction (PSF: bad team
composition and stress).

The eye-tracking data was analyzed according to the approach outline in Sect. 3.2.
The areas of interest (AoI) were defined and the gaze distribution was calculated as
cumulative proportion of the total gaze distribution. Based on this representation,
the correlations between the AoI were calculated. In order to detect the change of
user concepts given a change in situational conditions, the distribution of the misfit
mf over time can be used.

d.mf / D mft �mft�1 (11)

If one draws this function over time, a distribution as outlined in Fig. 9 will be
generated. One can see three peaks in the example that represents a change in user
concepts (highlighted with circles).
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4 Outlook

Human performance is variable, as the adaptive and approximate process of coping
with uncertainty forces people to “fill in the gaps” by relying on heuristics, trade-
offs, and shortcuts that mostly produce the desired results, but in very rare cases
lead to adverse outcomes (Hollnagel 2009). This adaptive capacity of the human
is a necessity for system functioning as it guarantees the flexibility of the system
and therefore constitutes an important contribution in keeping the system safe (e.g.
Hollnagel et al. N 2005).

The section outlined the use of multidimensional methods for better modeling
human adaptations for a better safety and reliability of systems. Human con-
tributions are dependent of contextual conditions and of time dynamics under
which a system operates. The fit of user concepts to the functions provided by
a system determine to a great extent the human error potential. In particular the
error potential for decision based, errors is determined by this fit. The modeling
of interrelationships of PSF using a NMDS representation make it possible to
adequately capture the interrelationships and to represent them in ways that make it
possible for the analyst to identify the fit and vulnerabilities of the system.

The dynamic NMDS provides information regarding the alignment of human
cognition/heuristics with the technical working environment. Thus, a new foun-
dation for the design of human–automation interaction can be achieved in the
sense that the HMI can be fitted to the structures that human regard as relevant
in interaction for certain tasks and in specific contextual conditions.

With the approach to represent approximate adaptations and change of user
concepts of human operators under the influence of PSFs, dynamic aspects of
system safety can be enriched by human safety contributions.

This approach allows identifying where working systems are underspecified
regarding human aspects. This also holds true for the humans working in the system
and who will eventually face conditions for which neither they nor the system
designers prepared the system. Using a multidimensional approach toward human
performance herewith allows better assessment of the safety contribution and also
to identify and assess the positive aspects of human behavior for safety.
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Markov Modeling for Reliability Analysis
Using Hypoexponential Distribution

Therrar Kadri, Khaled Smaili, and Seifedine Kadry

Abstract Reliability is the probability that the system will perform its intended
function under specified working condition for a specified period of time. It is
the analysis of failures, their causes and consequences. Reliability analysis is the
most important characteristic of product quality as things have to be working satis-
factorily before considering other quality attributes. Usually, specific performance
measures can be embedded into reliability analysis by the fact that if the perfor-
mance is below a certain level, a failure can be said to have occurred. Markov model
is widely used technique in reliability analysis. The hypoexponential distribution
is used in modeling multiple exponential stages in series. This distribution can be
used in many domains of application. In this chapter we find a modified and simple
form of the probability density function for the general case of the hypoexponential
distribution. The new form obtained is used in an application of Markovian systems
to find its reliability.

1 Introduction

The sum of random variable plays an important role in modeling many events
(Ross 2011; Feller 1971). In particular the sum of exponential random variable has
important applications in the modeling in many domains such as communications
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and computer science (Trivedi 2002; Anjum and Perros 2011), Markov process
(Jasiulewicz and Kordecki 2003; Mathai 1982), insurance (Willmot and Woo 2007;
Minkova 2010) and reliability and performance evaluation (Trivedi 2002; Jasi-
ulewicz and Kordecki 2003; Bolch et al. 2006; Amari and Misra 1997). Nadarajah
(2008) presented a review of some results on the sum of random variables.

Many processes in nature can be divided into sequential phases. If the time of a
process spends in each phase is independent and exponentially distributed, then the
overall time is hypoexponentially distributed, see Trivedi (2002).

The hypoexponential distribution is the distribution of the sum of m � 2 indepen-
dent exponential random variables. The general case of this distribution is when the
m parameters do not have to be distinct. This case was examined by Smaili et al.
(2013a). However, the case when the parameters are identical the hypoexponential
distribution is the Erlang distribution (Anjum and Perros 2011). Also the case when
the parameters are distinct, it is known to be the hypoexponential distribution with
different parameters discussed by Smaili et al. (2013b).

In this chapter we find a modified and simple form of the probability density
function (PDF) of the general case of the hypoexponential distribution. This
modified form is a linear combination of the PDF of the known Erlang distribution.
In the same way, the cumulative distribution function (CDF), moment generating
function (MGF), reliability function, hazard function, and moment of order k for the
general case of the hypoexponential distribution is written as a linear combination
of CDF, MGF, reliability function, hazard function, and moment of order k of the
Erlang distribution, respectively. Therefore, in order to obtain a comprehensive
study of the hypoexponential random variable is from the known Erlang random
variable. Moreover, we propose a recursive method to determine the coefficient of
the linear combinations, Aij, for the expressions obtained. At the end of first section
an application of Markovian systems is given alongside the reliability analysis. Next,
we examine the case of the hypoexponential RV with different parameters. Also, in
the domain of reliability and performance evaluation of systems and software many
authors used the geometric and arithmetic parameters such as (Gaudoin and Ledoux
2007; Jelinski and Moranda 1972; Moranda 1979). We study these two particular
cases. We illustrate two examples for each case.

2 The Hypoexponential Random Variable: General Case

In this section we examine the general case of the hypoexponential random variable.
We find a modified and simple form of the PDF for the general case of the hypoex-
ponential distribution when its parameters do not have to be distinct. This modified
form is found by writing the PDF of this distribution as a linear combination of the
PDF of the known Erlang distribution. Also, this modified form shall generate a
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simple form of the CDF, reliability function, hazard function, MGF, and moment of
order k for the general case of the hypoexponential distribution. Moreover, we give
a recursive method to determine the coefficient of the linear combinations, Aij, for
the expressions obtained. At the end an application of Markovian systems is given
alongside the reliability analysis.

Let Xij, 1 � i � n and 1 � j � ki, be m � 2 independent exponential random
variables with parameter ˛i, written as Xij 
 Exp(˛i), where m DP n

i D 1ki. We define
the random variable

Sm D
Xn

iD1
Xki

jD1Xij

to be the hypoexponential random variable with parameters �!̨ D .˛1; ˛2; : : : ; ˛n/

and
�!
k D .k1; k2; : : : ; kn/, where ˛i> 0 is repeated ki times, i D 1, 2, : : : , n. We

write Sm 
 Hypoexp
��!̨;

�!
k
�

, see Smaili et al. (2013a).

However, the case when n D 1 the m parameters are identical and the hypoexpo-
nential distribution is the Erlang distribution (Anjum and Perros 2011). Written as
Sm 
 Erl(m,˛i)

In the following proposition, we state the PDF, CDF, reliability function, hazard
function, MGF, and moment of order k for the Erlang RV, see Abdelkader (2003)
and Zukerman (2012).

Proposition 1 Let Y be an Erlang RV with parameter ˛ > 0 and positive integer n.
Then we have for Y

1. PDF is fY .t/ D .˛t/n�1˛e�˛t

.n�1/Š I.0;1/.t/

2. CDF is FY .x/ D �.n;˛x/

.n�1/Š D 1 � �.n;˛x/

.n�1/Š
3. Reliability function is RY .x/ D �.n;˛x/

.n�1/Š
4. Hazard function is hY .x/ D .˛x/n�1˛e�˛x

�.n;˛x/
I.0;1/.t/

5. MGF is ˆY .t/ D ˛n

.˛�t/n and

6. Moment of order k is E
�
Y k
	 D �.kCn/

˛k�.n/
.

where � (n,˛x) is the lower incomplete gamma function and � (n,˛x) is the upper

incomplete gamma function defined as � .n; ˛x/ D .n � 1/Še�˛xXn�1
kD0

.˛x/k

kŠ
D

.n � 1/Š � � .n; ˛x/ and � (n) is the gamma function.

2.1 The PDF for the Hypoexponential RV

We start by stating in the following theorem which gives the PDF for the general
case of the hypoexponential distribution given by Jasiulewicz and Kordecki (2003).
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Theorem 1 Let m � 2 and Sm 
 Hypoexp
��!̨;

�!
k
�

where �!̨ D .˛1; ˛2; : : : ; ˛n/

and
�!
k D .k1; k2; : : : ; kn/. Then the PDF of Sm is given by,

fSm.t/ D
�Yn

iD1˛
ki
i

�Xn

iD1
Xki

jD1cij
t j�1e�˛i t

.j � 1/Š I.0;1/.t/

where cij D 1

.ki � j /Š lim
s!�˛i

d .ki�j /

ds.ki�j /

 
Yn

jD1;j¤i
1

�
s C ˛j

�kj

!

(1)

Smaili et al. (2013a) gave a modified and simple form of the PDF of this
distribution as a linear combination of the probability density function of the known
Erlang distribution, given in the following theorem.

Theorem 2 Let m � 2 and Sm 
 Hypoexp
��!̨;

�!
k
�

where �!̨ D .˛1; ˛2; : : : ; ˛n/

and
�!
k D .k1; k2; : : : ; kn/. Then the PDF of Sm is

fSm.t/ D
Xn

iD1
Xki

jD1Aij fYij .t/; (2)

where

Aij D
�Yn

iD1˛
ki
i

� cij
˛
j
i

(3)

and cij is defined in Eq. (1) and Yij 
 Erl(j,˛i), where 1 � i � n and 1 � j � ki.

Proof From Theorem 1, the PDF of Sm can be written as

fSm.t/ D
�Yn

iD1˛
ki
i

�Xn

iD1
Xki

jD1
cij

a
j
i

.˛i t/
j�1˛ie�˛i t

.j � 1/Š I.0;1/.t/ (4)

where cij given in Eq. (1). Now, we define that Aij D
�Yn

iD1˛
ki
i

�
cij

˛
j
i

and the

fYij .t/ D .˛i t/
j�1˛i e�˛i t

.j�1/Š I.0;1/.t/, for 1 � i � n and 1 � j � ki. However fYij .t/ is the
PDF of the Erlang RV the so-called Yij having the parameters j and ˛i. Therefore, we

can rewrite Eq. (4) in the following form fSm.t/ D
Xn

iD1
Xki

jD1Aij fYij .t/. �

2.2 The CDF for the Hypoexponential RV

In this part, we give a modified form of the CDF for the general case of the
hypoexponential RV. Moreover, an equality for the coefficients Aij in Eq. (3) of the
linear combination is obtained, which shall be used later.
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Proposition 2 Let m � 2 and Yij 
 Erl(j,˛i) for 1 � i � n and 1 � j � ki. Then the

CDF of the hypoexponential RV Sm 
 Hypoexp
��!̨;

�!
k
�

, �!̨ D .˛1; ˛2; : : : ; ˛n/

and
�!
k D .k1; k2; : : : ; kn/ is

FSm.x/ D
Xn

iD1
Xki

jD1Aij FYij .x/ (5)

where FYij .x/ is the CDF of Yij and Aij is defined in Eq. (3)

Proof We have from Theorem 2, fSm.t/ D
Xn

iD1
Xki

jD1Aij Fyij .t/. Then the

CDF of Sm is given as FSm.x/ D
Z x

�1
fsm.t/dt D

Xn

iD1
Xki

jD1Aij
Z x

�1
fYij .t/

dt D
Xn

iD1
Xki

jD1Aij FYij .x/. �

In the next proposition, we determine an identity for the coefficients of the linear
combination stated in Eq. (2) using the above proposition.

Proposition 3
Xn

iD1
Xki

jD1Aij D 1, where is the expression defined in Eq. (3).

Proof We have the CDF of any random variable at 1 is 1. Then limx!1FSm.x/ D
limx!1FYij .x/ D 1 where FSm.x/ and FYij .x/ are the CDF of Sm 

Hypoexp

��!̨;
�!
k
�

and Yij 
 Erl(j,˛i) for 1 � i � n and 1 � j � ki, respectively. Now,

Eq. (4) at 1 gives that
Xn

iD1
Xki

jD1Aij D 1. �

In the next, theorem we use Propositions 1 and 2 to find a new form of CDF for
the general case of hypoexponential RV.

Theorem 3 Let m � 2. Then the CDF of hypoexponential RV Sm 

Hypoexp

��!̨;
�!
k
�

, �!̨ D .˛1; ˛2; : : : ; ˛n/ and
�!
k D .k1; k2; : : : ; kn/ is

FSm.x/ D
Xn

iD1
Xki

jD1Aij
� .j; ˛ix/

.j � 1/Š I.0;1/.x/

D 1 �
Xn

iD1
Xki

jD1Aij
� .j; ˛ix/

.j � 1/Š I.0;1/.x/ (6)

where Aij is defined in Eq. (3) and � (j,˛ix) and � (j,˛ix) are the lower incomplete
gamma function and the upper incomplete gamma function.

Proof We have from Proposition 2, FSm.x/ D
Xn

iD1
Xki

jD1Aij FYij .x/. More-

over, it is known that the CDF of the Erlang distribution from Proposition 1

we have FY .x/ D �.n;˛x/

.n�1/Š . Then FSm.x/ D
Xn

iD1
Xki

jD1
� .j; ˛ix/

.j � 1/Š I.0;1/.x/.
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Now, we have from Proposition 1, �.n;˛x/

.n�1/Š D 1 � �.j;˛i x/

.j�1/Š . Thus FSm.x/ D
Xn

iD1
Xki

jD1Aij
�
1 � �.j;˛i x/

.j�1/Š
�
I.0;1/.x/ D

Xn

iD1
Xki

jD1Aij �
Xn

iD1
Xki

jD1
Aij

�.j;˛i x/

.j�1/Š . But from Proposition 3
Xn

iD1
Xki

jD1Aij D 1. Therefore, we obtain

FSm.x/ D 1 �
Xn

iD1
Xki

jD1Aij
�.j;˛i x/

j�1 I.0;1/.x/. �

2.3 The Reliability and Hazard Functions
for the Hypoexponential RV

Mathematically, the reliability function R(t) is the probability that a system will be
successfully operating without failure in the interval from time 0 to t. The reliability
function is given by R(t) D P(T > t) D 1 – P(T < t) D 1 – F(T), t � 0, where T is a
random variable representing the failure time or time-to-failure and F(T) is the
cumulative density function. The failure rate function, or hazard function, is very
important in reliability analysis because it specifies the rate of the system aging. The
hazard function is defined by h(t) D f (t)/R(t) where f (t) is the probability density
function and R(t) is the reliability function (Trivedi 2002).

In this part we give a modified form of the reliability (survivor) and hazard
(failure) functions.

Proposition 4 The reliability function of the hypoexponential RV Sm 
 Hypoexp��!̨;
�!
k
�
;�!̨ D .˛1; ˛2; : : : ; ˛n/, and

�!
k D .k1; k2; : : : ; kn/ is given by

RSm.t/ D
Xn

iD1
Xki

jD1AijRYij .t/ D
Xn

iD1
Xki

jD1Aij
� .j; ˛i t/

.j � 1/Š I.0;1/.t/

where RYij .t/ is the reliability function of Yij 
 Erl(j,˛i), 1 � i � n, and 1 � j � ki

and � (j,˛it) is the upper incomplete gamma function.

Proof We have reliability function of Sm by RSm.t/ D 1� FSm.t/, and by Proposi-

tion 2, we getRSm.t/ D 1�
Xn

iD1
Xki

jD1Aij Fyij .x/. Now, letRYij .t/, be reliability

function of Yij 
 Erl(j,˛i), 1 � i � n, and 1 � j � ki, since FYij .t/ D 1 � RYij .t/,

then RSm.t/ D 1 �
Xn

iD1
Xki

jD1Aij
�
1 �RYij .t/

� D 1 �
Xn

iD1
Xki

jD1Aij C
Xn

iD1
Xki

jD1AijRYij .t/ and
Xn

iD1
Xki

jD1Aij D 1 from Proposition 3. Then

RSm.t/ D
Xn

iD1
Xki

jD1AijRYij .t/. However, the second formula of RSm.t/ is

obtained directly from Proposition 1, where RYij .t/ D �.j;˛i t/

.j�1/Š . �
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Proposition 5 The hazard (failure) function of the hypoexponential RV Sm 

Hypoexp

��!̨;
�!
k
�

, �!̨ D .˛1; ˛2; : : : ; ˛n/, and
�!
k D .k1; k2; : : : ; kn/ is given by

hSm.t/ D
Xn

iD1
Xki

jD1Aij hYij .t/RYij .t/
Xn

iD1
Xki

jD1AijRYij .t/

where hYij .t/ and RYij .t/ are the hazard and reliability function of Yij 
 Erl(j,˛i)
for 1 � i � n and 1 � j � ki, and Aij is defined in Eq. (3.3).

Proof We have the hazard function of Sm is given by hSm.t/ D fSm .t/

RSm .t/
, where fSm.t/

and RSm.t/ are the PDF and reliability function of Sm 
 Hypoexp
��!̨;

�!
k
�

. By

substituting the formulas of fSm.t/ and RSm.t/ in Theorem 2 and Proposition 4,

we obtain that hSm.t/ D
Xn

iD1
Xki

jD1Aij fYij .t/
Xn

iD1
Xki

jD1Aij RYij .t/
where Yij 
 Erl(j,˛i). However

FYij .t/ D hYij .t/RYij .t/ Thus we obtain the result. �

2.4 The MGF for the Hypoexponential RV

In this part, we introduce a modified form of the MGF for the general case of the
hypoexponential RV. Next, we give two new forms of the moment of Sm of order k
of the general case of the hypoexponential RV. These new forms are compared to
determine a generalized equality. Our results are applied on the two particular cases
k D 1 and k D 2.

Proposition 6 Let m � 2 and Yij 
 Erl(j,˛i) for 1 � i � n and 1 � j � ki. Then the

MGF of the hypoexponential RV Sm 
 Hypoexp
��!̨;

�!
k
�

, �!̨ D .˛1; ˛2; : : : ; ˛n/

and
�!
k D .k1; k2; : : : ; kn/ is

ˆSm.t/ D
Xn

iD1
Xki

jD1AijˆYij .t/ (7)

where Aij is defined in Eq. (3) and t < min
n�!̨o

.

Proof Let Sm 
 Hypoexp
��!̨;

�!
k
�

and Yij 
 Erl(j,˛i) for 1 � i � n and 1 � j � ki.

Then we have from Theorem 2, fSm.t/
Xn

iD1
Xki

jD1Aij fYij .t/. However the MGF

of Sm and Yij are give as
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ˆSm.t/ D
Z C1

�1
etx
�Xn

iD1
Xki

jD1Aij fYij .x/
�

dx D
Xn

iD1
Xki

jD1Aij
�Z C1

�1
etxfYij .x/dx

�
D
Xn

iD1
Xki

jD1AijˆYij .t/

ˆSm.t/ D
Z C1

�1
etxfSm.x/dx and ˆYij .t/ D

Z C1

�1
etxfYij .x/dx, respectively.

Therefore, we obtain that. �

Proposition 7 The MGF of Sm is ˆSm.t/ D
Xn

iD1
Xki

jD1Aij
˛
j
i

.˛i�t/j for t <

min
n�!̨o

; �!̨ D .˛1; ˛2; : : : ; ˛n/ where Aij is defined in Eq. (3).

Proof From Eq. (7), ˆSm.t/ D
Xn

iD1
Xki

jD1AijˆYij .t/. However, from Propo-

sition 1, the MGF of the Erlang Distribution Yij ! Erl(j,˛i) is given by ˆYij .t/ D
˛
j
i

.˛i�t/j for t<˛i, i D 1, 2, : : : , n, see Abdelkader (2003) and Minkova (2010). Hence

t < min
n�!̨o

; �!̨ D .˛1; ˛2; : : : ; ˛n/. Thus, we obtain the result. �

Corollary 1 Let m � 2 and Yij ! Erl(j,˛i) for 1 � i � n and 1 � j � ki. Then the

moment of order k of Sm 
 Hypoexp
��!̨;

�!
k
�

, �!̨ D .˛1; ˛2; : : : ; ˛n/ and
�!
k D

.k1; k2; : : : ; kn/ is

E
�
Skm
	 D

Xn

iD1
Xki

jD1AijE
h
Y kij

i
(8)

where Aij is defined in Eq. (3).

Proof From Proposition 6, the MGF of Sm 
 Hypoexp
��!̨;

�!
k
�

is given in Eq. (6)

as ˆSm.t/ D
Xn

iD1
Xki

jD1AijˆYij .t/. But we have the moment of order k of Sm

E
�
Sm

k
	 D dkˆSm.t/

dtk

ˇ̌
ˇtD0 and the moment of order k of Yij, E

�
Yij

k
	 D dkˆYij .t/

dtk

ˇ̌
ˇtD0.

Then applying the kth differentiation on Eq. (6), then finding the value at t D 0,

we obtain that E
�
Skm
	 D

Xn

iD1
Xki

jD1AijE
h
Y kij

i
. �

Next we give another expression of moment of Sm of order k.

Proposition 8 Let m � 2 and k be a positive integer. Then the moment of Sm of
order k is

E
�
Skm
	 D

Xn

iD1
Xki

jD1Aij
j .jC1/:::.jCk�1/

˛ki
. �
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Proof From Corollary 1, E
�
Skm
	 D

Xn

iD1
Xki

jD1AijE
h
Y kij

i
. However,

Yij 
 Erl(j,˛i) and from Proposition 1 the moment of Yij of order k is given by

E
h
Y kij

i
D � .k C j /

˛ki �.j /

Also �.kCj /
�.j /

D j .j C 1/ : : : .j C k � 1/. Therefore, we obtain the result. �

In the next proposition, we use the idea of writing Sm as a sum of Erlang RV to
write the moment of Sn of order k in another new form.

Proposition 9 Let m � 2 and k be a positive integer. Then

E
�
Skm
	 D

X

Ek

kŠ

�
k1 C l1 � 1

l1

��
k2 C l2 � 1

l2

�
: : :

�
kn C ln � 1

ln

�

� 1
˛
l1
1

� 1
˛
l2
2

: : :
1

˛
ln
n

where Ek D f(l1, : : : , ln)/0 � li � k;
P n

i D 1li D k; 1 � i � ng.

Proof We have the general case of Sm 
 Hypoexp
��!̨;

�!
k
�

where �!̨ D
.˛1; ˛2; : : : ; ˛n/ and

�!
k D .k1; k2; : : : ; kn/ can be written as a sum of n

Erlang RV, where Yi 
 Erl(ki,˛i), i D 1, 2, : : : , n. That is Sm DP n
j D 1Yi. Then

E[Sk
m] D E[(Y1 C Y2 C � � � C Yn)k]. Now using the multinomial expansion formula,

we obtain that E
�
Skm
	 D E

2

4
X

Ek

kŠ
l1Šl2Š:::lnŠ

�
Y
l1
1 Y

l2
2 : : : Y

ln
n

�
3

5.

Now since expectation is linear then we may write E
�
Skm
	 D

X

Ek

E
h

kŠ
l1Šl2Š:::lnŠ

�
Y
l1
1 Y

l2
2 : : : Y

ln
n

�i
, also Yi, i D 1, 2, : : : , n. Then E

�
Skm
	 D

X

Ek

kŠ
l1Šl2Š:::lnŠ

E
h
Y
l1
1

i
�

E
h
Y
l2
2

i
: : : E

�
Y lnn

	
. Moreover, the moment of Erlang Yi 
 Erl(ki,˛i) is given in

Proposition 1 as E
h
Y
li
i

i
D �.liCki /

˛i li �.ki /
D
�
ki C li � 1

li

�
li Š

˛i li
i D 1; 2; : : : ; n

Therefore, E
�
Skm
	 D

X

Ek

kŠ

�
k1 C l1 � 1

l1

��
k2 C l2 � 1

l2

�
: : :

�
kn C ln � 1

ln

�
�

1

˛
l1
1

� 1

˛
l2
2

: : : 1

˛
ln
n

. �

The two forms of the moment of order k obtained in Propositions 8 and 9, gives an
important identity concerning the coefficient Aij, given in the following proposition.
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Proposition 10 Let m � 2 and k be a positive integer

Xn

iD1
Xki

jD1Aij
j .j C 1/ : : : .j C k � 1/

˛ki

X

Ek
kŠ

�
k1 C l1 � 1

l1

��
k2 C l2 � 1

l2

�

: : :

�
kn C l2 � 1

ln

�
� 1
˛
l1
1

� 1
˛
l2
2

: : :
1

˛
ln
n

(9)

where Ek D f(l1, : : : , ln)/0 � li � k;
P n

i D 1li D k; 1 � i � ng.
Note that we may write

X

Ek

1

˛
l1
1 ˛

l2
2 : : : ˛

ln
n

D
X

Ik

1

˛i1˛i2˛i3 : : : ˛ik

where Ik D f.i1; : : : ; ik/ =1 � i1 � i2 � � � � � ik � ng

However Ek and Ik are equivalent representing a set of combination with repeti-

tion having

�
nC k � 1

k

�
possibilities and E0 D I0 D 0, thus the above summation

(9) shall be 1. This verifies Proposition 3.
In the following two corollaries, we use Propositions 3 and 4 to formulate two

important special cases: k D 1, Expectation, and k D 2. However, some Identities
concerning Aij have been established.

Corollary 2 Let m � 2 and Sm 
 Hypoexp
��!̨;

�!
k
�

where �!̨ D .˛1; ˛2; : : : ; ˛n/

and
�!
k D .k1; k2; : : : ; kn/. Then E ŒSm� D

Xn

iD1
Xki

jD1Aij
j

˛i
D
Xn

iD1
ki

˛i
, where

Aij is defined in Eq. (3).

Proof From Proposition 8, E
�
Skm
	 D

Xn

iD1
Xki

jD1Aij
j .jC1/:::.jCk�1/

˛ki
. Set k D 1,

then E ŒSm� D
Xn

iD1
Xki

jD1Aij
j

˛i
. From Definition 1, Sm D

Xn

iD1
Xki

jD1Xij ,

Xij 
 Exp(˛i), for 1 � i � n and 1 � j � ki. Thus ŒSm� D E

�Xn

iD1
Xki

jD1Xij
�

D
Xn

iD1
Xki

jD1E
�
Xij

	 D
Xn

iD1
Xki

jD1
1

˛i
D
Xn

iD1
ki

˛i
. �

Corollary 3 Let m � 2 and Sm 
 Hypoexp
��!̨;

�!
k
�

where �!̨ D .˛1; ˛2; : : : ; ˛n/

and
�!
k D .k1; k2; : : : ; kn/. Then E

�
S2m
	 D

Xn

iD1
Xki

jD1Aij
j .jC1/
˛2i

D
Xn

iD1
ki .ki C 1/

˛2i
C 2

X

1�j�n

kikj

˛i˛j
, where Aij is defined in Eq. (3).
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Proof From Proposition 8, take k D 2, we obtain that E
�
S2m
	 D

Xn

iD1
Xki

jD1

Aij
j .jC1/
˛2i

. Moreover, from Proposition 9, we haveE
�
Skm
	 D

X

Ek

kŠ

�
k1 C l1 � 1

l1

�

�
k2 C l2 � 1

l2

�
: : :

�
kn C ln � 1

ln

�
� 1

˛
l1
1

� 1

˛
l2
2

: : : 1

˛
ln
n

. Set k D 2 we have E2 D f(l1, : : : ,

ln)/0 � li � 2;
P n

i D 1li D 2; 1 � i � ng. Then we have two possible cases either li D 2
and lj D 0 for i ¤ j for 1 � i � n or li D lj D 1 for all 1 � i< j � n. Therefore, we

obtain that
�
S2m
	 D

Xn

iD12Š
�
ki C 1

2

�
1

˛2i
C
X

1�i<j�n2Š
�
ki
1

��
kj
1

�
1

˛i ˛j
D

Xn

iD1
ki .ki C 1/

˛2i
C 2

Xn

1�i<j�n
kikj

˛i˛j
. �

2.5 Algorithm for Finding Aij

In the previous section we gave the PDF, CDF, MGF, reliability function, hazard

function, and moment of order k of and Sm 
 Hypoexp
��!̨;

�!
k
�

where �!̨ D
.˛1; ˛2; : : : ; ˛n/ and

�!
k D .k1; k2; : : : ; kn/. In all expression, the coefficient Aij,

defined in Eq. (3) exists. For the importance of this coefficient, we present a method
in finding Aij. The method is a recursive algorithm. This method uses logarithmic
properties and the Leibnitz’s mth derivative.

Proposition 11 Let 1 � i � n, 1 � j � ki. Then

Aij D
Yn

iD1˛
ki
i

˛
j
i .ki � j /Š lim

s!�˛i
g
.ki�j /
i .s/ (10)

where g(q)
i (s) is the qth derivative of the function

gi .s/ D
nY

jD1;j¤i

1
�
s C ˛j

�kj (11)

Proof We have from Eqs. (1) and (3), Aij D
 

nY

iD1
˛
ki
i

!
cij

˛
j
i

and cij D
1

.ki�j /Š lim
s!�˛i

g
.ki�j /
i .s/, respectively. Thus, we may write Aij in the given

form. �
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In the next theorem, we relate the qth derivative of the function gi(s) defined in
Eq. (11) to the less order derivatives of gi(s). This gives a recursive sequence of Aij.

Theorem 4 Let 1 � i � n, 1 � j � ki. Then

g
.q/
i .s/ D

q�1X

lD0

h�
q � 1

l

�
.�1/lC1

0

@
nX

jD1;j¤i

.l/Škj
�
s C ˛j

�lC1

1

Ag.q�l�1/
i .s/ for q� 1

(12)

Proof We shall find the (ki � j)th derivative of gi(s) in a recursive way. First we take

the logarithm of both sides of gi .s/ D
nY

jD1;j¤i
1

.sC˛j /kj
, we obtain that lngi .s/ D

�
nX

jD1;j¤i
kj ln

�
s C ˛j

�
.

Second we differentiate the above equation with s, leads to g0

i .s/

gi .s/
D �

nX

jD1;j¤i

kj
sC˛j

and g0
i .s/ D �gi .s/

nX

jD1;j¤i

kj
sC˛j . Now, let ui D �

nX

jD1;j¤i

kj
sC˛j and vi D gi(s), thus

g
0

i(s) D uivi. By applying Leibnitz’s qth derivative to uivi, we obtain

�
g0
i .s/

�.q/ D
qX

lD0

��
q

l

�
u.l/i .s/v

.q�l/
i .s/

�

However, u.l/i .s/ D .�1/lC1
nX

jD1;j¤i

.l/Škj

.sC˛j /lC1 and v(q � l)
i (s) D g(q � l)

i (s).

Therefore,

g
.qC1/
i .s/ D

qX

lD0

h�
q

l

�
.�1/lC1

0

@
nX

jD1;j¤i

.l/Škj

.sC˛j /lC1

1

Ag.q�l/
i .s/ �

2.6 Application

Markov chains are mathematical models which have several applications in com-
puter science, particularly in performance and reliability modeling. In this appli-
cation, we consider a system that can go through five degraded stages before it
completely failed (D6), at which time a repair will take place. When the system
is still operating, periodic maintenance (1) activities are triggered with constant
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Fig. 1 Stochastic system with hypoexponential lifetime

rate ˇ. The rate for repair is 
. Both repair and maintenance take the system back
to the original good state (2). A Markov chain to represent this system is shown
in Fig. 1. The initial state is running (2), where the system is fully operational.
With the degradation rate ˛i(i D 1, 2), the system transits from D1 to D5, which are
degraded operational states. With rate ˛3, the system can move from state D5 to
state D6, which is the failed state. The repairing rate is 
 will take the system back
to the running (2), and all maintenance actions take the system back to state (2). The
system is available when it is in states (2) or D1–D5. While the system is available,
periodic maintenance will take place with rate ˇ. The system is not available when
it is in maintenance state (1) or in state D6. The rate to finish maintenance is denoted
as m.

Figure 1 corresponds to a system that has a hypoexponential failure time
distribution, with parameters ˛i (i D 1 : : : 3). Let X be the random variable rep-
resenting the failure times using hypoexponential distribution. Then X follows

an hypoexponential distribution, S6 
 Hypoexp
��!̨;

�!
k
�
; �!̨ D .1; 2; 6/ and

�!
k D .2; 3; 1/. We shall start by finding the coefficients Aij. Now, since 1 � i � 3
and 1 � j � ki, we have the following coefficients A11e, A12, A21, A22, A23 and A31.
Using Eqs. (10), (11), and (12), we shall find these coefficients.

• For i D 1, ˛1 D 1, k1 D 2, Eq. (11) gives that g1.s/ D
Y

jD2;3
1

�
s C ˛j

�kj

D 1

.s C 2/3
� 1

.s C 6/
and g1 .�1/ D 1

5 . Then Eq. (10) gives A12 D

12�23�61
12

g1 .�1/ D 48
5 . Now from Eq. (3.12), g.1/1 .s/ D .�1/

 
X

jD2;3
kj�

s C ˛j
�

!
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g
.0/
1 .s/ l D �

�
3

.sC2/ C 1
.sC6/

�
g
.0/
1 .s/, g

.1/
1 .�1/ D � 16

25 . Using Eq. (10)

A11 D 48g
.1/
1 .�1/ D � 768

25 .

• For i D 2, ˛2 D 2, k2 D 3, Eq. (11) gives that g2.s/ D
Y

jD1;3
1

�
s C ˛j

�kj D
1

.s C 1/2
� 1

.s C 6/
, and g

.0/
2 .�2/ D 1

4 , Then Eq. (10) gives A23 D

28
23
g
.0/
2 .�2/ D 3

2 . Again from Eq. (2), g.1/2 .s/ D .�1/
0

@
X

jD1;jD3

kj�
s C ˛j

�

1

A

g
.0/
2 .s/ D �

�
2

.sC1/ C 1
.sC6/

�
g
.0/
2 .s/

1
4 ; g

.1/
2 .�2/ D 7

16 and from Eq. (10) we

obtain A22 D 48
22.1/Š

g
.1/
2 .�2/ D 21

4 . Now, in order to find A21, we shall find

g(2)
2 (�2). Eq. (12) we have

g
.2/
2 .s/ D

X1

lD0
h�

1

l

�
.�1/lC1

 
X

jD1;jD3
.l/Škj

�
s C ˛j

�lC1

!

g
.1�l/
2 .s/ D

�
1

0

�
.�1/

 
X

jD1;jD3
kj�

s C ˛j
�

!

g
.1/
2 .s/ C

�
1

1

� X

jD1;jD3
.1/Škj

�
s C ˛j

�2

!

g
.0/
2 .s/ D �

�
2

.s C 1/
C 1

.s C 6/

�
g
.1/
2 .s/C

�
2

.s C 1/2
C 1

.s C 6/2

�
g
.0/
2 .s/.

Thus, g.2/2 .�2/ D 41
32 and A21 D 48

21.2/Š
g
.2/
2 .�2/ D 123

8 .

• For i D 3, ˛3 D 6, k3 D 1, we have from Eq. (11) g3.s/ D
Y

jD1;2
1

�
s C ˛j

�kj D
1

.s C 1/2
� 1

.s C 2/3
and g

.0/
3 .�6/ D � 1

1600 and Eq. (10) leads to A31 D
48
6.0/Š

g
.0/
3 .�6/ D � 1

200 .

So A11 D � 768
25 ; A12 D 48

5 ; A21 D 123
8 ; A22 D 21

4 ; A23 D 3
2 and A31 D

� 1
200 . For verification, Proposition 3 states that

X3

iD1
Xki

jD1Aij D 1. So we may

conclude that the PDF of S6 from Theorem 2 is fS6.t/ D
X3

iD1
Xki

jD1Aij fYij .t/ D
� 768

25 .e
�t /C 48

5 .te
�t /C 123

8

�
2e�2t �C 21

4

�
4te�2t�C 3

2

�
4t2e�2t�� 1

200

�
6e�6t � when

t> 0 and fS6.t/ D 0. Moreover, the CDF, MGF, reliability function, hazard
function, and moment of order k of S6 can be obtained.

Below we graph the PDF (Fig. 2), reliability function (Fig. 3) and the hazard
function (Fig. 4) of S6.
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Fig. 2 PDF of S6

Fig. 3 Reliability function
of S6

Fig. 4 Hazard function of S6

3 The Hypoexponential Random Variable
with Different Parameters

In this section, we examine the case of the hypoexponential RV with different
parameters. This case is a particular case of the general case of Sect. 2. A given
form of PDF and CDF can be found in Akkouchi (2008), Amari and Misra (1997),
and Kordecki (1997). We give in this section a modified form of the PDF, CDF,
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reliability function, hazard function, MGF, and moment of order k of the particular
case, see Smaili et al. (2013b). Also, in the domain of reliability and performance
evaluation of systems and software many authors used the geometric and arithmetic
parameters such as (Gaudoin and Ledoux 2007; Jelinski and Moranda 1972;
Moranda 1979). We study these two particular cases. We illustrate two examples
of such a case.

The general case of this RV is Sm D
Xn

iD1
Xki

jD1Xij . Now, taking

ki D 1, i D 1, 2, : : : , n, we get m D n and Sn DP n
i D 1Xi, where Xi ! exp(˛i) and

we write this case as Sn ! Hypoexp
��!̨�

. Moreover, the PDF in Eq. (2) has the

expression fSn.t/ D
Xn

iD1AifXi .t/, where Ai D Aij.

3.1 PDF, CDF, Reliability Function, Hazard
Function, and MGF

In this part we give the modified form PDF, CDF, reliability function, hazard
function, MGF, and moment of order k of the hypoexponential RV with different
parameters.

We start by finding the PDF of this case.

Theorem 5 Let Sn ! Hypoexp
��!̨�

, where �!̨ D .˛1; ˛2; : : : ; ˛n/. Then

fSn.t/ D
Xn

iD1AifXi .t/, where Ai D
Yn

jD1;j¤i

�
˛j

˛j�˛i

�
.

Proof This case is when ki D 1, thus m D n. From Eq. (3.2), fSn.t/ DXn

iD1Ai1fYi1.t/ and Yi1 ! Erl(1,˛i) D exp(˛i). Let Yi1 D Xi. We have the Laplace

transform of fXi .t/ is given by L ffXi .t/g D ˛i
˛iCs , where s>maxf�˛ig for

i D 1, 2, : : : , n. Since Xi are independent then fSn.t/ is the convolutions of
fXi ; i D 1; 2; : : : ; n written as

fSn.t/ D .fX1 � fX2 � � � � � fXn/ .t/

and the Laplace transform of convolution of functions is the product of their Laplace
transform, thus

L ffSn.t/g D
Yn

iD1L ffXi .t/g D
Yn

iD1
˛i

˛i C s
D
Yn

iD1 .˛i /
Yn

iD1
1

˛i C s
(13)

However, by Heaviside Expansion theorem (Spiegel 1965), for distinct poles

gives that L ffSn.t/g D
�Yn

iD1˛i
�Xn

iD1
Pi

s C ˛i
where Pi D 1Yn

jD1;j¤i .˛j�˛i /
.
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Therefore,

fSn.t/ D
�Yn

iD1˛i
�
L �1

�
Pi

s C ˛i


D
�Yn

iD1˛i
�Xn

iD1Pie
�˛i t I.0;1/.t/

But (
Qn

i D 1˛i)Pi D Ai˛i. Thus fSm.t/ D
Xm

iD1AifXi .t/.
Next, we give the CDF of the hypoexponential RV with different parameters. �

Corollary 4 Let Sn 
 Hypoexp
��!̨�

. Then the CDF of Sn is given by FSn.x/ D
1 �

Xn

iD1Aie
�˛i t I.0;1/.t/

where FXi .x/ is the CDF of the exponential random variable, Xi 
 Exp(˛i),
i D 1, 2, : : : , n.

Proof The CDF of the general case of the hypoexponential RV is given in Eq. (6)

as FSm.x/ D 1 �
Xn

iD1
Xki

jD1Aij
� .j; ˛ix/

.j � 1/Š I.0;1/.x/.

Taking the particular case of the hypexponential RV with different parameters,

thus ki D 1 and Aij D Ai, then FSm.x/ D 1 �
Xn

iD1Ai� .1; ˛ix/ I.0;1/.x/ D 1 �
Xn

iD1Aie
�˛i t I.0;1/.x/ �

Corollary 5 Let Sn 
 Hypoexp
��!̨�

. Then the reliability function of Sn is given by

RSn.x/ D
Xn

iD1Aie
�˛i t I.0;1/.t/

Proof The proof is a direct consequence of Corollary 4 knowing that RSn.x/ D
1 � FSn.x/ �

Proposition 12 The hazard (failure) function for the hypoexponential distribution

Hypoexp
��!̨�

, �!̨ D .˛1; ˛2; : : : ; ˛n/ is given by

hSn.t/ D
Xn

iD1Ai˛ie
�˛i t I.0;1/.t/

Xn

iD1Aie
�˛i t I.0;1/.t/

Proof We have the hazard function given by hSn.t/ D fSn .t/

RSn .t/
thus we obtain the

result. �

Corollary 6 Let n � 2. Then

ˆSn.t/ D
Xn

iD1AiˆXi .t/ and E
�
Skn
	 D

Xn

iD1
AikŠ

˛ki
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Proof From Proposition 6 the moment generating function is given for the general

case as ˆSm.t/ D
Xn

iD1
Xki

jD1AijˆYij .t/. Taking the particular case ki D 1, the

case of the hypoexponential with different parameters we obtain the result. In a
similar manner, Proposition 2 in this particular case gives the moment of order k of

Sn as E
�
Skn
	 D

Xn

iD1
AikŠ

˛ki
. �

3.2 Case of Arithmetic and Geometric Parameters

The study of reliability and performance evaluation of systems and software use in
general sum of independent exponential RV with distinct parameters. The model of
(Jelinski and Moranda 1972) considered that the parameters change in an arithmetic
sequence ˛i D˛i � 1 C d. Moreover, (Moranda 1979), considered the model when
˛i changes in a geometric sequence ˛i D˛i � 1r. In this section, we study the
hypoexponential distribution in these two cases when the parameters are arithmetic
and geometric, and we present their PDFs.

3.2.1 The Case of Arithmetic Parameters

Let Sn 
 Hypoexp
��!̨�

, where �!̨ D .˛1; ˛2; : : : ; ˛n/. Where ˛i, i D 1, 2, : : : , n

form an arithmetic sequence of common difference d.

Lemma 1. Let � i DQ n
j D 1,j ¤ i(˛j �˛i). Then for all 1 � i � n. �i D .�1/i�1

.n�1/Š0

@n � 1
i � 1

1

A

dn�1.

Proof Suppose that ˛i form an arithmetic sequence of common difference d. Then
˛j �˛i D (j � i)d. We have � i DQ n

j D 1,j ¤ i(˛j �˛i). Hence,

�i D .˛1 � ˛i / .˛2 � ˛i / � � � .˛i�1 � ˛i / .˛iC1 � ˛i / � � � .˛n � ˛i /
D .� .i � 1/ d/ � � � .�2d/ .d/ .2d/ � � � ..n � i/ d/

D .�1/i�1 .i � 1/Š .n � i/Šdn�1

However, .i � 1/Š .n � i/Š D nŠ

i

0

@n

i

1

A

D .n�1/Š0

@n � 1
i � 1

1

A

. Then �i D .�1/i�1

.n�1/Š0

@n � 1
i � 1

1

A

dn�1. �

Lemma 2. For all 1 � i � n. � i D (�1)n � 1�n � (i � 1).
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Proof We have from Lemma 1, �i D .�1/i�1 .n�1/Š0

@n � 1
i � 1

1

A

dn�1 for all 1 � i � n .

Replace i by n � (i � 1), we obtain
�n�.i�1/ D .�1/n�i .n�1/Š0

@ n � 1
n � .i � 1/

1

A

dn�1 D .�1/n�i .n�1/Š0

@n � 1
i � 1

1

A

dn�1 D

.�1/n�1�i .
Thus we obtain the result. �

Proposition 13 Let n � 2. Then the PDF of Sn is fSn.t/ D
�Yn

iD1˛i
�Xn

iD1
e�˛i t

�i
I.0;1/.t/.

Proof We have from Theorem 5 fSn.t/ D
Xn

iD1AifXi .t/, where Xi ! exp(˛i)

and Ai D
Yn

jD1;j¤i

�
˛j

˛j�˛i

�
. We have Ai D

Yn

jD1;j¤i
�

˛j
˛j�˛i

�
D

1Yn

jD1;j¤i
�
1�

˛i
˛j

� Then

fSn.t/ D
Xn

iD1
˛ie�˛i t

Yn

jD1;j¤i

�
1 � ˛i

˛j

�I.0;1/.t/

D
Xn

iD1
˛ie�˛i tYn

jD1;j¤i
�
˛j
�

Yn

jD1;j¤i
�
˛j � ˛i

� I.0;1/.t/

D
�Yn

iD1˛i
�Xn

iD1
e�˛i t

�i
I.0;1/.t/ (14)

where � i DQ n
j D 1,j ¤ i(˛j �˛i) and by the Lemmas 1 and 2 we obtain the result. �

3.2.2 The Case of Geometric Parameters

Next, we consider the case when ˛i, i D 1, 2, : : : , n form a geometric sequence of
common ratio r.

Proposition 14 Let n � 2. Then

fSn.t/ D
Xn

iD1
˛ie�˛i t

Yn

jD1;j¤i
�
1 � ri�j �

I.0;1/.t/
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Fig. 5 Reliability function

Fig. 6 Hazard function

Proof We have from Eq. (14), fSn.t/ D
Xn

iD1
˛i e

�˛i t
Yn

jD1;j¤i

�
1 � ˛i

˛j

�I.0;1/.t/.

Suppose now the parameter ˛i forms geometric sequence of common ratio r, then

˛i D˛jri � j and 1
Ai

D
Yn

jD1;j¤i

�
1 � ˛i

˛j

�
D
Yn

jD1;j¤i
�
1 � ri�j �. �

3.2.3 Application

The model of Jelinski and Moranda (Jelinski and Moranda 1972) considered that the
parameters change ˛i (the rate of defective of the product) in an arithmetic sequence
˛i D ˛i � 1 C d. We take ˛1 D 1 and d D 0.2 and m D 5 Applying Corollary 5 and
Propositions 11 and 12, we find the reliability function (Fig. 5) and Hazard function
(Fig. 6) represented in the following figures.
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Fig. 7 Reliability function

Fig. 8 Hazard function

In our second application is a model given by Moranda in (Moranda 1979),
considered the model when ˛i changes in a geometric sequence ˛i D ˛i � 1r. We
take ˛1 D 1, r D 1.2, and m D 10. Using Corollary 5 and Propositions 11 and 19, we
find the reliability function (Fig. 7) and Hazard function (Fig. 8) represented in the
following figures.
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Part IV
Decision Making Under Uncertainty



Reliability-Based Design Optimization
and Its Applications to Interaction Fluid
Structure Problems

Abderahman Makhloufi and Abdelkhalak El Hami

Abstract The objectives of this work are to quantify the influence of material and
operational uncertainties on the performance of structures coupled with fluid, and
to develop a reliability-based design and optimization (RBDO) methodology for
this type of the structures. Such a problem requires a very high computation cost,
which is mainly due to the calculation of gradients, especially when a finite element
model is used. To simplify the optimization problem and to find at least a local
optimum solution, two new methods based on semi-numerical solution are proposed
in this chapter. The results demonstrate the viability of the proposed reliability-
based design and optimization methodology relative to the classical methods, and
demonstrate that a probabilistic approach is more appropriate than a deterministic
approach for the design and optimization of structures coupled with fluid.

1 Introduction

The objective of the RBDO model is to design structures which should be both
economic and reliable where the solution reduces the structural weight in uncritical
regions. It does not only provide an improved design but also a higher level of con-
fidence in the design. The classical approach (Feng and Moses 1986) can be carried
out in two separate spaces: the physical space and the normalized space. Since very
many repeated searches are needed in the above two spaces, the computational time
for such an optimization is a big problem. To overcome these difficulties, two points
of view have been considered. From reliability view point, RBDO involves the
evaluation of probabilistic constraints, which can be executed in two different ways:
either using the Reliability Index Approach (RIA), or the Performance Measure
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Approach (PMA) (Tu et al. 1999; Youn et al. 2003). Recently, the enhanced hybrid
mean value (HMVC) method is proposed by Youn et al. 2005, to improve numerical
stability and efficiency in the most probable point (MPP) search. The major
difficulty lies in the evaluation of the probabilistic constraints, which is prohibitively
expensive and even diverges with many applications. However, from optimization
view point, an efficient method called the hybrid method (HM) has been elaborated
by (Kharmanda et al. 2002) where the optimization process is carried out in a
Hybrid Design Space (HDS). This method has been shown to verify the optimality
conditions relative to the classical RBDO method. The advantage of the HM allows
us to satisfy a required reliability level for different cases (static, dynamic, : : : ),
but the application of the hybrid RBDO to engineering design problems is often
complicated by multi-physics phenomena, such as fluid–structure interaction (FSI)
for naval and aeronautical structures. In these cases, the stochastic coupled multi-
physics response needs to be accounted for in the design optimization process.
To simplify the optimization problem that rely on fluid–structure interaction for
performance improvement and aims to find at least a local optimum solution, two
new methods based on semi-numerical solution are proposed: the first one is called
optimum safety factor (Kharmanda et al. 2004a), developed for structures in static
and dynamic. The second method called safest point (SP) has been next proposed
by (Kharmanda et al. 2007), developed for a special case, when a failure interval
[fa , fb] is given. This method can be considered as a conjoint of the OSF method
in order to solve the freely vibrating structures. In this chapter, we will underline
the different methods of the RBDO analysis and we highlight the advantage of new
semi-numerical approaches proposed. To demonstrate the methodology, results are
shown for a marine propeller and cavity acoustics, but the methodology is generally
applicable to other adaptive structures that undergo fluid–structure interaction.

2 Reliability Analysis

The design of structures and the prediction of their good functioning lead to the
verification of a certain number of rules resulting from the knowledge of physical
and mechanical experience of designers and constructors. These rules traduce the
necessity to limit the loading effects such as stresses and displacements. Each rule
represents an elementary event and the occurrence of several events leads to a failure
scenario. The objective is then to evaluate the failure probability corresponding to
the occurrence of critical failure modes.

2.1 Importance of Safety Criteria

In deterministic structural optimization, the designer aims to reduce the construc-
tion cost without caring about the effects of uncertainties concerning materials,
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Fig. 1 The transformation between the physical space and normalized one

geometry, and loading. In this way, the resulting optimal configuration may present a
lower reliability level and then, leads to higher failure rate. The equilibrium between
the cost minimization and the reliability maximization is a great challenge for the
designer. In general design problems, we distinguish between two kinds of variables:

• The design variables X which are deterministic variables to be defined in order
to optimize the design. They represent the control parameters of the mechanical
system (e.g. dimensions, materials, loads) and of the probabilistic model (e.g.
means and standard deviations of the random variables).

• The random variables Y which represent the structural uncertainties, identified
by probabilistic distributions. These variables can be geometrical dimensions,
material characteristics, or applied external loading.

2.2 Failure Probability

In addition to the vector of deterministic variables X to be used in the system
design and optimization, the uncertainties are modelled by a vector of stochastic
physical variables affecting the failure scenario. The knowledge of these variables
is not, at best, more than statistical information and we admit a representation in
the form of random variables. For a given design rule, the basic random variables
are defined by their joint probability distribution associated with some expected
parameters; the vector of random variables is denoted herein Y whose realizations
are written y. The safety is the state in which the structure is able to fulfill all the
functioning requirements (e.g. strength and serviceability) for which it is designed.
To evaluate the failure probability with respect to a chosen failure scenario, a limit
state function G(x, y) is defined by the condition of good functioning of the structure.
In Fig. 1, the limit between the state of failure G(x, y)< 0 and the state of safety
G(x, y)> 0 is known as the limit state surface G(x, y) D 0. The failure probability is
then calculated by:

Pf D Pr ŒG .x; y/ � 0� D
Z

G.x;y/�0
fY .y/ dy1 � � � dyn (1)
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where Pf is the failure probability, fY (y) is the joint density function of the random
variables Y and Pr[�] is the probability operator. The evaluation of the integral
in (Eq. (1)) is not easy, because it represents a very small quantity and all the
necessary information for the joint density function are not available. For these
reasons, the First and the Second Order Reliability Methods FORM/SORM have
been developed. They are based on the reliability index concept, followed by
an estimation of the failure probability. The invariant reliability index ˇ was
introduced by Hasofer and Lind (1974), who proposed to work in the space of
standard independent gaussian variables instead of the space of physical variables.
The transformation from the physical variables y to the normalized variables u is
given by:

u D T .x; y/ and y D T �1 .x; u/ (2)

This operator T(�) is called the probabilistic transformation. In this standard
space, the limit state function takes the form:

H .x; u/ � G .x; y/ D 0 (3)

In the FORM approximation, the failure probability is simply evaluated by:

Pf � ˆ.�ˇ/ (4)

where ·(�) is the standard Gaussian cumulated function. For practical engineering,
(Eq. (4)) gives sufficiently accurate estimation of the failure probability.

2.3 Reliability Evaluation

For a given failure scenario, the reliability index ˇ is evaluated by solving a
constrained optimization problem (Fig. 1). The calculation of the reliability index
can be realized by the following form:

ˇ D min
�p

uTu
�

subject to H .x; u/ � 0 (5)

The solution of this problem is called the design point P*, as illustrated in
Fig. 1. When the mechanical model is defined by numerical methods, such as the
finite element method, the evaluation of the reliability implies a special coupling
procedure between both reliability and mechanical models.
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3 Reliability-Based Design Optimization

Using the Deterministic Design Optimization (DDO) procedure by a reliability
analysis (see Kharmanda et al. 2004a), we can distinguish between two cases:

• Case 1: High reliability level: when choosing high values of safety factors for
certain parameters, the structural cost (or weight) will be significantly increased
because the reliability level becomes much higher than the required level for the
structure. So, the design is safe but very expensive.

• Case 2: Low reliability level: when choosing small values of safety factors or
bad distribution of these factors, the structural reliability level may be too low to
be appropriate. For example, (Grandhi and Wang 1998) found that the resulting
reliability index of the optimum deterministic design of a gas turbine blade is
ˇD 0.0053 under some uncertainties. This result indicated that the reliability at
the deterministic optimum is quite low and needs to be improved by probabilistic
design.

For both cases, we can find that there is a strong need to integrate the reliability
analysis in the optimization process in order to control the reliability level and to
minimize the structural cost or weight in the non-critical regions of the structure.

3.1 Classical Method (CM)

Traditionally, for the reliability-based optimization procedure we use two spaces:
the physical space and the normalized space (Fig. 1). Therefore, the reliability-based
optimization is performed by nesting the two following problems:

Optimization problem:

min W f .x/ subject to gk.x/ � 0 and ˇ.x;u/ � ˇt (6)

where f (x) is the objective function, gk(x) � 0 are the associated constraints, ˇ(x, u)
is the reliability index of the structure, and ˇt is the target reliability.

Reliability analysis:
The reliability index ˇ(x, u) is determined by solving the minimization problem:

ˇ D min dis.u/ D
vuu
t

mX

1

u2j subject to W H.x;u/ � 0 (7)

where dis(u) is the distance in the normalized random space and H(x, u) is the
performance function (or limit state function) in the normalized space, defined such
that H(x, u)< 0 implies failure, see Fig. 1. In the physical space, the image of
H(x, u) is the limit state function G(x, y), see Fig. 1. The solution of these
nested problems leads to very large computational time, especially for large-scale
structures.
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Fig. 2 Hybrid Design Space
for normal distribution

3.2 Hybrid Method (HM)

In order to improve the numerical performance, the hybrid approach consists in
minimizing a new form of the objective function F(x, y) subject to a limit state and
to deterministic as well as to reliability constraints, as:

min
x;y

W F .x; y/ D f .x/ � dˇ .x; y/
subject to W G .x; y/ � 0; gk .x/ � 0 and dˇ .x; y/ � ˇt

(8)

The minimization of the objective function F(x, y) is carried out simultaneously
with respect to x and y in the HDS of deterministic variables x and random variables
y. Here dˇ(x, y) is the distance in the hybrid space between the optimum point
and the design point. Since the random variables and the deterministic ones are
treated in the same space (HDS), it is important to know the types of the used
random variables (continuous and/or discrete) and the distribution law that has been
applied. In engineering design, there are many standard distributions or continuous
and discrete random variables. In this chapter, the normal distribution is used
to evaluate the reliability index ˇ. Other distributions can be used, such as the
lognormal and uniform distributions (Kharmanda et al. 2004b). Using anyone of
these distributions, we can determine the failure probability and then the reliability
index corresponding. An example of this HDS is given in Fig. 2, containing design
and random variables, where the reliability levels dˇ can be represented by ellipses
in case of normal distribution, the objective function levels are given by solid
curves and the limit state function is represented by dashed level lines except for
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Fig. 3 Bracket to be
designed

Table 1 Data of the problem

Variables R1 R2 R3 R4 W R L

Dimension (mm) 45 45 20 20 50 10 200

Table 2 Material parameters

Variables E (MPa) � � (kg/m3)

Values 71,018 0.33 8250

Table 3 RBDO variables

Variable y Mean x
Standard
deviation

Initial
design

R1 (mm) mR1 (mm) 4.5 45
R2 (mm) mR2 (mm) 4.5 45

G(x, y) D 0. We can see two important points: the optimal solution P*
x and the

reliability solution P*
y (i.e. the design point found on the curves G(x, y) D 0 and

dˇ Dˇt). In the paper of Kharmanda et al. (2002), we had demonstrated that the
HM reduced the computational time almost 80 % relative to the classical RBDO
approach. Using the HM, the optimization process is carried out in the HDS
where all numerical information about the optimization process can be modeled.
Furthermore, the classical method (CM) has weak convergence stability because it
is carried out in two spaces (physical and normalized spaces).

A bracket as shown in Fig. 3 is made of 7075-T651 Aluminum (E D 71,018 MPa,
�D 0.33), the yield strength of the material is assumed to be SY D 524 MPa. An
initial geometry of the bracket is given in Fig. 1 (dimensions in mm). The bracket
is clamped at the left hub and carries a downward load at the right hub. The load
is modeled as a uniform pressure P D 50 N/mm2 as shown. Material properties and
geometric dimensioning used in this model are shown respectively in Tables 1 and 2.
In this study, the objective is to minimize the weight design of the structure under
the design constraints that’s the reliability constraint. To optimize the structure,
the mean values of the dimensions mR1 and mR2 are the design variables. The
physical dimensions R1 and R2 are the random variables y, which are supposed
to be normally distributed. Table 3 gives the RBDO variables, as well as the
corresponding standard deviations and initial values. In this problem, we have four
optimization variables: two random variables y and two design variables x.
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Fig. 4 Stress distribution with RBDO procedure: (a) classical method and (b) hybrid method

For this design, the target reliability level is ˇc D 3 with convergence tolerance
equal to 1 %. The equivalent maximum failure probability is Pf D 4 � 10�4.

Classical RBDO approach: Using the classical model, the optimization problem can
be written in two sub-problems:

1. optimization problem subject to reliability constraint:

min W volume .R1;R2/
subject to W ˇ .fxg ; fyg/ � ˇc

2. calculation of the reliability index:

min W
0

@d1 .fug/ D
vuut

mX

i

u2i

1

A i D 1; 2

subject to W �eqv .R1;R2/ � �y
with �y D 524 MPa; ˇc D 3 and ui D xi�mxi

�xi

Hybrid RBDO approach: Using the hybrid reliability-based design model, we can
simplify the two last sub-problems into one problem:

min W F .fxg ; fyg/ D volume .fxg/ � dˇ .fxg ; fyg/
subject to W �eqv .R1;R2/ � �y and ˇ .fxg ; fyg/ � ˇc

Figure 4 shows the stress distribution after the application of the reliability-based
optimization procedure, and Table 4 shows the results of the classical and HMs.
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Table 4 Classical and hybrid RBDO results

Parameter Initial point Classical RBDO Hybrid RBDO

R1 (mm) 45 41.05 39.56
R2 (mm) 45 35.95 36.75
Volume (mm3) 19,534.31 15,254.65 15,016.45
ˇ – 3.2 3.00
Von Mises stress (MPa) 242 383 399

Table 5 Efficiency comparison

Model Classical RBDO Hybrid RBDO

Volume (mm2) 15,254.65 15,016.45
ˇ 3.2 3.00
ndet 7 8
nrel 5 C (7 * 3) 0
ncalls 80 32

The classical RBDO approach requires 80 Finite Element Analyses (FEA) to reach
the minimal volume V* D 15,254.65 mm3 and to satisfy the target reliability level
ˇD 3.2 �ˇc. However, the HM needs only 32 evaluations to reach the minimal
volume V* D 15,016.45 mm3 and to satisfy the target reliability level ˇD 3.00.

At each deterministic iteration, the CM needs a complete reliability analysis in
order to calculate the reliability index. Furthermore, for each reliability iteration,
we need two FEA (equal to the random variables number m D 2) that leads to a
very high FEA (for this example: five reliability iterations for the first deterministic
iteration and 3 ones for the following optimization iterations). By comparing their
results, the HM gives a computational time clearly reduced with respect to the
classical approach. In addition, for each deterministic iteration, we need a n C 1 D 3
FEA, n is the design variables number and one FEA for evaluating the stresses. In the
hybrid RBDO procedure, a gradient calculation for the design variables (n C 1 D 3
FEA) and two FEA (one for the design variables and the other for the random
ones) are necessary for each iteration. Table 5 gives the comparison between the
two methods, where ndet and nrel are the numbers of deterministic and reliability
iterations, respectively, and ncalls is the number of FEA.

In fact, when using the HM, we have a complex optimization problem with many
variables. Solving this problem, we get a local optimum. When changing the starting
point, we may get another local optimum. This way the designer has to repeat
the optimization process to get several local optima. However, to overcome these
drawbacks, two semi-numerical RBDO methods have been proposed (Kharmanda
et al. 2007).
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4 Semi-numerical RBDO Method

4.1 Optimum Safety Factor Method (OSF)

In this section, we select the normal distribution, to demonstrate the efficiency of the
OSF method relative to the hybrid RBDO method. Other distributions such as the
lognormal and uniform distributions are developed by Kharmanda et al. (2004b) to
compute safety factors satisfying a required reliability level to a trimaterial structure.

In general, when considering the normal distribution law, the normalized variable
ui is given by:

ui D yi �mi

�i
; i D 1; : : : ; n (9)

The standard deviation � i can be related to the mean value mi by:

�i D �i �mi or �i D �i � xi ; i D 1; : : : ; n (10)

This way we introduce the safety factors Sfi corresponding to the design
variables xi. The design point can be expressed by:

yi D Sfi � xi ; i D 1; : : : ; n (11)

For an assumed failure scenario G(y)< 0, the equation of the optimum safety
factor for a single limit state case can be written in the following form (see the
developments in Kharmanda et al. 2004a):

Sfi D 1˙ �i � ˇt

vuu
uuut

ˇ̌
ˇ @G@yi

ˇ̌
ˇ

nX

iD1

ˇ̌
ˇ̌@G
@yi

ˇ̌
ˇ̌
; i D 1; : : : ; n (12)

Here, the sign ˙ depends on the sign of the derivative, i.e.

@G

@yi
> 0 () Sfi > 1 or

@G

@yi
< 0 () Sfi < 1; i D 1; : : : ; n (13)

Implementation of the OSF approach: The algorithm of optimum safety factor
approach consists of a simple optimization problem to find the failure point followed
by calculation of the optimum safety factor and finally reevaluation of the new
model using the safety factors. This optimization problem presented in Fig. 5 can
be expressed according to the following steps:

1. Input the initial values of the variable vector y0 of the studied model.
2. Evaluate the objective function f (y).
3. Calculate the deterministic constraints G(y).
4. Test the convergence constraints G(y) � 0, if converged, stop or update y and go

to step 2.
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Fig. 5 The optimum safety factor algorithm

5. Compute the safety factors Sfi using (Eq. (6)). Here, the derivatives of the limit
state function are evaluated at the design point.

6. Reevaluate the new model that presents the optimum solution.

The OSF method cannot be used in some dynamic cases of freely vibrating
structures and using the HM, we can obtain local optima and designer may then
select the best optimum. This is the reason for why; the Safest Point method (SP)
has been proposed (Kharmanda et al. 2007).

4.2 Safest Point Method (SP)

The reliability-based optimum structure under free vibrations for a given interval
of eigen-frequency is found at the safest position of this interval where the safest
point has the same reliability index relative to both sides of the interval. A simple
method has been proposed here to meet the safest point requirements relative to a
given frequency interval.

Let consider a given interval [fa, fb] (see Fig. 6). For the first shape mode, to get
the reliability-based optimum solution for a given interval, we consider the equality
of the reliability indices:

ˇa D ˇb or ˇ1 D ˇ2 (14)

with ˇa D
vuut

nX

iD1

�
uai
�2

and ˇb D
vuut

nX

iD1

�
ubi
�2

i D 1; : : : ; n (15)
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Fig. 6 The safest point at
frequency fn

To verify the equality (14), we propose the equality of each term. So we have:

uai D � ubi ; i D 1; : : : ; n (16)

Normal distribution for SP method: One of the most commonly used distributions of
a random variable yi in engineering problems is the normal or Gaussian distribution.
The mean value mi and the standard deviation � i are two parameters of the
distribution, usually estimated from available data. The normalized variable ui is
defined by:

ui D yi �myi

�i
; i D 1; : : : ; n (17)

with W xi D myi i D 1; : : : ; n and �i D �i � xi ; i D 1; : : : ; n (18)

We consider the equality of the reliability indices

yai �mi

�i
D �y

b
i �mi

�i
or

yai � xi
�i

D �y
b
i � xi
�i

; i D 1; : : : ; n (19)

Safest point corresponding to the frequency fn and located in the interval [fa, fb]
is given by:

mi D xi D yai C ybi
2

; i D 1; : : : ; n (20)
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Lognormal distribution for SP method: If a random variable has a lognormal
distribution; the normalized variable ui is thus defined as:

ui D ln .yi / � 
i
�i

; i D 1; : : : ; n (21)

where 
i and � i are two parameters of the lognormal distribution that are defined as
follows:


i D ln

0

B
@

xiq
1C �2i

1

C
A ; �i D

q
ln
�
1C �2i

�
with �i D �i

xi
; i D 1; : : : ; n

(22)

This distribution is valid for any value of a random variable in the interval from
0 to C1. The normalized variable ui can then be expressed by:

ui D
ln

�
yi

p
1C.�i =xi /2
xi

�

r
ln
�
1C .�i=xi /

2
� i D 1; : : : ; n (23)

We consider the equality of the reliability indices:

ln
�
yai
� � 
i
�i

D � ln
�
ybi
� � 
i
�i

or 
i D ln

0

B
@

xiq
1C �2i

1

C
A

D ln
�
yai
�C ln

�
ybi
�

2
i D 1; : : : ; n (24)

Safest point corresponding to the frequency fn. and located in the interval [fa, fb]
is given by:

mi D xi D
q
1C �2i exp

 
ln
�
yai � ybi

�

2

!

i D 1; : : : ; n (25)

Uniform distribution for SP method: In general, when considering the uniform
distribution law, the transformation between the physical and the normalized space
is expressed by:

yi D aC .b � a/ˆ .ui / ; i D 1; : : : ; n (26)
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with

ˆ.Ui/ D 1p
2�

UiZ

�1
e� u2

2 du; i D 1; : : : ; n (27)

where a and b in (26) are the interval boundaries, and the normalized variables are
denoted by Ui. The mean value mi (or xi) is given by

mi D xi D aC b

2
; i D 1; : : : ; n (28)

and the standard deviation � i by

�i D a � bp
12
; i D 1; : : : ; n (29)

From (28) and (29), we easily get

a D xi � p
3�i and b D xi C p

3�i ; i D 1; : : : ; n (30)

We then propose to write (26) as follows

ui D ˆ�1 �yi � a
b � a

�
or ui D ˆ�1

 
yi � xi C p

3�i

2
p
3�i

!

; i D 1; : : : ; n (31)

Safest point corresponding to the frequency fn and located in the interval [fa, fb]
is given by:

mi D xi D yai C ybi
2

; i D 1; : : : ; n (32)

Implementation of the SP approach: The SP algorithm for symmetric case can be
expressed by the three following steps (two sequential optimization steps and an
analytical evaluation one) (see Fig. 7):

1. Compute the design point a: The first optimization problem is to minimize the
objective function subject to the first bound of the frequency interval fa. The
resulting solution is considered as a most probable point A.

2. Compute the design point b: The second optimization problem is to minimize the
objective function subject to the second bound of the frequency interval fb. The
resulting solution is considered as a most probable point B.

3. Compute the optimum solution: Here, we analytically determine the optimum
solution of the studied structure for linear distribution case.
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Fig. 7 The safest point algorithm

The reliability-based optimum structure under free vibrations for a given interval
of eigen-frequency is found at the safest position of this interval where the safest
point has the same reliability index relative to both sides of the interval. A simple
method has been proposed here to meet the safest point requirements relative to a
given frequency interval.

5 Numerical Applications

The following applications are carried out using ANSYS as a Finite Element Soft-
ware. All optimization process is carried out using a zero order method in ANSYS
optimization tools. This method uses curve fitting for all dependant variables.
The gradient tool in ANSYS computes the gradient of the state variables and the
objective function with respect to the design variables. A reference design set is
defined as the point of evaluation for the gradient. The gradient is approximated
from the following forward difference (ANSYS Guide 2013). For simplicity, we
consider that all random variables follow the normal (Gauss) distribution law and the
standard deviations are considered as proportional of the mean value of the random
variables.
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Fig. 8 Studied plate layers

Table 6 Probabilistic model
parameters Parameter

Initial
values

Mean
values

Standard
deviation

e1 (mm) 0.025 me1 (mm) 0.0025
e2 (mm) 0.050 me2 (mm) 0.0050
e3 (mm) 0.025 me3 (mm) 0.0025

Table 7 Material properties

Parameter E11 D E33 E22 G12 D G21 G13 ¤12 D¤13 � (kg/m3) �

Layer 1 200 1.0 40 2.0 0.3 2000 0/90
Layer 2 100 1.0 15 2.5 0.1 50 –
Layer 3 150 1.0 15 2.5 0.2 1400 90/0

Fig. 9 Meshing model of fluid–structure interaction

5.1 Optimization of a Beam Under Fluid–Structure Interaction

In the first application, we use the OSF and HMs to integrate fluid–structure
interaction phenomena into reliability-based design optimization. The studied
trimaterial plate structure is excited by a harmonic force (0–500 Hz) considering
the fluid-structure interaction phenomenon. The simplified model is presented in
Fig. 8. A rectangular plate consists of three layers fixed on the four corners. Each
layer has a thickness as: ei, i D 1, 2, 3 (see Table 6). The material properties: Eij

(Young’s modulus), �i (volume mass), vi (Poisson’s ratio), and Gij (shear modulus)
are presented in Table 7. This rectangular plate is obscure in the fluid (air) being
perfect, compressible, nonrotational, and initially in rest. Its volume mass and
celerity of sonorous waves are respectively: �f D 1.2 kg/m3 and c D 340 m/s. The
meshing model presented in Fig. 9 is carried out for both structure and fluid: 200
Shell81 elements (bidimensional linear shell element) and 1600 Fluid30 elements
(tridimensional linear acoustic fluid element). Figure 10 presents the acoustic
pressure inside the cavity in relation with the frequency interval [0–500] Hz.
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Fig. 10 Response of the acoustic pressure inside the cavity

Fig. 11 Three first shape modes of the plate. (a) Mode (1, 1), f D 66 Hz. (b) Mode(2, 1),
f D 113 Hz. (c) Mode(2, 2), f D 211 Hz

Fig. 12 Three first shape modes of the acoustic cavity. (a) Mode(1, 1), f D 107 Hz. (b) Mode(2, 1),
f D 138 Hz. (c) Mode(2, 2), f D 265 Hz

The three shape modes of the plate and of the acoustic cavity are respectively
presented in Figs. 11 and 12. To optimize this structure, we consider the stress Von
Mises and the interior noise level inside the acoustic cavity as constraints. The target
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(or allowable) constraint of acoustic comfort inside of the cavity is: Pt D 90 db and
the yield stresses for each layer are: �M1

y D 48 MPa, �M2
y D 18MPa, �M3

y D 42MPa.
Table 6 presents the probabilistic model parameters. Two optimization procedures

can be carried out: DDO and RBDO. The dimensions e1, e2, and e3 are regrouped in
a random vector y. The mean values mi of the random variables yi are regrouped in
a deterministic vector x and the standard deviations are considered as proportional
of the mean values: � i D 0.1*m; i D 1, : : : , 3.

DDO procedures: In the DDO procedure, it is the objective to minimize the volume
subject to the maximum stress constraint as:

min W volume .me1;me2;me3/
subject to W �Mi

max .me1;me2;me3/ � �Mi
w D �

y
i =Sf ; i D 1; : : : ; 3

P .me1;me2;me3/ � Pt � 0; : : : Pt D 90 db

The associated reliability evaluation without consideration of the safety factor
can be written in the form

min W d .e1; e2; e3; ue1; ue2; ue3/
subject to W �Mi

y � �Mi
max .e1; e2; e3;me1;me2;me3/ � 0; i D 1; : : : ; 3

The objective function and the constraints are evaluated by using ANSYS Finite
Element Analysis software.

structural volume D
elementX

iD1
Vi

where Vi designate the volume of the ith element

RBDO procedures (HM method): The CM implies very high computational cost
and exhibits weak convergence stability. So we use the HM to satisfy the required
reliability level (within admissible tolerances of 1 %). In the hybrid procedure, we
minimize the product of the volume and the reliability index subject to the limit state
functions and the required reliability level. The hybrid RBDO problem is written as:

min W volume .me1;me2;me3/ � dˇ .e1; e2; e3;me1;me2;me3/
subject to W �Mi

max .me1;me2;me3/ � �Mi
w ; i D 1; : : : ; 3

P .me1;me2;me3/ � Pt � 0

Pt D 90 db
dˇ .e1; e2; e3;me1;me2;me3/ � ˇc

RBDO procedures (OSF method): The RBDO by OSF includes three main steps:

• The first step is to obtain the design point (the most probable point). Here, we
minimize the volume subject to the design constraints without consideration of
the safety factors. This way the optimization problem is simply written as:
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Table 8 Sensitivities of limit state functions and optimum safety factors

Variables @GM1
.

@yi
@GM2

.

@y2
@GM3

.

@y3
Sfi

e1 �0.4159 �0.0273 �0.0895 0.8198
e2 �0.3104 �0.2100 �0.3765 0.7662
e3 �0.0370 �0.0403 �0.3348 0.8415

min W volume .me1;me2;me3/
subject to W �Mi

max .me1;me2;me3/ � �Mi
w D �

y
i =Sf ; i D 1; : : : ; 3

P .me1;me2;me3/ � Pt � 0

Pt D 90 db

The design point is found to correspond to the maximum Von Mises stresses
�M1
y D 47.966 MPa, �M2

y D 27.998, �M3
y D 41.275 MPa that is almost equivalent to

the given yield stresses.

• The second step is to compute the optimum safety factors using (Eq. (12)). In
this example, the number of the deterministic variables is equal to that of the
random ones. During the optimization process, we obtain the sensitivity values
of the limit state with respect to all variables. So there is no need for additional
computational cost. Table 8 shows the results leading to the values of the safety
factors, namely the sensitivity results for the different limit state functions.

• The third step is to calculate the optimum solution. This encompasses inclusion
of the values of the safety factors in the values of the design variables in order
evaluate the optimum solution.

Table 9 shows the results of the DDO and RBDO methods. In the DDO
problem, we cannot control the required reliability levels but when using the
RBDO procedures (HM and OSF), the target reliability index is satisfied. For the
computational time, the solution of the hybrid problem needs a high computing
time (28,670 s) because of the big number of optimization variables (deterministic
and random vectors). However, using OSF, we need only a little computing time
(9,236 s). The reduction of the computing time is almost 68 %. Furthermore, the
RBDO using OSF does not need additional cost computing time relative to DDO
(9,332 s).

5.2 Numerical Application on Marine Propeller

In the second application, we compare between the SP method and the hybrid
one relative to the computational time. Scheme and data problem are presented
respectively in Fig. 13 and Table 10.

The objective is to find the eigen-frequency for a given interval [14, 20]Hz, that
is located on the safest position of this interval. So fa D 14 Hz, fb D 20 Hz and



642 A. Makhloufi and A. El Hami

Table 9 DDO and RBDO results

RBDO procedure

Variables DDO procedure Hybrid method OSF method

me1 (cm) 0.5142 0.5245 0.5142
me2 (cm) 0.2257 0.2269 0.2257
me3 (cm) 0.74493 0.7473 0.7449

�M1
y (MPa) 47.966 47.009 47.966

�M2
y (MPa) 27.998 27.999 27.998

�M3
y (MPa) 41.275 41.075 41.275

e1 (cm) 0.5259 0.6229 0.6273
e2 (cm) 0.2869 0.2997 0.2945
e3 (cm) 0.7082 0.8902 0.8852

�M1
max (MPa) 40.001 34.585 33.315

�M2
max (MPa) 23.286 23.095 21.869

�M3
max (MPa) 34.261 33.663 26.637
ˇ 2.76 3.35 3.35
Pf (%) 0.3 0.04 0.04
P (db) 76 88.3 89.5
Volume (cm3) 3,042,127 3,625,621 3,616,843
Time (s) 9,332 28,670 9,236

Fig. 13 Scheme of the
marine propeller

Table 10 Data of the
problem

Parameter Value

Plate W 4.5 m
L 1.5 m
Thickness 0.1 m
Outer radius 0.50 m
Inner radius 0.35 m
Density 7,860 kg/m3

Young modulus 2.0 e11 Pa
Coefficient of poisson 0.3

Water Density 1000 kg/m3
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Fig. 14 Marine propeller optimization models for both cases

fn D ? Hz, where fn must verify the equality of reliability indices: ˇa Dˇb. We
can deal with three models: the first structure must be optimized subject to the
first frequency value of the given fa, the second one must be optimized at the end
frequency value of the interval fb, and the third structure must be optimized subject
to a frequency value fn that verifies the equality of reliability indices relative to both
sides of the given interval (see Fig. 14).

Here, we can deal with two reliability-based design optimization methods: hybrid
method and SP method. The HM simultaneously optimizes the three structures but
the SP method consists in optimizing three simple problems.

HM procedure: We minimize the weight of one pale of the objective function subject
to the different frequencies constraint and the reliability one as follows:

min W weight .mTh;mW ;mL/ � dˇ1 .T h1;W1; L1;mTh;mW ;mL/

�dˇ2 .T h2;W2; L2;mTh;mW ;mL/

subject to W f 1
max .T h1;W1; L1/ � fa � 0; f 2

max .T h2;W2; L2/ � fb � 0

W dˇ
1
.T h1;W1; L1;mTh;mW ;mL/ � dˇ

2
.T h2;W2; L2;mTh;mW ;mL/ � 0

W uai C ubi D 0; i D 1; : : : ; I

SP procedure: We have two simple optimization problems:

• The first is to minimize the objective function of the first model subject to the
frequency fa constraint as follows:

min W Weighta .T h1;W1; L1/ subject to W f 1
max .T h1;W1; L1/ � fa � 0
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• The second is to minimize the objective function of the second model subject to
the frequency fb constraint as follows:

min W Weightb .T h2;W2; L2/ subject to W f 2
max .T h2;W2; L2/ � fb � 0

Let consider a given interval [fa, fb] (see Fig. 14). For the first shape mode, to get
the reliability-based optimum solution for a given interval, we consider the equality
of the reliability indices:

ˇa D ˇb or ˇ1 D ˇ2

with ˇa D
vuu
t

nX

iD1

�
uai
�2

and ˇb D
vuu
t

nX

iD1

�
ubi
�2

i D 1; : : : ; n

To verify the equality (Eq. (14)), we propose the equality of each term. So we
have:

uai D � ubi ; i D 1; : : : ; n

According to the normal distribution law, the normalized variable ui is given by
(Eq. (17)), we get:

yai �mi

�i
D �y

b
i �mi

�i
or

yai � xi
�i

D �y
b
i � xi
�i

; i D 1; : : : ; n

To obtain equality between the reliability indices (see Eq. (14)), the mean value
of variable corresponds to the structure at fn. So the mean values of safest solution
are located in the middle of the variable interval [ya

i , yb
i ] as follows:

mi D xi D yai C ybi
2

; i D 1; : : : ; n

The coordinates of the third model which corresponds to fn according to
(Eq. (20)).

Table 11 shows the results of the SP method and presents the reliability-based
optimum point for a given interval [14 Hz, 20 Hz]. The value of fn presents the
equality of reliability indices. The SP method reduces the computing time by 75 %
relative to the HM. The advantage of the SP method is simple to be implemented on
the machine and to define the eigen-frequency of a given interval and provides the
designer with reliability-based optimum solution with a small tolerance relative to
the HM.
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Table 11 Results for the marine propeller

Variables
Initial
design

Optimum design
with HM

Optimum design
with SP

Th (m) 0.2 0.175 0.20
L (m) 2.00 2.253 2.55
W (m) 4.00 4.151 4.50
Th1 (m) 0.1 0.115 0.120
L1 (m) 1.5 1.65 1.750
W1 (m) 3.5 3.55 3.750
Th2 (m) 0.3 0.286 0.278
L2 (m) 3.5 3.485 3.353
W2 (m) 5.5 5.175 5.246
FA (Hz) 13 14.22 14.10
FN (Hz) 21 18.29 18.90
FB (Hz) 22 19.89 19.90
Volume (m3) 2.95 2.836 3.05
Time (s) – 4,125 995

6 Conclusion

A RBDO solution that reduces the structural weight in uncritical regions both
provides an improved design and a higher level of confidence in the design. The
classical RBDO approach can be carried out in two separate spaces: the physical
space and the normalized space. Since very many repeated searches are needed
in the above two spaces, the computational time for such an optimization is a big
problem. The structural engineers do not consider the RBDO as a practical tool
for design optimization. An efficient method called the HM has been elaborated
where the optimization process is carried out in a HDS. But the application of the
hybrid RBDO to engineering design problems is often complicated by multi-physics
phenomena, such as fluid–structure interaction (FSI), the use of HM necessitates a
high computing time and a complex implementation. Two new methods based on
semi-numerical solution called the OSF and SP Methods have been proposed to
simplify the Reliability-based design optimization problem of structures coupled
with fluid. As it is shown in the numerical applications, the SP and OSF method
can reduce efficiently the computing time and aims to find at least a local optimum
solution relative to the HM.
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Abstract Certain fatigued structures must be inspected in order to detect fatigue
damages that would otherwise not be apparent. A technique for obtaining optimal
inspection strategies is proposed for situations where it is difficult to quantify the
costs associated with inspections and undetected failure. For fatigued structures for
which fatigue damages are only detected at the time of inspection, it is important to
be able to determine the optimal times of inspection. Fewer inspections will lead to
lower fatigue reliability of the structure upon demand, and frequent inspection will
lead to higher cost. When there is a fatigue reliability requirement, the problem is
usually to develop an inspection strategy that meets the reliability requirements. It
is assumed that only the functional form of the underlying invariant distribution of
time to crack detection is specified, but some or all of its parameters are unspecified.
The invariant embedding technique proposed in this paper allows one to construct
an optimal inspection strategy under parametric uncertainty. Under fatigue crack
growth, the damage tolerance approach is considered. The new technique proposed
for planning in-service inspections of fatigued structures under crack propagation
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1 Introduction

In spite of decades of investigation, fatigue response of materials is yet to be
fully understood. This is partially due to the complexity of loading at which two
or more loading axes fluctuate with time. Examples of structures experiencing
such complex loadings are automobile, aircraft, off-shores, railways, and nuclear
plants. Fluctuations of stress and/or strains are difficult to avoid in many practical
engineering situations and are very important in design against fatigue failure. While
most industrial failures involve fatigue, the assessment of the fatigue reliability
of industrial components being subjected to various dynamic loading situations is
one of the most difficult engineering problems. The traditional analytical method
of engineering fracture mechanics (EFM) usually assumes that crack size, stress
level, material property and crack growth rate, etc. are all deterministic values
which will lead to conservative or very conservative outcomes. According to many
experimental results and field data, even in well-controlled laboratory conditions,
crack growth results usually show a considerable statistical variability (as shown in
Fig. 1).

Yet more considerable statistical variability is the case under variable amplitude
loading (as shown in Fig. 2).

Fatigue is one of the most important problems of aircraft arising from their
nature as multiple-component structures, subjected to random dynamic loads. The
analysis of fatigue crack growth is one of the most important tasks in the design and
life prediction of aircraft fatigue-sensitive structures (for instance, wing, fuselage)
and their components (for instance, aileron or balancing flap as part of the wing
panel, stringer, etc.). An example of in-service cracking from B727 aircraft (year of
manufacture 1981; flight hours not available; flight cycles 39,523) is given in Fig. 3.

Fig. 1 Constant amplitude loading fatigue test data curves. (Reproduced from Wu and Ni 2003)
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Fig. 2 Variable amplitude loading fatigue test data curves

Fig. 3 Example of in-service cracking from B727 aircraft. (Reproduced from Jones et al. 1999)

From an engineering standpoint the fatigue life of a component or structure
consists of two periods (this concept is shown schematically in Fig. 4):

(1) crack initiation period, which starts with the first load cycle and ends when
a technically detectable crack is present, and (2) crack propagation period, which
starts with a technically detectable crack and ends when the remaining cross section
can no longer withstand the loads applied and fails statically. Periodic inspections
of aircraft are common practice in order to maintain their reliability above a desired
minimum level.

For guaranteeing safety, the structural life ceiling limits of the fleet aircraft
are defined from three distinct approaches: safe-life, damage tolerance, and fail-
safe approaches. The common objectives to define fleet aircraft lives by the three
approaches are to ensure safety while at the same time reducing total ownership
costs.
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Fig. 4 Schematic fatigue crack growth curve [crack initiation period (A–B); crack propagation
period (B–C)]

The safe-life approach is based on the concept that significant damage, i.e. fatigue
cracking, will not develop during the service life of a component. The life is initially
determined from fatigue test data (S–N curves) and calculations using a cumulative
damage “law”. Then the design safe-life is obtained by applying a safety factor.
When the service life equals the design Safe-Life the component must be replaced.
However, there are two major drawbacks to this approach: (1) components are taken
out of service even though they may have substantial remaining lives; (2) despite
all precautions, cracks sometimes occur prematurely. This latter fact led airlines to
introduce the damage tolerance approach (Iyyer et al. 2007). The damage tolerance
approach recognizes that damage can occur and develop during the service life of a
component. Also, it assumes that cracks or flaws can be present in new structures.
Safety is obtained from this approach by the requirements that either (1) any damage
will be detected by routine inspection before it results in a dangerous reduction of
the static strength (inspectable components), or (2) initial damage shall not grow to
a dangerous size during the service life (non-inspectable components). For damage
tolerance analysis to be successful it must be possible to:

1. Define either a minimum crack length that will not go undetected during routine
inspections, or else an initial crack length, nominally based on preservice
inspection capability.

2. Predict crack growth during the time until the next inspection or until the design
service life is reached.

The fail-safe approach assumes initial damage as manufactured and its subse-
quent growth during service to detectable crack sizes or greater. Service life in
fail-safe structures can thus be defined as the time to a service detectable damage.
Inspection intervals are determined by using appropriate safety factors on calculated
crack growth time interval from service detectable cracks to critical crack sizes. The
prediction of crack growth is similar to that of damage tolerance approach, except
that a much smaller initial crack length is used.
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Many important fatigued structures (for instance, transportation systems and
vehicles: aircraft, space vehicles, trains, ships; civil structures: bridges, dams,
tunnels; and so on) for which extremely high reliability is required are maintained
by in-service inspections to prevent the reliability degradation due to fatigue
damage. However, temporal transition of the reliability is significantly affected by
the inspection strategy selected. Thus, to keep structures reliable against fatigue
damage by inspections, it is clearly important in engineering to examine the optimal
inspection strategy. In particular, it should be noticed that periodical inspections
with predetermined constant intervals are not always effective, since a fatigue crack
growth rate is gradually accelerated as fatigue damage grows, i.e. the intervals
between inspections should be gradually smaller in order to restrain the reliability
degradation by repeated inspections. Therefore, we need to construct the inspection
strategy by paying attention to this case.

Barlow et al. (1963) tackled this problem by assuming a known, fixed cost of
making an inspection and a known fixed cost per unit time due to undetected failure.
They then found a sequence of inspection times for which the expected cost is a
minimum. Their results have been extended by various authors (Luss and Kander
1974; Sengupta 1977). Unfortunately, it is difficult to compute optimal checking
procedures numerically, because the computations are repeated until the procedures
are determined to the required degree by changing the first check time. To avoid
this, Munford and Shahani (1972) suggested a suboptimal (or nearly optimal) but
computationally easier inspection policy. This policy was used for Weibull and
gamma failure distribution cases (Munford and Shahani 1973; Tadikamalla 1979).
Numerical comparisons among certain inspection policies are given by Munford
(1981) for the case of Weibull failure times. This case under parametric uncertainty
was considered by (Nechval et al. 2008a, 2008b, 2009, 2011a, 2011b).

Most models, which are used for solving the problems of planning inspections,
are developed under the assumptions that the parameter values of the models are
known with certainty. When these models are applied to solve real-world problems,
the parameters are estimated and then treated as if they were the true values.
The risk associated with using estimates rather than the true parameters is called
estimation risk and is often ignored. In this paper, we consider the case when the
functional form of the underlying invariant lifetime distribution is assumed to be
known, but some or all of its parameters are unspecified. To make the discussion
clear, we make the following restrictions on the inspection: (1) there is only one
objective structure component of the inspection; (2) if a fatigue crack is detected
by the inspection, the component is immediately replaced with a new (virgin) one.
To construct the optimal reliability-based inspection strategy in this case, the two
criteria are proposed and the invariant embedding technique (Nechval et al. 2008a,
2011a) is used.
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2 Planning Inspections for Fatigue Crack Detection Under
Crack Initiation and Complete Information

In this paper we look at inspection strategies for items or structures that can be
described as being in one of two states, one of which is preferable to the other.
This preferred state might be described as “working” whilst the other may represent
some sort of “fatigue damage”. The structures are originally known to be in a
working state but may subsequently fatigue damage. In other words, at t0 D 0 the
structure is in state S0 (working) but at a later time, t1, the structure will move into
state S1 (fatigue damage). We suppose that we do not know when the transition
from S0 into S1 will occur, and that fatigue damage (crack) can only be detected
through inspection. We deal with situations, where it is difficult to quantify the costs
associated with inspections and undetected fatigue damage, or when these costs vary
in time.

The inspection strategy defined is based on the conditional reliability of the
structure. It is given as follows. Fix 0<� < 1 and let

�1 D arg .Pr fX > �1g D �/ (1)

�j D arg
�

Pr
n
X > �j

ˇ
ˇ̌
X > �j�1

o
D �

�
; j � 2 (2)

where f� jgjD1, 2, : : : are inspection times, X is a random variable representing the
lifetime of the structure. This is named as “reliability-based inspection”. The above
inspection strategy makes use of the information about the remaining life that is
inherent in the sequence of previous inspection times. The value of � can be seen
as “minimum fatigue reliability required” during the next period when the structure
was still operational at last inspection time, that is, in other words, the conditional
probability that the failure (fatigue crack) occurs in the time interval (� j�1, � j)
without failure at time � j � 1 is always assumed 1 � � .

It is clear that if F� , the structure lifetime distribution with the parameter �
(in general, vector), is continuous and strictly increasing, the definition of the
inspection strategy is equivalent to

�j D arg
�
F �

�
�j
� D �j

�
; j � 1 (3)

or equivalent to

��
j D arg min

�j

�
F �

�
�j
� � �j 	2; j � 1 (4)

where

F �

�
�j
� D 1 � F�

�
�j
�

(5)
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If it is known that each inspection costs c1 and the cost of leaving an undetected
failure (fatigue crack) is c2 per unit time, then the total expected cost per inspection
cycle is given by

E� fC g D
1X

jD1

�jZ

�j�1

h
jc1 C c2

�
�j � x� �f� . x

�
dx

D c1

1X

jD1
j
�
F�
�
�j
� � F�

�
�j�1

�	

C c2

1X

jD1
�j
�
F�
�
�j
� � F�

�
�j�1

�	 � c2
1Z

0

xf� .x/dx

D c1

1X

jD0
F �

�
�j
�Cc2

1X

jD1
�j
�
F �

�
�j�1

� � F �

�
�j
�	 � c2E� fXg (6)

where f� (x) is the probability density function of the structure lifetime X,

E� fXg D
1Z

0

xf� .x/dx (7)

Thus, we can choose � such that E�fCg as defined in (6) is minimized.

3 Planning Inspections for Fatigue Crack Detection Under
Crack Initiation and Incomplete Information

To construct the optimal reliability-based inspection strategy under parametric
uncertainty, the two criteria are proposed.

The first criterion, which takes into account (3) and the past lifetime data of the
structures of the same type, allows one to construct the inspection strategy given by

�j D arg
�
E�
˚
F �

�
�j
�� D �j

�
; j � 1 (8)

where �j � �j

�
_

�

�

,

_

� represents either the maximum likelihood estimator of � or

sufficient statistic S for � , i.e., � j � � j(S). This criterion is named as “unbiasedness
criterion”.
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The second criterion (preferred), which takes into account (4) and the past
lifetime data of the structures of the same type, allows one to construct the inspection
strategy given by

��
j D arg min

�j
E�

n �
F �

�
�j
� � �j 	2

o
; j � 1 (9)

This criterion is named as “minimum variance criterion”.
It will be noted that in practice, under parametric uncertainty, the criterion,

�j D arg
�
F_

�

�
�j
� D �j

�
; j � 1 (10)

is usually used. This criterion is named as “maximum likelihood criterion”.

To find a sequence of inspection times, �j � �j

�
_

�

�
or � j � � j(S), j � 1,

satisfying either (8) or (9), the invariant embedding technique (Nechval et al. 2008a,
2011a) can be used. Let us assume that each inspection costs c1 and the cost
of leaving an undetected failure (fatigue crack) is c2 per unit time, then under
parametric uncertainty we can choose � such that E�fE�fCgg is minimized.

4 Exponential Distribution of Time to Crack Detection

Theorem 1 Let X1, : : : , Xn be the random sample of the past independent observa-
tions of time to crack detection from the fatigued structures of the same type, which
follow the exponential distribution with the probability density function

f�.x/ D .1=�/ exp .�x=�/ ; x � 0; � > 0 (11)

where the parameter � is unknown. Then the reliability-based inspection strategies
for a new fatigued structure of the same type are given as follows.

The unbiased inspection strategy (UIS):

�j D �
��j=n � 1	 S; j � 1 (12)

The minimum variance inspection strategy (MVIS):

��
j D 1 � � j

nC1

2�
j

nC1 � 1
S; j � 1 (13)

where S DP n
i D 1Xi is the sufficient statistic for � .
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The maximum likelihood inspection strategy (MLIS):

�j D j ln ��1 S
n
; j � 1 (14)

Proof Using the invariant embedding technique (Nechval et al. 2008a, 2011a), we
obtain the unbiased inspection strategy (UIS) from (8):

�j D arg ŒE�fF �

�
�j
� �D �j

	

D arg
h
E�

n
exp

�
��j
�

�o
D �j
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��j
S

S
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�
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E
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D arg
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1C �j
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#

D �
��j=n � 1	 S; j � 1 (15)

where

�j D �j =S (16)

V D S=� 
 f .v/ D 1

�.n/
vn�1 exp .�v/ ; v � 0 (17)

The minimum variance inspection strategy (MVIS) is obtained from (9):

��
j D arg min
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�
�j
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!

D
h �
1 � �j=.nC1/� =
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2�j=.nC1/ � 1 /� S; j � 1 (18)

The maximum likelihood inspection strategy (MLIS) follows immediately
from (10):

�j D arg
�
F_

�

�
�j
� D �j

�
D arg

"

exp

 

��j_
�

!

D �j

#

D j ln ��1 S
n
; j � 1 (19)

where the maximum likelihood estimator of � is
_

� D S=n. This ends the
proof. �
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5 Determination of the Optimal Value of ”

Theorem 2 Let us assume that under conditions of Theorem 1 each inspection of
the UIS costs c1 and the cost of leaving an undetected failure (fatigue crack) is c2

per unit time, then � minimizing EfE� fCgg is given by

�� D arg

0

@
"
1 � �.nC1/=n

1 � �

#2 "
1 � ��1=n C �

��1 � 1� =n
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n
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c2

1

S

1

A (20)

Proof Taking into account (6) and (12), we have
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1
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A

(21)

This ends the proof. �

5.1 Numerical Example 1

Let X1, : : : , Xn be the random sample of the past independent observations of time
to crack detection (from the same fatigued structures) which follow the exponential
distribution (11), where n D 2 and the parameter � is unknown. The sufficient
statistic for � is S D 335 h. In order to construct the reliability-based inspection
strategy for a new fatigued structure of the same type, the unbiasedness criterion (8)
will be used. Let us assume that each inspection of the UIS costs c1 D 1 (in terms
of money) and the cost of leaving an undetected failure (fatigue crack) is c2 D 2 (in
terms of money) per unit time. Then it follows from (20) that �� D 0.95. Figure 5
depicts the relationship between E�fE�fCgg/� and � .
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Fig. 5 Relationship between
E� fE� fCgg/� and �

The optimal inspection times (in terms of hours) for the unbiased inspection
strategy are given in Table 1.

Table 1 Optimal inspection
times (in terms of hours)

j 1 2 3 4 5 6 : : :

� j 8.70 17.63 26.79 36.19 45.83 55.73 : : :

6 Gumbel Distribution of Time to Crack Detection

Theorem 3 Let X1 � � � � � Xr be the first r ordered past observations of time to
crack detection from the n fatigued structures of the same type, which follow the
Gumbel distribution with the probability distribution function

Pr fX � xg D 1 � exp
h
� exp

�x � 

�

�i
; �1 < x < 1 (22)

where 
 is the location parameter, and � is the scale parameter (� > 0). The shape
of the Gumbel model does not depend on the distribution parameters. Then the
unbiased reliability-based strategy of simultaneous inspection of the m new fatigued
structures of the same type is given as follows:
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where Y1 is the smallest observation from a set of m future ordered observations
Y1 � � � � � Ym also from the distribution (22),

z D .z1; z2; : : : ; zr / ; Zi D Xi � _



_
�

; i D 1; : : : ; r (24)

_

 and

_
� are the maximum likelihood estimators of 
 and � based on the first r

ordered past observations (X1 � � � � � Xr) from a sample of size n from the Gumbel
distribution, which can be found from solution of
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Y1 is the smallest observation from a set of m future ordered observations
Y1 � � � � � Ym also from the distribution (22).

Proof The joint density of X1 � � � � � Xr is given by

f
�
x1; : : : ; xr

ˇ̌
ˇ
; �

�
D nŠ

.n � r/Š
rY

iD1
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�
exp
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� .n � r/ exp
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�

��
(27)

Let
_

,

_
� be the maximum likelihood estimates of 
, � , respectively, based on

X1 � � � � � Xr from a complete sample of size n, and let

V1 D
_

 � 

_
�

; V D
_
�

�
and Zi D Xi � _



_
�

; i D 1.1/r (28)

Parameters 
 and � in (28) are location and scale parameters, respectively, and
it is well known that if

_

 and

_
� are estimates of 
 and � , possessing certain

invariance properties, then V1 and V are the pivotal quantities whose distributions
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depend only on n. Most, if not all, proposed estimates of 
 and � possess the
necessary properties; these include the maximum likelihood estimates and various
linear estimates. Zi, i D 1(1)r, are ancillary statistics, any r � 2 of which form a
functionally independent set. For notational convenience we include all of z1, : : : , zr

in (24); zr–1 and zr can be expressed as function of z1, : : : , zr–2 only.
Using the invariant embedding technique (Nechval et al. 2008a, 2011a), we then

find in a straightforward manner, that the probability element of the joint density of
V1, V, conditional on fixed z D (z1, z2, : : : , zr), is

f
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is the normalizing constant. Writing
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we have that
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Now v1 can be integrated out of (33) in a straightforward way to give
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v
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iD1
zi rX

iD1
evzi C .n � r/ evzr

!�r
dv

(34)

This completes the proof. �

7 Weibull Distribution of Time to Crack Detection

Theorem 4 Let X1 � � � � � Xr be the first r ordered past observations of time to
crack detection from the n fatigued structures of the same type, which follow the
Weibull distribution with the probability distribution function

Pr fX � xg D 1 � exp

"

�
�
x

ˇ

�ı#

; x � 0 (35)

where both distribution parameters (ı-shape, ˇ-scale) are positive. Then the unbi-
ased reliability-based strategy of simultaneous inspection of the m new fatigued
structures of the same type is given as follows:

�j D arg
h
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(36)
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where

V2 D ı
_

ı

; w D .w1;w2; : : : ;wr / ; Wi D
0

@Xi
_

ˇ

1

A

_

ı

; i D 1; : : : ; r; w�j D
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@�j
_

ˇ

1

A

_

ı

(37)

_

ˇ and
_

ı are the maximum likelihood estimators of ˇ and ı based on the first
r ordered past observations (X1 � � � � � Xr) from a sample of size n from the two-
parameter Weibull distribution (35), which can be found from solution of
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(39)

Proof The proof of Theorem 4 is similar to that of Theorem 3 if we consider the
distribution of the logarithm of a Weibull variate (ln X), which follows the Gumbel
distribution. �

7.1 Numerical Example 2

Consider, for example, the data of fatigue tests on a particular type of structural
components (stringer) of aircraft IL-86. The data are for a complete sample of size
r D n D 5, with observations of time to crack initiation (in number of 104 flight
hours): X1 D 5, X2 D 6.25, X3 D 7.5, X4 D 7.9, X5 D 8.1; m D 1.

Goodness-of -fit Testing. It is assumed that Xi, i D 1(1)5, follow the two-parameter
Weibull distribution (35), where the parameters ˇ and ı are unknown. We assess
the statistical significance of departures from the Weibull model by perform-
ing empirical distribution function goodness-of-fit test. We use the K statistic
(Kapur and Lamberson 1977). For censoring (or complete) datasets, the K statistic
is given by
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Table 2 Inspection time
sequence under crack
initiation

Inspection time � j

(�104 flight hours)
Interval � jC1 � � j

(flight hours)

�0 D 0 �
�1 D 2.5549 25,549
�2 D 3.2569 7,020
�3 D 3.6975 4,406
�4 D 4.0212 3,237
�5 D 4.2775 2,563
�6 D 4.4898 2,123
�7 D 4.6708 1,810
�8 D 4.8287 1,579
�9 D 4.9685 1,398
:
:
:

:
:
:

Fig. 6 Graphical
representation of inspection
intervals under crack
initiation

K D

r�1X

iDŒr=2�C1

�
ln .xiC1=xi /

Mi

�

r�1X

iD1

�
ln .xiC1=xi /

Mi

� D

4X

iD3

�
ln .xiC1=xi /

Mi

�

4X

iD1

�
ln .xiC1=xi /

Mi

� D 0:184 (40)

where [r/2] is a largest integer � r/2, the values of Mi are given in Table 13
(Kapur and Lamberson 1977). The rejection region for the ˛ level of significance
is fK>Kn;˛g. The percentage points for Kn;˛ were given by Kapur and Lamberson
(1977). For this example,

K D 0:184 < KnD5I˛D0:05 D 0:86 (41)

Thus, there is not evidence to rule out the Weibull model.

Inspection Planning Under Fatigue Crack Initiation. Using (36), we have obtained
the following inspection time sequence (see Table 2). Graphical representation of
inspection intervals is shown in Fig. 6.
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8 Stochastic Models of Fatigue Crack Propagation (Growth)

8.1 Stochastic Model Based on Paris–Erdogan Law

To capture the statistical nature of fatigue crack growth, different stochastic models
have been proposed in the literature. Some of the models are purely based on
direct curve fitting of the random crack growth data, including their mean value and
standard deviation (Bogdanoff and Kozin 1985). These models, however, have been
criticized by other researchers, because less crack growth mechanisms have been
included in them. To overcome this difficulty, many probabilistic models adopted
the crack growth equations proposed by fatigue experimentalists, and randomized
the equations by including random factors into them (Lin and Yang 1985; Yang
et al. 1985; Yang and Manning 1990; Nechval et al. 2003, 2004; Straub and Faber
2005). The random factor may be a random variable, a random process of time,
or a random process of space. It then creates a random differential equation. The
solution of the differential equation reveals the probabilistic nature as well as the
scatter phenomenon of the fatigue crack growth. To justify the applicability of
the probabilistic models mentioned above, fatigue crack growth data are needed.
However, it is rather time-consuming to carry out experiments to obtain a set of
statistical meaningful fatigue crack growth data. To the writers’ knowledge, there
are only a few datasets available so far for researchers to verify their probabilistic
models. Among them, the most famous dataset perhaps is the one produced by
Virkler et al. (1979) more than twenty years ago. More frequently used datasets
include one reported by Ghonem and Dore (1987). Itagaki and his associates have
also produced some statistically meaningful fatigue crack growth data, but have not
been mentioned very often (Itagaki et al. 1993). In fact, many probabilistic fatigue
crack growth models are either lack of experimental verification or just verified
by only one of the above datasets. It is suspected that a model may explain a
dataset well but fail to explain another dataset. The universal applicability of many
probabilistic models still needs to be checked carefully by other available datasets.

Many probabilistic models of fatigue crack growth are based on the deterministic
crack growth equations. The most well-known equation is

da.t/

dt
D q.a.t//b (42)

in which q and b are constants to be evaluated from the crack growth observations.
The independent variable t can be interpreted as stress cycles, flight hours, or
flights depending on the applications. It is noted that the power-law form of
q(a(t))b at the right hand side of (42) can be used to fit some fatigue crack growth
data appropriately and is also compatible with the concept of Paris–Erdogan law
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(Paris and Erdogan 1963). The service time for a crack to grow from size a(t0) to
a(t) (where t> t0) can be found by performing the necessary integration

tZ

t0

dt D
a.t/Z

a.t0/

dv

qvb
(43)

to obtain

t � t0 D Œa .t0/�
�.b�1/ � Œa.t/��.b�1/

q .b � 1/ (44)

For the particular case (when b D 1), it can be shown, using Lopital’s rule, that

t � t0 D ln Œa.t/=a .t0/�

q
(45)

Thus, we have obtained the Exponential model

a.t/ D a .t0/ eq.t�t0/ (46)

In Nechval et al. (2008a, 2008b), it was considered a stochastic version of (44),

1

ab�1
0

� 1

ab�1 D .b � 1/ q .t � t0/C V� (47)

where a0 � a(t0), a � a(t).

Stochastic Model. If V•
N(0,[(b – 1)� (t – t0)1/2]2), then the probability that crack
size a(t) will exceed any given (say, maximum allowable) crack size a• can be
derived and expressed as

Pr fa.t/ � a�g D 1 �ˆ
0

@

2

4

�
a

�.b�1/
0 � .a�/�.b�1/ /� .b � 1/ q. t � t0
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3

5

1

A (48)

where ˚(�) is the standard normal distribution function. In this case, the conditional
probability density function of a is given by

fb;q;�

�
a
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ˇt
�

D a�b
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� exp
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2
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C
A (49)
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This model allows one to characterize the random properties that vary during
crack growth and may be suitable for planning in-service inspections of fatigued
structures under fatigue crack growth when the damage tolerance approach is used.

8.2 New Stochastic Model of Fatigue Crack Propagation

New Stochastic Model. As a result of our investigations of the experimental data
of fatigue crack growth, we have found that for planning in-service inspections of
fatigued structures under fatigue crack growth it may be used as the simplest of
probabilistic models—the straight line model—which derives its name from the fact
that the deterministic portion of the model graphs as a straight line,

y D ˇ0 C ˇ1x C " (50)

where

y � a ln t .a/; x � a (51)

a is a crack size, t can be interpreted as either stress cycles, flight hours, or flights
depending on the applications, ˇ0 and ˇ1 are parameters depending on loading
spectra, structural/material properties, etc., " is a stochastic factor.

Let us assume that we have a sample of n data points consisting of pairs of values
of x and y, say (x1, y1), (x2, y2), : : : , (xn, yn), where

yi D ˇ0 C ˇ1xi C "i ; 1 � i � n; "i
iid
 N

�
0; �2

�
(52)

� 2 is the variance.
The constant real parameters (ˇ0,ˇ1, �2) are unknown. The parameters (ˇ0,ˇ1)

are estimated by maximum likelihood, which in the case of normally distributed iid
factors "i as assumed here is equivalent to choosing ˇ0, ˇ1 in terms of f(xi, yi)gn

i D 1
by least squares, i.e. to minimize

P n
i D 1(yi �ˇ0 �ˇ1xi)2 which results in:

_

ˇ0 D y �
_

ˇ1x (53)

_

ˇ1 D sx y

s2x
(54)

where

x D 1

n

nX

iD1
xi ; y D 1

n

nX

iD1
yi (55)
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s2x D 1

n � 1
nX

iD1
.xi � x/2 D

nX

iD1
x2i � 1

n

 
nX
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sx y D 1
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! 
nX

iD1
yi

!
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The standard (unbiased) estimator of �2 is the mean residual sum of squares (per
degree of freedom) given by

_
�
2 D 1
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iD1

�
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_

ˇ0 �
_
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�
2 (58)

It can be shown that
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where ynC1 is a single future value of y (not yet observed) corresponding to a chosen
value xnC1 of x which was not in fact part of the dataset. Then
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�
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@_�

"

1C 1
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 tn�2 (60)

i.e., the statistic T follows a t-distribution with (n – 2) degrees of freedom. In this
case, a 100(1 �˛)% lower prediction limit h(1 �˛)

n C 1 for a single future value of
y D ynC1 at a chosen value of x D xnC1 is given by

h
.1�˛/
nC1 D

_

ˇ0 C
_

ˇ1xnC1 � tn�2I1�˛
_
�

"

1C 1

n
C .xnC1 � x/2

.n � 1/ s2x

#1=2
(61)

where tn � 2;1 �˛ denotes the (1�˛) quantile of the t-distribution with (n – 2) degrees
of freedom, which corresponds to a cumulative probability of (1 �˛).

For constant amplitude fatigue tests, the typical crack growth curve is shown in
Fig. 7.

Using the proposed stochastic model of crack propagation (50), the typical crack
growth curve in Fig. 7 can be transformed as follows (see Fig. 8).

It is interesting to point out that the coefficient of determination R2 is close to 1.
A variety of functions were reviewed in the search for a functional relationship

which would provide a useful empirical model for consolidated fatigue data.
Hyperbolic, exponential, and power functions were all investigated and found to
be unsatisfactory for fitting the complete range of available data. In order to find
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Fig. 7 Example of typical crack growth curve

Fig. 8 Example of transformed typical crack growth curve

a reasonable model of fatigue data trends throughout the life range of interest, the
following functional relationship,

a ln t .a/ D ˇ0 C ˇ1aC " (62)

is proposed in this paper, where " is a stochastic factor. In principle, this model of
fatigue crack growth is based on the following deterministic crack growth equation,

dt.a/

da
D q1q0

a2
exp

�
�q0
a

�
(63)

in which q1 and q0 are constants to be evaluated from the crack growth observations.
The variable t can be interpreted as stress cycles, flight hours, or flights depending
on the applications. The service time for a crack to grow from size a0 to a (where
a> a0) can be found by performing the necessary integration

t.a/Z

t.a0/

dt D q1

aZ

a0

q0

v2
exp

�
�q0

v

�
dv (64)
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to obtain

t .a/ � t .a0/ D q1

�
exp

�
�q0
a

�
� exp

�
�q0
a0

��
(65)

If a0 D 0, then it follows from (65) that

t .a/ D q1 exp
�
�q0
a

�
(66)

or

a ln t .a/ D ˇ0 C ˇ1a (67)

where ˇ1 D ln q1, ˇ0 D � q0. Including a stochastic factor " into (67), we obtain the
stochastic model of fatigue crack propagation (62).

8.3 New Equation for Planning In-Service Inspections
Under Fatigue Crack Propagation

New Equation. Let us assume that we have a sample of k data points consisting of
pairs of values of a and � , say (�1, a1), (�2, a2), : : : , (� k, � k), where k> 2, � j is the
time of the jth inspection, aj is the crack size detected by means of the jth inspection,
j D 1(1)k. Then the time � kC1 of the next inspection is determined as

�kC1 D exp

 
h
.1�˛/
kC1
QakC1

!

(68)

where

QakC1 D ak C�k (69)

represents a chosen value of future crack size akC1 (not yet observed), �k is a
selected increment of ak,

h
.1�˛/
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_
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"

1C 1

k
C .xkC1 � x/2

.k � 1/ s2x

#1=2
(70)

represents the 100(1 �˛)% lower prediction limit for a single future value of
y D ykC1 D ak C1ln � k C1 at a chosen value of x D xk C1 D QakC1,

_

ˇ0 D y �
_

ˇ1x;
_

ˇ1 D sx y

s2x
(71)
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8.4 Numerical Example 3

For illustration, the procedure of inspection planning based on Eq. (68) will be used
for the upper longerons of RNLAF F-16 aircraft (Grooteman 2008), see Fig. 9. Since
the longerons are not safety-critical, a baseline deterministic durability analysis
was done, starting from a 0.178 mm corner crack and ending at the “functional
impairment” crack length of 4.75 mm. The crack growth curve was obtained from a
Lockheed Martin crack growth model and a load spectrum representing the average
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Fig. 9 Inspection points of the upper longeron of RNLAF F-16 aircraft. (Reproduced from
Grooteman 2008)

usage of RNLAF F-16s. This crack growth model is based on the well-known
Forman equation and the generalized Willenborg retardation model, and has been
validated with data from a test of aircraft, i.e. it gives the correct trend of actual crack
growth. Figure 10 shows the calculated mean crack growth curve and superimposes
the damage tolerance inspection requirements (Military Specification 1974) on the
crack growth curve, whereby the 90 %/95 % reliably detectable crack length, ad, for
in-service inspections was specified to be 2.54 mm. These requirements led to the
following inspection scheme, which, however, has an unknown safety level:

1. Initial inspection 2,655 FH (flight hours);
2. Repeat inspection 62 FH.

Let us assume that 1 �˛D 0.95,�k D 4 mm for all k. Using the initial data points
(�1 D 2,655 FH, a1 D 0.35 mm), (�2 D 4,200 FH, a2 D 0.75 mm) and the subsequent
data points taken from the calculated mean crack growth curve (see Fig. 10, where
the coefficient of determination R2 D 1), we obtain from (68) the following sequence
of inspections and detectable crack lengths (see Table 3):
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Fig. 10 Deterministic damage tolerance inspection requirements for the RNLAF longerons.
(Reproduced from Grooteman 2008)

Fig. 11 Graphical
representation of inspection
intervals under crack
propagation

Table 3 Inspection time
sequence under crack
propagation

Inspection time
� j (flight hours) Crack length (mm)

Interval � jC1�� j

(flight hours)

�0 D 0 � �
�1 D 2,655 a1 D 0.35 �1��0 D 2,655
�2 D 4,200 a2 D 0.75 �2��1 D 1,545
�3 D 4,600 a3 D 1.15 �3��2 D 400
�4 D 4,800 a4 D 1.55 �4��3 D 200
�5 D 4,930 a5 D 1.95 �5��4 D 130
�6 D 5,030 a6 D 2.35 �6��5 D 100
�7 D 5,110 a7 D 2.75 �7��6 D 80
�8 D 5,170 a8 D 3.15 �8��7 D 60
�9 D 5,220 a9 D 3.55 �9��8 D 50
�10 D 5,260 a10 D 3.95 �10��9 D 40
�11 D 5,290 a11 D 4.35 �11��10 D 30
�12 D 5,310 a12 D 4.75 �12��11 D 20
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9 Conclusions and Future Work

The technique proposed in this paper represents a simple and computationally
attractive statistical method based on the constructive use of the invariance principle
in mathematical statistics. The main advantage of this technique consists in that it
allows one to eliminate unknown parameters from the problem and to use the past
lifetime data for planning future inspections as completely as possible.

The unbiasedness and minimum variance criteria, which are proposed in the
paper for constructing inspection strategies under fatigue crack initiation such as
the unbiased inspection strategy (UIS) and minimum variance inspection strategy
(MVIS), respectively, represent the novelty of the work. It is clear that these
inspection strategies, which have such properties as unbiasedness and minimum
variance, are preferable as compared to the maximum likelihood inspection strategy
(MLIS). We have illustrated the prediction methods for log-location-scale distri-
butions (such as the exponential, Gumbel, or Weibull distribution). Application to
other distributions could follow directly.

Under fatigue crack growth, the damage tolerance approach is considered. As a
result of our investigations of the experimental data of fatigue crack growth, we
have found that for planning in-service inspections of fatigued structures under
crack propagation it may be used the simplest of probabilistic models—the linear
regression model. Once the appropriate stochastic model is established, it can be
used for the fatigue reliability prediction of structures made of the tested material.
As such the model presented here provides a fast and computationally efficient
way to predict the fatigue lives of realistic structures. The new technique proposed
for planning in-service inspections of fatigued structures under crack propagation
requires a quantile of the t-distribution and is conceptually simple and easy to use.

The results obtained in this work can be used to solve the service problems
of the following important engineering structures: (1) transportation systems and
vehicles—aircraft, space vehicles, trains, ships; (2) civil structures—bridges, dams,
tunnels; (3) power generation—nuclear, fossil fuel, and hydroelectric plants; (4)
high-value manufactured products—launch systems, satellites, semiconductor and
electronic equipment; (5) industrial equipment—oil and gas exploration, production
and processing equipment, chemical process facilities, pulp and paper.
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Abstract Since variances in the input parameters of engineering systems cause
subsequent variations in the product performance, Reliability-Based Design Opti-
mization (RBDO) is getting a lot of attention recently. However, RBDO is com-
putationally expensive. Therefore, the Response Surface Methodology (RSM) is
often used to improve the computational efficiency in the solution of problems
in RBDO. In this chapter, the Diffuse Approximation (DA), a variant of the
well-known Moving Least Squares (MLS) approximation based on a progressive
sampling pattern is used within a variant of the First Order Reliability Method
(FORM). The proposed method simultaneously uses points in the standard normal
space (U-space) as well as the physical space (X-space). At last, we investigate
the optimization of the process parameters for Numerical Control (NC) milling of
ultrahigh strength steel. The objective functions are tool life and material removal
rate. The results show that the method proposed can decrease the number of ‘exact’
function calculations needed and reduce the computation time. It is also helpful to
adopt this new method for other engineering applications.

Since variances in the input parameters of engineering systems cause subsequent
variations in the product performance, and deterministic optimum designs that are
obtained without taking uncertainties into consideration could lead to unreliable
designs. Reliability-based design optimization (RBDO) is getting a lot of attention.
However, RBDO is computationally expensive. Therefore, the response surface
methodology (RSM) is often used to improve the computational efficiency in the
solution of problems in RBDO.
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RBDO is extensively applied in various fields due to its uncertainty consideration.
For example, RBDO is used in the crashworthiness of vehicle analysis to consider
simulation uncertainties and manufacturing imperfections (Youn et al. 2004). Allen
and Maute (2004) combined RBDO and high-fidelity aero elastic simulations of
structures. Behnam and Eamon (2013) obtained minimum cost of ductile hybrid
fiber reinforced polymer bar configurations by RBDO. Chen et al. (2014) developed
a cell evolution method for RBDO.

Several popular RSMs are applied widely in computational mechanics. RSM is
used to predict the tool life in end milling Titanium Alloy Ti–6AI–4V (Ginta 2009).
It was used by Bashir et al. (2010) for optimization of ammoniacal nitrogen removal
from semi-aerobic landfill leachate using ion exchange resin. Kumar and Singh
(2014) used RSM to optimize process parameters for catalytic pyrolysis of waste
high-density polyethylene to liquid fuel.

This chapter begins with the introduction of RBDO. After that diffuse approxi-
mation is presented as main part of RSM. Then design of experiments (DOE), most
important part of RSM, focuses on advancing Latin hypercube patterns. At last
a case of optimizing the process parameters of numerically controlled milling of
ultrahigh strength steel is investigated.

1 Reliability-Based Design Optimization

1.1 General Definition of RBDO Model

1.1.1 Deterministic Optimization Problem Statement

In the optimization process, the goal is to

Minimize f .x/ ; x 2 Rn

subject to a set of m constraints

gj .x/ � 0I j D 1; : : : ; m

with

Li � xi � Ui ; i D 1; : : : ; n

where f is the objective function, xi are the design variables, gj is the jth nonlinear
constraint. The region of interest is defined by Li and Ui which are the lower and
upper bounds on the design variables, respectively.
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Feasible region

Deterministic optimum

Reliability based optimum
b2

b1

Fig. 1 Comparison between RBDO and deterministic optimization

1.1.2 RBDO Problem Definition

RBDO is similar to deterministic optimization. The main difference lies in the
constraints. The constraints in RBDO are the reliability indices ˇ which ensure
that the design point is in the safe region. Figure 1 shows the role of the reliability
index ˇ.

In system parameter design, the RBDO model (Choi et al. 2007) can generally be
defined as:

Minimize or maximize f (x)

Subject to ˇi .u/ � ˇi i D 1; 2; � � � ; n

where x is the vector of the random variables in the design space (X-space) and u
is the associated variable in the standard normal space (U-space). So the RBDO
process is performed in two different random spaces: X-space and U-space.

Figure 2 clearly shows the difference between deterministic optimization and
reliability-based optimization. Some points (filled circle points) may be out of
the safe region when the deterministic optimum is being considered. Reliability-
based optimization on the other hand is able to ensure that all the possible points
(generated by the tolerance) are within the safe region with the probability defined
by the reliability index ˇ.

The flow chart of reliability-based optimization is shown in Fig. 3.

1.2 Basic Reliability Problems

In the RBDO model, the reliability constraints are most important. This section will
explain how to define the reliability.
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Safe region

Deterministic optimum

Reliable optimum
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β2

Constraint boundary

Constraint boundary

Fig. 2 Sketch of reliability-based optimization

Initialize design variables

Y

Evaluate objective function
and

Reliability-based constraints

Evaluate gradients

Reliability analysis
Approximation techniques

Converge

Stop

N

Fig. 3 Flow chart of reliability-based optimization

In effect, repeated realizations of the same physical phenomena may generate
multiple outcomes. Among these multiple outcomes, some outcomes are more
frequent than others. This means that the result is obtained with a certain amount
of uncertainty, so satisfactory performances cannot be absolutely ensured. Instead,
assurance can only be given in terms of the probability of success in satisfying
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x1

g(x)<0

g(x)=0

g(x)>0
Safe domain

Failure domain

fx(x)

Fig. 4 Formulation of
reliability problem

xS xS

Fig. 5 Rod under tension load

some performance criterions. A probabilistic assurance of performance determines
reliability. It can also be described as the probability of failure Pf.

A vector of basic random variables x D (x1, x2, : : : , xn) represents the uncertain
quantities that the define state of the structure. In structural reliability analysis, the
system output Z D g(x) is usually a functional relationship between the specific
performance criteria and the relevant load and resistance parameters x. The failure
surface can be given by g(x) D 0. This is the boundary between the safe and failure
regions in the random variables space. When g(x)> 0, the structure is considered to
be safe and when g(x)<0, the structure can no longer fulfill the design requirements
(see Fig. 4).

Here, we use the example of a simple rod under tension load (Fig. 5) to illustrate
the basic reliability problem. Suppose xS is the tension load and xR is the strength.
xS and xR are independent random variables with probability density functions
(fR(xR) and fS(xS)). The failure (rod is broken) state is given by: xR< xS; critical
state: xR D xS; and safe state: xR> xS. These three states are shown in Fig. 6.

Probability of failure Pf is

Pf D P Œg .x/ � 0� D
Z

g.x/�0
fX.x/dx (1)

where fX(x) is Probability Density Function (PDF) of basic variables x.
The reliability index ˇ is related to the probability of failure Pf by

ˇ D �ˆ�1 .Pf/ (2)

where ˆ�1 is the inverse Cumulative Distribution Function (CDF) of standard
normal variable. Figure 7 gives the interpretation of reliability index ˇ.
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Failure domain: xR <xS

Safe domain: xR >xS

Limit state surface:
g=xR-xS =0

fS(xS)

fR(xR)

xR

xS

Fig. 6 Basic reliability problem of a rod under tension load

σ σ

βσ
Pf = Φ(−b)

x

f

βσ

Fig. 7 Reliability index ˇ

1.3 Transformations

The RBDO process is performed in two different spaces: the design space (X-space)
and the standard normal space (U-space). It is necessary to do the transformation
between two spaces at any design point to estimate the reliability index. During the
transformation, the most important is that the failure probability Pf in the U-space
is the same as in the X-space.

The transformation T between the two different spaces is given by Youn (2001):

u D T .x/ x D T�1 .u/ (3)

h .u/ D h .T .x// g .x/ D g
�
T�1 .u/

�
(4)
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Fig. 8 Mapping from X-space to U-space

Table 1 Comparison of RIA and PMA

Approach RIA PMA

Main problem Minimize function f Minimize function f
Subject to ˇ(x)>D ˇlimit Subject to �g(x) � 0
and g(x)> 0

Sub-problem Minimize ˇ(u) Minimize h(u)
Subject to h(u) D 0 Subject to ˇ(u) Dˇlimit

Figure 8 shows the mapping of design point from X-space (Fig. 8a) to U-space
(Fig. 8b) by transformation.

For independent variables, the transformation may be expressed as

ui D ˆ�1 ŒFxi .xi /� i D 1; � � � ; n (5)

where ˆ�1 is the inverse CDF of standard normal variable, Fxi .xi / is CDF of xi.
When the variables are not independent, the transformation is more complicated.

The readers are referred to Rosenblatt (1952), Der Kiureghian (1986) and Box–Cox
(1964) for more information.

1.4 Methods for Solving Inner Loop

In the RBDO formulation, the double loop method has two iterative processes. The
inner loop is an optimization process to search for the Most Probable Point (MPP)
of each constraint.

Among several reliability approaches for locating the MPP to estimate the
probability index, both performance measure approach (PMA) and reliability index
approach (RIA) are used. The idea behind the PMA is to convert the probability
measure to a performance measure in order to search for the MPP. RIA involves the
evaluation of reliability by using a Taylor series of the limit state function to obtain
the reliability index for each constraint. The two of them are compared in Table 1.
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Fig. 9 MPP estimation of
PMA and RIA

1.5 The Concept of MPP

The concept of the MPP was originally developed in structural reliability in the
1970s (Hasofer and Lind 1974). The probability of failure is maximal at the MPP.
For the PMA approach, �r(g) at MPP is parallel to the vector from the origin to
that point. The MPP lies on the ˇ-circle for PMA approach and on the limit surface
boundary for RIA approach (Fig. 9). Exact MPP calculation is an optimization
problem.

1.6 Methods for the Computation of Reliability

Figure 10 shows the methods for the computation of reliability presented thus
far. The First- and Second-Order Reliability Methods (left side of Fig. 10) are
often used for low dimensionality problems, since their limit state surface g(x) D 0
is often approximated (linear or quadratic) by a first- or second-order Taylor
series expansion. Different approximate response surfaces h(u) D 0 correspond to
different methods for the calculation of failure probability. If the response surface is
approached by a first-order approximation at the MPP, the method is termed as the
First-Order Reliability Method (FORM), while the response surface is approached
by a second-order approximation at the MPP, the method is termed as the Second-
Order Reliability Method (SORM) and the response surface is approached by a
higher order approximation at the MPP, the method is termed as the Higher-Order
Reliability Method (HORM). It is actually a mathematical optimization process to
find the MPP on the limit state surface which has the shortest distance from the
origin to the limit state surface in the U-space.
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reliability analysis

Methods of reliability Sampling methods Stochastic expansion

FORM
SORM

…...

Monte Carlo Simulation (MCS)
Importance Sampling (IS)

Latin Hypercube Sampling (LHS)
…...

Polynomial Chaos Expansion (PCE)
Karhunen-Loeve Transform

Stochastic Finite Element Mehthod
(SFEM)

…...

FORM/SORM are based on the linear/quadratic
approximation of the limit state function around

MPP; which is defined is standard normal
space as the closest point from the originon

the response surface.

For highly nonlinear problems,
predictions of reliability from

FORM/SORM are not accurate
enough because they

approximate the response using
a linear or quadratic function.

RBDO Reliability index (safety index) b

MCS require large
number of samples

The failure probability can often be
represented by the reliability index

b = −Φ−1 (Pf)

Fig. 10 Methods of reliability computation

However, for highly nonlinear problems, the FORM and SORM are not accurate
enough to predict reliability because of the linear and quadratic approximations.
Sampling methods (see in the middle of Fig. 10) avoid this disadvantage, as they
estimate the reliability index by repeating the experiments many times. They are an
inexpensive way to study the uncertainty in the given problem. Stochastic expansion
is third method to calculate reliability index. More detailed information about these
methods is given by Choi et al. (2007). First-Order Reliability Methods (FORM) is
only introduced in detail here due to limited space.

In the FORM, the limit state surface is approximated by a tangent plane (normal
direction ˛) at the MPP, and the FORM results are used to specify a bound based on
the probability of failure.

The FORM is a mathematical optimization process to find the MPP on the limit
state surface. Reliability index ˇ is the shortest distance from the origin to the limit
state surface in the U-space (Fig. 11).
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Fig. 11 First-order reliability
method

The response surface is approached by a first-order approximation at the MPP,
and the limit surface state is

h .u/ D �˛Tu C ˇ (6)

Normal direction to the approximated limit surface state ˛ is

˛ D � rh .u/
krh .u/k juDu� (7)

Reliability index ˇ is the shortest distance from the origin to the approximated
limit state surface. The probability of failure Pf is expressed in Eq. (9).

ˇ D sign Œh.0/� ku�k (8)

Pf D ˆ.�ˇ/ (9)

Here, the Hasofer-Lind-Rackwitz-Fiessler (HLRF) algorithm is used to find u*
in the U-space. Find

Min: fQ.u/g D kuk2 D uTu (10)

Subject to

h .u/ D 0 (11)
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It is iteratively calculated using

uiC1 D 1

rhT .ui /rh .ui /
�rhT .ui /ui � h .ui /

�rh .ui / i D 0; : : : ; um (12)

rh(ui) is the gradient vector of the limit state function h(u) at ui. um is the number
of iteration in U-space. Convergence criterion is

juiC1 � ui j � " (13)

u* is the convergence point, the MPP.

2 Response Surface Model (RSM): Diffuse Approximation

For reliability computation, such as FORM and SORM require the computation
of function values, first- and second-order derivatives. In order to apply well the
formula in FORM, Response Surface Methodology is introduced in this section for
approximating the function value and its gradients.

RSM is a collection of mathematical and statistical techniques useful for empir-
ical model building. It replaces the true functional relationship by a mathematical
expression that is much cheaper to evaluate. The response surface is an approx-
imation of the relational expression of the response y predicted from n design
variables xi.

In general, for mathematical expression, a polynomial is often used because
it is easy to handle; a nonlinear function that can be linearized through variable
transformation (such as an exponential function) may also be used. There are
many methods to make a response surface: least square method, polynomials,
exponential, logarithm, neural network, spline interpolation, Lagrange interpolation
etc. Here, the diffuse approximation (DA), a version of moving least squares (MLS)
approximation is proposed as RSM.

The diffuse approximation (DA), a version of MLS approximation, estimates the
value of a function g: <n ! < and of its derivatives based on a certain number k of
samples g(xi), i D 1,2, : : : ,k. DA is usually presented in one to three dimensional
spaces, which is generally enough when applying DA as an alternative for the
Finite Element approximation, but is not enough for the optimization purposes. The
design spaces of interest are of higher dimension and specific issues of sampling
and weighting have to be addressed for a proper implementation. Here a scalable
DA framework for an arbitrary number of design variables is provided.
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x

xi

Fig. 12 Data point xi and
evaluation point x

The function value at a data point xi (filled circles in Fig. 12) may be formulated
using the first-order Taylor expansion in terms of the function and of the gradient
values at the evaluation point x (hollow circle in Fig. 12) and in terms of the
distances �xi D xi-x, i D 1 : : : k.

Using first-order expansion for the set of samples g(xi) gives

g .x1/ D g .x/C rgT�x1 C "1

� � �
g .xi / D g .x/C rgT�xi C "i

� � �
g .xk/ D g .x/C rgT�xk C "k (14)

from which we readily obtain expressions for the errors (Eq. (15)).

"1 D g .x1/ � g .x/ � rgT�x1
� � �

"i D g .xi / � g .x/ � rgT�xi
� � �

"k D g .xk/ � g .x/ � rgT�xk (15)

In matrix notation, denoting ©K D ("1 : : : "k)T

©K D gK � Pa (16)
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Fig. 13 Circle domain of
influence in 2D

with

PT D

2

666
4

1 � � � 1

�x11 � � � �x1k
:::

:::

�xn1 � � � �xnk

3

777
5

D
�
1 � � � 1

�x1 � � � �xk

�
a D

�
g .x/

rg .x/
�
;

and gK stands for the sample value vector gK D (g1 : : : gk)T, where �xi D (�xi
1

: : : �xi
n)T. The approximate function Qg .x/ and the approximate gradient Qrg .x/

values at the evaluation point x may then be found by minimizing the weighted
squared error

J
�

Qg .x/ ; Qrg .x/
�

D 1

2
©T

KW©K (17)

From the second-order Taylor expansion, the matrix P has additional lines
corresponding to n C (n2 � n)/2 second-order terms �xi

k�xi
l, k, l D 1, : : : ,n, and

one gets readily the criterion for the approximation of the function Qg .x/, of the
gradient Qrg .x/ and of the Hessian QH .x/

J
�

Qg .x/ ; Qrg .x/ ; QH .x/
�

D 1

2
©T

KW©K (18)

The diagonal weight matrix

W D

2

6
4

w .x1; x/
: : :

w .xk; x/

3

7
5 (19)

involves the weight functions w(xi, x) which translate the influence of the ith sample
point at the evaluation point x as illustrated in Fig. 13. R is the radius of influence
domain.
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w .xi ; x/ D wref

� jxi � xj
R

�
(20)

The influence of a data points decreases with the relative distance, according to
the reference weight function wref (d). The choice of weight function is critical for
the quality of the approximation. Weight functions are obtained from the reference
window functions by substituting the relative distance between the evaluation point
and the data points. It provides three features to the approximation: the locality,
the continuity, and the interpolation capacity. The locality is obtained when wref

disappears outside the unit region. The Cm continuity is governed by vanishing of
the m-order derivative of wref at the boundary. The interpolation property is obtained
when w(xi,xj) D ıi

j (Kronecker delta). A common choice for wref, which satisfies
the first two properties, is a spline function. More other weight functions (basic hat,
exponential) are presented by Belytschko et al. (1996). Here, we choose (Eq. (21))
as the weight function.

wref.d/ D
�
1 � 3d2 C 2d3 for 0 � d < 1

0 for d � 1
(21)

The weight function w(xi,x) built from the reference weight function wref(d)
serves implicitly as a selection tool for determining the domain of influence of the
given point. An obvious and common choice is

w .xi ; x/ D wref

�q
�xT

i �xi =R
�

(22)

with R to be the given size of the domain of influence, which results in an
n-spherical domain. Therefore, a tensor product of the reference weight functions
(Eq. (23)), calculated separately for each component of �xi, is better suited for
diffuse approximation

w .xi ; x/ D wref
�
�x1i =R1

� � � � � � wref
�
�xki =Rn

�
(23)

resulting in n-cubical shaped domains (Fig. 14) and permitting to adjust every Rj,
j D 1 : : : n according to the required resolution in individual directions.

Once the weight matrix is defined, one obtains the approximation of the function
and of the gradient by minimizing the criterion (Eq. (18)).

� Qg .x/
Qrg .x/

�
D �

PWPT
	�1

PWgK (24)

The condition of the matrix PWPT determines the quality of the approximation
and depends on the pattern and on its size. The choice of the pattern, avoiding
the degenerate situations is the subject of the DOE. In order to make the system
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Fig. 14 Rectangular domain
of influence in 2D

independent of the pattern size, the diagonal scaling matrix D is defined

D D

2

6
66
4

1 0

R1
: : :

0 Rn

3

7
77
5

�1

(25)

where we can use the same radiuses of influence Rj as for the weight function
computation. Finally, the system is Eq. (26)

� Qg .x/
Qrg .x/

�
D D

h
.DP/W.DP/T

i

„ ƒ‚ …
A

�1
Œ.DP/W�
„ ƒ‚ …

B

gK D DA�1BgK (26)

in which every Aij 2 (0,1) is independently of the scale of the pattern.
The difficulty in the use of the formulation (Eq. (26)) is the control of the number

of neighboring points k when the dimensionality n of the design space increases.
This is the problem of DOE.

3 DOE: Advancing Latin Hypercube Sampling

The objective of DOE is to choose a set of appropriate sampling points with which
the response surface should be evaluated. It is an important aspect of RSM. These
strategies were originally developed for the model fitting of physical experiments
and numerical experiments. DOE is thus how to arrange m experiments with n input
variables. The variables are called factors in the DOE context. Each factor is fixed to
several specified values called levels. So an experimental design is usually written
in matrix form where the rows show the individual experiments (called sampling
points) and the columns denote the particular factors.
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Fig. 15 Basic concept of LHS with two variables and five realizations

The choice of the DOE depends on the accuracy of the approximation, the cost of
constructing the response surface, and the cost of producing physical experiments
(maximum number of acceptable sampling points).

Advancing Latin hypercube sampling (LHS) is present due to its superiority on
the number of samples.

3.1 Latin Hypercube Sampling Theory

In statistics, a Latin square is an n � n table filled with n different symbols in such
a way that each symbol occurs exactly once in each row and exactly once in each
column. The term “Hypercube” extends this concept to higher dimensions for lots
of design variables. Therefore, LHS method, also known as the “stratified sampling
technique,” represents a multivariate sampling method without overlapping designs.
LHS, which has been successfully used to generate multivariate samples of statisti-
cal distributions, was first proposed by McKay et al. (1979). In LHS, the distribution
for each random variable can be subdivided into n equal probability intervals or
bins. Each bin has one analysis point. There are n analysis points, randomly mixed,
so each of the n bins has the distribution probability of 1/n. Figure 15 shows the
basic steps for the general LHS method. They are:

1. Divide the distribution for each variable into n non-overlapping intervals on the
basis equal probability.

2. Select one value at random from each interval with respect to its probability
density.
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3. Repeat steps (1) and (2) until the values of all random variables, i.e., x1, x2, : : : ,xk

are selected.
4. Associate the n values obtained for each xi with the n values obtained for the

other xj¤i at random.

The regularity of probability intervals on the probability distribution function
ensures that each of the input variables has all portions of its range represented,
resulting in relatively a small variance in the response. At the same time, the analysis
becomes much less computationally expensive.

3.2 Selection of Number of Points

LHS method can reduce the number of sampling points for calculations. However,
minimal number of needed sampling points exists. How many points are enough?
These sampling points are used to perform approximation by DA. So the number of
sampling points depends on the approximation formulation.

For Eq. (24), firstly, the following symbols are defined:

k, Number of data points needed
n, Number of dimensions of variable (n)
col, Number of columns of matrix P

Number of rows and columns of matrix P is k and col respectively: Pk�col.

• Matrix P is built from linear base polynomials, col D (n C 1);

PT
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• Matrix P is the case of quadratic basis functions, col D (1 C 2n C (n2 � n)/2);
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Table 2 Number of points (k) needed with different dimensions

Full factorial
Dimensions designs Linear base P Quadratic base P Bilinear base P

1-D 3 �2 �3 �2
2-D 9 �3 �6 �5
3-D 27 �4 �9 �7
4-D 81 �5 �15 �11
5-D 243 �6 �21 �16
n-D 3n �(n C 1) �1 C 2n C (n2 � n)/2 �1 C n C (n2 � n)/2

• Matrix P is the case of bilinear basis functions, col D (1 C n C (n2 � n)/2);

PT
k�col
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666666
66666
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:::

:::

�xn1 � � � �xnk
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i¤1 � � � �x1k�x1i¤k
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:::

�xn1�x
n
i¤1 � � � �xnk�xni¤k
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777777
77777
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D
2

4
1 � � � 1

�x1 � � � �xk
�x1�xi¤1 � � � �xk�xi¤k

3

5

k� col

The number of rows and the number of columns of matrix W, which depends on
the number of points, are k and k respectively: Wk�k.

The number of rows and the number of columns of vector gK are k and 1
respectively: gK(k�1).

a D
� Qg .x/

Qrg .x/
�

D �
PWPT

	�1
PWgK (27)

For linear base, it is not difficult to calculate the number of rows and the number
of columns of vector a. they are (n C 1) and 1: a(nC1)�1.

Here, we can say that number of unknown is (n C 1). It means that number of
points k should be at least bigger than (n C 1), or else, system of equations will not
get the solution. Table 2 lists the relations between k and n. Full factorial designs
take three levels as the example.

The DA scheme needs an efficient and scalable DOE, limiting the number of the
“exact” function evaluations. From Table 2, we can see that in n dimensions, DA
requires k> n C 1 data points with the linear P (for k D n C 1, the approximation
degenerates to the Least Squares fitting as the P matrix becomes square, and
[PWPT]� 1PWgK D P� TW� 1P� 1PWgK D P� TgK) and k> 1 C 2n C (n2 � n)/2
with the quadratic case.
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Fig. 16 Advancing LHS
pattern applied in FORM

Fig. 17 Mixing points in
both spaces

3.3 Advancing LHS Patterns

The overall idea of advancing LHS patterns is shown in Fig. 16. The pattern at the
iteration t surrounds the current approximation of the MPP. Then, Eq. (12) is used
to estimate the new MPP approximation. At this point the pattern has to be updated
in the vicinity of MPPtC1. The goal is to minimize the number of “exact” function
evaluations. The idea is thus to reuse as many points as possible from previous
computations and to add new points. The new points are selected in the way that
together with the previous points they form a new Latin Hypercube. Four points
(triangles) are needed for iteration (t C 1), while reuse a point (circle) from previous
iteration.

After mixing the sampling points from two spaces (rectangles from X-space,
circles from U-space), there are several points in the same cell. Their average is
taken instead of all the points in same cell. Now, only one point exists in one cell
(Fig. 17). Other strategies are of course possible.

The possible adaptations of the pattern are panning, expanding, and shrinking. As
the current evaluation point moves during the optimization iterations, three cases are
possible:

– The point stays inside the pattern, but the convergence stops, here, we are going to
use the “shrink” operator, say by halving the interval of grid to refine the pattern.
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Fig. 18 (a) Panning domain
of influence, virtual DOE
(eight hollow circles);
(b) Panning domain of
influence, adapted LHS (two
filled circles)

Fig. 19 (a) Shrinking
domain, virtual DOE (five
hollow circles); (b) Shrinking
LHS, adapted LHS (filled
circle)

– The point goes outside of the local pattern—we are going to use the “pan” or
operator in order to translate the pattern.

– When subsequent iteration points fall outside of the pattern, that means that the
size of the pattern is too small, this is the situation when we use the “expand”
operator.

In Fig. 18a, sampling point increases in the interested region due to the increment
of iterations in optimization process. Two new sampling points have to be chosen
among the virtual DOE noted now by eight hollow circles. The goal is to select the
points in the way that to obtain the new Latin square. Figure 18b shows the two
filled circles chosen in the way to obtain an equilibrated Latin square together with
the two points from the former rectangles.

The size of the domain of interest decreases when the optimization process
converges. It can reduce the number of “exact” function evaluation without affecting
quality of DOE (errors, condition number : : : ). In Fig. 19a, the gray domain
corresponds to the reduced domain of interest from Fig. 19b. The hollow circles
represent again the virtual DOE points along which now one additional point (the
size of the square decreases from 4 � 4 to 3 � 3) in the way has to be chosen to
preserve the Latin square. Figure 19b shows the chosen point as a filled circle.

The last situation happens when the domain of interest expands. In Fig. 20a,
the gray square expands the original 4 � 4 domain. The virtual DOE is once again
denoted by triangles and one of them has to be chosen. The four potential points
verifying the LHS criterion for the updated pattern are denoted by the filled triangles
in Fig. 20a.

Table 3 gives the value of the correlation coefficient, which is the usual criterion
for LHS, for four possible choices of the candidate point. According to the
correlation criterion, the best choice is the filled triangle No 4. The current design
point advances across the pattern, for instance towards upper left, the choice of the
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Fig. 20 (a) Expanding domain, virtual DOE (seven hollow circles); (b) Expanding domain,
adapted LHS (filled circle)

Table 3 Comparison of condition number and correlation coefficient for four
possible points

1 2 3 4

Correlation coefficient 0.7796 �0.2717 0.7820 �0.2640
� (�D�max/�min) 132.8759 4.0642 126.7684 66.9423

fourth point would give a potentially unbalanced pattern by adding points in the
direction opposite to the descent. This happens, because the correlation coefficient
does not depend on the position of the evaluation point. To compensate this effect,
a criterion is used based on the conditioning of the approximation at the current
point x. The following line in Table 3 gives the condition numbers of matrix A(x)
at a specific evaluation point (hollow circle in the upper left part of Fig. 20a), for
the four possible choices. The pattern giving minimal value of condition number is
selected. Therefore, the filled triangle No 2 point (left, top) is selected as new point
for forming a new 5 � 5 Latin square together with the four filled circle points from
the previous iteration Fig. 20b.

This choice results in a well-balanced pattern of sampling points, surrounding the
current evaluation point approximation and evolving in the direction of the current
RBDO iteration.

3.4 Coupling Advancing LHS Patterns With Reliability
Computations

A classical RBDO (n D 2; k D 3) approach is used to discuss the situation about
coupling advancing LHS patterns with reliability computations. The left and the
right side of Fig. 21 illustrate the process respectively in the X-space and the
U-space. At each optimization iteration, the eventually correlated and non-normally
distributed design variables from the X-space are transformed into the U-space.



696 P. Zhang et al.

Set initial point x0

Y

x1

x2

X(i) g(X)=0

X*(i)

u2

u1

h(U)=0β
U*(1)

U*(2)

U*(3) U*(4)

Calculate f(xi) (i=0,1,2...)
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Calculate the safety index β by
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optimization and constraints
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N
The new point x

Some data points from
U-space in X-space

Some data points from
X-space in U-space

U  virtual grid

Computed points

Points transformed from X-space

X virtual grid

Computed points

Points transformed from U-space

transformation

Fig. 21 The RSM with DA model for RBDO

In the U-space, the solid round points are used to calculate the derivative by the DA.
The FORM is used to find the new point. At convergence, The MPP is found on
the limit state surface. The distance between the original point (0, 0) and MPP is the
safety index ˇ. The reliability index is then evaluated in the U-space, which involves
an iterative process based on Eq. (12) and the generation of new data points when
the current estimation of MPP advances. In Fig. 21, in the U-space, both the solid
rounds points (generated in the U-space) and the square solid points (transformed
from X-space) are used together to calculate the gradient and the function terms
involved in the FORM equation Eq. (12). At convergence, the MPP on the limit
state surface is located.
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Fig. 22 Proposed model with advancing LHS pattern for RBDO

All the points evaluated in the U-space are then transformed into the X-space
using the inverse transformation x D T�1(u) and are denoted by small circles in
the left side of Fig. 21. In the X-space, the next design point is determined by
standard optimization using approximated values and gradients, based again on the
incremented LHS pattern.

In both spaces, the points in the vicinity of the current design are used to calculate
approximated value of functions and gradients using Eq. (26). And the process
of optimization continues until the optimal point, satisfying that prescribed safety
indices, is found. For the iteration in U-space shown in Fig. 21, the number of
evaluations with advancing LHS patterns is 10 rather than 45 which is calculated
traditional LHS patterns (the number of point each iteration 9, the number of
iterations 5).

The potential benefit of the proposed method is obvious when the design point x
approaches the limit surface and the points from both spaces (X-space and U-space)
are mixed. Mixing makes the points denser around xi or ui and provides a more
precise local approximation and a faster convergence.

An example of this process involving an advancing LHS pattern, taken from an
actual computation, is given in Fig. 22, with n D 2 and k D 5. From this figure, it
is easy to find that 17 data points are used to calculate reliability index ˇ. 20 data
points have to be used with advancing LHS patterns.
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Fig. 23 Advancing LHS patterns in X-space

Figure 23 shows the application of advancing LHS pattern in X-space. A black
rectangle point is reused in second iteration (red rectangle points). However, in last
iteration (pink rectangle points), three points are from last iteration. It means that
a new point is calculated for this iteration. For these five iterations, 10 “exact”
functions are computed to do approximation, not traditional number of “exact”
functions 20 (4 (data points for each iteration) � 5 (number of iteration)). Figure 24
shows flow chart of coupling advancing LHS patterns with optimization. In this flow
chart, firstly, original point x0 is calculated with DA and LHS patterns separately in
two spaces. Two sets of points in both design spaces are combined to form a virtual
DOE in order to adequately used previous calculated points. After that, points in
the region of influence are checked to find the previous computed points. If there
are no previous computed points, all new points are to be developed for forming
a new LHS patterns. If there are some previous computed points, less new points
need to be developed. Functions f (xi) and reliability index ˇi with points in region
of influence. Then constraints are checked to be satisfied. If yes, stop the program,
if no, develop new point and go back to first step to repeat the all the steps.
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Fig. 24 Flow chart of coupling moving LHS patterns with optimization



700 P. Zhang et al.

4 Engineering Application

4.1 Introduction

In process planning, the operation sequences are decided along with the appropriate
machine tools and cutting tools (Baskar et al. 2006). If cutting tools are given,
the success of the machining operation will depend on the selection of machining
parameters, such as feed rate, cutting speed, and depth of cut (axial depth of cut
and radial depth of cut). Using larger depth of cut and feed rate could reduce
machining time but will cause serious problems in machining, such as chatter, tool
breakage, poor surface, etc., which would damage the cutter, work piece and even
NC machine.

In deterministic optimization, the optimal point is usually close to the limit state
surface; it is dangerous to adopt directly the parameters without taking the tolerance
region into account. So it is useful to study the RBDO for NC machining operations
of ultrahigh strength steel.

4.2 NC Milling Model

The parameters of NC machining are feed rate f, cutting speed N, and axial depth
of cut dp and radial depth of cut de. The tool advances in the y direction with a feed
rate f (mm/min) and it rotates around the z-axis with the cutting speed N (rpm).
Here seven different models are used for machining time (T), material removal
rate (MRR), quality of cutting (Q), cutting force (F), power (P), tool life (Ttl), and
torque (M).

1. The machining time T (min) depends on the feed rate f (mm/min) and on the
length of cut L(mm)

T D L

f

2. The MRR (mm3/min) is given directly by the product of the axial depth of cut
dp, the radial depth of cut de and the feed rate f.

MRR D f � dp � de

3. Quality of cutting (Q) is also called roughness of surface (Ra) of machining which
is determined by material capability (c) and four machining parameters (dp, de,
N, f ). Exponents, a1, a2, a3, and a4, are the coefficients of roughness of surface
that are identified by experiments and the least square method.
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Ra D cda1p de
a2N a3f a4

Ra D 0:7298d0:0658p d�0:0904
e N�0:8865f 1:071

4. Cutting force (F) is also composed of four machining parameters (dp, de, N, f ),
coefficient of machining (CF), and exponents bi

1,bi
2,bi

3,bi
4. Similarly, these

coefficients should be identified by experiments and the least square method.

Fi max D CFdp
b1i N b2i f b3i de

b4i ; with i D x; y; z:

8
<

:

Fxmax D 767:1848 � dp
0:7153N�0:2420f 0:2269de

0:0606

Fymax D 35:6615 � dp
0:8264N�0:5024f 0:5993de

1:0831

Fz max D 9:8560 � dp
0:7388N�0:1749f 0:5151de

0:5358

5. The spindle power P (Kw) developed by the cutter of diameter D depends on
the tangential component of the cutting force produced in the x direction and on
the longitudinal component y but does not depend on the vertical component z as
there is no displacement in this direction.

P D
�
Fxmax � �DN C Fymax � f �

6 � 104

6. The tool life model Ttl (min) is

Ttl D
 

19650

d0:15p d0:1e Nf 0:25

!5

7. The torque M (N�m) is given by

M D FxmaxD

2 � 103 :

4.3 Optimization Problem Statement

The statistical nature of design variables and functions considered in RBDO process
is taken as constraints (limit state functions) involving bounds on reliability indices
ˇ. Actual variation ranges of the four parameters are:

dp 2 Œ2; 5� ; de 2 Œ4; 15�
f 2 Œ300; 600� ; N 2 Œ800; 1400�
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A Sequential Quadratic Programming (SQP) algorithm will be used to find
optimal and reliable parameters.

From experimental results, the following expressions of the possible limit state
functions have been identified:

– Machining time: gT D 250 � T D 0
– Material removal rate: gMRR D MRR � 8,000 D 0
– Torque: gtorque D 35 � M D 0
– Cutting force: gforce D 3,500 � F D 0
– Tool life: gtoollife D Ttl � 60 D 0.

The failure domain is defined by g � 0. Other parameters of the model are
specified as: D D 32(mm), L D84,000(mm).

Based on the engineering practice and the possible state limit functions men-
tioned above, a test case of NC machining is considered here.

4.4 Test Case

In general, machining parameters obey normal distribution. And its variance � is
affected by the capability of machine tool and experiences of workers. The variances
of machining parameters are obtained from the experiences of workers. The vector
of variance � is [0.005; 0.005; 2; 5]. k D 8, sampling points k are set according to
the Table 3. Interval of girds (distance between evaluation point and data points)
h are 0.01 (X-space) and 0.001 (U-space). The radius of influence is R D [2.5 h;
2.5 h; 2.5 h; 2.5 h]. Stopping criterion (absolute value of error) is 10�2 (X-space)
and 0.5 � 10�3 (U-space). Initial point is given as [3.5; 7; 450; 1000].

The tool life is one of the most attended targets in practical machining. So the
tool life (Ttl) is considered as the objective to be maximized. Minimum values of
the safety indices on machining time (T) and material removal rate (MRR) are taken
as constraints:

Maximize W tool life ftoollife
�
dp; de; f;N

� D
 

19650

d0:15p d0:1e Nf 0:25

!5

Subject to
ˇMRR � ˇMRR

ˇT � ˇT

with
gT D 250 � L

f
� 0

gMRR D f � dp � de � 8000 � 0

The limit values of safety indices must correspond to acceptable failure probabil-
ities. They depend on the limitations of practical machining, and may be different
in different limit state surfaces. Three situations are considered:
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Table 4 Results of each iteration in X-space for ˇT � 0 and ˇMRR � 0

Ite. NP x �ftoollife ˇT ˇMRR

1 8 [3.5, 7,450, 1000] �208.784010 57.000000, 59.655566
2 8 [2, 7.479764, 449.7383, 998.9519] �309.153158 56.869172, �35.468890
3 8 [2, 8.74186, 447.9655, 994.6622] �293.632990 55.982739, �4.146687
4 8 [2, 8.925221, 448.009, 993.5693] �292.167382 56.004483, �0.069051
5 8 [2, 8.891009, 449.8863, 990.5713] �295.636464 56.943141 �0.002770
6 8 [2, 6.526084, 569.58, 800] �747.860864 116.789999 �17.074853
7 8 [2, 7.018623, 567.442, 800] �724.541133 115.721020, �0.993031
8 8 [2, 7.055865, 566.8924, 800] �723.501844 115.446217 �0.004762
9 8 [2, 7.089607, 564.1934, 800] �726.096996 114.096712, �0.005142
10 8 [2, 9.954485, 336.2161, 800] �1170.328884 0.108140, �29.382826
11 8 [2, 11.6258, 336.1989, 800] �1083.013832 0.099484 �3.605565
12 7 [2, 11.89959, 335.986, 800] �1071.329326 �0.006992 �0.073595
13 4 [2, 11.90477, 335.9998, 800] �1071.041726 0.000000, 0.000013
14 4 [2, 11.90529, 335.9852, 800] �1071.076394 �0.007405, 0.000000
15 4 [2, 11.90476, 336, 800] �1071.040924 0.000000 0.000018
16 4 [2, 11.90515, 335.989, 800] �1071.067252 �0.005514 0.000000
17 0 [2, 11.90476, 336, 800] �1071.041345 0.000000 0.000000

Ite. standard order of iteration, NP standard number of new points

– ˇT � 0, ˇMRR � 0: this case is equivalent to deterministic optimization
– ˇT � 2, ˇMRR � 2: corresponding to a probability of failure Pf � 2.275 � 10�2

– ˇT � 3, ˇMRR � 4: Pf � 1.35 � 10�3 and Pf � 3.17 � 10�5 respectively

The detailed results of each iteration (number of new created points, optimal
points x, objective function ftoollife, two reliability constraints) in X-space for three
situations mentioned above are shown in Table 4 (ˇT � 0, ˇMRR � 0), Table 5
(ˇT � 2, ˇMRR � 2), and Table 6 (ˇT � 3, ˇMRR � 4). Other results will not be
presented here due to limited space. In these tables, the number of new created
points reduces to zero at the end of iterations due to the adaptation of advancing
LHS patterns. This kind of phenomenon is more sensitive in U-space.

Table 7 shows the results obtained by a deterministic formulation and by a
reliability approach performed with three levels of reliability. The same solution is
reached by the proposed method (with advancing LHS patterns) and by the reference
one (without advancing LHS patterns), but due to the computation of safety indices,
the number of functions evaluations increases from 13 in the deterministic approach
to several hundred in probabilistic design. The use of approximations capable to
handle previously calculated points becomes then necessary.

In Table 7, bigger radial depth of cut (de) and smaller feed rate (f ) with minimum
dp and N can bring a longer tool life. More rigorous requirements on the T and MRR
constraints (ˇT � 3 and ˇMRR � 4) imply to increase the axial depth of cut dp and
feed rate f. Both constraints are active at the optimum solution. The other important
information in this table is the number of “exact” function evaluations. Comparing
the results with reference solution, the proposed method leads to a significant
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Table 5 Results of each iteration in X-space for ˇT � 2 and ˇMRR � 2

Ite. NP x �ftoollife ˇT ˇMRR

1 8 [3.5, 7, 450, 1000] �208.783989 57.000001 59.655566
2 8 [2, 7.566049, 449.762, 998.9558] �307.359228 56.881014 �33.004245
3 8 [2, 8.82677, 448.3544, 995.1743] �291.150266 56.177210 �2.082074
4 8 [2, 9.014734, 448.1595, 993.55] �290.619454 56.079768 1.929792
5 8 [2, 9.030208, 447.5577, 958.8009] �347.526902 55.778850 1.999489
6 8 [2, 9.094933, 444.3734, 800] �863.984319 54.186676 1.989206
7 8 [2, 9.115617, 443.3951, 800] �865.384026 53.697562, 1.998938
8 8 [2.010617, 11.20993, 339.9495, 800] �1083.419315 1.974754 �6.847918
9 8 [2, 11.0647, 365.7266, 800] �999.252079 14.863298 1.915340
10 8 [2, 11.40406, 354.8065, 800] �1022.283895 9.403265 1.851303
11 8 [2, 11.89463, 340.012, 800] �1055.716696 2.005979 1.713298
12 8 [2, 11.91707, 340, 800] �1054.769016 1.999995 1.999411
13 0 [2, 11.91711, 340, 800] �1054.766991 2.000000 2.000000

Ite. standard order of iteration, NP standard number of new points

Table 6 Results of each iteration in X-space for ˇT � 3 and ˇMRR � 4

Ite. NP x �ftoollife ˇT ˇMRR

1 8 [3.5, 7, 450, 1000] �208.783962 57.000000 59.655566
2 8 [2,7.652575, 449.7481, 998.9639] �305.616150 56.874047 �30.591211
3 8 [2, 8.923739, 448.222, 994.6144] �290.487188 56.111011 �0.008934
4 8 [2, 9.108272, 448.198, 993.8661] �288.632768 56.099015 3.934414
5 8 [2, 9.1035, 448.5802, 993.6597] �288.700766 56.290090 3.999946
6 8 [2, 8.965542, 455.2779, 990.2563] �290.515130 59.638972, 3.956814
7 8 [2, 6.074225, 600, 916.3444] �368.393980 132.000024 �22.427106
8 8 [2, 6.727603, 600, 913.6504] �355.239418 132.000033 2.144853
9 8 [2, 6.780666, 600, 913.4239] �354.285623 132.000029, 3.989801
10 8 [2, 6.780961, 600, 913.0783] �354.948782 132.000031 3.999999
11 8 [2, 6.780962, 600, 906.0688] �368.892797 132.000028, 4.000033
12 8 [2, 9.7328, 341.436, 800] �1161.007826 2.718009 �31.011318
13 8 [2, 11.63319, 342.0275, 800] �1059.656614 3.013776, �0.832562
14 8 [2, 11.99065, 342.011, 800] �1043.804345 3.005516 3.874502
15 8 [2, 12.00084, 341.9994, 800] �1043.405327 2.999738 3.999929
16 0 [2, 12.00082, 342, 800] �1043.404011 3.000000 4.000000

Ite. standard order of iteration, NP standard number of new points

reduction of the number of “exact” function evaluations: for the constraint gT

function, this number is decreased by 32, 90, and 190 respectively for the three
situations. For the constraint gMRR function they are reduced by 20, 38, and 27 %
when using the DA. The total number of objective function evaluations is also
decreased by 25, 8, and 8: this is not directly related to the use of mixed X-space and
U-space points, because no reliability index is computed for the objective function,
but it can be interpreted as the effect of the high quality of the gradients values due
to the DA, which allows a faster convergence of SQP.
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Table 7 Numerical results for test case

ˇT � 0, ˇMRR � 0 ˇT � 2, ˇMRR � 2 ˇT � 3, ˇMRR � 4

Dete. Opt. Ref. Pro. Ref. Pro. Ref. Pro.

Num. of gT

evaluations
13 488 456 440 350 640 450

Num. of gMRR

evaluations
13 352 280 336 207 424 312

Num. of ftoollife

evaluations
13 136 111 104 96 128 120

dp 2 2 2 2
de 11.90476 11.90476 11.91711 12.00082
f 336 336 340 342
N 800 800 800 800
Value—ftoollife 1071 �1071.0417 1054.767 �1043.404
Value—gT 0 1.2158 � 10�4 �2.9412 �4.3859
Value—gMRR 0.00 �6.7471 � 10�4 �103.6368 �208.5614
ˇT 0 0.000000 2.000000 3.000000
ˇMRR 0 0.000000 2.000000 4.000000

Ref. standard reference method, Pro. standard proposed method, Dete. Opt. standard Deterministic
optimization

5 Conclusions

In this chapter, Diffuse Approximation (DA) as a RSM is described in detail. For
reducing data points which are used to develop RSM in process of optimization,
Advancing Latin Hypercube patterns are presented. In the application part, a case
of optimizing the process parameters of milling of ultrahigh strength steel is
investigated. The optimal reliable parameters are obtained within computing time
and with less calculations of function.
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The Stochastic Modeling of the Turning Decision
by Left-Turning Vehicles at a Signalized
Intersection in a University Campus
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Abstract The turning decision of a vehicle, at a signalized intersection, depends
on the characteristics of the road users (e.g., vehicle, pedestrians, bicycles) and the
intersection. The objective of this chapter is to estimate the turning decision of left-
turning vehicles at a signalized intersection in a university campus. The signalized
intersection, at the crossing of Boulevard de Maisonneuve Ouest and Rue MacKay
within the Sir George Williams campus of the Concordia University (Montreal,
Canada), is considered as a case study. The traffic video data were collected from
10 a.m. to 5 p.m. during the period of July–October in the year 2010. Vehicles
turn at the intersection based on the gap between those and the crossing traffic, and
complete the turning maneuver accepting the adequate gap (time or distance). The
mean value of accepting the gap is known as the critical gap acceptance (CGA).
The stochastic modeling of the left-turning decision is implemented at two stages—
the estimation of the CGA by using probabilistic approaches; and the determination
of the factors’ contribution by applying backpropagation neural network (BPN).
The stochastic distribution functions estimate the CGA for passenger cars and other
vehicles (e.g., buses, trucks, and vans) as 14.3 s and 16.5 s, respectively. The
BPN models determine the bicycle distance from conflict point, platoon bicycles,
existence of bicycle at conflict zone, bicycles’ speed, vehicles’ speed, pedestrians’
speed, number of vehicles passed, and vehicle moving at conflict zone are the
predominant factors of left-turning decision.
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1 Introduction

The turning vehicles, at a signalized intersection, are frequently interacted with
other road users (e.g., crossing pedestrians and bicycles, oncoming vehicles). The
turning decision of a vehicle is not only dependent on the vehicles’ characteristics
but also on the attributes of pedestrian and bicycle, such as pedestrians’ speed,
bicycles’ speed, and platoon bicycle. The crossing pedestrians are the major factors
affecting the turning decision of vehicles at intersections, especially within a
university campus. Drivers are more cautious for pedestrian safety in the university
campus as the students are more frequently crossing the intersection comparing
to other urban intersections. In a busy campus environment, the likelihood of
interactions with platoons of pedestrians and/or bicycle is significantly higher. The
additional structural safety measures of road geometric design to protect the cyclists
and pedestrians also guide the vehicle’s turning decision. In these scenarios, turning
vehicles first yield the right-of-way (ROW) to cyclists and then to pedestrians.

The previous studies (Geruschat and Hassan 2005; Katz et al. 1975) found
out that the likelihood of turning vehicles to yield the crossing pedestrians was
associated with the vehicles’ speed, relative position of the pedestrians to the curb,
and platoon pedestrians. Some researches (Varhelyi 1998; Hamed 2001) identified
that the drivers had less willingness to give the ROW to pedestrians; and they only
slowed or stopped when the speed of their vehicles was low. The turning decision
of vehicles is also influenced by specific bicycle attributes. For example, the gap
acceptance (GA) of vehicle is significantly determined by the number and speed of
bicycles in the conflict zone (Li et al. 2010) and the platoon bicycles (Zhang et al.
2009). Different drivers may react differently during the turning maneuver. A truck
driver’s reaction to pedestrian platoon is not same to that of car driver. The car driver
usually tends to move slowly to turn, while the truck or bus driver stops the vehicle
completely.

The objective of this chapter is to estimate the turning decision of left-turning
vehicles at a signalized intersection in a university campus. Vehicles turn at the
intersection based on the gap between those and the crossing traffic, and complete
the turning maneuver accepting the adequate gap (time or distance). The mean
value of accepting the gap is known as the critical gap acceptance (CGA). The
signalized intersection, at the crossing of Boulevard de Maisonneuve Ouest and
Rue MacKay within the Sir George Williams campus of the Concordia University
(Montreal, Canada), is considered as a case study. The stochastic modeling of the
left-turning decision is implemented at two stages—the estimation of the CGA by
using probabilistic approaches; and the determination of the factors’ contribution by
applying backpropagation neural network (BPN).
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2 Traffic Data and Study Area

The traffic video data were collected from 10 a.m. to 5 p.m. during the period of
July–October in the year 2010. There are two conflict zones at the crossing of
Boulevard de Maisonneuve Ouest and Rue Mackay for the left- and right-turning
vehicles. The left-turning vehicles, on Boulevard de Maisonneuve Ouest, interfere
with pedestrians and cyclists (Fig. 1a). The right-turning vehicles, on Rue Mackay,
interfere with pedestrian flows only (Fig. 1b). Since this study carried out the
stochastic modeling of left-turning vehicles, this study considered the conflict zone
of Fig. 1a. A total of 638 traffic data were recorded during the 30 h period in the
year of 2010.

Fig. 1 (a) Left-turning vehicles on Boulevard de Maisonneuve Ouest (source: Google Maps).
(b) Right-turning vehicles on Rue Mackay (source: Google Maps)
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A total of 606 vehicles out of 638 cases were accepted gap, while less than 5 %
of turning vehicles accepted a lag during the left-turning maneuver. In this study,
lag acceptance records were removed. A lag is defined as the time needed for a
vehicle to reach the conflict zone. The proportions of observed vehicles are 85.48 %
passenger cars, 2.31 % buses, 2.64 % trucks, and 9.24 % vans.

3 Methodology

The left-turning maneuver of vehicles is modeled as a two-step process—the
decision stage and the implementation stage. In the decision stage (Sects. 3.1 and
4.1), the CGA is calculated to estimate the mean value of the gap accepted by
different types of vehicles. In the implementation stage (Sects. 3.2 and 4.2), this
study identifies the significant factors contributing to the turning decision.

3.1 Critical Gap Acceptance (CGA)

This study defines the GA as the gap time when a vehicle accepts to allow a
pedestrian and/or bicycles to pass in front of it. For example, let’s assume the gap
commences at T1 when pedestrians reach the conflict point, the left-turning vehicle
reaches the conflict point at T2, and the gap ends at T3 when following pedestrians
reach the conflict point. The accepted gap by vehicle is T D T3 � T1. More complex
scenarios can be encountered, such as the case of pedestrian–bicycle–vehicle
interference. For example, the gap may start at T1, when the bicyclist reaches the
conflict point, pedestrian (or platoon of pedestrians) are screened by the bicyclists
and reach the conflict point at T2, the turning vehicle reaches the conflict point at
T3, and the gap ends at T4 when the following pedestrian(s) or bicyclist(s) reaches
the conflict point, then the accepted gap by vehicle is T D T4 � T1.

The CGA, the mean value of GA calibrated for local conditions (Troutbeck
and Brilon 2002), can be determined as the minimum gap duration accepted by
a vehicle in a specific situation (Miller 1971). The deterministic value of CGA can
be identified by measuring the mean of the GA distribution without considering
the randomness and heterogeneity (Taylor and Mahmassani 1998). The GA data
are randomly distributed; therefore, a simple mean value does not represent the
appropriate CGA. The cumulative distribution function (CDF) of GA distribution
can estimate the 50 % probability of a particular GA value, which is defined as
CGA.

The stochastic approaches are mentioned in the Next-Generation micro-
SIMulation (NGSIM) research effort of Federal Highway Administration (FHWA)
in 2004 (Alhajyaseen et al. 2012). Several research studies (Abernethy 2004;
Alhajyaseen et al. 2012) suggested that GA probability distributions could be
adjusted and fitted by cumulative Weibull distribution function. This study applies
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Easyfit Professional software to check the fitness of the probability distribution
of GA against 49 cumulative distribution functions (CDF). The goodness-of-fit of
GA distributions, compatibility of a random sample with a theoretical probability
distribution function, is determined by Kolmogorov–Smirnov (K–S), Anderson
Darling (A–D), and Chi-square tests. Initially, Chi-square goodness-of-fit test was
used because it can be applied to any univariate distribution. However, the Chi-
square test is restricted to discrete distributions. Both the K–S and A–D tests were
applied to determine the goodness-of-fit of continuous distributions. It was expected
that the K–S and A–D tests would yield better results because the distribution of
GA by each vehicle was continuous. The K–S test quantifies a distance between
the empirical and normal (theoretical) CDF. The K–S test statistic is defined by
max1 � i � N(F(Yi) � (i � 1/N), (i/N) � F(Yi)) where F(Yi) is the normal cumulative
distribution of GA (Chakravarti et al. 1967). The A–D test is a modification of the
K–S test by giving more weight to the tails than the K–S test does. The difference
between these two test stems from the fact that the K–S test is distribution free
(i.e., the critical values do not depend on the specific distribution being tested),
while the A–D test is more sensitive because it uses the specific distribution
in calculating critical values. The A–D test is defined as A2 D � N � s, where
S DP N

i D 1((2i � 1)/N)[ln F(Yi) C ln(1 � F(YN C 1 � i))] (Chakravarti et al. 1967).

3.2 Factors Contributing to Turning Decision

The calibration of a simulator to replicate vehicle’s turning maneuvers at a
signalized intersection is not a trivial exercise because it has to account for complex
interactions among all road users (i.e., pedestrians, vehicles, and bicycles) under
the prevailing traffic conditions. Several factors can influence the turning decision
of vehicles at signalized intersection, such as vehicles’ speed, vehicle in queue,
pedestrian distance from the curb, number of pedestrians in the conflict zone,
pedestrians’ speed, and behavior and number of preceding pedestrians. In addition,
one has to evaluate the impact of specific bicycle-related parameters, such as
bicycles’ speed, flow, and bicyclists’ behavior. The existence of bicycles may have
a pedestrian screening effect and may contribute to the road crossing decision
by pedestrians. Often times, turning vehicles waiting in the queue or at signal
tail of the green phase, may not yield ROW to pedestrians in order to use the
crossing opportunity of the current signal cycle. The contribution of these variables
to vehicle’s left-turning decision (accept the critical gap) can be determined by
different GA models. Ben-Akiva and Lerman (1985) and Cassidy et al. (1995)
proposed logit GA model, while Mahmassani and Sheffi (1981) and Madanat et al.
(1994) proposed probit GA model.

This study models the CGA of left-turning vehicles by applying an artificial
neural network (ANN). In this model, a certain relationship between dependent and
independent variables is not a priory hypothesis. However, the ANN is capable of
determining this relationship during the learning process (IBM 2010). This study
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used the backpropagation learning algorithm of ANN based on the mathematical
derivation of the Back-Propagation Neural Networks (BPN) by Freeman and
Skapura (1991). This BPN model the outputs as a binary value of CGA accepted
(1) or rejected (0) by vehicles.

The fundamental concept of BPN networks for a two-phase propagate-adapt
cycle is that input variables (vehicle, pedestrian and bicycle characteristics; and
traffic condition) are applied as a stimulus to the input layer of network units that
is propagated through each upper layer until an output is generated. This estimated
output is then compared to the desired output, and an error is computed for each
output unit. These errors are then transferred backward from the output layer to each
unit in the intermediate layer that contributes directly to the output. Each unit in the
intermediate layer receives only a portion of the total error signal, based roughly on
the relative contribution the unit made to the original output. This process repeats
layer-by-layer until each node in the network has received an error that represents
its relative contribution to the total error. Based on the error received, connection
weights are then updated by each unit to cause the network to converge toward
a state that allows all the training patterns to be encoded (Freeman and Skapura
1991).

This study applies generalized delta rule (GDR) to learn the algorithm for
the neural network. Suppose we have a set of P vector-pairs in the training
set, (x1, y1), (x2, y2), : : : (xp, yp), which are examples of a functional mapping
y D�(x) : x 2 RN , y 2 RM We also assume that (x1, d1), (x2, d2), : : : (xp, dp) is some
processing function that associates input vectors, xk (vehicle, pedestrian, bicycle,
and traffic attributes) with the desired output value, dk (CGA accepted or rejected).
The mean square error, or expectation value of error, is defined by Eq. (1).

"2k D �k D .dk � yk/2 D �
dk � wtXN

�2
where y D wtX (1)

r�k .w/ D @ .�/

@w
D �2"kXN (2)

Since the weight vector is an explicit function of iteration (t), the initial weight
vector is denoted as w(0) and the weight vector at iteration t is w(t). At each step,
the next weight vector is calculated according to Eq. (3).

w .t C 1/ D w.t/C�w.t/ D w.t/ � 
r�k .w.t//
D w.t/C 2
"NXN 8r� .w.t// � r� .w/ (3)

where �w(t) is the change in w at the tth iteration. The error surface is assumed as
a paraboloid. Initially, the error weight surface is negative gradient in the direction
of steepest descent, where 
 is constant of negative gradient and determines the
stability and speed of convergence of the weight vector toward the minimum error
value (Freeman and Skapura 1991).
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The input layer of input variables distributes the values to the hidden layer units.
Assuming that the activation of input node is equal to the net input, the output of
this input node is given by Eq. (4).

Ipj D fj
�
netpj

�
netpj D

XN

iD1wj ixpi C �j (4)

where netpj is the net input to the jth hidden unit, wji is the weight on the connection
from the ith input unit derived from Eq. (3), and � j is the bias term derived from
Eq. (1).

Similarly, the output of output node is given by Eq. (5), where the net output from
the jth hidden unit to kth output units is netpk.

Opk D fk
�
netpk

� 8netpk D
XL

jD1wkj IpjC�k (5)

There are multiple units in a layer, a single error value (� k) is not suffice for
the BPN. The sum of the squares of the errors for all output units is calculated by
Eq. (6).

�pk D 1

2

XM

kD1"
2
pk D 1

2

XM

kD1
�
ypk �Opk

�2

�p�p .w/ D @
�
�p
�

@wkj
D � �ypk �Opk

� @

@wkj

�
Opk

�

D � �ypk �Opk
� @f k

@
�
netpk

�
@
�
netpk

�

@wpk
(6)

Combining Eqs. (4), (5), and (6), change in weight of output layer can be
determined by Eq. (7).

@
�
�p
�

@wkj
D � �ypk �Opk

� @f k

@
�
netpk

�
@

@wkj

�XL

jD1wkj Ipj C �k

�

D � �ypk �Opk
�
f 0
k

�
netpk

�
Ipj (7)

Following Eq. (8), the weights on the output layer can be written as Eq. (8).

wkj .t C 1/ D wkj .t/C �
�
ypk �Opk

�
f 0
k

�
netpk

�
Ipj (8)

where � is a constant and is also known as learning-rate parameter. However,
fk(netpk) needs to be differentiated to derive f

0

k. There are two forms of out-
put functions for paraboloid [fk(netjk) D netjk] and sigmoid or logistic function
[fk(netjk) D (1 C e� netjk)� 1] As the output of this model is binary, sigmoid function
is applied for the output function because the sigmoid is output limiting and quasi-
bistable, but is also differentiable.
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The weights on the output layer can be re-written as Eq. (9).

wkj .t C 1/ D wkj .t/C �
�
ypk �Opk

�
Opk

�
1 �Opk

�
Ipj D wkj .t/C �ıpkIpj

(9)

The errors from the outputs were backpropagated in order to distribute the errors
into the contributing nodes of the neural network. Reconsidering Eqs. (6), (7), and
(9) for backpropagation algorithm, change of weights on hidden layer is given by
Eq. (10).
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Equation (10) explains that every weight update on hidden layer depends
on all the error terms (@pk) on the output layer, which is the fundamental
essence of backpropagation algorithm. By defining the hidden layer error term
as ıpj D f

0

j(netpj)
P

M
K D 1@pkwki, we can update the weight Eq. (11) to become

analogous to those for the output layer.

wj i .t C 1/ D wj i .t/C �ıxpi (11)

Equations (9) and (11) have the same form of delta rule.
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4 The Behavior Analysis of the Left-Turning Vehicles

The behavior analysis is made by comparing the passenger cars with other vehicles.
In Sect. 4.1, the CGA is estimated by fitting the traffic data to different distribution
functions. The CGA is evaluated by different goodness-of-fit tests. The contribution
of the selected explanatory variables to the turning decision of the left-turning
vehicles is examined by BPN models in Sect. 4.2.

4.1 Critical Gap Acceptance (CGA)

The stochastic analysis of the GA reveals that the CDF of gap acceptance by
all vehicles is best fitted by the Weibull distribution function (Eq. (12)), where
˛D 1.8865 (continuous shape), ˇD 16.108 (continuous scale), and � D 0.30685
(continuous location). The best-fitted distribution function is selected based on the
goodness-of-fit nonparametric tests (i.e., K–S, A–D, and Chi-square tests). The non-
parametric tests evaluate the null hypothesis that there is a distance between the
empirical and theoretical CDF.

The disaggregated data for passenger cars show that the CDF of GA is best fitted
by the Burr distribution function (Eq. (13)), where k D 9.4307 (continuous shape),
˛D 1.9914 (continuous shape), ˇD 46.906 (continuous scale), and � D 0.22807
(continuous location). The CDF of GA for the other vehicles is fitted best by the
Rayleigh distribution function (Eq. (14)) with � D 13.156 (continuous scale).

All three non-parametric tests (i.e., K–S, A–D, and Chi-square tests) for all
vehicles and passenger cars reject the null hypothesis which assumes that there is a
distance between the empirical and theoretical CDF (Table 1).

F.x/ D 1 � exp

�
�
�
x � �
ˇ

�˛�
(12)

F.x/ D 1 �
�
1C

�
x � �
ˇ

�˛��k
(13)

F.x/ D 1 � exp

�
�1
2

�x
�

�2�
(14)

The CGA of all vehicles is 14.57 s, while the CGA of passenger cars and
other vehicles are 7.97 s and 12.66 s, respectively. The CGA is 4.7 s higher for
other vehicles comparing to that for passenger cars. This study identifies three
reasons to accept higher critical gap by the other vehicles. First, the other vehicles
started turning maneuver at a longer distance from the conflict point (for example,
the turning maneuver was 9.44 m for passenger cars and 14.15 m for other
vehicles). Second, the bicycles had a higher acceptance of risk when interfering
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Table 2 Case processing summary of BPN models

Cases All vehicles Passenger cars Other vehicles

Training 64.10 % 63.10 % 65.10 %
Testing 26.30 % 26.30 % 19.80 %
Holdout 9.60 % 10.60 % 15.10 %
Total 605 518 86

with passenger cars and other vehicles (i.e., the bicycles’ speed was 1.23 m/s and
1.9 m/s, respectively). Third, other vehicles were more accommodating to bicycles
and pedestrians on the conflict zone comparing to passenger cars as other vehicles
provided ROW to more distanced bicycles (1.90 m for cars and 3.84 m for other
vehicles) to pass ahead of them.

4.2 Factors Contributing to Turning Decision-Making Process

This study applies BPN models without a prior hypothesis of a certain relationship
between the CGA and the characteristics of the road users and intersection. The BPN
models divide the CGA data into training, testing, and holdout data. From the total
of 605 gap-acceptance records processed for all vehicles (i.e., 518 for passenger
cars and 86 for other vehicles), 64.10 % are used during the training phase, 26.30 %
are assigned for cross-validation, and 9.60 % are assigned as testing data (Table 2).
Training data are used to train the neural network, while the cross-validation data are
used to identify errors during training in order to prevent overtraining. The testing
data are used to assess the final neural network. The error for the testing data gives
a true estimate of the predictive ability of the model because the testing data are not
used to build the BPN model (IBM 2010).

The results of the BPN models for passenger cars, other vehicles, and all vehicles
are summarized in Table 3. Table 3 explains the importance of response quantities
or independent variables to CGA. The importance of an independent variable is a
measure of how much the network’s model-predicted value changes for different
values of the independent variable. The CGA decision model for all left-turning
vehicles is mainly determined by the pedestrians’ speed (14.8 %), bicycle distance
from the conflict point (13.9 %), number of vehicles passed (11 %), number
of bicycle passed during the interference (9.8 %), and bicycles’ speed (8.5 %)
(Table 3). Therefore, the CGA decision by all left-turning vehicles is mainly
structured by the pedestrian and bicycle attributes.

The contribution of road users’ characteristics to CGA decision model is different
for different types of vehicles. The CGA decision model for the left-turning
passenger cars is explained by the pedestrians’ speed (9 %), existence of bicycle
at conflict zone during vehicles’ turning maneuver (7.5 %), platoon bicycles (11 %),
number of vehicles passed (11.5 %), and bicycles’ speed (11.2 %) (Table 3). Similar
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Table 3 Importance of response quantities or variables to CGA by BPN model

Factors
Passenger
cars

Other
vehicles

All
vehicles

Distance from conflict point (m) 4:8 4:4 7

Vehicle in queue 7:3 2:7 2:3

Vehicles’ speed (m/s) 8 4:4 1:6

Existence of bicycle at conflict point 7:5 5:7 2:2

Number of bicycle passed during the interference 3:8 9:8 3:2

Platoon bicycles when passing conflict point 11 4:4 10:3

Bicycle distance from the conflict point (m) 6:3 13:9 21:5

Bicycles’ speed (m/s) 11:2 8:5 2:3

Pedestrians’ speed (m/s) 9 14:8 3

Platoon pedestrians when passing conflict point 2:7 3:4 5:6

Pedestrians are in rush when crossing the intersection 6:5 1:7 2:5

Vehicle moving at conflict zone 1:1 2 8:8

Number of vehicles passed 11:5 11 15

Existence of traffic jam 4:5 6:9 6:7

Vehicle is in signal tail during turning 1:3 2:5 0:8

Vehicle turning from turning lane 3:5 3:9 7:3

to the CGA decision model for all vehicles, the CGA decision model for passenger
cars is mainly determined by the pedestrian and bicycle attributes.

The CGA decision model of other vehicles identifies the bicycle distance from
conflict point (21.5 %), platoon bicycles (10.3 %), number of vehicles passed
(15 %), vehicle moving at conflict zone (8.8 %), and vehicle turning from turning
lane (7.3 %) as the most important attributes (Table 3). It reveals that bicycle
attributes have limited contribution (39.5 %) to the decision model, majority
(21.5 %) of which is contributed by the bicycle distance from conflict point. This
may happen because of higher turning maneuver time required by other vehicles
(vehicle distance from conflict point 14.15 m). During the turning maneuvers, of
43 % cases other vehicles were in queue, of 48 % cases vehicle were in signal tail,
and of 83 % cases vehicles were moving at conflict zone.

This study observes some statistical anomalies in the BPN models. For example,
vehicles’ speed has insignificant contribution to the CGA decision model for
all vehicles; however, contribute significantly to CGA decision models both for
passenger cars (8.0 %) and other vehicles (4.4 %) (Table 3). The platoon bicycles
passing conflict zone have peculiar behavior for defining the CGA decision model
(4.4 %, 11 %, and 0 % contributions to the CGA decision models for all vehicles,
passenger cars, and other vehicles, respectively) (Table 3). This study estimates the
“sum of square error” and “relative error” to define the statistical significance of the
training, testing, and holdout procedures of the BPN models (Table 4).

The estimation of BPN decision models has significant difference between values
implied by estimators and the true values of the outputs being estimated especially
for training data. Testing data, used to track errors during training in order to prevent
overtraining, also contain noteworthy expected value of squared error loss (Table 4).
Error for holdout data explains less accurate predictive ability of the constructed
BPN—Multi Layer Perceptron (MLP) network (Table 4). Moreover, relative error
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Table 4 Model summary of BPN models

Cases Statistical significance All vehicles Cars
Other
vehicles

Training Sum of square error 38:114 40:7 3.254
Relative error 0:81 0:947 0.536

Testing Sum of square error 17:548 13:253 2.148
Relative error 0:878 0:956 0.794

Holdout Relative error 0:856 0:926 1.48

of CGA, a ratio of the sum-of-squares error for CGA to the sum-of-squares error
for “null model” (in which mean value is used as the predicted value), explains
significant amount of errors in modeling CGA decision (Table 4). However, the
average overall relative error of model and relative error of dependent variables are
fairly constant across the training, testing, holdout data, which give some confidence
that the model is not over-trained and that the error in future cases scored by the
neural network will be closed to the error (Table 4).

5 Conclusion

The turning vehicles, at a signalized intersection in a university campus, are
frequently interfered by the pedestrians and bicycles. The turning decision of
vehicles is very crucial to ensure traffic safety. Vehicle’s turning decision subjects
to road user’s characteristics and traffic condition at the signalized intersection. The
turning decision of vehicles, at the signalized intersection in a university campus, is
significantly different from that of urban road intersection. The objective of this
study is to estimate the turning decision of left-turning vehicles at a signalized
intersection in a university campus. The signalized intersection at the crossing of the
Boulevard de Maisonneuve Ouest and Rue MacKay within the Sir George Williams
campus at the Concordia University (Montreal, Canada) is considered as the case
study. The traffic video data were collected from 10 a.m. to 5 p.m. during the period
of July–October in the year 2010. Vehicles turn at the intersection based on the gap
between those and the crossing traffic, and complete the turning maneuver accepting
the adequate gap (time or distance). The mean value of accepting the gap is known
as the critical gap acceptance (CGA). The stochastic distribution functions estimated
the CGA for passenger and non-Passenger Cars (e.g., buses, trucks, and vans) as
14.3 s and 16.5 s, respectively.

The BPN decision model identifies that the pedestrians’ speed (9 %), existence
of bicycle at conflict zone (7.5 %), platoon bicycles (11 %), number of vehicles
passed (11.5 %), and bicycles’ speed (11.2 %) are the main decision-making factors
for left-turning passenger cars. The BPN prediction model also identifies that the
bicycle distance from conflict point (21.5 %), platoon bicycles (10.3 %), number of
vehicles passed (15 %), vehicle moving at conflict zone (8.8 %), and vehicle turning
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from turning lane (7.3 %) are the most important attributes of the turning decision
by other vehicles. The CGA decision by all left-turning vehicles is predominantly
guided by the bicycle and vehicles attributes. The outcomes of this research may
help the transportation planners to take preventive measures reducing the accident
risk at the conflict zone of signalized intersection in a university campus.

Acknowledgements Amir Hossein and Hamed Shahrokhi, M.Sc. students of Civil Engineering at
the Concordia University, helped this research by partially extracting traffic video data from video
cassette.
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Decision Making Behavior of Earthquake
Evacuees: An Application of Discrete
Choice Models

Umma Tamima and Luc Chouinard

Abstract Destination choice modeling, after an earthquake, is challenging for the
moderate seismic zones due to the shortage of evacuation data. Destination choice
decisions are important for emergency planners to ensure the safety of evacuees, and
to estimate the demand and specify the capacity of shelters. This study proposes
a model for the behavior of evacuees in the aftermath of an earthquake using
households as the unit of analysis. This study also considers heterogeneous mixtures
of population in terms of income and ethnicity from different parts of the city.
The Stated Preference (SP) method, using various hypothetical scenarios of shelter
choice game in the event of a large earthquake, is applied to collect information
on destination choices. Data were collected by e-mail back surveys, door-to-door
surveys, and surveys in public places (e.g., at shopping malls, public parks, and
student dormitories). This study proposes an error component model and a ran-
dom coefficient model. The random coefficient models capture the heterogeneous
responses of respondent while the error component model counts for correlations
between destination choices. The results from the proposed disaggregate method
are more comprehensive than those from the HAZUS method since it accounts for
factors that impact decisions on destination choices.

1 Introduction

The importance of evacuation studies in the aftermath of a disaster is recognized
by the natural hazards researchers (Tamima and Chouinard 2012; Hasan et al.
2010; Mesa-Arango et al. 2013). Disasters result in displaced households and the
estimation for the demand for shelters is a part of disaster preparedness studies.
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For example, the recent earthquake at Balochistan, Pakistan in 2013 that killed
more than five hundred people, and thousands of people were displaced and have
spent the night in the open (Jillani 2013). The prediction of the number of displaced
households in the aftermath of an earthquake is challenging due to the uncertainties
on the level of damage and on the decisions by evacuees. Decisions by evacuees are
influenced by the behavior of households and should be formulated probabilistically
(Ben-Akiva and Bierlaire 1999). Modeling the decision behavior of evacuees is
challenging and the complexity of this task adds dimensionality of the problem for
evacuation planning. Ignoring this component in evacuation planning may lead to
inaccurate estimation of the demand for shelters. Destination choice modeling is a
useful tool to understand which factors influence the decisions of evacuees.

The objective of this chapter is to model destination choices in the aftermath
of large earthquakes for a moderate seismic zone. The destination choices include
public shelters, staying home, and other locations such as: friends’ home, hotels,
and rental apartments.

2 Literature Review

Numerous researchers addressed the destination choice models for hurricane haz-
ards (Mesa-Arango et al. 2013; Hasan et al. 2010; Dash and Gladwin 2007; Fu
and Wilmot 2004, Lindell et al. 2005). The age of the decision maker, presence of
children or elderly persons in the household, gender, disability, race and ethnicity,
income, previous experience, household size, living in a single-family dwelling unit,
risk perception, geographic characteristics and location (proximity to highways and
exit routes) play important roles in the evacuation decision making process (Dash
and Gladwin 2007; Lindell et al. 2005; Gladwin and Peacock 1997).

Several studies have defined factors affecting destination choices after earth-
quakes based on empirical data from past earthquakes (MCEER 2008; Chang et al.
2009; FEMA 2003; Harrald et al. 1992). FEMA (2003) developed the HAZUS
method that is widely used worldwide for seismic risk analyses. The HAZUS
methodology assumes that destination choices in the aftermath of an earthquake is
a function of the degree of building damage, income, ethnicity, ownership, and age.

The weighting factors for these variables were developed from data of the
Northridge earthquake and expert opinion.

The HAZUS methodology uses census tracts as the basic unit of analysis; and
assumes that socioeconomic characteristics of census tracts are homogenous. To
address the limitation of the method, Chang et al. (2009) adopted the household as
the unit of analysis; and considered both building damage and socioeconomic char-
acteristics. Households are assumed to go through a series of “yes/no” decisions,
the outcomes of which are affected by various household and neighborhood-level
variables. However, the results for two earthquakes vary significantly from the
outcome predicted by the HAZUS. Moreover, the actual number of people who
took shelters after Northridge earthquake was about three times (2.70) higher than
the prediction from HAZUS.
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In addition to these limitations, the application of the HAZUS method to settings
other than the United States requires a calibration/validation of the parameters
and weighting factors. One of the challenges associated with destination choice
modeling for no-notice disasters is the shortage of data on evacuation, especially in
moderate seismic region such as Montreal. This study applies the Stated Preference
(SP) method for data collection which consists in collecting responses from partici-
pants to predefined hypothetical scenarios. The objective of this study is to develop
mixture logit models for decisions with error components and random coefficients.
The random coefficients describe heterogeneous responses of participants while the
error components depict the correlation among destination choices.

3 Methodology

Destination choice modeling in the aftermath of disasters must include human
response after a disaster which depends on preferences for destinations as a function
of attributes, risk perception, and coping capacity of households. Understanding
human response is used to forecast demand for shelters and can also be used by
emergency planners to improve the environment of shelters. There are number of
techniques available to understand human response and behavior. The most widely
used technique is discrete choice analysis (DCA). DCA is applicable to destination
choice modeling in which the decision making agent selects from a finite set of
discrete alternatives (Ben-Akiva and Lerman 1985). The choice of individuals can
be explained by the principle of utility maximization assuming the alternatives
are mutually exclusive and collectively exhaustive. This study calibrates a utility
function representing individual preferences to choose shelters in the aftermath of
earthquake in Montreal. Walker (2001) mentions that Multinomial Logit (MNL)
models are robust for formulating the choice probabilities which are widely used
in choice model (McFadden 1978; Ben-Akiva and Lerman 1985; Ben-Akiva and
Bierlaire 1999; Walker 2001; Koppelman and Bhat 2006).

The estimation of utility to choose shelters is a function of individual character-
istics and shelter attributes. The utility function for shelter i and the individual j has
the following form:

Uit D Vit C "it (1)

Vit is a deterministic term and "it is a disturbance term modeled as a random
variable with the extreme value Type-1 distribution. The deterministic term is a
function of a set of k factors that affect decisions,

Vit D ˇi0 C ˇi10Xit1 C ˇi2Xit2 C � � � C ˇikXitk (2)
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where, Vit—is the total utility provided by shelter i to individual t, ˇij is the
parameter for factor j and shelter i and xikj is the individual (or shelter) characteristics
k (age, income, travel time) for shelter i and individual t, and "it D the error term
associated with the shelter i and individual t.

The logit model is applied for model estimation. The expression of the logit
model for probability of choosing an option (shelter), Ait can be derived from the
following equation:

Pit D P .Ait / D evi t

X

Aj2Cn
evjt

(3)

Where, Cn is the choice set faced by individual t. However, one of the assumptions
of the standard logit model is that parameters are fixed across observations. When
this assumption does not hold, inconsistent estimates of parameters and outcome
probabilities will result (Hasan et al. 2010). To address the heterogeneity and flex-
ible correlation structure, the random parameters or mixed logit models are usually
considered. To allow for parameter variations across households (represented by
variations in ˇ), a mixed model is defined (i.e., a model with a mixing distribution).
Mixed logit probabilities are the integrals of standard logit probabilities over a
density of parameters that can be expressed in the following form:

Pi D
Z
Pit

�
ˇ
N

�
f

�
ˇ
N
=�N

�
dˇ

N
(4)

Where the logit probability is evaluated with the vector of parameters ˇ and

f

�
ˇ
N
=�N

�
is the joint probability density function with �N referring to a vector of

parameters of that density function (i.e., mean and variance).
The mixed logit model for the probability of individual n for choosing a

destination in the aftermath of an earthquake is,

Pni D
Z

evi

X

Aj2Cn
evj
f

�
ˇ
N
=�N

�
dˇ

N
(5)

The mixed logit probability is a weighted average of the logit formula evaluated at
different values of ˇ, with the weights given by the joint density f (ˇ). The values of
“ have some interpretable meaning as representing the decision criteria of individual
decision makers. In the statistics literature, the weighted average of several functions
is called a mixed function, and the density that provides the weights is called the
mixing distribution (Train 2009). This density is a function of parameters � that
represent, for example, the mean and covariance of the ˇ’s in the population. This
specification is the same as for standard logit except that ˇ varies over decision
makers rather than being fixed.
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Another way of representing mixed logit models is the error component
model that creates correlation among utilities for different alternatives. Utility
is specified as;

Unj D a0xnj C 
0Znj C "nj (6)

Where, xnj and Znj are vectors of observed variables relating to alternative j, ˛ is
a vector of fixed coefficients, 
’ is a vector of random terms with zero mean, and are
iid extreme value variables.

In this study, panel data is composed of ten observations per individual. These
ten observations correspond to the choices made by a single respondent for
ten hypothetical destination choice situations described in the questionnaire. The
specification of the utility function treats coefficients varying over population but
fixed across choices. The probability that a person makes a sequence of T choices is
the product of logit formula for each element of the sequence:

Pi D
TY

tD1

evi

X

Aj2Cn
evj

(7)

The Mixed logit is well suited to estimation methods based on simulation
(Train 2009, McFadden and Train 2000). A Maximum Simulation-based Maximum-
Likelihood Method is used to estimate the Mixed Logit Model. Several researchers
(McFadden and Ruud 1994; Geweke et al. 1994; Böersch-Supan and Hajivassiliou
1993; Stern 1997; Brownstone and Train 1998; McFadden and Train 2000) offer
the details of simulation-based maximum-likelihood methods for estimating mixed
logit models (Hasan et al. 2010).

The Mixed logit probabilities are approximated through simulation for a given

value of � by drawing a value of ˇ from f

�
ˇ
N
=�

�
and then the logit formula

is calculated for this draw. These steps are repeated and results are averaged to
obtain the simulated probability. The simulated probabilities are inserted into the
log-likelihood function to give a simulated log-likelihood which is used to calculate
the likelihood function.

4 Dataset

One of the challenges associated with destination choice modeling for non-data-
rich regions is the calibration of the model. The Montreal region was affected
by a major ice-storm in January 1998. During the ice-storm, several people took
refuge in shelters or other suitable accommodations (with family and friends) but
data on evacuation was not recorded in the aftermath of the ice-storm (Tamima
and Chouinard 2012). Montreal is ranked second in Canada for seismic risks and
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Fig. 1 A sample of stated preference survey

a number of small earthquakes have occurred in the Montreal area but none was
strong enough to cause any significant damage or evacuation. The scarcity of data
on evacuation for this region prompted the need for performing a stated preferences
survey. The idea is to obtain data on behavior by studying the choice process
under hypothetical scenarios designed by the researcher (Ben-Akiva and Abou-Zeid
2013).

This study uses the Stated Preference (SP) method including various hypothetical
scenarios of shelter choice game in the event of a large earthquake in Montreal.
A household-based questionnaire is developed to determine the preferences to
shelter decisions. It includes a heterogeneous mixture of population in terms of
income, ethnicity, and location. The questionnaire survey was conducted during
June–August, 2012 by e-mail, door-to-door surveys, and by surveys at shopping
malls, public parks, etc. A typical sample of the questionnaire is shown in Fig. 1.

In the stated preference questionnaire, an experimental setting is defined which
consists of the context of the hypothetical scenarios and the alternatives or profiles
that make up these scenarios. The experimental factors are building damage, power
outage, distance from home to shelter, road conditions, private space, space for pets,
parking space, social networking availability, elevator, backup power (generator),
food and clothes in the shelter, and special arrangements (beds and diets) for aged
and disabled evacuees. Each factor has multiple levels and each level of each
attribute is combined to construct profiles.

There are three destination options in the questionnaire: (1) public shelters (2)
staying home and (3) others such as; friends’ home, apartment rental, motel, hotel,
religious centers such as mosque and church. The destination options are selected
based on the literature review on the ice-storm in Montreal.
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Table 1 Demographic structure of the respondents

Name of the variables Percentage Name of the variables Percentage

Age of the respondents Income
Less than 20 years 3:7 Less than $24,999 40:2

20–30 years 35:9 25,000–49,999 24:9

30–40 years 34:6 25,000–49,999 13:0

40–50 years 10:6 75,000–99,999 10:6

50–60 years 8:6 100,000–149,999 6:0

60–70 years 5:3 More than 150,000 5:3

More than 70 years 1:3

Ethnicity Home Type
Canadian 28:2 College Dorm 2:7

Asian 42:2 Apartment 54:2

Latin American/Hispanic 7:0 Condominium 11:0

European 4:0 Townhouse 10:6

Arab 7:0 Single-family home 18:3

Others 11:7 Others 3:3

Education No of kids
Less than high school 1:7 No kid 70:4

High school graduate 10:6 One 14:3

College 14:0 Two or more 15:3

Associate degree 3:0

Bachelor degree 31:6

Graduate/Professional degree 39:6

Decision Dwelling type
Public Shelter 58:0 Rent 64:5

Staying home 24:0 Owned 35:5

Others 18:0

Source: Field survey, 2012

The Centre de la sécurité civile de Montréal, has sixty-two shelters in Montréal.
In summary, considering all the scenarios, the frequency distribution of the collected
data shows that 58 % of the respondents would choose to go to a shelter following a
major earthquake, 24 % would elect to stay home and the remainder (18 %) would
opt for the other options (Table 1).

Demographic data on the respondents as well as on other variables that have
influence on choice decision are presented in Table 1. The majority (70.5 %) of the
respondents of this study were within the age interval of 20–40 years old (Table 1).
Table 1 also shows that 40.2 % respondents have annual income of less than
$24,999, while 37.9 and 21.9 % respondents have annual income within the range of
$25,000–$49,999, and $50,000 and above, respectively. The ethnic composition of
the respondents is: 28.2 % Canadian, 42.2 % Asian, 7 % Latin American/Hispanic,
4 % European, 7 % Arab, and 11.7 % from other origins.

Most of these respondents are living at apartments and single-family homes
(72.5 %). Since most of the respondents are living at apartments and single-family
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homes, a majority of them (70.4 %) have no kids (Table 1). The evacuation decision
model may be biased if the proportion of respondents in a particular group is not
sufficient. However, in this case, the number of respondents per category was judged
to be sufficient in that respect.

The questionnaire survey contains a large proportion of highly educated people
(71.2 %), which may have a higher awareness relative to earthquake hazards, their
impacts, and what-to-do during, before, and after an earthquake (Table 1).

5 Model Estimation

The estimates for the parameters of the MNL model and the two mixed logit
models are presented in Table 2. In all cases, the estimation procedure is based
on the maximum-likelihood approach which maximizes the probability of a chosen
alternative.

The basic test for the adequacy of the model is the examination of the values
and sign of the estimates. For example, the estimates of the coefficients for building
damage, power outage, and road condition, have all positive signs which indicate
that households are more likely to go to shelters with an increase in building damage,
electricity outage, and deteriorated road conditions (Table 2). The t-value of the
coefficients for age, distance from home to shelters, ethnicity, and number of kids,
income, road conditions, family situation, building damage, and power outage are
all significant at the 5 % significance level. The positive sign of the coefficients for
age and households with/without children indicates the increasing utility to choose
public shelters with age and increasing number of children (Table 2). These findings

Table 2 Multinomial logit model for destination choice

Variables
Estimated
coefficients

Standard
error t-value p-value

ASC_Home 4.17 0.28 14.89 0
ASC_Others �1.08 0.15 �7.07 0
ASC_Shelter 0 Fixed
B_Age 0.02 0.005 4.61 0
B_Distance from

home to shelters
�0.48 0.086 �5.65 0

B_Latin �0.52 0.204 �2.56 0.01
B_No of kids 0.35 0.121 2.9 0
B_High income �0.48 0.235 �2.04 0.04
B_Road conditions 0.34 0.156 2.21 0.03
B_Single family �0.39 0.138 �2.79 0.01
B_bldg damage 1.91 0.164 11.61 0
B_power outage 0.21 0.086 2.49 0.01
Null log-likelihood �3,306.82
Final log-likelihood �2,373.17
Adjusted �2 0.279
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are consistent with the findings of previous research. Dash and Gladwin (2007)
concluded that factors such as age of the decision maker, presence of children
or elderly persons in the household, gender, disability, ethnicity, and income play
important roles in evacuation decision making.

On the other hand, the probability to choose public shelters after an earthquake
decreases for Latin households, households with high income and families who
live in single-family housing (Table 2). Previous earthquake and hurricane studies
reveal that Hispanic populations from Central America and Mexico tend to be
more concerned about reoccupying buildings than other groups (FEMA 2003). This
tendency appears to be because of the fear of collapsed buildings instilled from
past disastrous Latin American earthquakes (FEMA 2003). However, the results
obtained from the survey data show the opposite result for Montreal and may
be related to the lack of previous experience of the Latin population relative to
earthquakes. Households with high income are less likely to go to shelters since
that may have more destination options since they can more easily pay for hotels,
motels, or rental space.

The probability to choose shelter as an option also increases with the degree of
building damage and the number of days with power outage during the winter season
in Montreal. During winter season households without power are forced to evacuate
irrespective of the level of building damage (Table 2).

The Mixed logit model was estimated to incorporate taste heterogeneity among
households (Eq. (4)). Error component model was estimated to test whether there is
a correlation among utilities for different alternatives (Eq. (5)).

In the Alternative Specific Variance Model, Alternative Specific Constants
(ASCs) are randomly distributed. ASC home and ASC others are randomly
distributed with mean ˛home and ˛others standard deviation �home and �others which
are both estimated (Table 3). Staying home alternative is normalized because it has
minimum variance. Staying home and shelters are preferred compared to others. The
standard deviation of home option is less compared to mean which indicates less
variability. It may not be necessary to consider ASC home to be a random variable.
On the other hand, standard deviation of ASCothers is greater than the mean, which
indicates a great variability. This suggests that it is a good idea to consider ASCothers

to be a random variable instead of a constant.
In the Error Component model, the assumption is that public shelters and other

options are correlated; both being safe, but also that Staying home and Shelters are
correlated because of ease of access to living necessities. The random terms are
assumed to be normally distributed

& safety 
 N
�
msafety;�

2
safety

�

&accessibility stuffs 
 N
�
maccessibilty stuffs; �

2
accessibility stuffs

�

where m is the mean and � is the standard deviation. Standard deviation of both
safety and accessibility are estimated. ASCothers is negative, indicating a preference
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toward Home over Others option, all the rest being constant (Table 3). Standard
deviation of accessibility of stuffs is significantly different than zero that means
home and shelter share common unobserved attribute.

In the Random Coefficient Model, random parameters are assumed to be
randomly distributed over the population to capture the taste variation of individual.
In this specification, unknown parameters are normally distributed. The generic
coefficient for Latin, rich and building damage variables, which are normally
distributed with mean mlatin, mrich, and mbuilding damage and standard deviation ¢ latin,
¢ rich, and ¢building damage, respectively. The estimation results are shown in Table 4.

ASCothers shows negative sign means that all the rest, remaining constant, staying
home is most preferred alternative compared to other destination options. The mean
of Latin and Rich variables coefficients are negative, and the standard deviation
of ¢ latin and ¢ rich are significantly different than zero. For the standard deviation
value for Latin and Rich variables are higher than the mean value. It means that
different individuals in the same ethnic group and same income categories perceive
the alternatives’ utilities differently.

During the field survey, each individual faces ten scenarios. In order to address
the sequence of choices, mixture of logit with panel data was estimated where the
coefficients vary over population but fixed across choices (Eq. (7)). Python Biogeme
3.2 software is used to estimate the parameters of mixture of logit model with panel
data (Table 4). Individual specific error term is added, where the standard deviation
is estimated while the mean is fixed to zero. The coefficient of SIGMA_PANEL is
significant which means that this model allows for capturing intrinsic correlations
among the observations of the same individual.

Under all circumstances, 24 % households want to stay home. One of the probable
reasons is that most of the surveyed households do not have any experience to
face disasters. This is why; they could not feel the severity of the disasters and
decided to stay home. Riad et al. (1999) reported evacuation experience as the
single best predictor of evacuation in Hurricanes Hugo and Andrew. A study on
evacuation decision in Bangladesh during the super cyclone SIDR in 2007 depicts
that evacuation decision of female households depends on the decision of male.
Female households are not permitted to leave the home until the return of their
husband, brother, or father (Khatun, personal communication, June 11, 2007) One
of the possible reasons might be the threat of insecurity for the females. In some
cases, female households are reluctant to go to the shelters due to the privacy
issues (Khatun, personal communication, June 11, 2007). For Montrealers, privacy
is one of the major factors that decrease the percentage to choose public shelters.
A shelter is a construction built specially for providing relief during disasters or a
multipurpose construction taken over for temporary use in an emergency, such as a
school or a gymnasium (Li et al. 2008). In case of Montreal, this is not an exception.
Public schools and gymnasiums are designated as shelters. During the field survey
at Cote De Negies, an anonymous respondent stated “under any circumstances I
will not go to the public shelter because I will be infected by the disease carried by
others”.



732 U. Tamima and L. Chouinard

Ta
bl

e
4

E
st

im
at

io
n

of
th

e
ra

nd
om

co
ef

fic
ie

nt
m

od
el

an
d

m
ix

tu
re

of
lo

gi
tw

ith
pa

ne
ld

at
a

R
an

do
m

co
ef

fic
ie

nt
m

od
el

M
ix

tu
re

of
lo

gi
tw

ith
pa

ne
ld

at
a

V
ar

ia
bl

es
E

st
im

at
ed

co
ef

fic
ie

nt
s

St
an

da
rd

er
ro

r
t-

te
st

E
st

im
at

ed
co

ef
fic

ie
nt

s
St

an
da

rd
er

ro
r

t-
te

st

A
SC

_H
om

e
4.

27
0.

34
12

.7
4

4.
58

0.
31

14
.6

4
A

SC
_O

th
er

s
�1

.0
8

0.
15

�7
.0

2
�1

.0
8

0.
15

�7
.0

8
A

SC
_S

he
lte

r
0

Fi
xe

d
0

Fi
xe

d
B

_A
ge

0.
02

1
0.

00
5

4.
53

0.
02

1
0.

00
45

4.
76

B
_D

is
ta

nc
e

(H
om

e
to

sh
el

te
r)

�0
.4

81
0.

08
6

�5
.5

7
�0

.4
9

0.
08

6
�5

.6
6

B
_L

at
in

�0
.4

8
0.

24
�2

.0
4

�0
.5

5
0.

20
�2

.6
9

B
_L

at
in

St
an

da
rd

de
vi

at
io

n
�0

.7
51

0.
65

�1
.1

6
–

–
–

B
_N

o
of

ki
ds

0.
36

7
0.

13
2.

94
0.

36
0.

12
2.

98
B

_H
ig

h
in

co
m

e
�0

.4
24

0.
28

�1
.5

3
�0

.4
9

0.
24

�2
.0

9
B

_H
ig

h
in

co
m

eS
ta

nd
ar

d
de

vi
at

io
n

0.
81

7
0.

74
1.

10
–

–
–

B
_R

oa
d

co
nd

iti
on

s
0.

36
6

0.
17

2.
21

0.
34

0.
16

2.
20

B
_S

in
gl

e
fa

m
ily

�0
.3

98
0.

14
�2

.7
9

0.
36

0.
14

2.
62

B
_b

ld
g

da
m

ag
e

1.
95

0.
18

10
.7

5
1.

92
0.

17
11

.6
3

B
_b

ld
g

da
m

ag
eS

ta
nd

ar
d

de
vi

at
io

n
�0

.1
21

0.
23

�0
.5

3
–

–
–

B
_p

ow
er

ou
t

0.
21

4
0.

09
2.

49
0.

21
0.

08
5

2.
49

SI
G

M
A

_P
A

N
E

L
–

–
–

�0
.1

3
0.

05
2

�2
.5

2
Z

E
R

O
0

Fi
xe

d
N

o.
of

es
tim

at
ed

pa
ra

m
et

er
s

14
12

N
o.

of
ob

se
rv

at
io

ns
3,

01
0

3,
01

0
N

ul
ll

og
-l

ik
el

ih
oo

d
�3

,3
06

.8
2

�3
,3

06
.8

2
Fi

na
ll

og
-l

ik
el

ih
oo

d
�2

,3
72

.6
3

�2
,3

69
.9

9
A

dj
us

te
d
�

2
0.

28
0.

28



Decision Making Behavior of Earthquake Evacuees: An Application. . . 733

Although Mosques are not defined as public shelters in Montreal, few
respondents choose Mosque as a probable option to take shelters. The reason is
that religious women are reluctant to share common rooms with male. Usually, in
the Mosque, there are separate rooms for male and female. For the rest of the people
who prefers to go to the other options, choose relatives and friends’ home outside
the damaged area, hotels, and motels.

6 Discussion and Conclusion

This study develops a mixture of logit model for the household decision making on
the destination choice in the aftermath of large earthquake. The SP method was used
for data collection. Data were collected from field survey assuming the hypothetical
earthquake scenarios for the City of Montreal. Three destination options were given
as choices, such as: public shelters, staying home, and others (staying in hotels,
motels, renting apartments, friend’s or relative’s home).

The MNL model identifies age, ethnicity, income, types of accommodation,
number of kids, road condition, building damage, distance from home to shelter and
power outage as the significant factors influencing destination choice of households.
The MNL model depicts that age, number of kids, building damage, road condition,
and the number of days without power in the home, have positive effects on shelter
choice in the aftermath of earthquakes. On the other hand, ethnicity (e.g., Latin),
high income, type of accommodation (e.g., single family) and distance from home
to shelters have negative effect on the utility to choose shelters as a destination
option. It is expected that probability to choose shelter as a destination option
increases with age and number of kids. People with kids are more concerned about
the after effect of earthquakes and they are risk averse. The study finds out that the
probability to choose shelters increases with age. Young people are less likely to go
to shelters as they perceive risk differently. Senior people are more likely to leave
home because of the fear of trapping. Moreover, shelters can serve some basic needs
for the evacuees that may attract seniors. Latin households are less likely to go to
shelters which contradict with the previous findings of FEMA (2003). This study
concludes that the lack of experience is the main reason of the less likelihood of the
Latin households to choose shelters. Evacuation behavior is found to be related to
previous experience to similar events (Hasan et al. 2010).

Households living in a single-family house are less likely to evacuate. Usually,
the single-family houses are owned by the dwellers and they are concerned about
the safety of the belongings. Another reason might be the alternative arrangement
of the power and the confidence about the less likelihood of collapse of the whole
building during earthquakes.

Error component model depicts that there is a correlation between home and
shelter that shares common unobserved attribute. In the Random Coefficient Model,
random parameters are assumed to be randomly distributed over the population
to capture the taste variation of individual. The model concludes that different
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individuals in the same ethnic groups and same income categories perceive the
alternatives’ utilities differently. In order to address the sequence of choices, mixture
of logit with panel data was estimated. This model captures the intrinsic correlations
among the observations of the same individual.

The widely used destination choice method is HAZUS-MH that is designed to
produce the loss estimates for earthquake risk mitigation, emergency preparedness,
response, and recovery. The shelter model provides two estimates: the number of
displaced households (due to the loss of habitability), and the number of people
requiring only short-term shelter. The model is calibrated based on the earthquake
data in the United States. The application of HAZUS method in different settings
needs calibration or validation of the parameters. The parameter values are estimated
based on the subjective judgment of the experts. This study develops the mixture of
logit models to address the limitations of the traditional approach of the HAZUS.
This study develops a database on the behavior of evacuees for a moderate seismic
region such as the City of Montreal.

This study helps emergency planners to plan for the facilities in case of natural
hazards. The discrete choice model identifies factors influencing evacuation decision
of the city dwellers. The emergency planners can take the factors into consideration
to improve the facilities that will eventually reduce the risk of affected people. This
model is applicable in any other settings vulnerable to the natural hazards.

The future improvement of this work will include collecting more data on demo-
graphic characteristics and on other decision variables of evacuation. Incorporation
of hypothetical scenarios for two seasons, summer and winter time can be another
extension of the future work.
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Preventive Maintenance and Replacement
Scheduling in Multi-component Systems

Seyed Ahmad Ayatollahi, Mirmehdi Seyyed-Esfahani,
and Taha-Hossein Hejazi

Abstract Maintenance and replacement schedule is one of the most important
issues in industrial-production systems to ensure that the system is sufficient.
This chapter presents a multi-objective model to schedule preventive maintenance
activities for a series system of several standby subsystems where each component
has an increasing rate of occurrence of failure (ROCOF). The planning horizon
divided into the same length and discrete intervals that in each period three different
maintenance actions such as maintenance, replacement, and do nothing can be
performed. The objectives of this model are maximizing the system reliability and
minimizing the total system cost. Because of nonlinear and complex structure of the
mathematical model, non-dominated sorting genetic algorithm (NSGA-II) is used
to solve this model. Finally, a numerical example is illustrated to show the model’s
effectiveness.

Notation

N Number of subsystems
T Length of planning horizon
J Number of intervals
K Number of maintenance levels
C Number of components in each subsystem
œ Characteristic life (scale) parameter of component c of subsystem i
ˇc

i Shape parameter of component c of subsystem i
˛k

i Improvement factor of subsystem i in maintenance level k
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ªc
i (t) ROCOF of component c of subsystem i

Fi Unexpected failure of subsystem i
Mc,k

i Level kth maintenance cost of component c of subsystem i
Rc

i Replacement cost of component c of subsystem i
Si Switching cost in subsystem i
Z System outage cost
Cost Total system cost
E(Ni,j) Number of expected failures in subsystem i in period j
Reliabilityc

i,j Reliability of component c of subsystem i in period j
ReliabilitySS

i,j Reliability of subsystem i in period j
Reliability Total system reliability
ReSS,c

i,j Reliability of subsystem i if component c be loaded at the start of
period j

Rec
i,j(t) Operation probability of component c of subsystem i in interval

[0,t] of period j
Qc

i,j(t) Failure probability of component c of subsystem i in interval [0,t]
of period j

1 Introduction

Preventive maintenance and replacement is a schedule of planned maintenance and
replacement activities in order to prevent system failures. The main objective of
preventive maintenance and replacement is to prevent failure occurrences earlier
than in reality. This concept says that by replacing old components, the reliability
could be kept or improved.

Several misconceptions exist about preventive maintenance and replacement. One
of them is that preventive maintenance and replacement is very expensive. This logic
shows that planned maintenances are more expensive than the time a component
works till its failure and by a corrective maintenance become repaired. It may be true
for some components but just costs shouldn’t be compared, also long-term benefits
and savings should be considered. For example, without preventive maintenance and
replacement, by unplanned failure occurrences, some costs like lost production cost
will impose to the system. Also, by increasing in system service effective age, some
savings will be brought (http reliawiki com Preventive_Maintenance).

Long-term benefits of preventive maintenance include:

1. Improved system reliability.
2. Decreased cost of replacement.
3. Decreased system downtime.
4. Better spares inventory management.

Long-term costs and benefits comparison usually shows preventive maintenance
and replacement superiority.
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One of the fundamental questions is that, when preventive maintenance and
replacement is effective? The answer is preventive maintenance is a logical choice
if, and only if, the following two conditions are met (http reliawiki com Preven-
tive_Maintenance):

1. The component in question has an increasing failure rate. In other words, the
failure rate of the component increases with time, implying wear-out. Preventive
maintenance of a component that is assumed to have an exponential distribution
(which implies a constant failure rate) does not make sense

2. The overall cost of the preventive maintenance action must be less than the
overall cost of a corrective action

Modern world has realized the importance of preventive maintenance. So all
system types, including conveyers, vehicles, and overhead cranes, have predefined
maintenance and replacement schedules to reduce system failure risk. Preventive
maintenance and replacement activities usually include inspection, cleaning, lubri-
cation, adjustment, worn components replacement, etc. In addition, in preventive
maintenance and replacement, labors can record equipment failures and maintain
or replace old components before their failure. An ideal maintenance plan prevents
all equipment failures earlier than their occurrence in reality. Regardless of specific
systems, preventive maintenance and replacement activities could be divided into
two categories: component maintenance and its replacement (Usher et al. 1998).

A simple example of component maintenance is air pressure controlling in a car
tires in desirable limits. It’s notable that this task changes the tire age characteristics
and if occurs correctly will reduce the failure rate. Replacing a tire with new one is
a simple replacement example.

Standby systems are widely used in different industries. For example considering
a spare tire for cars, in fact is using a standby system to start up the car after a tire
failure. Using standby systems reduce system total costs and cause improvement in
reliability level. Outage in steel factories imposes enormous costs to the system for
its restart. So, for different parts of this factory, standby systems will be considered.
As mentioned before this policy causes earlier system restart after its outage and
prevents imposed costs.

In real world, factories consider multi-level maintenances for each system. It’s
obvious that different maintenances cause different changes in age characteristics.
For example, primary maintenances can be performed on equipment that don’t
change its effective age so much. But by equipment overhaul, it will improve deeply
and will change to a state like a new equipment.

It is known that preventive maintenance and replacement includes a trade off
between costs of conducting maintenance activities and saving costs resulted from
the reduction in the overall rate of system failure. Preventive maintenance and
replacement scheduling designers must measure these costs separately to minimize
total system operating costs. They may like to improve system reliability to highest
level and maximize it according to budget constraint.

In this chapter the problem is finding the best sequence of maintenance and
replacement activities for each component of the considered system in each period
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of a specified planning horizon, in order to minimize total cost and maximize system
reliability.

Optimization problems, in terms of objective functions and optimization criteria,
are dividable into two categories: single objective function problems and multi-
objective optimization problems. In single objective optimization problems, a
unique performance index improves, so that its minimum or maximum value shows
the obtained responses quality completely. But in multi-objective models more
than one objective should be optimized. In other words, in this type of problems,
several objective functions or operating indexes must be defined and optimized
simultaneously.

Multi-objective optimization is one of the known research fields among opti-
mization concepts. Usually, multi-objective optimization known as multicriteria
optimization and vector optimization. So far, several methods have been introduced
for solving multi-objective optimization problems.

NSGA-II algorithm is one of the most popular and powerful algorithms in solving
multi-objective optimization problems and its performance is proofed in solving
different problems.

2 Problem Definition

Consider a system consists of N subsystems that are connected to each other in
series. Each subsystem is a standby system with two or more components. It means
that if the loaded component fails, one of the other standby components become
active and the system continues its working. Figure 1 shows the assumed system.
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Fig. 1 Schematic view of the assumed system
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The main purpose of this system modeling is finding a set of maintenance and
replacement schedules for the components of each subsystem during the planning
horizon to minimize the total system cost and maximize its total reliability.

For this end, it is assumed that component c of subsystem i has an increasing
rate of occurrence of failure (ROCOF) ªc

i (t), in which t � (t> 0) shows actual time. It
is assumed that component failures follow well-known Non-Homogenous Poisson
Process (NHPP) with ROCOF given as:

#ci .t/ D �ci � ˇci � tˇci �1 for i D 1; : : : ; N and c D 1; : : : ; C (1)

Where �c
i and ˇc

i are the characteristic life (scale) and the shape parameters
of component i, respectively. It’s notable that NHPP is similar to HPP with this
difference that NHPP is a function of time.

As mentioned above, we seek to find a schedule for future maintenance and
replacement activities on each component in interval [0, T]. For this purpose, the
planning horizon is divided into J separated periods that each period length is
equal to T/J. Similar to John Usher assumption, at the end of period j, one of
these activities can be performed on each component: do nothing, maintenance, and
replacement (Usher et al. 1998). These actions will review deeply as follows. One of
the main assumptions of this model is that performing maintenance or replacement
activities reduce the age of the components effectively. So that the ROCOF of the
component will decrease. For simplicity, it is assumed that these activities perform
instantaneously. In other words, the required time for maintenance or replacement is
negligible compared to the planning horizon. Although this time is zero, but a cost
associated to the maintenance and replacement have been considered. As mentioned
above, one of these activities can be performed on each component at the end of a
period:

1. Do nothing: In this policy, nothing performs on the component and the compo-
nent age stays on the state “bad as old.” So the component continues its working
without any changes.

2. Maintenance: By maintaining a component, its age changes into a state between
“bad as old” and “good as new.” In this model, maintenance action reduces the
effective age as a percentage of total lifetime. It’s obvious that by a reduction
in a component effective age, the component ROCOF decreases. An important
point is that, the percentage of age reduction depends on the maintenance
performance. So, multi-level maintenance with different improvement factors
can be considered.

3. Replacement: In this case, the component replaces with a new one. So the
component effective age drops to zero and the component state will be “good
as new.”
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3 Effective Age of a Component at the Start of Each Period

3.1 Maintenance

For simplicity, an assumption is considered in which maintenance and replacement
actions perform at the end of period j instantaneously. As mentioned above,
according to the maintenance type, the age reduction differs. For example, three
maintenance levels are defined: primary, intermediate, and moderate maintenance.
When a primary maintenance performs, less age reduction occurs with less cost.
But by overhauling a component, that component improves effectively with more
cost. So:

Xc
i;jC1 D aki �X 0c

i;j

for i D 1; : : : ; N I j D 1; : : : ; T � 1I k D 1; : : : ; KI
c D 1; : : : ; C and

�
0 � aki � 1

� (2)

To consider instantaneous changes in system age and its failure rate, Xc
i,j is defined

as the effective age of component c of subsystem i at the start of period j and X
0 c
i,j as

the effective age of component c of subsystem i at the end of period j. ˛k
i displays an

improvement factor. Actually, this factor shows the effectiveness of the maintenance
action. When ˛k

i D 0, the effect of the maintenance action is similar to replacement
and the effective age becomes zero. But in the state ˛k

i D 1, the maintenance effect
is similar to do nothing policy with no changes in the component age. It means that,
increasing the improvement factor shows the maintenance weaknesses.

As is evident in Fig. 2, maintenance action at the end of period j, creates an
instantaneous drop in ROCOF of component c. So by performing a maintenance
action on component c of subsystem i at the end of period j, its ROCOF will change
from ªc

i (X
0 c
i,j ) to ªc

i (Xc
i,j C 1).

Fig. 2 Effect of period-j
maintenance on component
ROCOF (Usher et al. 1998)
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Fig. 3 Effect of period-j
replacement on component
ROCOF (Usher et al. 1998)

3.2 Replacement

If component c of subsystem i is replaced with a new one at the end of period j, its
effective age at the start of period j C 1 will be:

Xc
i;jC1 D 0

for i D 1; : : : ; N I j D 1; : : : ; T � 1I c D 1; : : : ; C
(3)

In other words, system will return to a state “good as new,” in which the
component effective age becomes zero like a new component. So the ROCOF of
this component drops from ªc

i (X
0 c
i,j ) to ªc

i (0). Figure 3 shows the replacement effect
on the component failure rate.

3.3 Do Nothing

If no action performs on a component in period j, that component continues its
working without any changes in its effective age and ROCOF. So:

Xc
i;jC1 D X 0c

ij

for i D 1; : : : ; N I j D 1; : : : ; T � 1I c D 1; : : : ; C
(4)

#ci

�
Xc
i;jC1

�
D #ci

�
X 0c
i;j

�
for i D 1; : : : ; N I c D 1; : : : ; C (5)

In order to construct a recursive function, which calculate Xc
i,j according to any

of above policies, two binary decision variables mc,k
i,j and rc

i,j are defined. These
two variables represent the maintenance and replacement states on component c
of subsystem i at the end of period j.

m
c;k
i;j D 1 if component c of subsystem i maintained in kth

level at the end of period j I 0 otherwise
(6)
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rci;j D 1 if component c of subsystem i replace at the end of

period j I 0 otherwise (7)

Now according to above definitions and equations from Eq. (2) to Eq. (4), a
recursive function between Xc

i,j, X
0 c
i,j , mc,k

i,j , rc
i,j and ˛k

i can be rewritten as below:

Xc
i;j D

�
1 � rci;j�1

�" KY

kD1

�
1 �mc;k

i;j�1
�#

X 0c
i;j�1

C
KX

kD1
m
c;k
i;j�1 �

�
aki �X 0c

i;j�1
�

for i D 1; : : : ; N I j D 2; : : : ; T and c D 1; : : : ; C (8)

Equation (8) presents a closed form to calculate the effective age of component
c of subsystem i at the end of period j, according to maintenance and replacement
actions are performed in previous period. In this recursive function if a component
is replaced in the previous period, then rc

i,j � 1 D 1 and mc,k
i,j � 1 D 0, where the result

will be Xc
i,j D 0. But if a component is maintained in one of maintenance levels, then

rc
i,j � 1 D 0 and mc,k

i,j � 1 for that maintenance level become one where Xc
i,j D˛k

i � X
0 c
i,j � 1

and the improvement factor of that maintenance will be used. Finally, if certain
operation doesn’t perform and the component continues its working and the
equation becomes Xc

i,j D X
0 c
i,j � 1.

There is a basic assumption that the system starts its working from a completely
new state. So the primary lifetime for each component at the start of first period
is 0. It is clear that this assumption could be changed according to real system
characteristics.

Xc
i;1 D 0 for i D 1; : : : N and c D 1; : : : ; C (9)

4 Costs Related to Maintenance and Replacement Activities

In this section the costs that are necessary to consider in this model will be analyzed.

4.1 Maintenance Cost

It’s obvious that performing maintenance on a component imposes a cost to the
system. So when a maintenance action performs in level k on component c of
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susbsystem i in a period, the constant maintenance cost Mc,k
i will add to the total

system cost at the end of that period.

Mi;j D
CX

cD1

KX

kD1
M

c;k
i �mc;k

i;j

for i D 1; : : : ; N and j D 1; : : : ; T

(10)

4.2 Replacement Cost

Similar to the maintenance cost, when a component is replaced in period j, a constant
replacement cost, Rc

i , that is equal to initial purchase price will add to total cost.

Ri;j D
cX

cD1
Rci � rci;j for i D 1; : : : ; N and j D 1; : : : ; T (11)

4.3 Fixed Cost

Imagine a state in which all components of a subsystem is maintained or replaced at
the end of a period. It’s evident that in this state the total system stops working. Since
the considered system is a series system of N subsystems, by failing a subsystem the
total system will stop working. In this order the system will contact to a cost related
to next system setup. In this purpose, fixed cost Z has been considered in a period
when all components of a subsystem is maintained or replaced.

Fixed cost D
TX

jD1

"

Z

 

1 �
NY

iD1

 

1 �
cY

cD1

 

rci;j C
KX

kD1
m
c;k
i;j

!!!#

(12)

As is obvious in Eq. (12), when all components of a subsystem are maintained or
replaced in a period, the expression

Q c
c D 1(rc

i,j CP
K
k D 1mc,k

i,j ) becomes equal to one
and the multiply operation on subsystems becomes 0. Then the fixed cost Z will add
to total cost.

Considering this cost has two benefits. First, this cost prevents system stops.
Second, when a system stops working at the end of a period, other subsystem’s
components can be maintained or replaced also without any changes in fixed cost.
Actually, considering this cost helps centralization in maintenance and replacement
activities.

So far it has been found that this model is a mixed integer nonlinear programming
model (MINLP). For solving this model using meta-heuristic algorithms is undeni-
able. So because of wide using of genetic algorithm in preventive maintenance and
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replacement scheduling, an edition of this algorithm is used which is suitable for
multi-objective models. This algorithm is non-dominated sorting genetic algorithm
(NSGA-II). This algorithm will be checked in the following.

Up to now the problem is defined, the system is analyzed and primary assump-
tions are set. Now for system modeling three different system approaches for
standby systems with different fundamental assumptions are considered.

• Preventive maintenance and replacement scheduling with failure impossibility
assumption

• Preventive maintenance and replacement scheduling with failure possibility
assumption

Non-optional switching
Optional switching

5 System Modeling

In this section the system that is defined in the second section and is shown in Fig. 1,
will be modeled according to above assumptions.

5.1 Preventive Maintenance and Replacement Scheduling
with Failure Impossibility Assumption

In this model there is no possibility for components failure during the periods. It
means that when a component is loaded at the start of a period must continue its
working to the end of that period without any failure. In Fig. 4, the system function
is illustrated. As shown in this figure the switching operations perform at the end of
the periods not during them. Actually in this approach switching operations perform
to maintain or replace the components that are not under load.

...1 2 3 4 5 J-2 J-1 J

...1st component
 

2nd component

Fig. 4 Schematic view of a subsystem operation in preventive maintenance and replacement
scheduling with failure impossibility assumption
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5.1.1 System Configuration

It’s obvious that if a component is under load in a period, its effective age will
increase in amount of T/J but if the component wouldn’t be under load in a period,
no changes will happen to its age, because each subsystem is cold standby. In the
other words, in each period if a component be under load its age increases otherwise
no changes will happen to the component age on that period. So for calculating the
age of components a binary variable lci,j is defined which will be equal to one if
component c of subsystem i is under load at the start of period j. So:

X 0c
i;j D Xc

i;j C lci;j � T=J
for i D 1; : : : ; N I j D 1; : : : ; T I c D 1; : : : ; C (13)

Another important point is that, in each period and in each subsystem, just one
component must be under load. Therefore:

CX

cD1
lci;j D 1 for i D 1; : : : ; N and j D 1; : : : ; T (14)

For simplicity it is assumed that at the start of first period, first component of each
subsystem is under load.

l1i;1 D 1 for i D 1; : : : ; N (15)

5.1.2 System Costs

Failure Cost

Unplanned failures impose a cost to the system. An important point is that at the start
of first period, failures occurrence time is unknown. However, it’s known that if the
component has a high ROCOF in a period, the probability of failure occurrence is
more, so higher cost must be considered and vice versa when ROCOF in a period
is low, less failure cost will yield. Since in each period just one component of each
subsystem is under load and switching operation can be done just at the end of
period, so failure of loaded component causes system failure. For this reason, the
expected number of failures in each period for each subsystem will be calculated. In
this chapter J.S. Usher et al. methodology is used where average of failure rate with
a fixed cost has been used (Usher et al. 1998). The expected number of failures in
component c of subsystem i in period j can be calculated as below:

E
�
Ni;j

� D
CX

cD1
lci;j �

Z X 0c
i;j

Xci;j

#ci .t/dt

for i D 1; : : : ; N I j D 1; : : : ; T (16)
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According to Sect. 2 and by the assumption NHPP for rate of occurrence of
failure, expected number of failures in component c of subsystem i in period j
will be:

E
�
Ni;j

� D
CX

cD1
lci;j �

Z X 0c
i;j

Xci;j

�ci � ˇci � tˇci �1dt

D
CX

cD1
lci;j �

�
�ci

�
X 0c
i;j

�ˇci � �ci
�
Xc
i;j

�ˇci
�

for i D 1; : : : ; N I j D 1; : : : ; T (17)

It is assumed that cost of each failure is Fi (a dollar per failure occurrence) which
allows the mode to calculate Fi,j, where Fi,j is failure cost of subsystem i in period j.

Fi;j D Fi �
CX

cD1
lci;j :

�
�ci

��
X 0c
i;j

�ˇci �
�
Xc
i;j

�ˇci
��

for i D 1; : : : ; N I j D 1; : : : ; T (18)

So regardless of maintenance or replacement action (that is assumed to occur at
the end of period) in period j, there is a cost related to failures which may occur in
each period.

Switching Cost

If a switching action occurs at the end of period j in subsystem i, then a cost equal
to Si would be imposed to the system. Considering this cost is essential to avoid
unnecessary switching. Switching operation can be recognized from the changes in
binary variable lci,j. When lci,j value changes from one to zero or from zero to one
means that a switching operation has occurred. So the expression jlci,j C 1 � lci,jj will
be equal to one if a switching operation occurs. This expression will be equal to one
for two components, one the component that becomes loaded and the component
that removes from loading state. So using 1/2Si is inevitable.

Si;j D 1

2
Si �

ˇ̌
ˇlci;jC1 � lci;j

ˇ̌
ˇ for i D 1; : : : ; N I j D 1; : : : ; T (19)

Total Cost

At the start of period j D 1, a set of maintenance, replacement, and do nothing
actions for all components of each subsystem in each period must be specified to
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minimize the total cost. According to different costs definition, the total cost can be
written as a simple sum on the costs.

Total Cost D
NX

iD1

TX

jD1

"

Fi �
CX

cD1
lci;j �

�
�ci

��
X 0c
i;j

�ˇci �
�
Xc
i;j

�ˇci
��

C
CX

cD1

 
KX

kD1

�
M

c;k
i �mc;k

i;j

�
CRci � rci;j C 1

2
Si �

ˇ̌
ˇlci;jC1 � lci;j

ˇ̌
ˇ

!#

C
TX

jD1

"

Z

 

1 �
NY

iD1

 

1 �
CY

cD1

 

rci;j C
KX

kD1
m
c;k
i;j

!!!#

(20)

5.1.3 System Reliability

For considering the reliability objective function in this model, the reliability
function of subsystem i in period j is defined as Eq. (20) and since the subsystems
are series, total reliability could be calculated by multiplying all subsystems in all
periods as shown in Eq. (21).

Ri;jD e

�
2

6
4
XC

cD1l
c
i;j �
Z X 0c

i;j

Xci;j

#ci .t/dt

3

7
5

D e

�
2

4
XC

cD1l
c
i;j �
�
�ci

��
X 0c
i;j

�ˇci �
�
Xc
i;j

�ˇci
��3
5

for i D 1; : : : N I j D 1; : : : ; T

(21)

Reliability D
NY

iD1

TY

jD1
e

�
2

4
XC

cD1l
c
i;j �

�
�ci

��
X 0c
i;j

�ˇci �
�
Xc
i;j

�ˇci
��3

5

(22)

5.2 Preventive Maintenance and Replacement Scheduling
with Failure Possibility Assumption

In this model two approaches can be supposed. In first approach, optional switching
is not applicable and by a failure in the loaded component, switching operation
performs. In second approach, optional switching is considered. It means that
two kinds of switching are conceivable, non-optional switching and optional one
according to failures and maintenance-replacement plan, respectively. These two
approaches will be surveyed in details.
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...1 2 3 4 5 J-2 J-1 J
...1st component

2nd component

Fig. 5 Schematic view of a subsystem operation in preventive maintenance and replacement
scheduling with failure possibility assumption and non-optional switching

5.2.1 Non-optional Switching

In this approach, when the loaded component breaks down, the switching operation
performs and the other component of subsystem has to be loaded. In other words,
the component that is under load at the start of a period wouldn’t be under load at
the end of that period necessarily. It is obvious that the time of failure occurrence is
unknown. It means that we don’t know when a failure occurs so this model deals to
a probability which is related to the component failure time. For simplicity just two
components are considered for each subsystem as shown in Fig. 5, the switching
operations are performed just when a failure occurs. It’s obvious that these failures
can occur during a period and its time is unknown.

Components Effective Age

Because of this probability approach, the expected effective age of the components
must be calculated. It means that in each period a fraction of each period length,
T/J, will add to the component effective age. For controlling the model parameters
and proper modeling, a variable is defined, pc

i,j, which indicates the probability of
component c of subsystem i loading status at the start of period j. It’s clear that sum
of these probabilities in each subsystem must be equal to one.

nX

iD1
pci;j D 1 for i D 1; : : : ; N and j D 1; : : : ; T (23)

By considering two components for each subsystem, Eq. (23) could be rewritten
as below:

p1i;j C p2i;j D 1 for i D 1; : : : ; N and j D 2; : : : ; T (24)

An assumption is considered that at the start of first period, the first component
of each subsystem is under load. So:

p1i;1 D 1 for i D 1; : : : ; N (25)

p2i;1 D 0 for i D 1; : : : ; N (26)
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Now, according to the above definitions, the expected effective age of each
component at the end of each period is computable. By considering two components
for each subsystem, the first component will be under load at the end of a period in
two states. These two states are:

1. First component operates from start to end of a period without any failure.
2. Second component is loaded at the start of a period, but by a failure in that

component the related subsystem switches to first component.

It’s evident that reliability of a component shows the probability of its operation
without any failure during a period and the complementary of that reliability
expresses the failure probability of that component in a period. Now, the expected
effective age of that component at the end of period j can be rewritten as a sum
of expected effective age of that component at the start of period j and during that
period. So the expected effective age of first component of each subsystem can be
formulated as below:

X 01
i;j D X1

i;j C
h
p1i;j � Reliabilty1i;j C p2i;j �

�
1 � Reliabilty2i;j

�i
� T=J

for i D 1; : : : ; N and j D 1; : : : ; T (27)

Similar to the first component two states of computing the expected effective age
for second component of each subsystem are:

1. Second component operates from start to end of a period without any failure.
2. First component is loaded at the start of a period, but by a failure in that

component the related subsystem switches to second component.

According to above states the expected effective of the second component of each
subsystem can be rewritten as below:

X 02
i;j D X2

i;j C
h
p2i;j � Reliabilty2i;j C p1i;j �

�
1 � Reliabilty1i;j

�i
� T=J

for i D 1; : : : ; N and j D 1; : : : ; T (28)

It should be noted that just one failure is considered for each subsystem in a
period. It’s evident that more than one failure in a period in each subsystem causes
subsystem and whole system failure finally because two components is considered
in each subsystem and maintenance and replacement activities occur at the end of
periods.

One of the parameters that should be updated in each period is pc
i,j. It’s obvious

that in the subsystems with two components, in two states a component will be
under load at the start of period j C 1, which are:

1. The component is under load at the start of period j and stays loaded during that
period without any failure.

2. The other component is under load at the start of period j, but by a failure, a
switching operation performs.
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According to expressed points, the probability of first component loading status
at the end of period j C 1 will be:

p1i;jC1 D p1i;j � Reliabilty1i;j C p2i;j �
�
1 � Reliabilty2i;j

�

for i D 1; : : : ; N and j D 1; : : : ; T � 1 (29)

It is clear that because of being two components in each subsystem, and according
to Eq. (24), p2

i,j C 1 is complementary of p1
i,j C 1. It means that:

p2i;jC1 D 1 � p1i;jC1
for i D 1; : : : ; N and j D 1; : : : ; T � 1 (30)

System Costs

Failure Cost

By looking at the foregoing operation periods, the unplanned components failures
should be considered. As mentioned before two components are considered for each
subsystem in which by a component failure the other one will be loaded. Since the
maintenance and replacement operations perform just at the end of periods, if both
components of a subsystem fail in a period, the related subsystem and the whole
system will fail.

Two approaches can be considered for failure cost. First is calculating the
expected failure cost. For this purpose, the subsystem failure probability that is
complementary of subsystem reliability is multiplied to constant failure cost Fi.

Fi;j D Fi �
�
1 � ReliabilitySSi;j

�

for i D 1; : : : ; N and j D 1; : : : ; T (31)

In the above equation, ReliabilitySS
i,j shows the reliability of subsystem i in

period j. So, its complementary, (1 � ReliabilitySS
i,j ), expresses the failure probability

of that subsystem.
Second approach is considering expected failure numbers in a subsystem. It’s

obvious that because of being just two components in each subsystem, at most one
failure in each subsystem during a period is reasonable. So, when expected failure
number is more than one, subsystem fails. At first the expected number of failures
in a component should be calculated:

E
�
Nc
i;j

�
D
Z X 0c

i;j

Xci;j

#ci .t/dt

for i D 1; : : : ; N and j D 1; : : : ; T and c D 1; : : : ; C (32)
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E(Nc
i,j) shows the expected number of failures in component c of subsystem i in

period j. According to Eq. (1) and by the assumption NHPP for ROCOF, expected
number of failures in component c of subsystem i in period j will be:

E
�
Nc
i;j

�
D
Z X 0c

i;j

Xci;j

�ci � ˇci � tˇci �1dt D
�
�ci

�
X 0c
i;j

�ˇci � �ci
�
Xc
i;j

�ˇci
�

for i D 1; : : : ; N and j D 1; : : : ; T and c D 1; : : : ; C

(33)

According to component c loading probability, the expected failure numbers of
subsystem i will be:

E
�
Ni;j

� D
CX

cD1
pci;j �E

�
Nc
i;j

�
D

CX

cD1
pci;j �

�
�ci

�
X 0c
i;j

�ˇci � �ci
�
Xc
i;j

�ˇci
�

for i D 1; : : : ; N and j D 1; : : : ; T (34)

As expressed before just one failure in each subsystem is acceptable. So, if the
expected failure number is greater than one, failure cost exists. So failure cost of
subsystem i in period j will be:

Fi;j D Fi � max
˚
0;E

�
Ni;j

� � 1�

for i D 1; : : : ; N and j D 1; : : : ; T (35)

Total Cost

At the start of period j D 1, a set of maintenance and replacement activities should be
specified for each component in following periods which minimizes the total cost.
According to different costs definitions, the total cost function can be rewritten as
below:

Total Cost D
NX

iD1

TX

jD1

"
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�
1 � ReliabiltySSi;j

�
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cD1

 
KX
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�
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KX

kD1
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c;k
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!!!#

(36)
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Above function calculates the total cost as a sum of component costs in each
period according to maintenance and replacement cost, down tie fixed cost and
expected system failure cost.

System Reliability

In order to calculate the system reliability, at first the reliability of subsystem i in
period j should be calculated. It’s notable that each subsystem is a cold standby
system. In other words, in this subsystems when a component is in standby mode no
changes will happen in its age and failure rate. Charles O. Smith defined a general
function for reliability of a standby system with two components (Smith 1976).

RSS D R1.t/CQ1 .t1/ �R2 .t � t1/ 0 � t1 � t (37)

Above expression shows that the reliability of a standby system is composed of
two parts. First part, R1(t), is related to a case in which the first component is active
from time 0 to t without any failure. But the second part, Q1(t1)�R2(t–t1), represents
the state in which first component breaks down in time t1 and the second component
continues its operation from t1 to t. In the following, each subsystem reliability will
be surveyed in details.

In the above equation, Rc(t) and Qc(t) represent the reliability of component c
from 0 to t and the failure probability of component C at time t, respectively. In

a system with C components in each subsystem, CŠ
XC�1

rD0
1

Œ.C � 1/ � r�Š states

can occur for each subsystem in each period. So in this model by considering
two components in each subsystem, four states can occur in each period. These
states are:

State 1:
In this state, the first component is under load at the start of period j, and will work
till the end of this period without any failure (Table 1).

State 2:
In this state, the first component cannot finish the period and because of a failure at
time t in first component a switching operation performs. So, the second component
will be loaded and the system continues its working from time t to T/J by second
component (Table 2).

State 3:
This state is similar to first state, but the second component is under load at the start
of period j (Table 3).
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Table 1 First state in a standby subsystem

1st component

2nd component

First component works during the period without
any failure

ReliabilitySS1 D Re1i;j .T=J / D e

�

2

66
6
4

Z X1i;jC
T.

J

X1i;j

#1i .t/dt

3

77
7
5

D e
�

" 

�1i

�
X1i;jCT=J

�ˇ1i
�

�
X1i;j

�ˇ1i
!#

for i D 1; : : : ; N I j D 1; : : : ; T (38)

Table 2 Second state in a standby subsystem

1st component

2nd component

The first component is loaded at the start of the period and
by its failure the second component works till the end
of the period

ReliabilitySS2 D Q1
i;j .t/ �Re2i;j

�
T=J � t

�

D
Z tDT=J

tD0

#1i .t/ � e
�

2

6
4

Z X1i;jCt
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#1i .t/dt

3

7
5

� e
�

2

6
4

Z X2i;jCT=J�t

X2i;j

#2i .t/dt

3

7
5

� dt

D
Z tDT=J

tD0

�1i � ˇ1i � tˇ1i �1 � e�

"

�1i

 �
X1i;jCt

�ˇ1i
�

�
X1i;j

�ˇ1i
!#

� e
�

2

4�2i

0

@
�
X2i;jC

T.

J �t

�ˇ2i
�

�
X2i;j

�ˇ2i
1

A

3

5

� dt
for i D 1; : : : ; N I j D 1; : : : ; T (39)

State 4:
In this state, second component is loaded at the start of period j, but similar to second
state, component failure causes a switching operation and the first component
become loaded (Table 4).

Total Reliability

In this section, the above functions for total reliability computation will be
combined. Since, at the start of each period, the components loading condition is
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Table 3 Third state in a standby subsystem

1st
 component

2nd
 component

Second component works during the period without
any failure

ReliabilitySS3 D Re2i;j .T=J / D e

�
"Z x2i;jCT=j

x2i;j

#2i .t/dt

#

D e
�

"

�2i

 �
x2i;jCT=J

�ˇ2i
�

�
x2i;j

�ˇ2i
!#

for i D 1; : : : ; N I j D 1; : : : ; T (40)

Table 4 Fourth state in a standby subsystem

1st
 component

2nd
 component

The second component is loaded at the start of the period and
by its failure the first component works till the end of the
period

ReliabilitySS4 D Q2
i;j .t/ �Re1i;j .T=J � t /

D
Z tDT=J

tD0

#2i .t/ � e
�

2

6
4

Z x2i;jCt
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� e
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7
5

� dt

D
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tD0

�2i � ˇ2i � tˇ2i �1 � e�

"

�2i

 �
x2i;jCt

�ˇ2i
�

�
x2i;j

�ˇ2i
!#

� e�

"

�1i

 �
x1i;jCT=J�t

�ˇ1i
�

�
x1i;j

�ˇ1i
!#

� dt
for i D 1; : : : ; N I j D 1; : : : ; T (41)

unknown, calculating the expected reliability in each period for each subsystem is
inevitable. So according to law of total probability, expected reliability will be:

ReliabilitySSi;j D p1i;j �ReSS;1i;j C p2i;j �ReSS;2i;j

D p1i;j �
�
R1i;j .T=J /CQ1

i;j .t/ �R2i;j .T=J � t /
�

C p2i;j �
�
R2i;j .T=J /CQ2

i;j .t/ �R1i;j .T=J � t /
�

for i D 1; : : : ; N I j D 1; : : : ; T (42)
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In this equation, ReSS,1
i,j illustrates ith subsystem reliability in which the first

component is under load at the start of period j and its measure is equal to sum
of first and second states reliability as follows:

Re
SS;1
i;j D e
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for i D 1; : : : ; N I j D 1; : : : ; T (43)

Similarly, ReSS,2
i,j is referred to the states that the second component is loaded at

the start of period j. Sum of third and fourth states reliability equations will be:
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for i D 1; : : : ; N I j D 1; : : : ; T (44)
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So, according to above descriptions, the expected total reliability for subsystem i
in period j is equal to:

ReliabilitySSi;j D p1i;j :Re
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for i D 1; : : : ; N I j D 1; : : : ; T (45)

With regard to considering a series system, the total reliability will be computable
by a simple multiply operation on N subsystems and J periods.
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Fig. 6 Schematic view of a subsystem operation in third approach

C p2i;j �
2

4e
�
"

�2i

 
�
X2i;jCT=J

�ˇ2i �
�
X2i;j

�ˇ2i
!#

C
Z tDT=J

tD0
�2i � ˇ2i � tˇ2i �1 � e

�
"

�2i

 
�
x2i;jCt

�ˇ2i �
�
x2i;j

�ˇ2i
!#

� e
�
"

�1i

 
�
x1i;jCT=J�t

�ˇ1i �
�
x1i;j

�ˇ1i
!#

� dt (46)

5.2.2 Optional Switching

In this section, optional switching possibility is considered to previous model. It
means that two types of switching can perform in this system, optional and non-
optional. When a failure occurs non-optional switching performs but, at the end of
some periods, optional switching performs to maintain or replace the component
that is under load. In Fig. 6, these two types of switching are illustrated.

In Fig. 6, black arrows represent non-optional switching and red arrows show
optional switching. By assuming optional switching, it is assumed that by maintain-
ing or replacing a component at the end of period j that component cannot be loaded
at the start of period j C 1. By this assumption, when

P
K
k D 1mc,k

i,j � 1 C rc
i,j � 1 is equal

to one, pc
i,j become 0. So:

pci;j �
 

KX

kD1
m
c;k
i;j�1 C rci;j�1

!

D 0

for i D 1; : : : ; N I j D 2; : : : ; T and c D 1; 2 (47)
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Another assumption is that at the start of each period at least one component in
each subsystem must be ready to become loaded. In other words, at the end of each
period there is at least one component that will not maintain or replace. So:

cX

cD1

 
KX

kD1
m
c;k
i;j C rci;j

!

� 1

for i D 1; : : : ; N I j D 1; : : : ; T � 1 and c D 1; 2 (48)

By this assumption fixed cost become equal to 0. Because at the end of a period
there is no possibility to perform maintenance or replacement activities on all
components of a subsystem and at least one component in each subsystem works.
So, the total system never stops working for maintenance or replacement.

6 Solution Approach

NSGA-II is one of the most useful and powerful existing algorithms for solving
various multi-objective optimization problems that its performance has been proved
(Deb et al. 2000). This algorithm combines GA algorithm with dominancy concept
to form Pareto front. Deb and his colleague designed first version of this algorithm
in 1995 and completed it in 2000 (Srinivas and Deb 1995; Deb et al. 2000). These
algorithm parameters are defined as follow:

• Crossover procedure
In this research, according to specific nature of this problem, two new methods
are considered. These two crossover procedures are:

1. Reverse three points crossover: In this method, at first three elements of
N � C � T matrix will be selected randomly. By this selection the parent chro-
mosomes will divide into two parts. The procedure of children chromosomes
construction is that the arrays out of these three points will select from the
first parent and the other arrays will copy from the second parent reversely.
By this method, if the parents have been selected similarly, the children will
create differently.

2. NCT points crossover: In this type of crossover, even genes will select from
the first parent and the odd genes from the second one.

So, if the selected solutions be similar, the algorithm uses the reverse three points
crossover, otherwise the NCT points crossover will be used.
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• Mutation procedure
It’s clear that mutation operator changes the coding design of chromosomes for
diversity in solutions. According to the problem construction, if a component is
maintained or replaced at the end of a period, the total system contacts to a cost.
So a specific mutation procedure is defined for this problem. In this procedure, a
number will be generated between one and N � C � T randomly. Then if this is a
non-zero number, the algorithm changes it to zero and reversely if it is equal to
zero changes to a number belongs to f1,2,3,4g randomly.

7 Numerical Example

In this section, three mentioned optimization models will be solved with a set of
data (considered in Table 5) to be compared in application area and examining their
strength and weaknesses. In addition to considered data set, for each subsystem
three similar components is assumed and 24 month is defined for planning horizon.
Fixed cost will be 800$. In Table 5 ˛1, ˛2, and ˛3 show three levels of maintenance
from overhaul to elementary maintenance and M1, M2, and M3 represent the costs
associated to maintenance levels. It’s notable that MATLAB R2013a environment
is used for model solving.

Table 5 Numerical example parameters
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1502002235472500.860.620.272.200.000221

1422102432432400.820.580.312.000.000352

1672454865782700.910.550.222.050.000383
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1782504355692550.840.670.382.150.0002010
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In this section, these three models will be checked deeply and compared with
each other. In many literature, optimization model is designed as a single objective
model by using one limitation formulation, like, Moghaddam and Usher (2011)
recent research in which two limitation models have been presented, where the
first model minimizes the total cost for a given system reliability and the second
one maximizes the total reliability with a budgetary constraint. Of course they
completed their research by considering a multi-objective model for a system of
several components that are connected in series configuration (Moghaddam and
Usher 2011). This chapter presented models are also multi-objective models which
are maximizing the total reliability by minimizing the total cost for a series system
of several standby subsystems.

7.1 First Model

As surveyed before in this model, preventive maintenance and replacement schedul-
ing with failure impossibility assumption is considered. Final optimization model is:
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Fig. 7 First model Parto front
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The proposed model solved by the considered parameters. The Pareto front
related to this problem is shown in Fig. 7. An important point is that all the points
in this front provide an approximation of the optimal values and none of them
dominate the others. It means that in different strategies different policies can be
chosen. In other words the primary points of Pareto front by low costs have less
reliability level and reversely by increasing the costs, the reliability levels are also
increasing. So according to designers and managers strategies different policies can
be implemented.
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As is obvious in the components effective age diagrams, effective age of a
component can increase, decrease or have no changes during the planning horizon.
Increasing in effective age diagram of a component expresses that the component
is loaded and operated during the period. No changes in a component effective
age shows that the component wouldn’t be under load in that period and when an
instantaneous drop or decrease occurs in the diagram illustrates the maintenance and
replacement activities happened on the component that its measure depends on the
maintenance level.

It’s notable that in the maintenance and replacement schedule tables, M1 shows
overhaul maintenance, M2, intermediate maintenance, M3, primary maintenance,
and R illustrates replacement activity on a component.

An obvious point about components effective age diagrams is that, in low
reliability levels, system prefers to maintain or replace the first component and the
second component isn’t active so much. But by increases in reliability levels and
costs, the second component starts to working (Figs. 8, 9, 10, 11, and 12; Tables 6,
7, 8, and 9).

7.2 Second Model

This model prepared with failure possibility assumption but non-optional switching
(Fig. 13). Total mathematical model, its reliability, costs, and components effective
age diagrams are shown in the following:
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Fig. 8 Components effective age by R D 19.25 % and C D 401$
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Fig. 9 Components effective age by R D 39.99 % and C D 1037.6$
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Fig. 10 Components effective age by R D 60.55 % and C D 3116.3$
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Fig. 11 Components effective age by R D 85.16 % and C D 30700$
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Fig. 12 Components effective age by R D 89.49 % and C D 59930$
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Table 6 Maintenance and replacement schedule by R D 39.99 % and C D 1037.6$
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Table 7 Maintenance and replacement schedule by R D 60.55 % and C D 3116.3$
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Table 8 Maintenance and replacement schedule by R D 85.16 % and C D 30700$
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Table 9 Maintenance and replacement schedule by R D 89.49 % and C D 59930$
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Fig. 13 Second model Parto front
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subject to:
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This point is notable that second component effective age doesn’t change any
more and its reason that optional switching isn’t possible in this model. Second
component effective age changes obviously in the next model (Figs. 14, 15, 16, and
17; Tables 10, 11, and 12).



776 S.A. Ayatollahi et al.

Fig. 14 Components effective age by R D 68.48 % and C D 93$

7.3 Third Model

This model is designed for a case in which both failure and optional switching is
possible (Figs. 18, 19, 20, 21, and 22; Tables 13, 14, and 15). This model formulation
and its diagrams are shown as below:
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Fig. 15 Components effective age by R D 90.11 % and C D 1481$
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Fig. 16 Components effective age by R D 99.37 % and C D 19431$
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Fig. 17 Components effective age by R D 99.95 % and C D 63583$
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Table 10 Maintenance and replacement schedule by R D 90.11 % and C D 1481$
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Table 11 Maintenance and replacement schedule by R D 99.37 % and C D 19431$
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Table 12 Maintenance and replacement schedule by R D 99.95 % and C D 63583$
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Fig. 18 Third model Parto front

Fig. 19 Components effective age by R D 68.48 % and C D 93$
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Fig. 20 Components effective age by R D 90.81 % and C D 499$
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Fig. 21 Components effective age by R D 99.11 % and C D 9611$
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Fig. 22 Components effective age by R D 99.89 % and C D 30184$
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Table 13 Maintenance and replacement schedule by R D 90.81 % and C D 499$

12121212121212121212

1----------------------------------------

2----------------------------------------

3----------------------------------------

4----------------------------------------

5----------------------------------------

6----------------------------------------

7----------------------------------------

8------------

M
2

--------------------------

9----------------------------------------

10

M
3

--------------------------------------

11--------------------

M
3

------------------

12

M
2

------

M
3

------------------------------

13----------------

M
2

----------------------

14----

M
3

------

M
2

--------------------------

15------------------------

M
2

--------------

16----------------

M
3

----------------------

17----------------------------------------

18----------------------------------------

19----------------------------------------

20--------------------

M
3

------

M
3

----------

21----------------------------------------

22--------

M
3

------------------------------

23----------------------------------------

24----------------------------------------

M
aintenance and replacem

ent schedule

678910

Component

Subsystem

12345



788 S.A. Ayatollahi et al.

Table 14 Maintenance and replacement schedule by R D 99.11 % and C D 9611$
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Table 15 Maintenance and replacement schedule by R D 99.89 % and C D 30184$
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Table 16 NSGA-II parameters

2nd & 3rd model1st modelNSGA-II parameters

1001000Number of Generations

50100Population Size

0.70.7Probability of Crossover

0.40.4Probability of Mutation

NSGA-II parameters are similar to GA parameters that are set as shown in
Table 16.

8 Conclusion

For better conclusion, these three models will be compared. As illustrated in Fig. 23,
second and third models with failure possibility are more powerful than first model
without failure possibility. As shown in Fig. 24, a brief focus on second and third
models shows third model strength. For example, by a simple comparison between
points (1) and (2), although the solution reliabilities are similar, the third model cost
is 33 % less than the other. Reversely, in the plot primary points (points (8) and (9)),
when the costs of these models are close together, the third model reliability is 10 %
more than second one. It means that by considering optional switching in a standby
system, the total cost reduces effectively without any changes in reliability or in the
same costs, optional switching increases total reliability.

Table 17 shows a comparison between one schedule of second and third models,
non-optional and optional switching in a same reliability. As is obvious in Table 17
optional switching causes less cost and more applicable scheduling than non-
optional switching without any changes in reliability. So it can be found out that,
in reality, the third model is more effective and powerful with failure possibility and
optional switching.
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Fig. 23 Models Pareto front comparison

Fig. 24 Second and third model Pareto front comparison
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Table 17 Maintenance and replacement scheduling in optional and non-optional switching cases
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