
On Cross-Stage Persistence in Multi-Stage
Programming

Yuichiro Hanada and Atsushi Igarashi

Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract. We develop yet another typed multi-stage calculus λ�%. It extends
Tsukada and Igarashi’s λ� with cross-stage persistence and is equipped with all
the key features that MetaOCaml-style multi-stage programming supports. It has
an arguably simple, substitution-based full-reduction semantics and enjoys basic
properties of subject reduction, confluence, and strong normalization. Progress
also holds under an alternative semantics that takes staging into account and mod-
els program execution. The type system of λ�% gives a sufficient condition when
residual programs can be safely generated, making λ�% more suitable for writing
generating extensions than previous multi-stage calculi.

1 Introduction

Multi-stage programming (MSP) is a programming paradigm in which a program-
mer can manipulate, generate, and execute code fragments at run time. These features
enhance reusability of programs and make optimizations easier by writing program spe-
cializers [1]. A number of programming languages that support multi-stage program-
ming have been proposed [2–7], not to mention Lisp and Scheme, and provide different
sets of language constructs for MSP.

Among these MSP languages, MetaOCaml provides (hygienic) quasiquotation
(called brackets and escape), eval (called run) [3]. Brackets 〈e〉 are a quotation of ex-
pression e to make a code value and escape (written ˜e) splices the value of e, which is
supposed to be a quotation, into the surrounding quotation. For example, the following
MetaOCaml expression1

let a = 〈1 + 2〉 in 〈˜a ∗ ˜a〉
evaluates to 〈(1+2) ∗ (1+2)〉. Run (written run e here2) evaluates the expression inside
a given code value, and so

run (let a = 〈1 + 2〉 in 〈˜a ∗ ˜a〉)
yields 9 (without brackets).

Another interesting feature of MetaOCaml is called cross-stage persistence (CSP),
which allows a computed value to be put into brackets: for example, the expression

let a = 1 + 2 in 〈a ∗ a〉
1 Actually, 〈e〉 is written .<e>. and ˜e is written .˜e in MetaOCaml.
2 In MetaOCaml, .!e is used for run e.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 103–118, 2014.
c© Springer International Publishing Switzerland 2014

104 Y. Hanada and A. Igarashi

(without escapes on a inside the brackets) is valid in MetaOCaml and yields 〈3 ∗ 3〉.
Here, a is bound to the integer value 3 and CSP (implicitly applied to variable refer-
ences) allows referencing a variable declared outside of the brackets. Note that, as Taha
and Sheard discuss [3], CSP is not lifting, which converts a value into its syntactic rep-
resentation (although CSP for basic values can be implemented by lifting). In fact, CSP
can be applied to a variable denoting any value, including functions, references, or even
file descriptors, which do not always have syntactic representations. CSP is a very im-
portant feature in practice, because a programmer can freely use library functions inside
brackets as in 〈List.map (λx.x + 1) [3; 4]〉.

Most type systems for MSP languages aim at ensuring safety of the code generated
by multi-stage programs, as well as that of multi-stage programs themselves. A chal-
lenging issue was how to prevent run from executing open code (namely, code values
that contain free variables), while allowing manipulation of open code, which is neces-
sary to generate efficient code. Taha and Nielsen [8] developed a multi-stage calculus
λα with all the features above and proved that its type system guaranteed safety in the
above sense. A key idea in the type system of λα is the introduction of environment
classifiers (or simply classifiers). Roughly speaking, classifiers statically keep track of
information on free variables in code values and prevents code value containing free
variables from being run. Later, its type system was adapted to ML-style type recon-
struction and has become a basis of MetaOCaml [9].

Tsukada and Igarashi [10] proposed another typed MSP calculus λ�, whose type
system, which uses a classifier-like mechanism, can be regarded as a certain modal logic
through the Curry–Howard isomorphism. Although λ� supports only brackets, escape,
and run, its operational semantics has a more “standard flavor” than that of λα (and
MetaOCaml) in that reduction can be defined in terms of (a few kinds of) substitutions.

In this paper, we present yet another multi-stage calculus λ�%, which is an extension
of λ� with CSP and study its properties. We give the semantics of λ�% in two ways:
full nondeterministic reduction, which allows any redex (even inside quotations) to be
reduced, and (call-by-value) staged reduction, which is a subrelation of the full reduc-
tion and allows only a certain redex at the lowest stage to be reduced. Interestingly, the
semantic “delta” over λ�% is surprisingly small, making proofs from λ� easy to extend
to λ�%. Our technical contributions are summarized as follows:

– we give the formal definition of λ�% with its syntax, type system, full reduction,
and staged reduction;

– for the full reduction, we prove subject reduction, strong normalization and conflu-
ence; and

– for the staged reduction, we prove progress and a property called Type-Safe Resid-
ualization, which means that a well-typed program of code type yields a code value
whose body is also a well-typed and serializable program.

We also discuss relationship between CSP and program residualization and point out
a problem that, although MetaOCaml enjoys a variant of Type-Safe Residualization,
MetaOCaml is not very suitable for writing offline generators because of CSP. Our type
system introduces residualizable code types to solve the problem.

On Cross-Stage Persistence in Multi-Stage Programming 105

1.1 Organization of the Paper

Section 2 gives an informal overview of our calculus λ�% after a brief review of λ�.
Section 3 defines the syntax, type system, and full reduction of λ�% formally and shows
relevant properties. Then, Section 4 defines the staged semantics and shows Progress
and Type-Safe Residualization. Finally, Section 6 discusses related work and Section 7
gives concluding remarks.

2 Informal Overview of λ�%

In this section, we give an informal overview of λ�% after reviewing λ� [10], on which
λ�% is based.

2.1 λ�

In λ�, brackets and escapes are written “�α M” and “�α M”, respectively. For example,
the first example in Section 1 can be represented as:

M1
def
= (λa : τ.�α(�α a ∗ �α a)) (�α 1 + 2)

where τ is a suitable type for code values, which we discuss below. In addition to ordi-
nary β-reduction, there is a reduction rule to cancel a pair of brackets under an escape:

�α(�α M) −→ M.

So, M1 reduces to �α(1 + 2) ∗ (1 + 2) in three steps. The type system assigns type �ατ,
which means the type of code of type τ, to �α M when M is of type τ. The type system
also enforces the argument to �α to be of type �ατ to prevent values other than code
from being spliced into a quotation.

The subscript α is called transition variable, which intuitively denotes how “thick”
the bracket is. A transition variable can be abstracted byΛα.M and instantiated by an ap-
plication “M A”. Here, A (called transition) is a (possibly empty) sequence of transition
variables α1 · · ·αn. For example, (Λα.(�α(λx : int.x))) (βγ) reduces to �βγ(λx : int.x),
which is an abbreviation of �β �γ(λx : int.x). A transition abstraction Λα.M is given
type ∀α.τ if the type of M is τ and an application M A is given type τ[α := A] if the type

of M is ∀α.τ. For example, M2
def
= Λα.(�α(λx : int.x)) is given type ∀α. �α (int→ int)

and M2 (βγ) is �β�γ(int→ int). Transition variables are similar to environment classi-
fiers in λα and the forms of terms also look like those in λα. One notable difference is
that, in λα, a classifier abstraction can be applied only to a single classifier.

One pleasant effect of generalizing transition applications is that run M can be ex-
pressed as a derived form, rather than a dedicated construct. Namely, run M desugars
into M ε, application to the empty sequence of transition variables. For example, the
second example in Section 1 can be represented as (Λα.M1) ε, which first reduces to
(Λα.�α((1 + 2) ∗ (1 + 2)))ε (by reducing the body of Λα.) and then to �ε(1+2)∗ (1+2),
which, as we shall see later, is identified with (1 + 2) ∗ (1 + 2). Notice that �α standing
for quotation has disappeared by substitution of ε for α. From the typing point of view,
run takes ∀α. �α τ and returns τ, representing the behavior of run. It is important that
run takes ∀-types, because typing rules guarantee that a term of type ∀α. �α τ does not
contain free variables inside �α, making it safe to remove �α.

106 Y. Hanada and A. Igarashi

2.2 Adding CSP to λ�

Next, we informally explain how we extend λ� with CSP to develop λ�%. Unlike
MetaOCaml, where CSP is implicit, λ�% has a dedicated construct %α M for CSP (as
in Nielsen and Taha [8] and Benaissa et al. [11]). For example, the third example in
Section 1 is represented as:

M3
def
= (λa : int.Λα.�α(%α a ∗%α a)) (1 + 2).

Call-by-value reduction leads to Λα.�α(%α 3 ∗%α 3), which we consider is already a
value. It may appear reasonable to allow reduction to remove % and regard Λα.�α 3 ∗ 3
as a value, but such reduction means that the run-time value 3 is converted to an integer
literal and lifted into a quotation. As we mentioned already, however, lifting is not
always possible, so we reject this idea.

Instead, we consider the CSP operator just a syntactic marker waiting for run to
dissolve the surrounding brackets: for example, run M3 (namely M3 ε) reduces first
to (Λα.�α(%α 3 ∗%α 3)) ε and then to �ε(%ε 3 ∗ %ε 3), which will be identified with
3 ∗ 3. One amusing consequence of this interpretation is that we do not even have to
add reduction rules for %—just extending the definition of substitution of transitions
suffices.

Now we consider typing. In λ�, a type judgment is of the form Γ �A M : τ, in which
transition A stands for the stage of the term, or, roughly speaking, how many brackets
are surrounding M. Representative typing rules are those for � and �:

Γ �Aα M : τ
Γ �A �α M : �ατ

(�)
Γ �A M : �ατ
Γ �Aα �α M : τ

(�)

The rule � means that a quotation is given a code type at stage A if its body is well
typed at the next stage Aα and � is its converse.

Then, a straightforward rule for CSP would be something like

Γ �A M : τ
Γ �Aα %α M : τ

It is very similar to �, but M can be of an arbitrary type. Actually, this rule works as far
as standard type safety is concerned: a term %α M interacts with its surrounding context
only when ε is substituted for α but then, %α disappears and yields a term of type τ,
which is exactly what the context expects.

However, this rule does not quite work when we consider program residualization,
by which we mean that a generated code can be dumped into a file, just as partial
evaluators (and generating extensions) [12] do. We expect Type-Safe Residualization,
which means residual programs are type safe in the following sense:

If �ε M : �ατ and M −→∗ V for a value V , then V = �α N for some term N
such that �ε N : τ.

Notice that N has to be typed at stage ε in the conclusion. For example, if V = �α((λx :
int.x + 4) 5), then its body is well typed at stage ε without any problem. However, if

On Cross-Stage Persistence in Multi-Stage Programming 107

V = �α((%α(λx : int.x + 4)) 5), then its body (%α(λx : int.x + 4)) 5 is not well typed
because %α can appear only under �α. One way to sidestep this anomaly is to adjust the
statement to something like “N is typeable after removing occurrences of %α at stage
ε” so that we can consider �α((λx : int.x + 4) 5) instead of �α((%α(λx : int.x + 4)) 5),
but it would mean that residualization requires lifting of function values, which is not
feasible.

We solve this problem by distinguishing two kinds of transition variables (and two
kinds of code types thereby). A transition variable of one kind can be used in CSP
but cannot be used to annotate residual code, whereas the other kind can be used for
residual code but not for CSP. Typing rules ensure that a transition variable of the first
kind is instantiated only by the empty sequence. The property above holds only when α
is of the second kind.

3 λ�%

We now present λ�% in detail. In this section, we will define syntax, (full) reduction and
type system of λ�%, and prove subject reduction, strong normalization, and confluence.
In the next section, we will study call-by-value staged semantics.

3.1 Syntax

Let Σ and Π be countably infinite sets of transition variables, ranged over by α, β, and
γ, and variables, ranged over by x, y, and z, respectively. A transition, denoted by A and
B, is a finite sequence of transition variables; we write ε for the empty sequence and AB
for the concatenation of A and B.

The syntax of λ�% is defined by the following grammar.

Variables x, y, z ∈ Π
Transition variables α, β, γ ∈ Σ
Transitions A, B ∈ Σ∗
Types τ, σ, φ ::= b | τ→ τ | �α τ | ∀α.τ | ∀εα.τ
Terms M,N ::= x | λx : τ.M | M N | �α M | �α M

| Λα.M | M A | %α M

A type is a base type (ranged over by b), a function type, a code type or an α-closed
type (of two kinds). A code type �ατ, indexed by a transition variable, denotes a code
fragment of a term of type τ. Two kinds ∀α.τ and ∀εα.τ of α-closed types (where α
is bound) correspond to the form of transition abstraction Λα.M. As we will see, the
type system guarantees that the body M does not contain any free variable at any stage
containing α. The type constructor �α connects tighter than→ and→ tighter than the
two forms of ∀: for example, �ατ → σ means (�ατ) → σ and ∀α.τ → σ means
∀α.(τ→ σ).

In addition to the standard λ-terms, there are five more forms: �α M, �α M, Λα.M,
M A and %α M, as we discussed in the last section. A term of the form �α M represents
a code fragment M, and �α M unquote, or “escape.” Terms Λα.M and M A are an

108 Y. Hanada and A. Igarashi

abstraction and an instantiation of a transition variable, respectively. Finally, %α M is a
primitive for cross-stage persistence.

The term constructors �α, �α and %α connects tighter than the two forms of appli-
cations and, as usual applications are left-associative and the two binders extends as far
to the right as possible: for example, �α x y means (�α x) y and �α λx : τ.x y means
(�α λx : τ.x y) and Λα. λx : τ.x y means Λα. (λx : τ.(x y)).

As usual, the variable x is bound in λx : τ.M. The transition variable α is bound in
Λα.M. We identify α-convertible terms and assume the names of bound variables are
pairwise distinct. We write FV(M) and FTV(M) for the set of free transition variables
and the set of free variables in M, respectively. We omit their straightforward defini-
tions.

3.2 Reduction

Next, we define full reduction for λ�%. Before giving reduction rules, we need to define
(capture-avoiding) substitutions for the two kinds of variables. We omit the straight-
forward definition of substitution M[x := N] of a variable for a term but show the
definition of substitution [α := A] of a transition variable for a transition in Figure 1.
The definition is mostly straightforward. Note that, when a transition variable of � and
% is replaced, the order of transition variables is reversed because � and % are kind of
inverse to �.

Definition 1 (Reduction). The reduction relation M −→ M′ is the least relation closed
under the three computation rules (β, � �, and βΛ) and (full) congruence rules, which
we omit here.

(λx : τ.M) N −→ M[x := N] (β)

�α �α M −→ M (� �)

(Λα.M) A −→ M[α := A] (βΛ)

In addition to ordinary β-reduction, there are two new reductions. The rule � � means
that escape cancels a quotation. The other rule βΛ means that a transition abstraction ap-
plied to a transition reduces to the body of the abstraction, where the argument transition
is substituted for the transition variable. It is interesting to see that there is no reduction
rule that explicitly concerns CSP! As we have discussed already, a CSP is just a syn-
tactic marker waiting for the indexing transition variable to disappear by substitution of
the empty sequence.

We write −→∗ for the reflexive and transitive closure of −→ .
Using integer constants, arithmetic operations, the type of integers, and let, we show

an example reduction sequence below (where the underlines show the redexes):

let f = λx : int.x ∗ 2 in
(Λα.�α(%α (f 1) + (%α f) (1 + 2))) ε (β)
−→∗ (Λα.�α(%α 2 + (%α(λx : int.x ∗ 2)) (1 + 2))) ε
−→ (Λα.�α(%α 2 + (%α(λx : int.x ∗ 2)) 3)) ε (βΛ)
−→ 2 + ((λx : int.x ∗ 2) 3)
−→∗ 6

On Cross-Stage Persistence in Multi-Stage Programming 109

(Aα)[α := B] = (A[α := B])B

(Aα)[β := B] = (A[β := B])α (if α � β)

b[α := A] = b

(τ→ σ)[α := A] = (τ[α := A])→ (σ[α := A])

(�ατ)[α := A] = �A(τ[α := A])

(�βτ)[α := A] = �β(τ[α := A]) (if α � β)

(∀α.τ)[β := A] = ∀α.(τ[β := A]) (if α � β and α � A)

(∀εα.τ)[β := A] = ∀εα.(τ[β := A]) (if α � β and α � A)

x[α := A] = x

(λx : τ.M)[α := A] = λx : (τ[α := A]).(M[α := A])

(M N)[α := A] = (M[α := A]) (N[α := A])

(�β M)[α := A] = �β[α:=A](M[α := A])

(�β M)[α := A] = �β[α:=A](M[α := A])

(%β M)[α := A] = %β[α:=A](M[α := A])

(Λβ.M)[α := A] = Λβ.(M[α := A]) (if β � α and β � A)

(M B)[α := A] = (M[α := A]) (B[α := A])

Here, �Aτ, �A M, �A M and %A M (where A = α1α2 · · ·αn) denote:

�Aτ = �α1�α2 · · · �αn τ

�A M = �α1 �α2 · · ·�αn M

�A M = �αn �αn−1 · · ·�α1 M

%A M = %αn %αn−1 · · ·%α1 M.

In particular, �ε M = �ε M = %ε M = M.

Fig. 1. Transition Substitution

Since the reduction is full, there are other reduction sequences as well. The sequence
above is not staged in the sense that only redexes at the lowest stage are reduced (notice
that 1+ 2 appears under a quotation). We will give staged reduction in the next section.

3.3 Type System

Next, we develop the type system of λ�%. As discussed in Section 2, we distinguish two
kinds of transition variables and have two forms of types ∀α.τ and ∀εα.τ for Λα.M. The
former can be applied to any transitions but M cannot contain %α; the latter allows %α
but can be applied only to ε. For programming convenience, we introduce subtyping
between two kinds of ∀ types to allow promotion from the former type to the latter.

Subtyping. We first give the subtyping relation.

110 Y. Hanada and A. Igarashi

∀α.τ <: ∀εα.τ τ <: τ
τ <: σ σ <: φ

τ <: φ

τ1 <: σ1 σ2 <: τ2

σ1 → σ2 <: τ1 → τ2

τ <: σ
�ατ <: �ασ

τ <: σ
∀α.τ <: ∀α.σ

τ <: σ
∀εα.τ <: ∀εα.σ

Fig. 2. Subtyping Rules

Definition 2 (Subtyping). The subtyping relation τ <: σ is the least relation closed
under the rules in Figure 2.

The only interesting rule is the first one, which means that a Λ-abstraction that can be
applied to any transitions can also be used in a restricted context where only applications
to the empty transition are allowed. The other rules mean that subtyping is reflexive and
transitive and that type constructors are covariant except for function types, which are
contravariant in argument types.

Typing. A typing context in λ�% keeps track of not only types of variables but also
transitions, which represent which stage it is declared at.

Definition 3 (Typing Context). A typing context Γ is a finite mapping from variables
to pairs of a type and a transition.

We often write Γ, x : τ@A for the typing context Γ′ such that dom(Γ′) = dom(Γ) ∪ {x}
and Γ′(x) = (τ, A) and Γ′(y) = Γ(y) if x � y. Γ(x) = (τ, A) means “the variable x at the
stage A has the type τ.” We write FTV(Γ) for the set of free transition variables in Γ,
defined as

⋃
x∈dom(Γ) { FTV(τ) ∪ FTV(A) | (τ, A) = Γ(x) }

A type judgment is of the form Γ;Δ �A M : τ, read “the term M is given type τ
under the context Γ and Δ at stage A.” Here, Δ is a set of transition variables and records
∀ε-bound transition variables. Intuitively, transition variables in Δ denote the empty
sequence and cross-stage persistence is allowed only for them. Conversely, a code type
�ατ is residualizable if α � Δ.

Definition 4 (Typing). The typing relation Γ;Δ �A M : τ is the least relation closed
under the rules in Figure 3.

The rules Var, Abs and App are mostly same as those in the simply typed lambda
calculus, except for stage annotations. The rule Var means that a variable can appear
only at the stage in which it is declared; the rule Abs requires the parameter and the
body to be at the same stage; similarly, the rule App requires M and N to be typeable at
the same stage. The following four rules �, �, Gen and Ins are essentially the same as
those of λ�, except that Δ is added to typing judgments. The rule � means that, if M is
of type τ at stage Aα, �α A is code of type τ at stage A; the rule � is its converse. The
rules Gen and Ins are the introduction and elimination of ∀ types, respectively. The side
condition of the rule (Gen) guarantees α-closedness of M, which means M has no free
variable which has a transition variable α in its type or its stage.

The next two rules GenE and InsE for ∀ε are very similar to Gen and Ins, respectively,
but there are two important differences. In GenE, the transition variable α must be in

On Cross-Stage Persistence in Multi-Stage Programming 111

Γ, x : τ@A;Δ �A x : τ
(Var)

Γ, x : τ@A;Δ �A M : σ
Γ;Δ �A λx : τ.M : τ→ σ (Abs)

Γ;Δ �A M : τ→ σ Γ; Δ �A N : τ
Γ;Δ �A M N : σ

(App)

Γ; Δ �Aα M : τ
Γ;Δ �A �α M : �ατ

(�)
Γ;Δ �A M : �ατ
Γ;Δ �Aα �α M : τ

(�)

Γ; Δ �A M : τ α � FTV(Γ) ∪ FTV(A) ∪ Δ
Γ; Δ �A Λα.M : ∀α.τ (Gen)

Γ;Δ �A M : ∀α.τ
Γ; Δ �A M B : τ[α := B]

(Ins)

Γ; Δ ∪ {α} �A M : τ α � FTV(Γ) ∪ FTV(A) ∪ Δ
Γ;Δ �A Λα.M : ∀εα.τ (GenE)

Γ; Δ �A M : ∀εα.τ β ∈ Δ whenever β ∈ B

Γ; Δ �A M B : τ[α := B]
(InsE)

Γ;Δ �A M : τ α ∈ Δ
Γ;Δ �Aα %α M : τ

(%)

Γ; Δ �A M : τ τ <: σ
Γ; Δ �A M : σ

(Sub)

Fig. 3. Typing Rules

the second component Δ ∪ {α} of the premise, so that CSP with α is possible. In InsE,
the argument B has to consist only of transition variables from Δ—B is virtually the
empty sequence. The next rule % is for CSP, which is allowed only when the indexing
transition variable is in Δ.

The last rule stands for ordinary subsumption.

3.4 Properties

We show three basic properties of the calculus: subject reduction, strong normalization
and confluence.

Subject Reduction. The key lemma to prove subject reduction is Substitution Lemma
as usual. We show that transition substitution [α := A] preserves subtyping and typing;
and that term substitution [x := M] preserves typing. There are two separate statements
for transition substitution and typing because a transition variable in Δ can be replaced
only with the “virtually empty” transitions.

Lemma 1 (Substitution Lemma)

1. If τ <: σ, then τ[α := B] <: σ[α := B]
2. If Γ, x : τ@B;Δ �A M : τ and Γ : Δ �B N : τ, then Γ;Δ �A M[x := N] : τ
3. If α � Δ and Γ;Δ �A M : τ, then Γ[α := B];Δ �A[α:=B] M[α := B] : τ[α := B]
4. If α ∈ Δ and Γ;Δ �A M : τ and β ∈ Δ for any β ∈ B, then
Γ[α := B]; (Δ \ {α} ∪ FTV(B)) �A[α:=B] M[α := B] : τ[α := B]

112 Y. Hanada and A. Igarashi

Proof. Straightforward induction on subtyping and typing derivations.

Theorem 1 (Subject Reduction). If Γ, Δ �A M : τ and M −→ M′ then Γ, Δ �A M′ : τ.

Proof. By induction on the derivation of M −→ M′.

Strong Normalization. Well-typed terms are strongly normalizing:

Theorem 2 (Strong Normalization). If a term M is typeable, there is no infinite re-
duction sequence M −→ M′ −→ M′′ −→ · · · starting with M.

Proof. First we define translation from λ�%-terms to simply typed λ-terms; the trans-
lation just removes all staging annotations. Then, it is easy to show that the translation
preserves typeability and one-step β reduction. It is also easy to see that an infinite re-
duction sequence in λ�%, which necessarily contains infinite β-reduction steps, can be
translated to an infinite reduction sequence in the simply typed λ-calculus, contradicting
strong normalization of the simply typed λ-calculus.

Confluence. We prove confluence by using the standard technique of parallel reduction
and complete development [13]. We omit the proof since it is entirely standard.

Theorem 3 (Confluence). For any term M, if M −→∗ M1 and M −→∗ M2, there exists
M3 that satisfies M1 −→∗ M3 and M2 −→∗ M3.

4 Staged Semantics

The reduction relation given in the last section is full reduction, where an arbitrary
subterm can be reduced nondeterministically, and it is not clear if computation can be
properly staged in the sense that code generation can be completed without computing
inside quotation.

In this section, we will define a deterministic call-by-value staged semantics, which
can be easily seen as program execution, and show the standard progress property. We
obtain the new semantics by allowing reduction at the lowest possible stages (and fixing
the evaluation order). As a result, the rules β and βΛ are allowed only at the stage ε and
the rule � � only at a stage α. (Notice that a redex �α �α M is supposed to appear under
a quotation in a well-typed term.)

We begin with the definitions of values and redexes.

Definition 5 (Values and Redexes). The family VA of sets of values, ranged over by
vA and the sets of ε-redexes (ranged over by Rε) and α-redexes (ranged over by Rα) are
defined by the following grammar. In the grammar, A is nonempty.

Values vε ∈ Vε ::= λx : τ.M | �α vα | Λα.vε
vA ∈ VA ::= x | λx : τ.vA | vA vA | �α vAα

| Λα.vA | vA B
| �α vA′(if A′α = A and A′ � ε)
| %α vA′ (if A′α = A)

Redexes Rε ::= (λx : τ.M) vε | (Λα.vε) A
Rα ::= �α �α M

On Cross-Stage Persistence in Multi-Stage Programming 113

EA
ε [(λx : τ.M) vε] −→s EA

ε [M[x := vε]] (βv)

EA
ε [(Λα.vε) B] −→s EA

ε [vε[α := B]] (βΛ)

EA
α [�α �α M] −→s EA

α [M] (� �)

Fig. 4. Staged Reduction

Values at stage ε consist of abstractions and quotations. The body of a λ-abstraction
can be any term, whereas the body of a transition abstraction must be a value. It means
that the bodies of transition abstractions are reduced before transition application is
reduced. The body of a quotation is a value at a higher stage. Since evaluation at higher
stages are not performed during code generation, values at higher stages contain all
forms of terms.3 Redexes are classified into two, according to the stage where they
appear.

Then, we define evaluation contexts, which are indexed by two stages and written
EA

B. Intuitively, A stands for that of the whole context when the stage of the hole is B.

Definition 6 (Evaluation Contexts). The family of sets ECtxA
B of evaluation contexts,

ranged over by EA
B, is defined by the grammar below. In the grammar, A is nonempty

(whereas B, A′ and B′ can be empty).

EεB ∈ ECtxεB ::= � (if B = ε) | EεB M | vε EεB | �α EαB | Λα.EεB | EεB A′

EA
B ∈ ECtxA

B ::= � (if A = B) | λx : τ.EA
B | EA

B M | vA EA
B | �α EAα

B

| �α EA′
B (where A′α = A) | Λα.EA

B | EA
B B′ | %α EA′

B (where A′α = A)

We show a few examples of evaluation contexts below.

� (λx : τ.x) ∈ ECtxεε
(λx : τ.x) (�α �) ∈ ECtxεα
�β �α �α �γ � ∈ ECtxεβγ

We write EA
B[M] for a term obtained by filling the hole in EA

B with M.

Definition 7 (Staged Reduction). The staged reduction relation, written M −→s M′,
is defined by the least relation closed under the rules in Figure 4.

The rules are rather straightforward adaptations of the reduction rules for −→. Note
that, in the first two rules, the lower index of the evaluation context is ε, which means
the redex appears at stage ε and that, in the third rule, it is α, which means the redex
appears inside a (single) quotation.

3 The only exception is that an escape cannot appear at stage α because the term of the form
�α vε is a redex (if it is well typed).)

114 Y. Hanada and A. Igarashi

For example, the reduction sequence for the example shown before is as follows:

let f = λx : int.x ∗ 2 in
(Λα.�α(%α (f 1) + (%α f) (1 + 2))) ε (β)
−→∗s (Λα.�α(%α (1 ∗ 2) + (%α(λx : int.x ∗ 2)) (1 + 2))) ε
−→s (Λα.�α(%α 2 + (%α(λx : int.x ∗ 2)) (1 + 2))) ε (βΛ)
−→s 2 + ((λx : int.x ∗ 2) (1 + 2))
−→∗s 8.

4.1 Properties of Staged Reduction

First, it is easy to see that −→s is a subrelation of −→. So, the relation −→s has
strong normalization and subject reduction.

Theorem 4. −→s ⊆ −→ .

Proof. By case analysis of the rules of −→s .

Every well-typed term can be either a value or decomposed into an evaluation context
and a redex uniquely. Thanks to this theorem, we know that −→s is deterministic.

Theorem 5 (Unique Decomposition). If Γ does not have any variable declared at
stage ε and Γ;Δ �A M : τ, then either (1) M ∈ VA, or (2) there exists a unique pair
(EA

B,R
B) such that M = EA

B[RB] for some B, which is either ε or a transition variable β.

Proof. By induction on the derivation of Γ;Δ �A M : τ.

Unique Decomposition usually states that a term M is either a value or there is an-
other term that it reduces to, if M is a closed well-typed term. In λ�%, free variables at
higher-stages can be considered symbols, so we can relax the closedness condition in
stating the property.

Thanks to Unique Decomposition, Progress is easy to show.

Theorem 6 (Progress). If Γ does not have any variable declared at stage ε and Γ;Δ �A

M : τ, then M ∈ VA or there exists M′ such that M −→s M′.

Proof. By induction on the derivation of Γ;Δ �A M : τ.

The last property we show is Type-Safe Residualization, which we have discussed in
Section 2. It states that if a program of a code type is well typed under the assumption
that Δ is empty, i.e., CSP (indexed by free transition variables) is not used, then the
result (if any) is certainly a quotation and its body is also typeable at stage ε.

In the statement of the theorem, we use the notation Γ−α, defined by; Γ−α = {x :
τ@B | x : τ@αB ∈ Γ}.
Theorem 7 (Type-Safe Residualization). If Γ does not have any variable declared at
stage ε and Γ; ∅ �ε M : �ατ is derivable then there exists vε = �α N ∈ Vε, M −→∗s vε

and Γ−α; ∅ �ε N : τ is derivable.

On Cross-Stage Persistence in Multi-Stage Programming 115

Proof. We show this theorem by two parts. First, we show the existence of v = �α N,
which is reduced from M. Next, we show that Γ−α; ∅ �ε N : τ is derivable.

The first part is proved by case analysis on the form of M. By the first part and the
typing rule �, we have a derivation of Γ; ∅ �α N : τ. So, all we need to show the second
part is that if Γ; ∅ �α N : τ then Γ−α; ∅ �ε N : τ, and we can prove this by induction on
the derivation of Γ; ∅ �α N : τ.

5 Discussion

In this section, we investigate differences between λ�% and BER MetaOCaml4 in more
detail. We also discuss the relationship between CSP and program residualization in
λ�%.

5.1 CSP in MetaOCaml

In MetaOCaml, CSP is implicitly applied to the occurrences of value identifiers (vari-
ables and references to module members such as List.map) declared outside brackets.
The behavior of CSP in MetaOCaml is, however, subtly different from that of λ�%;
actually, it depends on where the identifier is declared.

First, CSP for a variable declared in the same compilation unit works (almost) the
same as in λ�%. In the implementation, a code value is represented as an AST and
there is a special node that contains a pointer to the value of a variable under CSP5.
This pointer is dereferenced while the surrounding code is evaluated. In contrast to that,
CSP for an identifier in another compilation unit is represented by an AST node that
contains the identifier name, which is resolved while the surrounding code is evaluated.
The following program (run by BER MetaOCaml version N 101) demonstrates the
difference:

let f = List.map in .< (f, List.map) >.;;

- : ...

= .<(((* cross-stage persistent value (id: f) *)), List.map)>.

The result is a quoted pair consisting of a pointer to a closure (which is the value of
List.map) and a module member reference to be resolved later. This lazy name reso-
lution does not affect the result of program execution, because (1) variable reference is
a side-effect free operation and (2) resolving the same module name at code-generation
time and at code-evaluation time results in the same module implementation.

5.2 CSP and Program Residualization

As already discussed, in λ�%, CSP with a transition variable α can be applied only if
α is bound by Λα which has a ∀εα type. Due to this restriction, it is impossible to use
the same code value both for running and residualization if it contains a reference to a
library function, (which can be considered a free variable at stage ε).

4 A (re)implementation of the original MetaOCaml by Oleg Kiselyov.
5 For ground values such as integers, this node is replaced with an AST node for a constant.

116 Y. Hanada and A. Igarashi

Consider the following term (of λ�% extended with pairs):

M = let c = Λα.�α(1 + 2) in let d = c ε in �β(�β(c β),%β d)

The intention behind this term is to construct a code value representing 1 + 2, evaluate
it to 3, and construct another code value representing ((1 + 2), 3) to be residualized. If
+ is a language primitive (just as numbers), which can be used at any stage, then this
term can be given type �β(int × int). However, if + is a free variable at stage ε, the
subterm Λα.�α(1 + 2) is ill typed. One may apply CSP to + to make this subterm well
typed but the only type given to this term is ∀εα. �α int, making another subterm c β ill
typed (here, β cannot be in Δ in the type derivation because the generated code is to be
residualized).

Although this may sound very unfortunate because one may expect + is available
everywhere, we believe that it is reasonable for the type system to reject this term,
because, in general, a library function that is available during code generation may or
may not be available when the generated code is executed later. In other words, using
the same name at different levels may result in different values.

6 Related Work

Although many multi-stage calculi are studied in the literature, few of them are equipped
with all the combination of quasiquotation, run and CSP.

Davies’ λ◦ [14], which can model multi-level generating extensions [15], has
quasiquotation but neither run nor CSP. Due to the absence of CSP, Type-Safe Residu-
alization naturally follows.

Davies and Pfenning have proposed modal λ-calculi, whose type systems can be seen
as (intuitionistic) S4 modal logic [16]. They do not model CSP but a code fragment can
be embedded inside arbitrarily nested quotations. In this sense, code types can cross
stages. Such a limited support of CSP is found in other calculi [17, 10].

Taha et al. [18] and Moggi et al. [19] have proposed MSP calculi with quasiquo-
tation, run, and CSP. In these calculi, CSP is implicit as in MetaOCaml and limited
to variable references. They satisfy a property similar to Type-Safe Residualization
but, unfortunately, the distinction between lifting and CSP is not very clear from its
semantics because a variable under implicit CSP is just replaced with a value, e.g.,
(λ f .〈 f 42〉)(λx.x+ x) evaluates to 〈(λx.x+ x) 42〉, which looks as if the function λx.x+ x
were lifted.

Benaissa et al. [11] have presented λBN, which has an explicit CSP operator up that
can be applied to any expressions, as well as quasiquotation and (a limited support for)
run. Although there is a certain typing restriction on the use of up, this operator can be
used for any kind of values, including functions; lifting and CSP are confused here, too.

As we already mentioned, Taha and Nielsen [8] have introduced the notion of envi-
ronment classifiers to λα, which has quasiquotation, run, and CSP. In λα, CSP is explicit
(in fact, we borrow the symbol % from λα) and can be applied to any expression and λα-
term 〈%α 3 ∗%α 3〉α, which would correspond to �α(%α 3 ∗%α 3), is also considered a
value. Since environment classifiers in λα cannot be instantiated by the empty sequence,
the semantics of run is formalized as a reduction step which removes the outermost pair

On Cross-Stage Persistence in Multi-Stage Programming 117

of brackets and adjusts occurrences of % by a complicated meta-level operation called
demotion. For example, run (α)〈(%α 3 ∗ %α 3)〉α (where (α)M is a binder of a classi-
fier) reduces to (α)(3 ∗ 3). In the implementation (both the original one [4] and BER
MetaOCaml6 by Kiselyov), a code value is represented by an AST tree, in which CSP
is a special node that points to a run-time value; when a quotation is run and compiled,
a CSP node is compiled to an instruction to dereference the pointer to the value. This
implementation scheme matches the intuition that CSP is a syntactic marker that waits
for the surrounding code to start running. Lifting is not needed to implement CSP7, as
far as run is concerned, but dumping code values into a file is not generally possible
because a CSP node might point to a nonserializable object. We think λα is a suitable
model only of MSP languages without support of generating residual code because the
type system does not distinguish code that can/cannot be residualized.

Kim et al. [5] have proposed another multi-stage calculus λsim
open, which is equipped

with lifting of arbitrary values so that any value can be embedded into a quotation. So,
it seems also difficult to support residualization.

7 Conclusions

We have given the formal definition of λ�% with its syntax, type system, full reduction
and staged reduction. A key idea here is to view CSP as a syntactic marker waiting
for run to dissolve the surrounding brackets. For the full reduction, where an arbitrary
subterm can be reduced nondeterministically, we have proven subject reduction, strong
normalization and confluence. For staged reduction, which is a deterministic call-by-
value operational semantics, we have proven Progress, Type-Safe Residualization and
that staged reduction is a subrelation of the full reduction.

We have also discussed interactions between CSP and program residualization and
pointed out a problem that residualization for a value which is put into a bracket by
CSP requires lifting that is always not feasible. In this sense, MetaOCaml is not very
suitable for writing offline generators. Our type system for λ�% solves this problem by
distinguishing two kinds of transition variables.

Type inference for λ�% would not be possible as it is for the same reason as λα [8]
and λ� [10], but we would be able to identify a subset of λ�% in which type inference
is possible by a similar approach to Calgano, Moggi and Taha [9].

Acknowledgements. We thank Kenichi Asai and Yukiyoshi Kameyama for valuable
comments. We also thank three anonymous reviewers for their helpful comments (in
particular, one reviewer for describing how CSP is implemented in MetaOCaml).

References

1. Taha, W.: A gentle introduction to multi-stage programming. In: Lengauer, C., Batory,
D., Blum, A., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016,
pp. 30–50. Springer, Heidelberg (2004)

6 http://okmij.org/ftp/ML/MetaOCaml.html
7 Basic values such as numbers or strings under CSP are converted to literals.

http://okmij.org/ftp/ML/MetaOCaml.html

118 Y. Hanada and A. Igarashi

2. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. In: Proceedings of
Haskell Workshop (Haskell 2002), pp. 60–75 (2002)

3. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit annotations. The-
oretical Computer Science 248, 211–242 (2000)

4. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage languages us-
ing ASTs, gensym, and reflection. In: Pfenning, F., Macko, M. (eds.) GPCE 2003. LNCS,
vol. 2830, pp. 57–76. Springer, Heidelberg (2003)

5. Kim, I.S., Yi, K., Calcagno, C.: A polymorphic modal type system for Lisp-like multi-staged
languages. In: Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 2006), Charleston, SC, pp. 257–268 (January 2006)

6. Chen, C., Xi, H.: Meta-programming through typeful code representation. In: Proceedings of
ACM International Conference on Functional Programming (ICFP 2003), Uppsala, Sweden,
pp. 275–286 (August 2003)

7. Mainland, G.: Explicitly heterogeneous metaprogramming with MetaHaskell. In: Proceed-
ings of ACM International Conference on Functional Programming (ICFP 2012), Copen-
hagen, Denmark, pp. 311–322 (September 2012)

8. Taha, W., Nielsen, M.F.: Environment classifiers. In: Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2003), pp. 26–37
(2003)

9. Calcagno, C., Moggi, E., Taha, W.: ML-like inference for classifiers. In: Schmidt, D. (ed.)
ESOP 2004. LNCS, vol. 2986, pp. 79–93. Springer, Heidelberg (2004)

10. Tsukada, T., Igarashi, A.: A logical foundation for environment classifiers. Logical Methods
in Computer Science 6(4:8), 1–43 (2010)

11. Benaissa, Z.E.A., Moggi, E., Taha, W., Sheard, T.: Logical modalities and multi-stage pro-
gramming. In: Proceedings of Workshop on Intuitionstic Modal Logics and Applications
(IMLA 1999) (1999)

12. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Genera-
tion. Prentice-Hall (1993)

13. Takahashi, M.: Parallel reductions in lambda-calculus. Inf. Comput. 118(1), 120–127 (1995)
14. Davies, R.: A temporal-logic approach to binding-time analysis. In: Proceedings of the

Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 184–
195. IEEE Computer Society Press (July 1996)

15. Glück, R., Jørgensen, J.: Efficient multi-level generating extensions for program specializa-
tion. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 259–278. Springer, Heidel-
berg (1995)

16. Davies, R., Pfenning, F.: A modal analysis of staged computation. Journal of the ACM 48(3),
555–604 (2001)

17. Yuse, Y., Igarashi, A.: A modal type system for multi-level generating extensions with persis-
tent code. In: Proceedings of the 8th ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming (PPDP 2006), Venice, Italy, pp. 201–212 (2006)

18. Taha, W., Benaissa, Z.-E.-A., Sheard, T.: Multi-stage programming: Axiomatization and type
safety. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
918–929. Springer, Heidelberg (1998)

19. Moggi, E., Taha, W., Benaissa, Z.-E.-A., Sheard, T.: An idealized MetaML: Simpler, and
more expressive. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 193–207.
Springer, Heidelberg (1999)

	On Cross-Stage Persistence in Multi-Stage Programming
	1 Introduction
	1.1 Organization of the Paper

	2 InformalOverviewofλ
	2.1 λ
	2.2 Adding CSP to

	3 λ%
	3.1 Syntax
	3.2 Reduction
	3.3 Type System
	3.4 Properties

	4 Staged Semantics
	4.1 Properties of Staged Reduction

	5 Discussion
	5.1 CSP in MetaOCaml
	5.2 CSP and Program Residualization

	6 Related Work
	7 Conclusions
	References

