
Chapter 3
Identifying Coupling Directions by Recurrences

Yong Zou, M. Carmen Romano, Marco Thiel, and Jürgen Kurths

Abstract The identification of the coupling direction from measured time series
taking place in a group of interacting components is an important challenge for many
experimental studies. In Part I of this chapter, we introduce a method to detect and
quantify the asymmetry of the coupling between two interacting systems based on
their recurrence properties. This method can detect the direction of the coupling in
weakly as well as strongly coupled systems. It even allows detecting the asymmetry
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of the coupling in the more challenging case of structurally different systems and it
is very robust against noise. We also address the problem of detecting the asymmetry
of the coupling in passive experiments, i.e., when the strength of the coupling
cannot be systematically changed, which is of great relevance for the analysis
of experimental time series. Part II of this chapter hinges on a generalisation of
conditional probability of recurrence to the case of multivariate time series where
indirect interactions might be present. We test our method by an example of three
coupled Lorenz systems. Our results confirm that the proposed method has much
potential to identify indirect coupling.

3.1 Part I: Estimation of the Direction of the Coupling
by Conditional Probabilities of Recurrence

3.1.1 Introduction: Part I

The interplay among different complex dynamical systems is a central issue in
nonlinear dynamics as well as in nonlinear time series analysis. Under certain
assumptions different types of synchronisation can occur between the interacting
systems. This topic has been intensively studied in the last years and has been
applied to various fields, such as physics, engineering and biology [2, 6, 8, 9, 29,
52, 53, 55]. In such systems it is important not only to analyse the synchronisation
but also to identify causal (drive-response) or mutual relationships. There are four
major approaches to address this problem: state-space based methods [4,31,32,42],
information theory based methods [26, 41, 54], methods based on the interrelations
between the phases of the systems under consideration [37, 38], and recurrence-
based methods [12, 13, 18, 24, 33].

In the state-space based approach, the state vectors are usually reconstructed by
means of delay embedding [19]. The direction of the coupling is then assessed
by considering the correspondence between neighbours in the phase spaces of the
driver and response. If there exists a functional relationship between the driver X

and the response system Y , i.e., y.t/ D �.x.t//, they are said to be generalised
synchronised [20, 39]. If � exists and is smooth, it follows that close states of the
driver will be mapped to close states of the response. However, if � is bijective,
also close states of the response will be mapped to close states of the driver.
Therefore, if X and Y are generalised synchronised it is in general impossible to
assess the direction of the coupling reliably and the state-space based methods are
only applicable in the non-synchronised regime [25, 43].

The understanding of a driver-response relationship was firstly evaluated in
a linear framework by bivariate autoregressive models, by means of Granger
causality [16]. This has been mainly applied to economy and neurosciences [7].
From the nonlinear perspective, there are several methods based on information
theory to determine the direction of the coupling [5,14,26,41,47]. They are usually
applied to systems which are strongly coupled. In order to treat also weakly coupled
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systems, the phases of the signals are determined beforehand, and then information
theory based indices are applied to the phases [27,28]. In [38], a technique based on
the fitting of the functional relationship between the phases of the two interacting
systems has been proposed to detect and quantify the asymmetry in the coupling. A
systematic comparison between the phase-dynamics and the state-space approach
in the case of weak directional coupling has been done in [43], where the authors
concluded that neither one of the approaches is generally superior and that both
approaches have difficulties in assessing the direction of the coupling in systems
which are structurally different.

In Part I of this chapter, we summarize the recently proposed method to uncover
directional coupling. This approach is based on the recurrence properties of both
interacting systems. The concept of recurrence has been used to detect relationships
between interacting systems in [46], where the so-called synchronisation likelihood
has been introduced. This method allows for a multivariate analysis of generalised
synchronisation. Moreover, in [34] the concept of recurrence has been used to
quantify a weaker form of synchronisation, namely phase synchronisation. Here,
we extend these measures in order to detect the direction of the coupling. The
proposed method is rather straightforward to compute, in contrast to the more
complicated information theory approaches. Furthermore, it has the advantage that it
is applicable to both weak and strong directional coupling, as well as to structurally
different systems.

The outline of Part I of this chapter is as follows: in Sect. 3.1.2 we introduce
measures for the analysis of directional coupling based on recurrences. In Sect. 3.1.3
we demonstrate the proposed measures in some numerical examples and discuss the
choice of the parameters of the method in Sect. 3.1.4. In Sect. 3.1.5 we discuss the
dependence of these measures on observational noise. We consider in Sect. 3.1.6
the problem of passive experiments, where the coupling strength between the two
interacting systems cannot be varied systematically. In Sect. 3.1.7 we compare
the proposed method with other existing techniques and, finally, we give some
conclusions.

3.1.2 Detection of the Coupling Direction by Recurrences

Recurrence is a fundamental property of dynamical systems. The concept of
recurrence was introduced by Poincaré [30], where he showed that the trajectory
of a dynamical system with a measure preserving flow recurs infinitely many
times to some neighbourhood of a former visited state on an invariant set in phase
space. There are many different techniques in nonlinear dynamics which exploit
the concept of recurrence [1, 15, 40]. We concentrate on the method of Recurrence
Plots (RPs), introduced by Eckmann et al. to visualise the behaviour of dynamical
systems in the phase space [10]. They are defined by means of the recurrence matrix

RX
i;j D �

�
" � jjxi � xj jj� ; i; j D 1; : : : ; N; (3.1)
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where xi denotes the state of the system X at time i�t with �t being the sampling
rate, " is a predefined threshold, �.�/ is the Heaviside function and N is the length of
the trajectory considered. The RP is obtained plotting a dot at the coordinates .i; j /

if Ri;j D 1. By looking at the patterns of the RP, one gets at the outset a visual
impression about the dynamics of the system under consideration. In order to go
beyond the visual impression, several measures have been proposed to quantify the
patterns in the RP. They have found numerous applications in very different kinds
of systems [21, 22]. Moreover, somehow more formal relationships between the
patterns obtained in RPs and main dynamical invariants, such as K2 and D2, have
been found [11, 51] (cf. Chap. 2). It has also been shown that the RP contains all
necessary information to reconstruct the underlying trajectory, at least topologically
[49].

The method of RPs has been extended to Joint Recurrence Plots (JRPs) to analyse
the interplay of two or more dynamical systems [36, 46]. The JRP of X and Y is
defined as

JR
X;Y
i;j D �

�
"X � jjxi � xj jj� �

�
"Y � jjyi � yj jj� ; (3.2)

i.e., a joint recurrence occurs if the system X recurs in its own phase space and
simultaneously, the system Y recurs also in its own phase space. Based on JRPs it is
possible to analyse different kinds of synchronisation of coupled complex systems
[34, 45, 46]. In order to illustrate this, we consider two rather different chaotic
oscillators, namely the Rössler system

Px1 D 2 C x1.x2 � 4/;

Px2 D �x1 � x3; (3.3)

Px3 D x2 C 0:45x3;

which drives the Lorenz system

Py1 D �10.y1 � y2/;

Py2 D 28u � y2 � uy3; (3.4)

Py3 D uy2 � 8=3y3;

by means of the variable u D x1 C x2 C x3. In [20] it has been shown that
the driven Lorenz system is asymptotically stable and that both systems are in
generalised synchronisation. Hence, two close neighbours in the phase space of the
driver system correspond to two close neighbours in the phase space of the driven
system [39]. This relationship is reflected very clearly in the RPs of both systems.
In Fig. 3.1a, c we plot the trajectories in phase space of the Rössler Eq. (3.3) and
of the Lorenz system Eq. (3.4), respectively. To calculate their corresponding RPs,
we have used the third component of each system and reconstructed the respective
trajectories in phase space using delay embedding [19] with embedding dimension
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Fig. 3.1 (a) Rössler driving system, (b) the RP of the Rössler system (m D 3,� D 5), (c) the
driven Lorenz system, (d) the RP of the Lorenz system (m D 7,� D 5), (e) representation of the
“joint” system, and (f) the joint recurrence plot of both systems. The threshold for the computation
of the RPs has been chosen so that the recurrence rate (number of recurrence points divided by N 2)
is equal for both systems. In this case the recurrence rate was 0.005. The equations were integrated
using fourth order Runge–Kutta of and the sampling time was 0.2

m D 7 and time delay � D 5 (the time step between two consecutive points being
0.2), since dealing with experimental time series, usually only one observable of the
system is available. Even though the shapes of both attractors in the phase space look
rather different (Fig. 3.1a, c), both RPs are very similar (Fig. 3.1b, d). Therefore, the
joint recurrence plot (Fig. 3.1f) resembles the very similar recurrence patterns as the
RPs of the single systems.

This property of joint recurrence plots has been treated in detail in [34], where it
has been used for the detection of generalised synchronisation, also in more difficult
cases where other methods, such as the mutual false nearest neighbours, are not
appropriate any longer. In [46] the authors have introduced the synchronisation
likelihood, which is a multivariate measure for generalised synchronisation. This
measure is based on a very similar concept to the joint recurrence matrix of Eq. (3.2).
However, the thresholds "X and "Y are not fixed for the whole trajectories, but are
dependent on time.
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Only considering the concept of joint recurrence is not sufficient to identify which
system is the driver and which one is the response. In order to accomplish that, it is
necessary to assess conditional probabilities of recurrence. Therefore, we propose
the mean conditional probabilities of recurrence (MCR) between two systems X

and Y , which are defined as follows

MCR.Y jX/ D 1

N

NX

iD1

p.yi jxi / D 1

N

NX

iD1

PN
j D1 JR

X;Y
i;j

PN
j D1 RX

i;j

; (3.5)

and

MCR.X jY / D 1

N

NX

iD1

p.xi jyi / D 1

N

NX

iD1

PN
j D1 JR

X;Y
i;j

PN
j D1 RY

i;j

; (3.6)

where p.yi jxi / is an estimate of the probability that the trajectory of Y recurs
to the neighbourhood of yi under the condition that the trajectory of X recurs to
the neighbourhood of xi (p.xi jyi / is defined analogously). One can consider these
measures as an extension of the methods presented in [34, 46].

The criterion that we use for detecting the asymmetry of the coupling is the
following

If X drives Y; MCR.Y jX/ < MCR.X jY /: (3.7a)

If Y drives X; MCR.X jY / < MCR.Y jX/: (3.7b)

If the coupling is symmetric, then MCR.X jY / D MCR.Y jX/.
This criterion might appear counterintuitive at first, because if X is the driver,

one could think that the probability of recurrence of a state yi given that the state xi

recurs is larger than vice versa, since X is independent of Y .
A heuristic argumentation for this criterion is the following: if X drives Y , the

dimension of Y will be in general larger than the dimension of X , because the
evolution of Y is determined by both the states of X and Y . Moreover, the higher
the complexity of Y , the smaller is the probability of recurrence of yi 8i . Hence,
by increasing the coupling strength from X to Y , the probability p.yi / that the
trajectory of Y recurs to the neighbourhood of yi will decrease. In contrast, the
complexity of X remains constant with increasing coupling strength, because the
evolution of X depends only on the states of X . Hence, the probability p.xi / that
the trajectory of X recurs to the neighbourhood of xi does not change with the
coupling strength. We choose the thresholds "X and "Y in such a way, that if the
coupling strength is equal to zero, hp.xi /i D hp.yi /i. Therefore, if the coupling
strength from X to Y is larger than zero, in general p.yi / < p.xi /. That implies
p.xi ; yi /=p.xi / < p.xi ; yi /=p.yi / and hence, MCR.Y jX/ < MCR.X jY /.
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3.1.3 Numerical Examples

In this section we illustrate the performance of the proposed measures for the
direction of the coupling by three kinds of examples: strongly coupled systems
(close to the onset of complete synchronisation), weakly coupled systems (close to
the onset of phase synchronisation), and structurally different systems. The number
of data points of the trajectories used in each case, if not stated otherwise, is equal
to 10,000 throughout the chapter.

3.1.3.1 Strongly Coupled Systems

We consider two unidirectionally coupled Hénon maps, given by the following
equations

x1.i C 1/ D 1:4 � x1.i/2 C b1x2.i/;

x2.i C 1/ D x1.i/ (3.8)

for the driving system X , and

y1.i C 1/ D 1:4 � �
�x1.i/y1.i/ C .1 � �/y2

1 .i/
� C b2y2.i/;

y2.i C 1/ D y1.i/ (3.9)

for the response system Y [32], where � is the coupling strength. We analyse both
the case of identical systems (b1 D b2 D 0:3) and non-identical systems (b1 D
0:1, b2 D 0:3). To mimic this problem for data analysis, we assume that we have
observed the two scalar time series fx1.i/gN

iD1 and fy1.i/gN
iD1. Hence, we have to

reconstruct the trajectories of X and Y in phase space [19]; this will be done by
delay embedding. We choose embedding dimension m D 3 and time delay � D 1,
but we note that the results are qualitatively the same with other reasonable choices.
The values of the thresholds "X and "Y have been chosen such that for no coupling
both mean probabilities of recurrences hp.x.i//i and hp.y.i//i are equal to 0.01.
We use 10,000 data points and compute the indices MCR.X jY / and MCR.Y jX/ in
dependence on the coupling strength �. The results are shown in Fig. 3.2.

For two identical Hénon maps (Fig. 3.2a), the onset to identical synchronisation
occurs at approximately � D 0:65, as reported in [26,32]. As expected from this, we
yield for � > 0:65, MCR.X jY / D MCR.X jY /. Before the onset of synchronisation,
we get MCR.X jY / > MCR.Y jX/, indicating correctly the direction of the coupling.

On the other hand, for the non-identical Hénon maps, the onset to generalised
synchronisation occurs at approximately � D 0:4 [32]. Note that in general the
detection of the directionality is only possible before the onset of synchronisation.
In the case of identical synchronisation, the series fxi g and fyi g are identical
and hence there is no possibility of establishing the causal relationship between
X and Y just from the data. This argument can be also extended to the case
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Fig. 3.2 Mean conditional probabilities of recurrence MCR.X jY / (solid) and MCR.Y jX/ (dashed)
for two unidirectionally coupled identical (a) and non-identical (c) Hénon maps. The system X is
in both cases the driver, and hence, MCR.X jY / > MCR.Y jX/. For each value of the coupling
strength �, the mean value over 100 trajectories for uniformly distributed initial conditions
has been computed. In b and d we have plotted the mean value of the difference �MCR D
MCR.X jY / � MCR.Y jX/ over 100 trajectories and the corresponding standard deviation for the
identical and non-identical Hénon systems, respectively. The zero line is also plotted for orientation
(dotted-dashed)

of generalised synchronisation, where the systems are related by a one-to-one
function [4]. Therefore, in the case of the two non-identical Hénon maps the
directionality parameters are reliable for 0 < � < 0:4. The sharp drop of MCR.Y jX/

(dashed curve in Fig. 3.2c) at approximately � D 0:6 is due to the non-monotonic
dependence of the maximum Lyapunov exponent of the response system on the
coupling strength [32].

3.1.3.2 Weakly Coupled Systems

Now we study two non-identical unidirectionally coupled Lorenz systems, given by
the equations

Px1 D 10.x1 � x2/;

Px2 D 40x1 � x2 � x1x3; (3.10)

Px3 D x1x2 � 8=3x3;
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for the driver system X and

Py1 D 10.y2 � y1/ C �.x1 � y1/;

Py2 D 35y1 � y2 � y1y2; (3.11)

Py3 D y1y2 � 8=3y3;

for the response system Y . The equations have been integrated by a fourth-order
Runge–Kutta algorithm and the time step between two consecutive points is equal
to 0.03. We use 10,000 data points and assume that only the scalar variables x3

and y3 have been observed. The embedding parameters used for the reconstruction
are m D 10 and � D 12. As in the former case, the results do not depend on
the details of this choice. We have not used the optimal embedding parameters
which can be estimated by, e.g., the methods of false nearest neighbours and the
autocorrelation function, in order to show that the results are robust with respect
to different embedding parameters [43]. We compute the directionality parameters
MCR in dependence on the coupling strength � between 0 and 10, which is before
the onset of phase synchronisation [43]. The results are shown in Fig. 3.3a. We
clearly see that MCR.X jY / > MCR.Y jX/ for all computed values of the coupling
strength �, i.e., the recurrence based indices detect the direction of the coupling
correctly. The values of the thresholds "X and "Y have been chosen such that for no
coupling both mean probabilities of recurrences hp.x.i//i and hp.y.i//i are equal
to 0.01. However, note that for � D 0, the values of MCR.X jY / and MCR.Y jX/

are larger and not equal to 0.01, as one would expect. This is because the estimated
joint probability of recurrence is larger than .0:01/2, due to the limited number of
data used for the computation. Nevertheless, the expected qualitative behaviour, i.e.
MCR.X jY / > MCR.Y jX/ still holds, which is the important fact for our analysis.

The next example that we consider is a bidirectionally coupled system, namely,
two stochastic Van der Pol oscillators with slightly different mean frequencies !x

and !y

Rx D 0:2.1 � x2/ Px � !2
xx C �x C 0:03.y � x/;

Ry D 0:2.1 � y2/ Py � !2
yy C �y C �.x � y/; (3.12)

where !x D 1:02 and !y D 0:98, �x and �y are independent Gaussian white noise
with standard deviation 0.04. This example has been considered in [38, 43]. The
equations have been integrated with the Euler scheme and the sampling time was
0.1� . The variables x and y have been used to reconstruct the phase space with
embedding dimension 10 and delay 12, as in the former case. The thresholds "X and
"Y have been chosen such that for symmetrical coupling hp.xi /i D hp.yi /i D 0:1.
The results for the indices MCR are shown in Fig. 3.3b in dependence on the
coupling strength �. For � < 0:03, MCR.X jY / < MCR.Y jX/, since the coupling
is stronger from Y to X than vice versa. At the coupling strength 0.03, we obtain
MCR.X jY / D MCR.Y jX/, because the coupling is symmetrical, and for � > 0:03,
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Fig. 3.3 Mean conditional probabilities of recurrence MCR.X jY / (solid) and MCR.Y jX/ (dashed)
for (a): two weakly unidirectionally coupled non-identical Lorenz systems. For each value of
the coupling strength �, the mean value over 100 trajectories for uniformly distributed initial
conditions has been computed. The system X is the driver, and hence, MCR.X jY / > MCR.Y jX/.
(c): Two weakly bidirectionally coupled stochastic Van der Pol oscillators. The coupling strength
from X to Y is fixed and equal to 0.3. In b and d we have plotted the mean value of �MCR D
MCR.X jY / � MCR.Y jX/ and the corresponding standard deviation over 100 trajectories for each
system, respectively. The zero line is also plotted for orientation (dotted-dashed)

we observe that MCR.X jY / > MCR.Y jX/, because the coupling from X to Y is
stronger than vice versa. Note that at � � 0:06 both oscillators become phase
synchronised and the value of MCR.Y jX/ increases much faster.

3.1.3.3 Structurally Different Systems

Next, we study the more challenging case of two structurally different systems,
namely a stochastic Van der Pol system which drives a Rössler system. The equation
of the driving system X is

Rx D 0:1.1 � x2/ Px � !2
xx C �x; (3.13)
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Fig. 3.4 (a) Mean conditional probabilities of recurrence MCR.X jY / (solid) and MCR.Y jX/

(dashed) for the chaotic Rössler system driven by the stochastic Van der Pol system. For
each value of the coupling strength �, the mean value over 100 trajectories for uniformly
distributed initial conditions has been computed. The system X is the driver, and hence, we find
MCR.X jY / > MCR.Y jX/. (b) Mean value of the difference �MCR D MCR.X jY / � MCR.Y jX/

and corresponding standard deviation over 100 trajectories. The zero line is also plotted for
orientation (dotted-dashed)

where !x D 0:98 and �x is Gaussian white noise with standard deviation 0.05. The
equations of the response system Y are given by

Py1 D �y2 � y3;

Py2 D y1 C 0:15y2 C �x; (3.14)

Py3 D .y1 � 10/y3 C 0:2:

The equations have been integrated with a Euler scheme and the sampling time was
0.1� . The phase space has been reconstructed using the variables x and y1 and
embedding dimension 10 and delay 12. The values of the thresholds "X and "Y have
been chosen as in the former cases. The curves for MCR are shown in dependence
on the coupling strength � in Fig. 3.4. In this interval of values of the coupling
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Fig. 3.5 Mean conditional probabilities of recurrence MCR.X jY / (solid) and MCR.Y jX/ (dashed)
for two identical unidirectionally coupled Hénon maps for different choices of the embedding
parameters: (a) m D 3, � D 1, (c) m D 2, � D 3,(e) m D 5, � D 1. For each value of the
coupling strength �, the mean value over ten trajectories for uniformly distributed initial conditions
has been computed. In b, d and f the mean value and standard deviation over ten trajectories of the
corresponding �MCR are represented. The zero line is also plotted for orientation (dotted-dashed)

strength both systems are before the onset of phase synchronisation [43]. For all
values of the coupling strength we obtain MCR.X jY / > MCR.Y jX/, i.e., we are
able to detect the direction of the coupling also in this case.

3.1.4 Choice of the Parameters

In order to compute the indices MCR, we need to fix four parameters: the embedding
dimension m and the delay � for the reconstruction of the phase space, and
the thresholds "X and "Y for the computation of the recurrence matrices. As
we have mentioned in the previous section, the special choice of the embedding
parameters does not influence the results. In Fig. 3.5 we show the results for the
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for uniformly distributed initial conditions has been computed

direction parameters MCR for different choices of m and � for the two identical
unidirectionally coupled Hénon systems [Eqs. (3.8) and (3.9)]. We get, regardless
of the choice of the embedding parameters, MCR.X jY / > MCR.Y jX/ for all values
of the coupling strength � before the onset of synchronisation. This is the correct
behaviour, since the system X is the driver and Y is the response.

With regard to the choice of the thresholds "X and "Y , we have mentioned in the
previous section that they were chosen such that the mean probabilities of recurrence
for both systems at coupling strength � D 0 are equal. In this way, it is not necessary
to normalise the data xi and yi beforehand. In the numerical examples considered
in Sect. 3.1.3, we chose the mean probability of recurrence to be equal to 0.01.
In order to demonstrate how the results depend on this choice, we show in Fig. 3.6
�MCR D MCR.X jY / � MCR.Y jX/ in dependence on the coupling strength and
on the mean probability of recurrence (labelled as “Recurrence Rate” in the plot)
for the Hénon systems [Eqs. (3.8) and (3.9)]. As system X is the driver, we expect
that the surface �MCR takes only positive values, which is the case in fact. Hence,
we see that the estimation of MCR does not depend crucially on the choice of the
thresholds "X and "Y . Hence, for a rather broad range of values of the thresholds,
the direction of the coupling can be estimated correctly.

3.1.5 Influence of Noise

We now study the influence of observational noise on the MCR measures [Eqs. (3.5)
and (3.6)]. Therefore, we add different levels of noise to the scalar time series
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Fig. 3.7 MCR.X jY / and MCR.Y jX/ for two identical unidirectionally coupled Hénon maps
contaminated by uniformly distributed noise in dependence on the coupling strength �. (a)
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ten trajectories for uniformly distributed initial conditions has been computed. In b, d and (f) the
corresponding mean value of the difference �MCR and the standard deviation over ten trajectories
are plotted. The zero line is also plotted for orientation (dotted-dashed)

fxi gN
iD1 and fyigN

iD1, so that we compute the MCR indices for the series x0
i D

xi C 	
x�x
i and y0

i D yi C 	
y�
y
i , where 	 denotes the level of noise, 
x and


y are the standard deviation of xi and yi , respectively, and �x and �y are two
independent realisations of uniformly distributed random noise between �0:5 and
0.5. Figure 3.7 shows the results obtained for the MCR indices for three different
values of 	 corresponding to 20, 40 and 60 % of observational noise.

We observe that when the level of noise 	 increases, it becomes more difficult to
detect the asymmetry of the coupling for very small values of the coupling strength
�, because both curves MCR.X jY / and MCR.Y jX/ are almost equal. The larger
the level of noise, the stronger must be the coupling strength in order to detect
the asymmetry. Nevertheless, even with such high levels of observational noise,
the asymmetry of the coupling can still be correctly detected for relatively small
values of the coupling strength. Hence, we conclude that the MCR indices are a
rather robust measure for the detection of the asymmetry of the coupling, also in the
presence of relative high levels of observational noise.
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3.1.6 Passive Experiments

One crucial problem of all measures for the detection of asymmetry of the coupling
is the assessment of the significance of the results for passive experiments, i.e.,
when the coupling strength between both systems X and Y cannot be varied
systematically in experiments. In such cases, we usually just have one scalar
measurement sequence for each system fxi gN

iD1 and fyigN
iD1 for a fixed coupling

strength �. This is the case in numerous situations. For example, the experimental
data used in [23, 41] to illustrate the applicability of the method for the detection of
the asymmetry of the coupling, are time series of breath rate and instantaneous heart
rate of a sleeping human. It is very hard, if not impossible, to change the coupling
strength between the respiratory and cardiological system of a person in a systematic
way. The authors in [4] apply their proposed method for the detection of asymmetry
of the coupling to intracranially recorded EEG data. In this case, it is also obvious
that it is not possible to change the coupling strength between different areas of the
brain, in a controlled manner.

In all these cases we obtain just one value for the directionality indices and then
it is not trivial to decide whether the computed values have been obtained just by
chance or whether they are significant. In order to address this question, we propose
the following statistical test. Our null hypothesis is that the two systems X and
Y are independent. To test this null hypothesis, we generate the so called natural
or twin surrogates [50]. Suppose that we have one time series for each system
fxi gN

iD1 and fyi gN
iD1 for a fixed coupling strength �. The natural surrogates are

trajectories from the same underlying dynamical systems X and Y with identical
coupling strength � between both of them, but starting at different initial conditions.
We denote them by fxs

i gN
iD1 and fys

i gN
iD1. If we have computed the directionality

indices MCR.xjy/ and MCR.yjx/ for the measured time series, we can compare the
obtained values with the distribution of MCR.xjys/ and MCR.ysjx/,1 respectively,
generated from a large number of surrogates. If both systems X and Y are
independent, the value MCR.xjy/ will not differ significantly from the distribution
of the values MCR.xjys/. Otherwise, we can reject the null hypothesis, indicating
that the obtained values for the directionality indices are significant.

At this point, the following question arises naturally: dealing with experimental
data, one usually does not have a model for the governing dynamics. Then, how can
one generate natural surrogates? The answer to this question has been addressed
in [50], where an algorithm based on recurrence has been proposed to generate
natural surrogates without knowing the underlying equations of the system. These
recurrence based surrogates are called twin surrogates and have been applied in [50]
to tackle the problem of passive experiments in phase synchronisation.

We now show the performance of the MCR method applying the twin surrogates
test to analyse the estimation of the asymmetry of the coupling in [Eqs. (3.8)

1Note that considering MCR.xsjy/ and MCR.yjxs/ would yield the same result.
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Fig. 3.8 (a) Mean conditional probability of recurrence MCR.X jY / (solid) and 1 %-significance
level (dotted) for two identical Hénon maps unidirectionally coupled. (b) MCR.Y jX/ (dashed)
and 1 %-significance level (dotted) for the same system. One hundred twin surrogates have been
generated to estimate the significance level. The data have been normalised beforehand to have
zero mean and standard deviation equal to one and "X D "Y D 0:1

and (3.9)]. We therefore generate 100 twin surrogates using the algorithm presented
in [50]. We assume that we have scalar time series, and hence, use delay embedding
to reconstruct the trajectory. We use embedding dimension m D 3 and delay � D 1,
as in Sect. 3.1.3. The threshold for the generation of the surrogates is chosen to
be ı D 0:09 (see [50] for further details), according to the procedure given in
[35]. Summarising, the following steps have to be undertaken for each value of
the coupling strength �:

• Choose the significance level ˛ (i.e., 1 � ˛ quantile of the distribution).
• Compute MCR.xjy/ and MCR.yjx/.
• Generate L twin surrogate time series fxsj

i gN
iD1 and fysj

i gN
iD1, with j D 1; : : : ; L.

• Compute MCR.xjysj / and MCR.ysj jx/ for j D 1; : : : ; L.
• Compute the ˛-significance value based on the distribution obtained in the former

step.
• If MCR.xjy/ and MCR.yjx/ are larger than the corresponding ˛-significance

values, reject the null hypothesis.

The results for [Eqs. (3.8) and (3.9)] are shown in Fig. 3.8.
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The values of MCR.X jY / and MCR.Y jX/ are above the significance level in both
cases for all values of the coupling strength. Hence, the null hypothesis is correctly
rejected. Therefore, in the case that we have a passive experiment, this procedure
can be applied to assess the significance of the results about the asymmetry of the
coupling.

Note that in the case of passive experiments, we cannot apply the criterion
proposed in Sect. 3.1.2 to choose the thresholds "X and "Y , such that for coupling
strength equal to zero we have hp.xi /i D hp.yi /i, because we do not know the value
of the coupling strength. Therefore, one has to apply another criterion to choose the
thresholds "X and "Y . In the example shown in Fig. 3.8 we have normalised the data
beforehand to have zero mean and standard deviation equal to one, and then we have
chosen "X D "Y D 0:1. If both interacting systems are structurally similar, then
MCR.X jY / will be approximately equal to MCR.Y jX/ for coupling strength equal
to zero. However, if the interacting systems are structurally different, this approach
might not hold anymore.

3.1.7 Comparison with Other Methods

As mentioned in the introduction, several methods have been proposed in the
literature to estimate the direction of the coupling. Most of these methods can be
divided in the following categories:

1. In order to apply the method introduced in [38], one has to estimate first the
phases of the interacting systems and then fit a functional relationship between
them. From this function, the directionality variables are then derived. The main
disadvantage of this method is that it is not always possible to assign a phase
to a system based on a scalar time series, especially if the power spectrum of
the signal does not present a predominant peak (i.e., one cannot speak of a main
frequency of rotation of the system).

2. The state-space methods are based on the relationship between neighbours in
the respective phase spaces of the interacting systems X and Y . At a first
glance, these methods might seem to be very close to the recurrence based
method introduced in this chapter. However, there are some important differences
between them. For example, the computed indices in [4, 32] are based on the
mean distances between a certain number q of nearest neighbours, i.e., they use
the matrix of distances jxi � xj j between all points of the trajectory. In contrast,
the MCR indices do not use the distance matrix explicitly but rather the matrix of
inequalities jxi �xj j < ". Another way to express this difference is the following:
in the state-space based methods, the threshold used to compute the neighbours
is different for each point of the trajectory xi , i.e., " D ".i/, whereas to compute
MCR the threshold is the same for all points of the trajectory. Another important
difference is that in the MCR method, once the threshold is fixed, it remains
the same for all different values of the coupling strength. In contrast, in the
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Fig. 3.9 Transfer entropy for two identical unidirectionally coupled Hénon maps in dependence
on the coupling strength � and the threshold. For each value of the coupling strength �, the mean
value over ten trajectories for uniformly distributed initial conditions has been computed. Solid
surface: transfer entropy from X to Y , dashed surface: transfer entropy from Y to X

state-space based methods, the threshold does not only depend on the point of
the trajectory, but also on the coupling strength.

3. Actually, the MCR method is closer to the information theory based methods,
e.g., the transfer entropy [41]. In both cases, conditional probabilities of recur-
rence are estimated. But in the case of the transfer entropy, transition probabilities
are considered, rather than static ones. This has the advantage of incorporating
dynamical structure. The disadvantage compared to the MCR indices is that the
number of data points needed for the estimation is considerable, and this might
hamper the application of this method to experimental time series. For example,
using the same number of data points (10,000) and the same range of values of
the threshold as with the MCR method (Fig. 3.6) for the analysis of the direction
of the coupling of [Eqs. (3.8) and (3.9)], we obtain the results for the transfer
entropy as given in Fig. 3.9. The transfer entropy from X to Y is represented
by the solid surface and the transfer entropy from Y to X by the dashed one.
Note that even though the coupling is purely unidirectional, the transfer entropy
from Y to X is larger than zero (it becomes only zero for coupling strength
� � 0:7, when synchronisation sets in). That means that the transfer entropy
does not detect that the coupling is purely unidirectional. This problem might
be overcome using longer data sets. In the case of the MCR method, a purely
unidirectional coupling can be easily detected by computing the recurrence rate
of the driver in dependence on the coupling strength, which will then be constant.

4. A comparison between MCR and the recently introduced methods by [12,13,18]
will be a subject for future work.
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3.1.8 Conclusions: Part I

In this chapter, we have proposed recurrence based indices for the detection of
the asymmetry of the coupling between interacting systems. The quantification of
the asymmetry of the coupling can be very helpful in identifying driver-response
relationships, which is a relevant problem in many fields, especially when dealing
with experimental time series. The proposed indices are based on the mean condi-
tional probabilities of recurrence (MCR). We have exemplified their applicability
by several numerical examples which are representative of strong and weak coupled
systems. Furthermore, we have shown that the MCR indices can also cope with
the more challenging case of structurally different systems. We have studied the
dependence of the MCR indices on the parameters needed for their estimation
and we have found out that the choice of the parameters is not crucial for the
correct detection of the asymmetry of the coupling. Moreover, we have addressed
the very relevant problem of the quantification of the direction of the coupling in
passive experiments and proposed an algorithm to assess the statistical significance
of the results. Furthermore, we have studied the influence of observational noise
on our method and compared it with other existing techniques for the detection
of the asymmetry of the coupling. The numerical examples we considered in this
chapter were mainly low dimensional. This technique is promising as shown by an
application to experimental time series in the cardio-respiratory system [23].

3.2 Part II: Inferring Indirect Coupling

3.2.1 Introduction: Part II

The first part of this chapter introduced a new method to detect and quantify
the asymmetry of the coupling between two interacting systems based on their
recurrence properties [33]. Originally, it has focused on bivariate situations. It is
crucial to extend it to multivariate time series analysis as this occurs quite often
in many real applications. Inferring the coupling configuration at a local scale can
be of substantial help to explain the global functioning of the network, e.g., the
finding of motifs can be crucial for the understanding of the whole system [3, 44].
Therefore, now we focus on the inference of the coupling configuration of small
networks consisting of three nodes.

Let us start considering the following small network as in Fig. 3.10, showing six
different coupling settings for three unidirectionally interacting nodes. A pairwise
analysis (bivariate) is often insufficient in addressing the possible indirect coupling
(e.g., the coupling between X and Z in Fig. 3.10d). Hence, one main objective
here is to identify the indirect coupling by means of recurrences. More specifically,
we will identify the difference among these six coupling cases by studying the
recurrence properties. The advantage of the extension from two to three coupled
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fed

cba

Fig. 3.10 Coupling configuration settings for three systems, that only uni-directional couplings
are considered. (a) Z is independent of both X and Y . (b) X is the common driver for both Y and
Z. (c) X is co-regulated by Y and Z. (d) X drives Y , while Y further drives Z. (e) Direct coupling
with X being the common driver and Z being the common response. (f) Direct coupling in a ring
way

systems is that it makes possible to analyze data measured from small networks,
such as the EEG recordings on the scalp, so frequently used in neuroscience and
cognitive psychology. In such experimental situations we have access to time series
from typically of the order of ten nodes. Furthermore, it is crucial to identify the
indirect coupling between X and Z as illustrated by Fig. 3.10d since it is one of big
challenges for multivariate analysis. Therefore, we extend the study of [33] to three
oscillators.

We show numerical studies for the application to three coupled Lorenz systems
with six different coupling configurations (Fig. 3.10). Specifically, we consider the
following system

X W

8
ˆ̂
<

ˆ̂
:

Px1 D 
.x2 � x1/;

Px2 D rx1 � x2 � x1x3 C �21y2
2 C �31z2

3;

Px3 D x1x2 � bx3;

(3.15)

Y W

8
ˆ̂<

ˆ̂
:

Py1 D 
.y2 � y1/;

Py2 D ry1 � y2 � y1y3 C �12x
2
2 C �32z2

3;

Py3 D y1y2 � by3;

(3.16)

Z W

8
ˆ̂
<

ˆ̂:

Pz1 D 
.z2 � z1/;

Pz2 D rz1 � z2 � z1z3 C �13x2
2 C �23y2

2 ;

Pz3 D z1z2 � bz3:

(3.17)
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Table 3.1 Variation of RR of
each individual system

(a) (b) (c) (d) (e) (f)

RRX � � C � � C
RRY C C � C C C
RRZ � C � C C C
The symbols “C” correspond to the existence of
variation, while “�” means there is no changes with
increasing coupling strength

We integrate these equations numerically by a step 0:003 with sampling every 100
points leading to time step �t D 0:3. We use standard parameters 
 D 10; r D
28; b D 8=3 as in the uncoupled case �i;j D 0 so that the oscillators are in a chaotic
regime.

Our procedure to deal with the six coupling settings of Fig. 3.10 has three
steps, which are explained in different sections: in Sect. 3.2.2, we apply a univari-
ate analysis, namely analyzing each individual system separately; in Sect. 3.2.3,
we perform a pairwise analysis, after which only the coupling configuration of
Fig. 3.10d, e remains unclear. In Sect. 3.2.4, the partial mean conditional probability
of recurrence is developed to cope with the last two remaining cases. Some
conclusions are drawn in Sect. 3.2.7.

3.2.2 First Step: Univariate Analysis

Given the recurrence matrix Eq. (3.1), we are particularly interested in the mean
probability of recurrence (recurrence rate), which is estimated by

˝
p.xj /

˛ D RR D 1

N 2

NX

i;j D1

Ri;j : (3.18)

The first step is to study the variations of the mean probability of recurrences with
respect to an increase of the coupling strength (Fig. 3.10), separately. For instance,
in the case of coupling as in Fig. 3.10a, both hp.x/i and hp.z/i remain unchanged
while hp.y/i varies if the coupling strength � is increased. This is because Z is
independent of X and Y and the coupling from X to Y is unidirectional. A similar
analysis can be achieved for each coupling setting of Fig. 3.10. We summarize the
result in Table 3.1. We note that, throughout the chapter, the symbol “C” correspond
to a change of the recurrence rate of the component, while “�” means there is no
change with increasing the coupling strength. Furthermore “(a), : : :, (f)” denote the
six different coupling configurations, as shown in Fig. 3.10.

The numerical simulation for the first step is shown in Fig. 3.11, which verifies
the results presented in Table 3.1. By the first step of the univariate analysis, six
different couplings are subdivided into three categories: .C; �; �/, .C; C; �/, and
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Fig. 3.11 Univariate analysis. Six coupling cases are classified into three groups A, B and C
according to our univariate analysis

.C; C; C/. Note that .C; �; �/ denotes the configurations for which only the RR
of one component changes with the coupling strength no matter which component.
Therefore, the coupling configurations (a) and (c) are classified in the same group A.

Note that in principle one could also use other measures from Recurrence Quan-
tification Analysis (RQA) [21] for this first step analysis (cf. Chap. 1). However it
is not clear whether their use would allow identifying the coupling configuration.
Moreover, the interpretation of the results might be difficult and rather empirical.
Nevertheless, it is important to note that the probability of recurrence has a deep
theoretical meaning as it is the basis for calculating many dynamical invariants,
i.e., correlation dimension D2 [17]. Furthermore, it has a clear relationship with
information theoretic approaches (see [28]).

3.2.3 Second Step: Pairwise Analysis

In the second step, we perform a pairwise analysis, which is a generalisation of the
RPs to joint recurrence plots (JRPs), namely calculating Eq. (3.2).

Based on the results obtained in the first step (Table 3.1 and Fig. 3.15), we do
the pairwise analysis for cases A and B , following the notation of Fig. 3.11 since in
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case C we have only one coupling configuration. Furthermore, we characterize the
results of the pairwise analysis using the same notations as before. For instance,
if �MCR.X jY / changes with the coupling strength whereas �MCR.X jZ/ and
�MCR.Y jZ/ stay constant, we write .C; �; �/. In particular, we have explicit
expressions for Eq. (3.1.2) for each coupling:

A: couplings (a) and (c)

(a): .C; �; �/

�MCR.Y jX/ > 0; (3.19)

�MCR.ZjX/ D RRZ � RRX � 0; (3.20)

�MCR.ZjY / D RRY � RRZ: (3.21)

Note that RRY changes with the coupling strength, leading to �MCR
.ZjY / < 0. However, �MCR.ZjY / simply follows the same curve of
univariate analysis since Y is independent of Z. In this respect, we denote
it as “�”.

(c): .C; C; �/

�MCR.Y jX/ < 0; (3.22)

�MCR.ZjX/ < 0; (3.23)

�MCR.ZjY / D RRZ � RRY � 0: (3.24)

B: couplings (b), (d) and (e)

(b): .C; C; �/

�MCR.Y jX/ > 0; (3.25)

�MCR.ZjX/ > 0; (3.26)

�MCR.ZjY / � 0: (3.27)

(d, e): .C; C; C/

�MCR.Y jX/ > 0; (3.28)

�MCR.ZjX/ > 0; (3.29)

�MCR.ZjY / > 0: (3.30)

Therefore, after the pairwise analysis, only the cases (d) and (e) remain ambiguous.
The numerical simulations for the pairwise analysis of the second step are shown

in Fig. 3.12 for (a, c), and Fig. 3.13 for (b, d, e), respectively.
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Fig. 3.12 Pairwise comparison for coupling (a, c). The left panel is for coupling configuration
(a), the right panel is for coupling configuration (c). Note that in (a), �MCR.ZjY / is completely
overlapped with the difference between RRY and RRZ , which can be obtained from the first step
of univariate analysis (see Fig. 3.11)
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Fig. 3.13 Pairwise comparison for coupling configurations (b, d, e). The left panel is for (b), the
right panel is for coupling configurations (d, e)

3.2.4 Third Step: Partial MCR

A recurrence-based bivariate analysis is generally not conclusive in addressing the
existence of indirect coupling. Hence, we go to the crucial step in extending the
method to deal with the remaining two coupling cases (d) and (e) after the previous
two steps.
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Let us first consider MCR of two variables used in our previous bivariate
analysis, i.e., the pair of X and Y . We calculate MCR.Y jX/ and MCR.X jY /,
respectively. The second step is to quantify the influence of the third variable Z

on MCR.Y jX/ by considering the difference between MCR.Y jX/ and the mean
conditional probability of recurrence that Y recurs given that both X and Z recur,

�MCR.Y jX/Z D ��
MCR.Y jX/ � MCR.Y jX; Z/

�
: (3.31)

Similarly the contribution of Z to the MCR.X jY / is calculated by

�MCR.X jY /Z D ��
MCR.X jY / � MCR.X jY; Z/

�
: (3.32)

Before synchronisation sets in, we have MCR.Y jX/ < MCR.Y jX; Z/ due to˝
p.xj /

˛
>

˝
p.xj ; zj /

˛
. Hence, for convenience the normalization factor (negative

symbol) in front of the right hand side in Eq. (3.31) is introduced to keep the
probability values to be positive. Note that �MCR.Y jX/Z quantifies a subset of
MCR.Y jX/, measuring the contribution of Z to the probabilities of recurrence of
Y via X . In this regard, we call �MCR.Y jX/Z partial MCR. Moreover, in general
�MCR.Y jX/Z is different from �MCR.X jY /Z because of the asymmetry between
MCR.Y jX/ and MCR.X jY /.

Analogously, the contribution of Y to MCR.ZjX/ and MCR.X jZ/ is calculated,
respectively, by

�MCR.ZjX/Y D ��
MCR.ZjX/ � MCR.ZjX; Y /

�
; (3.33)

�MCR.X jZ/Y D ��
MCR.X jZ/ � MCR.X jY; Z/

�
: (3.34)

The contribution of X to MCR.Y jZ/ and MCR.ZjY / is computed by

�MCR.Y jZ/X D ��
MCR.Y jZ/ � MCR.Y jX; Z/

�
; (3.35)

�MCR.ZjY /X D ��
MCR.ZjY / � MCR.ZjX; Y /

�
: (3.36)

Depending on the particular coupling configuration (Fig. 3.10a–f), we obtain
explicit expressions for measuring the contribution of one system to the other two.
The details are presented in Sect. 3.2.6. In this section, however, we focus on the
remaining two coupling configurations that have still to be distinguished, namely
(d) and (e).

(d) From the viewpoint of Z, the contribution of indirect coupling from X to Z

is smaller than that of the direct coupling from Y to Z. Hence MCR.ZjX/ <

MCR.ZjY / and considering Eqs. (3.33) and (3.36) we have

�MCR.ZjY /X < �MCR.ZjX/Y : (3.37)
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This is validated by showing a similar relationship from the X perspective,
namely, MCR.X jZ/ < MCR.X jY / implying

�MCR.X jY /Z < �MCR.X jZ/Y : (3.38)

However, from the mediator Y viewpoint, one has

�MCR.Y jX/Z � �MCR.Y jZ/X ; (3.39)

indicating Y to be a mediator.
(e) In this case, from the perspective of system Z, the contribution of X to

Z is larger than the contribution of Y to Z, which implies MCR.ZjY / <

MCR.ZjX/. This yields, considering again Eqs. (3.33) and (3.36),

�MCR.ZjX/Y < �MCR.ZjY /X: (3.40)

This relationship is validated from the X perspective, MCR.X jY / <

MCR.X jZ/, implying

�MCR.X jZ/Y < �MCR.X jY /Z: (3.41)

Moreover, from the viewpoint of Y , we have

�MCR.Y jZ/X < �MCR.Y jX/Z: (3.42)

The numerical simulations for the partial MCR analysis for the coupling configu-
rations (d, e) involved in the third step are shown in Fig. 3.14, which agree with our
theoretical expectation in a reasonable range for coupling strengths.

3.2.5 Decision Tree

Following the discussions presented in previous sections, we conclude that the six
different coupling configurations are clearly identified with our three-step procedure
(plotted as a decision tree in Fig. 3.15):

1. Univariate analysis, namely the probability of recurrences for each individual
systems, identifies the coupling configuration of (f). Note that couplings (a, c)
are not able to be further classified because of the relabeling.

2. Pairwise analysis, allows distinguishing the coupling configuration of (a) from
(c), and (b) from (d, e).

3. Partial MCR analysis identifies the difference between coupling (d) and (e).
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Fig. 3.14 Partial MCR shows distinct behavior for the coupling configurations (d) and (e)

3.2.6 Partial MCR for All Couplings of Fig. 3.10

The detailed analysis for the partial MCR for the coupling settings in Fig. 3.10 is
performed in this section. We assume that the three systems are identical in the
case of zero coupling and that the coupling strengths can be changed systematically,
which is often the case for many active experiments. Note that the numerical results
are based on Eqs. (3.15)–(3.17)).

(a) Z independent of both X and Y (Fig. 3.10a)
We obtain MCR.Y j.X; Z// D MCR.Y jX/. This means that the contribution
of Z to MCR.Y jX/ can be disregarded. Similarly, we have MCR.X j.Y; Z// D
MCR.X jY /. Furthermore, MCR.ZjX/ D RRZ , MCR.ZjX; Y / D RRZ , and
MCR.Y jZ/ D RRY since Z is independent of both X and Y . Explicitly we
have the following equations:
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Fig. 3.15 Decision tree derived from the theoretical analysis. Our procedure consists of three
steps, namely univariate, pairwise and partial MCR analysis
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Fig. 3.16 Z independent of both X and Y (Fig. 3.10a, �12 D �; �ij D 0 otherwise). (a) From the
viewpoint of X , �MCR.X jY / D 0, Eq. (3.43). (b) �MCR.Y jX/Z D 0, Eq. (3.45). However, due
to the finite length of the time series used, these curves show some deviations from zero (� D 0).
(c) �MCR.ZjY /X � 0; �MCR.ZjX/ � 0

�MCR.X jY /Z D 0; (3.43)

�MCR.X jZ/Y D ��
RRX � MCR.X jY /

�
; (3.44)

�MCR.Y jX/Z D 0; (3.45)

�MCR.Y jZ/X D ��
RRY � MCR.Y jX/

�
; (3.46)

�MCR.ZjX/Y D 0; (3.47)

�MCR.ZjY /X D 0: (3.48)

In general [Eqs. (3.44) and (3.46)] are not equal because of the asymmetry
between X and Y . Figure 3.16 shows the numerical result.
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Fig. 3.17 (a) X is the common driver for both Y and Z (Fig. 3.10b, �12 D �13 D �, �ij D 0

otherwise). (b) From X viewpoint, �MCR.Y jX/Z < �MCR.Y jZ/X , Eq. (3.52). (c) The same
holds for Eq. (3.53), verified by �MCR.ZjX/Y < �MCR.ZjY /X . Note that when � > 0:39, Y

is synchronized with X suggested by the Lyapunov exponent spectrum (not shown here).

(b) X is a common driver (Fig. 3.10b)
From the viewpoint of X , MCR.X jY / D MCR.X jZ/, since Y and Z are
identical. Hence we have

�MCR.X jY /Z D �MCR.X jZ/Y : (3.49)

It is also obvious to see that Y is independent of Z under the condition of X ,
yielding MCR.Y jZ/ D RRY , MCR.ZjY / D RRZ , thus,

�MCR.Y jZ/X D ��
RRY � MCR.Y jX; Z/

�
; (3.50)

�MCR.ZjY /X D ��
RRZ � MCR.ZjX; Y /

�
: (3.51)

In general before reaching synchronisation we have the mean recurrence prob-
ability relationship

˝
p.xj /

˛
>

˝
p.yj /

˛ � ˝
p.zj /

˛
,
˝
p.xj ; yj /

˛
>

˝
p.yj ; zj /

˛ D˝
p.yj /

˛ � ˝
p.zj /

˛
. Hence, MCR.Y jX/ > MCR.Y jZ/ D RRY , which leads to

�MCR.Y jX/Z < �MCR.Y jZ/X : (3.52)

The same holds from the viewpoint of Z, namely,

�MCR.ZjX/Y < �MCR.ZjY /X: (3.53)

Figure 3.17 shows the numerical results.
(c) X is a common response (Fig. 3.10c)

When X is the common receiver, Y and Z are independent of each other. Hence,
we derive the same theoretical results as the case that X is the common driver.
Particularly, we have
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Fig. 3.18 X is the common receiver for both Y and Z (Fig. 3.10c, �21 D �31 D �, �ij D 0

otherwise). Equations (3.54)–(3.56) are verified (see the caption of Fig. 3.17)

�MCR.X jY /Z D �MCR.X jZ/Y ; (3.54)

�MCR.Y jX/Z < �MCR.Y jZ/X ; (3.55)

�MCR.ZjX/Y < �MCR.ZjY /X : (3.56)

Figure 3.18 shows the numerical results.
(d) Z indirectly coupled with X , but directly driven by Y (Fig. 3.10d)

Because of the asymmetry of MCR.Y jX/ and MCR.X jY /, one expects the
difference between �MCR.Y jX/Z and �MCR.X jY /Z . More specifically, the
values of [Eqs. (3.31)–(3.36)] are not zero.

Note that within the coupling setting (Fig. 3.10d), we have
˝
p.xj /

˛
>˝

p.yj /
˛

>
˝
p.zj /

˛
. Before synchronisation (neither two subsystems are syn-

chronized),
˝
p.xj /

˛
>

˝
p.yj ; zj /

˛
,

˝
p.yj /

˛
>

˝
p.xj ; zj /

˛
, and

˝
p.zj /

˛
>˝

p.xj ; yj /
˛
. Furthermore, the complexity of .X; Z/ is greater than the complex-

ity of the joint space of .Y; Z/. This leads to the joint recurrence probability
of

˝
p.yj ; zj /

˛
being greater than

˝
p.xj ; zj /

˛
. Hence we have MCR.ZjY / >

MCR.ZjX/, which yields

�MCR.ZjY /X < �MCR.ZjX/Y : (3.57)

From the viewpoint of Z, the relationship of the inequality of equation (3.57)
suggests that the contribution of indirect coupling from X to Z is smaller than
that of the direct coupling from Y to Z. This is validated by showing a similar
relationship from the X perspective, namely,

�MCR.X jY /Z < �MCR.X jZ/Y : (3.58)

However from the mediator Y viewpoint, it sends out the coupling information
to Z when receiving the same amount of information from X . Hence, one has

�MCR.Y jX/Z � �MCR.Y jZ/X ; (3.59)

indicating Y to be the mediator. Figure 3.19 shows the numerical results.
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Fig. 3.19 X drives Y , and Y drives Z (Fig. 3.10d, �12 D �23 D �, �ij D 0 otherwise). (a)
�MCR.X jY /Z < �MCR.X jZ/Y , (c) �MCR.ZjY /X < �MCR.ZjX/Y . (b) However, Y is a
mediator, having �MCR.Y jX/Z � �MCR.Y jZ/X
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Fig. 3.20 X drives both Y and Z, and Y drives Z (Fig. 3.10e, �12 D �13 D �23 D �, �ij D 0

otherwise). (a) �MCR.X jZ/Y < �MCR.X jY /Z . (b) �MCR.Y jZ/X < �MCR.Y jX/Z holds
before synchronisation. (c) �.ZjX/Y < �.ZjY /X

(e) Direct coupling setting: X is the common driver and Z is the common receiver
(Fig. 3.10e)
From the perspective of system X , both Y and Z have the same contribution to
X , namely, we have

�MCR.X jZ/Y < �MCR.X jY /Z: (3.60)

From the viewpoint of Z, it accepts two packages of information from the driver
X . One is from the direct contribution sent by X to Z; the other is received via
the mediator Y . Z cannot distinguish where these two packages of information
come from. Therefore, we have

�MCR.ZjX/Y < �MCR.ZjY /X ; (3.61)

indicating that the transitivity property of Y is identified. Before onset of
synchronisation, we again have

˝
p.xj /

˛
>

˝
p.yj /

˛
>

˝
p.zj /

˛
. Further, the

relationship of
˝
p.xj ; yj /

˛
>

˝
p.yj ; zj /

˛
holds. Hence, from the viewpoint of

Y , we have

�MCR.Y jZ/X < �MCR.Y jX/Z: (3.62)

Figure 3.20 shows the numerical results.
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Fig. 3.21 X drives Y , Y drives Z, and Z drives X (Fig. 3.10f, �12 D �23 D �31 D �, �ij D 0

otherwise) [Eqs. (3.63)–(3.65)]

(f) Direct coupling setting: in a ring way (Fig. 3.10f)
All measures are the same, since each system shows basically the same
recurrence behavior, namely,

�MCR.X jY /Z D �MCR.X jZ/Y ; (3.63)

�MCR.Y jX/Z D �MCR.Y jZ/X; (3.64)

�MCR.ZjX/Y D �MCR.ZjY /X: (3.65)

Note that this only holds in the case when the three systems are identical,
yielding the same transitivity ability. Figure 3.21 shows the numerical results.

3.2.7 Conclusions: Part II

We have shown a generalisation of MCR to three coupled systems, in particular
including the extraction of indirect coupling. We have demonstrated our procedure
using three Lorenz oscillators in chaotic regime in six different coupling configu-
rations. Some issues might appear in the line of experimental studies, which have
to be taken into consideration. Noise is ubiquitous in experimental time series and
requires developing robust measures to identify the correct coupling configuration.
It has been demonstrated that most recurrence structures are preserved if the free
parameter � (threshold in the recurrence matrix Eq. (3.1)) is chosen as � � 5
 ,
where 
 corresponds to the standard deviation of the observational noise [48]. For
the application to a large network of coupled units, the method has to be adapted to
keep a good statistical power and to reduce the computation time. A further issue
that will be considered in the future is the presence of asymmetric bidirectional
coupling, as it is rather common in experimental complex networks.
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