
Chapter 4
Complex Network Analysis of Recurrences

Reik V. Donner, Jonathan F. Donges, Yong Zou, and Jan H. Feldhoff

Abstract We present a complex network-based approach to characterizing the
geometric properties of chaos by exploiting the pattern of recurrences in phase
space. For this purpose, we utilize the basic definition of a recurrence as the mutual
proximity of two state vectors in phase space (disregarding time information) and
re-interpret the recurrence plot as a graphical representation of the adjacency matrix
of a random geometric graph governed by the system’s invariant density. The
resulting recurrence networks contain exclusively geometric information about the
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system under study, which can be exploited for inferring quantitative information on
the geometric properties of the system’s attractor without explicitly studying scaling
characteristics as in the case of “classical” fractal dimension estimates.

Similar as the established recurrence quantification analysis, recurrence networks
can be utilized for studying dynamical transitions in non-stationary systems, as well
as for automatically discriminating between chaos and order without the necessity
of extensive computations typically necessary when inferring this distinction based
on the systems’ maximum Lyapunov exponents. Moreover, we provide a thorough
re-interpretation of two bi- and multivariate generalizations of recurrence plots in
terms of complex networks, which allow tracing geometric signatures of asymmetric
coupling and complex synchronization processes between two or more chaotic
oscillators.

4.1 Introduction

With the recent increase in available computational capacities and rising data
volumes in various fields of science, complex networks have become an interesting
and versatile tool for describing structural interdependencies between mutually
interacting units [1,5,9,70]. Besides “classical” areas of research (such as sociology,
transportation systems, computer sciences, or ecology), where these units are clearly
(physically) identifiable, the success story of complex network theory has recently
lead to a variety of “non-conventional” applications.

One important class of such non-traditional applications of complex network
theory are functional networks, where the considered connectivity does not neces-
sarily refer to “physical” vertices and edges, but reflects statistical interrelationships
between the dynamics exhibited by different parts of the system under study.
The term “functional” was originally coined in neuroscientific applications, where
contemporaneous neuronal activity in different brain areas is often recorded using
a set of standardized EEG channels. These data can be used for studying statistical
interrelationships between different brain regions when performing certain tasks,
having the idea in mind that the functional connectivity reflected by the strongest
statistical dependencies can be taken as a proxy for the large-scale anatomic
connectivity of different brain regions [107, 108]. Similar approaches have been
later utilized for identifying dominant interaction patterns in other multivariate data
sets, such as climate data [13, 14, 96].

Besides functional networks derived from multivariate time series, there have
been numerous efforts for utilizing complex network approaches for quantifying
structural properties of individual time series. In the last decade, several conceptu-
ally different approaches have been developed, see [27] for a recent review. One
important class of approaches make use of ideas from symbolic dynamics and
stochastic processes by discretizing the dynamics and then studying the transition
probabilities between the obtained groups in a Markov chain-like approach [73].
A second class are visibility graphs and related concepts, which characterize
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local convexity or record-breaking properties within univariate time series data
[21, 51, 62]. The latter approach has important applications, such as providing new
estimates of the Hurst exponent of fractal and multi-fractal stochastic processes
[52, 72] or statistical tests for time series irreversibility [19, 53]. Finally, a third
important class of time series networks make use of similarities or proximity
relationships between different parts of a dynamical system’s trajectory [27],
including such diverse approaches as cycle networks [105], correlation networks
[102], and phase space networks based on a certain definition of nearest neighbors
[101]. One especially important example of proximity networks are recurrence
networks (RNs) [24, 25, 66], which provide a reinterpretation of recurrence plots
in network-theoretic terms and are already widely applied in a variety of fields.

In this chapter, we review the current state of knowledge on the theoretical
foundations and potential applications of recurrence networks. We demonstrate that
this type of time series networks naturally arises as random geometric graphs in the
phase space of dynamical systems, which determines their structural characteristics
and gives rise to a dimensionality interpretation of clustering coefficients and
related concepts. In this spirit, the rich toolbox of complex network measures
[5, 9, 70] provides various quantities that can be used for characterizing the
system’s dynamical complexity from an exclusively geometric viewpoint and allow
discriminating between different types of dynamics. Beyond the single-system case,
we also provide a corresponding in-depth discussion of cross- and joint recurrence
plots from the complex network viewpoint. As a new aspect not previously reported
in the literature, we provide a first-time theoretical treatment of a unification of
single-system and cross-recurrence plots in a complex network context. Moreover,
we discuss some new ideas related to the utilization of multivariate recurrence
network-based approaches for studying geometric signatures of coupling and
synchronization processes.

4.2 From Recurrence Plots to Recurrence Networks

In this section, we introduce and discuss RNs as an alternative framework for
studying recurrences in phase space from a geometric point of view. We start with
the basic setting suitable for single dynamical systems, followed by some detailed
considerations on two different multivariate generalizations, taking advantage of
corresponding recent extensions [82, 104] of the recurrence plot (RP) concept
[30,65]. Moreover, we provide a short overview on complex network characteristics
and their meaning for RNs, highlighting the type of information that can be
obtained using this approach—as opposed to other recurrence based techniques like
recurrence quantification analysis (RQA) [95, 103], recurrence time statistics, or
estimation of dynamical invariants from RPs.

In the remainder of this chapter, the properties of all approaches to be discussed
will be illustrated for the specific example of a Rössler system [86]
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Fig. 4.1 Example trajectory on the chaotic attractor of the Rössler system Eq. (4.1) at the
canonical parameter values
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where a, b and c are control parameters of the system, which will be varied if
necessary. In the “canonical” case, a D 0:15, b D 0:2 and c D 10. An example
trajectory on the system’s chaotic attractor at these parameter values is shown in
Fig. 4.1. A similar phase-coherent attractor1 can be observed at a D 0:16, b D 0:1

and c D 8:5, whereas for a D 0:2925, b D 0:1 and c D 8:5, the system exhibits a
structurally different chaotic attractor, the so-called funnel regime.

For the multivariate extensions, we consider the paradigmatic case of two slightly
detuned Rössler systems (i.e., otherwise identical systems whose natural oscillation
frequencies differ from each other) that are diffusively coupled via their second (y)
component:

1Here, phase-coherent describes chaotic oscillations around a well-defined center in a suitably
chosen two-dimensional projection of the system [111, 112], whereas such a projection is not
possible in the funnel regime.
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Px.1/ D �.1 C �/y.1/ � z.1/

Py.1/ D .1 C �/x.1/ C ay.1/ C �21.y
.2/ � y.1//

Pz.1/ D b C z.1/.x.1/ � c/

Px.2/ D �.1 � �/y.2/ � z.2/

Py.2/ D .1 � �/x.2/ C ay.2/ C �12.y.1/ � y.2//

Pz.2/ D b C z.2/.x.2/ � c/:

(4.2)

Here, � measures the detuning, �kl is the coupling strength with which system k acts
on system l (k; l 2 f1; 2g), and the control parameters a, b, c are chosen as being
identical for both systems. A natural extension is taking different parameter values
for both coupled systems, e.g., studying the situation with one phase-coherent and
one funnel system coupled to each other.

In what follows, trajectories are generated using numerical integration of Eq. (4.1)
with a step size of h D 0:001. As far as univariate (single-system) analyses are
concerned, we will utilize the canonical parameter values, whereas we will study
the attractors of the phase-coherent and funnel regime at the above given parameters
in the coupled systems setting.

4.2.1 Recurrence Networks from Single Dynamical Systems

4.2.1.1 Basic Idea

As in the classical RP analysis, we start with a (possibly multivariate) time series
fxi gN

iD1 with xi D x.ti /, which we interpret as a finite representation of the
trajectory of some (deterministic or stochastic) dynamical system. For a discrete
system (map), the sampling of the time series is directly given by the map, whereas
for a continuous-time system, the time series values correspond to a temporally
discretized sampling of a finite part of one trajectory of the system determined
by some initial conditions. In the case of observation functions not representing
the full variety of dynamically relevant components, we additionally assume that
attractor reconstruction has been performed (e.g., using time-delay embedding or
some related technique) [37, 48, 49, 92] and that the xi are state vectors in the
corresponding (reconstructed) phase space of the dynamical system under study.

From the set of (original or reconstructed) state vectors representing a discrete
sampling of the underlying system’s trajectory (e.g., the chaotic attractor of a
dissipative system), we compute the recurrence matrix R in the standard way
[30, 65] as

Rij."/ D �." � kxi � xj k/; (4.3)



106 R.V. Donner et al.

a b

Fig. 4.2 (a) Recurrence plot and (b) recurrence network for some finite trajectory (N D 200,
downsampled to a sampling interval of �t D 1:0) of the Rössler system Eq. (4.1). Recurrences
have been defined using maximum norm with a recurrence threshold " resulting in a recurrence
rate of RR D 0:05. The visual network representation has been obtained using a force-directed
placement algorithm in the free software GEPHI. Vertex colors indicate the respective vertex
degree in the network (orange: high degree, blue: low degree). Note that due to the peculiar three-
dimensional structure of the Rössler attractor, the original attractor shape is not very well recovered
by the network obtained from the short realization (this is distinctively different for other chaotic
systems with a more two-dimensional structure, e.g., the Lorenz system [27])

where �.x/ is the Heaviside function (we use here the convention �.x/ D 1

for x � 0, �.x/ D 0 otherwise), and k � k can be any norm in phase space
(e.g., Manhattan, Euclidean, or maximum norm). For convenience, we will use the
maximum norm in all following examples.

We can re-interpret the mathematical structure R."/ as the adjacency matrix of
some adjoint complex network embedded in phase space by setting

A."/ D R."/ � 1N ; (4.4)

where 1N is the N -dimensional identity matrix. The complex network defined
this way is called "-recurrence network (RN), as opposed to other types of
proximity-based networks in phase space making use of different definitions of
geometric closeness, e.g., considering k-nearest neighbors [27]. Specifically, the
sampled state vectors fxi g are interpreted as vertices of a complex network, which
are connected by undirected edges if they are mutually close in phase space
(i.e., describe recurrences). Notably, the binary matrix A."/ retains the symmetry
properties of R."/, which implies that the RN is a simple graph, i.e., a complex
network without multiple edges or self-loops (note that Aii D 0 according to
definition (4.4)). For an example of a RP and associated RN, see Fig. 4.2.
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4.2.1.2 Complex Network Characteristics

Based on the re-interpretation of the recurrence matrix R."/ as the adjacency
matrix of an adjoint RN, we can utilize the large toolbox of complex network
measures [1, 5, 9, 70] for characterizing the structural organization of a dynamical
system in its phase space. Notably, this viewpoint is complementary to other
concepts of nonlinear time series analysis making use of RPs. For example, RQA
characterizes the statistical properties of line structures in the RP, which implies
explicit consideration of dynamical aspects (i.e., sequences of state vectors). In
turn, RNs do not make use of time information, since network properties are
generally invariant under vertex relabelling (i.e., permutations of the order of
observations) [25]. In this spirit, RN analysis provides geometric instead of dynam-
ical characteristics. This idea of a geometric analysis is similar to some classical
concepts of fractal dimensions (e.g., box-counting or correlation dimensions), where
certain scaling laws in dependence on the spatial scale of resolution (corresponding
here to ") are exploited. In turn, RN analysis can be performed (as RQA) using only
a single fixed scale (") instead of explicitly studying scaling properties over a range
of threshold values.

The distinction between dynamical and geometric information implies that in
case of RN analysis, the typical requirement of a reasonable (typically uniform)
temporal sampling of the considered trajectory is replaced by the demand for a
suitable spatial coverage of the system’s attractor in phase space. Specifically, under
certain conditions the latter could also be obtained by considering an ensemble
of short trajectories instead of a single long one. If the trajectory under study is
relatively densely sampled, trivial serial correlations can lead to a selection bias
in the set of sampled state vectors; the latter could be avoided by reasonable
downsampling. In the same context, the possibility of utilizing Theiler windows for
removing edges representing short-term auto-correlations (e.g., recurrence points
close to the main diagonal in the RP) should be mentioned as another strategy based
on a somewhat different rationale [25]. However, from a conceptual perspective,
downsampling can provide an unbiased sampling of the attractor as long as the
fixed sampling time does not correspond to any integer multiple of some of the
system’s natural frequencies. As an alternative, bootstrapping from the set of
available state vectors provides another feasible option, which should be preferred
if a sufficiently long time series is available. In general, numerical experiments and
different applications suggest that stable estimates of RN characteristics can often
already be obtained using a sample size of N � O.102 : : : 103/ data points [15,16].

When considering quantitative characteristics of complex networks, different
classifications of measures are possible. First, we may distinguish measures
based on the concept of graph neighborhoods from those making use of shortest
path-based characteristics. (This is not an exhaustive classification, since it
potentially neglects other important network measures, e.g., such based on diffusion
processes or random walks on the network.) Second, network measures can be
classified into such making use of local, meso-scale and global information. This
scheme is widely equivalent to the first one in that local information refers to
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properties determined by the graph neighborhood of a given vertex, whereas global
information takes contributions due to all vertices of the network into account,
which is common for shortest path-based measures. Finally, we can differentiate
between measures quantifying properties of single vertices, pairs of vertices, and the
network as a whole. In this chapter, we will utilize the latter way of classification,
since it appears most instructive from the applied point of view (i.e., we are
commonly interested in either the local or the global geometry of an attractor).

In what follows, we will denote all properties computed from a RN consisting
of a finite number N of state vectors as Of , pointing to the fact that they are
estimated from a given sample of state vectors but shall characterize the entire
trajectory of the system under study. We will discuss a corresponding continuous
framework generalizing all network characteristics described below in Sect. 4.3. In
order to focus the following discussion, we review only the possibly most relevant
characteristics associated with RNs. More details including further measures can be
found in [18, 25].

4.2.1.3 Shortest Paths in Recurrence Networks

In addition to the concepts of vertices (in the RN, the state vectors of a sampled
dynamical system) and edges (recurrences between state vectors in phase space), the
notion of shortest paths is a third important ingredient in complex network theory.

In general, a path between two specified vertices i and j is an ordered
sequence of edges starting at i and ending at j , with its path length Olij."/

given by the number of edges in this sequence. In the context of RNs, we
can thus understand a path as a sequence of mutually overlapping "-balls2

B".xi /; B".xk1/; : : : ; B".xkli;j �1
/; B".xj /, where

B".x/ D fy j kx � yk < "g

is an open set describing a volume with maximum distance " (measured in a given
norm) from x, and B".xi / \ B".xk1/ ¤ ;; : : : ; B".xkli;j �1

/ \ B".xj / ¤ ;.
Following these considerations, a shortest path is a minimum sequence of edges

(mutually overlapping "-balls) between two fixed vertices (state vectors) i and j .
Note that a shortest path does not need to be unique. In turn, due to the discrete
character of a network, it is rather typical that there are multiple shortest paths
between some specific pair of vertices. In what follows, the shortest path length
will be denoted as Odij, and the multiplicity of such shortest paths as O�ij.

2Here, "-balls refers to general (hyper-)volumes according to the specific norm chosen for
measuring distances in phase space, e.g., hypercubes of edge length 2" in case of the maximum
norm, or hyperballs of radius " for the Euclidean norm.
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Fig. 4.3 Spatial distributions of vertex characteristics of the RN obtained for the Rössler system
Eq. (4.1) at the canonical parameters (RPs computed using the maximum norm with O� D 0:01,
N D 10;000 and sampling time �t D 0:2): (a) degree centrality, (b) local clustering coefficient,
(c) closeness centrality, (d) betweenness centrality. Open circles in (d) highlight vertices that are
disconnected from the rest of the RN

4.2.1.4 Local (Vertex-Based) Measures

The conceptually simplest measure characterizing the connectivity properties of a
single vertex in a complex network is the degree or degree centrality

Okv."/ D
NX

iD1

Aiv."/; (4.5)

which simply counts the number of edges associated with a given vertex v. From
the perspective of recurrences, it is reasonable to replace the degree by a normalized
characteristic, the degree density

O�v."/ D
Okv."/

N � 1
D 1

N � 1

NX
iD1

Aiv."/; (4.6)

which corresponds to the definition of the local recurrence rate of the state xv. O�v."/

quantifies the density of states in the "-ball around xv, i.e., the probability that a
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randomly chosen member of the available sample of state vectors is "-close to xv.
An illustration of this fact for the Rössler system is presented in Fig. 4.3a; here,
phase space regions with a high density of points (i.e., a high residence probability
of the sampled trajectory) are characterized by a high degree density.

In order to characterize the density of connections among the neighbors of a given
vertex v, we can utilize the local clustering coefficient3

OCv."/ D 1

Okv."/. Okv."/ � 1/

NX
i;j D1

Avi ."/Aij."/Aj v."/; (4.7)

which measures the fraction of pairs of vertices in the "-ball around xv that are
mutually "-close. For vertices with Okv."/ < 2, we define OCv."/ D 0. It can be argued
(see Sect. 4.4.2.2) that the local clustering coefficient in a RN is associated with the
geometric alignment of state vectors. Specifically, close to dynamically invariant
objects such as unstable periodic orbits (UPOs) of low period, the dynamics of
the system is effectively lower-dimensional, which results in a locally enhanced
fraction of closed paths of length 3 (“triangles”) and, thus, a higher local clustering
coefficient. The latter behavior is exemplified in Fig. 4.3b for the Rössler system,
where we recognize certain bands with higher values of OCv corresponding to the
positions of known low-periodic UPOs [25].

While degree and local clustering coefficient characterize network structures on
the local and meso-scale, there are further vertex characteristics that make explicit
use of the concept of shortest paths and, thus, provide measures relying on the
connectivity of the entire network. Two specific properties of this kind are the
closeness or closeness centrality

Ocv."/ D
 

1

N � 1

NX
iD1

Odvi ."/

!�1

; (4.8)

which gives the inverse arithmetic mean of the shortest path lengths between vertex
v and all other vertices, and the local efficiency

Oev."/ D 1

N � 1

NX
iD1

Odvi ."/�1; (4.9)

which gives the inverse harmonic mean of these shortest path lengths. Notably, the
latter quantity has the advantage of being well-behaved in the case of disconnected
network components, where there are no paths between certain pairs of vertices (i.e.,
Odij D 1). In order to circumvent divergences of the closeness due to the existence

3In Eq. (4.7) as well as several following definitions, we skip the condition i ¤ j ¤ v for
simplicity, since Aii D 0 for all vertices i according to our RN definition Eq. (4.4).
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of disconnected components, it is convenient to always set Odij to the highest possible
value of N � 1 for pairs of vertices that cannot be mutually reached. Both Ocv."/ and
Oev."/ characterize the geometric centrality of vertex v in the network, i.e., closeness
and local efficiency exhibit the highest values for such vertices which are situated in
the center of the RN (see Fig. 4.3c for an illustration for the Rössler system).

Another frequently studied path-based vertex characteristic is the so-called
betweenness or betweenness centrality, which measures the fraction of shortest
paths in a network traversing a given vertex v. Let O�ij denote the total number of
shortest paths between two vertices i and j and O�ij.v/ the cardinality of the subset
of these paths that include a given vertex v, betweenness centrality is defined as

Obv."/ D
MX

i;j D1Ii;j ¤v

O�ij.v/

O�ij
: (4.10)

Betweenness centrality is commonly used for characterizing the importance of
vertices for information propagation in networks. In the RN context, it can be
interpreted as indicating the local degree of fragmentation of the underlying
attractor [25]. To see this, consider two densely populated regions of phase space
that are separated by a poorly populated one. Vertices in the latter will “bundle”
the shortest paths between vertices in the former ones, thus forming geometric
bottlenecks in the RN. In this spirit, we may understand the spatial distribution
of betweenness centrality for the Rössler system (Fig. 4.3d) which includes certain
bands with higher and lower residence probability reflected in lower and higher
betweenness values.

4.2.1.5 Pairwise Vertex and Edge Measures

In contrast to vertices, whose properties can be characterized by a multitude of graph
characteristics, there are fewer measures that explicitly relate to the properties of
edges or, more generally, pairs of vertices. One such measure is the matching index,
which quantifies the overlap of the network neighborhoods of two vertices v and w:

Omvw."/ D
PN

iD1 Avi ."/Awi ."/

Okv."/ C Okw."/ �PN
iD1 Avi ."/Awi ."/

: (4.11)

From the above definition, it follows that Omvw."/ D 0 if kxv � xwk � 2". In turn,
there can be mutually unconnected vertices v and w (Avw D 0) with " � kxv�xwk <

2" that have some common neighbors and, thus, non-zero matching index. In the
context of recurrences in phase space, Omvw."/ D 1 implies that the states xv and
xw are twins, i.e., share the same neighborhood in phase space. In this spirit, we
interpret Omvw."/ as the degree of twinness of two state vectors. Note that twins have
important applications in creating surrogates for testing for the presence of complex
synchronization [85, 94].
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a b

Fig. 4.4 Color-coded representations of (a) matching index Omij and (b) logarithmic edge between-

ness log10
Obij for the RN of the Rössler system (using N D 100 vertices corresponding to a

sampling with �t D 1:0, RP obtained using the maximum norm with " chosen such as to yield a
recurrence rate of RR D 0:05)

While the concept of matching index does not require the presence of an edge
between two vertices v and w, there are other characteristics that are explicitly
edge-based. To this end, we only mention that the concept of betweenness centrality
can also be transferred to edges, leading to the edge betweenness measuring the
fraction of shortest paths on the graph traversing through a specific edge .v; w/:

Obvw."/ D
MX

i;j D1Ii;j ¤v;w

O�ij.v; w/

O�ij
; (4.12)

where O�ij.v; w/ gives the total number of shortest paths between two vertices i and
j that include the edge .v; w/. If there is no edge between two vertices v and w, we
set Obvw D 0 for convenience. As the (vertex-based) betweenness centrality, in a RN
edge betweenness characterizes the local fragmentation of the studied dynamical
system in its phase space.

Figure 4.4 illustrates the two aforementioned concepts for one example trajectory
of the Rössler system. As can be seen, there is no simple correspondence between
matching index and edge betweenness, since both quantify distinctively different
aspects of phase space geometry. Specifically, there are more pairs of vertices
with non-zero matching index than edges, even though there are also pairs of
vertices with Obvw."/ > 0 but Omvw."/ D 0 (i.e., there is an edge between v and
w, but both have no common neighbors). However, for those pairs of vertices
for which both characteristics are non-zero, we find a clear anti-correlation. One
interpretation of this finding is that a large matching index typically corresponds
to very close vertices in phase space; such pairs of vertices can in turn be easily
exchanged as members of shortest paths on the network, which implies lower
edge betweenness values. A similar argument may explain the coincidence of
high edge betweenness and low non-zero matching index values.
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4.2.1.6 Global Network Measures

Some, but not all useful global network characteristics can be derived by averaging
certain local-scale (vertex) properties. Prominently, the edge density

O�."/ D 1

N

NX
vD1

O�v."/ D 1

N.N � 1/

NX
i;j D1

Aij."/ (4.13)

is defined as the arithmetic mean of the degree densities of all vertices and
characterizes the fraction of possible edges that are present in the network. Notably,
for a RN the edge density equals the recurrence rate RR."/ of the underlying RP.4 It
is trivial to show that O�."/ is a monotonically increasing function of the recurrence
threshold ": the larger the threshold, the more neighbors can be found, and the higher
the edge density.

In a similar way, we can consider the arithmetic mean of the local clustering
coefficients OCv."/ of all vertices, resulting in the (Watts–Strogatz) global clustering
coefficient [97]

OC ."/ D 1

N

NX
vD1

OCv."/ D 1

N

NX
vD1

PN
i;j D1 Avi."/Aij."/Ajv."/

Okv."/. Okv."/ � 1/
: (4.14)

The global clustering coefficient measures the mean fraction of triangles that include
the different vertices of the network. Given our interpretation of the local clustering
coefficient in a RN, OC ."/ can be interpreted as a proxy for the average local
dimensionality of the dynamical system in phase space.

Notably, in the case of a very heterogeneous degree distribution, the global
clustering coefficient will be dominated by contributions from the most abundant
type of vertices. For example, for a scale-free network with p.k/ � k�� ,
vertices with small degree will contribute predominantly, which can lead to an
underestimation of the actual fraction of triangles in the network, since OCv."/ D 0

if Okv."/ < 2 by definition. In order to correct for such effects, Barrat and Weigt [3]
proposed an alternative definition of the clustering coefficient, which is nowadays
frequently referred to as network transitivity [5] and is defined as

OT ."/ D
PN

v;i;j D1 Avi ."/Aij."/Aj v."/
PN

v;i;j D1 Avi ."/Aj v."/
: (4.15)

When interpreting OC ."/ as a proxy for the average local dimensionality, OT ."/

characterizes the effective global dimensionality of the system.

4Strictly speaking, this is only true if the recurrence rate is defined such that the main diagonal in
the RP is excluded in the same way as potential self-loops from the RN’s adjacency matrix.
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Finally, turning to shortest path-based characteristics, we define the average path
length

OL ."/ D 1

N.N � 1/

NX
i;j D1

Odij."/ D 1

N

NX
vD1

Ocv."/�1 (4.16)

as the arithmetic mean of the shortest path lengths between all pairs of vertices, and
the global efficiency

OE ."/ D
0
@ 1

N.N � 1/

NX
i;j D1

Odij."/�1

1
A

�1

D
 

1

N

NX
vD1

Oev."/

!�1

(4.17)

as the associated harmonic mean. Notably, the average path length can be rewritten
as the arithmetic mean of the inverse closeness, and the global efficiency as the
inverse arithmetic mean of the local efficiency. We can easily convince ourselves
that the average path length must exhibit an inverse relationship with the recurrence
threshold, since it approximates (constant) distances in phase space in units of
" [25].

4.2.2 Inter-System Recurrence Networks

In the last decade, two different widely applicable bi- and multivariate extensions of
RPs have been proposed [65]: cross-recurrence plots [63, 104] and joint recurrence
plots [82]. In the following, we discuss some possibilities for utilizing these
approaches in a complex network framework, following previous considerations
in [33–35]. For this purpose, let us consider K (possibly multivariate) time series
fxk

i gNk

iD1 with xk
i D xk.tk

i / sampled at times ftk
i g from dynamical systems fXkg with

k D 1; : : : ; K .

4.2.2.1 Cross-Recurrences and Cross-Recurrence Networks

One way of extending recurrence analysis to the study of multiple dynamical
systems is looking at cross-recurrences,5 i.e., encounters of the trajectories of two

5It is important to realize that cross-recurrences are not to be understood in the classical sense of
Poincaré’s considerations, since they do not indicate the return of an isolated dynamical system to
some previously assumed state. In contrast, they imply an arbitrarily delayed close encounter of the
trajectories of two distinct systems and, therefore, should be better named cross encounters instead.
Following the same reasoning, terms such as cross-recurrence plot or cross-recurrence rate are
suggestive, but potentially misleading. However, to comply with the existing literature on cross-
recurrence plots, we will adopt the established terms even despite their conceptual ambiguities.
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Fig. 4.5 Schematic representation of the notions of cross-recurrence (left) and joint recurrence
(right) between the trajectories x.t/ and y.t/ of two dynamical systems X and Y . PSX and PSY

denote the individual phase spaces of systems X and Y within the joint recurrence framework,
whereas PSXY indicates the joint phase space of X and Y necessary for considering cross-
recurrences

systems Xk and Xl sharing the same phase space, where xk
i � xl

j [63, 104] (see
Fig. 4.5 for some illustration). Unlike the traditional recurrence matrix R of a single
system, the elements of the cross-recurrence matrix CRkl are defined as

CRkl
ij ."kl/ D �."kl � kxk

i � xl
j k/; (4.18)

where i D 1; : : : ; Nk , j D 1; : : : ; Nl , and "kl is a prescribed threshold distance in
the joint phase space of both systems. As in the single-system case, "kl determines
the number of mutual neighbors in phase space, quantified by the cross-recurrence
rate

RRkl."kl/ D 1

NkNl

NkX
iD1

NlX
j D1

CRkl
ij ."kl/; (4.19)

which is a monotonically increasing function of "kl (i.e., the larger the distance
threshold in phase space, the more neighbors are found). Note that unlike Rk

and Rl , the cross-recurrence matrix CRkl is asymmetric, since we typically have
kxk

i � xl
j k ¤ kxl

i � xk
j k. Even more, it can be non-square if time series of different

lengths (Nk ¤ Nl ) are considered.
Due to the aforementioned characteristics, CRkl cannot be directly interpreted as

the adjacency matrix of a network with similar properties as single-system RNs.
This is because the indices i and j label two distinct sets of state vectors belonging
to systems Xk (i ) and Xl (j ), respectively. In turn, we can interpret the state
vectors fxk

i g and fxl
j g as two distinct groups of vertices, and CRkl as being an

adjacency matrix of a cross-recurrence network (CRN) providing a binary encoding
of the presence of edges between vertices belonging to different groups. This is the
defining property of bipartite graphs [70].
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Bipartite networks are found in a wide range of fields [46, 50] and can be
understood as a generic way for describing arbitrary complex networks [44, 45].
The large variety of applications of bipartite graphs has triggered great interest in
models describing their properties in an appropriate way. Particular attention has
been spent on the problem of community detection [36], involving new definitions
for the modularity function [2,46,69,91] and the development of proper algorithms
for community detection [2,28,56,87], partially relating to the spectral properties of
the networks. However, their specific structure renders some traditional definitions
of network-theoretic measures non-applicable, calling for generalizations or even
re-definitions of quantities such as the clustering coefficient [60, 106]. This is why
we do not further consider explicit quantification of the properties of the bipartite
CRN, but follow a different approach detailed below.

4.2.2.2 Combining Single-System and Cross-Recurrence Networks

As mentioned in Sect. 4.2.2.1, there is a lack of appropriate measures for char-
acterizing explicit bipartite network structures as compared with the rich toolbox
of general-purpose complex network characteristics [5, 9]. Therefore, instead of
explicitly investigating the bipartite structure of the CRN, it is more useful to
combine the information contained in the single-system recurrence matrices Rk."k/

and the cross-recurrence matrices CRkl."kl/ to construct an inter-system recurrence
matrix [34]

IR."/ D

0
BBB@

R1."11/ CR12."12/ : : : CR1K."1K/

CR21."21/ R2."22/ : : : CR2K."2K/
:::

:::
: : :

:::

CRK1."K1/ CRK2."K2/ : : : RK."KK/

1
CCCA : (4.20)

Here, " D ."kl/kl is a K � K matrix containing the single-system recurrence thresh-
olds "kk D "k and (cross-recurrence) distance thresholds "kl. The corresponding
inter-system recurrence network (IRN) [34] (see Fig. 4.6 for an example) is fully
described by its adjacency matrix

A."/ D IR."/ � 1N ; (4.21)

where N D PK
kD1 Nk is the number of vertices and 1N the N -dimensional

identity matrix. As in the case of single-system RNs, the IRN is an undirected and
unweighted simple graph, which additionally obeys a natural partition of its vertex
and edge sets (see Sect. 4.2.2.3). Vertices represent state vectors in the phase space
common to all systems Xk and edges indicate pairs of state vectors from either
the same or two different systems that are mutually close, whereby the definition
of closeness can vary between different pairs of systems. To this end, we briefly
mention two specific choices that may be convenient:
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Fig. 4.6 Example of an inter-system recurrence network of two coupled Rössler systems (N1;2 D
100, RR D 0:03, CRR D 0:02, �1;2 D 0:1). The vertex sets as well as internal edge sets
corresponding to both systems are indicated by red and blue colors, respectively, while cross-edges
are displayed as dashed gray lines

• Since we assume the considered systems to share the same phase space, it can be
reasonable to measure distances in a way disregarding the specific membership of
vertices to the different systems under study. This would imply choosing "kl D "

as equal values for all k; l D 1; : : : ; K . In such a case, we can reinterpret the IRN
as the RN constructed from the concatenated time series

fyi gN
iD1 D .x1

1; : : : ; x1
N1

; x2
1; : : : ; x2

N2
; : : : ; xK

1 ; : : : ; xK
NK

/:

In this situation, we can reconsider the general framework of single-system
RN analysis as discussed above for studying the geometric properties of the
combined system as reflected in a RN. Note, however, that in this case it is hardly
possible to explicitly exploit the given natural partitioning of the concatenated
data.6 In contrast, all state vectors are treated in exactly the same way.

6One corresponding strategy could be utilizing methods for community detection in networks [36],
such as consideration of modularity [71]. Notably, such idea has not yet been explored in the
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Table 4.1 Comparison of two multivariate generalizations of RN analysis regarding the principal
requirements on the time series to be analyzed

IRN JRN

Length Arbitrary Identical
Sampling Arbitrary Identical
Physical units Identical Arbitrary
Phase space dimension Identical Arbitrary

Identical means that a specific property must be the same for all involved time series, while
arbitrary implies that this does not need to be the case

• An alternative choice of recurrence and distance thresholds is based on con-
sidering the individual single-system RNs as quantitatively comparable. Since
some of the network measures discussed in Sect. 4.2.1.2 explicitly depend on
the number of existing edges in the network, this requirement calls for networks
with the same edge density �k D � for all k D 1; : : : ; K . In other words, the
recurrence thresholds 	kk (k D 1; : : : ; K) should be chosen such that the (single-
system) recurrence rates are equal .RR1 D � � � D RRK D RR/. Given the natural
partitioning of the IRN vertex set, such network can be viewed and statistically
analyzed as a network of networks (see Sect. 4.2.2.3). In this case, in order to
highlight the interconnectivity structure of the individual RNs, it is beneficial
to chose the distance thresholds "kl for k ¤ l such that the resulting cross-
recurrence rates RRkl yield RRkl < RRk D RRl D RR and possibly also take
the same values RRkl D CRR < RR for all k ¤ l .

As already stated above, the meaningful construction and analysis of IRNs
requires time series fxk

i gNk

iD1 that share the same phase space and, hence, describe
the same observables with identical physical units (Table 4.1). However, the time
series under study can in principle be sampled at arbitrary times ftk

i gNk

iD1 and have
different lengths Nk , because the method discards all information on time and
focuses exclusively on neighborhood relationships in phase space. This type of
geometric information is what can be exploited for studying coupling structures
between different dynamical systems as reflected by the spatial arrangement of state
vectors in the joint phase space (see Sect. 4.4.4).

4.2.2.3 Interacting Network Characteristics

In order to define characteristics that are specifically tailored for analyzing the
interdependence structure between two or more complex networks (also called

context of RN analysis, and it is unclear to what extent the inferred possible community structure
of an IRN could exhibit relevant information for studying any geometric signatures associated
with the mutual interdependences between different dynamical systems. To this end, we leave this
problem for future research.
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interacting, interdependent, or networks of networks) [7], we utilize a recently
introduced general framework [17,99]. For this purpose, let us consider an arbitrary
undirected and unweighted simple graph G D .V; E/ with adjacency matrix
A D fAijgN

i;j D1. Furthermore, let us assume that there is a given partition of G

with the following properties:

1. The vertex set V is decomposed into K disjunct subsets Vk 	 V such thatSK
kD1 Vk D V and Vk \ Vl D ; for all k ¤ l . The cardinality of Vk will be

denoted as Nk.
2. The edge set E consists of mutually disjoint sets Ekl 	 E with

SK
k;lD1 Ekl D E

and Ekl \ Emn D ; for all .k; l/ ¤ .m; n/.
3. Let Ekl 	 Vk � Vl . Specifically, for all k D 1; : : : ; K , Gk D .Vk; Ekk/ is the

induced subgraph of the vertex set Vk with respect to the full graph G.

Under these conditions, Ekk comprises the (internal) edges within Gk , whereas Ekl

contains all (cross-) edges connecting Gk and Gl . Specifically, for the “natural”
partition of an IRN, the Gk correspond to the single-system RNs constructed from
the systems Xk , whereas the cross-recurrence structure is encoded in Ekl for k ¤ l .

We are now in a position to study the interconnectivity structure between two
subnetworks Gk; Gl on several topological scales drawing on the lineup of local
and global graph-theoretical measures generalizing those used for single network
characterization (Sect. 4.2.1.2). In this context, local measures Of kl

v characterize a
property of vertex v 2 Vk with respect to subnetwork Gl , while global measures
Ofkl assign a single real number to a pair of subnetworks Gk; Gl to quantify a

certain aspect of their mutual interconnectivity structure. Most interconnectivity
characteristics discussed below have been originally introduced in [17] which see
for more detailed discussions.

4.2.2.4 Local Measures

The cross-degree (or cross-degree centrality)

Okkl
v D

X
i2Vl

Avi (4.22)

counts the number of neighbors of v within Gl , i.e., direct connections between Gk

and Gl (Fig. 4.7a). Thus, this measure provides information on the relevance of v
for the network “coupling” between Gk and Gl .7 For the purpose of the present

7In the specific case of an IRN, we interpret this as geometric signatures of the coupling between
the underlying dynamical systems Xk and Xl [33, 34].
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Fig. 4.7 Schematic illustration of some characteristics of interdependent networks: (a) the cross-
degree kkl

v counts the number of neighbors of vertex v 2 Vk within the subnetwork Gl . In the
example, the associated cross-edge density is �kl D 0:5. (b) The local cross-clustering coefficient
C kl

v is the probability that two randomly drawn neighbors of vertex v 2 Vk from subnetwork
Gl are mutually connected. In the example, the associated global cross-clustering coefficients are
given by Ckl D 0:5 and Clk D 0, whereas the cross-transitivities are Tkl D 1 and Tlk D 0. (c)
The cross-betweenness centrality bkl

w measures the fraction of shortest paths between vertices from
subnetworks Gk and Gl that traverse vertex w 2 Vm (note that Gm can coincide here with Gk

or Gl ). In the example, w; w0 2 Vm (red) have a large cross-betweenness, whereas the remaining
vertices p 2 Vm n fw; w0g from subnetwork Gm do not participate in shortest paths between Gk

and Gl and therefore have vanishing cross-betweenness bkl
p D 0.

work, it is useful studying a normalized version of this measure, the cross-degree
density

O�kl
v D 1

Nl

X
i2Vl

Avi D 1

Nl

Okkl
v : (4.23)
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As for the single network case, important information is governed by the presence
of triangles in the network. Given two subnetworks, the local cross-clustering
coefficient

OC kl
v D 1

Okkl
v . Okkl

v � 1/

X
i;j 2Vl

AviAijAjv; (4.24)

measures the relative frequency of two randomly drawn neighbors i; j 2 Vl of
v 2 Vk that are mutually connected (Fig. 4.7b). For Okkl

v < 2, we define OC kl
v D 0. In

general, OC kl
v characterizes the tendency of vertices in Gk to connect to clusters of

vertices in Gl .
The cross-closeness centrality

Ockl
v D

�P
i2Vl

dvi

Nl

��1

(4.25)

(where dvi is the graph-theoretical shortest-path length between v and i ) character-
izes the topological closeness of v 2 Gk to Gl , i.e., the inverse arithmetic mean of
the shortest path lengths between v and all vertices i 2 Vl . If there exist no such
paths, dvi is commonly set to the maximum possible value N � 1 given the size of
G. As in the single network case, replacing the arithmetic by the harmonic mean
yields the local cross-efficiency

Oekl
v D

P
i2Vl

d �1
vi

Nl

; (4.26)

which can be interpreted in close analogy to Ockl
v . Note that in the case of IRNs,

topological closeness directly implies geometric closeness.
As a final vertex characteristic, we may generalize the betweenness concept to

the case of coupled subnetworks, which results in the cross-betweenness centrality

Obkl
v D

X
i2Vk;j 2Vl Ii;j ¤v

O�ij.v/

O�ij
: (4.27)

Here, O�ij.v/ and O�ij are defined as in the case of a single network. Note that unlike
the other vertex characteristics discussed above, in the case of cross-betweenness
centrality, we do not require v belonging to Gk or Gl (Fig. 4.7c). The reason for
this is that vertices belonging to any subnetwork may have a non-zero betweenness
regarding two given subgraphs Gk and Gl , in the sense that shortest paths between
i 2 Vk and j 2 Vl can also include vertices in other subnetworks.
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4.2.2.5 Global Measures

The density of connections between two subnetworks can be quantified by taking the
arithmetic mean of the local cross-degree density Eq. (4.23), yielding the cross-edge
density

O�kl D 1

NkNl

X
i2Vk;j 2Vl

Aij D O�lk: (4.28)

Notably, O�kl corresponds to the definition of the cross-recurrence rate RRkl

Eq. (4.19). Since we consider here only undirected networks (i.e., bidirectional
edges), the cross-edge density is invariant under mutual exchange of the two
considered subnetworks.

The global cross-clustering coefficient

OC kl D
D OC kl

v

E
v2Vk

D 1

Nk

X

v2Vk; Okkl
v >1

P
i;j 2Vl

AviAijAjvP
i¤j 2Vl

AviAvj
(4.29)

estimates the probability of vertices in Gk to have mutually connected neighbors in
Gl . Unlike the cross-edge density, the corresponding “cross-transitivity” structure
is typically asymmetric, i.e., OC kl ¤ OC lk. As in the single network case, we need to
distinguish OC kl from the cross-transitivity

OT kl D
P

v2Vk Ii;j 2Vl
AviAijAjvP

v2VkIi¤j 2Vl
AviAvj

; (4.30)

for which we generally have OT kl."/ ¤ OT lk."/ as well. Again, we have to underline
that cross-transitivity and global cross-clustering coefficient are based on a similar
concept, but capture distinctively different network properties.

Regarding the quantification of shortest path-based characteristics, we define the
cross-average path length

OL kl D 1

NkNl

X
i2Vk;j 2Vl

dij (4.31)

and the global cross-efficiency

OE kl D
0
@ 1

NkNl

X
i2Vk;j 2Vl

d �1
ij

1
A

�1

(4.32)

Unlike OC kl and OT kl, OL kl and OE kl are (as shortest path-based measures) symmetric
by definition, i.e., OL kl."/ D OL lk."/ and OE kl."/ D OE lk."/. In the case of
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disconnected network components, the shortest path length dij is defined as dis-
cussed for the corresponding local measures.

In the same spirit as shown above, other single network characteristics [5, 9]
can be adopted as well for defining further interdependent network measures.
This includes measures characterizing edges or, more generally, pairs of vertices
like edge betweenness or matching index, further global network characteristics
(assortativity, network diameter and radius), mesoscopic structures (motifs), or even
characteristics associated with diffusion processes on the network instead of shortest
paths (e.g., eigenvector centrality or random walk betweenness). The selection of
measures introduced above reflects those characteristics which have the most direct
interpretation in the context of IRNs and have also been utilized in studying the
interdependence structure between complex networks in other contexts [17, 99].

4.2.3 Joint Recurrence Networks

4.2.3.1 Basic Idea

Besides cross-recurrences, another possible multivariate generalization of RPs is
studying joint recurrences of different systems in their individual (possibly different)
phase spaces. Here, the basic idea is that the simultaneous occurrence of recurrences
in two or more systems fXkg (see Fig. 4.5) contains information on possible
interrelationships between their respective dynamics, for example, the emergence
of generalized synchronization [82, 83]. Consequently, based on time series fxk

i g,
the joint recurrence matrix JR with elements

JRij."1; : : : ; "K/ D
KY

kD1

Rk
ij."k/ (4.33)

is defined as the element-wise product of the single-system recurrence matrices Rk

with elements

Rk
ij."k/ D �."k � kxk

i � xk
j k/; (4.34)

where ."1; : : : ; "K/ is the vector of recurrence thresholds that can be selected for
each time series individually, typically such as to yield the same global recurrence
rates RRk D RR for all k D 1; : : : ; K .

Analogously to single-system recurrence network analysis, we can take a graph-
theoretical perspective by defining a joint recurrence network (JRN) by its adjacency
matrix

A."1; : : : ; "K/ D JR."1; : : : ; "K/ � 1N ; (4.35)
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where 1N again denotes the N -dimensional identity matrix. Hence, edges .i; j / of a
JRN indicate joint recurrences occurring simultaneously in all K time series under
study. Alternatively, A."1; : : : ; "K/ may be viewed as the element-wise product of
the single-system recurrence networks’ adjacency matrices Ak."k/.

As single-system RN and IRN, the JRN describes an undirected and unweighted
simple graph. However, due to the temporal simultaneity condition of the joint
recurrence concept, vertices i are explicitly associated with points in time tk

i D t l
i

common to the K considered time series (cf. Table 4.1). This is conceptually
different from RNs and IRNs where time information is not taken into account so
that network characteristics are invariant under permutations of the state vectors
(i.e., the—possibly embedded—observations). More specifically, it is not possible
to independently relabel the observations in the underlying time series prior to the
computation of the JRN, whereas the JRN vertices can be shuffled again without
altering the resulting network properties.

By construction, the time series fxk
i g used for constructing a JRN need to be

sampled at identical times ftk
i g and have to have the same length, i.e., N1 D N2 D

: : : D NK D N . However, since recurrences are compared instead of state vectors,
the fxk

i g neither have to represent the same physical quantity measured in identical
units, nor need they reside in the same phase space (Table 4.1).

From a conceptual perspective, a JRN can be regarded as a simple RN for the
combined system .X1 ˝: : :˝XK/ in its higher-dimensional phase space spanned by
all state variables. However, recurrences are defined here in some non-standard way
taking distances in the subspaces associated with the individual systems separately
into account. This implies that the properties of JRNs can be studied in essentially
the same way as those of single-system RNs (but with more subtle geometric
interpretations of the respective network characteristics). In turn, comparing the
same properties for JRN and single-system RNs provides important information
about the similarity of neighborhood relationships in the combined phase space
and projections on the individual systems’ subspaces. Specifically, we can gain
insights about the effective degrees of freedom of the combined system, which
may be reduced in comparison with the sum of the degrees of freedom of the
uncoupled systems due to dynamical interdependences between its components. We
will further detail this idea in Sect. 4.4.5.

4.2.3.2 ’-Joint Recurrence Networks

Equivalently to their interpretation outlined in Sect. 4.2.3.1, we can also consider
JRNs as the reduction of a generalized graph, where the vertices correspond to
time points ti , which can be connected by at most K different types of (labelled)
edges representing the mutual closeness of states in the K different systems. In this
viewpoint, the reduction towards the JRN follows from the requirement that for a
given pair of vertices, in the generalized graph all K possible labelled edges must
be present. With other words, in terms of Boolean logics the entries of the binary
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recurrence matrices Rk are connected by a logical AND for defining the elements
of JR.

Notably, the presence of a joint recurrence becomes increasingly unlikely as the
number of possibly interacting systems K increases. Even in the case of very strong
interdependences, there may be stochastic fluctuations in the individual systems
(e.g., observational noise) that mask recurrences in individual systems and, thus,
subsequently reduce the joint recurrence rate

JRR."1; : : : ; "K/ D 2

N.N � 1/

N �1X
iD1

NX
j DiC1

JRij."1; : : : ; "K/ (4.36)

aka JRN edge density �J .
One possibility to circumvent the problem sketched above is relaxing the

requirement of having simultaneous recurrences in all systems (i.e., the logical
AND operation connecting the recurrence matrices of the individual systems in a
component-wise way), but considering the case where at least a fraction ˛ 2 .0; 1


of all systems exhibit recurrences (the standard JRN follows for ˛ D 1). This point
of view allows defining a hierarchy of networks, which we call ˛-joint recurrence
networks (˛-JRN). Starting from the union of the single-system RNs providing a
network with K different edge types corresponding to recurrences of the individual
systems, we require that there exist at least d˛Ke edges between two specified
vertices (i.e., time points). In the specific case of K D 2 systems and ˛ 2 .0; 0:5


(or, more generally, for ˛ 2 .0; 1=K
), we can rewrite this requirement with a simple
logical (Boolean) operation connecting the single-system recurrence matrices in a
component-wise way as JR˛

ij."1; "2/ D R
X1

ij ."1/ OR R
X2

ij ."2/.
For the more general case, in order to mathematically formulate the requirement

of d˛Ke simultaneous recurrences, it is convenient to start from a practically
equivalent re-definition of the joint recurrence matrix,

JR.1/
ij ."1; : : : ; "K/ D �

 
KX

kD1

Rk
ij."k/ � K

!
; (4.37)

JR.˛/
ij ."1; : : : ; "K/ D �

 
KX

kD1

Rk
ij."k/ � ˛K

!
; (4.38)

to be the ˛-joint recurrence matrix. We can use the latter definition to define ˛-joint
recurrence plots as well as ˛-JRNs in full analogy to the classical case ˛ D 1.

Trivially, the number of edges in an ˛-JRN decreases monotonically for increas-
ing ˛ if all single-system recurrence thresholds "k are kept fixed. We note that a
similar relaxation of the strict requirement of a conjection (AND relation) between
the (Boolean) entries of different recurrence matrices has been recently discussed in
the framework of symbolic recurrence plots [22]. Moreover, it might be interesting
(but has not yet been explored) to use concepts from fuzzy logic as the basis for
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somewhat weaker requirements than in the rather restrictive definition of the original
JRN.

The conceptual idea of ˛-JRNs has not yet been further developed and studied
elsewhere. One possible field of application could be finding proper values of ˛

(for example, in dependence on the magnitude of some observational noise) for
which results commonly obtained using “normal” JRNs become stable in the case
of real-world time series. To this end, we only emphasize the possibility of defining
˛-JRNs and studying the properties of these entities (e.g., the scaling of network
characteristics as a function of ˛), but leave a corresponding investigation as a
subject for future research.

4.3 Analytical Description of Recurrence Networks

As we will demonstrate in the following, the properties of RNs can be described
analytically supporting their better understanding and, hence, applicability. For this
purpose, we can exploit the formal equivalence of RNs and random geometric
graphs (RGGs), a well-studied concept in graph theory and computational geometry.
In this section, we motivate this equivalence and demonstrate how the variety of RN
characteristics can be reformulated in the continuum limit N ! 1 for any finite
". This framework allows gaining deep insights into the geometric organization of
chaotic attractors by exploring the multitude of characteristics provided by complex
network theory. Moreover, we present a first-time extension [12] of the previous
analytical considerations [18] to IRNs.

4.3.1 Random Geometric Graphs

Random geometric graphs [77] are based on a (finite) set of vertices randomly
positioned in a d -dimensional (d 2 N

C) metric space according to some probability
density function p.x/ with x 2 R

d . In general, the connectivity among this set of
vertices is taken to be distance-dependent, i.e., for two vertices i and j , the
probability of being connected in the RGG has the form P.Aij D 1/ D f .kxi � xj k/

with some predefined function f , which is monotonically decreasing. As a conse-
quence, spatially close vertices are more likely to be connected than distant ones. A
particularly well studied special case is f .ı/ D �." � ı/ (ı denoting here the
distance between any two points in the considered metric space), often referred
to as RGG (in the strict sense). Notably, the latter definition has fundamental
real-world importance (e.g., in terms of ad-hoc communication networks or, more
general, contact networks). Moreover, it matches that of the adjacency matrix of a
RN in Eq. (4.4) if we identify p.x/ with the invariant density of the dynamically
invariant object under study (e.g., some attractor in case of a dissipative system),
and take the space in which the RGG is embedded as that spanned by the respective
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Fig. 4.8 Example of RGGs constructed from the invariant density of the Rössler system Eq. (4.1)
using sample sizes of N D 10, 100, 500 and 1;000 and a fixed " D 2:0. In order to obtain a
better visualization, only projections of the attractor and resulting graph to the .x; y/-plane are
shown. Note that although the attractor’s invariant density is not yet well sampled at N D 1;000,
most network characteristics obtained from the corresponding RN (not shown) already provide
reasonable approximations of the expected values for the underlying RGG.

dynamical variables of the system. In this respect, for all following considerations,
it is sufficient restricting attention to the support of p.x/ (respectively its closure),
which is described by some manifold S D supp.p/ embedded in the considered
metric space (e.g., the attractor manifold).

Figure 4.8 shows some example of RGGs obtained using the invariant density
of the Rössler system Eq. (4.1) as p.x/. Specifically, the RGG has been obtained
from the numerical realization of a single trajectory of the system, which has been
downsampled to a certain fixed sampling rate.

From a practical perspective, the spatial coverage of p.x/ by the RGG’s vertices
can be strongly affected by the sampling, leading to a spatial clustering of vertices
if the sampling frequency is close to an integer multiple of the chaotic attractor’s
characteristic frequency. In such a situation, it is advantageous to follow alternative
sampling strategies for p.x/.8 As already mentioned above, generating the RGG/RN

8For ergodic systems, sampling from one long trajectory, ensembles of short independent
realizations of the same system, or directly from the invariant density should lead to networks
with the same properties at sufficiently large N .
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representation based on bootstrapping from the ensemble of available state vectors
can eventually provide better results than a regular sampling of a given trajectory.

As outlined above, the importance of RGGs for the considerations on RNs is that
some of their properties (like the degree distribution [47] or transitivity [10]) have
been intensively studied in the past for the generic case of a hard distance threshold
in f and arbitrary probability density functions p.x/ for metric spaces of various
integer dimensions. For example, Hermann et al. [47] give a closed-form expression
of the degree distribution for arbitrary p.x/, whereas Dall and Christensen [10]
provide a deep discussion of the transitivity properties of RGGs. Notably, the latter
aspect has become particularly relevant in the interpretation of RN properties as well
as their multivariate generalizations, as will be further discussed in Sect. 4.4.

4.3.2 Single-System Recurrence Network Characteristics

By making use of the fact that RNs are a specific type of RGGs, all relevant
graph-theoretical measures for recurrence networks can be seen as discrete approx-
imations of more general and continuous geometrical properties of a dynamical
system’s underlying attractor characterized by a set S together with an associated
invariant density p.x/, x 2 S . This point of view allows obtaining deeper insights
into the geometrical meaning of the network quantifiers introduced in Sect. 4.2.1.2
and enables us to establish surprising connections to other fields, e.g., the close
relationship of transitivity measures like the local clustering coefficient and global
network transitivity to the local and global fractal dimension of the dynamical
system’s attractor, respectively [26], see Sect. 4.4.2.2. In the following, we review a
corresponding analytical framework for general spatially embedded networks which
is specifically tailored for defining continuous variants of the common discrete
complex network characteristics [18].

4.3.2.1 General Setting

Let S be a compact and smooth manifold with a non-vanishing continuous
probability density function p W S ! .0; 1/ with

R
S

dx p.x/ D 1. For the purpose
of the present work, we identify S with the set of points defining the attractor of
a (dissipative) dynamical system. In case of chaotic attractors in time-continuous
systems, we obtain a closure of the open attractive set by considering its union with
the set of (infinitely many) unstable periodic orbits embedded in the attractor.

Continuous analogs of the discrete complex network characteristics introduced in
Sect. 4.2.1.2 should be approximated by taking the limit N ! 1 and " ! 0 (note
that the latter limit may not be assessible in the case of fractal sets S , which we
will not further consider in the following). Here, “continuous” refers to a network
with uncountably many vertices and edges, which is determined by the adjacency
function
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S

x

yg(x,y)

Fig. 4.9 Schematic
illustration of a set S (gray),
where g.x; y/ denotes the
geodesic distance between
x; y 2 S (after [18])

A.x; y/ D �." � kx � yk/ � ı.x � y/ (4.39)

for all x; y 2 S , which is a continuous analog of the adjacency matrix. In the latter
expression, ı.x � y/ D 1 if x D y, and 0 otherwise.

4.3.2.2 Shortest Paths and Geodesics

A large variety of complex network characteristics introduced in Sect. 4.2.1.2 relies
on the concept of shortest paths. Examples include closeness and betweenness
centrality, local and global efficiency, and average path length. In the continuum
limit, we consider a path in S as a closed curve described by a properly parametrized
function f W Œ0; 1
 ! S , and define the associated path length

l.f / D sup
n>0Iftign

iD1

(
nX

iD1

d.f .ti�1/; f .ti //

ˇ̌
ˇ̌
ˇ 0 D t0 � t1 � � � � � tn D 1

)
2 Œ0; 1


(4.40)

where d.�/ denotes some metric used for defining distances on S . The geodesic
distance between two points x; y 2 S , which serves as the analog of the shortest
path length on a network, is then defined as (cf. Fig. 4.9).

g.x; y/ D inf
f

fl.f / j f W Œ0; 1
 ! S; f .0/ D x; f .1/ D yg : (4.41)

A path of length g.x; y/ is called a global geodesic on S . Depending on the specific
geometry of the considered set S , the multiplicity of global geodesics connecting
x and y may differ, including no, one, or even infinitely many distinct global
geodesics.

Regarding a continuum limit for RNs, we note that shortest paths in such
networks approximate global geodesics on the underlying invariant set S in the
limit of " ! 0 and N ! 1. Specifically, in the latter limit the shortest path length
lij."/ between two points x.ti /; x.tj / 2 S behaves as

" lij."/ ! g.x.ti /; x.tj // (4.42)

independently of the chosen metric [18].
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For defining betweenness centrality, we do not only require information on the
lengths of global geodesics, but also their total multiplicity �.y; zI "/ as well as their
multiplicity conditional on a third point x 2 S being part of the curve, denoted as
�.y; zjxI "/ in the following. The definition of the latter quantity is, however, not
unique for a given finite ". Two possible, yet generally not equivalent expressions
read [18]

�1.y; zjxI "/ D
�.y;zI"/X

kD1

Z 1

0

dt ı.fk.t/ � x/ (4.43)

�2.y; zjxI "/ D
�.y;zI"/X

kD1

Z 1

0

dt �." � kfk.t/ � xk/; (4.44)

where fk.t/ denotes the family of global geodesics between y and z. Note that this
family can have uncountably many members (to see this, consider, for example,
the set of geodesics between the two poles on a sphere). In this case, the sum in
Eqs. (4.43) and (4.44) should be replaced by an integral. Furthermore, we emphasize
that the "-dependence in the multiplicities of shortest paths is implicit rather than
explicit, since the chosen discretization level " can affect the effective “shape” of S

and, hence, the positions of possible edges in the considered space.

4.3.2.3 Local (Vertex-Based) Measures

The continuous "-degree density

�.xI "/ D
Z

B".x/

d�.y/ (4.45)

gives the probability that a point y 2 S randomly drawn according to p falls into
an "-neighborhood B".x/ D fy 2 S j kx � yk < "g around x. Its discrete estimator
is given by the classical degree density O�v."/ Eq. (4.6).

In order to quantify the density of closed paths of length 3 in the network, we can
consider the continuous local "-clustering coefficient

C .xI "/ D
R R

B".x/
d�.y/ d�.z/ �." � ky � zk/

�.xI "/2
: (4.46)

This measure characterizes the probability that two points y and z randomly drawn
according to p from the "-neighborhood of x 2 S are mutually closer than ". Its
discrete approximation is provided by the classical local clustering coefficient OCv."/

Eq. (4.7).
Let y 2 S be drawn randomly according to p. For a fixed x 2 S , the continuous

"-closeness centrality
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c.xI "/ D
�Z

S

d�.y/
g.x; y/

"

��1

(4.47)

and the continuous local "-efficiency

e.xI "/ D
Z

S

d�.y/

�
g.x; y/

"

��1

(4.48)

give the inverse expected geodesic distance and the expected inverse geodesic
distance of y to x, respectively. Hence, both measures quantify the geometric
closeness of x to any other point in S according to the probability density function
p. By making use of RNs, they can be approximated by the classical closeness
centrality Ocv."/ Eq. (4.8) and local efficiency Oev."/ Eq. (4.9).

Finally, the probability that a point x lies on a randomly chosen global geodesic
connecting two points y; z 2 S according to p is measured by the continuous "-
betweenness centrality

b.xI "/ D
Z Z

S

d�.y/ d�.z/
�.y; zjxI "/

�.y; zI "/
: (4.49)

Its discrete estimator is given by the standard RN betweenness centrality Obv."/

Eq. (4.10) with the different possible expressions for �.y; zjxI "/ [Eqs. (4.43) and
(4.44)] [18].

4.3.2.4 Pairwise Vertex and Edge Measures

The continuous "-matching index

m.x; yI "/ D
R

B".x/\B".y/ d�.z/R
B".x/[B".y/

d�.z/
(4.50)

quantifies the mutual overlap between the neighborhoods of two vertices x; y 2 S .
In other words, m.x; yI "/ is the probability that a point z 2 S randomly chosen
from B".x/ according to p is also contained in B".y/ and vice versa. For x ! y, we
have B".x/ ! B".y/ and, consequently, m.x; yI "/ ! 1, whereas m.x; yI "/ D 0

if kx � yk > 2". As in the case of the other measures described above, m.x; yI "/

can be approximated by the discrete RN matching index Omvw."/ Eq. (4.11).
m.x; yI "/ does not require mutual closeness between x and y (i.e., kx � yk 2

."; 2"/ is possible). In contrast, the continuous "-edge betweenness

b.x; yI "/ D
Z Z

S

d�.z/ d�.z0/
�.z; z0jx; yI "/

�.z; z0I "/
(4.51)
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(with �.z; z0jx; yI "/ denoting the number of global geodesics between z and z0
containing both x and y under the condition kx � yk � ", and �.z; z0I "/ the total
number of global geodesics between z and z0) is a measure whose discrete estimator
Obvw."/ Eq. (4.12) is related to the presence of an edge between x.tv/ and x.tw/, i.e.,
kx.tv/�x.tw/k < ". However, although this property has been originally introduced
as an explicit edge property, it can be understood in a more general way as a
two-vertex property such that b.x; yI "/ measures the probability that two specific
(not necessarily "-close) points x and y both lie on a p-randomly drawn global
geodesic connecting two points z; z0 2 S and are mutually closer than ". Further
generalizations towards n-point relationships are possible, but not instructive within
the scope of this work.

4.3.2.5 Global Network Measures

The continuous "-edge density

�."/ D
Z

S

d�.x/ �.xI "/ (4.52)

is the p-expectation value of the continuous "-degree density and approximated by
the discrete edge density O�."/ of a RN Eq. (4.13).

In the same spirit, the continuous global "-clustering coefficient

C ."/ D
Z

S

d�.x/ C .xI "/ (4.53)

is the p-expectation value of the continuous local "-clustering coefficient. Its
associated discrete estimator is the classical global (Watts–Strogatz) clustering
coefficient OC ."/ Eq. (4.14). As an alternative measure characterizing geometric
transitivity, we can define the continuous "-transitivity

T ."/ D
R R R

S
d�.x/ d�.y/ d�.z/ �." � kx � yk/ �." � ky � zk/ �." � kz � xk/R R R

S
d�.x/ d�.y/ d�.z/ �." � kx � yk/ �." � kz � xk/

;

(4.54)

which gives the probability that among three points x; y; z 2 S randomly drawn
according to p, y and z are mutually closer than " given they are both closer than "

to x. The corresponding discrete estimator is the RN transitivity OT ."/ Eq. (4.15).
As examples of shortest path-based characteristics, we can define the continuous

"-average path length

L ."/ D
Z Z

S

d�.x/ d�.y/
g.x; y/

"
(4.55)
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and the continuous global "-efficiency

E ."/ D
 Z Z

S

d�.x/ d�.y/

�
g.x; y/

"

��1
!�1

; (4.56)

which quantify the expected geodesic distance and the inverse of the expected
inverse geodesic distance, respectively, both measured in units of " between two
points x; y 2 S drawn randomly according to p. Their discrete estimators
are given by the classical RN average path length OL ."/ Eq. (4.16) and global
efficiency OE ."/ Eq. (4.17), respectively. Notably, we can reformulate L ."/ as the
p-expectation value of the inverse continuous "-closeness centrality,

L ."/ D
Z

S

d�.x/ c.xI "/�1; (4.57)

and E ."/ the inverse p-expectation value of the continuous local "-efficiency

E ."/ D
�Z

S

d�.x/ e.xI "/

��1

: (4.58)

4.3.2.6 Further Characteristics

The selection of measures discussed above is far from being complete. Continuous
versions of further complex network characteristics, such as assortativity, network
diameter and radius, and network motifs are discussed in [18], where also some out-
look on corresponding generalizations of other measures like eigenvector centrality
or random walk betweenness has been given. To this end, we restrict ourselves to
the measures discussed above, since they have been most commonly used in recent
applications of the RN framework.

4.3.3 Inter-System Recurrence Network Characteristics

In the same spirit as for the single-system RNs (Sect. 4.3.2), we can consider the
graph-theoretical measures for studying the interconnections between subnetworks
within IRNs (Sect. 4.2.2.3) as discrete approximations of continuous geometric
properties [12]. Let Sk 
 Y be a subset of an m-dimensional compact smooth
manifold Y and pk.x/ represent its invariant density for all k D 1; : : : ; K ,
where x 2 Sk . In the following, the Sk and pk are assumed to fulfill the same
requirements that are stated for S and p in Sect. 4.3.2. Notably, the Sk are assumed
to have considerable non-empty pairwise intersections. We will use the abbreviationR

d�k.x/ D R
Sk

d mx pk.x/, where �k is a probability measure on Sk. For
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simplicity, only a single recurrence threshold " D "kl for all k; l will be used in
the following. The generalization to different values of "kl is straightforward.

4.3.3.1 Local Measures

The continuous "-cross-degree density

�kl.xI "/ D
Z

B".x/\Sl

d�l.y/ D
Z

d�l.y/�." � kx � yk/ (4.59)

measures the probability that a randomly chosen point in Sl is found in the
neighborhood B".x/ of x 2 Sk . Its discrete version is the cross-degree density
O�kl
v ."/ Eq. (4.23).

The continuous local "-cross-clustering coefficient

C kl.xI "/ D
RR

B".x/\Sl
d�l.y/ d�l.z/ �." � ky � zk/

�kl.xI "/2
(4.60)

gives the probability that two randomly chosen points y; z 2 Sl are "-close to each
other (ky � zk < ") if they both lie in the neighborhood of x 2 Sk. C kl.xI "/ is
approximated by the discrete local cross-clustering coefficient OC kl

v ."/ Eq. (4.24).
Considering the mutual global geometry of the sets Sk; Sl , we furthermore

introduce continuous "-cross-closeness centrality

ckl.xI "/ D
�Z

d�l .y/
g.x; y/

"

��1

(4.61)

quantifying the closeness of x 2 Sk to all points of the set Sl along geodesics
together with the related harmonic continuous local "-cross-efficiency

ekl.xI "/ D
Z

d�l.y/

�
g.x; y/

"

��1

: (4.62)

Here, geodesics are defined with respect to the union of all involved systems’
attractors S D SK

kD1 Sk and g.x; y/ is a suitable distance metric on such geodesics
(Sect. 4.3.2). The proposed local path-based measures for interdependent networks
are approximated by the discrete cross-closeness centrality Ockl

v ."/ Eq. (4.25) and
local cross-efficiency Oekl

v ."/ Eq. (4.26).
Finally, we define the continuous "-cross-betweenness centrality

bkl.xI "/ D
Z Z

d�k.y/ d�l.z/
�.y; zjxI "/

�.y; zI "/
: (4.63)
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As in the single network case, �.y; zjxI "/ denotes the number of times x 2 S (i.e.,
from any arbitrary subnetwork) lies on a geodesic between y 2 Sk and z 2 Sl , and
�.y; zI "/ denotes the total number of such geodesics. Regarding the appropriate
parametrization of �.y; zjxI "/, we refer to our discussion for the single network
case in Sect. 4.3.2. The discrete estimator Obkl

v ."/ of bkl.xI "/ is given in Eq. (4.27).

4.3.3.2 Global Measures

The simplest continuous global property describing the geometric overlap between
the sets Sk and Sl is the continuous "-cross-edge density

�kl."/ D
ZZ

d�k.x/d�l.y/�." � kx � yk// D �lk."/ (4.64)

that is empirically estimated by the discrete cross-edge density O�kl."/ Eq. (4.28).
The expectation value of the continuous local "-cross-clustering coefficient

C kl.xI "/ is referred to as the continuous global "-cross-clustering coefficient

C kl."/ D
Z

d�k.x/ C kl.xI "/; (4.65)

which is approximated by the discrete global cross-clustering coefficient OC kl."/

Eq. (4.29). Moreover, designed for quantifying transitivity in the cross-recurrence
structure, the continuous "-cross-transitivity

T kl."/ D
RRR

d�k.x/d�l .y/d�l.z/�." � kx � yk/�." � ky � zk/�." � kz � xk/RRR
d�k.x/d�l .y/d�l.z/�." � kx � yk/�." � kx � zk/

(4.66)

gives the probability that two randomly chosen points y; z 2 Sl which are "-close to
a randomly chosen point x 2 Sk are also "-close with respect to each other. T kl."/

is approximated by the discrete cross-transitivity OT kl."/ Eq. (4.30). As in the case
of the discrete estimators, the two latter quantities are in general not symmetric, i.e.,
C kl."/ ¤ C lk."/ and T kl."/ ¤ T lk."/.

While the two former measures depend only on the local overlap structure
between Sk and Sl together with the invariant densities pk.x/ and pl.x/, path-based
measures contain information on the global geometry of both sets. The continuous
"-cross-average path length

L kl."/ D
ZZ

d�k.x/d�l.y/
g.x; y/

"
D L lk."/ (4.67)

gives the average length of geodesic paths starting in Sk and ending in Sl or vice
versa. Similarly, we define the continuous global "-cross-efficiency
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E kl."/ D
 ZZ

d�k.x/d�l .y/

�
g.x; y/

"

��1
!�1

D E lk."/ (4.68)

which is the harmonic mean geodesic distance between Sk and Sl . Discrete
approximations of these global path-based quantifiers are provided by the cross-
average path length OL kl."/ Eq. (4.31) and global cross-efficiency OE kl."/ Eq. (4.32),
respectively. As for their discrete estimators, the path-based characteristics L kl."/

and E kl."/ are invariant under an exchange of Sk and Sl .

4.4 Recurrence Networks: General Properties
and Applications

With the general RN framework (Sect. 4.2) and the associated analytical treatment
of RNs (Sect. 4.3) in mind, it is possible to study the properties of RNs as well as
their multivariate generalizations from a solid theoretical basis. In the following,
we will first discuss some general aspects of complex networks often found in
real-world systems, such as small-world effects, the emergence of scale-free degree
distributions, or assortative mixing (i.e., the tendency of vertices to connect with
other vertices that exhibit a similar degree), regarding their presence or absence in
RNs. Subsequently, we will turn to the transitivity characteristics of RNs, motivating
their particular usefulness for detecting geometric signatures of qualitative changes
in the dynamics of a single system, as well as the dynamical interrelationships
between two or more mutually interacting systems.

4.4.1 Generic Network Characteristics

4.4.1.1 Absence of Small-World Effects

A first generic property shared by many real-world networks is the so-called
small-world effect, first described as the outcome of studies on social interrela-
tionships, predominantly Milgram’s famous chain-letter experiment in the 1960s
[68]. In the spirit of the latter studies, the term “small-world effect” originally
denoted the fact that average shortest path lengths in social networks, but also
other real-world networks, are much shorter than we would expect from random
connectivity configurations. Given the importance of redundancy in such networks,
Watts and Strogatz [97] suggested including the presence of a high clustering
coefficient (i.e., higher than in random graphs) as a second criterion for identifying
the small-world effect in real-world networks.

From the latter considerations, it is clear that RNs cannot obey a small-world
effect: although they may exhibit a high degree of transitivity (typically depending
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on the specific system under study; see our corresponding considerations in
Sect. 4.4.2), for any fixed value of " the average path lengths can only take specific
values, which become independent of the network size N in case of sufficiently
large samples. On the one hand, for any chosen pair of vertices i and j at positions
xi and xj , the shortest path length is bounded from below as Olij � dkxi � xj k="e
(respectively, the geodesic distance on the attractor S divided by the recurrence
threshold "). Specifically, each shortest path length will converge to a finite value
for N ! 1. On the other hand, due to the finite diameter of chaotic attractors,
the average path length OL ."/ cannot exceed a certain maximum value. Hence, the
average path length is bounded from above, which is distinct from the common
behavior of small-world networks ( OL � log N ) for N ! 1 [97]. Moreover,
as another immediate consequence of the latter considerations, we observe that

OL � "�1 [25] as long as OL � 1 and " > "c (the percolation threshold of the
RN [18]). This implies that by tuning ", it is possible to achieve any desired average
shortest path length OL � 1; this fact notably reduces the explanatory power of this
global network characteristic.

4.4.1.2 Emergence of Scale-Free Distributions

A general analytical expression for the degree distribution P.k/ of a RGG and,
hence, a RN has been given by Herrmann et al. [47]. For this purpose, let us
make the following assumptions: (1) The system under study is ergodic. (2) The
sampled trajectory is sufficiently close to its attractor, i.e., we exclude the presence
of transient behavior. (3) The sampling interval is co-prime to any possible periods
of the system. If these three conditions are met, the vertices of the RN can be
considered as being randomly sampled from the probability density function p.x/

associated with the invariant measure � of the attractor given that N is sufficiently
large [29].

For a RGG with arbitrary p.x/, the degree distribution P.k/ can be derived from
p.x/ in the limit of large sample size N as

P.k/ D
Z

dx p.x/e�˛p.x/.˛p.x//k=kŠ (4.69)

(representing an n-dimensional integral in case of an n-dimensional system) with
˛ D hki =

R
dx p.x/2 [47]. In order to understand this relationship, note that for

each x, the probability that a sampled point falls into the "-ball centered at x is
approximately proportional to p.x/. Hence, the degree of a node at x has a binomial
distribution. For sufficiently large N , the latter can be approximated by a Poissonian
distribution with parameter ˛p.x/, leading to Eq. (4.69).

For the specific case of one-dimensional maps, Eq. (4.69) can be explicitly
evaluated, leading to a general characterization of the conditions under which
scale-free distributions can emerge in RNs. When projecting higher-dimensional
time-continuous systems to such one-dimensional maps by making use of appropri-
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ate (Poincaré) return maps, the corresponding considerations can be generalized to
such systems, given the specific Poincaré surface is “representative” for the system’s
geometric structure. A detailed discussion has been presented in [113]. To this end,
we only recall the main result that when the system’s invariant density p.x/ exhibits
a singularity with power-law shape, Eq. (4.69) implies that the resulting RN’s degree
distribution must also display a power-law in the limit N ! 1 for sufficiently
small ". In turn, if " is chosen too large, the scale-free behavior cannot be detected
anymore, since it is masked by too large neighborhoods of the points close to the
singularity. Figure 4.10 demonstrates the latter effect for the specific case of the
Rössler system Eq. (4.1).

Notably, it is not trivial to provide an exhaustive characterization of the conditions
under which scale-free distributions can emerge for higher-dimensional systems.
As a consequence, generally applicable necessary and sufficient conditions for the
presence of power-laws in the degree distributions of RNs have not been established
so far.

We note that in general complex systems, the emergence of power-laws is often
associated with a hierarchical organization related to certain fractal properties.
In contrast, for RNs it has been shown that the presence of power-laws is not
directly related to some (global) fractal structure of the system, but rather the
local shape of its invariant density. Consequently, although there are examples of
dynamical systems where the scaling exponent of the degree distribution coincides
well with the associated fractal dimension, there is no such relationship in general.
It will be subject of future studies under which conditions regarding the structural
organization of the attractor, fractal structure and power-law singularities are
sufficiently closely related so that the RN’s degree distribution allows quantifying
the system’s fractal properties.

4.4.1.3 Assortative vs. Disassortative Mixing

Unlike regarding small-world effects and scale-free degree distributions, there are
hardly any available results regarding the mixing properties of RNs. In general,
RNs obey a tendency towards showing assortative mixing (i.e., vertices tend to link
to other vertices with similar degree), which is reasonable in situations where the
invariant density p.x/ is continuous or even differentiable as supported by recent
numerical results [15, 25].

4.4.2 Characterization of Dynamical Complexity

The main field of application of RQA as well as other quantitative approaches to
characterizing the distribution of recurrences in phase space (e.g., recurrence time
statistics) is identifying and quantifying different degrees of dynamical complexity
among realizations of the same system under different conditions (e.g., different
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Fig. 4.10 (a) Complementary cumulative distribution function F.k/ D P
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Dk p.k0/ for RNs
obtained from the x-component of the first return map of the Rössler system (with a D b D 0:2,
c D 5:7) through the y D 0 plane, using edge densities O�1 D 0:02 % (open circle), O�2 D 0:03 %
(filled circle), O�3 D 0:05 % (triangle right), and O�4 D 3 % (+). All curves have been obtained as
mean values taken from five independent realizations of the system with length N D 2 � 105 and
using the Euclidean norm. For O�1 to O�3, we find power-law behavior with a characteristic exponent
of � D 2:16˙0:03, whereas no clear scaling region is found in the denser RN with edge density O�4.
(b) PDF of the x values of the corresponding return map (insert). Power-law shaped singularities
of the PDF (observable spikes) correspond to supertrack functions [64, 74, 75] of the return map.
Redrawn after [113]

values of the control parameter(s)), or even within a single time series given the
system is non-stationary. While the line-based characteristics of RQA are founded
on heuristic considerations (e.g., the higher the predictability of the observed
dynamics, the longer the diagonal line structures off the main diagonal should
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be), we have argued in Sect. 4.3 that RNs have an analytical foundation in RGGs.
Notably, the corresponding characteristics are based on the same binary structure
(the recurrence matrix) as the RQA measures. Hence, both concepts should allow
deriving a similar kind of information, with the important difference being that
RQA quantifies dynamical properties whereas RNs encode topological/geometric
characteristics. However, since both aspects are ultimately linked in the case
of chaotic attractors, this general observation suggests that RN analysis is in
principle suitable for characterizing dynamical complexity in the same way as other
established concepts. Therefore, one natural question arises: How do RN measures
perform in this task, and which of the multiple possible network measures are
particularly suited for this purpose?

The latter questions have been the main motivation behind much of the early
work on RNs focussing on numerical studies of various paradigmatic model systems
for low-dimensional chaos [23–25, 27, 66, 109, 111]. The latter studies suggest
that for characterizing dynamical complexity, global network characteristics are
conceptually easier to use and could provide potentially more stable and distinctive
results than certain statistics over local network properties such as the distributions
of vertex degrees [113] or local clustering coefficients [111]. Among the set of
possible global RN measures, two properties have been found particularly useful:
network transitivity OT and average path length OL .

4.4.2.1 Average Path Length

Regarding for the average path length, the discriminatory skills regarding dif-
ferent degrees of dynamical complexity can be understood by the fact that for
time-continuous systems, chaotic systems can display different degrees of spatial
filling of the “populated” area in phase space. In this spirit, a high (fractal) dimen-
sion of a chaotic attractor close to the (integer) dimension of the corresponding
phase space gives rise to a more homogeneous filling than lower ones, which has
a natural geometric consequence for the possible path lengths between pairs of
sampled state vectors on the attractor. However, it needs to be noted that quantifying
dynamical complexity by means of OL suffers from two important drawbacks.

On the one hand, the measure is not normalized and depends crucially on the
choice of ". Hence, working in different methodological settings (e.g., using fixed
recurrence thresholds " vs. fixed recurrence rates RR D O�) can provide potentially
ambiguous results, since numerical values of OL cannot necessarily be directly
compared with each other.

On the other hand, even the qualitative behavior of OL in dependence on the
system’s dynamical complexity depends on whether the system is a discrete map or
time-continuous. In the latter case, a periodic orbit would result in a higher average
path length than a chaotic one, since a chaotic attractor is a “spatially extended”
object in phase space on which there are “shortcuts” between any two state vectors
connecting points corresponding to different parts of the trajectory [25]. In turn, for
discrete maps, a periodic orbit contains only a finite set of p mutually different state
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vectors, so that for sufficiently low " and large N , the RN is decomposed into p

disjoint, fully connected components. In such a situation with not just a few isolated
vertices, but a completely decomposed network, a reasonable redefinition of OL
would be summing up only over pairs of mutually reachable vertices in Eq. (4.16).
Consequently, we approach the minimum possible value of OL D 1 [66], whereas
chaotic orbits typically lead to larger OL .

According to the above observations, there is no fully developed theoretical
understanding and description of the influence of attractor dimensionality on
the resulting average path length beyond the general considerations presented in
Sect. 4.3. Corresponding further investigations might be an interesting subject for
future studies.

4.4.2.2 Network Transitivity

As mentioned in Sect. 4.4.1.2, the scaling exponent of a possible power-law degree
distribution has no direct relationship to the fractal dimension of the system. In
turn, such a relationship naturally exists when studying the corresponding integrated
measure (i.e., the edge density O�."/) in terms of its scaling properties as the recur-
rence threshold is systematically varied. The latter approach has been extensively
discussed in the literature in connection with the estimation of dynamical invariants
from RPs [31, 93] and gives rise to estimates of the correlation dimension D2.
Notably, one of the classical approaches to estimating D2 from time series data, the
Grassberger-Procaccia algorithm [42, 43], makes use of the correlation sum, which
can be easily formulated in terms of the recurrence rate or RN edge density.

The relatively high computational complexity of approaches to estimating the
correlation dimension from a RP stems from the fact that a sequence of RPs
for different values of " needs to be studied for obtaining a proper scaling
relationship. In turn, as shown by us in previous studies [26], network transitivity
provides an alternative approach to defining and estimating a different notion of
fractal dimension. For this purpose, note that for a classical RGG embedded in
some integer-dimensional metric space, the expected network transitivity (which is
numerically estimated as the ensemble mean over sufficiently many realizations of
the stochastic generation of the RGG) is an analytical function of the dimension m,
which decays (exactly when using the maximum norm, otherwise approximately)
exponentially with m [10]. This analytical relationship can be generalized to
attractor manifolds with non-integer fractal dimensions, which can in turn be
estimated from the RN transitivity by inverting this function.

For the general case, the latter idea leads to a pair of quantities referred to as
upper and lower transitivity dimensions [26],

Du
T D lim sup

"

log.T ."//

log.3=4/
; (4.70)

Dl
T D lim inf

"

log.T ."//

log.3=4/
; (4.71)
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where the two definitions originate from the fact that certain systems (in particular,
chaotic maps whose attractors form Cantor sets in at least one direction in phase
space [26]) can exhibit an oscillatory behavior between some upper and lower
accumulation point of T ."/ as the recurrence threshold " is varied. For systems
without such fragmented structure, upper and lower transitivity dimension seem
to coincide, which allows estimating them from the sample RN transitivity with
reasonable accuracy using only a single network instance with one suitably chosen
value of ". A detailed analytical investigation of the qualitatively different behavior
of the RN transitivity for chaotic attractors with continuous and fragmented invariant
densities in dependence on " will be subject of future work. Note that in the above
definition, we do not explicitly consider a scaling behavior for " ! 0, since the
definition does not explicitly contain " (as it is the case for other classical notions of
fractal dimensions), but makes use of normalized characteristics with a probabilistic
interpretation (cf. Sect. 4.3). In this spirit, the fraction on the right-hand side of the
former equations is a well-defined object for each value of " (i.e., the specific scale
under which the system is viewed) individually.

Figure 4.11a shows the behavior of the scale-dependent transitivity dimension
estimate ODT ."/ D log. OT ."//= log.3=4/ for the Rössler system Eq. (4.1) for three
different RN sizes. We clearly recognize that ODT ."/ assumes approximately stable
(i.e., N - and "-independent) values if the recurrence threshold is chosen sufficiently
large. In general, there exist two limits that need to be taken into account: For
too large recurrence rates, the RN characteristics lose their discriminatory skills,
since too many edges are present masking subtle small-scale properties of the
attractor [18, 24]. In turn, if " is too low (e.g., if O� is below the RN’s percolation
threshold) [18], the network decomposes into mutually disjoint components, and the
resulting network characteristics can become ambiguous. In the considered example
of the Rössler system, this decomposition is mainly caused by the rare excursions
of some cycles towards larger z values (cf. Fig. 4.1), which give rise to a poorly
populated region (low p.x/) of the attractor. In order to properly cover this part
of the attractor for a given ", many samples (i.e., a large network size N ) are
necessary. Otherwise, the edge density O� starts saturating as " gets smaller (at least
in the regime where most vertices close to the z D 0 plane are still connected,
cf. Fig. 4.11b), and the transitivity dimension estimates strongly deviate from their
expected values.

Notably, the analytical relationship [Eqs. (4.70) and (4.71)] between the effective
(geometric) dimension of chaotic attractors and RN transitivity provides the theo-
retical justification and foundation for applying OT as a characteristic discriminating
between high and low dynamical complexity of chaotic attractors. Unlike for OL , the
transitivity shows qualitatively the same behavior for discrete and time-continuous
systems and is normalized, so that its values can be directly used as a quantitative
measure of dynamical complexity associated with the effective geometric dimen-
sionality and, hence, structural complexity of the attractor in phase space.
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a

b

Fig. 4.11 (a) Dependence of
the transitivity dimension
ODT ."/ on the recurrence

threshold " for realizations of
the Rössler system Eq. (4.1)
with different lengths N

(sampling time �t D 0:05,
first part of the trajectory
removed to avoid possible
transient dynamics).
(b) Corresponding behavior
of the edge density O�. Note
the different scale on the
x axis

4.4.2.3 Other Network Characteristics

In addition to the aforementioned characteristics, there are also other RN measures
on both local and global scale that are able to trace changes in the dynamical
complexity of a given system [15, 111, 112]. In some cases, there are strong
conceptual interrelationships with the previously discussed properties [15], whereas
other measures (for example, the assortativity) require more complex considerations
for providing potential interpretations of the observed variability. In general, we
emphasize that as of today, transitivity and path length based characteristics provide
the computationally simplest and theoretically best understood tracers of dynamical
complexity based on RNs.
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Fig. 4.12 RN transitivity OT (a) and average path length OL (b) for a two-dimensional intersection
(a D b) of the three-dimensional parameter space of the Rössler system Eq. (4.1), displaying
“shrimp” structures (i.e., self-similar periodic windows with complex shape). For details, see [109]

4.4.2.4 Example: Tracing Bifurcations in the Rössler System

In order to illustrate the performance of RN transitivity OT and average path length
OL as tracers for qualitative changes in the dynamics of complex systems, we briefly

recall results originally obtained by the authors [109]. In the latter work, the RN
properties have been successfully used to discriminate between periodic and chaotic
solutions in a two-dimensional subspace (a D b) of the original three-dimensional
parameter space of the Rössler system.

As Fig. 4.12 reveals, there are sequences of transitions between periodic and
chaotic solutions. Specifically, we clearly see from the figure that the periodic
windows are characterized by higher values of OT and OL than the chaotic solutions,
which is in agreement with the general considerations discussed above. Specifically,
for the periodic windows, we find OT close to 0:75, the theoretical value for periodic
dynamics (i.e., a system with effective dimension of 1).

In a similar way, we may use the RN framework for capturing the signatures of
qualitative changes in the attractor’s shape and invariant density as a single control
parameter is varied systematically. In a previous study using the Rössler system, we
have investigated the RN properties across the transition from the classical phase-
coherent Rössler attractor to the non-coherent funnel regime [111]. Our results
indicate that phase coherence—in a similar spirit as fractal dimension—should be
characterized from a geometric rather than a dynamics viewpoint. However, as of
today there is no single RN-based index for phase coherence that has been explicitly
derived from theoretical considerations.

While the aforementioned results have been obtained for stationary systems,
i.e., independent realizations of the system at fixed parameter values, tracing
temporal changes in dynamical complexity of non-stationary systems is another
interesting field of application with numerous examples in the real-world. Using
model systems with drifting parameters such as the Lorenz [15] or Rössler systems
(see Fig. 4.13), it is possible to systematically evaluate the performance of RN
characteristics in a sliding windows framework, underlining their capabilities for
discriminating between qualitatively different types of dynamics and different
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a b

Fig. 4.13 (a) RN transitivity T and (b) average path length L for varying recurrence window size
W for the Rössler system Eq. (4.1) at a D b D 0:25 with linearly drifting bifurcation parameter
c over 10;000 time steps (sampling interval �t D 0:2). For constructing the RN, a single long
trajectory with the three original coordinates (i.e., no embedding) and initial values .x0; y0; z0/ D
.0; �10; 0/ was used. W was varied linearly in the interval .100; 500/, the recurrence window
step size was fixed to �W D 10. The threshold " has been set such as to yield O� D 0:05 in
all windows. Vertical dashed lines indicate the critical values of c marking transitions between
periodic and chaotic windows of the stationary system at about c D 31:7 and 37:3, respectively
(cf. Fig. 4.12)

degrees of complexity in non-stationary (transient) runs as well. For the example
of a linearly drifting control parameter c of the Rössler system (Fig. 4.13), we
find that the values at which bifurcations between periodic and chaotic behavior
occur in the non-stationary system do well coincide with the numerically estimated
bifurcation points of the autonomous system inferred from Fig. 4.12, indicating that
in the considered example, transient dynamics close to the bifurcation points does
not play a major role as long as the considered RNs are still sufficiently large to
obtain a reliable statistics.

4.4.3 Characterization of Local Dimensionality

With the same rationale as for the global network transitivity, we can make use
of the local clustering properties of RNs for defining local measures of attractor
dimensionality, referred to as upper and lower clustering dimensions [26]:

Du
C .x/ D lim sup

"

log.C .xI "//

log.3=4/
; (4.72)

Dl
C .x/ D lim inf

"

log.C .xI "//

log.3=4/
: (4.73)

Following the same argument as for the (global) transitivity dimensions, we do not
need to consider the limit " ! 0 here.
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With similar considerations regarding the possible existence of two distinct
accumulation points of C .x/ as " varies, we may utilize this framework for
characterizing the point-wise dimension of chaotic attractors in a unique way
without making explicit use of scaling characteristics as in the common point-wise
dimensions [26]. However, we need to keep in mind that the considered concept of
(geometric) dimensionality is largely affected by the profile of the invariant density,
e.g., the existence of sharp attractor boundaries or supertrack functions [23, 25, 26].
For example, if the attractor has distinct tips (e.g., in the case of the Hénon
system [25, 26]), the geometric dimension at these points is effectively reduced to
zero, which is reflected by OCv D 1 for vertices v sufficiently close to the tips. A
similar behavior can be observed for the logistic map at the attractor boundaries and
the supertrack functions [23, 25, 26].

The latter observations point to a prospective application of the local clustering
properties of RNs. In case of chaotic attractors of time-continuous dynamical
systems, it is known that an infinite number of unstable periodic orbits (UPOs)
provide the skeleton of the chaotic dynamics and are densely embedded in the
attractor. The localization of such UPOs is, however, known to be a challenging
task. Since UPOs are relatively weakly repulsive (from a practical perspective, those
UPOs with low periods are typically least unstable), a trajectory getting close to the
vicinity of an UPO will stay close to this orbit for some finite amount of time [55].
As a result, the dynamics close to UPOs is quasi one-dimensional, and state vectors
sampled from the trajectories approximate some lower-dimensional (in the limiting
case one-dimensional) subset of the attractor manifold. In such case, the above
theoretical considerations suggest that the local clustering coefficient OCv of vertices
v close to low-periodic UPOs should be higher than the values typical for other
parts of the chaotic attractor. This conceptual idea is supported by numerical results
from our previous work [24, 25] (cf. also the band structures with increased OCv

in Fig. 4.3b), but has not yet been systematically applied to the problem of UPO
localization. Notably, the detection limit of UPOs should be ultimately determined
by the recurrence threshold " in conjunction with the RN size N . Specifically,
for every finite " > 0, there are infinitely many UPOs intersecting with the "-
neighborhood of some point xv in phase space, whereas we will (for a finite sample
of state vectors) only resolve the signatures of the least unstable orbits.

4.4.4 Cross-Transitivity Properties and Coupling Asymmetry

The new class of statistical network measures designed for investigating the
topology of networks of networks discussed in Sect. 4.2.2 is readily applicable for
analyzing the interdependency structure of multiple complex dynamical systems.
For the special case of two coupled systems X and Y , we have demonstrated
numerically that in an IRN, the asymmetry intrinsic to the global measures cross-
transitivity OT XY and global cross-clustering coefficient OC XY can be exploited to
reliably detect the direction of coupling between chaotic oscillators over a wide
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range of coupling strengths, requiring only a relatively small number of samples
NX;Y � O.102 : : : 103/ [34]. For this purpose, we make again use of the fact that
transitivity-based characteristics quantify subtle geometric properties that can be
easily evaluated both analytically and numerically.

In order to see how cross-transitivities and global cross-clustering coefficients
capture dynamical signatures of asymmetric vs. symmetric coupling configurations,
let us assume a diffusive coupling with positive sign (i.e., an attractive interaction)
as in Eq. (4.2). In the uncoupled case, cross-triangles arise randomly according to
the sampling from the systems’ respective invariant densities. In this case, eventual
asymmetries between OT XY and OT YX (or, equivalently, OC XY and OC YX) originate from
the geometry of the respective sets and the associated p.x/, which should already be
reflected in the single-system RN transitivities and global clustering coefficients. In
turn, if both systems are represented by the same set of state variables (a prerequisite
for the application of IRNs) and obey similar values of OT X and OT Y ( OC X and OC Y ), it
is likely that also OT XY and OT YX ( OC XY and OC YX) take similar values. Note that minor
asymmetries in the interdependent network characteristics can already occur if both
systems are only weakly non-identical, e.g., when considering uncoupled identical
Rössler systems with just a small detuning of their natural frequencies [34].

Let us suppose now that there is a unidirectional coupling X ! Y . In this case,
the trajectory of the driven system Y is attracted by that of the driver X due to the
considered form of coupling. As a result, it is likely to find more states in Y that
are close to mutually connected pairs of states in X than in the uncoupled case.
This implies that OT YX ( OC YX) increases since X is “pulling” the trajectory of Y and,
hence, the number of triangles having their baseline in system X increases relatively
to those having their baseline in Y . Consequently, we expect to have OT YX > OT XY

and OC YX > OC XY , which is confirmed by numerical studies [34]. An alternative
way for understanding the observed asymmetry of the interdependent network
characteristics is illustrated in Fig. 4.14: moderate unidirectional coupling (below
the onset of synchronization) increases the driven system’s dimension [84, 110]
(we will numerically demonstrate this behavior in Sect. 4.4.5), so that some former
neighbors of pairs of recurrent states in X are not mutually close in Y anymore.
In this case, the number of “cross-triangles” with baseline in Y decreases in
comparison with those having their baseline in X . In fact, a corresponding decrease
in OT XY ( OC XY) and an increase in OT YX ( OC YX ) can often be observed in parallel (see
Fig. 4.15).

Figure 4.15 shows the illustrative example of global cross-clustering coefficients
for two unidirectionally coupled Rössler systems in the funnel regime with the same
parameters a, b and c, but a weak detuning of � D 0:02, following the setting of
[34]. The obtained results are consistent with our above heuristic explanation for
the emergence of asymmetries between the interdependent network characteristics
in the presence of unidirectional coupling. Specifically, for a wide range of
moderate coupling strengths, the difference between the two global cross-clustering
coefficients allows to correctly identify the direction of the imposed coupling.
At large coupling strengths (i.e., close to and beyond the onset of generalized
synchronization, which is indicated by the second largest Lyapunov exponent of
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Fig. 4.14 Schematic illustration of the dimensionality and thus resulting mutual neighborhoods
of state vectors xi and yj in the case of (a) uncoupled and (b) unidirectionally coupled systems.
Shaded areas represent the neighborhoods of the respective state vectors, filled squares indicate
recurrent states. In case (b), the coupling increases the driven system’s dimension, so that formerly
recurrent states are now outside of the neighborhood of yj . Thus, the number of “cross-triangles”
with baseline in Y (i.e., “from X to Y ”) decreases

Fig. 4.15 Global cross-clustering coefficients C XY (black), C YX (gray) and the four largest
Lyapunov exponents �1;:::;4 estimated using the Wolf algorithm [100] for two identically but
slightly detuned (� D 0:02) Rössler oscillators in the funnel regime subject to unidirectional
coupling X ! Y (left) and Y ! X (right). The shaded regions mark the values of the
coupling strength for which a correct identification of the coupling direction is achieved. Error
bars represent mean values and standard deviations taken from an ensemble of 200 independent
network realizations (with N D 1;500 data points per system)
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the system approaching zero as shown in Fig. 4.15), both global cross-clustering
coefficients become statistically indistinguishable, which is consistent with the fact
that the behavior of the driven system is completely locked to the dynamics of the
driver (cf. Sect. 4.4.5). In turn, the indistinguishability of both coupling directions
at very low coupling strengths is most likely due to the fact that the geometric
deformations of the driven system’s attractor are too small to be detected for the
given finite values of "X , "Y and "XY and the chosen network size. We expect that
for larger IRNs and smaller distance thresholds, the lower boundary of the interval
of coupling strengths for which the two global cross-clustering coefficients differ
statistically significantly from each other will shift towards zero.

We emphasize that the same results can be obtained using the cross-transitivity
replacing the global cross-clustering coefficient. Moreover, it is notable that the
reported distinction can already be obtained at comparably small network sizes of
some hundred vertices [34].

4.4.5 Joint Transitivity Properties and Synchronization

The concept of joint recurrence plots (JRPs) has been found very useful for
studying the otherwise hard to detect emergence of generalized synchronization
(GS) between two coupled chaotic systems X and Y [83]. GS describes the presence
of a general functional relationship between the trajectories of both systems, y.t/ D
f .x.t//, which can arise at sufficiently large coupling strengths in both uni- and
bidirectional coupling configurations. Most available methods for identifying GS
from time series data have been developed for driver-response relationships, and
only few approaches are also suitable for studying GS in the presence of symmetric
couplings [35]. Among the latter, JRPs have recently attracted specific interest.

Romano et al. [83] argued that in case of GS, recurrences in the two coupled
systems need to occur simultaneously (or with a given fixed time lag in the special
case of lag synchronization, y.t/ D f .x.t � �//). Hence, comparing the joint
recurrence rate JRR with the recurrence rates of the individual single-system RPs
(taken to be the same for both systems) should show convergence of both values. The
latter fact is quantified in terms of the joint probability of recurrence (JPR) index

JPR D max
�

S.�/ � RR

1 � RR
(4.74)

with the lagged joint recurrence rate ratio

S.�/ D 1

N 2 RR

NX
i;j D1

�."X � kxi � xj k/ �."Y � kyiC� � yj C�k/ (4.75)
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and RR being the recurrence rate taken equal for both considered systems. Since for
GS, we can expect that S.�/ ! 1 for some � , JPR ! 1. However, the latter measure
has some disadvantages. On the one hand, testing for significance of a specific value
of JPR usually requires complex surrogate data approaches for properly approximat-
ing the distribution of the underlying null hypothesis (no synchronization) adapted
to the specific time series under study [94]. On the other hand, comparing the single-
system and joint recurrence rates may be insufficient since due to the complexity
of fluctuations or the presence of stochastic components (observational noise), we
hardly ever capture all single-system recurrence in the JRP. Consequently, a solely
RR-based characterization does not necessarily lead to the expected “optimum”
value of the synchronization index (JPR D 1) in case of fully developed GS.

As an alternative, we have suggested that looking at higher-order characteris-
tics (specifically, three-point instead of two-point relationships) may improve the
results [35]. One convenient way is utilizing again the concept of transitivities
from RN and JRN. The exploitation of alternative higher-order characteristics might
be possible, but has not yet been explored. Notably, the specific requirements
on the time series data render JRNs a promising approach for detecting intricate
interconnections between qualitatively distinct observables in observational or
experimental real-world data.

As a heuristic indicator for the presence of GS, we have proposed using the
transitivity ratio [35]

OQT D
OT J

. OT X C OT Y /=2
; (4.76)

i.e., the ratio between the JRN transitivity and the arithmetic mean of the
single-system RN transitivities. The rationale behind this definition is that for
systems exhibiting GS, all degrees of freedom are completely locked, implying that
both approach the same effective (fractal) dimension and should thus have the same
RN transitivities, which approximately equal the JRN transitivity. Alternatively, we
could also use other means of OT X;Y , such as the geometric or harmonic means, for
obtaining a meaningful ratio. Numerical experiments show that using the arithmetic
mean provides values of OQT that are mostly confined to the interval Œ0; 1
 with
only minor exceedances in the fully developed GS regime [35]. Since the arithmetic
mean is always larger than the geometric one, normalizing with respect to the

geometric mean
p OT X OT Y would lead to higher values of OQT and, hence, an even

stronger violation of the desired normalization of the transitivity ratio. However,
even when considering the normalization by the arithmetic mean of single-system
RN transitivities, the thus defined transitivity ratio has two major drawbacks:

On the one hand, if the single-system RN transitivities are essentially different (a
case that has not been studied in [35]), the contribution of the lower-dimensional
system (higher transitivity) dominates the arithmetic mean in the denominator
of Eq. (4.76) and, hence, the transitivity ratio itself irrespective of a possible
well-defined driver-response relationship.
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On the other hand, there is no rigorous theoretical justification for OQT being
a good indicator of GS. Notably, the definition of the transitivity ratio is based
on the idea that the transitivities are related with the effective dimensions of the
individual systems. In the uncoupled case, the degrees of freedom of both systems
are independent; hence, the effective dimension of the composed system X ˝ Y is
expected to read DX˝Y D DX C DY (notably, due to the logarithmic transform
between RN transitivity and transitivity dimension, this additivity does not apply
to the RN transitivities). In turn, in case of GS, the degrees of freedom of both
systems become mutually locked, probably leading to DX˝Y D DX D DY (i.e.,
one system can be viewed as a—possibly nonlinear—projection of the other), with
DX and DY eventually differing from their values in the uncoupled case depending
on the specific coupling configuration (e.g., uni- versus bidirectional coupling).
Taking the estimated transitivity dimensions ODT X;Y as proxies for DX;Y and the

pseudo-dimension OQDT J D log. OT J /= log.3=4/ as an approximation of the true
dimension DX˝Y of the composed system X ˝ Y ,9 the latter case would translate
into OQT D 1, which is approximately attained in numerical studies for coupled
Rössler systems in different dynamical regimes [35].

In order to circumvent both problems, we suggest here utilizing an alternative
indicator, which is directly based on the concept of effective dimensions (degrees
of freedom) of the individual systems. In analogy with the mutual information
(sometimes also called redundancy [76,78]) frequently used in nonlinear time series
analysis, we define the transitivity dimension redundancies

OQDT R D ODT X C ODT Y � OQDT J ; (4.77)

ODT R D ODT X C ODT Y � ODT X˝Y ; (4.78)

which should assume zero values in the uncoupled case and exhibit ODT X D
ODT Y D ODT X˝Y D OQDT J in case of GS. In order to obtain a normalized measure

for the presence of GS, we define the dimensional locking index (DLI)

̂
D̃LI D

OQDT R

OQDT J

; (4.79)

D̂LI D
ODT R

ODT X˝Y

: (4.80)

9In fact, we should take here the transitivity dimension of the RN obtained for X ˝ Y , i.e.,
ODT X˝Y D log. OT X˝Y /= log.3=4/, which is in general not identical to the pseudo-dimension
OQDT J due to the different metrics used for the definition of recurrences of X ˝ Y and joint

recurrences of X and Y .
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Fig. 4.16 Joint transitivity OT J , single-system RN transitivities OT X;Y , corresponding transitivity

dimensions ODT X , ODT Y and derived dimensional locking index
̂
D̃LI (from top to bottom) for two

unidirectionally coupled Rössler systems (X ! Y ) in the funnel regime with � D 0:02 (driver
oscillates faster than driven system, left panels) and � D �0:02 (right panels). The error bars
indicate mean values and standard deviations estimated from 100 independent network realizations
for each value of the coupling strength �XY . For transitivities and transitivity dimensions, red
(black) lines correspond to the values for system X (Y )

Notably, this index is tailored to the dimensionality interpretation of RN tran-
sitivity. In a strict sense, this argument only applies if using the single-system
RN transitivity (dimension) of the composed system X ˝ Y instead of the JRN

transitivity (dimension) OQDT J . However, at this point, we suggest using the latter
as an approximation. A detailed comparison between the two definitions will be
subject to future research.

In order to further illustrate the behavior of the (J)RN-based characteristics for
detecting the emergence of GS, we reconsider the example of two unidirectionally
coupled identical but slightly detuned Rössler systems from Sect. 4.4.4. In contrast
to [35], who studied different settings for uni- and bidirectional configurations
with single realizations of the same system, we present here results obtained from
ensembles of realizations. The results shown in Fig. 4.16 demonstrate that the
estimated values of T J and gDLI exhibit a marked increase at the onset of GS.
Specifically, the new DLI index approaches one (with little overshooting) in the
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synchronized regime as expected, but takes values of only about 0:2 or lower in the
non-synchronous case (in comparison with values of about 0:7 exhibited by QT ,
cf. Fig. 2b in [35]).

As a second important observation, we find a systematic and significant decrease
in the RN transitivity of the driven system at moderate coupling strengths before the
onset of GS, which corresponds to an increase of the associated transitivity dimen-
sion. This behavior is precisely what was claimed in the context of coupling analysis
in Sect. 4.4.4 for providing an explanation of the numerically observed asymmetry
between the transitivity-based interdependent network characteristics. These results
underline that some integrated utilization of single-system, inter-system and joint
recurrence networks can eventually provide deep insights into the coupling regime
and strength from bivariate observations.

4.4.6 Real-World Applications

Although much recent work on RNs and multivariate generalizations thereof has
been focused on the development of the theoretical framework and its numerical
exploration using simple low-dimensional model systems, there have already
been some first successful applications to characterizing system’s properties from
experimental or observational time series.

4.4.6.1 Applications in Climatology

One important field of recent applications is paleoclimatology, which has already
been taken as an illustrative example in the seminal paper by Marwan et al. [66].
The corresponding study was later extended to some systematic investigation of
the temporal variability profile of RN-based complexity measures for three marine
sediment records of terrigenous dust flux off Africa during the last 5 million years.
Donges et al. [15] argued that RNs can be used for characterizing dynamics from
non-uniformly sampled or age-uncertain data, since this methodological approach
does not make explicit use of time information. In turn, due to the necessity of
using time-delay embedding, there is implicit time information entering the analysis,
which has been recognized but widely neglected in previous works. Notably,
disregarding age uncertainty and sampling heterogeneity appears a reasonable
approximation only in cases where the distribution of instantaneous sampling rates
remains acceptably narrow.

The results of Donges et al. [16] pointed to the existence of spatially coherent
changes in the long-term variability of environmental conditions over Africa, which
have probably influenced the evolution of human ancestor species. Specifically, RN
transitivity and average path length have been interpreted as indicators for “climate
regularity” (i.e., the complexity of fluctuations as captured by the transitivity
dimensions) and “abrupt dynamical changes”, respectively. By identifying three
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time intervals with consistent changes of the RN properties obtained from spatially
widely separated records, it has been possible to attribute the corresponding
long-term changes in the dynamics to periods characterized by known or speculated
mechanisms for large-scale climate shifts such as changes in the Indian ocean
circulation patterns, the intensification of the atmospheric Walker circulation,
or changes in the dominant periodicity of Northern hemispheric glacial cycles.
Moreover, Donges et al. [15] demonstrated a good robustness of the results of RN
analysis obtained in a sliding windows framework when varying the corresponding
parameters (e.g., window size or embedding delay) over a reasonable range.

As another methodological step towards better understanding climatic mecha-
nisms, the authors have used two speleothem records for studying interdependencies
between the two main branches of the Asian summer monsoon (the Indian and East
Asian summer monsoon) by means of IRNs [34]. For this purpose, they selected two
data sets of oxygen isotope anomalies from speleothems obtained from two caves in
China and the Oman, respectively, which can be considered as proxies for the annual
precipitation and, hence, the overall strength of the two monsoon branches over the
last about 10,000 years. The asymmetries of the IRN cross-transitivities and global
cross-clustering coefficients provided clear evidence for a marked influence of the
Indian summer monsoon on the East Asian branch rather than vice versa, which is
in good agreement with existing climatological theories. As a subsequent extension
of this work, we emphasize the possibility of repeating the same kind of analysis
in a sliding windows framework, thereby gaining information on possible temporal
changes of the associated climatic patterns during certain time periods as recently
revealed using correlation-based complex network analysis applied to a larger set of
paleoclimate records from the Asian monsoon domain [81].

In order to characterize dynamical complexity associated with more recent
environmental variability, Lange and Böse [6,54] used RQA as well as RN analysis
for studying global photosynthetic activity from remote sensing data in conjunction
with global precipitation patterns. Specifically, they studied 14-years long time
series (1998–2011) of the fraction of absorbed photosynthetically active radiation
(faPAR) with a spatial resolution of 0.5o around the Earth and a temporal sampling
of about 10 days, providing time series of N D 504 data points. Their results
revealed very interesting spatial complexity patterns, which have been largely, but
not exclusively determined by the amplitude of the annual cycle of vegetation
growth in different ecosystems.

4.4.6.2 Applications in Fluid Dynamics

In a series of papers, Gao et al. investigated the emerging complexity of dynamical
patterns in two-phase gas–liquid or oil–water flows in different configurations using
RN techniques. In general, multiple sensors measuring fluctuations of electrical
conductance have been used for obtaining signals that are characteristic for the
different flow patterns. For gas–liquid two-phase upward flows in vertical pipes,
different types of complex networks generated from observational data have been
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proposed, among which the degree correlations (assortativity) of RNs was proven to
be particularly useful for distinguishing between qualitatively different flow types
[38]. For oil–water two-phase upward flows in a similar configuration, the global
clustering coefficient of RNs reveals a marked increase in dynamical complexity
(detectable in terms of a decreasing OC ) as the flow pattern changes from slug
flow over coarse to very finely dispersed bubble flow [40]. In case of oil–water
two-phase flows in inclined pipes [39], the motif distributions of RNs (specifically,
the frequency distributions of small subgraphs containing exactly four vertices)
revealed an increasing degree of heterogeneity, where the motif ranking was
conserved in all experimental conditions, whereas the absolute motif frequency dra-
matically changed. The corresponding results were independently confirmed using
some classical measures of complexity, which indicated increasing complexity in
conjunction with increasing heterogeneity of the RN motif distributions. Finally,
for characterizing horizontal oil–water flows [41], RN and IRN analysis were
combined for studying conductance signals from multiple sensors. Specifically,
cross-transitivity was found a useful measure for tracing the transitions between
stable stratified and unstable states associated with the formation of droplets.

4.4.6.3 Applications in Electrochemistry

Zou et al. [112] studied the complexity of experimental electrochemical oscil-
lations as one control parameter of the experiments (temperature) was system-
atically varied. By utilizing a multitude of complementary RN characteristics,
they could demonstrate a systematic rise in dynamical complexity as temperature
increased, but an absence of a previously speculated phase transition [98] separating
phase-coherent from noncoherent chaotic oscillations. The latter results were inde-
pendently confirmed using other classical indicators for phase coherence, as well
as studies of a corresponding mathematical model of the specific electrochemical
processes.

4.4.6.4 Applications in Medicine

Finally, there have been a couple of successful applications in a medical context.
Marwan et al. [67] demonstrated that the global clustering coefficients of RNs
obtained from heartbeat intervals, diastolic and systolic blood pressure allowed
a reliable identification of patients with pre-eclampsia, a cardiovascular disease
during pregnancy with a high risk of fetal and maternal morbidity. Their results were
further improved by Ramírez et al. [79,80] who considered combinations of various
RN-based network characteristics. In a similar spirit as for cardiovascular diseases,
recent results point to the capability of RN characteristics for discriminating
between the EEG signals of healthy and epileptic patients [90].
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4.5 Related Approaches

Besides the recurrence definition based on a fixed distance threshold " in phase
space (i.e., equal neighborhood volumes around all available state vectors), there are
alternative ways for defining recurrences and, hence, RPs and RNs. For example, the
original definition of a RP by Eckmann et al. [30] makes use of k-nearest neighbors
(i.e., a fixed probability mass of the considered neighborhoods). Re-interpreting the
resulting recurrence matrix as the adjacency matrix of a complex network leads to a
different type of RN [88], typically referred to as k-nearest neighbor network [27].
Since in this definition, the neighborhood relation is not symmetric (i.e., xj being
among the k nearest neighbors of xi does not imply xi also being among the k

nearest neighbors of xj ), the resulting networks are in general directed graphs, and
the local density of unidirectional edges (as opposed to bidirectional ones) is related
to the gradient of the invariant density.

In order to circumvent the directedness of k-nearest neighbor networks, Xu et al.
[89, 101] proposed an algorithm for balancing the neighborhood relationships in
such a way that they become symmetric again. The resulting networks embedded
in phase space, sometimes also referred to as adaptive nearest neighbor networks
[27], are conceptually more similar to classical ("-)RNs, but still exhibit somewhat
different topological characteristics. In particular, the motif distribution of adaptive
nearest neighbor networks has been shown to allow a discrimination between
different types of dynamics in terms of a different motif ranking [61, 101].
Consequently, this approach has been mainly used for such discriminatory tasks,
including applications to turbulence phenomena, stock markets [61] or instrumental
music [27].

For a detailed discussion of the differences between "-RNs, k-nearest neighbor
and adaptive nearest neighbor networks, we refer to [27]. While these three classes
of time series networks exhibit very strong conceptual similarities (the same applies
to correlation networks [102] if interpreting the correlation coefficient between two
sufficiently high-dimensional state vectors as a generalized distance), the approach
proposed by Li et al. [57, 58] can be understood as being derived from the RN idea.
Here, for a set of m-dimensional embedding vectors, all mutual Euclidean distances
are computed. Based on the maximum point-wise Euclidean distance dmax.m/, the
threshold distance of a RN is taken as ".m/ D dmax.m/=.N � 1/. This procedure
is repeated for different m, and the critical value of the embedding dimension
for which the resulting network gets completely disconnected is interpreted as
a complexity index [8]. However, it has not yet been demonstrated that this
algorithmic approach has any conceptual benefits in comparison with the classical
RN transitivity obtained for a fixed embedding dimension.

Another conceptual approach loosely related to RNs provides the foundation of
the frequency-degree mapping algorithm introduced by Li et al. [59]. Here, the
resulting time series networks contain two types of edges: (1) temporal edges con-
necting subsequent points in time, and (2) proximity edges containing observations
of similar values, where similarity is defined by an initial grouping of the data
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into a discrete set of classes, and observed values being connected if and only if
they belong to the same class. Notably, the latter approach combines the classical
recurrence idea and basic concepts of symbolic dynamics [11]. In this spirit, the
resulting network’s adjacency matrix is given as the recurrence matrix associated
with a symbolic recurrence plot [4, 22, 32] plus a “stripe” around the matrix’ main
diagonal. The frequency-degree mapping algorithm has been successfully applied
to characterizing signatures of various types of ventricular arrhythmias in human
heart beat time series [59].

4.6 Summary

This work has provided an overview on the current state of complex network
approaches to quantifying nonlinear dynamics based on recurrence plots. This
emerging field has already proven its great potentials by addressing methodological
questions common to various fields of research, such as the characterization
of complexity, the identification of dynamical transitions in non-stationary time
series, and the detection of asymmetric coupling and generalized synchronization
from bivariate records. In all these areas, recurrence networks and multivariate
generalizations thereof have been successfully applied to model systems and at least
partially also to real-world observational or experimental data. The results available
so far suggest reasonable numerical properties and, hence, a wide applicability
of this approach. Moreover, the quantitative analysis of recurrence networks is
supported by a rigorous analytical framework derived from the theory of random
geometric graphs. In turn, unlike other recurrence plot-based analysis concepts,
recurrence networks characterize geometric properties of the system under study
rather than dynamical ones. However, since geometry and dynamics are known
to be closely interrelated, the network-based approach is still useful for obtaining
information on dynamical complexity and related aspects as reflected in the system’s
structural features.

Beyond exclusively reviewing recent results, we have also discussed some new
aspects not yet found in the previous peer-reviewed literature: (1) an analytical
framework for inter-system recurrence networks providing a possible foundation
for a future analytical understanding of geometric signatures of coupling between
dynamical systems, (2) a straightforward extension of joint recurrence plots and
joint recurrence networks to a less restrictive definition, which could allow studying
synchronization processes between noisy systems based on recurrence plots, and (3)
the introduction of a new index for generalized synchronization, which is expected
to yield a better performance than other recent recurrence-based indices. The latter
three aspects open new perspectives for both an improved theoretical understanding
of geometric effects of coupling and synchronization and applications in various
contexts. We outline corresponding further investigations as an important research
avenue for our future work.



158 R.V. Donner et al.

Acknowledgements The reported development of the recurrence network framework has been a
community effort. Among other colleagues, we particularly acknowledge important contributions
by Jobst Heitzig and Norbert Marwan, as well as multiple inspiring discussions with Jürgen
Kurths. Financial support of this work has been granted by the German Federal Environmental
Agency, the European Union Seventh Framework Program, the Max Planck Society, the Stordalen
Foundation, the German Research Association via the IRTG 1740 “Dynamical phenomena in
complex networks”, the National Natural Science Foundation of China (Grant No. 11305062,
11135001), and the German Federal Ministry for Science and Education (project CoSy-CC2 ,
grant no. 01LN1306A). Numerical codes used for estimating recurrence network properties can be
found in the software package pyunicorn [20], which is available at http://tocsy.pik-potsdam.
de/pyunicorn.php.

References

1. R. Albert, A.L. Barabasi, Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1),
47–97 (2002). doi:10.1103/RevModPhys.74.47

2. M.J. Barber, Modularity and community detection in bipartite networks. Phys. Rev. E 76(6),
066102 (2007). doi:10.1103/PhysRevE.76.066102

3. A. Barrat, M. Weigt, On the properties of small-world network models. Eur. Phys. J. B 13,
547–560 (2000). doi:10.1007/s100510050067

4. P. beim Graben, A. Hutt, Detecting recurrence domains of dynamical systems by symbolic
dynamics. Phys. Rev. Lett. 110, 154101 (2013). doi:10.1103/PhysRevLett.110.154101

5. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Complex networks: structure
and dynamics. Phys. Rep. 424(4–5), 175–308 (2006). doi:10.1016/j.physrep.2005.10.009

6. S. Böse, Recurrence network analysis of remote sensing data. Master’s thesis, University of
Bayreuth (2012)

7. S.V. Buldyrev, R. Parshani, G. Paul, H.E. Stanley, S. Havlin, Catastrophic cascade of failures
in interdependent networks. Nature 464(7291), 1025–1028 (2010). doi:10.1038/nature08932

8. H. Cao, Y. Li, Unraveling chaotic attractors by complex networks to measure the complexity
of stock markets. Chaos. 24(1), 013134 (2014). doi:10.1063/1.4868258

9. L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas: Characterization of
complex networks: a survey of measurements. Adv. Phys. 56(1), 167–242 (2007).
doi:10.1080/00018730601170527

10. J. Dall, M. Christensen, Random geometric graphs. Phys. Rev. E 66(1), 016121 (2002).
doi:10.1103/PhysRevE.66.016121

11. C.S. Daw, C.E.A. Finney, E.R. Tracy, A review of symbolic analysis of experimental data.
Rev. Sci. Instrum. 74(2), 915–930 (2003). doi:10.1063/1.1531823

12. J. Donges, Functional network macroscopes for probing past and present earth system
dynamics: complex hierarchical interactions, tipping points, and beyond. Ph.D. thesis,
Humboldt University, Berlin, 2012

13. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, The backbone of the climate network. Europhys.
Lett. 87(4), 48007 (2009). doi:10.1209/0295-5075/87/48007

14. J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Complex networks in climate dynamics:
comparing linear and nonlinear network construction methods. Eur. Phys. J. Spec. Top. 174,
157–179 (2009). doi:10.1140/epjst/e2009-01098-2

15. J.F. Donges, R.V. Donner, K. Rehfeld, N. Marwan, M.H. Trauth, J. Kurths, Identification
of dynamical transitions in marine palaeoclimate records by recurrence network analysis.
Nonlinear Process. Geophys. 18(5), 545–562 (2011). doi:10.5194/npg-18-545-2011

16. J.F. Donges, R.V. Donner, M.H. Trauth, N. Marwan, H.J. Schellnhuber, J. Kurths, Nonlinear
detection of paleoclimate-variability transitions possibly related to human evolution. Proc.
Natl. Acad. Sci. USA 108, 20422–20427 (2011). doi:10.1073/pnas.1117052108

http://tocsy.pik-potsdam.de/pyunicorn.php
http://tocsy.pik-potsdam.de/pyunicorn.php
http://10.1103/RevModPhys.74.47
http://10.1103/PhysRevE.76.066102
http://10.1007/s100510050067
http://10.1103/PhysRevLett.110.154101
http://10.1016/j.physrep.2005.10.009
http://10.1038/nature08932
http://10.1063/1.4868258
http://10.1080/00018730601170527
http://10.1103/PhysRevE.66.016121
http://10.1063/1.1531823
http://10.1209/0295-5075/87/48007
http://10.1140/epjst/e2009-01098-2
http://10.5194/npg-18-545-2011
http://10.1073/pnas.1117052108


4 Complex Network Analysis of Recurrences 159

17. J.F. Donges, H.C.H. Schultz, N. Marwan, Y. Zou, J. Kurths, Investigating the topology
of interacting networks. Eur. Phys. J. B 84(4), 635–652 (2011). doi:10.1140/epjb/e2011-
10795-8

18. J.F. Donges, J. Heitzig, R.V. Donner, J. Kurths, Analytical framework for recurrence network
analysis of time series. Phys. Rev. E 85, 046105 (2012). doi 10.1103/PhysRevE.85.046105

19. J.F. Donges, R.V. Donner, J. Kurths, Testing time series irreversibility using complex network
methods. Europhys. Lett. 102(1), 10004 (2013). doi:10.1209/0295-5075/102/10004

20. J.F. Donges, J. Heitzig, J. Runge, H.C.H. Schultz, M. Wiedermann, A. Zech, J.
Feldhoff, A. Rheinwalt, H. Kutza, A. Radebach, et al.: Advanced functional network analysis
in the geosciences: the pyunicorn package. Geophys. Res. Abstr. 15, 3558 (2013)

21. R.V. Donner, J.F. Donges, Visibility graph analysis of geophysical time series: potentials and
possible pitfalls. Acta Geophysica 60(3), 589–623 (2012). doi:10.2478/s11600-012-0032-x

22. R. Donner, U. Hinrichs, B. Scholz-Reiter, Symbolic recurrence plots: a new quantitative
framework for performance analysis of manufacturing networks. Eur. Phys. J. Spec. Top.
164, 85–104 (2008). doi:10.1140/epjst/e2008-00836-2

23. R.V. Donner, J.F. Donges, Y. Zou, N. Marwan, J. Kurths, Recurrence-based evolving networks
for time series analysis of complex systems, in Proceedings of the International Symposium
on Nonlinear Theory and its Applications (NOLTA 2010) (2010), pp. 87–90

24. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Ambiguities in recurrence-based
complex network representations of time series. Phys. Rev. E 81(1), 015101(R) (2010).
doi:10.1103/PhysRevE.81.015101

25. R.V. Donner, Y. Zou, J.F. Donges, N. Marwan, J. Kurths, Recurrence networks: a
novel paradigm for nonlinear time series analysis. New J. Phys. 12(3), 033025 (2010).
doi:10.1088/1367-2630/12/3/033025

26. R.V. Donner, J. Heitzig, J.F. Donges, Y. Zou, N. Marwan, J. Kurths, The geometry of
chaotic dynamics: a complex network perspective. Eur. Phys. J. B 84(4), 653–672 (2011).
doi:10.1140/epjb/e2011-10899-1

27. R.V. Donner, M. Small, J.F. Donges, N. Marwan, Y. Zou, R. Xiang, J. Kurths, Recurrence-
based time series analysis by means of complex network methods. Int. J. Bifurcat. Chaos
21(4), 1019–1046 (2011). doi:10.1142/S0218127411029021

28. N. Du, B. Wang, B. Wu, Y. Wang, Overlapping community detection in bipartite networks,
in Proceedings of the 2008 IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology, vol. 01 (IEEE Computer Society, Washington, DC, 2008),
pp. 176–179. doi:10.1109/WIIAT.2008.98

29. J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57,
617–656 (1985). doi:10.1103/RevModPhys.57.617

30. J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems. Europhys.
Lett.4(9), 973–977 (1987). doi:10.1209/0295-5075/4/9/004

31. P. Faure, H. Korn, A new method to estimate the Kolmogorov entropy from recurrence plots:
its application to neuronal signals. Physica D 122(1–4), 265–279 (1998). doi:10.1016/S0167-
2789(98)00177-8

32. P. Faure, A. Lesne, Recurrence plots for symbolic sequences. Int. J. Bifurcat. Chaos 20(6),
1731–1749 (2010). doi:10.1142/S0218127410026794

33. J. Feldhoff, Multivariate extensions of recurrence network analysis. Master’s thesis, Hum-
boldt University, Berlin (2011)

34. J.H. Feldhoff, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Geometric detection of
coupling directions by means of inter-system recurrence networks. Phys. Lett. A 376(46),
3504–3513 (2012). doi:10.1016/j.physleta.2012.10.008

35. J.H. Feldhoff, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Geometric signature of
complex synchronisation scenarios. Europhys. Lett. 102(3), 30007 (2013). doi:10.1209/0295-
5075/102/30007

36. S. Fortunato, Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010).
doi:10.1016/j.physrep.2009.11.002

http://10.1140/epjb/e2011-10795-8
http://10.1103/PhysRevE.85.046105
http://10.1209/0295-5075/102/10004
http://10.2478/s11600-012-0032-x
http://10.1140/epjst/e2008-00836-2
http://10.1103/PhysRevE.81.015101
http://10.1088/1367-2630/12/3/033025
http://10.1140/epjb/e2011-10899-1
http://10.1142/S0218127411029021
http://10.1109/WIIAT.2008.98
http://10.1103/RevModPhys.57.617
http://10.1209/0295-5075/4/9/004
http://10.1016/S0167-2789(98)00177-8
http://10.1142/S0218127410026794
http://10.1016/j.physleta.2012.10.008
http://10.1209/0295-5075/102/30007
http://10.1016/j.physrep.2009.11.002


160 R.V. Donner et al.

37. A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual
information. Phys. Rev. A 33(2), 1134–1140 (1986). doi:10.1103/PhysRevA.33.1134

38. Z. Gao, N. Jin, Flow-pattern identification and nonlinear dynamics of gas-liquid two-
phase flow in complex networks. Phys. Rev. E 79(6), 066303 (2009). doi:10.1103/Phys-
RevE.79.066303

39. Z.K. Gao, N.D. Jin, W.X. Wang, Y.C. Lai, Motif distributions in phase-space networks for
characterizing experimental two-phase flow patterns with chaotic features. Phys. Rev. E 82,
016210 (2010). doi:10.1103/PhysRevE.82.016210

40. Z.K. Gao, X.W. Zhang, M. Du, D.D. Jin, Recurrence network analysis of experi-
mental signals from bubbly oil-in-water flows. Phys. Lett. A 377, 457–462 (2013).
doi:10.1016/j.physleta.2012.12.017

41. Z.K. Gao, X.W. Zhang, D.D. Jin, R. Donner, N. Marwan, J. Kurths, Recurrence networks
from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified
flows. Europhys. Lett. 103(5), 50004 (2013). doi:10.1209/0295-5075/103/50004

42. P. Grassberger, Generalized dimensions of strange attractors. Phys. Lett. A 97(6), 227–230
(1983). doi:10.1016/0375-9601(83)90753-3

43. P. Grassberger, I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett. 50(5),
346–349 (1983). doi:10.1103/PhysRevLett.50.346

44. J.L. Guillaume, M. Latapy, Bipartite structure of all complex networks. Inf. Process. Lett.
90(5), 215–221 (2004). doi:10.1016/j.ipl.2004.03.007

45. J.L. Guillaume, M. Latapy, Bipartite graphs as models of complex networks. Physica A
371(2), 795–813 (2006). doi:10.1016/j.physa.2006.04.047

46. R. Guimerà, M. Sales-Pardo, L.A.N. Amaral, Module identification in bipartite and directed
networks. Phys. Rev. E 76(3), 036102 (2007). doi:10.1103/PhysRevE.76.036102

47. C. Herrmann, M. Barthélemy, P. Provero, Connectivity distribution of spatial networks. Phys.
Rev. E 68(2), 026128 (2003). doi:10.1103/PhysRevE.68.026128

48. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press,
Cambridge, 1997)

49. M.B. Kennel, R. Brown, H.D.I. Abarbanel, Determining embedding dimension for
phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411
(1992). doi:10.1103/PhysRevA.45.3403

50. M. Kitsak, D. Krioukov, Hidden variables in bipartite networks. Phys. Rev. E 84, 026114
(2011). doi:10.1103/PhysRevE.84.026114

51. L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J.C. Nuno, From time series to complex
networks: the visibility graph. Proc. Natl. Acad. Sci. USA 105(13), 4972–4975 (2008).
doi:10.1073/pnas.0709247105

52. L. Lacasa, B. Luque, J. Luque, J.C. Nuno, The visibility graph: a new method for estimating
the Hurst exponent of fractional Brownian motion. Europhys. Lett. 86(3), 30001 (2009).
doi:10.1209/0295-5075/86/30001

53. L. Lacasa, A. Nuñez, E. Roldán, J.M.R. Parrondo, B. Luque, Time series irreversibility: a
visibility graph approach. Eur. Phys. J. B 85, 217 (2012). doi:10.1040/epjb/e2012-20809-8

54. H. Lange, S. Böse, Recurrence quantification and recurrence network analysis of global
photosynthetic activity, in Recurrence Quantification Analysis: Theory and Best Practices,
ed. by C.L. Webber, N. Marwan (Springer, Berlin, 2014, Chap. 12 of this volume)

55. D.P. Lathrop, E.J. Kostelich, Characterization of an experimental strange attractor by
periodic-orbits. Phys. Rev. A 40(7), 4028–4031 (1989). doi:10.1103/PhysRevA.40.4028

56. S. Lehmann, M. Schwartz, L.K. Hansen, Biclique communities. Phys. Rev. E 78(1), 016108
(2008). doi:10.1103/PhysRevE.78.016108

57. Y. Li, H. Cao, Y. Tan, A comparison of two methods for modeling large-scale data from time
series as complex networks. AIP Adv. 1, 012103 (2011). doi:10.1063/1.3556121

58. Y. Li, H. Cao, Y. Tan, Novel method of identifying time series based on network graphs.
Complexity 17, 13–34 (2011). doi:10.1002/cplx.20384

http://10.1103/PhysRevA.33.1134
http://10.1103/PhysRevE.79.066303
http://10.1103/PhysRevE.82.016210
http://10.1016/j.physleta.2012.12.017
http://10.1209/0295-5075/103/50004
http://10.1016/0375-9601(83)90753-3
http://10.1103/PhysRevLett.50.346
http://10.1016/j.ipl.2004.03.007
http://10.1016/j.physa.2006.04.047
http://10.1103/PhysRevE.76.036102
http://10.1103/PhysRevE.68.026128
http://10.1103/PhysRevA.45.3403
http://10.1103/PhysRevE.84.026114
http://10.1073/pnas.0709247105
http://10.1209/0295-5075/86/30001
http://10.1040/epjb/e2012-20809-8
http://10.1103/PhysRevA.40.4028
http://10.1103/PhysRevE.78.016108
http://10.1063/1.3556121
http://10.1002/cplx.20384


4 Complex Network Analysis of Recurrences 161

59. X. Li, D. Yang, X. Liu, X.M. Wu, Bridging time series dynamics and complex network theory
with application to electrocardiogram analysis. IEEE Circuits Syst. Mag. 12(4), 33–46 (2012).
doi:10.1109/MCAS.2012.2221521

60. P.G. Lind, M.C. González, H.J. Herrmann, Cycles and clustering in bipartite networks. Phys.
Rev. E 72(5), 056127 (2005). doi:10.1103/PhysRevE.72.056127

61. C. Liu, W.X. Zhou, Superfamily classification of nonstationary time series based on DFA
scaling exponents. J. Phys. A 43, 495005 (2009). doi:10.1088/1751-8113/43/49/495005

62. B. Luque, L. Lacasa, F. Ballesteros, J. Luque, Horizontal visibility graphs: exact results for
random time series. Phys. Rev. E 80(4), 046103 (2009). doi:10.1103/PhysRevE.80.046103

63. N. Marwan, J. Kurths, Nonlinear analysis of bivariate data with cross recurrence plots. Phys.
Lett. A 302(56), 299–307 (2002). doi:10.1016/S0375-9601(02)01170-2

64. N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence plot based
measures of complexity and its application to heart rate variability data. Phys. Rev. E 66(2),
026702 (2002). doi:10.1103/PhysRevE.66.026702

65. N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex
systems. Phys. Rep. 438(5–6), 237–329 (2007). doi:10.1016/j.physrep.2006.11.001

66. N. Marwan, J.F. Donges, Y. Zou, R.V. Donner, J. Kurths, Complex network approach
for recurrence analysis of time series. Phys. Lett. A 373(46), 4246–4254 (2009).
doi:10.1016/j.physleta.2009.09.042

67. N. Marwan, N. Wessel, J. Kurths, Recurrence based complex network analysis of cardiovas-
cular variability data to predict pre-eclampsia, in Proceedings of Biosignals 2010, 2010, 022

68. S. Milgram, Small-world problem. Psychol. Today 1(1), 61–67 (1967)
69. T. Murata, Detecting communities from bipartite networks based on bipartite modular-

ities, in Proceedings of the 2009 International Conference on Computational Science
and Engineering, vol. 04 (IEEE Computer Society, Washington, DC, 2009), pp. 50–57.
doi:10.1109/CSE.2009.81

70. M.E.J. Newman, The structure and function of complex networks. SIAM Rev. 45(2), 167–256
(2003). doi:10.1137/S003614450342480

71. M.E.J. Newman, Detecting community structure in networks. Eur. Phys. J. B 38(2), 321–330
(2004). doi:10.1140/epjb/e2004-00124-y

72. X.H. Ni, Z.Q. Jiang, W.X. Zhou, Degree distributions of the visibility graphs mapped from
fractional Brownian motions and multifractal random walks. Phys. Lett. A 373(42), 3822–
3826 (2009). doi:10.1016/j.physleta.2009.08.041

73. G. Nicolis, A. García Cantú, C. Nicolis, Dynamical aspects of interaction networks. Int.
J. Bifurcat. Chaos 15(11), 3467–3480 (2005). doi:10.1142/S0218127405014167

74. E.M. Oblow, Supertracks, supertrack functions and chaos in the quadratic map. Phys. Lett. A
128(8), 406–412 (1988). doi:10.1016/0375-9601(88)90119-3

75. E. Ott, Chaos in Dynamical Systems, 2nd edn. (Cambridge University Press, Cambridge,
2002)

76. M. Paluš, Testing for nonlinearity using redundancies: quantitative and qualitative aspects.
Physica D 80, 186–205 (1995). doi:10.1016/0167-2789(95)90079-9

77. M. Penrose, Random Geometric Graphs, (Oxford University Press, Oxford, 2003)
78. D. Prichard, J. Theiler, Generalized redundancies for time series analysis. Physica D 84, 476–

493 (1995). doi:10.1016/0167-2789(95)00041-2
79. G. Ramírez Ávila, A. Gapelyuk, N. Marwan, T. Walther, H. Stepan, J. Kurths, N. Wessel, Clas-

sification of cardiovascular time series based on different coupling structures using recurrence
networks analysis. Phil. Trans. P. Soc. A 371, 20110623 (2013). doi:10.1098/rsta.2011.0623

80. G. Ramírez Ávila, A. Gapelyuk, N. Marwan, H. Stepan, J. Kurths, T. Walther, N. Wes-
sel, Classifying healthy women and preeclamptic patients from cardiovascular data using
recurrence and complex network methods. Autonom. Neurosci. 178(1–2), 103–110 (2013).
doi:10.1016/j.autneu.2013.05.003

81. K. Rehfeld, N. Marwan, S.F.M. Breitenbach, J. Kurths, Late Holocene Asian summer
monsoon dynamics from small but complex networks of paleoclimate data. Clim. Dyn. 41(1),
3–19 (2013). doi:10.1007/s00382-012-1448-3

http://10.1109/MCAS.2012.2221521
http://10.1103/PhysRevE.72.056127
http://10.1088/1751-8113/43/49/495005
http://10.1103/PhysRevE.80.046103
http://10.1016/S0375-9601(02)01170-2
http://10.1103/PhysRevE.66.026702
http://10.1016/j.physrep.2006.11.001
http://10.1016/j.physleta.2009.09.042
http://10.1109/CSE.2009.81
http://10.1137/S003614450342480
http://10.1140/epjb/e2004-00124-y
http://10.1016/j.physleta.2009.08.041
http://10.1142/S0218127405014167
http://10.1016/0375-9601(88)90119-3
http://10.1016/0167-2789(95)90079-9
http://10.1016/0167-2789(95)00041-2
http://10.1098/rsta.2011.0623
http://10.1016/j.autneu.2013.05.003
http://10.1007/s00382-012-1448-3


162 R.V. Donner et al.

82. M.C. Romano, M. Thiel, J. Kurths, W. von Bloh, Multivariate recurrence plots. Phys. Lett. A
330(3–4), 214–223 (2004). doi:10.1016/j.physleta.2004.07.066

83. M.C. Romano, M. Thiel, J. Kurths, I.Z. Kiss, J.L. Hudson, Detection of synchronization
for non-phase-coherent and non-stationary data. Europhys. Lett. 71(3), 466–472 (2005).
doi:10.1209/epl/i2005-10095-1

84. M.C. Romano, M. Thiel, J. Kurths, C. Grebogi, Estimation of the direction of the coupling by
conditional probabilities of recurrence. Phys. Rev. E 76(3), 036211 (2007). doi:10.1103/Phys-
RevE.76.036211

85. M.C. Romano, M. Thiel, J. Kurths, K. Mergenthaler, R. Engbert, Hypothesis test for synchro-
nization: twin surrogates revisited. Chaos 19(1), 015108 (2009). doi:10.1063/1.3072784

86. O.E. Rössler, An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976).
doi:10.1016/0375-9601(76)90101-8

87. E.N. Sawardecker, C.A. Amundsen, M. Sales-Pardo, L.A.N. Amaral, Comparison of methods
for the detection of node group membership in bipartite networks. Eur. Phys. J. B 72, 671–677
(2009). doi:10.1140/epjb/e2009-00397-6

88. Y. Shimada, T. Kimura, T. Ikeguchi, Analysis of chaotic dynamics using measures of
the complex network theory, in Artificial Neural Networks - ICANN 2008, Pt. I, ed. by
V. Kurkova, R. Neruda, J. Koutnik. Lecture Notes in Computer Science, vol. 5163, (Springer,
New York, 2008), pp. 61–70

89. M. Small, J. Zhang, X. Xu, Transforming time series into complex networks, in Complex
Sciences. First International Conference, Complex 2009, Shanghai, China, February 2009,
ed. by J. Zhou . Revised Papers, Part 2. Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, vol. 5, (Springer, Berlin, 2009),
pp. 2078–2089. doi:10.1007/978-3-642-02469-6_84

90. N.P. Subramaniyam, J. Hyttinen, Analysis of nonlinear dynamics of healthy and epileptic
eeg signals using recurrence based complex network approach, in Proceedings of the
6th International IEEE EMBS Conference on Neural Engineering, 2013, pp. 605–608.
doi:10.1109/NER.2013.6696007

91. K. Suzuki, K. Wakita, Extracting multi-facet community structure from bipartite net-
works, in Proceedings of the 2009 International Conference on Computational Science
and Engineering, vol. 04 (IEEE Computer Society, Washington, DC, 2009), pp. 312–319.
doi:10.1109/CSE.2009.451

92. F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence,
Warwick 1980, ed. by D.A. Rand, L.S. Young. Lecture Notes in Mathematics, vol. 898,
(Springer, New York, 1981), pp. 366–381. doi:10.1007/BFb0091924

93. M. Thiel, M.C. Romano, P.L. Read, J. Kurths, Estimation of dynamical invariants without
embedding by recurrence plots. Chaos 14(2), 234–243 (2004). doi:10.1063/1.1667633

94. M. Thiel, M.C. Romano, J. Kurths, M. Rolfs, R. Kliegl, Twin surrogates to test for complex
synchronisation. Europhys. Lett. 75(4), 535–541 (2006). doi:10.1209/epl/i2006-10147-0

95. L.L. Trulla, A. Giuliani, J.P. Zbilut, C.L. Webber Jr., Recurrence quantification analysis of the
logistic equation with transients. Phys. Lett. A 223(4), 255–260 (1996). doi:10.1016/S0375-
9601(96)00741-4

96. A.A. Tsonis, P.J. Roebber, The architecture of the climate network. Physica A 333, 497–504
(2004). doi:10.1016/j.physa.2003.10.045

97. D.J. Watts, S.H. Strogatz, Collective dynamics of “small-world” networks. Nature 393(6684),
440–442 (1998). doi:10.1038/30918

98. M. Wickramasinghe, I.Z. Kiss, Effect of temperature on precision of chaotic oscillations in
nickel electrodissolution. Chaos 20(2), 023125 (2010). doi:10.1063/1.3439209

99. M. Wiedermann, J.F. Donges, J. Heitzig, J. Kurths, Node-weighted interacting network
measures improve the representation of real-world complex systems. Europhys. Lett. 102(2),
28007 (2013). doi:10.1209/0295-5075/102/28007

100. A. Wolf, J.B. Swift, H.L. Swinney, J.A. Vastano, Determining Lyapunov exponents from a
time series. Physica D 16(3), 285–317 (1985). doi:10.1016/0167-2789(85)90011-9

http://10.1016/j.physleta.2004.07.066
http://10.1209/epl/i2005-10095-1
http://10.1103/PhysRevE.76.036211
http://10.1063/1.3072784
http://10.1016/0375-9601(76)90101-8
http://10.1140/epjb/e2009-00397-6
http://10.1007/978-3-642-02469-6_84
http://10.1109/NER.2013.6696007
http://10.1109/CSE.2009.451
http://10.1007/BFb0091924
http://10.1063/1.1667633
http://10.1209/epl/i2006-10147-0
http://10.1016/S0375-9601(96)00741-4
http://10.1016/j.physa.2003.10.045
http://10.1038/30918
http://10.1063/1.3439209
http://10.1209/0295-5075/102/28007
http://10.1016/0167-2789(85)90011-9


4 Complex Network Analysis of Recurrences 163

101. X. Xu, J. Zhang, M. Small, Superfamily phenomena and motifs of networks
induced from time series. Proc. Natl. Acad. Sci. USA 105(50), 19601–19605 (2008).
doi:10.1073/pnas.0806082105

102. Y. Yang, H. Yang, Complex network-based time series analysis. Physica A 387(5–6), 1381–
1386 (2008). doi:10.1016/j.physa.2007.10.055

103. J.P. Zbilut, C.L. Webber Jr., Embeddings and delays as derived from quantification of recur-
rence plots. Phys. Lett. A 171(3–4), 199–203 (1992). doi:10.1016/0375-9601(92)90426-M

104. J.P. Zbilut, A. Giuliani, C.L. Webber Jr., Detecting deterministic signals in exceptionally noisy
environments using cross-recurrence quantification. Phys. Lett. A 246(12), 122–128 (1998).
doi:10.1016/S0375-9601(98)00457-5

105. J. Zhang, M. Small, Complex network from pseudoperiodic time series: topology versus
dynamics. Phys. Rev. Lett. 96(23), 238701 (2006). doi:10.1103/PhysRevLett.96.238701

106. P. Zhang, J. Wang, X. Li, M. Li, Z. Di, Y. Fan, Clustering coefficient and
community structure of bipartite networks. Physica A 387(27), 6869–6875 (2008).
doi:10.1016/j.physa.2008.09.006

107. C. Zhou, L. Zemanova, G. Zamora, C.C. Hilgetag, J. Kurths, Hierarchical organization
unveiled by functional connectivity in complex brain networks. Phys. Rev. Lett. 97(23),
238103 (2006). doi:10.1103/PhysRevLett.97.238103

108. C. Zhou, L. Zemanova, G. Zamora-Lopez, C.C. Hilgetag, J. Kurths, Structure-function rela-
tionship in complex brain networks expressed by hierarchical synchronization. New J. Phys.
9(6), 178 (2007). doi:10.1088/1367-2630/9/6/178

109. Y. Zou, R.V. Donner, J.F. Donges, N. Marwan, J. Kurths, Identifying shrimps in con-
tinuous dynamical systems using recurrence-based methods. Chaos 20(4), 043130 (2010).
doi:10.1063/1.3523304

110. Y. Zou, M.C. Romano, M. Thiel, N. Marwan, J. Kurths, Inferring indirect cou-
pling by means of recurrences. Int. J. Bifurcat. Chaos 21(4), 1099–1111 (2011).
doi:10.1142/S0218127411029033

111. Y. Zou, R.V. Donner, J. Kurths, Geometric and dynamic perspectives on phase-coherent and
noncoherent chaos. Chaos 22(1), 013115 (2012). doi:10.1063/1.3677367

112. Y. Zou, R.V. Donner, M. Wickramasinghe, I.Z. Kiss, M. Small, J. Kurths, Phase coherence
and attractor geometry of chaotic electrochemical oscillators. Chaos 22(3), 033130 (2012).
doi:10.1063/1.4747707

113. Y. Zou, J. Heitzig, R.V. Donner, J.F. Donges, J.D. Farmer, R. Meucci, S. Euzzor, N. Marwan,
J. Kurths, Power-laws in recurrence networks from dynamical systems. Europhys. Lett. 98(4),
48001 (2012). doi:10.1209/0295-5075/98/48001

http://10.1073/pnas.0806082105
http://10.1016/j.physa.2007.10.055
http://10.1016/0375-9601(92)90426-M
http://10.1016/S0375-9601(98)00457-5
http://10.1103/PhysRevLett.96.238701
http://10.1016/j.physa.2008.09.006
http://10.1103/PhysRevLett.97.238103
http://10.1088/1367-2630/9/6/178
http://10.1063/1.3523304
http://10.1142/S0218127411029033
http://10.1063/1.3677367
http://10.1063/1.4747707
http://10.1209/0295-5075/98/48001

	Chapter4 Complex Network Analysis of Recurrences
	4.1 Introduction
	4.2 From Recurrence Plots to Recurrence Networks
	4.2.1 Recurrence Networks from Single Dynamical Systems
	4.2.1.1 Basic Idea
	4.2.1.2 Complex Network Characteristics
	4.2.1.3 Shortest Paths in Recurrence Networks
	4.2.1.4 Local (Vertex-Based) Measures
	4.2.1.5 Pairwise Vertex and Edge Measures
	4.2.1.6 Global Network Measures

	4.2.2 Inter-System Recurrence Networks
	4.2.2.1 Cross-Recurrences and Cross-Recurrence Networks
	4.2.2.2 Combining Single-System and Cross-Recurrence Networks
	4.2.2.3 Interacting Network Characteristics
	4.2.2.4 Local Measures
	4.2.2.5 Global Measures

	4.2.3 Joint Recurrence Networks
	4.2.3.1 Basic Idea
	4.2.3.2 α-Joint Recurrence Networks


	4.3 Analytical Description of Recurrence Networks
	4.3.1 Random Geometric Graphs
	4.3.2 Single-System Recurrence Network Characteristics
	4.3.2.1 General Setting
	4.3.2.2 Shortest Paths and Geodesics
	4.3.2.3 Local (Vertex-Based) Measures
	4.3.2.4 Pairwise Vertex and Edge Measures
	4.3.2.5 Global Network Measures
	4.3.2.6 Further Characteristics

	4.3.3 Inter-System Recurrence Network Characteristics
	4.3.3.1 Local Measures
	4.3.3.2 Global Measures


	4.4 Recurrence Networks: General Properties and Applications
	4.4.1 Generic Network Characteristics
	4.4.1.1 Absence of Small-World Effects
	4.4.1.2 Emergence of Scale-Free Distributions
	4.4.1.3 Assortative vs. Disassortative Mixing

	4.4.2 Characterization of Dynamical Complexity
	4.4.2.1 Average Path Length
	4.4.2.2 Network Transitivity
	4.4.2.3 Other Network Characteristics
	4.4.2.4 Example: Tracing Bifurcations in the Rössler System

	4.4.3 Characterization of Local Dimensionality
	4.4.4 Cross-Transitivity Properties and Coupling Asymmetry
	4.4.5 Joint Transitivity Properties and Synchronization
	4.4.6 Real-World Applications
	4.4.6.1 Applications in Climatology
	4.4.6.2 Applications in Fluid Dynamics
	4.4.6.3 Applications in Electrochemistry
	4.4.6.4 Applications in Medicine


	4.5 Related Approaches
	4.6 Summary
	References


