
AC-KBO Revisited�

Akihisa Yamada1, Sarah Winkler2, Nao Hirokawa3, and Aart Middeldorp2

1 Graduate School of Information Science, Nagoya University, Japan
2 Institute of Computer Science, University of Innsbruck, Austria

3 School of Information Science, JAIST, Japan

Abstract. We consider various definitions of AC-compatible Knuth-
Bendix orders. The orders of Steinbach and of Korovin and Voronkov
are revisited. The former is enhanced to a more powerful AC-compatible
order and we modify the latter to amend its lack of monotonicity on
non-ground terms. We further present new complexity results. An ex-
tension reflecting the recent proposal of subterm coefficients in standard
Knuth-Bendix orders is also given. The various orders are compared on
problems in termination and completion.

1 Introduction

Associative and commutative (AC) operators appear in many applications, e.g.
in automated reasoning with respect to algebraic structures such as commuta-
tive groups or rings. We are interested in proving termination of term rewrite
systems with AC symbols. AC termination is important when deciding validity
in equational theories with AC operators by means of completion.

Several termination methods for plain rewriting have been extended to deal
with AC symbols. Ben Cherifa and Lescanne [4] presented a characterization of
polynomial interpretations that ensures compatibility with the AC axioms. There
have been numerous papers on extending the recursive path order (RPO) of
Dershowitz [6] to deal with AC symbols, starting with the associative path order
of Bachmair and Plaisted [3] and culminating in the fully syntactic AC-RPO of
Rubio [16]. Several authors [1, 7, 12, 15] adapted the influential dependency pair
method of Arts and Giesl [2] to AC rewriting.

We are aware of only two papers on AC extensions of the order of Knuth and
Bendix (KBO) [8]. In this paper we revisit these orders and present yet another
AC-compatible KBO. Steinbach [17] presented a first version, which comes with
the restriction that AC symbols are minimal in the precedence. By incorporating
ideas of [16], Korovin and Voronkov [9] presented a version without this restric-
tion. Actually, they present two versions. One is defined on ground terms and
another one on arbitrary terms. For (automatically) proving AC termination of

� The research described in this paper is supported by the Austrian Science Fund
(FWF) international project I963, the bilateral programs of the Japan Society for
the Promotion of Science and the KAKENHI Grant No. 25730004.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 319–335, 2014.
c© Springer International Publishing Switzerland 2014

320 A. Yamada et al.

rewrite systems, an AC-compatible order on arbitrary terms is required.1 We
show that the second order of [9] lacks the monotonicity property which is re-
quired by the definition of simplification orders. Nevertheless we prove that the
order is sound for proving termination by extending it to an AC-compatible sim-
plification order. We furthermore present a simpler variant of this latter order
which properly extends the order of [17]. In particular, Steinbach’s order is a
correct AC-compatible simplification order, contrary to what is claimed in [9].
We also present new complexity results which confirm that AC rewriting is much
more involved than plain rewriting. Apart from these theoretical contributions,
we implemented the various AC-compatible KBOs to compare them also exper-
imentally.

The remainder of this paper is organized as follows. After recalling basic
concepts of rewriting modulo AC and orders, we revisit Steinbach’s order in
Section 3. Section 4 is devoted to the two orders of Korovin and Voronkov. We
present a first version of our AC-compatible KBO in Section 5, where we also
give the non-trivial proof that it has the required properties. (The proofs in [9]
are limited to the order on ground terms.) Then we prove in Section 6 that
the problem of orienting a ground rewrite system with the order of Korovin
and Voronkov as well as our new order is NP-hard. In Section 7 our order is
strengthened with subterm coefficients. In order to show effectiveness of these
orders experimental data is provided in Section 8. The paper is concluded in
Section 9. Due to lack of space, some of the proofs can be found in the full
version of this paper [21].

2 Preliminaries

We assume familiarity with rewriting and termination. Throughout this paper
we deal with rewrite systems over a set V of variables and a finite signature F
together with a designated subset FAC of binary AC symbols. The congruence re-
lation induced by the equations f(x, y) ≈ f(y, x) and f(f(x, y), z) ≈ f(x, f(y, z))
for all f ∈ FAC is denoted by =AC. A term rewrite system (TRS for short) R is
AC terminating if the relation =AC ·→R ·=AC is well-founded. In this paper AC
termination is established by AC-compatible simplification orders �, which are
strict orders (i.e., irreflexive and transitive relations) closed under contexts and
substitutions that have the subterm property f(t1, . . . , tn) � ti for all 1 � i � n
and satisfy =AC · � · =AC ⊆ �. A strict order � is AC-total if s � t, t � s or
s =AC t, for all ground terms s and t. A pair (�,�) consisting of a preorder �
and a strict order � is said to be an order pair if the compatibility condition
� · � · � ⊆ � holds.

Definition 1. Let � be a strict order and � be a preorder on a set A. The
lexicographic extensions �lex and �lex are defined as follows:

1 Any AC-compatible reduction order �g on ground terms can trivially be extended
to arbitrary terms by defining s � t if and only if sσ �g tσ for all grounding
substitutions σ. This is, however, only of (mild) theoretical interest.

AC-KBO Revisited 321

– x �lex y if x �lex
k y for some 1 � k � n,

– x �lex y if x �lex
k y for some 1 � k < n.

Here x = (x1, . . . , xn), y = (y1, . . . , yn), and x �lex
k y denotes the following

condition: xi � yi for all i � k and either k < n and xk+1 � yk+1 or k = n.

The multiset extensions �mul and �mul are defined as follows:

– M �mul N if M �mul
k N for some 0 � k � min(m,n),

– M �mul N if M �mul
k N for some 0 � k � min(m− 1, n).

Here M �mul
k N if M and N consist of x1, . . . , xm and y1, . . . , yn respectively

such that xj � yj for all j � k, and for every k < j � n there is some k < i � m
with xi � yj.

Note that these extended relations depend on both � and �. The following
result is folklore; a recent formalization of multiset extensions in Isabelle/HOL
is presented in [18].

Theorem 2. If (�,�) is an order pair then (�lex,�lex) and (�mul,�mul) are
order pairs. ��

3 Steinbach’s Order

In this section we recall the AC-compatible KBO >S of Steinbach [17], which
reduces to the standard KBO if AC symbols are absent.2 The order >S depends
on a precedence and an admissible weight function. A precedence > is a strict
order on F . A weight function (w,w0) for a signature F consists of a mapping
w : F → N and a constant w0 > 0 such that w(c) � w0 for every constant c ∈ F .
The weight of a term t is recursively computed as follows: w(t) = w0 if t ∈ V
and w(f(t1, . . . , tn)) = w(f) + w(t1) + · · ·+ w(tn). A weight function (w,w0) is
admissible for > if every unary f with w(f) = 0 satisfies f > g for all function
symbols g different from f . Throughout this paper we assume admissibility.

The top-flattening [16] of a term t with respect to an AC symbol f is the
multiset �f (t) defined inductively as follows: �f (t) = {t} if root(t) 	= f and
�f (f(t1, t2)) = �f (t1)
 �f (t2).

Definition 3. Let > be a precedence and (w,w0) a weight function. The order
>S is inductively defined as follows: s >S t if |s|x � |t|x for all x ∈ V and either
w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

(0) s = fk(t) and t ∈ V for some k > 0,

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
S (t1, . . . , tn),

(3) s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and �f (s) >
mul
S �f (t).

2 The version in [17] is slightly more general, since non-AC function symbols can have
arbitrary status. To simplify the discussion, we do not consider status in this paper.

322 A. Yamada et al.

The relation =AC is used as preorder in >lex
S and >mul

S .

Cases (0)–(2) are the same as in the classical Knuth-Bendix order. In case
(3) terms rooted by the same AC symbol f are treated by comparing their
top-flattenings in the multiset extension of >S.

Example 4. Consider the signature F = {a, f, g} with f ∈ FAC, precedence g >
a > f and admissible weight function (w,w0) with w(f) = w(g) = 0 and w0 =
w(a) = 1. Let R1 be the following ground TRS:

g(f(a, a)) → f(g(a), g(a)) (1) f(a, g(g(a))) → f(g(a), g(a)) (2)

For 1 � i � 2, let �i and ri be the left- and right-hand side of rule (i), Si = �f(�i)
and Ti = �f(ri). Both rules vacuously satisfy the variable condition. We have
w(�1) = 2 = w(r1) and g > f, so �1 >S r1 holds by case (1). We have w(�2) =
2 = w(r2), S2 = {a, g(g(a))}, and T2 = {g(a), g(a)}. Since g(a) >S a holds by
case (1), g(g(a)) >S g(a) holds by case (2), and therefore �2 >S r2 by case (3).

Theorem 5 ([17]). If every symbol in FAC is minimal with respect to > then
>S is an AC-compatible simplification order.3 ��

In Section 5 we reprove4 Theorem 5 by showing that >S is a special case of our
new AC-compatible Knuth-Bendix order.

4 Korovin and Voronkov’s Orders

In this section we recall the orders of [9]. The first one is defined on ground
terms. The difference with >S is that in case (3) of the definition a further case
analysis is performed based on terms in S and T whose root symbols are not
smaller than f in the precedence. Rather than recursively comparing these terms
with the order being defined, a lighter non-recursive version is used in which the
weights and root symbols are considered. This is formally defined below.

Given a multiset T of terms, a function symbol f , and a binary relation R on
function symbols, we define the following submultisets of T :

T �V = {x ∈ T | x ∈ V} T �Rf = {t ∈ T \ V | root(t) R f}

Definition 6. Let > be a precedence and (w,w0) a weight function.5 First we
define the auxiliary relations =kv and >kv as follows:

– s =kv t if w(s) = w(t) and root(s) = root(t),
– s >kv t if either w(s) > w(t) or both w(s) = w(t) and root(s) > root(t).

3 In [17] AC symbols are further required to have weight 0 because terms are flattened.
Our version of >S does not impose this restriction due to the use of top-flattening.

4 The counterexample in [9] against the monotonicity of >S is invalid as the condition
that AC symbols are minimal in the precedence is not satisfied.

5 Here we do not impose totality on precedences, cf. [9]. See also Example 25.

AC-KBO Revisited 323

The order >KV is inductively defined on ground terms as follows: s >KV t if
either w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
KV (t1, . . . , tn),

(3) s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = �f (s) and T = �f (t)

(a) S�≮f >mul
kv T �≮f , or

(b) S�≮f =mul
kv T �≮f and |S| > |T |, or

(c) S�≮f =mul
kv T �≮f , |S| = |T |, and S >mul

KV T .

Here =AC is used as preorder in >lex
KV and >mul

KV whereas =kv is used in >mul
kv .

Only in cases (2) and (3c) the order >KV is used recursively. In case (3) terms
rooted by the same AC symbol f are compared by extracting from the top-
flattenings S and T the multisets S�≮f and T �≮f consisting of all terms rooted by
a function symbol not smaller than f in the precedence. If S�≮f is larger than
T �≮f in the multiset extension of >kv, we conclude in case (3a). Otherwise the

multisets must be equal (with respect to =mul
kv). If S has more terms than T , we

conclude in case (3b). In the final case (3c) S and T have the same number of
terms and we compare S and T in the multiset extension of >KV.

Theorem 7 ([9]). The order >KV is an AC-compatible simplification order on
ground terms. If > is total then >KV is AC-total on ground terms. ��

The two orders >KV and >S are incomparable on ground TRSs.

Example 8. Consider again the ground TRS R1 of Example 4. To orient rule (1)
with >KV, the weight of the unary function symbol g must be 0 and admissibility
demands g > a and g > f. Hence rule (1) is handled by case (1) of the definition.
For rule (2), the multisets S = {a, g(g(a))} and T = {g(a), g(a)} are compared
in case (3). We have S�≮f = {g(g(a))} if f > a and S�≮f = S otherwise. In both
cases we have T �≮f = T . Note that neither a >kv g(a) nor g(g(a)) >kv g(a) holds.
Hence case (3a) does not apply. But also cases (3b) and (3c) are not applicable
as g(g(a)) =kv g(a) and a 	=kv g(a). Hence, independent of the choice of >, R1

cannot be proved terminating by >KV. Conversely, the TRS R2 resulting from
reversing rule (2) in R1 can be proved terminating by >KV but not by >S.

Next we present the second order of [9], the extension of >KV to non-ground
terms. Since it coincides with >KV on ground terms, we use the same notation
for the order.

In case (3) of the following definition, also variables appearing in the top-
flattenings S and T are taken into account in the first multiset comparison.
Given a relation � on terms, we write S �f T for S�≮f �mul T �≮f
 T �V − S�V .
Note that �f depends on a precedence >. Whenever we use �f , > is defined.

Definition 9. Let > be a precedence and (w,w0) a weight function. First we
extend the orders =kv and >kv as follows:

324 A. Yamada et al.

– s =kv t if |s|x = |t|x for all x ∈ V, w(s) = w(t) and root(s) = root(t),
– s >kv t if |s|x � |t|x for all x ∈ V and either w(s) > w(t) or both w(s) = w(t)

and root(s) > root(t).

The order >KV is now inductively defined as follows: s >KV t if |s|x � |t|x for
all x ∈ V and either w(s) > w(t), or w(s) = w(t) and one of the following
alternatives holds:

(0) s = fk(t) and t ∈ V for some k > 0,

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
KV (t1, . . . , tn),

(3) s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = �f (s) and T = �f (t)

(a) S >f
kv T , or

(b) S =f
kv T and |S| > |T |, or

(c) S =f
kv T , |S| = |T |, and S >mul

KV T .

Here =AC is used as preorder in >lex
KV and >mul

KV whereas =kv is used in >mul
kv .

Contrary to what is claimed in [9], the order >KV of Definition 9 is not a
simplification order because it lacks the monotonicity property (i.e., >KV is not
closed under contexts), as shown in the following example.

Example 10. Let f be an AC symbol and g a unary function symbol with w(g) =
0 and g > f.6 We obviously have g(x) >KV x. However, f(g(x), y) >KV f(x, y)
does not hold. Let S = �f(s) = {g(x), y} and T = �f(t) = {x, y}. We have
S�≮f = {g(x)}, S�V = {y}, T �≮f = ∅, and T �V = {x, y}. Note that g(x) >kv x
does not hold since g ≯ x. Hence case (3a) in Definition 9 does not apply. But
also g(x) =kv x does not hold, excluding cases (3b) and (3c).

The example does not refute the soundness of >KV for proving AC termina-
tion; note that also f(x, y) >KV f(g(x), y) does not hold. We prove soundness by
extending >KV to >KV′ which has all desired properties.

Definition 11. The order >KV′ is obtained as in Definition 9 after replacing
=f

kv by �f
kv′ in cases (3b) and (3c), and using �kv′ as preorder in >mul

kv in case
(3a). Here the relation �kv′ is defined as follows:

– s �kv′ t if |s|x � |t|x for all x ∈ V and either w(s) > w(t), or w(s) = w(t)
and either root(s) � root(t) or t ∈ V.

Note that �kv′ is a preorder that contains =AC.

Example 12. Consider again Example 10. We have f(g(x), y) >KV′ f(x, y) be-
cause now case (3c) applies: S�≮f = {g(x)} �mul

kv′ {x} = T �≮f
 T �V − S�V ,
|S| = 2 = |T |, and S = {g(x), y} >mul

KV′ {x, y} = T because g(x) >KV′ x.

6 The use of a unary function of weight 0 is not crucial, see [21].

AC-KBO Revisited 325

The order >KV′ is an AC-compatible simplification order. Since the inclu-
sion >KV ⊆ >KV′ obviously holds, it follows that >KV is a sound method for
establishing AC termination, despite the lack of monotonicity.

Theorem 13. The order >KV′ is an AC-compatible simplification order.

Proof. See [21]. ��

The order >KV′ lacks one important feature: a polynomial-time algorithm to
decide s >KV′ t when the precedence and weight function are given. By using
the reduction technique of [18, Theorem 4.2], NP-hardness of this problem can
be shown. Note that for KBO the problem is known to be linear [13].

Theorem 14. The decision problem for >KV′ is NP-hard.

Proof. See [21]. ��

5 AC-KBO

In this section we present another AC-compatible simplification order. In con-
trast to >KV′ , our new order >ACKBO contains >S. Moreover, its definition is
simpler than >KV′ since we avoid the use of an auxiliary order in case (3). Fi-
nally, >ACKBO is decidable in polynomial-time. Hence it will be used as the basis
for the extension discussed in Section 7.

Definition 15. Let > be a precedence and (w,w0) a weight function. We define
>ACKBO inductively as follows: s >ACKBO t if |s|x � |t|x for all x ∈ V and either
w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

(0) s = fk(t) and t ∈ V for some k > 0,

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

(2) s=f(s1, . . . , sn), t=f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
ACKBO (t1, . . . , tn),

(3) s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = �f (s) and T = �f (t)

(a) S >f
ACKBO T , or

(b) S =f
AC T , and |S| > |T |, or

(c) S =f
AC T , |S| = |T |, and S�<f >mul

ACKBO T �<f .

The relation =AC is used as preorder in >lex
ACKBO and >mul

ACKBO.

Note that in case (3c) we compare the multisets S�<f and T �<f rather than S
and T in the multiset extension of >ACKBO.

Steinbach’s order is a special case of the order defined above.

Theorem 16. If every AC symbol has minimal precedence then >S = >ACKBO.

326 A. Yamada et al.

Proof. Suppose that every function symbol in FAC is minimal with respect to
>. We show that s >S t if and only if s >ACKBO t by induction on s. It is clearly
sufficient to consider case (3) in Definition 3 and cases (3a)–(3c) in Definition 15.
So let s = f(s1, s2) and t = f(t1, t2) such that w(s) = w(t) and f ∈ FAC. Let
S = �f (s) and T = �f (t).

– Let s >S t by case (3). We have S >mul
S T . Since S >mul

S T involves only
comparisons s′ >S t′ for subterms s′ of s, the induction hypothesis yields
S >mul

ACKBO T . Because f is minimal in >, S = S�≮f
S�V and T = T �≮f
T �V .
For no elements u ∈ S�V and v ∈ T �≮f , u >ACKBO v or u =AC v holds. Hence

S >mul
ACKBO T implies S >f

ACKBO T or both S =f
AC T and S�V � T �V . In the

former case s >ACKBO t is due to case (3a) in Definition 15. In the latter case
we have |S| > |T | and s >ACKBO t follows by case (3b).

– Let s >ACKBO t by applying one of the cases (3a)–(3c) in Definition 15.

• Suppose (3a) applies. Then we have S >f
ACKBO T . Since f is minimal in>,

S�≮f = S−S�V and T �≮f
T �V = T . Hence S >mul
ACKBO (T−S�V)
S�V ⊇ T .

We obtain S >mul
S T from the induction hypothesis and thus case (3) in

Definition 3 applies.
• Suppose (3b) applies. Analogous to the previous case, the inclusion
S =mul

AC (T − S�V)
 S�V ⊇ T holds. Since |S| > |T |, S =mul
AC T is not

possible. Thus (T − S�V)
 S�V � T and hence S >mul
S T .

• If case (3c) applies then S�<f >mul
ACKBO T �<f . This is impossible since both

sides are empty as f is minimal in >. ��

The following example shows that >ACKBO is a proper extension of >S and in-
comparable with >KV′ .

Example 17. Consider the TRS R3 consisting of the rules

f(x + y) → f(x) + y h(a, b) → h(b, a) h(g(a), a) → h(a, g(b))

g(x) + y → g(x+ y) h(a, g(g(a))) → h(g(a), f(a)) h(g(a), b) → h(a, g(a))

f(a) + g(b) → f(b) + g(a)

over the signature {+, f, g, h, a, b} with + ∈ FAC. Consider the precedence f >
+ > g > a > b > h together with the admissible weight function (w,w0) with
w(+) = w(h) = 0, w(f) = w(a) = w(b) = w0 = 1 and w(g) = 2. The interesting
rule is f(a)+g(b) → f(b)+g(a). For S = �+(f(a)+g(b)) and T = �+(f(b)+g(a))
the multisets S′ = S�≮+ = {f(a)} and T ′ = T �≮+
 T �V − S�V = {f(b)} satisfy
S′ >mul

ACKBO T ′ as f(a) >ACKBO f(b), so that case (3a) of Definition 15 applies. All
other rules are oriented from left to right by both >KV′ and >ACKBO, and they
enforce a precedence and weight function which are identical (or very similar) to
the one given above. Since >KV′ orients the rule f(a) + g(b) → f(b) + g(a) from
right to left, R3 cannot be compatible with >KV′ . It is easy to see that the rule
g(x) + y → g(x+ y) requires + > g, and hence >S cannot be applied.

Fig. 1 summarizes the relationships between the orders introduced so far.

AC-KBO Revisited 327

>KV′

>ACKBO

>S

R1
•

R2
•

R3
•

R1 Example 4 (and 8)

R2 Example 8

R3 Example 17

Fig. 1. Comparison

In the following, we show that >ACKBO is an AC-compatible simplification
order. As a consequence, correctness of >S (i.e., Theorem 5) is concluded by
Theorem 16.

Lemma 18. The pair (=AC, >ACKBO) is an order pair.

Proof. See [21]. ��

The subterm property is an easy consequence of transitivity and admissibility.

Lemma 19. The order >ACKBO has the subterm property. ��

Next we prove that >ACKBO is closed under contexts. The following lemma is
an auxiliary result needed for its proof. In order to reuse this lemma for the
correctness proof of >KV′ in the appendix of [21], we prove it in an abstract
setting.

Lemma 20. Let (�,�) be an order pair and f ∈ FAC with f(u, v) � u, v for

all terms u and v. If s � t then {s} �mul �f (t) or {s} �mul �f (t). If s � t then
{s} �mul �f (t).

Proof. Let �f(t) = {t1, . . . , tm}. If m = 1 then �f (t) = {t} and the lemma holds
trivially. Otherwise we get t � tj for all 1 � j � m by recursively applying the
assumption. Hence s � tj by the transitivity of � or the compatibility of � and
�. We conclude that {s} �mul �f(t). ��

In the following proof of closure under contexts, admissibility is essential. This
is in contrast to the corresponding result for standard KBO.

Lemma 21. If (w,w0) is admissible for > then >ACKBO is closed under contexts.

Proof. Suppose s >ACKBO t. We consider the context h(�, u) with h ∈ FAC and
u an arbitrary term, and prove that s′ = h(s, u) >ACKBO h(t, u) = t′. Closure
under contexts of >ACKBO follows then by induction; contexts rooted by a non-
AC symbol are handled as in the proof for standard KBO.

If w(s) > w(t) then obviously w(s′) > w(t′). So we assume w(s) = w(t).
Let S = �h(s), T = �h(t), and U = �h(u). Note that �h(s

′) = S
 U and
�h(t

′) = T
U . Because >mul
ACKBO is closed under multiset sum, it suffices to show

that one of the cases (3a)–(3c) of Definition 15 holds for S and T . Let f = root(s)
and g = root(t). We distinguish the following cases.

328 A. Yamada et al.

– Suppose f � h. We have S = S�≮h = {s}, and from Lemmata 19 and 20 we
obtain S >mul

ACKBO T . Since T is a superset of T �≮h
 T �V − S�V , (3a) applies.
– Suppose f = h > g. We have T �≮h
T �V = ∅. If S�≮h 	= ∅, then (3a) applies.

Otherwise, since AC symbols are binary and T = {t}, |S| � 2 > 1 = |T |.
Hence (3b) applies.

– If f = g = h then s >ACKBO t must be derived by one of the cases (3a)–(3c)
for S and T .

– Suppose f, g < h. We have S�≮h = T �≮h
 T �V = ∅, |S| = |T | = 1, and
S�<h = {s} >mul

ACKBO {t} = T �<h . Hence (3c) holds.

Note that f � g since w(s) = w(t) and s >ACKBO t. Moreover, if t ∈ V then
s = fk(t) for some k > 0 with w(f) = 0, which entails f > h due to admissibility.

��

Closure under substitutions is the trickiest part since by substituting AC-rooted
terms for variables that appear in the top-flattening of a term, the structure of
the term changes. In the proof, the multisets {t ∈ T | t /∈ V}, {tσ | t ∈ T }, and
{�f(t) | t ∈ T } are denoted by T �F , Tσ, and �f(T), respectively.

Lemma 22. Let > be a precedence, f ∈ FAC, and (�,�) an order pair on terms
such that � and � are closed under substitutions and f(x, y) � x, y. Consider
terms s and t such that S = �f(s), T = �f(t), S

′ = �f(sσ), and T ′ = �f(tσ).

(1) If S �f T then S′ �f T ′.
(2) If S �f T then S′ �f T ′ or S′ �f T ′. In the latter case |S|−|T | � |S′|−|T ′|

and S′�<f �mul T ′�<f whenever S�<f �mul T �<f .

Proof. Let v be an arbitrary term. By the assumption on � we have either
{v} = �f (v) or both {v} �mul �f (v) and 1 < |�f(v)|. Hence, for any set V of
terms, either V = �f(V) or both V �mul �f (V) and |V | < |�f(V)|. Moreover,
for V = �f(v), the following equalities hold:

�f (vσ)�≮f = V �≮f σ
 �f(V �Vσ)�≮f �f(vσ)�V = �f (V �Vσ)�V

To prove the lemma, assume S �f T for � ∈ {�,�}. We have S�≮f �mul T �≮f
U
where U = (T −S)�V . Since multiset extensions preserve closure under substitu-
tions, S�≮f σ �mul T �≮f σ
 Uσ follows. Using the above (in)equalities, we obtain

S′�≮f = S�≮f σ
�f (S�Vσ)�≮f
�mul T �≮f σ
 �f(S�Vσ)�≮f
 Uσ

O T �≮f σ
 �f (S�Vσ)�≮f
 �f(Uσ)

= T �≮f σ
 �f(S�Vσ)�≮f
�f (Uσ)�V
 �f(Uσ)�≮f
 �f(Uσ)�<f
P T �≮f σ
 �f (T �Vσ)�≮f
 �f (Uσ)�V
= T �≮f σ
 �f(T �Vσ)�≮f
 �f(T �Vσ)�V − �f (S�Vσ)�V
= T ′�≮f
 T ′�V − S′�V

AC-KBO Revisited 329

Here O denotes = if Uσ = �f(Uσ) and �mul if |Uσ| < |�f (Uσ)|, while P

denotes = if Uσ�<f = ∅ and � otherwise. Since (�mul,�mul) is an order pair

with ⊇ ⊆ �mul and � ⊆ �mul, we obtain S′ �f T ′.
It remains to show (2). If S′

�
f T ′ then O and P are both = and thus

Uσ = �f(Uσ) and Uσ�<f = ∅. Let X = S�V ∩ T �V . We have U = T �V −X .

– Since |W �Fσ| = |W �F | and |W | � |�f (W)| for an arbitrary set W of terms,
we have |S′| � |S| − |X | + |�f (Xσ)|. From |Uσ| = |U | = |T �V | − |X | we
obtain |T ′| = |T �Fσ|+ |�f(Uσ)| + |�f (Xσ)| = |T | − |X |+ |�f(Xσ)|. Hence
|S| − |T | � |S′| − |T ′| as desired.

– Suppose S�<f �mul T �<f . From Uσ�<f = ∅ we infer T �Vσ�<f ⊆ S�Vσ�<f .
Because S′�<f = S�<f σ
 S�Vσ�<f and T ′�<f = T �<f σ
 T �Vσ�<f , closure under
substitutions of �mul (which it inherits from � and �) yields the desired
S′�<f �mul T ′�<f . ��

Lemma 23. >ACKBO is closed under substitutions.

Proof. If s >ACKBO t is obtained by cases (0)–(1) in Definition 15, the proof
for standard KBO goes through. If (3a) or (3b) is used to obtain s >ACKBO

t, according to Lemma 22 one of these cases also applies to sσ >ACKBO tσ.
The final case is (3c). So �f (s)�<f >mul

ACKBO �f(t)�<f . Suppose sσ >ACKBO tσ
cannot be obtained by (3a) or (3b). Lemma 22(2) yields |�f (sσ)| = |�f(tσ)| and
�f (sσ)�<f >mul

ACKBO �f (tσ)�<f . Hence case (3c) is applicable to obtain sσ >ACKBO

tσ. ��

We arrive at the main theorem of this section.

Theorem 24. The order >ACKBO is an AC-compatible simplification order. ��

Since we deal with finite non-variadic signatures, simplification orders are well-
founded. The following example shows that AC-KBO is not incremental, i.e.,
orientability is not necessarily preserved when the precedence is extended. This
is in contrast to the AC-RPO of Rubio [16]. However, this is not necessarily a
disadvantage; actually, the example shows that by allowing partial precedences
more TRSs can be proved to be AC terminating using AC-KBO.

Example 25. Consider the TRS R consisting of the rules

a ◦ (b • c) → b ◦ f(a • c) a • (b ◦ c) → b • f(a ◦ c)

over the signature F = {a, b, c, f, ◦, •} with ◦, • ∈ FAC. By taking the precedence
f > a, b, c, ◦, • and admissible weight function (w,w0) with w(f) = w(◦) =
w(•) = 0, w0 = w(a) = w(c) = 1, and w(b) = 2, the resulting >ACKBO orients
both rules from left to right. It is essential that ◦ and • are incomparable in the
precedence: We must have w(f) = 0, so f > a, b, c, ◦, • is enforced by admissibility.
If ◦ > • then the first rule can only be oriented from left to right if a >ACKBO

f(a • c) holds, which contradicts the subterm property. If • > ◦ then we use
the second rule to obtain the impossible a >ACKBO f(a • c). Similarly, R is also
orientable by >KV′ but we must adopt a non-total precedence.

330 A. Yamada et al.

The final theorem in this section is easily proved.

Theorem 26. If > is total then >ACKBO is AC-total on ground terms. ��

6 NP-Hardness of Orientability

It is well-known [10] that KBO orientability is decidable in polynomial time. In
this section we show that >KV orientability is NP-hard even for ground TRSs.
The corresponding result for >ACKBO is given in the full version of this paper [21].
To this end, we reduce a SAT instance to an orientability problem.

Let φ = {C1, . . . , Cn} be a CNF SAT problem over propositional variables
p1, . . . , pm. We consider the signature Fφ consisting of an AC symbol +, con-

stants c and d1, . . . , dn, and unary function symbols p1, . . . , pm, a, b, and eji for
all i ∈ {1, . . . , n} and j ∈ {0, . . . ,m}. We define a ground TRS Rφ on T (Fφ)
such that >KV orients Rφ if and only if φ is satisfiable. The TRS Rφ will contain
the following base system R0 that enforces certain constraints on the precedence
and the weight function:

a(c+ c) → a(c) + c b(c) + c → b(c+ c) a(b(b(c))) → b(a(a(c)))

a(p1(c)) → b(p2(c)) · · · a(pm(c)) → b(a(c)) a(a(c)) → b(p1(c))

Lemma 27. The order >KV is compatible with R0 if and only if a > + > b and
w(a) = w(b) = w(pj) for all 1 � j � m. ��

Consider the clause Ci of the form {p′1, . . . , p′k,¬p′′1 , . . . ,¬p′′l }. Let U , U ′, V , and
W denote the followings multisets:

U = {p′1(b(di)), . . . , p′k(b(di))} V = {p′′0(e
0,1
i), . . . , p′′l−1(e

l−1,l
i), p′′l (e

l,0
i)}

U ′ = {b(p′1(di)), . . . , b(p′k(di))} W = {p′′0(e
0,0
i), . . . , p′′l (e

l,l
i)}

where we write p′′0 for a and ej,ki for eji (e
k
i (c)). The TRS Rφ is defined as the

union of R0 and {�i → ri | 1 � i � n} with

�i = b(b(c+ c)) +
∑

U +
∑

V ri = b(c) + b(c) +
∑

U ′ +
∑

W

Note that the symbols di and e0i , . . . , e
l
i are specific to the rule �i → ri.

Lemma 28. Let a > + > b. Then, Rφ ⊆ >KV for some (w,w0) if and only if
for every i there is some p such that p ∈ Ci with p ≮ + or ¬p ∈ Ci with + > p.

Proof. For the “if” direction we reason as follows. Consider a (partial) weight
function w such that w(a) = w(b) = w(pj) for all 1 � j � m. We obtain R0 ⊆
>KV from Lemma 27. Furthermore, consider Ci = {p′1, . . . , p′k,¬p′′1 , . . . ,¬p′′l } and
�i, ri, U , V and W defined above. Let L = �+(�i) and R = �+(ri). We clearly
have L�≮+ = U�≮+ ∪ V �≮+ and R�≮+ = W �≮+. It is easy to show that w(�i) = w(ri).
We show �i >KV ri by distinguishing two cases.

AC-KBO Revisited 331

1. First suppose that p′j ≮ + for some 1 � j � k. We have p′j(b(di)) ∈ U�≮+.
Extend the weight function w such thatw(di) = 1+2·max{w(e0i), . . . , w(eli)}.
Then p′j(b(di)) >kv t for all terms t ∈ W and hence L�≮+ >mul

kv R�≮+. Therefore
�i >KV ri by case (3a).

2. Otherwise, U�≮+ = ∅ holds. By assumption + > p′′j for some 1 � j � l.
Consider the smallest m such that + > p′′m. Extend the weight function w
such that w(emi) = 1 + 2 ·max {w(eji) | j 	= m}. Then w(p′′m−1(e

m−1,m
i)) >

w(p′′j (e
j,j
i)) for all j 	= m. From p′′m−1 > + we infer p′′m−1(e

m−1,m
i) ∈ V �≮+.

(Note that p′′m−1 = a > + if m = 1.) By definition of m, p′′m(em,m
i) /∈ W �≮+.

It follows that L�≮+ >mul
kv R�≮+ and thus �i >KV ri by case (3a).

Next we prove the “only if” direction. So suppose there exists a weight function
w such that Rφ ⊆ >KV. We obtain w(a) = w(b) = w(pj) for all 1 � j � m from
Lemma 27. It follows that w(�i) = w(ri) for every Ci ∈ φ. Suppose for a proof by
contradiction that there exists Ci ∈ φ such that + > p for all p ∈ Ci and p ≮ +
whenever ¬p ∈ Ci. So L�≮+ = V and R�≮+ = W . Since |R| = |L| + 1, we must
have �i >KV ri by case (3a) and thus V >kv W . Let s be a term in V of maximal
weight. We must have w(s) � w(t) for all terms t ∈ W . By construction of the
terms in V and W , this is only possible if all symbols eji have the same weight.
It follows that all terms in V and W have the same weight. Since |V | = |W | and
for every term s′ ∈ V there exists a unique term t′ ∈ W with root(s′) = root(t′),
we conclude V =kv W , which provides the desired contradiction. ��

After these preliminaries we are ready to prove NP-hardness.

Theorem 29. The (ground) orientability problem for >KV is NP-hard.

Proof. It is sufficient to prove that a CNF formula φ = {C1, . . . , Cn} is satisfiable
if and only if the corresponding Rφ is orientable by >KV. Note that the size
of Rφ is linear in the size of φ. First suppose that φ is satisfiable. Let α be
a satisfying assignment for the atoms p1, . . . , pm. Define the precedence > as
follows: a > + > b and pj > + if α(pj) is true and + > pj if α(pj) is false.
Then Rφ ⊆ >KV follows from Lemma 28. Conversely, if Rφ is compatible with
>KV then we define an assignment α for the atoms in φ as follows: α(p) is true if
p ≮ + and α(p) is false if + > p. We claim that α satisfies φ. Let Ci be a clause
in φ. According to Lemma 28, p ≮ + for one of the atoms p in Ci or + > p for
one of the negative literals ¬p in Ci. Hence α satisfies Ci by definition. ��

7 Subterm Coefficients

Subterm coefficients were introduced in [14] in order to cope with rewrite rules
like f(x) → g(x, x) which violate the variable condition. A subterm coefficient
function is a partial mapping sc : F ×N → N such that for a function symbol f
of arity n we have sc(f, i) > 0 for all 1 � i � n. Given a weight function (w,w0)
and a subterm coefficient function sc, the weight of a term is inductively defined
as follows:

332 A. Yamada et al.

w(t) =

{
w0 if t ∈ V
w(f) +

∑

1�i�n

s(f, i) · w(ti) if t = f(t1, . . . , tn)

The variable coefficient vc(x, t) of a variable x in a term t is inductively
defined as follows: vc(x, t) = 1 if t = x, vc(x, t) = 0 if t ∈ V \ {x}, and
vc(x, f(t1, . . . , tn)) = sc(f, 1) · vc(x, t1) + · · ·+ sc(f, n) · vc(x, tn).

Definition 30. The order >sc
ACKBO is obtained from Definition 15 by replacing

the condition “ |s|x � |t|x for all x ∈ V” with “ vc(x, s) � vc(x, t) for all x ∈ V”
and using the modified weight function introduced above.

In order to guarantee AC compatibility of >sc
ACKBO, the subterm coefficient

function sc has to assign the value 1 to arguments of AC symbols. This follows
by considering the terms t ◦ (u ◦ v) and (t ◦ u) ◦ v for an AC symbol ◦ with
sc(◦, 1) = m and sc(◦, 2) = n. We have

w(t ◦ (u ◦ v)) = 2 · w(◦) +m · w(t) +mn · w(u) + n2 · w(v)
w((t ◦ u) ◦ v) = 2 · w(◦) +m2 · w(t) +mn · w(u) + n · w(v)

Since w(t ◦ (u ◦ v)) = w((t ◦ u) ◦ v) must hold for all possible terms t, u, and
v, it follows that m = m2 and n2 = n, implying m = n = 1.7 The proof of the
following theorem is very similar to the one of Theorem 24 and hence omitted.

Theorem 31. If sc(f, 1) = sc(f, 2) = 1 for every function symbol f ∈ FAC then
>sc

ACKBO is an AC-compatible simplification order. ��

Example 32. Consider the following TRS R with f ∈ FAC:

g(0, f(x, x)) → x (1)

g(x, s(y)) → g(f(x, y), 0) (2)

g(s(x), y) → g(f(x, y), 0) (3)

g(f(x, y), 0) → f(g(x, 0), g(y, 0)) (4)

Termination ofR was shown using AC dependency pairs in [11, Example 4.2.30].
Consider a precedence g > f > s > 0, and weights and subterm coefficients given
by w0 = 1 and the following interpretation A, mapping function symbols in F
to linear polynomials over N:

sA(x) = x+ 6 gA(x, y) = 4x+ 4y + 5 fA(x, y) = x+ y + 3 0A = 1

It is easy to check that the first three rules result in a weight decrease. The left-
and right-hand side of rule (4) are both interpreted as 4x+4y+21, so both terms
have weight 29, but since g > f we conclude termination of R from case (1) in
Definition 15 (30). Note that termination of R cannot be shown by AC-RPO or
any of the previously considered versions of AC-KBO.

7 This condition is also obtained by restricting [4, Proposition 4] to linear polynomials.

AC-KBO Revisited 333

Table 1. Experiments on 145 termination and 67 completion problems

orientability AC-DP completion
method yes time ∞ yes time ∞ yes time ∞
AC-KBO 32 1.7 0 66 463.1 3 25 2278.6 37
Steinbach 23 1.6 0 50 463.2 2 24 2235.4 36
Korovin & Voronkov 30 2.0 0 66 474.3 4 25 2279.4 37
KV′ 30 2.1 0 66 472.4 3 25 2279.6 37
subterm coefficients 37 47.1 0 68 464.7 2 28 1724.7 26
AC-RPO 63 2.8 0 79 501.5 4 28 1701.6 26

total 72 94 31

8 Experiments

We ran experiments on a server equipped with eight dual-core AMD Opteron R©

processors 885 running at a clock rate of 2.6GHz with 64GB of main memory. The
different versions of AC-KBO considered in this paper as well as AC-RPO [16]
were implemented on top of TTT2 using encodings in SAT/SMT. These encodings
resemble those for standard KBO [22] and transfinite KBO [20]. The encoding
of multiset extensions of order pairs are based on [5], but careful modifications
were required to deal with submultisets induced by the precedence.

For termination experiments, our test set comprises all AC problems in the
Termination Problem Data Base,8 all examples in this paper, some further prob-
lems harvested from the literature, and constraint systems produced by the com-
pletion tool mkbtt [19] (145 TRSs in total). The timeout was set to 60 seconds.
The results are summarized in Table 1, where we list for each order the num-
ber of successful termination proofs, the total time, and the number of timeouts
(column ∞). The ‘orientability’ column directly applies the order to orient all
the rules. Although AC-RPO succeeds on more input problems, termination of
9 TRSs could only be established by (variants of) AC-KBO. We found that our
definition of AC-KBO is about equally powerful as Korovin and Voronkov’s or-
der, but both are considerably more useful than Steinbach’s version. When it
comes to proving termination, we did not observe a difference between Defini-
tions 9 and 11. Subterm coefficients clearly increase the success rate, although
efficiency is affected. In all settings partial precedences were allowed.

The ‘AC-DP’ column applies the order in the AC-dependency pair framework
of [1], in combination with argument filterings and usable rules. Here AC symbols
in dependency pairs are unmarked, as proposed in [15]. In this setting the variants
of AC-KBO become considerably more powerful and competitive to AC-RPO,
since argument filterings relax the variable condition, as pointed out in [22].

For completion experiments, we ran the normalized completion tool mkbtt
with AC-RPO and the variants of AC-KBO for termination checks on 67 equa-
tional systems collected from the literature. The overall timeout was set to
60 seconds, the timeout for each termination check to 1.5 seconds. Table 1

8 http://termination-portal.org/wiki/TPDB

http://termination-portal.org/wiki/TPDB

334 A. Yamada et al.

Table 2. Complexity results (KV is the ground version of >KV)

problem KBO AC-KBO KV KV′

membership P P P NP-hard
orientability P NP-hard NP-hard NP-hard

summarizes our results, listing for each order the number of successful com-
pletions, the total time, and the number of timeouts. All experimental details,
source code, and TTT2 binaries are available online.9

The following example can be completed using AC-KBO, whereas AC-RPO
does not succeed.

Example 33. Consider the following TRS R [15] for addition of binary numbers:

+ 0 → # x0 + y0 → (x+ y)0 x1+ y1 → (x+ y +#1)0

x+# → x x0 + y1 → (x+ y)1

Here + ∈ FAC, 0 and 1 are unary operators in postfix notation, and # denotes
the empty bit sequence. For example, #100 represents the number 4. This TRS
is not compatible with AC-RPO but AC termination can easily be shown by
AC-KBO, for instance with the weight function (w,w0) with w(+) = 0, w0 =
w(0) = w(#) = 1, and w(1) = 3. The system can be completed into an AC
convergent TRS using AC-KBO but not with AC-RPO.

9 Conclusion

We revisited the two variants of AC-compatible extensions of KBO. We extended
the first version >S introduced by Steinbach [17] to a new version >ACKBO,
and presented a rigorous correctness proof. By this we conclude correctness of
>S, which had been put in doubt in [9]. We also modified the order >KV by
Korovin and Voronkov [9] to a new version >KV′ which is monotone on non-
ground terms, in contrast to >KV. We also presented several complexity results
regarding these variants (see Table 2). While a polynomial time algorithm is
known for the orientability problem of standard KBO [10], the problem becomes
NP-hard even for the ground version of>KV, as well as for our>ACKBO. Somewhat
unexpectedly, even deciding >KV′ is NP-hard while it is linear for standard KBO
[13]. In contrast, the corresponding problem is polynomial-time for our >ACKBO.
Finally, we implemented these variants of AC-compatible KBO as well as the AC-
dependency pair framework of Alarcón et al. [1]. We presented full experimental
results both for termination proving and normalized completion.

Acknowledgments. We are grateful to Konstantin Korovin for discussions
and the reviewers for their detailed comments which helped to improve the
presentation.

9 http://cl-informatik.uibk.ac.at/software/ackbo

http://cl-informatik.uibk.ac.at/software/ackbo

AC-KBO Revisited 335

References

1. Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A ∨ C-
termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51.
Springer, Heidelberg (2010)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
TCS 236(1-2), 133–178 (2000)

3. Bachmair, L., Plaisted, D.A.: Termination orderings for associative-commutative
rewriting systems. JSC 1, 329–349 (1985)

4. Ben Cherifa, A., Lescanne, P.: Termination of rewriting systems by polynomial
interpretations and its implementation. SCP 9(2), 137–159 (1987)

5. Codish, M., Giesl, J., Schneider-Kamp, P., Thiemann, R.: SAT solving for termi-
nation proofs with recursive path orders and dependency pairs. JAR 49(1), 53–93
(2012)

6. Dershowitz, N.: Orderings for term-rewriting systems. TCS 17(3), 279–301 (1982)
7. Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp,

A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)
8. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.

(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press,
New York (1970)

9. Korovin, K., Voronkov, A.: An AC-compatible Knuth-Bendix order. In: Baader, F.
(ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 47–59. Springer, Heidelberg (2003)

10. Korovin, K., Voronkov, A.: Orienting rewrite rules with the Knuth-Bendix order.
I&C 183(2), 165–186 (2003)

11. Kusakari, K.: AC-Termination and Dependency Pairs of Term Rewriting Systems.
PhD thesis, JAIST (2000)

12. Kusakari, K., Toyama, Y.: On proving AC-termination by AC-dependency pairs.
IEICE Transactions on Information and Systems E84-D(5), 439–447 (2001)

13. Löchner, B.: Things to know when implementing KBO. JAR 36(4), 289–310 (2006)
14. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-

like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 348–362. Springer, Heidelberg (2007)

15. Marché, C., Urbain, X.: Modular and incremental proofs of AC-termination.
JSC 38(1), 873–897 (2004)

16. Rubio, A.: A fully syntactic AC-RPO. I&C 178(2), 515–533 (2002)
17. Steinbach, J.: AC-termination of rewrite systems: A modified Knuth-Bendix order-

ing. In: Kirchner, H., Wechler, W. (eds.) ALP 1990. LNCS, vol. 463, pp. 372–386.
Springer, Heidelberg (1990)

18. Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination tech-
niques based on multiset orderings. In: Proc. RTA-23. LIPIcs, vol. 15, pp. 339–354
(2012)

19. Winkler, S.: Termination Tools in Automated Reasoning. PhD thesis, UIBK (2013)
20. Winkler, S., Zankl, H., Middeldorp, A.: Ordinals and Knuth-Bendix orders. In:

Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 420–434.
Springer, Heidelberg (2012)

21. Yamada, A., Winkler, S., Hirokawa, N., Middeldorp, A.: AC-KBO revisited. CoRR
abs/1403.0406 (2014)

22. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. JAR 43(2), 173–201
(2009)

	AC-KBO Revisited
	1 Introduction
	2 Preliminaries
	3 Steinbach’s Order
	4 Korovin and Voronkov’s Orders
	5 AC-KBO
	6 NP-Hardness of Orientability
	7 Subterm Coefficients
	8 Experiments
	9 Conclusion
	References

