
Michael Codish
Eijiro Sumii (Eds.)

 123

LN
CS

 8
47

5

12th International Symposium, FLOPS 2014
Kanazawa, Japan, June 4–6, 2014
Proceedings

Functional and
Logic Programming

Lecture Notes in Computer Science 8475
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Michael Codish Eijiro Sumii (Eds.)

Functional and
Logic Programming

12th International Symposium, FLOPS 2014
Kanazawa, Japan, June 4-6, 2014
Proceedings

13

Volume Editors

Michael Codish
Ben-Gurion University of the Negev
Department of Computer Science
P.O. Box 653
84105 Beer-Sheva, Israel
E-mail: mcodish@cs.bgu.ac.il

Eijiro Sumii
Tohoku University
Graduate School of Information Sciences
Aoba-ku, Aramaki Aza-aoba 6-3-09
Sendai, 980-8579, Japan
E-mail: sumii@ecei.tohoku.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-319-07150-3 e-ISBN 978-3-319-07151-0
DOI 10.1007/978-3-319-07151-0
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2014938286

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer International Publishing Switzerland 2014

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in ist current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the 12th International Symposium on
Functional and Logic Programming (FLOPS 2014), held in Kanazawa, Japan,
during June 4–6, 2014 at the Ishikawa Prefecutural Museum of Art.

FLOPS is a forum for research on all issues concerning declarative program-
ming, including functional programming and logic programming, and aims to
promote cross-fertilization and integration between the two paradigms. The pre-
vious FLOPS meetings were held in Fuji Susono (1995), Shonan Village (1996),
Kyoto (1998), Tsukuba (1999), Tokyo (2001), Aizu (2002), Nara (2004), Fuji
Susono (2006), Ise (2008), Sendai (2010), and Kobe (2012). Since 1999, FLOPS
proceedings have been published by Springer in its Lecture Notes in Computer
Science series, as volumes 1722, 2024, 2441, 2998, 3945, 4989, 6009, and 7294
respectively.

In response to the call for papers, 41 papers were submitted. All papers
received three reviews by members of the Program Committee assisted by expert
external reviewers. A Program Committee meeting was conducted electronically,
in February 2014. After careful and thorough discussion, the ProgramCommittee
selected 21 papers for presentation at the conference. In addition to the 21
contributed papers, the symposium included talks by three invited speakers:
Ranjit Jhala, Shin-ya Katsumata, and Gabriele Keller.

On behalf of the Program Committee, we would like to thank the invited
speakers and all those who submitted papers to FLOPS 2014. As Program Com-
mittee chairs, we would like to sincerely thank all the members of the FLOPS
2014 Program Committee for their excellent job, and all of the external reviewers
for their invaluable contributions. We are also grateful to the people behind the
EasyChair conference system. We are indebted to our sponsor the Japan Society
for Software Science and Technology (JSSST) SIGPPL for their support and
we acknowledge the cooperation with the Association for Computing Machinery
(ACM) SIGPLAN, the Asian Association for Foundation of Software (AAFS),
and the Association for Logic Programming (ALP). Finally, we would like to
thank the members of the Local Arrangements Committee for their invaluable
support throughout the preparation and organization of the symposium.

March 2014 Michael Codish
Eijiro Sumii

Organization

Program Chairs

Michael Codish Ben-Gurion University, Israel
Eijiro Sumii Tohoku University, Japan

General Chair

Eijiro Sumii Tohoku University, Japan

Local Chair

Yuki Chiba JAIST, Japan

Program Committee

Lars Birkedal Aarhus University, Denmark
Michael Codish Ben-Gurion University, Israel
Marina De Vos University of Bath, UK
Moreno Falaschi University of Siena, Italy
Carsten Fuhs University College London, UK
John Gallagher Roskilde University, Denmark
Samir Genaim Universidad Complutense de Madrid, Spain
Laura Giordano Università del Piemonte Orientale, Italy
Ichiro Hasuo University of Tokyo, Japan

Fritz Henglein University of Copenhagen, Denmark
Andy King University of Kent, UK
Oleg Kiselyov University of Tsukuba, Japan
Vitaly Lagoon The MathWorks, USA
Shin-Cheng Mu Academia Sinica, Taiwan
Keiko Nakata Institute of Cybernetics, Estonia
Luke Ong University of Oxford, UK
Peter Schachte The University of Melbourne, Australia
Takehide Soh Kobe University, Japan
Eijiro Sumii Tohoku University, Japan
Tachio Terauchi Nagoya University, Japan
Joost Vennekens K.U. Leuven, Belgium
Janis Voigtländer University of Bonn, Germany
Stephanie Weirich University of Pennsylvania, USA

VIII Organization

Additional Reviewers

Atkey, Robert Ballis, Demis
Beckers, Sander Ben-Amram, Amir
Bizjak, Ales Bone, Paul
Broadbent, Christopher Chang, Stephen
Chitil, Olaf Christakis, Maria
Chuang, Tyng-Ruey Comini, Marco
De Cat, Broes Devriendt, Jo
Eisenberg, Richard Elsman, Martin
Gange, Graeme Goldberg, Mayer
Grathwohl, Niels Bjørn Bugge Haemmerlé, Rémy
Hague, Matthew Igarashi, Atsushi
Inoue, Jun Jeltsch, Wolfgang
Joshi, Anjali Katsumata, Shinya
Koskinen, Eric Maher, Michael
Martelli, Alberto Morales, Jose F.
Oliveira, Bruno C.D.S. Pope, Bernie
Poulding, Simon Pozzato, Gian Luca
Pu, Yewen Rajeev, A.C.
Rasmussen, Ulrik Terp Schmitt, Alan
Schneider-Kamp, Peter Shashidhar, K.C.
Stampoulis, Antonis Stroeder, Thomas
Sulzmann, Martin Tamm, Hellis
Torella, Luca Tsukada, Takeshi
Vidal, German Wang, Meng
Worrell, James Yang, Edward

Abstracts of Invited Talks

Liquid Types For Haskell

Ranjit Jhala

Department of Computer Science and Engineering
University of California, San Diego, La Jolla, CA

USA

Abstract. We present LiquidHaskell (http://goto.ucsd.edu/liquid), an
automatic verifier for Haskell. LiquidHaskell uses “refinement types”, a
restricted form of dependent types where relationships between values
are encoded by decorating types with logical predicates drawn from an
efficiently SMT decidable theory (of arithmetic and uninterpreted func-
tions). In this talk, we will describe the key ingredients of LiquidHaskell.

First, we will present a rapid overview of liquid refinement types,
including SMT solver based (decidable) subtyping, and inference. Decid-
ability is achieved by eschewing the use of arbitrary terms inside types,
and the use of indices to encode rich properties of data.

Second, we will show how to recover some of the expressiveness lost
by restricting the logic, with two new techniques: measures which encode
structural properties of values and abstract refinements which enable
generalization (i.e. quantification) over refinements.

Third, we will discuss the curious interaction of laziness and refine-
ment typing. In a nutshell, the technique of refinement typing can be
viewed as a type-based generalization of Floyd-Hoare logics. Surprisingly,
we demonstrate that under non-strict evaluation, these logics (and hence,
classical refinement typing) is unsound, due to the presence of potentially
divergent sub-computations. Fortunately, we show how soundness can be
recovered with a termination analysis, itself, circularly bootstrapped off
refinement typing.

We have used LiquidHaskell to verify safety, functional correctness
and termination properties of real-world Haskell libraries totalling more
than 10,000 lines of code. Time permitting, we will present a demonstra-
tion of the tool and a few short case studies illustrating its use.

(Joint work with Niki Vazou and Eric Seidel and Patrick Rondon)

Relating Computational Effects by ��-Lifting

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University
Kyoto, 606-8502, Japan

sinya@kurims.kyoto-u.ac.jp

When two interpretations of a programming language are given, we are naturally
interested in the problem of establishing a relationship between these interpre-
tations. A representative case is the computational adequacy of PCF, which
compares the denotational semantics and the operational semantics of PCF.

Problems of this sort are also seen in monadic representations of compu-
tational effects. They vary a lot depending on the combination of a computa-
tional effect, two monadic representations of it and a relationship between these
monadic representations. For instance,

1. A simple problem is to compare two monadic representations of nondeter-
ministic computations using the powerset monad and the list monad.

2. Filinski gave a formal relationship between the monadic representation and
the CPS representation of call-by-value programs [1]. This is to compare
representations of computational effects by a monad T and the continuation
monad (− ⇒ TR)⇒ TR.

3. Wand and Vaillancourt compared two monadic representations of backtrack-
ing computations using the stream monad and the 2-CPS monad [6].

We aim to solve these problems in a uniform manner. We give a set of con-
ditions to show that a given relationship holds between two monadic interpreta-
tions of a call-by-value functional language. These conditions are applicable to
a wide range of problems relating computational effects. The proof of this result
employs the categorical ��-lifting [2], which is a semantic analogue of Lind-
ley and Stark’s leapfrog method [4, 5], and offers a flexible method to construct
logical relations for monads. This talk is based on the paper [3].

References

1. Filinski, A.: Representing monads. In: Proc. POPL 1994, pp. 446–457 (1994)
2. Katsumata, S.-Y.: A semantic formulation of ��-lifting and logical predicates for

computational metalanguage. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp.
87–102. Springer, Heidelberg (2005)

3. Katsumata, S.-Y.: Relating computational effects by ��-lifting. Inform. and Com-
put. (Special issue on ICALP 2011) 222, 228–246 (2013)

4. Lindley, S.: Normalisation by Evaluation in the Compilation of Typed Functional
Programming Languages. PhD thesis, University of Edinburgh (2004)

Relating Computational Effects by ��-Lifting XIII

5. Lindley, S., Stark, I.: Reducibility and ��-lifting for computation types. In: Urzy-
czyn, P. (ed.) TLCA 2005. LNCS, vol. 3461, pp. 262–277. Springer, Heidelberg
(2005)

6. Wand, M., Vaillancourt, D.: Relating models of backtracking. In: Proc. ICFP 2004,
pp. 54–65 (2004)

Programming Language Methodologies for

Systems Verification

Gabriele Keller

School of Computer Science and Engineering
The University of New South Wales

Sydney, Australia

Abstract. The need for correct and secure systems is becoming more
acute as software is impacting a greater part of our daily life. Formal
verification is one method to improve on the status quo. In many cases,
however, the costs are still simply too high.

In this talk, I will present an outline of our approach to achieving a
fully verified operating system at acceptable costs. It is based on combin-
ing insights from systems, formal methods and programming language
research. I will give a brief overview of the history of the project and
the goals already achieved, followed by a more detailed look at a specific
subproject, namely file system verification. In particular, I will describe
the role of two distinct domain-specific programming languages in this
framework.

Table of Contents

PrologCheck – Property-Based Testing in Prolog . 1
Cláudio Amaral, Mário Florido, and Vı́tor Santos Costa

Generating Constrained Random Data with Uniform Distribution 18
Koen Claessen, Jonas Dureg̊ard, and Micha�l H. Pa�lka

Guided Type Debugging . 35
Sheng Chen and Martin Erwig

Using Big-Step and Small-Step Semantics in Maude to Perform
Declarative Debugging . 52

Adrián Riesco

Faustine: A Vector Faust Interpreter Test Bed for Multimedia Signal
Processing – System Description . 69

Karim Barkati, Haisheng Wang, and Pierre Jouvelot

The Design and Implementation of BER MetaOCaml: System
Description . 86

Oleg Kiselyov

On Cross-Stage Persistence in Multi-Stage Programming 103
Yuichiro Hanada and Atsushi Igarashi

Lightweight Higher-Kinded Polymorphism . 119
Jeremy Yallop and Leo White

Generic Programming with Multiple Parameters . 136
José Pedro Magalhães

Type-Based Amortized Resource Analysis with Integers and Arrays 152
Jan Hoffmann and Zhong Shao

Linear Sized Types in the Calculus of Constructions 169
Jorge Luis Sacchini

Dynamic Programming via Thinning and Incrementalization 186
Akimasa Morihata, Masato Koishi, and Atsushi Ohori

POSIX Regular Expression Parsing with Derivatives 203
Martin Sulzmann and Kenny Zhuo Ming Lu

XVI Table of Contents

Proving Correctness of Compilers Using Structured Graphs 221
Patrick Bahr

A New Formalization of Subtyping to Match Subclasses to Subtypes . . . 238
Hyunik Na and Sukyoung Ryu

Type Soundness and Race Freedom for Mezzo . 253
Thibaut Balabonski, François Pottier, and Jonathan Protzenko

Semantics for Prolog with Cut – Revisited . 270
Jael Kriener and Andy King

Constraint Logic Programming for Hedges: A Semantic
Reconstruction . 285

Besik Dundua, Mário Florido, Temur Kutsia, and Mircea Marin

How Many Numbers Can a Lambda-Term Contain? 302
Pawe�l Parys

AC-KBO Revisited . 319
Akihisa Yamada, Sarah Winkler, Nao Hirokawa, and
Aart Middeldorp

Well-Structured Pushdown System: Case of Dense Timed Pushdown
Automata . 336

Xiaojuan Cai and Mizuhito Ogawa

Author Index . 353

PrologCheck – Property-Based Testing in Prolog

Cláudio Amaral1,2, Mário Florido1,2, and Vı́tor Santos Costa1,3

1 DCC - Faculty of Sciences, University of Porto, Porto, Portugal
2 LIACC - University of Porto, Porto, Portugal
3 CRACS - University of Porto, Porto, Portugal

{coa,amf,vsc}@dcc.fc.up.pt

Abstract. We present PrologCheck, an automatic tool for property-
based testing of programs in the logic programming language Prolog
with randomised test data generation. The tool is inspired by the well
known QuickCheck, originally designed for the functional programming
language Haskell. It includes features that deal with specific character-
istics of Prolog such as its relational nature (as opposed to Haskell) and
the absence of a strong type discipline.

PrologCheck expressiveness stems from describing properties as Prolog
goals. It enables the definition of custom test data generators for random
testing tailored for the property to be tested. Further, it allows the use
of a predicate specification language that supports types, modes and
constraints on the number of successful computations. We evaluate our
tool on a number of examples and apply it successfully to debug a Prolog
library for AVL search trees.

1 Introduction

Software testing consists of executing a program on a pre-selected set of inputs
and inspecting whether the outputs respect the expected results. Each input
tested is called a test case and the set of inputs is a test suite. Testing tries to
find counter-examples and choosing the test cases to this effect is often a difficult
task. The approach used can be manual, with the tester designing test cases one
by one, or it can be automated to some extent, in this case resorting to tools for
case generation. Ideally, the best approach would be automatic testing.

In a property-based framework test cases are automatically generated and
run from assertions about logical properties of the program. Feedback is given
to the user about their evaluation. Property-based testing applications include
black-box, white-box, unit, integration and system testing [3] [6,7].

Property-based testing naturally fits the logic programming paradigm. Asser-
tions are first order formulas and thus easily encoded as program predicates.
Therefore, a property based approach to testing is intuitive for the logic pro-
grammer.

In this paper we introduce PrologCheck1, a property-based testing framework
for Prolog. We further discuss two main contributions: a specification language
for Prolog predicates and a translation procedure into testable properties.

1 The PrologCheck tool is available at www.dcc.fc.up.pt/~coa/PrologCheck.html

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 1–17, 2014.
c© Springer International Publishing Switzerland 2014

{coa,amf,vsc}@dcc.fc.up.pt
www.dcc.fc.up.pt/~coa/PrologCheck.html

2 C. Amaral, M. Florido, and V.S. Costa

In most programming languages interfaces to testing frameworks rely on
boolean functions, such as equality, to determine primitive properties.
PrologCheck states properties through a domain-specific language that naturally
supports domain quantification. In this language primitive properties are Prolog
goals which can be composed by PrologCheck property operators.

PrologCheck testing consists on repetitively calling the goal for a large number
of test cases. Input to such goals is based on PrologCheck value abstraction,
quantification over a domain represented by a randomised generator of terms. We
implement randomised test case generation, which frees the user from choosing
input manually. We include a number of predefined generators for relevant sets
of terms, such as integers, and combinators to help define new generators. Thus
other generation techniques [10] [16] [18] can be implemented to complement the
power of built-in generators.

We also define a language of testable predicate specifications including types,
modes and multiplicity, which the tester can use to encode interesting properties
of the predicate under test. By specifying some aspects of a predicate in a proper
specification language it is possible to generate a PrologCheck property and check
it. This allows us to use PrologCheck and its predicate specification to test a
number of non-trivial programs.

The rest of this paper is organised as follows. We proceed with motivating
examples in Sec. 3. Section 2 encloses the presentation of related work. In Sec. 4
we introduce property definitions and their testing in PrologCheck and in Sec. 5
we discuss details about test case generation. Section 6 describes the predicate
specification language and how to test the specifications. A case study of AVL
trees is presented Sec. 7. We finalise with the conclusions in Sec. 8.

2 Related Work

There is some previous support for automated testing in the logic programming
community: SWI-Prolog supports unit testing through plunit [20]; the Ciao Pro-
log System [13] has an assertion language integrating run-time checking and
unit testing [15]. We use a property specification language but in an automatic
property-based randomly generated testing context. Property specification lan-
guages for Prolog were used before [9] [15] [19] in different contexts.

Automated testing is supported in several languages and paradigms. The three
most influential tools for our work were QuickCheck [5] for the functional pro-
gramming language Haskell, PropEr [17] for the functional programming language
Erlang and EasyCheck [4] for the functional-logic language Curry.

Easycheck is an automated tool for specification-based testing of declarative
programs, which deals with logic programming features. It is written in the
functional-logic programming language Curry and it is based on the view of free
variables of an appropriate type as non-deterministic generators [1] and mech-
anisms to specify properties of non-deterministic operations by generalizing the
set of combinators for non-deterministic operations of QuickCheck. In our work
we focus on Prolog and, in contrast with EasyCheck, non-deterministic generators

PrologCheck – Property-Based Testing in Prolog 3

are implemented by non-deterministic Prolog programs, types are implemented
by monadic logic programs [11,12], and we use a specification language for stan-
dard features of logic programming such as modes and number of answers [9].

There are several automatic testing tools for functional programming lan-
guages, namely QuickCheck, PropEr, SmallCheck [18], and G∀ST [14]. The first
and most preeminent tool is QuickCheck. QuickCheck uses a domain specific lan-
guage of testable specifications as does PropEr. We define a specification language
in PrologCheck but with differences related to the relational nature of Prolog. As
in QuickCheck, we use random testing - we choose this method compared to sys-
tematic methods due to its success in QuickCheck.QuickCheck generates test data
based on Haskell types. In Erlang, types are dynamically checked and PropEr, as
does as ErlangQuickCheck, guides value generation by functions, using quantified
types defined by these generating functions. Prolog is an untyped language, but
type information is crucial in PrologCheck test data generation as well. Similarly
to the Erlang tools, we adopt the view of types defined by test case generators.
Our types are intended to construct test cases that depict input instantiations.
Thus we would not take advantage of the use of restricted type languages based
on regular types [11,12] [21,22].

3 Motivating Examples

3.1 Append

Consider the well-known concatenation predicate.

app([], YS , YS).

app([X|XS], YS , [X|AS]) :- app(XS , YS, AS).

We specify the predicate behaviour through the predicate specification language
presented in Sec. 6. The properties and predicates to be tested are in module m.

app(A,B,C) is used in a functional way in many programs, i.e., by giving it two
lists as input and getting their concatenation as output. The directionality is
determined by the modes of each parameter: ground, ground, variable to ground,
ground, ground. The range of answers for a predicate with a (total) functional
behaviour is exactly one. This behaviour is specified in PrologCheck as:

app of_type (A-(listOf (int)), B-(listOf (int)), C-(variable))

where (i(g, g, v), o(g, g, g)) has_range {1 ,1}.

The property originated by this specification clause passes the tests generated
by the tool.

?- prologcheck (m:prop(spec_app)).

OK: Passed 100 test(s).

app/3 may be used in other situations. One can use it to create an open list
bound to the third parameter by calling it with a variable in the second input
parameter, which remains uninspected. The result is a list with the ground ele-
ments of the list in the first parameter and the variable in the second parameter
as the tail, therefore it is neither ground nor variable. This usage also behaves
as a function. We state this as specification clause 1 of predicate app.

4 C. Amaral, M. Florido, and V.S. Costa

{app , 1} of_type (A-(listOf (int)), B-(variable), C-(variable))

where (i(g, v, v), o(g, v, ngv)) has_range {1 ,1}.

Testing reveals that the out part of the directionality is not satisfied.

?- prologcheck (m:prop(spec_app_1), [noshrink]).

{failed_out_modes ,[[o,g,v,ngv]], [[], _10258 ,_10258]}

Failed : After 3 test(s).

Counterexample found : [[[], _10258 ,_10260]]

The counterexample shows that the output modes do not respect the specifi-
cation when the first input parameter is the empty list. One way to solve this
issue is to add the missing directionality (i(g, v, v), o(g, v, ngv)), o(g,v,v). Al-
though, the correct choice in general is to split the input types, since this is a
matter between disjoint sets of terms. Multiple output directionalities are mainly
intended for multiple modes of multiple answers.

{app , 1a} of_type (A-(listOf1 (int)), B-(variable), C-(variable))

where (i(g, v, v), o(g, v, ngv)) has_range {1 ,1}.

{app , 1b} of_type (A-(value([])), B-(variable), C-(variable))

where (i(g, v, v), o(g, v, v)) has_range {1 ,1}.

3.2 List Reverse

Let us explore an example of list reversing predicates. The reversing procedure
relates two lists and is polymorphic in the type of the list’s elements. It is usu-
ally sufficient to check the behaviour for a single type of elements. Moreover,
sometimes even a type with a finite number of values suffice, but we can safely
overestimate the size of the type [2]. Therefore, we use the generator for integers,
int, as the elements of the parametric list generator, listOf(int).

rev([],[]).

rev([X|XS], YS) :- rev(XS,ZS), append (ZS, [X], YS).

We express the symmetry of the reversing relation in terms of its intended use:
given a ground list in one input parameter retrieve a result in the other.

prop(d_rev) :- for_all (listOf (int), XS , (rev(XS , RX), rev(RX, XS)))

Prologchecking the property bears no surprises.

?- prologcheck (m:prop(d_rev)).

OK: Passed 100 test(s).

We could have mis-typed the property, making it impossible to be satisfied:

prop(wrong_dr) :-

for_all (listOf (int), XS, (rev(XS,RX), rev(RX,RX))).

We mistakenly make the second call to rev/2 with RX as the second parameter.

?- prologcheck (m:prop(wrong_dr)).

Failed : After 11 test(s).

Shrinking (6 time(s))

Counterexample found : [[0 ,6]]

PrologCheck – Property-Based Testing in Prolog 5

A counterexample is found and shrunk to the presented counter-example [0,6].
To check that the order is being reversed we can randomly choose an ele-

ment (or a set of elements) and inspect its position in the parameters. Choosing
random elements prevent us from checking the whole list.

prop(rev_i) :- plqc:for_all (

suchThat (structure ({listOf (int), int}), m:valid_index),

{L,I}, m:prop({double_rev_i_body , L, I})).

valid_index ({L, I}) :- length (L,X), I<X.

prop({ double_rev_i_body , L, I}) :-

m:rev(L, LR), length (L,X), Index is I+1, RevIndex is X-I,

lists:nth (Index , L, Val), lists:nth(RevIndex , LR , Val).

When performing a large number of tests this method should randomly choose
enough indexes to give good element coverage.

?- prologcheck (m:prop(rev_i)).

OK: Passed 100 test(s).

We have another implementation of reverse, using an accumulator instead of
concatenation. The previous properties can be adapted to this implementation
with the same results.

rev_acc ([], LR , LR).

rev_acc ([X|XS], Acc , LR) :- rev_acc (XS , [X|Acc], LR).

rev_acc (L, LR) :- rev_acc (L, [], LR).

Since we have two implementations of the same concept we can explore this
by stating and testing a property comparing their behaviours.

prop(eqv_acc_app) :-

for_all (listOf (int), L, (rev_acc (L,LR),rev(L,LR))).

The comparison succeeds if both have the same behaviour.

?- prologcheck (m:prop(eqv_acc_app)).

OK: Passed 100 test(s).

4 Properties

Property-based testing extends program code with property definitions. Prop-
erties are specifications in a suitable language and are tested automatically by
generating test cases.

PrologCheck is a property-based testing framework. Given a specification it
randomly generates test cases for the properties to be tested, executing them
to assess their validity. A primitive property is a Prolog goal, hence, the whole
language can be used to define properties. Properties may then be composed
according to composition rules described later in the paper. This enables the
specification of a wide range of properties. Next, in this section we introduce
PrologCheck through the append example.

6 C. Amaral, M. Florido, and V.S. Costa

We will go through the process of using the tool, beginning by turning a logical
statement of a property into a PrologCheck testable property. An example of a
property of app/3 is that, assuming the first two input parameters are lists, after
its execution a variable given in the third input parameter is instantiated with
a list. This property can be represented by the first order formula

∀ l1, l2 ∈ list . (l1 ++ l2 ∈ list)

where l1 and l2 denote lists given as input and ++ is interpreted as list con-
catenation. The primitive property in the formula, l1++ l2 ∈ list, can then be
represented by the goal

app(L1 , L2 , L), (L = []; L = [_|_]).

The next step is optional. We explicitly parametrise the property into a first
order object. The resulting property is written as a clause for the special predi-
cate prop/1 and parametrised accordingly.

prop({appLLL , L1, L2}) :- app (L1 , L2 , L), (L = []; L = [_|_]).

This is PrologCheck’s predicate for labelling properties. The parametric label,
{appLLL, L1, L2} in the example, uniquely identifies the property and holds the
variables for all the input required. The symbol appLLL is the “append of lists
results in list” property identifier and the variables L1, L2 the input. The body
of labelled properties is inspected by PrologCheck, making it possible to abstract
long or frequently used properties.

A last step is needed to verify properties with PrologCheck. In order to enable
random testing, we define a domain of parameter instantiations. Values from
this domain are used as test cases.

prop(appL) :- for_all (listOf (int), L1, for_all (listOf (int), L2 ,

prop({appLLL , L1, L2})))

This more precise definition states that the property appL is appLLL over two
lists of integers. More accurately, we use for_all/3 to represent PrologCheck’s
universal quantification. The first input parameter describes the type of terms
we want to generate randomly, in this case lists of integers, listOf(int), and the
second input parameter names the variable they will bind to, in this case L1 and
L2. The third is the property we want to verify. To check the property we can call
PrologCheck using the alias prop(appL). It starts with the outer for_all quantifier,
generates a random list of integers, unifies it with L1 and repeats the process for
the inner quantifier, unifying L2 with the second generated list.

?- prologcheck (m:prop(appL)).

OK: Passed 100 test(s).

The prologcheck/1 predicate is the simplest property tester in PrologCheck, taking
a property as a parameter and checking it for a large number (100 is the default
number) of generated test cases.

We could have mis-typed the property, making it impossible to be satisfied:

prop(wrong_appL) :- for_all (listOf (int), L1,

for_all (listOf (int), L2, (app(L1, L2 , L), (L=[], L=[_|_])))).

PrologCheck – Property-Based Testing in Prolog 7

We mistakenly determine L to be both [] and [_|_].

?- prologcheck (m:prop(wrong_dr)).

Failed : After 1 test(s).

Shrinking (1 time(s))

Counterexample found : [[] ,[]]

A counterexample is found and showed. We observe at this point that a coun-
terexample is immediately found. There is no possible value that can satisfy the
written condition.

Often we want to find concise counterexamples. To do this we use a shrinking
predicate that tries to reduce the counterexample found. To improve the proba-
bility of finding smaller counter-examples the tool keeps track of a growing size
parameter. This parameter starts at an initial value and is updated with each
successful test. Its purpose is to control the size of produced test cases and it is
used in test case generation. The definition of the actual size of a term is flexible
and definable by the generating procedure.

We can define general properties or define sub-properties individually. We can,
for example, separate property appLLL into appLLE and appLLC to state the empty
list and cons cell separately and compose them with property operators.

prop({appLLE , L1, L2}) :- append (L1 , L2 , L), L = [].

prop({appLLC , L1, L2}) :- append (L1 , L2 , L), L = [_|_].

Property operators currently include conjunction (Prop1 and Prop2), disjunc-
tion (Prop1 or Prop2), conditional execution (if Cond then Prop1 else Prop2)) and
quantification (for_all(Gen, Var, Prop)). Property labelling (prop(Label)) is con-
sidered an operation. PrologCheck inspects its body for the occurrence of other
tool specific operations. Using property connectives one can compose labelled
properties or other PrologCheck property operations.

We now define other properties of app/3, such as the relation of lists’ lengths
and the left and right identity element of concatenation.

prop({appLLLen , L1 , L2}) :- app(L1, L2 , L),

length (L1 , K1), length (L2 , K2), length (L, K), K is K1 + K2.

prop({appLZ ,L1 ,L2}) :- if L1=[] then (app(L1 ,L2 ,L), L=L2).

prop({appRZ ,L1 ,L2}) :- if L2=[] then (app(L1 ,L2 ,L), L=L1).

Conjunction and disjunction is used as expected. The conditional statement
if A then B else C performs a conditional execution on A. If A runs successfully
the tool continues by executing B and in case it fails executing C instead. A,
B and C are PrologCheck properties. In the example shown the else branch is
omitted. This is equivalent to having the property true in the omitted branch.
The conditional statement enables conditional properties without cut.

prop(appAll) :- for_all (listOf (int),L1 , for_all (listOf (int),L2 ,

(prop({appLLLen , L1 , L2}) and prop({appLZ , L1 , L2})

and prop({appRZ , L1 , L2}) and prop({appLLL , L1 , L2})

and (prop({appLLE ,L1,L2}) or prop({appLLC ,L1,L2}))))).

Primitive properties are Prolog goals. In a strongly typed language (such as
Haskell) only safe properties, pure functions or predicates, are allowed. In Pro-
logCheck the user is free to use simpler or more involved properties. This provides

8 C. Amaral, M. Florido, and V.S. Costa

extra flexibility but, ultimately, the user is responsible for guaranteeing the safety
of impure code in a property.

5 Generators

Input for testing properties is randomly generated through explicitly defined
procedures: generators. There are differences between PrologCheck generators
and the generators in a strongly typed version of the tool. In Haskell QuickCheck,
or any language with strong types, generators pick values inside a preexisting
type according to some criteria. In PrologCheck generators represent procedures
that randomly construct elements according to the shape of the term. In fact,
the generators themselves define a set by the elements they generate, with non-
zero probability. Thus, they define a set of terms, here denoted as a type. Note
that this set of terms is not necessarily composed of only ground terms, instead
it exactly represents the form of an input parameter to a property.

PrologCheck has generators and generator predicates. Generators specify the
input parameters of properties. One example generator is listOf(int). Generator
predicates are the predicates responsible for the generation of test cases. The cor-
responding example of a call to a generator predicate is listOf(Type, Output, Size)

where Type would be bound to int, Output would be instantiated with the pro-
duced test case and Size would be used to control the size of produced test cases.
The value is passed to the property by the PrologCheck quantification through
unification.

choose/4 and elements/3 are examples of generator predicates. Picking an in-
teger in an interval is probably the most common operation in generators. The
choose/4 predicate discards the size parameter and randomly chooses an integer
between the inclusive range given by the first two input parameters. elements/3
randomly chooses an element from a non-empty list of possible elements. They
are implemented as follows:

elements (AS , A, S) :-

length (AS , Cap), choose (1,Cap ,I,S), nth(I, AS , A).

choose (Min ,Max , A, _) :- Cap is Max +1, random (Min ,Cap ,A).

Combinators. We extend generator predicates with generator combinators
that allow us to define more complex generators. More precisely, combinators
are generator predicates that are parametrised by generators. This is shown in
the app/3 example, where the generator for lists, listOf(int), is parametrised by
a generator for integers. Generator predicates can have several parameters, but
the two last must always be, in this order, the generated value and the size.
When a generator predicate uses another generator predicate to build a value,
the parameter is passed in generator form.

PrologCheck combinators enable the generation of complex data and can tune
the probability distribution of the generated values to better fit the needs of the
tester. Next, we present some combinators distributed with the tool.

PrologCheck – Property-Based Testing in Prolog 9

To generate lists we provide generators for arbitrary and fixed length lists.
They are parametrised by a generator for the list elements. Random size lists
can be generated by listOf/3, which randomly chooses a list length and uses
vectorOf/4. Non-empty lists are generated by the listOf1/3 variation. vectorOf/4

is a fixed length generator predicate that recurs on the integer given as the first
input parameter, generating each element.

listOf (GenA , AS , S) :- choose (0, S, K, S),vectorOf (K, GenA , AS , S).

listOf1 (GenA , AS, S) :- max_list ([1,S], Cap),

choose (1, S, K, S), vectorOf (K, GenA , AS , S).

vectorOf (0, _GenA , [], _Size) :- !.

vectorOf (K, GenA , [A|AS], Size) :-

call(GenA , A, Size), K1 is K-1, vectorOf (K1 , GenA , AS , Size).

Combinators can interact and, for example, create lists of random length in an
interval ([2, 5]) and create lists whose elements are in an interval ([0, 9]).

for_all (choose (2,5),I, for_all (vectorOf (I,int),L1 ,

for_all (listOf (choose (0,9)),L2 , (prop({appLLC , L1, L2}))))

Generating specific values, ground or not, fresh variables and terms with a
certain structure is possible with value/3, variable/2 and structure/3 respectively.
With such generators/combinators we can describe and therefore test a different
input mode.

for_all (structure ([listOf (int), value(v), variable]) ,[L1 ,X,L],

app(L1 , X, L))

If the values or part of the values to be generated have to be of a certain size,
we override the size parameter with the resize/4 combinator.

resize (NewSize , GenA , A, _Size) :- call(GenA , A, NewSize).

Resizing can contribute to better chances of fulfilling a condition, e.g., a size
near zero improves the chances of generating empty lists.

for_all (resize (0,listOf (int)), L1 ,

for_all (listOf (int), L2 , (prop({appLZ , L1 , L2}))))

The suchThat/4 combinator restricts the values of a generator. If not all gener-
ated elements for a generator are useful, wrapping it with suchThat/4 will select
the elements of the generator in the first input parameter that satisfy the pred-
icate in the second. If a generated value is valid it is returned; if not, the size
parameter is slowly increased to avoid a size without valid values. This is a
dangerous combinator in the sense that it can loop indefinitely if the the valid
values are too sparse. We can restrict a list generator so that it only generates
non-empty lists.

posLen ([_|_]).

...

for_all (suchThat (listOf (int), posLen), L1,

for_all (listOf (int),L2 , (prop({appLLC , L1 , L2}))))

10 C. Amaral, M. Florido, and V.S. Costa

Often, it is hard to find a good generator. Choosing from a set of generators
that complement each other is a good way to generate values with a desired
distribution. Grouping generators can be done in several ways. We can randomly
choose from a list of generators with oneof/3. The list of generators given in the
first input parameter must be non-empty.

oneof(LGenA , A, S) :- length (LGenA , Cap), choose (1,Cap ,I,S),

nth(I, LGenA , GenA), call(GenA , A, S).

If an uniform distribution between the generators is not suitable one can specifi-
cally state the proportions of the probabilities to choose each generator. The first
input parameter of frequency/3 is a list of pairs {weight,generator} representing
such proportions. The input list must be non-empty. A frequency-index list is
created with the correct proportions and a generator is then randomly chosen
from that list to be called.

frequency (FGL , A, S) :- checkFreqWeights(FGL , FIL , Cap),

choose (1,Cap ,I,S), nth(I, FIL , GenA), call(GenA , A, S).

We can use both combinators to randomly choose generators for each test case.

Gen1 = resize (0,listOf (int))

Gen2 = suchThat (listOf (int), posLen)

...

for_all (frequency ([{4, listOf (int)}, {1, Gen2 }]), L1,

for_all (oneof([Gen1 ,Gen2],L2 , (prop({appLLC , L1 , L2}))))

Shrinking. When a test fails the tool may try to simplify the failing input to
a smaller and easier to understand counterexample. Shrinking is a process by
which a shrinker predicate returns a possibly empty list of smaller elements than
the one given as input.

Similarly to generator predicates, shrinkers are calls to the corresponding
generator. To trigger shrinking a generator is called with the value to shrink,
the flag shrink and a variable to store the list of shrunk values. An example of
a shrinker behaviour for lists is to remove an element. The following auxiliary
predicate builds a list of the possible shrunk lists.

genL(GenA , A, Size) :- listOf (GenA , A, Size).

genL(GenA , L, shrink , Shrs) :- shrL(L, Shrs).

shrL([], []).

shrL([A], [[]]) :- !.

shrL([A|AS], [AS|Shrs]) :-

shrL(AS , Shrs1), maplist (cons(A), Shrs1 , Shrs).

cons(X, XS , [X|XS]).

Most combinators do not have a default shrinking procedure. Since it is hard
to decide, for example, what is a proper shrink for values generated by a random
choice between generators, we default the shrinking of many combinators to an
empty list of shrunk values. Instead of directly using combinators in a property
quantification the user can wrap them in a generator predicate with a mean-
ingful name, implementing the shrink behaviour for this specific type. This is

PrologCheck – Property-Based Testing in Prolog 11

exemplified by the genL generator predicate, which is a redefinition of listOf and
can therefore implement a different shrinking process.

6 Specification Language

In this section we describe our predicate specification language. Throughout, we
follow some of the principles presented by Deville [9]. There are several ways to
state a predicate’s specification, we do not argue that our specification process
is superior to other approaches. We do believe that this approach fits naturally
our needs, namely as a form to express testable predicate features.

The general specification form of a predicate p/n consists, at its core, of a set
of uniquely identified specification clauses about input types or the shape of the
parameters when evoking the predicate. Various aspects of the predicate for the
particular input type in question can be added to a specification clause. If there
is a parameter relation or a relation that input parameters must fulfil one can
implement it as a predicate which checks if such a relation is valid for the list
of input parameters given. The modes of each parameter can be given for the
input parameters and for output answers. The language also allows stating the
number of answers of a predicate, or its range. Last, the user may state invariant
properties that should hold both before and after the predicate is executed as
pre- and post-conditions. Next, we discuss the main properties that we allow in
our framework.

Types. Types are the mandatory part of the specification. They are required to
guarantee that the specification may be automatically tested. We define a type
as follows:

Definition 1. A type is a non-empty set of terms.
A term t belongs to a type τ (t ∈ τ) if it belongs to the set of terms that define
the type.

Types are not defined as a set of ground terms but rather by a set of terms.
Note that types defined in this manner depict perfectly possible forms of pred-
icate input. This approach for types already encloses, by definition, the type
precondition, where the input must be compatible with the specified types.

The types mentioned in a predicate specification clause correspond to Pro-
logCheck generators used to automatically create individual test cases. This
means that the type in a specification clause is partial in the sense that it only
specifies that the predicate should succeed when given elements of such types
as parameters. It states nothing about parameters of other types. Other input
types can be covered by other specification clauses with different generators.
The behaviour of a procedure for types not covered by any of the specification
clauses is considered undefined/unspecified.

We can now easily specify input types for program predicates like app/3. We
identify the specification clauses as {app,K}, specification clause K of predicate
app, and declare the PrologCheck types. The specifications can be tested and the
predicate checked to succeed for the corresponding input types.

12 C. Amaral, M. Florido, and V.S. Costa

{app ,1} of_type (listOf (int), value (v), variable)

{app ,2} of_type (listOf (int), variable , variable)

{app ,3} of_type (listOf (int), listOf (int), variable)

Domain. Correct typing of parameters is crucial but may be insufficient to
express the allowed input. Sometimes the input parameters must obey a relation
extending type information, based on the actual values of the parameters. The
domain of a predicate is the set of parameters accepted by a predicate [9]. The
domain precondition is a restriction over the set of parameters of a predicate.
Suppose that minimum(A,B,C) is a predicate that succeeds when C is the minimum
of A and B. The predicate has the type (int, int, int) and the domain is the
restriction (C==A; C==B),(C<=A, C<=B).

Definition 2. A domain of a procedure p/n is a set of term n-tuples such that
〈t1, ..., tn〉 ∈ (τ1 × ...× τn)
〈t1, ..., tn〉 satisfies the input parameter relation

This definition of a domain, similarly to what happens with types, is different
from the usual notion of domain. It focus on the shape of the input to a predicate
and not the accepted answer set. The PrologCheck domain of a predicate is then
any set of terms produced by the generator that fulfils the domain precondition.
In the absence of a domain precondition relating parameters the domain is the set
of terms generated. A specification clause can thus be engineered to represent a
subset of a more general type. An example could be that we want to test app with
at least one non-empty list input. This can be used, for example, to guarantee
that the variable given in the third input parameter will be instantiated with a
non-empty list.

non_empty ([[_|_],_,_]).

non_empty ([_,[_|_],_]).

{app ,3b} of_type (listOf (int), listOf (int), variable)

such_that m:non_empty .

Directionality. The directionality of a predicate describes its possible uses by
specifying the possible forms of the parameters before and after execution. We
follow Deville [9] where the main modes for a parameter are ground, variable and
neither ground nor variable. Conjunction of modes is possible and all combina-
tions are achieved by the notation for ground (g) and variable (v) as well as the
negation (n?). This results in the main modes and their pairwise combinations:
g, v, gv, ng, nv, ngv. A parameter that can be used in any form is denoted by
the mode identifier any.

Definition 3. The modes or forms a term may present are denoted by
Modes = g, v, gv, ng, nv, ngv, any

There are two components to a directionality: input and output. They must
hold for a predicate’s parameters before and after execution, respectively. This
means a full directionality denotes a pre- and a post-condition to the execution

PrologCheck – Property-Based Testing in Prolog 13

of the specified predicate. In PrologCheck these properties are checked for each
test case when specified before and after calling the predicate.

Input directionality acts as a sanity check for the elements of the domain,
meaning that the generators must be constructed to conform to the specified
input modes. Each specification clause is allowed one input directionality. If the
user wishes to specify more than one input form the clause should be divided
into the number of input forms and its generators adapted accordingly. This
results in bigger predicate specifications with possibly duplicated code, but is a
very simple way to express what happens to the parameters in finer detail.

Each input may have more than one answer and therefore more than one
output form. For this reason we adopted a schema where an input directionality
is paired with a list of output forms.

Definition 4. A directionality of a specification clause of a predicate p/n is
a sequence of predicate modes, with one input mode followed by one or more
output modes.
A predicate mode of p, or just mode of p, is denoted as

– i(m1, ...,mn)

– o(M1, ...,Mn)
where mi,Mi ∈Modes and i, o respect to input and output modes respectively.

The specification of input and output modes is important to state predicate
behaviours that may be oblivious to a library user. From using the predicate
app/3 with a list and two variables, for example, two distinct directionalities may
arise. This is due to the fact that an empty list in the first input parameter does
not contribute to instantiate any part of the third parameter.

{app , 4} of_type (listOf (int), variable , variable)

where (i(g, v, v), o(g, v, ngv), o(g, v, v)).

PrologCheck does not check the specification for consistency. A parameter
with modes such that in is ground and out is variable is caught during testing.
Output modes that are redundant or invalid will not be exposed when part
of a set of output directionalities since they are interpreted as a disjunction.
Directionalities should be constructively defined and not over-specified. They
should be separated according to disjoint input types and incremented as needed.

Multiplicity. The number of answers a predicate call has can be valuable infor-
mation. Knowing a predicate has a finite search space is a termination guarantee
for predicates using it. Conventionally, multiplicity information, or range, is given
for each directionality [19]. In PrologCheck we do not require that directionality
is given, in which case no tests are performed regarding parameter form and the
any mode is assumed for all parameters. The multiplicity is tied to the domain
of each specification clause where defined.

The range of answers is given with two bounds: Min and Max. These values
are the lower and upper bounds to the number of answers. The lower bound
should not exceed the upper bound and they both take non-negative integer

14 C. Amaral, M. Florido, and V.S. Costa

values up to infinity (denoted by the atom inf). When no explicit multiplicity is
given the default we follow is 〈1, inf〉. When testing a specification clause, the
default minimal expected behaviour is that the domain is successfully accepted
by the predicate. Therefore we try to mirror this when there are other features
specified but no multiplicity, expecting at least one solution. It is necessary to
impose a limit when the upper bound is infinity or an excessively large number.
One can state the maximum number of answers necessary to assume that the
answer range is sufficiently close to the upper bound with a positive integer. We
can complement the previous specification clause with a statement about the
predicate behaviour regarding the number of answers. In this case we have a
total function behaviour, always yielding one and only one answer.

{app , 4b} of_type (listOf (int), variable , variable)

where (i(g, v, v), o(g, v, ngv), o(g, v, v))

has_range {1 ,1}.

{app , 4c} of_type (variable , listOf (int), variable)

where (i(v, g, v), o(g, g, g), o(ngv , g, ngv))

has_range {1, inf} limit 50.

Pre and Post-conditions. Along with all the other features of a predicate
we can have a connection between the relations represented by the predicate
being specified and other predicates. These relations can be valid prior to or
after execution. In the predicate specification language they are pre- and post-
conditions and are expressed as PrologCheck properties.

A pre-condition is a property that only inspects its input. It does not change
the generated values to be applied to the specified predicate. Post-conditions
can use any of the specified parameters. Since they are no longer used, it does
not matter if they are changed by the answer substitution. Now we can describe
the property relating the lengths of app/3’s parameters in a post-condition of a
specification clause of the respective type. We identify the parameters of app so
that we can use them in the post-condition as A, B and C.

{app , 5} of_type (A-(listOf (int)), B-(listOf (int)), C-(variable))

post_cond (length (A,K1), length (B,K2), length (C,K), K is K1+K2).

7 AVL Trees Case Study

We have described AVL properties and performed black-box testing of an imple-
mentation of AVL trees in a Yap [8] module, avl.yap, with PrologCheck2. Due to
space restrictions we present a general description of the process and its results.

The module interface is small, with predicates to create an empty tree, in-
sert an element and look up an element, respectively avl_new/1, avl_insert/4 and
avl_lookup/3. When performing this kind of test one does not simply test indi-
vidual predicates but rather usages of the module. To do this we must be able
to create sequences of interface calls and inspect intermediate results for com-
pliance with AVL invariants. Knowledge about the shape of input/output terms
can be gathered manually if it is not previously known.

2 All the details can be found in the tool’s website.

PrologCheck – Property-Based Testing in Prolog 15

Generator. Creating a valid sequence of interface calls is not difficult, but
requires attention to detail. First, we only want to generate valid sequences to
save effort of checking validity and not suffer from sparse valid values. Using the
avl module implies the existence of two sets of important terms: key terms, and
value terms, which we represent as generators. In order to test the correct failure
of wrong look-ups, a set of values for failed look-ups disjoint from the regular
values is implemented.

The generator starts by creating the tree, independently of the size parameter,
using avl_new/1. This implies that when size is 0 an empty AVL-tree is still
created. Thus, we always append the tree creation to a sequence of calls to
insert and look-up values. Each element of the sequence is obtained by randomly
choosing between insert and look-ups.

When an insert command is added to the sequence, the value to be inserted
is kept so that it can be used in later look-ups. Look-ups are divided between
valid look-up and invalid look-up. Valid look-ups are only generated after the
corresponding insert and invalid look-ups are based in a set of values that is
never inserted. Valid look-ups can be further distinguished between looking up
a key-value pair and looking up a key and retrieving its value. These elements
are branded by a command identifier to recognise their correct behaviour during
testing. The relative probabilities are such that we get a big variety of commands
within relatively small sequences.

Property. The definition of the AVL property depends on several factors. It is
necessary to have operations to extract information from trees, such as current
node’s key, key comparison, left and right sub-trees and empty tree test.

A tree may be empty, in which case it is an AVL tree of height 0. In the case
of a non-empty tree we retrieve its key and sub-trees. They are used in recursive
checks of the property. The recursive calls accumulate lists of keys that should be
greater and less then the keys in the sub-trees. If the sub-trees are individually
compliant with the property, we proceed with the last check, comparing the
returned heights for balance and computing the current tree height. This is how
the property is outlined in PrologCheck:

prop({avl , T, Gs , Ls, H}) :- if (not isNil (T)) then

((getKey (T, K), left(T, L), right(T, R),

((forall (member (X, Ls), cmpKeys (X, K, gt))) -> error1),

((forall (member (X, Gs), cmpKeys (X, K, lte))) -> error2))

and prop({avl , L, [Key|Gt], Lt , Hl})

and prop({avl , R, Gt, [Key|Lt], Hr})

and ((abs(Hl -Hr) >1 -> error3), H is 1+ max(Hl ,Hr)))

else (H = 0).

We complete the property by inserting it into a loop that consumes the opera-
tions in the quantified module uses.

Table 1 summarises some relevant results of our tool applied to the AVL
library. Each line corresponds to a different module version: line 1 to the original
version; line 2 to a bug in the re-balancing strategy inserted by the tester; line
3 to a different bug in the re-balancing strategy inserted by someone that was
not involved with the tests. The column Tests is the number of tests needed

16 C. Amaral, M. Florido, and V.S. Costa

to achieve a particular counter-example. For the purpose of readability we will
represent only the key and value input parameters of the AVL operations. Thus
consider i(N,V) as insert an element with key N and value V, and l(N,V) as look
up the pair (N,V) in the tree.

Note that the counter-example found in the original version corresponds to
an unspecified behaviour in the case of two insertions with the same key. After
several runs of the tool (10 for the first bug and 20 for the second) we managed
to find a pattern on the counter-examples which led to the identification of the
pathological behaviour caused by the bugs.

Table 1. AVL testing summary

Version Tests Counter-example

Original 732 i(1,a), i(1,b), l(1,b)

Error 1 51 i(3,a), i(1,b), i(2,c)

Error 2 213 i(5,a), i(2,b), i(3,c), i(4,d), i(1,e)

8 Conclusion

We present PrologCheck, an automatic tool for specification based testing of
Prolog programs.

Compared to similar tools for functional languages, we deal with testing of
non-deterministic programs in a logic programming language. We provide a lan-
guage to write properties with convenient features, such as quantifiers, condi-
tionals, directionality and multiplicity. PrologCheck also includes the notion of
random test-data generation.

We show that specification based testing works extremely well for Prolog. The
relational nature of the language allows to specify local properties quite well
since all the dependencies between input parameters are explicit in predicate
definitions.

Finally note that our tool uses Prolog to write properties, which, besides its
use in the tool for test specification, increases the understanding of the program
itself, without requiring extra learning for Prolog programmers.

Acknowledgements. This work is partially financed by the ERDF - European
Regional Development Fund through the COMPETE Program and by National
Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project ADE/PTDC/EIA-
EIA/121686/2010 and by LIACC through Programa de Financiamento Pluri-
anual, FCT. Cláudio Amaral is funded by FCT grant SFRH/BD/65371/2009.

References

1. Antoy, S., Hanus, M.: Overlapping rules and logic variables in functional logic
programs. In: Etalle, S., Truszczyński, M. (eds.) ICLP 2006. LNCS, vol. 4079,
pp. 87–101. Springer, Heidelberg (2006)

PrologCheck – Property-Based Testing in Prolog 17

2. Bernardy, J.-P., Jansson, P., Claessen, K.: Testing polymorphic properties. In: Gor-
don, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 125–144. Springer, Heidelberg
(2010)

3. Boberg, J.: Early fault detection with model-based testing. In: Proc. of Workshop
on Erlang, pp. 9–20. ACM (2008)

4. Christiansen, J., Fischer, S.: EasyCheck — test data for free. In: Garrigue, J.,
Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer,
Heidelberg (2008)

5. Claessen, K., Hughes, J.: Quickcheck: a lightweight tool for random testing of
haskell programs. In: Proc. of ICFP, pp. 268–279. ACM (2000)

6. Claessen, K., Hughes, J., Pa�lka, M., Smallbone, N., Svensson, H.: Ranking pro-
grams using black box testing. In: Proc. of AST, pp. 103–110. ACM (2010)

7. Claessen, K., Pa�lka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T., Wiger,
U.: Finding race conditions in erlang with quickcheck and pulse. In: Proc. of ICFP,
pp. 149–160. ACM (2009)

8. Costa, V.S., Rocha, R., Damas, L.: The yap prolog system. TPLP 12(1-2), 5–34
(2012)

9. Deville, Y.: Logic programming: systematic program development. Addison-Wesley
Longman Publishing Co. Inc., Boston (1990)

10. Dureg̊ard, J., Jansson, P., Wang, M.: Feat: functional enumeration of algebraic
types. In: Proc. of Haskell Symposium, pp. 61–72. ACM (2012)

11. Florido, M., Damas, L.: Types as theories. In: Proc. of post-conference workshop
on Proofs and Types, JICSLP (1992)

12. Frühwirth, T.W., Shapiro, E.Y., Vardi, M.Y., Yardeni, E.: Logic programs as types
for logic programs. In: Proc. of LICS, pp. 300–309 (1991)

13. Hermenegildo, M.V., Bueno, F., Carro, M., López-Garćıa, P., Mera, E., Morales,
J.F., Puebla, G.: An overview of ciao and its design philosophy. In: TPLP, pp.
219–252 (2012)

14. Koopman, P., Alimarine, A., Tretmans, J., Plasmeijer, R.: Gast: Generic auto-
mated software testing. In: Peña, R., Arts, T. (eds.) IFL 2002. LNCS, vol. 2670,
pp. 84–100. Springer, Heidelberg (2003)

15. Mera, E., Lopez-Garćıa, P., Hermenegildo, M.: Integrating software testing and
run-time checking in an assertion verification framework. In: Hill, P.M., Warren,
D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 281–295. Springer, Heidelberg (2009)

16. Naylor, M.: A logic programming library for test-data generation (2007)
17. Papadakis, M., Sagonas, K.: A proper integration of types and function specifi-

cations with property-based testing. In: Proc. of Workshop on Erlang, pp. 39–50.
ACM (2011)

18. Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: auto-
matic exhaustive testing for small values. In: Proc. of Haskell Symposium, pp.
37–48. ACM (2008)

19. Somogyi, Z., Henderson, F.J., Conway, T.C.: Mercury, an efficient purely declar-
ative logic programming language. Australian Computer Science Communica-
tions 17, 499–512 (1995)

20. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: Swi-prolog. TPLP 12(1-2),
67–96 (2012)

21. Yardeni, E., Shapiro, E.: A type system for logic program. J. Log. Program. 10(2),
125–153 (1991)

22. Zobel, J.: Derivation of polymorphic types for prolog programs. In: Proc. of ICLP,
pp. 817–838 (1987)

Generating Constrained Random Data
with Uniform Distribution

Koen Claessen, Jonas Duregård, and Michał H. Pałka

Chalmers University of Technology, Gothenburg, Sweden
{koen,jonas.duregard,michal.palka}@chalmers.se

Abstract. We present a technique for automatically deriving test data generators
from a predicate expressed as a Boolean function. The distribution of these gen-
erators is uniform over values of a given size. To make the generation efficient we
rely on laziness of the predicate, allowing us to prune the space of values quickly.
In contrast, implementing test data generators by hand is labour intensive and
error prone. Moreover, handwritten generators often have an unpredictable dis-
tribution of values, risking that some values are arbitrarily underrepresented. We
also present a variation of the technique where the distribution is skewed in a lim-
ited and predictable way, potentially increasing the performance. Experimental
evaluation of the techniques shows that the uniform derived generators are much
easier to define than hand-written ones, and their performance, while lower, is
adequate for some realistic applications.

1 Introduction

Random property-based testing has proven to be an effective method for finding bugs
in programs [1, 4]. Two ingredients are required for property-based testing: a test data
generator and a property (sometimes called oracle). For each test, the test data generator
generates input to the program under test, and the property checks whether or not the
observed behaviour is acceptable. This paper focuses on the test data generators.

The popular random testing tool QuickCheck [4] provides a library for defining ran-
dom generators for data types. Typically, a generator is a recursive function that at every
recursion level chooses a random constructor of the relevant data type. Relative frequen-
cies for the constructors can be specified by the programmer to control the distribution.
An extra resource argument that shrinks at each recursive call is used to control the size
of the generated test data and ensures termination.

The above method for test generation works well for generating structured, well-
typed data. But it becomes much harder when our objective is to generate well-typed
data that satisfies an extra condition. A motivating example is the random generation of
programs as test data for testing compilers. In order to successfully test different phases
of a compiler, programs not only need to be grammatically correct, they may also need
to satisfy other properties such as all variables are bound, all expressions are well-typed,
certain combinations of constructs do not occur in the programs, or a combination of
such properties.

In previous work by some of the authors, it was shown to be possible but very tedious
to manually construct a generator that (a) could generate random well-typed programs

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 18–34, 2014.
c© Springer International Publishing Switzerland 2014

Generating Constrained Random Data with Uniform Distribution 19

data Expr
= Ap Expr Expr Type
| Vr Int
| Lm Expr

data Type = A | B | C
| Type :→ Type

check :: [Type]→ Expr → Type→ Bool
check env (Vr i) t = env !! i == t
check env (Ap f x tx) t =

check env f (tx :→ t) && check env x tx
check env (Lm e) (ta :→ tb) = check (ta : env) e tb
check env = False

Fig. 1. Data type and type checker for simply-typed lambda calculus. The Type in the Ap nodes
represents the type of the argument term.

in the polymorphic lambda-calculus, and at the same time (b) maintain a reasonable
distribution such that no programs were arbitrarily excluded from generation.

The problem is that generators mix concerns that we would like to separate: (1)
what is the structure of the test data, (2) which properties should it obey, and (3) what
distribution do we want.

In this paper, we investigate solutions to the following problem: Given a definition
of the structure of test data (a data type definition), and given one or more predicates
(functions computing a boolean), can we automatically generate test data that satisfies
all the predicates and at the same time has a predictable, good distribution?

To be more concrete, let us take a look at Fig. 1. Here, a data type for typed lambda
expressions is defined, together with a function that given an environment, an expres-
sion, and a type, checks whether or not the expression has the stated type in the envi-
ronment. From this input alone, we would like to be able to generate random well-typed
expressions with a good distribution.

What does a ‘good’ distribution mean? First, we need to have a way to restrict the
size of the generated test data. In any application, we are only ever going to generate a
finite number of values, so we need a decision on what test data sizes to use. An easy
and common way to control test data size is to control the depth of a term. This is for
example done in SmallCheck [10]. The problem with using depth is that the cardinality
of terms of a certain depth grows extremely fast as the depth increases. Moreover, good
distributions for, to give an example, the set of trees of depth d are hard to find, because
there are many more almost full trees of depth d than there are sparse trees of depth
d, which may lead to an overrepresentation of almost full trees in randomly generated
values.

Another possibility is to work with the set of values of a given size n, where size is
understood as the number of data constructors in the term. Previous work by one of the
authors on FEAT [5] has shown that it is possible to efficiently index in, and compute
cardinalities of, sets of terms of a given size n. This is the choice we make in this paper.

The simplest useful and predictable distribution that does not arbitrarily exclude val-
ues from a set is the uniform distribution, which is why we chose to focus on uniform
distributions in this paper. We acknowledge the need for other distributions than uni-
form in certain applications. However, we think that a uniform distribution is at least a
useful building block in the process of crafting test data generators. We anticipate meth-
ods for controlling the distribution of our generators in multiple ways, but that remains
future work.

20 K. Claessen, J. Duregård, and M.H. Pałka

Our first main contribution in this paper is an algorithm that, given a data type defini-
tion, a predicate, and a test data size, generates random values satisfying the predicate,
with a perfectly uniform distribution. It works by first computing the cardinality of the
set of all values of the given size, and then randomly picking indices in this set, com-
puting the values that correspond to those indices, until we find a value for which the
predicate is true. The key feature of the algorithm is that every time a value x is found for
which the predicate is false, it is removed from the set of values, together with all other
values that would have lead to the predicate returning false using the same execution
path as x.

Unfortunately, even with this optimisation, uniformity turns out to be a very costly
property in many practical cases. We have also developed a backtracking-based gener-
ator that is more efficient, but has no guarantees on the distribution. Our second main
contribution is a hybrid generator that combines the uniform algorithm and the back-
tracking algorithm, and is ‘almost uniform’ in a precise and predictable way.

2 Generating Values of Algebraic Datatypes

In this section we explain how to generate random values of an algebraic data type
(ADT) uniformly. Our approach is based on a representation of sets of values that allows
efficient indexing, inspired by FEAT [5], which is used to map random indices to random
values. In the next section we modify this procedure to efficiently search for values that
satisfy a predicate.

Algebraic Data Types (ADTs) are constructed using units (atomic values), disjoint
unions of data types, products of data types, and may refer to their own definitions
recursively. For instance, consider these definitions of Haskell data types for natural
numbers and lists of natural numbers:

data Nat = Z | Suc Nat
data ListNat = Nill | Cons Nat ListNat

In general, ADTs may contain an infinite number of values, which is the case for
both data types above. Our approach for generating random values of an ADT uni-
formly is to generate values of a specific size, understood as the number of con-
structors used in a value. For example, all of Cons (Suc (Suc Z)) (Cons Z Nill),
Cons (Suc Z) (Cons (Suc Z) Nill) and Cons Z (Cons Z (Cons Z Nill)) are values of
size 7. As there is only a finite number of values of each size, we can create a sampling
procedure that generates a uniformly random value of ListNat of a given size.

2.1 Indexing

Our method for generating random values of an ADT is based on an indexing function,
which maps integers to corresponding data type values of a given size.

indexS,k : {i ∈N | i < |Sk|} → Sk

Generating Constrained Random Data with Uniform Distribution 21

Here, S is the data type, and Sk is the set of k-sized values of S. The intuitive idea behind
efficient indexing is to quickly calculate cardinalities of subsets of the indexed set. For
example, when S = T ⊕U is a sum type, then indexing is performed as follows:

indexT⊕U,k(i) =

{
indexT,k(i) if i < |Tk|
indexU,k(i−|Tk|) otherwise

When S = T ⊗U is a product type, we need to consider all ways size k can be divided
between the components of the product. The cardinality of the product can be computed
as follows:

|(T ⊗U)k|= ∑
k1+k2=k

|Tk1 ||Uk2 |

When indexing (T ⊗U)k using index i, we first select the division of size k1 + k2 = k,
such that:

0≤ i′ < |Tk1 ||Uk2 | where i′ = i− ∑
l1<k1

l1+l2=k

|Tl1 ||Ul2 |

Then, elements of Tk1 and Uk2 are selected using the remaining part of the index i′.

indexT⊗U,k(i) = (indexT,k(i
′ div |Uk2 |), indexU,k(i

′ mod |Uk2 |))

In the rest of this section, we outline how to implement indexing in Haskell.

2.2 Representation of Spaces

We define a Haskell Generalized Algebraic Data Type (GADT) Space to represent ADTs,
and allow efficient cardinality computations and indexing.

data Space a where
Empty :: Space a
Pure :: a → Space a
(:+:) :: Space a → Space a→ Space a
(:∗ :) :: Space a → Space b→ Space (a,b)
Pay :: Space a → Space a
(:$:) :: (a → b)→ Space a→ Space b

Spaces can be built using four basic operations: Empty for empty space, Pure for unit
space, (:+:) for a sum of two spaces and (: ∗ :) for a product. Spaces also have an
operator Pay which represents a unit cost imposed by using a constructor. The last
operation (: $:), applies a function to all values in the space. We assume that spaces
are constructed in such a way that all their elements are unique. If this is not the case, a
‘uniform’ sampling procedure would return repeated elements more often than unique
ones.

A very convenient operator on spaces is the lifted application operator, that takes a
space of functions and a space of parameters and produces a space of all applications
of the functions to the parameters:

22 K. Claessen, J. Duregård, and M.H. Pałka

(<∗>) ::Space (a→ b)→ Space a→ Space b
s1 <∗> s2 = (λ (f ,a)→ f a) :$: (s1 :∗ : s2)

With the operators defined above, the definition of spaces mirror the definitions of data
types. For example, spaces for the Nat and ListNat data types can be defined as follows:

spaceNat :: Space Nat
spaceNat = Pay (Pure Z :+: (Suc :$: spaceNat))
spaceListNat :: Space ListNat
spaceListNat = Pay (Pure Nill :+: (Cons :$: spaceNat <∗> spaceListNat))

Unit constructors are represented with Pure, whereas compound constructors are
mapped on the subspaces of the values they contain. In this example, Pay is applied
each time we introduce a constructor, which makes the size of values equal to number
of constructors they contain, and is the usual practice. However, the user may choose
to use another way of assigning costs, which would change the sizes of individual val-
ues and, as a result, the distribution of the generated values. The only rule that must
be followed when assigning costs is that all recursion is guarded by at least one Pay
operation, otherwise the sets of values of a given size might be infinite, which would
lead to non-terminating cardinality computations.

2.3 Indexing on Spaces

Indexing on spaces can be reduced to two subproblems: Extracting the finite set of
values of a particular set, and indexing into such finite sets. Assume we have some data
type for finite sets constructed by combining the empty set ({}), singleton sets ({a}),
disjoint union (�) and Cartesian product (×). From the definition of such a finite set, its
cardinality can be computed as follows:

|{}| = 0
|{a}|= 1

|a× b|= |a| ∗ |b|
|a�b| = |a|+ |b|

Using this function it is possible to define an indexing function on the type:

indexFin {a} 0 = a
indexFin (a�b) i | i < |a|= indexFin a i
indexFin (a�b) i | i � |a|= indexFin b (i−|a|)
indexFin (a× b) i = (indexFin a (i÷|b|), indexFin b (i mod |b|))

With these definitions at hand, all we have to do to index in spaces is to define a function
sized which extracts the finite set of values of a given size k from a space.

sized Empty k = {}
sized (Pure a) 0 = {a}
sized (Pure a) k = {}
sized (Pay a) 0 = {}

sized (Pay a) k = sized a (k−1)
sized (a :+: b) k = sized a k� sized b k
sized (f :$: a) k = {f x : x ∈ sized a k}

Generating Constrained Random Data with Uniform Distribution 23

We define sized Pure to be empty for all sizes except 0, since we want values of an exact
size. For Pay we get the values of size k−1 in the underlying space. Union and function
application translate directly to union and application on sets. Selecting k-sized values
of a product space requires dividing the size between its components. Thus, we can
consider the set as a disjoint union of the k+ 1 different ways of dividing size between
the components:

sized (a :∗ : b) k =
⊎

k1+k2=k
sized a k1× sized b k2

Knowing how to index in finite sets, we can implement an indexing function on spaces
by composing the sized function with the indexFin function.

indexSized :: Space a→ Int→ Integer→ a
indexSized s k i = indexFin (sized s k) i

Computing cardinalities and indexing requires arbitrarily large integers, which are pro-
vided by Haskell’s Integer type. Calculating cardinalities can be computationally inten-
sive, and to be practical requires memoising cardinalities of recursive data types, which
is implemented using another constructor of the Space a data type not shown here.

3 Predicate-Guided Indexing

Having solved the problem of generating members of algebraic data types, we extend
the problem with a predicate that all generated values must satisfy.

A first approach for uniform generation is to choose a size, generate values of that
size, test them against the predicate and keep the ones for which the predicate is True.
This works well for cases where the proportion of values that satisfy the predicate is
large enough, for example larger than 1%, but is far too inefficient in many practical
situations.

In order to speed up random generation of values satisfying a given predicate, we
use the lazy behaviour of the predicate to know its result on sets of values, rather than
individual values, similarly to [10]. For instance, consider a predicate that tests if a list
is sorted by checking the inequality of each pair of consecutive elements in turn starting
from the front. Applying the predicate to 1 : 2 : 1 : 3 : 5 : [] will yield False after the pair
(2,1) is encountered, before the predicate looks at the later elements, which means that
it will return False for all lists starting with 1,2,1. Once we have computed a set of
values for which the predicate is going to return false, we remove all of these values
from our original set.

To detect this we can exploit Haskell’s call-by-need semantics by applying the pred-
icate to a partially-defined value. In this case, observing that our predicate returns False
when applied to a partially-defined list 1 : 2 : 1 :⊥, can lead us to conclude that ⊥ can
be replaced with any value without affecting the result. Thus, we could remove all lists
that start with 1,2,1 from the space. For many realistic predicates this removes a large
number of values with each failed generation attempt, improving the chances of finding
a value satisfying the predicate next time.

24 K. Claessen, J. Duregård, and M.H. Pałka

We implement this by using the function valid, that determines whether a given pred-
icate needs to investigate its argument or not in order to produce its result. The function
valid returns Nothing if the predicate needed its argument, and Just b if the predicate
returns b regardless of its argument.

valid :: (a→ Bool)→Maybe Bool

For example valid (λ a → True) == Just True, valid (λ a → False) == Just False,
valid (λ x → x+ 1> x) == Nothing. Implementing valid involves applying the pred-
icate to ⊥ and catching the resulting exception if there is one. Catching the exception
is an impure operation in Haskell, so the function valid is also impure (specifically, it
breaks monotonicity).

The function valid is used to implement the indexing function, which takes the pred-
icate, the space, the size and a random index.

index :: (a→ Bool)→ Space a→ Int → Integer→ Space a

It returns a space of values containing at least the value at the given index, and any
number of values for which the predicate yields the same result. When the returned
space contains values for which the predicate is false, the top level search procedure
(not shown here) removes all these values from the original enumeration and retries
with a new index in the now smaller enumeration.

The function index is implemented by recursion on its Space a argument, and com-
posing the predicate with traversed constructor functions, until its result is independent
of which value from the current space is chosen. In particular, index on a function
application (: $:) returns the current space if the predicate p′ returns the same result
regardless of its argument, which is determined by calling valid p′. Otherwise, it calls
index recursively on the subspace, composing the predicate with the applied function.

index p (f :$: a) k i = case valid p′ of
Just → f :$: a
Nothing→ f :$: index p′ a k i
where p′ = p ◦ f

3.1 Predicate-Guided Refinement Order

When implementing index for products, it is no longer possible to choose a division of
size between the components, as was the case for indexing in Section 2. Determining the
size of components early causes problems when generalising to sets of partial values,
as the same partial value may represent values where size is divided in different ways.

We solve this problem using the algebraic nature of our spaces to eliminate prod-
ucts altogether. Disregarding the order of values when indexing, spaces form an alge-
braic semi-ring, which means that we can use the following algebraic laws to eliminate
products.

a⊗ (b⊕ c)≡ (a⊗ b)⊕ (a⊗ c) [distributivity]
a⊗ (b⊗ c)≡ (a⊗ b)⊗ c [associativity]
a⊗1 ≡ a [identity]
a⊗0 ≡ 0 [annihilation]

Generating Constrained Random Data with Uniform Distribution 25

Expressing these rules on our Haskell data type is more complicated, because we need
to preserve the types of the result, i.e. we only have associativity of products if we
provide a function that transforms the left associative pair back to a right associative
one, etc. The four rules defined on the Space data type expressed as a transformation
operator (∗∗∗) are as follows:

a∗∗∗ (b :+: c) = (a :∗ : b) :+: (a :∗ : c) [distributivity]
a∗∗∗ (b :∗ : c) = (λ ((x,y),z)→ (x,(y,z))) :$: ((a :∗ : b) :∗ : c) [associativity]
a∗∗∗ (Pure x) = (λ y→ (y,x)) :$: a [identity]
a∗∗∗Empty = Empty [annihilation]

In addition to this, we need two laws for eliminating Pay and function application.

a∗∗∗ (Pay b) = Pay (a :∗ : b) [lift-pay]
a∗∗∗ (f :$: b) = (λ (x,y)→ (x, f y)) :$: (a :∗ : b) [lift-fmap]

The first law states that paying for the component of a pair is the same as paying for
the pair, the second that applying a function f to one component of a pair is the same
as applying a modified (lifted) function on the pair. If recursion is always guarded by a
Pay, we know that the transformation will terminate after a bounded number of steps.

Using these laws we could define index on products by applying the transformation,
so index p (a :∗ : b) = index p (a ∗∗∗ b). This is problematic, because ∗∗∗ is a right-
first traversal, which means that for our generators the left component of a pair is never
generated before the right one is fully defined. This is detrimental to generation, since
the predicate may not require the right operand to be defined. To guide the refinement
order by the evaluation order of the predicate, we need to ‘ask’ the predicate which
component should be defined first. We define a function similar to valid that takes a
predicate on pairs:

inspectsRight :: ((a,b)→ Bool)→ Bool

The expression inspectsRight p is True iff p evaluates the right component of the pair
before the left. Just like valid, inspectsRight exposes some information of the Haskell
runtime, which can not be observed directly.

To define indexing on products we combine inspectsRight with another algebraic
law: commutativity of products. If the predicate ‘pulls’ at the left component, the
operands of the product are swapped before applying the transformation for the
recursive call.

index p (a :∗ : b) k i = if inspectsRight p
then index p (a ∗∗∗ b) k i
else index p (swap :$: (b ∗∗∗ a)) k i
where swap (a,b) = (b,a)

The end result is an indexing algorithm that gradually refines the value it indexes to,
by expanding only the part that the predicate needs in order to progress. With every
refinement, the space is narrowed down until the predicate is guaranteed to be true or
false for all values in the space. In the end the algorithm removes the indexed subspace
from the search space, so no specialisations of the tested value are ever generated.

26 K. Claessen, J. Duregård, and M.H. Pałka

Note that the generation algorithm is still uniform because we only remove values
for which the predicate is false from the original set of values. The uniformity is only
concerned with the set of values for which the predicate is true.

3.2 Relaxed Uniformity Constraint

When our uniform generator finds a space for which the predicate is false, the algorithm
chooses a new index and retries, which is required for uniformity. We have implemented
two alternative algorithms.

The first one is to backtrack and try the alternative in the most recent choice. Such
generators are no longer uniform, but potentially more efficient. Even though the algo-
rithm start searching at a uniformly chosen index, since an arbitrary number of back-
tracking steps is allowed the distribution of generated values may be arbitrarily skewed.
In particular, values satisfying the predicate that are ‘surrounded’ by many values for
which it does not hold may be much more likely to be generated than other values.

The second algorithm also performs backtracking, but imposes a bound b for how
many values the backtracking search is allowed to skip over. When the bound b is
reached, a new random index is generated and the search is restarted. The result is an
algorithm which has an ‘almost uniform’ distribution in a precise way: the probabilities
of generating any two values differ at most by a factor b+ 1. So, if we pick b = 1000,
generating the most likely value is at most 1001 times more likely than the least likely
value.

The bounded backtracking search strategy generalises both the uniform search (when
the bound b is 0) and the unlimited backtracking search (when the bound b is infinite).

We expected the backtracking strategy to be more efficient in terms of time and space
usage than the uniform search, and the bounded backtracking strategy to be somewhere
in between, with higher bounds leading to results closer to unlimited backtracking. Our
intention for developing these alternative algorithms was that trading the uniformity
of the distribution for higher performance may lead to a higher rate of finding bugs.
Section 4 contains experimental verification of these hypotheses.

3.3 Parallel Conjunction

It is possible to improve the generation performance by introducing the parallel con-
junction operator [10], which makes pruning the search space more efficient. Suppose
we have a predicate p x = q x && r x. Given that && is left-biased, if valid r ==
Just False and valid q == Nothing then the result of valid p will be Nothing, even
though we expect that refining q will make the conjunction return False regardless of
what q x returns.

We can define a new operator &&& for parallel conjunction with different behaviour
when the first operand is undefined: ⊥&&& False == False. This may make the
indexing algorithm terminate earlier when the second operand of a conjunction is false,
without needing to perform refinements needed by the first operand at all. Similarly, we
can define parallel disjunction that is True when either operand is True.

Generating Constrained Random Data with Uniform Distribution 27

4 Experimental Evaluation

We evaluated our approach in four benchmarks. Three of them involved measuring the
time and memory needed to generate 2000 random values of a given size satisfying a
predicate. The fourth benchmark compared a derived simply-typed lambda term gener-
ator against a hand-written one in triggering strictness bugs in the GHC compiler. Some
benchmarks were also run with a naı̈ve generator that generates random values from a
space, as in Section 2, and filters out those that do not satisfy a predicate.

4.1 Trees

Our first example is binary search trees (BSTs) with Peano-encoded natural numbers as
their elements, defined as follows.

data Tree a = L
| N a (Tree a) (Tree a)

isBST :: Ord a⇒ Tree a→ Bool
data Nat = Z | Suc Nat

instance Ord Nat where
<Z = False

Z <Suc = True
Suc x<Suc y = x< y

The isBST predicate (omitted) decides if the tree is a BST, and uses a supplied lazy
comparison function for type Nat for increased laziness.

We measured the time and space needed to generate 2000 trees for each size from
a range of sizes, allowing at most 300 s of CPU time and 4 GiB of memory to be
used. Derived generators based on three different search strategies (see Section 3.2)
were used: One performing uniform sampling (uniform), one bounded backtracking
allowed to skip at most 10k values (backtracking 10k), and one performing unbounded
backtracking (backtracking). A naı̈ve generate-and-filter generator was also used for
comparison.

Both backtracking 10k and backtracking generators produce non-uniform distribu-
tions of values. The skew of the backtracking 10k generator is limited, as the least likely
values are generated at most 10k times less likely than the most common ones, as men-
tioned in Section 3.2.

Fig. 2 shows the time and memory consumed the runs with resource limits marked
by dotted lines in the plots. Run times for all derived generators rise sharply with the
increased size of generated values and seem to approach exponential growth for larger
sizes. The backtracking generator performs best of all, and has a slower exponential
growth rate for large sizes than the other derived generators. The backtracking 10k
generator achieved similar performance as the uniform one when generating values that
are about 11 size units larger. The generate-and-filter generator was not able to complete
any of the runs in time, and is omitted from the graphs.

4.2 Simply-Typed Lambda Terms

Generating random simply-typed lambda terms was our motivating application. Simply-
typed lambda terms can be turned into well-typed Haskell programs and used for testing
compilers. Developing a hand-written recursive generator for them requires the use of

28 K. Claessen, J. Duregård, and M.H. Pałka

50 100
0.01

0.1

1

10

100

Size

[s]

uniform
backtracking 10k
backtracking

50 100
1

10

100

1,000

Size

[MiB]

Fig. 2. Run times in (left) and memory consumption (right) of derived generators generating 2000
BSTs depending on the size of generated values

15 20 25
1

10

100

uniform
backtracking 10k
backtracking

15 20 25

10

100

1,000

Fig. 3. Run times (left) and memory consumption (right) of derived generators generating 2000
simply-typed lambda terms depending on the size of generated terms

backtracking, because of the inability of predicting whether a given local choice can
lead to a successful generation, and because typing constraints from two distant parts
of a term can cause conflict. Achieving satisfactory distribution and performance re-
quires careful tuning, and it is difficult to assess if any important values are severely
underrepresented [9].

On the other hand, obtaining a generator that is based on our framework requires
only the definitions from Fig. 1, and a relatively simple space definition, which we omit
here. The code for the type checker is standard and uses a type stored in each application
node (tx in Ap f x tx) to denote the type of the argument term for simplicity.

To evaluate the generators, we generated 2000 terms with a simple initial environ-
ment of 6 constants. The derived generator with three search strategies and one based
on generate-and-filter were used. Fig. 3 shows the results. The uniform search strategy
is capable of generating terms of size up to 23. For larger sizes, the generator exceeded
the resource limits (300 s and 4 GiB, marked w/ dotted lines). The generator that used

Generating Constrained Random Data with Uniform Distribution 29

Table 1. Performance of the reference hand-written term generator compared to a derived gener-
ator using backtracking with size 30. We compare the average number of terms that have to be
generated before a counterexample (ctr ex.) is found, and how much CPU time the generation and
testing consumes per found counterexample.

Generator Hand-written Derived (size 30)

Terms per ctr ex. (k) 18.6 52.5
Gen. CPU time per ctr ex. (min) 1.7 14.0
Test CPU time per ctr ex. (min) 1.8 10.4
Tot. CPU time per ctr ex. (min) 3.5 24.4

limited backtracking allowed generating terms up to size 28, using 9 times less CPU time
and over 11 times less memory than the uniform one at size 23. Unlimited backtracking
improved memory consumption dramatically, up to 30-fold, compared to limited back-
tracking. The run time is improved only slightly with unlimited backtracking. Finally,
the generator based on generate-and-filter exceeded the run times for all sizes, and is
not included in the plots.

4.3 Testing GHC

Discovering strictness bugs in the GHC optimising Haskell compiler was our prime
reason for generating random simply-typed lambda terms. To evaluate our approach,
we compared its bug finding power to a hand-written generator that had been developed
before [9] using the same test property that had been used there.

Random simply-typed lambda terms were used for testing GHC by first generating
type-correct Haskell modules containing the terms, and then using them as test data.
In this case, we generated modules containing expressions of type [Int]→ [Int] and
compiled them with two different optimisation levels. Then, we tested their observable
behaviour and compared them against each other, looking for discrepancies.

We implemented the generator using a similar data type as in Fig. 1 extended with
polymorphic constants and type constructors. For efficiency reasons we avoided having
types in term application constructors, and used a type checker based on type inference,
which is more complex but still easily implementable. It allows generators to scale up to
larger effective term sizes because not having types in the term representation increases
the density of well-typed terms.

A generator based on this data type was capable of generating terms containing 30
term constructors, and was able to trigger GHC failures. Table 1 shows the results of
testing GHC both with the hand-written simply-typed lambda term generator and our
derived generator. The hand-written generator used for comparison generated terms of
sizes from 0 to about 90, with most terms falling in the range of 20–50. It needed
the least total CPU time to find a counterexample, and the lowest number of generated
terms. The derived generator needs almost 7 times more CPU time per failure than the
hand-written one.

30 K. Claessen, J. Duregård, and M.H. Pałka

Table 2. Maximum practical sizes of values generated by derived program generators that use
unlimited backtracking and backtracking with cut-off of 10k

Predicates Backtracking Backtracking c/o

1, 2, 3, 4, 5 13 15
1, 3, 4, 5 13 30
1, 3, 5 31 30

The above results show that a generator derived from a predicate can be used to ef-
fectively find bugs in GHC. The derived generator is less effective than a hand-written
one, but is significantly easier to develop. Developing an efficient type-checking pred-
icate required for the derived generator took a few days, whereas the development and
tuning of the hand-written generator took an order of months.

4.4 Programs

The Program benchmark is meant to simulate testing of a simple compiler by generating
random programs, represented by the following data type.

type Name = String

data Program = New Name Program | Name :=Expr | Skip
| Program :>>Program | If Expr Program Program
| While Expr Program

data Expr = Var Name | Add Expr Expr

The programs contain some common imperative constructs and declarations of new
variables using New, which creates a new scope.

A compiler may perform a number of compilation passes, which would typically
transform the program into some kind of normal form that may be required by the
following pass. Our goal is to generate test data that satisfy the precondition in order to
test the code of each pass separately. We considered 5 predicates on the program data
type that model simple conditions that may be required by some compilation phases:
(1) boundProgram saying that the program is well-scoped, (2) usedProgram saying that
all bound variables are used, (3) noLocalDecls requiring all variables to be bound on the
top level, (4) noSkips forbidding the redundant use of :>> and Skip, and (5) noNestedIfs
forbidding nested if expressions.

Table 2 shows maximum value sizes that can be practically reached by the derived
generators for the program data type with different combinations of predicates. All runs
were generating 2000 random programs with resource limits (300 s and 4 GiB). When
all predicates were used, the generators performed poorly being able to reach at most
size 15. When the usedProgram predicate was omitted, the generator that uses limited
backtracking improved considerably, whereas the one using unlimited backtracking re-
mained at size 13. Removing the noSkips predicate turns the tables on the two genera-
tors improving the performance of the unlimited backtracking generator dramatically.

Generating Constrained Random Data with Uniform Distribution 31

A generator based on generate-and-filter was also benchmarked, but did not termi-
nate within the time limit for the sizes we tried.

4.5 Summary

All derived generators performed much better than ones based on generate-and-filter in
three out of four benchmarks. In the fourth one, testing GHC, using a generator based
on generate-and-filter was comparable to using our uniform or near-uniform derived
generators, and slower than a derived generator using backtracking. In that benchmark
the backtracking generator was the only that was able to find counterexamples, and yet
it was less effective than a hand-written generator. However, as creating the derived
generators was much quicker, we believe that they are still an attractive alternative to a
hand-written generator.

The time and space overhead of the derived generators appeared to rise exponentially,
or almost exponentially with the size of generated values in most cases we looked at,
similarly to what can be seen in Figures 2 and 3.

In most cases the backtracking generator provided the best performance,
which means that sometimes we may have to sacrifice our goal of having a predictable
distribution. However, we found the backtracking generator to be very sensitive to the
choice of the predicate. For example, some combinations of predicates in Section 4.4
destroyed its performance, while having less influence on the uniform and near-uniform
generators. We hypothesise that this behaviour may be caused by regions of search
space where the predicates evaluate values to a large extent before returning False. The
backtracking search remain in such regions for a long time, in contrast to the other
search that gives up and restarts after a number of values have been skipped.

Overall, the performance of the derived generators is practical for some applications,
but reaching higher sizes of generated data might be needed for effective bug finding. In
particular, being able to generate larger terms may improve the bug-finding performance
when testing for GHC strictness bugs.

5 Related Work

Feat. Our representation of spaces and efficient indexing is based on FEAT (Functional
Enumeration of Algebraic Types) [5]. The practicalities of computing cardinalities and
the deterministic indexing functions are described there. The inability to deal with com-
plex data type invariants is the major concern for FEAT, which is addressed by this paper.

Lazy SmallCheck and Korat. Lazy SmallCheck [10] uses laziness of predicates to
get faster progress in an exhaustive depth-limited search. Our goal was to reach larger,
potentially more useful values than Lazy SmallCheck by improving on it in two direc-
tions: using size instead of depth and allowing random search in sets that are too large to
search exhaustively. Korat is a framework for testing Java programs [2]. It uses similar
techniques to exhaustively generate size-bounded values that satisfy the precondition of
a method, and then automatically check the result of the method for those values against
a postcondition.

32 K. Claessen, J. Duregård, and M.H. Pałka

EasyCheck: Test Data For Free. EasyCheck is a library for generating random test
data written in the Curry functional logic programming language [3]. Its generators de-
fine search spaces, which are enumerated using diagonalisation and randomising local
choices. In this way values of larger sizes have a chance of appearing early in the enu-
meration, which is not the case when breadth-first search is used. The Curry language
supports narrowing, which can be used by EasyCheck to generate values that satisfy
a given predicate. The examples that are given in the paper suggest that, nonetheless,
micro-management of the search space is needed to get a reasonable distribution. The
authors point out that their enumeration technique has the problem of many very similar
values being enumerated in the same run.

Metaheuristic Search. In the GödelTest [6] system, so-called metaheuristic search
is used to find test cases that exhibit certain properties referred to as bias objectives.
The objectives are expressed as fitness metrics for the search such as the mean height
and width of trees, and requirements on several such metrics can be combined for a
single search. It may be possible to write a GödelTest generator by hand for well typed
lambda terms and then use bias objectives to tweak the distribution of values in a desired
direction, which could then be compared to our work.

Lazy Nondeterminism. There is some recent work on embedding non-determinism
in functional languages [7]. As a motivating example an isSorted predicate is used to
derive a sorting function, a process which is quite similar to generating sorted lists from
a predicate. The framework defined in [7] is very general and could potentially be used
both for implementing SmallCheck style enumeration and for random generation.

Generating Lambda Terms. There are several other attempts at enumerating or gen-
erating well typed lambda terms. One such attempt uses generic programming to ex-
haustively enumerate lambda terms by size [11]. The description focuses mainly on the
generic programming aspect, and the actual enumeration appears to be mainly proof of
concept with very little discussion of the performance of the algorithm. There has been
some work on counting lambda terms and generating them uniformly [8]. This includes
generating well typed terms by a simple generate-and-filter approach.

6 Discussion

Performance of Limiting Backtracking. The performance of our generators depends
on the strictness and evaluation order of the used predicate. The generator that performs
unlimited backtracking was especially sensitive to the choice of predicate, as shown
in Section 4.4. Similar effects have been observed in Korat [2], which also performs
backtracking.

We found that for most predicates unbounded backtracking is the fastest. But un-
expectedly, for some predicates imposing a bound on backtracking improves the run
time of the generator. This also makes the distribution more predictable, at the cost of
increased memory consumption. We found tweaking the degree of backtracking to be a

Generating Constrained Random Data with Uniform Distribution 33

useful tool for improving the performance of the generators, and possibly trading it for
distribution guarantees.

In-place Refinement. We experimented with a more efficient mechanism for observ-
ing the evaluation order of predicates, which avoids repeated evaluation of the predicate.
For that we use an indexing function that attaches a Haskell IO-action to each subcom-
ponent of the generated value. When the predicate is applied to the value, the IO-actions
will fire only for the parts that the property needs to inspect to determine the outcome.
Whenever the indexing function is required to make a choice, the corresponding IO-
action records the option it did not take, so after the predicate has finished executing
the refined search space can be reconstructed. Guiding the evaluation order is handled
automatically by the Haskell run time system, which has call-by-need built into it.

In-place refinement is somewhat more complicated than the procedure described in
Section 3. Also, defining parallel conjunction for this type of refinement is difficult,
because inspecting the result of a predicate irreversibly makes the choices required to
compute the result. For this reason our implementation of in-place refinement remains
a separate branch of development and a topic of future work.

Conclusion. Our method aims at preserving the simplicity of generate-and-filter type
generators, but supporting more realistic predicates that accept only a small fraction of
all values. This approach works well provided the predicates are lazy enough.

Our approach reduces the risk of having incorrect generators, as coming up with
a correct predicate is usually much easier than writing a correct dedicated generator.
Creating a predicate which leads to an efficient derived generator, on the other hand, is
more difficult.

Even though performance remains an issue when generating large test cases, experi-
mental results show that our approach is a viable option for generating test data in many
realistic cases.

Acknowledgements. This research has been supported by the Resource-Aware Func-
tional Programming (RAW FP) grant awarded by the Swedish Foundation for Strategic
Research.

References

[1] Arts, T., et al.: Testing Telecoms Software with Quviq QuickCheck. In: Proc. 2006 Erlang
Workshop, pp. 2–10. ACM (2006)

[2] Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated Testing Based on Java Predi-
cates. In: Proc. 2002 Inl. Symp. Software Testing and Analysis (ISSTA 2002), pp. 123–133.
ACM (2002)

[3] Christiansen, J., Fischer, S.: EasyCheck: test data for free. In: Garrigue, J., Hermenegildo,
M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 322–336. Springer, Heidelberg (2008)

[4] Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of Haskell
programs. In: ICFP 2000, pp. 268–279. ACM (2000)

34 K. Claessen, J. Duregård, and M.H. Pałka

[5] Duregard, J., Jansson, P., Wang, M.: FEAT: functional enumeration of algebraic types. In:
Proc. 2012 Symp. Haskell, pp. 61–72. ACM (2012)

[6] Feldt, R., Poulding, S.: Finding Test Data with Specific Properties viaMetaheuristic Search.
In: Proc. Intl. Symp. Software Reliability Engineering (ISSRE). IEEE (2013)

[7] Fischer, S., Kiselyov, O., Shan, C.C.: Purely functional lazy nondeterministic programming.
J. Funct. Program. 21(4-5), 413–465 (2011)

[8] Grygiel, K., Lescanne, P.: Counting and generating lambda terms. J. Funct. Program. 23,
594–628 (2013)

[9] Palka, M.H.: Testing an Optimising Compiler by Generating Random Lambda Terms. Li-
centiate Thesis. Chalmers University of Technology, Gothenburg, Sweden (2012)

[10] Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: automatic ex-
haustive testing for small values. In: Haskell 2008, pp. 37–48. ACM (2008)

[11] Rodriguez Yakushev, A., Jeuring, J.: Enumerating Well-Typed Terms Generically. In:
Schmid, U., Kitzelmann, E., Plasmeijer, R. (eds.) AAIP 2009. LNCS, vol. 5812, pp. 93–
116. Springer, Heidelberg (2010)

Guided Type Debugging

Sheng Chen and Martin Erwig

Oregon State University,
Corvallis, USA

{chensh,erwig}@eecs.oregonstate.edu

Abstract. We present guided type debugging as a new approach to quickly and
reliably remove type errors from functional programs. The method works by gen-
erating type-change suggestions that satisfy type specifications that are elicited
from programmers during the debugging process. A key innovation is the incor-
poration of target types into the type error debugging process. Whereas previous
approaches have aimed exclusively at the removal of type errors and disregarded
the resulting types, guided type debugging exploits user feedback about result
types to achieve better type-change suggestions. Our method can also identify
and remove errors in type annotations, which has been a problem for previous
approaches. To efficiently implement our approach, we systematically generate
all potential type changes and arrange them in a lattice structure that can be effi-
ciently traversed when guided by target types that are provided by programmers.

Keywords: Type debugging, type inference, error localization, type error mes-
sages, choice types, change suggestions.

1 Introduction

One beauty of the Hindley-Milner type system is the type inference mechanism that
computes principal types for expressions without any type annotation. However, when
type inference fails, it is often difficult to locate the origin of type errors and deliver
precise feedback to the programmer. Despite numerous efforts devoted to improve type
error diagnosis in past three decades [22,13,12,19,25], every proposed approach be-
haves poorly in certain situations.

A major problem for the localization and removal of type errors is the inherent am-
biguity in this problem. For example, the type error in the expression not 1 can be
fixed by either replacing the function or the argument. Without any additional infor-
mation it is not clear what the correct solution is. In such a situation type checkers that
produce suggestions for how to fix a type error have to fall back on some form of heuris-
tics [13,12,14,25,4] to select or rank their recommendations. These heuristics are often
based on some complexity measure for suggestions (for example, prefer simple changes
over complex ones), or they try to assess the likelihood of any particular suggestion. A
problem with most of these approaches is that while they may work reasonably well in
some cases, they can also go wrong and be misleading. This presents a problem since
lack of precision in tools leads to distrust by users. Moreover, for novices it can add to
confusion and frustration [12].

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 35–51, 2014.
c© Springer International Publishing Switzerland 2014

36 S. Chen and M. Erwig

rev [] = []
rev (x:xs) = rev xs ++ x

last xs = head (rev xs)
init = rev . tail . rev

rR xs = last xs : init xs

last :: [[a]]->a
(1) Is intended type an instance? (y/n) n

... interactions (2) through (8) omitted

(++) (rev xs) :: [b]->[b]
rev :: a->[b]
xs :: a
(9) Are intended types an instance? (y/n) y
Error located. Wrong expression:
(rev xs) ++ x

Fig. 1. An ill-typed program (left) together with an interaction session between a user and an
algorithmic debugging tool (right) [7]

As a partial solution to this problem programmers are advised to add type annotations
to their program.1 Type annotations can assist type checkers in producing better error
messages, and they also enhance the readability of programs.2

However, type annotations are not without problems. In particular, too much trust in
type annotations can have a negative impact on the precision of error localization. This
happens when type annotations themselves are erroneous. A type checker that assumes
that type annotations are always correct will not only miss the error in the annotation,
but will also produce wrong error messages and misleading suggestions.

Incorrect type annotations are not a fringe phenomenon. Precisely because type an-
notations represent a useful form of redundancy in programs, they are widely used, and
thus it may very well happen that, over time, they get out of sync with the rest of the
program. This can happen, for example, when an annotation is not updated after its
corresponding expression is changed or when another part of the program is changed
so that it relies on a more generic form of an expression than expressed by the annota-
tion. We have investigated a set of over 10,000 Haskell programs, which were written
by students learning Haskell [10]. Of those, 1505 contained type errors (the remaining
programs were well typed or contained parsing errors or unbound variables). We found
that over 20% of the ill-typed programs contained wrong type annotations. We will dis-
cuss the impact of incorrect type annotations on type error messages in Section 5 in
more depth.

We seem to face a dilemma now. To produce better feedback about type errors we
have to rely on some form of user input, and information about the intended type of ex-
pressions is extremely helpful for this. At the same time, type annotations are not always
reliable and sometimes even cause more problems. A solution is to elicit user input in
a systematic and targeted manner. Specifically, we should ask for type information at
the fewest number of possible places and where this information is most beneficial to
our type debugger. This strategy ensures the availability of the latest up-to-date type
information and avoids the potential problems with type annotations discussed earlier.

The idea of systematically eliciting user input for debugging (type) errors is not new
[7,20]. To illustrate our approach and compare it with these previous systems we present

1 http://en.wikibooks.org/wiki/Haskell/Type_basics#Type_signatures_in_code
2 Type annotations can also improve the performance of type checkers. They also help make

type inference decidable in richer type systems. A discussion of these aspects is beyond the
scope of this paper.

http://en.wikibooks.org/wiki/Haskell/Type_basics#Type_signatures_in_code

Guided Type Debugging 37

What is the expected type of rR?
[a] -> [a]

Potential fixes:
1 change x from type a to type [a].
2 change ++

from type [a] -> [a] -> [a]
to type [a] -> a -> [a]

There are no other one-change fixes.
Show two-change fixes? (y/n)

What is the expected type of rR?
[[a]] -> [a]

Potential fixes:
1 change rev (in tail. rev)

from type [[a]] -> [a] to type [a] -> [a]
2 change tail (in tail . rev)

from type [a] -> [a] to type [a] -> [[a]]
Show more one-change fixes? (y/n)

Fig. 2. Guided Type Debugging. The target type for rR is [a] -> [a] (left) and [[a]] -> [a]

(right). User inputs are shown in italics.

in Figure 1 an ill-typed program, taken from [7] (with some of the names changed). The
error is attributed to the expression rev xs ++ x, and x should be replaced by [x]. We
also show part of an interaction session between a user and the algorithmic debug-
ger [7]. (Of the omitted seven questions, five are similar to (1), asking questions about
variables, whereas two are similar to (9), asking questions about subexpressions and
the relationships between their types.) The general strategy of this method is to sys-
tematically inquire about the correctness of each subexpression once an expression has
been identified as ill typed (rR in the example). The first question is thus about the func-
tion last. If users respond “yes” to the question about a subexpression, then no more
questions about that subexpression will be asked. Otherwise, the algorithmic debugger
will switch the focus to that subexpression and ask questions about its subexpressions.
From the debugging session, we can observe the following.

– To find the source of an error, the debugger has to work through chains of function
calls and fragments of function definitions.

– The debugger interacts with users in typing jargon. Moreover, users have to track
and connect information when the same type variable appears at different places
(as, for example, the type variable a in the types for rev and xs).

– The length of a debugging trace depends on the distance between the origin of a
type error and where it manifests itself. This distance can be large.

– The type debugger works in a linear fashion, and it is unclear how to support cases
in which there is more than one type error.

– The final change suggestion delivered by the debugger still leaves some work for
users to figure out what exactly the cause of the type error is and how to fix it.

The interactive type debugger [20] follows the same strategy and thus suffers from
similar problems. We argue that even with the assistance of such debuggers, locating
and removing type errors is still a nontrivial and arduous task.

In contrast, the guided type debugging (GTD) approach developed in this paper asks
programmers to provide simple type signatures only. Moreover, most of the time, only
one signature is needed to lead to a suggestion for how to fix the type error. More
specifically, for a single expression, exactly one signature is needed. For a program
with multiple function definitions and expressions containing type errors, we have to
distinguish between several cases. First, if only one expression is ill typed, GTD solicits
a type annotation for that expression. In case there are more expressions that are ill
typed, GTD asks for a type annotation for the first ill-typed expression. In case the

38 S. Chen and M. Erwig

program still contains ill-typed expressions after the user has fixed the first one, GTD
again asks for a type annotation for the next ill-typed expression. This process repeats
until the whole program becomes well typed. Note that the expression for which GTD
requests a type annotation is not necessarily the cause of the type error, and GTD will
point to the most likely cause of the type error in the program.

Figure 2 shows two examples. Here the debugger first asks the programmer for the
intended type of the ill-typed expression rR. If the target type is [a] -> [a], the debug-
ger infers that there are exactly two potential suggestions with only one change to the
program. The first suggestions is to change x, whose inferred type is a, to something of
type [a]. The second suggestion is to change ++ of type [a] -> [a] -> [a] to some-
thing of type [a] -> a -> [a]. There are, of course, other changes that can lead the
expression rR to the target type, but each such suggestion requires changes in at least
two places. (The right half of Figure 2 shows the suggestions in case the target type is
[[a]] -> [a].)

With a user interface, we can envision a more flexible way of how GTD may be
used. First, GTD type checks the program and marks all expressions that are ill typed.
The user can go to any expression and specify the intended result type. GTD will then
suggest a most likely change that satisfies the user’s intention. Note that the user may
even specify an intended type for a well-typed expression. For example, if the user
specifies [[a]] -> [[a]] as an expected type for foldr (:) [], which is well typed,
GTD will suggest to change (:) of type a -> [a] -> [a] to something of type [a] ->

[a] -> [a].
In summary, GTD will ask programmers significantly fewer questions than algo-

rithmic type debugging. GDT will then work out the details and show exact change
locations and suggestions. Moreover, GTD supports changes involving multiple loca-
tions.

To work as indicated, the GTD method has to find all potential changes that can
in principle fix a particular type error. Moreover, it must be able to select among all
changes those that satisfy the user-provided intended types of expressions. At the same
time, all these tasks have to be done efficiently.

We employ counter-factual typing [4] (CF typing for short) to realize the first task.
CF typing computes all potential type changes for fixing type errors by typing expres-
sions once. For each change, it returns the information about change locations, the ex-
pected type for each location, and the result type of applying the change. We describe
the concept of variational types as the underlying representation in Section 2 and the
method of CF typing in Section 3.

To implement the second task efficiently, we exploit the instance-of relationship
among result types of change suggestions. Specifically, we can arrange all changes in
a lattice because changes involving more locations always produce more general result
types than changes involving fewer locations. Given a user-provided target type, we can
search through this lattice efficiently and narrow down the set of changes to a manage-
able size. We describe the idea of type-change lattices and how they can help to find
good type-change suggestions in Section 4.

The question of how GTD can deal with erroneous type annotations is discussed in
Section 5. Section 6 discusses related work, and Section 7 concludes the paper.

Guided Type Debugging 39

2 Representing Type Errors by Variational Types

A type error results when the rules of a type system require an expression to have two
conflicting (that is, non-unifiable) types. This happens, for example, when a function
is applied to an argument of the wrong type or when branches of a conditional have
different types. One of the simplest examples of a type error is a conflicting type an-
notation, as in the expression e = 3::Bool. Now the problem for a type checker is to
decide whether to consider the annotation or the type of the value to be correct. With-
out any further information this is impossible to know. Therefore, we should defer this
decision until more context information is available that indicates which one of the two
is more compatible with the context.

To represent conflicting type for expressions we employ the concept of choice
types [6]. A choice type D〈φ1,φ2〉 has a dimension D and contains two alternative types
φ1 and φ2. For example, we can express the uncertainty about the type of the expression
e with the choice type D〈Int,Bool〉. Choice types may be combined with other type
constructors to build variational types, in which choices may be nested within type
expressions, as in D〈Int,Bool〉 → Int.

We can eliminate choices using a selection operation, which is written as �φ�s. Here
φ is a variational type, and s is a selector, which is of form D.1 or D.2. Selection re-
places all occurrences of D〈φ1,φ2〉 with its ith alternative. Choice types with different
dimensions are independent of one another and require separate selections to be elimi-
nated, whereas those with the same dimension are synchronized and are eliminated by
the same selection. For example, A〈Int,Bool〉 → A〈Bool,Int〉 encodes two function
types, but A〈Int,Bool〉 → B〈Bool,Int〉 encodes four function types. We use δ to range
over decisions, which are sets of selectors (usually represented as lists). The selection
operation extends naturally to decisions through �φ�s:δ = ��φ�s�δ. In this paper, when
we select δ from a type φ, we assume that selection eliminates all choices in φ.

The idea of CF typing is to systematically generate all changes (for variables and
constants) that could fix a type inconsistency. Each such change is represented as a
choice between the current and the new type. In the example, the choice type A〈Int,α1〉
is created for 3.3 The first alternative denotes the current type of 3, and the second
alternative denotes a type that can make 3 well typed within its context. We can think of
the first alternative as the type 3 should have when it is not the cause of type errors and
the second alternative as the type 3 ought to have when it is. Similarly, the annotation
Bool may also be the cause of the type error. We thus create the choice type B〈Bool,α2〉,
which says that if the type annotation is correct, it has the type Bool, otherwise it has
the type α2, an arbitrary type that makes the context well typed.

But what should be the type of e? Usually, when we have two sources of type infor-
mation for one expression, we unify the two types. Thus we would expect the unification
result of A〈Int,α1〉 and B〈Bool,α2〉 to be the result type of e. However, the two choice
types are not unifiable because Bool and Int fail to unify. (This is not surprising since
the expression contains a type error.)

3 One might wonder why a type variable is chosen and not just the type Bool. The reason is that
when we are typing 3, we have no knowledge about its context yet. We thus use α1 to allow it
to acquire any type that its context dictates.

40 S. Chen and M. Erwig

We address this problem through the introduction of error types [5], written as ⊥, to
represent non-unifiable parts of choice types. Specifically, we have developed a unifi-
cation algorithm that computes a substitution for two variational types that is (a) most
general and (b) introduces as few error types as possible. Because of the possibility of
error types we call such substitutions partial unifiers. For the two types A〈Int,α1〉 and
B〈Bool,α2〉, the algorithm computes the following partial unifier.

θ = {α1 �→ A〈α4,B〈Bool,α3〉〉,α2 �→ B〈α5,A〈Int,α3〉〉}

The algorithm also computes a typing pattern that captures the choice structure of the
result type and represents, using error types, those variants that would lead to a type
error. In our example, the typing pattern is π= A〈B〈⊥,�〉,�〉. It indicates that the types
at [A.1,B.1] fail to unify (⊥) and all other variants unify successfully (�). The typing
pattern is used to mask the result type that can be obtained from the partial unifier. From
θ and π we obtain the type φ = A〈B〈⊥,Int〉,B〈Bool,α3〉〉 for e. Finally, from θ and φ
we can derive following changes to potentially eliminate the type error in e.

– If we don’t change e, that is, if we select [A.1,B.1] from φ, there is a type error.
– If we change 3 but don’t change the annotation Bool, that is, if we select δ =
[A.2,B.1] from φ, we get the type Bool. Moreover, by selecting δ from θ(α1), we
get Bool, which is the type that 3 should to be changed to.

– If we change the annotation Bool but don’t change 3, that is, if we select δ =
[A.1,B.2] from φ, we get the result type Int. Moreover, by selecting δ from θ(α2)
we get Int as the type the annotation Bool ought to be changed to.

– If we change both 3 and Bool, that is, if we select [A.2,B.2] from φ, we get a more
general type α3. This means that e can be changed to some arbitrary value of any
type. Note that α3 will be very likely refined to a more concrete type if e occurs as
a subexpression within some other context.

3 Counter-Factual Typing

In this section we describe the CF typing method [4], extended to handle type annota-
tions. We work with the following syntax for expressions and types.

Expressions e, f ::= c | x | λx.e | e e | let x = e in e | e::τ
Monotypes τ ::= γ | α | τ→ τ
Variational types φ ::= τ | ⊥ | D〈φ,φ〉 | φ→ φ
Type schemas σ ::= φ | ∀α.φ
Choice environments Δ ::= ∅ | Δ,(l,D〈φ,φ〉)

We use c, γ, and α to range over value constants, type constants, and type variables,
respectively. We have seen error types ⊥ and choice types D〈φ,φ〉 in Section 2. To
simplify the discussion, we assume that type annotations are monotypes. However, this
will not limit the expressiveness of the type system. We use η to denote substitutions
mapping from type variables to variational types. We use the special symbol θ to denote
substitutions that are partial unifiers. We use Γ to store the type assumptions about
variables and treat Γ as a stack.

Guided Type Debugging 41

CON
c is of type γ D fresh

Γ � c : D〈γ,φ〉|{(�(c),D〈γ,φ〉)}

VAR

Γ(x) = ∀α.φ1 D fresh φ = {α �→ φ′}(φ1)

Γ � x : D〈φ,φ2〉|{(�(x),D〈φ,φ2〉)}

UNBOUND
x /∈ dom(Γ) D fresh

Γ � x : D〈⊥,φ〉|{(�(x),D〈⊥,φ〉)}

ANT
Γ � e : φ1|Δ D fresh φ2 = D〈τ,φ′〉

π1 = φ1 �� φ2 φ3 = π1 �φ1

Γ � (e::τ) : φ3|Δ∪{(�(τ),φ2)}

ABS
Γ,x �→ φ � e : φ′|Δ
Γ � λx.e : φ→ φ′|Δ

LET
Γ,x �→ φ � e : φ|Δ

α = FV(φ)−FV(Γ) Γ,x �→ ∀α.φ � e′ : φ′|Δ′

Γ � let x = e in e′ : φ′|Δ∪Δ′

APP
Γ � e1 : φ1|Δ1 Γ � e2 : φ2|Δ2 φ′2 → φ′ = ↑(φ1) π = φ′2 �� φ2 φ = π�φ′

Γ � e1 e2 : φ|Δ1∪Δ2

Fig. 3. Rules for counter-factual typing

We use FV to denote free type variables in types, type schemas, and typing environ-
ments. The application of a substitution to a type schema, written as η(σ), replaces free
type variables in σ with the bindings in η. For presentation purposes, we assume we can
determine the location of any given f in e with the function �e(f); the exact definition
doesn’t matter here. We may drop the subscript e when the context is clear.

We show the typing rules in Figure 3. The typing relation Γ � e : φ|Δ expresses that
under the assumptions in Γ the expression e has the result type φ. All choice types that
were generated during the typing process are stored (together with their locations) in Δ.
Note that, due to the presence of choice types, the result type φ represents a whole set
of possible result types that may be obtained by changing the types of certain parts of
the expression. The information about what change leads to what type can be recovered
from φ and Δ. For example, in the case of 3::Bool we obtain the typing

∅ � (3::Bool) : A〈B〈⊥,Int〉,B〈Bool,α3〉〉|Δ
where Δ = {�(3) �→ A〈Int,B〈Bool,α3〉〉, �(Bool) �→ B〈Bool,A〈Int,α3〉〉}

We create choices in rules CON, VAR, UNBOUND, and ANT. The first alternative of each
choice contains the type under normal typing, and the second alternative contains any
type to enable a change that is as general as the context allows. In rules ABS, LET, and
APP, we collect generated choices from the typing of its subexpressions.

Most of the typing rules are self-explanatory. As one example let us consider the
typing rule ANT for type annotations in more detail since it is new and introduces two
operations that are crucial for typing applications. To type an expression e::τ we have
to reconcile the inferred type φ1 and the choice type φ2 created for the annotation τ into
one result type for e, which is achieved by using a common type φ3. For the variants

42 S. Chen and M. Erwig

where φ1 and φ2 agree, φ3 has the same type as φ1. For other variants, φ3 contains the
error types ⊥s. We use operations �� and � to realize this process.

The operation �� computes how well two types match each other. We use typing
patterns introduced in Section 2 to formalize this notion.

φ �� φ = �
⊥ �� φ = ⊥
φ �� ⊥ = ⊥
φ �� φ′ = ⊥

D〈φ1,φ2〉 �� D〈φ3,φ4〉 = D〈φ1 �� φ3,φ2 �� φ4〉
D〈φ1,φ2〉 �� φ = D〈φ1 �� φ,φ2 �� φ〉
φ �� D〈φ1,φ2〉 = D〈φ1 �� φ,φ2 �� φ〉

φ1 → φ2 �� φ′1 → φ′2 = (φ1 �� φ′1)⊗ (φ2 �� φ′2)

Note that the definition contains overlapping cases and assumes that more specific cases
are applied before more general ones. The matching of two plain types either succeeds
with � or fails with ⊥, depending on whether they have the same syntactic represen-
tation. Matching two choice types with the same choice name reduces to a matching
of corresponding alternatives. Matching a type with some choice type reduces to the
matching of that type with both alternatives in the choice type.

The matching of two arrow types is more involved. For a variant to be matched suc-
cessfully, both the corresponding argument types and result types of that variant have to
be matched successfully. The ⊗ operation captures this idea. The definition can be in-
terpreted as defining a logical “and” operation by viewing� as “true” and⊥ as “false”.
For example, when computing Int→A〈Bool,Int〉 �� B〈Int,⊥〉→ Bool, we first obtain
B〈�,⊥〉 and A〈�,⊥〉 for matching the argument and return types, respectively. Next,
we use⊗ to derive the final result as A〈B〈�,⊥〉,⊥〉. From the result, we know that only
matching the first alternative of A and first alternative of B will succeed.

�⊗π = π ⊥⊗π =⊥ D〈φ1,φ2〉⊗π = D〈φ1⊗π,φ2⊗π〉

The masking operation π�φ replaces all occurrences of � in π with φ and leaves all
occurrences of ⊥ unchanged. It is defined as follows [5].

⊥�φ =⊥ ��φ = φ D〈π1,π2〉�φ = D〈π1 �φ,π2 �φ〉

To type function applications in APP, we need a further operation ↑(φ) to turn φ into
an arrow type when possible and introduce error types when necessary. We need this
operation because the type of an expression may be a choice between two function
types, in which case we have to factor arrows out of choices. For example, given
(succ,Int → Int) ∈ Γ, we can derive Γ � succ : φ|Δ with φ = D〈Int → Int,Int →
Bool〉 and Δ = {(�(succ),φ)}. Thus, we have to turn φ into D〈Int,Int〉→D〈Int,Bool〉
if we apply succ to some argument.

We can observe that the rules CON, VAR, UNBOUND, and ANT introduce arbitrary
types in the second alternative of result types. Thus, given e and Γ we have an infinite
number of typings for e.

The following theorem expresses that there is a best typing (in the sense that it pro-
duces most general types with the fewest number of type errors) and that this is the only
typing we need to care about. To compare the relation between different typings, we
assume the same location at different typings generate the same fresh choice, and we
write φ1 � φ2 if there is some η such that η(φ1) = φ2.

Guided Type Debugging 43

Theorem 1 (Most general and most defined typing). Given e and Γ, there is a unique
best typing Γ � e : φ1|Δ1 such that for any other typing Γ � e : φ2|Δ2, ∀δ : (�φ1�δ =⊥⇒
�φ2�δ =⊥)∨�φ1�δ � �φ2�δ.

In [4] we have presented a type inference algorithm that is sound, complete, and com-
putes the most general result type (that is, at least as general as the result type of the
best typing).

4 Climbing the Type-Change Lattice

The idea of guided type debugging is to narrow down the number of suggestions for
how to remove a type error based on targeted user input. More specifically, given an
ill-typed expression e for which CF typing has produced the variational type φ and the
location information about changes Δ, we elicit from the programmer a target type τ
and then want to identify the changes from φ and Δ that cause e to have type τ.

However, if the inference process produces a set of n choices with dimensions D ,
which means that n potential changes have been identified, it seems that we have to
check all 2n combinations to find the right combination of changes that has the desired
property. Fortunately, the structure of φ reveals some properties that we can exploit to
significantly reduce the complexity of this process.

First, some of the created choices may not be needed at all. As the rules in Figure 3
show, the second alternative of created choice types can be any type. In many cases the
best typing requires the second alternative to be identical to the first alternative, which
means that no change is required. For example, when typing the expression succ 1 +

True, the choice created for 1 is always B〈Int,Int〉. Thus, we can remove choice B.
However, even after removing such non-relevant choices, the search space can still

be exponential in the number of remaining choices. We can address this problem by
searching, in a systematic way, only through some of the changes. To do this, we con-
ceptually arrange all sets of changes in a type-change lattice (TCL). Note that we don’t
ever actually construct this lattice; it is a conceptual entity that helps to explain the al-
gorithm for identifying type-change suggestions guided by a user-provided target type.

Each node in the lattice is identified by a subset of dimensions C ⊆D that indicates
which changes to apply, and each C determines a decision δC , defined as follows.

δC = {D.2 | D ∈ C}∪{D.1 | D ∈D−C}

With δC we can determine the result type for e by �φ�δC for the case when the changes
indicated by C are to be applied. Usually, we attach �φ�δC to the node C in TCLs.

A TCL comprises n+1 levels, where level k contains an entry for each combination
of k individual changes. The bottom of this lattice (level 0) consists of a single node ∅,
which produces the result type �φ�δ∅ = ⊥. Level 1 consists of n entries, one for each
single change D∈D. The next level consists of all two-element subsets of D , and so on
The top-most level has one entry D , which represents the decision to apply all changes.
We show three example TCLs in Figure 4.

44 S. Chen and M. Erwig

Fig. 4. Type-change lattices for the expressions 3::Bool (left), id (3::Bool) (middle), and rR

(right). The function id is assumed to have the type α1 → α1, which could be a cause of the type
error and thus a choice type is created for id. For the second example, the dimensions A, B, and C
represent the changes for id, 3, and Bool, respectively. For the rR example, B and C are created
for locations x and (++), respectively.

To find a change suggestion we traverse the TCL in a breadth-first manner from the
bottom up.4 For each entry C under consideration we check whether the type produced
by it covers the target type as a generic instance, that is, �φ�δC � τ. Once we have found
such an entry, we can present the programmer with a corresponding suggestion. In case
there are several suggestions with k changes that satisfy the condition, we employ the
heuristics developed in CF typing [4] to order them and present them to programmers
in this order. If the programmer selects a suggested change, we’re done. Otherwise, we
continue the search by including the next level in the lattice and offer suggestions with
one more change.

We illustrate how the algorithm works with the two earlier examples e = 3::Bool

and rR (recall Figures 1 and 2). The TCLs are shown in Figure 4. Expression e is trivial
since the algorithm will ask the user for the type of this expression and correspondingly
suggest to either change the value or the annotation. To make this example more inter-
esting, consider the slightly more general expression id (3::Bool). For this expression,
CF typing produces the following result, and the TCL is in the middle of Figure 4.

φ = A〈B〈C〈⊥,Int〉,C〈Bool,α1〉〉,B〈C〈⊥,α2〉,α2〉〉
Δ = {(�(id),A〈α1 → α1,B〈Int→ α2,C〈Bool→ α2,α3 → α2〉〉〉)

(�(3),B〈Int,C〈Bool,A〈α1,α3〉〉〉)
(�(Bool),C〈Bool,B〈Int,A〈α1,α3〉〉〉)}

Suppose the user-provided target type is Bool. The first of the changes on level 1
({A},⊥) will be dismissed since the application of change A cannot remove the type
error. Since the result type of the next entry ({B},Bool) matches exactly the target type,
this change will be suggested. We will look at the third entry as well, but it is dismissed
since the target type Bool is not an instance of the result type Int for that entry. Thus,
we will present the suggestion of change B (that is, location �(3)) to the programmer.
From Δ we infer that the place should be changed to something of type Bool. Thus, the
generated suggestion is to change 3 from type Int to type Bool.

4 Again, the algorithm for finding change suggestions constructs part of this lattice on the fly as
needed. The lattice is not represented explicitly.

Guided Type Debugging 45

If this suggestion is accepted, the debugger terminates. If, however, the programmer
asks for more suggestions, we check change suggestions in two steps. First, we remove
all the nodes in the lattice that are above the node that produced the previous suggestion.
In this example, we remove all the nodes in the lattice above {B} because the program-
mer doesn’t want to apply any change that includes the B change, yielding a smaller
lattice with only four nodes. Then we continue the search on the higher level. In this
case the only node that remains on the second level is ({A,C},α2). To get the result
Bool, we derive the substitution η = {α2 �→ Bool}. By selecting [A.2,B.1,C.2] from the
variational type Δ(�(id)), we derive that id should be changed from type α1 → α1 to
something of type η(Int→ α2), which is Int→ Bool. By making the same selection
[A.2,B.1,C.2] from Δ(�(Bool)), we derive that Bool should be changed to Int.

For the example rR we apply the same strategy. If the programmer provides the target
type [a] -> [a], only two of the 13 entries on level 1 qualify since their result types
can be instantiated to the target type.

Despite the exponential size that TCLs can have in the worst-case and the corre-
sponding worst-case time complexity to explore TCLs exhaustively, GTD search turns
out to be very efficient in almost all cases for the following reasons.

– The change suggestions to be presented first will be encountered and found first
during the search process.

– If a presented suggestion is rejected by the programmer, the lattice can be trimmed
down by removing all the nodes higher in the lattice that are reachable from the
node representing the rejected suggestion.

– The lattice narrows quickly toward the top since after a few layers the result types
tend to become free type variables, which can be unified with the user-provided
target type successfully, ending the search.

The first point is substantiated by following theorem, which states that generality of
result types increases with the number of changes. We want to find suggestions that
consist of as few as possible changes and whose result type is closest to the target
type. This theorem ensures that when we traverse a TCL from the bottom up, we will
encounter changes that have fewest locations first.

Theorem 2 (More change locations lead to more general types). Given the best typ-
ing Γ � e : φ|Δ, if C1 ⊆ C2, then �φ�δC2

� �φ�δC1
.

Proof. The proof is shown in Appendix A.

Guided type debugging can improve the precision of suggesting type changes for ill-
typed programs at a low cost. We have tested the method and compared it with CF
typing on 86 programs, which were collected from 22 publications (see [4] for details).
Since many programs we collected were written in ML [9] and in OCaml [14], we
have translated them into the programs written in the calculus presented in the paper
plus operations stored in the initial type environment. The following table shows the
percentage of the programs a correct change suggestion could be provided for after n
attempts. In all cases in which GTD helped to remove the type error, only one target
type had to be supplied.

46 S. Chen and M. Erwig

Method No. of Attempts
1 2 3 ≥ 4 never

CF Typing 67% 80% 88% 92% 8%
GTD 83% 90% 92% 92% 8%

With GTD we can now find the correct suggestions with the first attempt in 83% of the
cases. We can fix 90% of the cases with at most two attempts. At the same time GTD
adds never more than 0.5 seconds to the computing time.

5 Reporting Type Errors in Type Annotations

We use following example, which was written by a student learning Haskell [10], to
compare the behaviors of different tools on reporting type errors in type annotations.
We copied the code literally except for removing the type definition of Table, which
is [[String]] and the definition of the function collength, whose type is Table->Int.
Both are irrelevant to the type error.

buildcol :: Table->[String]

buildcol [] = [""]

buildcol (x:xs) = [" " ++ (replicate n ’-’)," " ++ (spaceout n (head x))]

where n = collength (x:xs)

spaceout :: String->String

spaceout n str = str ++ replicate (n-(length str)) ’ ’

The type annotation of spaceout contains one argument, but the function definition
has two arguments. Based on the same student’s follow-up programs we know that the
annotation is incorrect. Note that this is also the only type error in the program because
removal of the type annotation of spaceout restores type correctness of the program.

For this program, the Glasgow Haskell Compiler (GHC) 7.6.3 reports the following
four type errors. The first two point to the use of spaceout in buildcol, and the other
two point to the definition of spaceout.

– The first blames that spaceout is applied to two arguments while it takes only one.
– The second complains that the first argument type of spaceout should be String,

but something of Int is given.
– The third reports that the definition of spaceout has two arguments while its type

has only one.
– The fourth complains that n is of type String, but it should have type Int because

it is used as the first argument to the operation -.

GHC reports these errors because it always trusts type annotations, and it pushes down
type information from type annotations to expressions. In the definition spaceout,
the parameters n and str both get the type String. When type annotation is correct,
this scheme makes type checking more efficient and helps make type inference decid-
able [18]. However, when type annotation is incorrect, this leads to poor error messages.

Guided Type Debugging 47

Helium5, a research tool with high quality error messages developed to assist stu-
dents in learning Haskell, reports two type errors. The first reported error is similar to
GHC’s first error message. Moreover, Helium suggests to remove the first argument.
Helium’s second error message is almost the same as GHC’s third message, blaming
the definition of spaceout, but not the annotation. Type annotations were not supported
in CF typing [4].

In contrast to previous tools, our guided type debugger is the first approach that can
find errors in type annotations. In this example it directly suggests to change the type
annotation String -> String to Int -> String -> String, which fixes all type errors
in the program.

6 Related Work

The challenge of accurately reporting type errors and producing helpful error messages
has received considerable attention in the research community. Improvements for type
inference algorithms have been proposed that are based on changing the order of uni-
fication, suggesting program fixes, interactive debugging, and using program slicing
techniques to find all program locations involved in type errors. We will focus our
discussion on debugging and change-suggesting approaches. Since this problem has
been extensively studied, summaries of the work in this area are also available else-
where [12,23,24,15,4].

The idea of debugging type errors was first proposed by Bernstein and Stark [2].
Their work was based on the observation that type inference is able to infer types for
unbound variables, which allows programmers to replace suspicious program fragments
with unbound variables. If a replacement leads to a type correct program, the type er-
rors have been located. The original work requires programmers to manually locate
suspicious fragments and replace them with unbound variables. Braßel [3] has later
automated this process.

By employing the idea of algorithmic debugging developed in debugging Prolog
errors, Chitil [7] proposed an approach for debugging type errors. Chitil developed
principal typing, where type inference is fully compositional by inferring also type as-
sumptions, for building explanation graphs. Each node is a combination of the typings
of its children. The idea of algorithmic debugging is to navigate through the graphs and
ask questions about the correctness of each node. Each question is of form “Is the in-
tended type of a specific function an instance of the type inferred?”, and programmers
will respond “yes” or “no”. In Chameleon, Stuckey at al. [20,21] presented a debugging
approach that is similar to algorithmic debugging. Chameleon also allows programmers
to ask why an expression has a certain type. There are other tools that don’t allow user
inputs but allow programmers to navigate through the programs and view their types,
such as Typeview [8] and the Haskell Type Browser [17].

While previous debugging approaches are operational in the sense that programmers
have to be involved in the details of the debugging process, our approach is more declar-
ative in the sense programmers only have to specify the intended result type. Moreover,
we provide more precise change suggestions, such as the change location and the types

5 http://www.cs.uu.nl/wiki/bin/view/Helium/WebHome

http://www.cs.uu.nl/wiki/bin/view/Helium/WebHome

48 S. Chen and M. Erwig

expressions should be changed to. Moreover, in some cases we can be even more spe-
cific and suggest specific program edit actions, such as swapping function arguments
(see [4] for some examples). In contrast, previous approaches can only locate a pro-
gram fragment or a set of possible places as the cause of type errors, and thus often
leave much work for programmers after the debugging is finished.

Researchers have paid considerable attention to the problem of making change sug-
gestions when type inference fails. For such methods to work, however, the most likely
error location has to be determined. Since there is seldom enough information to make
this decision, approaches have resorted to various kinds of heuristics. For example, in
the earliest work along this line, Johnson and Walz [13] used a heuristic of “usage vot-
ing”, that is, when a variable has to be unified with many different types, the variable is
chosen to have the type that is unified most often. Locations that require that variable
to have a different type are then reported as problematic.

Seminal [14] uses the difference between the original (ill-typed) program and the
changed (well-typed) programs as a heuristic. Top [12] uses more sophisticated heuris-
tics [11], such as a participation-ratio heuristic, a trust-factor heuristic, and others. CF
typing [4] uses heuristics, such as preferring expression changes to other places, fa-
voring changes at lower places in the tree representations, and preferring simpler type
changes over more complex ones. The most recent work by Zhang and Myers [25]
employs Bayesian principles to locate type errors, but they don’t make suggestions.

While previous approaches involve programmers only in a very limited way and
allow them to accept or reject a suggestion, guided type debugging gives programmers
the opportunity to provide more meaningful input and explicitly specify some of their
goals. This is not complicating matters much since it requires only the formulation of
type annotations. On the other hand, the input can be effectively exploited to shorten
the debugging process considerably. The strategy of steering the derivation of changes
by target types elicited from users is inspired by a technique to guide the debugging of
spreadsheets by user-provided target values [1].

The idea of choice types seems to be similar to the concept of discriminative sum
types [16,17], in which two types are combined into a sum type when an attempt to unify
them fails. However, there are several important differences. Choice types are named
and thus provide more fine-grained control over the grouping of types, unification, and
unification failures. Sum types are always unified component-wise, whereas we do this
only for choice types under the same dimension. For choice types with different dimen-
sions, each alternative of a choice type is unified with all alternatives of the other choice
type. Other differences between guided type debugging and the error-locating method
developed in [16] are as follows. First, their method extracts all locations involved in
type errors and is thus essentially a type-error slicing approach, whereas our method
always blames the most likely error location. Second, guided type debugging provides
change suggestions in all cases, whereas their method, like all error-slicing approaches,
does not. Finally, error locations reported by their method may contain program frag-
ments that have nothing to do with type errors. For example, a variable used for passing
type information will be reported as a source of type errors only if it is unified once with
some sum types during the type inference process. In our method, on the other hand,
only locations that contribute to type errors are reported.

Guided Type Debugging 49

An additional contribution of guided type debugging is a better treatment of type
annotations. We have investigated the reliability of type annotations and studied the
problem of locating type errors in annotations, a problem that hasn’t received much
attention from the research community so far.

7 Conclusions

We have developed guided type debugging as an approach to produce better change sug-
gestions faster in response to type errors in functional programs. Our approach differs
from previous tools by incorporating programmer intentions more directly by asking
targeted questions about types. This strategy is efficient and can effectively increase the
precision of type-change suggestions. A further contribution our method is the effective
identification and removal of inconsistent type annotations.

In future work, we plan to investigate the possibility of minimizing programmer
input by exploiting the information about the evolution of programs. For example, the
knowledge about which part of the program was changed last may in many cases allow
the automatic derivation of the target types. Another question we will investigate is how
to locate type errors in type annotations when omitting them will lead to undecidable
type inference.

Acknowledgements. We thank Jurriaan Hage for sharing his collection of student
Haskell programs with us. This work is supported by the the National Science Founda-
tion under the grants CCF-1219165 and IIS-1314384.

References

1. Abraham, R., Erwig, M.: GoalDebug: A Spreadsheet Debugger for End Users. In: 29th IEEE
Int. Conf. on Software Engineering, pp. 251–260 (2007)

2. Bernstein, K.L., Stark, E.W.: Debugging type errors. Technical report, State University of
New York at Stony Brook (1995)

3. Braßel, B.: Typehope: There is hope for your type errors. In: Int. Workshop on Implementa-
tion of Functional Languages (2004)

4. Chen, S., Erwig, M.: Counter-Factual Typing for Debugging Type Errors. In: ACM Symp.
on Principles of Programming Languages, pp. 583–594 (2014)

5. Chen, S., Erwig, M., Walkingshaw, E.: An Error-Tolerant Type System for Variational
Lambda Calculus. In: ACM Int. Conf. on Functional Programming, pp. 29–40 (2012)

6. Chen, S., Erwig, M., Walkingshaw, E.: Extending Type Inference to Variational Programs.
ACM Trans. on Programming Languages and Systems 36(1), 1–54 (2014)

7. Chitil, O.: Compositional explanation of types and algorithmic debugging of type errors. In:
ACM Int. Conf. on Functional Programming, pp. 193–204 (September 2001)

8. Chitil, O., Huch, F., Simon, A.: Typeview: A tool for understanding type errors. In: Interna-
tional Workshop on Implementation of Functional Languages, pp. 63–69 (2000)

9. Haack, C., Wells, J.B.: Type error slicing in implicitly typed higher-order languages. In:
Degano, P. (ed.) ESOP 2003. LNCS, vol. 2618, pp. 284–301. Springer, Heidelberg (2003)

10. Hage, J.: Helium benchmark programs. Private Communication (2002-2005)

50 S. Chen and M. Erwig

11. Hage, J., Heeren, B.: Heuristics for type error discovery and recovery. In: Horváth, Z., Zsók,
V., Butterfield, A. (eds.) IFL 2006. LNCS, vol. 4449, pp. 199–216. Springer, Heidelberg
(2007)

12. Heeren, B.J.: Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The
Netherlands (September 2005)

13. Johnson, G.F., Walz, J.A.: A maximum-flow approach to anomaly isolation in unification-
based incremental type inference. In: ACM Symp. on Principles of Programming Languages,
pp. 44–57 (1986)

14. Lerner, B., Flower, M., Grossman, D., Chambers, C.: Searching for type-error messages. In:
ACM Int. Conf. on Programming Language Design and Implementation, pp. 425–434 (2007)

15. McAdam, B.J.: Repairing type errors in functional programs. PhD thesis, University of Ed-
inburgh. College of Science and Engineering. School of Informatics (2002)

16. Neubauer, M., Thiemann, P.: Discriminative sum types locate the source of type errors. In:
ACM Int. Conf. on Functional Programming, pp. 15–26 (2003)

17. Neubauer, M., Thiemann, P.: Haskell type browser. In: ACM SIGPLAN Workshop on
Haskell, pp. 92–93 (2004)

18. Odersky, M., Läufer, K.: Putting type annotations to work. In: ACM Symp. on Principles of
Programming Languages, pp. 54–67 (1996)

19. Schilling, T.: Constraint-free type error slicing. In: Peña, R., Page, R. (eds.) TFP 2011. LNCS,
vol. 7193, pp. 1–16. Springer, Heidelberg (2012)

20. Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive Type Debugging in Haskell. In: ACM
SIGPLAN Workshop on Haskell, pp. 72–83 (2003)

21. Stuckey, P.J., Sulzmann, M., Wazny, J.: Improving type error diagnosis. In: ACM SIGPLAN
Workshop on Haskell, pp. 80–91 (2004)

22. Wand, M.: Finding the source of type errors. In: ACM Symp. on Principles of Programming
Languages, pp. 38–43 (1986)

23. Wazny, J.R.: Type inference and type error diagnosis for Hindley/Milner with extensions.
PhD thesis, The University of Melbourne (January 2006)

24. Yang, J., Michaelson, G., Trinder, P., Wells, J.B.: Improved type error reporting. In: Int.
Workshop on Implementation of Functional Languages, pp. 71–86 (2000)

25. Zhang, D., Myers, A.C.: Toward General Diagnosis of Static Errors. In: ACM Symp. on
Principles of Programming Languages, pp. 569–581 (2014)

A Proof of Theorem 2

To prove the theorem, we need a relation between the application of a change and
the corresponding result type. This idea is formally captured in the typing relation in
Figure 5. Note that we omit the rules for abstractions and let expressions because they
can be obtained by simply adding χ to the left of turnstile, as we did for the rule for
applications.

The rule system defines the judgment Γ;χ � e : τ, where χ is a mapping that maps
the location to the type that location will be changed to. In the rules, we use the notation
χ(e)||τ to decide whether we should use the information in χ to override the type τ for
the atomic expression e. More precisely, if (�(e),τ′) ∈ χ, then χ(e)||τ yields τ′, and
otherwise τ.

Given a decision δ and a change environment Δ, we can obtain the corresponding χ
through the operation ↓δΔ, defined as follows.

↓δΔ = {l �→ �φ2�δ | (l,D〈φ1,φ2〉) ∈ Δ∧D.2 ∈ δ}

Guided Type Debugging 51

VAR-C
Γ;χ � x : χ(x)||{α �→ τ}(Γ(x))

ANT-C
Γ;χ � (e::τ) : χ(τ)||τ

CON-C
c is of type γ

Γ;χ � c : χ(c)||γ

APP-C
Γ;χ � e1 : τ1 → τ Γ;χ � e2 : τ1

Γ;χ � e1 e2 : τ

Fig. 5. Rules for the type-update system

We have proved that if Γ � e : φ|Δ, then for any decision δ, we have Γ;↓δΔ � e : �φ�δ [4].
Thus, the proof of Theorem 2 reduces to a proof of the following lemma.

Lemma 1 (More change locations lead to more general types). Given Γ � e : φ|Δ
and two decisions δ1 and δ2, let χ1 = ↓δ1

Δ and χ2 = ↓δ2
Δ. If dom(χ1)⊆ dom(χ2), then

Γ;χ1 � e : τ1 and Γ;χ2 � e : τ2 with τ2 � τ1.

Proof. The proof is by induction over the typing derivations. Since Γ;χ1 � e : τ1 and
Γ;χ2 � e : τ2 are typing the same expression e, and since we are using the same set of
rules, the derivation trees for them have the same structure. We show the proof for the
cases of variable reference and application. The proof for other cases is similar.

– Case VAR. There are several subcases to consider.
(1) �(x) /∈ dom(χ1) and �(x) /∈ dom(χ2). In this case, χ1(x) and χ2(x) are both given
by Γ(x). Therefore, τ1 = τ2 = Γ(x), and τ2 � τ1 trivially holds.
(2) �(x) /∈ dom(χ1) and �(x) ∈ dom(χ2). We can formally prove that τ2 � τ1 by an
induction over the structure of expressions. An intuitive argument is that when we
can change the original type (τ1) to a new arbitrary type (τ2) that makes its context
well typed, the definition of the typing relation in Figure 3 maintains generality and
doesn’t make τ2 more specific than τ1.
(3) �(x) ∈ dom(χ1) but �(x) /∈ dom(χ2). This case is not possible.
(4) �(x) ∈ dom(χ1) and �(x) ∈ dom(χ2). The proof for this case is similar to the
one for case (2).

– Case APP. The induction hypotheses are Γ;χ1 � e1 : τ3 → τ1, Γ;χ1 � e2 : τ3,
Γ;χ2 � e1 : τ4 → τ2, Γ;χ2 � e2 : τ4, with τ4 → τ2 � τ3 → τ1 and τ4 � τ3. From
τ4 → τ2 � τ3 → τ1, we derive τ4 � τ3 and τ2 � τ1, which completing the proof for
this case.

Using Big-Step and Small-Step Semantics

in Maude to Perform Declarative Debugging�

Adrián Riesco

Departamento de Sistemas Informáticos y Computación,
Universidad Complutense de Madrid, Madrid, Spain

ariesco@fdi.ucm.es

Abstract. Declarative debugging is a semi-automatic debugging tech-
nique that abstracts the execution details to focus on results. This tech-
nique builds a debugging tree representing an incorrect computation and
traverses it by asking questions to the user until the error is found. In
previous works we have presented a declarative debugger for Maude
specifications. Besides a programming language, Maude is a semantic
framework where several other languages can be specified. However, our
declarative debugger is only able to find errors in Maude specifications,
so it cannot find bugs on the programs written on the languages being
specified. We study in this paper how to modify our declarative debugger
to find this kind of errors when defining programming languages using
big-step and small-step semantics, two generic approaches that allow to
specify a wide range of languages in a natural way. We obtain our de-
bugging trees by modifying the proof trees obtained from the semantic
rules. We have extended our declarative debugger to deal with this kind
of debugging, and we illustrate it with an example.

Keywords: Declarative debugging, Big-step semantics, Small-step
semantics, Maude.

1 Introduction

Declarative debugging is a semi-automatic debugging technique that abstracts
the execution details to focus on results. It has been widely used in logic [10,16],
functional [11,12], multi-paradigm [2,8], and object-oriented [3] programming
languages. The declarative debugging scheme consists of two steps: during the
first one a tree representing the erroneous computation is built, while during
the second one this tree is traversed by asking questions to an external oracle
(usually the user) until the bug is found.

The operational semantics of a programming language can be defined in dif-
ferent ways [6]. One approach, called big-step or evaluation semantics, consists
of defining how the final results are obtained. The complementary approach,

� Research supported by MICINN Spanish project StrongSoft (TIN2012-39391-C04-
04) and Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 52–68, 2014.
c© Springer International Publishing Switzerland 2014

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 53

small-step or computation semantics, defines how each step in the computation
is performed.

Maude [4] is a high-level language and high-performance system supporting
both equational and rewriting logic computation. Maude modules correspond
to specifications in rewriting logic [9], a logic that allows the representation
of many models of concurrent and distributed systems. This logic is an ex-
tension of membership equational logic [1], an equational logic that, in addi-
tion to equations, allows the statement of membership axioms characterizing
the elements of a sort. Rewriting logic extends membership equational logic by
adding rewrite rules that represent transitions in a concurrent system and can be
nondeterministic.

In [18] (and in the extended version in [17]) the big-step and small-step seman-
tics for several programming languages and its translation to Maude is presented.
These papers show that big-step and small-step semantics can be easily specified
in Maude by using a method called transitions as rewrites. This approach trans-
lates the inferences in the semantics into rewrite rules, that is, the lefthand side
of the rule stands for the expression before being evaluated and the righthand
side for the reached expression. The premises are specified analogously by using
rewrite conditions.

Our declarative debugger for Maude specifications is presented in [14]. This
debugger uses the standard calculus for rewriting logic1 to build the debugging
trees, which are used to locate bugs in equations, membership axioms, and rules.
However, when a programming language is specified in Maude we cannot debug
the language but only the semantics. That is, the previous version of our de-
bugger could point out some rules as buggy (e.g. the rule in charge of executing
functions) but not the specific constructs of the language being specified (e.g.
the specific function going wrong in our program). We present here an improve-
ment of this debugger to locate the user-defined functions responsible for the
error when big-step or small-step semantics are used to define the programming
languages. It is based on the fact these semantics contain a small number of rules
that represent evaluation of functions in the specified language, so they can be
isolated to extract the applied function, hence revealing an error in the program.
Note that the information about the rules in charge of evaluating functions will
be different in every semantics, and hence they must be provided by the user.
We will see a more detailed example in the next section, showing the difference
between these two kinds of debugging.

The rest of the paper is organized as follows: Section 2 describes the standard
approach to big-step and small-step semantics and how to represent the seman-
tics of programming languages in Maude following them. Section 3 develops the
relation between the proof trees obtained with these approaches and the debug-
ging trees used by our declarative debugger. Section 4 presents our declarative
debugger by means of examples. Finally, Section 5 concludes and outlines some
lines of future work.

1 In fact, we extended the calculus to debug new kinds of errors. However, this exten-
sion of the debugger is not relevant for the present work.

54 A. Riesco

Syntactic categories:
D in Decl e in Exp be in BExp F in FunVar
op in Op bop in BOp n in Num x in Var bx in BVar

Definitions:
D ::= F (x1, . . . , xk)⇐= e | F (x1, . . . , xk) ⇐= e,D, k ≥ 0
op ::= + | − | ∗ | div
bop ::= And | Or
e ::= n | x | e op e | let x = e in e | If be Then e Else e | F (e1, . . . , ek), k ≥ 0
be ::= bx | T | F | be bop be | Not be | Equal(e, e)

Fig. 1. Syntax for Fpl

2 Preliminaries

We present in this section the basic notions used throughout the rest of the
paper. First, we briefly describe a simple functional language and introduce its
big-step and small-step semantics. Then, we present Maude and outline how to
specify the semantics from the previous sections. The example in this section
has been extracted from [6], while the translation to Maude follows [17]. Finally,
we compare this approach with standard trace-debuggers.

2.1 Fpl, A Simple Functional Language

The Fpl language [6] is a simple functional language with arithmetic and Boolean
expressions, let expressions, if conditions, and function definitions. The syntax
for Fpl, presented in Figure 1, indicates that declarations are mappings, built
with ⇐=, between function definitions and their bodies; an expression can be
either a number, a variable, two expressions combined with an arithmetic opera-
tor, a let expression, an if condition, or a function call; and a Boolean expression
can be either a Boolean variable, true, false, two Boolean expressions combined
with a Boolean operator, the negation of a Boolean expression, or an equality
between two arithmetic expressions.

In order to execute programs, we will also need an environment ρ mapping
variables to values. We will use the syntax D, ρ � e for our evaluations, indi-
cating that the expression e is evaluated by using the definitions in D and the
environment ρ. We explain now the different semantics to reach the final value.

Big-Step Semantics. Big-step semantics evaluates a term written in our Flp
language to its final value, evaluating in the premises of each rule the auxiliary
values. That is, this semantics will be used to infer judgements of the form D, ρ �
e ⇒B v, with D the function definitions, ρ an (initially empty) environment, e
and expression, and v a value. For example, the rule for executing a function
call is defined as follows:

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 55

(FunBS)
D, ρ � ei ⇒B vi D, ρ[vi/xi] � e⇒B v

D, ρ � F (e1, . . . , en)⇒B v

where 1 ≤ i ≤ n and F (x1, . . . , xn)⇐= e ∈ D.

That is, the arguments are evaluated in the premises, and then the variables,
obtained from the definition of the function on the function definitions, are
bound to these values in order to evaluate the body of the function. The value
thus obtained is the one returned by the rule.2

Small-Step Semantics. In contrast to big-step semantics, small-step semantics
just try to represent each step performed by the program to reach the final value.
We will use in this case judgements of the form D, ρ � e ⇒S e′, and hence the
expression may need several steps to reach its final value. For example, the rules
for evaluating a function call with this semantics would be:

(FunSS1)
D, ρ � ei ⇒B e′i

D, ρ � F (e1, . . . , ei, . . . , en)⇒B F (e1, . . . , e
′
i, . . . , en)

(FunSS2) D, ρ � F (v1, . . . , vn)⇒B e[v1/x1, . . . , vn/xn]

where F (x1, . . . , xn)⇐= e ∈ D.

That is, they first evaluate all the arguments to their final values and then
continue by evaluating the body of the function. Note that this semantics just
shows the result of applying one step; since this is very inconvenient for execution
purposes, we will define in the next section its reflexive and transitive closure.

2.2 Maude

Maude modules are executable rewriting logic specifications. Maude functional
modules [4, Chap. 4], introduced with syntax fmod ... endfm, are executable
membership equational specifications that allow the definition of sorts (by means
of keyword sort(s)); subsort relations between sorts (subsort); operators (op)
for building values of these sorts, giving the sorts of their arguments and result,
and which may have attributes such as being associative (assoc) or commuta-
tive (comm), for example; memberships (mb) asserting that a term has a sort; and
equations (eq) asserting that terms are equal. Both memberships and equations
can be conditional (cmb and ceq). Maude system modules [4, Chap. 6], intro-
duced with syntax mod ... endm, are executable rewrite theories. A system
module can contain all the declarations of a functional module and, in addition,
declarations for rules (rl) and conditional rules (crl).

To specify our semantics in Maude we first define its syntax in the SYNTAX

module. This module contains the sort definitions for all the categories:

2 Note that we are using call-by-value parameter passing; a modification of the rule
could also define the behavior for call-by-name.

56 A. Riesco

sorts Var Num Op Exp BVar Boolean BOp BExp FunVar VarList NumList

ExpList Prog Dec .

Note that we need to define lists explicitly. It also defines some subsorts, e.g. the
one stating that a variable or a number are specific cases of expressions:

subsort Var Num < Exp .

Then it defines the syntax for each sort. For example, variables are defined
by using the operator V, which receives a Qid (a term preceded by a quote) as
argument; function names, of sort FunVar, are built by the operator FV, which
also receives a Qid; operators are defined as constants; and let-expressions, if-
expressions, and function calls are defined by using the operators below, where
underscores are placeholders, ctor indicates that the operator is a constructor,
and the prec attribute indicates its precedence:

op V : Qid -> Var [ctor] .

op FV : Qid -> FunVar [ctor] .

ops + - * : -> Op [ctor] .

op let_=_in_ : Var Exp Exp -> Exp [ctor prec 25] .

op If_Then_Else_ : BExp Exp Exp -> Exp [ctor prec 25] .

op _(_) : FunVar ExpList -> Exp [ctor prec 15] .

Once this module is defined, we have others that use equations to define
the behavior of the basic operators, such as addition; another to define the
environment (mapping variables to values); and another one for dealing with
substitutions. These modules are required by the ones in charge of defining
the semantics. Following the idea of transitions as rewrites [17] outlined in the
introduction, we can specify inference rules by using conditional rules, being the
body of the rule the conclusion of the inference and the conditions, written as
rewrite conditions, the premises. In this way, we can write the (FunBS) rule as:

crl [FunBS] : D, ro |- FV(elist) => v

if D, ro |- elist => vlist /\

FV(xlist) <= e & D’ := D /\

D, ro[vlist / xlist] |- e => v .

that is, given the set of definitions D, the environment for variables ro and a
function FV applied to a list of expressions elist, the function is evaluated to
the value v if (i) the expressions elist are evaluated to the list of values vlist;
(ii) the body of the function FV stored in D is e and the function parameters are
xlist; and (iii) the body, where the variables in xlist are substituted by the
values in vlist, is evaluated to v.

We define the small-step semantics in another module. The rule FunSS1 in-
dicates that, if the list of expressions applied to a function FV has not been
evaluated to values yet, then we can take any of these expressions and replace
it by a more evolved one:

crl [FunSS1] : D, rho |- FV(elist,e,elist’) => FV(elist,e’,elist’)

if D, rho |- e => e’ .

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 57

The rule FunSS2 indicates that, once all the expressions have been evaluated
into values, we can look for the definition of FV in the set of definitions D,
substitute the parameters by the given values, and then reduce the function
to the body:

crl [FunSS2] : D, rho |- FV(vlist) => e[vlist / xlist]

if FV(xlist)<= e & D’ := D .

Moreover, we can also define the reflexive and transitive closure, which will
be required to reach final values. These rules are defined by using a different
operator _|=_, which distinguishes between single steps and the closure in order
to avoid infinite computations. The rule zero indicates that a value is reduced
to itself:

rl [zero] : D, ro |= v => v . *** no step

The rule more indicates that, if the expression e has not reached a value then
we can first perform a small step to reach a newer expression e’, which will
further evaluated using this reflexive and transitive closure until it reaches a
value:

crl [more] : D, ro |= e => v

if not (e :: Num) /\

D, ro |- e => e’ /\ *** one step

D, ro |= e’ => v . *** all the rest

However, note that this distinction is only necessary from the executability
point of view, and hence these rules can be understood as:

(zero)
D, ρ � v ⇒S v

(more)
D, ρ � e⇒S e

′ D, ρ � e′ ⇒S v

D, ρ � e⇒S v

Using any of these semantics we can execute programs written in our Fpl
language. For example, we can define in a constant exDec the Fibonacci function
and use a wrong addition function, which is implemented as “times”:

eq exDec =

FV(’Fib)(V(’x)) <= If Equal(V(’x), 0) Then 0

Else If Equal(V(’x), 1) Then 1

Else FV(’Add)(FV(’Fib)(V(’x) - 1),

FV(’Fib)(V(’x) - 2)) &

FV(’Add)(V(’x), V(’y)) <= V(’x) * V(’y) .

and use the big-step semantics to execute Fib(2), obtaining 0 as result:

Maude> (rew exDec, mt |= FV(’Fib)(2) .)

rewrite in BIG-STEP : exDec, mt |- FV(’Fib)(2)

result Num : 0

58 A. Riesco

(FunBS)

(CRN)
D, id � 2⇒B 2

(IfR2)

(EqR2)
�1 �2

D, ρ � x == 0⇒B F
(IfR2)

�3 �4

D, ρ � If x == 1 . . .⇒B 0

D, ρ � If x == 0 . . .⇒B 0

D, id � Fib(2) ⇒B 0

where proof tree �4 is defined as:

(FunBS)

(ExpLR)

(FunBS)
� �

D, ρ � Fib(x− 1) ⇒B 1
(FunBS)

� �
D, ρ � Fib(x− 2)⇒B 0

D, ρ � Fib(x− 1), Fib(x− 2) ⇒B 1, 0 �
D, ρ � Add(Fib(x− 1), Fib(x− 2))⇒B 0

Fig. 2. Proof tree for Fib(2) evaluated by using big-step semantics

This result is erroneous, and its associated proof tree, partially depicted in
Figure 2, has 37 nodes. In this figure D stands for the declarations shown above,
ρ for x �→ 2, and we have simplified the syntax to improve the readability. The
labels for the rules that we have not shown are straightforward: CRN evaluates a
value to itself, IfR2 evaluates an if statement when the condition is false, EqR
evaluates an equality to false, and ExpLR evaluates a list of expressions. The
tree �1 abbreviates the tree for the evaluation of x to 2, �2 the evaluation
of 0 to itself, �3 evaluates x == 1, and the rest of �’s just continue with the
computation following the same ideas presented above.

Similarly, the evaluation of Fib(2) using small-step semantics returns the fol-
lowing result:

Maude> (rew exDec2, mt |= FV(’Fib)(2) .)

rewrite in COMPUTATION : exDec2, mt |= FV(’Fib)(2)

result Num : 0

The proof tree for this case is shown in Figure 3, where D stands for the
definitions, e1 for the definition of Fib applied to 2, and e2 for this definition
once we have substituted the condition by F. We start with a transitivity step,
which has a function application as left child, which replaces the call to Fib by
the body of the function. This value is used to keep looking for the final result
with another more rule, which evaluates the condition in this If expression by
means of an (IfR1) inference rule. It then continues with another more rule, where
the �’s stand for trees similar to the ones shown here.

If we try to use the previous version of our debugger to debug this problem
it will indicate that the rule FunBS is buggy for the big-step semantics, while
FunSS2 will be pointed out as buggy for small-step semantics, although they are
correctly defined. This happens because these rules are in charge of applying
the functions (in this case Fib and Add) defined by the user, but they cannot
distinguish between different calls. We will show how to improve the debugger
to point out the specific user-defined function responsible for the error in the
next sections.

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 59

(more)

(FunSS2)
D, id � Fib(2)⇒S e1

(more)

(IfR1)

(EqR4)
D, id � Equal(2,0) ⇒S F

D, id � e1 ⇒S e2
(more)

� �
D, id � e2 ⇒S 0

D, id � e1 ⇒S 0

D, id � Fib(2) ⇒S 0

Fig. 3. Proof tree for Fib(2) evaluated by using small-step semantics

2.3 Related Work

We compare in this section our approach with the best known debugging method
for any programming language: tracing with breakpoints. Although the trace is
easy to use and highly customizable, a declarative debugger provides more clar-
ity and simplicity of usage. In a trace-debugger, programmers must set some
breakpoints where they want to stop the execution. From those points they can
proceed step by step, checking whether the results of the functions or the ar-
guments and bindings are the expected ones. If they skip the evaluation of a
function but they discover it returns a wrong value, they have to restart the ses-
sion to enter and debug its code. The advantage of the declarative debugger is
that, starting only from an expression returning a wrong value, it finds a buggy
function by simply asking about the results of the functions in the computa-
tion, avoiding low-level details. It focuses on the intended meaning of functions,
which is something very clear to programmers (or debuggers), and the naviga-
tion strategies saves them from choosing what functions check and in what order
as with breakpoints in the trace-debugger.

Moreover, note that throughout the paper we talk about functions as potential
sources of errors because they depend on the user code and have an expected
result (so we can make questions about them). However, we can modify the
granularity of the errors discovered by the debugger by pointing out more specific
rules as potentially erroneous. For example, we could consider that a loop in an
imperative language is a “computational unit” and hence it has meaning by
itself (as considered when enhancing declarative debugging in [7]). In this way,
the debugger would ask questions related to loops (it could also ask questions
about functions, if they are included). That is, we can configure the debugger to
ask questions as specific as we want, so we could also examine the code inside
functions, just as a trace-debugger.

Moreover, our approach is quite useful when prototyping a new programming
language, since it would not have any debugging mechanism a priori. That is,
the present work provides a debugger for free for any programming language
specified in Maude, while the trace would only provide the execution of Maude
equations and rules.

3 Declarative Debugging Using the Semantics

We present in this section the relation between the proof trees obtained by using
the operational semantics in the previous section and the debugging trees that
should be used to debug them.

60 A. Riesco

3.1 Preliminaries

Declarative debugging requires an intended interpretation, which corresponds
to the model the user had in mind while writing the program, to locate the
bug. This interpretation depends on the programming language, and hence we
cannot define it a priori. For this reason, we present the assumptions that must
be fulfilled by the calculus and the information provided by the user before
starting the debugging process:

– There is a set S of rules whose correctness depends on the code of the
program being debugged. That is, we can distinguish between the inference
rules executing the user code (e.g. the rules defining function call), which will
be contained in S, and the rest of rules defining the operational details (e.g.
the rules defining the execution order). If the inference rules are correctly
implemented, only the execution of rules in S may lead to incorrect results.

– The user must provide this set, which will fix the granularity of the debugging
process. The rest of the rules will be assumed to work as indicated by the
semantics (i.e. no errors can be detected through them).

– The user knows the fragment of code being executed by each rule, assuming
the premises are correct.

Example 1. The obvious candidate for the set S in our functional language is
S = {(FUNBS)} for big-step semantics (respectively, S = {(FUNSS2)} for small-
step semantics). This rule is in charge of evaluating a function, and thus we can
indicate that, when an error is found, the responsible is F , the name given in
the rule to the function being evaluated.

Corollary 1. As a consequence of the second restriction, given a calculus with
a set of inference rules R, a set of rules S fulfilling the restrictions above, a set
of rules U ⊆ R such that U ∩ S = ∅, a model M of the calculus, an intended
interpretation I, and a judgement j which is the consequence of any inference
rule in U , we have M |= j ⇐⇒ I |= j.

We are interested in the judgements whose correctness may differ between
the model and the intended interpretation. Given a model of the calculus, an
intended interpretation I, and a judgement j such that M |= j we will say that
a judgement j is valid if I |= j and invalid otherwise. The basic declarative
debugging scheme tries to locate a buggy node, that is, an invalid node with all
its children valid. Regarding buggy nodes in the proof trees defined above, it is
important to take into account the following property:

Proposition 1. Let N be a buggy node in some proof tree in the given calculus,
I an intended interpretation, and S the set of rules indicated by the user.

1. N corresponds to the consequence of an inference rule in S.
2. The error associated to N is the one indicated by the user to the rule in N .

Proof. The first item is a straightforward consequence of Corollary 1. The second
item is also straightforward from the third condition required on the set S.

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 61

3.2 Declarative Debugging with Big-Step Semantics

Instead of using the proof trees obtained from the calculus for declarative de-
bugging, we will use an abbreviation to remove all the nodes that do not pro-
vide debugging information. We call this abbreviation APTbs , from Abbreviated
Proof Tree for big-step semantics. APTbs is defined by using the set of rules S
indicated by the user as follows:

APTbs

(
(R)

T

j

)
= (R)

APT ′
bs(T)

j

APT ′
bs

(
(R)

T1 . . . Tn

j

)
=

{
(R)

APT ′
bs(T1) . . . APT ′

bs(Tn)

j

}
, (R) ∈ S

APT ′
bs

(
(R)

T1 . . . Tn

j

)
= APT ′

bs(T1)
⋃

. . .
⋃

APT ′
bs(Tn), (R)
∈ S

The basic idea of the transformation is that we keep the initial evaluation and
the evaluation performed by rules in S, while the rest of evaluations are removed
from the tree. We show that this transformation is appropriate:

Theorem 1. Let T be a finite proof tree representing an inference in the given
calculus. Let I be an intended interpretation for this calculus such that the root
N of T is invalid in I. Then:

(a) APTbs(T) contains at least one buggy node (completeness).
(b) Any buggy node in APTbs(T) has an associated error, according to the in-

formation given by the user.

Proof. We prove the items separately:

(a) By induction on the height of APTbs(T).
(Base case). If height(APTbs(T)) = 1 then APTbs(T) only contains the

root, which is invalid by hypothesis, and hence buggy.
(Inductive case). When height(APTbs (T)) = k then APTbs(T) contains

a buggy node. If height(APTbs(T)) = k + 1 we distinguish whether the
root if buggy or not. If it is buggy then we have found the buggy node.
Otherwise, it has at least one child node which is invalid and it contains
a buggy node by hypothesis.

(b) Note first that the root is buggy iff (R) ∈ S. In fact, it is easy to see that,
by Proposition 2, if (R) "∈ S then at least one of its child nodes is invalid
in I, and hence the APT ′bs function will contain an invalid tree, preventing
the root from being buggy. Once this is stated, we realize that APT ′bs only
keeps the inference rules in S and, since a buggy node has all its children
valid and the user has assured that it can indicate the source of the error,
the result holds.

where the auxiliary results are proved as follows:

Proposition 2. Given a proof tree T , a set S of rules given by the user, an
intended interpretation I such that the root N of T is invalid, and {T1, . . . , Tn} =
APT ′bs(T), then ∃ Ti, 1 ≤ i ≤ n, and N ′ the root of ti such that I "|= N ′.

62 A. Riesco

(FunBS)

(FunBS)

(FunBS)
D, ρ � Fib(x− 1) ⇒B 1

(FunBS)
D, ρ � Fib(x− 2) ⇒B 0

D, ρ � Add(Fib(x− 1), Fib(x− 2))⇒B 0

D, id � Fib(2) ⇒B 0

Fig. 4. Abbreviated proof tree for Fib(2)

Proof. We proceed by induction on the height of T .

Base case. If height(T) = 1 then, because of the restrictions on the set S, we
have (R) ∈ S, with (R) the rule used to infer N , and the result holds.

Inductive case. When height(T) = k we have an invalid tree w.r.t. I in the
set APT ′bs(T). If height (T) = k, then we distinguish whether the rule (R)
used in the root is in S. If it is, then the result holds trivially, since the
transformation will keep this tree. Otherwise, we know that there is a child
node that is invalid (since we restrictions in the set S prevent this node from
being buggy), and we can use the induction hypothesis to check that the
result holds.

Example 2. We can apply these rules, using the set S from Example 1, to the
proof tree presented in Figure 2, obtaining the tree in Figure 4. Note that the
37 nodes in the proof tree have been reduced to 4 nodes in the abbreviated one.

The major weakness of big-step semantics when used for declarative debugging
resides in the fact that evaluating terms whose subterms have not been fully
reduced, as shown in Figure 4. This element makes the debugging process more
complicated because it forces the user to think about the expected results for
the subterms before considering whether the current computation is correct or
not.

To solve this problem, we propose to use the single-stepping navigation strat-
egy [15], which starts asking from the leaves, discarding the correct ones until
an invalid one (and hence buggy, since leaves have no children) is found. This
strategy allows us to substitute subterms by the appropriate values when asking
questions, given this property is assured by the user:

Proposition 3. Given I |= t⇒ t′, we have

I |= f(t1, . . . , t, . . . , tn)⇒ r ⇐⇒ I |= f(t1, . . . , t
′, . . . , tn)⇒ r

That is, the user must make sure that the semantics works, for the rules he
has selected, by first reducing the subterms/arguments and then applying the
rules for the reduced term. Note that these reduced terms are just a specific
case of the ones indicated by the user for his intended semantics, and thus are
included in I. Since the structure of the tree does not change it is easy to see that
completeness holds. Regarding soundness, it only holds if we traverse the tree
by checking the correctness of the inferences for the subterms before checking
the correctness of the whole term (otherwise we might discard the real source

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 63

(FunBS)

(FunBS)

(FunBS)
(♦) D, ρ � Fib(1) ⇒B 1

(FunBS)
(♥) D, ρ � Fib(0)⇒B 0

(♣) D, ρ � Add(1, 0)⇒B 0

D, id � Fib(2) ⇒B 0

Fig. 5. Simplified abbreviated proof tree for Fib(2)

of the error). For this reason, we combine this transformation with the single-
stepping navigation strategy [15], which performs exactly this traversal.

Using this simplification, we would obtain the tree in Figure 5, where all the
subterms have been reduced. Although this change might seem trivial in this
simple example, the benefits are substantial when more complex programs are
debugged. Notice also that Proposition 3 may not hold in some cases, e.g. in
lazy languages where the arguments are not evaluated until they are required.
In this case we will follow the standard approach, asking about subterms not
fully reduced and using the top-down or divide and query navigation strategies,
which are more efficient in general that single-stepping.

3.3 Declarative Debugging with Small-Step Semantics

In contrast to the big-step semantics above, the small-step semantics applies
a single evaluation step, making the debugging very similar to the step-by-step
approach. To avoid this problem we place transitivity nodes in such a way that (i)
the debugging tree becomes as balanced as possible, which improves the behavior
of the navigation strategies and (ii) the questions in the debugging tree refer to
final results, making the questions easier to answer. The tree transformation for
this semantics, similar to the one in [14], takes advantage of transitivity rules
while keeping the correctness and completeness of the technique. Thus, in this
case the APTss function is defined as:

APTss

(
(R)

T

j

)
= (R)

APT ′
ss(T)

j

APT ′
ss

⎛
⎜⎜⎝(Tr)

(R)
T1 . . . Tn

j′ T

j

⎞
⎟⎟⎠ =

{
(R)

APT ′
ss(T1) . . .APT ′

ss(Tn) APT ′
ss(T)

j

}
, (R) ∈ S

APT ′
ss

(
(R)

T1 . . . Tn

j

)
=

{
(R)

APT ′
ss(T1) . . .APT ′

ss(Tn)

j

}
, (R) ∈ S

APT ′
ss

(
(R)

T1 . . . Tn

j

)
= APT ′

ss(T1)
⋃

. . .
⋃

APT ′
ss(Tn), (R)
∈ S

That is, when we have a transitivity step whose left premise is a rule pointed
out by the user, then we keep the “label” of the inference (which indicates that

64 A. Riesco

we will locate the error in the lefthand side of this node, which is the same as
the one in the premise) in the transitivity step, that presents the final value.

Theorem 2. Let T be a finite proof tree representing an inference in the given
calculus. Let I be an intended interpretation for this calculus such that the root
N of T is invalid in I. Then:

(a) APTss (T) contains at least one buggy node (completeness).
(b) Any buggy node in APTss (T) has an associated error, according to the in-

formation given by the user.

Proof. We prove each item separately:

(a) Analogous to the proof for Theorem 1(a).
(b) We first use Proposition 4 below to check that, if the root is buggy, then it

is associated to an inference rule (R) ∈ S and the result holds by using the
assumed conditions on the rules of this set. Any other buggy node must be
obtained from APT ′ss(T).
Let N be a buggy node occurring in APT ′ss(T). Then N is the root of some
tree TN , subtree of some T ′ ∈ APT ′ss(T). By the structure of the APT ′ss
rules this means that there is a subtree T ′ of T such that TN ∈ APT ′ss (T

′).
We prove that the inference rule used to obtain N is in the set S by induction
on the number of nodes of T ′, |T ′|.
If |T ′| = 1 then T ′ contains only one node and APT ′ss (T

′) = {T ′}, due to the
restrictions in the set S. Since only the second APT ′ss rule can be applied in
this case the rule has been kept and it is associated to the error specified by
the user.
If |T ′| > 1 we examine the APT ′ss rule applied at the root of T ′:
• In the first case, T ′ is of the form

(Tr)

(R)
T1 . . . Tn

j′ T ′′

j
, with (R) ∈ S

Hence N ≡ j and TN is

(R)
APT ′ss(T1) . . . APT ′ss(Tn) APT ′ss (T

′′)

j

Since N is buggy in TN it is invalid w.r.t. I. However, a transitivity step
cannot be buggy in T ′, since it does not depend on the code written
by the user. For this reason either j′ or the root of T ′′ are invalid. But
the root of T ′′ cannot be buggy, since Proposition 4 indicates that the
APT ′ss applied to a tree with an invalid root produces a set where at
least one tree has an invalid root, which would prevent N from being
buggy. Therefore j′ is invalid. Moreover, the roots of T1 . . . Tn must be
valid, since otherwise N would not be buggy. Hence, j′ is buggy in T ′

and the user is able to point out the error. Therefore, and given that in a
transitivity rule the lefthand side of the root is the same as the lefthand
side of the left premise, the user can identify the error in j.

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 65

• In the second case the conclusion of the inference is kept and, given that
N is buggy, all the premises are valid and hence the user can identify
the error.

• In the third case, TN ∈ APT ′ss (Ti) for some child subtree Ti of the root
T ′ and the result holds by the induction hypothesis.

where the auxiliary results are proved as follows:

Proposition 4. Given a proof tree T , a set S of rules given by the user, an
intended interpretation I such that the root N of T is invalid, and {T1, . . . , Tn} =
APT ′ss(T), then ∃ Ti, 1 ≤ i ≤ n, and N ′ the root of ti such that I "|= N ′.

Proof. Analogous to Proposition 2.

The tree obtained by using this abbreviation is equal to the one shown in
Figure 5, although in this case the (FunBS) inferences are (FunSS2) inferences ob-
tained by applying the first equation for APT ′SS . Finally, note that, if the user
does not want to use this simplification, we can still use the APT transforma-
tion for big-step and the result from Theorem 1 to perform the debugging in a
“normal” tree, which will present a step-by-step-like debugging session.

4 Debugging Session

The debugger is started by loading the file dd.maude available at
http://maude.sip.ucm.es/debugging/. It starts an input/output loop where
commands can be introduced by enclosing them into parentheses.

Once we have introduced the modules specifying the semantics, we can intro-
duce the set S rule by rule as follows:

Maude> (intended semantics FunBS culprit FV:FunVar .)

The rule FunBS has been added to the intended semantics.

If buggy, FV in the lefthand side will be pointed out as erroneous.

This command introduces the rule FunBS into the set S indicating that, when
the buggy node is found, the responsible for the error will be the value matching
the variable FV. Now we can select the single-stepping navigation strategy and
start the debugging session for big-step, which reduces the subterms by default:

Maude> (single-stepping strategy .)

Single-stepping strategy selected.

Maude> (debug big step semantics exDec, mt |- FV(’Fib)(2) => 0 .)

Is D, V(’x) = 2 |- FV(’Fib)(1) evaluated to 1 ?

Maude> (yes .)

The first question (where we have replaced the definitions by D to simplify the
presentation) corresponds to the node marked as (♦) in Figure 5. Since we
expected this result we have answered yes, so the subtree is removed and the
next question corresponds to the node marked as (♥):

http://maude.sip.ucm.es/debugging/

66 A. Riesco

Is D, V(’x) = 2 |- FV(’Fib)(0) evaluated to 0 ?

Maude> (yes .)

This result was also expected, so we have answered yes again, and this subtree
is also removed. The next question, which is related to the node marked as
(♣), corresponds to an erroneous evaluation, so we answer no. Now, this node
becomes an invalid node with all its children valid, and hence it reveals an error
in the specification:

Is D, V(’x) = 2 |- FV(’Add)(1,0) evaluated to 1 ?

Maude> (no .)

The buggy node is:

The term D, V(’x) = 2 |- FV(’Add)(1, 0) has been evaluated to 0

The code responsible for the error is FV(’Add)

That is, the debugger indicates that the function Add has been wrongly imple-
mented in the Fpl language. We can debug the program in a similar way using
the small-step semantics. In this case we have to introduce, in addition to the
set of rules responsible for errors as shown above, the set of rules required for
transitivity:

Maude> (intended semantics FunSS2 culprit FV:FunVar .)

The rule FunSS2 has been added to the intended semantics.

If buggy, the FV:FunVar in the lefthand side will be pointed out

as erroneous.

Maude> (transitivity rules more .)

The rules more have been introduced as rules for transitivity.

We can now start the debugging session for small-step as follows:

Maude> (debug small step semantics exDec2, mt |= FV(’Fib)(2) => 0 .)

Is D, mt |= FV(’Add)(1, 0) evaluated to 0 ?

The answer is no, which allows the debugger to find the error in Add:

The buggy node is:

The term D, mt |= FV(’Add)(1, 0) has been evaluated to 0

The code responsible for the error is FV(’Add)

5 Concluding Remarks and Ongoing Work

We have presented in this paper a methodology to use declarative debugging
on programming languages defined using big-step and small-step semantics in
Maude. It uses the specific features of each semantics to improve the questions
asked to the user. The big-step semantics can present terms with all the sub-
terms in normal form, while the small-step semantics use the transitivity rule

Using Big-Step and Small-Step Semantics to Perform Declarative Debugging 67

to present the final results. This approach has been implemented in a Maude
prototype extending the previous declarative debugger for Maude specifications.
The major drawback of this approach consists in relying on the user for most of
the results, that depend on the set of rules chosen for debugging. Although this
is unfortunate, we consider it is necessary to build a tool as general as the one
presented here.

Thus far we have checked the adequacy of the approach for small functional
and imperative languages, so we also plan to study its behavior with more com-
plex languages. Moreover, we want to extend our declarative debugger to work
with K definitions. The K framework [5] is a rewrite-based executable seman-
tic framework where programming languages and applications can be defined.
However, K performs intermediate transformations to the rules defining the se-
mantics and thus it is difficult to reason about them.

Another interesting subject of future work would consist of studying how
declarative debugging works for languages with parallelism. We could use the
search engine provided by Maude to look for paths leading to errors, and then
use the path leading to the errors to build the debugging tree, thus providing
a simple way to combine verification and debugging. We also plan to extend
the possible answers in this kind of debugging. We are specifically interested in
implementing a trust answer that removes from the tree all the subtrees rooted
by the expression being trusted. Finally, a prototype for generating test cases
based on the semantics specified in Maude has been proposed in [13]. It would
be interesting to connect both tools, in order to debug the failed test cases.

References

1. Bouhoula, A., Jouannaud, J.-P., Meseguer, J.: Specification and proof in member-
ship equational logic. Theoretical Computer Science 236, 35–132 (2000)

2. Caballero, R.: A declarative debugger of incorrect answers for constraint functional-
logic programs. In: Antoy, S., Hanus, M. (eds.) Proc. of the 2005 ACM SIGPLAN
Workshop on Curry and Functional Logic Programming, WCFLP 2005, Tallinn,
Estonia, pp. 8–13. ACM Press (2005)

3. Caballero, R., Hermanns, C., Kuchen, H.: Algorithmic debugging of Java pro-
grams. In: López-Fraguas, F. (ed.) Proc. of the 15th Workshop on Functional and
(Constraint) Logic Programming, WFLP 2006, Madrid, Spain. Electronic Notes in
Theoretical Computer Science, vol. 177, pp. 75–89. Elsevier (2007)

4. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

5. Şerbănuţă, T.F., Roşu, G.: K-Maude: A rewriting based tool for semantics of pro-
gramming languages. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp.
104–122. Springer, Heidelberg (2010)

6. Hennessy, M.: The Semantics of Programming Languages: An Elementary Intro-
duction Using Structural Operational Semantics. John Wiley & Sons (1990)

7. Insa, D., Silva, J., Tomás, C.: Enhancing declarative debugging with loop expansion
and tree compression. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 71–
88. Springer, Heidelberg (2013)

68 A. Riesco

8. MacLarty, I.: Practical declarative debugging of Mercury programs. Master’s thesis,
University of Melbourne (2005)

9. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

10. Naish, L.: Declarative diagnosis of missing answers. New Generation Comput-
ing 10(3), 255–286 (1992)

11. Nilsson, H.: How to look busy while being as lazy as ever: the implementation
of a lazy functional debugger. Journal of Functional Programming 11(6), 629–671
(2001)

12. Pope, B.: A Declarative Debugger for Haskell. PhD thesis, The University of Mel-
bourne, Australia (2006)

13. Riesco, A.: Using semantics specified in Maude to generate test cases. In: Roy-
choudhury, A., D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 90–104.
Springer, Heidelberg (2012)

14. Riesco, A., Verdejo, A., Mart́ı-Oliet, N., Caballero, R.: Declarative debugging of
rewriting logic specifications. Journal of Logic and Algebraic Programming 81(7-8),
851–897 (2012)

15. Shapiro, E.Y.: Algorithmic Program Debugging. ACM Distinguished Dissertation.
MIT Press (1983)

16. Tessier, A., Ferrand, G.: Declarative diagnosis in the CLP scheme. In: Deransart,
P., Ma�luszyński, J. (eds.) DiSCiPl 1999. LNCS, vol. 1870, pp. 151–174. Springer,
Heidelberg (2000)

17. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in
Maude. Technical Report 134-03, Dpto. Sistemas Informáticos y Programación,
Universidad Complutense de Madrid (2003)

18. Verdejo, A., Mart́ı-Oliet, N.: Executable structural operational semantics in
Maude. Journal of Logic and Algebraic Programming 67, 226–293 (2006)

Faustine: A Vector Faust Interpreter Test Bed

for Multimedia Signal Processing

System Description

Karim Barkati, Haisheng Wang, and Pierre Jouvelot

MINES ParisTech, France
name.surname@mines-paristech.fr

Abstract. Faustine is the first interpreter for the digital audio sig-
nal processing language Faust and its vector extension. This domain-
specific language for sample-based audio is highly expressive and can
be efficiently compiled. Faustine has been designed and implemented, in
OCaml, to validate the Faust multirate vector extension proposed in the
literature, without having to modify the sophisticated Faust scalar com-
piler. Moving to frame-based algorithms such as FFT is of paramount
importance in the audio field and, more broadly, in the multimedia signal
processing domain. Via the actual implementation of multidimensional
FFT and morphological image processing operations, Faustine, although
unable to process data in real time, illustrates the possible advantages
and shortcomings of this vector extension as a language design proposal.
More generally, our paper provides a new use case for the vision of inter-
preters as lightweight software platforms within which language design
and implementation issues can be easily assessed without incurring the
high costs of modifying large compiler platforms.

1 Introduction

Domain-specific languages (DSLs) are high-level, specialized, abstract program-
ming languages that help shrink the “semantic gap” between the concepts of a
particular application area and the program implementation level. These lan-
guages are, by essence, more often upgraded or extended than traditional pro-
gramming languages, since the unavoidable changes to the underlying business
logic often call for the introduction of new traits in the corresponding DSLs [10].
This makes the design language phase – where one looks for defining a proper
balance between the choice of programming features, their practical relevance
and their performance cost – an almost constant endeavor.

Finding an appropriate set of programming language features calls thus for
a trial-and-error design and implementation approach, which may end up being
a costly proposition when the corresponding language evaluation platform must
be continuously tweaked to test new proposals. Reaching an acceptable language
design is even more complicated when one deals with advanced languages that
target compute-intensive applications such as signal processing. Indeed, such

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 69–85, 2014.
c© Springer International Publishing Switzerland 2014

70 K. Barkati, H. Wang, and P. Jouvelot

performance requirements are usually only met by sophisticated compilation
systems that incorporate advanced optimization phases, making such software
platforms unwieldy and difficult to adapt on-the-fly to test new language ideas.

Language interpreters are often considered as simple educational tools to in-
troduce semantic language concepts (see for instance [22]), illustrate one of the
Gang-of-Four design patterns (Interpreter Pattern) [9] or motivate the intro-
duction of compilers for performance purposes. Yet, interpreters can also be
invaluable tools to assess the adequacy of various programming language traits
(see for instance the seminal paper [26]), and thus help address the cost-vs-design
conundrum that plagues DSLs. We illustrate this idea with Faustine, an OCaml-
based interpreter for the Faust programming language. Faustine implements the
core of Faust, a functional DSL dedicated to advanced audio signal processing,
and is thus a useful tool in itself, for instance to debug Faust programs that
use new constructs. But the development of Faustine is also motivated by the
desire of testing the “interpreters as DSL design-assistant tools” idea outlined
above (see also [5], an interesting blog on other positive aspects of interpreters
for traditional languages).

As a case study, we augmented Faust with the vector extension proposal intro-
duced in Dependent vector types for data structuring in multirate Faust [17] and
tested its practical applicability using a set of typical benchmarks. As explained
in Section 6, these experiments showed us that some unanticipated problems
lurked within the current vector design; discovering such issues early on is what
the Faustine prototype is all about. On the contrary, a positive byproduct of the
introduction of vectors within the Faust programming paradigm is that such an
extension not only opens the door to important audio analysis techniques such
as spectral algorithms to the Faust community, but may even extend the very
domain Faust has been designed for. Indeed we show how key image processing
operations can be expressed in Faust, and run in Faustine.

To summarize, the major contributions introduced in this paper are:

– an illustration of the “interpreters as language design-assistant tools” idea,
which, even though not new, we think could be looked at in a new light when
dealing with DSLs and their unusual life cycle and performance requirements.
In our case, this approach proved also quite cost-effective, since we were able
to assess our design ideas after the two months it only took to implement
Faustine, a short time given we were not very knowledgeable about OCaml
at first;

– Faustine1, an OCaml-based interpreter for the functional audio signal pro-
cessing language Faust;

– the first implementation of the Faust vector extension proposed in [17] within
Faustine, seen as a test bed for assessing the adequacy of new language
constructs for Faust;

– a first look at the wider applicability of the Vector Faust programming model
in the more general setting of multimedia signal processing, providing some
insights to its possible use for image processing.

1 http://www.cri.mines-paristech.fr/~pj/faustine-1.0.zip

http://www.cri.mines-paristech.fr/~pj/faustine-1.0.zip

Faustine: A Vector Faust Interpreter Test Bed 71

After this introduction, Section 2 introduces the Faust project and its core
language. Section 3 outlines the vector extension proposal, our main motivation
for the development of Faustine. Section 4 describes the main features of Faus-
tine, our Faust interpreter. Section 5 provides first experimental evidence of the
practicality of its use, including running examples illustrating the applicability
of the Faust vector extension to key applications such as Fast Fourier Transform
(FFT) and image signal processing. Section 6 highlights some of the key prelim-
inary results coming from the use of the Faustine system, yielding some ideas
about future work. We conclude in Section 7.

2 Faust

Faust2 (Functional Audio Stream) is a DSL originally designed to help imple-
ment real-time audio applications. Designed at Grame, a French center for music
creation located in Lyon, France, the Faust project as a whole has been under
development since 2002. It has been instrumental in the development of many
audio applications, such as the open-source Guitarix3 and commercial moForte4

guitar synthesizers. It has also been an enabling technology in many of the mu-
sic works and performances created at Grame. The Faust language is taught in
many music-oriented institutions over the world, such as Stanford University’s
CCRMA and French IRCAM and Université de Saint-Etienne.

2.1 Design

DSLs derive from the knowledge of a particular application domain. This gener-
ally puts constraints upon the kind of programming constructs they provide. One
popular approach is to embed such knowledge within an existing programming
language [15]; this provides a general framework within which applications can
be programmed. For the domain of audio processing addressed by Faust, such a
generality was not deemed necessary. Deciding not to go for an embedded DSL
in turn opens the door to specific optimization opportunities, which might be
unreachable for more general programming languages. This is particularly true
for run-time performance.

Given the high computational load required by audio signal processing pro-
grams [2], one of the requirements for Faust has indeed been, from the start, to
strive to reach C++-like run-time performance, while providing high-level con-
structs that appeal intuitively to audio-oriented engineers and artists [20,21,3].
To reach such goals, the design of Faust adopts an unusual approach, being
structured in two completely different parts:

– the Faust core language is a functional expression language built upon a very
limited set of constructs that define an algebra over signal processors, which

2 http://faust.grame.fr
3 http://sourceforge.net/projects/guitarix
4 http://www.moforte.com

http://faust.grame.fr
http://sourceforge.net/projects/guitarix
http://www.moforte.com

72 K. Barkati, H. Wang, and P. Jouvelot

are operators taking (theoretically infinite) streams of samples as input and
yielding streams of processed samples as output;

– the Faust macro language is a version of the full-fledged, untyped lambda-
calculus, that can be used to define parametrized functions and allows cur-
rification.

Faust expressions can mix freely constructs taken from these two language com-
ponents. Full-fledged Faust programs are defined as sets of identifier definitions
i = e; or macro definitions f(x,y,...) = e;. All uses of an identifier or a
macro, e.g., f(3,s,...), are expanded at compile time to yield only core ex-
pressions. The identifier process denotes the main signal processor.

2.2 Core Faust

Faust core expressions are signal processors, inputting and outputting signals.
Even a constant such as 1 is seen as a signal processor that takes no input
signals, and outputs one signal, all samples of which have value 1. Three main
constructs, similar to the combinators used in a language such as Yampa5, a
DSL built on top of Haskell, are operators of what amounts to an algebra of
signal processors.

– The “:” sequential combinator pipes the output of its first argument into
the input of its second. Thus “1 : sin” is a core expression that takes no
input (as does 1) and outputs a signal of samples, all of value 0.841471.

– The Faust parallel combinator is “,” and is the dual of “:”. Here, “1,2 : +”
takes again no inputs, but pipes two constant signals into the “+” signal
processor, yielding a stream of samples, all of value 3.

– The Faust recursion combinator is “~”. The output samples of its second
argument are fed back, after a one sample delay, into the inputs of its first
argument.

For instance, the signal that contains the infinite sequence of successive inte-
gers is defined by “_ ~ (1,_ : +)”, where “_” is the identity signal proces-
sor, in Faust. Figure 1 provides a graphic explanation of the inner working of
the “~” construct; the displayed diagram corresponds to the Faust program
process = _ ~ (1,_ : +);. Note that the small square on the back edge de-
notes a 1-sample delay, and that all signals are initialized by default to 0.

The last two main constructs of the signal processor algebra are the fan-out
“<:” and fan-in “:>” combinators. A fan-out duplicates the output signals of
its first argument to feed the (supposedly more numerous) input signals of its
second argument. A fan-in performs the dual operation, combining signals that
end up mixing in the same input signal with an implicit “+” operation.

5 http://www.haskell.org/haskellwiki/Yampa

http://www.haskell.org/haskellwiki/Yampa

Faustine: A Vector Faust Interpreter Test Bed 73

Fig. 1. The infinite stream of successive integers. The Faust platform provides a SVG
block-diagram prettyprinter for Faust (text) definitions.

2.3 Implementation

Faust is a purely functional specification language, operating at the audio sam-
ple level. The Faust compiler6 makes such specifications executable. Since all
macro-level constructs are expanded-away before code generation, the compiler
can devote all its attention on performing efficient code generation at the Core
Faust expression level. Performance being key, this highly optimized sequential
compiler uses C++ as its target language. Its more than 150,000 lines of C++
code implement a wealth of optimization techniques, needed to enable real-time
processing of computing-intensive audio applications. When even more perfor-
mance is needed, parallel code, using OpenMP pragmas, can be generated.

In addition to the compiler itself, the Faust software suite offers a graphi-
cal IDE (FaustWorks) and many architecture files enabling its use via standard
audio interfaces or plugins such as VST, Jack, ALSA, iOS and Android. Some
important computer music environments such as Max/MSP, CSound or Open-
Music embed a standalone version of the Faust compiler, opening up the way to
the use of Faust within foreign systems. A SaaS-version of the Faust compiler is
available on the Faust web site.

3 Faust Vector Extension

Faust current design, focused on audio signal processing, assumes that all signals
carry scalar floating-point or integer values. Yet, many digital signal processing
(DSP) operations such as FFT and its derivatives operate on finite arrays of
values, or frames. Such a feature is lacking, and even more so if one envisions
to extend Faust application domain to others, such as image processing. A pro-
posal for a simple vector extension has been introduced [17], which we briefly
summarize below.

Faust is a typed language: a signal processor is typed with the type of the
scalars carried over its signal input and output arguments. To ensure efficient
compilation, these types are dependent, in that each type includes an interval

6 http://sourceforge.net/projects/faudiostream

http://sourceforge.net/projects/faudiostream

74 K. Barkati, H. Wang, and P. Jouvelot

of values; e.g., a signal of type float[0; 10] can only carry floating-point values
within the interval [0;10]. The proposed vector extension builds upon this typing
mechanism by adding a rate information to types; the rate or frequency f of a
signal is the number of samples per second this signal is operating at. This rate
information is, in turn, modified when dealing with vector operations. In short,
a vectorize construct takes an input signal of rate f and a fixed size signal n
and generates a signal of vectors of size n, at a rate f/n. The dual operation,
serialize, takes a signal at rate f of vectors of size n, and outputs the serialized
vector components in its output signal, at rate f × n. Note that this scheme
imposes that array sizes are known at compile time; what might appear as an
unacceptable constraint is in fact quite handy within Faust, with its two-level
design approach and its emphasis on efficiency for audio applications.

If vectorize and serialize are the constructor and destructor of the vector
algebra, component-wise operations are still needed. The current proposal, in
tune with the minimalism of Faust design, offers only two constructs, called
pick (noted by “[]”) and concat (“#”). To define these operations, while also
providing a flavor of Faust extended typing system and how it closely constraints
Faust expression construction, we give below their typing schemes:

– # : (vectorm(τ)f , vectorn(τ)
f)→ (vectorm+n(τ)

f);
– [] : (vectorn(τ)

f , int[0;n−1]f)→ (τf).

All italic variables are supposed to be abstracted, to form type schemes. Con-
catenating two input signals carrying vectors of size m and n is possible only if
they have the same rate, here f : the concatenated output signal operates at the
same rate, but carries values that are vectors of size m+n, formed, at each time
tick, by the concatenation of the two corresponding vectors in the input signals.
Dependent typing shines in the case of pick operations: there, given vector values
v carried by an input signal at rate f and a signal of scalar indexes i, which have
to be integers within the bounds [0; n−1] of the input vectors, pick creates an
output signal, at rate f , formed with the components vi, at each time tick.

To illustrate how the vector datatype can be used, we provide in Listing 1.1 a
n-fold subsampling signal processor subsampling(n). Running a subsampling-
by-2 process over the list of successive integers (refer to Figure 1, if need be)
yields a signal of successive odd integers.

Listing 1.1. n-fold subsampling signal processor

� �

subsampling(n) = (,n) : vectorize : [0];

integers = ˜ (1, : +);
process = integers : subsampling(2);
� �

4 Faustine

In this section, we motivate our decision to design and implement Faustine, while
highlighting some of its salient features.

Faustine: A Vector Faust Interpreter Test Bed 75

4.1 Motivation

We intend to ultimately extend the current Faust compiler with the vector API
introduced above. Yet, adding this capability to the many tens of thousands of
lines of C++ code of such a large program is a major undertaking. Moreover,
it seems unwise to commit to a full-fledged implementation without validating
our extension proposal in the first place. Thus, implementing a lightweight in-
terpreter such as Faustine appears as a simple way, in addition to the intrinsic
value of such a system for testing and debugging purposes, to provide a test
bed for checking the validity and practical applicability of the proposed vector
extension on actual examples.

The interpreter route is even more appealing given the nature of the Faust
language we emphasized at the beginning of Section 2. Indeed, Faustine has
largely benefited from its two-tiered structure, core and macro. Faust macro
constructs are first processed out by the original Faust compiler, which only had
to be slightly adapted, at the parser and SVG generator levels, to handle the few
idiosyncratic syntactic features of the vector extension. The resulting expression
is then fed to Faustine, which has been designed to only address core language
expressions.

Note that an interpreter can sometimes even be converted into a full-fledged
compiler using semi-automated techniques such as partial evaluation, as shown
for instance in [13], which interestingly is also looking at DSLs for signal pro-
cessing. Yet, in our case, we intend to eventually provide our vector extension
as an upgrade to the existing Faust compiler. One reason is that we would
like to leverage the wealth of optimization techniques that already exist in the
current compilation infrastructure. Another one is that the modifications re-
quired to handle vectors efficiently, something our users would want, are going
to be tricky. Indeed, Faust operations work at the audio sample level, and each
of these samples is currently a scalar. Dealing with vector-valued samples and
their corresponding more complex data structures (Reference [17] even suggests
to introduce records) is going to require significant design thinking to handle
memory management issues in an efficient manner.

4.2 OCaml for Executable Specifications

Faustine is an interpreter designed for testing purposes, and not for operational
usage. As such, a high-level implementation language is called for, since rapid
specification modification cycles can be excepted, for which a flexible and expres-
sive programming paradigm and environment are of paramount importance [16].
Since performance is not the primary concern here, one must keep an eye on this
issue when dealing with real life examples. Even though there exist frameworks
such as K [7] that can be used to automatically derive interpreters, we chose
OCaml for a couple of reasons.

– First, its mix of functional and object-oriented paradigms enables close-to-
specification implementations. Indeed, one can even view OCaml as a lan-
guage within which to express executable specifications [18,23], in particular

76 K. Barkati, H. Wang, and P. Jouvelot

when using denotational-style definitions, as is the case in the vector exten-
sion paper on which Faustine is based [17].

– OCaml sports a wide variety of libraries, and in particular a binding to the
libsndfile package7. This C library handles I/O operations over audio files
encoded in the WAV or AIFF formats, and comes in handy when performing
audio processing applications.

– In addition to the functional and OO paradigms, OCaml offers imperative
constructs, which are useful, when handled with care, for performing certain
optimizations such as memoization.

4.3 Implementation

Faustine is an off-line interpreter; in particular, no interactive evaluation loop
is provided. Instead, Faustine takes a Faust program file (.dsp) and evaluates
it, taking as input the standard input file and generating processed data on
standard out. First, the original Faust compiler is called to preprocess the .dsp
file, in order to eliminate all macro calls and generate a Core Faust expression.
This one is passed to Faustine, which parses it and evaluates it sequentially
according to the semantics defined in [17]. Input and output signal data can be
encoded in two possible formats: WAV and CSV (ASCII values separated by
commas), the latter being useful for spectra (see Subsection 5.1) and images.

Following Faust semantics, every expression in a program is considered as a
Faust signal processor. In turn, each processor consists of subprocessors con-
nected via Core Faust constructors by signals. In Faustine, signals are defined
as OCaml functions of time to values; here “time” represents the succession of
clock ticks t, implemented as integers. More specifically, one has:

class signal : rate -> (time -> value) -> signal =

fun freq_init -> fun func_init ->

object (self)

method frequency = freq_init (* signal rate *)

method at = func_init (* signal initial value *)

method add : signal -> signal

...

method vectorize : signal -> signal

method serialize : signal

As shown above, a signal sample rate is a key property defining a signal in
our multirate context. A different sample rate is computed when a given signal
is vectorized or serialized, e.g., as in the following:

method vectorize : signal -> signal =

fun s_size ->

let size = (s_size#at 0)#to_int in

if size <= 0 then

7 Libsndfile is a cross-platform API for reading and writing a large number of file
formats containing sampled sound (http://www.mega-nerd.com/libsndfile)

http://www.mega-nerd.com/libsndfile

Faustine: A Vector Faust Interpreter Test Bed 77

raise (Signal_operation "Vectorize: size <= 0.")

else

let freq = self#frequency#div size in

let func : time -> value =

fun t ->

let vec = fun i -> (self#at (size * t + i))#get in

new value (Vec (new vector size vec)) in

new signal freq func

The main job of Faustine is to construct the dynamic relationship between the
input and output signals of a processor. When executing a Faust program, all
subprocessors are synchronized by a global clock. Every time the clock ticks,
subprocessors pull the current value of their incoming processors’ signals, and
refresh the values of their output signals. For most non-delay processors, output
signals only depend upon the current value of the input signals. Delay modules,
like the primitive “mem” that uses a one-slot memory, depend on previous input
frames; Faustine uses arrays to memoize signal values to avoid computing values
more than once.

Faustine deals with all but GUI Faust constructs in only 2,700 lines of code,
a mere 100 of which are dedicated to the vector extension design we were inter-
ested in evaluating. It took about 2 months to implement, even though we were
not very knowledgeable about OCaml at the start; so, presumably, seasoned pro-
grammers could have completed this task in a shorter amount of time. Yet, this
enabled us to assess in a matter of days the issues regarding the Faust vector
extension and its shortcomings (see Section 6).

5 Experiments

Faustine is able to handle many Faust programs, although its off-line nature
prohibits the use of GUI elements. This does not limit its usability in our case,
since we are mostly interested in proof-of-design issues. To illustrate the expres-
sive power of our Faust vector extension and the possible generalization of its
application domain to non-audio multimedia systems, we provide below two sig-
nificant examples. This first one is the implementation of FFT and the second,
an image processing application, LicensePlate, based on mathematical morpho-
logical operators.

5.1 FFT

The Discrete Fourier Transform (DFT) of an N -element real-valued vector xn,
in our case a frame of N successive signal values, is an N -element vector Xk of
complex values. This vector can informally be seen as denoting a sum of am-
plified sine and cosine functions. The frequency-to-amplitude mapping of these
functions is called the signal spectrum. In practice, one has:

78 K. Barkati, H. Wang, and P. Jouvelot

Xk =

N−1∑
n=0

xne
−2πkni

N , k = 0, ..., N − 1.

The Fast Fourier Transform (FFT) is an efficient algorithm that uses recursion
to perform a DFT in O(N log(N)) steps in lieu of O(N2):

Xk =

N/2−1∑
m=0

x2me
−2πmki

N/2 + e
−2πki

N

N/2−1∑
m=0

x2m+1e
−2πmki

N/2 .

In the FFT process shown in Listing 1.2 (part of File fft.dsp), an input stream
of real scalars is first vectorized in vectors of size 8. The eight elements of the
vector are accessed in parallel through picks(8), and then converted to 8 com-
plex numbers in parallel by real2pcplx(8). We implemented the complex.lib

complex algebra library, a complex number being implemented, in its polar and
Cartesian representations, as a 2-component vector.

Listing 1.2. Faust 8-sample length FFT (excerpts)

� �

import (”complex.lib”);

picks(n) = par(i, n, [i]);
fft(n) = <: picks(n) : real2pcplx(n) : shuffle(n) : butterflies(n);
process = vectorize(8) : fft(8) : pcplx modules(8) : nconcat(8) : serialize;
� �

The 8 complex elements are then reshuffled, and fed to a so-called butter-
fly processor (see Figure 2). The output of the recursively-defined butterflies
(omitted here) are complex numbers. Their moduli are kept, and represent the
spectrum. The eight real scalars in parallel are repacked into a vector of size 8 by
nconcat(8), and then serialized to produce the output stream, which represents
the spectrum.

Fig. 2. FFT shuffling and butterfly

Faustine: A Vector Faust Interpreter Test Bed 79

We ran a small experiment to illustrate the style of FFT outputs generated
via Faustine. We fed fft.dsp the signal generated by the sum of four audio sine
waves in WAV format (1.378 kHz, 2.067 kHz, 16.536 kHz and 22 kHz, sampled
at 44.1 kHz) as given in Listing 1.3, where s(f) denotes a sine wave function at
Frequency f, and t is the list of successive integers, starting at 0. The output
of process was encoded as a .csv file, and is here plotted in Figure 3, using
Octave8.

Listing 1.3. Sum of 4 sine waves

� �

import(”math.lib”);
samplerate = 44100;

process = s(1378) + s(2067) , s(16536) + s(22000) : + : /(4) ;
s(f) = 2.0∗PI∗f∗t/samplerate : sin;
t = (+(1) ˜) − 1;
� �

s(1378)

s(2067)

+

s(16536)

s(22000)

+

+ 4 /

process

Fig. 3. FFT spectrum output of 4 sine waves: sum generation block diagram (left) and
resulting analysis output (right)

5.2 Image Processing

The audio processing origins of Faust do not, a priori, preclude its usage in other
domains. This should be even more the case once equipped with the vector ex-
tension described above. To test this hypothesis, we looked at how some image
processing applications could be implemented in Vector Faust. As a case study,
we chose LicensePlate, a car plate identification algorithm based on mathemat-
ical morphology operations.

Mathematical morphology [25] is a broad set of image processing methods
based on shapes. The basic idea is to probe an image with a simple pre-defined
shape, seen as a structuring element. The value of each pixel in the output
image is determined by a comparison between the corresponding pixels in the

8 Recall that, for real numbers xn, the complex numbersXN−k and Xk are conjugates,
and have thus the same modulus.

80 K. Barkati, H. Wang, and P. Jouvelot

input image with its neighbors, defined by the structuring element. Dilation is
an important operation in mathematical morphology that uses this approach:
the value of the output pixel is the maximum value of all the pixels in the input
pixel’s neighborhood (see Figure 4).

Fig. 4. Dilation A⊕B of a binary image A by a 3-point structuring element B

Implementing morphological operations in Vector Faust requires examining
a 2D neighborhood of each pixel. A general solution is to examine one pixel in
the neighborhood at a time, and then combine all the output images. Moreover,
one can show that the image dilated by any pixel in the structuring element can
be dilated firstly by line, then by column, using the associativity of the dilation
operation ⊕ (see Figure 5).

Fig. 5. Decomposition of a 3x3 square structuring element

For the example of Figure 4, one can use the code in Listing 1.4 to cre-
ate dilation_square(3)(3); this processor dilates each input image sample by
three pixels in line, and then dilates it by three pixels in column. Each pixel in
the output image is thus the maximum value of the corresponding neighborhood
of 9 pixels in the input image.

Listing 1.4. Dilation by a 3x3 square structuring element in Vector Faust

� �

dilating(n) = strel shift dilation, , strel shift dilation : # , : # : spray by three(n) :
tri maxs(n) : nconcat(n);

dilation line(x, y) = serialize : dilating(x) : vectorize(y);
dilation column(x, y) = matrix transpose(y, x) : serialize : dilating(y) : vectorize(x) :

matrix transpose(x, y);
dilation square(x, y) = dilation line(x, y) : dilation column(x, y);
� �

Faustine: A Vector Faust Interpreter Test Bed 81

With the operations of dilation and erosion (the dual of dilation, which shrinks
shapes), an entire morphological image processing library can be constructed.
As a use case, we implemented in Vector Faust the car plate identification al-
gorithm LicensePlate, based on mathematical morphology [14,12]; it can detect
and isolate a plate in an image, as illustrated in Figure 6.

Fig. 6. LicensePlate algorithm: original image (left); detected license plate (right)

5.3 Performance

Given our goal of using Faustine as a language design test bed, no real efforts
have been put into optimizing run-time efficiency. The interpreter is, in fact,
unusable as is in a production setting. This is even more true when one takes
into account Faust strong emphasis on very high performance, a key feature
users have been counting on.

To put things in perspective and illustrate Faustine limitations, we ran both
the FFT and image processing applications on an Ubuntu 12.04 LTS desktop
sporting two Intel Core 2 Duo CPU E8600 64-bit processors running at 3.3 GHz
each, with 3.7 GB of main memory. Dealing with a single frame of 128 64-bit
floating-point numbers takes our FFT algorithm 22.4 seconds to process. A single
small 195×117 image took LicensePlate 812 seconds; note that a subsequent test
with a computer using a similar CPU but twice the memory size took a more
reasonable 90 s to complete.

6 Future Work

The results of the previous section suggest that Vector Faust is a good candi-
date to express vector operations fit to perform frame-based operations, such
as those present in audio spectral analysis or image processing systems. The
Faustine interpreter system, as an experimental platform to run practical tests
of Vector Faust programs, was instrumental in getting these results in a short
period of time, proving its intrinsic value as a language design development tool.
We discuss in this section some of the ideas our use of Faustine helped spur.

82 K. Barkati, H. Wang, and P. Jouvelot

6.1 Vector Extension Issues

One unexpected outcome of the use of Faustine is that we found unanticipated
difficulties with the current design of Faust vector extension. Since this addi-
tion to Faust is, for the time being, rather primitive, in that no higher-order
constructs such as map or reduce are provided, all array operations must be
specified at the element-access level, typically a[i], leading to the introduction
of numerous macros. For instance, Listing 1.5 implements a matrix transposition
algorithm in a very straightforward manner. The block diagram resulting from
the expansion of all these macros, following Faust design principle, is given in
Figure 7.

Listing 1.5. Matrix transposition

� �

process = matrix transpose(3,3);
matrix transpose(n, m) =

<: par(i, n, [i]) <: par(j, m, (par(i, n, [j]) : concats(n))) : concats(m);
concats = case {

(1) => vectorize(1);
(n) => concats(n−1) # vectorize(1);

};
� �

0 []

1 []

2 []

0 []

0 []

0 []

1 vectorize

1 vectorize

#

1 vectorize

#

1 []

1 []

1 []

1 vectorize

1 vectorize

#

1 vectorize

#

2 []

2 []

2 []

1 vectorize

1 vectorize

#

1 vectorize

#

1 vectorize

1 vectorize

#

1 vectorize

#

process

Fig. 7. Transpose diagram of a 3× 3 matrix

As one can see, the transpose definition leads to the creation of a rather large
Core Faust expression. This would have been even more patent had we used a
more meaningful matrix size. In fact, when running LicensePlate, we tried to
use an image of size 640×383, and the macro expansion phase of Faust original
compiler (not Faustine per se) could not manage to complete its task, even after
multiple hours. Thus addressing problems with data sets of significant size seems

Faustine: A Vector Faust Interpreter Test Bed 83

to make the whole “macro/core” structure of the current Faust compilation
process unusable for common array operations. Discovering this problem will
affect even a future Faust-with-vectors compiler, making the introduction of
higher-level constructs a necessity.

One other difficult case we encountered regards the handling of “overlapping
FFT”, where the successive frames for which an FFT transform is required over-
lap. We have not yet managed to find a totally general solution, with arbitrary
overlaps, to this problem. Algorithm-specific questions such as these open op-
portunities for possible changes to the vector extension specification, and are at
the core of what DSLs are about, i.e., finding a good match between generality
and domain specificity.

6.2 Static Typechecking

One of the major limitations of Faustine, beside the lack of GUI support we
already alluded to, lies in the current dynamic nature of its type checking. Signal
rate and type information is currently computed and checked at run time. This
may lead to run-time errors when programmers plug together unmatched signals
(for instance via a “:” combinator). An optimizing compiler would preferably
have to sport a static checker of types and rates. This is particularly true for
a language such as Faust where having a precise knowledge of some of the key
parameters in a program, e.g., delays, is crucial to assuring C++-like run-time
performance.

Typing Vector Faust expressions is a non-trivial problem given the sophisti-
cated nature of their type information. In particular, the presence of dependent
datatypes (e.g., intervals specify the expected range of possible values of a given
numeric type) is reminiscent of refinement [11] and liquid [24] types. One stan-
dard way to approach such typing systems is to use SMT solvers such as Z39 to
handle the value-based equalities and inequalities implied by the typing rules. In
addition to such tools, we envision to look carefully at the structure of constraints
induced by the specifics of Faust (which does not allow first-class function val-
ues) or to design typing assistants that may ask for inputs from programmers
to ensure type-checking correctness ([1,4,8,19,6]).

7 Conclusion

Faustine is a new interpreter-based test bed implemented to assess the validity
of possible language extensions, in particular regarding vector operations, for the
digital audio signal processing language Faust. More specifically, this platform
is the first implementation of the vector/multirate extension for Faust proposed
in the literature.

We used, as test cases, multidimensional FFTs and morphological image pro-
cessing algorithms. These experiments suggest that the vector extension seman-
tics can be implemented in a compliant way regarding the Faust language design.

9 http://z3.codeplex.com

http://z3.codeplex.com

84 K. Barkati, H. Wang, and P. Jouvelot

Yet, these same benchmarks show that further research is needed on the opti-
mization front, both at the implementation and language design levels. This is
paramount, given that the Faust language philosophy is to prove that a high level
of expressibility is compatible with ultimate efficient run-time performance.

More generally, our design and implementation of Faustine strengthen the
case for the development of interpreters, seen as flexible and easy-to-modify test
beds for exploring the possible evolutionary paths of compiled languages. This
idea seems to be even more convincing for highly optimized languages such as
DSLs, for which introducing changes and updates within their large compiler
platforms is a risky and costly proposition.

Acknowledgments. We thank Yann Orlarey for his help regarding Faust, Lau-
rent Daverio for his input on LicencePlate and Benoit Pin for his advice on the
Faustine development platform. The anonymous reviewers and Oleg Kyselyov
provided many suggestions that greatly improved the quality of our paper. This
work is part of the FEEVER project, partially funded by the Agence nationale
de la recherche, under reference ANR-13-BS02-0008-01.

References

1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to Coq through proof witnesses. In: Jouannaud,
J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011)

2. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J.,
Morgan, N., Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view
of the parallel computing landscape. Commun. ACM 52(10), 56–67 (2009)

3. Barkati, K., Jouvelot, P.: Synchronous programming in audio processing: A lookup
table oscillator case study. ACM Computing Surveys 46(2) (2014)

4. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: An open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS,
vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

5. Brunthaler, S.: Why interpreters matter (at least for high level programming lan-
guages) (2012),
http://www.ics.uci.edu/~sbruntha/why-interpreters-matter.html

6. Cuoq, P., Signoles, J., Baudin, P., Bonichon, R., Canet, G., Correnson, L., Monate,
B., Prevosto, V., Puccetti, A.: Experience report: Ocaml for an industrial-strength
static analysis framework. In: Proceedings of the 14th ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2009, pp. 281–286. ACM,
New York (2009)

7. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2012, pp. 533–544. ACM, New York (2012)

8. Fontaine, P., Marion, J.-Y., Merz, S., Nieto, L.P., Tiu, A.F.: Expressiveness +
automation + soundness: Towards combining SMT solvers and interactive proof
assistants. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 167–181. Springer, Heidelberg (2006)

http://www.ics.uci.edu/~sbruntha/why-interpreters-matter.html

Faustine: A Vector Faust Interpreter Test Bed 85

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education (1994)

10. Ghosh, D.: DSLs in Action, 1st edn. Manning Publications Co., Greenwich (2010)
11. Gordon, A.D., Fournet, C.: Principles and applications of refinement types. Logics

and Languages for Reliability and Security 25, 73–104 (2010)
12. Guillou, P.: Portage et optimisation d’applications de traitement d’images sur

architecture many-core. Technical report, Centre de recherche en informatique,
MINES ParisTech (2013)

13. Herrmann, C.A., Langhammer, T.: Combining partial evaluation and staged inter-
pretation in the implementation of domain-specific languages. Science of Computer
Programming 62(1), 47–65 (2006), Special Issue on the First MetaOCaml Work-
shop 2004

14. Hsieh, J.-W., Yu, S.-H., Chen, Y.-S.: Morphology-based license plate detection from
complex scenes. In: Proceedings of the 16th International Conference on Pattern
Recognition, vol. 3, pp. 176–179. IEEE (2002)

15. Hudak, P.: Building domain-specific embedded languages. ACM Computing Sur-
veys 28(4es), 196 (1996)

16. Jouvelot, P.: ML: Un langage de maquettage? In: AFCET Workshop on New Lan-
guages for Software Engineering, Evry (1985)

17. Jouvelot, P., Orlarey, Y.: Dependent vector types for data structuring in multirate
Faust. Comput. Lang. Syst. Struct. 37, 113–131 (2011)

18. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system (1998)

19. Nguyen, Q.H., Kirchner, C., Kirchner, H.: External rewriting for skeptical proof
assistants. Journal of Automated Reasoning 29(3-4), 309–336 (2002)

20. Orlarey, Y., Fober, D., Letz, S.: An algebra for block diagram languages. In: Pro-
ceedings of International Computer Music Conference, pp. 542–547 (2002)

21. Orlarey, Y., Fober, D., Letz, S.: Faust: an efficient functional approach to DSP
programming. In: New Computational Paradigms for Computer Music (2009)

22. Ortiz, A.: Language design and implementation using Ruby and the interpreter.
In: ACM SIGCSE Bulletin, vol. 40, pp. 48–52. ACM (2008)

23. Rémy, D.: Using, understanding, and unraveling the OCaml language from practice
to theory and vice versa. In: Barthe, G., Dybjer, P., Pinto, L., Saraiva, J. (eds.)
APPSEM 2000. LNCS, vol. 2395, pp. 413–536. Springer, Heidelberg (2002)

24. Rondon, P.M., Kawaguci, M., Jhala, R.: Liquid types. In: Proceedings of the 2008
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2008, pp. 159–169. ACM, New York (2008)

25. Serra, J., Soille, P. (eds.): Mathematical morphology and its applications to im-
age processing. Computational Imaging and Vision. Kluwer Academic Publishers
(1994)

26. Steele, G.L., Sussman, G.J.: The art of the interpreter or, the modularity complex
(parts zero, one, and two). Technical report, Cambridge, MA, USA (1978)

The Design and Implementation

of BER MetaOCaml�

System Description

Oleg Kiselyov

University of Tsukuba, Japan
oleg@okmij.org

Abstract. MetaOCaml is a superset of OCaml extending it with the
data type for program code and operations for constructing and
executing such typed code values. It has been used for compiling domain-
specific languages and automating tedious and error-prone specializa-
tions of high-performance computational kernels. By statically ensuring
that the generated code compiles and letting us quickly run it, Meta-
OCaml makes writing generators less daunting and more productive.

The current BER MetaOCaml is a complete re-implementation of the
original MetaOCaml by Taha, Calcagno and collaborators. Besides the
new organization, new algorithms, new code, BER MetaOCaml adds a
scope extrusion check superseding environment classifiers. Attempting
to build code values with unbound or mistakenly bound variables (liable
to occur due to mutation or other effects) is now caught early, raising an
exception with good diagnostics. The guarantee that the generated code
always compiles becomes unconditional, no matter what effects were used
in generating the code.

We describe BER MetaOCaml stressing the design decisions that
made the new code modular and maintainable. We explain the imple-
mentation of the scope extrusion check.

1 Introduction

MetaOCaml is a conservative extension of OCaml for “writing programs that
generate programs”. MetaOCaml adds to OCaml the type of code values (denot-
ing “program code”, or future-stage computations), and two basic constructs to
build them: quoting and splicing. The generated code can be printed, stored in
a file – or compiled and linked-back to the running program, thus implementing
run-time code optimization.

MetaOCaml has been successfully used for specializing numeric and dynamic
programming algorithms; building FFT kernels, compilers for an image pro-
cessing domain-specific language (DSL), OCaml server pages; and generating
families of specialized basic linear algebra and Gaussian Elimination routines,
and high-performance stencil computations [1–4].

� The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 86–102, 2014.
c© Springer International Publishing Switzerland 2014

The Design and Implementation of BER MetaOCaml 87

MetaOCaml is distinguished from Camlp4 and other such macro-processors
by: hygiene (maintaining lexical scope); generating assuredly well-typed code;
and the integration with higher-order functions, modules and other abstrac-
tion facilities of ML, hence promoting modularity and reuse of code generators.
A well-typed BER MetaOCaml program produces the code that shall compile
without type errors. We no longer have to puzzle out a compilation error in the
generated code (which is typically large, obfuscated and with unhelpful variable
names). We illustrate these features in §2.

The original MetaOCaml was developed by Walid Taha, Cristiano Calcagno
and collaborators [5] as a dialect of OCaml. Therefore, MetaOCaml took the
full advantage of the OCaml’s back-end code generation, the standard and other
libraries, the top-level, etc. Alas, the divergence between the two languages has
made integrating OCaml’s new features and improvements progressively more
and more difficult. Eventually MetaOCaml could no longer be maintained with-
out a major investment.

BER MetaOCaml [6] is a re-design and the complete re-implementation of
MetaOCaml, with different algorithms and techniques. It aims at the most har-
monious integration with OCaml and lowering the barrier for contribution. The
compatibility with OCaml becomes relatively easy to maintain, bringing better
tools, better diagnostics, new libraries and new features to code generators. Con-
tributors of new ways of running the generated code (e.g., translating it to C or
LLVM) no longer need to be familiar with the OCaml internals and keep recom-
piling the system. The new goals of modularity and maintainability called for new
code organization and design decisions. BER MetaOCaml also took advantage of
the large experience with MetaOCaml, which prompted the drastic change of re-
tiring environment classifiers and introducing the scope extrusion check.

Despite polar design decisions and the different implementation (BER and the
old MetaOCaml share no staging-related code apart from parsing and pretty-
printing), BER MetaOCaml does run the old MetaOCaml user code with little
or no change. The implementation differences between the two systems are sum-
marized in Appendix A of the full paper1. Here is the brief comparison from the
user point of view:

– Whereas the old MetaOCaml is formalized by λilet [7], BER MetaOCaml
implements the classifier-less version of that calculus2. The translation from
λilet to the latter only affects types (which can be inferred); the two calculi
have the same dynamic semantics.

– BER MetaOCaml requires user-defined data types be declared in a separate
file, see §4.

– BER MetaOCaml accepts programs that could not be typed before, see §5.2,
making it easier to use modules to structure generators.

1 http://okmij.org/ftp/meta-programming/ber-design.pdf
2 We drop single-classifier annotations of λi

let and replace a sequence of classifiers with
the natural number denoting its length. Strictly speaking, we also have to replace
the terms open e and close e of λi

let with just e. However, these terms never show up
explicitly in the user-written code, so their disappearance is unnoticeable.

http://okmij.org/ftp/meta-programming/ber-design.pdf

88 O. Kiselyov

– Scope extrusion (see §2.1 for illustration) during code generation was not
detected before. BER MetaOCaml detects it early and raises an exception.

All in all, a type-annotation-free old MetaOCaml program using standard data
types will be accepted by BER MetaOCaml as it was. It will produce the same
result (or raise the scope-extrusion exception).

Although this paper is a system description of BER MetaOCaml, it highlights
the guidance from theory (§5.3 in particular), or the regrettable lack of it. Staging
in the presence of user-defined data types, described in §4, is a thorny problem
that seems to have not been addressed in any of the staged calculi. Implementing
BER MetaOCaml thus has suggested directions for further theoretical research.

Specifically, our contributions are as follows:

– the specific approach of adding staging to OCaml that minimizes the changes
to the base system (significantly, compared to the old MetaOCaml), making
it easier to contribute to and maintain MetaOCaml and to keep it consistent
with new revisions of OCaml (see §3 and App. A);

– constructor restriction, §4: a new trade-off in supporting values of user-
defined data types within the generated code. The restriction markedly
simplifies the implementation. The experience with the restriction (first
introduced in the January 2013 release) showed its burden to be light, jus-
tifying the trade-off;

– scope-extrusion check, §5: detecting scope extrusion promptly at the genera-
tor run-time, aborting the code generation with an informative error message
pointing to problematic locations in the generator source code. The positive
experience with the check (again first introduced in the January 2013 release)
led to the retirement of environment classifiers in the current version. BER
MetaOCaml guarantees that the successfully generated code is well-typed
and well-scoped. The guarantee is now unconditional: it holds even if the
generator performed arbitrary effects, including delimited control effects.

We start with a brief introduction to MetaOCaml and finish, §6, with related
work. BER MetaOCaml is available from OPAM, among other places [6].

2 The Taste of MetaOCaml

This section introduces MetaOCaml and describes its features on very simple
examples. §2.1 continues with a more realistic case, also explaining the need for
control effects when generating code – and the accompanying danger of produc-
ing ill-scoped code.

Our first example is very familiar and simple, letting us focus on the Meta-
OCaml features used in its implementation. It centers on computing the n-th
element of the Fibonacci-like sequence with the user-defined first two elements:

let rec gib n x y = match n with
| 0 → x | 1 → y
| n → let z = x + y in gib (n−1) y z

The Design and Implementation of BER MetaOCaml 89

This ordinary OCaml code can be entered into MetaOCaml as it is since Meta-
OCaml is source- (and binary-) compatible with OCaml. If we are to compute
gib n many times for a fixed n, we want to specialize gib to that n, obtaining the
code that will later receive x and y and efficiently compute the n-th element of
the sequence. We re-write gib annotating expressions as computed ‘now’ (when
n is given) or ‘later’ (when x and y are given):

let rec sgib n x y = match n with
| 0 → x | 1 → y
| n → 〈let z = ∼x +∼y in ∼ (sgib (n−1) y 〈z〉)〉

� val sgib : int → int code → int code → int code = <fun>

let sgib4 = 〈fun x y → ∼(sgib 4 〈x〉 〈y〉)〉 ;;
� val sgib4 : (int → int → int) code = 〈fun x 1 → fun y 2 →

let z 3 = (x 1 + y 2) in let z 4 = (y 2 + z 3) in
let z 5 = (z 3 + z 4) in z 5〉

(!. sgib4) 1 1;;
� − : int = 5

The two annotations, or staging constructs, are brackets 〈e〉 (in code, .<e>.) and
escape ∼e (in code .~e). Brackets 〈e〉 ‘quasi-quote’ the expression e, annotating
it as computed later, or at the future stage. Escape ∼e, which must occur within
brackets, tells that e is computed now, at the present stage, but produces the
code for later. That code is spliced into the containing bracket. The plus +
appearing in brackets is not a symbol: it is the identifier bound to the OCaml
function (infix operator) (+): int →int →int. A present-stage bound identifier
referred to in the future stage is called cross-stage persistent (CSP). CSP is the
third, less noticeable feature of MetaOCaml.

The inferred type of sgib (printed by the MetaOCaml top-level) tells its result
is not an int: rather, it is int code – the type of expressions that compute an int.
Hence, sgib is a code generator. Its type spells out which argument is received
now, and which are later: the future-stage arguments have the code type. The
type of a future-stage code is known now – letting us type-check future stage
expressions and the code that generates them, assuring that the generated code is
well-typed. For example, if we replace (+) in sgib with the floating-point addition
(+ .) or omit an escape, we see a type error with an informative diagnostic.

The expression sgib4 shows how to actually apply sgib to produce the spe-
cialized code and how to obtain the int code values to pass as the last two
arguments of sgib. The code value 〈x〉 represents an open code: the free variable
“x”. We may store such variables in reference cells and pass them as arguments
and function results. MetaOCaml hence lets us manipulate (future-stage) vari-
ables symbolically. We can splice variables into larger future-stage expressions
but we cannot compare or substitute them, learn their name, or examine the
already generated code and take it apart. This pure generativity of MetaOCaml

90 O. Kiselyov

helps maintain hygiene: open code can be manipulated but the lexical scoping
is still preserved3.

The inferred type of sgib4 shows it as a code expression that will, when com-
piled, be a function on integers. Code, even of functions, can be printed, which
is what the MetaOCaml top-level did. The prefix operator !. lets us run sgib4,
that is, to compile it and link back to our program. The result can be used as
an ordinary int→int→int function.

Generating code and then running it is specializing a frequently used function
to some data obtained at run-time, e.g., from user input. In our example, !. sgib4
is such a version of gib n x y specialized to n= 4. The sgib4 code is straight-line
and can be efficiently compiled and executed. The generated code can also be
saved into a file. Since the generated code is ordinary OCaml, it can be compiled
with ordinary OCaml compilers, even ocamlopt, and later linked into various
ordinary OCaml applications. Thus, MetaOCaml can be used not only for run-
time specialization, but also for offline generation of specialized library code,
e.g., of BLAS and Linpack libraries.

Since hygiene and lexical scoping is one of the two main topics of the paper (see
§5), we illustrate it on another example – demonstrating the crucial difference
between brackets and Lisp quasi-quotation. The example is a one-line generator,
producing the code shown underneath:

〈fun x → ∼ (let body = 〈x〉 in 〈fun x → ∼body〉)〉
� 〈fun x 1 → fun x 2 → x 1〉

Re-written in Lisp, with anti- and un-quotations, it generates the code

‘(lambda (x) ,(let ((body ‘x)) ‘(lambda (x) , body)))
� ‘(lambda (x) (lambda (x) x))

with two indistinguishable instances of x, which denotes a different function.
MetaOCaml maintains the distinction between the variables that, although iden-
tically named, are bound at different places. A variable in MetaOCaml is not
just a symbol. We return to this topic in §5.

We have thus seen the five features that MetaOCaml adds to OCaml: brackets
and escapes, CSP, showing and running code values. We will now see a realistic
example of their use.

2.1 Code Motion

This section gives a glimpse of a realistic application of MetaOCaml, generating
high-performance numerical kernels. We demonstrate generating matrix-matrix
multiplication with a loop-invariant code motion, i.e., moving the code not de-
pending on the loop index out of the loop. We will see the need for delimited
control, the actual danger of generating ill-scoped code, and how BER Meta-
OCaml alerts of the danger before it becomes too late. We will hence see the

3 At first blush, the inability to examine the generated code seems to preclude any
optimizations. Nevertheless, generating optimal code is possible [3, 8, 9].

The Design and Implementation of BER MetaOCaml 91

scope extrusion check, explained in depth in §5. For the lack of space, the running
example is presented schematically and in a less general form: see the complete
code4 and [9] for the explanation of the overall approach.

To generate a variety of specialized kernels and optimize them easily, we in-
troduce a minimalist linear-algebra DSL (demonstrating how the abstraction
facilities of OCaml such as modules benefit code generation):

module type LINALG = sig
type tdom
type tdim type tind type tunit
type tmatrix
val (∗) : tdom →tdom →tdom
val mat dim : tmatrix → tdim ∗ tdim
val mat get : tmatrix → tind → tind → tdom
val mat incr : tmatrix → tind → tind → tdom →tunit
val loop : tdim → (tind → tunit) → tunit

end

The abstract type tdom is the type of scalars, with the operation to multiply
them; tdim is the type of vector dimensions (zero-based) and tind is the type
of the index; tunit is the unit type in our DSL. The operation mat get accesses
an element of a matrix, and mat incr increments it. The DSL lets us write the
multiplication of matrix a by matrix b with the result in c (which is assumed
zero at the beginning) in the familiar form5:

module MMUL(S: LINALG) = struct open S
let mmul a b c = loop (fst (mat dim a)) @@ fun i →
loop (fst (mat dim b)) @@ fun k →
loop (snd (mat dim b)) @@ fun j →
mat incr c i j @@ mat get a i k ∗ mat get b k j

end

With different implementations of LINALG, we obtain either functions for
matrix-matrix multiplication (in float, int or other domains), or the code for
such functions. For example, the following instance of LINALG produces the
familiar matrix multiplication code

module LAintcode = struct
type tdom = int code type tdim = int code ...
type tmatrix = int array array code
let (∗) = fun x y → 〈∼x ∗ ∼y〉
let mat get a i j = 〈(∼a).(∼ i).(∼ j)〉
let loop n body = 〈for i= 0 to ∼n−1 do ∼(body 〈i〉) done〉

end

4 http://okmij.org/ftp/meta-programming/tutorial/loop_motion.ml
5 The infix operator @@ is a low-precedence application, introduced in OCaml 4.01.

http://okmij.org/ftp/meta-programming/tutorial/loop_motion.ml

92 O. Kiselyov

We can do better: in MMUL.mmul the expression mat get a i k does not de-
pend on the index j of the innermost loop, and can be moved out. We extend
our DSL with the operation

module type LINALG GENLET = sig include LINALG
val genlet : tind → (unit → tdom) → tdom end

One may think of genlet k (fun () →e) as memoizing the value of e with key k in
a 1-slot memo table. We re-write mmul and manually introduce this memoization
optimization:

module MMULopt(S: LINALG GENLET) = struct open S
let mmul a b c = loop (fst (mat dim a)) @@ fun i →
loop (fst (mat dim b)) @@ fun k →
loop (snd (mat dim b)) @@ fun j →
mat incr c i j @@ genlet k (fun () → mat get a i k) ∗

genlet j (fun () → mat get b k j)
end

We extend LAintcode by adding genlet, the new realization of tind and the new
implementation of loop. In thus extended LAintcode opt, genlet k (fun () → 〈e〉)
evaluates to a future-stage variable 〈t〉 bound by let t = e in ... inserted at the
beginning of the loop with the index k. LAintcode opt has to rely [10] on delimited
control effects, provided by the library delimcc. MMULopt(LAintcode opt).mmul
then generates the following code

〈fun a 7 b 8 c 9 →
for i 10 = 0 to (Array. length a 7) − 1 do
for i 11 = 0 to (Array. length b 8) − 1 do
let t 14 = a 7.(i 10).(i 11) in
for i 12 = 0 to (Array. length b 8.(0)) − 1 do
let t 13 = b 8.(i 11).(i 12) in
c 9.(i 10).(i 12) ← c 9.(i 10).(i 12) + t 14 ∗ t 13

done done done〉
The expressions to access the elements of a and b are let-bound; a is accessed
outside the innermost loop. The code motion is evident.

The operation genlet is powerful but dangerous. If we by mistake instead of
genlet j (fun () →mat get b k j) in MMULopt.mmul write genlet k (fun () →
mat get b k j), we pull the code generated by mat get b k j out of the innermost
loop as well. The old MetaOCaml then produces:

〈fun a 7 b 8 c 9 →
for i 10 = 0 to (Array. length a 7) − 1 do
for i 11 = 0 to (Array. length b 8) − 1 do
let t 13 = b 8.(i 11).(i 12) in
let t 14 = a 7.(i 10).(i 11) in
for i 12 = 0 to (Array. length b 8.(0)) − 1 do
c 9.(i 10).(i 12) ← c 9.(i 10).(i 12) + t 14 ∗ t 13

done done done〉

The Design and Implementation of BER MetaOCaml 93

Although the generated code is simple, it is already hard to see what is wrong
with it: as typical, variables in the generated code have unhelpful names. If we
look carefully at the let-binding t 13, we see that the variable i 12, the index of
the innermost loop, escaped its binding, creating the so-called scope extrusion.
The escaped variable is unbound in the generated code above. More dangerously,
it may be accidentally captured by another binding. The generated code will
then successfully compile; the resulting bug will be very difficult to find. Since
the scope extrusion has not been detected, it is hard to determine what part of
the generator did it by looking only at the final result.

In contrast, BER MetaOCaml detects the scope extrusion with a good diag-
nostic. For example, executing the generator with the mistaken genlet aborts the
execution when b 8.(i 11).(i 12) has just been moved out of the innermost loop,
with the error that identifies the expression containing the escaped variable (the
matrix element access), the name of the variable and where it was supposed to
be bound (in the loop header). No bad code is hence generated. The exception
backtrace further helps find the mistake in the generator6.

We have seen the benefit of effects in code generation, for loop-invariant code
movement. The same technique can also do loop interchange and loop tiling.
We have also seen the danger of generating ill-scoped code and MetaOCaml’s
detecting the scope extrusion as soon as it occurs. The section hopefully has
given the taste of generator abstractions; see the poster [9] for an elaborated
example of using the OCaml module system to state an algorithm in a clear way
and then apply various optimizations.

3 Design of BER MetaOCaml

This section briefly overviews the design of BER MetaOCaml and outlines our
approach to implementing staging. The following two sections will explain in
depth two particularly subtle issues, user-defined types and the scope extrusion
check. Our guiding principle is to make MetaOCaml easier to maintain and use
by making its changes to the OCaml code base smaller and modular.

MetaOCaml has to modify OCaml to extend its syntax with staging anno-
tations and its type checker with the notion of the present and future stages.
Unlike the original MetaOCaml, BER MetaOCaml tries to minimize the modi-
fications and hence makes different design decisions, see below and §4. Whereas
the original MetaOCaml was a fork, BER MetaOCaml is maintained as a set of
patches to OCaml plus a library. Such an organization reflects the separation be-
tween the MetaOCaml ‘kernel’ and ‘user-level’. The kernel (patched OCaml) is
responsible for building and type-checking code values. The user-level processes
closed code values, e.g., prints or runs them. As with the kernel/user-level sepa-
ration in an OS, adding a new way to run code (e.g., to compile to Javascript) is

6 The real linear-algebra DSL will unlikely offer genlet to the end-user. Rather, genlet
will be incorporated into mat get, where it could compare loop indices, determine
which one corresponds to an innerer loop, and insert let appropriately. The scope
extrusion may well happen however during the development of the DSL.

94 O. Kiselyov

like writing a regular library, which requires no patching or recompilation of the
MetaOCaml system. The separation lessens the maintenance burden and makes
it easier to contribute to MetaOCaml.

Here is an example of how BER MetaOCaml minimizes changes to OCaml.
For the most part, type checking is invariant of the stage (bracketing) level,
with a notable exception [7]. Identifiers bound by future-stage binding forms
should be annotated with their stage level. The original MetaOCaml added a
field val level to the value description record describing an identifier in the type
checker. This change has lead to the cascade of patches at every place a new
identifier is added to the type environment. A new OCaml version typically
modifies the type checker quite heavily. Integrating all these modifications into
MetaOCaml, accounting for the new field, is a hard job. It is avoidable however:
we may associate identifiers with levels differently, by adding a new map to the
environment that tells the level of each future-stage identifier. Any identifier
not in the domain of that map is deemed present-stage. This alternative helped
BER MetaOCaml significantly reduce the amount of changes to the OCaml type
checker and make MetaOCaml more maintainable7.

BER MetaOCaml follows the general staging implementation approach by
Taha et al.[5]. After type checking, the code with brackets and escapes is post-
processed to translate brackets and escapes into expressions that produce code
values8. These expressions are built from primitive code generators, which pro-
duce a representation of code values; in MetaOCaml, it is OCaml’s abstract
syntax tree, called Parsetree. Other possible code representations (e.g., the inter-
mediate language or the typed AST) are more difficult to compose. The post-
processing of the type-checked code by and large implements the rules in [5,
Figure 3]. (The translation of binding forms is new and described in §5.) For
example, <succ 1> is translated to the pure OCaml expression (slightly abbre-
viated) build apply [Pexp ident ”succ”; Pexp constant (Const int 1)] which will
construct, at run-time, a Pexp apply node of the Parsetree. Here, Pexp ident and
Pexp constant are constructors of Parsetree.

With staging annotations eliminated after the translation, the original OCaml
back-end (compiling to the intermediate language, optimizing, and generating
the target code) can be used as it is. To run the generated code, we follow the
pattern in the OCaml top-level, which also needs to compile and execute the
(user-entered) code. Having given an overview of BER MetaOCaml, we describe
in depth two of its features, in which BER MetaOCaml significantly differs from
the original one.

7 The first version of BER MetaOCaml modified 35 files in the OCaml distributions,
which is 23 fewer files compared to the original MetaOCaml. The patch to the
distribution was 59KB in size, reduced to 48KB in the current version.

8 Doing such a translation before type checking is tantalizing because it can be done
as a pre-processing step and requires no changes to OCaml. Alas, we will not be able
to support let-polymorphism within brackets; also, the value restriction will preclude
polymorphic code values like 〈[]〉.

The Design and Implementation of BER MetaOCaml 95

4 Staging User-Defined Data Types

We now illustrate the first of the two distinct features of BER MetaOCaml: the
different handling of values of user-defined data types within brackets.

Algebraic data types and records are one of the salient features of OCaml,
which, alas, have not been considered in staged calculi. The theory therefore
gives no guidance on staging the code with constructors of user defined data
types, such as the following:

type foo = Foo | Bar of int
〈function Bar → Foo〉

The generated program, which can be stored in a file, is function Bar →Foo.
Compiling this file will fail since Foo and Bar are not defined. The problem is how
to put a data type declaration into the generated code, which is syntactically an
expression and hence cannot contain declarations.

The old MetaOCaml dealt with the problem by modifying the AST represent-
ing the generated code and adding a field for declarations (actually, the entire
type environment) [5, §6.1]. Such a change sent ripples of modifications through-
out the type checker, and was one of the main reasons for the divergence from
OCaml, which contributed to MetaOCaml’s demise.

We observe that there is no problem compiling the code such as true, raise
Not found, Some [1] and {Complex.re = 1.0; im = 2.0} – even though labels like
re and data constructors like Some are likewise undefined within the compilation
unit. However, the data types bool, option, list, Complex.t are either Pervasive or
defined in the (separately compiled) standard library. External type declarations
like those of Complex.t are found in the compiled interface complex.cmi, which
can be looked up when the generated code is compiled. This observation leads to
the constructor restriction: “all data constructors and record labels used within
brackets must come from the types that are declared in separately compiled
modules”. The code at the beginning of the section is rejected by BER Meta-
OCaml. The type declaration foo must be moved into an interface file, separately
compiled, and be available somewhere within the OCaml library search path –
as if it were the standard library type.

Thanks to the constructor restriction, BER MetaOCaml evades the thorny
problem of user-defined data types and eliminates the AST modifications by
the original MetaOCaml, bringing BER MetaOCaml much closer to OCaml and
making it significantly more maintainable.

We are researching the possibility to cleanly lift the constructor restriction.
On the other hand, from the experience with BER MetaOCaml (for example,
project [9] and the MetaOCaml tutorial at CUFP 2013) the restriction does not
seem to be bothersome or hard to satisfy.

5 Detecting Scope Extrusion

MetaOCaml lets us manipulate open code. This section describes the complexi-
ties and trade-offs in making sure all free variables in such code will eventually

96 O. Kiselyov

be bound, by their intended binders. BER MetaOCaml reverses the choice of
its predecessors and trades an incomplete type-level check for a comprehensive
and more informative dynamic scope-extrusion check. A well-typed BER Meta-
OCaml program may attempt, when executed, to run an open code or construct
ill-scoped code – the code with a free variable that ‘escaped’ its binder and
hence will remain unbound or, worse, bound accidentally. BER MetaOCaml
detects such attempts early, aborting the execution of the generator with an
informative error message. If the code is successfully generated, it is guaranteed
to be well-typed and well-scoped – no matter what effects have been used in its
generation.

5.1 Scope-Extrusion Check in Action

Manipulating open code is overshadowed by two dangers. First, the operation
to run the code may be applied to the code still under construction:

〈fun x y → ∼ (let z = !. 〈x+ 1〉 in 〈z〉)〉 (1)

The old MetaOCaml rejects this code with the type error:9

〈fun x y → ∼ (let z = .! 〈x+ 1〉 in 〈z〉)〉
ˆˆˆˆˆˆˆ

.! error : α not generalizable in (α, int) code

BER MetaOCaml type checks this generator but its evaluation aborts with the
run-time exception:

Exception: Failure
”The code built at Characters 29−32:
〈fun x y → ∼ (let z = !. 〈x+ 1〉 in 〈z〉)〉

ˆˆˆ
is not closed : identifier x 1 bound at Characters 6−7:
〈fun x y → ∼ (let z = !. 〈x+ 1〉 in 〈z〉)〉

ˆ
is free ”.

The error message is more informative, explicitly telling the name of the free
variable and pointing out, in the generator source code, the binder that should
have bound it.

The second, far more common danger comes from effects: a piece of code with
a free variable may be stored within the scope of its future-stage binder, to be
retrieved from outside:

let r = ref 〈0〉 in
let = 〈fun x → ∼ (r := 〈x+ 1〉; 〈x〉)〉 in
〈fun y → ∼ (! r)〉 ;;

(2)

(A free variable can also be smuggled out of its binder by raising an excep-
tion containing open code, or through control effects, shown in §2.1). The old

9 In the old MetaOCaml, the operation to run the code was a special form spelled .!.
In BER MetaOCaml, it is the regular function and spelled !., following the OCaml
lexical convention for prefix operators.

The Design and Implementation of BER MetaOCaml 97

MetaOCaml accepts this generator and lets it run to completion, producing
〈fun y 2 →(x 1 + 1)〉, which can be further spliced-in. It is only when we at-
tempt to execute the final code we get a run-time exception Unbound value x 1.
If we save the code in a file for offline compilation, the error will be discovered
only when we later compile this file.

Although BERMetaOCaml also accepts generator (2), it does not let it run to
completion. The generator now produces nothing: it aborts with the informative
exception:

Exception: Failure
”Scope extrusion detected at Characters 96−111:

〈fun y → ∼ (! r)〉 ;;
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

for code built at Characters 67−70:
let = 〈fun x → ∼ (r := 〈x+ 1〉; 〈x〉)〉 in

ˆˆˆ
for the identifier x 5 bound at Characters 52−53:

let = 〈fun x → ∼ (r := 〈x+ 1〉; 〈x〉)〉 in
ˆ”.

5.2 The Trade-Offs of Environment Classifiers

Previous versions of MetaOCaml employed so-called environment classifiers [11]
to prevent the first, quite rare, danger at compile-time: example (1) was rejected
by the type checker. Environment classifiers do not help in detecting scope extru-
sion errors. BER MetaOCaml retired environment classifiers and introduced the
dynamic scope extrusion check. The problem with example (1) now reported
when running the generator rather than when type-checking it. The problem
with example (2) is now reported, early and informatively.

Removing the type-level feature and introducing the dynamic check is the sig-
nificant departure of BER MetaOCaml from the original system. We summarize
this static-dynamic trade-off as follows.

Accepting More Good Programs. BERMetaOCaml accepts programs that
did not type check previously, for example, 〈fun x →!. x〉. With environ-
ment classifiers, type-checking this code requires impredicative polymor-
phism. More practically relevant, the operation to run the code was a special
form in the old MetaOCaml, with its special typing rules (akin to runST in
Haskell). It was not first-class. In BER MetaOCaml, (!.) is the ordinary
function. Removing environment classifiers simplified the type system. Pre-
viously, a code value 〈1〉 had the type (α,int) code where α is the classifier.
When defining a new data type, we had to parameterize it by the classifier
if the data type may contain code values. This extra type parameter caused
not only cosmetic problems: it notably hindered the use of module system to
structure generators. For example, LAintcode in §2.1 could not be an imple-
mentation of the signature LINALG. To accommodate code types and their
classifiers, all abstract types in LINALG should have an extra type param-
eter, even though LINALG may have implementations without code values.
When writing signatures we had to anticipate their implementations.

98 O. Kiselyov

Accepting More Bad Programs. The old MetaOCaml rejected example (1)
before running the generator. BER MetaOCaml detects the problem only at
run-time. Extensive experience with MetaOCaml showed that the problem-
atic code like (1) is exceedingly rare. Because of the special typing rules of
.!, this operator was essentially usable only at the top level; one rarely sees it
in subexpressions. Furthermore, by its very design an environment classifier
represents just a staging level rather than an individual variable. Therefore,
the type checker can tell that the code to run was open but it cannot tell the
name of its free variable. Although BER MetaOCaml exception is raised at
run-time, the error message refers to the free variable by its name, pointing
out its binder.

Detecting Previously Undetected Error. Environment classifiers do not
help in detecting scope extrusion. A well-typed generator could produce ill-
scoped code. In contrast, in BER MetaOCaml the generator stops as soon
as the ill-scoped piece of code is about to be used in any way, spliced, run,
or shown. It throws an exception with a fairly detailed and helpful error
message, pointing out the variable that got away and the location of the
extrusion, in terms of the source code of the generator. Since the error is an
exception, the exception stack backtrace further describes exactly which part
of the generator caused that variable leak. Previously, we would discover the
problem, in the best case, only when compiling the generated code. It could
be quite a challenge in figuring out which part of the generator is to blame.

Implementation Complexity. On the whole, environment classifiers are eas-
ier to implement. Checking for scope extrusion is not as straightforward as
it may seem, as described in the next section. It requires more code, which
is however isolated in one MetaOCaml-specific module, mainly, outside the
type checker.

Run-Time Cost. The scope extrusion check adds run-time overhead to code
generation. As the next section mentions, micro-benchmarks and experience
showed the overhead to be negligible.

The fact that the old MetaOCaml let a well-typed, effectful generator produce
ill-scoped code must not be confused with an implementation bug. It was not a
coding error. No practical approaches to statically prevent scope extrusion were
known at the time. Even now, there are only hopeful candidates relying on fancy
types. Environment classifiers are a remarkable achievement: they are relatively
simple to implement, they fit within OCaml type checking and inference, and
they statically preclude a class of scoping problems, illustrated by example (1).
At the time of writing the original MetaOCaml, it was unclear which of the
two scoping problems, example (1) or (2), turns out more common in practice.
The decision to retire the classifiers was made in light of all the accumulated
experience with MetaOCaml.

5.3 Implementing the Scope-Extrusion Check

Detection of scope extrusion may appear straightforward: traverse the result
of a generator looking for unbound identifiers. Instead of traversing, we may

The Design and Implementation of BER MetaOCaml 99

annotate each code value with a list of free variables therein; code generation
combinators will combine annotations as they combine code values. The code to
be run must be annotated with no free variables – reflecting the requirement only
closed code be run. That requirement is necessary but not sufficient however.
Detecting the scope extrusion by checking the result of the entire generator is
too late: it is hard to determine which part of the generator caused the extrusion.
Furthermore, scope extrusion does not necessarily lead to an unbound variable:
the escaped variable may be accidentally captured by a stray binder. We need
early detection of scope extrusion; first we need a precise criterion for it.

The staging theory lets us define scope extrusion and identify it early. The
most suitable is not the λU -staged calculus by Taha et al. [5, Fig.1] with brackets
and escapes but the ‘single-stage target language’ of code-generation combinators
[5, Fig.2], which we call λAST . The latter underlies MetaOCaml and is proven
to simulate the λU [5, Corollary 1]. The insight comes from translating the
characteristic example 〈fun x → ∼(body 〈x〉)〉 (where body is a variable bound
somewhere in the environment) to code combinators, and evaluating it by the
rules of λAST . The result, to be called efun, is presented in a sugared form
compared to [5]:

build fun simple ”x” (fun x → body (Var x))

where Var (and Lam below) are self-explanatory data constructors of the code
representation data type, AST. Our sugared translation is a higher-order ab-
stract syntax (HOAS) representation of the original future-stage function: the
future-stage variable and the binder are translated to the present-stage variable
and the binder, but of a code type. The big-step evaluation relation of λAST has
the form N;e �v where e is an expression, v is its value and N is a sequence of
names ν (which are called symbols in [5] and denoted α). We obtain from [5,
Fig.2] that N;efun �Lam(ν,v) provided N,ν; (fun x →body (Var x)) ν �v and
ν is chosen to be not in N. During the evaluation of body (Var ν), Var ν is the
code of the free variable, whose name however appears in the name environment
N,ν. The body may store Var ν in a mutable cell. If it is retrieved after efun is
evaluated, ν would no longer appear in the name environment current at that
point. That is scope extrusion.

The final insight – which leads to the implementation and accommodates
delimited control – is that the name environment N is the dynamic environment;
ν created during the evaluation of build fun simple is in the dynamic scope of the
latter. In other words, build fun simple dynamically binds the name of its free
variable during the evaluation of its body.

Definition. At any point during the evaluation, an occurrence of an open-code
value with a free variable whose name is not dynamically bound is called scope
extrusion.10

10 Normally, dynamic scope cannot be reentered. Therefore, a scope extrusion that
occurs at one point in the evaluation will persist through the end. Delimited con-
trol however can reenter once exited dynamic scope. Therefore, our definition could
potentially raise false alarm. We have not observed such cases in practice.

100 O. Kiselyov

This definition clarifies our intuitions. It lets us detect scope extrusion without
waiting for the result of the generation. It also has a straightforward implementa-
tion, without representing N explicitly. The function build fun simple (the actual
name of the code-generating combinator) creates a fresh variable name and dy-
namically binds it. Each code value carries the list (heap actually, for ease of
merging) of its free variables. Every code-generating combinator verifies that
every free variable of the argument code value is currently dynamically bound.
A scope-extrusion exception is thrown otherwise. App. B gives further details.

Microbenchmarks (generating code with up to 120 free variables) and expe-
rience shows that the scope-extrusion check imposes a linear (in the number of
free variables) and negligible cost.

We have described a dynamic, generation-time test, for scope extrusion. A
variable that got away is detected as soon as its code is used in any way (spliced,
printed, run). The check generates very helpful error messages with precise lo-
cation information. The location refers to the generator code (rather than the
generated code). The test works even in presence of delimited control.

6 Related Work

Building code by quasi-quotation is the hallmark of Lisp (see [12] for overview).
Any effects are permitted in code generation but the result is not even as-
sured well-formed. Scheme macros support hygiene to some extent (see [13]
for overview) but the generator is written in a restricted language of syntax
transformers, which permits no effects.

Metaprogramming in Haskell is quite similar to that in Lisp. The original
Template Haskell (TH) [14] provides anti- and un-quotation, generates declara-
tions as well as expressions, and permits arbitrary IO effects in the generator. On
the flip side, TH is unhygienic. The constructed code may well be ill-typed, and
has to be type checked when spliced into the main program (in compile-time
code generation) or run, using GHC API. Alas, type errors reported at that
stage come with poor diagnostics and refer to the generated code rather than
the generator. Furthermore, mistakenly bound variables escape detection. Re-
cently, Haskell gained so-called typed template Haskell expressions TExp. Like
MetaOCaml, they construct only expressions (rather than, say, declarations)
and are typed checked as being constructed, hence ensuring the generated code
is well-typed. TExp offer no run operation; to prevent scope extrusion, any effects
during code generation are disallowed.

Code generation is part of partial evaluation (PE); hence a partial evaluator
that handles effectful code and performs effects at specialization time has to
contend with a possible scope extrusion. Since the user of PE has no direct con-
trol over the code generation or specialization, scope extrusion can be prevented
by the careful design of PE [15]. Explicit staging annotations let the program-
mer directly control specialization, and take blame for scope extrusion. BER
MetaOCaml places the blame early (before the code generation is finished) and
precisely, within the source code of the generator.

The Design and Implementation of BER MetaOCaml 101

Scala-Virtualized [16] successfully demonstrates an alternative to quasi-
quotation: code-generating combinators. Normally, using them directly is in-
convenient. The pervasive overloading of Scala however makes code generators
look like ordinary expressions. For example, 1 + 2 may mean either the ad-
dition of two numbers or building the code for it, depending on the type of
that expression. Scala-Virtualized takes the overloading to extreme: everything
is an (overloaded) method call, including conditionals, loops, pattern-matching,
record declarations, type annotations and other special forms. DSL expressions
may look like ordinary Scala code but produce various code representations,
which can then be optimized and compiled to target code. Lightweight Modu-
lar Staging (LMS) [17] further provides code representations used in the Scala
compiler itself. A DSL writer then gets for free the compiler optimizations like
common-subexpression elimination, loop fusion, etc. The many DSLs built with
LMS proved the approach successful.

Code-generating combinators however cannot easily express polymorphic let
(see §3) and often polymorphic code. LMS was not used for DSL with polymor-
phism. In contrast, polymorphic let is common in the generated OCaml code.
With regards to hygiene and scope extrusion, LMS takes the same pragmatic
approach as Lisp.

7 Conclusions and Further Plans

We have presented BER MetaOCaml, a superset of OCaml for writing, conve-
niently and with ease of mind, programs that generate programs. BER Meta-
OCaml continues the tradition of the original MetaOCaml by Taha, Calcagno
and collaborators, remaining largely compatible with it. There are many design
and implementation differences under the hood. They are motivated by the de-
sire to make it easier to maintain and contribute to MetaOCaml, to make it
more convenient to use and to catch more errors, and earlier. The motivations
are somewhat contradictory, and we had to make choices and test them through
experience. We strove to report errors as informatively as possible.

BER MetaOCaml poses questions for the staging theory, of accounting for
user-defined data types, objects, modules and GADTs. On the development
agenda are adding more ways to ‘run’ code values, by translating them to C,
Fortran, LLVM, Verilog and others. MetaOCaml can then be used for generating
libraries of specialized C, etc. code.

Active development, new modular structure, new features of MetaOCaml will
hopefully attract more users and contributors, and incite future research into
type-safe meta-programming.

Acknowledgments. I am very grateful to Walid Taha for introducing me to
MetaOCaml, for his encouragement, and a great number of stimulating con-
versations. I thank Cristiano Calcagno, Jacques Carette, Jun Inoue, Yukiyoshi
Kameyama and Chung-chieh Shan for many helpful discussions and encour-
agement. Many helpful comments by the anonymous reviewers are gratefully
acknowledged.

102 O. Kiselyov

References

[1] Swadi, K., Taha, W., Kiselyov, O., Pašalić, E.: A monadic approach for avoiding
code duplication when staging memoized functions. In: PEPM, pp. 160–169 (2006)

[2] Carette, J., Kiselyov, O.: Multi-stage programming with functors and monads:
Eliminating abstraction overhead from generic code. Science of Computer Pro-
gramming 76, 349–375 (2011)

[3] Kiselyov, O., Taha, W.: Relating FFTW and split-radix. In: Wu, Z., Chen, C., Guo,
M., Bu, J. (eds.) ICESS 2004. LNCS, vol. 3605, pp. 488–493. Springer, Heidelberg
(2005)

[4] Lengauer, C., Taha, W. (eds.) MetaOCaml Workshop 2004, Special Issue on the
1st MetaOCaml Workshop (2004); 62(1) of Science of Computer Programming
(2006)

[5] Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage languages
using ASTs, gensym, and reflection. In: Pfenning, F., Macko, M. (eds.) GPCE
2003. LNCS, vol. 2830, pp. 57–76. Springer, Heidelberg (2003)

[6] Kiselyov, O.: BER MetaOCaml N101 (2013),
http://okmij.org/ftp/ML/MetaOCaml.html

[7] Calcagno, C., Moggi, E., Taha, W.: ML-like inference for classifiers. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 79–93. Springer, Heidelberg (2004)

[8] Kiselyov, O., Swadi, K.N., Taha, W.: A methodology for generating verified com-
binatorial circuits. In: EMSOFT, pp. 249–258 (2004)

[9] Kiselyov, O.: Modular, convenient, assured domain-specific optimizations: Can
generative programming deliver? Poster at APLAS (2012),
http://okmij.org/ftp/meta-programming/Shonan1.html

[10] Kameyama, Y., Kiselyov, O., Shan, C.-c.: Shifting the stage: Staging with delim-
ited control. Journal of Functional Programming 21, 617–662 (2011)

[11] Taha, W., Nielsen, M.F.: Environment classifiers. In: POPL, pp. 26–37 (2003)
[12] Bawden, A.: Quasiquotation in Lisp. In: PEPM. Number NS-99-1 in Note, pp.

4–12. BRICS (1999)
[13] Herman, D.: A Theory of Typed Hygienic Macros. PhD thesis, Northeastern Uni-

versity, Boston, MA (2010)
[14] Sheard, T., Peyton Jones, S.L.: Template meta-programming for Haskell. In:

Chakravarty, M.M.T. (ed.) Haskell Workshop, pp. 1–16 (2002)
[15] Thiemann, P., Dussart, D.: Partial evaluation for higher-order languages with

state (1999),
http://www.informatik.uni-freiburg.de/~thiemann/papers/mlpe.ps.gz

[16] Rompf, T., Amin, N., Moors, A., Haller, P., Odersky, M.: Scala-Virtualized:
linguistic reuse for deep embeddings. Higher-Order and Symbolic Computation
(2013)

[17] Rompf, T., Odersky, M.: Lightweight modular staging: a pragmatic approach to
runtime code generation and compiled DSLs. Commun. ACM 55, 121–130 (2012)

http://okmij.org/ftp/ML/MetaOCaml.html
http://okmij.org/ftp/meta-programming/Shonan1.html
http://www.informatik.uni-freiburg.de/~thiemann/papers/mlpe.ps.gz

On Cross-Stage Persistence in Multi-Stage
Programming

Yuichiro Hanada and Atsushi Igarashi

Graduate School of Informatics, Kyoto University, Kyoto, Japan

Abstract. We develop yet another typed multi-stage calculus λ�%. It extends
Tsukada and Igarashi’s λ� with cross-stage persistence and is equipped with all
the key features that MetaOCaml-style multi-stage programming supports. It has
an arguably simple, substitution-based full-reduction semantics and enjoys basic
properties of subject reduction, confluence, and strong normalization. Progress
also holds under an alternative semantics that takes staging into account and mod-
els program execution. The type system of λ�% gives a sufficient condition when
residual programs can be safely generated, making λ�% more suitable for writing
generating extensions than previous multi-stage calculi.

1 Introduction

Multi-stage programming (MSP) is a programming paradigm in which a program-
mer can manipulate, generate, and execute code fragments at run time. These features
enhance reusability of programs and make optimizations easier by writing program spe-
cializers [1]. A number of programming languages that support multi-stage program-
ming have been proposed [2–7], not to mention Lisp and Scheme, and provide different
sets of language constructs for MSP.

Among these MSP languages, MetaOCaml provides (hygienic) quasiquotation
(called brackets and escape), eval (called run) [3]. Brackets 〈e〉 are a quotation of ex-
pression e to make a code value and escape (written ˜e) splices the value of e, which is
supposed to be a quotation, into the surrounding quotation. For example, the following
MetaOCaml expression1

let a = 〈1 + 2〉 in 〈˜a ∗ ˜a〉
evaluates to 〈(1+2) ∗ (1+2)〉. Run (written run e here2) evaluates the expression inside
a given code value, and so

run (let a = 〈1 + 2〉 in 〈˜a ∗ ˜a〉)
yields 9 (without brackets).

Another interesting feature of MetaOCaml is called cross-stage persistence (CSP),
which allows a computed value to be put into brackets: for example, the expression

let a = 1 + 2 in 〈a ∗ a〉
1 Actually, 〈e〉 is written .<e>. and ˜e is written .˜e in MetaOCaml.
2 In MetaOCaml, .!e is used for run e.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 103–118, 2014.
c© Springer International Publishing Switzerland 2014

104 Y. Hanada and A. Igarashi

(without escapes on a inside the brackets) is valid in MetaOCaml and yields 〈3 ∗ 3〉.
Here, a is bound to the integer value 3 and CSP (implicitly applied to variable refer-
ences) allows referencing a variable declared outside of the brackets. Note that, as Taha
and Sheard discuss [3], CSP is not lifting, which converts a value into its syntactic rep-
resentation (although CSP for basic values can be implemented by lifting). In fact, CSP
can be applied to a variable denoting any value, including functions, references, or even
file descriptors, which do not always have syntactic representations. CSP is a very im-
portant feature in practice, because a programmer can freely use library functions inside
brackets as in 〈List.map (λx.x + 1) [3; 4]〉.

Most type systems for MSP languages aim at ensuring safety of the code generated
by multi-stage programs, as well as that of multi-stage programs themselves. A chal-
lenging issue was how to prevent run from executing open code (namely, code values
that contain free variables), while allowing manipulation of open code, which is neces-
sary to generate efficient code. Taha and Nielsen [8] developed a multi-stage calculus
λα with all the features above and proved that its type system guaranteed safety in the
above sense. A key idea in the type system of λα is the introduction of environment
classifiers (or simply classifiers). Roughly speaking, classifiers statically keep track of
information on free variables in code values and prevents code value containing free
variables from being run. Later, its type system was adapted to ML-style type recon-
struction and has become a basis of MetaOCaml [9].

Tsukada and Igarashi [10] proposed another typed MSP calculus λ�, whose type
system, which uses a classifier-like mechanism, can be regarded as a certain modal logic
through the Curry–Howard isomorphism. Although λ� supports only brackets, escape,
and run, its operational semantics has a more “standard flavor” than that of λα (and
MetaOCaml) in that reduction can be defined in terms of (a few kinds of) substitutions.

In this paper, we present yet another multi-stage calculus λ�%, which is an extension
of λ� with CSP and study its properties. We give the semantics of λ�% in two ways:
full nondeterministic reduction, which allows any redex (even inside quotations) to be
reduced, and (call-by-value) staged reduction, which is a subrelation of the full reduc-
tion and allows only a certain redex at the lowest stage to be reduced. Interestingly, the
semantic “delta” over λ�% is surprisingly small, making proofs from λ� easy to extend
to λ�%. Our technical contributions are summarized as follows:

– we give the formal definition of λ�% with its syntax, type system, full reduction,
and staged reduction;

– for the full reduction, we prove subject reduction, strong normalization and conflu-
ence; and

– for the staged reduction, we prove progress and a property called Type-Safe Resid-
ualization, which means that a well-typed program of code type yields a code value
whose body is also a well-typed and serializable program.

We also discuss relationship between CSP and program residualization and point out
a problem that, although MetaOCaml enjoys a variant of Type-Safe Residualization,
MetaOCaml is not very suitable for writing offline generators because of CSP. Our type
system introduces residualizable code types to solve the problem.

On Cross-Stage Persistence in Multi-Stage Programming 105

1.1 Organization of the Paper

Section 2 gives an informal overview of our calculus λ�% after a brief review of λ�.
Section 3 defines the syntax, type system, and full reduction of λ�% formally and shows
relevant properties. Then, Section 4 defines the staged semantics and shows Progress
and Type-Safe Residualization. Finally, Section 6 discusses related work and Section 7
gives concluding remarks.

2 Informal Overview of λ�%

In this section, we give an informal overview of λ�% after reviewing λ� [10], on which
λ�% is based.

2.1 λ�

In λ�, brackets and escapes are written “�α M” and “�α M”, respectively. For example,
the first example in Section 1 can be represented as:

M1
def
= (λa : τ.�α(�α a ∗ �α a)) (�α 1 + 2)

where τ is a suitable type for code values, which we discuss below. In addition to ordi-
nary β-reduction, there is a reduction rule to cancel a pair of brackets under an escape:

�α(�α M) −→ M.

So, M1 reduces to �α(1 + 2) ∗ (1 + 2) in three steps. The type system assigns type �ατ,
which means the type of code of type τ, to �α M when M is of type τ. The type system
also enforces the argument to �α to be of type �ατ to prevent values other than code
from being spliced into a quotation.

The subscript α is called transition variable, which intuitively denotes how “thick”
the bracket is. A transition variable can be abstracted byΛα.M and instantiated by an ap-
plication “M A”. Here, A (called transition) is a (possibly empty) sequence of transition
variables α1 · · ·αn. For example, (Λα.(�α(λx : int.x))) (βγ) reduces to �βγ(λx : int.x),
which is an abbreviation of �β �γ(λx : int.x). A transition abstraction Λα.M is given
type ∀α.τ if the type of M is τ and an application M A is given type τ[α := A] if the type

of M is ∀α.τ. For example, M2
def
= Λα.(�α(λx : int.x)) is given type ∀α. �α (int→ int)

and M2 (βγ) is �β�γ(int→ int). Transition variables are similar to environment classi-
fiers in λα and the forms of terms also look like those in λα. One notable difference is
that, in λα, a classifier abstraction can be applied only to a single classifier.

One pleasant effect of generalizing transition applications is that run M can be ex-
pressed as a derived form, rather than a dedicated construct. Namely, run M desugars
into M ε, application to the empty sequence of transition variables. For example, the
second example in Section 1 can be represented as (Λα.M1) ε, which first reduces to
(Λα.�α((1 + 2) ∗ (1 + 2)))ε (by reducing the body of Λα.) and then to �ε(1+2)∗ (1+2),
which, as we shall see later, is identified with (1 + 2) ∗ (1 + 2). Notice that �α standing
for quotation has disappeared by substitution of ε for α. From the typing point of view,
run takes ∀α. �α τ and returns τ, representing the behavior of run. It is important that
run takes ∀-types, because typing rules guarantee that a term of type ∀α. �α τ does not
contain free variables inside �α, making it safe to remove �α.

106 Y. Hanada and A. Igarashi

2.2 Adding CSP to λ�

Next, we informally explain how we extend λ� with CSP to develop λ�%. Unlike
MetaOCaml, where CSP is implicit, λ�% has a dedicated construct %α M for CSP (as
in Nielsen and Taha [8] and Benaissa et al. [11]). For example, the third example in
Section 1 is represented as:

M3
def
= (λa : int.Λα.�α(%α a ∗%α a)) (1 + 2).

Call-by-value reduction leads to Λα.�α(%α 3 ∗%α 3), which we consider is already a
value. It may appear reasonable to allow reduction to remove % and regard Λα.�α 3 ∗ 3
as a value, but such reduction means that the run-time value 3 is converted to an integer
literal and lifted into a quotation. As we mentioned already, however, lifting is not
always possible, so we reject this idea.

Instead, we consider the CSP operator just a syntactic marker waiting for run to
dissolve the surrounding brackets: for example, run M3 (namely M3 ε) reduces first
to (Λα.�α(%α 3 ∗%α 3)) ε and then to �ε(%ε 3 ∗ %ε 3), which will be identified with
3 ∗ 3. One amusing consequence of this interpretation is that we do not even have to
add reduction rules for %—just extending the definition of substitution of transitions
suffices.

Now we consider typing. In λ�, a type judgment is of the form Γ �A M : τ, in which
transition A stands for the stage of the term, or, roughly speaking, how many brackets
are surrounding M. Representative typing rules are those for � and �:

Γ �Aα M : τ
Γ �A �α M : �ατ

(�)
Γ �A M : �ατ
Γ �Aα �α M : τ

(�)

The rule � means that a quotation is given a code type at stage A if its body is well
typed at the next stage Aα and � is its converse.

Then, a straightforward rule for CSP would be something like

Γ �A M : τ
Γ �Aα %α M : τ

It is very similar to �, but M can be of an arbitrary type. Actually, this rule works as far
as standard type safety is concerned: a term %α M interacts with its surrounding context
only when ε is substituted for α but then, %α disappears and yields a term of type τ,
which is exactly what the context expects.

However, this rule does not quite work when we consider program residualization,
by which we mean that a generated code can be dumped into a file, just as partial
evaluators (and generating extensions) [12] do. We expect Type-Safe Residualization,
which means residual programs are type safe in the following sense:

If �ε M : �ατ and M −→∗ V for a value V , then V = �α N for some term N
such that �ε N : τ.

Notice that N has to be typed at stage ε in the conclusion. For example, if V = �α((λx :
int.x + 4) 5), then its body is well typed at stage ε without any problem. However, if

On Cross-Stage Persistence in Multi-Stage Programming 107

V = �α((%α(λx : int.x + 4)) 5), then its body (%α(λx : int.x + 4)) 5 is not well typed
because %α can appear only under �α. One way to sidestep this anomaly is to adjust the
statement to something like “N is typeable after removing occurrences of %α at stage
ε” so that we can consider �α((λx : int.x + 4) 5) instead of �α((%α(λx : int.x + 4)) 5),
but it would mean that residualization requires lifting of function values, which is not
feasible.

We solve this problem by distinguishing two kinds of transition variables (and two
kinds of code types thereby). A transition variable of one kind can be used in CSP
but cannot be used to annotate residual code, whereas the other kind can be used for
residual code but not for CSP. Typing rules ensure that a transition variable of the first
kind is instantiated only by the empty sequence. The property above holds only when α
is of the second kind.

3 λ�%

We now present λ�% in detail. In this section, we will define syntax, (full) reduction and
type system of λ�%, and prove subject reduction, strong normalization, and confluence.
In the next section, we will study call-by-value staged semantics.

3.1 Syntax

Let Σ and Π be countably infinite sets of transition variables, ranged over by α, β, and
γ, and variables, ranged over by x, y, and z, respectively. A transition, denoted by A and
B, is a finite sequence of transition variables; we write ε for the empty sequence and AB
for the concatenation of A and B.

The syntax of λ�% is defined by the following grammar.

Variables x, y, z ∈ Π
Transition variables α, β, γ ∈ Σ
Transitions A, B ∈ Σ∗
Types τ, σ, φ ::= b | τ→ τ | �α τ | ∀α.τ | ∀εα.τ
Terms M,N ::= x | λx : τ.M | M N | �α M | �α M

| Λα.M | M A | %α M

A type is a base type (ranged over by b), a function type, a code type or an α-closed
type (of two kinds). A code type �ατ, indexed by a transition variable, denotes a code
fragment of a term of type τ. Two kinds ∀α.τ and ∀εα.τ of α-closed types (where α
is bound) correspond to the form of transition abstraction Λα.M. As we will see, the
type system guarantees that the body M does not contain any free variable at any stage
containing α. The type constructor �α connects tighter than→ and→ tighter than the
two forms of ∀: for example, �ατ → σ means (�ατ) → σ and ∀α.τ → σ means
∀α.(τ→ σ).

In addition to the standard λ-terms, there are five more forms: �α M, �α M, Λα.M,
M A and %α M, as we discussed in the last section. A term of the form �α M represents
a code fragment M, and �α M unquote, or “escape.” Terms Λα.M and M A are an

108 Y. Hanada and A. Igarashi

abstraction and an instantiation of a transition variable, respectively. Finally, %α M is a
primitive for cross-stage persistence.

The term constructors �α, �α and %α connects tighter than the two forms of appli-
cations and, as usual applications are left-associative and the two binders extends as far
to the right as possible: for example, �α x y means (�α x) y and �α λx : τ.x y means
(�α λx : τ.x y) and Λα. λx : τ.x y means Λα. (λx : τ.(x y)).

As usual, the variable x is bound in λx : τ.M. The transition variable α is bound in
Λα.M. We identify α-convertible terms and assume the names of bound variables are
pairwise distinct. We write FV(M) and FTV(M) for the set of free transition variables
and the set of free variables in M, respectively. We omit their straightforward defini-
tions.

3.2 Reduction

Next, we define full reduction for λ�%. Before giving reduction rules, we need to define
(capture-avoiding) substitutions for the two kinds of variables. We omit the straight-
forward definition of substitution M[x := N] of a variable for a term but show the
definition of substitution [α := A] of a transition variable for a transition in Figure 1.
The definition is mostly straightforward. Note that, when a transition variable of � and
% is replaced, the order of transition variables is reversed because � and % are kind of
inverse to �.

Definition 1 (Reduction). The reduction relation M −→ M′ is the least relation closed
under the three computation rules (β, � �, and βΛ) and (full) congruence rules, which
we omit here.

(λx : τ.M) N −→ M[x := N] (β)

�α �α M −→ M (� �)

(Λα.M) A −→ M[α := A] (βΛ)

In addition to ordinary β-reduction, there are two new reductions. The rule � � means
that escape cancels a quotation. The other rule βΛ means that a transition abstraction ap-
plied to a transition reduces to the body of the abstraction, where the argument transition
is substituted for the transition variable. It is interesting to see that there is no reduction
rule that explicitly concerns CSP! As we have discussed already, a CSP is just a syn-
tactic marker waiting for the indexing transition variable to disappear by substitution of
the empty sequence.

We write −→∗ for the reflexive and transitive closure of −→ .
Using integer constants, arithmetic operations, the type of integers, and let, we show

an example reduction sequence below (where the underlines show the redexes):

let f = λx : int.x ∗ 2 in
(Λα.�α(%α (f 1) + (%α f) (1 + 2))) ε (β)
−→∗ (Λα.�α(%α 2 + (%α(λx : int.x ∗ 2)) (1 + 2))) ε
−→ (Λα.�α(%α 2 + (%α(λx : int.x ∗ 2)) 3)) ε (βΛ)
−→ 2 + ((λx : int.x ∗ 2) 3)
−→∗ 6

On Cross-Stage Persistence in Multi-Stage Programming 109

(Aα)[α := B] = (A[α := B])B

(Aα)[β := B] = (A[β := B])α (if α � β)

b[α := A] = b

(τ→ σ)[α := A] = (τ[α := A])→ (σ[α := A])

(�ατ)[α := A] = �A(τ[α := A])

(�βτ)[α := A] = �β(τ[α := A]) (if α � β)

(∀α.τ)[β := A] = ∀α.(τ[β := A]) (if α � β and α � A)

(∀εα.τ)[β := A] = ∀εα.(τ[β := A]) (if α � β and α � A)

x[α := A] = x

(λx : τ.M)[α := A] = λx : (τ[α := A]).(M[α := A])

(M N)[α := A] = (M[α := A]) (N[α := A])

(�β M)[α := A] = �β[α:=A](M[α := A])

(�β M)[α := A] = �β[α:=A](M[α := A])

(%β M)[α := A] = %β[α:=A](M[α := A])

(Λβ.M)[α := A] = Λβ.(M[α := A]) (if β � α and β � A)

(M B)[α := A] = (M[α := A]) (B[α := A])

Here, �Aτ, �A M, �A M and %A M (where A = α1α2 · · ·αn) denote:

�Aτ = �α1�α2 · · · �αn τ

�A M = �α1 �α2 · · ·�αn M

�A M = �αn �αn−1 · · ·�α1 M

%A M = %αn %αn−1 · · ·%α1 M.

In particular, �ε M = �ε M = %ε M = M.

Fig. 1. Transition Substitution

Since the reduction is full, there are other reduction sequences as well. The sequence
above is not staged in the sense that only redexes at the lowest stage are reduced (notice
that 1+ 2 appears under a quotation). We will give staged reduction in the next section.

3.3 Type System

Next, we develop the type system of λ�%. As discussed in Section 2, we distinguish two
kinds of transition variables and have two forms of types ∀α.τ and ∀εα.τ for Λα.M. The
former can be applied to any transitions but M cannot contain %α; the latter allows %α
but can be applied only to ε. For programming convenience, we introduce subtyping
between two kinds of ∀ types to allow promotion from the former type to the latter.

Subtyping. We first give the subtyping relation.

110 Y. Hanada and A. Igarashi

∀α.τ <: ∀εα.τ τ <: τ
τ <: σ σ <: φ

τ <: φ

τ1 <: σ1 σ2 <: τ2

σ1 → σ2 <: τ1 → τ2

τ <: σ
�ατ <: �ασ

τ <: σ
∀α.τ <: ∀α.σ

τ <: σ
∀εα.τ <: ∀εα.σ

Fig. 2. Subtyping Rules

Definition 2 (Subtyping). The subtyping relation τ <: σ is the least relation closed
under the rules in Figure 2.

The only interesting rule is the first one, which means that a Λ-abstraction that can be
applied to any transitions can also be used in a restricted context where only applications
to the empty transition are allowed. The other rules mean that subtyping is reflexive and
transitive and that type constructors are covariant except for function types, which are
contravariant in argument types.

Typing. A typing context in λ�% keeps track of not only types of variables but also
transitions, which represent which stage it is declared at.

Definition 3 (Typing Context). A typing context Γ is a finite mapping from variables
to pairs of a type and a transition.

We often write Γ, x : τ@A for the typing context Γ′ such that dom(Γ′) = dom(Γ) ∪ {x}
and Γ′(x) = (τ, A) and Γ′(y) = Γ(y) if x � y. Γ(x) = (τ, A) means “the variable x at the
stage A has the type τ.” We write FTV(Γ) for the set of free transition variables in Γ,
defined as

⋃
x∈dom(Γ) { FTV(τ) ∪ FTV(A) | (τ, A) = Γ(x) }

A type judgment is of the form Γ;Δ �A M : τ, read “the term M is given type τ
under the context Γ and Δ at stage A.” Here, Δ is a set of transition variables and records
∀ε-bound transition variables. Intuitively, transition variables in Δ denote the empty
sequence and cross-stage persistence is allowed only for them. Conversely, a code type
�ατ is residualizable if α � Δ.

Definition 4 (Typing). The typing relation Γ;Δ �A M : τ is the least relation closed
under the rules in Figure 3.

The rules Var, Abs and App are mostly same as those in the simply typed lambda
calculus, except for stage annotations. The rule Var means that a variable can appear
only at the stage in which it is declared; the rule Abs requires the parameter and the
body to be at the same stage; similarly, the rule App requires M and N to be typeable at
the same stage. The following four rules �, �, Gen and Ins are essentially the same as
those of λ�, except that Δ is added to typing judgments. The rule � means that, if M is
of type τ at stage Aα, �α A is code of type τ at stage A; the rule � is its converse. The
rules Gen and Ins are the introduction and elimination of ∀ types, respectively. The side
condition of the rule (Gen) guarantees α-closedness of M, which means M has no free
variable which has a transition variable α in its type or its stage.

The next two rules GenE and InsE for ∀ε are very similar to Gen and Ins, respectively,
but there are two important differences. In GenE, the transition variable α must be in

On Cross-Stage Persistence in Multi-Stage Programming 111

Γ, x : τ@A;Δ �A x : τ
(Var)

Γ, x : τ@A;Δ �A M : σ
Γ;Δ �A λx : τ.M : τ→ σ (Abs)

Γ;Δ �A M : τ→ σ Γ; Δ �A N : τ
Γ;Δ �A M N : σ

(App)

Γ; Δ �Aα M : τ
Γ;Δ �A �α M : �ατ

(�)
Γ;Δ �A M : �ατ
Γ;Δ �Aα �α M : τ

(�)

Γ; Δ �A M : τ α � FTV(Γ) ∪ FTV(A) ∪ Δ
Γ; Δ �A Λα.M : ∀α.τ (Gen)

Γ;Δ �A M : ∀α.τ
Γ; Δ �A M B : τ[α := B]

(Ins)

Γ; Δ ∪ {α} �A M : τ α � FTV(Γ) ∪ FTV(A) ∪ Δ
Γ;Δ �A Λα.M : ∀εα.τ (GenE)

Γ; Δ �A M : ∀εα.τ β ∈ Δ whenever β ∈ B

Γ; Δ �A M B : τ[α := B]
(InsE)

Γ;Δ �A M : τ α ∈ Δ
Γ;Δ �Aα %α M : τ

(%)

Γ; Δ �A M : τ τ <: σ
Γ; Δ �A M : σ

(Sub)

Fig. 3. Typing Rules

the second component Δ ∪ {α} of the premise, so that CSP with α is possible. In InsE,
the argument B has to consist only of transition variables from Δ—B is virtually the
empty sequence. The next rule % is for CSP, which is allowed only when the indexing
transition variable is in Δ.

The last rule stands for ordinary subsumption.

3.4 Properties

We show three basic properties of the calculus: subject reduction, strong normalization
and confluence.

Subject Reduction. The key lemma to prove subject reduction is Substitution Lemma
as usual. We show that transition substitution [α := A] preserves subtyping and typing;
and that term substitution [x := M] preserves typing. There are two separate statements
for transition substitution and typing because a transition variable in Δ can be replaced
only with the “virtually empty” transitions.

Lemma 1 (Substitution Lemma)

1. If τ <: σ, then τ[α := B] <: σ[α := B]
2. If Γ, x : τ@B;Δ �A M : τ and Γ : Δ �B N : τ, then Γ;Δ �A M[x := N] : τ
3. If α � Δ and Γ;Δ �A M : τ, then Γ[α := B];Δ �A[α:=B] M[α := B] : τ[α := B]
4. If α ∈ Δ and Γ;Δ �A M : τ and β ∈ Δ for any β ∈ B, then
Γ[α := B]; (Δ \ {α} ∪ FTV(B)) �A[α:=B] M[α := B] : τ[α := B]

112 Y. Hanada and A. Igarashi

Proof. Straightforward induction on subtyping and typing derivations.

Theorem 1 (Subject Reduction). If Γ, Δ �A M : τ and M −→ M′ then Γ, Δ �A M′ : τ.

Proof. By induction on the derivation of M −→ M′.

Strong Normalization. Well-typed terms are strongly normalizing:

Theorem 2 (Strong Normalization). If a term M is typeable, there is no infinite re-
duction sequence M −→ M′ −→ M′′ −→ · · · starting with M.

Proof. First we define translation from λ�%-terms to simply typed λ-terms; the trans-
lation just removes all staging annotations. Then, it is easy to show that the translation
preserves typeability and one-step β reduction. It is also easy to see that an infinite re-
duction sequence in λ�%, which necessarily contains infinite β-reduction steps, can be
translated to an infinite reduction sequence in the simply typed λ-calculus, contradicting
strong normalization of the simply typed λ-calculus.

Confluence. We prove confluence by using the standard technique of parallel reduction
and complete development [13]. We omit the proof since it is entirely standard.

Theorem 3 (Confluence). For any term M, if M −→∗ M1 and M −→∗ M2, there exists
M3 that satisfies M1 −→∗ M3 and M2 −→∗ M3.

4 Staged Semantics

The reduction relation given in the last section is full reduction, where an arbitrary
subterm can be reduced nondeterministically, and it is not clear if computation can be
properly staged in the sense that code generation can be completed without computing
inside quotation.

In this section, we will define a deterministic call-by-value staged semantics, which
can be easily seen as program execution, and show the standard progress property. We
obtain the new semantics by allowing reduction at the lowest possible stages (and fixing
the evaluation order). As a result, the rules β and βΛ are allowed only at the stage ε and
the rule � � only at a stage α. (Notice that a redex �α �α M is supposed to appear under
a quotation in a well-typed term.)

We begin with the definitions of values and redexes.

Definition 5 (Values and Redexes). The family VA of sets of values, ranged over by
vA and the sets of ε-redexes (ranged over by Rε) and α-redexes (ranged over by Rα) are
defined by the following grammar. In the grammar, A is nonempty.

Values vε ∈ Vε ::= λx : τ.M | �α vα | Λα.vε
vA ∈ VA ::= x | λx : τ.vA | vA vA | �α vAα

| Λα.vA | vA B
| �α vA′(if A′α = A and A′ � ε)
| %α vA′ (if A′α = A)

Redexes Rε ::= (λx : τ.M) vε | (Λα.vε) A
Rα ::= �α �α M

On Cross-Stage Persistence in Multi-Stage Programming 113

EA
ε [(λx : τ.M) vε] −→s EA

ε [M[x := vε]] (βv)

EA
ε [(Λα.vε) B] −→s EA

ε [vε[α := B]] (βΛ)

EA
α [�α �α M] −→s EA

α [M] (� �)

Fig. 4. Staged Reduction

Values at stage ε consist of abstractions and quotations. The body of a λ-abstraction
can be any term, whereas the body of a transition abstraction must be a value. It means
that the bodies of transition abstractions are reduced before transition application is
reduced. The body of a quotation is a value at a higher stage. Since evaluation at higher
stages are not performed during code generation, values at higher stages contain all
forms of terms.3 Redexes are classified into two, according to the stage where they
appear.

Then, we define evaluation contexts, which are indexed by two stages and written
EA

B. Intuitively, A stands for that of the whole context when the stage of the hole is B.

Definition 6 (Evaluation Contexts). The family of sets ECtxA
B of evaluation contexts,

ranged over by EA
B, is defined by the grammar below. In the grammar, A is nonempty

(whereas B, A′ and B′ can be empty).

EεB ∈ ECtxεB ::= � (if B = ε) | EεB M | vε EεB | �α EαB | Λα.EεB | EεB A′

EA
B ∈ ECtxA

B ::= � (if A = B) | λx : τ.EA
B | EA

B M | vA EA
B | �α EAα

B

| �α EA′
B (where A′α = A) | Λα.EA

B | EA
B B′ | %α EA′

B (where A′α = A)

We show a few examples of evaluation contexts below.

� (λx : τ.x) ∈ ECtxεε
(λx : τ.x) (�α �) ∈ ECtxεα
�β �α �α �γ � ∈ ECtxεβγ

We write EA
B[M] for a term obtained by filling the hole in EA

B with M.

Definition 7 (Staged Reduction). The staged reduction relation, written M −→s M′,
is defined by the least relation closed under the rules in Figure 4.

The rules are rather straightforward adaptations of the reduction rules for −→. Note
that, in the first two rules, the lower index of the evaluation context is ε, which means
the redex appears at stage ε and that, in the third rule, it is α, which means the redex
appears inside a (single) quotation.

3 The only exception is that an escape cannot appear at stage α because the term of the form
�α vε is a redex (if it is well typed).)

114 Y. Hanada and A. Igarashi

For example, the reduction sequence for the example shown before is as follows:

let f = λx : int.x ∗ 2 in
(Λα.�α(%α (f 1) + (%α f) (1 + 2))) ε (β)
−→∗s (Λα.�α(%α (1 ∗ 2) + (%α(λx : int.x ∗ 2)) (1 + 2))) ε
−→s (Λα.�α(%α 2 + (%α(λx : int.x ∗ 2)) (1 + 2))) ε (βΛ)
−→s 2 + ((λx : int.x ∗ 2) (1 + 2))
−→∗s 8.

4.1 Properties of Staged Reduction

First, it is easy to see that −→s is a subrelation of −→. So, the relation −→s has
strong normalization and subject reduction.

Theorem 4. −→s ⊆ −→ .

Proof. By case analysis of the rules of −→s .

Every well-typed term can be either a value or decomposed into an evaluation context
and a redex uniquely. Thanks to this theorem, we know that −→s is deterministic.

Theorem 5 (Unique Decomposition). If Γ does not have any variable declared at
stage ε and Γ;Δ �A M : τ, then either (1) M ∈ VA, or (2) there exists a unique pair
(EA

B,R
B) such that M = EA

B[RB] for some B, which is either ε or a transition variable β.

Proof. By induction on the derivation of Γ;Δ �A M : τ.

Unique Decomposition usually states that a term M is either a value or there is an-
other term that it reduces to, if M is a closed well-typed term. In λ�%, free variables at
higher-stages can be considered symbols, so we can relax the closedness condition in
stating the property.

Thanks to Unique Decomposition, Progress is easy to show.

Theorem 6 (Progress). If Γ does not have any variable declared at stage ε and Γ;Δ �A

M : τ, then M ∈ VA or there exists M′ such that M −→s M′.

Proof. By induction on the derivation of Γ;Δ �A M : τ.

The last property we show is Type-Safe Residualization, which we have discussed in
Section 2. It states that if a program of a code type is well typed under the assumption
that Δ is empty, i.e., CSP (indexed by free transition variables) is not used, then the
result (if any) is certainly a quotation and its body is also typeable at stage ε.

In the statement of the theorem, we use the notation Γ−α, defined by; Γ−α = {x :
τ@B | x : τ@αB ∈ Γ}.
Theorem 7 (Type-Safe Residualization). If Γ does not have any variable declared at
stage ε and Γ; ∅ �ε M : �ατ is derivable then there exists vε = �α N ∈ Vε, M −→∗s vε

and Γ−α; ∅ �ε N : τ is derivable.

On Cross-Stage Persistence in Multi-Stage Programming 115

Proof. We show this theorem by two parts. First, we show the existence of v = �α N,
which is reduced from M. Next, we show that Γ−α; ∅ �ε N : τ is derivable.

The first part is proved by case analysis on the form of M. By the first part and the
typing rule �, we have a derivation of Γ; ∅ �α N : τ. So, all we need to show the second
part is that if Γ; ∅ �α N : τ then Γ−α; ∅ �ε N : τ, and we can prove this by induction on
the derivation of Γ; ∅ �α N : τ.

5 Discussion

In this section, we investigate differences between λ�% and BER MetaOCaml4 in more
detail. We also discuss the relationship between CSP and program residualization in
λ�%.

5.1 CSP in MetaOCaml

In MetaOCaml, CSP is implicitly applied to the occurrences of value identifiers (vari-
ables and references to module members such as List.map) declared outside brackets.
The behavior of CSP in MetaOCaml is, however, subtly different from that of λ�%;
actually, it depends on where the identifier is declared.

First, CSP for a variable declared in the same compilation unit works (almost) the
same as in λ�%. In the implementation, a code value is represented as an AST and
there is a special node that contains a pointer to the value of a variable under CSP5.
This pointer is dereferenced while the surrounding code is evaluated. In contrast to that,
CSP for an identifier in another compilation unit is represented by an AST node that
contains the identifier name, which is resolved while the surrounding code is evaluated.
The following program (run by BER MetaOCaml version N 101) demonstrates the
difference:

let f = List.map in .< (f, List.map) >.;;

- : ...

= .<(((* cross-stage persistent value (id: f) *)), List.map)>.

The result is a quoted pair consisting of a pointer to a closure (which is the value of
List.map) and a module member reference to be resolved later. This lazy name reso-
lution does not affect the result of program execution, because (1) variable reference is
a side-effect free operation and (2) resolving the same module name at code-generation
time and at code-evaluation time results in the same module implementation.

5.2 CSP and Program Residualization

As already discussed, in λ�%, CSP with a transition variable α can be applied only if
α is bound by Λα which has a ∀εα type. Due to this restriction, it is impossible to use
the same code value both for running and residualization if it contains a reference to a
library function, (which can be considered a free variable at stage ε).

4 A (re)implementation of the original MetaOCaml by Oleg Kiselyov.
5 For ground values such as integers, this node is replaced with an AST node for a constant.

116 Y. Hanada and A. Igarashi

Consider the following term (of λ�% extended with pairs):

M = let c = Λα.�α(1 + 2) in let d = c ε in �β(�β(c β),%β d)

The intention behind this term is to construct a code value representing 1 + 2, evaluate
it to 3, and construct another code value representing ((1 + 2), 3) to be residualized. If
+ is a language primitive (just as numbers), which can be used at any stage, then this
term can be given type �β(int × int). However, if + is a free variable at stage ε, the
subterm Λα.�α(1 + 2) is ill typed. One may apply CSP to + to make this subterm well
typed but the only type given to this term is ∀εα. �α int, making another subterm c β ill
typed (here, β cannot be in Δ in the type derivation because the generated code is to be
residualized).

Although this may sound very unfortunate because one may expect + is available
everywhere, we believe that it is reasonable for the type system to reject this term,
because, in general, a library function that is available during code generation may or
may not be available when the generated code is executed later. In other words, using
the same name at different levels may result in different values.

6 Related Work

Although many multi-stage calculi are studied in the literature, few of them are equipped
with all the combination of quasiquotation, run and CSP.

Davies’ λ◦ [14], which can model multi-level generating extensions [15], has
quasiquotation but neither run nor CSP. Due to the absence of CSP, Type-Safe Residu-
alization naturally follows.

Davies and Pfenning have proposed modal λ-calculi, whose type systems can be seen
as (intuitionistic) S4 modal logic [16]. They do not model CSP but a code fragment can
be embedded inside arbitrarily nested quotations. In this sense, code types can cross
stages. Such a limited support of CSP is found in other calculi [17, 10].

Taha et al. [18] and Moggi et al. [19] have proposed MSP calculi with quasiquo-
tation, run, and CSP. In these calculi, CSP is implicit as in MetaOCaml and limited
to variable references. They satisfy a property similar to Type-Safe Residualization
but, unfortunately, the distinction between lifting and CSP is not very clear from its
semantics because a variable under implicit CSP is just replaced with a value, e.g.,
(λ f .〈 f 42〉)(λx.x+ x) evaluates to 〈(λx.x+ x) 42〉, which looks as if the function λx.x+ x
were lifted.

Benaissa et al. [11] have presented λBN, which has an explicit CSP operator up that
can be applied to any expressions, as well as quasiquotation and (a limited support for)
run. Although there is a certain typing restriction on the use of up, this operator can be
used for any kind of values, including functions; lifting and CSP are confused here, too.

As we already mentioned, Taha and Nielsen [8] have introduced the notion of envi-
ronment classifiers to λα, which has quasiquotation, run, and CSP. In λα, CSP is explicit
(in fact, we borrow the symbol % from λα) and can be applied to any expression and λα-
term 〈%α 3 ∗%α 3〉α, which would correspond to �α(%α 3 ∗%α 3), is also considered a
value. Since environment classifiers in λα cannot be instantiated by the empty sequence,
the semantics of run is formalized as a reduction step which removes the outermost pair

On Cross-Stage Persistence in Multi-Stage Programming 117

of brackets and adjusts occurrences of % by a complicated meta-level operation called
demotion. For example, run (α)〈(%α 3 ∗ %α 3)〉α (where (α)M is a binder of a classi-
fier) reduces to (α)(3 ∗ 3). In the implementation (both the original one [4] and BER
MetaOCaml6 by Kiselyov), a code value is represented by an AST tree, in which CSP
is a special node that points to a run-time value; when a quotation is run and compiled,
a CSP node is compiled to an instruction to dereference the pointer to the value. This
implementation scheme matches the intuition that CSP is a syntactic marker that waits
for the surrounding code to start running. Lifting is not needed to implement CSP7, as
far as run is concerned, but dumping code values into a file is not generally possible
because a CSP node might point to a nonserializable object. We think λα is a suitable
model only of MSP languages without support of generating residual code because the
type system does not distinguish code that can/cannot be residualized.

Kim et al. [5] have proposed another multi-stage calculus λsim
open, which is equipped

with lifting of arbitrary values so that any value can be embedded into a quotation. So,
it seems also difficult to support residualization.

7 Conclusions

We have given the formal definition of λ�% with its syntax, type system, full reduction
and staged reduction. A key idea here is to view CSP as a syntactic marker waiting
for run to dissolve the surrounding brackets. For the full reduction, where an arbitrary
subterm can be reduced nondeterministically, we have proven subject reduction, strong
normalization and confluence. For staged reduction, which is a deterministic call-by-
value operational semantics, we have proven Progress, Type-Safe Residualization and
that staged reduction is a subrelation of the full reduction.

We have also discussed interactions between CSP and program residualization and
pointed out a problem that residualization for a value which is put into a bracket by
CSP requires lifting that is always not feasible. In this sense, MetaOCaml is not very
suitable for writing offline generators. Our type system for λ�% solves this problem by
distinguishing two kinds of transition variables.

Type inference for λ�% would not be possible as it is for the same reason as λα [8]
and λ� [10], but we would be able to identify a subset of λ�% in which type inference
is possible by a similar approach to Calgano, Moggi and Taha [9].

Acknowledgements. We thank Kenichi Asai and Yukiyoshi Kameyama for valuable
comments. We also thank three anonymous reviewers for their helpful comments (in
particular, one reviewer for describing how CSP is implemented in MetaOCaml).

References

1. Taha, W.: A gentle introduction to multi-stage programming. In: Lengauer, C., Batory,
D., Blum, A., Odersky, M. (eds.) Domain-Specific Program Generation. LNCS, vol. 3016,
pp. 30–50. Springer, Heidelberg (2004)

6 http://okmij.org/ftp/ML/MetaOCaml.html
7 Basic values such as numbers or strings under CSP are converted to literals.

http://okmij.org/ftp/ML/MetaOCaml.html

118 Y. Hanada and A. Igarashi

2. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. In: Proceedings of
Haskell Workshop (Haskell 2002), pp. 60–75 (2002)

3. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit annotations. The-
oretical Computer Science 248, 211–242 (2000)

4. Calcagno, C., Taha, W., Huang, L., Leroy, X.: Implementing multi-stage languages us-
ing ASTs, gensym, and reflection. In: Pfenning, F., Macko, M. (eds.) GPCE 2003. LNCS,
vol. 2830, pp. 57–76. Springer, Heidelberg (2003)

5. Kim, I.S., Yi, K., Calcagno, C.: A polymorphic modal type system for Lisp-like multi-staged
languages. In: Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL 2006), Charleston, SC, pp. 257–268 (January 2006)

6. Chen, C., Xi, H.: Meta-programming through typeful code representation. In: Proceedings of
ACM International Conference on Functional Programming (ICFP 2003), Uppsala, Sweden,
pp. 275–286 (August 2003)

7. Mainland, G.: Explicitly heterogeneous metaprogramming with MetaHaskell. In: Proceed-
ings of ACM International Conference on Functional Programming (ICFP 2012), Copen-
hagen, Denmark, pp. 311–322 (September 2012)

8. Taha, W., Nielsen, M.F.: Environment classifiers. In: Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL 2003), pp. 26–37
(2003)

9. Calcagno, C., Moggi, E., Taha, W.: ML-like inference for classifiers. In: Schmidt, D. (ed.)
ESOP 2004. LNCS, vol. 2986, pp. 79–93. Springer, Heidelberg (2004)

10. Tsukada, T., Igarashi, A.: A logical foundation for environment classifiers. Logical Methods
in Computer Science 6(4:8), 1–43 (2010)

11. Benaissa, Z.E.A., Moggi, E., Taha, W., Sheard, T.: Logical modalities and multi-stage pro-
gramming. In: Proceedings of Workshop on Intuitionstic Modal Logics and Applications
(IMLA 1999) (1999)

12. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Genera-
tion. Prentice-Hall (1993)

13. Takahashi, M.: Parallel reductions in lambda-calculus. Inf. Comput. 118(1), 120–127 (1995)
14. Davies, R.: A temporal-logic approach to binding-time analysis. In: Proceedings of the

Eleventh Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 184–
195. IEEE Computer Society Press (July 1996)

15. Glück, R., Jørgensen, J.: Efficient multi-level generating extensions for program specializa-
tion. In: Swierstra, S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 259–278. Springer, Heidel-
berg (1995)

16. Davies, R., Pfenning, F.: A modal analysis of staged computation. Journal of the ACM 48(3),
555–604 (2001)

17. Yuse, Y., Igarashi, A.: A modal type system for multi-level generating extensions with persis-
tent code. In: Proceedings of the 8th ACM SIGPLAN Symposium on Principles and Practice
of Declarative Programming (PPDP 2006), Venice, Italy, pp. 201–212 (2006)

18. Taha, W., Benaissa, Z.-E.-A., Sheard, T.: Multi-stage programming: Axiomatization and type
safety. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp.
918–929. Springer, Heidelberg (1998)

19. Moggi, E., Taha, W., Benaissa, Z.-E.-A., Sheard, T.: An idealized MetaML: Simpler, and
more expressive. In: Swierstra, S.D. (ed.) ESOP 1999. LNCS, vol. 1576, pp. 193–207.
Springer, Heidelberg (1999)

Lightweight Higher-Kinded Polymorphism

Jeremy Yallop and Leo White

University of Cambridge

Abstract. Higher-kinded polymorphism—i.e. abstraction over type con-
structors— is an essential component of many functional programming
techniques such as monads, folds, and embedded DSLs. ML-family lan-
guages typically support a form of abstraction over type constructors
using functors, but the separation between the core language and the
module language leads to awkwardness as functors proliferate.

We show how to express higher-kinded polymorphism in OCaml with-
out functors, using an abstract type app to represent type application,
and opaque brands to denote abstractable type constructors. We demon-
strate the flexibility of our approach by using it to translate a variety of
standard higher-kinded programs into functor-free OCaml code.

1 Introduction

Polymorphism abstracts types, just as functions abstract values. Higher-kinded
polymorphism takes things a step further, abstracting both types and type con-
structors, just as higher-order functions abstract both first-order values and func-
tions.

Here is a function with a higher-kinded type. The function when conditionally
executes an action:

when b m = if b then m else return ()

In Haskell, when receives the following type:

when :: ∀ (m :: ∗ → ∗). Monad m ⇒ Bool → m () → m ()

The kind ascription ∗ → ∗ makes explicit the fact that m is a higher-kinded
type variable: it abstracts type constructors such as Maybe and [], which can be
applied to types such as Int and () to build new types. The type of when says
that its second argument and return value are monadic computations returning
(), but the monad itself is not fixed: when can be used at any type m () where m

builds a type from a type and is an instance of the Monad class.
In contrast, in OCaml, as in other ML-family languages, all type variables

have kind ∗. In order to abstract a type constructor one must use a functor.
Here is an implementation of when in OCaml:

module When (M : Monad) = struct
let f b m = if b then m else M.return ()

end

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 119–135, 2014.
c© Springer International Publishing Switzerland 2014

120 J. Yallop and L. White

The When functor receives the following type:

module When (M : Monad) :sig
val f : bool → unit M.t → unit M.t

end

Defining When is more work in OCaml than in Haskell. For callers of When the
difference is even more pronounced. Here is a Haskell definition of unless using
when:

unless b m = when (not b) m

Defining Unless in OCaml involves binding three modules. First, we define
a functor to abstract the monad once more, binding both the functor and its
argument. Next, we instantiate the When functor with the monad implementation
and bind the result. Finally, we can call the function:

module Unless(M : Monad) = struct
module W = When(M)
let f b m = W.f (not b) m

end

The situation is similar when we come to use our functions at a particular
monad. We must first instantiate When or Unless with a module satisfying the
Monad interface before we can use it to build computations. The following ex-
ample instantiates Unless with a module implementing the state monad, then
uses the result to build a computation that conditionally writes a value:

let module U = Unless(StateM) in
U.unless (v < 0) (StateM.put v)

Why does OCaml require us to do so much work to define such simple func-
tions? One issue is the lack of overloading: in order to use functions like when

with multiple monads we must explicitly pass around dictionaries of functions.
However, most of the syntactic heaviness comes from the lack of higher-kinded
polymorphism: functors are the only mechanism ML provides for abstracting
over type constructors. The purpose of this paper is to address this second issue,
bringing higher-kinded polymorphism into the core OCaml language, and mak-
ing it almost as convenient to define when and unless in OCaml as in Haskell.

1.1 The Alias Problem

At this point the reader might wonder why we do not simply adopt the Haskell
approach of adding higher-kinded polymorphism directly to the core language.
The answer lies in a fundamental difference between type constructors in Haskell
and type constructors in OCaml.

In Haskell data and newtype definitions create fresh data types. It is possible
to hide the data constructors of such types by leaving them out of the export list
of the defining module, but the association between a type name and the data
type it denotes cannot be abstracted. It is therefore straightforward for the type

Lightweight Higher-Kinded Polymorphism 121

checker to determine whether two type names denote the same data type: after
expanding synonyms, type names denote the same data types exactly when the
names themselves are the same.

OCaml provides more flexible mechanisms for creating abstract types. An
entry type t in a signature may hide either a fresh data type definition such as
type t = T of int or as an alias such as type t = int. Abstracting types with
signatures is sometimes only temporary, since instantiating a functor can replace
abstract types in the argument signature with concrete representations. Checking
whether two type names denote the same data type is therefore a more subtle
matter in OCaml than in Haskell, since abstract types with no visible equalities
may later turn out to be equal after all.

Since OCaml cannot distinguish between data types and aliases, it must sup-
port instantiating type variables with either. This works well for type variables
of base kind, but breaks down with the addition of higher-kinded type vari-
ables. To see the difficulty, consider the unification of the following pair of type
expressions

’a ’f ∼ (int * int) list

where ’f is a higher-kinded type variable. If there are no other definitions in
scope then there is an obvious solution, unifying ’a with (int * int) and ’f

with list. Now suppose that we also have the following type aliases in scope:

type ’a plist = (’a * ’a) list

type ’a iplist = (int * int) list

With the addition of plist and iplist there is no longer a most general unifier.
Unifying ’f with either plist or iplist gives two new valid solutions, and none
of the available solutions is more general than the others.

One possible response to the loss of most general unifiers is to give up on
type inference for higher-kinded polymorphism. This is the approach taken by
OCaml’s functors, which avoid ambiguity by explicitly annotating every instan-
tiation. We will now consider an alternative approach that avoids the need to
annotate instantiations, bringing higher-kinded polymorphism directly into the
core language.

1.2 Defunctionalization

Since we cannot use higher-kinded type variables to represent OCaml type con-
structors, we are faced with the problem of abstracting over type expressions of
higher kind in a language where all type variables have base kind. At first sight
the problem might appear intractable: how can we embed an expressive object
language in a less expressive host language?

Happily, there is a well-understood variant of this problem from which we
can draw inspiration. Four decades ago John Reynolds introduced defunction-
alization, a technique for translating higher-order programs into a first-order
language [Reynolds, 1972].

122 J. Yallop and L. White

The following example illustrates the defunctionalization transform. Here is
a higher-order ML program which computes a sum and increments a list of
numbers:

let rec fold : type a b. (a ∗ b → b) ∗ b ∗ a list → b =
fun (f, u, l) = match l with
| [] → u

| x :: xs → f (x, fold (f u, xs))

let sum l = fold ((fun (x, y) → x + y), 0, l)
let add (n, l) = fold (fun (x, l’) → x + n :: l’) [] l

Defunctionalizing this program involves introducing a datatype arrow with
two constructors, one for each of the two function terms; the arguments to each
constructor represent the free variables of the corresponding function term, and
the type parameters to arrow represent the argument and return types of the
function. We follow Pottier and Gauthier [2004] in defining arrow as a gener-
alised algebraic data type (GADT), which allows the instantiation of the type
parameters to vary with each constructor, and so makes it possible to preserve
the well-typedness of the source program.

type (,) arrow =
Fn plus : ((int ∗ int), int) arrow

| Fn plus cons : int → ((int ∗ int list), int list) arrow

The second step introduces a function, apply, that relates each constructor
of arrow to the function body.

let apply : type a b. (a, b) arrow ∗ a → b =
fun (appl, v) → match appl with
| Fn plus → let (x, y) = v in x + y

| Fn plus cons n → let (x, l’) = v in x + n :: l’

We can now replace function terms with constructors of arrow and indirect
calls with applications of apply to turn the higher-order example into a first
order program:

let rec fold : type a b. (a ∗ b, b) arrow ∗ b ∗ a list → b =
fun (f, u, l) = match l with
| [] → u

| x :: xs → apply (f, (x, fold (f, u, xs)))

let sum l = fold (Fn plus, 0, l)
let add (n, l) = fold (Fn plus cons n, [], l)

1.3 Type Defunctionalization

Defunctionalization transforms a program with higher-order values into a pro-
gram where all values are first-order. Similarly, we can change a program with
higher-kinded type expressions into a program where all type expressions are of
kind ∗, the kind of types.

Lightweight Higher-Kinded Polymorphism 123

The first step is to introduce an abstract type constructor, analogous to apply,
for representing type-level application:

type (’a, ’f) app

OCaml excludes higher-kinded type expressions syntactically by requiring
that the type operator be a concrete name: ’a list is a valid type expres-
sion, but ’a ’f is not. The app type sidesteps the restriction, much as the apply
function makes it possible to embed the application of a higher-order function
in a first-order defunctionalized program. The type expression (s, t) app repre-
sents the application of the type expression t to the type expression s. We can
now abstract over type constructors by using a type variable for the operator
term t.

Eliminating higher-order functions associates a constructor of arrow with each
function expression from the original program. In order to eliminate higher-
kinded type expressions we associate each type expression with a distinct in-
stantiation of app. More precisely, for each type constructor t which we wish
to use in a polymorphic context we introduce an uninhabited opaque type T.t,
called the brand. Brands appear as the operator argument to app; for exam-
ple, we can represent the type expression ’a list as (’a, List.t) app, where
List.t is the brand for list. With each brand we associate injection and pro-
jection functions for moving between the concrete type and the corresponding
instantiation of app:

module List : sig
type t

val inj : ’a list → (’a, t) app

val prj : (’a, t) app → ’a list

end

We now have the operations we need to build and call functions that abstract
over type constructors. Here is a second OCaml implementation of the when
function from the beginning of this paper:1

let when (d : #monad) b m = if b then m else d#return ()

The first parameter d is a dictionary of monad operations analogous to the
type class dictionary passed to when in a typical implementation of Haskell
[Wadler and Blott, 1989]. (We defer further discussion of dictionary represen-
tation to Section 2.3.) Our earlier implementation received the dictionary as a
functor argument in order to accommodate abstraction over the type construc-
tor, but the introduction of app makes it possible to write when entirely within
the core language. This second implementation of when receives the following
type:

val when : ’m #monad → bool → (unit, ’m) app → (unit, ’m) app

1 We append an underscore to variable names where they clash with OCaml keywords.

124 J. Yallop and L. White

type (’a, ’f) app

module type Newtype1 = sig

type ’a s

type t

val inj : ’a s → (’a,t) app

val prj : (’a,t) app → ’a s

end

module Newtype1(T : sig type ’a t end):
Newtype1 with type ’a s = ’a T.t

Fig. 1. The higher interface

module type Newtype2 = sig

type (’a, ’b) s

type t

val inj : (’a,’b) s → (’b,(’a,t) app) app

val prj : (’b,(’a,t) app) app → (’a,’b) s

end

module Newtype2(T : sig type (’a,’b) t end):
Newtype2 with type (’a,’b) s = (’a,’b) T.t

Fig. 2. The Newtype2 functor

The improvement becomes even clearer when we implement unless without
a functor in sight:

let unless d b m = when d (not b) m

There is a similar improvement when using when and unless at particular
monads. Once again we find that we no longer need to instantiate a functor,
since the dictionary parameter is passed as a regular function argument. Here is
our earlier example that conditionally writes a value in the state monad, adapted
to our new setting:

unless state (v < 0) (state#put v)

2 The Interface

We have written a tiny library called higher to support programming with app.
Figure 1 shows the interface of the higher library.2 The Newtype1 functor gen-
erates brands together with their associated injection and projection functions,
preserving the underlying concrete type under the name s for convenience. For
example, applying Newtype1 to a structure containing the concrete list type
gives the List.t brand from Section 1.3.

module List = Newtype1(struct type ’a t = ’a list end)

In fact, as the numeric suffix in the Newtype1 name suggests, higher exports
a family of functors for building brands. Figure 2 gives another instance, for
concrete types with two parameters. However, rather than introducing a second
version of app to accompany Newtype2, we use app in a curried style. One of the
benefits of higher kinded polymorphism is the ability to partially apply multi-
parameter type constructors, and the currying in Newtype2 makes this possible
in our setting.

The remainder of this section shows how various examples from the literature
can be implemented using higher.

2 The higher library is available on opam: opam install higher.

Lightweight Higher-Kinded Polymorphism 125

2.1 Example: Higher-Kinded Folds

Higher-kinded polymorphism was introduced to Haskell to support constructor
classes such as Monad [Jones, 1995, Hudak et al., 2007]. However, not all uses
of higher kinds involve constructor classes. Traversals of non-regular datatypes
(whose definitions contain non-trivial instantiations of the definiendum) typi-
cally involve higher-kinded polymorphism. Here is an example: the type perfect
describes perfectly balanced trees, with 2n elements:

type ’a perfect = Zero of ’a | Succ of (’a ∗ ’a) perfect

A fold over a perfect value is parameterised by two functions, zero, applied
at each occurrence of Zero, and succ, applied at each occurrence of Succ. In
diagram form the fold has the following simple shape:

Succ (Succ . . . (Succ (Zero v)). . .)
↓ ↓ ↓ ↓

succ (succ . . . (succ (zero v)). . .)

What distinguishes this fold from a similar function defined on a regular
datatype is that each occurrence of Succ is used at a different type. If the outer-
most constructor builds an int perfect value then the next constructor builds
an (int ∗ int) perfect, the next an ((int ∗ int) ∗ (int ∗ int)) perfect, and
so on. For maximum generality, therefore, we must allow the types of zero and
succ to vary in the same way.3 In Haskell we might define foldp as follows:

foldp :: (∀a. a → f a) → (∀a. f (a, a) → f a) → Perfect a → f a

foldp zero succ (Zero l) = zero l

foldp zero succ (Succ p) = succ (foldp zero succ p)

Here is a corresponding definition in OCaml, using a record type with poly-
morphic fields for the higher-rank types (nested quantification) and using app

to introduce higher-kinded polymorphism:

type ’f perfect folder = {
zero: ’a. ’a → (’a, ’f) app;
succ: ’a. (’a ∗ ’a, ’f) app → (’a, ’f) app;

}

let rec foldp : ’f ’a. ’f perfect folder → ’a perfect → (’a, ’f) app =
fun { zero; succ } → function
| Zero l → zero l

| Succ p → succ (foldp { zero; succ } p)

The foldp function has a number of useful properties. A simple one, imme-
diately apparent from the diagram, is that foldp Zero Succ is the identity. In
order to instantiate the result type we need a suitable instance of app, which we
can obtain using Newtype1.

3 Hinze [2000] shows how to take generalization of folds over nested types significantly
further than the implementation we present here.

126 J. Yallop and L. White

type (’a, ’b) eq

val refl : unit → (’a, ’a) eq

module Subst (F : sig type ’a f end):
sig
val subst : (’a, ’b) eq →
’a F.f → ’b F.f

end

Fig. 3. Leibniz equality without higher

module Eq : Newtype2
type (’a, ’b) eq = (’b, (’a, Eq.t) app) app

val refl : unit → (’a, ’a) eq

val subst : (’a, ’b) eq →
(’a, ’f) app → (’b, ’f) app

Fig. 4. Leibniz equality with higher

module Perfect = Newtype1(struct type ’a t = ’a perfect end)

Passing Zero and Succ requires a little massaging with inj and prj.

let idp p = Perfect.(prj (foldp { zero = (fun l → inj (Zero l));
succ = (fun b → inj (Succ (prj b)))} p))

It is easy to verify that idp implements the identity function.

2.2 Example: Leibniz Equality

Our second example involves higher-kinded polymorphism in the definition of a
datatype. As part of a library for dynamic typing, Baars and Swierstra [2002]
introduce the following definition of type equality:

newtype Equal a b = Equal (∀ (f :: ∗ → ∗). f a → f b)

The variable f abstracts over one-hole type contexts — type expressions which
build a type from a type. The types encode Leibniz’s law that a and b can
be considered equal if they are interchangeable in any context f. A value of
type Equal a b serves both as proof that a and b are equal and as a coercion
between contexts instantiated with a and b. Ignoring ⊥ values, there is a single
inhabitant of Equal, the value Equal id of type Equal a a, which serves as a
proof of equality between any type a and itself.

Yallop and Kiselyov [2010] show how first-class modules make it possible to
define an OCaml type eq equivalent to Equal. A minimised version of eq and its
core operations is given in Figure 3. There are two operations: refl introduces
the sole inhabitant, a proof of reflexive equality, and subst turns an equality
proof into a coercion within any context f.

Figure 4 gives a second definition of eq and its operations using higher. As
with unless, using the functor version of Figure 3 is significantly heavier than
the higher version of Figure 4. Here is a definition of the transitive property of
equality using the implementation of Figure 3:

Lightweight Higher-Kinded Polymorphism 127

class virtual [’m] monad : object
method virtual return : ’a. ’a → (’a, ’m) app

method virtual bind : ’a ’b. (’a, ’m) app → (’a → (’b, ’m) app) → (’b, ’m) app

end

Fig. 5. The monad interface in OCaml

type (’a, ’f) free = Return of ’a | Wrap of ((’a, ’f) free, ’f) app

module Free = Newtype2(struct type (’a, ’f) t = (’a, ’f) free end)

Fig. 6. The free monad data type in OCaml

let trans : type a b c. (a, b) eq → (b, c) eq → (a, c) eq =
fun ab bc →
let module S = Subst(struct type ’a tc = (a, ’a) eq end) in
S.subst bc ab

And here is a definition using higher :

let trans ab bc = subst bc ab

Both implementations receive the same type:

val trans: (’a, ’b) eq → (’b, ’c) eq → (’a, ’c) eq

The contrast between the implementations of refl and subst is similarly
striking. The interested reader can find the full implementations in the extended
version of this paper.

2.3 Example: The Codensity Transform

Much of the appeal of higher-kinded polymorphism arises from the ability to
define overloaded functions involving higher-kinded types. Constructor classes
[Jones, 1995] turn monads (and other approaches to describing computation
such as arrows [Hughes, 2000] and applicative functors [McBride and Paterson,
2008]) from design patterns into named program entities. The Monad interface
requires abstraction over type constructors, and hence higher kinds, but defining
it brings a slew of benefits: it becomes possible to build polymorphic functions
and notation which work for any monad, and to construct a hierarchy of related
interfaces such as Functor and MonadPlus.

OCaml does not currently support overloading, making many programs which
find convenient expression in Haskell cumbersome to write. However, the loss of
elegance does not arise from a loss of expressive power: although type classes
are unavailable we can achieve similar results by programming directly in the
target language of the translation which eliminates type classes in favour of
dictionary passing [Wadler and Blott, 1989]. We might reasonably view these
explicit dictionaries as temporary scaffolding that will vanish once the plans to
introduce overloading to OCaml come to fruition [Chambart and Henry, 2012].

128 J. Yallop and L. White

let monad free (functor free : ’f #functor) = object
inherit [(’f, Free.t) app] monad
method return v = Free.inj (Return v)
method bind =
let rec bind m k = match m with
| Return a → k a

| Wrap t → Wrap (functor free#fmap (fun m → bind m k) t) in
fun m k → Free.inj (bind (Free.prj m) (fun a → Free.prj (k a)))

end

Fig. 7. The free monad instance in OCaml

class virtual [’f, ’m] freelike (pf : ’f functor) (mm : ’m monad) = object
method pf : ’f functor = pf method mm : ’m monad = mm

method virtual wrap : ’a. ((’a, ’m) app, ’f) app → (’a, ’m) app

end

Fig. 8. The freelike interface in OCaml

We now turn to an example of a Haskell program that makes heavy use
of higher-kinded overloading. The codensity transform [Voigtländer, 2008] takes
advantage of higher-kinded polymorphism to systematically substitute more effi-
cient implementations of computations involving free monads, leading to asymp-
totic performance improvements. We will focus here on the constructs necessary
to support the codensity transform rather than on the computational content of
the transform itself, which is described in Voigtländer’s paper. The code in this
section is not complete (the definitions of abs, C, and functor are missing), but
we give a complete translation of the code from Voigtländer [2008, Sections 3
and 4] in the extended version of this paper.

Figure 5 shows the monad interface in OCaml. We represent a type class by an
OCaml virtual class —i.e., a class with methods left unimplemented. The type
class variable m of type ∗ → ∗ becomes a type parameter, which is used in the
definition of monad as an argument to our type application operator app.

Figure 6 defines the free monad type [Voigtländer, 2008, Section 3]. The use
of app in the definition of free reflects the fact that the type parameter ’f has
higher kind; without higher we would have to define the free within a functor.

Figure 7 gives the free monad instance over a functor using the free type. We
represent type class instances in OCaml as values of object type. Instantiating
and inheriting the monad class provides type checking for return and bind.
Constraints in the instance definition in the Haskell code become arguments to
the function; our definition says that (’f, Free.t) app is an instance of monad if
’f is an instance of functor.

Figure 8 defines the freelike interface. In Voigtländer’s presentation
FreeLike is a multi-parameter type class with two superclasses. In our setting
the parameters become type parameters of the virtual class and the superclasses

Lightweight Higher-Kinded Polymorphism 129

type (’a, ’f) freelike poly = {
fl: ’m ’d. ((’f, ’m) #freelike as ’d) → (’a, ’m) app

}

let improve (d : #functor) { fl } =
Free.prj (abs (monad free d) (C.prj (fl (freelike c d (freelike free d)))))

Fig. 9. The improve function in OCaml

improve :: Functor f ⇒ (∀m. FreeLike f m → m a) → Free f a

improve m = abs m

Fig. 10. The improve function in Haskell

become class arguments which must be supplied at instantiation time. We bind
the class arguments to methods so that we can easily retrieve them later.

Figure 9 shows the improve function, the entry point to the codensity trans-
form. In Haskell improve has a concise definition (Figure 10) due to the amount
of work done by the type class machinery; in OCaml we must perform the work
of building and passing dictionaries ourselves. As in a previous example (Sec-
tion 2.1) we use a record with a polymorphic field to introduce the necessary
higher-rank polymorphism.

The extended version of this paper gives a complete implementation of the
codensity transform, and a translation of Voigtländer’s example which applies it
to an echo computation.

2.4 Example: Kind Polymorphism

Standard Haskell’s kind system is “simply typed”: the two kind formers are the
base kind ∗ and the kind arrow→, and unknown types are defaulted to ∗. Recent
work adds kind polymorphism, increasing the number of programs that can be
expressed [Yorgey et al., 2012]. In contrast higher lacks a kind system altogether:
the brands that represent type constructors are simply uninhabited members of
the base kind ∗.

The obvious disadvantage to the lack of a kind system is that the type
checker is no help in preventing the formation of ill-kinded expressions, such
as (List.t, List.t) app. However, this drawback is not so serious as might first
appear, since it does not introduce any means of forming ill-typed values, and
so cannot lead to runtime errors. In fact, the absence of well-kindedness checks
can be used to advantage: it allows us to write programs which require the kind
polymorphism extension in Haskell.

Figure 11 defines a class category parameterised by a variable ’f. In the
analogous type class definition standard Haskell would give the variable cor-
responding to ’f the kind ∗ → ∗ → ∗; the polymorphic kinds extension gives

130 J. Yallop and L. White

class virtual [’f] category = object
method virtual ident : ’a. (’a, (’a, ’f) app) app

method virtual compose : ’a ’b ’c.
(’b, (’a, ’f) app) app → (’c, (’b, ’f) app) app → (’c, (’a, ’f) app) app

end

Fig. 11. The category interface

module Fun = Newtype2(struct type (’a, ’b) t = ’b → ’a end)
let category fun = object
inherit [Fun.t] category
method ident = Fun.inj id

method compose f g = Fun.inj (fun x → Fun.prj g (Fun.prj f x))
end

Fig. 12. A category instance for →

type (’n, ’m) ip = { ip: ’a. (’a, ’m) app → (’a, ’n) app }
module Ip = Newtype2(struct type (’n, ’m) t = (’n, ’m) ip end)
let category ip = object
inherit [Ip.t] category
method ident = Ip.inj { ip = id }
method compose f g = Ip.inj {ip = fun x → (Ip.prj g).ip ((Ip.prj f).ip x) }

end

Fig. 13. A category instance for index-preserving functions

it ∀κ. κ → κ → ∗, allowing the arguments to be type expressions of any kind.
Since there is no kind checking in higher, we can also instantiate the arguments
of ’f with expressions of any kind. Figure 12 gives an instance definition for →,
whose arguments have kind ∗; Figure 13 adds a second instance for the category
of index-preserving functions, leaving the kinds of the indexes unspecified.

The extended version of this paper continues the example, showing how higher
supports higher-kinded non-regularity.

3 Implementations of higher

Up to this point we have remained entirely within the OCaml language. Both
the interfaces and the examples are written using the current release of OCaml
(4.01). However, running the code requires an implementation of the higher
interface, which requires a small extension to pure OCaml. We now consider
two implementations of higher, the first based on an unsafe cast and the second
based on an extension to the OCaml language.

Let us return to the analogy of Section 1.3. The central point in an imple-
mentation of higher is a means of translating between values of the app family
of types and values of the corresponding concrete types, much as defunctional-
ization involves translating between higher-order function applications and uses

Lightweight Higher-Kinded Polymorphism 131

type family Apply f p :: *
newtype App f b = Inj { prj :: Apply f b }

data List

type instance Apply List a = [a]

Fig. 14. Implementing higher with type families

type (’p, ’f) app

module Newtype1 (T : sig type ’a t end) = struct
type ’a s = ’a T.t
type t

let inj : ’a s → (’a, t) app = Obj.magic
let prj : (’a, t) app → ’a s = Obj.magic

end

Fig. 15. Implementing higher with an unchecked cast

of the apply function. However, defunctionalization is a whole program trans-
formation: a single apply function handles every translated higher-order call.
Since we do not wish to require that every type used with higher is known in
advance, we need an implementation that makes it possible to extend app with
new inhabitants as needed.

We note in passing that Haskell’s type families [Schrijvers et al., 2008], which
define extensible type-level functions, provide exactly the functionality we need.
Figure 14 gives an implementation, with a type family Apply parameterised
by a brand and a type and a type definition App with injection and projection
functions Inj and Prj. The type instance declaration adds a case to Apply that
matches the abstract type List and produces the representation type [a].

3.1 First Implementation: Unchecked Cast

The first implementation is shown in Figure 15. Each instantiation of the
Newtype1 constructor generates a fresh type t to use as the brand. The inj

and prj functions which coerce between the concrete type ’a s and the corre-
sponding defunctionalized type (’a, t) app are implemented using the unchecked
coercion function Obj.magic.

Although we are using an unchecked coercion within the implementation of
Newtype1 the module system ensures that type safety is preserved. Each module
to which Newtype1 is applied generates a fresh brand t. Since the only way to
create a value of type (’a, t) app is to apply inj to a value of the corresponding
type ’a s, it is always safe to apply prj to convert the value back to type ’a s.

132 J. Yallop and L. White

type (’p, ’f) app = . .

module Newtype1 (T : sig type ’a t end) () = struct
type ’a s = ’a T.t
type t

type (,) app += App : ’a s → (’a, t) app

let inj v = App v

let prj (App v) = v

end

Fig. 16. Implementing higher using open types

3.2 Second Implementation: Open Types

We can avoid the use of an unchecked cast altogether with a small extension
to the OCaml language. Löh and Hinze [2006] propose extending Haskell with
open data types, which lift the restriction that all the constructors of a data type
must be given in a single declaration. The proposal is a good fit for OCaml,
which already supports a single extensible type for exceptions, and there is an
implementation available.4.

Figure 16 shows an implementation of higher using open data types. The el-
lipsis in the first line declares that app is an open data type; each instantiation
of the Newtype1 functor extends app with a fresh GADT constructor, App which
instantiates app with the brand t and which carries a single value of the rep-
resentation type ’a s. The inj and prj functions inject and project using App;
although the pattern in prj is technically inexhaustive, the fact that the functor
generates a fresh t for each application guarantees a match in practice.

The empty parentheses in the functor definition force the functor to be gener-
ative rather than applicative5 [Leroy, 1995], so that each application of Newtype1
generates a fresh type t, even if Newtype1 is being applied to the same argument.

This generative marker is a small deviation from the interface of Figure 1,
but essential to ensure that only a single data constructor App is generated for
each brand t. Without the generative marker, multiple applications of Newtype1
to the same argument would generate modules with compatible brands but
incompatible data constructors, leading to runtime pattern-matching failures
in prj.

4 Related Work

We have shown how type defunctionalization can be used to write programs that
abstract over OCaml type constructors without leaving the core language. In a

4 Opam users can install the extended OCaml compiler with the command
opam switch 4.01.0+open-types.

5 Explicitly generative functors are a new feature of OCaml, scheduled for the next
release: http://caml.inria.fr/mantis/view.php?id=5905

http://caml.inria.fr/mantis/view.php?id=5905

Lightweight Higher-Kinded Polymorphism 133

language with features that support case analysis on types, type defunctional-
ization becomes a yet more powerful tool. Kiselyov et al. [2004] use type defunc-
tionalization together with functional dependencies to support fold operations on
heterogeneous lists. Similarly, Jeltsch [2010] implements type defunctionalization
using type synonym families to support folds over extensible records.

Kiselyov and Shan [2007] introduce lightweight static capabilities, applying
phantom types and generativity to mark values as safe for use with an efficient
trusted kernel, much as we use generativity in Section 3.1 to ensure the safety
of an unchecked cast. Kiselyov and Shan’s work is significantly more ambitious
than ours; whereas we are interested in expressing programs with higher-kinded
polymorphism in ML, they show how to statically ensure properties such as array
lengths that were previously thought to require a dependently-typed language.
The “brand” terminology is borrowed from Kiselyov and Shan, but their brands
are structured type expressions, and significantly more elaborate than the simple
atomic names which we use to denote type constructors.

Jones [1995] shows that standard first-order unification suffices for inferring
types involving higher-kinded variables so long as the language of constructor
expressions has no non-trivial equalities. This insight underlies our use of brands
to embed type constructor polymorphism in OCaml.

Swamy et al. [2011] share our aim of reducing the overhead of monadic pro-
gramming in ML, but take a different approach based on an elaboration of
implicitly-monadic ML programs into a language with explicit monad opera-
tions. Whereas the present work aims to embed higher-kinded programs into
OCaml without changing the language, their proposal calls for significant new
support at the language level.

5 Limitations and Future Work

The NewtypeN family. The interface presented in Section 2 consists of a type
constructor app and a family of functors Newtype1, Newtype2, . . . for extending
app with new inhabitants. We would ideally like to replace the Newtype family
with arity-generic operations, but it is unclear whether it is possible to do so in
OCaml. For the moment the family of functors seems adequate in practice.

Variance and subtyping. Our focus so far has been on expressing higher-kinded
programs from Haskell. However, we also plan to explore the interaction of
higher-kinded polymorphism with features specific to OCaml. For example, we
can obtain a representation of proofs of subtyping by changing the definition of
Leibniz equality (Section 2.2) to quantify over positive contexts: a type a is a
subtype of b if it can be coerced to b in a positive context (or if b can be coerced
to a in a negative context.) We look forward to exploring the implications of
having first-class witnesses of the subtyping relation.

Acknowledgements. We are grateful to the anonymous reviewers for their
many helpful suggestions.

134 J. Yallop and L. White

References

Baars, A.I., Swierstra, S.D.: Typing dynamic typing. In: ICFP 2002, pp. 157–166. ACM,
New York (2002), ISBN 1-58113-487-8

Chambart, P., Henry, G.: Experiments in generic programming: runtime type repre-
sentation and implicit values. In: OCaml Users and Developers Workshop (2012)

Hinze, R.: Efficient generalized folds. In: Jeuring, J. (ed.) Proceedings of the 2nd Work-
shop on Generic Programming, Ponte de Lima, Portugal, pp. 1–16 (July 2000)

Hudak, P., Hughes, J., Peyton Jones, S., Wadler, P.: A history of Haskell: Being lazy
with class. In: Proceedings of the Third ACM SIGPLAN Conference on History of
Programming Languages, HOPL III, pp. 12–1–12–55. ACM, New York (2007) ISBN
978-1-59593-766-7

Hughes, J.: Generalising monads to arrows. Science of Computer Programming 37(13),
67–111 (2000) ISSN 0167-6423

Jeltsch, W.: Generic record combinators with static type checking. In: Proceedings of
the 12th International ACM SIGPLAN Symposium on Principles and Practice of
Declarative Programming, pp. 143–154. ACM (2010)

Jones, M.P.: A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of Functional Programming 5, 1–35 (1995) ISSN 1469-7653

Kiselyov, O., Shan, C.-C.: Lightweight static capabilities. Electron. Notes Theor. Com-
put. Sci. 174(7), 79–104 (2007) ISSN 1571-0661

Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections. In:
Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, pp. 96–107. ACM
(2004)

Leroy, X.: Applicative functors and fully transparent higher-order modules. In: Pro-
ceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1995, pp. 142–153. ACM, New York (1995)
ISBN 0-89791-692-1, http://doi.acm.org/10.1145/199448.199476 ,
doi:10.1145/199448.199476

Löh, A., Hinze, R.: Open data types and open functions. In: Proceedings of the 8th
ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming, PPDP 2006, pp. 133–144. ACM, New York (2006)
ISBN 1-59593-388-3

McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008) ISSN 0956-7968

Pottier, F., Gauthier, N.: Polymorphic typed defunctionalization. In: Proceedings of
the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2004, pp. 89–98. ACM, New York (2004) ISBN 1-58113-729-X

Reynolds, J.C.: Definitional interpreters for higher-order programming languages. In:
Proceedings of the ACM Annual Conference, ACM 1972, vol. 2, pp. 717–740. ACM,
New York (1972)

Schrijvers, T., Peyton Jones, S., Chakravarty, M., Sulzmann, M.: Type checking with
open type functions. In: Proceedings of the 13th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2008, pp. 51–62. ACM, New York (2008)
ISBN 978-1-59593-919-7

Swamy, N., Guts, N., Leijen, D., Hicks, M.: Lightweight monadic programming in ML.
In: Proceedings of the 16th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2011, pp. 15–27. ACM, New York (2011) ISBN 978-1-4503-
0865-6

http://doi.acm.org/10.1145/199448.199476

Lightweight Higher-Kinded Polymorphism 135

Voigtländer, J.: Asymptotic improvement of computations over free monads. In: Au-
debaud, P., Paulin-Mohring, C. (eds.) MPC 2008. LNCS, vol. 5133, pp. 388–403.
Springer, Heidelberg (2008)

Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: Proceedings
of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 1989, pp. 60–76. ACM, New York (1989) ISBN 0-89791-294-2

Yallop, J., Kiselyov, O.: First-class modules: hidden power and tantalizing promises. In:
ACM SIGPLAN Workshop on ML, Baltimore, Maryland, United States (September
2010)

Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães, J.P.:
Giving Haskell a promotion. In: Proceedings of the 8th ACM SIGPLAN Workshop
on Types in Language Design and Implementation, TLDI 2012, pp. 53–66. ACM,
New York (2012) ISBN 978-1-4503-1120-5

Generic Programming with Multiple Parameters

José Pedro Magalhães

Department of Computer Science, University of Oxford, Oxford, UK
jpm@cs.ox.ac.uk

Abstract. Generic programming, a form of abstraction in programming lan-
guages that serves to reduce code duplication by exploiting the regular structure
of algebraic datatypes, has been present in the Haskell language in different forms
for many years. Lately, a library for generic deriving has been given native sup-
port in the compiler, allowing programmers to write functions such as fmap that
abstract over one datatype parameter generically. The power of this approach is
limited to dealing with one parameter per datatype, however. In this paper, we
lift this restriction by providing a generalisation of generic deriving that supports
multiple parameters, making essential use of datatype promotion and kind poly-
morphism. We show example encodings of datatypes, and how to define a map
function that operates on multiple parameters simultaneously.

1 Introduction

Haskell [12], a pure, lazy, strongly-typed functional programming language, has been
a research vehicle for generic programming almost since its inception [2]. Generic pro-
gramming is a form of abstraction which exploits the structure of algebraic datatypes
in order to define functionality that operates on many datatypes uniformely, reducing
code duplication. With generic programming, certain functions (such as data seriali-
sation and traversals) can be written once and for all, working for existing and future
types of data.

Early approaches to generic programming in Haskell were separate extensions to
the compiler or preprocessors [3], but recently all approaches are bundled as libraries
[13], sometimes with direct compiler support [11]. The easier availability of generic
programming functionality appears to increase its usage; in particular, offering native
support for an approach in the compiler confers a sense of stability to a specific ap-
proach, allowing more programmers to use and benefit from generic programming.

This switch to library approaches simplifies the task of the generic programming
library developer, since it is typically easier to maintain a library than a separate ex-
tension. It also presents the library user with fewer barriers to adoption, as it requires
no external tools. However, it can compromise expressivity and usability, as library
approaches are limited to the capabilities of the Haskell language itself. Performance
and quality of error messages are common complaints of generic programming li-
braries, but also reduced support for certain datatypes can be a concern. In particular,
the Generic Haskell compiler [6], an early, pre-processor approach, had full support for
generic functions abstracting over multiple parameters. The same goes for the gener-
ics in the Clean language [1], which were implemented in the kind-indexed style of

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 136–151, 2014.
© Springer International Publishing Switzerland 2014

Generic Programming with Multiple Parameters 137

Generic Haskell. However, to our knowledge no library approach to generic program-
ming in Haskell has native support for abstraction over multiple datatype parameters.
Concretely, consider the following example:

data WTree α ω = Leaf α
| Fork (WTree α ω) (WTree α ω)
| WithWeight (WTree α ω) ω

mapWTree :: (α → α ′)→ (ω → ω ′)→WTree α ω →WTree α ′ ω ′

mapWTree f g (Leaf a) = Leaf (f a)
mapWTree f g (Fork l r) = Fork (mapWTree f g l) (mapWTree f g r)
mapWTree f g (WithWeight t w) = WithWeight (mapWTree f g t) (g w)

Clearly, functions like mapWTree follow the structure of the datatype, and should be
defined generically, once and for all. In this paper we focus on the problem of defininig
functions such as mapWTree generically; many (if not all) modern generic programming
approaches support the WTree datatype, but not generic operations such as mapWTree.
The only exception that we are aware of is a convoluted implementation using Scrap
Your Boilerplate [5], which relies on runtime type comparison, casting, and (virtual)
seralisation.1 Our approach focuses instead on encoding the parameters adequately in
the generic representation.

In this paper, we focus our attention on the generic-deriving approach, as
implemented in the Glasgow Haskell Compiler (GHC) [8, Chapter 11]. To balance
complexity and ease-of-use, generic-deriving was designed from the start with one
compromise in mind: many generic functions (e.g. fmap and traverse) abstract over one
datatype parameter (i.e. they operate on type containers, or types of kind �→ �), but few
require abstraction over more than one parameter. As such, the design of generic-de-
riving could be kept relatively simple, at the loss of some generality. Recently, with the
advent of kind polymorphism in GHC [16], many libraries are being generalised from
kind-specific to kind-polymophic (e.g. Typeable [16]). In this paper we describe an ele-
gant generalisation of generic-deriving that works with multiple parameters, lifting
the one-parameter restriction without requiring the full-blown power (and complexity)
of indexed functors [7]. Our solution is based on an earlier, failed attempt [9, Section
6.1], but uses new insights to overcome old challenges: we use heterogeneous collec-
tions [4] to encode a function with multiple arguments as a regular single-argument
function that takes a list of arguments.

In the remainder of this paper, we first review one-parameter generic-deriving
(Section 2). We proceed to describe our generalisation in Section 3, showing example
datatype encodings (Section 3.2), and a generalised map function (Section 3.3). We list
limitations and propose future work in Section 4, and conclude in Section 5.

Notation. In order to avoid syntactic clutter and to help the reader, we adopt a lib-
eral Haskell notation in this paper. Datatype promotion makes datatype definitions also
define a kind (with the name of the datatype being defined), while the constructors
also become the types that inhabit that kind; we assume the existence of a kind key-
word, which allows us to define kinds that behave as if they had arisen from datatype

1 http://okmij.org/ftp/Haskell/generics.html#gmap

http://okmij.org/ftp/Haskell/generics.html#gmap

138 J.P. Magalhães

promotion, except that they do not define a datatype and constructors. This helps us
preventing name clashes. We omit the keywords type family and type instance en-
tirely, making type-level functions look like their value-level counterparts. Promoted
lists are prefixed with a quote, to distinguish them from the list type. Additionally, we
use Greek letters for type variables, apart from κ , which is reserved for kind variables.
A colour version of this paper is available at http://dreixel.net/research/pdf/
gpmp colour.pdf. The syntactic sugar is only for presentation purposes. An executable
version of the code, which compiles with GHC 7.6.2, is available at http://
dreixel.net/research/code/gpmp.zip.

2 Generic Programming with One Parameter

In this section we review the generic-deriving library (in the slightly revised version
of Magalhães and Löh [10]), which supports abstraction over (at most) one datatype
parameter. We omit meta-information, as it is not relevant to our development.

2.1 Universe

Using datatype promotion and kind polymorphism, we can keep the “realm” of generic
representations of user datatypes separate from the realm of user datatypes by defin-
ing a new kind. Like types classify values, kinds classify types. User datatypes always
have kind �. For the generic representation, we define a kind Univ that aggregates the
types used to represent user datatypes in generic-deriving. U encodes constructors
without arguments, P an occurence of the parameter, K a type that does not contain
the parameter, R a type that contains the parameter, (:+:) the choice between two con-
structors, (:×:) is used for constructors with multiple arguments, and (:@:) encodes the
application of a functor to a type. The interpretation datatype In υ ρ encodes the values
associated with a representation type υ and parameter ρ :

kind Univ =
U
| P
| K �
| R (�→ �)
| Univ :+: Univ

| Univ :×: Univ
| �→ � :@: Univ

data In (υ :: Univ) (ρ ::�) ::� where
U1 :: In U ρ
Par1 :: ρ → In P ρ
K1 :: α → In (K α) ρ
Rec1 :: φ ρ → In (R φ) ρ
L1 :: In φ ρ → In (φ :+: ψ) ρ
R1 :: In ψ ρ → In (φ :+: ψ) ρ
(:×:) :: In φ ρ → In ψ ρ → In (φ :×: ψ) ρ
App1 :: φ (In ψ ρ) → In (φ :@: ψ) ρ

There is some redundacy in the universe codes; for example, R φ is essentially a shortcut
for φ :@: P, but the latter has a more complicated representation (φ (In P ρ) instead of
just φ ρ). Our new encoding in Section 3 also solves this issue.

The Generic type class mediates between user datatypes and their generic represen-
tation. A Rep type function is used to encode the generic representation of some user
datatype α , while Par identifies the parameter. Conversion functions from and to wit-
ness the isomorphism between α and In (Rep α) (Par α):

http://dreixel.net/research/pdf/gpmp_colour.pdf
http://dreixel.net/research/pdf/gpmp_colour.pdf
http://dreixel.net/research/code/gpmp.zip
http://dreixel.net/research/code/gpmp.zip

Generic Programming with Multiple Parameters 139

class Generic (α ::�) where
Rep α :: Univ
Par α ::�

from :: α → In (Rep α) (Par α)
to :: In (Rep α) (Par α)→ α

Instances of this class are trivial, but tedious to write, and are necessary for each datatype
intended to be used generically. Fortunately, these instances are automatically derivable
by GHC, therefore making generic-deriving a “built-in” generic programming ap-
proach.

2.2 Datatype Encodings

The universe of generic-deriving is best understood through sample datatype instan-
tiations, which we provide in this section. We start with the encoding of lists. A list
is a choice ((:+:)) between an empty constructor (U) or two ((:×:)) arguments—the
parameter (P) and another list (R []):

instance Generic [α] where
Rep [α] = U :+: P :×: R []
Par [α] = α
from [] = L1 U1

from (h : t) = R1 (Par1 h :×: Rec1 t)

to (L1 U1) = []
to (R1 (Par1 h :×: Rec1 t)) = h : t

From this point forward we shall omit the to function, as it is always entirely symmetric
to from.

A slightly more complicated encoding is that of rose (or multiway) trees. Since we
use application of lists in the representation, the conversion functions need to be able to
map over these lists. This is achieved using the fmap function, a generic map that can
be defined for all Generic types (Section 2.3):

data RTree α = RTree α [RTree α]

instance Generic (RTree α) where
Rep (RTree α) = P :×: ([] :@: R RTree)
Par (RTree α) = α
from (RTree x xs) = Par1 x :×: App1 (fmap Rec1 xs)

2.3 Mapping

As generic-deriving supports abstraction over one parameter, we can define the stan-
dard function fmap generically. The user-facing class for this function abstracts over
type containers φ of kind �→ �:

class Functor (φ ::�→ �) where
fmap :: (α → β)→ φ α → φ β

140 J.P. Magalhães

The generic version, fmapR, on the other hand, operates on the generic representation.
We need to give an instance of fmapR for each representation type; we use another type
class for this purpose:

class FunctorR (υ :: Univ) where
fmapR :: (α → β)→ In υ α → In υ β

Sums, products, units, and constants are trivial:

instance FunctorR U where
fmapR U1 = U1

instance FunctorR (K α) where
fmapR (K1 x) = K1 x

instance (FunctorR φ ,FunctorR ψ)⇒ FunctorR (φ :+: ψ) where
fmapR f (L1 x) = L1 (fmapR f x)
fmapR f (R1 x) = R1 (fmapR f x)

instance (FunctorR φ ,FunctorR ψ)⇒ FunctorR (φ :×: ψ) where
fmapR f (x :×: y) = fmapR f x :×: fmapR f y

More interesting are the instances for: the parameter, where we apply the mapping func-
tion; recursion into type containers, where we recurse using fmap; and application of
type containers, where we fmap on the outer container, and fmapR on the inner repre-
sentation:

instance FunctorR P where
fmapR f (Par1 x) = Par1 (f x)

instance (Functor φ)⇒ FunctorR (R φ) where
fmapR f (Rec1 x) = Rec1 (fmap f x)

instance (Functor φ ,FunctorR υ)⇒ FunctorR (φ :@: υ) where
fmapR f (App1 x) = App1 (fmap (fmapR f) x)

Providing instances for types with a Generic instance, such as [α], requires only using
fmapR and converting from/to the original datatype:

instance Functor [] where
fmap f = to◦ fmapR f ◦ from

We now have an easy way to define a generic fmap for any user datatype with a Generic
instance.

3 Generic Programming with Multiple Parameters

Having seen the current implementation of generic-deriving, we are ready to explore
the changes that are necessary to make it support abstraction over multiple parameters.

3.1 Universe

The main change to the universe involves the introduction of a list of parameters, and
the separation of fields into a kind of their own. A field can be one of three things.

Generic Programming with Multiple Parameters 141

Constant types (K) are unchanged. Parameters (P ν) now take an argument ν :: Nat
to indicate which of the parameters it is. The kind Nat encodes Peano-style natural
numbers; we will write 0 for Ze, 1 for Su Ze, etc. A generalised form of application
((:@:)) replaces R and the old (:@:), encoding the application of a type of kind κ to a
type-level list of fields. As we only deal with parameters of kind � (see Section 4.1), the
first argument to :@: will always have a kind of the form �→ . . .→ �, and the second
argument will have as many elements as necessary to fully saturate the first argument.
The interpretation now takes a list of parameters ρ instead of a single parameter. A
separate InField υ ρ datatype interprets a field representation type υ with parameters ρ .
Constants are interpreted as before. Parameters are looked-up in the parameter list with
a type-level lookup operator (:!:) akin to the value-level (!) operator. An application
σ :@: χ is interpreted by applying σ to each of the arguments in χ , after transforming
these (with ExpandField) into types of kind �:

kind Univ =
U
| F Field
| Univ :+: Univ

| Univ :×: Univ

kind Field =
K �
| P Nat
| ∀κ.κ :@: [Field]

data In (υ :: Univ) (ρ :: [�]) ::� where
U :: In U ρ
F :: InField υ ρ → In (F υ) ρ
L :: In α ρ → In (α :+: β) ρ
R :: In β ρ → In (α :+: β) ρ
:×: :: In α ρ → In β ρ → In (α :×: β) ρ

data InField (υ :: Field) (ρ :: [�]) ::� where
K :: α → InField (K α) ρ
P :: ρ :!: ν → InField (P ν) ρ
A :: AppFields σ χ ρ → InField (σ :@: χ) ρ

kind Nat = Ze | Su Nat

(ρ :: [�]) :!: (ν :: Nat) ::�
(α ‘: ρ) :!: Ze = α
(α ‘: ρ) :!: (Su ν) = ρ :!: ν
AppFields σ χ ρ = σ :$: ExpandField χ ρ
(σ :: κ) :$: (ρ :: [�]) ::�
σ :$: ‘[] = σ
σ :$: (α ‘: β) = (σ α) :$: β
ExpandField (χ :: [Field]) (ρ :: [�]) :: [�]
ExpandField ‘[] ρ = ‘[]
ExpandField ((K α) ‘: χ) ρ = α ‘: ExpandField χ ρ
ExpandField ((P ν) ‘: χ) ρ = (ρ :!: ν) ‘: ExpandField χ ρ
ExpandField ((σ :@: ω) ‘: χ) ρ = (σ :$: ExpandField ω ρ) ‘: ExpandField χ ρ

The ExpandField type function converts a list of Fields into user-defined types (of
kind �). Constants are represented by the type in question, parameters are looked up
in the parameter list, and applications are expanded into a fully applied type.

142 J.P. Magalhães

The Generic class to mediate between user datatypes and their representation now
has a type function Pars which lists the parameters of the datatype:

class Generic (α ::�) where
Rep α :: Univ
Pars α :: [�]

from :: α → In (Rep α) (Pars α)
to :: In (Rep α) (Pars α)→ α

3.2 Datatype Encodings

To better understand the universe of our generalised generic-deriving, we show sev-
eral example datatype encodings in this section. We begin with lists; their encoding is
similar to that of Section 2.2, only now we use (:@:) instead of R:

instance Generic [α] where
Rep [α] = U :+: F (P 0) :×: F ([] :@: ‘[P 0])
Pars [α] = ‘[α]

from [] = L U
from (h : t) = R (F (P h) :×: F (A t))

The RTree type of Section 2.2 can also still be encoded. In fact, since we use the
type family ExpandField to transform fields υ of kind Field into �, instead of using the
interpretation InField υ recursively, we no longer need to use fmap; the arguments can
be used directly, simplifying the implementation of from and to:

instance Generic (RTree α) where
Rep (RTree α) = F (P 0) :×: F ([] :@: ‘[RTree :@: ‘[P 0]])
Pars (RTree α) = ‘[α]

from (RTree x xs) = F (P x) :×: F (A xs)

Having support for multiple parameters, we can now deal with pairs properly, for
example. These are simply a product between two fields with a parameter each:

instance Generic (α,β) where
Rep (α,β) = F (P 0) :×: F (P 1)
Pars (α,β) = ‘[α,β]
from (a,b) = F (P a) :×: F (P b)

A more complicated example shows how we can mix datatypes with a different num-
ber of parameters, and partially instantiated datatypes:

data D α β γ = D β [(α, Int)] (RTree [γ])
instance Generic (D α β γ) where

Rep (D α β γ) =
F (P 1) :×: F ([] :@: ‘[(,) :@: ‘[P 0,K Int]]) :×: F (RTree :@: ‘[[] :@: ‘[P 2]])

Pars (D α β γ) = ‘[α,β ,γ]
from (D a b c) = F (P a) :×: F (A b) :×: F (A c)

Generic Programming with Multiple Parameters 143

Even nested datatypes can be encoded, as our application supports the notion of
recursion with parameters instantiated to other applications:

data Perfect α = Perfect (Perfect (α,α)) | End α
instance Generic (Perfect α) where

Rep (Perfect α) = F (Perfect :@: ‘[(,) :@: ‘[P 0,P 0]]) :+: F (P 0)
Pars (Perfect α) = ‘[α]

from (Perfect x) = L (F (A x))
from (End x) = R (F (P x))

As we have seen, our generalisation of generic-deriving supports all the previous
datatypes, plus many new ones, involving any number of parameters of kind �.

3.3 Mapping

While designing a new or improved generic programming library, defining the universe
and showing example datatype encodings is not enough; it is, in fact, easy to define
a simple and encompassing universe that is then found not to be suitable for defining
generic functions. As such, we show that our universe allows defining a generalised
map function, which maps n different functions over n datatype parameters.

Preliminaries. As the generalised map takes n functions, one per datatype parameter,
we need a value-level counterpart to our type-level lists of parameters. We use a strongly
typed heterogenous list [4] for this purpose:

data HList (ρ :: [�]) where
HNil :: HList ‘[]
HCons :: α →HList β →HList (α ‘: β)

We also need a way to pick the n-th element from such a list; we define a Lookup type
class for this purpose, as the function is defined by induction on the type-level natural
numbers. We use a Proxy to carry type information at the value-level (the index being
looked up):

data Proxy (σ :: κ) = Proxy

class Lookup (ρ :: [�]) (ν :: Nat) where
lookup :: Proxy ν →HList ρ → ρ :!: ν

instance Lookup ρ Ze where
lookup (HCons f) = f

instance (Lookup β ν)⇒ Lookup (α ‘: β) (Su ν) where
lookup (HCons fs) = lookup (Proxy :: Proxy ν) fs

User-Facing Type Class. We are now ready to see the class that generalises Functor
of Section 2.3. This is a multi-parameter type class, taking a parameter σ for the un-
saturated type we are mapping over, and a list of function types τ encoding the types
of the functions we will be mapping. As σ will often be ambiguous in the code for

144 J.P. Magalhães

the generic definition of map, we provide a version gmapP with an extra argument that
serves to identify the σ . A version without the proxy (gmap) is provided with a default
for convenient usage:

class GMap (σ :: κ) (τ :: [�]) | τ → κ where
gmap :: HList τ → σ :$: Doms τ → σ :$: Codoms τ
gmap = gmapP (Proxy :: Proxy σ)

gmapP :: Proxy σ →HList τ → σ :$: Doms τ → σ :$: Codoms τ

Our generalised map, gmap, takes two arguments. The first is an HList of functions to
map. The second is the type σ applied to the domains of the functions we are mapping.
Its return type is again σ , but now applied to the codomains of the same functions. For
example, for lists, σ is [], and τ is ‘[α → β]. In this case, gmap gets the expected type
HList ‘[α → β]→ [α]→ [β]. The functional dependency τ → κ is essential to prevent
ambiguity when using gmap—and indeed the kind of σ is uniquely determined by the
(length of the) list τ . The type functions Doms and Codoms compute the domains and
codomains of the list of functions τ :

Doms (τ :: [�]) :: [�]
Doms ‘[] = ‘[]
Doms ((α → β) ‘: τ) = α ‘: Doms τ
Codoms (τ :: [�]) :: [�]
Codoms ‘[] = ‘[]
Codoms ((α → β) ‘: τ) = β ‘: Codoms τ

Mapping on the Generic Representation. We have seen GMap, the user-facing type
class for the generalised map. Its counterpart for representation types is GMapR, which
operates on the interpretation of a representation:

class GMapR (υ :: Univ) (τ :: [�]) where
gmapR :: HList τ → In υ (Doms τ)→ In υ (Codoms τ)

We now go through the instances of GMapR for each representation type. There is
nothing to map over in units, and sums and products are simply traversed through:

instance GMapR U τ where
gmapR U = U

instance (GMapR α τ ,GMapR β τ)⇒ GMapR (α :+: β) τ where
gmapR fs (L x) = L (gmapR fs x)
gmapR fs (R x) = R (gmapR fs x)

instance (GMapR α τ ,GMapR β τ)⇒ GMapR (α :×: β) τ where
gmapR fs (x :×: y) = gmapR fs x :×: gmapR fs y

Fields require more attention, so we define a separate type class GMapRF to handle
them:

instance (GMapRF υ τ)⇒ GMapR (F υ) τ where
gmapR fs (F x) = F (gmapRF fs x)

Generic Programming with Multiple Parameters 145

class GMapRF (υ :: Field) (τ :: [�]) where
gmapRF :: HList τ → InField υ (Doms τ)→ InField υ (Codoms τ)

Constants, however, just like units, are returned unchanged:

instance GMapRF (K α) τ where
gmapRF (K x) = K x

For a parameter P ν , we need to lookup the right function to map over. We again use a
separate type class, GMapRP, and we traverse the input list of functions until we reach
the ν-th function. We thus require the list of functions τ to have its elements in the same
order as the datatype parameters:

instance (GMapRP ν τ)⇒GMapRF (P ν) τ where
gmapRF fs (P x) = P (gmapRP (Proxy :: Proxy ν) fs x)

class GMapRP (ν :: Nat) (τ :: [�]) where
gmapRP :: Proxy ν →HList τ → (Doms τ) :!: ν → (Codoms τ) :!: ν

instance GMapRP Ze ((α → β) ‘: τ) where
gmapRP (HCons f) x = f x

instance (GMapRP ν τ)⇒GMapRP (Su ν) ((α → β) ‘: τ) where
gmapRP (HCons fs) p = gmapRP (Proxy :: Proxy ν) fs p

Handling Application. The only representation type we still have to deal with is (:@:).
This is also the most challenging case. As a running example, consider the second
field of the D datatype of Section 3.2. D has three parameters, α , β , and γ , and the
second field of its only constructor has type [(α, Int)], represented as [] :@: ‘[(,) :@:
‘[P 0,K Int]]. In this situation, we intend to transform [(α, Int)] into [(α ′, Int)], having
available a function of type α →α ′. We do this by requiring the availability of gmap for
this particular list type; that is, we require an instance GMap [] ‘[(α, Int)→ (α ′, Int)].
Having such an instance, we can simply gmap over the argument. However, the func-
tions we map need to be adapted to this new argument. That is the task of AdaptFs,
which we explain below.

A type function MakeFs computes the types of the functions to be mapped inside the
applied type. For example, MakeFs ‘[(,) :@: ‘[P 0,K Int]] ‘[α → α ′,β → β ′,γ → γ ′] is
‘[(α, Int)→ (α ′, Int)]. We use proxies to fix otherwise ambiguous types when invoking
gmapP and adaptFs:

MakeFs (ρ :: [Field]) (τ :: [�]) :: [�]
MakeFs ‘[] τ = ‘[]
MakeFs ((K α) ‘: ρ) τ = (α → α) ‘: MakeFs ρ τ
MakeFs ((P ν) ‘: ρ) τ = (τ :!: ν) ‘: MakeFs ρ τ
MakeFs ((σ :@: ω) ‘: ρ) τ =
(AppFields σ ω (Doms τ)→ AppFields σ ω (Codoms τ)) ‘: MakeFs ρ τ

instance (GMap σ (MakeFs ρ τ)
,AdaptFs ρ τ
,ExpandField ρ (Doms τ)∼ Doms (MakeFs ρ τ)

146 J.P. Magalhães

,ExpandField ρ (Codoms τ)∼ Codoms (MakeFs ρ τ)
)⇒GMapRF (σ :@: ρ) τ where

gmapRF fs (A x) = A (gmapP p1 (adaptFs p2 fs) x)
where p1 = Proxy :: Proxy σ

p2 = Proxy :: Proxy ρ

This instance has four constraints, two of them being equality constraints, introduced
by the ∼ operator: a constraint of the form α ∼ β indicates that the type α must be
equal to the type β . The four constraints of this instance are: the ability to map over
the argument type, the requirement to rearrange the functions we map over, and two
coherence conditions on the behaviour of ExpandField and MakeFs over the list of
functions. The latter are always true for valid ρ and τ .

We are left with the task of adapting the functions to be mapped over. In our run-
ning example, we have an HList ‘[α → α ′,β → β ′,γ → γ ′], and we have to produce
an HList ‘[(α , Int)→ (α ′, Int)]. This is done by adaptFs, a method of the type class
AdaptFs which is implemented by induction on the list of fields to be mapped over:

class AdaptFs (ρ :: [Field]) (τ :: [�]) where
adaptFs :: Proxy ρ → HList τ →HList (MakeFs ρ τ)

For an empty list of an arguments, we return an empty list of functions. If the argument
is a constant, we ignore it and proceed to the next argument. For a parameter P ν , we
use the ν-th function of the original list of functions, and proceed to the next argument:

instance AdaptFs ‘[] τ where
adaptFs = HNil

instance (AdaptFs ρ τ)⇒ AdaptFs ((K α) ‘: ρ) τ where
adaptFs fs = HCons id (adaptFs (Proxy :: Proxy ρ) fs)

instance (AdaptFs ρ τ,Lookup τ ν)⇒ AdaptFs ((P ν) ‘: ρ) τ where
adaptFs fs = HCons (lookup p1 fs) (adaptFs p2 fs)

where p1 = Proxy :: Proxy ν
p2 = Proxy :: Proxy ρ

The most delicate case is, again, application. Back to our running example, this is where
we have to produce a function of type (α, Int)→ (α ′, Int). We do so by requiring an
instance GMap (,) ‘[α → α ′, Int → Int], reusing MakeFs and AdaptFs in the process.
We also need to proceed recursively for the rest of the arguments. Again, we have the
same two coherence conditions on the behaviour of ExpandField and MakeFs over the
list of functions, and use proxies to fix ambiguous types:

instance (GMap σ (MakeFs ω τ)
,AdaptFs ω τ
,AdaptFs ρ τ
,ExpandField ω (Doms τ)∼ Doms (MakeFs ω τ)
,ExpandField ω (Codoms τ)∼ Codoms (MakeFs ω τ)
)⇒ AdaptFs ((σ :@: ω) ‘: ρ) τ where

adaptFs fs = HCons (gmapP p1 (adaptFs p2 fs)) (adaptFs p3 fs)
where p1 = Proxy :: Proxy σ

Generic Programming with Multiple Parameters 147

p2 = Proxy :: Proxy ω
p3 = Proxy :: Proxy ρ

The generic definition of the generalised map is thus complete, and ready to be used.

3.4 Example Usage

Before we instantiate map to our example datatypes of Section 3.2, we first provide a
generic default [11] to make instantiation simpler. This default, for the GMap class,
will allow us to then give empty instances of the class, which will automatically use
the generic definition for the generalised map. The default version of gmapP converts
a value into its generic representation, applies gmapR, and then converts back to a user
datatype. This requires several constraints (which would all be inferred if the function
was defined at the top level). First, we introduce α and β as synonyms for the input and
output type, respectively, for mere convenience. In the case of the GMap [] ‘[γ → γ ′]
instance, for example, α is [γ], and β is [γ ′]. We also require a Generic [γ] instance (for
from), and a Generic [γ ′] instance (for to); these instances will coincide, and indeed we
also require that the representation Rep [γ] be the same as Rep [γ ′] (which is the case).
Furthermore, the parameters of [γ] have to coincide with the domains of ‘[γ → γ ′], and
the parameters of [γ ′] have to coincide with the codomains of the same list. Finally, we
require the ability to map generically over the representation of the input list:

default gmapP :: (α ∼ (σ :$: Doms τ)
,β ∼ (σ :$: Codoms τ)
,Generic α,Generic β
,Rep α ∼ Rep β
,Pars α ∼ Doms τ
,Pars β ∼ Codoms τ
,GMapR (Rep α) τ
)⇒ Proxy σ → HList τ → α → β

gmapP fs = to◦ gmapR fs◦ from

With this default in place, we are ready to instantiate our example datatypes:

instance GMap [] ‘[α → α ′]
instance GMap RTree ‘[α → α ′]
instance GMap (,) ‘[α → α ′,β → β ′]
instance GMap D ‘[α → α ′,β → β ′,γ → γ ′]
instance GMap Perfect ‘[α → α ′]

Using the generic default, instantiation is kept simple and concise. We can verify that
our map works as expected in an example that should cover all the representation types:

x :: D Int Float Char
x = D 0.2 [(0,0),(1,1)] (RTree "p" [])

y :: D Int String Char
y = gmap (HCons (+1) (HCons show (HCons (const ’q’) HNil))) x

Indeed, y evaluates to D "0.2" [(1,0),(2,1)] (RTree "q" []) as expected.

148 J.P. Magalhães

4 Limitations and Future Work

In this section we discuss the limitations of our new generic-deriving, and propose
future research directions.

4.1 Parameters of Higher Kinds

While our generalisation supports any number of parameters of kind �, it is unable to
deal with parameters of higher kinds. Consider the following two datatypes representing
generalised trees:

data GTree1 φ α = GTree1 α (φ (GTree1 φ α))
data GTree2 α φ = GTree2 α (φ (GTree2 α φ))

The most general mapping function for GTree1 has the following type:

(α → β)→ (∀α β .(α → β)→ φ α → ψ β)→ GTree1 φ α → GTree1 ψ β

The generalisation of this paper provides a map of type (α → β)→ GTree1 φ α →
GTree1 φ β , therefore ignoring the φ parameter of kind �→ �. For GTree2, however,
our approach cannot even provide that simple map; we cannot give the GMap instance,
since the parameters of kind � of interest come before a parameter of kind �→ �, and
the second parameter of GMap is a list of kind [�] (so all arguments must have kind �).

As such, we support generic abstraction only over the parameters of kind � which
come after any parameters of other kinds. Lifting this restriction is not trivial. Recall
that the Pars type family has return kind [�]. To generalise to multiple parameters, we
should make this return kind be a (promoted) heterogeneous list. This is currently not
possible, as heterogeneous lists are implemented as GADTs, which cannot be promoted.
Foregoing giving Pars the correct kind and working with nested tuples instead gives rise
to many kind ambiguities, which are cumbersome to solve. As such, we hope that the
promotion mechanism is extended to allow promotion of GADTs soon [15], and defer
generalising our approach to parameters of arbitrary kinds until then.

4.2 Integration with Existing Generic Programming Libraries

The introduction of our new generic-deriving raises the question of how to upgrade
from the old version. Our changes are not backwards compatible, but since the new
version encodes strictly more information than the previous one, we can provide a con-
version that automatically transforms the new representation into the old one, therefore
remaining compatible with old code [10]. The core of this conversion is a type-level
function Dn→D that converts the new representation into the old one. We show a proto-
type implementation here, subscripting the new generic-deriving codes with an n to
distinguish them from the old ones. Units, sums, and products are converted trivially.
Fields are handled by a separate function Dn→DF . Constants are converted trivially. For
a parameter, we return P if it is the last parameter of the datatype (the only one sup-
ported by the old version of generic-deriving), or a constant otherwise. We make
use of type-level if-then-else, equality on Nat, and length. Applications of types of kind

Generic Programming with Multiple Parameters 149

�→ � are converted into compositions. For applications of types of higher arity, we first
apply the type to all its arguments but the last:

IfThenElse (α :: Bool) (β :: κ) (γ :: κ) :: κ
IfThenElse ‘True β γ = β
IfThenElse ‘False β γ = γ
(α :: Nat)≡Nat (β :: Nat) :: Bool
Ze≡Nat Ze = ‘True
Su υ ≡Nat Ze = ‘False
Ze≡Nat Su ν = ‘False
Su υ ≡Nat Su ν = υ ≡Nat ν
Length (ρ :: [κ]) :: Nat
Length ‘[] = Ze
Length (α ‘: ρ) = Su (Length ρ)
Dn→D (υ :: Univn) (ρ :: [�]) :: Univ
Dn→D Un ρ = U
Dn→D (α :+n: β) ρ = Dn→D α ρ :+: Dn→D β ρ
Dn→D (α :×n: β) ρ = Dn→D α ρ :×: Dn→D β ρ
Dn→D (Fn α) ρ = Dn→DF α ρ
Dn→DF (υ :: Fieldn) (ρ :: [�]) :: Univ
Dn→DF (Kn α) ρ = K α
Dn→DF (Pn ν) ρ = IfThenElse (ν ≡Nat Length ρ) P (K (ρ :!: ν))
Dn→DF (φ :@n: ‘[α]) ρ = φ :@: Dn→DF α ρ
Dn→DF (φ :@n: (α ‘: β ‘: γ)) ρ = Dn→DF ((AppFields φ ‘[α] ρ) :@n: (β ‘: γ)) ρ

The introduction of yet another generic programming library underscores the need
for a single mechanism for type reflection baked into the compiler, from which other
mechanisms, such as our new generic-deriving, or Data and Typeable [5], could then
be derived.

4.3 Parameter Genericity vs. Arity Genericity

The approach described in this paper allows us to define generic functions that operate
over multiple datatype parameters. This is not the same as generic functions that operate
at diverse arities [14]. Consider the following generic functions:

map1
n :: HList ‘[α1

1 , . . . ,α1
n]→ φ (α1

1 . . .α1
n)

map2
n :: HList ‘[α1

1 → α2
1 , . . . ,α

1
n → α2

n]→ φ (α1
1 . . .α

1
n)→ φ (α2

1 . . .α
2
n)

map3
n :: HList ‘[α1

1 → α2
1 → α3

1 , . . . ,α
1
n → α2

n → α3
n]

→ φ (α1
1 . . .α

1
n)→ φ (α2

1 . . .α
2
n)→ φ (α3

1 . . .α
3
n)

mapm
n :: HList ‘[α1

1 → . . .→ αm
1 , . . . ,α

1
n → . . .→ αm

n]

→ φ (α1
1 . . .α

1
n)→ . . .→ φ (αm

1 . . .α
m
n)

The function map1
n, or repeat, creates a φ -structure given elements for the parameter po-

sitions. The function map2
n, equivalent to the generic gmap of Section 3.3, is the function

that maps over a φ -structure, taking one function per parameter. The function map3
n, or

150 J.P. Magalhães

zipWith, is the function that takes two φ -structures and zips them when their shapes are
compatible, using the provided functions to zip the parameters. The function mapm

n is
the generalisation of the previous three, in the arity-generic sense. Our approach allows
defining each of map1

n, map2
n, map3

n, etc., individually, as separate generic functions. It
does not allow defining mapm

n ; that generalisation is described by Weirich and Casingh-
ino [14], in the dependently-typed programming language Agda. It remains to see how
to transfer the concept of arity-genericity to Haskell.

5 Conclusion

In this paper we have seen how we can use the promotion mechanism together with kind
polymorphism to encode a generic representation of datatypes that supports abstraction
over multiple parameters (of kind �). This enables a whole new class of generic func-
tionality: we have shown a generalised map, but also folding, traversing, and zipping,
for example, are now possible. We plan to implement support for the new generic-de-
riving in GHC soon, so that users can take advantage of the new functionality without
needing to write their own Generic instances.

Acknowledgements. This work was supported by the EP/J010995/1 EPSRC grant.
Jeremy Gibbons and anonymous referees provided valuable feedback on an early draft
of this paper.

References

[1] Alimarine, A., Plasmeijer, R.: A generic programming extension for Clean. In: Arts, T.,
Mohnen, M. (eds.) IFL 2002. LNCS, vol. 2312, pp. 168–185. Springer, Heidelberg (2002)

[2] Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic programming: An introduc-
tion. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608, pp. 28–115.
Springer, Heidelberg (1999)

[3] Hinze, R., Jeuring, J., Löh, A.: Comparing approaches to generic programming in Haskell.
In: Backhouse, R., Gibbons, J., Hinze, R., Jeuring, J. (eds.) SSDGP 2006. LNCS, vol. 4719,
pp. 72–149. Springer, Heidelberg (2007)

[4] Kiselyov, O., Lämmel, R., Schupke, K.: Strongly typed heterogeneous collections. In: Pro-
ceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell 2004, pp. 96–107.
ACM (2004), doi:10.1145/1017472.1017488

[5] Lämmel, R., Peyton Jones, S.: Scrap your boilerplate: a practical design pattern for
generic programming. In: Proceedings of the 2003 ACM SIGPLAN International Work-
shop on Types in Languages Design and Implementation, pp. 26–37. ACM (2003),
doi:10.1145/604174.604179

[6] Löh, A.: Exploring Generic Haskell. PhD thesis, Universiteit Utrecht (2004),
http://igitur-archive.library.uu.nl/dissertations/2004-1130-111344

[7] Löh, A., Magalhães, J.P.: Generic programming with indexed functors. In: Proceedings
of the 7th ACM SIGPLAN Workshop on Generic Programming, pp. 1–12. ACM (2011),
doi:10.1145/2036918.2036920

[8] Magalhães, J.P.: Less Is More: Generic Programming Theory and Practice. PhD thesis,
Universiteit Utrecht (2012)

http://igitur-archive.library.uu.nl/dissertations/2004-1130-111344

Generic Programming with Multiple Parameters 151

[9] Magalhães, J.P.: The right kind of generic programming. In: Proceedings of the 8th ACM
SIGPLAN Workshop on Generic Programming, WGP 2012, pp. 13–24. ACM, New York
(2012) ISBN 978-1-4503-1576-0, doi:10.1145/2364394.2364397

[10] Magalhães, J.P., Löh, A.: Generic generic programming (2014),
http://dreixel.net/research/pdf/ggp.pdf, Accepted for publication at Practical As-
pects of Declarative Languages (PADL 2014)

[11] Magalhães, J.P., Dijkstra, A., Jeuring, J., Löh, A.: A generic deriving mechanism for
Haskell. In: Proceedings of the 3rd ACM Haskell Symposium on Haskell, pp. 37–48. ACM
(2010), doi:10.1145/1863523.1863529

[12] Peyton Jones, S. (ed.): Haskell 98, Language and Libraries. The Revised Report. Cambridge
University Press (2003), doi:10.1017/S0956796803000315, Journal of Functional Program-
ming Special Issue 13(1)

[13] Rodriguez Yakushev, A., Jeuring, J., Jansson, P., Gerdes, A., Kiselyov, O., Oliveira,
B.C.D.S.: Comparing libraries for generic programming in Haskell. In: Proceedings
of the 1st ACM SIGPLAN Symposium on Haskell, pp. 111–122. ACM (2008),
doi:10.1145/1411286.1411301

[14] Weirich, S., Casinghino, C.: Arity-generic datatype-generic programming. In: Proceedings
of the 4th ACM SIGPLAN Workshop on Programming Languages meets Program Verifi-
cation, pp. 15–26. ACM (2010), doi:10.1145/1707790.1707799

[15] Weirich, S., Hsu, J., Eisenberg, R.A.: System FC with explicit kind equality. In: Proceedings
of the 18th ACM SIGPLAN International Conference on Functional Programming, ICFP
2013, pp. 275–286. ACM (2013), doi:10.1145/2500365.2500599

[16] Yorgey, B.A., Weirich, S., Cretin, J., Peyton Jones, S., Vytiniotis, D., Magalhães,
J.P.: Giving Haskell a promotion. In: Proceedings of the 8th ACM SIGPLAN Work-
shop on Types in Language Design and Implementation, pp. 53–66. ACM (2012),
doi:10.1145/2103786.2103795

http://dreixel.net/research/pdf/ggp.pdf

Type-Based Amortized Resource Analysis with

Integers and Arrays

Jan Hoffmann and Zhong Shao

Yale University

Abstract. Proving bounds on the resource consumption of a program
by statically analyzing its source code is an important and well-studied
problem. Automatic approaches for numeric programs with side effects
usually apply abstract interpretation–based invariant generation to de-
rive bounds on loops and recursion depths of function calls.

This paper presents an alternative approach to resource-bound analy-
sis for numeric, heap-manipulating programs that uses type-based amor-
tized resource analysis. As a first step towards the analysis of imperative
code, the technique is developed for a first-order ML-like language with
unsigned integers and arrays. The analysis automatically derives bounds
that are multivariate polynomials in the numbers and the lengths of
the arrays in the input. Experiments with example programs demon-
strate two main advantages of amortized analysis over current abstract
interpretation–based techniques. For one thing, amortized analysis can
handle programs with non-linear intermediate values like f��n �m�2�.
For another thing, amortized analysis is compositional and works natu-
rally for compound programs like f�g�x��.

Keywords: Quantitative Analysis, Resource Consumption, Amortized
Analysis, Functional Programming, Static Analysis.

1 Introduction

The quantitative performance characteristics of a program are among the most
important aspects that determine whether the program is useful in practice.
Manually proving concrete (non-asymptotic) resource bounds with respect to
a formal machine model is tedious and error-prone. This is especially true if
programs evolve over time when bugs are fixed or new features are added. As a
result, automatic methods for inferring resource bounds are extensively studied.
The most advanced techniques for imperative programs with integers and arrays
apply abstract interpretation to generate numerical invariants [1, 2, 3, 4], that
is, bounds on the values of variables. These invariants form the basis of the
computation of actual bounds on loop iterations and recursion depths.

For reasons of efficiency, many abstract interpretation–based resource-analysis
systems rely on abstract domains such as polyhedra [5] which enable the inference
of invariants through linear constraint solving. The downside of this approach is
that the resulting tools only work effectively for programs in which all relevant
variables are bounded by linear invariants. This is, for example, not the case

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 152–168, 2014.
c© Springer International Publishing Switzerland 2014

Type-Based Amortized Resource Analysis with Integers and Arrays 153

if programs perform non-linear arithmetic operations such as multiplication or
division. A linear abstract domain can be used to derive non-linear invariants
using domain lifting operations [6]. Another possibility is to use disjunctive ab-
stract domains to generate non-linear invariants [7]. This technique has been
experimentally implemented in the COSTA analysis system [8]. However, it is
less mature than polyhedra-based invariant generation and it is unclear how it
scales to larger examples.

In this paper, we study an alternative approach to infer resource bounds
for numeric programs with side effects. Instead of abstract interpretation, it
is based on type-based amortized resource analysis [9, 10]. It has been shown
that this analysis technique can infer tight polynomial bounds for functional
programs with nested data structures while relying on linear constraint solving
only [11, 10]. A main innovation in this polynomial amortized analysis is the
use of multivariate resource polynomials that have good closure properties and
behave well under common size-change operations. Advantages of amortized
resource analysis include precision, efficiency, and compositionality.

Our ultimate goal is to transfer the advantages of amortized resource analysis
to imperative (C-like) programs. As a first important step, we develop a multi-
variate amortized resource analysis for numeric ML-like programs with mutable
arrays in this work. We present the new technique for a simple language with
unsigned integers, arrays, and pairs as the only data types in this paper. How-
ever, we implemented the analysis in Resource Aware ML (RAML) [12] which
features more data types such as lists and binary trees. Our experiments (see
Section 6) show that our implementation can automatically and efficiently infer
complex polynomial bounds for programs that contain non-linear size changes
like f�8128 � x � x� and composed functions like f�g�x�� where the result of the
function g�x� is non-linear. RAML is publicly available and all of our examples
as well as user-defined code can be tested in an easy-to-use online interface [12].

Technically, we treat unsigned integers like unary lists in multivariate amor-
tized analysis [10]. However, we do not just instantiate the previous framework by
providing a pattern matching for unsigned integers and implementing recursive
functions. In fact, this approach would be possible but it has several shortcom-
ings (see Section 2) that make it unsuitable in practice. The key for making
amortized resource analysis work for numeric code is to give direct typing rules
for the arithmetic operations addition, subtraction, multiplication, division, and
modulo. The most interesting aspect of the rules we developed is that they can
be readily represented with very succinct linear constraint systems. Moreover,
the rules precisely capture the size changes in the corresponding operations in
the sense that no precision (or potential) is lost in the analysis.

To deal with mutable data, the analysis ensures that the resource consumption
does not depend on the size of data that has been stored in a mutable heap cell.
While it would be possible to give more involved rules for array operations, all
examples we considered could be analyzed with our technique. Hence we found
that the additional complexity of more precise rules was not justified by the gain
of expressivity in practice.

154 J. Hoffmann and Z. Shao

To prove the soundness of the analysis, we model the resource consumption
of programs with a big-step operational semantics for terminating and non-
terminating programs. This enables us to show that bounds derived within the
type system hold for terminating and non-terminating programs. Refer to the
literature for more detailed explanations of type-based amortized resource anal-
ysis [9, 11, 10], the soundness proof [13], and Resource Aware ML [12, 14].

The full version of this article is available online [15] and includes all technical
details and additional explanations.

2 Informal Account

In this section we briefly introduce type-based amortized resource analysis. We
then motivate and describe the novel developments for programs with integers
and arrays.

Amortized Resource Analysis. The idea of type-based amortized resource
analysis [9, 10] is to annotate each program point with a potential function which
maps sizes of reachable data structures to non-negative numbers. The potential
functions have to ensure that, for every input and every possible evaluation,
the potential at a program point is sufficient to pay for the resource cost of the
following transition and the potential at the next point. It then follows that the
initial potential function describes an upper bound on the resource consumption
of the program.

It is natural to build a practical amortized resource analysis on top of a type
system because types are compositional and provide useful information about
the structure of the data. In a series of papers [11, 10, 13, 14], it has been shown
that multivariate resource polynomials are a good choice for the set of possi-
ble potential functions. Multivariate resource polynomials are a generalization
of non-negative linear combinations of binomial coefficients that includes tight
bounds for many typical programs [13]. At the same time, multivariate resource
polynomials can be incorporated into type systems so that type inference can
be efficiently reduced to LP solving [13].

The basic idea of amortized resource analysis is best explained by example.
Assume we represent natural numbers as unary lists and implement addition
and multiplication as follows.

add (n,m) = match n with | nil � m

| _::xs � () :: (add (xs,m));

mult (n,m) = match n with | nil � nil

| _::xs � add(m,mult(xs,m));

Assume furthermore that we are interested in the number of pattern matches
that are performed by these functions. The evaluation of the expression add�n,m�
performs �n��1 pattern matches and evaluating mult�n,m� needs �n��m��2�n��1
pattern matches. To represent these bounds in an amortized resource analy-
sis, we annotate the argument and result types of the functions with indexed

Type-Based Amortized Resource Analysis with Integers and Arrays 155

families of non-negative rational coefficients of our resource polynomials. The
index set depends on the type and on the maximal degree of the bounds,
which has to be fixed to make the analysis feasible. For our example mult we
need degree 2. The index set for the argument type A � L�unit� � L�unit� is
then I�A� � ��0, 0�, �1, 0�, �2, 0�, �1, 1�, �0, 1�, �0, 2��. A family Q � �qi�i�I�A�

denotes the resource polynomial that maps two lists n and m to the number�
�i,j��I�A� q�i,j�

�
�n�
i

��
�m�
j

�
. Similarly, an indexed family P � �pi�i��0,1,2� describes

the resource polynomial � 	
 p0 � p1��� � p2
�
���
2

�
for a list � : L�unit�.

A valid typing for the multiplication would be for instance mult : �L�unit� �
L�unit�, Q�
 �L�unit�, P �, where q�0,0� � 1, q�1,0� � 2, q�1,1� � 1, and qi � pj �
0 for all other i and all j. Another valid instantiation of P and Q, which would
be needed in a larger program such as add�mult�n,m�, k�, is q�0,0� � q�1,0� �
q�1,1� � 2, p0 � p1 � 1 and qi � pj � 0 for all other i and all j.

The challenge in designing an amortized resource analysis is to develop a type
rule for each syntactic construct of a program that describes how the potential
before the evaluation relates to the potential after the evaluation. It has been
shown [11, 13] that the structure of multivariate resource polynomials facilitates
the development of relatively simple type rules. These rules enable the gener-
ation of linear constraint systems such that a solution of a constraint system
corresponds to a valid instantiation of the rational coefficients qi and pj.

Numerical Programs and Side Effects. Previous work on polynomial amor-
tized analysis [11, 13] (that is implemented in RAML) focused on inductive data
structures such as trees and lists. In this paper, we are extending the technique
to programs with unsigned integers, arrays, and the usual atomic operations such
as �, �, �, mod, div, set, and get. Of course, it would be possible to use existing
techniques and a code transformation that converts a program with these opera-
tions into one that uses recursive implementations such as the previously defined
functions add and mult. However, this approach has multiple shortcomings.

Efficiency. In programs with many arithmetic operations, the use of recursive
implementations causes the analysis to generate large constraint systems
that are challenging to solve. Figure 1 shows the number of constraints that
are generated by the analysis for a program with a single multiplication a� b
as a function of the maximal degree of the bounds. With our novel hand-
crafted rule for multiplication the analysis creates for example 82 constraints
when searching for bounds of maximal degree 10. With the recursive imple-
mentation, 408653 constraints are generated. IBM’s Cplex can still solve
this constraint system in a few seconds but a precise analysis of a larger
RAML program currently requires to copy the 408653 constraints for every
multiplication in the program. This makes the analysis infeasible.

Effectivity. A straightforward recursive implementation of the arithmetic op-
erations on unary lists in RAML would not allow us to analyze the same
range of functions we can analyze with handcrafted typing rules for the
operations. For example, the fast Euclidean algorithm cannot be analyzed
with the usual, recursive definition of mod but can be analyzed with our

156 J. Hoffmann and Z. Shao

12
11
10
9
8
7
6
5
4
3
2
1

100 101 102 103 104 105 106 107

New ruleM
ax

im
al

 d
eg

re
e

Recursive

Fig. 1. Number of constraint generated by RAML for the program a � b as a function
of the maximal degree. The solid bars show the number of constraints generated using
the novel type rule for multiplication. The striped bars show the number of constrained
generated using an recursive implementation. The scale on the x-axis is logarithmic.

new rule. Similarly, we cannot define a recursive function so that the analy-
sis is as effective as with our novel rule for minus. For example, the pattern
if n � C then ... recCall�n� C� else ... for a constant C � 0 can be analyzed
with our new rule but not with a recursive definition for minus.

Conception. A code transformation prior to the analysis complicates the sound-
ness proof since we would have to show that the resource usage of the mod-
ified code is equivalent to the resource usage of the original code. More
importantly, handling new language features merely by code transforma-
tions into well-understood constructs is conceptually less attractive since it
often does not advance our understanding of the new features.

To derive a typing rule for an arithmetic operation in amortized resource anal-
ysis, we have to describe how the potential of the arguments of the opera-
tion relates to the potential of the result. For x, y N and a multiplication
x � y we start with a potential of the form

�
�i,j��I q�i,j�

�
x
i

��
y
j

�
(where I �

��0, 0�, �1, 0�, �2, 0�, �1, 1�, �0, 1�, �0, 2�� in the case of degree 2). We then have to
ensure that this potential is always equal to the constant resource consumption
Mmult of the multiplication and the potential

�
i��0,1,2� pi

�
x�y
i

�
of the result x�y.

This is the case if q�0,0� �Mmult�p0, q�1,1� � p1, q�1,2� � q�2,1� � p2, q�2,2� � 2p2,
and q�i,j� � 0 otherwise. We will show that such relations can be expressed for
resource polynomials of arbitrary degree in a type rule for amortized resource
analysis that corresponds to a succinct linear constraint system.

The challenge with arrays is to account for side effects of computations that
influence the resource consumption of later computations in the presence of
aliasing. We can analyze such programs but ensure that the potential of data that
is stored in arrays is always 0. In this way, we prove that the influence of aliasing
on the resource usage is accounted for without using the size of mutable data.
As for all language features, we could achieve the same with some abstraction of
the program that does not use arrays. However, this is not necessarily a simpler
approach.

Type-Based Amortized Resource Analysis with Integers and Arrays 157

3 A Simple Language with Side Effects

We present our analysis for a minimal first-order functional language that only
contains the features we are interested in, namely operations for integers and
arrays. However, we implemented the analysis in Resource Aware ML (RAML)
[14, 12] which also includes (signed) integers, lists, binary trees, Booleans, con-
ditionals and pattern matching on lists and trees.

Syntax. The subset of RAML we use in this article includes variables x, un-
signed integers n, function calls, pairs, pattern matching for unsigned integers
and pairs, let bindings, an undefined expression, a sharing expression, and the
built in operations for arrays and unsigned integers.

e ::� x � f�x� � �x1, x2� � matchxwith �x1, x2� � e � undefined � letx � e1 in e2

� sharex as �x1, x2� in e � matchxwith �0� e1 � S�y� � e2�

� n � x1 � x2 � x1 � x2 � minus�x1, x2� � minus�x1, n� � divmod�x1, x2�

� A.make�x1, x2� � A.set�x1, x2, x3� � A.get�x1, x2� � A.length�x�

We present the language in, what we call, share-let normal form which simplifies
the type systemwithout hampering expressivity. In the implementation, we trans-
form input programs to share-let normal form before the analysis. Like in Haskell,
the undefined expression simply aborts the program without consuming any re-
sources. The meaning of the sharing expression sharex as �x1, x2� in e is that the
value of the free variable x is bound to the variables x1 and x2 for use in the ex-
pression e.We use it to inform the (affine) type systemofmultiple uses of a variable.

While all array operations as well as multiplication and addition are stan-
dard, subtraction, division, and modulo differ from the standard operations.
To give stronger typing rules in our analysis system, we combine division and
modulo in one operation divmod. Moreover, minus and divmod return their sec-
ond argument, that is, minus�n,m� � �m,n �m� and divmod�n,m� � �m,n �
m,n mod m�. We also distinguish two syntactic forms of minus; one in which
we subtract a variable and another one in which we subtract a constant. More
explanations are given in Section 5. If m � n then the evaluation of minus�n,m�
fails without consuming resources. That means that it is the responsibility of
the user or other static analysis tools to show the absence of overflows.

Types and Programs. We define data types A,B and function types F .

A,B ::� nat � A array � A �B F ::� A
 B

Let A be the set of data types and let F be the set of function types. A signature
Σ : FID � F is a partial finite mapping from function identifiers to function
types. A context is a partial finite mapping Γ : Var � A from variable identifiers
to data types. A simple type judgment Σ;Γ � e : A states that the expression
e has type A in the context Γ under the signature Σ. The definition of typing
rules for this judgment is standard and we omit the rules. A (well-typed) program
consists of a signature Σ and a family �ef , yf �f�dom�Σ� of expressions ef with a
distinguished variable identifier yf such that Σ; yf :A � ef :B if Σ�f� � A
 B.

158 J. Hoffmann and Z. Shao

V,H
M

e � � � 0
(E:Zero)

n 	 H�V �x1��
H�V �x2�� H � 	 H, � �� n

V,H
M

x1 � x2 � ��,H
�� �Mmult

(E:Mult)

n 	 H�V �x1�� �H�V �x2�� H � 	 H, � �� �V �x2�, �
��, �� �� n

V,H
M

minus�x1, x2� � ��,H
�� � M sub

(E:Sub)

yf ��V �x��,H
M

ef � ρ � �q, q��

V,H
M

f�x� � ρ �M app
�q, q��
(E:App)

H�V �x1��	�σ, n� H�V �x2���n

V,H
M

A.get�x1, x2� � � �M
Afail

(E:AGFail)

H�V �x1�� 	 �σ, n� H�V �x2�� 	 i 0 � i � n

V,H
M

A.get�x1, x2� � �σ�i�,H� � MAget
(E:AGet)

Fig. 2. Selected rules of the operational big-step semantics

Cost Semantics. Figure 2 contains representative rules of the operational cost
semantics. The full version of this article [15] contains all rules of the semantics
for our subset of RAML. The semantics is standard except that it defines the
cost of an evaluation. This cost depends on a resource metric M : K
 Q that
assigns a cost to each evaluation step of the big-step semantics. Here, K is a
finite set of constant symbols. We write Mk for M�k�.

The semantics is formulated with respect to a stack and a heap. Let Loc be
an infinite set of locations modeling memory addresses on a heap. The set of
RAML values Val is given as follows.

Val � v ::� n � ��1, �2� � �σ, n�

A value v Val is either a natural number n, a pair of locations ��1, �2�, or an
array �σ, n�. An array �σ, n� consists of a size n and a mapping σ : �0, . . . , n�1�

Loc from the set �0, . . . , n�1� of natural numbers to locations. A heap is a finite
partial mapping H : Loc � Val that maps locations to values. A stack is a finite
partial mapping V : Var � Loc from variable identifiers to locations.

The big-step operational evaluation rules are defined in the full version of this
article. They define an evaluation judgment of the form V,H M e � ��,H �� �
�q, q�� . It expresses the following. Under resource metric M , if the stack V and
the initial heap H are given then the expression e evaluates to the location �
and the new heap H �. To evaluate e one needs at least q Q	

0 resource units
and after the evaluation there are q� Q	

0 resource units available. The actual
resource consumption is then δ � q � q�. The quantity δ is negative if resources
become available during the execution of e.

In fact, the evaluation judgment is slightly more complicated because there
are two other behaviors that we have to express in the semantics: failure (i.e.,
array access outside its bounds) and divergence. To this end, our semantics judg-
ment does not only evaluate expressions to values but also expresses incomplete
computations by using � (pronounced busy). The evaluation judgment has the
general form

V,H M e � ρ � �q, q�� where ρ ::� ��,H� � � .

Type-Based Amortized Resource Analysis with Integers and Arrays 159

Well-Formed Environments. For each simple type A we inductively define
a set �A� of values of type A.

�nat� � N

�A array� � ��α, n� � n N and α : �0, . . . , n� 1�
 �A��

�A �B� � �A� � �B�

If H is a heap, � is a location, A is a type, and a �A� then we write H �
� 	
 a :A to mean that � defines the semantic value a �A� when pointers are
followed in H in the obvious way. The judgment is formally defined in the full
version.

We write H � � :A to indicate that there exists a necessarily unique, semantic
value a �A� so that H � � 	
 a :A . A stack V and a heap H are well-formed
with respect to a context Γ if H � V �x� :Γ �x� holds for every x dom�Γ �. We
then write H � V : Γ .

4 Resource Polynomials and Annotated Types

Compared with multivariate amortized resource analysis for nested inductive
data types [13], the resource polynomials that are needed for the data types
in this article are relatively simple. They are multivariate, non-negative linear
combinations of binomial coefficients.

Resource Polynomials. For each data type A we first define a set P�A� of
functions p : �A�
 N that map values of type A to natural numbers. The
resource polynomials for type A are then given as non-negative rational linear
combinations of these base polynomials. We define P�A� as follows.

P�nat� � �λn .

�
n

k

�
� k N� P�A array� � �λ�α, n� .

�
n

k

�
� k N�

P�A1 �A2� � �λ�a1, a2� . p1�a1��p2�a2� � p1 P�A1� � p2 P�A2��

A resource polynomial p : �A�
 Q	
0 for a data type A is a non-negative linear

combination of base polynomials, i.e., p �
�

i
1,...,m qi � pi for qi Q	
0 and

pi P�A�. We write R�A� for the set of resource polynomials of data type A.
For example, h�n,m� � 7� 2.5�n� 5

�
n
3

��
m
2

�
� 8
�
m
4

�
is a resource polynomial

for the data type nat � nat.

Names for Base Polynomials. To assign a unique name to each base poly-
nomial, we define the index set I�A� to denote resource polynomials for a given
data type A.

I�nat� � I�A array� � N

I�A1 �A2� � ��i1, i2� � i1 I�A1� and i2 I�A2��

For each i I�A�, we define a base polynomial pi P�A� as follows: If A � nat
then pk�n� �

�
n
k

�
. If A � A� array then pk�σ, n� �

�
n
k

�
. If A � �A1 �A2� is a pair

160 J. Hoffmann and Z. Shao

type and v � �v1, v2� then p�i1,i2��v� � pi1�v1� � pi2�v2�. We use the notation 0A
(or just 0) for the index in I�A� such that p0A�a� � 1 for all a.

Our previous example h : �nat � nat�
 Q	
0 can for instance be written as

h�n,m� � 7p�0,0��n,m� � 2.5p�1,0��n,m� � 5p�3,2��n,m� � 8p�0,4��n,m�.

Annotated Types and Potential Functions. A type annotation for a data
type A is defined to be a family QA � �qi�i�I�A� with qi Q	

0 . An annotated
data type is a pair �A,QA� of a data type A and a type annotation QA.

Let H be a heap and let � be a location with H � � 	
 a :A for a data type
A. Then the type annotation QA defines the potential

ΦH��:�A,QA�� �
�

i�I�A�

qi � pi�a�

If a �A� then we also write Φ�a : �A,QA�� for
�

i qi�pi�a�.
For example, consider the resource polynomial h�n,m� again. We have

Φ��n,m� : �nat�nat, Q�� � h�n,m� if q�0,0� � 7, q�1,0� � 2.5, q�3,2� � 5, q�0,4� � 8,
and q�i,j� � 0 for all other �i, j� I�nat � nat�.

The Potential of a Context. For use in the type system we need to extend
the definition of resource polynomials to typing contexts. We treat a context like
a tuple type. Let Γ � x1:A1, . . . , xn:An be a typing context and let k N. The
index set I�Γ � is defined as I�Γ � � ��i1, . . . , in� � ij I�Aj��. A type annotation
Q for Γ is a family Q � �qi�i�I�Γ � with qi Q	

0 .
We denote a resource-annotated context with Γ ;Q. Let H be a heap and V

be a stack with H � V : Γ where H � V �xj� 	
 axj : Γ �xj� . The potential of
Γ ;Q with respect to H and V is ΦV,H�Γ ;Q� �

�
�i1,...,in��I�Γ � q�ı

�n
j
1 pij �axj �.

In particular, if Γ � � then I�Γ � � ���� and ΦV,H�Γ ; q��� � q��. We sometimes
also write q0 for q��.

Operations on Annotations. For each arithmetic operation such as n � 1,
n � m, and n � m, we define a corresponding operation on annotations that
describes how to transfer potential from the arguments to the result.

For addition and subtraction (compare rules T:Add and T:Sub in Figure 3)
we need to express the potential of a natural number n in terms of two numbers
n1 and n2 such that n � n1 � n2. To this end, let Q � �qi�i�N be an annotation
for data of type nat. We define the convolution ��Q� of the annotation Q to be
the following annotation Q� for the type nat � nat.

��Q� � �q��i,j���i,j��I�nat�nat� if q��i,j� � qi	j

The convolution ��Q� for type annotations corresponds to Vandermonde’s con-
volution for binomial coefficients:�

n1 � n2

k

�
�

�
i	j
k

�
n1

i

��
n2

j

�

Using Vandermonde’s convolution we derive Lemma 1.

Lemma 1. Let Q be an annotation for type nat, H � � 	
 n1�n2 : nat , and
H � � �� 	
 �n1, n2� : nat �nat . Then ΦH��:�nat, Q�� � ΦH����:�nat � nat,��Q���.

Type-Based Amortized Resource Analysis with Integers and Arrays 161

In the type rule for subtraction of a constantK we can distribute the potential in
two different ways. We can either use the convolution to distribute the potential
between two numbers or we can perform K additive shifts. Of course, we can
describe K shift operations directly: Let Q � �qi�i�N be an annotation for data
of type nat. The K-times shift for natural numbers �K�Q� of the annotation Q
is an annotation Q� for data of type nat that is defined as follows.

�K�Q� � �q�i�i�I�nat� if q�i �
�

j
i	�

qj

�
K

�

�
.

Recall that
�
n
m

�
� 0 if m � n. The K-times shift corresponds to the follow-

ing identity (where qk	1 � 0 again) that can be derived from Vandermonde’s
convolution. �

0�i�k

qi

�
n�K

i

�
�

�
0�i�k

� �
j
i	�

qj

�
K

�

�	�
n

i

�

The K-times shift is a generalization of the additive shift (see [13]) which is
equivalent to the 1-times shift. Using the previous identity we prove Lemma 2.

Lemma 2. Let Q be an annotation for type nat, H � � 	
 n�K : nat , and
H � � �� 	
 n : nat . Then ΦH��:�nat, Q�� � ΦH����:�nat,�KQ��.

For multiplication and division, things are more interesting. Our goal is to define
a convolution-like operation ��Q� that defines an annotation for the arguments
�x1, x2� : nat � nat if given an annotation Q of a product x1 � x2 : nat. For this
purpose, we are interested in the coefficients A�i, j, k� in the following identity.�

nm

k

�
�
�
i,j

A�i, j, k�

�
n

i

��
m

j

�

Fortunately, this problem has been carefully studied by Riordan and Stein [16].1

Intuitively, the coefficient A�i, j, k� is number of ways of arranging k pebbles on
an i�j chessboard such that every row and every column has at least one pebble.
Riordan and Stein obtain the following closed formulas.

A�i, j, k� �
�
r,s

��1�i	j	r	s

�
i

r

��
j

s

��
rs

k

�
�
�
n

i!j!

k!
S�n, i�S�n, j� s�k, n�

Here, S��, �� and s��, �� denote the Stirling numbers of first and second kind,
respectively. Furthermore they report the recurrence relation A�i, j, k � 1��k �
1� � �A�i, j, k� �A�i� 1, j, k� �A�i, j � 1, k� �A�i� 1, j� 1, k��ij � k A�i, j, k�.

Equipped with a closed formula for A�i, j, k�, we now define the multiplicative
convolution ��Q� of an annotation Q for type nat as

��Q� � �q��i,j���i,j��I�nat�nat� if q��i,j� �
�
k

A�i, j, k� qk .

Lemma 3 is then a direct consequence of the identity of Riordan and Stein.

1 Thanks to Mike Spivey for pointing us to that article.

162 J. Hoffmann and Z. Shao

Lemma 3. Let Q be an annotation for type nat, H � � 	
 n1 � n2 : nat , and
H � � �� 	
 �n1, n2� : nat �nat . Then ΦH��:�nat, Q�� � ΦH����:�nat � nat,��Q���.

5 Resource-Aware Type System

We now describe the type-based amortized analysis for programs with unsigned
integers and arrays. We only present the novel rules for arrays and arithmetic
expressions. The complete set of rules can be found in the full version of the
article [15].

Type Judgments. The type rules for RAML expressions in Figure 3 define a
resource-annotated typing judgment of the form

Σ;Γ ;Q M e : �A,Q��

where e is a RAML expression, M is a metric, Σ is a resource-annotated signa-
ture (see below), Γ ;Q is a resource-annotated context and �A,Q�� is a resource-
annotated data type. The intended meaning of this judgment is that if there
are more than Φ�Γ ;Q� resource units available then this is sufficient to cover
the evaluation cost of e in metric M . In addition, there are at least Φ�v:�A,Q���
resource units left if e evaluates to a value v.

Programs with Annotated Types. Resource-annotated function types have
the form �A,Q�
 �B,Q�� for annotated data types �A,Q� and �B,Q��. A
resource-annotated signature Σ is a finite, partial mapping from function iden-
tifiers to sets of resource-annotated function types.

A RAML program with resource-annotated types for metric M consists of a
resource-annotated signature Σ and a family of expressions with variable iden-
tifiers �ef , yf �f�dom�Σ� such that Σ; yf :A;Q

M ef : �B,Q�� for every function
type �A,Q�
 �B,Q�� Σ�f�.

Notations. If Q,P and R are annotations with the same index set I then
we extend operations on Q pointwise to Q,P and R. For example, we write
Q � P �R if qi � pi � ri for every i I.

For K Q we write Q � Q� �K to state that q0 � q�0 �K � 0 and qi � q�i
for i � 0 I. Let Γ � Γ1, Γ2 be a context, let i � �i1, . . . , ik� I�Γ1� and j �
�j1, . . . , jl� I�Γ2� . We write �i, j� for the index �i1, . . . , ik, j1, . . . , jl� I�Γ �.

Let Q be an annotation for a context Γ1, Γ2. For j I�Γ2� we define the
projection πΓ1

j �Q� of Q to Γ1 to be the annotation Q� with q�i � q�i,j�. Sometimes
we omit Γ1 and just write πj�Q� if the meaning follows from the context.

Type Rules. Figure 3 contains the annotated type rules for arithmetic opera-
tions, array operations, the undefined expression, variables, and function appli-
cation. The rules T:Var and T:App for variables and function application are
similar to the corresponding rules in previous work [10].

In the rule T:Undef, we only require that the constant potential Mundef is
available. In contrast to the other rules we do not relate the initial potential Q

Type-Based Amortized Resource Analysis with Integers and Arrays 163

Q 	 Q� �M var

Σ;x:A;Q
M

x : �A,Q��
(T:Var)

P�M app 	 Q �A,P � � �A�, Q�� � Σ�f�

Σ;x:A;Q
M

f�x� : �A�, Q��
(T:App)

Q 	 ��Q�� �M add

Σ;x1:nat, x2:nat;Q
M

x1 � x2 : �nat, Q��
(T:Add)

Q� �M sub 	 ��πx1:nat
0 �Q��

Σ;x1:nat, x2:nat;Q
M

minus�x1, x2� : �nat � nat, Q
��

(T:Sub)

q0 	 Mnat �
�
i�0

q�i

�
n

i

�

Σ;
;Q
M

n : �nat, Q��
(T:Nat)

Q	M sub�P�R P �	� �P � R�	�n�R�
q��i,0� 	 r�i � p��i,0� q��i,j� 	 p��i,j� if j � 0

Σ; x:nat;Q
M

minus�x,n� : �nat � nat, Q��
(T:SubC)

q0 	 Mundef

Σ;
;Q
M

undefined :�B,Q��
(T:Undef)

Q 	 ��Q�� �Mmult

Σ; x1:nat, x2:nat;Q
M

x1�x2:�nat, Q
��
(T:Mult)

R�Mdif 	 ��πx1:nat
0 �Q�� �i � N : πi�R� 	 ��πi�Q

���

Σ;x1:nat, x2:nat;Q
M

divmod�x1, x2� : ��nat � nat� � nat, Q
��

(T:Div)

� i�1 : q�i,0� 	 q�i q�0,0� 	 q�0 �MAmake q�1,0� 	 q�1 �MAmakeL

Σ;x1:nat, x2:A;Q
M

A.make�x1, x2� : �A array, Q��
(T:AMake)

q0 	 q�0 �MAget

Σ;x1:A array, x2:nat, x3:A;Q
M

A.set�x1, x2, x3� : �nat, Q
��

(T:ASet)

� i�0 : q�i 	 0 q0 	 q�0 �MAset

Σ;x1:A array, x2:nat;Q
M

A.get�x1, x2� : �A,Q��
(T:AGet)

Q 	 Q� �MAlen

Σ;x : A array;Q
M

A.length�x� : �nat, Q��
(T:ALen)

Fig. 3. Annotated type rules for arithmetic and array operations

with the resulting potential Q�. Intuitively, this is sound because the program
is aborted when evaluating the expression undefined. A consequence of the rule
T:Undef is that we can type the expression letx � undefined in e with constant
initial potential Mundef regardless of the resource cost of the expression e.

The rule T:Nat shows how to transfer constant potential to polynomial po-
tential of a non-negative integer constant n. Since n is statically available, we
simply compute the coefficients

�
n
i

�
for the linear constraint system.

In the rule T:Add, we use the convolution operation ���� that we describe
in Section 4. The potential defined by the annotation ��Q�� for the context
x1:nat, x2:nat is equal to the potential Q� of the result.

Subtraction is handled by the rules T:Sub and T:SubC. To be able to con-
serve all the available potential, we have to ensure that subtraction is the inverse

164 J. Hoffmann and Z. Shao

operation to addition. To this end, we abort the program if x2 � x1 and oth-
erwise return the pair �n,m� � �x2, x1 � x2�. This enables us to transfer the
potential of x1 to the pair �n,m� where n�m � x1. This is inverse to the rule
T:Add for addition.

In the rule T:Sub, we only use the potential of x1 by applying the projection
πx1:nat
0 �Q�. The potential of x2 and the mixed potential of x1 and x2 can be

arbitrary and is wasted by the rule. This is usually not problematic since it would
just be zero anyways in most useful type derivations. By using the convolution
��πx1:nat

0 �Q�� we then distribute the potential of x1 to the result ofminus�x1, x2�.
The rule T:SubC specializes the rule T:Sub. We can use T:SubC to simulate

T:Sub but we also have the possibility to exploit the fact that we subtract a
constant. This puts us in a position to use the K-times shift that we introduced
in Section 4. So we split the initial potential Q into P and R. We then assign the
convolution P � � ��P � to the pair of unsigned integers that is returned by minus
and the n-times shift �n�R� to the first component of the returned pair. In fact,
it would not hamper the expressivity of our system to only use the conventional
subtraction x� n and the n-times shift in the case of subtraction of constants.

In practice, it would be beneficial not to expose this non-standard minus
function to users and instead apply a code transformation that converts the
usual subtraction letx � x1 � x2 in e into an equivalent expression let �x2, x� �
minus�x1, x2� in e that overshadows x2 in e. In this way, it is ensured that the
potential that is returned by minus can be used within e.

The rule T:Mult is similar to T:Add. We just use the multiplicative con-
volution ���� (see Section 4) instead of the additive convolution ����. The rule
T:Div is inverse to T:Mult in the same way that T:Sub is inverse to T:Add.
We use both, the additive and multiplicative convolution to express the fact that
n �m� r � x1 if �n,m, r� � divmod�x1, x2�.

In the rule T:AMake, we transfer the potential of x1 to the created array.
We discard the potential of x2 and the mixed potential of x1 and x2. At this
point, it would in fact be not problematic to use mixed potential to assign it to
the newly created elements of the array. We refrain from doing so solely because
of the complexity that would be introduced by tracking the potential in the
functions A.get and A.set. Another interesting aspect of T:AMake is that we
have a constant cost that we deduce from the constant coefficient as usual, as
well as a linear cost that we deduce from the linear coefficient. This is represented
by the constraints q�0,0� � q�0 �MAmake and q�1,0� � q�1 �MAmakeL, respectively.

For convenience, the operation A.set returns 0 in this paper. In RAML, A.set
has however the return type unit. This makes no difference for the typing rule
T:ASet in which we simply pay for the cost of the operation and discard the
potential that is assigned to the arguments. Since the return value is 0, we do
not need require that the non-constant annotations of Q� are zero.

In the rule T:AGet, we again discard the potential of the arguments and also
require that the non-linear coefficients of the annotation of the result are zero.
In the rule T:ALen, we simply assign the potential of the array in the argument
to the resulting integer.

Type-Based Amortized Resource Analysis with Integers and Arrays 165

Soundness. An annotated type judgment for an expression e establishes a
bound on the resource cost of all evaluations of e in a well-formed environment;
regardless of whether the evaluation terminates, diverges, or fails.

Additionally, the soundness theorem states a stronger property for termi-
nating evaluations. If an expression e evaluates to a value v in a well-formed
environment then the difference between initial and final potential is an upper
bound on the resource usage of the evaluation.

Theorem 1 (Soundness). Let H � V :Γ and Σ;Γ ;Q M e:�B,Q��.

1. If V,H M e � ��,H �� � �p, p�� then we have p � ΦV,H�Γ ;Q� and p � p� �
ΦV,H�Γ ;Q� � ΦH���:�B,Q���.

2. If V,H M e � � � �p, p�� then p � ΦV,H�Γ ;Q�.

Theorem 1 is proved by a nested induction on the derivation of the evaluation
judgment and the type judgment Γ ;Q � e:�B,Q��. The inner induction on the
type judgment is needed because of the structural rules. There is one proof for
all possible instantiations of the resource constants.

The proof of most rules is similar to the proof of the rules for multivariate
resource analysis for sequential programs [13]. The novel type rules are mainly
proved by the Lemmas 1, 2, and 3. We deal with the mutable heap by requiring
that array elements do not influence the potential of an array. As a result, we
can prove the following lemma.

Lemma 4. If H � V :Γ , Σ;Γ ;Q M e : �B,Q�� and V,H M e � ��,H �� �
�p, p�� then ΦV,H�Γ ;Q� � ΦV,H��Γ ;Q�.

If the metric M is simple (all constants are 1) then it follows from Theorem 1
that the bounds on the resource usuage also prove the termination of programs.

Corollary 1. Let M be a simple metric. If H � V :Γ and Σ;Γ ;Q M e:�A,Q��
then there are w N and d � ΦV,H�Γ ;Q� such that V,H M e � ��,H �� � �w, d�
for some � and H �.

Type Inference. In principle, type inference consists of four steps. First, we
perform a classic type inference for the simple types such as nat array. Second,
we fix a maximal degree of the bounds and annotate all types in the derivation of
the simple types with variables that correspond to type annotations for resource
polynomials of that degree. Third, we generate a set of linear inequalities, which
express the relationships between the added annotation variables as specified by
the type rules. Forth, we solve the inequalities with an LP solver such as CLP.
A solution of the linear program corresponds to a type derivation in which the
variables in the type annotations are instantiated according to the solution.

In practice, the type inference is slightly more complex. Most importantly,
we have to deal with resource-polymorphic recursion in many examples. This
means that we need a type annotation in the recursive call that differs from the
annotation in the argument and result types of the function. To infer such types
we successively infer type annotations of higher and higher degree. Details can be

166 J. Hoffmann and Z. Shao

found in previous work [17]. Moreover, we have to use algorithmic versions of the
type rules in the inference in which the non-syntax-directed rules are integrated
into the syntax-directed ones [13]. Finally, we use several optimizations to reduce
the number of generated constraints.

An concrete example of a type derivation can be found in previous work [13].

6 Experimental Evaluation

We have implemented our analysis system in Resource Aware ML (RAML) [12,
14] and tested the new analysis on multiple classic examples algorithms. In this
section we describe the results of our experiments with the evaluation-step metric
that counts the number of steps of an evaluation in the operational semantics.

Table 1 contains a compilation of analyzed functions together with their sim-
ple types, the computed bounds, the run times of the analysis, and the number of
generated linear constraints. We write Mat for the type (Arr(Arr(int)),nat,nat).
The dimensions of the matrices are needed since array elements do not carry po-
tential. The variables in the computed bounds correspond to the sizes of different
parts of the input. The naming convention is that we use the order n,m, x, y, z, u
of the variables to name the sizes in a depth-first way: n is the size of the first
argument, m is the maximal size of the elements of the first argument, x is the
size of the second argument, etc. The experiments were performed on an iMac
with a 3.4 GHz Intel Core i7 and 8 GB memory.

All but one of the reported bounds are asymptotically tight (gcdFast is actu-
ally O�logm�). We also measured the evaluation cost of the functions for several
inputs in the RAML interpreter. Our experiments indicate that all constant fac-
tors in the bounds for the functions dyadAllM and mmultAll are optimal. The
bounds for the other functions seem to be off by ca. 2% � 20%. However, it
is sometimes not straightforward to find worst-case inputs. The full version of
this article [15] contains plots for the functions dijkstra, quicksort, dyadAllM, and
mmultAll that compare the measured evaluation cost for inputs of different sizes
with the inferred bounds.

The function dijkstra is an implementation of Dijkstra’s single-source shortest-
path algorithm which uses a simple priority queue; gcdFast is an implementation
of the Euclidean algorithm using modulo; pascal�n� computes the first n�1 lines
of Pascal’s triangle; quicksort is an implementation of Hoare’s in-place quick sort
for arrays; and mmultAll takes a matrix (an accumulator) and a list of matrices,
and multiplies all matrices in the list with the accumulator.

The last three examples are composed functions that highlight interesting
capabilities of the analysis. The function blocksort�a, n� takes an array a of length
m and divides it into n�m blocks (and a last block containing the remainder)
using the build-in function divmod, and sorts all blocks in-place with quicksort.
The function dyadAllM�n� computes a matrix of size �i2�9i�28� � �ij�6j� for
every pair of numbers i, j such that 1 � j � i � n (the polynomials are just
a random choice). Finally, the function mmultFlatSort takes two matrices and
multiplies them to get a matrix of dimension m� u. It then flattens the matrix
into an array of length mu and sorts this array with quicksort.

Type-Based Amortized Resource Analysis with Integers and Arrays 167

Table 1. Compilation of RAML Experiments

Function / Type Computed Bound Time #Constr.

dijkstra : (Arr(Arr(int)),nat)�Arr(int) 79.5n2 � 31.5n � 38 0.1 s 2178

gcdFast : (nat,nat) � nat 12m � 7 0.1 s 105

pascal : nat � Arr(Arr(int)) 19n2 � 95n� 30 0.4 s 998

quicksort : (Arr(int),nat,nat) � unit 12.25x2 � 52.75x � 3 0.7 s 2080

blocksort : (Arr(int),nat) � unit 12.25n2 � 90.25n � 18 0.4 s 27795

mmultAll : (L(Mat),Mat) � Mat
18nuyx� 31nuy � 38nu�
38n� 3

5.6 s 184270

dyadAllM : nat � unit
1.6̄n6 � 334.8n4 � 1485.1n3�
37n5�2963.5n2�1789.92n�3

3.9 s 130236

mmultFlatSort : (Mat,Mat)�Arr(int)
12.25u2m2 � 18umz � 28u�
127.25um � 49m � 66

5.9 s 167603

We did not perform an experimental comparison with abstract interpretation–
based resource analysis systems. Many systems that are described in the litera-
ture are not publicly available. The COSTA system [3, 4] is an exception but it
is not straightforward to translate our examples to Java code that COSTA can
handle. We know that the COSTA system can compute bounds for the Euclidean
algorithm (when using an extension [8]), quick sort, and Pascal’s triangle. The
advantages of our method are the compositionality that is needed for the anal-
ysis of compound functions such as dyadAllM and mmultFlatSort, as well as for
bounds that depend on integers as well as on sizes of data structures such as
dijkstra (priority queue) and mmultAll.

7 Conclusion

We have presented a novel type-based amortized resource analysis for programs
with arrays and unsigned integers. We have implemented the analysis in Resource
Aware ML and our experiments show that the analysis works efficiently for
many example programs. Moreover, we have demonstrated that the analysis has
benefits in comparison to abstract interpretation–based approaches for programs
with function composition and non-linear size changes.

While the developed analysis system for RAML is useful and interesting in its
own right, we view this work mainly as an important step towards the applica-
tion of amortized resource analysis to C-like programs. The developed rules for
arithmetic expression can be reused when moving to a different language. Our
next step is to develop an analysis system that applies the ideas of this work to
an imperative language with while-loops, integers, and arrays.

Acknowledgments. This research is based on work supported in part by
NSF grants 1319671 and 1065451, and DARPA grants FA8750-10-2-0254 and
FA8750-12-2-0293. Any opinions, findings, and conclusions contained in this doc-
ument are those of the authors and do not reflect the views of these agencies.

168 J. Hoffmann and Z. Shao

References

1. Gulwani, S., Mehra, K.K., Chilimbi, T.M.: SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In: 36th ACM Symp. on Prin-
ciples of Prog. Langs (POPL 2009), pp. 127–139 (2009)

2. Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound Analysis of Imperative Pro-
grams with the Size-Change Abstraction. In: Yahav, E. (ed.) Static Analysis.
LNCS, vol. 6887, pp. 280–297. Springer, Heidelberg (2011)

3. Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: Cost Analysis of
Object-Oriented Bytecode Programs. Theor. Comput. Sci. 413(1), 142–159 (2012)

4. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla, G.: Automatic
Inference of Resource Consumption Bounds. In: Bjørner, N., Voronkov, A. (eds.)
LPAR-18 2012. LNCS, vol. 7180, pp. 1–11. Springer, Heidelberg (2012)

5. Cousot, P., Halbwachs, N.: Automatic Discovery of Linear Restraints Among Vari-
ables of a Program. In: 5th ACM Symp. on Principles Prog. Langs (POPL 1978),
pp. 84–96 (1978)

6. Gulavani, B.S., Gulwani, S.: A Numerical Abstract Domain Based on Expression
Abstraction and Max Operator with Application in Timing Analysis. In: Gupta,
A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 370–384. Springer, Heidelberg
(2008)

7. Sankaranarayanan, S., Ivančić, F., Shlyakhter, I., Gupta, A.: Static Analysis in
Disjunctive Numerical Domains. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp.
3–17. Springer, Heidelberg (2006)

8. Alonso-Blas, D.E., Arenas, P., Genaim, S.: Handling Non-linear Operations in the
Value Analysis of COSTA. Electr. Notes Theor. Comput. Sci. 279(1), 3–17 (2011)

9. Hofmann, M., Jost, S.: Static Prediction of Heap Space Usage for First-Order
Functional Programs. In: 30th ACM Symp. on Principles of Prog. Langs (POPL
2003), pp. 185–197 (2003)

10. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
In: 38th ACM Symp. on Principles of Prog. Langs (POPL 2011) (2011)

11. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polynomial Poten-
tial. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 287–306. Springer,
Heidelberg (2010)

12. Aehlig, K., Hofmann, M., Hoffmann, J.: RAML Web Site (2010-2013),
http://raml.tcs.ifi.lmu.de

13. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
ACM Trans. Program. Lang. Syst. (2012)

14. Hoffmann, J., Aehlig, K., Hofmann, M.: Resource Aware ML. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 781–786. Springer, Heidelberg
(2012)

15. Hoffmann, J., Shao, Z.: Type-Based Amortized Resource Analysis with Integers
and Arrays (2013) (full version),
http://cs.yale.edu/homes/hoffmann/papers/aa_imp2013TR.pdf

16. Riordan, J., Stein, P.R.: Arrangements on Chessboards. Journal of Combinatorial
Theory, Series A 12(1) (1972)

17. Hoffmann, J., Hofmann, M.: Amortized Resource Analysis with Polymorphic Re-
cursion and Partial Big-Step Operational Semantics. In: Ueda, K. (ed.) APLAS
2010. LNCS, vol. 6461, pp. 172–187. Springer, Heidelberg (2010)

http://raml.tcs.ifi.lmu.de
http://cs.yale.edu/homes/hoffmann/papers/aa_imp2013TR.pdf

Linear Sized Types in the Calculus

of Constructions

Jorge Luis Sacchini

Carnegie Mellon University

Abstract. Sized types provide an expressive and compositional frame-
work for proving termination and productivity of (co-)recursive defini-
tions. In this paper, we study sized types with linear annotations of the
form n · α + m with n and m natural numbers. Concretely, we present
a type system with linear sized types for the Calculus of Constructions
extended with one inductive type (natural numbers) and one coinductive
type (streams). We show that this system satisfies desirable metatheo-
retical properties, including strong normalization, and give a sound and
complete size-inference algorithm.

1 Introduction

Termination and productivity of (co-)recursive definitions are essential proper-
ties of theorem provers based on dependent type theories (such as Coq [28] and
Agda [21]), as they ensure logical consistency and decidability of type checking.

Type-based systems for termination and productivity [19] provide a powerful
and flexible framework for proving termination and productivity of (co-)recursive
functions. The basic idea is the use of sized types (i.e. types annotated with size
information) to trace the size of (co-)recursive calls. Let us illustrate the concept
with a simplified typing rule for recursive functions:

Γ (f : natı → U) �M : natı̂ → U

Γ � fix f :=M : nat∞ → U

where natı represents the type of natural numbers smaller than ı, and ı̂ represents
the successor of ı. The above rule enforces the restriction that recursive calls
must be placed on smaller arguments, as evidenced by their type. The recursive
function is then defined on the whole type of natural numbers, denoted nat∞.

Corecursive functions have a dual but similar rule for ensuring productivity:

Γ (f : streamı U) �M : streamı̂ U

Γ � cofix f :=M : stream∞ U

where streamı U represents the type of streams (infinite sequences) where at
least ı elements can be produced. The above rule ensures that each iteration of
the body M produces at least one more element of the stream. By repeated
iterations we can produce all elements of the stream.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 169–185, 2014.
c© Springer International Publishing Switzerland 2014

170 J.L. Sacchini

The algebra of size annotations determines the expressive power of the type
system. Many papers on sized types [1, 2, 8–10,12, 24] consider the simplest size
algebra with sizes of the form ı+ n, where ı is a size variable and n is a natural
number. Even with such a simple size algebra, the type systems are very ex-
pressive, allowing to type non-structural recursive programs such as quicksort.
Furthermore, size annotations can be inferred [9, 10].

However, using this algebra, we cannot give precise types to functions such
as double, that multiplies a natural number by 2, or even, that filters the even
positions of a stream (they precise types being natı → nat2·ı and stream2·ı T →
streamı T , respectively). This limits the use of these functions for defining other
recursive functions [15, 25]. The tradeoff between expressiveness and usability
is clear: a more expressive size algebra allows to type more programs, at the
expense of requiring more explicit annotations for type checking (see e.g. [22]).

In previous work [17,24,25], we showed logical consistency of an extension of
the Calculus of (Co-)Inductive Constructions (CIC) with sized types introduced
in [10]. In this work, we extend these results to a more expressive size algebra
and a relaxed notion of types allowed for recursion. Concretely, the contributions
of this paper are the following.

– We introduce CIC�̂, an extension of CIC with linear sizes of the form n·α+m,
and a notion of types allowed for recursion based on the work of Abel on
semi-continuity [2] (Sect. 2). We only consider natural numbers and streams,
although the extension to general (co-)inductive types is straightforward.

– We show that CIC�̂ satisfies desirable metatheoretical properties, including
logical consistency and strong normalization (SN) by adapting the Λ-set
model [6] given in [17, 24, 25] (Sect. 2.3).

– We present a size-inference algorithm that requires size annotations in the
types of (co-)recursive functions, based on the algorithm given in [10, 25]
(Sect. 3).

2 CIC�̂

In this section we introduce the syntax and typing rules of CIC�̂ (Sect. 2.1). We
show the features of this system through a series of examples (Sect. 2.2), and
study its metatheory (Sect. 2.3).

2.1 Syntax and Typing Rules

Sizes. Size (or stage) expressions over a symbol set X are given by the following
grammar:

S(X) ::= X | Ŝ | ∞ | n · S

where 1 ≤ n ∈ N. Let VS be a denumerable set of stage variables. We write S to
denote the set of stage expressions over VS , i.e. S(VS). We use ı, j to denote stage
variables, and s, r to denote stages. A size of the form ŝ denotes the successor

Linear Sized Types in the Calculus of Constructions 171

of size s; we write ŝk where k ∈ N to denote k applications of the successor
operator to s (by definition, ŝ0 = s). We write n · ı+m for n̂ · ım.

Sizes come equipped with a subsize relation, denoted s � r, defined as the
reflexive-transitive closure of the following rules:

s � ŝ s � ∞
n ≤ m s � r

n · s � m · r

1 · s = s n · ŝ = n · s+ n n ·m · s = nm · s
where a rule with a conclusion of the form C1 = C2 is an abbreviation for two
rules with conclusions C1 � C2 and C2 � C1. Given stages s, r, we write s = r
to mean that s � r and r � s are derivable. We write �s�, called the base of s,
for the partial function defined by �ı� = ı, �ŝ� = �s�, and �n · s� = �s� (it is not
defined for ∞). It is easy to see that for every stage s, either there exist unique
m,n such that s = n · ı+m (if �s� = ı), or ∞ � s (if �s� is not defined).

The introduction of linear sizes is the main difference between CIĈ� and the
system CIĈ introduced in [10].

Syntax. Similar to [9, 10, 17], we consider three classes of terms, which differ
in the kind of annotations that (co-)inductive types carry: bare terms, where
(co-)inductive types carry no annotations, position terms, where (co-)inductive
types either carry no annotation, or use a special symbol ℵ, and sized terms,
where (co-)inductive types carry a size expression.

Definition 1 (Terms). The terms of CIC�̂ are given by the following generic
grammar defined over a set a.

T [a] ::= U | Πx:T [a].T [a] | V | λx:T ◦.T [a] | T [a] T [a]

| nata | O | S(T [a]) | streama T [a] | cons(T [a], T [a])

| caseT ◦ V := T of {P [a]}
| fixV :T [S({ℵ}), ε] := T [a] | cofixV :T [S({ℵ}), ε] := T [a]

P [a] ::= {cons(V ,V)⇒ T [a]} | {O⇒ T [a]; S(V)⇒ T [a]}

where V is a denumerable set of term variables, and U is the set of sorts (uni-
verses), defined as U = {Prop} ∪ {Typei}i∈N.

The set of bare terms, position terms, and sized terms are defined by T ◦ ::=
T [ε], T [S({ℵ}), ε], and T ::= T [S], respectively. We also consider the class of
sized terms with no size variables: T ∞ ::= T [∞].

Sort Prop is impredicative, while {Typei}i∈N forms a predicative hierarchy.
We define a Pure Type System specification [7] for the set of sorts U , given by
the following sets:

Axiom = {(Prop,Type0)} ∪ {(Typei,Typei+1)}i
Rule = {(u,Prop,Prop)}u∈U ∪ {(u1, u2,max(u1, u2)}u1,u2∈U

172 J.L. Sacchini

where Axiom is used to describe the typing rules for sorts and Rule is used to
describe the typing rules for products.

A context (resp. erased context) is a finite sequence of variable declarations
of the form x:T (resp. x:T ◦). We write · to denote the empty context; we use
Γ,Δ to denote contexts. Given a context Γ = x1:T1, . . . , xn:Tn, we write ΠΓ.U
for the type Πx1:T1. . . . Πxn:Tn.U .

We write | · | : T → T ◦ to denote the erasure map that erases all size annota-
tions. Given a stage variable ı, we write |·|ı : T → T [S({ℵ}), ε] for the erasure
map that replaces ı with ℵ and erases all stage expressions s such that �s� "= ı.
We write FV(M) (resp. SV(M)) for the set of free term variables (resp. the set
of size variables) in term M . We omit the definition of these functions.

Let us explain briefly the constructions of the language that are related to
(co-)inductive types. The type nats denotes the type of natural numbers of size
at most s, while streams T denotes the type of stream, whose elements have
type T , of which at least s can be produced. Constructors and case analysis are
standard. As we explain below, case analysis on nat is dependent, while we only
allow non-dependent case analysis on stream.

The syntax of (co-)recursive definitions needs more explanations. A recursive
function has the form fix f : T ℵ := M where T is the type (which might have
occurrences of the special symbol ℵ) and M is the body where recursive calls
to f are possible. The type T ℵ must be of the form Πx:nats.Uℵ, where �s� = ℵ
and ℵ may occur in Uℵ (although with some restrictions). The special symbol
ℵ is used to type recursive arguments. For example, the function that divides a
natural number by 2 can be defined with the position type nat2·ℵ → natℵ.

Corecursive definitions are used in a similar way, with the exception that the
type must be a function that produces a stream, i.e. of the form ΠΔℵ.streams T ,
where �s� = ℵ. The precise form of the type of (co-)recursive functions is given
by the typing rules.

In previous work [9,10,17,24,25], position types had the form T [{�}, ε], where
� is used to mark recursive positions. Here we opt for a more explicit notion of
position types that express the actual sizes. For example, in our case we would

write natℵ → nat
̂ℵ, where in previous work we would simply write nat� → nat�.

This choice simplifies the size-inference algorithm.

Reduction. It is defined by β-reduction, for applications, ι-reduction, for case
analysis, and μ-reduction, for unfolding of (co-)recursive definitions. β-reduction
and ı-reduction are standard:

(λx:T ◦.M)N β M [N/x]

caseP◦ cons(M1,M2) of {cons(y1, y2)⇒ N} ι N [M1/y1] [M2/y2]

caseP◦ O of {O⇒ N1; S y ⇒ N2} ι N1

caseP◦ SM of {O⇒ N1; S y ⇒ N2} ι N2 [M/y]

In the case of (co-)recursive definitions, unfolding must be restricted in or-
der to obtain a strongly normalizing relation. For fixpoint definitions, unfolding
occurs when it is applied to a term in constructor form:

Linear Sized Types in the Calculus of Constructions 173

T R U

T �R U

U1 �R T1 T2 �R U2

Πx:T1.T2 �R Πx:U1.U2

T1 �R T2 T2 �R T3

T1 �R T3

s � r T �R U

streamr T �R streams U

s � r

nats � natr

ı /∈ SV(T)

ı occξ T

ı occ−ξ T ı occξ U

ı occξ Πx:T.U

ı /∈ s ı pos T

ı pos (streams T)

ı neg T

ı neg (streams T)

ı ∈ s

ı pos nats

Fig. 1. Subtyping and positivity rules

(fix f :T ℵ :=M)C μ M
[
fix f :T ℵ :=M/f

]
C

where C is either O or of the form SN . For cofixpoint definitions, we adopt a
lazy strategy, where unfolding occurs only inside a case analysis.

caseU◦ (cofix f :T ℵ :=M)N of {P} μ caseU◦ M�N of {P}

where M� is M
[
(cofix f :T ℵ :=M)/f

]
. A well-known issue with this reduction

strategy is that, in the presence of dependent case analysis, it does not satisfy
subject reduction (SR) [16, 20, 27].

In this paper, we focus on the use of linear sizes, so we do not address the
issue of subject reduction with coinductive types. We only allow non-dependent
case analysis of streams.

Subtyping Rules. The typing rules depend on a notion of subtyping and positivity
of stage variables (see Fig. 1). Note that size annotations are covariant in nat and
contravariant in stream. The subtyping relation is parameterized by a relation R
on terms: we write T +R U to mean that T is a subtype of U with respect to R.
In the following, R will either be the convertibility relation (≈), or α-equivalence
(≡). We write ≤ for +≈.

We write ı pos T (resp. ı neg T) to denote that ı occurs positively (resp.
negatively) in T . To simplify the definition of positivity we introduce polarities:
a polarity ξ is either + or −. We denote with −ξ for the opposite polarity of ξ.
We write occ+ (resp. occ−) to mean pos (resp. neg).

Simple Types. As in our previous work [17,24,25], we restrict the occurrences of
size variables in types, in order to have a set-theoretical model (or a Λ-set model
to prove SN). In essence, well-typed types (i.e. terms whose type is a sort) must
satisfy the simple predicate defined by the following rules:

simple(T) simple(U)

simple(Πx:T.U)

SV(T) = ∅
simple(T)

simple(T)

simple(streams T) simple(nats)

174 J.L. Sacchini

WF(·) (wf-emp)
WF(Γ) Γ � T : u

WF(Γ (x:T))
(wf-cons)

WF(Γ)

Γ � x : Γ (x)
(var)

WF(Γ) (u1, u2) ∈ Axiom

Γ � u1 : u2

(sort)

Γ � T : u1 Γ (x:T) � U : u2 (u1, u2, u3) ∈ Rule

Γ � Πx : T.U : u3

(prod)

Γ (x:T) �M : U SV(M) = ∅
Γ � λx : |T |.M : Πx : T.U

(abs)

Γ �M : Πx : T.U Γ � N : T
SV(N) = ∅

Γ �M N : U [N/x]
(app)

Γ �M : T Γ � U : u T ≤ U

Γ �M : U
(conv)

Γ � T : Type0

Γ � streams T : Type0
(stream)

Γ �M : T Γ � N : streams T
SV(M) = ∅

Γ � cons(M,N) : streamŝ T
(cons)

Γ � nats : Type0
(nat)

Γ � O : natŝ
(zero)

Γ �M : nats

Γ � SM : natŝ
(succ)

Γ �M : streamŝ T SV(N) = ∅
Γ � P : u Γ (y1:T)(y2:stream

s T) � N : P

Γ � case|P | x := M of {cons(y1, y2) ⇒ N} : P
(case-stream)

Γ �M : natŝ SV(N1, N2) = ∅ Γ, x:natŝ � P : u
Γ � N1 : P [O/x] Γ (y:nats) � N2 : P [S y/x]

Γ � case|P | x := M of {O ⇒ N1;S y ⇒ N2} : P [M/x]
(case-nat)

T ≡ Πnatk·ı.U ı semi+ T SV(M) = ∅
ı /∈ SV(Γ) Γ � T : u Γ (f : T) �M : T [̂ı/ı]

Γ � fix f :|T |ı := M : T [s/ı]
(fix)

T ≡ ΠΔ.streamk·ı U ı semi+ T SV(M) = ∅
ı /∈ SV(Γ) Γ � T : u Γ (f : T) �M : T [̂ı/ı]

Γ � cofix f :|T |ı := M : T [s/ı]
(cofix)

Fig. 2. Typing rules of CIĈ�

We also extend the simple predicate to position types by taking ℵ as a size
variable.

Restricting to simple allows us to deal with features of CIC�̂ that are difficult
to express in set-theoretical models—namely, erased types and contravariance.
However, this restriction has no effect on practical programming [24].

Typing Rules. They are defined by the following judgments: WF(Γ), meaning
that context Γ is well formed, and Γ � M : T , meaning that under context Γ ,
term M has type T .

Linear Sized Types in the Calculus of Constructions 175

The typing rules are given in Fig. 2. Most of the rules are standard. In (abs)
we require the body to have no size variables to ensure that we only have types
satisfying the simple predicate. Similar restrictions appear in (app), (cons), and
the rules for case analysis and (co-)recursive functions.

Let us explain in more detail the rules for (co-)recursive functions, (fix) and
(cofix). Both rules are very similar, with only the shape of the recursion type
differing. In the case of recursive functions, the type must be a function on natu-
ral numbers (in general, a function on an inductive type); we can view recursive
functions as consuming elements of an inductive type. Dually, for corecursive
functions, the type must return a stream (in general, the type must return a
coinductive type); we can view corecursive functions as producing elements of a
coinductive type.

We need to impose some restrictions on the occurrences of the recursion size
variable ℵ in T ℵ; otherwise we could write non-terminating programs [2]. In
previous work [17, 24, 25] we used a condition of monotonicity originated in [8].
For recursive functions, this means types of the form Πx:natı.U with ı pos U .
However, this forbids valid types such as natı → natı → natı.

In this work, we extend our notion of valid types for (co-)recursion by adapt-
ing the work of Abel [2] on semi-continuity. The condition ı semi+ T , read ı
occurs semi-positively in T , ensures that the type is valid. The rules defining
this judgment are given in Fig. 3, and are adapted to our setting from [2].

ı semi− T ı semi+ U

ı semi+ Πx:T.U ı semi− natn·ı
ı pos T

ı semi+ streamn·ı T

ı occξ T

ı semiξ T

Fig. 3. Semi-continuity rules

2.2 Examples

We show some example programs in CIĈ�. The first two examples concern re-
cursive definitions. The half function on natural numbers, that divides a number
by 2, can be given the precise type Πn:nat2·s → nats:

half
def
= fix half : nat2·ℵ → natℵ :=
λx. case x of

{O⇒ O
; S y ⇒ case y of

{O⇒ O
; S z ⇒ S (half z)}}

This function is definable in Coq, however, in CIĈ�, we can give the more precise
type that shows the relation between the argument and the result.

176 J.L. Sacchini

In the next example we define addition on natural numbers, plus, with the
type nats → nats → nat2·s:

plus
def
= fix plus : natℵ → natℵ → nat2·ℵ :=
λx.λy. case x of

{O⇒ y
; Sx′ ⇒ case y of

{O⇒ x
; S y′ ⇒ S (S (plusx′ y′))}}

While the reduction behavior of the above definition is not the same as in the
standard library of Coq, this example shows the extended types for recursion.
In CIĈ [10], the type natı → natı → nat∞ is not allowed for recursion.

The next examples concern corecursive definitions. The function odd (resp.
even) on streams filters all elements in odd positions (resp. even positions). Both
functions can be given type ΠA:Type0.stream

2·sA → streamsA. We only give
the definition of odd, as even is similarly defined:

cofix odd : stream2·ℵA→ streamℵA :=
λx. case x of

{cons(y1, y2)⇒ case y2 of
{cons(z1, z2)⇒ cons(y1, odd z2)}}

The function interleave combines two streams by interleaving their elements:

cofix interleave : streamℵA→ streamℵA→ stream2·ℵA :=
λx.λy. case x of

{cons(x1, x2)⇒
case y of
{cons(y1, y2)⇒ cons(x1, cons(y1, interleavex2 y2)}}

While these functions are definable in Coq, the precise type given in CIĈ�

allows us, for example, to define the following identity function on streams with
precise type:

λx:streamA. interleave (oddAx) (evenAx) : stream2·sA→ stream2·sA

Consider the following Haskell definition of the Thue-Morse sequence:

tm = 0 : interleave (map inv (odd tm)) (tail tm)

where inv 0 = 1 and inv 1 = 0. Endrullis et al. [15] define a procedure for proving
productivity of stream definitions that accepts the above program as productive.
This definition is not typeable in CIĈ� for two reasons. First, it uses tail, which
has type streamı̂ A→ streamıA, which cannot be used in a recursive definition.
However, recursive functions that use tail can be represented using mutual re-
cursion.1 The second reason is the use of odd: we need to produce two elements

1 We do not study mutual recursion in CIĈ�, but it is relatively straightforward to
add mutual recursion to a type system with sized types (see e.g. [22]).

Linear Sized Types in the Calculus of Constructions 177

of tm in order to apply odd. If we unfold the definition of tm above a few times
(five to be precise), we arrive at the following equivalent definition:

tm = 0 : 1 : 1 : 0 : 1 : interleave (map inv (even tm3)) tm3

where tm3 is tail3 tm. We can define this version of the Thue-Morse sequence in
CIC�̂ as follows:

tm0
def
= cons(0, cons(1, cons(1, tm3)))

tm3
def
= cofix tm3 : stream

2·ℵ nat :=
cons(1, cons(0, interleave (map inv (even tm3)) tm3))

where map : (A → B) → streamsA → streamsB. Note that the precise type
of even allows us to use it in the definition of a recursive stream. With the size
algebra ı + n, even can only be given the type stream∞A → streamsA, which
limits its uses [15, 25].

2.3 Metatheory

CIC�̂ satisfies desired metatheoretical properties including logical consistency
and SN (for details of the proofs see [26]). The following lemma states sev-
eral standard properties of type theories: weakening, substitution, uniqueness of
types, and subject reduction. The proofs by induction on the typing judgment
are standard.

Lemma 1. – If Γ �M : T , then ΓΔ �M : T .
– If Γ1(x : T)Γ2 � M : U , Γ1 � N : T , and SV(N) = ∅, then Γ1(Γ2 [N/x]) �
M [N/x] : U [N/x].

– If Γ �M : T1 and Γ �M : T2, then |T1| ≈ |T2|.
– If Γ �M : T and M →M ′ then Γ �M ′ : T
Logical consistency and SN follow from the Λ-set model given in [24] for

inductive types and [25] for coinductive types. To extend the model to CIĈ� we
need to deal with linear sizes and semi-positive types.

Size annotations are interpreted as ordinals. In the system presented in this
paper, we only need to consider ordinals up to ω—however, in the extension with
full (co-)inductive types, we need to consider inaccessible cardinals. This inter-
pretation naturally supports linear sizes and validates the subsize and subtyping
relation.

For semi-positivity, consider a (co-)recursive function fix f :T ℵ := M . A suf-
ficient condition for ensuring that this definition is valid is that

⋂
i<ω�T �i ⊆

�T �ω [1], where �T �i is the interpretation of T at size i—more precisely, �·� is
the relational interpretation we defined in [24,25]. Abel [2] relaxes this condition
to
⋂

i

⋃
j≥i�T �j ⊆ �T �ω (the limit superior of �T �i, when i→ ω).

The main property we need, in order to prove soundness of the Λ-set model,
is the following: if ı semi+ T (resp. ı semi− T), then

⋂
i

⋃
j≥i�T �j ⊆ �T �ω (resp.

�T �ω ⊆
⋃

i

⋂
j≥i�T �j . The proof proceeds by induction on the derivation of semi-

continuity.

178 J.L. Sacchini

Theorem 1. If Γ �M : T , then M is strongly normalizing.

The proof combines model construction given in [17] (for natural numbers)
and [25] (for streams). The property stated above is essential to ensure soundness
of rules (fix) and (cofix).

Logical consistency follows as a direct collorary of SN.

Lemma 2. Let u be a sort. Then, there is no term M such that · �M : Πx:u.x.

3 Size Inference

In this section we present a size-inference algorithm for CIC�̂ based on the algo-
rithm introduced in [9, 10] (and adapted to coinductive types in [25]).

Size inference is performed on a variant of CIĈ� where size variables are taken
from a denumerable set of inference size variables, VSI . We use α, β to denote
inference size variables. We write SI to denote the set of stages defined over
VSI , i.e. S(VSI). A generic term (similarly generic context) is a term whose size
variables are taken from VSI . Given a generic termM , we can obtain a size term
by applying a stage substitution ρ from inference size variables to stages.

In a nutshell, the algorithm proceeds as follows: given a context Γ and a bare
term M◦, the algorithm computes a generic term M (with |M | = M◦) and a
generic type T , and a set of constraints C, such that, for every stage substitution
ρ satisfying C, the judgment ρΓ � ρM : ρT is valid. Note that bare terms contain
size annotation in the types of (co-)recursive functions (in the form of position
types).

A constraint set is a finite set of constraints of the form s � r where s, r ∈ SI .
A stage substitution ρ : VSI → S satisfies a constraint set C, denoted ρ |= C, if
for every s � r ∈ C, ρs � ρr. Any constraint set is satisfiable by the constant
substitution ρ(α) =∞, for all α ∈ VSI .

The size inference algorithm is defined by the following judgments:

– V,C, Γ � M◦ � V ′, C′,M ′ ⇒ T : given a context Γ , a bare term M◦,
and a set of constraints C, the algorithm either computes M ′ satisfying
M◦ ≡ |M ′|, a type T , and a new set of constraints C′, such that for all
ρ |= C′, ρΓ � ρM ′ : ρT ; or fails if no such M ′, T , and C′ exists.

– V,C, Γ � M◦ ⇐ T � V ′, C′,M ′: given a context Γ , a bare M◦, a type
T , and a set of constraints C, the algorithm either computes M ′ satisfying
M◦ ≡ |M ′| and a new set of constraints C′, such that for all ρ |= C′,
ρΓ � ρM ′ : ρT ; or fails if no such M ′ and C′ exists.

At the core of the type inference algorithm we have the RecCheck procedure
ensuring that a constraint set can be instantiated in such a way that the con-
ditions on size variables in rules (fix) and (cofix) are satisfied. The procedure
presented here is a modification of that of [9] to deal with linear sizes.

Given a size inference variable α, a set of size inference variables V
= and a
constraint set C, RecCheck(α, V
=, C) either succeeds returning a constraint set,
or fails. It satisfies the following properties:

Linear Sized Types in the Calculus of Constructions 179

Soundness (SRC): if RecCheck(α, V
=, C′) = C then for all ρ, such that
ρ |= C, there exists a fresh stage variable ı and ρ′ such that ρ′ |= C′,
ρ′(α) = ı, and �ρ′(V
=)� "= ı.

Completeness (CRC): if ρ(α) = ı and �ρ(V
=)� "= ı and also ρ |= C then
RecCheck(α, V
=, C) succeeds and ρ |= RecCheck(α, V
=, C)

The type inference algorithm is given in Fig. 4 and 5. We write V,C, Γ �
M◦ � V ′, C′ ⇒ T for V,C, Γ � M◦ � V ′, C′,M ⇒ T when M is just (M◦)∞.
And similarly for V,C, Γ � M◦ ⇐ T � V ′, C′. We write V,C, Γ � M◦ �
V ′, C′ ⇒∗ W as a shorthand for V,C, Γ � M◦ � V ′, C′ ⇒ T ∧ whnf(T) = W .
For checking sorts and products, we view CIC�̂ as a functional Pure Type System:
we read Axiom as a function from sorts to sorts (U → U) and Rule as a function
from pair of sorts to sorts (U × U → U).

In the type inference rules, we use the following operations:

– T1 � T2 computes a constraint set C such that for all ρ, ρ |= C iff ρT1 ≤ ρT2;

– T1 -V,C T2 � T ′, V ′, C′ (resp. T1 .V,C T2 � T ′, V ′, C′) computes a type T ′

(fresh with respect to V,C), a set of variables V ′, and a constraint set C′

such that for all ρ |= C and T such that ρT1, ρT2 ≤ T (resp. T ≤ ρT1, ρT2)
there exists ρ′ |= C′ such that ρ =V ρ′ and ρ′T ′ ≤ T (resp. T ≤ ρ′T ′).

– ℵ SEMI+ T , where T is a position term, checks that ℵ occurs semi-positively
in T . It holds iff for every stage variable ı and type T ′ such that |T ′|ı ≡ T ,
ı semi+ T ′.

– T ℵ =α T ′ � C, where T ℵ is a position type, T ′ is a generic type such
that |T ℵ| ≡ |T ′| and ℵ is an inference size variable. It replaces ℵ with α
in T ℵ and generates equality constraints with T ′ for each occurrence of α.
It holds iff, for each ρ |= C such that ρ(α) = ı, |ρT ′|ı ≡ T ℵ. For example,
(nat2·ℵ → nat =α natβ1 → natβ2) � 2 · α = β1.

The type-inference algorithm is sound and complete as stated in the following
lemmas.

Lemma 3 (Soundness of type inference)

1. If V,C, Γ � M◦ ⇐ T � V ′, C′,M ′, with SV(C) ⊆ V , then SV(C′) ⊆ V ′,
|M ′| ≡M◦, and for all ρ |= C′, ρΓ � ρM ′ : ρT .

2. If V,C, Γ � M◦ � V ′, C′,M ′ ⇒ T , with SV(C) ⊆ V , then SV(C′) ⊆ V ′,
|M ′| ≡M◦, and for all ρ |= C′, ρΓ � ρM ′ : ρT .

Lemma 4 (Completeness of type inference)

1. If ρΓ � M : ρT , ρ |= C, and SV(Γ, T) ⊆ V , then there exist V ′, C′,M ′, ρ′

such that ρ′ |= C′, ρ =V ρ′, ρ′M ′ ≡ M , and V,C, Γ � |M | ⇐ T �
V ′, C′,M ′.

2. If ρΓ � M : T , ρ |= C, and SV(Γ) ⊆ V , there exist V ′, C′,M ′, T ′, ρ′

such that ρ′ |= C′, ρ′T ′ ≤ T , ρ′ =V ρ, ρ′M ′ = M , and V,C, Γ � |M | �
V ′, C′,M ′ ⇒ T ′.

180 J.L. Sacchini

RecCheck Algorithm. It is computed by a sequence of operations on constraint
graphs. We adapt the algorithm of [9] to linear sizes and our different notion of
position types.

We use the following operations on graphs: given a graph G and a set of vertex
V in G, we define the upward closure of V (resp. the downward closure of V),
denoted V � (resp. V), to the smallest set of vertex containing V that is closed
by the edge relation (resp. is closed by the inverse of the edge relation).

Given an inference stage variable α (that must be mapped to a fresh stage
variable ı), a set of inference stage variables V
= (that must be mapped to
stages not containing ı), and an initial set of constraints C, the computation
of RecCheck(α, V
=, C) proceeds as follows:

1. Let Sı = {α}; all variables in Sı must be mapped to a stage with base ı.
2. Let Sı� = (Sı)

� and S¬ı = (V
=)�. Variables in Sı� (resp. S¬ı) must be
mapped to stages with base ı or to ∞ (resp. to stages with base different
that ı or to ∞). Then, all variables in Sı� ∩ S¬ı must be set to ∞. This is
done by removing all constraints with vertices in (Sı� ∩ S¬ı)�, and adding
constraints ∞ � (Sı� ∩ S¬ı)�. Let C1 be the constraint set obtained after
this step.

3. Let S∞ = {∞}�. If Sı ∩ S∞ = ∅, the algorithm fails (since a variable in Sı

must be mapped to both ∞ and stage containing ı).
4. Check that constraints in Sı are satisfiable. Each variable in Sı must be

mapped to a stage of the form x · ı + y for some x ≥ 1, y; furthermore α
must be mapped to ı (i.e., 1 · ı+ 0). Consider a constraint in Sı of the form
m1 · α1 + n1 � m2 · α2 + n2. Assume that αi (for i = 1, 2) is mapped to
xi · ı + yi (with 1 ≤ xi). Then, {x1, x2, y1, y2} must satisfy the following
constraints:

m1x1 ≤ m2x2 m1y1 + n1 ≤ m2y2 + n2

Let C be the set of (integer) constraints obtained by applying the above
procedure to all constraints between variables in Sı. Then C is a constraint
set in Presburger arithmetic—therefore, the satisfiability of C is decidable.

5. If C is satisfiable, return C1 (computed in step 2); else, fail.

The RecCheck algorithm described above satisfies the soundness and com-
pleteness conditions needed for the size-inference algorithm.

Lemma 5. The RecCheck algorithm described above satisfies (SRC) and (CRC).

The original RecCheck [9] defined for sizes of the form ı+n has a complexity of
O(k2) where k is the number of size variables. In our case, the use of linear sizes
has a considerable cost, as RecCheck involves solving an integer programming
problem, which makes its complexity exponential.

However, we expect that RecCheck will not have a great impact on large proofs
by induction that usually use primitive recursion. For example, in a proof of the
form fix f :Πx:natℵ.U :=M. . ., where ℵ does not occur in U , recursive calls to f
generate constraints of the form β � α, where α is the size variable assigned to

Linear Sized Types in the Calculus of Constructions 181

V,C, Γ �M◦ � C′ ⇒ T ′

V,C, Γ �M◦ ⇐ T � C′ ∪ T ′ ≤ T
(a-check)

V,C, Γ � u � V,C ⇒ Axiom(u)
(a-sort)

V,C, Γ � x � V,C ⇒ Γ (x)
(a-var)

V,C, Γ � T1
◦ � V1, C1, T1 ⇒∗ u1

V1, C1, Γ (x : T1) �M◦ � V2, C2 ⇒ T2 C3 = C2 ∪∞ � SV(M)

V,C, Γ � λx : T1
◦.M◦ � V2, C3 ⇒ Πx : T1.T2

(a-abs)

V,C, Γ � T1
◦ � V1, C1, T1 ⇒∗ u1

V1, C1, Γ (x : T1) � T2
◦ � V2, C2, T2 ⇒∗ u2

V,C, Γ � Πx : T1
◦.T2

◦ � V2, C2,Πx : T1.T2 ⇒ Rule(u1, u2)
(a-prod)

V,C, Γ �M1
◦ � V1, C1 ⇒∗ Πx : T2.T

V1, C1, Γ �M2
◦ ⇐ T2 � V2, C2

C3 = C2 ∪∞ � SV(M2)

V,C, Γ �M1
◦ M2

◦ � V2, C3 ⇒ T [M2/x]
(a-app)

Fig. 4. Type-inference algorithm

ℵ and β is the size of the argument in the recursive call. As α must be mapped
to a fresh size variable, let us say ı, the only possibility is that β = ı; hence the
constraint can be eliminated.

4 Related Work

Sized Types. Termination using sized types [19] has a long history (see e.g. [1,
24, 25] for more references). The system presented here is an extension of that
of [17, 24], which are themselves based on CIĈ [10]. With respect to CIC ,̂ we
add linear sizes and a relaxed notion of allowed types for recursion, while still
proving strong normalization and size inference.

We consider other works on type-based termination that use size algebras
other than just ı+n. Pareto [22] (see also [19]) considers an extension of Haskell
with a size algebra that includes addition. The type-checking algorithm requires
let-expressions annotated with types and produces a set of constraints in Pres-
burger arithmetic (which are solved using the Omega solver [23]).

MiniAgda [3] is a prototype implementation of a dependent type theory with
sized types. It features size addition and a type checking algorithm from fully
annotated types for top-level functions. However, there is no metatheoretical
study of the system or the type checking algorithm. Agda [21] has experimental
support for sized types, but again there is no metatheoretical study.

Barthe et al. [11] consider an extension of system F with sized products and
size addition. Their system is able to type quicksort with an exact measure,
by giving a size zero to base constructors (like O or the empty list). However,
this involves some syntactic restrictions where fixpoints and case analysis are
combined in one construction. Type checking is not studied.

182 J.L. Sacchini

V,C, Γ � T ◦ ⇐ Type0 � V1, C1, T α /∈ V1

V,C, Γ � streamT ◦ � V1 ∪ {α}, C1, stream
α T ⇒ Type0

(a-stream)

α /∈ V

V,C, Γ � nat � V ∪ {α}, C, natα ⇒ Type0
(a-nat)

V,C, Γ �M1
◦ � V1, C1 ⇒ T1

V1, C, κ, Γ �M2
◦ � V2, C2 ⇒∗ streamr T2

T1 �V2,C2 T2 � T, V3, C3 C4 = C3 ∪∞ � SV(M1)

V, C, Γ � cons(M1
◦,M2

◦) � V3, C4 ⇒ streamr̂ T
(a-cons)

α /∈ V

V,C, Γ � O � V ∪ {α}, C ⇒ natα̂
(a-zero)

V,C, Γ �M◦ � V1, C1 ⇒ natr

V,C, Γ � SM◦ � V ∪ {α}, C ⇒ natr̂
(a-succ)

V,C, Γ �M◦ � V1, C1 ⇒∗ streamr T1

α /∈ V1 V1 ∪ {α}, (C1 ∪ α̂ � r), κ, Γ � P ◦ � V2, C2, P ⇒∗ u
V2, C2, κ, Γ (y1 : T1)(y2 : streamα T1) � N◦ ⇐ P � V3, C3

C4 = C3 ∪∞ � SV(N)

V,C, Γ �
(
caseP◦ x := M◦

of cons(y1, y2)⇒ N◦

)
� V3, C4 ⇒ P

(a-case-stream)

V,C, Γ �M◦ � V1, C1 ⇒∗ natr

α /∈ V1 V1 ∪ {α}, (C1 ∪ α̂ � r), κ, Γ (x : T) � P ◦ � V2, C2, P ⇒∗ u
V2, C2, κ, Γ � N1

◦ ⇐ P [O/x] � V3, C3

V3, C3, κ, Γ (y : natα) � N2
◦ ⇐ P [S y/x] � V4, C4

C5 = C4 ∪∞ � SV(N1, N2)

V,C, Γ �
(
caseP◦ x := M◦

of O⇒ N1
◦;S y ⇒ N2

◦

)
� V4, C5 ⇒ P [M/x]

(a-case-nat)

Tℵ ≡ Πx:natk·α.U ℵ SEMI+ Tℵ V, C, Γ � |Tℵ|� V1, C1, T
′ ⇒∗ u

α /∈ V1 Tℵ =α T ′ � Cα

V1 ∪ {α}, C1 ∪ Cα, Γ (f : T ′) �M◦ ⇐ T ′ [α̂/α] � V2, C2

RecCheck(α, V �=, C2) = C3

V,C, Γ � fix f :Tℵ := M◦ � V2, C3 ⇒ T ′ (a-fix)

Tℵ ≡ ΠΔ.streamℵ U ℵ SEMI+ Tℵ

V,C, 〈α, κ〉, Γ � |Tℵ|� V1, C1, T
′ ⇒∗ u

α /∈ V1 Tℵ =α T ′ � Cα

V1, C1, κ, Γ (f : T ′) �M◦ ⇐ T [α̂/α] � V2, C2

RecCheck(α, V �=, C2) = C3

V,C, Γ � cofix f :T � := M◦ � V2, C3 ⇒ T ′ (a-cofix)

Fig. 5. Type-inference algorithm (continued)

Linear Sized Types in the Calculus of Constructions 183

Blanqui and Riba [13] consider a system with sized types and size constraints
for rewrite systems with simply-typed inductive types, which can also give exact
measure to quicksort. Due to the complexities of the constraint algebra, type
checking is only semi-decidable.

Vasconcelos [29] uses sized types to analyze the space cost of functional pro-
grams. Using abstract interpretation techniques, his algorithm automatically
infers size relations between inputs and outputs of a function, as well size con-
straints on stack and heap space. The resulting constraints are given in Pres-
burger arithmetic. However, his system does not analyze the termination of
functions. Nevertheless, it would be interesting to see if we could use this ap-
proach to infer the size annotations in (co-)fixpoint types (which would then be
checked using the algorithm described in this paper).

Coinduction. The problems of defining coinductive types in dependent type
theory were described by Giménez [16], who implemented coinduction in Coq.
See also [5, 20]. While, as far as we know, the problems with coinduction in
dependent type theory have not been completely solved, there are promising
approaches [4, 5, 20, 27].

Endrullis et al. [14,15] describe a data-oblivious procedure for deciding produc-
tivity of stream definitions given as term rewriting systems. Data-oblivious refers
to the fact that the procedure only looks at the number of elements consumed
and produced for each rule and not the actual data—type-based termination is
a form of data-oblivious analysis [15]. The analysis in [14] is able to recognize
stream functions bounded by periodically-increasing (p-i) functions.

With linear sizes we can represent the type of stream functions described by
p-i functions, at a loss of precision. For example, odd is described by the p-i
function 1,1,2,2. . .; the period length is 2 and the number of elements produced
in a period is 1. The type of odd, stream2·s → streams, reflects this information.
In general, a function with period length k, producing n elements in each period
is described by the type streamk·s → streamn·s.

Because we lose precision in the definition of p-i functions, we cannot directly
type the definition of the Thue-Morse sequence given in Sect. 2.2. It would be
interesting to integrate the results of [14, 15] to our setting in order to accept
more definitions as productive.

5 Conclusions

We presented a type system for an extension of the Calculus of Constructions
with two (co-)inductive types and linear sized types. We have proved that this
system is logically consistent and strongly normalizing. We also presented a
sound and complete size-inference algorithm that requires size annotations in
(co-)recursive definitions. This work is part of a larger project whose objective
is to integrate sized types in the Coq kernel.

There are still several issues to resolve in order to incorporate sized types in
Coq. In this work we focused on aspects that pertain the Coq kernel. However,

184 J.L. Sacchini

Coq is large system and many of its components will be affected by the addition
of sized types in the kernel. In particular, we need to understand how to handle
incomplete proof terms and how to present size constraints to the user.

Acknowledgments. The author would like to thank the anonymous reviewers
for their valuable comments and suggestions that helped to considerably improve
this paper.

This publication was made possible by a JSREP grant (JSREP 4-004-1-001)
from the Qatar National Research Fund (a member of The Qatar Foundation).
The statements made herein are solely the responsibility of the author.

References

1. Abel, A.: A Polymorphic Lambda-Calculus with Sized Higher-Order Types. PhD
thesis, Ludwig-Maximilians-Universität München (2006)

2. Abel, A.: Semi-continuous sized types and termination. Logical Methods in Com-
puter Science 4(2) (2008)

3. Abel, A.: MiniAgda: Integrating sized and dependent types. In: Bove, A., Komen-
dantskaya, E., Niqui, M. (eds.) PAR (2010)

4. Abel, A., Pientka, B.: Wellfounded recursion with copatterns: a unified approach
to termination and productivity. In: Morrisett, G., Uustalu, T. (eds.) ICFP,
pp. 185–196. ACM (2013)

5. Abel, A., Pientka, B., Thibodeau, D., Setzer, A.: Copatterns: programming infinite
structures by observations. In: Giacobazzi, R., Cousot, R. (eds.) POPL, pp. 27–38.
ACM (2013)

6. Altenkirch, T.: Constructions, Inductive Types and Strong Normalization. PhD
thesis, University of Edinburgh (November 1993)

7. Barendregt, H.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.,
Maibaum, T. (eds.) Handbook of Logic in Computer Science, pp. 117–309.
Oxford Science Publications (1992)

8. Barthe, G., Frade, M.J., Giménez, E., Pinto, L., Uustalu, T.: Type-based termina-
tion of recursive definitions. Mathematical Structures in Computer Science 14(1),
97–141 (2004)

9. Barthe, G., Grégoire, B., Pastawski, F.: Practical inference for type-based termina-
tion in a polymorphic setting. In: Urzyczyn, P. (ed.) TLCA 2005. LNCS, vol. 3461,
pp. 71–85. Springer, Heidelberg (2005)

10. Barthe, G., Grégoire, B., Pastawski, F.: CIĈ : Type-based termination of recursive
definitions in the Calculus of Inductive Constructions. In: Hermann, M., Voronkov,
A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 257–271. Springer, Heidelberg
(2006)

11. Barthe, G., Grégoire, B., Riba, C.: Type-based termination with sized products.
In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 493–507.
Springer, Heidelberg (2008)

12. Blanqui, F.: A type-based termination criterion for dependently-typed higher-order
rewrite systems. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 24–39.
Springer, Heidelberg (2004)

Linear Sized Types in the Calculus of Constructions 185

13. Blanqui, F., Riba, C.: Combining typing and size constraints for checking the ter-
mination of higher-order conditional rewrite systems. In: Hermann, M., Voronkov,
A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 105–119. Springer, Heidelberg
(2006)

14. Endrullis, J., Grabmayer, C., Hendriks, D.: Data-oblivious stream productivity. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330,
pp. 79–96. Springer, Heidelberg (2008)

15. Endrullis, J., Grabmayer, C., Hendriks, D., Isihara, A., Klop, J.W.: Productivity
of stream definitions. Theor. Comput. Sci. 411(4-5), 765–782 (2010)

16. Giménez, E.: A Calculus of Infinite Constructions and its application to the verifi-
cation of communicating systems. PhD thesis, Ecole Normale Supérieure de Lyon
(1996)

17. Grégoire, B., Sacchini, J.L.: On strong normalization of the calculus of construc-
tions with type-based termination. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR-
17. LNCS, vol. 6397, pp. 333–347. Springer, Heidelberg (2010)

18. Hermann, M., Voronkov, A. (eds.): LPAR 2006. LNCS (LNAI), vol. 4246. Springer,
Heidelberg (2006)

19. Hughes, J., Pareto, L., Sabry, A.: Proving the correctness of reactive systems using
sized types. In: POPL, pp. 410–423 (1996)

20. McBride, C.: Let’s see how things unfold: Reconciling the infinite with the inten-
sional (extended abstract). In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO
2009. LNCS, vol. 5728, pp. 113–126. Springer, Heidelberg (2009)

21. Norell, U.: Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology (2007)

22. Pareto, L.: Types for Crash Prevention. PhD thesis, Chalmers University of Tech-
nology (2000)

23. Pugh, W.: The omega test: a fast and practical integer programming algorithm for
dependence analysis. In: Martin, J.L. (ed.) SC, pp. 4–13. IEEE Computer Soci-
ety/ACM (1991)

24. Sacchini, J.L.: On Type-Based Termination and Dependent Pattern Matching in
the Calculus of Inductive Constructions. PhD thesis, École Nationale Supérieure
des Mines de Paris (2011)

25. Sacchini, J.L.: Type-based productivity of stream definitions in the calculus of
constructions. In: LICS, pp. 233–242. IEEE Computer Society (2013)

26. Sacchini, J.L.: Linear sized types in the calculus of constructions. Technical Report
CMU-CS-14-104, Carnegie Mellon University (2014)

27. Setzer, A.: Coalgebras as types determined by their elimination rules. In: Dybjer,
P., Lindström, S., Palmgren, E., Sundholm, G. (eds.) Epistemology versus Ontol-
ogy. Logic, Epistemology, and the Unity of Science, vol. 27, pp. 351–369. Springer
(2012)

28. The Coq Development Team. The Coq Reference Manual, version 8.4 (2012)
29. Pedro, B.: Vasconcelos. Space cost analysis using sized types. PhD thesis,

University of St. Andrews (2008)

Dynamic Programming via Thinning

and Incrementalization

Akimasa Morihata1, Masato Koishi2, and Atsushi Ohori1

1 Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
2 Toshiba Solutions Corporation, Kawasaki, Japan

Abstract. We demonstrate that it is useful to combine two indepen-
dently studied methods, thinning and incrementalization, to develop
programs that use dynamic programming. While dynamic programming
is a fundamental algorithmic pattern, its development is often difficult
for average programmers. There are several methods for systematically
developing dynamic programming from plain problem descriptions by
program transformations. We show that by combining two known
methods, thinning and incrementalization, we can systematically derive
efficient dynamic-programming implementations from high-level descrip-
tions. The derivations cannot be achieved by using only one of them. We
illustrate our approach with the 0-1 knapsack problem, the longest com-
mon subsequence problem, and association rule mining from numeric
data.

1 Introduction

Dynamic programming is a fundamental algorithmic pattern. It avoids unneces-
sary recomputations by using tables that store calculated values and filling the
tables in a certain order. A standard approach to designing the tables is to reveal
the principle of optimality, namely, how the optimal solution can be composed
from the optimal solutions of subproblems. However, this standard approach is
often too difficult for average programmers. It is desirable that plain programs
written with little care about the principle of optimality be systematically trans-
formed to programs that use dynamic programming. Many methods [1–14] have
been proposed to achieve this goal.

This paper is also about systematic developments of dynamic programming.
We do not introduce any new methods but rather propose combining two in-
dependently studied methods: thinning and incrementalization. Thinning, pro-
posed by Bird and de Moor [2], transforms a problem description specified by a
generator, which enumerates all solution candidates, and a criterion of the best
one, to a program that does not consider most candidates. It can mechanically
derive dynamic programming for a large class of problems [6, 3, 12]. Incremental-
ization [15–18, 7, 9] improves efficiency by caching and reusing values calculated
in the previous iterations. Liu and Stoller [7, 9] demonstrated that it is useful for
developing efficient table-filling computation patterns for dynamic programming.
To the best of the authors’ knowledge, there was no study on their cooperation.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 186–202, 2014.
c© Springer International Publishing Switzerland 2014

Dynamic Programming via Thinning and Incrementalization 187

Our major contribution is to point out that thinning and incrementalization
complement each other for developing dynamic programming. On one hand,
thinning is useful for revealing the principle of optimality from trivial problem
descriptions; however, its outputs are rather high-level and do not immediately
lead to efficient implementation. On the other hand, incrementalization helps
us to design the tables for dynamic programming if the principle of optimality
is exposed in the input program. Therefore, applying incrementalization after
thinning brings efficient dynamic programming from high-level descriptions.

We demonstrate the effectiveness of our approach through the rest of this
paper. After outlining our approach in Section 3, we illustrate, in Section 4,
our approach with the 0-1 knapsack problem [19]. Our approach leads to a so-
phisticated algorithm by de Moor [4]. In Section 5, we apply our approach to
the longest common subsequence problem [19] and derive an O(n2)-time im-
plementation. We deal with a more complex problem, association-rule mining
from two-dimensional numeric data [22], in Section 6. For some instances, our
approach results in O(n3)-time algorithms, which are as fast as those developed
by Fukuda et al. [22]. In Section 7, we compare ours to thinning and incremen-
talization and discuss the possibility of mechanizing our approach. In Section 8,
we discuss related work.

2 Preliminary

We use Haskell [23] with apparent syntactic sugars for describing programs. We
overload map and filter to manipulate sets. We use a :̃ x as a shorthand for
map (a :) x. For an associative and commutative operator (⊕) :: A→ A→ A
and a set x :: 2A, we abbreviate

⊕
a∈x a to

⊕
x. We regard

⊕
∅ as the unit

of ⊕.
A binary relation + is a preorder if it is transitive, (a + b ∧ b + c) ⇒ a + c,

and reflective, a + a. A preorder + on a set A is total if either a + b or b + a
holds for any a, b ∈ A. On a preorder +, (:) is said to be monotone if x + y ⇒
(a : x) + (a : y) and increasing if x + a : x. For a preorder + on A and a function
f ::B → A, +f is a preorder on B such that a +f b ⇐⇒ f a + f b. For preorders
+ and /, a preorder + ∩ / is defined as a (+ ∩ /) b ⇐⇒ (a + b ∧ a / b).
We may write the converses of + and / as 0 and 1, respectively.

We use max� :: 2A → 2A to extract all maximal solution candidates on the
preorder +. For simplicity, we assume that no two have the same priority, i.e.,
∀a, b. a "= b ⇒ ¬(a + b ∧ b + a). This assumption is not crucial because for
all examples in this paper arbitrarily choosing one among equivalent solution
candidates leads to one of the optimal solutions. Under the assumption, max�
is defined by max� x = {a | a ∈ x ∧ (∀b ∈ (x \ {a}). ¬(a + b))}.

2.1 Thinning

Thinning replaces an enumeration of all solution candidates with a more efficient
one that touches only useful ones. We use the following variant, which slightly

188 A. Morihata, M. Koishi, and A. Ohori

generalizes the one formalized by Morihata [12]. It squeezes the pruning oper-
ations, max and filter , into the candidate enumeration step; then, gen retains
only those that are feasible and maximal on + ∩ 1h.

Theorem 1. For gen :: ∀β. (β → β → β)→ (A→ β → β)→ β,

max� (filter p (gen (∪) (̃:) {[]})) =
max� (gen (λx y → max�∩�h

(x ∪ y))
(λa x→ max�∩�h

(filter p (a :̃ x))) (filter p {[]})),

provided that + and / are preorders, (:) is monotone on + and moreover
monotone and increasing on /h, and p satisfies either p x = h x / c or
p x = ¬(c/ h x). .-

Theorem 1 requires two conditions. First, the candidate enumeration should
be specified by a function of a certain polymorphic type. This requirement guar-
antees that gen appropriately captures the value flow for the candidate enu-
meration. The second requirement is that the criterion of the best candidate
is characterized by preorders satisfying certain properties. It guarantees that
discarded candidates will not lead to better ones.

2.2 Incrementalization

Incrementalization improves efficiency by reusing values that have been calcu-
lated in the previous iterations. For example, from a quadratic-time suffix sum
program, ssum (a : x) = sum (a : x) : ssum x, incrementalization derives a
liner-time equivalent, ssum (a : x) = let r = ssum x in (a + head r) : r; here
head (ssum x) is reused so as to calculate sum (a : x). We will use the following
incrementalization rule, which is an instance of known methods [15, 17, 18, 7, 9].

Theorem 2. For an associative and commutative operator ⊕ and a series of
sets s1 ⊆ · · · ⊆ sn, the following equation holds.

[
⊕

sn,
⊕

sn−1, . . . ,
⊕

s1] = foldr f [
⊕

s1] [sn \ sn−1, . . . , s3 \ s2, s2 \ s1]
where f s (r : rs) = ((

⊕
s)⊕ r) : r : rs .-

Theorem 2 states that if we calculate
⊕
s1, . . . ,

⊕
sn in this order, it is sufficient

to deal with si \ si−1 to calculate each
⊕
si (i ≥ 2).

3 Combining Thinning and Incrementalization

Figure 1 outlines our approach, which consists of two major steps.

1. Given a naive enumerate-and-choose-style implementation, we apply thin-
ning to it. The resulted program calculates optimal solutions of subproblems
only.

Dynamic Programming via Thinning and Incrementalization 189

naive program
(enumerate-and-choose style) �

�

thinning
program calculating optimal solutions

(principle of optimality exposed)

��
incrementalization

table-filling implementation

Fig. 1. Outline of our approach

2. Then, we apply incrementalization so as to derive efficient implementation
for calculating the optimal solutions of the subproblems. The order of it-
erations is important for incrementalization. An appropriate order is often
implied by the preorder that characterizes the feasibility.

To understand the effect of our approach, it would be helpful to compare it
with the standard, textbook approach to dynamic programming. For example,
[20] addresses the following three as the keys to dynamic programming:

1. There are only a polynomial number of subproblems.
2. The solution to the original problem can be easily computed from

solutions to the subproblems. ([...])
3. There is a natural ordering on subproblems from “smallest” to “largest,”

together with an easy-to-compute recurrence ([...]) that allows one to
determine the solutions to a subproblem from the solution to some
number of smaller subproblems.

The first one is concerned with efficiency. We neglect it here. The second is often
called the “principle of optimality”. The third requires an ordering for efficiently
calculating the optimal solutions of the subproblems; the order is often realized
as the order to fill the table entries used to implement dynamic programming.

In our approach, thinning and incrementalization respectively help us to deal
with the second and the third points. Thinning enables us to expose the principle
of optimality. Then, incrementalization helps us to find an appropriate order.

4 0-1 Knapsack Problem

In the following three sections, we illustrate our approach. The first example is
the 0-1 knapsack problem [19]: find the most valuable set of items among those
whose weights are no more than a limit, say W .

Developing a Naive Program: The first step is to provide an enumerate-and-
choose-style implementation to the problem. The following knapsack enumerates
all possible item sets, filters those heavier than the limit, and then extracts the
most valuable one.

190 A. Morihata, M. Koishi, and A. Ohori

data Item = Item{v :: Int , w :: Int}
knapsack :: [Item]→ 2[Item]

knapsack = max≤value
◦ filter lessW ◦ sublists

where value = sum ◦map v
weight = sum ◦map w
lessW is = weight is ≤W
sublists [] = {[]}
sublists (a : x) = let r = sublists x in r ∪ (a :̃ r)

Thinning: We replace sublists with a more efficient one by using Theorem 1.
The theorem requires two premises. First, the candidate enumeration should
be specified by a function of a certain polymorphic type. For all examples in
this paper, we obtain such polymorphic implementations by just abstracting
all set/list constructing operators by using the corresponding parameters. For
instance, consider genSublists defined below.

genSublists [] u s e = e
genSublists (a : x) u s e = let r = genSublists x u s e in r ‘u‘ (a ‘s‘ r)

Apparently sublists x = genSublists x (∪) (̃:) {[]}; moreover, genSublists x has
the polymorphic type. The second requirement is that the criterion of the best
candidate is characterized by preorders satisfying certain properties. It is not
difficult to see that ≤value and ≤weight satisfy the required properties. Thus, we
can apply Theorem 1 to knapsack .

knapsack
= { definition of knapsack }

max≤value
◦ filter lessW ◦ sublists

= { Theorem 1, where + = ≤value ∩ ≥weight }
max≤value

◦ candidates
where candidates [] = {[]}

candidates (a : x) = let r = candidates x
in max� (r ∪max� (filter lessW (a :̃ r)))

A Digression: Exposed Principle of Optimality: It is worth noting that
Theorem 1 reveals the principle of optimality: each result of max� is the most
valuable among those that are composed from optimal solutions of subproblems
and are not heavier than a certain threshold. More formally, we can regard the
derived program as essentially denoting the following recurrence equation that
exposes the principle of optimality, where optk,x denotes the most valuable subset
of x whose weight is no more than k and a⊕ b = if a ≤value b then b else a.

optk,a:x =
⊕

({optk′,x | k′ ≤ k} ∪ {a : optk′,x | w a+ k′ ≤ w})

It is nontrivial to formally extract the above recurrence equation from the
program; yet, this view is helpful to understand the effect of our approach.

Dynamic Programming via Thinning and Incrementalization 191

Incrementalization: Although the derived program is much better than the
original, it is not satisfactory. First, candidates repeatedly invokes auxiliary func-
tions, weight and value, for each candidate. We do not tackle this issue because
the standard and simple solutions, such as caching calculated value and weight
values, are sufficient. It is worth nothing that incrementalization can be used for
streamlining this. In the rest of this paper, we regard such auxiliary functions
as being constant time.

Second, it is nontrivial to efficiently implement max�. The direct implementa-
tion of the definition of max takes time quadratic to its input size. The following
reasoning shows that max� is in the domain of Theorem 2.

max� iss
= { definitions of max and + }
{is | is ∈ iss , (∀is ′ ∈ (iss \ {is}). (is ′ ≤weight is)⇒ ¬(is ≤value is ′))}

= { assumption: no two item sets are equally valuable }
{
⊕
{is ′ | is ′ ∈ iss , is ′ ≤weight is} | is ∈ iss}

The preorder that characterizes the feasibility, ≤weight , leads to a chain of sub-
set relations that Theorem 2 requires. For iss = {is1, . . . , isk}, where is1 ≤weight

· · · ≤weight isk, let sj = {is | is ∈ iss , is ≤weight isj}. Then, sj = {is1, . . . , isj}
and, thus, s1 ⊆ · · · ⊆ sk. Therefore, Theorem 2 brings the following implemen-
tation, which calculates the optimal candidates from lighter ones.

max� iss = Data.Set .fromList (foldr f [is1] [isk, . . . , is2])
where f is (r : rs) = (is ⊕ r) : r : rs

Implementing Candidate Sets: The derived implementation of max� is lin-
ear time if the input is sorted by weights. Although it is possible to achieve this
by, as the usual dynamic programming, implementing the candidate set with a
table from weights to candidates, it is more natural to use an ordered list. For
this implementation, it is sufficient to use, instead of (∪), the merge operation
used in the merge sort; we do not need to modify filter and (̃:) because they
preserve the order.

The obtained implementation is essentially the one introduced by de Moor [4].

Computational Complexity: Our implementation is an O(nW)-time algo-
rithm, where n is the number of given items, because each recursive step of
candidates takes time proportional to the number of candidates, which is O(W).
The space complexity is also O(nW). While the asymptotic complexities are the
same as those of the standard table-filling dynamic programming, it is faster if
the number of candidates is actually much less than W .

5 Longest Common Subsequence Problem

We derived an efficient implementation for the 0-1 knapsack problem. Keen
readers may have noticed that the derivation uses few properties specific to

192 A. Morihata, M. Koishi, and A. Ohori

the problem, and thus, other problems can be similarly dealt with. One such
instance is the longest common subsequence problem [19]. The problem is to
find the longest (possibly non-consecutive) common sublists of given two lists.
For example, the longest common subsequence of [a, a, b, c, b] and [a, c, c, b, a]
is [a, c, b]. In this example, we assume that the inputs are in fact arrays, and
therefore, even the last elements can be accessed in O(1) time.

Developing a Naive Program: The following enumerate-and-choose-style
function, lcs , expresses the problem.

lcs x y = max≤length
(filter (isSub x) (sublists y))

where isSub x r = elim x r "= Nothing
elim x r = foldr step (Just x) r
step a (Just (z ++ [b])) = if a ≡ b then Just z else step a (Just z)
step − − = Nothing

Thinning: Theorem 1 requires us to express isSub by a preorder, say /. Note
that (:) should be increasing on /elim x , namely, elim x should yield larger
results for longer lists. Therefore, it is natural to let Just (x ++ z) / Just x /
Nothing ; then, isSub x r = r /elim x Just []. It is not difficult to see that (:) is
monotone and increasing on /elim x. Writing elim by foldr helps us to confirm
these properties; see [12] for more discussions. Now, we can use Theorem 1.

lcs x
= { definition of lcs ; note that isSub x r = r /elim x Just [] }

max≤length
◦ filter (λr → r /elim x Just []) ◦ sublists

= { Theorem 1, where + = ≤length∩ 1elim x }
max≤length

◦ candidates
where candidates [] = {[]}

candidates (a : y) = let r = candidates y
in max� (r ∪max� (filter (isSub x) (a :̃ r)))

Incrementalize max�: We incrementalize max� by using the same approach
as that for the 0-1 knapsack problem. Let rs = {r1, . . . , rk}, where r1 /elim x

· · · /elim x rk.

max� rs
= { definition of max�, where a⊕ b = if a ≤length b then b else a }
{
⊕
{r′ | r′ ∈ rs , r′ /elim x r} | r ∈ rs}

= { Theorem 2 }
Data.Set .fromList (foldr f [r1] [rk, rk−1, . . . , r2])

where f r′ (r : rs) = (r′ ⊕ r) : r : rs

Further Incrementalization: The derived program is not efficient enough.
For each recursive call of candidate , we need to calculate {elim x (a : r) | r ∈ rs}

Dynamic Programming via Thinning and Incrementalization 193

where rs is the current candidate set. Even if we memorize elim x r, each step
(and thereby elim) may take time proportional to the length of x. We would like
to perform step in O(1) time.

Further incrementalization removes this inefficiency. Observe that what we
need to calculate is {step a (Just xk) | 0 ≤ k ≤ n} where x = [b0, . . . , bn−1] and
xk = [b0, . . . , bk−1]. A rule similar to Theorem 2 enables us to incrementalize
this computation as follows. The rule, Theorem 3, is shown in Appendix.

[step a (Just xk) | n ≥ k ≥ 0] = foldr fa [Nothing] [n− 1, . . . , 0]
where fa i (r : rs) = (if a ≡ bi then Just xi−1 else r) : r : rs

Caching this result enables us to calculate {elim x (a : r) | r ∈ rs} in time pro-
portional to the size of rs . We omit the details due to space limitations.

Implementing Candidate Sets: This step is exactly the same as the previous.
It is appropriate to implement the candidate set by using a list whose elements
are sorted in accordance with /elim x.

Computational Complexity: Let n and m be the lengths of x and y, respec-
tively. Since /elim x categorizes the candidates into n + 1 equivalence classes,
it is sufficient to consider O(n) candidates in the computation of candidates .
Function candidates consists of O(m) recursions. In total, the algorithm runs in
time O(nm). The space complexity is also O(nm). These are the same as those
of the textbook algorithm [19].

6 Association-Rule Mining from Numeric Data

Given a collection of elements, which are characterized by a set of attributes,
association rule mining [24] finds correlations between attribute values. For ex-
ample, it may reveal that most customers who buy diapers buy beer as well.
If some attributes have numeric values, it is reasonable to consider ranges. For
example, it would be useful to know ranges of the ages and/or salaries that most
customers fall in. Fukuda et al. [21, 22] formalized such cases as problems of lo-
cating the most interesting subregion of the solution space and proposed efficient
algorithms for several instances. We try to deal with them in our approach.

6.1 Formalizing Problems

We consider the following situation. We have a two-dimensional rectangular
solution space divided into a grid consisting of m × n blocks. We capture the
structure by using a list ofm lists (rows) of length n. Our objective is to locate its
most interesting subregion. Although several criteria can be thought of, here we
consider finding the maximum-sum connected subregion whose lower parts are
wider, as shown in Figure 2. This problem is intended as a simpler variant of the

194 A. Morihata, M. Koishi, and A. Ohori

n︷ ︸︸ ︷

m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2. Connected subregion whose lower parts are wider; grey grids are selected,
whereas white ones not

problem of finding the maximum-sum rectilinear convex subregion studied by
Fukuda et al. [22]. We will discuss the capability of other criteria in Section 6.7.

We express a subregion by using a list each of whose elements is a consecutive
sublist of a row. A sublist of a row is a triple of the following type.

type Sublist = ([Int], Int , Int)

Given a row x, we denote by xi−j a sublist (x̃, i, j) such that x̃ consists of
elements come from the i-th to the j-th positions in x. For example, for x =
[a0, a1, a2, a3, a4], x2−3 = ([a2, a3], 2, 3). Since each sublist consists of essentially
two pointers, we assume that xi−j is constant space and obtained from x in O(1)
time.

The following program formulates the problem. Function subregions enumer-
ates all candidates by selecting a sublist for each row of each consecutive subset
of rows; filter feasible eliminates those that violate the requirement, and then,
max≤score extracts the maximum-sum subregion.

locate :: [[Int]]→ [Sublist]
locate = max≤score ◦ filter feasible ◦ subregions
where subregions xs = let (r1, r2) = rows xs in r1 ∪ r2

rows [] = (∅, {[]})
rows (x : xs) = let (r1, r2) = rows xs

in (r1 ∪ r2, {[]} ∪
⋃
{c :̃ r2 | c ∈ cols x})

cols x = {xi−j | 0 ≤ i ≤ j ≤ n− 1}
score = sum ◦map (λ(x, i, j)→ sum x)
feasible xs = check xs "= Bad
check = foldr step None
step (−, i, j) (W (i′, j′)) | ¬(i ≤ i′ ≤ j′ ≤ j) = Bad
step (−, i, j) − = W (i, j)

6.2 Thinning

The first step of our derivation is to apply Theorem 1. As in the case of the longest
common subsequence problem, we characterize feasible by using a preorder /

Dynamic Programming via Thinning and Incrementalization 195

so that check yields larger results for longer lists: None / b, a / Bad , and
W (i′, j′) / W (i, j) ⇐⇒ i ≤ i′ ≤ j′ ≤ j. The monotonicity and the increasing
properties are not difficult to check. Now, we apply Theorem 1.

locate
= { definitions }

max≤score ◦ filter (λxs → ¬(Bad / check xs)) ◦ subregions
= { Theorem 1; let + = ≤score ∩ 1check and x - y = max� (x ∪ y) }

max≤score ◦ candidates
where
candidates xs = let (r1, r2) = crows xs in r1 - r2
crows [] = (∅, {[]})
crows (x : xs) = let (r1, r2) = crows xs

in (r1 - r2,
{[]} - (

⊔
{max� (filter feasible (c :̃ r2)) | c ∈ cols x}))

Since / categorizes solution candidates into O(n2) equivalence classes, only
O(n2) candidates are considered in candidates .

6.3 Elaboration before Incrementalization

Before deriving an implementation of max�, we discuss another source of inef-
ficiency. In

⊔
{max� (filter feasible (c :̃ r2)) | c ∈ cols x}, O(n4) candidates are

considered if the size of r2 is O(n2). However, because check (xi−j : r) "= Bad if
and only if check r / W (i, j), it is unnecessary to consider every combination
of xi−j and r.

The reasoning below formalizes this observation. We use the following no-
tations. For a set of candidates, rs , let rs|v = {r | r ∈ rs , check r = v} and
rs |�v = {r | r ∈ rs , check r/ v}. Let a⊕ b = if a ≤score b then b else a.⊔

{max� (filter feasible (c :̃ r2)) | c ∈ cols x}
= { unfolding feasible and cols }⊔

{max�{xi−j : r | r ∈ r2,¬(Bad / check (xi−j : r))} | 0 ≤ i ≤ j ≤ n− 1}
= { check (xi−j : r) results in either Bad or W (i, j) }
{
⊕
{xi−j : r | r ∈ r2, check (xi−j : r) =W (i, j)} | 0 ≤ i ≤ j ≤ n− 1}

= { check (xi−j : r) =W (i, j) iff check r /W (i, j) }
{
⊕
{xi−j : r | r ∈ r2|�W (i,j)} | 0 ≤ i ≤ j ≤ n− 1}

= { monotonicity }
{xi−j : (

⊕
r2|�W (i,j)) | 0 ≤ i ≤ j ≤ n− 1}

Therefore, we would like to develop efficient implementation of {
⊕
r2|�W (i,j) |

0 ≤ i ≤ j ≤ n− 1}. Note that this computation also appears in max�, since
max� rs = {

⊕
rs |�W (i,j) | 0 ≤ i ≤ j ≤ n− 1} ∪ {

⊕
rs ,
⊕

rs |None}.

6.4 Incrementalization

Let us incrementalize {
⊕

rs |�W (i,j) | 0 ≤ i ≤ j ≤ n− 1}. Unfortunately, we can-

not immediately use Theorem 2 because rs|�W (i,j) is incomparable to rs |�W (i′,j′) if

196 A. Morihata, M. Koishi, and A. Ohori

i < i′ < j < j′. Therefore, we look for a subset of {rs |�W (i,j) | 0 ≤ i ≤ j ≤ n− 1}
for which Theorem 2 is applicable. In fact, rs|�W (i,i) ⊆ · · · ⊆ rs |�W (i,n−1) holds.

rs |�W (i,j+1) \ rs |
�
W (i,j)

= { definition of /; note that both include rs |None . }
(
⋃
{rs|W (i′,j′) | i ≤ i′ ≤ j′ ≤ j + 1}) \ (

⋃
{rs|W (i′,j′) | i ≤ i′ ≤ j′ ≤ j})

= { simplify }⋃
{rs |W (i′,j+1) | i ≤ i′ ≤ j + 1}

We apply Theorem 2 for this kind of series of sets. In the following, a set
arr = {v1 �→ w1, . . . , vk �→ wk} denotes an association array, i.e., map, such that
arr vi = wi. The range of arr is denoted by range arr .

{
⊕

rs |�W (i,j) | 0 ≤ i ≤ j ≤ n− 1}
= { case analysis on i }⋃

{{
⊕

rs|�W (i,j) | i ≤ j ≤ n− 1} | 0 ≤ i ≤ n− 1}
= { Theorem 2; we abbreviate Data.Set .fromList to toSet }

⋃
⎧⎪⎪⎨⎪⎪⎩
toSet (foldr f [e] [sn−1, sn−2, . . . , si+1])
where e =

⊕
(rs |W (i,i) ∪ rs|None)

f s (r : rs ′) = ((
⊕
s)⊕ r) : r : rs ′

sk =
⋃
{rs|W (i′,k) | i ≤ i′ ≤ k}

∣∣∣∣∣∣∣∣
0 ≤ i ≤ n− 1

⎫⎪⎪⎬⎪⎪⎭
= { hoisting (explained below) }

let rsv = {(i, j) �→
⊕
{rs|W (i′,j) | i ≤ i′ ≤ j} | 0 ≤ i ≤ j ≤ n− 1}

in
⋃⎧⎨⎩toSet (foldr f ′ [e] [(i, j) | n− 1 ≥ j ≥ i+ 1])

where e = rsv (i, i)⊕ (
⊕

rs |None)
f ′ k (r : rs ′) = (rsv k ⊕ r) : r : rs ′

∣∣∣∣∣∣ 0 ≤ i ≤ n− 1

⎫⎬⎭
At the last step, we hoist computation shared among iterations by introducing

an association array rsv . It is worth noting that hoisting is a standard technique
for effective incrementalization; see [9] for instance. The hoisting reveals that
Theorem 2 is applicable once again because {rs |W (k,j) | i ≤ k ≤ j} ⊆ {rs|W (k,j) |
i− 1 ≤ k ≤ j}.

rsv = {(i, j) �→
⊕
{rs|W (i′,j) | i ≤ i′ ≤ j} | 0 ≤ i ≤ j ≤ n− 1}

= { introducing a nested loop }
rsv =

⋃
{{(i, j) �→

⊕
{rs|W (i′,j) | i ≤ i′ ≤ j} | 0 ≤ i ≤ j} | 0 ≤ j ≤ n− 1}

= { Theorem 2 (with apparent extensions to association arrays) }
rsv =

⋃
{Data.Map.fromList (foldr gj [(j, j) �→ vj] rsl j) | 0 ≤ j ≤ n− 1}

where rsl j = [((i, j), rs |W (i,j)) | 0 ≤ i ≤ j − 1]
vj =

⊕
rs |W (j,j)

gj (k′, s) ((k �→ r) : rs ′) = (k′ �→ ((
⊕
s)⊕ r)) : (k �→ r) : rs ′

We summarize the outcome of our derivation in Figure 3. maxCore performs
the incrementalized computation and results in an association array so as to
efficiently use its result.

Dynamic Programming via Thinning and Incrementalization 197

locate xs = max≤score (candidates xs)

candidates xs = let (r1, r2) = crows xs in r1 � r2

crows [] = (∅, {[]})
crows (x : xs) = let (r1, r2) = crows xs

r̂2 = maxCore r2
in (r1 � r2, {[]} � {xi−j : r̂2 (i, j) | 0 ≤ i ≤ j ≤ n− 1})

rs1 � rs2 = let rs = rs1 ∪ rs2 in range (maxCore rs) ∪ {⊕ rs |None}
maxCore rs =⋃{toMap (foldr f ′ [(i, i) �→ e] [(i, j) | n− 1 ≥ j ≥ i+ 1]) | 0 ≤ i ≤ n− 1}
where rsl j = [((i, j), rs |W (i,j)) | 0 ≤ i ≤ j − 1]

gj (k′, s) ((k �→ r) : rs ′) = (k′ �→ ((
⊕

s)⊕ r)) : (k �→ r) : rs ′

rsv =
⋃{toMap (foldr gj [(j, j) �→ (

⊕
rs |W (j,j))] rsl j) | 0 ≤ j ≤ n− 1}

e = rsv (i, i)⊕ (
⊕

rs |None)
f ′ k ′ ((k �→ r) : rs ′) = (k′ �→ (rsv k′ ⊕ r)) : (k �→ r) : rs ′

Fig. 3. Derived implementation of locate ; Data.Map.fromList is abbreviated to toMap

6.5 Implementing Candidate Sets

Since we would like to immediately extract rs |v from rs, we implement the
candidate set by using an association array from v to rs |v. It is easy to implement
the ∪ operator accordingly.

6.6 Computational Complexity

Observe that for any candidate set rs and any value v, rs |v contains O(1) ele-
ments, and hence, a candidate set consists of O(n2) elements. Thus, maxCore
necessitates O(n2) time. Since maxCore is the major component of a recursive
call of crows and crows causes O(m) recursive calls, the time complexity of our
algorithm is O(mn2). The space complexity is the same, O(mn2).

6.7 Capability of Other Problem Variants

While we have discussed a simple problem, Fukuda et al. [21, 22] discussed sev-
eral others. The authors [25] have observed that, in addition to the problem we
have discussed, our approach can uniformly deal with two cases considered by
Fukuda et al.: finding the maximum-sum rectangular subregion, and finding the
maximum-sum rectilinear convex region. The derived algorithms are asymptoti-
cally as fast as those proposed by Fukuda et al. These results show the usefulness
of our approach.

Nevertheless, there are several examples for which our approach is not satisfac-
tory. One such example is the problem of finding the maximum-sum admissible
region, which is a connected subregion obtained from subregions . While our ap-
proach yields an O(mn2)-time algorithm, theirs is O(mn) time. It is not usual
dynamic programming in the sense that it fills only a part of the entries of the
table, and hence, a more sophisticated incrementalization rule seems necessary

198 A. Morihata, M. Koishi, and A. Ohori

for deriving it. Other instances include problems of finding the maximum den-
sity regions. Mu [26] studied, from the perspective of thinning, the problem of
finding the maximum density consecutive sublist of a list, and pointed out that
thinning is not applicable because the monotonicity condition does not hold.
Thus, it seems hopeless for our approach to deal with them.

7 Discussion

7.1 Textbook Approach vs. Thinning vs. Incrementalization vs.
Thinning + Incrementalization

As discussed in Section 3, our approach can be regarded as formalizing the stan-
dard, textbook approach to dynamic programming by program transformations1.
Hence our approach is not quite different from the standard one; moreover, as
discussed in Section 6, it cannot deal with all the problems that the standard
one can. Nevertheless, it has two advantages.

– Ours is more formal and thus better suitable to proving the correctness
of developed algorithms. The algorithms we have developed are correct by
construction, namely the developments guarantee their correctness.

– Ours is based on program transformations and thus better suitable for mech-
anization, though there are still several issues for it.

This view, namely, understanding ours as a systematization of the standard
approach, is also helpful for comparing ours with others, in particular thinning
and incrementalization. Thinning can expose the principle of optimality, but is
not helpful for giving efficient table-filling implementations. In particular, it is
known that implementing max needs further elaborations [2, 26]. Incremental-
ization is useful for developing table-filling computations but is less useful for
revealing the principle of optimality. In fact, Liu and Stoller [7] takes recurrence
equations for dynamic programming as the inputs of their method. From this
viewpoint, one can understand that thinning, incrementalization, and thinning +
incrementalization are all different in the sense that their inputs and/or outputs
differ. Moreover, only thinning + incrementalization has the same functionality
as the textbook approach.

7.2 Toward Mechanization of Developments

We have carried out derivations by hand. Derivations are often complex. It is
desirable to use methods of mechanizing thinning and incrementalization.

For mechanizing thinning, combinator-based approaches were studied [4, 6,
10, 12]. Programmers specify their problems by using given sets of combinators so
that a system can automatically apply thinning laws. Liu et al. [17, 7, 9] studied
automatic incrementalization with the help of constraint solvers. In particular,

1 Indeed, Takeshi Tokuyama said “these two steps are exactly what we did for devel-
oping algorithms in [21, 22]” (personal communication).

Dynamic Programming via Thinning and Incrementalization 199

their incrementalization algorithms can deal with programs whose conditionals
are expressed by linear inequalities, as the case of association rule mining studied
in Section 6. Another important step is to choose the appropriate implementa-
tion of candidate sets depending on the costs of operations performed. There
are studies on automatic data structure selection [27–29]. These existing meth-
ods may be useful for our approach, in particular for mechanizing applications
of Theorems 1 and 2. Nevertheless, there are issues to fully mechanizing our
approach.

First, it is often nontrivial to describe the result of thinning in the form for
which incrementalization works well. For effective automatic incrementalization,
the result of thinning should do iterations in such an order that efficient programs
will be derived by reusing the results of the previous iterations. However, it
is nontrivial to mechanically find such an iteration order. A possible strategy
is to exhaustively try to incrementalize programs of different iteration orders.
This strategy was used to deal with association rule mining problems in our
approach [25].

Second, as we encountered in Sections 5 and 6.3, problem-specific develop-
ments are sometimes necessary for obtaining efficient programs. It is worth
noting that similar developments are often applicable to similar problems. For
instance, the improvement in Section 6.3 is useful for many association rule min-
ing problems [25]. This observation suggests considering problems in a certain
domain. For a restricted class of problems, we may be able to prepare a sufficient
amount of improvement strategies.

8 Related Work

8.1 Thinning

Our method is based on thinning [1–3]. The essence of thinning is to improve
a naive enumerate-and-choose-style program by identifying that each candidate
generation step is monotone on the order that specifies the best solution.

The most related study in this context is one by de Moor [4]. He developed
a program transformation rule that can derive efficient programs for a class of
problems called sequential decision processes. When the feasibility of candidates
is characterized by a total preorder, his method is similar to ours in the sense
that, for example, it derives the same algorithm for the 0-1 knapsack problem.
From this perspective, our approach can be regarded as a refinement on his
method. We modularlize his rule into two independent components, thinning
and incrementalization, and generalized both parts. Theorem 1 can deal with
problems other than sequential decision processes. As seen in Section 6, incre-
mentalization is potentially applicable even if the preorder is not total.

Mu [26] studied some optimal list problems from the perspective of thinning.
He pointed out that it is often nontrivial to provide efficient implementation
to the max operator as well as the candidate set. For instance, in order to
efficiently solve the length-constrained maximum-sum sublist problem, he im-
plemented candidate sets by using a sophisticated priority queue. Our study is

200 A. Morihata, M. Koishi, and A. Ohori

motivated by his observation. Our approach slightly streamlines his development;
yet, problem-specific developments are necessary for deriving his algorithm.

8.2 Incrementalization Based on Fixed-Point Transformation

Our incrementalization is based on fixed point calculations by Cai and Paige [16].
The approach identifies a problem as a fixed point of a set-calculating function
and then derives an efficient implementation by incrementalization and selecting
data structures for implementing the set.

Liu and Stoller [7] applied the approach to derive efficient programs that use
dynamic programming from recursive programs. There is a subtle issue. Since
incrementalization relies on reusing the results of the previous iterations, the ef-
ficiency of obtained implementation does depend on the order of iteration. This
issue is crucial for deriving dynamic programming; the order of iteration corre-
sponds to the order to fill the table. Liu and Stoller proposed a method of finding
an appropriate iteration order from computations on recursion parameters.

Unfortunately, max , which is the major subject of incrementalization in our
approach, is not such the recursive function that the method by Liu and Stoller
expects. Instead, we extracted an appropriate iteration order from the preorder
that specifies the feasibility. This approach seems natural because the thinning
law, Theorem 1, indicates that the principle of optimality can be read from
that preorder. Our approach is effective if the preorder is total; however, it is
nontrivial to specify an appropriate iteration order otherwise.

8.3 Other Approaches to Systematic Dynamic Programming

There are several other approaches for systematically or automatically devel-
oping efficient dynamic programming from relatively high-level problem spec-
ifications, including [5, 8, 11, 13, 14]. Each method has its own strength and
weakness. For example, the algebraic dynamic programming framework [8, 14]
automatically compiles high-level specifications of the problems in an enumerate-
and-choose manner to efficient programs that use dynamic programming. The
framework is useful especially for solving problems on sequences such as DNA
analyses; however, it cannot solve the association-rule mining problem discussed
in Section 6 in O(n3) time.

We do not intend to argue that our approach is more powerful. Our message
is that it is worthwhile to combine them. As thinning and incrementalization,
existing approaches often fail to bring the same algorithm as the textbook ap-
proach from high-level problem descriptions. We expect that such missing links
can be completed by combining other methods.

9 Conclusion and Future Work

We demonstrated that it is useful to combine thinning and incrementalization for
developing efficient programs that use dynamic programming from plain prob-
lem descriptions. We discussed the 0-1 knapsack problem, the longest common

Dynamic Programming via Thinning and Incrementalization 201

subsequence problem, and association rule mining from numeric data. It is fu-
ture work to mechanize our approach and to find a class of problems for which
efficient algorithms can be automatically obtained. It seems also interesting to
study other combinations of existing methods.

Acknowledgements. The authors are grateful to Takeshi Tokuyama for our
discussion with him and his suggestion of applying our approach to the longest
common subsequence problem. The authors are also grateful to anonymous re-
viewers for comments useful for improving presentations.

References

1. de Moor, O.: Categories, Relations and Dynamic Programming. PhD thesis, Oxford
University Computing Laboratory, Technical Monograph PRG-98 (1992)

2. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice Hall (1997)

3. Bird, R.S.: Maximum marking problems. J. Funct. Program. 11(4), 411–424 (2001)
4. de Moor, O.: A generic program for sequential decision processes. In: Swierstra,

S.D. (ed.) PLILP 1995. LNCS, vol. 982, pp. 1–23. Springer, Heidelberg (1995)
5. Pettorossi, A., Proietti, M.: Rules and strategies for transforming functional and

logic programs. ACM Computing Surveys 28(2), 360–414 (1996)
6. Sasano, I., Hu, Z., Takeichi, M., Ogawa, M.: Make it practical: a generic linear-

time algorithm for solving maximum-weightsum problems. In: Proceedings of the
5th ACM SIGPLAN International Conference on Functional Programming, ICFP
2000, pp. 137–149. ACM Press (2000)

7. Liu, Y.A., Stoller, S.D.: Dynamic programming via static incrementalization.
Higher-Order and Symbolic Computation 16(1-2), 37–62 (2003)

8. Giegerich, R., Meyer, C., Steffen, P.: A discipline of dynamic programming over
sequence data. Sci. Comput. Program. 51(3), 215–263 (2004)

9. Liu, Y.A., Stoller, S.D., Li, N., Rothamel, T.: Optimizing aggregate array compu-
tations in loops. ACM Trans. Program. Lang. Syst. 27(1), 91–125 (2005)

10. Sasano, I., Ogawa, M., Hu, Z.: Maximum marking problems with accumulative
weight functions. In: Van Hung, D., Wirsing, M. (eds.) ICTAC 2005. LNCS,
vol. 3722, pp. 562–578. Springer, Heidelberg (2005)

11. Puchinger, J., Stuckey, P.J.: Automating branch-and-bound for dynamic programs.
In: Proceedings of the 2008 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation, PEPM 2008, pp. 81–89. ACM Press
(2008)

12. Morihata, A.: A short cut to optimal sequences. New Generation Comput. 29(1),
31–59 (2011)

13. Pu, Y., Bod́ık, R., Srivastava, S.: Synthesis of first-order dynamic programming
algorithms. In: Lopes, C.V., Fisher, K. (eds.) Proceedings of the 26th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, pp. 83–98. ACM Press (2011)

14. Sauthoff, G., Janssen, S., Giegerich, R.: Bellman’s gap: a declarative language for
dynamic programming. In: Proceedings of the 13th International ACM SIGPLAN
Conference on Principles and Practice of Declarative Programming, pp. 29–40.
ACM Press (2011)

202 A. Morihata, M. Koishi, and A. Ohori

15. Paige, R., Koenig, S.: Finite differencing of computable expressions. ACM Trans.
Program. Lang. Syst. 4(3), 402–454 (1982)

16. Cai, J., Paige, R.: Program derivation by fixed point computation. Sci. Comput.
Program. 11(3), 197–261 (1989)

17. Liu, Y.A., Teitelbaum, T.: Systematic derivation of incremental programs. Sci.
Comput. Program. 24(1), 1–39 (1995)

18. Liu, Y.A., Stoller, S.D., Teitelbaum, T.: Static caching for incremental computa-
tion. ACM Trans. Program. Lang. Syst. 20(3), 546–585 (1998)

19. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to algorithms.
MIT Press, Cambridge (2001)

20. Kleinberg, J., Tardos, É.: Algorithm Design Pearson Education Inc. (2006)
21. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Mining optimized associ-

ation rules for numeric attributes. J. Comput. Syst. Sci. 58(1), 1–12 (1999)
22. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining with opti-

mized two-dimensional association rules. ACM Trans. Database Syst. 26(2), 179–
213 (2001)

23. Peyton Jones, S. (ed.): Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press, Cambridge (2003)

24. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In: Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, pp. 207–216. ACM Press (1993)

25. Koishi, M.: Derivation of two-dimensional maximum weighted sum problems using
program transformations. Master’s thesis, Graduate School of Information Science,
Tohoku University (2013) (in Japanese)

26. Mu, S.C.: Maximum segment sum is back: deriving algorithms for two segment
problems with bounded lengths. In: Proceedings of the 2008 ACM SIGPLAN Sym-
posium on Partial Evaluation and Semantics-based Program Manipulation, PEPM
2008, pp. 31–39. ACM Press (2008)

27. Schwartz, J.T.: Automatic data structure choice in a language of very high level.
Commun. ACM 18(12), 722–728 (1975)

28. Schonberg, E., Schwartz, J.T., Sharir, M.: An automatic technique for selection
of data structures in SETL programs. ACM Trans. Program. Lang. Syst. 3(2),
126–143 (1981)

29. Paige, R., Henglein, F.: Mechanical translation of set theoretic problem specifi-
cations into efficient ram code—a case study. J. Symb. Comput. 4(2), 207–232
(1987)

Appendix

Theorem 3. For lists s and t, let s ⊆ t if s is a suffix of t, and let t \ s be the
prefix of t obtained by eliminating the suffix s. For a series of lists s1 ⊆ · · · ⊆ sn,
the following equation holds.

[foldr g e sn, foldr g e sn−1, . . . , foldr g e s1]
= foldr f [foldr g e s1] [sn \ sn−1, . . . , s3 \ s2, s2 \ s1]

where f s (r : rs) = foldr g r s : r : rs .-

POSIX Regular Expression Parsing

with Derivatives

Martin Sulzmann1 and Kenny Zhuo Ming Lu2

1 Hochschule Karlsruhe - Technik und Wirtschaft, 76133 Karlsruhe, Germany
martin.sulzmann@hs-karlsruhe.de

2 School of Information Technology, Nanyang Polytechnic,
180 Ang Mo Kio Avenue 8, Singapore 569830, Singapore

luzhuomi@gmail.com

Abstract. We adapt the POSIX policy to the setting of regular expres-
sion parsing. POSIX favors longest left-most parse trees. Compared to
other policies such as greedy left-most, the POSIX policy is more intu-
itive but much harder to implement. Almost all POSIX implementations
are buggy as observed by Kuklewicz. We show how to obtain a POSIX
algorithm for the general parsing problem based on Brzozowski’s regular
expression derivatives. Correctness is fairly straightforward to establish
and our benchmark results show that our approach is promising.

1 Introduction

We consider the parsing problem for regular expressions. Parsing produces a
parse tree which provides a detailed explanation of which subexpressions match
which substrings. The outcome of parsing is possibly ambiguous because there
may be two distinct parse trees for the same input. For example, for input string
ab and regular expression (a + b + ab)∗, there are two possible ways to break
apart input ab: (1) a, b and (2) ab. Either in the first iteration subpattern a
matches substring a, and in the second iteration subpattern b matches substring
b, or subpattern ab immediately matches the input string.

There are two popular disambiguation strategies for regular expressions:
POSIX [10] and greedy [21]. In the above, case (1) is the greedy result and
case (2) is the POSIX result. For the variation (ab+ a+ b)∗, case (2) is still the
POSIX result whereas now the greedy result equals case (2) as well.

We find that greedy parsing is directly tied to the structure and the order
of alternatives matters. In contrast, POSIX is less sensitive to the order of al-
ternatives because longest matches are favored. Only in case of equal matches
preference is given to the left-most match. This is a useful property for appli-
cations where we build an expression as the composition of several alternatives,
e.g. consider lexical analysis.

As it turns out, POSIX appears to be much harder to implement than greedy.
Kuklewicz [11] observes that almost all POSIX implementations are buggy

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 203–220, 2014.
c© Springer International Publishing Switzerland 2014

204 M. Sulzmann and K.Z.M. Lu

which is confirmed by our own experiments. These implementations are also re-
stricted in that they do not produce full parse trees and only provide submatch
information. For example, in case of Kleene star only the last match is recorded
instead of the matches for each iteration.

In this work, we propose a novel method to compute POSIX parse trees
based on Brzozowski’s regular expression derivatives [1]. A sketch of how deriva-
tives could be applied to compute POSIX submatches is given in our own prior
work [24]. The present work includes some significant improvements such as a
rigorous correctness result, dealing with the more general parsing problem and
numerous optimizations.

Specifically, we make the following contributions:

– We formally define POSIX parsing by viewing regular expressions as types
and parse trees as values (Section 2). We also relate parsing to the more
specific submatching problem.

– We present a method for computation of POSIX parse trees based on
Brzozowski’s regular expression derivatives [1] and verify its correctness
(Section 3).

– We have built optimized versions for parsing as well as for the special case of
submatching where we only keep the last match in case of a Kleene star. We
conduct experiments to measure the effectiveness of our method (Section 4).

Section 5 discusses related work and concludes.

2 Regular Expressions and Parse Trees

We follow [8] and phrase parsing as a type inhabitation relation. Regular expres-
sions are interpreted as types and parse trees as values of some regular expression
type. Figure 1 contains the details which will be explained in the following.

The syntax of regular expressions r is standard. As it is common, concatena-
tion and alternation is assumed to be right associative. The example (a+b+ab)∗

from the introduction stands for (a+ (b + ab))∗. Words w are formed using lit-
erals l taken from a finite alphabet Σ. Parse trees v are represented via some
standard data constructors such as lists, pairs, left/right injection into a disjoint
sum etc. We write [v1, ..., vn] as a short-hand for v1 : ... : vn : [].

Parse trees v and regular expressions r are related via a natural deduction style
proof system where inference rules make use of judgments � v : r. For example,
rule (Left+) covers the case that the left alternative r1 has been matched. We
will shortly see some examples making use of the other rules.

For each derivable statement � v : r, the parse tree v provides a proof that
the word underlying v is contained in the language described by r. That is,
L(r) = {|v| | � v : r } where the flattening function | · | extracts the underlying
word. In general, proofs are not unique because there may be two distinct parse
trees for the same input.

Recall the example from the introduction. For expression (a + (b + ab))∗

and input ab we find parse trees [Left a,Right Left b] and [Right Right (a, b)]. For

POSIX Regular Expression Parsing with Derivatives 205

Words:

w ::= ε Empty word
| l ∈ Σ Literal
| ww Concatenation

Regular expressions:

r ::= l
| r∗ Kleene star
| rr Concatenation
| r + r Choice
| ε Empty word
| φ Empty language

Parse trees:

v ::= () | l | (v, v) | Left v | Right v | vs
vs ::= [] | v : vs

� v : r

(None∗) � [] : r∗

(Once∗)
� v : r � vs : r∗

� (v : vs) : r∗

(Pair)
� v1 : r1 � v2 : r2

� (v1, v2) : r1r2

(Left+)
� v1 : r1

� Left v1 : r1 + r2

(Right+)
� v2 : r2

� Right v2 : r1 + r2

(Empty) � () : ε (Lit)
l ∈ Σ

� l : l
Flattening:

|()| = ε |l| = l |Left v| = |v| |v : vs| = |v||vs|
|[]| = ε |(v1, v2)| = |v1||v2| |Right v| = |v|

Fig. 1. Regular Expressions and Parse Trees

brevity, some parentheses are omitted, e.g. we write Right Left b as a short-hand
for Right (Left b). The derivation trees are shown below:

� a : a � b : b

� (a, b) : ab

� Right (a, b) : b+ ab

� Right Right (a, b) : a+ (b + ab) � [] : (a+ (b+ ab))∗

� [Right Right (a, b)] : (a+ (b + ab))∗

� a : a

� Left a : (a+ (b+ ab))∗

� b : b

� Left b : b+ ab

� Right Left b : a+ (b+ ab) � [] : (a+ (b+ ab))∗

� [Right Left b] : (a+ (b+ ab))∗

� [Left a,Right Left b] : (a+ (b+ ab))∗

To avoid such ambiguities, the common approach is to impose a disambigua-
tion strategy which guarantees that for each regular expression r matching a

206 M. Sulzmann and K.Z.M. Lu

word w there exists a unique parse tree v such that |v| = w. Our interest is in
the computation of POSIX parse trees. Below we give a formal specification of
POSIX parsing by imposing an order among parse trees.

Definition 1 (POSIX Parse Tree Ordering). We define a POSIX order-
ing v1 >r v2 among parse trees v1 and v2 where r is the underlying regular
expression. The ordering rules are as follows

(C1)
v1 = v′1 v2 >r2 v

′
2

(v1, v2) >r1r2 (v′1, v
′
2)

(C2)
v1 >r1 v

′
1

(v1, v2) >r1r2 (v′1, v
′
2)

(A1)
len |v2| > len |v1|

Right v2 >r1+r2 Left v1
(A2)

len |v1| ≥ len |v2|
Left v1 >r1+r2 Right v2

(A3)
v2 >r2 v

′
2

Right v2 >r1+r2 Right v′2
(A4)

v1 >r1 v
′
1

Left v1 >r1+r2 Left v′1

(K1)
|v : vs| = ε

[] >r∗ v : vs
(K2)

|v : vs| "= ε

v : vs >r∗ []

(K3)
v1 >r v2

v1 : vs1 >r∗ v2 : vs2
(K4)

v1 = v2 vs1 >r∗ vs2

v1 : vs1 >r∗ v2 : vs2

where helper function len computes the number of letters in a word.
Let r be a regular expression and v1 and v2 parse trees such that � v1 : r and

� v2 : r. We define v1 ≥r v2 iff either v1 and v2 are equal or v1 >r v2 where
|v1| = |v2|. We say that v1 is the POSIX parse tree w.r.t. r iff � v1 : r and
v1 ≥r v2 for any parse tree v2 where � v2 : r and |v1| = |v2|.

The above ordering relation is an adaptation of the Greedy parse tree order
defined in [8]. The (Greedy) rule Left v >r1+r2 Right v′ is replaced by rules (A1)
and (A2). All other rules remain unchanged compared to [8].

Rules (A1) and (A2) guarantee that preference is given to longest left-most
parse trees as stipulated by the POSIX submatching policy [10]:

“Subpatterns should match the longest possible substrings, where
sub- patterns that start earlier (to the left) in the regular expression
take priority over ones starting later. Hence, higher-level subpatterns
take priority over their lower-level component subpatterns. Matching an
empty string is considered longer than no match at all.”

For example, consider again our running example. For expression (a+(b+ab))∗

and word ab we find parse trees [Right Right (a, b)] and [Left a,Right Left b].
Due to rule (A1), we have that Right Right (a, b) is greater than Left a because
Right Right (a, b) contains a longer match than Left a. Hence,

[Right Right (a, b)] ≥(a+(b+ab))∗ [Left a,Right Left b]

POSIX Regular Expression Parsing with Derivatives 207

In contrast, under the Greedy order we would find that [Left a,Right Left b] is
greater than [Right Right (a, b)].

POSIX is Non-Problematic. In case of the Greedy parse tree order, it is well-
observed [8] that special care must be given to problematic expressions/parse
trees. Roughly, an expression induces problematic parse trees if we find empty
matches under a Kleene star. The potential danger of problematic expressions
is that we might end up with an infinite chain of larger parse trees. This causes
possible complications for a Greedy parsing algorithm, as the algorithm attempts
to compute the “largest” parse tree. Fortunately, none of this is an issue for
POSIX.

For example, consider the problematic expression ε∗. For the empty input we
find the following infinite chain of parse trees

v0 = [], v1 = [()], v2 = [(), ()] ...

Parse tree v0 is the largest according to our ordering relation. See rule (K1).
Let’s consider another more devious, problematic expression (ε + a)∗ where

for input a we find

v0 = [Right a], v1 = [Left (),Right a], v2 = [Left (),Left (),Right a] ...

Due to rule (A1), v0 is the largest parse tree according to our POSIX ordering
relation. In contrast, under the Greedy order each vi+1 is larger than vi. Hence,
the Greedy order does not enjoy maximal elements unless we take special care
of problematic expressions. For details see [8].

To summarize, expressions which are problematic under the Greedy order
are “not problematic” under the POSIX order. For any expression, the POSIX
order defined in Definition 1 is well-defined in the sense that the order is total
and enjoys maximal elements.

Proposition 1 (Maximum and Totality of POSIX Order). For any ex-
pression r, the ordering relation ≥r is total and has a maximal element.

Parsing versus Submatching. For space reasons, practical implementations
only care about certain subparts and generally only record the last match in case
of a Kleene star iteration. For example, consider expression ((x : a∗)+ (b+ c)∗)∗

where via an annotation we have marked the subparts we are interested in.
Matching the above against word abaacc yields the submatch binding x �→ aa.
For comparison, here is the parse tree resulting from the match against the input
word abaacc

[Left [a],Right Left [b],Left [a, a],Right Right [c, c]]

Instead of providing a stand-alone definition of POSIX submatching, we show
how to derive submatchings from parse trees. In Figure 2, we extend the syn-
tax of regular expressions with submatch annotations (x : r) where variables x

208 M. Sulzmann and K.Z.M. Lu

Annotated regular expressions: r ::= (x : r) | l | r∗ | rr | r + r | ε | φ
Submatch binding environment: Γ ::= {} | {x �→ w} | Γ ∪ Γ

v � r � Γ

v � r � Γ

v � (x : r) � {x �→ |v|} ∪ Γ
() � ε � {} l � l � {}

[] � r∗ � {} v � r � Γ

[v] � r∗ � Γ

v � r � Γ1 vs � r∗ � Γ2

v : vs � r∗ � Γ1 ∪ Γ2

v1 � r1 � Γ1

v2 � r2 � Γ2

(v1, v2) � r1r2 � Γ1 ∪ Γ2

v1 � r1 � Γ1

Left v1 � r1 + r2 � Γ1

v2 � r2 � Γ2

Right v2 � r1 + r2 � Γ2

Fig. 2. From Parsing to Submatching

are always distinct. For parsing purposes, submatch annotations will be ignored.
Given a parse tree v of a regular expression r, we obtain the submatch environ-
ment Γ via judgments v � r � Γ . We simply traverse the structure of v and r
and collect the submatch binding Γ .

For our above example, we obtain the binding {x �→ a, x �→ aa}. Repeated
bindings resulting from Kleene star are removed by only keeping the last sub-
match. Technically, we achieve this by exhaustive application of the following
rule on submatch bindings (from left to right):

Γ1 ∪ {x �→ w1} ∪ Γ2 ∪ {x �→ w2} ∪ Γ3 = Γ1 ∪ Γ2 ∪ {x �→ w2} ∪ Γ3

Hence, we find the final submatch binding {x �→ aa}. As another example,
consider expression (x : a∗)∗ and the empty input string. The POSIX parse tree
for (x : a∗)∗ is [] which implies the POSIX submatching {x �→ ε}.

We believe that the submatchings resulting from POSIX parse trees corre-
spond to the POSIX submatchings described in [25]. The formal details need
yet to be worked out.

Construction of a full parse tree is of course wasteful, if we are only interested
in certain submatchings. However, both constructions are equally challenging in
case we wish to obtain the proper POSIX candidate. That is, even if we only
keep the last match in case of a Kleene star iteration, we must compare the set of
accumulated submatches to select the appropriate POSIX, i.e. longest left-most,
match.

A naive method to obtain the POSIX parse tree is to perform an exhaustive
search. Such a method is obviously correct but potentially has an exponential
run time due to backtracking. Next, we develop a systematic method to compute
the POSIX parse trees.

POSIX Regular Expression Parsing with Derivatives 209

3 Parse Tree Construction via Derivatives

Our idea is to apply Brzozowski’s regular expression derivatives [1] for parsing.
The derivative operation r\l performs a symbolic transformation of regular ex-
pression r and extracts (takes away) the leading letter l. In formal language
terms, we find

lw ∈ L(r) iff w ∈ L(r\l)

Thus, it is straightforward to obtain a regular expression matcher. To check if
regular expression r matches word l1...ln, we simply build a sequence of deriva-
tives and test if the final regular expression is nullable, i.e. accepts the empty
string:

Matching by extraction: r0
l1→ r1

l2→ ...
ln→ rn

Regular expression derivatives:

φ\l = φ
ε\l = φ

l1\l2 =

{
ε if l1 == l2
φ otherwise

(r1 + r2)\l = r1\l + r2\l
(r1r2)\l =

{
(r1\l)r2 + r2\l if ε ∈ L(r1)
(r1\l)r2 otherwise

r∗\l = (r\l)r∗
Empty parse tree construction and parse tree transformation:

mkEpsr∗ = []
mkEpsr1r2 = (mkEpsr1 ,mkEpsr2)
mkEpsr1+r2

|ε ∈ L(r1) = Left mkEpsr1
|ε ∈ L(r2) = Right mkEpsr2

mkEpsε = ()

injr∗\l(v , vs) = (injr\l v) : vs
inj(r1r2)\l =

λv .case v of
(v1, v2)→ (injr1\l v1, v2)
Left (v1, v2)→ (injr1\l v1, v2)
Right v2 → (mkEpsr1 , injr2\l v2)

inj(r1+r2)\l =
λv .case v of

Left v1 → Left (injr1\l v1)
Right v2 → Right (injr2\l v2)

injl\l() = l

Parsing with derivatives:

parse r ε
|ε ∈ L(r) = mkEpsr

parse r lw = injr\l(parse r\l w)

Fig. 3. Parsing Tree Construction with Derivatives

210 M. Sulzmann and K.Z.M. Lu

In the above, we write r
l→ r′ for applying the derivative operation on r where

r′ equals r\l. In essence, derivatives represent DFA states and
l→ represents the

DFA transition relation.
Our insight is that based on the first matching pass we can build the POSIX

parse tree via a second injection pass:

Parse trees by injection v0
l1← v1

l2← ...
ln← vn

The basic idea is as follows. After the final matching step, we compute the
parse tree vn for a nullable expression rn. Then, we apply a sequence of parse
tree transformations. In each transformation step, we build the parse tree vi for

expression ri given the tree vi+1 for ri+1 where ri
l→ ri+1 This step is denoted

by vi
l← vi+1. In essence, the derivative operation removes leading letters from

an expression whereas the transformation via injection step simply reverses this
effect at the level of parse trees. In the above, we inject the removed letter l into
the parse tree vi+1 of the derived expression ri+1 which results in a parse tree
vi of expression ri. Thus, we incrementally build the parse tree v0 for the initial
expression r0. Importantly, our method yields POSIX parse tree because (a) we
build the POSIX parse tree vn for the nullable expression rn and (b) each parse

tree transformation step vi
l← vi+1 maintains the POSIX property.

Next, we introduce the details of the above sketched POSIX parsing method
followed by a worked out example. Finally, we present an improvement parsing
algorithm which performs the ’backward’ construction of POSIX parse trees
during the ’forward’ matching pass.

POSIX Parse Tree Construction via Injection. Figure 3 summarizes our
method for construction of POSIX parse trees based on the above idea. We first
repeat the standard derivative operation r\l. Next, we find function mkEpsr to
compute an empty parse tree assuming that r is nullable. The function is defined
by structural induction over r where as a notational convention the cases are
written as subscripts. Similarly, we find function injr\l which takes as an input
a parse tree of the derivative r\l and yields a parse of r by (re)injecting the

removed letter l. Thus, we can define the transformation step vi
l← vi+1 by

vi = injri\l vi+1. Function parse computes a parse tree by first applying the
derivative operation until we obtain a parse tree for the empty tree via mkEps .
Starting with this parse tree, we then repeatedly apply inj .

Let us take a closer look at mkEpsr. We recurse over the structure of r. There
is no case for letter l and empty language φ as we assume that r must be nullable.
The cases for Kleene star r∗ and empty word ε are straightforward and yield [],
respectively, (). For concatenation r1 + r2, we build the pair consisting of the
empty parse trees for r1 and r2. The most interesting case is choice r1+r2 where
we are careful to first check if r1 is nullable. Otherwise, we consider r2. Thus,
we can guarantee that the resulting parse tree is the largest according to our
POSIX order in Definition 1.

POSIX Regular Expression Parsing with Derivatives 211

Lemma 1 (Empty POSIX Parse Tree). Let r be a regular expression such
that ε ∈ L(r). Then, � mkEpsr : r and mkEpsr is the POSIX parse tree of r
for the empty word.

Next, we take a closer look at the definition inj. For example, the most simple
(last) case is injl\l() = l where we transform the empty parse tree () into l. Recall
that l\l equals ε. The definition for choice is also simple. We check if either a
parse for the left or right component exists. Then, we apply inj on the respective
component.

Let’s consider the first case dealing with Kleene star. By definition r∗\l =
(r\l)r∗. Hence, the input consists of a pair (v, vs). Function injr\l is applied
recursively on v to yield a parse tree for r.

Concatenation r1r2 is the most involved case. There are three possible sub-
cases. The first subcase covers the case that r1 is not nullable. The other two
cases deal with the nullable case.

In case r1 is not nullable, we must find a pair (v1, v2). Recall that for this
case (r1r2)\l = (r1\l)r2. Hence, the derivative operation has been applied on r1
which implies that inj will also be applied on v1.

Let’s consider the two subcases dealing with nullable expressions r1. Recall
that in such a situation we have that (r1r2)\l = (r1\l)r2 + r2\l. Hence, we need
to check if either a parse tree for the left or right expression exists. In case of
a left parse tree, we apply inj on the leading component (like for non-nullable
r1). In case of a right parse tree, none of the letters have been extracted from
r1. Hence, we build a pair consisting of an ’empty’ parse tree mkEpsr1 for r1
and r2’s parse tree by injecting l back into v2 via injr2\l.

It is not difficult to see that injr\l applied on a parse tree of r\l yields a parse
tree of r. The important property for us is that injection also maintains POSIX
parse trees.

Lemma 2 (POSIX Preservation under Injection). Let r be a regular ex-
pression, l a letter, v a parse tree such that � v : r\l and v is POSIX parse tree
of r\l and |v|. Then, � (injr\l v) : r and (injr\l v) is POSIX parse tree of r
and l|v| where |(injr\l v)| = l|v|.

We have a rigorous proof for this statement. The proof is rather involved and
requires a careful analysis of the various (sub)cases. Briefly, inj strictly injects
letters at the left-most position. Recall that derived expressions are obtained
by greedily removing leading letters from the left. Injection also preserves the
longest left-most property because the derivative operation favors subexpressions
that start earlier. Recall the case for choice

(r1r2)\l =
{
(r1\l)r2 + r2\l if ε ∈ L(r1)
(r1\l)r2 otherwise

where we favor subexpression r1. Thus, injection can guarantee that longest
left-most parse trees are preserved.

Based on the above lemmas we reach the following result.

Theorem 1 (POSIX Parsing). Function parse computes POSIX parse trees.

212 M. Sulzmann and K.Z.M. Lu

POSIX Parsing Example. To illustrate our method, we consider expression
(a+ ab)(b+ ε) and word ab for which we find parse trees (Right (a, b),Right ())
and (Left a,Left b). The former is the POSIX parse tree whereas the latter is
the Greedy parse tree.

We first build the derivative w.r.t. a and then w.r.t. b. For convenience, we

use notation
l→ to denote derivative steps. For our example, we find:

(a+ ab)(b + ε)
a→ (ε+ εb)(b+ ε)
b→ (φ+ (φb + ε))(b+ ε) + (ε+ φ)

where the last step
b→ in more detail is as follows:

((ε + εb)(b+ ε))\b
= ((ε + εb)\b)(b+ ε) + (b+ ε)\b
= (ε\b+ (εb)\b)(b+ ε) + (b\b+ ε\b)
= (φ+ ((ε\b)b+ b\b))(b+ ε) + (ε + φ)
= (φ+ (φb + ε))(b + ε) + (ε + φ)

Next, we check that the final expression (φ+(φb+ε))(b+ε)+(ε+φ) is nullable
which is the case here. Hence, we can compute the empty POSIX parse tree via

mkEps(φ+(φb+ε))(b+ε)+(ε+φ) = Left (Right (Right ()),Right ())

What remains is to apply the ’backward’ injection pass where the POSIX
parse tree v′ of r\l is transformed into a POSIX parse tree v of r by injecting
the letter l appropriately into v′.

We find

inj((ε+εb)(b+ε))\b (Left (Right (Right ()),Right ()))
= (inj(ε+εb)\bRight (Right ()),Right ())
= (Right (inj(εb)\b (Right ())),Right ())
= (Right (mkEpsε, injb\b()),Right ())
= (Right ((), b),Right ())

where (Right ((), b),Right ()) is the POSIX parse tree of (ε + εb)(b + ε) and
word b.

Another injection step yields

inj((a+ab)(b+ε))\a (Right ((), b),Right ()) = (Right (a, b),Right ())

As we know the above is the POSIX parse tree for expression (a+ab)(b+ ε) and
word ab.

Incremental Bit-Coded Forward Parse Tree Construction. Next, we
show how to perform parsing more efficiently by incrementally building up parse
trees during matching. That is, the ’second’ injection step is immediately applied

POSIX Regular Expression Parsing with Derivatives 213

during matching. Thus, we avoid to record the entire path of derived expressions.
In addition, we use bit-codes to represent parse trees more compactly.

Our bit-code representation of parse trees follows the description in [17]. See
Figure 4. Bit-code sequences are represented as lists where we use Haskell nota-
tion. The symbol [] denotes the empty list and b : bs denotes a list with head b
and tail bs. We write ++ to concatenate two lists. Function encoder computes a
bit-code representation of parse tree v where � v : r. Function decoder turns a
bit-code representation back into a parse tree.

The main challenge is the incremental construction of parse trees during
matching. The idea is to incrementally annotate regular expressions with partial
parse tree information during the derivative step.

Annotated regular expressions ri are defined in Figure 5. Each annotation bs
represents some partial parse tree information in terms of bit-code sequences.
There is no annotation for φ as there is no parse tree for the empty language.

Function internalize transforms a standard regular expressions r into an an-
notated regular expressions ri by inserting empty annotations []. In addition,

Bit-codes b ::= 0 | 1 bs ::= [] | b : bs

encodeε () = []
encodel l = []
encoder1+r2 (Left v) = 0 : encoder1 v
encoder1+r2 (Right v) = 1 : encoder2 v
encoder1r2 (v1, v2) = encoder1 v1 ++ encoder2 v2
encoder∗ [] = [1]
encoder∗ (v : vs) = (0 : encoder v) ++ encoder∗ vs

decoder bs = let (v , p) = decode ′
r bs

in case p of
[]→ v

decode ′
ε bs = ((), bs)

decode ′
l bs = (l , bs)

decode ′
r1+r2 (0 : bs) = let (v , p) = decode ′

r1 bs
in (Left v , p)

decode ′
r1+r2 (1 : bs) = let (v , p) = decode ′

r2 bs
in (Right v , p)

decode ′
r1r2 bs = let (v1, p1) = decode ′

r1 bs
(v2, p2) = decode ′

r2 p1
in ((v1, v2), p2)

decode ′
r∗ (0 : bs) = let (v , p1) = decode ′

r bs
(vs, p2) = decode ′

r∗ p1
in ((v : vs), p2)

decode ′
r∗ (1 : bs) = ([], bs)

Fig. 4. Bit-Code Representation of Parse Trees

214 M. Sulzmann and K.Z.M. Lu

choice + is transformed into ⊕. The purpose of this transformation is that all
parse tree information can be derived from the operands of ⊕ without having
to inspect the surrounding structure. For example, we attach 0 (“left position”)
to the internalized expression resulting from left alternative r1 of r1 + r2 where
helper function fuse attaches a bit-code sequence to the top-most position of an
annotated regular expression.

As an example, consider application of function internalize to the expression
(a+ ab)(b+ ε) which yields the annotated expression

[]@(([0]@a)⊕ ([1]@([]@a)([]@b)))(([0]@b)⊕ ([1]@ε)) (1)

The derivative operation now operates on annotated regular expressions. See
Figure 5. To avoid confusion, we denote the refined derivative operation by ri\bl.
As can be seen, the definition of ri\bl follows closely the definition of the standard
derivative operation r\l. The difference is that ri\bl propagates and inserts parse
tree information in terms of annotations. In essence, ri\bl is an amalgamation
of r\l and injr\l.

For example, consider ri1 ri2 where ε ∈ L(ri1). Like in the standard case,
the letter l could either be extracted from ri1 or ri2. We keep track of both
alternatives by combining them via ⊕. The interesting case is if l is extracted
from ri2 which implies that the parse tree of ri1 must be empty. We record
this information via fuse mkEpsBCri1 (ri2\bl). Helper function mkEpsBCri1

computes an empty parse tree of ri1 in terms of the bit-code representation.
This information is then attached to the top-most annotation in ri2\bl via the
helper function fuse.

Similarly, the annotations resulting from Kleene star must record the number
of iterations we have performed. For example, fuse [0] ri\bl records that the
Kleene star has been unrolled once. The existing annotation bs is moved to the
resulting concatenation whereas we attach [] to ri∗ to indicate the start of a new
Kleene star iteration.

For example, \ba applied on the above annotated expression (1) yields

[]@(([0]@ε)⊕ ([1]@([]@ε)([]@b)))(([0]@b)⊕ ([1]@ε))

Let us take a closer look atmkEpsBCri which follows the definition of mkEps
in Figure 3. Like in case of mkEps , we first check the left and then the right
alternative in ri1 ⊕ ri2. One difference is that operands themselves record the
information which alternative (left or right) they originated. Recall the definition
of internalize. Hence, it suffices to collect the annotations in either ri1 or ri2.

Thus, incremental parsing via function parseBC is performed by (1) internal-
izing the regular expression, (2) repeated application of the refined derivative
operation, (3) extraction of the accumulated annotations of the final ’empty’
regular expression, and (4) turning the bit-code representation into parse tree
from.

Simplifications. A well-known issue is that the size and number of derivatives
may explode. For example, consider the following derivative steps.

POSIX Regular Expression Parsing with Derivatives 215

Bit-code annotated regular expressions:

ri ::= φ | (bs@ε) | (bs@l) | (bs@ri⊕ ri) | (bs@ri ri) | (bs@ri∗)

internalize φ = φ
internalize ε = ([]@ε)
internalize l = ([]@l)
internalize (r1 + r2) = ([]@(fuse [0] (internalize r1)) ⊕ (fuse [1] (internalize r2)))
internalize (r1 r2) = ([]@(internalize r1) (internalize r2))
internalize r∗ = ([]@(internalize r)∗)

fuse bs φ = φ
fuse bs (p@ε) = (bs++p@ε)
fuse bs (p@l) = (bs++p@l)
fuse bs (p@ri1 ⊕ ri2) = (bs++p@ri1 ⊕ ri2)
fuse bs (p@ri1 ri2) = (bs++p@ri1 ri2)
fuse bs (p@ri∗) = (bs++p@ri∗)

Incremental POSIX parsing:

φ\bl = φ
(bs@ε)\bl = φ

(bs@l1)\bl2 =

{
(bs@ε) if l1 == l2
φ otherwise

(bs@ri1 ⊕ ri2)\bl = (bs@ri1\bl⊕ ri2\bl)
(bs@ri1 ri2)\bl =

{
(bs@(ri1\bl) ri2) ⊕ (fuse mkEpsBCri1 (ri2\bl)) if ε ∈ L(ri1)
(bs@(ri1\bl)) ri2 otherwise

(bs@ri∗)\bl = (bs@(fuse [0] ri\bl) ([]@ri∗))

mkEpsBC(bs@ε) = bs
mkEpsBC(bs@ri1⊕ri2)

|ε ∈ L(ri1) = bs++mkEpsBCri1

|ε ∈ L(ri2) = bs++mkEpsBCri2
mkEpsBC(bs@ri1 ri2) = bs++mkEpsBCri1++mkEpsBCri2

mkEpsBC(bs@ri∗) = bs++[1]

parseBC ′ri ε
|ε ∈ L(r) = mkEpsBCri

parseBC ′ri lw = parseBC ′ ri\b l w
parseBCrw = decoder (parseBC ′(internalize r)w)

Fig. 5. Incremental Bit-Coded Forward POSIX Parse Tree Construction

a∗
a→ εa∗

a→ φa∗ + εa∗
a→ (φa∗ + εa∗) + (φa∗ + εa∗)

a→ ...

As can easily be seen, subsequent derivatives are all equivalent to εa∗.
To ensure that that the size and number of derivatives remains finite, we sim-

plify regular expressions. Each simplification step must maintain the parse tree
information represented by the involved regular expression. Figure 6 performs

216 M. Sulzmann and K.Z.M. Lu

isPhi (bs@ri∗) = False
isPhi (bs@ri1 ri2) = isPhi ri1 ∨ isPhi ri2
isPhi (bs@ri1 ⊕ ri2) = isPhi ri1 ∧ isPhi ri2
isPhi (bs@l) = False
isPhi (bs@ε) = False
isPhi φ = True

We assume that ⊕ takes a list of operands, written (bs@⊕ [ri1, ..., rin]).

simp (bs@(bs′@ε) ri)
|isPhi r = φ
|otherwise = fuse (bs++bs′)ri

simp (bs@ri1 ri2)
|isPhi ri1 ∨ isPhi ri2 = φ
|otherwise = bs@(simp ri1) (simp ri2)

simp (bs@⊕ []) = φ
simp (bs@⊕ ((bs′@⊕ rsi1) : rsi2)) = bs@⊕ ((map (fuse bs′) rsi1)++rsi2)
simp (bs@⊕ [ri]) = fuse bs(simp ri)
simp (bs@⊕ (ri : rsi)) = bs@⊕ (nub (filter (not .isPhi) ((simp ri) : map simp rsi)))

Fig. 6. Simplifications

simplification of annotated expressions in terms of function simp. We assume
that simp is applied repeatedly until a fixpoint is reached.

For convenience, we assume that ⊕ takes a list of operands, instead of just
two, and therefore write (bs@⊕ [ri1, ..., rin]). This notational convention makes
it easier to put alternatives into right-associative normal form and apply sim-
plification steps to remove duplicates and expressions equivalent to the empty
language. Helper isPhi indicates if an expression equals the empty language.
We can safely remove such cases via filter . In case of duplicates in a list of
alternatives, we only keep the first occurrence via nub.

Linear-Time Complexity Claim. It is easy to see that each call of one of the
functions/operations \b, simp, fuse,mkEpsBC and isPhi leads to subcalls whose
number is bound by the size of the regular expression involved. We claim that
thanks to aggressively applying simp this size remains finite. Hence, we can argue
that the above mentioned functions/operations have constant time complexity
which implies that we can incrementally compute bit-coded parse trees in linear
time in the size of the input. We yet need to work out detailed estimates regarding
the space complexity of our algorithm.

Correctness Claim. We further claim that the incremental parsing method in
Figure 5 in combination with the simplification steps in Figure 6 yields POSIX
parse trees. We have tested this claim extensively by using the method in Figure 3
as a reference but yet have to work out all proof details.

POSIX Regular Expression Parsing with Derivatives 217

For example, we claim that r\bl is related to injr\l as follows. Let r be a
regular expression, l be a letter and v′ a parse tree such that � v′ : r\l. Then,
we claim that injr\l v

′ = decoder (retrieve(internalize r)\bl v
′) where

retrieve(bs @ ε) () = bs
retrieve(bs @ l) l = bs
retrieve(bs @ ri1 ⊕ ri2) (Left v) = bs ++ retrieveri1 v
retrieve(bs @ ri1 ⊕ ri2) (Right v) = bs ++ retrieveri2 v
retrieve(bs @ ri1 ri2) (v1, v2) = bs ++ retrieveri1 v1 ++ retrieveri2 v2
retrieve(bs @ ri∗) [] = bs ++ [1]
retrieve(bs @ ri∗) (v : vs) = bs ++ [0] ++ retrieveri v ++ retrieve([] @ ri∗) vs

Function retrieve assembles a complete parse tree in bit-code representation
based on the annotations in (internalize r)\bl with respect to a given parse
tree v′.

A similar claim applies to simp. We plan to work out the formal proof details
in future work.

4 Experiments

We have implemented the incremental bit-coded POSIX parsing approach in
Haskell. An explicit DFA is built where each transition has its associated parse
tree transformer attached. Thus, we avoid repeated computations of the same
calls to \b and simp. Bit codes are built lazily using a purely functional data
structure [18,6].

Experiments show that our implementation is competitive for inputs up to
the size of about 10 Mb compared to highly-tuned C-based tools such as [2]. For
larger inputs, our implementation is significantly slower (between 10-50 times)
due to what seems to be high memory consumption. A possible solution is to use
our method to compute the proper POSIX ’path’ and then use this information
to guide a space-efficient parsing algorithm such as [9] to build the POSIX parse
tree. This is something we are currently working on.

For the specialized submatching case we have built another Haskell implemen-
tation referred to as DERIV. In DERIV, we only record the last match in case
of Kleene star which is easily achieved in our implementation by ’overwriting’
earlier with later matches.

We have benchmarked DERIV against three contenders which also claim to
implement POSIX submatching: TDFA, a Haskell-based implementation [23] of
an adapted Laurikari-style tagged NFA. The original implementation [14] does
not always produce the proper POSIX submatch and requires the adaptations
described in [13]. RE2, the google C++ re2 library [2] where for benchmarking
the option RE2::POSIX is turned on. C-POSIX, the Haskell wrapper of the
default C POSIX regular expression implementation [22].

To our surprise, RE2 and C-POSIX report incorrect results, i.e. non-POSIX
matches, for some examples. For RE2 there exists a prototype version [3] which
appears to compute the correct POSIX match. We have checked the behavior

218 M. Sulzmann and K.Z.M. Lu

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

time (sec)

input size (millions of ”a”s)

C-POSIX

+
+

+
+

+
+

+
+

+
++

TDFA

× × × × × × × × × ×

×
DERIV

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
RE2

� � � � � � � � � �

�

(a) Matching (a+ b+ ab)∗ with sequences of as

0
5

10
15
20
25
30
35
40
45
50

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

time (sec)

input size (millions of ”ab”s)

C-POSIX

+
+

+
+

+
+

+
+

+
+

+
TDFA

× × × × × × ×
×

×
××

DERIV

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
RE2

� � � � � � � � � �

�

(b) Matching (a+ b+ ab)∗ with sequences of abs

Fig. 7. Ambiguous Pattern Benchmark

for a few selected cases. Regardless, we include RE2 and C-POSIX in our exper-
iments.

We have carried out an extensive set of benchmarks consisting of con-
trived as well as real-world examples which we collected from various sources,
e.g. see [12,17,5]. The benchmarks were executed under Mac OS X 10.7.2 with
2.4GHz Core 2 Duo and 8GB RAM where results were collected based on the
median over several test runs. The complete set of results as well as the imple-
mentation can be retrieved via [15]. A brief summary of our experimental results
follows.

Overall our DERIV performs well and for most cases we beat TDFA and
C-POSIX. RE2 is generally faster but then we are comparing a Haskell-based
implementation against a highly-tuned C-based implementation.

Our approach suffers for cases where the size of a DFA is exponentially larger
compared to the equivalent NFA. Most of the time is spent on building the DFA.
The actual time spent on building the match is negligible. A surprisingly simple
and efficient method to improve the performance of our approach is to apply

POSIX Regular Expression Parsing with Derivatives 219

some form of abstraction. Instead of trying to find matches for all subpattern
locations, we may only be interested in certain locations. That is, we use the
POSIX DFA only for subparts we are interested in. For subparts we don’t care
about, rely on an NFA.

For us the most important conclusion is that DERIV particularly performs
well for cases where computation of the POSIX result is non-trivial. See Figure 7
which shows the benchmarks results for our example from the introduction. We
see this as an indication that our approach is promising to compute POSIX
results correctly and efficiently.

5 Related Work and Conclusion

The work in [7] studies like us the efficient construction of regular expression
parse trees. However, the algorithm in [7] neither respects the Greedy nor the
POSIX disambiguation strategy.

Most prior works on parsing and submatching focus on Greedy instead of
POSIX. The greedy result is closely tied to the structure of the regular expression
where priority is given to left-most expressions. Efficient methods for obtaining
the greedy result transform the regular expression into an NFA. A ’greedy’ NFA
traversal then yields the proper result. For example, consider [14] for the case of
submatching and [9,8] for the general parsing case.

Adopting greedy algorithms to the POSIX setting requires some subtle ad-
justments to compute the POSIX, i.e. longest left-most, result. For example,
see [4,13,19]. Our experiments confirm that our method particularly performs
well for cases where there is a difference between the POSIX and Greedy re-
sult. By construction our method yields the POSIX result whereas the works
in [4,13,19] require some additional bookkeeping (which causes overhead) to se-
lect the proper POSIX result.

The novelty of our approach lies in the use of derivatives. Regular expression
derivatives [1] are an old idea and recently attracted again some interest in the
context of lexing/parsing [20,16]. We recently became aware of [26] which like
us applies the idea of derivatives but only considers submatching.

To the best of our knowledge, we are the first to give an efficient algorithm
for constructing POSIX parse trees including a formal correctness result. Our
experiments show good results for the specialized submatching case. We are
currently working on improving the performance for the full parsing case.

Acknowledgments. We thank referees for LATA’14 and FLOPS’14 for their
helpful comments on earlier versions of this paper. We thank Christian Urban
and Mark Sangster for their comments.

References

1. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494 (1964)
2. Cox, R.: re2 – an efficient, principled regular expression library,

http://code.google.com/p/re2/+

http://code.google.com/p/re2/+

220 M. Sulzmann and K.Z.M. Lu

3. Cox, R.: NFA POSIX (2007), http://swtch.com/~rsc/regexp/nfa-posix.y.txt
4. Cox, R.: Regular expression matching: the virtual machine approach - digression:

Posix submatching (2009), http://swtch.com/~rsc/regexp/regexp2.html
5. Cox, R.: Regular expression matching in the wild (2010),

http://swtch.com/~rsc/regexp/regexp3.html
6. http://hackage.haskell.org/package/dequeue-0.1.5/docs/

Data-Dequeue.html
7. Dubé, D., Feeley, M.: Efficiently building a parse tree from a regular expression.

Acta Inf. 37(2), 121–144 (2000)
8. Frisch, A., Cardelli, L.: Greedy regular expression matching. In: Dı́az, J.,

Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 618–629. Springer, Heidelberg (2004)

9. Grathwohl, N.B.B., Henglein, F., Nielsen, L., Rasmussen, U.T.: Two-pass greedy
regular expression parsing. In: Konstantinidis, S. (ed.) CIAA 2013. LNCS,
vol. 7982, pp. 60–71. Springer, Heidelberg (2013)

10. Institute of Electrical and Electronics Engineers (IEEE): Standard for information
technology – Portable Operating System Interface (POSIX) – Part 2 (Shell and
utilities), Section 2.8 (Regular expression notation). IEEE Standard 1003.2, New
York (1992)

11. Kuklewicz, C.: Regex POSIX,
http://www.haskell.org/haskellwiki/Regex_Posix

12. Kuklewicz, C.: The regex-posix-unittest package,
http://hackage.haskell.org/package/regex-posix-unittest

13. Kuklewicz, C.: Forward regular expression matching with bounded space (2007),
http://haskell.org/haskellwiki/RegexpDesign

14. Laurikari, V.: NFAs with tagged transitions, their conversion to deterministic au-
tomata and application to regular expressions. In: SPIRE, pp. 181–187 (2000)

15. Lu, K.Z.M., Sulzmann, M.: POSIX Submatching with Regular Expression Deriva-
tives, http://code.google.com/p/xhaskell-regex-deriv

16. Might, M., Darais, D., Spiewak, D.: Parsing with derivatives: a functional pearl.
In: Proc. of ICFP 2011, pp. 189–195. ACM (2011)

17. Nielsen, L., Henglein, F.: Bit-coded regular expression parsing. In: Dediu, A.-H.,
Inenaga, S., Mart́ın-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 402–413.
Springer, Heidelberg (2011)

18. Okasaki, C.: Purely functional data structures. Cambridge University Press (1999)
19. Okui, S., Suzuki, T.: Disambiguation in regular expression matching via position

automata with augmented transitions. In: Domaratzki, M., Salomaa, K. (eds.)
CIAA 2010. LNCS, vol. 6482, pp. 231–240. Springer, Heidelberg (2011)

20. Owens, S., Reppy, J., Turon, A.: Regular-expression derivatives reexamined. Jour-
nal of Functional Programming 19(2), 173–190 (2009)

21. PCRE - Perl Compatible Regular Expressions, http://www.pcre.org/
22. regex-posix: The posix regex backend for regex-base,

http://hackage.haskell.org/package/regex-posix
23. regex-tdfa: A new all haskell tagged dfa regex engine, inspired by libtre,

http://hackage.haskell.org/package/regex-tdfa
24. Sulzmann, M., Lu, K.Z.M.: Regular expression sub-matching using partial deriva-

tives. In: Proc. of PPDP 2012, pp. 79–90. ACM (2012)
25. Vansummeren, S.: Type inference for unique pattern matching. ACM TOPLAS

28(3), 389–428 (2006)
26. Vouillon, J.: ocaml-re - Pure OCaml regular expressions, with support for Perl and

POSIX-style strings, https://github.com/avsm/ocaml-re

http://swtch.com/~rsc/regexp/nfa-posix.y.txt
http://swtch.com/~rsc/regexp/regexp2.html
http://swtch.com/~rsc/regexp/regexp3.html
http://hackage.haskell.org/package/dequeue-0.1.5/docs/Data-Dequeue.html
http://hackage.haskell.org/package/dequeue-0.1.5/docs/Data-Dequeue.html
http://www.haskell.org/haskellwiki/Regex_Posix
http://hackage.haskell.org/package/regex-posix-unittest
http://haskell.org/haskellwiki/RegexpDesign
http://code.google.com/p/xhaskell-regex-deriv
http://www.pcre.org/
http://hackage.haskell.org/package/regex-posix
http://hackage.haskell.org/package/regex-tdfa
https://github.com/avsm/ocaml-re

Proving Correctness of Compilers Using

Structured Graphs

Patrick Bahr

Department of Computer Science, University of Copenhagen, Denmark
paba@di.ku.dk

Abstract. We present an approach to compiler implementation using
Oliveira and Cook’s structured graphs that avoids the use of explicit
jumps in the generated code. The advantage of our method is that it
takes the implementation of a compiler using a tree type along with
its correctness proof and turns it into a compiler implementation using
a graph type along with a correctness proof. The implementation and
correctness proof of a compiler using a tree type without explicit jumps
is simple, but yields code duplication. Our method provides a convenient
way of improving such a compiler without giving up the benefits of simple
reasoning.

1 Introduction

Verification of compilers – like other software – is difficult [13]. In such an en-
deavour one typically has to balance the “cleverness” of the implementation with
the simplicity of reasoning about it. A concrete example of this fact is given by
Hutton and Wright [10] who present correctness proofs of compilers for a simple
language with exceptions. The authors first present a näıve compiler implemen-
tation that produces a tree representing the possible control flow of the input
program. The code that it produces is essentially the right code, but the com-
piler loses information since it duplicates code instead of sharing it. However,
the simplicity of the implementation is matched with a clean and simple proof by
equational reasoning. Hutton and Wright also present a more realistic compiler,
which uses labels and explicit jumps, resulting in a target code in linear form and
without code duplication. However, the cleverer implementation also requires a
more complicated proof, in which one has to reason about the freshness and
scope of labels.

In this paper we present an intermediate approach, which is still simple, both
in its implementation and in its correctness proof, but which avoids the loss of
information of the simple approach described by Hutton and Wright [10]. The
remedy for the information loss of the simple approach is obvious: we use a graph
instead of a tree structure to represent the target code. The linear representation
with labels and jumps is essentially a graph as well – it is just a very inconvenient
one for reasoning. Instead of using unique names to represent sharing, we use the
structured graphs representation of Oliveira and Cook [18]. This representation

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 221–237, 2014.
c© Springer International Publishing Switzerland 2014

222 P. Bahr

of graphs uses parametric higher-order abstract syntax [5] to represent binders,
which in turn are used to represent sharing. This structure allows us to take
the simple compiler implementation using trees, make a slight adjustment to it,
and obtain a compiler implementation using graphs that preserves the sharing
information.

In essence our approach teases apart two aspects that are typically combined
in code generation: (1) the translation into the target language, and (2) generat-
ing fresh (label) names for representing jumps in the target language. By keeping
the two aspects separate, we can implement further transformations, e.g. code
optimisations, without having to deal with explicit jumps and names. Only in
the final step, when the code is linearised, names have to be generated in order
to produce explicit jump instructions. Consequently, the issues that ensue in this
setting can be dealt with in isolation – separately from the actual translation
and subsequent transformation steps.

Our main goal is to retain the simplicity of the correctness proof of the tree-
based compiler. The key observation making this possible is that the semantics of
the tree-based and the graph-based target language, i.e. their respective virtual
machines, are equivalent after unravelling of the graph structure. More precisely,
given the semantics of the tree-based and the graph-based target language as
execT and execG, respectively, we have the following equation:

execG = execT ◦ unravel

We show that this correspondence is an inherent consequence of the recursion
schemes that are used to define these semantics. In fact, this correspondence fol-
lows from the correctness of short cut fusion [8, 12]. That is, the above property
is independent of the target language of the compiler. As a consequence, the
correctness proof of the improved, graph-based compiler is reduced to a proof
that its implementation is equivalent to the tree-based implementation modulo
unravelling. More precisely, it then suffices to show that

compT = unravel ◦ compG

which is achieved by a straightforward induction proof.
In sum, the technique that we propose here improves existing simple

compiler implementations to more realistic ones using a graph representation
for the target code. This improvement requires minimal effort – both in terms
of the implementation and the correctness proof. The fact that we consider both
the implementation and its correctness proof makes our technique the ideal com-
panion to improve a compiler that has been obtained by calculation [16]. Such
calculations derive a compiler from a specification, and produce not only an im-
plementation of the compiler but also a proof of its correctness. The example
compiler that we use in this paper has in fact been calculated in this way by Bahr
and Hutton [3], and we have successfully applied our technique to other com-
pilers derived by Bahr and Hutton [3], which includes compilers for languages
with features such as (synchronous and asynchronous) exceptions, (global and
local) state and non-determinism. Thus, despite its simplicity, our technique

Proving Correctness of Compilers Using Structured Graphs 223

is quite powerful, especially when combined with other techniques such as the
abovementioned calculation techniques.

In short, the contributions of this paper are the following:

– From a compiler with code duplication we derive a compiler that avoids
duplication using a graph representation.

– Using short cut fusion, we prove that folds over graphs are equal to corre-
sponding folds over the unravelling of the input graphs.

– Using the above result, we derive the correctness of the graph-based compiler
implementation from the correctness of the tree-based compiler.

– We further simplify the proof by using free monads to represent tree types
together with a corresponding monadic graph type.

Throughout this paper we use Haskell [14] as the implementation language.

2 A Simple Compiler

The example language that we use throughout the paper is a simple expression
language with integers, addition and exceptions:

data Expr = Val Int | Add Expr Expr
| Throw | Catch Expr Expr

The semantics of this language is defined using an evaluation function that
evaluates a given expression to an integer value or returns Nothing in case of an
uncaught exception:

eval :: Expr → Maybe Int
eval (Val n) = Just n
eval (Add x y) = case eval x of

Nothing → Nothing
Just n → case eval y of

Nothing → Nothing
Just m → Just (n +m)

eval Throw = Nothing
eval (Catch x h) = case eval x of

Nothing → eval h
Just n → Just n

This is the same language and semantics used by Hutton and Wright [10]. Like
Hutton and Wright, we chose a simple language in order to focus on the essence
of the problem, which in our case is control flow in the target language and the
use of duplication or sharing to represent it. Moreover, this choice allows us to
compare our method to the original work of Hutton and Wright whose focus was
on the simplicity of reasoning.

The target for the compiler is a simple stack machine with the following
instruction set:

224 P. Bahr

data Code = PUSH Int Code | ADD Code | HALT
| UNMARK Code | MARK Code Code | THROW

The intended semantics (which is made precise later) for the instructions is:

– PUSH n pushes the integer value n on the stack,
– ADD expects two integers on the stack and replaces them with their sum,
– MARK c pushes the exception handler code c on the stack,
– UNMARK removes such a handler code from the stack,
– THROW unwinds the stack until an exception handler code is found, which

is then executed, and
– HALT stops the execution.

For the implementation of the compiler we deviate slightly from the presen-
tation of Hutton and Wright [10] and instead write the compiler in a style that
uses an additional accumulation parameter c, which simplifies the proofs [9]:

compA :: Expr → Code → Code

compA (Val n) c = PUSH n c

compA (Add x y) c = compA x (compA y (ADD c))

compA Throw c = THROW

compA (Catch x h) c = MARK (compA h c) (compA x (UNMARK c))

Since the code generator is implemented in this code continuation passing style,
function application corresponds to concatenation of code fragments. To stress
this reading, we shall use the operator �, which is simply defined as function
application and is declared to associate to the right with minimal precedence:

(�) :: (a → b)→ a → b
f � x = f x

For instance, the equation for the Add case of the definition of compA then reads:

compA (Add x y) c = compA x � compA y �ADD � c

To obtain the final code for an expression, we supply HALT as the initial
value of the accumulator of compA. The use of the � operator to supply the
argument indicates the intuition that HALT is placed at the end of the code
produced by compA:

comp :: Expr → Code

comp e = compA e �HALT

The following examples illustrate the workings of the compiler comp:

comp (Add (Val 2) (Val 3)) � PUSH 2 � PUSH 3 �ADD �HALT
comp (Catch (Val 2) (Val 3)) � MARK (PUSH 3 �HALT)

� PUSH 2 �UNMARK �HALT
comp (Catch Throw (Val 3)) � MARK (PUSH 3 �HALT) � THROW

Proving Correctness of Compilers Using Structured Graphs 225

For the virtual machine that executes the code produced by the above com-
piler, we use the following type for the stack:

type Stack = [Item]
data Item = VAL Int | HAN (Stack → Stack)

This type deviates slightly from the one for the virtual machine defined by
Hutton and Wright [10]. Instead of having the code of an exception handler on
the stack (constructor HAN), we have the continuation of the virtual machine
on the stack. This will simplify the proof as we shall see later on. However, this
type and the accompanying definition of the virtual machine that is given below
is exactly the result of the calculation given by Bahr and Hutton [3] just before
the last calculation step (which then yields the virtual machine of Hutton and
Wright [10]). The virtual machine that works on this stack is defined as follows:

exec :: Code → Stack → Stack
exec (PUSH n c) s = exec c (VAL n : s)
exec (ADD c) s = case s of

(VAL m :VAL n : t)→ exec c (VAL (n +m) : t)
exec THROW s = unwind s
exec (MARK h c) s = exec c (HAN (exec h) : s)
exec (UNMARK c) s = case s of (x : HAN : t)→ exec c (x : t)
exec HALT s = s

unwind :: Stack → Stack
unwind [] = []
unwind (VAL : s) = unwind s
unwind (HAN h : s) = h s

The virtual machine does what is expected from the informal semantics that we
have given above. The semantics of MARK , however, may seem counterintuitive
at first: as mentioned above, MARK does not put the handler code on the stack
but rather the continuation that is obtained by executing it. Consequently, when
the unwinding of the stack reaches a handler h on the stack, this handler h is
directly applied to the remainder of the stack. This slight deviation from the
semantics of Hutton and Wright [10] makes sure that exec is in fact a fold.

We will not go into the details of the correctness proof for the compiler comp.
One can show that it satisfies the following correctness property [3]:

Theorem 1 (compiler correctness)

exec (comp e) [] = conv (eval e) for all e :: Expr

where conv (Just n) = [Val n]
conv Nothing = []

That is, in particular, we have that

exec (comp e) [] = [Val n] ⇐⇒ eval e = Just n

226 P. Bahr

While the compiler has the nice property that it can be derived from the
language semantics, the code that it produces is quite unrealistic. Note the du-
plication that occurs for generating the code for Catch: the continuation code c
is inserted both after the handler code (in compA h c) and after the UNMARK
instruction. This is necessary since the code c may have to be executed regardless
whether an exception is thrown in the scope x of the Catch or not.

This duplication can be avoided by using explicit jumps in the code. Instead
of duplicating code, jumps to a single copy of the code are inserted. However,
this complicates both the implementation of the compiler and its correctness
proof [10]. Also the derivation of such a compiler by calculation is equally cum-
bersome.

The approach that we suggest in this paper takes the above compiler and
derives a slightly different variant that instead of a tree structure produces a
graph structure. Along with the compiler we derive a virtual machine that also
works on the graph structure. The two variants of the compiler and its companion
virtual machine only differ in the sharing that the graph variant provides. This
fact allows us to derive the correctness of the graph-based compiler very easily
from the correctness of the original tree-based compiler.

3 From Trees to Graphs

Before we derive the graph-based compiler and the corresponding virtual ma-
chine, we restructure the definition of the original compiler and the corresponding
virtual machine. This will smoothen the process and simplify the presentation.

3.1 Preparations

Instead of defining the type Code directly, we represent it as the initial algebra
of a functor. To distinguish this representation from the graph representation
we introduce later, we use the name Tree for the initial algebra construction.

data Tree f = In (f (Tree f))

The functor that induces the initial algebra that we shall use for representing
the target language is easily obtained from the original Code data type:

data CodeF a = PUSH F Int a | ADDF a | HALTF

| MARK F a a | UNMARK F a | THROW F

The type representing the target code is thus Tree CodeF, which is isomorphic
to Code modulo non-strictness. We proceed by reformulating the definition of
comp to work on the type Tree CodeF instead of Code:

compA
T :: Expr → Tree CodeF → Tree CodeF

compA
T (Val n) c = PUSH T n � c

compA
T (Add x y) c = compA

T x � compA
T y �ADDT � c

Proving Correctness of Compilers Using Structured Graphs 227

compA
T Throw c = THROW T

compA
T (Catch x h) c = MARKT (compA

T h � c) � compA
T x �UNMARKT � c

compT :: Expr → Tree CodeF
compT e = compA

T e �HALTT

Note that we do not use the constructors of CodeF directly, but instead we use
smart constructors that also apply the constructor In of the type constructor
Tree. These smart constructors serve as drop-in replacements for the constructors
of the original Code data type. For example, PUSH T is defined as follows:

PUSH T :: Int → Tree CodeF → Tree CodeF
PUSH T i c = In (PUSH F i c)

Lastly, we also reformulate the semantics of the target language, i.e. we define the
function exec on the type Tree CodeF. To do this, we use the following definition
of a fold on an initial algebra:

fold :: Functor f ⇒ (f r → r)→ Tree f → r
fold alg (In t) = alg (fmap (fold alg) t)

The definition of the semantics is a straightforward transcription of the defi-
nition of exec into an algebra:

execAlg :: CodeF (Stack → Stack)→ Stack → Stack
execAlg (PUSH F n c) s = c (VAL n : s)
execAlg (ADDF c) s = case s of

(VAL m :VAL n : t)→ c (VAL (n +m) : t)
execAlg THROW F s = unwind s
execAlg (MARK F h c) s = c (HAN h : s)
execAlg (UNMARK F c) s = case s of (x : HAN : t)→ c (x : t)
execAlg HALT F s = s

execT :: Tree CodeF → Stack → Stack
execT = fold execAlg

From the correctness of the original compiler from Section 2, as expressed
in Theorem 1, we obtain the correctness of our reformulation of the
implementation:

Corollary 1 (correctness of compT)

execT (compT e) [] = conv (eval e) for all e :: Expr

Proof. Let φ :: Code → Tree CodeF be the function that recursively maps each
constructor of Code to the corresponding smart constructor of Tree CodeF. We
can easily check that compT and execT are equivalent to the original functions
comp respectively exec via φ, i.e.

compT = φ ◦ comp and execT ◦φ = exec

Consequently, we have that execT ◦ compT = exec ◦ comp, and thus the corollary
follows from Theorem 1. .-

228 P. Bahr

3.2 Deriving a Graph-Based Compiler

Finally, we turn to the graph-based implementation of the compiler. Essentially,
this implementation is obtained from compT by replacing the type Tree CodeF
with a type Graph CodeF, which instead of a tree structure has a graph structure,
and using explicit sharing instead of duplication.

In order to define graphs over a functor, we use the representation of Oliveira
and Cook [18] called structured graphs. Put simply, a structured graph is a tree
with added sharing facilitated by let bindings. In turn, let bindings are repre-
sented using parametric higher-order abstract syntax [5].

data Graph′ f v = GIn (f (Graph′ f v))
| Let (Graph′ f v) (v → Graph′ f v)
| Var v

The first constructor has the same structure as the constructor of the Tree type
constructor. The other two constructors will allow us to express let bindings:
Let g (λx → h) binds g to the metavariable x in h. Metavariables bound in a
let binding have type v ; the only way to use them is with the constructor Var .
To enforce this invariant, the type variable v is made polymorphic:

newtype Graph f = MkGraph (∀ v .Graph′ f v)

We shall use the type constructor Graph (and Graph′) as a replacement for
Tree. For the purposes of our compiler we only need acyclic graphs. That is
why we only consider non-recursive let bindings as opposed to the more general
structured graphs of Oliveira and Cook [18]. This restriction to non-recursive let
bindings is crucial for the reasoning principle that we use to prove correctness.

We can use the graph type almost as a drop-in replacement for the tree type.
The only thing that we need to do is to use smart constructors that use the
constructor GIn instead of In, e.g.

PUSH G :: Int → Graph′ CodeF v → Graph′ CodeF v
PUSH G i c = GIn (PUSH F i c)

From the type of the smart constructors we can observe that graphs are con-
structed using the type constructor Graph′, not Graph. Only after the construc-
tion of the graph is completed, the constructor MkGraph is applied in order to
obtain a graph of type Graph CodeF.

The definition of compA
T can be transcribed into graph style by simply using

the abovementioned smart constructors instead:

compA
G :: Expr → Graph′ CodeF a → Graph′ CodeF a

compA
G (Val n) c = PUSH G n � c

compA
G (Add x y) c = compA

G x � compA
G y �ADDG � c

compA
G (Throw) c = THROW G

compA
G (Catch x h) c = MARKG (compA

G h � c) � compA
G x �UNMARKG � c

Proving Correctness of Compilers Using Structured Graphs 229

The above is a one-to-one transcription of compA
T. But this is not what we want.

We want to make use of the fact that the target language allows sharing. In
particular, we want to get rid of the duplication in the code generated for Catch .

We can avoid this duplication by simply using a let binding to replace the
two occurrences of c with a metavariable c′ that is then bound to c. The last
equation for compA

G is thus rewritten as follows:

compA
G (Catch x h) c = Let c (λc′ → MARKG (compA

G h �Var c′)

� compA
G x �UNMARKG �Var c′)

The right-hand side for the case Catch x h has now only one occurrence of c.
The final code generator function compA

G is then obtained by supplying HALTG

as the initial value of the code continuation and wrapping the result with the
MkGraph constructor so as to return a result of type Graph CodeF:

compG :: Expr → Graph CodeF
compG e = MkGraph (compA

G e �HALTG)

To illustrate the difference between compG and compT, we apply both of them
to an example expression e = Add (Catch (Val 1) (Val 2)) (Val 3):

compT e � MARKT (PUSH T 2 � PUSH T 3 �ADDT �HALTT)
� PUSH T 1 �UNMARKT � PUSH T 3 �ADDT �HALTT

compG e � MkGraph (Let (PUSH G 3 �ADDG �HALTG) (λv →
MARKG (PUSH G 2 �Var v) � PUSH G 1 �UNMARKG �Var v))

Note that compT duplicates the code fragment PUSH T 3 � ADDT � HALTT,
which is supposed to be executed after the catch expression, whereas compG

binds this code fragment to a metavariable v , which is then used as a substitute.
The recursion schemes on structured graphs make use of the parametricity in

the metavariable type as well. The general fold over graphs as given by Oliveira
and Cook [18] is defined as follows:1

gfold :: Functor f ⇒ (v → r)→ (r → (v → r)→ r)→ (f r → r)→
Graph f → r

gfold v l i (MkGraph g) = trans g
where trans (Var x) = v x

trans (Let e f) = l (trans e) (trans ◦ f)
trans (GIn t) = i (fmap trans t)

The combinator takes three functions, which are used to interpret the three
constructors of Graph′. This general form is needed for example if we want to
transform the graph representation into a linearised form [2], but for our purposes
we only need a simple special case of it:

1 Oliveira and Cook [18] considered the more general case of cyclic graphs, the defini-
tion of gfold given here is specialised to the case of acyclic graphs.

230 P. Bahr

ufold :: Functor f ⇒ (f r → r)→ Graph f → r
ufold = gfold id (λe f → f e)

Note that the type signature is identical to the one for fold except for the use of
Graph instead of Tree. Thus, we can reuse the algebra execAlg from Section 3.1,
which defines the semantics of Tree CodeF, in order to define the semantics of
Graph CodeF:

execG ::Graph CodeF → Stack → Stack
execG = ufold execAlg

4 Correctness Proof

In this section we shall prove that the graph-based compiler that we defined in
Section 3.2 is indeed correct. This turns out to be rather simple: we derive the
correctness property for compG from the correctness property for compT. The
simplicity of the argument is rooted in the fact that compT is the same as compG

followed by unravelling. In other words, compG only differs from compT in that
it adds sharing – as expected.

4.1 Compiler Correctness by Unravelling

Before we prove this relation between compT and compG, we need to specify
what unravelling means:

unravel :: Functor f ⇒ Graph f → Tree f
unravel = ufold In

While this definition is nice and compact, we gain more insight into what it
actually does by unfolding it:

unravel :: Functor f ⇒ Graph f → Tree f
unravel (MkGraph g) = unravel ′ g

unravel ′ :: Functor f ⇒ Graph′ f (Tree f)→ Tree f
unravel ′ (Var x) = x
unravel ′ (Let e f) = unravel ′ (f (unravel ′ e))
unravel ′ (GIn t) = In (fmap unravel ′ t)

We can see that unravel simply replaces GIn with In, and applies the function
argument f of a let binding to the bound value e. For example, we have that

MkGraph (Let (PUSH G 2 �HALTG) (λv → MARKG (Var v) �Var v))
unravel� MARKT (PUSH T 2 �HALTT) � PUSH T 2 �HALTT

We can now formulate the relation between compT and compG:

Proving Correctness of Compilers Using Structured Graphs 231

Lemma 1 compT = unravel ◦ compG

This lemma, which we shall prove at the end of this section, is one half of the
argument for deriving the correctness property for compG. The other half is the
property that execT and execG have the converse relationship, viz.

execG = execT ◦ unravel

Proving this property is much simpler, though, because it follows from a more
general property of fold .

Theorem 2. Given a strictly positive functor f , a type c, and alg :: f c → c,
we have the following:

ufold alg = fold alg ◦ unravel

The equality execG = execT ◦ unravel is an instance of Theorem 2 where alg =
execAlg. We defer discussion of the proof of this theorem until Section 4.2.

We derive the correctness of compG by combining Lemma 1 and Theorem 2:

Theorem 3 (correctness of compG)

execG (compG e) [] = conv (eval e) for all e :: Expr

Proof. execG (compG e) [] = execT (unravel (compG e) [] (Theorem 2)
= execT (compT e) [] (Lemma 1)
= conv (eval e) (Corollary 1) .-

We conclude this section by giving the proof of Lemma 1.

Proof (of Lemma 1). Instead of proving the equation directly, we prove the fol-
lowing equation for all e :: Expr and c ::Graph′ CodeF (Tree CodeF):

compA
T e � unravel ′ c = unravel ′ (compA

G e � c) (1)

In particular, the above equation holds for all c :: ∀ v . Graph′ CodeF v . Thus,
the lemma follows from the above equation as follows:

compT e
= { definition of compT }
compA

T e �HALTT

= { definition of unravel ′ }
compA

T e � unravel ′ HALTG

= { Equation (1) }
unravel ′ (compA

G e �HALTG)
= { definition of unravel }
unravel (MkGraph (compA

G e �HALTG))
= { definition of compG }
unravel (compG e)

232 P. Bahr

We prove (1) by induction on e:

– Case e = Val n:

unravel ′ (compA
G (Val n) � c)

= { definition of compA
G }

unravel ′ (PUSH G n � c)
= { definition of unravel ′ }
PUSH T n � unravel ′ c

= { definition of compA
T }

compA
T (Val n) � unravel ′ c

– Case e = Throw :

unravel ′ (compA
G Throw � c)

= { definition of compA
G }

unravel ′ THROW G

= { definition of unravel ′ }
THROW T

= { definition of compA
T }

compA
T Throw � unravel ′ c

– Case e = Add x y:

unravel ′ (compA
G (Add x y) � c)

= { definition of compA
G }

unravel ′ (compA
G x � compA

G y �ADDG � c)
= { induction hypothesis }
compA

T x � unravel ′ (compA
G y �ADDG � c)

= { induction hypothesis }
compA

T x � compA
T y � unravel ′ (ADDG � c)

= { definition of unravel ′ }
compA

T x � compA
T y �ADDT � unravel

′ c

= { definition of compA
T }

compA
T (Add x y) � unravel ′ c

– Case e = Catch x h:

unravel ′ (compA
G (Catch x h) � c)

= { definition of compA
G }

unravel ′ (Let c (λc′ → MARKG (compA
G h �Var c′)

� compA
G x �UNMARKG �Var c′))

= { definition of unravel ′ and β-reduction }
unravel ′ (MARKG (compA

G h �Var (unravel ′ c))

� compA
G x �UNMARKG �Var (unravel ′ c))

= { definition of unravel ′ }
MARKT (unravel ′ (compA

G h �Var (unravel ′ c)))

� unravel ′ (compA
G x �UNMARKG �Var (unravel ′ c))

= { induction hypothesis }
MARKT (compA

T h � unravel ′ (Var (unravel ′ c)))

� compA
T x � unravel ′ (UNMARKG �Var (unravel ′ c))

= { definition of unravel ′ }
MARKT (compA

T h � unravel ′ c) � compA
T x �UNMARKT � unravel

′ c

= { definition of compA
T }

compA
T (Catch x h) � unravel ′ c .-

Proving Correctness of Compilers Using Structured Graphs 233

4.2 Proof of Theorem 2

Theorem 2 states that folding a structured graph g :: Graph f over a strictly
positive functor f with an algebra alg yields the same result as first unravelling
g and then folding the resulting tree with alg , i.e.

ufold alg = fold alg ◦ unravel

Since unravel is defined as ufold In, the above equality follows from a more
general law of folds over algebraic data types, known as short cut fusion [8]:

b alg = fold alg (b In) for all b :: ∀ c . (f c → c)→ c

This law holds for all strictly positive functors f as proved by Johann [12].
Essential for its correctness is the polymorphic type of b.

For any given graph g :: Graph f , we can instantiate b with the function
λa → ufold a g, which yields that

(λa → ufold a g) alg = fold alg ((λa → ufold a g) In)

Note that λa → ufold a g has indeed the required polymorphic type. After
applying beta-reduction, we obtain the equation

ufold alg g = fold alg (ufold In g)

Since g was chosen arbitrarily, and unravel is defined as ufold In , we thus
obtain the equation as stated in Theorem 2:

ufold alg = fold alg ◦ unravel

5 Other Approaches

5.1 Other Graph Representations

The technique presented here is not necessarily dependent on the particular
representation of graphs that we chose. However, while other representations are
conceivable, structured graphs have two properties that make them a suitable
choice for this application: (1) they have a simple representation in Haskell and
(2) they provide a convenient interface for introducing sharing, viz. variable
binding in the host language.

Nevertheless, in other circumstances a different representation may be ad-
vantageous. For example the use of higher-order abstract syntax may have a
negative impact on performance in practical applications. Moreover, the neces-
sity of reasoning over parametricity may be inconvenient for a formalisation of
the proofs in a proof assistant.

Therefore, we also studied an alternative representation of graphs that uses
de Bruijn indices for encoding binders instead of parametric higher-order ab-
stract syntax (PHOAS). To this end, we have used the technique proposed by

234 P. Bahr

Bernardy and Pouillard [4] to provide a PHOAS interface to this graph rep-
resentation. This allows us to use essentially the same simple definition of the
graph-based compiler as presented in Section 3.2. Using this representation of
graphs – PHOAS interface on the outside, de Bruijn indices under the hood –
we formalised the proofs presented here in the Coq theorem prover2.

5.2 A Monadic Approach

We briefly describe a variant of our technique that is based on free monads and a
corresponding monadic graph structure. The general approach of this variant is
similar to what we have seen thus far; however, the monadic structure simplifies
some of the proofs. The details can be found in the companion report [2].

The underlying idea, originally developed by Matsuda et al. [15], is to replace
a function f with accumulation parameters by a function f ′ that produces a
context with the property that

f x a1 . . . an = (f ′ x)〈a1, . . . , an〉

That is, we obtain the result of the original function f by plugging in the accu-
mulation arguments a1, . . . , an in to the context that f ′ produces.

In order to represent contexts, we use a free monad type TreeM instead of
a tree type Tree, where TreeM is obtained from Tree by adding a construc-
tor of type a → TreeM f a. A context with n holes is represented by a type
TreeM f (Fin n) – where Fin n is a type with exactly n distinct inhabitants –
and context application is represented by the monadic bind operator >>=. The
compiler is then reformulated as follows – using the shorthand hole = return ():

compC
M :: Expr → TreeM CodeF ()

compC
M (Val n) = PUSHM n hole

compC
M (Add x y) = compC

M x >> compC
M y >>ADDM hole

compC
M (Throw) = THROWM

compC
M (Catch x h) = MARKM (compC

M h) (compC
M x >>UNMARKM hole)

As we only have a single accumulator for the compiler, we use the type () 2 Fin 1
to express that there is exactly one type of hole.

Also graphs can be given monadic structure by adding a constructor of type
a → Graph ′M f v a to the data type Graph′. And the compiler compA

G can be
reformulated in terms of this type accordingly.

We can define fold combinators for the monadic structures as well. The virtual
machines are thus easily adapted to this monadic style by simply reusing the
same algebra execAlg. Again, one half of the correctness proof follows from a
generic theorem about folds corresponding to Theorem 2. The other half of the
proof can be simplified. In the corresponding proof of Lemma 1 it suffices to
show the following simpler equation, in which unravel ′ only appears once:

compA
T = unravel ′ ◦ compA

G

2 Available from the author’s web site.

Proving Correctness of Compilers Using Structured Graphs 235

This simplifies the induction proof. While this proof requires an additional
lemma, viz. that unravelling distributes over >>, this lemma can be proved (once
and for all) for any strictly positive functor f :

unravel ′ (g1 >> g2) = unravel ′ g1 >> unravel ′ g2

Unfortunately, we cannot exploit short cut fusion to prove this lemma because
it involves a genuine graph transformation, viz. >> on graphs . However, with
the representation mentioned in Section 5.1, we can prove it by induction.

Note that the full monadic structure of TreeM and GraphM is not needed for
our example compiler since we only use the simple bind operator >>, not >>=.
However, a different compiler implementation may use more than one accumu-
lation parameter (for example an additional code continuation that contains the
current exception handler), for which we need the more general bind operator.

6 Concluding Remarks

6.1 Related Work

Compiler verification is still a hard problem and in this paper we only cover one
– but arguably the central – part of a compiler, viz. the translation of a high-
level language to a low-level language. The literature on the topic of compiler
verification is vast (e.g. see the survey of Dave [7]). More recent work has shown
impressive results in verification of a realistic compiler for the C language [13].
But there are also efforts in verifying compilers for higher-level languages (e.g.
by Chlipala [6]).

This paper, however, focuses on identifying simple but powerful techniques
for reasoning about compilers rather than engineering massive proofs for full-
scale compilers. Our contributions thus follow the work on calculating compilers
[21, 16, 1] as well as Hutton and Wright’s work on equational reasoning about
compilers [10, 11].

Structured graphs have been used in the setting of programming language im-
plementation before: Oliveira and Löh [17] used structured graphs to represent
embedded domain-specific languages. That is, graphs are used for the representa-
tion of the source language. Graph structures used for representing intermediate
languages in a compiler typically employ pointers (e.g. Ramsey and Dias [20]) or
labels (e.g. Ramsey et al. [19]). We are not aware of any work that makes use of
higher-order abstract syntax or de Bruijn indices in the representation of graph
structures in this setting.

6.2 Discussion and Future Work

The underlying goal of our method is to separate the transformation to the
target language from the need to generate fresh names for representing jumps.
For a full compiler, we still have to deal with explicit jumps eventually, but we
can do so in isolation. That is, (1) we have to define a function

236 P. Bahr

linearise ::Graph CodeF → CodeL

that transforms the graph-based representation into a linear representation of
the target language, and (2) we have to prove that it preserves the semantics.
The proof can focus solely on the aspect of fresh names and explicit jumps.
Since linearise is trivial for all cases except for the let bindings of the graph
representation, we expect that the proof can be made independently of the actual
language under consideration.

While our method reduces the proof obligations for the graph-based compiler
considerably, there is still room for improvement. Indeed, we only require a simple
induction proof showing the equality compT = unravel ◦ compG. But since the
two compiler variants differ only in the sharing they produce, one would hope
the proof obligation could be further reduced to the only interesting case, i.e. the
case for Catch in our example. In a proof assistant such as Coq, we can indeed
take care of all the other cases with a single tactic and focus on the interesting
case. However, it would be desirable to have a more systematic approach that
captures this intuitive understanding.

A shortcoming of our method is its limitation to acyclic graphs. Nevertheless,
the implementation part of our method easily generalises to cyclic structures,
which permits compilation of cyclic control structures like loops. Corresponding
correctness proofs, however, need a different reasoning principle.

Acknowledgements. The author is indebted to Janis Voigtländer for his many
helpful suggestions to improve both the substance and the presentation of this
paper. In particular, the idea to use short cut fusion to prove Theorem 2 was
his. The author would like to thank Nicolas Pouillard and Daniel Gustafsson for
their assistance in the accompanying Coq development.

This work was supported by the Danish Council for Independent Research,
Grant 12-132365, “Efficient Programming Language Development and Evolution
through Modularity”.

References

[1] Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: From interpreter to com-
piler and virtual machine: A functional derivation. Tech. Rep. RS-03-14, BRICS,
Department of Computer Science, University of Aarhus (2003)

[2] Bahr, P.: Proving correctness of compilers using structured graphs (extended ver-
sion). Tech. rep., University of Copenhagen (2014)

[3] Bahr, P., Hutton, G.: Calculating correct compilers (2014) (unpublished
manuscript)

[4] Bernardy, J.P., Pouillard, N.: Names for free: polymorphic views of names and
binders. In: Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell, pp.
13–24. ACM (2013)

[5] Chlipala, A.: Parametric higher-order abstract syntax for mechanized semantics.
In: Proceeding of the 13th ACM SIGPLAN International Conference on Functional
Programming, pp. 143–156. ACM (2008)

Proving Correctness of Compilers Using Structured Graphs 237

[6] Chlipala, A.: A verified compiler for an impure functional language. In: Proceed-
ings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 93–106. ACM (2010)

[7] Dave, M.A.: Compiler verification: a bibliography. SIGSOFT Softw. Eng.
Notes 28(6), 2 (2003)

[8] Gill, A., Launchbury, J., Peyton Jones, S.L.: A short cut to deforestation. In: Pro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture, pp. 223–232. ACM (1993)

[9] Hutton, G.: Programming in Haskell, vol. 2. Cambridge University Press, Cam-
bridge (2007)

[10] Hutton, G., Wright, J.: Compiling exceptions correctly. In: Kozen, D. (ed.) MPC
2004. LNCS, vol. 3125, pp. 211–227. Springer, Heidelberg (2004)

[11] Hutton, G., Wright, J.: What is the meaning of these constant interruptions? J.
Funct. Program. 17(6), 777–792 (2007)

[12] Johann, P.: A generalization of short-cut fusion and its correctness proof. Higher
Order Symbol. Comput. 15(4), 273–300 (2002)

[13] Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. In: Conference record of the 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pp. 42–54. ACM (2006)

[14] Marlow, S.: Haskell 2010 language report (2010)
[15] Matsuda, K., Inaba, K., Nakano, K.: Polynomial-time inverse computation for

accumulative functions with multiple data traversals. In: Proceedings of the ACM
SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipulation, pp.
5–14. ACM (2012)

[16] Meijer, E.: Calculating Compilers. Ph.D. thesis, Katholieke Universiteit Nijmegen
(1992)

[17] Oliveira, B.C.D.S., Löh, A.: Abstract syntax graphs for domain specific languages.
In: Proceedings of the ACM SIGPLAN 2013 Workshop on Partial Evaluation and
Program Manipulation, pp. 87–96. ACM (2013)

[18] Oliveira, B.C., Cook, W.R.: Functional programming with structured graphs. In:
Proceedings of the 17th ACM SIGPLAN International Conference on Functional
Programming, pp. 77–88. ACM (2012)

[19] Ramsey, N., Dias, J.A., Peyton Jones, S.: Hoopl: a modular, reusable library for
dataflow analysis and transformation. In: Proceedings of the Third ACM Haskell
Symposium on Haskell, pp. 121–134. ACM (2010)

[20] Ramsey, N., Dias, J.: An applicative control-flow graph based on huet’s zipper.
In: Proceedings of the ACM-SIGPLAN Workshop on ML, pp. 105–126 (2006)

[21] Wand, M.: Deriving target code as a representation of continuation semantics.
ACM Trans. Program. Lang. Syst. 4(3), 496–517 (1982)

A New Formalization of Subtyping
to Match Subclasses to Subtypes

Hyunik Na1 and Sukyoung Ryu2

1 S-Core., Ltd., Seongnam, Korea
hina@kaist.ac.kr

2 Department of Computer Science, KAIST, Daejeon, Korea
sryu.cs@kaist.ac.kr

Abstract. Most object-oriented languages do not support explicit recursive
types, which are useful to define binary methods and some kinds of factory meth-
ods, because explicit recursive types lead to a mismatch between subclassing and
subtyping. This mismatch means that an expression of a subclass may not always
be usable in a context where an expression of a superclass is expected, which is
not intuitive in an object-oriented setting.

In this paper, we present a new subtyping formalization, which allows sub-
classing to match subtyping even in the presence of recursive types in an object-
oriented language. The formalization comes from a new perspective on object
types and subtyping, which clearly distinguishes object types and some-object
types and defines a new subtype relation on some-object types. We formally prove
that the new subtype relation can successfully replace the traditional one and that
subclassing always matches subtyping even in the presence of recursive types in a
language. We believe that our formalization makes it easier to understand objects
than the traditional formalization because of a simple encoding of objects in a
typed lambda calculus.

1 Introduction

When defining an object in an object-oriented language, programmers often need to de-
clare that the object has a method which takes or returns an object of the same type with
the object. A recursive type is natural and effective in expressing this type constraint.
For example, one might want to declare a point object in a one-dimensional space to
have the following recursively defined record type (under the conventional interpreta-
tion of objects as records [8,26,16]):

P = {x : int, equals : P→ bool, move : int→ P}

This object type specifies that the method equals takes a point object of the same type
as the current point object, and that the method move returns a point object of the same
type as the current point object.

However, researchers reported that recursive types break a valuable property
subtyping-by-subclassing (or subtyping-by-inheritance) of object-oriented languages

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 238–252, 2014.
c© Springer International Publishing Switzerland 2014

A New Formalization of Subtyping to Match Subclasses to Subtypes 239

[10,11]: if an object type T has a negative1 type recursion (as is the case in P), then
any extension T′ of T is not a subtype of T. For example, the following object type P′

which extends P is not a subtype of P:

P′ = {x : int, y : int, equals : P′ → bool, move : int→ P′ }

Note that similar type extensions frequently occur in object-oriented programs to add
fields or methods while subclassing. This mismatch between subclassing and subtyping
means that programmers may not be able to use an expression of a subclass in a context
where an expression of a superclass is expected, which is not intuitive in object-oriented
languages. This is why most object-oriented languages do not support (explicit) recur-
sive types.

The lack of recursive types, however, results in insufficient expressiveness of the lan-
guages. When programmers want to describe “the same type relation” on class mem-
bers, instead of using recursive types, they often have to use dynamic typechecking and
casting, which lead to a nontrivial amount of routine code (for example, see [23, Chapter
28]). One example of class members with the same type relation is binary methods [3].

While an extension of Java [14], LOOJ [4], addresses the mismatch between sub-
classing and subtyping, the main obstacle for an object-oriented language to adopt
recursive types, it does not describe the theoretical reason behind it compared to the
traditional formalization of subtyping [8]. In LOOJ, programmers can use an expres-
sion of a subclass in any context where an expression of a superclass is expected even
when the superclass has a negative occurrence of a This type, which designates type
recursion, in its definition.

In this paper, we present a new formalization of subtyping to explain the coexis-
tence of recursive types and the subtyping-by-subclassing. We suppress subtyping be-
tween object types by dropping the traditional subtyping on record types and recursive
types [8,9]. Instead, we define a new subtype relation on existential types of a spe-
cial form which we call some-object types. In the new subtype relation, unlike in the
traditional one, negative type recursions do not limit subtyping. Some-object types cor-
respond to class types (class names used as types) in nominal type systems of object-
oriented languages, and hence the new subtype relation explains the coexistence of
recursive types and subtyping-by-subclassing seamlessly.

In addition, we explain that the new subtype relation supports the self-application
interpretation [16]. Although the self-application interpretation is the most realistic (in
that most object-oriented language implementations are based on it) and simplest inter-
pretation of objects, researchers considered it unsatisfactory because it cannot explain
subtyping between object types due to the negative type recursion inherent in the in-
terpretation (see [2, Section 6.7.1]). However, we believe that the problem is not in the
interpretation but in the traditional formalization of subtyping which defines subtyping
on object types. With the new formalization of subtyping, which distinguishes between

1 Roughly, a position in a type expression is positive (or covariant) if it is on the left side of an
even number of function types, and is negative (or contravariant) if it is on the left of an odd
number of function types. In particular, the position of the return type of a function is positive
and the position of a parameter type of a function is negative.

240 H. Na and S. Ryu

object types and some-object types and defines subtyping on some-object types as men-
tioned before, the self-application interpretation becomes satisfactory.

The remainder of this paper is as follows. In Section 2, we discuss some historical
background and motivation of this work. After summarizing the traditional formaliza-
tion of subtyping in Section 3, we present the new formalization and compare it with the
traditional one in Section 4. We also prove that the new formalization can successfully
replace the traditional one. In Section 5, we discuss the self-application interpretation
and explain that the interpretation is satisfactory and acceptable under the new formal-
ization of subtyping. In Section 6, we show that the newly defined relation is indeed a
subtype relation by proving that it conforms to the substitutability notion of subtyping
in a simple core language. We conclude in Section 7.

2 Motivation and Related Work

Many researchers have proposed various names such as MyType [7,6], Self type [2],
ThisType [5,4,27], and like Current [10] to designate type recursion in object types.
They all denote the type of the current object this or self in a class definition. We
henceforth use a single type name This to collectively refer to the various type names
listed above. One can extend any class-based object-oriented language with This types
to express that, in any invocation of a method, an argument or the result of the method
invocation should have the same type as the method’s receiver. For example, in a Java-
like language equipped with This types, one can define point classes having equals
methods as follows:

class Point {
int x;
Point(int i) { this.x = i; }
boolean equals(This other) {

return this.x == other.x;
}

}

class ColorPoint extends Point {
int color;
ColorPoint(int i, int c) {

super(i); this.color = c;
}
boolean equals(This other) {

return this.x == other.x &&
this.color == other.color;

}
}

In these class definitions, the formal parameter type This of each equals method puts
a type constraint which specifies that the argument and the receiver in any invocation of
the method should have the same type. This the-same-type constraint is often desirable
or required for implementations of binary operations such as numeric operations, set
operations, equality checks and comparisons (<, ≤, etc). Implementations of binary

A New Formalization of Subtyping to Match Subclasses to Subtypes 241

operations in object-oriented languages are usually called binary methods [3] and a
negative occurrence of a This type is their distinctive characteristic.

Traditionally, the-same-type constraint expressed by a This type means matching of
object type,. which results in a breach in the soundness of a type system equipped with
This types and leads to the conclusion that inheritance is not subtyping [10,11]. For
example, the following method definition is well-typed under the traditional notion of
the-same-type constraint (or of This types) because, in the invocation of equals, the
argument q has the same type Point as the receiver p:

boolean testEQ(Point p, Point q) {
return p.equals(q);

}

More specifically, the formal parameter type This of the equals method is substituted
with the type Point of the receiver p while typechecking. Though the method definition
is well-typed, the following invocation of testEQwill cause a run-time type error when
executed because it will try to access the color field from an object of the Point class:

testEQ(new ColorPoint(1,2), new Point(1));

Therefore, any sound type system should reject this example.
To recover type soundness, researchers have proposed the perspective that inheri-

tance is not (always) subtyping [10,11], which points out that if a traditional object
type R has a negative type recursion, any extension R′ of R is not a subtype of R. For
example, the type μt.{x :int, color :int, eq :t→bool} of objects that the class
ColorPoint generates is not a subtype of the type μt.{x :int, eq :t→bool} of ob-
jects that the class Point generates, and hence ColorPoint is not a subtype of Point.
This approach rejects the above invocation of testEQ because it passes an incompat-
ible ColorPoint object as an argument bound to a Point variable p. This approach,
however, does not fully localize the cause of the breach in type soundness. A more
direct cause of the breach is the binary method invocation rather than the argument
passing; the argument passing would not cause a run-time type error if it was not fol-
lowed by the binary method invocation p.equals(q). Most of all, the perspective
of inheritance-is-not-subtyping is the biggest obstacle for a language to adopt recursive
types to increase its expressiveness.

On the other hand, the possibility that inheritance may be subtyping originates from
LOOM [6]. LOOM clearly distinguishes hash types and non-hash types, and it allows
binary method invocations on expressions of non-hash types, but not on expressions
of hash types (see the typing rules Msg and Msg# of [6]). A successor of LOOM,
LOOJ [4], inherits this compatibility with a similar strategy for typing binary methods
in the sense that it “allows binary method invocations only on expressions whose exact
run-time classes are known at compile-time.” In LOOJ and subsequent work [27,22,21],
a class is always compatible with its superclasses; if a class D is a subclass of another
class C, then one can use an expression of type D in any context where an expression
of type C is expected even when C has a negative occurrence of a This type in its def-
inition. This manifests more clearly the possibility that inheritance is subtyping. While
the compatibility well matches the general idea of subtyping discussed in Section 3,
the traditional formalization of subtyping does not explain the relationship. LOOJ ac-
cepts the above invocation of testEQ because it considers ColorPoint as a subtype of

242 H. Na and S. Ryu

Point, but it rejects the definition of testEQ because it cannot know run-time classes
of the receiver p in the invocation of equals at compile-time. Though LOOJ effec-
tively achieves subtyping-by-subclassing with recursive types, its strategy for typing
binary methods has some limitations: programmers should maintain exact type infor-
mation using type annotations and they cannot use dynamic dispatch of binary methods
(and hence their generic uses).

We address the limitations of LOOJ by proposing two static typing techniques, exact
type capture and named wildcards, in our earlier work [22,21]. With those techniques,
it becomes possible in some cases to dynamically dispatch a binary method without
limiting the type of the method’s receiver to a single exact type.

3 Traditional Formalization of Subtyping

Subtyping or subtype polymorphism relates two types by the following notion of sub-
stitutability [8,18,24]:

If T is a subtype of U (or equivalently U is a supertype of T), then any expres-
sion of type T can be safely used in any context where an expression of type
U is expected.

where the safety here usually means that any well typed program does not cause a run-
time type error.

In his seminal work [8], Cardelli formalized this notion of subtyping with a rela-
tion ≤ on type expressions consisting of primitive types (of basic values such as unity,
booleans, and integers), record types, variant types, and function types. Soon after-
wards, in the presentation of the Amber language [9], he extended the relation to re-
cursive types. The subtyping rules of [8,9] are listed in Figure 1. In the figure, we omit
the subtyping rule for variant types presented in [8] because variant types are less sig-
nificant in most object-oriented languages and they are beyond the scope of this paper.
For the same reason, we limit type recursions to record types; we syntactically preclude
type expressions of the forms μt.u, μt.T→U and μu.μt.T .

In Figure 1, the metavariable R actually ranges over two syntactic forms of type
expressions μt.{li :Ti i∈1..n} and {li :Ti i∈1..n} because we identify these two (that is,
they are freely interchangeable in any context) when the type recursion variable t does
not occur free in each Ti. We also identify μt.{li :Ti i∈1..n} and μu.{li :Ti[u/t] i∈1..n}
where [u/t] denotes a capture-avoiding substitution of t with u. The metavariable ρ
ranges over a finite number of primitive types. For convenience, we take ρ1= unit,
ρ2= bool, ρ3= int in this paper.

As Cook et al. pointed out [11], if a record type R has a negative occurrence of a
type recursion variable, then for any record type R′ that extendsR, the relation ≤ does
not relate R′ and R due to the interaction between the negative occurrence of the type
recursion variable and the subtyping rule for function types. For example, one cannot
derive the following judgement:

� μt.{x :int, y :int, eq :t→bool } ≤ μt.{x :int, eq :t→bool }

This limitation has led most language designers to the conclusion that they should aban-
don recursive types in favor of arguably more valuable subtyping-by-subclassing. The

A New Formalization of Subtyping to Match Subclasses to Subtypes 243

Metavariables:

t, u type variable
ρ primitive type
l label

T,U ::= t | ρ | R | T→T type
R ::= μt.{li : Ti

i∈1..n} record type

Type variables: vars({ti ≤ ui
i∈1..n}) vars({ti ≤ ui

i∈1..n}) = {ti, ui
i∈1..n}

Traditional subtyping: Δ � T ≤ U where Δ ::= {ti ≤ ui
i∈1..n}

[TS-PRIM]

Δ � ρ ≤ ρ

[TS-FUNC]
Δ � U ≤ T Δ � T ′ ≤ U ′

Δ � T→T ′ ≤ U→U ′

[TS-RECORD]
∀i ∈ 1..n : Δ � Ti ≤ Ui n ≥ 0, m ≥ 0

Δ � {li : Ti
i∈1..n+m} ≤ {li :Ui

i∈1..n}
[TS-AMBER1]
t ≤ u ∈ Δ

Δ � t ≤ u

[TS-AMBER2]
t
= u t, u /∈ vars(Δ) Δ ∪ {t ≤ u} � T ≤ U

Δ � μt.T ≤ μu.U

Fig. 1. Traditional subtyping

lack of recursive types, however, results in the lack of simple static typing for binary
methods [3].

4 Revised Formalization of Subtyping

In this section, we discuss our new formalization of subtyping. Figure 2 presents a re-
lation <� on record types called specializing and another relation <: on types called
revised subtyping. The specializing is very similar to matching [7], but unlike matching,
it is defined together with subtyping in a mutually dependent manner. Specializing re-
lates two record types even in the presence of a negative occurrence of a type recursion
variable. Therefore, it relates more pairs of record types than the traditional subtyping
does. Straightforward inductions on derivations prove reflexivity and transitivity of the
relations <� and <:.

As briefly discussed in Section 1, the revised subtyping <: does not relate two dif-
ferent record types because it does not have the record subtyping and Amber rules. The
rationale of dropping the rules is that the traditional subtyping based on them is not fully
satisfactory (it sometimes fails to produce a desirable subtyping result as discussed in
the previous section) and we can establish an alternative subtyping which does not have
such drawback.

Two rules [RS-RTOS] and [RS-STOS] in Figure 2 suggest the main idea of the
alternative subtyping. In the rules, the type ∃s<�β.s, which we call a some-record type,
denotes the set of records whose types specialize the record type β. When a record type
α specializes another record type β (∅ � α<�β), one can safely use a record of type
α in any context where an expression of type ∃s<�β.s is expected ([RS-RTOS]), and

244 H. Na and S. Ryu

Metavariables:

τ, υ ::= t | ρ | α | γ | τ→τ type (revised)
α, β ::= μt.{li : τi i∈1..n} record type (revised)

γ ::= ∃s<�α.s some-record type

Specializing: Δ � α<�β where Δ ::= {ti i∈1..n}

[SPECIALIZING]
n ≥ 0, m ≥ 0 t /∈ Δ ∀i ∈ 1..n : Δ ∪ {t} � τi <: υi

Δ � μt.{li : τi i∈1..n+m} <� μt.{li : υi
i∈1..n}

Revised subtyping: Δ � τ <: υ where Δ ::= {ti i∈1..n}

[RS-PRIM]

Δ � ρ <: ρ

[RS-FUNC]
Δ � υ <: τ Δ � τ ′ <: υ′

Δ � τ→τ ′ <: υ→υ′

[RS-TVAR]
t ∈ Δ

Δ � t <: t

[RS-RTOR]

Δ � α <: α

[RS-RTOS]
Δ � α<� β

Δ � α <: ∃s<�β.s

[RS-STOS]
Δ � α<� β

Δ � ∃s<�α.s <: ∃s<�β.s

Fig. 2. Revised subtyping

one can safely use an expression of type ∃s<�α.s in any context where an expression
of type ∃s<�β.s is expected ([RS-STOS]). We prove this substitutability in Theorem 1
in Section 6.

Note, however, that <: does not directly relate α and β (α is not a subtype of β in
our type system). Allowing a record of type α in a context where a record of type β
is expected may lead to a situation at run-time where a binary method with a receiver
object of type α takes an object of type β as its argument, which may result in a run-
time type error. In our type system, some-record types take the traditional role of record
types as discussed further below. Two advantages of this replacement are as follows:

– The revised subtyping <: always relates a some-record type and each of its exten-
sions even in the presence of a negative occurrence of a type recursion variable. For
example, unlike the last example in Section 3, the following judgement is derivable:

∅ � ∃s<�μt.{x : int, y : int, eq : t→bool}.s <:
∃s<�μt.{x :int, eq :t→bool}.s

– It provides a theoretical base of the exact type capture presented in [22,21]. Class
types (class names used as types) in a nominal type system correspond to some-
record types in our type system, and the exact type capture correspond to implicit
unpacking of some-record types (which are existential types).

The syntactic form of a record type R in Figure 1 is similar to that of a record type
α in Figure 2. However, the behavior of R with respect to subtyping is closer to that

A New Formalization of Subtyping to Match Subclasses to Subtypes 245

of a some-record type γ in Figure 2 rather than to that of α. Each of R and γ can be a
supertype of another extended type whereas it is not the case for α; α can be a supertype
of only itself by [RS-RTOR].

The following function �-�, which maps a T to a τ , formalizes the intuitive corre-
spondence between T and τ . Note that there is no T which corresponds to an α. That
is, �-� is not a surjective function:

�μt.{li :Ti i∈1..n}� = ∃s<�μt.{li : �Ti� i∈1..n}.s
�T→U� = �T�→�U�

�ρ� = ρ

�t� = t

We define the function FTV , which maps a type to a set of free type variables in it:

FTV (μt.{li : τi i∈1..n}) =
⋃

i∈1..n FTV (τi)− {t}
FTV (∃s<�α.s) = FTV (α)
FTV (ρ) = ∅
FTV (t) = {t}
FTV (τ→υ) = FTV (τ) ∪ FTV (υ)

Note that an existentially quantified type variable s of ∃s<�α.s does not occur free in α
by construction (using a different symbol s other than t and u). Thus, FTV (∃s<�α.s)
does not need to be FTV (α) − {s}.

A type τ is well formed under a type variable environmentΔ:

Δ � τ ok if FTV (τ) ⊆ Δ.

We define FTV (T) andΔ � T ok similarly, and we say “τ (T) is well-formed” instead
of “τ (T) is well-formed under ∅.” With the well-formedness of types, we state the
reflexivity and transitivity of the two relations <: and <� and omit their proofs due to
the space limitation:

Proposition 1 (Reflexivity)

1. If Δ � τ ok, then Δ � τ <: τ .
2. If Δ � α ok, then Δ � α<�α.

Proposition 2 (Transitivity)

1. If Δ � τ1 <: τ2 and Δ � τ2 <: τ3, then Δ � τ1 <: τ3.
2. If Δ � α1<�α2 and Δ � α2<�α3, then Δ � α1<�α3.

Now, the following proposition states that <: is more general than ≤:

Proposition 3. For well-formed types T and U , ∅ � T ≤ U implies ∅ � �T� <: �U�.

The converse of the implication does not hold in general: for a counter example, take
T = μt.{x : int, y : int, eq : t→ bool} and U = μt.{x : int, eq : t→ bool}.
However, negative occurrences of type recursion variables are the only reason that in-
validates the converse as shown by the following proposition:

246 H. Na and S. Ryu

Proposition 4. For well-formed types T and U which are free of negative occurrences
of type recursion variables, ∅ � T ≤ U if and only if ∅ � �T� <: �U�.

This proposition suggests that replacing the traditional subtyping with the revised one
does not change subtyping results in legacy programs written in a recursive-type-free
object-oriented language. Of course, if an object-oriented language is to adopt recursive
types, then the revised formalization is more adequate than the traditional one because
an extended some-record type is always a subtype of its original type under the revised
formalization even when the original has a negative occurrence of a type recursion
variable.

We consider that a record type μt.{li : τi i∈1..n} is the type of a run-time object that
has exactly those members l1, l2, ..., ln and a some-record type ∃s<�μt.{li : τi i∈1..n}.s
is the type of a compile-time expression that may be evaluated at run-time to objects of
various record types each of which specializes μt.{li : τi i∈1..n}. From this perspec-
tive, record types well amount to exact types2 of LOOJ [4] and some-record types well
amount to class types of any class-based object-oriented language.

5 Subtyping in Self-application Interpretation

In the course of understanding core features of object-oriented languages such as ob-
jects, object types, classes, subtyping, inheritance and object member access via the
special variable this (or self), researchers have developed several interpretations (or
encodings) of those features into typed lambda calculi [2,13,8,26,16,20,17,25,12,15].

Self-application [16,17] is the simplest one of those interpretations. In the interpre-
tation, every object is a record of self-applying functions: for an object member access,
it first passes the whole object to the member. This interpretation provides a simple ex-
planation about what objects and object types are and about object-related features such
as late-binding of the special variable this, object member lookup and update, and ob-
ject cloning. In comparison, the other interpretations have limitations and complications
such as limited update and cloning, different encodings for internal and external oper-
ations, and inefficient implementations (see [2, Chapter. 18] for detailed comparisons).
Therefore, it is no surprise that most implementations of object-oriented languages are
based on the self-application interpretation: in most object-oriented languages, every
non-static method takes the current object as the argument to its hidden formal parame-
ter this (for example, see the specification of the invokevirtual instruction of the Java
Virtual Machine [19]).

Even with all its advantages, the researchers have considered the self-application
interpretation unsatisfactory because the interpretation could not explain subtyping be-
tween object types clearly. In the interpretation, object types generally have the form
μt.{li : t→τi

i∈1..n} (note the negative occurrence of the type recursion variable t),

2 For a class C, LOOJ [4] uses @C to denote a type which has the following properties: (1) an
object generation expression new C(...) has the type @C, and (2) @C is a subtype of C,
but not vice versa. The types of the form @C are called exact types. LOOJ suppresses proper
subtyping between exact types: when D is a subclass of C, LOOJ does not consider @D to be a
subtype of @C while it considers D to be a subtype of C.

A New Formalization of Subtyping to Match Subclasses to Subtypes 247

and the traditional subtyping cannot relate an object type and each of its extensions due
to the negative type recursion in the object type [2, Section 6.7.1]. However, we believe
that this problem is due to the weakness of the traditional formalization of subtyping
rather than to the weakness of the self-application interpretation.

Under the revised formalization of subtyping presented in the previous section, the
negative type recursion in object types is not a problem in subtyping because:

– the formalization distinguishes object types (record types) and some-object types
(some-record types), and

– it relates some-object types instead of object types.

With the revised formalization of subtyping, the simple and elegant self-application in-
terpretation becomes satisfactory and acceptable because object types do not need to be
related by subtyping. To highlight this point, we use the self-application interpretation
while we prove in the next section that the relation <: conforms to the substitutability
notion of subtyping.

6 Substitutability of <:

In this section, we define a simple language to show that the relation <: is indeed a
subtype relation. Figure 3 presents the syntax and typing rules of the language and
Figure 4 the dynamic semantics of the language.

The language is a typed lambda calculus extended with primitive values and records
of self-applying functions of the form {li=λz :ω. ei i∈1..n}. As we take ρ1= unit,
ρ2= bool, and ρ3= int in Section 3, we accordingly let p1, p2 and p3 range over
{unity}, {true, false} and {. . . ,−1, 0, 1, . . .}, respectively. According to the self-
application interpretation discussed in the previous section, we refer to the records of
self-applying functions as objects. Note, however, that general record member retrieval
is not allowed for objects (an object member expression is denoted by e�l, not by e.l).
When an object member expression is evaluated, the self-variable of the member is
first bound to the whole object and then the body of the member is evaluated (self-
application, see [R-MEM] in Figure 4). In this sense, an object is not a normal record.
If a member’s self-variable is not used in its body (such a member is sometimes called
a field [2]), then the self-application is actually not necessary for the member. However,
we do not distinguish such cases for presentation brevity.

Due to the self-application, object types ranged over by a metavariable ω has the
form μt.{li : t→τi

i∈1..n}. That is, a type recursion variable always occurs negatively
in each member’s type. In the above form, we call τi the body type of member li for
each i ∈ 1..n. For an object type ω, a some-object type ∃s<�ω.s is a supertype of every
object type that specializesω. A metavariable σ ranges over the some-object types. Note
that the term “object type” means a rather different thing in this paper; object types in
the literature are closer to some-object types in this paper.

Typing rules for variables, functions, function applications and primitive values are
standard and straightforward. An object is well typed to an object type ω annotated to
the self-variable of its members if ω is well-formed and each member’s body is well
typed to a subtype of the corresponding body type declared in ω. Note that we use

248 H. Na and S. Ryu

Syntax:

e ::= expression
| x variable
| λx : ε. e function expression
| e e function application
| p primitive values
| {li=λz :ω. ei

i∈1..n} object
| e
l object member

ε, δ ::= ρ | ω | σ | ε→ε expression type

ω ::= μt.{li : t→τi
i∈1..n} object type

σ ::= ∃s<�ω.s some-object type

Typing: Γ � e : ε where Γ ::= {xi : εi
i∈1..n}

[T-VAR]
Γ (var) = ε

Γ � var : ε

[T-FUNC]
∅ � ε ok′ Γ x : ε � e : ε′

Γ � λx : ε. e : ε→ε′

[T-APP]
Γ � e : ε→ε′ Γ � e′ : δ ∅ � δ <: ε

Γ � e e′ : ε′

[T-PRIM]
i = 1, 2, 3, . . .

Γ � pi : ρi

[T-OBJ]
∅ � ω ok′ ω = μt.{li : t→τi

i∈1..n}
∀i ∈1..n : (Γ z :ω � ei : ε

′
i ∅ � ε′i <: τi[ω/t])

Γ � {li=λz :ω. ei
i∈1..n} : ω

[T-MEM1]
Γ � e : ω ω = μt.{l : t→τ, . . . }

Γ � e
l : τ [ω/t]

[T-MEM2]
Γ � e : σ σ = ∃s<�μt.{l : t→τ, . . . }.s

no free t occurs negatively in τ

Γ � e
l : τ [σ/t]

Fig. 3. Syntax and static semantics

Value:
v ::= p | λx : ε. e | {li=λz :ω. ei

i∈1..n}
Evaluation context:
E ::= � | E e | v E | E
l

Reduction and evaluation: e �⇒ e′, e �−→ e′

[R-MEM]
j ∈ 1..n

{li=λz :ω. ei
i∈1..n}
lj �⇒ ej [{li=λz :ω. ei

i∈1..n}/z]

[R-APP]
λx : ε. e v �⇒ e[v/x]

[EVAL]
e �⇒ e′

E[e] �−→ E[e′]

Fig. 4. Dynamic semantics

A New Formalization of Subtyping to Match Subclasses to Subtypes 249

another definition of well-formed types which is stronger (more restrictive) than that
presented in Section 4:

∅ � τ ok′ if ∅ � τ ok and ∅ � α ok for every subexpression α of τ .

We use this stronger definition of type well-formedness in the typing rules [T-FUNC]
and [T-OBJ] in Figure 3 to prevent using a type recursion variable in a nested scope.
For example, the following type is well-formed under the stronger definition:

μt.{a :t, b :μu.{c :int, d : int→u}}

but, the following is not though it is well-formed under the definition given in Section 4:

μt.{a :t, b :μu.{c :int, d : t→u}}.

An object member e�l is well typed in two cases: firstly, when e is well typed to an
object type ω, and secondly, when e is well typed to a some-object type σ and l’s body
type declared in σ does not have a negative occurrence of the outermost type recursion
variable appearing in σ.

With this language, we show that the relation <: conforms to the substitutability
notion of subtyping discussed at the beginning of Section 3 by proving the following
theorem.

Theorem 1 (Substitutability). If � e1 : ε1, � E[e1] : ε and � e2 : ε2 for some ε2
with ∅ � ε2 <: ε1, then

1. E[e2] is a value or there exists an e′ such that E[e2] �−→ e′, and
2. if there exists an e′′ such thatE[e2] �−→ e′′, then there exists an ε′ such that � e′′ :
ε′ and ∅ � ε′ <: ε.

This theorem says that using an expression e2 of a type ε2 in place of another expression
e1 of another type ε1 with ∅ � ε2 <: ε1 results in a value or a reducible expression, and
in case of a reducible expression, it produces an expression of a type ε′ which relates to
the type ε of the original whole expression E[e1] by ∅ � ε′ <: ε. In short, substituting
e1 with e2 does not make the computation of the whole expression stuck. Note that this
theorem also states the progress and subject reduction properties of the type system, and
hence proves its type soundness with respect to the dynamic semantics in the standard
manner [28].

6.1 An Interpretation of Classes

In this subsection, we present an interpretation of classes in a typed lambda calculus
which is very similar to that of [1,2] except that it uses the specializing relation instead
of subtyping or matching in the bounded type abstraction.

As discussed in [1,2], one can consider a class as an object-generating object which
consists of a special member new and other members called pre-methods. The new

member of a class takes the class itself for self-application and zero or more additional
values for object fields initialization, and it generates an object with the pre-methods

250 H. Na and S. Ryu

obtained from the given class together with the given initial values for fields. A pre-
method is a function which is embedded into each generated object to be its member.
The object type is abstracted in a pre-method definition so that the pre-method can
be inherited and reused in other classes. For example, the following object (class) c1
generates objects of type P1:

c1 = {new=λz′ : C1. λi : int. {x=λz : P1. i, eq=λz : P1. (z′�pre-eq P1 z)},
pre-eq=λz′ : C1. λZ<�P1. λz : Z. λo : Z.(z�x == o�x)}

where:

P1 = μt.{x :t→int, eq : t→t→bool}
C1 = μt.{new :t→int→P1,

pre-eq : t→(∀Z<� P1.Z→Z→bool)}.

With these definitions, c1�new 1, c1�new 2, c1�new 3, and so forth respectively evalu-
ate to:

{x=λz : P1. 1, eq=λz : P1. λo : P1. (z�x == o�x)},
{x=λz : P1. 2, eq=λz : P1. λo : P1. (z�x == o�x)},
{x=λz : P1. 3, eq=λz : P1. λo : P1. (z�x == o�x)},
...

A class can reuse pre-methods of another class when the type of objects that it generates
specializes the type of objects that the latter class generates. Consider the following
example:

P1x =μt.{x :t→int, eq :t→t→bool, dist :t→int}
C1x = μt.{new :t→int→P1x,

pre-eq :t→(∀Z<� P1x.Z→Z→bool),

pre-dist :t→(∀Z<� P1x.Z→int)}
c1x = {new=λz′ :C1x. λi : int. {x=λz : P1x. i,

eq=λz : P1x. (z
′
�pre-eq P1x z),

dist=λz : P1x. (z
′
�pre-dist P1x z)},

pre-eq=λz′ :C1x. c1�pre-eq,

pre-dist=λz′ :C1x. λZ<� P1x. λz : Z. |z�x |}

In this example, the object type P1x specializes P1 only with a single additional member
dist (distance to the origin). Therefore, c1x can reuse the pre-method pre-eq of c1
(see the definition of pre-eq in c1x). For such kind of pre-method reuse, it is essential
to abstract the object type with an appropriate bound in the definition of each pre-
method, as done in the above example: in the definition of pre-eq of c1, the type
of the self-variable is abstracted with the bound P1 (. . . λZ<� P1. λz : Z. . . .) and in the
definition of pre-dist of c1x, the type of the self-variable is abstracted with the bound

A New Formalization of Subtyping to Match Subclasses to Subtypes 251

P1x (. . . λZ<� P1x. λz : Z. . . .). Note that the above examples use specialization-bounded
type abstraction rather than subtype-bounded type abstraction. This example cannot use
subtype-bounded type abstraction because the revised subtyping cannot relate object
types over which the type variable Z ranges, and the traditional subtyping cannot relate
object types when the types have a negative type recursion [1,2].

7 Conclusion

We present a new formalization of subtyping to explain the subtyping-by-subclassing
observed in recent developments of object-oriented languages [4,27,22,21]. In the for-
malization, we drop the traditional subtype relation on recursive record types and define
a new one on the specialization-bounded existential types which we call some-object
types. Negative type recursions do not limit subtyping in the new formalization, and
some-object types well correspond to class types in ordinary object-oriented languages.
This explains the coexistence of subtyping-by-subclassing and recursive types. Neg-
ative type recursions always arise in typing binary methods, and moreover, they are
already inherent in real implementations of object-oriented languages. Therefore, our
formalization of subtyping is helpful to better understand objects.

Though we limit type recursions to record types in this paper to focus on object-
oriented languages which are our main concern, our approach—dropping the Amber
rules and establishing subtyping via specializing and existential types—may be appli-
cable to other kinds of recursive types such as recursive function types and recursive
variant types, because the interaction between the subtyping rule for function types and
the negative type recursion limits subtyping between those recursive types too. We hope
that this work will serve as a new direction for a desirable formalization of subtyping in
the programming language research community.

Acknowledgments. This work is supported in part by Korea Ministry of Educa-
tion, Science and Technology(MEST) / National Research Foundation of Korea(NRF)
(Grants NRF-2011-0016139 and NRF-2008-0062609), Microsoft Research Asia, Sam-
sung Electronics, and S-Core., Ltd.

References

1. Abadi, M., Cardelli, L.: On subtyping and matching. ACM Trans. Program. Lang.
Syst. 18(4), 401–423 (1996)

2. Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag New York, Inc., Secaucus
(1996)

3. Bruce, K., Cardelli, L., Castagna, G., Leavens, G.T., Pierce, B.: On binary methods. Theory
and Practice of Object Systems 1, 221–242 (1995)

4. Oulmakhzoune, S., Foster, J.N.: LOOJ: Weaving LOOM into Java. In: Odersky, M. (ed.)
ECOOP 2004. LNCS, vol. 3086, pp. 390–414. Springer, Heidelberg (2004)

5. Bruce, K., Odersky, M., Wadler, P.: A statically safe alternative to virtual types. In: Jul, E.
(ed.) ECOOP 1998. LNCS, vol. 1445, Springer, Heidelberg (1998)

252 H. Na and S. Ryu

6. Bruce, K., Petersen, L., Fiech, A.: Subtyping is not a good “match” for object-oriented lan-
guages. In: Akşit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS, vol. 1241, Springer, Hei-
delberg (1997)

7. Bruce, K., Schuett, A., van Gent, R., Fiech, A.: PolyTOIL: A type-safe polymorphic object-
oriented language. ACM TOPLAS 25, 225–290 (2003)

8. Cardelli, L.: A semantics of multiple inheritance. In: Kahn, G., MacQueen, D.B., Plotkin, G.
(eds.) Semantics of Data Types. LNCS, vol. 173, pp. 51–67. Springer, Heidelberg (1984)

9. Cardelli, L.: Amber. In: Cousineau, G., Curien, P.-L., Robinet, B. (eds.) LITP 1985. LNCS,
vol. 242, pp. 21–47. Springer, Heidelberg (1986)

10. Cook, W.: A proposal for making Eiffel type-safe. The Computer Journal, 57–70 (1989)
11. Cook, W.R., Hill, W., Canning, P.S.: Inheritance is not subtyping. In: Proceedings of the

17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pp.
125–135. ACM, New York (1990)

12. Eifrig, J., Smith, S., Trifonov, V., Zwarico, A.: An interpretation of typed oop in a language
with state. LISP and Symbolic Computation 8, 357–397 (1995)

13. Fisher, K., Mitchell, J.C.: The development of type systems for object-oriented languages.
Technical report, Stanford, CA, USA (1996)

14. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A.: The JavaTM Language Specification,
Java SE 7 Edition. Oracle America, Inc. (February 2012)

15. Hofmann, M., Pierce, B.: A unifying type-theoretic framework for objects. Journal of Func-
tional Programming 5(04), 593–635 (1995)

16. Kamin, S.: Inheritance in Smalltalk-80: a denotational definition. In: Proceedings of the 15th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (1988)

17. Kamin, S.N., Reddy, U.S.: Two semantic models of object-oriented languages. In: Gunter,
C.A., Mitchell, J.C. (eds.) Theoretical Aspects of Object-Oriented Programming, pp. 463–
495. MIT Press (1994)

18. LaLonde, W., Pugh, J.: Subclassing
= subtyping
= is-a. J. Object Oriented Program. 3(5),
57–62 (1991)

19. Lindholm, T., Yellin, F., Bracha, G., Buckley, A.: The JavaTM Virtual Machine Specification,
Java SE 7 Edition. Oracle America, Inc. (February 2012)

20. Mitchell, J.C.: Toward a typed foundation for method specialization and inheritance. In:
POPL 1990 (1990)

21. Na, H., Ryu, S.: ThisJava: An extension of Java with exact types. In: Shan, C.-c. (ed.) APLAS
2013. LNCS, vol. 8301, pp. 233–240. Springer, Heidelberg (2013)

22. Hyunik, N., Sukyoung, R., Kwangmoo, C.: Exact type parameterization and ThisType sup-
port. In: TLDI 2012 (2012)

23. Odersky, M., Spoon, L., Venners, B.: Programming in Scala. Artima Inc. (2008)
24. Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)
25. Pierce, B.C., Turner, D.N.: Simple type-theoretic foundations for object-oriented program-

ming. Journal of Functional Programming 4(02), 207–247 (1994)
26. Reddy, U.: Objects as closures: abstract semantics of object-oriented languages. In: Proceed-

ings of the 1988 ACM Conference on LISP and Functional Programming (1988)
27. Saito, C., Igarashi, A.: Matching ThisType to subtyping. In: Proceedings of the 2009 ACM

Symposium on Applied Computing, SAC 2009, pp. 1851–1858. ACM, New York (2009)
28. Wright, A.K., Felleisen, M.: A syntactic approach to type soundness. Information and Com-

putation 115, 38–94 (1992)

Type Soundness and Race Freedom for Mezzo

Thibaut Balabonski, François Pottier, and Jonathan Protzenko

INRIA Paris-Rocquencourt, France

Abstract. The programming language Mezzo is equipped with a rich
type system that controls aliasing and access to mutable memory. We
incorporate shared-memory concurrency into Mezzo and present a mod-
ular formalization of its core type system, in the form of a concurrent
λ-calculus, which we extend with references and locks. We prove that
well-typed programs do not go wrong and are data-race free. Our defini-
tions and proofs are machine-checked.

1 Introduction

Strongly-typed programming languages rule out some programming mistakes
by ensuring at compile-time that every operation is applied to arguments of
suitable nature. As per Milner’s slogan, “well-typed programs do not go wrong”.
If one wishes to obtain stronger static guarantees, one must usually turn to static
analysis or program verification techniques. For instance, separation logic [13]
can prove that private state is properly encapsulated; concurrent separation
logic [10] can prove the absence of interference between threads; and, in general,
program logics can prove that a program meets its specification.

The programming language Mezzo [12] is equipped with a static discipline
that goes beyond traditional type systems and incorporates some of the ideas of
separation logic. The Mezzo type-checker reasons about aliasing and ownership.
This increases expressiveness, for instance by allowing gradual initialization, and
rules out more errors, such as representation exposure or data races. Mezzo is
descended from ML: its core features are immutable local variables, possibly-
mutable heap-allocated data, and first-class functions. In this paper, we incor-
porate shared-memory concurrency into Mezzo and present its meta-theory.

A Race. In order to illustrate Mezzo, let us consider the tiny program in Fig. 1.
This code exhibits a data race, hence is incorrect, and is rejected by the type
system. Let us explain how it is type-checked. At line 1, we allocate a reference

1 val r = newref 0
2 val f (| r @ ref int)
3 : (| r @ ref int) =
4 r := !r + 1
5 val () =
6 spawn f; spawn f

Fig. 1. Ill-typed code. The function f increments
the global reference r. The main program spawns
two threads that call f. There is a data race: both
threadsmay attempt tomodify rat the same time.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 253–269, 2014.
c© Springer International Publishing Switzerland 2014

254 T. Balabonski, F. Pottier, and J. Protzenko

(i.e., a memory cell), and store its address in the global variable r. In the eyes
of the type-checker, this gives rise to a permission, written r @ ref int. This
permission has a double reading: it describes the layout of memory (i.e., “the
variable r denotes the address of a cell that stores an integer”) and grants ex-
clusive read-write access to this cell. That is, the type constructor ref denotes a
uniquely-owned reference, and the permission r @ ref int is a unique token that
one must possess in order to dereference r. This token exists at type-checking
time only.

A permission r @ ref int looks like a traditional assumption r : ref int.
However, a type assumption would be valid everywhere in the scope of r, whereas
a permission is a token: it can be passed from caller to callee, returned from callee
to caller, passed from one thread to another, etc. If one gives away this token,
then, even though r is still in scope, one can no longer read or write it.

Although r @ ref int is an affine permission (i.e., it cannot be copied), some
permissions are duplicable. For instance, x @ int is a duplicable permission. If
one can get ahold of such a permission, then one can keep it forever (i.e., as
long as x is in scope) and pass copies of it to other threads, if desired. Such a
permission behaves like a traditional type assumption x : int.

The function f in Fig. 1 takes no argument and returns no result. Its type is not
just () -> (), though. Because f needs access to r, it must explicitly request the
permission r @ ref int and return it. (The fact that this permission is available
at the definition site of f is not good enough: a closure cannot capture an affine
permission.) This is declared by the type annotation1 at lines 2 and 3. Thus, at
line 5, in conjunction with r @ ref int, we get a new permission, f @ (| r @ ref
int) -> (| r @ ref int). This means that f is a function with zero (runtime)
argument and result, which (at type-checking time) requires and returns the
permission r @ ref int. The type T | P denotes a package of a value of type T
and the permission P. We write (| P) for (() | P), where () is the unit type.

At line 6, the type-checker analyzes the sequencing construct in a manner
analogous to separation logic: the second spawn instruction is checked using the
permissions that are left over by the first spawn. An instruction spawn f requires
two permissions: a permission to invoke the function f, and r @ ref int, which
f itself requires. It does not return these permissions: they are transferred to the
spawned thread. Thus, in line 6, between the two spawns, we no longer have a
permission for r. (We still have f @ (|...) -> (|...), because it is duplicable.)
Therefore, the second spawn is ill-typed. The racy program of Fig. 1 is rejected.

A Fix. In order to fix this program, one must introduce enough synchronization
so as to eliminate the race. A common way of doing so is to introduce a lock
and place all accesses to r within critical sections. In Mezzo, this can be done,
and causes the type-checker to recognize that the code is now data-race free.

1 In the surface syntax of Mezzo, in the absence of a consumes keyword, a permission
that is taken by a function is considered also returned, so one need not repeat r @
ref int in the header or in the type of f. In this paper, we do not use this convention.
We work in a simpler, lower-level syntax where functions consume their arguments.

Type Soundness and Race Freedom for Mezzo 255

1 val hide [a, b, s : perm]
2 (f : (a | s) -> (b | s) | s)
3 : (a -> b) =
4 let l : lock s = newlock ()in
5 release l;
6 fun (x : a) : b =
7 acquire l;
8 let y = f x in
9 release l;

10 y

Fig. 2. The polymorphic, higher-order
function hide takes a function f of type
(a | s) -> (b | s), which means that
f needs access to some state represented
by the permission s. The function hide
requires s, and consumes it. It returns
a function of type a -> b, which does
not require s, hence can be invoked by
multiple threads concurrently.

In fact, this common pattern can be implemented abstractly as a polymorphic,
higher-order function, hide (Fig. 2).

In Fig. 2, f is a parameter of hide. It has a visible side effect: it requires and
returns a permission s. When hide is invoked, it creates a new lock l, whose role
is to guard the use of the possibly affine permission s. This is materialized by a
duplicable permission l @ lock s, which is produced by the newlock instruction,
and added to the two permissions s and f @ (a | s) -> (b | s) already present
at the beginning of line 4. The fact that l @ lock s is duplicable is a key point:
this enables multiple threads to compete for the lock even if the guarded permis-
sion is affine. The lock is created in the “locked” state, and released at line 5. This
consumes s: when one releases a lock, one must give up and give back the per-
mission that it controls. The permissions for f and l remain, and, because they
are duplicable, they are also available within the anonymous function defined at
line 6. (A closure can capture a duplicable permission.)

The anonymous function at line 6 does not require or return s. Yet, it needs s
in order to invoke f. It obtains s by acquiring the lock, and gives it up by
releasing the lock. Thus, s is available only to a thread that has entered the
critical section. The side effect is now hidden, in the sense that the anonymous
function has type a -> b, which does not mention s.

It is easy to fix the code in Fig. 1 by inserting the redefinition val f = hide f
before line 5. This call consumes r @ ref int and produces f @ () -> (), so the
two spawn instructions are now type-checked without difficulty.

Channels. Acquiring or releasing a lock produces or consumes a permission:
a transfer of ownership takes place between the lock and the active thread.
This can be used to encode other patterns of ownership transfer. For example,
a (multiple-writer, multiple-reader) communication channel, which allows ex-
changing messages and permissions between threads, is easily implemented as
a FIFO queue, protected by a lock. Let us briefly describe the interface and
implementation of this user-defined abstraction.

Channels are described by the interface in Fig. 3. Line 1 advertises the ex-
istence of an abstract type channel a of channels along which values of type a
may be transferred. Line 2 advertises the fact that this type is duplicable. (We
explain below why the definition of channel satisfies this claim.) This means
that the permission to use a channel (for sending or receiving) can be shared

256 T. Balabonski, F. Pottier, and J. Protzenko

1 abstract channel a
2 fact duplicable (channel a)
3 val new: [a] () -> channel a
4 val send: [a] (channel a, a) -> ()
5 val receive : [a] (channel a) -> a

Fig. 3. An interface for communication channels

1 alias channel a =
2 (q: unknown , lock (q @ fifo a))
3 val new [a] () : channel a =
4 let q = queue:: create () in
5 let l : lock (q @ fifo a) = newlock () in
6 release l;
7 (q, l)
8 val send [a] (c: channel a, x: a) : () =
9 let (q, l) = c in

10 acquire l;
11 queue:: insert (x, q);
12 release l
13 val receive [a] (c : channel a) : a =
14 let (q, l) = c in
15 acquire l;
16 let rec loop (| q @ fifo a * l @ locked) : a =
17 match queue:: retrieve q with
18 | None -> loop ()
19 | Some { contents = x } -> release l; x
20 end
21 in loop ()

Fig. 4. A simple implementation of channels using a queue and a lock

between several threads. The type of send means that sending a value x along a
channel c of type channel a consumes the permission x @ a. Symmetrically, the
type of receive means that receiving a value x along such a channel produces
the permission x @ a. It is important to note that the type a of messages is not
necessarily duplicable. If it is not, then a transfer of ownership, from the sender
thread to the receiver thread, is taking place.

Fig. 4 implements channels using a FIFO queue and a lock. The lock guards
the exclusive permission to access the queue. In lines 1–2, the type channel a is
defined as an abbreviation for a pair2 of a value q of a priori unknown type (i.e.,
no permission is available for it) and a lock of type lock (q @ fifo a). Acquiring
the lock produces the permission q @ fifo a, so that, within a critical section, q
is recognized by the type-checker as a queue, which can be accessed and updated.

2 The dependent pair notation used in this definition is desugared into existential
types and singleton types, which are part of Mezzo’s core type discipline (§2).

Type Soundness and Race Freedom for Mezzo 257

The type-checker accepts the claim that the type channel a is duplicable because
it is defined as a pair of two duplicable types, namely unknown and lock (...).

Contributions. Mezzo appeared in a previous paper by Pottier and Protzenko [12].
That paper does not cover concurrency. It presents Mezzo’s type discipline in a
monolithic manner, and does not contain any details about the proof of type
soundness. In the present paper, Mezzo includes shared-memory concurrency, and
its presentation is modularly organized in several layers. We identify a kernel layer:
a concurrent, call-by-value λ-calculus extended with a construct for dynamic
thread creation (§2). In its typed version, it is a polymorphic, value-dependent
system, which enjoys type erasure: values exist at runtime, whereas types and per-
missions do not. The system provides a framework for handling duplicable as well
as affine permissions, and is equipped with a rich set of subsumption rules that are
analogous to separation logic entailment. Although this calculus does not have ex-
plicit side effects, we endow it with an abstract notion of machine state, and we
organize the proof of type soundness in such a way that the statements of the main
lemmas need not be altered as we introduce new forms of side effects. The next
two layers, which are independent of one another, are heap-allocated references
(§3) and locks (§4). Our definitions and proofs are machine-checked [2].

2 Kernel

2.1 Machine States and Resources

The kernel calculus does not include any explicit effectful operations. Yet, in
order to later add such operations without altering the statements of the main
lemmas that lead to the type soundness result, we build into the kernel calculus
the idea of a machine state s. At this stage, the nature of machine states is
unspecified. Later on, we make it partially concrete, by specifying that a machine
state is a tuple of a heap (§3), a lock heap (§4), and possibly more: the type of
machine states is informally considered open-ended. The execution of a program
begins in a distinguished machine state initial.

A program under execution is composed of multiple threads, each of which
has partial knowledge of the current machine state and partial rights to alter
this state. In the proof of type soundness, we account for this by working with
a notion of resource, of which one can think as the “view” of a thread [7]. At
this stage, again, the nature of resources is unspecified. One should think of
a resource as a partial, instrumented machine state: a resource may contain
additional information that does not exist at runtime, such as an access right
for a memory location (§3), or the invariant associated with a lock (§4).

We require resources to form a monotonic separation algebra [11, §10]. That
is, we assume the following:

– A composition operator � allows two resources (i.e., the views of two threads)
to be combined. It is total, commutative, and associative.

– A predicate, R ok, identifies the well-formed resources. It is preserved by
splitting, i.e., R1 � R2 ok implies R1 ok.

258 T. Balabonski, F. Pottier, and J. Protzenko

– A total function ·̂ maps every resource R to its core R̂, which represents the
duplicable (shareable) information contained in R.
• This element is a unit for R, i.e., R � R̂ = R.
• Two compatible elements have a common core, i.e., R1 � R2 = R and
R ok imply R̂1 = R̂.

• A duplicable resource is its own core, i.e., R � R = R implies R = R̂.
• Every core is duplicable, i.e., R̂ � R̂ = R̂.

– A relation R1 � R2, the rely, represents the interference that “other” threads
are allowed to inflict on “this” thread. For instance, the allocation of new
memory blocks, or of new locks, is typically permitted by this relation.
• This relation is reflexive.
• It preserves consistency, i.e., R1 ok and R1 � R2 imply R2 ok.
• It is preserved by core, i.e., R1 � R2 implies R̂1 � R̂2.
• Finally, it is compatible with �, in the following sense:

R1 � R2 � R′ R1 � R2 ok
∃R′1R′2, R′1 � R′2 = R′ ∧R1 � R′1 ∧R2 � R′2

We assume that a connection between machine states and resources is given
by a relation s ∼ R. In the case of heaps, for instance, this would mean that the
heap s and the instrumented heap R have a common domain and that, by erasing
the extra information in R, one finds s. We assume that the initial machine state
corresponds to a distinguished void resource, i.e., initial ∼ void. We assume that
s ∼ R implies R ok. No other assumptions are required at this abstract stage.

2.2 Syntax

Values, terms, types, and permissions form a single syntactic category. There
is a single name space of variables. Within this universe, defined in Fig. 5, we
impose a kind discipline, so as to distinguish the following sub-categories3.

The values v have kind value. They are the variables of kind value (the λ binder
introduces such a variable) and the λ-abstractions.

The terms t have kind term. They encompass values. Function application v t
and thread creation spawn v1 v2 are also terms (the latter is meant to execute
the function call v1 v2 in a new thread). The sequencing construct let x =
t1 in t2 is encoded as (λx.t2) t1. We reduce the number of evaluation contexts by
requiring the left-hand side of an application to be a value. This does not reduce
expressiveness: t1 t2 can be encoded as let x = t1 in x t2.

The soups, also written t, have kind soup. They are parallel compositions of
threads. A thread takes the form thread (t), where t has kind term.

The types T , U have kind type; the permissions P , Q have kind perm. We
write θ for a syntactic element of kind type or perm.
3 For the sake of conciseness, we omit the definition of the well-kindedness judgement,
and omit the well-kindedness premises in the definition of the typing judgement.
Instead, we use conventional metavariables (v, t, etc.) to indicate the intended kind
of each syntactic element.

Type Soundness and Race Freedom for Mezzo 259

κ ::= value | term | soup | type | perm (Kinds)

v, t, T, U, P,Q, θ ::= x (Everything)
| λx.t (Values: v)
| v t | spawn v v (Terms: t)
| thread (t) | t ‖ t (Soups: t)
| =v | T → T | (T | P) (Types: T , U)
| v@ T | empty | P ∗ P | duplicable θ (Permissions: P , Q)
| ∀x : κ.θ | ∃x : κ.θ (Types or permissions: θ)

E ::= v [] (Shallow evaluation contexts)
D ::= [] | E[D] (Deep evaluation contexts)

Fig. 5. Kernel: syntax of programs, types, and permissions

initial configuration new configuration side condition
s / (λx.t) v −→ s / [v/x]t
s / E[t] −→ s′ / E[t′] s / t −→ s′ / t′

s / thread (t) −→ s′ / thread (t′) s / t −→ s′ / t′

s / t1 ‖ t2 −→ s′ / t′1 ‖ t2 s / t1 −→ s′ / t′1
s / t1 ‖ t2 −→ s′ / t1 ‖ t′2 s / t2 −→ s′ / t′2
s / thread (D[spawn v1 v2]) −→ s / thread (D[()]) ‖ thread (v1 v2)

Fig. 6. Kernel: operational semantics

The types T include the singleton type =v, inhabited by the value v only; the
function type T → U ; and the conjunction T | P of a type and a permission.

The permissions P include the atomic form v@T , which can be viewed as
an assertion that the value v currently has type T , or can be used at type T ;
the trivial permission empty; the conjunction of two permissions, P ∗ Q; and the
permission duplicable θ, which asserts that the type or permission θ is duplicable.
A permission of the form duplicable θ is typically used as part of a constrained
quantified type. For instance, ∀x : type.(x | (duplicable x)) → . . . describes a
polymorphic function which, for every duplicable type x, is able to take an
argument of type x.

Universal and existential quantification is available in the syntax of both types
and permissions. The bound variable x has kind κ, which is restricted to be one
of value, type, or perm: that is, we never quantify over terms or soups.

2.3 Operational Semantics

The calculus is equipped with a small-step operational semantics (Fig. 6). The
reduction relation acts on configurations c, which are pairs of a machine state s
and a closed term or soup t. In the kernel rules, the machine state is carried
around, but never consulted or modified.

2.4 Typing Judgement and Interpretation of Permissions

The main two judgements, which depend on each other, are the typing judgement
R;K;P � t : T and the permission interpretation judgement R;K � P . The
kind environment K is a finite map of variables to kinds. It introduces the

260 T. Balabonski, F. Pottier, and J. Protzenko

Singleton

R;K;P � v : =v

Frame

R;K;P � t : T

R;K;P ∗ Q � t : T | Q

Function

̂R;K, x : value;P ∗ x@T � t : U

R;K; (duplicable P) ∗ P � λx.t : T → U

ForallIntro

t is harmless
R;K,x : κ;P � t : T

R;K;∀x : κ.P � t : ∀x : κ.T

ExistsIntro

R;K;P � v : [U/x]T

R;K;P � v : ∃x : κ.T

Cut

R2;K;P1 ∗ P2 � t : T
R1;K � P1

R1 � R2;K;P2 � t : T

ExistsElim

R;K, x : κ;P � t : T

R;K;∃x : κ.P � t : T

SubLeft

K � P1 ≤ P2 R;K;P2 � t : T

R;K;P1 � t : T

SubRight

R;K;P � t : T1 K � T1 ≤ T2

R;K;P � t : T2

Application

R;K;Q � t : T

R;K; (v@T → U) ∗ Q � v t : U

Spawn

R;K; (v1 @ T → U) ∗ (v2 @T) � spawn v1 v2 : �

Fig. 7. Kernel: typing rules

variables that may occur free in P , t, and T 4. The kind environment K contains
information that does not evolve with time (i.e., the kind of every variable)
whereas the precondition P contains information that evolves with time (i.e.,
the available permissions).

The typing judgement R;K;P � t : T states that, under the assumptions
represented by the resource R and by the permission P , the term t has type T .
One can view the typing judgement as a Hoare triple, where R and P form the
precondition and T is the postcondition. The resource R plays a role only when
reasoning about programs under execution: it is the “view” that each thread has
of the machine state. When type-checking source programs, R is void.

The permission interpretation judgement R;K � P means that R justifies,
or satisfies, the permission P . If one thinks of R as an (instrumented) heap
fragment and of P as a separation logic assertion, one finds that this judgement is
analogous to the interpretation of assertions in separation logic. It gives meaning,
in terms of resources, to the syntax of permissions.

The typing judgement is defined in Fig. 7. The first five rules are introduction
rules: they define the meaning of the type constructors. Singleton states that
v is one (and the only) inhabitant of the singleton type =v. Frame can be
applied to a value v or to a term t. In the latter case, it is a frame rule in the
sense of separation logic. Because every function type is considered duplicable,
a function body must be type-checked under duplicable assumptions. For this
reason, in Function, P is required to be duplicable and R is replaced in the
premise with its core R̂. ForallIntro can be applied to a value or to a term:
there is no value restriction. Once hidden state is introduced (§4), polymorphism
must be restricted to a syntactic category of harmless terms. For now, every term
is harmless. ExistsIntro is standard.

4 The parameter K is used only in the well-kindedness premises, all of which we have
elided in this paper. Nevertheless, we mention K as part of the typing judgement.

Type Soundness and Race Freedom for Mezzo 261

Atomic

R1;K;P � v : T R2;K � P

R1 � R2;K � v@T

Empty

R;K � empty

Star

R1;K � P1 R2;K � P2

R1 � R2;K � P1 ∗ P2

Duplicable

θ is duplicable
R;K � duplicable θ

Forall

R;K, x : κ � P

R;K � ∀x : κ.P

Exists

R;K � [U/x]P

R;K � ∃x : κ.P

Fig. 8. Kernel: the interpretation of permissions

MixStarIntroElim

(v@ T) ∗ P ≡ v@ T | P
Frame

v@T1 → T2 ≤ v@(T1 | P)→ (T2 | P)

Duplicate

(duplicable P) ∗ P ≤ P ∗ P
DupSingleton

empty ≤ duplicable =v
DupArrow

empty ≤ duplicable (T → U)

Fig. 9. Kernel: permission subsumption (a few rules only; K � omitted)

Cut moves information between the parameters P and R of a judgement. In
short, it says, if t is well-typed under the assumption P1, then it is well-typed
under R1, provided the resource R1 satisfies the permission P1.

Next, we find three non-syntax-directed rules, namely ExistsElim, SubLeft,
SubRight. An important part of the type soundness proof consists in proving
that every well-typed, closed value can be type-checked without using these rules.

Application is standard. Spawn states that spawn v1 v2 is type-checked just
like a function application v1 v2, except a unit value is returned in the original
thread. We write � for the type ∃x : value.=x.

We now review the interpretation of permissions (Fig. 8). These rules play a
role in the proof of type soundness, where they establish a connection between
the syntax of permissions and their intended meaning in terms of resources.
Empty, Star, Forall, Exists correspond to the interpretation of assertions in
separation logic. Atomic states, roughly, that the resource R satisfies the permis-
sion v@T if the value v has type T under R. Duplicable defines the meaning
of the permission duplicable θ in terms of a meta-level predicate, θ is duplicable.
The latter is defined by cases over the syntax of θ, as follows: a variable x is not
duplicable; a singleton type =v is duplicable; a function type T → U is duplica-
ble; a conjunction T | P is duplicable if T and P are duplicable; and so on. We
omit the full definition.

2.5 Subsumption

The permission subsumption judgement takes the form K � P ≤ Q. It is in-
ductively defined by many rules, of which, by lack of space, we show very few
(Fig. 9). MixStarIntroElim is a compact way of summing up the relationship
between the two forms of conjunction. Frame is analogous to the typing rule
by the same name (Fig. 7), and means that a function that performs fewer side
effects can be passed where a function that performs more side effects is allowed.

262 T. Balabonski, F. Pottier, and J. Protzenko

Thread

R;∅; empty � t : T

R � thread (t)

Par

R1 � t1 R2 � t2

R1 � R2 � t1 ‖ t2

JConf

s ∼ R R � t

� s / t

Fig. 10. Kernel: typing rules for soups and configurations

Duplicate states that if P is provably duplicable, then P can be turned into
P ∗ P . DupSingleton, DupArrow, and a family of similar rules (not shown)
allow constructing permissions of the form duplicable θ.

The subtyping judgement used in SubRight is defined in terms of permission
subsumption: we write K � T ≤ U when K,x : value � x@T ≤ x@U holds.

2.6 Typing Judgements for Soups and Configurations

The typing judgement for soups R � t (Fig. 10, first two rules) ensures that
every thread is well-typed (the type of its eventual result does not matter) and
constructs the composition of the resources owned by the individual threads. It
means that, under the precondition R, the thread soup t is safe to execute.

The typing judgement for configurations � s / t (Fig. 10, last rule) ensures
that the thread soup t is well-typed under some resource R that corresponds to
the machine state s. This judgement means that s / t is safe to execute.

2.7 Type Soundness

The kernel calculus is quite minimal: in its untyped form, it is a pure λ-calculus.
As a result, there is no way that a program can “go wrong”. Nevertheless, it is
useful to prove that (the typed version of) the kernel calculus enjoys subject
reduction and progress properties. Because abstract notions of machine state s,
resource R, and correspondence s ∼ R have been built in, our proofs are para-
metric in these notions. Instantiating these parameters with concrete definitions
(as we do when we introduce references, §3, and locks, §4) does not require any
alteration to the statements or proofs of the main lemmas. Introducing new prim-
itive operations (such as the operations that manipulate references and locks)
does not require altering the statements either; naturally, it does create new
proof cases.

For the sake of brevity, we state only the main two lemmas.

Theorem 1 (Subject reduction). If c1 −→ c2, then � c1 implies � c2.

Theorem 2 (Progress). � c implies that c is acceptable.

At this stage, a configuration is deemed acceptable if every thread either has
reached a value or is able to take a step. This definition is later extended (§4)
to allow for the possibility for a thread to be blocked (i.e., waiting for a lock).

Type Soundness and Race Freedom for Mezzo 263

v, t, T, P ::= ... (Everything)
| � (Values: v)
| newref v | !v | v := v (Programs: t)
| refm T (Types: T)

m ::= D | X (Modes)

Fig. 11. References: syntax

initial config. new configuration side condition
h / newref v −→ h++ v / limit h
h / !� −→ h / v h(�) = v
h / � := v′ −→ h[� �→ v′] / () h(�) = v

Fig. 12. References: operational semantics

3 References

We extend the kernel calculus with heap-allocated references. We show how the
type system is extended and prove that it ensures data-race freedom.

Syntax. We extend the syntax as per Fig. 11. Values now include the mem-
ory locations �, which are natural numbers. Terms now include the three stan-
dard primitive operations on references, namely allocating, reading, and writing.
Types now include the type refm T of references whose current content is a value
of type T . The mode m indicates whether the reference is shareable (duplica-
ble, D) or uniquely-owned (exclusive, X). Only the latter mode allows writing:
this is key to enforcing data-race freedom. The type ref T (§1) is short for refX T .

Operational Semantics. A heap h is a function of an initial segment of the
natural numbers to values. We write limit h for the first unallocated address
in the heap h. We write h++ v for the heap that extends h with a mapping
of limit h to the value v. If the memory location � is in the domain of h, then
h[� �→ v] is the heap that maps � to v and agrees with h elsewhere.

We specify that a machine state s is a tuple, one of whose components is a
heap h. In Fig. 12, we abuse notation and pretend that a machine state is a
heap; thus, the reduction rules for references are written in a standard way. In
Coq, we use overloaded “get” and “set” functions to mediate between the two
levels.

Assigning Types to Terms. The typing rules for the operations on references
appear in Fig. 13. A memory allocation expression newref v consumes the per-
mission v@T and produces a new memory location of type refm T with mode
m. Reading or writing a reference x requires a permission x@ refm T , which
guarantees that x is a valid memory location, and holds a value of type T . Be-
cause reading a reference creates a new copy of its content without consuming
x@ refm T , Read requires T to be duplicable. Write requires the exclusive mode
X, in which the permission x@ refX T ensures that “nobody else” has any knowl-
edge of (or access to) x. The rule allows strong update: the type of x changes to

264 T. Balabonski, F. Pottier, and J. Protzenko

NewRef

R;K; v@T � newref v : refm T
Read

R;K; (duplicable T) ∗ (v@ refm T) � !v : T | (v@ refm T)

Write

R;K; (v@ refX T) ∗ (v
′
@T

′
) � v := v

′
: � | (v@ refX T

′
)

Loc

R1;K � v@ T R2(�) = mv

R1 � R2;K;P � � : refm T

Fig. 13. References: typing rules for terms and values

DecomposeRef

v@ refm T
≡ ∃x : value.((v@ refm =x) ∗ (x@T))

CoRef

T ≤ U

v@ refm T ≤ v@ refm U

Fig. 14. References: subsumption rules

refX T ′, where T ′ is the type of v′. All three operations are harmless: there is no
adverse interaction between polymorphism and uniquely-owned references [4,11].

Subsumption. Subsumption is extended with new rules for reasoning about refer-
ences (Fig. 14). DecomposeRef introduces a fresh name x for the content of the
reference v. This allows separate reasoning about the ownership of the reference
cell and about the ownership of its content. This step is reversible. CoRef states
that ref is covariant. For uniquely-owned references, this is standard [4,11].

Resources. An instrumented value is �, N, D v, or X v, where v is a value. N
represents no information and no access right about a memory location, whereas
for any m ∈ {D,X}, m v represents full information (one knows that the value
stored there is v). D v (resp. X v) moreover indicates a shared read-only access
right (resp. an exclusive read/write access right). The type of instrumented val-
ues forms a monotonic separation algebra, where D v � D v is D v, N � X v and
X v � N are X v; N � N is N; and every other combination yields �.

A heap resource is either � or an instrumented value heap. Heap resources
form a monotonic separation algebra, whose � operation requires agreement of
the allocation limits (i.e., the next unallocated location is shared knowledge)
and is defined pointwise. A heap resource is essentially a heap fragment in the
sense of separation logic [13] and � is a union operation that requires disjointness
at mutable locations and agreement at immutable locations. We specify that a
resource R is a tuple of several components, one of which is a heap resource.

A notion of agreement between a value and an instrumented value is defined
by “v and m v agree”. This is lifted to agreement between a heap and a heap
resource, and is taken as the definition of correspondence between a machine
state and a resource, s ∼ R.

Assigning Types to Values. Loc (Fig. 13) is the introduction rule for the type
constructor ref. It splits R: intuitively, the type refm T represents the separate
ownership of the memory cell at address � and of the value v that is currently
stored there, to the extent dictated by the type T .

Type Soundness and Race Freedom for Mezzo 265

v, t, T, P ::= ... (Everything)
| k (Values: v)
| newlock | acquire v | release v (Programs: t)
| lock P | locked (Types: T)

Fig. 15. Locks: syntax

initial config. new configuration side condition
kh / newlock −→ kh++L / limit kh
kh / acquire k −→ kh[k �→ L] / () kh(k) = U
kh / release k −→ kh[k �→ U] / () kh(k) = L

Fig. 16. Locks: operational semantics

Data-Race Freedom. The auxiliary jugdement t accesses � for am (whose defini-
tion is omitted) means that the term t (which represents either a single thread
or a thread soup) is ready to access the memory location � for reading or writing,
as indicated by the access mode am, which is R or W. A racy thread soup t is
one where two distinct threads are ready to access a single memory location �
and at least one of these accesses is a write.

The key reason why racy programs are ill-typed is the following lemma. If a
thread soup t is well-typed with respect to R and is about to access �, then the
instrumented heap R must contain a right to access �; moreover, in the case of
a write access, this access right must be exclusive.

Lemma 3 (Typed access). Every memory access is justified by a suitable
access right.

R � t t accesses � for am R ok
∃m, ∃v, (R(�) = m v) ∧ (am = W⇒ m = X)

Theorem 4 (Data-race freedom). A well-typed configuration is not racy.

4 Locks

We extend the kernel calculus with dynamically-allocated locks. This extension
is independent of the previous one (§3), although references and locks are of
course intended to be used in concert.

Syntax. We extend the syntax as per Fig. 15. Values now include lock ad-
dresses k, which are implemented as natural numbers. (We allocate references
and locks in two separate heaps, with independent address spaces.) Terms now
include the three standard primitive operations on locks, namely allocating, ac-
quiring, and releasing. Types now include the type lock P of a lock whose invari-
ant is the permission P . The type lock P is duplicable, regardless of P . Types
now also include the type locked. This type is not duplicable. It serves as a proof
that a lock is held and (hence) as a permission to release the lock.

Operational Semantics. We specify that a machine state s comprises a lock
heap kh. A lock heap maps a valid lock address to a lock status: either U (un-
locked) or L (locked). The reduction rules for locks appear in Fig. 16.

266 T. Balabonski, F. Pottier, and J. Protzenko

NewLock

R;K;Q � newlock : ∃x : value.(=x | (x@ lock P) ∗ (x@ locked))

Acquire

R;K; v@ lock P � acquire v : � | P ∗ (v@ locked)
Release

R;K;P ∗ (v@ locked) ∗ (v@ lock P) � release v : �

Fig. 17. Locks: typing rules for terms

Lock

R(k) = (P,_)

R;K;Q � k : lock P

Locked

R(k) = (_,X)

R;K;Q � k : locked

Fig. 18. Locks: typing rules for values

Assigning Types to Terms. We create new locks in the locked state, because
this is more flexible: a lock of type lock P can be created before the invariant P
is established. The expression newlock creates a new lock, say x, and produces
the permissions x@ lock P and x@ locked5 (Fig. 17). The former guarantees that
x is a lock and records its invariant, whereas the latter guarantees that x is
held and represents a permission to release it. The expressions acquire x and
release x have the precondition x@ lock P , which guarantees that x is a valid lock
with invariant P . acquire x produces the permissions P and x@ locked, whereas,
symmetrically, release x requires (and consumes) these permissions.

The interaction between polymorphism and hidden state is unsound. When a
new lock is allocated by newlock, its invariant (a permission P) becomes hidden,
and it is necessary, at this point, to ensure that P is closed: newlock must not
be allowed to execute under ForallIntro. This is why this rule is restricted
to a class of harmless terms. This class does not contain any term of the form
D[newlock]; encompasses the values; and is stable by substitution and reduction.
It is nevertheless possible to use the typing rule NewLock with a permission P
that is not closed, as illustrated by hide (§1).

Resources. An instrumented lock status is a pair of a closed permission P and an
access right, one of �, N, and X. (These are the same as the instrumented values
of §3, except this time X does not carry an argument and D does not appear.)
The permission P is the lock invariant. The access right indicates whether re-
leasing the lock is permitted: N represents no right, whereas X means that the
lock is held and represents an exclusive right to release the lock. Instrumented
lock statuses form a monotonic separation algebra, where, e.g., (P,X) � (P,N)
is (P,X). That is, the lock invariant is shared (and immutable) information,
whereas the ownership of a held lock is exclusive.

A lock resource is � or an instrumented lock status heap. Lock resources form
a monotonic separation algebra. Agreement between a lock status and an instru-
mented lock status is defined by “U and (P,N) agree” and “L and (P,X) agree”.
This is lifted to agreement between a lock heap and a lock resource.
5 In surface Mezzo, the type of newlock is written (x: lock p | x @ locked).

Type Soundness and Race Freedom for Mezzo 267

To summarize, if we extend the kernel with both references (§3) and locks,
then a machine state s is a pair of a value heap and a lock heap; a resource R
is a pair of an instrumented value heap and an instrumented lock heap. The
agreement relation s and R agree requires agreement between each heap and
the corresponding instrumented heap.

Hidden State. One might expect the correspondence relation s ∼ R to be just
agreement, i.e., s and R agree, as in the previous section (§3). However, there is
something more subtle to locks. Locks introduce a form of hidden state: when
a lock is released, its invariant P disappears; when the lock is acquired again
(possibly by some other thread), P reappears, seemingly out of thin air. While
the lock is unlocked, the resource that justifies P is not available to any thread.

This leads us to refine our understanding of the correspondence s ∼ R. The
assertion should no longer mean that R is the entire instrumented (value/lock)
heap; instead, it should mean that R is the fragment of the instrumented heap
that is visible to the program, while the rest is hidden.

To account for this, we define the relation s ∼ R as follows.

s and R � R′ agree R′;∅ � hidden invariants of (R � R′)

s ∼ R

The machine state s represents the entire (value/lock) heap. Thus, the agree-
ment assertion s and R � R′ agree implies that R � R′ represents the entire
instrumented (value/lock) heap. We split this resource between a visible part R,
which appears in the conclusion, and a hidden part R′, which must justify the
conjunction of the invariants of all currently unlocked locks. This conjunction
is constructed by inspection of R � R′. We omit its definition, and denote it
hidden invariants of (R � R′).

Assigning Types to Values. The typing rules Lock and Locked (Fig. 18) assign
types to lock addresses, thus giving meaning to the types lockedP and locked.
Their premises look up the (lock) resource R. A lock address k whose invariant
(as recorded in R) is P receives the type lock P . A lock address k whose access
right (as recorded in R) is X receives the type locked.

Soundness. A configuration is now deemed acceptable if every thread either (i)
has reached a value; or (ii) is waiting on a lock that is currently held; or (iii) is
able to take a step. The statements of type soundness are unchanged. Well-typed
programs remain acceptable (§2.7) and are data-race free (§3).

5 Related Work

Mezzo has close ties with L3 [1]. Both are affine λ-calculi with strong references.
They distinguish between a pointer and a capability to dereference it; the former
is duplicable, the latter affine. Both record must-alias information via singleton
types. However, Mezzo is meant to be a surface language, as opposed to a low-
level calculus, and this leads to different designs. For instance, L3 has type-level

268 T. Balabonski, F. Pottier, and J. Protzenko

names � for values, whereas, for greater conciseness and simplicity, Mezzo allows
types to depend directly on values. Also, L3 views capabilities as unit values,
which one hopes can be erased by the compiler, whereas Mezzo views permissions
as purely static entities, and has no syntax for manipulating them.

Mezzo is strongly inspired by separation logic [13] in its treatment of heap-
allocated data and by concurrent separation logic [10] and its successors [8,3] in
its treatment of locks. Like second-order separation logic, as found at the core
of CaReSL [14], Mezzo supports higher-order functions and quantification over
permissions (assertions) and types (predicates). Our duplicable permissions are
analogous to Turon et al.’s necessary assertions, and our function hide (§1) is
essentially identical to their mkSync [14, §3.2].

Although the formalization of Mezzo was carried out independently, and in
part grew out of earlier work by the second author [11], it is in several ways
closely related to the Views framework [7]. In both cases, an abstract calcu-
lus is equipped with a notion of machine state; a commutative semigroup of
views, or resources; and a projection, or correspondence, between the two levels.
This abstract system is proven sound, and is later instantiated and extended to
accommodate features such as references, locks, and more.

We have emphasized the modular organization of the meta-theory of Mezzo.
When one extends the kernel in a new direction (references; locks), one must
of course extend existing inductive definitions with new cases and extend the
state with new components. However, one does not need to alter existing rules,
or to alter the statements of the main type soundness lemmas. Of course, one
sometimes must add new cases to existing proofs—only sometimes, though, as
it is often possible to express an Ltac “recipe” that magically takes care of the
new cases [5, chapter 16].

The manner in which this modularity is reflected in our Coq formalization
reveals pragmatic compromises. We use monolithic inductive types. Delaware
et al. [6] have shown how to break inductive definitions into fragments that
can be modularly combined. This involves a certain notational and conceptual
overhead, as well as a possible loss of flexibility, so we have not followed this route.
A moderate use of type classes allows us to access or update one component of
the state without knowing what other components might exist. A similar feature
is one of the key strengths of the MSOS notation [9]. As often as possible, we
write statements that concern just one component of the state, and in the few
occasions where it seems necessary to explicitly work with all of them at once, we
strive to write Ltac code in a style that is insensitive to the number and nature
of these components. It has been our experience that each extension (references;
locks) required very few undesirable amendments to the existing code base.

6 Conclusion

We have presented a formalisation of three basic layers of Mezzo, namely:

– a concurrent call-by-value λ-calculus, equipped with an affine, polymorphic,
value-dependent type-and-permission system;

Type Soundness and Race Freedom for Mezzo 269

– an extension with strong (i.e., affine, uniquely-owned) mutable references;
– an extension with dynamically-allocated, shareable locks.

This paper is accompanied with a Coq proof [2], which covers just these three
layers. It is about ten thousand (non-blank, non-comment) lines of code. Out of
this, a de Bruijn index library and a monotonic separation algebra library, both
of which are reusable, occupy about 2Kloc each. The remaining 6Kloc are split
between the kernel (4Kloc), references (1Kloc), and locks (1Kloc).

The full Mezzo language offers more features, including richer memory blocks,
carrying a tag and multiple fields; the possibility of turning a mutable block
into an immutable one; iso-recursive types; and adoption and abandon [12], a
mechanism that allows the unique-owner policy to be relaxed and enforced in
part at runtime. All of these features are covered by an older Coq proof. In the
future, we plan to port these features into the new proof without compromising
its modularity. In particular, we wish to revisit the treatment of adoption and
abandon so as to better isolate it from the treatment of memory blocks.

References
1. Ahmed, A., Fluet, M., Morrisett, G.: L3: A linear language with locations. Funda-

menta Informaticæ 77(4), 397–449 (2007)
2. Balabonski, T., Pottier, F.: A Coq formalization of Mezzo (December 2013),

http://gallium.inria.fr/~fpottier/mezzo/mezzo-coq.tar.gz
3. Buisse, A., Birkedal, L., Støvring, K.: A step-indexed Kripke model of separation

logic for storable locks. Electronic Notes in Theoretical Computer Science 276,
121–143 (2011)

4. Charguéraud, A., Pottier, F.: Functional translation of a calculus of capabilities. In:
International Conference on Functional Programming (ICFP), pp. 213–224 (2008)

5. Chlipala, A.: Certified Programming and Dependent Types. MIT Press (2013)
6. Delaware, B., Oliveira, B.C.D.S., Schrijvers, T.: Meta-theory à La Carte. In: Prin-

ciples of Programming Languages (POPL), pp. 207–218 (2013)
7. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views:

compositional reasoning for concurrent programs. In: Principles of Programming
Languages (POPL), pp. 287–300 (2013)

8. Gotsman, A., Berdine, J., Cook, B., Rinetzky, N., Sagiv, M.: Local reasoning
for storable locks and threads. Tech. Rep. MSR-TR-2007-39, Microsoft Research
(2007)

9. Mosses, P.D.: Modular structural operational semantics. Journal of Logic and Al-
gebraic Programming 60, 195–228 (2004)

10. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theoretical Computer
Science 375(1-3), 271–307 (2007)

11. Pottier, F.: Syntactic soundness proof of a type-and-capability system with hidden
state. Journal of Functional Programming 23(1), 38–144 (2013)

12. Pottier, F., Protzenko, J.: Programming with permissions in Mezzo. In: Interna-
tional Conference on Functional Programming (ICFP), pp. 173–184 (2013)

13. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
Logic in Computer Science (LICS), pp. 55–74 (2002)

14. Turon, A., Dreyer, D., Birkedal, L.: Unifying refinement and Hoare-style reasoning
in a logic for higher-order concurrency. In: International Conference on Functional
Programming (ICFP), pp. 377–390 (2013)

http://gallium.inria.fr/~fpottier/mezzo/mezzo-coq.tar.gz

Semantics for Prolog with Cut – Revisited

Jael Kriener1 and Andy King2

1 Centre de Recherche Commun INRIA-Microsoft Research, 91120 Palaiseau, France
2 School of Computing, University of Kent, UK

Abstract. This paper revisits the semantics for Prolog with cut from
the perspective of formulating a semantic base that is amenable to ab-
stract interpretation. It argues that such a semantics should separate
the question of divergence from questions pertaining to the number of
answers and determinacy. It also shows how to replace prefix ordering,
that is classically used in these semantics, with a domain that is set up
for abstraction, whilst simultaneously retaining a fixpoint construction,
albeit one in a stratified form.

1 Introduction

The cut is arguably the most widely used non-logical feature of Prolog; by giving
the programmer control over the search it is crucially important for making
Prolog programs efficient. Prolog programmers use the cut operator to literally
cut off all choice points that may lead to additional answers, once a goal has
succeeded. A cut that is used to (brutely) enforce determinacy in this way is
classified as red [14]. Cuts that are coloured green and blue are used, respectively,
to avoid repeating tests in clause selection and exploring clauses which would
ultimately fail. Such classifications have been introduced to aid manual reasoning
about the effects of cut in different contexts. Arguably, though, a more principled
approach would to be define a semantics that encapsulated the effect of cut in
a given context. Then, in principle, abstract interpretation [3] could be applied
to systematically derive from the semantics an abstract interpreter (a tool) for
program comprehension that could automatically classify different applications
of cut, and thereby support program development.

This is an attractive idea since the programmer would be insulated from the
conceptual complexity of the semantics, yet would benefit from its rigour. One
might expect that there is nothing left to be said on this subject: denotational
semantics for cut can be traced back at least twenty years [2,6,7], and analyses
for reasoning about determinacy and cut also have a long and distinguished
history [4,11,12,13,16].

Yet reasoning about cut does not sit comfortably with abstract interpretation;
something that has been exposed in our attempt to certify our own determinacy
inference tool [10] in Coq. First, semantically justifying a determinacy analysis
that is faithful in its handling of cut requires a computational (concrete) domain
that is amenable to abstraction, and that can express the existence of several
alternative possibilities and the order in which they occur. Second, a semantics

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 270–284, 2014.
c© Springer International Publishing Switzerland 2014

Semantics for Prolog with Cut – Revisited 271

should ideally separate the question of divergence from questions pertaining to
the number of answers and determinacy. Third, cut is not monotonic; in fact, it
can be used to define “not” as negation-by-failure. This means that defining a
fixpoint semantics is non-trivial, to say the least. The first and second of these
issues are subtle and therefore we amplify these points by way of an extended
introduction that motivates the design choices taken in the rest of paper.

1.1 Contributions and Outline

The paper makes the following contributions:

1. We discuss the state-of-the-art in denotational semantics for Prolog with cut,
addressing in particular their amenability to abstract interpretation.

2. We identify and correct mistakes in previously published work on this topic
[10], which were discovered by means of interactive theorem proving.

3. We present the first well-defined denotational semantics for cut designed to
serve as a basis for abstract interpretation.

4. Our definitions are accompanied by a collection of Coq-scripts, available at

http://www.cs.kent.ac.uk/people/rpg/jek26/thesis/

thus presenting the first formalisation of a semantics for Prolog with cut; the
work presented here forms part of a larger project of formalising abstract-
interpretation-based analyses for Prolog [8].

The paper is structured as follows: the remainder of Section 1 discusses the
state-of-the-art; Section 2 presents the domains underlying our constructions,
and in that context discusses mistakes and deficiencies in previously published
work; Section 3 briefly presents the required syntactic definitions and fixpoint
theory; Section 4 presents the semantics; and finally Section 5 concludes.

1.2 Domains for Abstraction

Existing semantics [2,6,7] are defined over computational domains of sequences
of substitutions or states, ordered by a prefix order (sequence a is less than
sequence b iff a is a (strict) prefix of b). These domains are not amenable to
abstraction. This is because off-the-shelf domains from logic programming typ-
ically represent sets of substitutions or, equivalently, sets of constraints. A se-
quence of substitutions is therefore naturally abstracted by a sequence of sets
of substitutions; cruder abstractions can be derived from sequences of sets by
applying a further layer of abstraction. (The alternative of using domains where
the elements are sets of sequences of single substitutions, appears to be less
straightforward to compactly represent, though a regular grammar might pro-
vide a natural representation for sequences of substitutions). However, working
with sets of substitutions, rather than sequences of single substitutions, engen-
ders a loss of precision which means that a goal can possibly generate additional
answers, hence a sequence of n sets of substitutions actually represents a se-
quence of m substitutions, where m ≤ n. This requires an order on sequences
based on set containment and sub-sequencing that is strictly more general than
the prefix order on sequences of individual substitutions.

http://www.cs.kent.ac.uk/people/rpg/jek26/thesis/

272 J. Kriener and A. King

1.3 Monotonicity and Divergence

These semantics achieve monotonicity in the presence of cut by establishing a
subtle connection between cut and divergence. To explain, consider the non-
monotone predicate liar :- (liar, !, fail) ; true. which is a Prolog
version of the liar paradox: it succeeds if it fails, and it fails if it succeeds.
The predicate liar exemplifies the non-monotonicity of cut. However, liar also
diverges. In the discussed semantics, the fact that liar diverges gives it a stable
value, namely ⊥. This way the problem that liar poses for the monotonicity
of a semantic operator is avoided. Divergence trumps non-monotonicity, so to
speak, and these semantics for cut are well-defined only because they propagate
divergence over any other semantic value, which allows them to avoid handling
the non-monotonicity of cut.

These semantics model both, divergence and the application of cut, by se-
quence truncation; when either occurs, all possible later alternatives are cut off
from a sequence of alternative answers. Truncation as a basic operation naturally
goes with the prefix order on sequences. Therefore, treating the cut in this style
requires one to work with the prefix order, which is an obstacle to abstraction,
as explained above.

Furthermore, divergence and determinacy are two independent properties of
programs which should be orthogonal in the semantics. Termination analysis for
Prolog with [17] and without [5] cut is an independent, well-developed field of
analysis within itself. In programming practice divergence comes first; there is
little correctness and no efficiency gained in knowing that a goal can succeed only
once, when it diverges. An analysis that reasons about cut is therefore only really
useful for goals which do not diverge. This suggests that an analysis for cut may
plausibly avoid the complexity connected with modelling divergence; this follows
the principle that an analysis should be based on a semantics that expresses the
property of interest, and ideally nothing else. Obviously, since divergence is a
complex issue, the conceptual simplicity gained by disentangling determinacy
from divergence is considerable. The classical semantics of [2,6,7] are not suited
for our task, since they do not allow the reasoning about cut to be separated
from reasoning about divergence.

We therefore choose to limit ourselves to non-divergent goals, and construct
a semantics for Prolog with cut with a similarly limited scope. The semantics
defined in Section 4 is defined for a subset of legal Prolog programs, namely
the terminating, cut-stratified ones (where cut-stratification is defined below in
Section 3). While this avoids much complication in the correctness argument, the
construction of the semantics itself is not trivial: without being able to resort to
divergence, non-monotone uses of cut have to be handled in some other way. The
remainder of this paper explains this construction and the novel structure of our
computational domain. In all, the work can be considered to be a revisit of our
own denotational semantics for Prolog with cut [10]; a report on the subtleties
that were exposed in a Coq formulation.

Semantics for Prolog with Cut – Revisited 273

2 Domains

In this section we incrementally construct the domain by a series of lifts. The
base domain of constraints, defined in Section 2.1, is lifted to downward closed
sets of ideals in Section 2.3. A generic sequence domain is defined in Section 2.4
which is then instantiated with ideals in Section 2.5. Over and above this, a
domain of parameteric constraints is introduced in Section 2.2 that is used, in
conjunction with a higher-order abstract syntax [15], to formalise the semantics.

2.1 Constraint Domain

Our domain of sequences is built on a domain of constraints con over a set of
variables V; con is partially ordered by entailment |=, and contains a least and
a greatest element false and true. This structure can be instantiated to the
domain of Herbrand constraints, or some enriched set of Herbrand constraints,
e.g. their extension by linear arithmetic, and hence can serve as a basis for ex-
pressing Prolog states. Note that any set of constraints is implicitly sorted into
subsets, based on the number of variables mentioned in a constraint: there are
two constraints over zero variables, 0con = {true, false}, 1con are unary con-
straints over a single variable, 2con are dyadic constraints over pairs of variables,
and so on.

2.2 Parameterised Constraint Domain

We will refer to the set of variables mentioned in a constraint as the vector
of variables that are constrained by the constraint. The Coq development that
underlies this study, uses a dependently typed representation of vectors and, as a
consequence, the representation of the type of constraints is also as a dependent
type. In fact, this dependency is propagated from here on all the way through
to the type of a program (see Section 3); everything is really a family of things
dependent on an arity. Hence we assume a family of partially ordered constraints,
depending on the number of constrained variables.

To formulate our semantics in a parametric (higher-order) setting (see Sec-
tion 4), we require a parametric notion of constraint. The idea is simply to bind
the free variables in a constraint with a λ, that is to say, to turn the constraint
into a function of its free variables; e.g. x = [], y = z becomes λxyz, x = [], y = z.
We call the family of types constructed in this fashion pcon. Like con, pcon
is implicitly sorted into subsets, with each nφ ∈ npcon expecting a vector of
n variables, and returning a constraint over them. Note that each nφ has in-
finitely many semantically equivalent siblings of higher arity: λx, x = [] ∈ 1pcon
is equivalent to λxy, x = [] ∈ 2pcon and λxyz, x = [] ∈ 3pcon and so forth.

In the following, we denote elements of con by small Greek letters θ, φ, ψ;
we denote the results of closing them, i.e. elements of pcon, by the same small
Greek letters with an underline to indicate that they are closed terms θ, φ, ψ; we
denote sets of (open) constraints by capital Greek letters Θ,Φ, Ψ .

274 J. Kriener and A. King

2.3 Ideal Domain

Next we define the domain C as the non-empty ideals, i.e. downward closed
sets, of constraints; the elements of C represent program states by capturing
all possible bindings to the complete set of program variables consistent with
a specific set of constraints; formally nC := {Θ ⊆ ncon | Θ "= ∅ ∧ ↓Θ = Θ}
where ↓Θ = {ψ ∈ ncon | ∃θ ∈ Θ.ψ |= θ}. Note that in the sequel ↓will denote
downward closure, and it will be used as a device for constructing ideals over
different partial orders. We exclude the empty set, because we would like {false}
to be the bottom element of the set, representing a failed state. The empty set is
not required at this level and excluding it will simplify the reasoning slightly. In
this representation of states, unification, and more generally constraint solving,
is straightforwardly modelled by set intersection, that is to say the result of
unifying variable x with Herbrand term t at state Θ is simply ↓{x= t} ∩Θ.

2.4 Generic Sequence Domain

We now show how to construct a complete lattice for sequences over a generic
partially ordered set by constructing an order that combines the notion of a
sub-sequence with point-wise comparison of the elements of two sequences. In
what follows, sequences are written as lists of elements, e.g. ‘[a, b, c]’; the result of
constructing a sequence from an element a and a sequence s is written as ‘a :: s’;
the result of concatenating two sequences s1 and s2 is written as ‘s1 ++s2’; the
result of mapping a function f : A→ B onto a sequence s of elements drawn from
A is written as ‘map f s’ ; the result of removing all occurrences of an element
a from a sequence s is written as ‘remove a s’; finally, the empty sequence is
denoted by ‘ε’.

Our sub-sequence order is defined as follows:

Definition 1 (combined subsequence order). Given a partial order �A on
A, the set Seq(A) of sequences over A is partially ordered by the relation:

∀ s1 s2 . s1 � s2 iff ∃ s3 . s3 � s2 ∧ |s3| = |s1| ∧ s1 �pw s3

where �pw is the point-wise lifting �A sequences of equal length, and t � s means
that t is a (possibly non-contiguous) sub-sequence of s, defined as follows:

∀ s . ε � s

∀ s s′ a . s � s′ ⇒ a :: s � a :: s′

∀ s s′ a . s � s′ ⇒ s � a :: s′

Whilst attempting to formalise in Coq the definitions and proofs published
in [9,10], we found the set of sequences of downward closed sets of partially
ordered constraints, as defined there is not a complete lattice. The mistake is in
the definition of a join over sequences of partially ordered elements. The paper
attempts to define a join in terms of a meet by means of a standard construction.
The meet is defined by first defining a binary operator ⊗ and then lifting it to
potentially infinite subsets. The operator ⊗ is defined as follows:

Semantics for Prolog with Cut – Revisited 275

Definition 2 (candidate meet over sequences [10, Section 2.1.2])

s1 ⊗ s2 =

{
s2 ⊗ s1 if |s2| < |s1|
remove { false } (⊔pw{s1 pw s3 | s3 � s2 ∧ |s3| = |s1|}

)
otherwise

where
⊔

pw and .pw are point-wise join and point-wise binary meet, which require
all elements in the joined set, resp. both operands of the binary meet, to have the
same length.

As defined above, s1 ⊗ s2 is not a greatest lower bound of s1 and s2. The
attempted proof that s1 ⊗ s2 is the greatest lower bound of s1 and s2 relies
on the unproven assertion that ⊗ is monotone. In fact, the following counter-
example shows it is not:

Example 1 (⊗ is not monotone). To construct a counter-example to the mono-
tonicity of ⊗, it is sufficient to provide three sequences s1, s2, and s3, such that
s1 � s2 and s1 ⊗ s3 "� s2 ⊗ s3. Take any partial order �A on A, and any two
elements a and b ∈ A, such that a �A b. Consider the two sequences [b, b] and
[b, b, a] and note that clearly [b, b] � [b, b, a]. Combining each of these with the
third sequence [a, b, b] by ⊗ gives: [a, b, b]⊗ [b, b] =

⊔
pw{ [a, b].pw [b, b], [b, b].pw

[b, b], [a, b] .pw [b, b] } =
⊔

pw{ [a, b], [b, b], [a, b] } = [b, b], and [a, b, b] ⊗ [b, b, a] =
[a, b, a]. Clearly [b, b] "� [a, b, a].

The problem lies in the fact that comparison between lists of different lengths
depends on shorter, but point-wise ‘maximal’ sub-sequences of lists, which may
get destroyed when point-wise combining lists of equal lengths by ⊗. To obtain
a complete lattice, in this paper we move instead to the domain of ideals of
sequences closed under our order:

Definition 3 (Seq↓(A)). Given any partial order A, the domain of ideals of
sequences of A is defined as:

Seq↓(A) := { S | S ⊆ Seq(A) ∧ S = ↓S }.
It follows that Seq↓(A) is a complete lattice if A is a partial order.

The definition of our semantics will require a notion of concatenation:

Definition 4 (concatenation over Seq↓(A)). Given a partial order A and
to downward closed sets of sequences over A, S1 and S2, we define the binary
operator +++ over Seq↓(A) as:

S1 +++ S2 := { s1 ++ s2 | s1 ∈ S1 ∧ s2 ∈ S2 }
Note that Seq↓(A) as defined on the basis of our combined sub-sequence order is
closed under +++, i.e. S1+++S2 = ↓(S1 +++S2), which is why the above definition
need not explicitly close the constructed set. Note further that S1 +++ S2 = ∅ if
either S1 = ∅ or S2 = ∅ . The following lemma states that the lifted concatenation
operators as defined above does not undermine the continuity of a semantic
operators defined in terms of it.

Lemma 1 (concatenation over Seq↓(A) is monotone and continuous)

– ∀ S1 S2 T1 T2 ∈ Seq↓(A).S1 ⊆ S2 ⇒ T1 ⊆ T2 ⇒ S1 +++ T1 ⊆ S2 +++ T2
– ∀ S1 S2 ∈ P(Seq↓(A)).(

⋃
S1)+++ (

⋃
S2) =

{
S1 +++S2 | S1 ∈ S1 ∧S2 ∈ S2

}

276 J. Kriener and A. King

2.5 Ideal Sequence Domain

Finally, we are in a position to define the domain underlying our denotational
semantics for Prolog with cut, as that of ideals of sequences of states: Seq↓(C).
We denote elements of Seq(C), i.e. individual sequences of states, by Θ,Φ,Ψ ;
we denote elements of Seq↓(C) by small Greek letters σ, τ . Note that Seq↓(C)
has two elements which are less than all its other elements: ⊥ = ∅ and { ε }
(= ↓{ε}), which is greater only than ⊥. Each has an intuitive interpretation: { ε }
represents failure and ⊥ represents divergence.

3 Syntax

As observed above, the cut is essentially a contextual construct: its effect, be it
to remove open possibilities (red), or just to improve efficiency by failing quicker
(blue, green), depends on its context. Rather than giving a meaning to cut itself,
therefore, we chose to treat it contextually. That is to say, the semantics we are
constructing will not have a rule for �!� like those in [2,6,7]. Rather, we construct
a semantics in which cut influences the evaluation of the goals in its context.
In order to do so in a uniform way, and avoid enumerating cases upon cases of
different uses, we normalise the use of cut syntactically.

3.1 Cut-Normal Form

This is achieved by normalising the format for predicate definitions: we assume
each predicate in the analysed program to be defined in a single clause of the form
p(x) ← G1;G2, !, G3;G4, where each Gi is a conjunctive goal (see Definition 5
below). We say a program in which each predicate is defined in this way is in
cut-normal form.

Example 2. For example consider the following pair of predicates:

memberchk(X,L) :- member(X,L), !.

member(X,[X|_]).

member(X,[_|L]) :- member(X,L).

The cut-normal program containing definitions of the predicates memberchk and
member looks like this:

memberchk(X, L) :- false;

(member(X, L), !, true);

false.

member(X, L) :- L = [X| _];

(false, !, true);

(L = [_| R], member(X, R)).

Working with programs in cut-normal form does not introduce a loss of gen-
erality, since all Prolog programs can be transformed into cut-normal form by
applying simple transformations which we do not elaborate on here (see [10] for
a more detailed discussion).

Semantics for Prolog with Cut – Revisited 277

3.2 Higher Order Abstract Syntax

The logic programming semantics community usually deals with the issue of free
variables by applying renaming operators, that are constructed from projections,
which are approximating in the abstract context. The functional community has
a similar, if somewhat harder, problem with name capturing; and has developed
an elegant non-approximating solution - higher order abstract syntax (HOAS)
[15]. Applying this approach in the logical context relieves us of the need to apply
renamings, and thus renders the corresponding requirements on the domains
superfluous and the definitions and proofs less complex. In particular: the case
of a predicate call becomes trivial throughout. Though not conceptually easier
then renaming, the HOAS-approach is much more natural when working within
the functional setting of Coq, because it is based on function abstraction and
application, native concepts in the Coq proof assistant, the tool we have adopted
to certify our proofs. Adopting this approach, the syntax of Prolog programs with
cut is defined in the HOAS-style as follows:

Definition 5 (cut-normal form Prolog syntax). Goals (of arity n) are con-
structed from parametric goals (pGoal) defined as follows:

pGoal :: Vn → Goal

:= tell θ | head p | conj pGoal pGoal

where V is the set of program variables, P is a set of predicate identifiers, p ∈ P,
and θ ∈ pcon. Predicates are defined from parametric goals in cut-normal form,
and programs are simply lists of predicates:

Predicate := p← pGoal ; pGoal , ! , pGoal ; pGoal .

Program := ε | Predicate.Program.

where again p ∈ P.

Notice that parametric goals are themselves functions. When applied to a vector
x, conj passes x down to its component parametric goals. In this way x is
propagated down to the atomic goals, where it is either used as an argument for
a parametric constraint under a tell, or is passed on to the body of the predicate
called by head. This propagation is realised by the semantic operators described
in Section 4.

3.3 Cut-Stratification

Before we define our semantics, there is the issue of non-monotonicity to be
addressed. As discussed previously, a motivation for defining a new semantics
for cut is to keep it conceptually separate from divergence. This means we cannot
resort to divergence in order to assign a stable meaning to predicates such as
the liar predicate, but rather have to address the non-monotonic aspect of it
directly.

278 J. Kriener and A. King

The influential work [1] addresses the parallel problem in the context of nega-
tion by banning the use of such viciously circular definitions. To this end, they
introduce the notion of stratification with respect to negation. In their view,
negation is used ‘safely’, if all predicates falling under the scope of a negation
are defined independently of the predicate in which that negation occurs. Given
the connection between cut and negation, it is natural to adopt a similar ap-
proach towards our analogous problem. We define stratification with respect to
cut as follows: cut is used safely, if the decision whether a cut is reached or not
depends only on predicates that are defined independently of the context of that
cut:

Definition 6 (cut-stratification). A program P is cut-stratified, if P can be
partitioned into n separate strata, such that P =

⋃n
0 Si, S0 is cut-free, and the

following two conditions are met for all 1 ≤ i ≤ n:

1. For all p ← G1;G2, !, G3;G4 in Si, all calls in G2 are to predicates in⋃
k<i Sk.

2. For all p← G1;G2, !, G3;G4 in Si, all calls in G1, G3 and G4 are to predi-
cates in

⋃
k≤i Sk.

A stratified program can be represented as a list of strata, each of which is itself
a program, i.e. a list of predicates in cut-normal form.

Notice that this restriction is, as far as we can see, purely theoretical. In the
worst case, a cut after a recursive call produces a situation like or similar to that
of the liar-predicate above, which has no stable semantics and diverges. In the
best case, such a cut is simply redundant. Either way, we have not been able
to come up with an example in which such a cut is put to good use; nor have
we been able to find such a cut in an actual Prolog program, which suggests
that treating cut in this way – separate from divergence and stratified – is an
appropriate mathematical way to capture programming practice.

3.4 Environments

The driving intuition behind the semantics described in Section 4 is to simulate
the effect that execution of a goal will have on a current state of computation. To
evaluate predicate calls, semantic summaries of their definitions are looked up in
an environment, a mapping from predicate identifiers and vectors of variables (to
construct goals from the parametric goals in a predicate definition) to continuous
functions from a current state to a new state; formally we define:

Definition 7 (poly-environment). The type of a (n-ary) poly-environment is
defined as follows (where ‘E’ stands for ‘environment’):

E := P→ Vn → Seq↓(C) c−→ Seq↓(C).
We use small German letters e and f as variables for poly-environments. We

write the result of updating f with a mapping from p to λx σ. σ′, which overwrites
any previous mapping f may contain for p, as: f[p �→ λx σ. σ′].

Semantics for Prolog with Cut – Revisited 279

Observe that environments model programs by mapping each predicate iden-
tifier to a function simulating the result of executing its (syntactic) definition.
Note too that the ‘inner’ functions from Seq↓(C) to Seq↓(C) are annotated with
c indicating that they are continuous. The reason is that the semantic operator
FG defined below (see Definition 8) is defined in terms of looking up predicate
summaries in environments. To guarantee continuity of FG, the results of these
look-ups need to be continuous.

The bottom poly-environment e⊥ maps predicate identifiers to a default value.
Following [2,6,7], we initialise e⊥ to map those predicate identifiers which have
definitions in the evaluated program to ⊥, and those which do not to { ε },
reflecting the fact that Prolog implementations generally fail with an error when
encountering a call to an undefined predicate; formally:

e⊥ := if p ∈ P then λ x σ.⊥ else λ xσ. { ε }

This case distinction is not reflected in the Coq scripts used to check the results.
We have the necessary structure in place and could easily reflect it; however,
experience has shown that it introduces considerable complexity, without much
gain: the interesting part of any fixpoint construction is that dealing with p ∈ P;
and since { ε } is well-behaved as a value, the additional case-split would have
amounted to little more than code duplication. (The situation would be differ-
ent, if, e.g. concatenation over Seq↓(C) contained a check that neither argument
is { ε }.)

3.5 Fixpoint Semantics of Stratified Programs

Given a stratified program represented as a list of strata P = P1, . . . , Pn, the
semantic operator FP at the heart of the denotational semantics will map each
stratum Pi to a growing function of type E→ E. A growing function [1] of type
f : E → E satisfies a relaxed monotonicity property of the form ∀fgh ∈ E.f �
g � h � f ↑ ω(f)⇒ f(g) � f(h) where � is the natural pointwise ordering on E.
Applying FP to each Pi constructs a sequence of growing functions FP1 , . . . ,FPn

which can be combined thus

f1 = FP1 ↑ ω(⊥), f2 = FP2 ↑ ω(f1), . . . , fn = FPn ↑ ω(fn−1)

Following [1], we then define iter(FP1 , . . . ,FPn , (⊥)) = fn. This poly-environment
is the join of all fi and therefore a good candidate for a well-defined fixpoint
semantics of stratified programs. Complete details for a formulation of this con-
struction can be found in [8].

There is, however, one potential worry to be discussed: given a stratified
program P , there are several representations of it as lists of strata, that is
to say, there are several ways of stratifying a stratified program. Since the
construction of iter(FP1 , . . . ,FPn , (⊥)) syntactically depends on the particular
stratification, this could mean that it is not uniquely defined. In response,
[1] show that the fixpoint construction is independent of these stratifications,

280 J. Kriener and A. King

i.e. that for two different stratifications P1, . . . , Pn and P ′1, . . . , P
′
n of P ,

iter(FP1 , . . . ,FPn , (⊥)) = iter(FP ′
1
, . . . ,FP ′

n
, (⊥)) (see [1, Theorem 11, p.116]).

Their proof is rather complex, however, the result is not surprising: though there
are several possible stratifications, it seems plausible that there is a canonical
stratification for each program, which could serve as the basis for a canonical,
thus unique, fixpoint.

4 Denotational Semantics for Prolog with cut

Now we are in a position to define the semantics of a cut-stratified Prolog pro-
grams as the stratified fixpoint of the sequence of growing functions induced by
the operator FP below. Note that due to its contextual treatment, the cut only
appears at the level of predicate definitions (FH). This means that goals can be
treated in the standard way; FG is monotone and continuous.

Definition 8. For a given stratified program P = P1, . . . , Pn, its semantics is
defined as a least fixpoint, namely iter(FP1 , . . . ,FPn , (⊥)), where each FPi =
FP �Pi �, and FP is defined as follows:

FP : Program→ E
g−→ E

FP �ε � f = f
FP �p← B : P � f = (FP �P � f)[p �→ FH �p← B � f]

where B = G1;G2, !, G3;G4.

FH : Predicate→ E→ Vn → Seq↓(C) c−→ Seq↓(C)
FH �p← B� f = λx σ.

⊔{
if {ε}⊂τ2 then τ1+++ τ3 else τ1+++ τ4 | Θ ∈ σ

}
where B = G1;G2, !, G3;G4.
and τ1 = FG �G1 x � f ↓{Θ}
and τ2 = FG �G2 x � f ↓{Θ}
and τ3 = FG �G3 x � f ↓{[Ψ] | (Ψ :) ∈ τ2}
and τ4 = FG �G4 x � f ↓{Θ}

FG : Goal → E→ Seq↓(C) c−→ Seq↓(C)
FG �tell φ x � fσ = ↓

{
remove {false}

(
map (λΘ. Θ . ↓{φ(x)})Θ

)
| Θ ∈ σ

}
FG �head p x � fσ = f p x σ
FG �conj G1G2 x � f σ= FG �G2 x � f (FG �G1 x � f σ)

Note that ‘⊂’ denotes strict subset; the predicate {ε} ⊂ τ2 checks whether τ2
contains a non-empty sequence. Before explaining in detail, let us attempt to
give an intuition by considering again the member- and memberchk- predicates:

Example 3. To illustrate, consider again the member(A,S) and memberchk(A,S)

(see Example 2 for their definitions in cut-normal form); suppose each is called
at a point in a program where there is only one possible set of bindings, namely

Semantics for Prolog with Cut – Revisited 281

A = 3 and S = [3, 2, 3], represented by a state σ = ↓{ [Θ] } where Θ = ↓{A =
3∧S = [3, 2, 3]}. Below fP = iter(FP1 ,FP2 , (⊥)), i.e. the semantics of the program
containing only these two predicates in two separate strata.

FG �headmember 〈A,S〉 � fP σ ⊇

↓{ [Θ . ↓{S = [A|]}]} +++ ↓{FG �headmember 〈A,S1〉 � fP ↓{ [Θ . ↓{S =
[|S1]}] } }

= ↓{
[
Θ . ↓{S = [A|]}, ↓{FG �headmember 〈A,S1〉 � fP ↓{ [Θ . ↓{S =

[|S1]}]}}
]
}

FG �headmemberchk 〈A,S〉 � fP σ =
⊔{

∅+++ ↓{[Ψ . ↓{true}]}
}

where Ψ : = FG �headmember 〈A,S〉 � fP σ
There are rather a lot of different brackets involved here. The important thing to
notice is that the longest sequence in the denotation of memberchk has exactly
one element, while the longest sequence in the denotation of member has more
than one element. Thus, the fact that the former is deterministic, while the latter
is not, is reflected in their denotations.

Now let us explain in more detail by examining each operator in turn:

4.1 Evaluation of Single Goals (FG)

FG �G � fσ evaluates the single goal G in the context of an environment f; it
simulates the effect that execution of G would have in the context of a program
summarised by f on the ‘current state’ σ. Note that FG propagates both failure
({false}), and divergence (⊥), as long as f does.

The clauses for head and conj should seem unsurprising; the former is a
straightforward look up of a predicate summary in the context; the latter models
consecutive execution of two goals by executing the left-most goal first, and
channelling the result as the new ‘current state’ into the execution of the other.

The clause for tell simulates the effect of adding a conditional constraint
φ(x) to the current store, by adding it in all alternatives, i.e. mapping the op-
eration of intersection with ↓{φ(x)} onto a sequence. Some of these alternatives
may fail when the additional constraint is posted, i.e. Θ . ↓{φ(x)} may reduce
to {false}. Rather than carrying these failures around, we remove them from
the sequence, making sure that only open branches are retained in the defining
sequence of the ideal.

4.2 Evaluation of Cut in Context (FH)

As stated above, FH does not evaluate cut by itself; rather, it reflects the effect
that it has on the execution of the goals around it. Cut is used in the context
of choice, i.e. disjunction. When encountering a disjunction in cut normal form,
the pre-cut disjunct G1 is not affected by the cut. However, depending on the
success of G2, the result of executing G1, τ1, is concatenated with one of two

282 J. Kriener and A. King

possible second disjuncts: If G2 fails, i.e. all possibilities open in σ are closed
after its execution and σ is reduced to {ε}, τ1 is concatenated with the result of
executing G4 in the initial state σ.

If G2 does not fail, i.e. the state after its execution has some open branches
left and is thus strictly larger than {ε}, only the first of these possibilities are
used for a basis of evaluating G3, and the result of that evaluation is appended
to τ1 . This implements the effect of the ‘red cut’ to remove open possibilities
for backtracking when it is reached.

Note that this treatment of cut is direct; that is to say, it does not require
additional technical machinery such as cut-flags [7,2] or cut-markers [6] which
propagate the effect of cut implicitly by means of a special concatenation op-
eration. The price we pay for this is a rather coarse over-approximation of di-
vergence: if any of the two open branches of a predicate diverges, the entire
predicate is taken to diverge.

4.3 Evaluation of Programs (FP)

Finally, FP �Prog � does the obvious thing: it evaluates each predicate P defined
in Prog in turn, and updates the constructed environment with a mapping from
the name of P to its evaluation under FH .

4.4 Note on Monotonicity

The reader may be wondering about the use of set comprehension and join in
the definition of FH . Prima facie, the definition should look as follows:

FH �p← G1;G2, !, G3;G4.� f = λx σ. if {ε}⊂τ2 then τ1+++ τ3 else τ1 +++ τ4
where τ1 = FG �G1 x � f σ
and τ2 = FG �G2 x � f σ
and τ3 = FG �G3 x � f ↓{[Θ] | (Θ :) ∈ τ2}
and τ4 = FG �G4 x � f σ

The reason why FH is not defined like this, is that it needs to construct a
continuous, hence monotone function from Seq↓(C) to Seq↓(C). The if-then-else
construct above is not monotone, since σ1 ⊆ σ2 does not in general guarantee
that {ε} ⊂ FG �G2 x � fσ1 iff {ε} ⊂ FG �G2 x � fσ2; it is possible for the left hand
side of this if-and-only-if to be false, and the right hand side true. The only
solution we see is to ‘push’ the if-then-else ‘down a level’ inside the set compre-
hension. By considering each element of a set of sequences individually, and then
working with the join of the outcomes, monotonicity is recovered. Note that it
is the same problem, on the level of the environment parameter, that stratifi-
cation solves: f1 � f2 is not sufficient to guarantee that {ε} ⊂ FG �G2 x � f1 σ
iff {ε} ⊂ FG �G2 x � f2 σ. This problem is solved by partitioning the input en-
vironment into a stable part f and a current part f. The stability of f means
it can be used to branch on in an if-then-else statement without compromising
monotonicity.

The reader will also have observed that the set comprehension in the definition
of FH has an unintuitive consequence: all non-empty σ contain sequences Θ for

Semantics for Prolog with Cut – Revisited 283

which {ε} "⊂ FG �G2 x � f ↓{Θ} (at the very least ε is such a sequence); some σ
also contain some sequences Ψ for which this is not the case, i.e. G2 x succeeds.
The fact that a σ which contains some such sequence Ψ will always contain
smaller Θs is a consequence of the move from sequences to ideals of sequences,
necessitated by the need for a complete lattice. It is a bad consequence, because
as a result the choice between τ3 and τ4 is not uniform for some σ.

Example 4 (FH is a strict over-approximation). To appreciate the effect consider
the conjunctive goal G = q(X, Y), X = 2., which calls the following predicate:

q(X, Y) :- false ; (X = 0, !, Y = 0) ; Y = 1.

The goal G will fail when neither X nor Y are bound; the cut will prevent the
third disjunct of q from ever being explored. However, in the domain of ideals
of sequences such a completely unconstrained state is represented by the ideals
↓{[↓{true}]}. This contains the sequence [↓{X = 2}] for which the third branch of
q is reachable so G will succeed with some σ, such that ↓{[↓{X = 2, Y = 1}]} ⊆ σ.

This is not desirable, however, it is not fatal in the context of an analysis
that over-approximates the number of solutions to a predicate, as in determi-
nacy analysis. FH does not adequately capture the behaviour of cut, but rather
over-approximates success coarsely. That is to say, it under-estimates the ex-
tent of determinacy gained by a cut: in reality q is more deterministic than FH

makes it out to be. Such an over-approximation is safe in the context of deter-
minacy analysis; any analysis which is correct wrt FH will certainly be correct
in practice. If anything, the conditions it derives will be overly strong.

5 Concluding Discussion

There is no doubt that formalisation in Coq has proved to be useful, albeit
in uncovering holes in a denotational semantics that we previously thought to
be well-defined (and which, incidentally, had undergone careful reviewing [10]).
The impetus for the work was initially to repair the join operator of sequences
of ideals, though this had far reaching implications for the whole semantics.

Formalisation, and specifically the act of trying to prove the monotonicity
of FH , also exposed a deficiency in the semantics: that FH is a coarse over-
approximation of the solution set. This seems to be an inevitable consequence of
working with a domain of downward closed sequences of downward closed ideals.
This is clear in hindsight, and suggests that the architect of a semantics is not
always the best person to prove their correctness of their semantics since they
can come with the baggage of their own false suppositions; at this stage proof
assistants have an important role to play.

We suspect that the problem of over-approximation can be solved by migrat-
ing to a domain of downward closed sequences of pairs of ideals where one ideal is
upward closed and the other ideal is downward closed which, in tandem, describe
a range of possible constraints, akin to an interval. This will be one direction
for future work. Another will be to investigate conditions under which it is pos-
sible to push if-then-else up one level in FH . Yet another direction will be to

284 J. Kriener and A. King

synthesise a determinacy analysis from the semantics and certify its correctness
relative to the semantics presented in this paper using a proof assistant, which
is the overarching goal of this work.

Acknowledgements. The authors would like to thank the reviewers for their
insightful comments.

References

1. Apt, K.R., Blair, H.A., Walker, A.: Towards a Theory of Declarative Knowledge. In:
Foundations of Deductive Databases and Logic Programming, pp. 89–148. Morgan
Kaufmann (1988)

2. Billaud, M.: Simple Operational and Denotational Semantics for Prolog with Cut.
Theoretical Computer Science 71(2), 193–208 (1990)

3. Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2&3), 103–179 (1992)

4. Dawson, S., Ramakrishnan, C.R., Ramakrishnan, I.V., Sekar, R.C.: Extracting De-
terminacy in Logic Programs. In: International Conference on Logic Programming,
pp. 424–438. MIT Press (1993)

5. De Schreye, D., Decorte, S.: Termination of logic programs: The never-ending story.
Joural of Logic Programming 19(20), 199–260 (1994)

6. de Vink, E.P.: Comparative Semantics for Prolog with Cut. Science of Computer
Programming 13(1), 237–264 (1989)

7. Debray, S.K., Mishra, P.: Denotational and Operational Semantics for Prolog. Jour-
nal of Logic Programming 5(1), 81–91 (1988)

8. Kriener, J.: Towards A Verified Determinacy Analysis for Prolog with cut. PhD
thesis, School of Computing, University of Kent (December 2013)

9. Kriener, J., King, A.: Appendix for RedAlert: Determinacy Inference for Prolog.
Technical Report 1-11, School of Computing, University of Kent, CT2 7NF, UK
(2011), http://arxiv.org/corr/home

10. Kriener, J., King, A.: RedAlert: Determinacy inference for Prolog. TPLP 11(4-5),
537–553 (2011)

11. Le Charlier, B., Rossi, S., Van Hentenryck, P.: An Abstract Interpretation Frame-
work which Accurately Handles Prolog Search-Rule and the Cut. In: Symposium
on Logic Programming, pp. 157–171. MIT Press (1994)

12. López-Garćıa, P., Bueno, F., Hermenegildo, M.V.: Automatic Inference of Deter-
minacy and Mutual Exclusion for Logic Programs Using Mode and Type Analyses.
New Generation Computing 28(2), 177–206 (2010)

13. Mogensen, T.Æ.: A Semantics-Based Determinacy Analysis for Prolog with Cut.
In: Bjorner, D., Broy, M., Pottosin, I.V. (eds.) PSI 1996. LNCS, vol. 1181, pp.
374–385. Springer, Heidelberg (1996)

14. O’Keefe, R.A.: The Craft of Prolog. MIT Press, Cambridge (1990)
15. Pfenning, F., Elliott, C.: Higher-Order Abstract Syntax. In: Wexelblat, R.L. (ed.)

PLDI, pp. 199–208. ACM (1988)
16. Sahlin, D.: Determinacy Analysis for Full Prolog. In: Symposium on Partial Eval-

uation and Semantics-Based Program Manipulation, pp. 23–30. ACM (1991)
17. Schneider-Kamp, P., Giesl, J., Ströder, T., Serebrenik, A., Thiemann, R.: Auto-

mated termination analysis for logic programs with cut. TPLP 10(4-6), 365–381
(2010)

http://arxiv.org/corr/home

Constraint Logic Programming for Hedges:

A Semantic Reconstruction

Besik Dundua1,3, Mário Florido1, Temur Kutsia2, and Mircea Marin4

1 DCC-FC & LIACC, University of Porto, Portugal
2 RISC, Johannes Kepler University, Linz, Austria

3 VIAM, Ivane Javakhishvili Tbilisi State University, Georgia
4 West University of Timişoara, Romania

Abstract. We describe the semantics of CLP(H): constraint logic pro-
gramming over hedges. Hedges are finite sequences of unranked terms,
built over variadic function symbols and three kinds of variables: for
terms, for hedges, and for function symbols. Constraints involve equa-
tions between unranked terms and atoms for regular hedge language
membership. We give algebraic semantics of CLP(H) programs, define a
sound, terminating, and incomplete constraint solver, and describe some
fragments of constraints for which the solver returns a complete set of
solutions.

1 Introduction

Hedges are finite sequences of unranked terms. These are terms in which function
symbols do not have a fixed arity: The same symbol may have a different num-
ber of arguments in different places. Manipulation of such expressions has been
intensively studied in recent years in the context of XML processing, rewriting,
automated reasoning, knowledge representation, just to name a few.

When working with unranked terms, variables that can be instantiated with
hedges (hedge variables) are a pragmatic necessity. In (pattern-based) program-
ming, hedge variables help to write neat, compact code. Using them, for instance,
one can extract duplicates from a list with just one line of a program. Several lan-
guages and formalisms operate on unranked terms and hedges. The programming
language of Mathematica [21] is based on hedge pattern matching. Languages
such as Tom [1], Maude [2], ASF+SDF [19] provide capabilities similar to hedge
matching (via associative functions). ρLog [17] extends logic programming with
hedge transformation rules. XDuce [13] enriches untyped hedge matching with
regular expression types. The Constraint Logic Programming schema has been
extended to work with hedges in CLP(Flex) [3], which is a basis for the XML pro-
cessing language XCentric [5] and a Web site verification language VeriFLog [4].

The goal of this paper is to describe a precise semantics of constraint logic
programs over hedges. We consider positive CLP programs with two kinds of
primitive constraints: equations between hedges, and membership in a hedge
regular language. Function symbols are unranked. Predicate symbols have a

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 285–301, 2014.
c© Springer International Publishing Switzerland 2014

286 B. Dundua et al.

fixed arity. Terms may contain three kinds of variables: for terms (term vari-
ables), for hedges (hedge variables), and for function symbols (function symbol
variables). Moreover, we may have function symbols whose argument order does
not matter (unordered symbols): a kind of generalization of the commutativity
property to unranked terms. As it turns out, such a language is very flexible
and permits to write short, yet quite clear and intuitive code: One can see
examples in Sect. 2. We call this language CLP(H), for CLP over hedges. It
generalizes CLP(Flex) with function variables, unordered functions, and mem-
bership constraints. Hence, as a special case, our paper describes the semantics
of CLP(Flex). Moreover, as hedges generalize strings, CLP(H) can be seen also
as a generalization of CLP over strings CLP(S) [18], string processing features
of Prolog III [6], and CLP over regular sets of strings CLP(Σ∗) [20].

Note that some of these languages allow an explicit size factor for string
variables, restricting the length of strings they can be instantiated with. We do
not have size factors, but can express this information easily with constraints.
For instance, to indicate the fact that a hedge variable x can be instantiated with
a hedge of minimal length 1 and maximal length 3, we can write a disjunction
x
.
= x∨x .

= (x1, x2)∨x .
= (x1, x2, x3), where the lower case x’s are term variables.

Flexibility and the expressive power of CLP(H) has its price: Equational con-
straints with hedge variables, in general, may have infinitely many solutions [15].
Therefore, any complete equational constraint solving procedure with hedge vari-
ables is nonterminating. The solver we describe in this paper is sound and termi-
nating, hence incomplete for arbitrary constraints. However, there are fragments
of constraints for which it is complete, i.e., computes all solutions. One such frag-
ment is so called well-moded fragment, where variables in one side of equations
(or in the left hand side of the membership atom) are guaranteed to be instanti-
ated with ground expressions at some point. This effectively reduces constraint
solving to hedge matching (which is known to be NP-complete [16]), plus some
early failure detection rules. Another fragment for which the solver is complete is
named after the Knowledge Interchange Format, KIF [12], where hedge variables
are permitted only in the last argument positions. We identify forms of CLP(H)
programs which give rise to well-moded or KIF constraints.

We can easily model lists with ordered function symbols and multisets with
the help of unordered ones. In fact, since we may have several such symbols,
we can directly model colored multisets. Constraint solving over lists, sets, and
multisets has been intensively studied, see, e.g., [10] and references there, and the
CLP schema can be extended to accommodate them. In our case, an advantage
of using hedge variables in such terms is that hedge variables can give immediate
access to collections of subterms via unification. It is very handy in programming.

The paper is organized as follows: We start with motivating examples in
Sect. 2. In Sect. 3 we describe the syntax of CLP(H). Sect. 4 is about seman-
tics. The constraint solver is introduced in Sect. 5. The operational semantics
of CLP(H) is described in Sect. 6. In Sect. 7, we introduce well-moded and KIF
fragments of CLP(H) programs, for which the constraint solver is complete. Due
to space restrictions, proofs of technical lemmas are put in the report [11].

Constraint Logic Programming for Hedges: A Semantic Reconstruction 287

2 Motivating Examples

In this section we show how to write programs in CLP(H). For illustration, we
chose two examples: the rewriting of terms from some regular hedge language
and an implementation of the recursive path ordering with status.

Example 1. The general rewriting mechanism can be implemented with two
CLP(H) clauses: The base case rewrite(x, y) ← rule(x, y) and the recursive
case rewrite(X(x, x, y), X(x, y, y)) ← rewrite(x, y), where x, y are term vari-
ables, x, y are hedge variables, and X is a function symbol variable. It is as-
sumed that there are clauses which define the rule predicate. The base case says
that a term x can be rewritten to y if there is a rule which does it. The recur-
sive case rewrites a nondeterministically selected subterm x of the input term
to y, leaving the context around it unchanged. Applying the base case before
the recursive case gives the outermost strategy of rewriting, while the other way
around implements the innermost one.

An example of the definition of the rule predicate is

rule(X(x1, x2), X(y))← x1 in f(a∗) · b∗, x1 .
= (x, z), y

.
= (x, f(z)),

where the constraint1 x1 in f(a∗)·b∗ requires x1 to be instantiated by hedges from
the language generated by the regular hedge expression f(a∗) · b∗ (that is, from
the language {f, f(a), f(a, a), . . . , (f, b), (f(a), b), . . . , (f(a, . . . , a), b, . . . , b), . . .}).

With this program, the goal ← rewrite(f(f(f(a, a), b)), x) has two answers:
{x �→ f(f(f(a, a), f))} and {x �→ f(f(f(a, a), f(b)))}.

Example 2. The recursive path ordering (rpo) >rpo is a well-known term order-
ing [8] used to prove termination of rewriting systems. Its definition is based on
a precedence order 5 on function symbols, and on extensions of >rpo from terms
to tuples of terms. There are two kinds of extensions: lexicographic >lex

rpo, when

terms in tuples are compared from left to right, and multiset >mul
rpo , when terms

in tuples are compared disregarding the order. The status function τ assigns to
each function symbol either lex or mul status. Then for all (ranked) terms s, t,
we define s >rpo t, if s = f(s1, . . . , sm) and

1. either si = t or si >rpo t for some si, 1 ≤ i ≤ m, or
2. t = g(t1, . . . , tn), s >rpo ti for all i, 1 ≤ i ≤ n, and either

(a) f 5 g, or (b) f = g and (s1, . . . , sn) >
τ(f)
rpo (t1, . . . , tn).

To implement this definition in CLP(H), we use the predicate rpo for >rpo

between two terms, and four helper predicates: rpo all to implement the com-
parison s >rpo ti for all i; prec to implement the comparison depending on
the precedence; ext to implement the comparison with respect to an extension

1 In the notation defined later, strictly speaking, we need to write this constraint
as f(a(eps)∗) · b(eps)∗, where eps is the regular expression for the empty hedge.
However, for brevity and clarity of the presentation we omit eps here.

288 B. Dundua et al.

of >rpo; and status to give the status of a function symbol. The predicate lex
implements >lex

rpo and mul implements >mul
rpo . The symbol 〈〉 is an unranked func-

tion symbol, and {} is an unordered unranked function symbol. As one can see,
the implementation is rather straightforward and closely follows the definition.
>rpo requires four clauses, since there are four alternatives in the definition:

1. rpo(X (x , x , y), x). rpo(X (x , x , y), y)← rpo(x , y).

2a. rpo(X (x),Y (y))← rpo all(X (x), 〈y〉), prec(X ,Y).

2b. rpo(X (x),X (y))← rpo all(X (x), 〈y〉), ext(X (x),X (y)).

rpo all is implemented with recursion:

rpo all(x , 〈 〉). rpo all(x , 〈y, y〉)← rpo(x , y), rpo all(x , 〈y〉).

The definition of prec as an ordering on finitely many function symbols is
straightforward. More interesting is the definition of ext :

ext(X (x),X (y))← status(X , lex), lex (〈x〉, 〈y〉).
ext(X (x),X (y))← status(X ,mul),mul({x}, {y}).

status can be given as a set of facts, lex needs one clause, and mul requires three:

lex (〈x , x , y〉, 〈x , y, z 〉)← rpo(x , y).

mul({x , x}, {}). mul({x , x}, {x , y})← mul({x}, {y}).
mul({x , x}, {y, y})← rpo(x , y), mul({x , x}, {y}).

That’s all. This example illustrates the benefits of all three kinds of variables we
have and unordered function symbols.

3 Preliminaries

For common notation and definitions, we mostly follow [14]. The alphabet A
consists of the following pairwise disjoint sets of symbols:

– VT: term variables, denoted by x, y, z, . . .,
– VH: hedge variables, denoted by x, y, z, . . .,
– VF: function variables, denoted by X,Y, Z, . . .,
– Fu: unranked unordered function symbols, denoted by fu, gu, hu, . . .,
– Fo: unranked ordered function symbols, denoted by fo, go, ho, . . .,
– P : ranked predicate symbols, denoted by p, q,

The sets of variables are countable, while the sets of function and predicate
symbols are finite. In addition, A also contains

– The propositional constants true and false, the binary equality predicate
.
=,

and the unranked membership predicate in.
– Regular operators: eps, ·,+, ∗.

Constraint Logic Programming for Hedges: A Semantic Reconstruction 289

– Logical connectives and quantifiers: ¬, ∨, ∧, →, ↔, ∃, ∀.
– Auxiliary symbols: parentheses and the comma.

Function symbols, denoted by f, g, h, . . ., are elements of the set F = Fu ∪Fo. A
variable is an element of the set V = VT ∪ VH ∪ VF. A functor, denoted by F , is
a common name for a function symbol or a function variable.

We define terms, hedges, and other syntactic categories over A as follows:

t ::= x | f(H) | X(H) Term

T ::= t1, . . . , tn (n ≥ 0) Term sequence

h ::= t | x Hedge element

H ::= h1, . . . , hn (n ≥ 0) Hedge

We denote the set of terms by T (F ,V) and the set of ground (variable-free)
terms by T (F). For readability, we put parentheses around hedges, writing, e.g.,
(f(a), x, b) instead of f(a), x, b. The empty hedge is written as ε. Besides the
letter t, we use also r and s to denote terms. Two hedges are disjoint if they do
not share a common element. For instance, (f(a), x, b) and (f(x), f(b, f(a))) are
disjoint, whereas (f(a), x, b) and (f(b), f(a)) are not.

An atom is a formula of the form p(t1, . . . , tn), where p ∈ P is an n-ary
predicate symbol. Atoms are denoted by A.

Regular hedge expressions R are defined inductively:

R ::= eps | (R · R) | R+ R | R∗ | f(R)

where the dot · stands for concatenation, + for choice, and ∗ for repetition.
Primitive constraints are either term equalities

.
= (t1, t2) or membership for

hedges in(H,R). They are written in infix notation, such as t1
.
= t2, and H in R.

Instead of F1()
.
= F2() and fo(H1)

.
= fo(H2) we write F1

.
= F2 and H1

.
= H2

respectively. We denote the symmetric closure of the relation
.
= by 2.

A literal L is an atom or a primitive constraint. Formulas are defined as usual.
A constraint is an arbitrary first-order formula built over true, false, and primitive
constraints. The set of free variables of a syntactic objectO is denoted by var(O).
We let ∃VN denote the formula ∃v1 · · · ∃vnN , where V = {v1, . . . , vn} ⊂ V . ∃VN
denotes ∃var(N)\VN . We write ∃N (resp. ∀N) for the existential (resp. universal)
closure of N . We refer to a language over the alphabet A as L(A).

A substitution is a mapping from term variables to terms, from hedge variables
to hedges, and from function variables to functors, such that all but finitely many
term, hedge, and function variables are mapped to themselves. Substitutions
extend to terms, hedges, literals, conjunction of literals.

A (constraint logic) program is a finite set of rules of the form ∀(L1∧· · ·∧Ln →
A), usually written as A ← L1, . . . , Ln, where A is an atom and L1, . . . , Ln are
literals (n ≥ 0). A goal is a formula of the form ∃(L1 ∧ · · · ∧Ln), n ≥ 0, usually
written as L1, . . . , Ln.

We say a variable is solved in a conjunction of primitive constraints K =
c1 ∧ · · · ∧ cn, if there is a ci, 1 ≤ i ≤ n, such that

290 B. Dundua et al.

– the variable is x, ci = x
.
= t, and x occurs neither in t nor elsewhere in K, or

– the variable is x, ci = x
.
= H , and x occurs neither in H nor elsewhere in

K, or
– the variable is F , ci = X

.
= F and X occurs neither in F nor elsewhere in

K, or
– the variable is x, ci = x in f(R) and x does not occur in membership

constraints elsewhere in K, or
– the variable is x, ci = x in R, x does not occur in membership constraints

elsewhere in K, and R has the form R1 · R2 or R∗1.

In this case we also say that ci is solved in K. Moreover, K is called solved if for
any 1 ≤ i ≤ n, ci is solved in it. K is partially solved, if for any 1 ≤ i ≤ n, ci is
solved in K, or has one of the following forms:

– Membership atom:
• fu(H1, x,H2) in fu(R).
• (x,H) in R where R has a form R1 · R2 or R∗1.

– Equation:
• (x,H1)

.
= (y,H2) where x "= y, H1 "= ε and H2 "= ε.

• (x,H1)
.
= (T, y,H2), where x "∈ var(T),H1 "= ε, and T "= ε. The variables

x and y are not necessarily distinct.
• fu(H1, x,H2)

.
= fu(H3, y,H4) where (H1, x,H2) and (H3, y,H4) are dis-

joint.

A constraint is solved, if it is either true or a non-empty quantifier-free dis-
junction of solved conjunctions. A constraint is partially solved, if it is either true
or a non-empty quantifier-free disjunction of partially solved conjunctions.

4 Semantics

For a given set S, we denote by S∗ the set of finite, possibly empty, sequences
of elements of S, and by Sn the set of sequences of length n of elements of
S. The empty sequence of symbols from any set S is denoted by ε. Given a
sequence s = (s1, s2, . . . , sn) ∈ Sn, we denote by perm(s) the set of sequences
{(sπ(1), sπ(2), . . . , sπ(n)) | π is a permutation of {1, 2, . . . , n}}.

A structure S for a language L(A) is a tuple 〈D, I〉 made of a non-empty
carrier set of individuals and an interpretation function I that maps each func-
tion symbol f ∈ F to a function I(f) : D∗ → D, and each n-ary predicate
symbol p ∈ P to an n-ary relation I(p) ⊆ Dn. Moreover, if f ∈ Fu then
I(f)(s) = I(f)(s′) for all s ∈ D∗ and s′ ∈ perm(s). A variable assignment
for such a structure is a function with domain V that maps term variables to
elements of D, hedge variable to elements of D∗, and function variables to func-
tions from D∗ to D.

The interpretations of our syntactic categories w.r.t. a structure S = 〈D, I〉
and variable assignment σ is shown below. The interpretations [[H]]S,σ of hedges
(including terms) is defined as follows (v ∈ VT ∪ VH):

[[(H1, . . . , Hn)]]S,σ := ([[H1]]S,σ, . . . , [[Hn]]S,σ), [[v]]S,σ := σ(v),

Constraint Logic Programming for Hedges: A Semantic Reconstruction 291

[[f(H)]]S,σ := I(f)([[H]]S,σ), [[X(H)]]S,σ := σ(X)([[H]]S,σ).

Note that terms are interpreted as elements of D and hedges as elements of
D∗. We may omit σ and write simply [[E]]S for the interpretation of a ground
expression E. The interpretation of regular expressions is defined as follows:

[[eps]]S := {ε}, [[f(R)]]S := {I(f)(H) | H ∈ [[R]]S},
[[R1 + R2]]S := [[R1]]S ∪ [[R2]]S, [[R1 · R2]]S := {(H1,H2) | H1 ∈ [[R1]]S,H2 ∈ [[R2]]S},

[[R∗]]S := [[R]]∗S.

Primitive constraints are interpreted w.r.t. a structureS and variable assignment
σ as follows: S |=σ t1

.
= t2 iff [[t1]]S,σ = [[t2]]S,σ; S |=σ H in R iff [[H]]S,σ ∈ [[R]]S;

and S |=σ p(t1, . . . , tn) iff I(p)([[t1]]S,σ, . . . , [[tn]]S,σ) holds. The notions S |= N
for validity of an arbitrary formula N in S, and |= N for validity of N in any
structure are defined in the standard way.

An intended structure is a structure I with the carrier set T (F) and interpre-
tations I defined for every f ∈ F by I(f)(H) := f(H). Thus, intended structures
identify terms and hedges by themselves. Also, if R is any regular hedge expres-
sion then [[R]]I is the same in all intended structures, and will be denoted by [[R]].
Other remarkable properties of intended structures I are: Variable assignments
are substitutions, I |=ϑ t1

.
= t2 iff t1ϑ = t2ϑ, and I |=ϑ H in R iff Hϑ ∈ [[R]].

Given a program P , its Herbrand base BP is, naturally, the set of all atoms
p(t1, . . . , tn), where p is an n-ary user-defined predicate in P and (t1, . . . , tn) ∈
T (F)n. Then an intended interpretation of P corresponds uniquely to a sub-
set of BP . An intended model of P is an intended interpretation of P that is
its model. We will write shortly H-structure, H-interpretation, H-model for in-
tended structures, interpretations, and models, respectively.

As usual, we will write P |= G if G is a goal which holds in every model of P .
Since our programs consist of positive clauses, the following facts hold:

1. Every program P has a least H-model, which we denote by lm(P,H).
2. If G is a goal then P |= G iff lm(P,H) is a model of G.

A partially solved form of a constraint C1 is a constraint C2 such that C2 is
partially solved and I |= ∀

(
C1 ↔ ∃var(C1)C2

)
for any H-structure I.

A ground substitution ϑ is a H-solution (or simply solution) of a constraint
C if I |= Cϑ for all H-structures I. The notation |=H C stands for I |= C for all
H-structures I.

Theorem 1. If the constraint D is solved, then I |= ∃D holds.

Proof. Since D is solved, each disjunct K in it has a form v1
.
= e1∧· · ·∧vn .

= en∧
v′1 in R1 ∧ · · · ∧ v′m in Rm where m,n ≥ 0, vi, v

′
j ∈ V and ei is an expression

corresponding to vi. Moreover, v1, . . . , vn, v
′
1, . . . , v

′
m are distinct and [[Rj]] "= ∅ for

all 1 ≤ j ≤ m. Assume σ′i is a grounding substitution for ei for all 1 ≤ i ≤ n, and
let e′j be an element of [[Rj]] for all 1 ≤ j ≤ m. Then σ = {v1 �→ e1σ

′
1, . . . , vn �→

enσ
′
n, v
′
1 �→ e′1, . . . , v

′
m �→ e′m} solves K. Therefore, I |= ∃D holds.

292 B. Dundua et al.

5 Solver

We consider constraints in DNF: K1 ∨ · · · ∨ Kn, where K’s are conjunctions of
of true, false, and primitive constraints. The solver defined below transforms a
constraint into a partially solved form. The solver is formulated in a rule-based
way. The number of rules is not small (as it is usual for such kind of solvers,
cf., e.g., [9,7]). To make their comprehension easier, we group them so that
similar ones are collected together in subsections. Within each subsection, for
better readability, they are put in frames. In the rules, K stands for a maximal
conjunction of primitive constraints. The rules are applied in any context.

5.1 Rules

Logical Rules. There are eight logical rules which are applied at any depth
in constraints, modulo associativity and commutativity of disjunction and con-
junction. N stands for any formula. We denote the whole set of rules by Log.

N ∧N � N N ∨N � N H
.
= H � true true ∧N � N

false ∧N � false false ∨N � N ε in R � true, if ε ∈ [[R]] true ∨N � true

Failure Rules. The first two rules perform occurrence check, rules (F3) and
(F5) detect function symbol clash, and rules (F4), (F6), (F7) detect inconsistent
primitive constraints. We denote the set of rules (F1)–(F7) by Fail.

(F1) x 2 (H1, F (H), H2) � false, if x ∈ var (H).

(F2) x 2 (H1, t,H2) � false, if x ∈ var (H1, t,H2).

(F3) f1(H1) 2 f2(H2) � false, if f1 "= f2.

(F4) ε 2 (H1, t,H2) � false.

(F5) f1(H) in f2(R) � false, if f1 "= f2.

(F6) ε in R � false, if ε "∈ [[R]],

(F7) (H1, t,H2) in eps � false.

DecompositionRules. Each of the decomposition rules operates on a conjunc-
tion of constraint literals and gives back either a conjunction of constraint literals
again, or constraints in DNF. We denote the set of rules (D1) and (D2) by Dec.

(D1) fu(H) 2 fu(T) ∧K �
∨

T ′∈perm(T)

(
H

.
= T ′ ∧ K

)
,

where H and T are disjoint.

(D2) (t1, H1) 2 (t2, H2) � t1
.
= t2 ∧H1

.
= H2, where H1 "= ε or H2 "= ε.

Deletion Rules. These rules delete identical terms or hedge variables from
both sides of an equation. We denote this set of rules by Del.

Constraint Logic Programming for Hedges: A Semantic Reconstruction 293

(Del1) (x,H1) 2 (x,H2) � H1
.
= H2.

(Del2) fu(H1, h,H2) 2 fu(H3, h,H4) � fu(H1, H2)
.
= fu(H3, H4).

(Del3) x 2 H1, x,H2 � H1
.
= ε ∧H2

.
= ε, if H1 "= ε.

Variable Elimination Rules. These rules eliminate variables from the given
constraint keeping only a solved equation for them. They apply to disjuncts. The
first two rules replace a variable with the corresponding expression, provided that
the occurrence check fails:

(E1) x 2 t ∧ K � x
.
= t ∧ Kϑ,

where x "∈ var (t), x ∈ var (K) and ϑ = {x �→ t}. If t is a variable
then in addition it is required that t ∈ var(K).

(E2) x 2 H ∧ K� x
.
= H ∧ Kϑ,

where x "∈ var(H), x ∈ var (K), and ϑ = {x �→ H}. If H = y for
some y, then in addition it is required that y ∈ var(K).

The next two rules (E3) and (E4) assign to a variable an initial part of the
hedge in the other side of the selected equation. The hedge has to be a sequence
of terms T in the first rule. The disjunction in the rule is over all possible splits
of T . In the second rule, only a split of the prefix T of the hedge is relevant and
the disjunction is over all such possible splits of T . The rest is blocked by the
term t due to occurrence check: No instantiation of x can contain it.

(E3) (x,H) 2 T ∧ K�
∨

T=(T1,T2)

(
x
.
= T1 ∧Hϑ .

= T2 ∧ Kϑ
)
,

where x "∈ var (T), ϑ = {x �→ T1}, and H "= ε.

(E4) (x,H1) 2 (T, t,H2) ∧ K �
∨

T=(T1,T2)

(
x
.
= T1 ∧H1ϑ

.
= (T2, t,H2)ϑ ∧ Kϑ

)
where x "∈ var (T), x ∈ var (t), ϑ = {x �→ T1}, and H1 "= ε.

Finally, there are three rules for function variable elimination. Their behavior
is standard:

(E5) X 2 F ∧ K� X
.
= F ∧ Kϑ,

whereX "= F ,X ∈ var (K), and ϑ = {X �→ F}. If F is a function
variable, then in addition it is required that F ∈ var (K).

(E6) X(H1) 2 F (H2) ∧ K� X
.
= F ∧ F (H1)ϑ

.
= F (H2)ϑ ∧ Kϑ.

where X "= F , ϑ = {X �→ F}, and H1 "= ε or H2 "= ε.

(E7) X(H1) 2 X(H2) ∧ K�
∨
f∈F

(
X

.
= f ∧ f(H1)ϑ

.
= f(H2)ϑ ∧ Kϑ

)
,

where ϑ = {X �→ f}, and H1 "= H2.

294 B. Dundua et al.

We denote the set of rules (E1)–(E7) by Elim.

Membership Rules. The membership rules apply to disjuncts of constraints
in DNF, to preserve the DNF structure. They provide the membership check,
if the hedge H in the membership atom H in R is ground. Nonground hedges
require more special treatment as one can see.

To solve membership constraints for term sequences of the form (t,H) with
t a term, we rely on the possibility to compute the linear form of a regular
expression, that is, to express it as a finite sum of concatenations of regular
hedge expressions that identify all plausible membership constraints for t and
H . Formally, the linear form of a regular expression R, denoted lf (R), is a finite
set of pairs (f(R1),R2) called monomials, which is defined recursively as follows:

lf (eps) = ∅. lf (R∗) = lf (R)7 R∗. lf (f(R)) = {(f(R), eps)}.
lf (R1 + R2) = lf (R1) ∪ lf (R2).

lf (R1 · R2) = lf (R1)7 R2, if ε /∈ [[R1]].

lf (R1 · R2) = lf (R1)7 R2 ∪ lf (R2), if ε ∈ [[R1]].

These equations involve an extension of concatenation 7 that acts on a linear
form and a regular expression and returns a linear form. It is defined as l7eps =
l, and l 7 R = {(f(R1),R2 · R) | (f(R1),R2) ∈ l,R2 "= eps} ∪ {(f(R1),R) |
(f(R1), eps) ∈ l}, if R "= eps.

The rules are as follows:

(M1) (x1, . . . , xn) in eps ∧ K� ∧n
i=1 xi

.
= ε ∧ Kϑ,

where ϑ = {x1 �→ ε, . . . , xn �→ ε}, n > 0.

(M2) (t,H) in R ∧ K �
∨

(f(R1),R2)∈lf (R)

(
t in f(R1) ∧H in R2 ∧ K

)
,

where H "= ε and R "= eps.

(M3) (x,H) in f(R) ∧ K�(
x in f(R) ∧H .

= ε ∧ K
)
∨
(
x
.
= ε ∧H in f(R) ∧ K

)
,

where H "= ε.

(M4) t in R∗ � t in R.

(M5) t in R1 · R2 ∧ K �
(
t in R1 ∧ ε in R2 ∧ K

)
∨
(
ε in R1 ∧ t in R2 ∧ K

)
.

(M6) t in R1 + R2 ∧ K�
(
t in R1 ∧ K

)
∨
(
t in R2 ∧K

)
.

(M7) (x,H) in R1 + R2 ∧ K �
(
(x,H) in R1 ∧ K

)
∨
(
(x,H) in R2 ∧ K

)
.

(M8) v in R1 ∧ v in R2 � v in R, where v ∈ VT ∪ VH, [[R]] = [[R1]] ∩ [[R2]].

Next, we have rules which constrain singleton hedges to be in a term language.
They proceed by the straightforward matching or decomposition of the struc-
ture. Note that in (M12), we require the arguments of the unordered function

Constraint Logic Programming for Hedges: A Semantic Reconstruction 295

symbol to be terms. (M10) and (M9) do not distinguish whether f is ordered or
unordered:

(M9) x in f(R) ∧ K� x
.
= x ∧ x in f(R) ∧K{x �→ x},where x is fresh.

(M10) X(H) in f(R) ∧ K� X
.
= f ∧ f(H){X �→ f} in f(R) ∧ K{X �→ f}.

(M11) fo(H) in fo(R) � H in R.

(M12) fu(T) in fu(R) ∧ K�
∨

T ′∈perm(T)

(
T ′ in R ∧ K

)
.

We denote the set of rules (M1)–(M12) by Memb.

5.2 The Constraint Solving Algorithm

In this section, unless otherwise stated, by a constraint we mean a formula
K1∨· · ·∨Kn, where K’s are conjunctions of true, false, and primitive constraints.
First, we define the rewrite step

step := first(Log, Fail, Del, Dec, Elim, Memb).

When applied to a constraint, step transforms it by the first applicable rule of
the solver, looking successively into the sets Log, Fail, Del, Dec, Elim, and Memb.

The constraint solving algorithm implements the strategy solve defined as a
computation of a normal form with respect to step:

solve := NF(step).

That means, step is applied to a constraint repeatedly as long as possible. It re-
mains to show that this definition yields an algorithm, which amounts to proving
that a constraint to which none of the rules Log, Fail, Del, Dec, Elim, and Memb
applies, is produced by NF(step) for any constraint C.

Theorem 2 (Termination of solve). solve terminates on any input constraint.

Proof (Sketch). We define a complexity measure cm(C) for quantifier-free con-
straints in DNF, and show that cm(C′) < cm(C) holds whenever C′ = step(C).

For a hedge H (resp. regular expression R), we denote by size(H) (resp.
by size(R)) its denotational length, e.g., size(eps) = 1, size(f(f(a)), x) = 4,
and size(f(f(a · b∗))) = 6. The complexity measure cm(K) of a conjunction of
primitive constraints K is the tuple 〈N1,M1, N2,M2,M3〉 defined as follows ({||}
stands for a multiset):

– N1 is the number of unsolved variables in K.
– M1 := {|size(H) | H in R ∈ K, H "= ε|}.
– N2 is the number of primitive constraints in the form v in R where v ∈ V

plus the number of primitive constraints in the form x in R in K .
– M2 := {|size(R) | H in R ∈ K|}.
– M3 := {|size(t1) + size(t2) | t1 .

= t2 ∈ K|}.

296 B. Dundua et al.

The complexity measure cm(C) of a constraint C = K1 ∨ · · · ∨ Kn is defined
as {|cm(K1), . . . , cm(Kn)|}. Measures are compared by the multiset extension of
the lexicographic ordering on tuples. The Log rules strictly reduce the measure.
For the other rules, the table below shows which rule reduces which component
of the measure, which implies termination of the algorithm solve.

Rule N1 M1 N2 M2 M3

(M1),(M10),(E1)–(E7) >
(F5),(F7),(M2),(M3), (M11), (M12) ≥ >
(M8), (M9) ≥ ≥ >
(F6),(M4)–(M7) ≥ ≥ ≥ >
(D1), (D2), (F1)–(F4), (Del1)–(Del3) ≥ ≥ ≥ ≥ >

The next lemma is needed to prove that the solver reduces a constraint to its
equivalent constraint:

Lemma 1. If step(C) = D, then |=H ∀
(
C ↔ ∃var(C)D

)
.

Theorem 3. If solve(C) = D, then |=H ∀
(
C ↔ ∃var(C)D

)
and D is a partially

solved form of C.

Proof. |=H ∀
(
C ↔ ∃var(C)D

)
follows from Lemma 1 and the following property:

If |=H ∀
(
C1 ↔ ∃var(C1)C2

)
and |=H ∀

(
C2 ↔ ∃var(C2)C3

)
, then |=H ∀

(
C1 ↔

∃var(C1)C3
)
. The property itself relies on the fact that |=H ∀

(
∃var(C1)∃var(C2)C3 ↔

∃var(C1)C3
)
, which holds because all variables introduced by the rules of the solver

in C3 are fresh not only for C2, but also for C1.
As for the partially solved form, by the definition of solve and Theorem 2,

D is in a normal form. Assume by contradiction that it is not partially solved.
By inspection of the solver rules, based on the definition of partially solved
constraints, we can see that there is a rule that applies to D. But this contradicts
the fact that D is in a normal form. Hence, D is partially solved. By Lemma 1,
we conclude that D is a partially solved form of C.

6 Operational Semantics of CLP(H)

In this section we describe the operational semantics of CLP(H), following the
approach for the CLP schema given in [14]. A state is a pair 〈G ‖ C〉, where G
is the sequence of literals and C = K1 ∨ · · · ∨ Kn, where K’s are conjunctions
of true, false, and primitive constraints. The definition of an atom p(t1, . . . , tm)
in program P , defnP (p(t1, . . . , tm)), is the set of rules in P such that the head
of each rule has a form p(r1, . . . , rm). We assume that defnP each time returns
fresh variants.

A state 〈L1, . . . , Ln ‖ C〉 can be reduced with respect to P as follows: Select a
literal Li. Then:

Constraint Logic Programming for Hedges: A Semantic Reconstruction 297

– If Li is a primitive constraint literal and solve(C ∧ Li) "= false, then it is
reduced to 〈L1, . . . , Li−1, Li+1, . . . , Ln ‖ solve(C ∧ Li)〉.

– If Li is a primitive constraint literal and solve(C ∧ Li) = false, then it is
reduced to 〈� ‖ false〉.

– If Li is an atom p(t1, . . . , tm), then it is reduced to

〈L1, . . . , Li−1, t1
.
= r1, . . . , tm

.
= rm, B, Li+1, . . . , Ln ‖ C〉

for some (p(r1, . . . , rm)← B) ∈ defnP (Li).
– If Li is a atom and defnP (Li) = ∅, then it is reduced to 〈� ‖ false〉.
A derivation from a state S in a program P is a finite or infinite sequence of

states S0 � S1 � · · ·� Sn � · · · where S0 is S and there is a reduction from
each Si−1 to Si, using rules in P . A derivation from a goal G in a program P
is a derivation from 〈G ‖ true〉. The length of a (finite) derivation of the form
S0 � S1 � · · · � Sn is n. A derivation is finished if the last goal cannot be
reduced, that is, if its last state is of the form 〈� ‖ C〉 where C is partially solved
or false. If C is false, the derivation is said to be failed.

7 Well-Moded and KIF Programs

In this section we consider syntactic restrictions that lead to well-moded and
KIF style CLP(H) programs. They are interesting, because the constraints that
appear in derivations for such programs can be completely solved by solve.

7.1 Well-Moded Programs

A mode for an n-ary predicate symbol p is a function mp : {1, . . . , n} −→ {i, o}.
If mp(i) = i (resp. mp(i) = o) then the position i is called an input (resp.
output) position of p. The predicates in and

.
= have only output positions. For

a literal L = p(t1, . . . , tn) (where p can be also in or
.
=), we denote by invar (L)

and outvar(L) the sets of variables occurring in terms in the input and output
positions of p.

A sequence of literals L1, . . . , Ln is well-moded if the following hold:

1. For all 1 ≤ i ≤ n, invar (Li) ⊆
⋃i−1

j=1 outvar(Lj).

2. If for some 1 ≤ i ≤ n, Li is t1
.
= t2, then var (t1) ⊆

⋃i−1
j=1 outvar(Lj) or

var (t2) ⊆
⋃i−1

j=1 outvar(Lj).
3. If for some 1 ≤ i ≤ n, Li is a membership atom, then the inclusion var(Li) ⊆⋃i−1

j=1 outvar(Lj) holds.

A conjunction of literals G is well-moded if there exists a well-moded sequence
of literals L1, . . . , Ln such that G =

∧n
i=1 Li modulo associativity and commu-

tativity. A formula in DNF is well-moded if each of its disjuncts is. A state
〈L1, . . . , Ln ‖ K1 ∨ · · · ∨ Kn〉 is well-moded, where K’s are conjunctions of true,
false, and primitive constraints, if the formula (L1 ∧ · · · ∧Ln ∧K1) ∨ · · · ∨ (L1 ∧
· · · ∧ Ln ∧ Kn) is well-moded. A clause A ← L1, . . . , Ln is well-moded if the
following hold:

298 B. Dundua et al.

1. For all 1 ≤ i ≤ n, invar (Li) ⊆
⋃i−1

j=1 outvar(Lj) ∪ invar (A).

2. outvar(A) ⊆
⋃n

j=1 outvar(Lj) ∪ invar (A).

3. If for some 1 ≤ i ≤ n, Li is H1
.
= H2, then var (H1) ⊆

⋃i−1
j=1 outvar(Lj) ∪

invar (A) or var(H2) ⊆
⋃i−1

j=1 outvar(Lj) ∪ invar(A).
4. If for some 1 ≤ i ≤ n, Li is a membership atom, then outvar(Li) ⊆⋃i−1

j=1 outvar(Lj) ∪ invar (A).

A program is well-moded if all its clauses are well-moded.

Example 3. In Example 1, if the first argument is the input position and the
second argument is the output position in the user-defined predicates, it is easy
to see that the program is well-moded. In Example 2, for well-modedness we
need to define both positions in the user-defined predicates to be the input ones.

Well-modedness is preserved by program derivation steps:

Lemma 2. Let P be a well-moded CLP(H) program and 〈G ‖ C〉 be a well-moded
state. If 〈G ‖ C〉� 〈G′ ‖ C′〉 is a reduction using clauses in P , then 〈G′ ‖ C′〉 is
also a well-moded state.

The solver reduces well-moded constrains either to a solved form of to false:

Lemma 3. Let C be a well-moded constraint and solve(C) = C′, where C′ "= false.
Then C′ is solved.

The theorem below is the main theorem for well-moded CLP(H) programs.
It states that any finished derivation from a well-moded goal leads to a solved
constraint or to a failure:

Theorem 4. Let 〈G ‖ true〉 � · · · � 〈� ‖ C′〉 be a finished derivation with
respect to a well-moded CLP(H) program, starting from a well-moded goal G. If
C′ "= false, then C′ is solved.

Proof. We prove a more general statement: Let 〈G ‖ true〉� · · ·� 〈G′ ‖ C′〉 be
a derivation with respect to a well-moded program, starting from a well-moded
goal G and ending with G′ that is either � or consists only of atomic formulas
without arguments (propositional constants). If C′ "= false, then C′ is solved.

To prove this statement, we use induction on the length n of the derivation.
When n = 0, then C′ = true and it is solved. Assume the statement holds when
the derivation length is n, and prove it for the derivation with the length n+ 1.
Let such a derivation be 〈G ‖ true〉� · · ·� 〈Gn ‖ Cn〉� 〈Gn+1 ‖ Cn+1〉. There
are two possibilities to make the last step:

1. Gn has a form (modulo permutation) L, p1, . . . , pn, where L is primitive con-
straint, the p’s are propositional constants, Gn+1 = p1, . . . , pn, and Cn+1 =
solve(Cn ∧ L).

2. Gn has a form (modulo permutation) q, p1, . . . , pn, where q and p’s are propo-
sitional constants, Gn+1 = p1, . . . , pn, and Cn+1 = Cn.

Constraint Logic Programming for Hedges: A Semantic Reconstruction 299

In the first case, note that by Lemma 2, 〈Gn ‖ Cn〉 is well-moded. Since the
p’s have no influence on well-modedness (they are just propositional constants),
Cn ∧ L is well-moded. By Lemma 3 we get that if Cn+1 = solve(Cn ∧ L) "= false
then Cn+1 is solved.

In the second case, since Gn consists of propositional constants only, by the
induction hypothesis we have that if Cn is not false, then it is solved. But Cn =
Cn+1. It finishes the proof.

7.2 Programs in the KIF Form

A term is in the KIF form (KIF-term) if hedge variables occur only below
ordered function symbols,2 and they occupy only the last argument position in
each subterm where they appear. For example, the term fo(x, fo(a, x), fu(x, b), x)
is in the KIF form, while fo(x, a, x), fu(x, fo(a, x), fu(x, b), x) are not. A hedge
(T, h) is in the KIF form, if T is a sequence of KIF-terms and h is either a
KIF-term or a hedge variable.

An atom p(t1, . . . , tn) (including t1
.
= t2) is in the KIF form, if each ti, 1 ≤

i ≤ n, is a KIF-term. A membership atom H in R is in the KIF-form, if H is
a KIF-hedge. A CLP(H) program is in the KIF form, if it is constructed from
literals in the KIF form. Note that the programs in examples 1 and 2 are not
KIF programs. One could rewrite them in this form, but the code size would
become a bit larger.

The notion of KIF form extends naturally to constraints and states, requiring
that all their literals should be in the KIF form. KIF-programs, like well-moded
ones discussed above, also show a good behavior. As the lemmas below state,
reductions preserve the KIF form and the solver is complete:

Lemma 4. Let P be a CLP(H) program in the KIF form and 〈G ‖ C〉 be a KIF-
state. If 〈G ‖ C〉� 〈G′ ‖ C′〉 is a reduction using clauses in P , then 〈G′ ‖ C′〉 is
also a KIF-state.

Lemma 5. Let C be a KIF-constraint and solve(C) = C′, where C′ "= false. Then
C′ is solved.

We illustrate how to solve a simple KIF constraint:

Example 4. Let C = f(x, x)
.
= f(g(y), a, y) ∧ x in a(eps)∗ ∧ y in a(eps) ·

a(b(eps)∗)∗. Then solve performs the following derivation:

C �2 x
.
= g(y) ∧ x .

= (a, y) ∧ (a, y) in a(eps)∗ ∧ y in a(eps) · a(b(eps)∗)∗

� x
.
= g(y) ∧ x .

= (a, y) ∧ y in a(eps)∗ ∧ y in a(eps) · a(b(eps)∗)∗

� x
.
= g(y) ∧ x .

= (a, y) ∧ y in a(eps) · a(eps)∗

The obtained constraint is solved.

2 If the language does not contain unordered function symbols, then hedge variables
are permitted under function symbols as well.

300 B. Dundua et al.

The theorem below is the main theorem for KIF programs and can be proved
similarly to the analogous theorem for well-moded programs (Theorem 4). It
states that any finished derivation from a KIF-goal with respect to a KIF-
program leads to a solved constraint or to a failure:

Theorem 5. Let 〈G ‖ true〉 � · · · � 〈� ‖ C′〉 be a finished derivation with
respect to a CLP(H) program in the KIF form, starting from a KIF-goal G. If
C′ "= false, then C′ is solved.

8 Conclusion

We defined a semantics for CLP(H) programs and introduced a solver for positive
equational and membership constraints over hedges. The solver, in general, is
incomplete. It is natural, since hedge unification is infinitary. We identified two
special cases of CLP(H) programs which lead to constraints, for which the solver
computes a complete set of solutions.

Acknowledgments. This research has been partially supported by LIACC
through Programa de Financiamento Plurianual of the Fundação para a Ciência
e Tecnologia (FCT), by the FCT fellowship (ref. SFRH/BD/62058/2009), by the
Austrian Science Fund (FWF) under the project SToUT (P 24087-N18), and the
Rustaveli Science Foundation under the grants DI/16/4-120/11 and FR/611/4-
102/12.

References

1. Balland, E., Brauner, P., Kopetz, R., Moreau, P.-E., Reilles, A.: Tom: Piggybacking
rewriting on Java. In: Baader, F. (ed.) RTA 2007. LNCS, vol. 4533, pp. 36–47.
Springer, Heidelberg (2007)

2. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007)

3. Coelho, J., Florido, M.: CLP (Flex): constraint logic programming applied to XML
processing. In: Meersman, R. (ed.) CoopIS/DOA/ODBASE 2004. LNCS, vol. 3291,
pp. 1098–1112. Springer, Heidelberg (2004)

4. Coelho, J., Florido, M.: VeriFLog: a constraint logic programming approach to
verification of website content. In: Shen, H.T., Li, J., Li, M., Ni, J., Wang, W.
(eds.) APWebWorkshops 2006. LNCS, vol. 3842, pp. 148–156. Springer, Heidelberg
(2006)

5. Coelho, J., Florido, M.: XCentric: logic programming for XML processing. In:
Fundulaki, I., Polyzotis, N. (eds.) WIDM, pp. 1–8. ACM (2007)

6. Colmerauer, A.: An introduction to Prolog III. Commun. ACM 33(7), 69–90 (1990)
7. Comon, H.: Completion of rewrite systems with membership constraints. Part II:

constraint solving. J. Symb. Comput. 25(4), 421–453 (1998)
8. Dershowitz, N.: Orderings for term-rewriting systems. Theor. Comput. Sci. 17,

279–301 (1982)

Constraint Logic Programming for Hedges: A Semantic Reconstruction 301

9. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000)

10. Dovier, A., Piazza, C., Rossi, G.: A uniform approach to constraint-solving for
lists, multisets, compact lists, and sets. ACM Trans. Comput. Log. 9(3) (2008)

11. Dundua, B., Florido, M., Kutsia, T., Marin, M.: Constraint logic programming for
hedges: A semantic reconstruction. RISC Report Series 14-02, RISC, University of
Linz, Austria (2014)

12. Genesereth, M.R., Fikes, R.E.: Knowledge Interchange Format, Version 3.0 Ref-
erence Manual. Technical Report Logic-92-1, Stanford University, Stanford, CA,
USA (1992)

13. Hosoya, H., Pierce, B.C.: Regular expression pattern matching for XML. J. Funct.
Program. 13(6), 961–1004 (2003)

14. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The semantics of constraint
logic programs. J. Log. Program. 37(1-3), 1–46 (1998)

15. Kutsia, T.: Solving equations with sequence variables and sequence functions. J.
Symb. Comput. 42(3), 352–388 (2007)

16. Kutsia, T., Marin, M.: Solving, reasoning, and programming in Common Logic.
In: SYNASC, pp. 119–126. IEEE Computer Society (2012)

17. Marin, M., Kutsia, T.: Foundations of the rule-based system ρlog. Journal of Ap-
plied Non-Classical Logics 16(1-2), 151–168 (2006)

18. Rajasekar, A.: Constraint logic programming on strings: Theory and applications.
In: SLP, p. 681 (1994)

19. van den Brand, M.G.J., et al.: The ASF+SDF meta-environment: A component-
based language development environment. In: Wilhelm, R. (ed.) CC 2001. LNCS,
vol. 2027, pp. 365–370. Springer, Heidelberg (2001)

20. Walinsky, C.: CLP(Σ∗): constraint logic programming with regular sets. In: Levi,
G., Martelli, M. (eds.) ICLP, pp. 181–196. MIT Press (1989)

21. Wolfram, S.: The Mathematica book, 5th edn. Wolfram-Media (2003)

How Many Numbers Can a Lambda-Term

Contain?

Pawe�l Parys�

University of Warsaw, Warsaw, Poland
parys@mimuw.edu.pl

Abstract. It is well known, that simply-typed λ-terms can be used to
represent numbers, as well as some other data types. We prove, however,
that in a λ-term of a fixed type we can store only a fixed number of
natural numbers, in such a way that they can be extracted using λ-
terms. More precisely, while representing k numbers in a closed λ-term
of some type we only require that there are k closed λ-terms M1, . . . ,Mk

such that Mi takes as argument the λ-term representing the k-tuple,
and returns the i-th number in the tuple (we do not require that, using
λ-calculus, one can construct the representation of the k-tuple out of the
k numbers in the tuple). Moreover, the same result holds when we allow
that the numbers can be extracted approximately, up to some error (even
when we only want to know whether a set is bounded or not).

1 Introduction

It is well known, that simply-typed λ-terms can be used to represent numbers, as
well as some other data types (for an introduction see e.g. [1]). In particular we
can represent pairs or tuples of representable data types. Notice however that
the sort1 of terms representing pairs is more complex than the sort of terms
representing the elements of pairs. We prove that, indeed, for representing k-
tuples of natural numbers for big k, we need terms of complex sort. For this
reason, for each sort α we define a number dim(α), the dimension of sort α. It
gives an upper bound on how large tuples of natural numbers can be represented
by a term of sort α.

To represent a natural number in a λ-term we use two constants: 0 of sort o,
and 1+ of sort o → o. We define the value of a closed term M of sort o as the
natural number saying how many times the constant 1+ appears in the β-normal
form of M . Notice that each β-normalized closed term of sort o is of the form
1+ (1+ (. . . (1+ 0) . . .)). Of course the number of constants 1+ used in a term
may change during β-reduction; we count it in the β-normal form of a term.

� The author holds a post-doctoral position supported by Warsaw Center of Math-
ematics and Computer Science. Work supported by the National Science Center
(decision DEC-2012/07/D/ST6/02443).

1 We use the name “sort” instead of “type” (except of the abstract) to avoid confusion
with the types introduced later, used for describing terms more precisely.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 302–318, 2014.
c© Springer International Publishing Switzerland 2014

How Many Numbers Can a Lambda-Term Contain? 303

It is not a problem to pack arbitrarily many natural numbers into a term, so
that for each list (arbitrarily long tuple) of natural numbers we obtain a different
term, even of a very simple sort. We however consider the opposite direction,
that is extracting numbers from terms. We do not require anything about how
a representation of a tuple can be created out of the numbers in the tuple. But
what we require is that using λ-terms we can extract the numbers from the
representation of the tuple. That is, while representing k-tuples in terms of sort
α, we want to have closed terms M1, . . . ,Mk, all of the same sort α → o. Then
the k-tuple extracted by M1, . . . ,Mk from a closed term N (representing a k-
tuple) of sort α is defined as the k-tuple of values ofM1 N, . . . ,Mk N . Our main
result is described by the following theorem.

Theorem 1. Let M1, . . . ,Mk be closed terms of sort α → o, for k > dim(α).
Let X be the set of all k-tuples which are extracted by M1, . . . ,Mk from any
closed term of sort α. Then X "= Nk. Moreover, there exist at most dim(α)
indices i ∈ {1, . . . , k} for which there exists a subset Xi ⊆ X containing tuples
with arbitrarily big numbers on the i-th coordinate, but such that all numbers on
all other coordinates are bounded.

In the last sentence of the theorem we say that the set X is, in some sense,
really at most dim(α)-dimensional. It follows that it is impossible to represent
k-tuples in terms of sort α with k > dim(α) even when we allow some approxi-
mation of the numbers in tuples. The next theorem states a similar property.

Theorem 2. Fix a sort α. We define an equivalence relation over closed terms
of sort α → o: we have M ∼ M ′ when for each sequence N1, N2, . . . of closed
terms of sort α, the sequences of values of the terms M N1,M N2, . . . and
M ′ N1,M

′ N2, . . . are either both bounded or both unbounded. Then this relation
has at most dim(α) equivalence classes.

Beside of the final result, we believe that the techniques used in the proofs
are interesting on their own. First, we introduce a type system which describes,
intuitively, whether a subterm adds something to the value of a term, or not.
Second, we describe a closed term of any sort α by a tuple (of arity depending
only on α) of natural numbers, which approximate all possible values which can
be extracted from the term. This description is compositional: the tuple forMN
depends only on the tuples for M and for N .

Related Work. Results in the spirit of this paper (but with significant differ-
ences) were an important part of the proof [2] that Collapsible Higher-Order
Pushdown Systems generate more trees than Higher-Order Pushdown Systems
without the collapse operation. However the appropriate lemmas of [2] were
almost completely hidden in the appendix, and stated in the world of stacks
of higher-order pushdown systems. Because we think that these results are of
independent interest, we present them here, in a more natural variant.

The types defined in our paper resemble the intersection types used in [3].
However, comparing to [3], we additionally have a productive/nonproductive
flag in our types.

304 P. Parys

One may wonder why we represent natural numbers using constants 1+ and 0,
instead of using the standard representation as terms of sort (o → o) → o→ o,
where the representation [k] of a number k is defined by [0] = λf.λx.x and
[k + 1] = λf.λx.f ([k] f x). Observe, however, that a number in the “standard”
representation can be easily converted to a number in our representation: the
term [k] 1+ 0 has value k. Since in this paper we only talk about extracting
numbers from terms (we never start from representations of numbers), all our
results also hold for the standard representation. We believe that thanks to
distinguishing the constants 0 and 1+ from other variables, the argumentation
in the paper becomes more clear.

Schwichtenberg [4] and Statman [5] show that the functions over natural num-
bers representable in the simply-typed λ-calculus are precisely the “extended
polynomials”. Notice that our results does not follow from this characterization,
since they describe only first-order functions (functions Nk → N). Similarly,
Zaionc [6] characterizes the class of functions over words which are represented
by closed λ-terms (for appropriate representation of words in λ-calculus).

Structure of the Paper. In Section 2 we define some basic notions. In Section 3
we introduce a type system which has two roles. First, it allows us to determine
which arguments of a term will be used (i.e. will not be ignored, as in λx.0).
Second, the type of a subterm says whether this subterm is productive, that
is whether it adds something to the value of the whole term. In Section 4 we
introduce the Krivine machine, and we define its variant which beside of terms
stores type judgements, and even derivation trees for them. This machine allows
us to trace how a derivation tree changes during β-reductions. Next, in Section
5, to configurations of the Krivine machine we assign some numbers, which
give a lower and an upper bound on the value of the term. To obtain them,
we basically count in how many places in derivation trees for type judgements
something “productive” happens. Finally, in Section 6 we conclude the proof of
our main theorems, and in Section 7 we give some further remarks.

2 Preliminaries

The set of sorts is constructed from a unique basic sort o using a binary operation
→. Thus o is a sort and if α, β are sorts, so is (α → β). The order of a sort is
defined by: ord(o) = 0, and ord(α→ β) = max(1 + ord(α), ord(β)).

A signature is a set of typed constants, that is symbols with associated sorts.
In our paper we use a signature consisting of two constants: 0 of sort o, and 1+
of sort o→ o.

The set of simply-typed λ-terms is defined inductively as follows. A constant
of sort α is a term of sort α. For each sort α there is a countable set of variables
xα, yα, . . . that are also terms of sort α. IfM is a term of sort β and xα a variable
of sort α then λxα.M is a term of sort α→ β. Finally, if M is of sort α→ β and
N is of sort α then MN is a term of sort β. As usual, we identify λ-terms up
to α-conversion. We often omit the sort annotation of variables, but please keep

How Many Numbers Can a Lambda-Term Contain? 305

in mind that every variable is implicitly sorted. A term is called closed when it
does not have free variables. For a termM of sort α we write ord(M) for ord(α).

3 Type System

In this section we define types which will be used to describe our terms. These
types differ from sorts in that on the left-hand side of →, instead of a single
type, we have a set of pairs (f, τ), where τ is a type, and f is a flag from {pr, np}
(where pr stands for productive, and np for nonproductive). The unique atomic
type is denoted r. More precisely, for each sort α we define the set T α of types
of sort α as follows:

T o = {r}, T α→β = P({pr, np} × T α)× T β ,

where P denotes the powerset. A type (T, τ) ∈ T α→β is denoted as
∧
T → τ ,

or
∧

i∈I(fi, τi) → τ when T = {(fi, τi) | i ∈ I}. Moreover, to our terms we will
not only assign a type τ , but also a flag f ∈ {pr, np} (which together form a pair
(f, τ)).

Intuitively, a term has type
∧
T → τ when it can return τ , while taking an

argument for which we can derive all pairs (of a flag and a type) from T . And,
we assign the flag pr (productive), when this term (while being a subterm of
a term of sort o) increases the value. To be more precise, a term is productive
in two cases. First, when it uses the constant 1+. Notice however that this 1+
has to be really used: there exist terms which syntactically contain 1+, but the
result of this 1+ is then ignored, like in (λx.0)1+. Second, a term which takes a
productive argument and uses it at least twice is also productive.

A type judgement is of the form Γ � M : (f, τ), where we require that the
type τ and the term M are of the same sort. The type environment Γ is a set
of bindings of variables of the form xα : (f, τ), where τ ∈ T α. In Γ we may
have multiple bindings for the same variable. By dom(Γ) we denote the set of
variables x which are binded by Γ , and by Γ 	pr we denote the set of those binding
from Γ which use flag pr.

The type system consists of the following rules:

∅ � 0 : (np, r) ∅ � 1+ : (pr, (f, r)→ r) x : (f, τ) � x : (np, τ)

Γ ∪ {x : (fi, τi) | i ∈ I} �M : (f, τ) x "∈ dom(Γ)

Γ � λx.M : (f,
∧
i∈I

(fi, τi)→ τ)
(λ)

Γ �M : (f ′,
∧
i∈I

(f•i , τi)→ τ) Γi � N : (f◦i , τi) for each i ∈ I

Γ ∪
⋃
i∈I

Γi �MN : (f, τ)
(@)

306 P. Parys

where in the (@) rule we assume that

– each pair (f•i , τi) is different (where i ∈ I), and
– for each i ∈ I, f•i = pr if and only if f◦i = pr or Γi	pr "= ∅, and
– f = pr if and only if f ′ = pr, or f◦i = pr for some i ∈ I, or |Γ 	pr| +∑

i∈I |Γi	pr| > |(Γ ∪
⋃

i∈I Γi)	pr|.
Let us explain the conditions of the (@) rule. The second condition says that
when M requires a “productive” argument, either we can apply an N which is
itself productive, or we can apply a nonproductive N which uses a productive
variable; after substituting something for the variable N will become productive.
The third condition says that MN is productive if M is productive, or if N is
productive, or if some productive free variable is duplicated.

Notice that strengthening of type environment is disallowed (i.e., Γ � M :
(f, τ) does not necessarily imply Γ, x : (g, σ) � M : (f, τ)), but contraction is
allowed (i.e., Γ, x : (g, σ), x : (g, σ) � M : (f, τ) implies Γ, x : (g, σ) �M : (f, τ),
since a type environment is a set of type bindings); such contractions will be
counted by duplication factors defined below.

A derivation tree is defined as usual: it is a tree labeled by type judgements,
such that each node together with its children fit to one of the rules of the type
system. Consider a node of a derivation tree in which the (@) rule is used, with
type environments Γ and Γi for i ∈ I. For a ∈ N, the order-a duplication factor
in such a node is defined as

|{(x : (pr, σ)) ∈ Γ | ord(x) = a}|+
∑
i∈I

|{(x : (pr, σ)) ∈ Γi | ord(x) = a}|−

− |{(x : (pr, σ)) ∈ Γ ∪
⋃
i∈I

Γi | ord(x) = a}|.

In other words, this is equal to the number of productive type bindings for
variables of order a together in all the type environments Γ , (Γi)i∈I , minus the
number of such type bindings in their union.

Example 3. Below we give two example derivation trees. In the first tree, we
denote by by the binding y : (pr, (pr, r)→ r), and by bz the binding z : (pr, r).

by � y : (np, (pr, r)→ r)

by � y : (np, (pr, r)→ r) bz � z : (np, r)

bz, by � y z : (np, r)
(@)

bz, by � y (y z) : (pr, r)
(@)

� 1+ : (pr, (pr, r)→ r)

� 1+ : (pr, (pr, r)→ r) x : (pr, r) � x : (np, r)

x : (pr, r) � 1+ x : (pr, r)
(@)

x : (pr, r) � 1+ (1+ x) : (pr, r)
(@)

� λx.1+ (1+ x) : (pr, (pr, r)→ r)
(λ)

The order-1 duplication factor of the root node of the first tree is 1, because the
binding for y is used in both subtrees (and y is of order 1); the other nodes have
duplication factors 0.

How Many Numbers Can a Lambda-Term Contain? 307

It is possible to derive six other type judgements containing the term y (y z):

y : (np, (pr, r)→ r), z : (pr, r) � y (y z) : (np, r),

y : (pr, (pr, r)→ r), y : (np, (pr, r)→ r), z : (pr, r) � y (y z) : (np, r),

y : (pr, (pr, r)→ r), y : (pr, (np, r)→ r), z : (np, r) � y (y z) : (np, r),

y : (pr, (np, r)→ r), y : (np, (np, r)→ r), z : (np, r) � y (y z) : (np, r),

y : (np, (pr, r)→ r), y : (pr, (np, r)→ r), z : (np, r) � y (y z) : (np, r),

y : (np, (np, r)→ r), z : (np, r) � y (y z) : (np, r).

4 Krivine Machine

The Krivine machine [7] is an abstract machine that computes the weak head
normal form of a λ-term, using explicit substitutions, called environments. Two
properties of the Krivine machine are important for us. First, the Krivine ma-
chine performs β-reductions starting from the head redex; this redex is always
a closed term. Second, the Krivine machine isolates closed subterms of a term
using closures; we will be deriving types for each closure separately. We could
perform β-reductions in this order and identify closed subterms also without the
Krivine machine, but we believe that using it simplifies the presentation.

An environment is a function mapping some variables into closures. A closure
is a pair C = (M,ρ), where M is a term and ρ is an environment. We use
the notation term(C) := M and env(C) := ρ. A configuration of the Krivine
machine is a pair (C, S), where C is a closure and S is a stack, which is a sequence
of closures (with the topmost element on the left).

We require that in a closure (M,ρ), the environment is defined for every free
variable of M ; moreover term(ρ(x)) has to be of the same sort as x. We also
require that in a configuration (C, S), when term(C) is of sort α1 → · · · →
αk → o, then the stack S has k elements C1, . . . , Ck, where term(Ci) is of
sort αi, for each i. Let us also emphasize that we only consider “finite” closures,
environments, configurations: an environment binds only finitely many variables,
and after going repeatedly to a closure in the environment of a closure we will
find an empty environment after finitely many steps.

The rules of the Krivine machine are as follows:

((λx.M, ρ), CS)
λ−→ ((M,ρ[x �→ C]), S),

((MN, ρ), S)
@−→ ((M,ρ), (N, ρ)S),

((x, ρ), S)
Var−−→ (ρ(x), S),

((1+, ρ), C)
1+−−→ (C, ε).

Intuitively, a closure C = (M,ρ) denotes the closed λ-term �C� which is
obtained from M by substituting for every its free variable x the λ-term �ρ(x)�.
Also a configuration (C, S) denotes a closed λ-term �C, S� of sort o; this is the
application �C��C1� . . . �Ck�, where S = C1 . . . Ck. It is not difficult to see that

308 P. Parys

– when (C, S)
@−→ (C′, S′) or (C, S)

Var−−→ (C′, S′), then �C, S� = �C′, S′�;

– when (C, S)
λ−→ (C′, S′), then �C, S� β-reduces to �C′, S′� (the head redex is

eliminated);

– when (C, S)
1+−−→ (C′, S′), then �C, S� = (1+ �C′, S′�) (in particular the value

of the new term is smaller by one than that of the old term).

From each configuration (C, S), as long as term(C) "= 0, a (unique) step can
be performed. Next, observe that each computation terminates after finite time.
Indeed, the 1+ rule changes the denoted term into one with smaller value (and the
value is not changed by the other rules). The λ rule performs β-reduction (and
the term is not changed by the @ and Var rules), so as well it can be applied only
finitely many times. The Var rule removes one closure from the configuration; the
total number of closures (computed recursively) in the configuration decreases.
The @ rule does not change this number, but increases the size of the stack, which
is necessarily bounded by the number of closures. It follows that to compute the
value of the term �C, S�, it is enough to start the Krivine Machine from (C, S),
and count how many times the 1+ rule was used.

In this paper we use an extension of the Krivine Machine, which also stores
derivation trees. An extended closure is a triple (M,D, ρ), where M is a term of
some sort α, and ρ is an environment (mapping variables to extended closures),
and D is a partial function from {pr, np} × T α to derivation trees. Beside of
term(C) and env(C) we use the notation der (C) := D, as well as tp(C) :=
dom(D). The root of the tree assigned by D to a pair (f•, τ) has to be labeled
by Γ � M : (f◦, τ) such that f• = pr if and only if f◦ = pr or Γ 	pr "= ∅.
Moreover, for each binding (x : (g, σ)) ∈ Γ we require that (g, σ) ∈ tp(ρ(x));
denote this condition by (�). The partial function D can be also seen as a set
of derivation trees: the pair (f, τ) to which a tree is assigned is determined by
its root (however this is not an arbitrary set: to each pair we assign at most one
tree).

A configuration of the extended Krivine machine is a pair (C, S), where C is an
extended closure such that |tp(C)| = 1, and S = C1 . . . Ck is a stack of extended
closures. We require that, when tp(C) = {(f,

∧
T1 → · · · →

∧
Tk → r)}, it holds

Ti ⊆ tp(Ci) for each i; denote this condition by (��).
The rules of the extended Krivine machine are as follows:

– ((λx.M,D, ρ), CS)
λ−→ ((M,D′, ρ[x �→ C]), S), where the only tree in D′ is

obtained from the only tree in D by cutting off the root;

– ((MN,D, ρ), S)
@−→ ((M,DM , ρ), (N,DN , ρ)S), where DM contains the sub-

tree of the tree in D which derives a type for M , and DN contains all other
subtrees (rooted in children of the root) of the tree in D;

– ((x,D, ρ), S)
Var−−→ ((term(ρ(x)), der (ρ(x))	dom(D), env(ρ(x))), S);

– ((1+, D, ρ), (M,D′, ρ′))
1+−−→ ((M,D′	{(f,r)}, ρ′), ε), when the only element of

dom(D) is (pr, (f, r)→ r).

Let π be the projection from configurations of the extended machine to con-
figurations of the standard one, which just drops the “der” component of every

How Many Numbers Can a Lambda-Term Contain? 309

extended closure. Notice that when (C, S) → (C′, S′) in the extended machine,
then π(C, S) → π(C′, S′) in the standard machine. Next, we observe that from
each configuration, as long as the term in its main closure is not 0, we can
perform a step (in particular, the result of the step satisfies all conditions of a
configuration).

– In the case of λx.M , the root of the derivation tree in D is labeled by
Γ � λx.M : (f,

∧
i∈I(fi, τi) → τ). This tree begins by the (λ) rule, so

x "∈ dom(Γ), and the only child of the root (which becomes the root of
the new tree) is labeled by Γ ∪ {x : (fi, τi) | i ∈ I} � M : (f, τ). Notice
that (due to conditions (�) and (��)) for each binding (y : (g, σ)) ∈ Γ we
have (g, σ) ∈ tp(ρ(y)) = tp(ρ[x �→ C](y)), and for each i ∈ I we have
(fi, τi) ∈ tp(C) = tp(ρ[x �→ C](x)), which gives condition (�) for the new
closure.

– In the application case, the derivation tree in D uses the (@) rule in the
root. Thus one child of the root is labeled by Γ �M : (f ′,

∧
i∈I(f

•
i , τi)→ τ),

and the other children by Γi � N : (f◦i , τi) for each i ∈ I, where f•i = pr
if and only if f◦i = pr or Γi	pr "= ∅. It follows that dom(DN) = {(f•i , τi) |
i ∈ I}. Simultaneously dom(DM) = {(f ′•,

∧
i∈I(f

•
i , τi) → τ)} for some f ′•,

so condition (��) holds for the new configuration. The definition of the (@)
rule ensures that each pair (f•i , τi) is different, so DN is really a (partial)
function. Condition (�) for both the new closures is ensured by condition
(�) for the original closure, since the type environment in the root of the
derivation tree in D is a superset of Γ and of each Γi.

– In the Var case, the root of the tree in D is labeled by x : (f, τ) � x :
(np, τ), where dom(D) = {(f, τ)}. Thus condition (�) for (x,D, ρ) ensures
that dom(D) ⊆ tp(ρ(x)).

– In the 1+ case, the root of the tree in D is labeled by ∅ � 1+ : (pr, (f, r)→ r),
so dom(D) is as in the rule, and condition (��) ensures that (f, r) ∈ dom(D′).

Example 4. We give an example computation of the extended Krivine machine.
In our closures we use fragments of the derivation trees given in Example 3. By
T1, T2, T3, U1, U2, U3, U4 we denote the subtrees of these trees, where:

– T1 derives y : (pr, (pr, r)→ r), z : (pr, r) � y (y z) : (pr, r),

– T2 derives y : (pr, (pr, r)→ r) � y : (np, (pr, r)→ r),

– T3 derives y : (pr, (pr, r)→ r), z : (pr, r) � y z : (np, r),
– U1 derives � λx.1+ (1+ x) : (pr, (pr, r)→ r),

– U2 derives x : (pr, r) � 1+ (1+ x) : (pr, r),

– U3 derives � 1+ : (pr, (pr, r)→ r),

– U4 derives x : (pr, r) � 1+ x : (pr, r).

Additionally, we use the following derivation tree, which we denote V1.

� 1+ : (pr, (np, r)→ r) � 0 : (np, r)

� 1+ 0 : (pr, r)
(@)

310 P. Parys

To shorten the notation, we denote:

ρ := [y �→ (λx.1+ (1+ x), {U1}, ∅), z �→ (1+ 0, {V1}, ∅)],
η := [x �→ (y z, {T3}, ρ)].

The extended Krivine machine can transition as follows:

((y (y z), {T1}, ρ), ε) @−→ ((y, {T2}, ρ), (y z, {T3}, ρ)) Var−−→
Var−−→ ((λx.1+ (1+ x), {U1}, ∅), (y z, {T3}, ρ)) λ−→ ((1+ (1+ x), {U2}, η), ε) @−→
@−→ ((1+, {U3}, η), (1+ x, {U4}, η)) 1+−−→ ((1+ x, {U4}, η), ε) @−→ . . .

Next, we observe that we can really add some derivation trees to a
configuration.

Lemma 5. For each configuration (C, S) of the standard Krivine machine there
exists a configuration (C′, S′) of the extended machine such that π(C′, S′) =
(C, S).

Proof. We use induction on the length of the longest computation starting from
the configuration (C, S) (this computation is unique and has finite length). We
have five cases depending on the form of the term in the main closure. Before
starting the case analysis, we observe that for each closure B there exists an
extended closure B′ such that π(B′) = B. To construct such B′ we can add
the partial function with empty domain everywhere inside B. (This cannot be
applied for a configuration: the tp of the main closure of a configuration is
required to have size 1).

Consider first a configuration of the form ((0, ρs), ε). Then to the main closure
we can add the derivation tree using the rule ∅ � 0 : (np, r), and everywhere
inside ρs we can add the partial function with empty domain.

Next, consider a configuration of the form ((λx.M, ρs), CsSs). Its successor
is ((M,ρs[x �→ Cs]), Ss), which by the induction assumption can be extended
to a configuration ((M,D′, ρ[x �→ C]), S) of the extended machine. Potentially
ρs(x) can be defined. In such situation we can assume that ρ(x) is defined and
π(ρ(x)) = ρs(x); otherwise we assume that ρ(x) is undefined. Notice that these
assumptions do not change ρ[x �→ C], where ρ(x) is overwritten. The label of
the root of the tree in D′ can be denoted as Γ ∪{x : (fi, τi) | i ∈ I} �M : (f, τ),
where x "∈ dom(Γ). We can apply the (λ) rule, and obtain a tree rooted by
Γ � λx.M : (f,

∧
i∈I(fi, τi) → τ). The thesis is satisfied by the configura-

tion ((λx.M,D, ρ), CS), where D contains this new tree. Notice that conditions
(�) and (��) are satisfied for this configuration, since they were satisfied for
((M,D′, ρ[x �→ C]), S).

Before considering the next case, notice that any two extended closures C1, C2

such that π(C1) = π(C2) can be merged into one extended closure C such that
π(C) = π(C1) and tp(C) = tp(C1)∪tp(C2). To do that, by induction we create an
environment ρ, which maps each variable x ∈ dom(env(C1)) into the extended
closure obtained by merging env(C1)(x) and env(C2)(x). We also createD which

How Many Numbers Can a Lambda-Term Contain? 311

is equal to der (C1) on tp(C1), and is equal to der (C2) on tp(C2) \ tp(C1). As C
we take (term(C1), D, ρ); notice that condition (�) remains satisfied.

Next, consider a configuration of the form ((MN, ρs), Ss). Its successor is
((M,ρs), (N, ρs)Ss), which by the induction assumption can be extended to a
configuration ((M,DM , ρM), (N,DN , ρN)S) of the extended machine. Let ρ be
obtained by merging ρM and ρN , as described in the previous paragraph. Denote
dom(DM) as {(f ′•,

∧
i∈I(f

•
i , τi) → τ)}, where each pair (f•i , τi) is different.

Then (f•i , τi) ∈ dom(DN) for each i ∈ I, by condition (��). Let Γ � M :
(f ′,

∧
i∈I(f

•
i , τi) → τ) be the label of the root of the tree in DM , and let Γi �

N : (f◦i , τi) be the label of the root of DN(f•i , τi) for each i; recall that f
•
i = pr

if and only if f◦i = pr or Γi	pr "= ∅. We can apply the (@) rule to these roots,
and obtain a derivation tree with root labeled by Γ ∪

⋃
i∈I Γi � MN : (f, τ)

(for some f). Then ((MN,D, ρ), S), where D contains this new tree, is a correct
configuration and satisfies the thesis.

Next, consider a configuration ((x, ρs), Ss). Its successor is (ρs(x), Ss), which
by the induction assumption can be extended to a configuration (C, S) of the
extended machine. Let {(f, τ)} := tp(C). We take D containing the derivation
x : (f, τ) � x : (np, τ), and we take ρ mapping x to C, and each other variable
y ∈ dom(ρs) into any extended closure Ey such that π(Ey) = ρs(y). Then
((x,D, ρ), S) is a configuration and satisfies the thesis.

Finally, consider a configuration of the form ((1+, ρs), Cs). Its successor is
(Cs, ε), which by the induction assumption can be extended to a configuration
(C, ε) of the extended machine. Let {(f, r)} := tp(C). We take D containing
the derivation ∅ � 1+ : (pr, (f, r) → r), and we take ρ mapping each variable
x ∈ dom(ρs) into any extended closure Ex such that π(Ex) = ρs(x). Then
((1+, D, ρ), C) is a configuration and satisfies the thesis. .-

5 Assigning Values to Configurations

To a configuration of a Krivine machine we assign two numbers, low and high ,
which estimate (from below and from above, respectively) the value of the term
represented by the configuration.

Let C be an extended closure, and let (f, τ) ∈ tp(C). By inc0(C, f, τ) we de-
note the number of leaves of der (C)(f, τ) using the 1+ rule, and by inca(C, f, τ)
for a > 0 we denote the sum of order-(a− 1) duplication factors of all (@) nodes
of der (C)(f, τ).

We define low (C, f, τ), and higha(C, f, τ), and reca(C, f, τ), and exta(C, f, τ)
for each a ∈ N by induction on the structure of C (where rec stands for “recur-
sive” and ext for “external”). Let Γ be the type environment used in the root
of der (C)(f, τ). We take

low (C, f, τ) :=
∑
a∈N

inca(C, f, τ) +
∑

(x:(g,σ))∈Γ
low (env(C)(x), g, σ),

reca(C, f, τ) := inca(C, f, τ) +
∑

(x:(g,σ))∈Γ
exta(env(C)(x), g, σ),

312 P. Parys

higha(C, f, τ) := (reca(C, f, τ) + 1) · 2higha+1(C,f,τ) − 1,

higha(C, f, τ) := 0 if recb(C, f, τ) = 0 for all b ≥ a,

exta(C, f, τ) :=

⎧⎨⎩0 if a > ord(term(C)),
higha(C, f, τ) if a = ord(term(C)),
reca(C, f, τ) if a < ord(term(C)).

For a configuration (C0, S) with S = C1 . . . Ck and tp(C0) = {(f,
∧
T1 → · · · →∧

Tk → r)} we define, denoting T0 := tp(C0):

low(C0, S) :=

k∑
i=0

∑
(g,σ)∈Ti

low (Ci, g, σ),

reca(C0, S) :=

k∑
i=0

∑
(g,σ)∈Ti

exta(Ci, g, σ),

higha(C0, S) := (reca(C0, S) + 1) · 2higha+1(C0,S) − 1,

higha(C0, S) := 0 if recb(C0, S) = 0 for all b ≥ a,

high(C0, S) := high0(C0, S).

Example 6. We will compute these numbers for the first configuration from Ex-
ample 4. Denoting

C2 = (λx.1+ (1+ x), {U1}, ∅), C3 = (1+ 0, {V1}, ∅),

C1 = (y (y z), {T1}, [y �→ C2, z �→ C3]),

this configuration is (C1, ε). It denotes the term

(λx.1+ (1+ x)) ((λx.1+ (1+ x)) (1+ 0)),

which has value 5. It holds tp(C1) = tp(C3) = {(pr, r)} and tp(C2) = {(pr, τ)},
where τ = ((pr, r)→ r). Because we have two 1+ nodes in U1, and one in V1, it
holds inc0(C2, pr, τ) = 2 and inc0(C3, pr, r) = 1. The order-1 duplication factor
in the root of T1 causes that inc2(C1, pr, r) = 1. All other inci(·, ·, ·) equal 0. It
follows that

low(C2, pr, τ) = ext0(C2, pr, τ) = high0(C2, pr, τ) = rec0(C2, pr, τ) = 2,

low(C3, pr, r) = ext0(C3, pr, r) = high0(C3, pr, r) = rec0(C3, pr, r) = 1,

low(C1, pr, r) = low (C2, pr, τ) + low (C3, pr, r) + inc2(C1, pr, r) = 4,

rec0(C1, pr, r) = 3, high2(C1, pr, r) = rec2(C1, pr, r) = 1,

high1(C1, pr, r) = (0 + 1) · 21 − 1 = 1,

ext0(C1, pr, r) = high0(C1, pr, r) = (3 + 1) · 21 − 1 = 7,

low(C, ε) = 4, high(C, ε) = 7.

In the second configuration of the computation we do not have any duplication
factor, and we count five 1+ nodes. Notice that both C2 and C3 appear in two

How Many Numbers Can a Lambda-Term Contain? 313

environments, but C3 is not used in the first of them (more precisely, no binding
for z is appears in the type environment of T2), so the 1+ node in C3 is counted
only once. Thus both low and high of this configuration are 5, which is equal to
its value.

Let us explain the intuitions behind the definitions of low and high . First,
concentrate on low . It counts the number of 1+ leaves of our derivation trees.
Our type system ensures that each such 1+ will be used (and thus it will add
1 to the value of the term). It also counts duplication factors of (@) nodes of
derivation trees. When a duplication factor in some node is 1 (and similarly for
any positive number), some “productive” subtree of the (@) node will be used
twice. And such a subtree increases the value of the term at least by one—it either
contains some 1+, or some other duplication, which will be now performed twice
instead of once.

In the formula for high , which is going to be an upper bound for the value,
we have to overapproximate. For that reason, it is not enough to look on the
sum of duplication factors; the orders on which they appear start to play a role.
Consider the highest k for which the order-k duplication factor is positive in
some (@) node, and consider an innermost node such that it is positive; say, it is
equal to 1. Inside, we only have duplication factors of smaller order, and some 1+
nodes. When the application described by the (@) node is performed, they will
be replicated twice. Similarly, the next (@) node also can multiply their number
by two, and so on. Next, analogous analysis for order-(k− 1) duplication factors
(whose number is already increased by order-k duplication factors) shows that
each of them can multiply by two the number of duplication factors of order
smaller than k − 1 (and of 1+ nodes), and so on. This justifies on the intuitive
level the exponential character of the formula2 for high , but in fact this analysis
cannot be formalized (in some sense it is incorrect). The problem is that the
innermost node with positive duplication factor for the highest order does not
necessarily denote a closed term. So a positive duplication factor not only implies
that the subterms will be replicated, but also the free variables will be used more
times (and we do not know how “big” terms will be substituted there). Thus it
is important in our correctness proof that we reduce only such redexes (λx.M)N
in which N is closed; this is always the case for the head redex, which is reduced
by the Krivine machine.

However in the formula we do not make just one tower of exponentials at
the end, but we compute some exponentials already for some inner closures.
This is essential for the proof of correctness, since otherwise Lemma 9 would be
false (although this modification makes the high value even smaller). The idea
behind that is as follows. When we have a closed term M , its subterm of order
a ≥ ord(M) cannot be duplicated by anything outside M ; only the whole M
can be duplicated (or subterms of M which are of order smaller order than M).
Oppositely, a subterm of order a < ord(M) can be duplicated by things from

2 One can observe that the order-0 duplication factor always equals 0 (an order-0
term can be used only once). Thus in high0 we could multiply rec0 directly by
2high2 . However this observation would only complicate the proof.

314 P. Parys

outside of M , because we can pass this subterm as an argument to an argument
of M . Thus basically inca is cumulated recursively along closures; however for
a closure of some order k we can forget about its duplication factors in inca for
a > k—they will only be applied to inck contained inside this closure, so we can
predict their result in highk.

The next two propositions state that low and high extend quantitatively the
information in the pr/np flag: 0 corresponds to np, and positive numbers to pr.

Proposition 7. Let C be a closure, and let (np, τ) ∈ tp(C). Then it holds
reca(C, np, τ) = 0 for each a ∈ N.

Proof. The root of der(C)(np, τ) is labeled by a type judgement Γ � term(C) :
(np, τ), where Γ 	pr = ∅. It is easy to see by induction on the tree structure, that
a derivation tree ending with the np flag has duplication factors of each (@) node
(and each order) equal to zero, as well as it does not contain 1+ leaves. It follows
that inca(C, np, τ) = 0. Because Γ 	pr = ∅, the added reca components are also
equal to 0, by induction on the structure of the closure. .-

Proposition 8. Let C be a closure, and let (pr, τ) ∈ tp(C). Then it holds
low (C, pr, τ) > 0.

Proof. When der(C)(pr, τ) is labeled by a type judgement Γ � term(C) : (f, τ),
we have one of two cases. One possibility is that f = pr. Then it is easy to see
by induction on the tree structure, that a derivation tree ending with the pr flag
either has a 1+ leaf, or an (@) node with a positive duplication factor for some
order. Otherwise we have Γ 	pr "= ∅. Then by induction on the structure of the
closure we obtain that some of the added low components (for closures in the
environment) is positive. .-

Below we have the key lemma about the low and high numbers.

Lemma 9. Let (C, S) be a configuration of the extended Krivine machine, which
evolves to (C′, S′) in one step. If this was the 1+ step, we have low (C, S) ≤
1+ low(C′, S′) and high(C, S) ≥ 1+high(C′, S′); otherwise we have low(C, S) ≤
low (C′, S′) and high(C, S) ≥ high(C′, S′).

Proof (sketch). The proof consists of tedious but straightforward calculations.
We have four rules of the Krivine machine, which we have to analyze. We will
see that only in the application rule we can have inequalities; for the other rules
we have equalities. In all cases only the “front” of the configuration changes. In
low and high for the old configuration we include some low and high of closures
in the environment or on the stack, for some pairs (g, σ). We see that for the
new configuration we include exactly the same closures with the same (g, σ)
pairs. Thus we have to locally analyze what changes only near the “front” of the
configuration.

For the 1+ rule this is immediate. We remove a closure (1+, D, ρ), where the
only tree in D uses the rule ∅ � 1+ : (pr, (f, r) → r). Since inc0 for this closure
is 1, and inca for a > 0 is 0, during the step we subtract 1 from low and high .

How Many Numbers Can a Lambda-Term Contain? 315

Also the case of the Var rule is very easy. This time we remove a closure
(x,D, ρ), where the only tree in D uses the rule x : (f, τ) � x : (np, τ). This
closure has inca equal to 0 for each a, so low and high do not change.

In the λ rule we only move one closure from the stack to the environment, so
low and high do not change as well. It can happen that the order of λx.M and of
M is different, and the definition of exta is sensitive for that. But, since all other
terms in the stack are of order smaller than the order of M (and the order of
λx.M), this change of order does not influence the result: some exponents which
were computed outside of the closure with λx.M will be now computed inside
the closure with M .

Finally, consider the case ((MN,D, ρ), S)
@−→ ((M,DM , ρ), (N,DN , ρ)S). For

low the analysis is quite simple. The root of the tree in D had some duplication
factor, which were added to low in the old configuration, but is not in the new
one. But such duplication factor counts how many times a productive binding of
a variable in the type environment in D is replicated in the type environments
of the trees in DM and DN . In the new configuration, the low for these bindings
will be added for each copy. Since by Proposition 8 these low are positive, they
will compensate the duplication factor of the root, which is subtracted.

For high we have two phenomena. The first concerns the replication of variable
bindings in the type environments. We do not have to care about nonproductive
bindings, since by Proposition 7 their reca is 0. Let dpa be the order-a duplication
factor at the root of the tree in D. A productive binding for a variable of order a
is replicated at most dpa times (instead of once in D it appears at most dpa +1
times in DM and DN). Notice the shift of orders: in the old configuration we
were adding dpa to inca+1. Thus without it, higha decreases 2dpa times. On
the other hand, a closure (from ρ) of order a adds something to recb only for
b ≤ a (otherwise its extb is 0), and now this recb will be multiplied by (at most)
dpa+1. Due to the inequality 2dpa ≥ dpa+1, we see that higha will not increase.
In fact it decreases by at least dpa, thanks to the +1 in the formula for higha.
Thus we can repeat the same argument for a− 1, and continue by induction for
all b ≤ a. The second phenomenon is that ord(N) is smaller than ord(M). This
implies that previously we were first adding together some exta for elements of
ρ, and then making a tower of exponents in the closure (MN,D, ρ), while now
we are making the tower of exponents inside (N,DN , ρ), separately for each pair
(g, σ) ∈ dom(DN), and then we are summing the results. But this can only
decrease the result, as described by the inequality

(a+ b+ 1) · 2c+d − 1 ≥ (a+ 1) · 2c − 1 + (b + 1) · 2d − 1.

We also notice that ord(MN) can be smaller than ord(M), but this does not
influence the result, since all other elements on the stack are of smaller order
(similarly to the λ case). .-

Corollary 10. Let (C, S) be a configuration of the extended Krivine machine.
Then the value of the term �C, S� is not smaller than low (C, S), and not greater
than high(C, S).

316 P. Parys

Proof. Induction on the length of the maximal computation from (C, S). If this
length is 0, we have term(C) = 0, and tp(C) = {(np, r)}, and der(C)(np, r)
consists of the rule ∅ � 0 : (np, r), so low (C, S) = 0 = high(C, S), and �C, S� = 0
has value 0. Otherwise we use the induction assumption and Lemma 9.

Next, we state that if low (C, S) is small, then also high(C, S) is small, so
low (C, S) (and high(C, S) as well) really approximates the value of �C, S�.

Lemma 11. For all k, L ∈ N there exists a number Hk,L such that for each con-
figuration (C, S) such that low (C, S) ≤ L and such that each variable appearing
anywhere inside (C, S) (inside a term or an environment) is of order at most k,
it holds high(C, S) ≤ Hk,L.

Proof. We define

H0,L := (L+ 1) · 2L − 1,

Ha+1,L := (L+ 1) · 2Ha,L − 1 for each a ∈ N.

Let #cl(C, S) denote the number of closures everywhere (recursively) inside
(C, S), and let |S| denote the length of the stack. We prove the inequality by
induction on 2 ·#cl(C, S)− |S|.

Assume first that S and env(C) are empty. Let tp(C) = {(f, τ)}. Then
low (C, S) = low (C, f, τ) =

∑
a∈N inca(C, f, τ), and high(C, S) = high0(C, f, τ)

with reca(C, f, τ) = inca(C, f, τ) ≤ low (C, S) for each a ∈ N. Since each vari-
able in term(C) is of order at most k, for a > k + 1 (which gives a − 1 > k)
the order-(a− 1) duplication factor of any (@) node in der (C)(f, τ) is zero, thus
also inca(C, f, τ) = 0. We see for a ∈ {0, 1, . . . , k} that higha(C, f, τ) ≤ Hk−a,L.

Next, assume that S is nonempty. Denote ((M,DM , ρM), (N,DN , ρN)S′) :=
(C, S). W.l.o.g. we can assume that dom(ρM)∩ dom(ρN) = ∅; otherwise we can
rename the variables inM , DM , ρM so that they are different from the variables
in dom(ρN), and such renaming does not change the low and high values. Denote
ρ := ρM ∪ ρN . Notice that ((M,DM , ρ), (N,DN , ρ)S

′) is a configuration with
the same low and high as (C, S). The tree in DM has root’s label of the form
Γ �M : (f ′,

∧
i∈I(f

•
i , τi)→ τ), where each pair (f•i , τi) is different. Moreover, for

each i ∈ I, we have a derivation tree DN (f•i , τi) rooted by some Γi � N : (f◦i , τi)
such that f•i = pr if and only if f◦i = pr or Γi	pr "= ∅. Thus we can apply
the (@) rule to these trees, and obtain a tree rooted by Γ ∪

⋃
i∈I Γi � MN :

(f, τ) for some f . Let C′ := (MN,D, ρ), where D contains this new tree. We
notice that (C′, S′) is a configuration (satisfies conditions (�) and (��)), and
the machine can make a step from it to ((M,DM , ρ), (N,DN , ρ)S

′). Lemma 9
implies that low(C′, S′) ≤ low (C, S) ≤ L and high(C, S) ≤ high(C′, S′). It holds
#cl(C

′, S′) = #cl(C, S) − 1, and |S′| = |S| − 1, and the maximal order of a
variable in these two configurations is the same. The induction assumption for
(C′, S′) tells us that high(C′, S′) ≤ Hk,L.

Finally, assume that S is empty, but env(C) is nonempty. Fix some variable
x ∈ dom(env(C)), and denote (M,D, ρ[x → Cx]) := C, where x "∈ dom(ρ). Let
Γ ∪ {x : (fi, τi) | i ∈ I} �M : (f, τ) with x "∈ dom(Γ) be the label of the root of

How Many Numbers Can a Lambda-Term Contain? 317

the tree inD. We can append the (λ) rule to this tree, and obtain a tree with root
labeled by Γ � λx.M : (f,

∧
i∈I(fi, τi) → τ). Let C′ := (λx.M,D′, ρ), where D′

contains this new tree. We notice that (C′, CxS
′) is a configuration (satisfies (�)

and (��)), and the machine can make a step from it to (C, S). Lemma 9 implies
that low (C′, CxS

′) ≤ low (C, S) ≤ L and high(C, S) ≤ high(C′, CxS
′). Notice

that #cl(C
′, CxS

′) = #cl(C, S), and |S′| = |S|+ 1, and the maximal order of a
variable in these two configurations is the same. The induction assumption for
(C′, CxS

′) tells us that high(C′, CxS
′) ≤ Hk,L. .-

6 Representing Tuples

In this section conclude the proof of Theorems 1 and 2.

Proof (Theorem 2). We define dim(α) = |P({pr, np}×T α→o)|. For a closed term
M of sort α→ o, let types(M) be the set of pairs (f,

∧
T → r) such that we can

derive ∅ � nf (M) : (f,
∧
T → τ), where nf (M) is the β-normal form of M . We

will show that when types(M) = types(M ′) then also M ∼M ′; the thesis of the
theorem will follow, since we have at most dim(α) possible sets types(M).

Thus suppose types(M) = types(M ′), and consider a sequence N1, N2, . . . of
terms of sort α, such that the sequence of values ofM N1,M N2, . . . is bounded.
W.l.o.g. we can assume that M , M ′, and all Ni are in β-normal form (since the
value of M Ni and of nf (M) nf (Ni) is exactly the same). For each i ∈ N,
there exists a correct configuration of the form ((M,DM

i , ∅), (Ni, D
N
i , ∅)), de-

note it (Ci, Ei) (we use Lemma 5 for ((M, ∅), (Ni, ∅))). Let {(fi,
∧
Ti → r)} :=

dom(DM
i), and let DM ′

i contain a derivation tree rooted by ∅ �M ′ : (fi,
∧
Ti →

r), which exists thanks to equality of types . Let C′i := (M ′, DM ′
i , ∅). Then

(C′i, Ei) is a correct configuration as well. Since low (Ci, Ei) is not greater than
the value of M Ni (Corollary 10), also low(Ci, Ei) is bounded (when ranging
over i = 1, 2, . . .). Next, we see that

low (C′i, Ei) + low (Ci, fi,
∧
Ti → r) =

= low(C′i, fi,
∧
Ti → r) +

∑
(g,σ)∈Ti

low (Ei, g, σ) + low (Ci, fi,
∧
Ti → r) =

= low(Ci, Ei) + low (C′i, fi,
∧
Ti → r).

Since Ci, fi, Ti, C
′
i come from a finite set, we obtain that low (C′i, Ei) is bounded

as well (by some L). Notice that the maximal order of a variable appearing
anywhere inside M ′ or some Ni is ord(α), because these terms are in β-normal
form. Thus high(C′i, Ei) is bounded by Hord(α),L (Lemma 11). It follows that the
sequence of values of M ′ N1,M

′ N2, . . . is bounded by Hord(α),L as well (Corol-
lary 10). The opposite implication (fromM ′ toM) is completely symmetric. .-

Proof (Theorem 1). This is an immediate consequence of Theorem 2. Assume
that for some i there exists a set Xi as in the statement of the theorem. This
means that there is a sequence of terms N1, N2, . . . , such that the values of

318 P. Parys

Mi N1,Mi N2, . . . are unbounded, but the values of Mj N1,Mj N2, . . . are
bounded for each j "= i. Then, by definition Mi "∼ Mj for each j "= i. Since we
only have dim(α) equivalence classes of ∼, we can have at most dim(α) such
indices i. In particular it holds X "= Nk. .-

7 Future Work

One can consider λ-calculus enriched by the Y combinator, describing recursion.
Then, instead of a finite β-normal form of a term, we may obtain an infinite limit
tree, called the Böhm tree. An algorithmic question arises: given a λY -term, how
to calculate its “value”, that is the “value” of its Böhm tree. In particular, can
we decide whether this value is finite? (It turns out that when the value is finite,
one can compute it precisely, using standard techniques.) The question starts
to become interesting when we can have arbitrary constants of order 0 and 1,
instead of just 0 and 1+, and the value (of a Böhm tree) is defined by a finite
tree automaton with counters (e.g. a parity B-automaton), given as a part of the
input. (Notice that the value can be finite even when the tree is infinite.) This
question (in several variants) were approached only for order 1 (all subterms of
the input term are of order 1), that is for pushdown systems [8,9]; in general it
remains open.

Acknowledgement. We thank Igor Walukiewicz and Sylvain Salvati for a dis-
cussion on this topic.

References

1. Barendregt, H., Dekkers, W., Statman, R.: Lambda calculus with types. In: Per-
spectives in Logic. Cambridge University Press (2013)

2. Parys, P.: On the significance of the collapse operation. In: LICS, pp. 521–530. IEEE
(2012)

3. Kobayashi, N.: Pumping by typing. In: LICS, pp. 398–407. IEEE Computer Society
(2013)

4. Schwichtenberg, H.: Definierbare funktionen im lambda-kalkl mit typen. Archiv
Logic Grundlagenforsch 17, 113–114 (1976)

5. Statman, R.: The typed lambda-calculus is not elementary recursive. Theor. Com-
put. Sci. 9, 73–81 (1979)

6. Zaionc, M.: Word operation definable in the typed lambda-calculus. Theor. Comput.
Sci. 52, 1–14 (1987)

7. Krivine, J.L.: A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation 20(3), 199–207 (2007)

8. Lang, M.: Resource-bounded reachability on pushdown systems. Master’s thesis,
RWTH Aachen (2011)

9. Chatterjee, K., Fijalkow, N.: Infinite-state games with finitary conditions. In: Rocca,
S.R.D. (ed.) CSL. LIPIcs, vol. 23, pp. 181–196. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2013)

AC-KBO Revisited�

Akihisa Yamada1, Sarah Winkler2, Nao Hirokawa3, and Aart Middeldorp2

1 Graduate School of Information Science, Nagoya University, Japan
2 Institute of Computer Science, University of Innsbruck, Austria

3 School of Information Science, JAIST, Japan

Abstract. We consider various definitions of AC-compatible Knuth-
Bendix orders. The orders of Steinbach and of Korovin and Voronkov
are revisited. The former is enhanced to a more powerful AC-compatible
order and we modify the latter to amend its lack of monotonicity on
non-ground terms. We further present new complexity results. An ex-
tension reflecting the recent proposal of subterm coefficients in standard
Knuth-Bendix orders is also given. The various orders are compared on
problems in termination and completion.

1 Introduction

Associative and commutative (AC) operators appear in many applications, e.g.
in automated reasoning with respect to algebraic structures such as commuta-
tive groups or rings. We are interested in proving termination of term rewrite
systems with AC symbols. AC termination is important when deciding validity
in equational theories with AC operators by means of completion.

Several termination methods for plain rewriting have been extended to deal
with AC symbols. Ben Cherifa and Lescanne [4] presented a characterization of
polynomial interpretations that ensures compatibility with the AC axioms. There
have been numerous papers on extending the recursive path order (RPO) of
Dershowitz [6] to deal with AC symbols, starting with the associative path order
of Bachmair and Plaisted [3] and culminating in the fully syntactic AC-RPO of
Rubio [16]. Several authors [1, 7, 12, 15] adapted the influential dependency pair
method of Arts and Giesl [2] to AC rewriting.

We are aware of only two papers on AC extensions of the order of Knuth and
Bendix (KBO) [8]. In this paper we revisit these orders and present yet another
AC-compatible KBO. Steinbach [17] presented a first version, which comes with
the restriction that AC symbols are minimal in the precedence. By incorporating
ideas of [16], Korovin and Voronkov [9] presented a version without this restric-
tion. Actually, they present two versions. One is defined on ground terms and
another one on arbitrary terms. For (automatically) proving AC termination of

� The research described in this paper is supported by the Austrian Science Fund
(FWF) international project I963, the bilateral programs of the Japan Society for
the Promotion of Science and the KAKENHI Grant No. 25730004.

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 319–335, 2014.
c© Springer International Publishing Switzerland 2014

320 A. Yamada et al.

rewrite systems, an AC-compatible order on arbitrary terms is required.1 We
show that the second order of [9] lacks the monotonicity property which is re-
quired by the definition of simplification orders. Nevertheless we prove that the
order is sound for proving termination by extending it to an AC-compatible sim-
plification order. We furthermore present a simpler variant of this latter order
which properly extends the order of [17]. In particular, Steinbach’s order is a
correct AC-compatible simplification order, contrary to what is claimed in [9].
We also present new complexity results which confirm that AC rewriting is much
more involved than plain rewriting. Apart from these theoretical contributions,
we implemented the various AC-compatible KBOs to compare them also exper-
imentally.

The remainder of this paper is organized as follows. After recalling basic
concepts of rewriting modulo AC and orders, we revisit Steinbach’s order in
Section 3. Section 4 is devoted to the two orders of Korovin and Voronkov. We
present a first version of our AC-compatible KBO in Section 5, where we also
give the non-trivial proof that it has the required properties. (The proofs in [9]
are limited to the order on ground terms.) Then we prove in Section 6 that
the problem of orienting a ground rewrite system with the order of Korovin
and Voronkov as well as our new order is NP-hard. In Section 7 our order is
strengthened with subterm coefficients. In order to show effectiveness of these
orders experimental data is provided in Section 8. The paper is concluded in
Section 9. Due to lack of space, some of the proofs can be found in the full
version of this paper [21].

2 Preliminaries

We assume familiarity with rewriting and termination. Throughout this paper
we deal with rewrite systems over a set V of variables and a finite signature F
together with a designated subset FAC of binary AC symbols. The congruence re-
lation induced by the equations f(x, y) ≈ f(y, x) and f(f(x, y), z) ≈ f(x, f(y, z))
for all f ∈ FAC is denoted by =AC. A term rewrite system (TRS for short) R is
AC terminating if the relation =AC ·→R ·=AC is well-founded. In this paper AC
termination is established by AC-compatible simplification orders 5, which are
strict orders (i.e., irreflexive and transitive relations) closed under contexts and
substitutions that have the subterm property f(t1, . . . , tn) 5 ti for all 1
 i
 n
and satisfy =AC · 5 · =AC ⊆ 5. A strict order 5 is AC-total if s 5 t, t 5 s or
s =AC t, for all ground terms s and t. A pair (�,5) consisting of a preorder �
and a strict order 5 is said to be an order pair if the compatibility condition
� · 5 · � ⊆ 5 holds.

Definition 1. Let 5 be a strict order and � be a preorder on a set A. The
lexicographic extensions 5lex and �lex are defined as follows:

1 Any AC-compatible reduction order "g on ground terms can trivially be extended
to arbitrary terms by defining s " t if and only if sσ "g tσ for all grounding
substitutions σ. This is, however, only of (mild) theoretical interest.

AC-KBO Revisited 321

– x �lex y if x �lex
k y for some 1
 k
 n,

– x 5lex y if x �lex
k y for some 1
 k < n.

Here x = (x1, . . . , xn), y = (y1, . . . , yn), and x �lex
k y denotes the following

condition: xi � yi for all i
 k and either k < n and xk+1 5 yk+1 or k = n.

The multiset extensions 5mul and �mul are defined as follows:

– M �mul N if M �mul
k N for some 0
 k
 min(m,n),

– M 5mul N if M �mul
k N for some 0
 k
 min(m− 1, n).

Here M �mul
k N if M and N consist of x1, . . . , xm and y1, . . . , yn respectively

such that xj � yj for all j
 k, and for every k < j
 n there is some k < i
 m
with xi 5 yj.

Note that these extended relations depend on both � and 5. The following
result is folklore; a recent formalization of multiset extensions in Isabelle/HOL
is presented in [18].

Theorem 2. If (�,5) is an order pair then (�lex,5lex) and (�mul,5mul) are
order pairs. .-

3 Steinbach’s Order

In this section we recall the AC-compatible KBO >S of Steinbach [17], which
reduces to the standard KBO if AC symbols are absent.2 The order >S depends
on a precedence and an admissible weight function. A precedence > is a strict
order on F . A weight function (w,w0) for a signature F consists of a mapping
w : F → N and a constant w0 > 0 such that w(c) � w0 for every constant c ∈ F .
The weight of a term t is recursively computed as follows: w(t) = w0 if t ∈ V
and w(f(t1, . . . , tn)) = w(f) + w(t1) + · · ·+ w(tn). A weight function (w,w0) is
admissible for > if every unary f with w(f) = 0 satisfies f > g for all function
symbols g different from f . Throughout this paper we assume admissibility.

The top-flattening [16] of a term t with respect to an AC symbol f is the
multiset f (t) defined inductively as follows: f (t) = {t} if root(t) "= f and
f (f(t1, t2)) = f (t1) � f (t2).

Definition 3. Let > be a precedence and (w,w0) a weight function. The order
>S is inductively defined as follows: s >S t if |s|x � |t|x for all x ∈ V and either
w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

(0) s = fk(t) and t ∈ V for some k > 0,

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
S (t1, . . . , tn),

(3) s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and f (s) >
mul
S f (t).

2 The version in [17] is slightly more general, since non-AC function symbols can have
arbitrary status. To simplify the discussion, we do not consider status in this paper.

322 A. Yamada et al.

The relation =AC is used as preorder in >lex
S and >mul

S .

Cases (0)–(2) are the same as in the classical Knuth-Bendix order. In case
(3) terms rooted by the same AC symbol f are treated by comparing their
top-flattenings in the multiset extension of >S.

Example 4. Consider the signature F = {a, f, g} with f ∈ FAC, precedence g >
a > f and admissible weight function (w,w0) with w(f) = w(g) = 0 and w0 =
w(a) = 1. Let R1 be the following ground TRS:

g(f(a, a))→ f(g(a), g(a)) (1) f(a, g(g(a)))→ f(g(a), g(a)) (2)

For 1
 i
 2, let �i and ri be the left- and right-hand side of rule (i), Si = f(�i)
and Ti = f(ri). Both rules vacuously satisfy the variable condition. We have
w(�1) = 2 = w(r1) and g > f, so �1 >S r1 holds by case (1). We have w(�2) =
2 = w(r2), S2 = {a, g(g(a))}, and T2 = {g(a), g(a)}. Since g(a) >S a holds by
case (1), g(g(a)) >S g(a) holds by case (2), and therefore �2 >S r2 by case (3).

Theorem 5 ([17]). If every symbol in FAC is minimal with respect to > then
>S is an AC-compatible simplification order.3 .-

In Section 5 we reprove4 Theorem 5 by showing that >S is a special case of our
new AC-compatible Knuth-Bendix order.

4 Korovin and Voronkov’s Orders

In this section we recall the orders of [9]. The first one is defined on ground
terms. The difference with >S is that in case (3) of the definition a further case
analysis is performed based on terms in S and T whose root symbols are not
smaller than f in the precedence. Rather than recursively comparing these terms
with the order being defined, a lighter non-recursive version is used in which the
weights and root symbols are considered. This is formally defined below.

Given a multiset T of terms, a function symbol f , and a binary relation R on
function symbols, we define the following submultisets of T :

T 	V = {x ∈ T | x ∈ V} T 	Rf = {t ∈ T \ V | root(t) R f}

Definition 6. Let > be a precedence and (w,w0) a weight function.5 First we
define the auxiliary relations =kv and >kv as follows:

– s =kv t if w(s) = w(t) and root(s) = root(t),
– s >kv t if either w(s) > w(t) or both w(s) = w(t) and root(s) > root(t).

3 In [17] AC symbols are further required to have weight 0 because terms are flattened.
Our version of >S does not impose this restriction due to the use of top-flattening.

4 The counterexample in [9] against the monotonicity of >S is invalid as the condition
that AC symbols are minimal in the precedence is not satisfied.

5 Here we do not impose totality on precedences, cf. [9]. See also Example 25.

AC-KBO Revisited 323

The order >KV is inductively defined on ground terms as follows: s >KV t if
either w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
KV (t1, . . . , tn),

(3) s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = f (s) and T = f (t)

(a) S	≮f >mul
kv T 	≮f , or

(b) S	≮f =mul
kv T 	≮f and |S| > |T |, or

(c) S	≮f =mul
kv T 	≮f , |S| = |T |, and S >mul

KV T .

Here =AC is used as preorder in >lex
KV and >mul

KV whereas =kv is used in >mul
kv .

Only in cases (2) and (3c) the order >KV is used recursively. In case (3) terms
rooted by the same AC symbol f are compared by extracting from the top-
flattenings S and T the multisets S	≮f and T 	≮f consisting of all terms rooted by
a function symbol not smaller than f in the precedence. If S	≮f is larger than
T 	≮f in the multiset extension of >kv, we conclude in case (3a). Otherwise the

multisets must be equal (with respect to =mul
kv). If S has more terms than T , we

conclude in case (3b). In the final case (3c) S and T have the same number of
terms and we compare S and T in the multiset extension of >KV.

Theorem 7 ([9]). The order >KV is an AC-compatible simplification order on
ground terms. If > is total then >KV is AC-total on ground terms. .-

The two orders >KV and >S are incomparable on ground TRSs.

Example 8. Consider again the ground TRS R1 of Example 4. To orient rule (1)
with >KV, the weight of the unary function symbol g must be 0 and admissibility
demands g > a and g > f. Hence rule (1) is handled by case (1) of the definition.
For rule (2), the multisets S = {a, g(g(a))} and T = {g(a), g(a)} are compared
in case (3). We have S	≮f = {g(g(a))} if f > a and S	≮f = S otherwise. In both
cases we have T 	≮f = T . Note that neither a >kv g(a) nor g(g(a)) >kv g(a) holds.
Hence case (3a) does not apply. But also cases (3b) and (3c) are not applicable
as g(g(a)) =kv g(a) and a "=kv g(a). Hence, independent of the choice of >, R1

cannot be proved terminating by >KV. Conversely, the TRS R2 resulting from
reversing rule (2) in R1 can be proved terminating by >KV but not by >S.

Next we present the second order of [9], the extension of >KV to non-ground
terms. Since it coincides with >KV on ground terms, we use the same notation
for the order.

In case (3) of the following definition, also variables appearing in the top-
flattenings S and T are taken into account in the first multiset comparison.
Given a relation � on terms, we write S �f T for S	≮f �mul T 	≮f � T 	V − S	V .
Note that �f depends on a precedence >. Whenever we use �f , > is defined.

Definition 9. Let > be a precedence and (w,w0) a weight function. First we
extend the orders =kv and >kv as follows:

324 A. Yamada et al.

– s =kv t if |s|x = |t|x for all x ∈ V, w(s) = w(t) and root(s) = root(t),
– s >kv t if |s|x � |t|x for all x ∈ V and either w(s) > w(t) or both w(s) = w(t)

and root(s) > root(t).

The order >KV is now inductively defined as follows: s >KV t if |s|x � |t|x for
all x ∈ V and either w(s) > w(t), or w(s) = w(t) and one of the following
alternatives holds:

(0) s = fk(t) and t ∈ V for some k > 0,

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

(2) s = f(s1, . . . , sn), t = f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
KV (t1, . . . , tn),

(3) s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = f (s) and T = f (t)

(a) S >f
kv T , or

(b) S =f
kv T and |S| > |T |, or

(c) S =f
kv T , |S| = |T |, and S >mul

KV T .

Here =AC is used as preorder in >lex
KV and >mul

KV whereas =kv is used in >mul
kv .

Contrary to what is claimed in [9], the order >KV of Definition 9 is not a
simplification order because it lacks the monotonicity property (i.e., >KV is not
closed under contexts), as shown in the following example.

Example 10. Let f be an AC symbol and g a unary function symbol with w(g) =
0 and g > f.6 We obviously have g(x) >KV x. However, f(g(x), y) >KV f(x, y)
does not hold. Let S = f(s) = {g(x), y} and T = f(t) = {x, y}. We have
S	≮f = {g(x)}, S	V = {y}, T 	≮f = ∅, and T 	V = {x, y}. Note that g(x) >kv x
does not hold since g ≯ x. Hence case (3a) in Definition 9 does not apply. But
also g(x) =kv x does not hold, excluding cases (3b) and (3c).

The example does not refute the soundness of >KV for proving AC termina-
tion; note that also f(x, y) >KV f(g(x), y) does not hold. We prove soundness by
extending >KV to >KV′ which has all desired properties.

Definition 11. The order >KV′ is obtained as in Definition 9 after replacing
=f

kv by �f
kv′ in cases (3b) and (3c), and using �kv′ as preorder in >mul

kv in case
(3a). Here the relation �kv′ is defined as follows:

– s �kv′ t if |s|x � |t|x for all x ∈ V and either w(s) > w(t), or w(s) = w(t)
and either root(s) � root(t) or t ∈ V.

Note that �kv′ is a preorder that contains =AC.

Example 12. Consider again Example 10. We have f(g(x), y) >KV′ f(x, y) be-
cause now case (3c) applies: S	≮f = {g(x)} �mul

kv′ {x} = T 	≮f � T 	V − S	V ,
|S| = 2 = |T |, and S = {g(x), y} >mul

KV′ {x, y} = T because g(x) >KV′ x.

6 The use of a unary function of weight 0 is not crucial, see [21].

AC-KBO Revisited 325

The order >KV′ is an AC-compatible simplification order. Since the inclu-
sion >KV ⊆ >KV′ obviously holds, it follows that >KV is a sound method for
establishing AC termination, despite the lack of monotonicity.

Theorem 13. The order >KV′ is an AC-compatible simplification order.

Proof. See [21]. .-

The order >KV′ lacks one important feature: a polynomial-time algorithm to
decide s >KV′ t when the precedence and weight function are given. By using
the reduction technique of [18, Theorem 4.2], NP-hardness of this problem can
be shown. Note that for KBO the problem is known to be linear [13].

Theorem 14. The decision problem for >KV′ is NP-hard.

Proof. See [21]. .-

5 AC-KBO

In this section we present another AC-compatible simplification order. In con-
trast to >KV′ , our new order >ACKBO contains >S. Moreover, its definition is
simpler than >KV′ since we avoid the use of an auxiliary order in case (3). Fi-
nally, >ACKBO is decidable in polynomial-time. Hence it will be used as the basis
for the extension discussed in Section 7.

Definition 15. Let > be a precedence and (w,w0) a weight function. We define
>ACKBO inductively as follows: s >ACKBO t if |s|x � |t|x for all x ∈ V and either
w(s) > w(t), or w(s) = w(t) and one of the following alternatives holds:

(0) s = fk(t) and t ∈ V for some k > 0,

(1) s = f(s1, . . . , sn), t = g(t1, . . . , tm), and f > g,

(2) s=f(s1, . . . , sn), t=f(t1, . . . , tn), f /∈ FAC, (s1, . . . , sn) >
lex
ACKBO (t1, . . . , tn),

(3) s = f(s1, s2), t = f(t1, t2), f ∈ FAC, and for S = f (s) and T = f (t)

(a) S >f
ACKBO T , or

(b) S =f
AC T , and |S| > |T |, or

(c) S =f
AC T , |S| = |T |, and S	<f >mul

ACKBO T 	
<
f .

The relation =AC is used as preorder in >lex
ACKBO and >mul

ACKBO.

Note that in case (3c) we compare the multisets S	<f and T 	<f rather than S
and T in the multiset extension of >ACKBO.

Steinbach’s order is a special case of the order defined above.

Theorem 16. If every AC symbol has minimal precedence then >S = >ACKBO.

326 A. Yamada et al.

Proof. Suppose that every function symbol in FAC is minimal with respect to
>. We show that s >S t if and only if s >ACKBO t by induction on s. It is clearly
sufficient to consider case (3) in Definition 3 and cases (3a)–(3c) in Definition 15.
So let s = f(s1, s2) and t = f(t1, t2) such that w(s) = w(t) and f ∈ FAC. Let
S = f (s) and T = f (t).

– Let s >S t by case (3). We have S >mul
S T . Since S >mul

S T involves only
comparisons s′ >S t

′ for subterms s′ of s, the induction hypothesis yields
S >mul

ACKBO T . Because f is minimal in >, S = S	≮f �S	V and T = T 	≮f �T 	V .
For no elements u ∈ S	V and v ∈ T 	≮f , u >ACKBO v or u =AC v holds. Hence

S >mul
ACKBO T implies S >f

ACKBO T or both S =f
AC T and S	V � T 	V . In the

former case s >ACKBO t is due to case (3a) in Definition 15. In the latter case
we have |S| > |T | and s >ACKBO t follows by case (3b).

– Let s >ACKBO t by applying one of the cases (3a)–(3c) in Definition 15.

• Suppose (3a) applies. Then we have S >f
ACKBO T . Since f is minimal in>,

S	≮f = S−S	V and T 	≮f �T 	V = T . Hence S >mul
ACKBO (T−S	V)�S	V ⊇ T .

We obtain S >mul
S T from the induction hypothesis and thus case (3) in

Definition 3 applies.
• Suppose (3b) applies. Analogous to the previous case, the inclusion
S =mul

AC (T − S	V) � S	V ⊇ T holds. Since |S| > |T |, S =mul
AC T is not

possible. Thus (T − S	V) � S	V � T and hence S >mul
S T .

• If case (3c) applies then S	<f >mul
ACKBO T 	<f . This is impossible since both

sides are empty as f is minimal in >. .-

The following example shows that >ACKBO is a proper extension of >S and in-
comparable with >KV′ .

Example 17. Consider the TRS R3 consisting of the rules

f(x + y)→ f(x) + y h(a, b)→ h(b, a) h(g(a), a)→ h(a, g(b))

g(x) + y → g(x+ y) h(a, g(g(a)))→ h(g(a), f(a)) h(g(a), b)→ h(a, g(a))

f(a) + g(b)→ f(b) + g(a)

over the signature {+, f, g, h, a, b} with + ∈ FAC. Consider the precedence f >
+ > g > a > b > h together with the admissible weight function (w,w0) with
w(+) = w(h) = 0, w(f) = w(a) = w(b) = w0 = 1 and w(g) = 2. The interesting
rule is f(a)+g(b)→ f(b)+g(a). For S = +(f(a)+g(b)) and T = +(f(b)+g(a))
the multisets S′ = S	≮+ = {f(a)} and T ′ = T 	≮+ � T 	V − S	V = {f(b)} satisfy
S′ >mul

ACKBO T
′ as f(a) >ACKBO f(b), so that case (3a) of Definition 15 applies. All

other rules are oriented from left to right by both >KV′ and >ACKBO, and they
enforce a precedence and weight function which are identical (or very similar) to
the one given above. Since >KV′ orients the rule f(a) + g(b)→ f(b) + g(a) from
right to left, R3 cannot be compatible with >KV′ . It is easy to see that the rule
g(x) + y → g(x+ y) requires + > g, and hence >S cannot be applied.

Fig. 1 summarizes the relationships between the orders introduced so far.

AC-KBO Revisited 327

>KV′

>ACKBO

>S

R1
•

R2
•

R3
•

R1 Example 4 (and 8)

R2 Example 8

R3 Example 17

Fig. 1. Comparison

In the following, we show that >ACKBO is an AC-compatible simplification
order. As a consequence, correctness of >S (i.e., Theorem 5) is concluded by
Theorem 16.

Lemma 18. The pair (=AC, >ACKBO) is an order pair.

Proof. See [21]. .-

The subterm property is an easy consequence of transitivity and admissibility.

Lemma 19. The order >ACKBO has the subterm property. .-

Next we prove that >ACKBO is closed under contexts. The following lemma is
an auxiliary result needed for its proof. In order to reuse this lemma for the
correctness proof of >KV′ in the appendix of [21], we prove it in an abstract
setting.

Lemma 20. Let (�,5) be an order pair and f ∈ FAC with f(u, v) 5 u, v for

all terms u and v. If s � t then {s} �mul f (t) or {s} 5mul f (t). If s 5 t then
{s} 5mul f (t).

Proof. Let f(t) = {t1, . . . , tm}. If m = 1 then f (t) = {t} and the lemma holds
trivially. Otherwise we get t 5 tj for all 1
 j
 m by recursively applying the
assumption. Hence s 5 tj by the transitivity of 5 or the compatibility of 5 and
�. We conclude that {s} 5mul f(t). .-

In the following proof of closure under contexts, admissibility is essential. This
is in contrast to the corresponding result for standard KBO.

Lemma 21. If (w,w0) is admissible for > then >ACKBO is closed under contexts.

Proof. Suppose s >ACKBO t. We consider the context h(�, u) with h ∈ FAC and
u an arbitrary term, and prove that s′ = h(s, u) >ACKBO h(t, u) = t′. Closure
under contexts of >ACKBO follows then by induction; contexts rooted by a non-
AC symbol are handled as in the proof for standard KBO.

If w(s) > w(t) then obviously w(s′) > w(t′). So we assume w(s) = w(t).
Let S = h(s), T = h(t), and U = h(u). Note that h(s

′) = S � U and
h(t

′) = T �U . Because >mul
ACKBO is closed under multiset sum, it suffices to show

that one of the cases (3a)–(3c) of Definition 15 holds for S and T . Let f = root(s)
and g = root(t). We distinguish the following cases.

328 A. Yamada et al.

– Suppose f � h. We have S = S	≮h = {s}, and from Lemmata 19 and 20 we
obtain S >mul

ACKBO T . Since T is a superset of T 	≮h � T 	V − S	V , (3a) applies.
– Suppose f = h > g. We have T 	≮h �T 	V = ∅. If S	≮h "= ∅, then (3a) applies.

Otherwise, since AC symbols are binary and T = {t}, |S| � 2 > 1 = |T |.
Hence (3b) applies.

– If f = g = h then s >ACKBO t must be derived by one of the cases (3a)–(3c)
for S and T .

– Suppose f, g < h. We have S	≮h = T 	≮h � T 	V = ∅, |S| = |T | = 1, and
S	<h = {s} >mul

ACKBO {t} = T 	<h . Hence (3c) holds.

Note that f � g since w(s) = w(t) and s >ACKBO t. Moreover, if t ∈ V then
s = fk(t) for some k > 0 with w(f) = 0, which entails f > h due to admissibility.

.-

Closure under substitutions is the trickiest part since by substituting AC-rooted
terms for variables that appear in the top-flattening of a term, the structure of
the term changes. In the proof, the multisets {t ∈ T | t /∈ V}, {tσ | t ∈ T }, and
{f(t) | t ∈ T } are denoted by T 	F , Tσ, and f(T), respectively.

Lemma 22. Let > be a precedence, f ∈ FAC, and (�,5) an order pair on terms
such that � and 5 are closed under substitutions and f(x, y) 5 x, y. Consider
terms s and t such that S = f(s), T = f(t), S

′ = f(sσ), and T
′ = f(tσ).

(1) If S 5f T then S′ 5f T ′.

(2) If S �f T then S′ 5f T ′ or S′ �f T ′. In the latter case |S|−|T |
 |S′|−|T ′|
and S′	<f 5mul T ′	<f whenever S	<f 5mul T 	<f .

Proof. Let v be an arbitrary term. By the assumption on 5 we have either
{v} = f (v) or both {v} 5mul f (v) and 1 < |f(v)|. Hence, for any set V of
terms, either V = f(V) or both V 5mul f (V) and |V | < |f(V)|. Moreover,
for V = f(v), the following equalities hold:

f (vσ)	≮f = V 	≮f σ � f(V 	Vσ)	≮f f(vσ)	V = f (V 	Vσ)	V

To prove the lemma, assume S �f T for � ∈ {�,5}. We have S	≮f �mul T 	≮f �U
where U = (T −S)	V . Since multiset extensions preserve closure under substitu-
tions, S	≮f σ �mul T 	≮f σ � Uσ follows. Using the above (in)equalities, we obtain

S′	≮f = S	≮f σ �f (S	Vσ)	≮f
�mul T 	≮f σ � f(S	Vσ)	≮f � Uσ
O T 	≮f σ � f (S	Vσ)	≮f � f(Uσ)

= T 	≮f σ � f(S	Vσ)	≮f �f (Uσ)	V � f(Uσ)	≮f � f(Uσ)	<f
P T 	≮f σ � f (T 	Vσ)	≮f � f (Uσ)	V
= T 	≮f σ � f(T 	Vσ)	≮f � f(T 	Vσ)	V − f (S	Vσ)	V
= T ′	≮f � T ′	V − S′	V

AC-KBO Revisited 329

Here O denotes = if Uσ = f(Uσ) and 5mul if |Uσ| < |f (Uσ)|, while P

denotes = if Uσ	<f = ∅ and � otherwise. Since (�mul,5mul) is an order pair

with ⊇ ⊆ �mul and � ⊆ 5mul, we obtain S′ �f T ′.
It remains to show (2). If S′ �f T ′ then O and P are both = and thus

Uσ = f(Uσ) and Uσ	<f = ∅. Let X = S	V ∩ T 	V . We have U = T 	V −X .

– Since |W 	Fσ| = |W 	F | and |W |
 |f (W)| for an arbitrary set W of terms,
we have |S′| � |S| − |X | + |f (Xσ)|. From |Uσ| = |U | = |T 	V | − |X | we
obtain |T ′| = |T 	Fσ|+ |f(Uσ)| + |f (Xσ)| = |T | − |X |+ |f(Xσ)|. Hence
|S| − |T |
 |S′| − |T ′| as desired.

– Suppose S	<f 5mul T 	<f . From Uσ	<f = ∅ we infer T 	Vσ	<f ⊆ S	Vσ	<f .
Because S′	<f = S	<f σ � S	Vσ	<f and T ′	<f = T 	<f σ � T 	Vσ	<f , closure under
substitutions of 5mul (which it inherits from 5 and �) yields the desired
S′	<f 5mul T ′	<f . .-

Lemma 23. >ACKBO is closed under substitutions.

Proof. If s >ACKBO t is obtained by cases (0)–(1) in Definition 15, the proof
for standard KBO goes through. If (3a) or (3b) is used to obtain s >ACKBO

t, according to Lemma 22 one of these cases also applies to sσ >ACKBO tσ.
The final case is (3c). So f (s)	<f >mul

ACKBO f(t)	<f . Suppose sσ >ACKBO tσ
cannot be obtained by (3a) or (3b). Lemma 22(2) yields |f (sσ)| = |f(tσ)| and
f (sσ)	<f >mul

ACKBO f (tσ)	<f . Hence case (3c) is applicable to obtain sσ >ACKBO

tσ. .-

We arrive at the main theorem of this section.

Theorem 24. The order >ACKBO is an AC-compatible simplification order. .-

Since we deal with finite non-variadic signatures, simplification orders are well-
founded. The following example shows that AC-KBO is not incremental, i.e.,
orientability is not necessarily preserved when the precedence is extended. This
is in contrast to the AC-RPO of Rubio [16]. However, this is not necessarily a
disadvantage; actually, the example shows that by allowing partial precedences
more TRSs can be proved to be AC terminating using AC-KBO.

Example 25. Consider the TRS R consisting of the rules

a ◦ (b • c)→ b ◦ f(a • c) a • (b ◦ c)→ b • f(a ◦ c)

over the signature F = {a, b, c, f, ◦, •} with ◦, • ∈ FAC. By taking the precedence
f > a, b, c, ◦, • and admissible weight function (w,w0) with w(f) = w(◦) =
w(•) = 0, w0 = w(a) = w(c) = 1, and w(b) = 2, the resulting >ACKBO orients
both rules from left to right. It is essential that ◦ and • are incomparable in the
precedence: We must have w(f) = 0, so f > a, b, c, ◦, • is enforced by admissibility.
If ◦ > • then the first rule can only be oriented from left to right if a >ACKBO

f(a • c) holds, which contradicts the subterm property. If • > ◦ then we use
the second rule to obtain the impossible a >ACKBO f(a • c). Similarly, R is also
orientable by >KV′ but we must adopt a non-total precedence.

330 A. Yamada et al.

The final theorem in this section is easily proved.

Theorem 26. If > is total then >ACKBO is AC-total on ground terms. .-

6 NP-Hardness of Orientability

It is well-known [10] that KBO orientability is decidable in polynomial time. In
this section we show that >KV orientability is NP-hard even for ground TRSs.
The corresponding result for >ACKBO is given in the full version of this paper [21].
To this end, we reduce a SAT instance to an orientability problem.

Let φ = {C1, . . . , Cn} be a CNF SAT problem over propositional variables
p1, . . . , pm. We consider the signature Fφ consisting of an AC symbol +, con-

stants c and d1, . . . , dn, and unary function symbols p1, . . . , pm, a, b, and eji for
all i ∈ {1, . . . , n} and j ∈ {0, . . . ,m}. We define a ground TRS Rφ on T (Fφ)
such that >KV orients Rφ if and only if φ is satisfiable. The TRS Rφ will contain
the following base system R0 that enforces certain constraints on the precedence
and the weight function:

a(c+ c)→ a(c) + c b(c) + c→ b(c+ c) a(b(b(c)))→ b(a(a(c)))

a(p1(c))→ b(p2(c)) · · · a(pm(c))→ b(a(c)) a(a(c))→ b(p1(c))

Lemma 27. The order >KV is compatible with R0 if and only if a > + > b and
w(a) = w(b) = w(pj) for all 1
 j
 m. .-

Consider the clause Ci of the form {p′1, . . . , p′k,¬p′′1 , . . . ,¬p′′l }. Let U , U ′, V , and
W denote the followings multisets:

U = {p′1(b(di)), . . . , p′k(b(di))} V = {p′′0(e
0,1
i), . . . , p′′l−1(e

l−1,l
i), p′′l (e

l,0
i)}

U ′ = {b(p′1(di)), . . . , b(p′k(di))} W = {p′′0(e
0,0
i), . . . , p′′l (e

l,l
i)}

where we write p′′0 for a and ej,ki for eji (e
k
i (c)). The TRS Rφ is defined as the

union of R0 and {�i → ri | 1
 i
 n} with

�i = b(b(c+ c)) +
∑
U +

∑
V ri = b(c) + b(c) +

∑
U ′ +

∑
W

Note that the symbols di and e0i , . . . , e
l
i are specific to the rule �i → ri.

Lemma 28. Let a > + > b. Then, Rφ ⊆ >KV for some (w,w0) if and only if
for every i there is some p such that p ∈ Ci with p ≮ + or ¬p ∈ Ci with + > p.

Proof. For the “if” direction we reason as follows. Consider a (partial) weight
function w such that w(a) = w(b) = w(pj) for all 1
 j
 m. We obtain R0 ⊆
>KV from Lemma 27. Furthermore, consider Ci = {p′1, . . . , p′k,¬p′′1 , . . . ,¬p′′l } and
�i, ri, U , V and W defined above. Let L = +(�i) and R = +(ri). We clearly
have L	≮+ = U	≮+ ∪ V 	≮+ and R	≮+ =W 	≮+. It is easy to show that w(�i) = w(ri).
We show �i >KV ri by distinguishing two cases.

AC-KBO Revisited 331

1. First suppose that p′j ≮ + for some 1
 j
 k. We have p′j(b(di)) ∈ U	≮+.
Extend the weight function w such thatw(di) = 1+2·max{w(e0i), . . . , w(eli)}.
Then p′j(b(di)) >kv t for all terms t ∈W and hence L	≮+ >mul

kv R	≮+. Therefore
�i >KV ri by case (3a).

2. Otherwise, U	≮+ = ∅ holds. By assumption + > p′′j for some 1
 j
 l.
Consider the smallest m such that + > p′′m. Extend the weight function w
such that w(emi) = 1 + 2 ·max {w(eji) | j "= m}. Then w(p′′m−1(e

m−1,m
i)) >

w(p′′j (e
j,j
i)) for all j "= m. From p′′m−1 > + we infer p′′m−1(e

m−1,m
i) ∈ V 	≮+.

(Note that p′′m−1 = a > + if m = 1.) By definition of m, p′′m(em,m
i) /∈ W 	≮+.

It follows that L	≮+ >mul
kv R	≮+ and thus �i >KV ri by case (3a).

Next we prove the “only if” direction. So suppose there exists a weight function
w such that Rφ ⊆ >KV. We obtain w(a) = w(b) = w(pj) for all 1
 j
 m from
Lemma 27. It follows that w(�i) = w(ri) for every Ci ∈ φ. Suppose for a proof by
contradiction that there exists Ci ∈ φ such that + > p for all p ∈ Ci and p ≮ +
whenever ¬p ∈ Ci. So L	≮+ = V and R	≮+ = W . Since |R| = |L| + 1, we must
have �i >KV ri by case (3a) and thus V >kv W . Let s be a term in V of maximal
weight. We must have w(s) � w(t) for all terms t ∈ W . By construction of the
terms in V and W , this is only possible if all symbols eji have the same weight.
It follows that all terms in V and W have the same weight. Since |V | = |W | and
for every term s′ ∈ V there exists a unique term t′ ∈W with root(s′) = root(t′),
we conclude V =kv W , which provides the desired contradiction. .-

After these preliminaries we are ready to prove NP-hardness.

Theorem 29. The (ground) orientability problem for >KV is NP-hard.

Proof. It is sufficient to prove that a CNF formula φ = {C1, . . . , Cn} is satisfiable
if and only if the corresponding Rφ is orientable by >KV. Note that the size
of Rφ is linear in the size of φ. First suppose that φ is satisfiable. Let α be
a satisfying assignment for the atoms p1, . . . , pm. Define the precedence > as
follows: a > + > b and pj > + if α(pj) is true and + > pj if α(pj) is false.
Then Rφ ⊆ >KV follows from Lemma 28. Conversely, if Rφ is compatible with
>KV then we define an assignment α for the atoms in φ as follows: α(p) is true if
p ≮ + and α(p) is false if + > p. We claim that α satisfies φ. Let Ci be a clause
in φ. According to Lemma 28, p ≮ + for one of the atoms p in Ci or + > p for
one of the negative literals ¬p in Ci. Hence α satisfies Ci by definition. .-

7 Subterm Coefficients

Subterm coefficients were introduced in [14] in order to cope with rewrite rules
like f(x) → g(x, x) which violate the variable condition. A subterm coefficient
function is a partial mapping sc : F ×N→ N such that for a function symbol f
of arity n we have sc(f, i) > 0 for all 1
 i
 n. Given a weight function (w,w0)
and a subterm coefficient function sc, the weight of a term is inductively defined
as follows:

332 A. Yamada et al.

w(t) =

{
w0 if t ∈ V
w(f) +

∑
1�i�n

s(f, i) · w(ti) if t = f(t1, . . . , tn)

The variable coefficient vc(x, t) of a variable x in a term t is inductively
defined as follows: vc(x, t) = 1 if t = x, vc(x, t) = 0 if t ∈ V \ {x}, and
vc(x, f(t1, . . . , tn)) = sc(f, 1) · vc(x, t1) + · · ·+ sc(f, n) · vc(x, tn).

Definition 30. The order >sc
ACKBO is obtained from Definition 15 by replacing

the condition “ |s|x � |t|x for all x ∈ V” with “ vc(x, s) � vc(x, t) for all x ∈ V”
and using the modified weight function introduced above.

In order to guarantee AC compatibility of >sc
ACKBO, the subterm coefficient

function sc has to assign the value 1 to arguments of AC symbols. This follows
by considering the terms t ◦ (u ◦ v) and (t ◦ u) ◦ v for an AC symbol ◦ with
sc(◦, 1) = m and sc(◦, 2) = n. We have

w(t ◦ (u ◦ v)) = 2 · w(◦) +m · w(t) +mn · w(u) + n2 · w(v)
w((t ◦ u) ◦ v) = 2 · w(◦) +m2 · w(t) +mn · w(u) + n · w(v)

Since w(t ◦ (u ◦ v)) = w((t ◦ u) ◦ v) must hold for all possible terms t, u, and
v, it follows that m = m2 and n2 = n, implying m = n = 1.7 The proof of the
following theorem is very similar to the one of Theorem 24 and hence omitted.

Theorem 31. If sc(f, 1) = sc(f, 2) = 1 for every function symbol f ∈ FAC then
>sc

ACKBO is an AC-compatible simplification order. .-

Example 32. Consider the following TRS R with f ∈ FAC:

g(0, f(x, x)) → x (1)

g(x, s(y))→ g(f(x, y), 0) (2)

g(s(x), y)→ g(f(x, y), 0) (3)

g(f(x, y), 0)→ f(g(x, 0), g(y, 0)) (4)

Termination ofR was shown using AC dependency pairs in [11, Example 4.2.30].
Consider a precedence g > f > s > 0, and weights and subterm coefficients given
by w0 = 1 and the following interpretation A, mapping function symbols in F
to linear polynomials over N:

sA(x) = x+ 6 gA(x, y) = 4x+ 4y + 5 fA(x, y) = x+ y + 3 0A = 1

It is easy to check that the first three rules result in a weight decrease. The left-
and right-hand side of rule (4) are both interpreted as 4x+4y+21, so both terms
have weight 29, but since g > f we conclude termination of R from case (1) in
Definition 15 (30). Note that termination of R cannot be shown by AC-RPO or
any of the previously considered versions of AC-KBO.

7 This condition is also obtained by restricting [4, Proposition 4] to linear polynomials.

AC-KBO Revisited 333

Table 1. Experiments on 145 termination and 67 completion problems

orientability AC-DP completion
method yes time ∞ yes time ∞ yes time ∞
AC-KBO 32 1.7 0 66 463.1 3 25 2278.6 37
Steinbach 23 1.6 0 50 463.2 2 24 2235.4 36
Korovin & Voronkov 30 2.0 0 66 474.3 4 25 2279.4 37
KV′ 30 2.1 0 66 472.4 3 25 2279.6 37
subterm coefficients 37 47.1 0 68 464.7 2 28 1724.7 26
AC-RPO 63 2.8 0 79 501.5 4 28 1701.6 26

total 72 94 31

8 Experiments

We ran experiments on a server equipped with eight dual-core AMD Opteron R©

processors 885 running at a clock rate of 2.6GHz with 64GB of main memory. The
different versions of AC-KBO considered in this paper as well as AC-RPO [16]
were implemented on top of TTT2 using encodings in SAT/SMT. These encodings
resemble those for standard KBO [22] and transfinite KBO [20]. The encoding
of multiset extensions of order pairs are based on [5], but careful modifications
were required to deal with submultisets induced by the precedence.

For termination experiments, our test set comprises all AC problems in the
Termination Problem Data Base,8 all examples in this paper, some further prob-
lems harvested from the literature, and constraint systems produced by the com-
pletion tool mkbtt [19] (145 TRSs in total). The timeout was set to 60 seconds.
The results are summarized in Table 1, where we list for each order the num-
ber of successful termination proofs, the total time, and the number of timeouts
(column ∞). The ‘orientability’ column directly applies the order to orient all
the rules. Although AC-RPO succeeds on more input problems, termination of
9 TRSs could only be established by (variants of) AC-KBO. We found that our
definition of AC-KBO is about equally powerful as Korovin and Voronkov’s or-
der, but both are considerably more useful than Steinbach’s version. When it
comes to proving termination, we did not observe a difference between Defini-
tions 9 and 11. Subterm coefficients clearly increase the success rate, although
efficiency is affected. In all settings partial precedences were allowed.

The ‘AC-DP’ column applies the order in the AC-dependency pair framework
of [1], in combination with argument filterings and usable rules. Here AC symbols
in dependency pairs are unmarked, as proposed in [15]. In this setting the variants
of AC-KBO become considerably more powerful and competitive to AC-RPO,
since argument filterings relax the variable condition, as pointed out in [22].

For completion experiments, we ran the normalized completion tool mkbtt
with AC-RPO and the variants of AC-KBO for termination checks on 67 equa-
tional systems collected from the literature. The overall timeout was set to
60 seconds, the timeout for each termination check to 1.5 seconds. Table 1

8 http://termination-portal.org/wiki/TPDB

http://termination-portal.org/wiki/TPDB

334 A. Yamada et al.

Table 2. Complexity results (KV is the ground version of >KV)

problem KBO AC-KBO KV KV′

membership P P P NP-hard
orientability P NP-hard NP-hard NP-hard

summarizes our results, listing for each order the number of successful com-
pletions, the total time, and the number of timeouts. All experimental details,
source code, and TTT2 binaries are available online.9

The following example can be completed using AC-KBO, whereas AC-RPO
does not succeed.

Example 33. Consider the following TRS R [15] for addition of binary numbers:

+ 0→ # x0 + y0→ (x+ y)0 x1+ y1→ (x+ y +#1)0

x+#→ x x0 + y1→ (x+ y)1

Here + ∈ FAC, 0 and 1 are unary operators in postfix notation, and # denotes
the empty bit sequence. For example, #100 represents the number 4. This TRS
is not compatible with AC-RPO but AC termination can easily be shown by
AC-KBO, for instance with the weight function (w,w0) with w(+) = 0, w0 =
w(0) = w(#) = 1, and w(1) = 3. The system can be completed into an AC
convergent TRS using AC-KBO but not with AC-RPO.

9 Conclusion

We revisited the two variants of AC-compatible extensions of KBO. We extended
the first version >S introduced by Steinbach [17] to a new version >ACKBO,
and presented a rigorous correctness proof. By this we conclude correctness of
>S, which had been put in doubt in [9]. We also modified the order >KV by
Korovin and Voronkov [9] to a new version >KV′ which is monotone on non-
ground terms, in contrast to >KV. We also presented several complexity results
regarding these variants (see Table 2). While a polynomial time algorithm is
known for the orientability problem of standard KBO [10], the problem becomes
NP-hard even for the ground version of>KV, as well as for our>ACKBO. Somewhat
unexpectedly, even deciding >KV′ is NP-hard while it is linear for standard KBO
[13]. In contrast, the corresponding problem is polynomial-time for our >ACKBO.
Finally, we implemented these variants of AC-compatible KBO as well as the AC-
dependency pair framework of Alarcón et al. [1]. We presented full experimental
results both for termination proving and normalized completion.

Acknowledgments. We are grateful to Konstantin Korovin for discussions
and the reviewers for their detailed comments which helped to improve the
presentation.

9 http://cl-informatik.uibk.ac.at/software/ackbo

http://cl-informatik.uibk.ac.at/software/ackbo

AC-KBO Revisited 335

References

1. Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A ∨ C-
termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51.
Springer, Heidelberg (2010)

2. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs.
TCS 236(1-2), 133–178 (2000)

3. Bachmair, L., Plaisted, D.A.: Termination orderings for associative-commutative
rewriting systems. JSC 1, 329–349 (1985)

4. Ben Cherifa, A., Lescanne, P.: Termination of rewriting systems by polynomial
interpretations and its implementation. SCP 9(2), 137–159 (1987)

5. Codish, M., Giesl, J., Schneider-Kamp, P., Thiemann, R.: SAT solving for termi-
nation proofs with recursive path orders and dependency pairs. JAR 49(1), 53–93
(2012)

6. Dershowitz, N.: Orderings for term-rewriting systems. TCS 17(3), 279–301 (1982)
7. Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp,

A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)
8. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.

(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press,
New York (1970)

9. Korovin, K., Voronkov, A.: An AC-compatible Knuth-Bendix order. In: Baader, F.
(ed.) CADE-19. LNCS (LNAI), vol. 2741, pp. 47–59. Springer, Heidelberg (2003)

10. Korovin, K., Voronkov, A.: Orienting rewrite rules with the Knuth-Bendix order.
I&C 183(2), 165–186 (2003)

11. Kusakari, K.: AC-Termination and Dependency Pairs of Term Rewriting Systems.
PhD thesis, JAIST (2000)

12. Kusakari, K., Toyama, Y.: On proving AC-termination by AC-dependency pairs.
IEICE Transactions on Information and Systems E84-D(5), 439–447 (2001)

13. Löchner, B.: Things to know when implementing KBO. JAR 36(4), 289–310 (2006)
14. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-

like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI),
vol. 4790, pp. 348–362. Springer, Heidelberg (2007)

15. Marché, C., Urbain, X.: Modular and incremental proofs of AC-termination.
JSC 38(1), 873–897 (2004)

16. Rubio, A.: A fully syntactic AC-RPO. I&C 178(2), 515–533 (2002)
17. Steinbach, J.: AC-termination of rewrite systems: A modified Knuth-Bendix order-

ing. In: Kirchner, H., Wechler, W. (eds.) ALP 1990. LNCS, vol. 463, pp. 372–386.
Springer, Heidelberg (1990)

18. Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination tech-
niques based on multiset orderings. In: Proc. RTA-23. LIPIcs, vol. 15, pp. 339–354
(2012)

19. Winkler, S.: Termination Tools in Automated Reasoning. PhD thesis, UIBK (2013)
20. Winkler, S., Zankl, H., Middeldorp, A.: Ordinals and Knuth-Bendix orders. In:

Bjørner, N., Voronkov, A. (eds.) LPAR-18 2012. LNCS, vol. 7180, pp. 420–434.
Springer, Heidelberg (2012)

21. Yamada, A., Winkler, S., Hirokawa, N., Middeldorp, A.: AC-KBO revisited. CoRR
abs/1403.0406 (2014)

22. Zankl, H., Hirokawa, N., Middeldorp, A.: KBO orientability. JAR 43(2), 173–201
(2009)

Well-Structured Pushdown System:

Case of Dense Timed Pushdown Automata

Xiaojuan Cai1 and Mizuhito Ogawa2

1 Shanghai Jiao Tong University, China
cxj@sjtu.edu.cn

2 Japan Advanced Institute of Science and Technology
mizuhito@jaist.ac.jp

Abstract. This paper investigates a general framework of a pushdown
system with well-quasi-ordered states and stack alphabet to show
decidability of reachability, which is an extension of our earlier work
(Well-structured Pushdown Systems, CONCUR 2013). As an instance,
an alternative proof of the decidability of the reachability for dense-timed
pushdown system (in P.A. Abdulla, M.F. Atig, F. Stenman, Dense-
Timed Pushdown Automata, IEEE LICS 2012) is presented. Our proof
would be more robust for extensions, e.g., regular valuations with time.

1 Introduction

Infinite state transition systems appear in many places still keeping certain de-
cidable properties, e.g., pushdown systems (PDS), timed automata [5], and vec-
tor addition systems (VAS, or Petri nets). Well-structured transition systems
(WSTSs) [3,14] are one of successful general frameworks to reason about decid-
ability. The coverability of VASs, the reachability of communicating finite state
machines with lossy channels [14], and the inclusion problem between timed
automata with single clocks [18] are beginning of a long list.

A natural extension of WSTS is to associate a stack. It is tempting to apply
Higman’s lemma on stacks. However this fails immediately, since the monotonic-
ity of transitions with respect to the embedding on stacks hardly holds.

This paper investigates a general framework for PDSs with well-quasi-
ordered states and stack alphabet, well-structured pushdown systems. Well-
quasi-orderings (WQOs) over stack alphabet are extended to stacks by the
element-wise comparison. Note that this extension will not preserve WQO (nor
well founded). By combining classical Pre∗-automaton technique [7,15,12], we
reduce the argument on stacks to that on stack symbols, and similar to WSTS,
finite convergence of antichains during Pre∗-automata saturation is shown by a
WQO.

When the set P of states is finite, we have decidability of coverability [8].
When P is infinite (but equipped with WQO), we can state decidability of quasi-
coverability only. To compensate, we introduce a well-formed projection ⇓Υ ,
which extracts a core shape from the stack related to pushdown transitions. If
we find ⇓Υ such that, for configurations c, c′ with c ↪→ c′ and Υ = {c | c =⇓Υ (c)},

M. Codish and E. Sumii (Eds.): FLOPS 2014, LNCS 8475, pp. 336–352, 2014.
c© Springer International Publishing Switzerland 2014

Well-Structured Pushdown System 337

– compatibility: ⇓Υ (c) ↪→⇓Υ (c′), and
– stability: c ∈ Υ if, and only if, c′ ∈ Υ .

the quasi-coverability leads the configuration reachability. The compatibility
strengthens the quasi-coverability to the coverability, and the stability boosts
the coverability to the configuration reachability.

As an instance, we encode a dense-timed pushdown automaton (DTPDA) [2]
into a snapshot PDS, inspired by the digitization techniques in [18]. A snapshot
PDS has the set of snapshot words as stack alphabet. A snapshot word is essen-
tially a region construction of the dimension equal to its size. Since a snapshot
PDS contains non-standard pop rules (i.e., (p, γγ′) → (q, γ′′)), by associating a
top stack symbol to a state, it is encoded as a PDS with WQO states and stack
alphabet. Our general framework shows an alternative decidability proof of the
reachability of a DTPDA [2].1

Our contribution is not on logically difficult proofs, but clarifying the proof
structure behind theorems. Different from [2], our encoding is inspired by [18],
and would be more robust for extensions, e.g., regular valuations [13] with time.

Related Work

There are lots of works with context-sensitive infinite state systems. A pro-
cess rewrite systems combines a PDS and a Petri net, in which vector addi-
tions/subtractions between adjacent stack frames during push/pop operations
are prohibited [17]. With this restrictions, its reachability becomes decidable. A
WQO automaton [9], is a WSTS with auxiliary storage (e.g., stacks and queues).
It proves that the coverability is decidable under compatibility of rank functions
with a WQO, of which an Multiset PDS is an instance. A timed pushdown
automaton is a timed extension of a pushdown automaton. It has only global
clocks, and the region construction [5] encodes it to a standard PDS [6,10,11].
DTPDA [2] firstly introduces local ages, which are stored with stack symbols
when pushed, and never reset. DTPDA utilizes them to check whether an age
in a stack frame satisfies constraints when pop occurs.

A WSPDS is firstly introduced in [8]. It focuses on WSPDSs with finite con-
trol states (and well-quasi-ordered stack alphabet), whereas the paper explores
WSPDSs with well-quasi-ordered control states at the cost of weakening the
target property from the coverability to the quasi-coverability. The well-formed
projection (Section 5), if exists, strengthens it again to the reachability.

2 Dense-Timed Pushdown Automata

Dense-timed pushdown automaton (DTPDA) extends timed pushdown automa-
ton (TPDA) with local ages [2]. A local age in each context is set when a push
transition occurs, and restricts a pop transition only when the value of a local

1 In [2], only the state reachability is mentioned, but the proof is applied also for the
configuration reachability.

338 X. Cai and M. Ogawa

age meets the condition. The values of local ages proceed synchronously to global
clocks, and they are never reset. Following [2], we omit input alphabet, since our
focus is on reachability (regardless of an input word).

As notational convention, Section 2 and 7.2 use I for an interval (obeying to
[2]), whereas Section 4 used I for an ideal.

Definition 1. A DTPDA is a tuple 〈S, sinit, Γ, C, Δ〉, where

– S is a finite set of states with the initial state sinit ∈ S,
– Γ is a finite stack alphabet,
– C is a finite set of clocks, and
– Δ is a finite set of transitions.

A transition t ∈ Δ is a triplet (s, op, s′) in which s, s′ ∈ S and op is either of

– Local. nop, a state transition in S,
– Assignment. x← I, assign an arbitrary value in I to a clock x ∈ C,
– Test. x ∈ I?, test whether the value of a clock x ∈ C is in I,
– Push. push(γ, I), push γ on a stack associated with a local age of an arbi-

trary value in I, and
– Pop. pop(γ, I), pop γ off a stack if the associated age a is in I.

where I is an interval bounded by natural numbers (i.e., [l, h], (l, h], [l, h), (l, h)
for l, h ∈ N ∪ {ω} with l ≤ h).

If each I in Push and Pop rules is [0,∞) (i.e., no conditions on local ages),
we say simply a Timed Pushdown Automaton.

Definition 2. For a DTPDA 〈S, sinit, Γ, C, Δ〉, a configuration is a triplet
(s, ν, w) with s ∈ S, a clock valuation ν : C → R≥0, and w ∈ (Γ × R≥0)∗.
We refer s in a configuration c = (s, ν, w) by state(c). For t ∈ R≥0, we denote

– ν0(x) = 0 for x ∈ C,
– νx←t(x) = t and νx←t(y) = ν(y) if y "= x,
– (ν + t)(x) = ν(x) + t for x ∈ C, and
– w + t = (γ1, t1 + t). · · · .(γk, tk + t) for w = (γ1, t1). · · · .(γk, tk).

There are two types of transitions, timed
t−→Time and discrete transitions

op−→Disc. Semantics of a timed transition is (s, ν, w)
t−→Time (s, ν + t, w + t),

and a discrete transitions (s, op, s′) is either

– Local. (s, ν, w)
nop−−→Disc (s

′, ν, w),

– Assignment. (s, ν, w)
x←I−−−→Disc (s

′, νx←t, w) for t ∈ I,
– Test. (s, ν, w)

x∈I?−−−→Disc (s
′, ν, w) if ν(x) ∈ I,

– Push. (s, ν, w)
push(γ,I)−−−−−−→Disc (s

′, ν, (γ, t).w) for t ∈ I, and
– Pop. (s, ν, (γ, t).w)

pop(γ,I)−−−−−→Disc (s
′, ν, w) if t ∈ I.

We assume that the initial configuration is (sinit, ν0, ε).

Well-Structured Pushdown System 339

Example 1. The figure shows transitions between configurations in which S =
{•} (omitted), C = {x1, x2, x3}, and Γ = {a, b, d}. From c1 to c2, a discrete
transition push(d, [1, 3]) pushes (d, 2.6) into the stack. At the timed transition
from c2 to c3, 2.6 time units have elapsed, and each value grows older by 2.6.
From c3 to c4, the value of x2 is assigned to 3.8, which lies in the interval (2, 5],
and the last transition pops (d, 5.2) after testing that its local age lies in [4, 6].

(a, 1.9)
(b, 6.7)
(a, 3.1)
(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,2.6)
(a, 1.9)
(b, 6.7)
(a, 3.1)
(d, 4.2)

x1 ← 0.5
x2 ← 3.9
x3 ← 2.3

(d,5.2)
(a,4.5)
(b,9.3)
(a,5.7)
(d,6.8)

x1 ← 3.1
x2 ← 6.5
x3 ← 4.9

(d, 5.2)
(a, 4.5)
(b, 9.3)
(a, 5.7)
(d, 6.8)

x1 ← 3.1
x2 ← 3.8
x3 ← 4.9

(a, 4.5)
(b, 9.3)
(a, 5.7)
(d, 6.8)

x1 ← 3.1
x2 ← 3.8
x3 ← 4.9

c1
push(d,[1,3])−−−−−−−−→Disc c2

2.6−−−−−→Time c3
x2←(2,5]−−−−−−−→Disc c4

pop(d,[4,6])−−−−−−−→Disc c5

3 P-Automaton

A textbook standard technique to decide the emptiness of a pushdown au-
tomaton is, first converting it to context free grammar (with cubic explosion),
and then applying CYK algorithm, which is a well-known dynamic program-
ming technique. A practical alternative (with the same complexity) is a P-
automaton [15,12]. Starting from a regular set C of initial configurations (resp.
target configurations) Post∗ (resp. Pre∗) saturation procedure is applied on
an initial P-automaton (which accepts C) until convergence. The resulting P-
automaton accepts the set of all successors (resp. predecessors) of C. In litera-
ture, it is applied only for PDSs with finite control states and stack alphabet. We
confirm that it works for PDSs without finite assumptions (at the cost of infinite
convergence), and extend it to the coverability and the quasi-coverability.

3.1 P-Automaton for Reachability of Pushdown System

In the standard definition, a pushdown system (PDS) has a finite set of states
and finite stack alphabet. We will consider a PDS with an infinite set of states
and infinite stack alphabet. For (possibly infinitely many) individual transition
rules, we introduce a partial function ψ to describe a pattern of transitions. We
denote the set of partial functions from X to Y by PFun(X,Y).

Definition 3. A pushdown system (PDS) M = 〈P, Γ,Δ〉 consists of a finite
set Δ ⊆ PFun(P × Γ, P × Γ 2) ∪ PFun(P × Γ, P × Γ) ∪ PFun(P × Γ, P)
of transition rules. We say that ψ ∈ Δ is a push, internal, and pop rule if
ψ ∈ PFun(P ×Γ, P ×Γ 2), ψ ∈ PFun(P ×Γ, P ×Γ), and ψ ∈ PFun(P ×Γ, P),
respectively.

A configuration 〈p, w〉 consists of p ∈ P and w ∈ Γ ∗. For a transition rule
ψ ∈ Δ, a transition is 〈p, γw〉 ↪→ 〈p′, vw〉 for (p′, v) = ψ(p, γ)

340 X. Cai and M. Ogawa

Remark 1. Often in multi-thread programmodelings and in snapshot PDSs (Sec-
tion 7.2) for discretizing DTPDAs, PDSs are defined with finite control states,
but with non-standard pop rules, like 〈p, γ1γ2〉 ↪→ 〈q, γ〉 ∈ PFun(P ×Γ 2, P ×Γ)
with |P | < ∞. This can be encoded into PDSs in Definition 3 by associating a
top stack symbol to a state, like 〈(p, γ1), γ2〉 ↪→ 〈(q, γ), ε〉 ∈ PFun(P ′ × Γ, P ′)
with P ′ = P × Γ , at the cost that the set P ′ of control states becomes infinite.

We use c1, c2, · · · to range over configurations. ↪→∗ is the reflexive transitive
closure of ↪→. There are two kinds of reachability problems.

– Configuration reachability: Given configurations 〈p, w〉, 〈q, v〉 with p, q ∈
P and w, v ∈ Γ ∗, decide whether 〈p, w〉 ↪→∗ 〈q, v〉.

– State reachability: Given a configuration 〈p, w〉 and a state q with p, q ∈ P
and w ∈ Γ ∗, decide whether there exists v ∈ Γ ∗ with 〈p, w〉 ↪→∗ 〈q, v〉.

Given a set of configurations C, we write pre∗(C) (resp. post∗(C)) for the set
{c′ | c′ ↪→∗ c ∧ c ∈ C} (resp. {c′ | c ↪→∗ c′ ∧ c ∈ C}). The reachability problem
from 〈p, w〉 to 〈q, v〉 is reduced to whether c ∈ pre∗({c′}) (or c′ ∈ post∗({c})).

Definition 4. A Pre∗-automaton A is a quadruplet (S, Γ,∇, F) with F ⊆ S
and ∇ ⊆ S × Γ × S. A Pre∗-automaton is initial if each state in S ∩ P has no
incoming transitions and S is finite. A accepts a configuration 〈p, w〉 with p ∈ P
and w ∈ Γ ∗, if w is accepted starting from p (as an initial state).

The set of configurations accepted by A is denoted by L(A). When (p, γ, q) ∈
∇, we denote p

γ�→ q. For w = γ1 . . . γk ∈ Γ ∗, p
γ1�→ · . . . γk�→ q is denoted by

p
w�→∗ q ∈ ∇∗. If k = 0 (i.e., p

ε�→ q), we assume p = q.

Starting from an initial Pre∗-automaton A0 that accepts C (i.e., C = L(A0)),
the repeated (possibly infinite) applications of saturation rules

(S, Γ,∇, F)
(S ∪ {p′}, Γ,∇∪ {p′ γ�→ q}, F)

if p
w�→
∗
q ∈ ∇∗ and ψ(p′, γ) = (p, w) for ψ ∈ Δ

converge to Pre∗(A0). Note that saturation rules never eliminate transitions,
but monotonically enlarge.

Theorem 1. [15,7,12] (Theorem 1 in [8]) For a PDS, pre∗(C) = L(Pre∗(A0)).
where C = L(A0).

Example 2. Let 〈{pi}, {γi}, Δ〉 be a pushdown system with i = 0, 1, 2 and Δ
given below. The saturation A of Pre∗-automata started from A0 accepting
C = {〈p0, γ0γ0〉}. L(A) coincides pre∗(C).

(1). 〈p0, γ0〉 → 〈p1, γ1γ0〉
(2). 〈p1, γ1〉 → 〈p2, γ2γ0〉
(3). 〈p2, γ2〉 → 〈p0, γ1〉
(4). 〈p0, γ1〉 ↪→ 〈p0, ε〉

A0 : p0
γ0 �� s1

γ0 �� s2

A : p0
γ0 ��

γ0

(1)

��
γ1

(4)
��

s1
γ0 �� s2

p1

(2)
γ1

��

(2) γ1

��

p2
(3)

γ2

��

Well-Structured Pushdown System 341

Remark 2. Since the saturation procedure monotonically extends Pre∗-
automaton, even if a PDS has an infinite set of states / stack alphabet and
the initial Pre∗-automaton A0 has infinite states, it converges (after infinite
many saturation steps), and pre∗(C) = L(Pre∗(A0)) holds.

3.2 P-Automata for Coverability of OPDS

A quasi-ordering (QO) is a reflexive transitive binary relation. We denote the
upward (resp. downward) closure of X by X↑ (resp. X↓), i.e., X↑ = {y | ∃x ∈
X.x ≤ y} (resp. X↓ = {y | ∃x ∈ X.y ≤ x}).

For a PDS M = 〈P, Γ,Δ〉, we introduce QOs (P,+) and (Γ,≤) on P and Γ ,
respectively. We call M = 〈(P,+), (Γ,≤), Δ〉 an ordered PDS (OPDS).

Definition 5. For w1 = α1α2 · · ·αn, w2 = β1β2 · · ·βm ∈ Γ ∗, let

– Element-wise comparison w1 / w2 if m = n and ∀i ∈ [1..n].αi ≤ βi.
– Embedding w1 � w2 if there is an order-preserving injection f from [0..n]

to [0..m] with αi ≤ βf(i) for each i ∈ [0..n].

We extend / on configurations such that (p, w)/ (q, v) if p + q and w/ v.
A partial function ψ ∈ PFun(X,Y) is monotonic if γ ≤ γ′ and γ ∈ dom(ψ)

imply ψ(γ)/ ψ(γ′) and γ′ ∈ dom(ψ) for each γ, γ′ ∈ X . We say that an OPDS
M = 〈(P,+), (Γ,≤), Δ〉 is monotonic if ψ is monotonic for each ψ ∈ Δ.

– Coverability: Given configurations (p, w), (q, v) with p, q ∈ P and w, v ∈
Γ ∗, decide whether there exist q′ ∈ P and v′ ∈ Γ ∗ with q + q′, v / v′, and
(p, w) ↪→∗ (q′, v′).

Coverability is reduced to whether (p, w) ∈ pre∗({(q, v)}↑). For coverability, we
restrict saturation rules of Pre∗-automata.

(S, Γ,∇, F)
(S ⊕ {p′}, Γ,∇⊕ {p′ γ�→ q}, F)

if p
w�−→∗ q ∈ ∇∗ and

ψ(p′, γ) ∈ {(p, w)}↑ for ψ ∈ Δ

where (S ⊕ {p′},∇⊕ {p′ γ�→ q}) is{
(S,∇) if there exists {p′′ γ′

�→ q} ∈ ∇ with p′′ + p′ and γ′ ≤ γ

(S ∪ {p′},∇∪ {p′ γ�→ q}) otherwise.

Theorem 2. (Theorem 3 in [8]) For a monotonic OPDS, pre∗(C↑) =
L(Pre∗(A0)). where C

↑ = L(A0).

3.3 P-Automata for Quasi-Coverability of OPDS

– Quasi-coverability.Given configurations 〈p, w〉, 〈q, v〉, decide whether there
exist 〈p′, w′〉 and 〈q′, v′〉 such that 〈p, w〉 / 〈p′, w′〉, 〈q, v〉 / 〈q′, v′〉, and
〈p′, w′〉 ↪→∗ 〈q′, v′〉.

342 X. Cai and M. Ogawa

Quasi-coverability is reduced to whether 〈p, w〉 ∈ pre∗({(q, v)}↑)↓. For quasi-
coverability, we further restrict saturation rules of Pre∗-automata.

(S, Γ,∇, F)
(S ⊕ {p′}, Γ,∇⊕ {p′ γ�→ q}, F)

if p
w�→
∗
q ∈ ∇∗ and

ψ(p′, γ) ∈ {(p, w)}↑ for ψ ∈ Δ

where (S ⊕ {p′},∇⊕ {p′ γ�→ q}) is⎧⎪⎨⎪⎩
(S,∇) if there exists {p′′ γ′

�→ q} ∈ ∇ with p′′ + p′ and γ′ ≤ γ

(S,∇ ∪ {p′′ γ�→ q}) if there exists p′′ ∈ S ∩ P with p′′ + p′

(S ∪ {p′},∇∪ {p′ γ�→ q}) otherwise.

The second condition suppresses adding new states in Pre∗-automata, and
the first condition gives a termination condition for adding new edges.

p q

p’

p”

pq’ q

Proof ideaSaturation rule
(second case)

Pre*-automaton

p”q’

p’q”
Not added

I.H.

growing.

Definition 6. An OPDS M = 〈(P,+), (Γ,≤), Δ〉 is growing if, for each
ψ(p, γ) = (q, w) with ψ ∈ Δ and (q′, w′) 1 (q, w), there exists (p′, γ′) with
(p′, γ′)1 (p, γ) such that ψ(p′, γ′)1 (q′, w′).

Lemma 1 is obtained by induction on steps of Pre∗-automata saturation.

Lemma 1. For a monotonic and growing OPDS, assume p
w�−→
∗
s in Pre∗(A0).

For each (p′, w′)1 (p, w),

– If s ∈ P , there exist (p′′, w′′)1 (p′, w′) and q′ 0 s with 〈p′′, w′′〉 ↪→∗ 〈q′, ε〉.
– If s ∈ S \ P , there exist (p′′, w′′)1 (p′, w′), q

v�−→
∗
s in A0 with q ∈ P , and

〈q′, v′〉 1 〈q, v〉 such that 〈p′′, w′′〉 ↪→∗ 〈q′, v′〉.

For simplicity, we say “c0 covers c1” to mean that there exists c′1 1 c1 with
c0 ↪→∗ c′1. The next Claim is easily proved by induction on the steps of ↪→.

Claim. For a monotonic and growing OPDS, if 〈p, w〉 ↪→∗ 〈q, v〉, then for any
(q′, v′)1 (q, v), there exists (p′, w′)1 (p, w) such that 〈p′, w′〉 covers 〈q′, v′〉.

Well-Structured Pushdown System 343

Proof. By induction on steps of the Pre∗ saturation procedure A0,A1,A2, · · · .
For A0, the statements hold immediately. Assume the statements hold for Ai,

and Ai+1 is constructed by adding new transition p0
γ0�→ q0.

(S, Γ,∇, F)
(S ∪ {p0}, Γ,∇⊕ {p0

γ0�→ q0}, F)
if p1

w1�→
∗
q0 ∈ ∇∗ and

ψ(p0, γ0) ∈ {(p1, w1)}↑ for ψ ∈ Δ

We give a proof only for the first statement. The second statement is similarly
proved. According to the definition of ⊕, there are three cases:

– There exists {p′0
γ′
0�→ q0} ∈ ∇ with p′0 + p0 and γ′0 ≤ γ0. Nothing added.

– There exists p′0 in S ∩ P and p′0 + p0. Then, p
′
0

γ0�→ q0 is added.

– Otherwise. p0
γ0�→ q0 is added.

The second case is the most complex, and we focus on it. Assume that a path

p
w�−→
∗
q contains p′0

γ0�→ q0 k-times. We apply (nested) induction on k, and we

focus on its leftmost occurrence. Let w = wlγ0wr and p
wl�−→
∗
p′0

γ0�→ q0
wr�−→
∗
q.

For each p′ 0 p, w′l 1 wl, w
′
r 1 wr and γ′0 ≥ γ0:

1. By induction hypothesis on p
wl�−→
∗
p′0, there exists (p′′, w′′l) 1 (p′, w′l) such

that 〈p′′, w′′l 〉 covers 〈p′0, ε〉.
2. By the definition of saturation rules, there exist p′1 0 p1 and w′1 1 w1 such

that 〈p0, γ0〉 ↪→ 〈p′1, w′1〉.
3. By induction hypothesis on p1

w1wr�−→
∗
q, there exist p′′1 0 p′1 and w′′1w

′′
r 1

w′1w
′
r such that 〈p′′1 , w′′1w′′r 〉 covers 〈q, ε〉.

4. By the growing property, there exist p′′0 0 p0 0 p′0 and γ′′0 ≥ γ′0 such that
〈p′′0 , γ′′0 〉 covers 〈p′′1 , w′′1 〉.

By Claim and 1., there exists (p′′′, w′′′l) 1 (p′′, w′′l) 1 (p′, w′l) such
that 〈p′′′, w′′′l 〉 covers 〈p′′0 , ε〉. Put all these together, for each (p′, w′lγ

′
0w
′
r) 1

(p, wlγ0wr), there exists (p′′′, w′′′l γ
′′
0w
′′
r) 1 (p′, w′lγ

′
0w
′
r). Therefore, each of

〈p′′′, w′′′l γ′′0w′′r 〉, 〈p′′0 , γ′′0w′′r 〉, 〈p′′1 , w′′1w′′r 〉, and 〈q, ε〉 covers the next. �

Theorem 3. For a monotonic and growing OPDS, pre∗(C↑)↓ = L(Pre∗(A0))
↓.

where C↑ = L(A0).

4 Finite Convergence of Pre∗-automata

Definition 7. A QO ≤ is a well-quasi-ordering (WQO) if, for each infinite
sequence a1, a2, · · · , there exist i, j with i < j and ai ≤ aj.

A QO ≤ is a WQO, if, and only if each upward closed set X↑ has finite
basis (i.e., minimal elements). Note that / may be no longer a WQO (nor well
founded), while the embedding (Γ ∗,�) stays a WQO by Higman’s lemma.

Lemma 2. Let (D,≤) and (D′,≤′) be WQOs.

344 X. Cai and M. Ogawa

– (Dickson’s lemma) (D ×D′,≤ × ≤′) is a WQO.
– (Higman’s lemma) (D∗,�) is a WQO, where � is the embedding.

For a monotonic OPDS, if (P,+), (Γ,≤) are WQOs, we call it a Well-
Structured PDS (WSPDS). For a WSPDS ((P,+), (Γ,≤), Δ), ψ−1({(p, w)}↑)
is upward-closed and has finite basis (i.e., finitely many minimal elements). In
the Pre∗ saturation rule of Section 3.3, its side condition contains ψ(p′, γ) ∈
{(p, w)}↑ for ψ ∈ Δ, which allows arbitrary choices of (p′, γ). For a WSPDS, we
focus only on finite basis of upward-closed sets (p′, γ) ∈Min(ψ−1({(p, w)}↑)).

We assume that such finite basis are computable for each ψ ∈ Δ, and the
initial Pre∗-automaton A0 with L(A0) = (p, w)↑ has finitely many states S0.

Theorem 4. For a WSPDS ((P,+), (Γ,≤), Δ), if (i) (P,+), (Γ,≤) are com-
putable WQOs, and (ii) a finite basis of ψ−1({(p, w)}↑) is computable for each
ψ ∈ Δ and 〈p, w〉 ∈ P × Γ≤2, Pre∗(A0) (in Section 3.3) finitely converges.

Proof. (Sketch) Starting from a WQO over S such that + over S0 ∩ P and
= on S0 \ P , the set S of states of the Pre∗-automaton make a bad sequence,
since saturation rules in Section 3.3 do not add larger states. For each pair (p, q)
of states, they do not add larger stack symbols as labels of Pre∗ automaton

transitions p
γ�→ q. Thus, during the saturation, a sequence of added edges p1

γ1�→
q1, p2

γ2�→ q2, · · · is bad. Thus, it finitely terminates. Since Δ has finitely many
transition rules, dependency during generation of Pre∗ automaton transitions is
finitely branching. Thus, by König’s lemma, Pre∗(A0) finitely converges. �

Example 3. Let M = 〈{pi},N2, Δ〉 be a WSPDS with vectors in N2 as a stack
alphabet and Δ consists of four rules given in the figure. The figure illus-
trates a Pre∗-automaton construction starting from initial A0 that accepts
C = 〈p2, (0, 0)↑〉. For v ∈ N2, we abbreviate {v}↑ by v↑. Note that N2 is WQO
by the element-wise comparison. A is the saturation of the Pre∗-automaton.

A0 : p2

(0,0)↑

��
f

ψ1 : 〈p0, v〉 → 〈p0, (v + (1, 1))v〉
ψ2 : 〈p1, v〉 → 〈p1, ε〉 if v ≥ (m, 0)
ψ3 : 〈p0, v〉 → 〈p1, v − (0, 2)〉 if v ≥ (0, 2)
ψ4 : 〈p1, v〉 → 〈p2, ε〉 if v ≥ (1, 0)

A :
(m = 2)

p1
(1,0)↑ψ4 ��

(2,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(0,0)↑ψ1

��

(1,1)↑
ψ1,3

		

(2,0)↑

ψ1,3

f

A′ :
(m = 3)

p1
(1,0)↑ψ4 ��

(3,0)↑

ψ2

��
p2

(0,0)↑

��
p0

(2,1)↑ ∪ (1,2)↑

ψ1,3

��

(3,0)↑

ψ1,3

(1,0)↑ ∪ (0,1)↑ψ1

�� f

For instance, when m = 2, p0
(2,2)↑�−→ p1 in A is generated from p1

(2,0)↑�−→ p1

by ψ3. By repeating application of ψ1 twice to p0
(2,2)↑�−→ p1

(2,0)↑�→ p1, we obtain

Well-Structured Pushdown System 345

p0
(2,0)↑�−→ p1. Then, applying ψ1 to p0

(2,0)↑�−→ p1
(1,0)↑�−→ p2, we obtain p0

(1,0)↑�−→ p2.

p0
(1,2)↑�−→ p2 is also generated from p1

(1,0)↑�−→ p2 by ψ3, but it will not affect.
By Theorem 2, we obtain

pre∗(C) = {〈p2, (0, 0)↑〉, 〈p1, ((2, 0)↑)∗(1, 0)↑(0, 0)↑〉,
〈p0, (0, 0)↑〉, 〈p0, (1, 1)↑(0, 0)↑〉, 〈p0, ((2, 0)↑)+(1, 0)↑(0, 0)↑〉}

Thus, 〈p0, (0, 0)〉 covers 〈p2, (0, 0)〉. Actually,

〈p0, (0, 0))〉↪→ 〈p0, (1, 1)(0, 0)〉 ↪→ 〈p0, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p1, (2, 0)(1, 1)(0, 0)〉
↪→ 〈p1, (1, 1)(0, 0)〉 ↪→ 〈p2, (0, 0)〉

Note that if we change the condition of ψ2 from v ≥ (2, 0) to v ≥ (3, 0), the sat-
urated Pre∗-automaton becomes A′, and 〈p0, (0, 0)〉 no more covers 〈p2, (0, 0)〉,
though 〈p0, (0, 0)〉 is reachable to p2. Actually,

〈p0, (0, 0))〉↪→ 〈p0, (1, 1)(0, 0)〉 ↪→ 〈p0, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p0, (3, 3)(2, 2)(1, 1)(0, 0)〉
↪→ 〈p1, (3, 1)(2, 2)(1, 1)(0, 0)〉 ↪→ 〈p1, (2, 2)(1, 1)(0, 0)〉 ↪→ 〈p2, (1, 1)(0, 0)〉

To detect the state reachability, instead of A0, we can start with an initial
automaton A′0 that accepts p2 × Γ ∗ = {〈p2, ((0, 0)↑)∗}.

5 Well-Formed Constraint

Definition 8. For an OPDS M , a pair (Υ,⇓Υ) of a set Υ ⊆ P × Γ ∗ and a
projection function ⇓Υ : P × Γ ∗ → (P × Γ ∗) ∪ {#} is a well-formed constraint
if, for configurations c, c′,

– c ↪→ c′ implies that c ∈ Υ if, and only if c′ ∈ Υ ,
– c ↪→ c′ implies ⇓Υ (c) ↪→⇓Υ (c′),
– ⇓Υ (c)/ c, and
– c/ c′ implies either ⇓Υ (c) =⇓Υ (c′) or ⇓Υ (c) = #,

where # is added to P ×Γ ∗ as the least element (wrt /) and Υ = {c ∈ P ×Γ ∗ |
c =⇓Υ (c)}. (# represents failures of ⇓Υ .)

Lemma 3. For a monotonic OPDS M with a well-formed projection ⇓Υ , as-
sume C ⊆ Υ . Then, pre∗(C) = pre∗(C↑) ∩ Υ = pre∗(C↑)↓ ∩ Υ .
Proof. We will show pre∗(C) = pre∗(C↑)↓ ∩ Υ only. Similarly, pre∗(C) =
pre∗(C↑) ∩ Υ is shown.

From C ⊆ Υ , pre∗(C) ⊆ pre∗(C↑)↓ ∩Υ is obvious, For the opposite direction,
we first show ⇓Υ (pre∗(C↑)) ⊆ pre∗(C). Since c ∈ pre∗(C↑) is equivalent to
∃c′ ∈ C↑.c ↪→∗ c′, we have ⇓Υ (c) ↪→∗⇓Υ (c′) ∈ C. Since C ⊆ Υ implies
⇓Υ (c′) ∈ C, ⇓Υ (c) ∈ pre∗(C) is obtained. For pre∗(C) ⊇ pre∗(C↑)↓ ∩ Υ ,

pre∗(C↑)↓ ∩ Υ =⇓Υ (pre∗(C↑)↓ ∩ Υ) ⊆⇓Υ (pre∗(C↑)↓) =⇓Υ (pre∗(C↑)) ∪ {#}.

From ⇓Υ (pre∗(C↑)) ⊆ pre∗(C), ⇓Υ (pre∗(C↑)) ∪ {#} ⊆ pre∗(C) ∪ {#}. Thus,
pre∗(C↑)↓ ∩ Υ ⊆ (pre∗(C) ∪ {#}) ∩ Υ = pre∗(C). .-

346 X. Cai and M. Ogawa

From Theorem 3 and Lemma 3, Theorem 5 is immediate, which strengthens
the quasi-coverability to the configuration reachability, and the decidability is
reduced to finite convergence of L(Pre∗(A0)).

Theorem 5. Let C be a regular set of configurations with C↑ = L(A0) for a P-
automaton A0. For a monotonic and growing OPDS and a well-formed constraint
(Υ,⇓Υ), if C ⊆ Υ , then pre∗(C) = L(Pre∗(A0))

↓ ∩ Υ .

Example 4. In Example 3, let Υ be{
〈p0, (n, n) · · · (0, 0)〉, 〈p2, (n, n) · · · (0, 0)〉
〈p1, (n, n− 2)(n− 1, n− 1) · · · (0, 0)〉, | n ≥ m ≥ 0

}
Then, Υ is well-formed. Since both 〈p0, (0, 0)〉 and 〈p2, (0, 0)〉 are in Υ and
{〈pi, (0, 0)〉}↑∩Υ = {〈pi, (0, 0)〉}, 〈p0, (0, 0)〉 ↪→∗ 〈p2, (0, 0)〉 holds by Theorem 5.

6 Snapshot Word

In a DTPDA, local ages in the stack proceed when a timed transition occurs.
When a DTPDA is encoded into a discrete WSPDS, named snapshot PDS (Sec-
tion 7.2), it can operate only the top stack symbol. A snapshot word summarizes
the ordering of fractions among values of all local ages and global clocks in the
stack, after applying the digitization technique in [18,1,4]. When a pop occurs,
time progress recorded at the top stack symbol is propagated to the next stack
symbol after finding a permutation by matching via markings ρ1 and ρ2.

6.1 Snapshot Word

As notational convention, let MP(D) be the set of finite multisets over D. We
regard a finite set as a multiset in which the multiplicity of each element is 1.
For a finite word w = a1a2 · · · ak, we denote w(j) = aj

Let 〈S, sinit, Γ, C, Δ〉 be a DTPDA, and let n be the largest integer (except
for ∞) that appears in Δ. For v ∈ R≥0, proj(v) = ri if v ∈ ri ∈ Intv(n), where

Intv(n) =

⎧⎨⎩
r2i = [i, i] if 0 ≤ i ≤ n
r2i+1 = (i, i+ 1) if 0 ≤ i < n
r2n+1 = (n,∞)

Definition 9. Let frac(x, t) = t− floor(t) for (x, t) ∈ (C ∪Γ)×R≥0. A digiti-
zation digi :MP((C∪Γ)×R≥0)→ (MP((C∪Γ)×Intv(n)))∗ is as follows. For
X ∈ MP((C ∪ Γ)× R≥0), let X1, · · · , Xk be multisets that collect (x, proj(t))’s
in X having the same frac(x, t). We assume that Xi’s are sorted by the increas-
ing order of frac(x, t) (i.e., , frac(x, t) < frac(x′, t′) for (x, proj(t)) ∈ Xi and
(x′, proj(t′)) ∈ Xi+1). Then, digi(X) is a word X1 · · ·Xk.

Example 5. In Example 1, n = 6 and we have 13 intervals illustrated below.

0 r1 1 r3 2 r5 3 r7 4 r9 5 r11 6 r13

r0 r2 r4 r6 r8 r10 r12

Well-Structured Pushdown System 347

From the configuration c1 in Example 1, the clock information is extracted from
the stack content of c1 as a multiset

X = {(a, 1.9), (b, 6.7), (a, 3.1), (d, 4.2), (x1, 0.5), (x2, 3.9), (x3, 2.3)}

and digi(X) = {(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}.
For instance, The value of the clock x2 and the age of the top stack frame
(a, 1.9) have the same fraction 0.9, thus they are packed into the same multiset
{(x2, r7), (a, r3)}, and placed at the last since their fraction is the largest.

Definition 10. A word γ̄ ∈ (MP((C ∪ Γ) × Intv(n)))∗ is a snapshot word if
it has two pointers ρ1, ρ2 such that ρ1(γ̄), ρ2(γ̄) point to different elements of
Γ × Intv(n) appearing in γ̄. We denote the set of snapshot word by sw(C, Γ, n),
and γ̄|Γ is obtained by removing all elements in C × Intv(n) from γ̄.

Example 6. From digi(X) in Example 5, by adding ρ1 and ρ2 (marked with
overline and underline), which point to (a, r3) and (b, r13), respectively, we have

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}

and digi(X)|Γ = {(a, r7)}{(d, r9)}{(b, r13)}{(a, r3)}.

Definition 11. For snapshot words γ̄ = X1 · · ·Xm and γ̄′ = Y1 · · ·Yn with
Xi, Yj ∈ MP((C ∪Γ)× Intv(n)), we define the embedding γ̄ � γ̄′, if there exists
a monotonic injection f : [1..m]→ [1..n] such that

– Xk ⊆ Yf(k) for each k ∈ [1..m], and
– ρi(γ̄) = ρi(γ̄

′) for i = 1, 2.

Since Γ and C are finite, � is a WQO over sw(C, Γ, n) by Higman’s lemma.

Definition 12. Let c = (s, ν, w) be a configuration of a DTPDA with s ∈ S,
w ∈ (Γ ×R≥0)∗, and ν : C → R≥0, and let mp(w, ν) = w∪{(x, ν(x)) | x ∈ C} by
regarding w as a multiset (i.e., ignore the ordering). snap(c) is a snapshot word
obtained by adding ρ1, ρ2 to digi(mp(w, ν)) as:⎧⎨⎩ρ1, ρ2 are left undefined if w = ε
ρ1(snap(c)) = (γ, proj(t)), ρ2 is left undefined if w = (γ, t)
ρ1(snap(c)) = (γ, proj(t)), ρ2(snap(c)) = ρ1(snap((s, ν, w

′))) if w = (γ, t)w′

Example 7. For c2 in Example 1, snap(c1) is digi(X) (with ρ1 and ρ2) in Ex-
ample 6. ρ1 and ρ2 point to the top and second stack frames (a, 1.9), (b, 6.7).

Definition 13. For a configuration c = (s, ν, w) of a DTPDA, a snapshot con-
figuration Snap(c) = (s, w̃) with stack alphabet sw(C, Γ, n)∗ is with

w̃ = snap(s, ν, w[m]) snap(s, ν, w[m− 1]) · · · snap(s, ν, w[1]) snap(s, ν, ε)

where w = (am, tm) · · · (a1, t1) ∈ (Γ × R≥0)∗ and w[i] = (ai, ti) · · · (a1, t1).

348 X. Cai and M. Ogawa

Example 8. For c1 in Example 1 (with ν(x1) = 0.5, ν(x2) = 3.9, ν(x3) = 2.3),
Snap(c1) is shown below. The top snapshot word summarizes a time sequence.

(a, 1.9)

(b, 6.7)

(a, 3.1)

(d, 4.2)

⊥

⇒

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}
{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7)}

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(x2, r7)}
{(d, r9)}{(x3, r5)}{(x1, r1)}{(x2, r7)}

{(x3, r5)}{(x1, r1)}{(x2, r7)}
Stack of c1 Stack of Snap(c1)

6.2 Operations on Snapshot Words

Definition 14. Let γ̄ = X1 · · ·Xm ∈ (MP((C ∪ Γ)× Intv(n)))∗ be a snapshot
word and let γ ∈ Γ ∪ C. We define operations as follows.

– Insert. γ̄′ = insert(γ̄, (δ, rk)) is obtained from γ̄ by inserting (δ, rk)

{
either into Xj for j ∈ [1..m], or between Xj and Xj+1 for j ∈ [1..m− 1] if k is odd
into X1, if each ri in X1 has an even index; before X1, o.w. if k is even

and setting ρ1(γ̄
′) = (δ, rk) and ρ2(γ̄

′) = ρ1(γ̄).
– DeleteΓ . γ̄

′ = deleteΓ (γ̄) is obtained from γ̄ by deleting ρ1(γ̄) and setting
ρ1(γ̄

′) = ρ2(γ̄) and ρ2(γ̄
′) left undefined.

– DeleteC. For x ∈ C, deleteC(γ̄, x) is obtained from γ̄ by deleting (x, r) (and
ρ1, ρ2 are kept unchanged).

– Assignment. For x ∈ C, r ∈ Intv(n), assign(γ̄, x, r) = insert(deleteC(γ̄, x),
(x, r)).

– Permutation. Let i ∈ [1..m] and 0 ≤ k ≤ n. Basic permutations are⎧⎨⎩
⇒̇(γ̄) = Ẋ1X2 · · ·Xm

⇒̈(γ̄) = (Ẍ+
m)X1X2 · · ·Xm−1

addk(γ̄) = (X1 + k)(X2 + k) · · · (Xm + k)

where
• Ẋ updates each (y, rl) ∈ X with (y, rl+1) if l is even; otherwise as is,
• Ẍ+ updates each (y, rl) ∈ X with (y, rl+1) if l "= 2n + 1 and keeps if
l = 2n+ 1 (We assume that l is odd), and

• X + k updates each (y, rl) ∈ X with (y, rmin(l+k,2n+1)).
Then, a permutation is either σ̇i,k(γ̄) or σ̈i,k(γ̄), where

σ̇i,k(γ̄) = ⇒̇ · ⇒̈ · . . . · ⇒̈︸ ︷︷ ︸
m−i+1

·addk(γ̄) σ̈i,k(γ̄) = ⇒̈ · . . . · ⇒̈︸ ︷︷ ︸
m−i+1

·addk(γ̄)

– Propagate. propagate(γ̄, γ̄′) is obtained from deleteΓ (γ̄) by assigning
σ(ρ2(γ̄

′)) to ρ2(deleteΓ (γ̄)) for a permutation σ with γ̄|Γ = σ(γ̄′)|Γ .

Well-Structured Pushdown System 349

Example 9. Consider snap(ci) in Example 7 for c1 in Example 1.

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}
– insert(snap(c1), (d, r5)) has lots of choices, e.g.,

{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1), (d, r5)}{(b, r13)}{(x2, r7), (a, r3)},
{(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}, {(d, r5)}, {(b, r13)}{(x2, r7), (a, r3)}, · · ·
The transition from c1 to c2 in Example 1 is simulated by pushing the second
one (say, γ̄2) to Snap(c1) in Example 8.

– For c2
2.6→Time c3, the permutation σ̇4,2(γ̄2) results in γ̄3 below.

{(x1, r7)}, {(d, r11)}, {(b, r19)}{(x2, r13), (a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.

If a timed transition is c2
2.5→Time c3 (in time elapses 2.5 such that the fraction

of ν(x1) becomes 0), σ̈4,2(γ̄2) simulates it as

{(x1, r6)}, {(d, r11)}, {(b, r19)}{(x2, r13), (a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.
Propagate is used with deleteΓ to simulate a pop transition. Since time

progress is recorded only at the top stack frame (including updates on clock
values), after deleteΓ is applied to the top stack frame, the second stack frame
is replaced with the top. Lacking information is a pointer ρ2, which is recovered
from the second stack frame. This will be illustrated in Example 11.

7 Decidability of Reachability of DTPDA

7.1 Well-Formed Projection on Snapshot Configurations

Let 〈s, γ̄k · · · γ̄2γ̄1〉 be a snapshot configuration for s ∈ S and γ̄i ∈ (MP((C ∪
Γ) × Intv(n)))∗ (regarding γ̄k as a top stack symbol). A marking completion
marks elements in Γ × Intv(n) that relate to pushdown transitions.

Definition 15. For γ̄k · · · γ̄2γ̄1 with γ̄i ∈ (MP((C∪Γ)×Intv(n)))∗, the marking
completion comp inductively marks elements in γ̄i|Γ for each i.{

comp(γ̄1) = add marking on ρ1(γ̄1)
comp(γ̄k · · · γ̄2γ̄1) = γ̄′k · · · γ̄′2γ̄′1

where γ̄′k−1 · · · γ̄′2γ̄′1 = comp(γ̄k−1 · · · γ̄2γ̄1) and γ̄′k is obtained from γ̄k by marking

– ρ1(γ̄k), and
– each element in deleteΓ (γ̄k)|Γ corresponding to a marked element in γ̄′k−1|Γ

by a permutation σ satisfying σ(γ̄k−1)|Γ = deleteΓ (γ̄k)|Γ .
If such σ does not exist, comp(γ̄k · · · γ̄2γ̄1) = #.

We define a well-formed projection ⇓Υ (s, γ̄k · · · γ̄2γ̄1) by removing all un-
marked elements of Γ × Intv(n) in each γ̄i in (s, comp(γ̄k · · · γ̄2γ̄1)). A snapshot
configuration (s, γ̄k · · · γ̄2γ̄1) is well-formed if ⇓Υ (s, γ̄k · · · γ̄2γ̄1) = (s, γ̄k · · · γ̄2γ̄1)
(ignoring markings), and Υ is the set of well-formed snapshot configurations.

Example 10. In Example 8, γ̄5 is well-formed (i.e., (a, r7), (d, r9), (b, r13), (a, r3)
are all marked). For instance, a marking on (a, r7) succeeds the pointer ρ1 of γ̄3.

350 X. Cai and M. Ogawa

7.2 Snapshot PDS

Definition 16. Let 〈S, sinit, Γ, C, Δ〉 be a DTPDA and let n be the largest in-
teger in Δ. A snapshot PDS is a PDS S = 〈S, sw(C, Γ, n), Δ〉. We assume that
its initial configuration is 〈sinit, {(x, r0) | x ∈ C}〉.

Transition rule to simulate timed transitions 〈s, γ̄〉 t−→S 〈s, σ(γ̄)〉,
where σ is either σ̇i,m or σ̈i,m with m = floor(t) and 1 ≤ i ≤ length(γ̄)

Transition rules to simulate discrete transitions (s, op, s′)

– Local 〈s, ε〉 nop−−→S 〈s′, ε〉,
– Assignment 〈s, γ̄〉 x←I−−−→S 〈s′, assign(γ̄, x, r)〉 for r ⊆ I,

– Test 〈s, γ̄〉 x∈I?−−−→S 〈s′, γ̄〉 if r ⊆ I for (x, r) in γ̄.

– Push 〈s, γ̄〉 push(γ′,I)−−−−−−−→S 〈s′, insert(γ̄, (γ′, r)) γ̄〉 for r ⊆ I, and

– Pop 〈s, γ̄ γ̄′〉 pop(γ′,I)−−−−−−→S 〈s′, propagate(γ̄, γ̄′)〉.

By induction on the number of steps of transitions, complete and sound simu-
lation between a DTPDA and a snapshot PDS is observed. Note that the initial
clock valuation of a DTPDA to be set ν0 is essential.

Lemma 4. Let us denote c0 and c (resp. 〈sinit, γ̄0〉 and 〈s, w̃〉) for the initial
configuration and a configuration of a DTPDA T (resp. its snapshot PDS S).

1. If c0 ↪→∗ c then there exists 〈s, w̃〉 such that 〈sinit, γ̄0〉 ↪→∗S 〈s, w̃〉, s =
state(c), and w̃ is well-formed.

2. If 〈sinit, γ̄0〉 ↪→∗S 〈s, w̃〉 and w̃ is well-formed. there exists c such that c0 ↪→∗ c
with Snap(c) = 〈s, w̃〉.

Example 11. We show how a snapshot PDS simulates a DTPDA in Example 1,
as continuation to Example 9 (which shows transitions from c1 to c3).

– c3
x2←(2,5]−−−−−−→Disc c4 is simulated by assign(deleteC(snap(c3), x2), x2, r7) at

the top stack frame, since ν(x2) = 3.8 ∈ r7. There are several choices of
assign(deleteC(snap(c3), x2), x2, r7). Among them,

{(x1, r7)},{(d, r11)},{(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.
corresponds to 3.8. A different value, e.g., ν(x2) = 3.3, corresponds to
{(x1, r7)},{(d, r11)},{(x2, r7), (b, r19)}{(a, r9)}{(a, r11)}{(d, r13)}{(x3, r9)}.

– c4
pop(d,[4,6])−−−−−−−→Disc c5 is simulated by propagate(deleteΓ (snap(c4)), snap(c1)).

Note that a snapshot PDS does not change anything except for the top stack
frame. Thus, the second stack frame is kept unchanged from snap(c1). First,
deleteΓ removes the element pointed by ρ1, which results in

{(x1, r7)}, {(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.

snap(c1) = {(a, r7)}{(d, r9)}{(x3, r5)}{(x1, r1)}{(b, r13)}{(x2, r7), (a, r3)}
and, by pattern matching between ρ2 in the former and ρ1 in the latter,

Well-Structured Pushdown System 351

σ̇4,2 (which is used in the timed transition from c2 to c3 in Example 9) is
found. Then ρ1 is updated with the current ρ2 and ρ2 is recovered by σ as

{(x1, r7)}, {(b, r19)}{(a, r9)}{(a, r11)}{(x2, r7), (d, r13)}{(x3, r9)}.

We observe that ⇓Υ (defined in Section 7.1) satisfies Definition 8. A snapshot
PDS has finite states and WQO stack alphabet. By applying the encoding in
Remark 1, we obtain our main result from Theorem 3, 4, 5, Lemma 3, and 4.

Corollary 1. The (configuration) reachability of a DTPDA is decidable.

7.3 Comparison with the Original Encoding

In [16], we apply slight extensions of a DTPDA to make it able to set the value
of an age to that of a clock when a push occurs, and set the value of a clock
to that of an age when a pop occurs. Both the original encoding in [2] and our
snapshot word correctly handle them.

– Push-set push(γ, x), push γ on a stack associated with a local age of the
value of a clock x ∈ C, and

– Pop-set pop(γ, x), pop γ on a stack and set the value of a clock x ∈ C to
the value of the associated age a.

A snapshot word summarizes the ordering of fractions of all local ages and
global clocks in the stack, whereas the encoding in [2] summarizes boundedly
many information, i.e., values of global clocks and local ages in the top and
next stack frames (those in the next stack frame as shadow items). When a pop
occurs, it recovers the relation among global clocks and local ages in the next
stack frame. The difference would appear if we consider regular valuations [13]
with time, e.g., ∀a.a < x for a stack symbol a and a clock x, which means all
ages associated with a in the stack are smaller than the value of the clock x.

8 Conclusion

This paper investigated a general framework of pushdown systems with
well-quasi-ordered control states and stack alphabet, well-structured pushdown
systems, to show decidability of the reachability. This extends the decidability
results on a pushdown system with finite control states and well-quasi-ordered
stack alphabet [8]. The ideas behind are,

– combining WSTS [3,14] and classical Pre∗-automaton technique [7,15,12],
which enables us to reduce arguments on stacks to on stack symbols, and

– introduction of a well-formed projection ⇓Υ , which extracts the shape of
reachable configurations.

As an instance, an alternative decidability proof of the reachability for dense-
timed pushdown system [2] was shown. The encoding is inspired by the digitiza-
tion techniques in [18]. We expect our snapshot word encoding would be more
robust for extensions, e.g., regular valuations [13] with time.

Acknowledgements. The authors would like to thank Shoji Yuen, Yasuhiko
Minamide, Tachio Terauchi, and Guoqiang Li for valuable comments and

352 X. Cai and M. Ogawa

discussions. This work is supported by the NSFC-JSPS bilateral joint research
project (61011140074), NSFC projects (61003013,61100052,61033002), NSFC-
ANR joint project (61261130589), and JSPS KAKENHI Grant-in-Aid for Sci-
entific Research(B) (23300008).

References

1. Abdulla, P.A., Jonsson, B.: Verifying networks of timed processes. In: Steffen, B.
(ed.) TACAS 1998. LNCS, vol. 1384, pp. 298–312. Springer, Heidelberg (1998)

2. Abdulla, P.A., Atig, M.F., Stenman, F.: Dense-Timed Pushdown Automata. In:
IEEE LICS 2012, pp. 35–44 (2012)

3. Abdulla, P.A., Cerans, K., Jonsson, C., Yih-Kuen, T.: Algorithmic analysis of
programs with well quasi-ordered domains. Information and Computation 160(1-
2), 109–127 (2000)

4. Abdulla, P.A., Jonsson, B.: Model checking of systems with many identical time
processes. Theoretical Computer Science 290(1), 241–264 (2003)

5. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

6. Bouajjani, A., Echahed, R., Robbana, R.: On the Automatic Verification of Sys-
tems with Continuous Variables and Unbounded Discrete Data Structures. In:
Antsaklis, P.J., Kohn, W., Nerode, A., Sastry, S.S. (eds.) HS 1994. LNCS, vol. 999,
pp. 64–85. Springer, Heidelberg (1995)

7. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)

8. Cai, X., Ogawa, M.: Well-Structured Pushdown Systems. In: D’Argenio, P.R., Mel-
gratti, H. (eds.) CONCUR 2013. LNCS, vol. 8052, pp. 121–136. Springer, Heidel-
berg (2013)

9. Chadha, R., Viswanathan, M.: Decidability results for well-structured transition
systems with auxiliary storage. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR
2007. LNCS, vol. 4703, pp. 136–150. Springer, Heidelberg (2007)

10. Dang, Z.: Pushdown timed automata:a binary reachability characterization and
safety verification. Theoretical Computer Science 302, 93–121 (2003)

11. Emmi, M., Majumdar, R.: Decision Problems for the Verification of Real-Time
Software. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp.
200–211. Springer, Heidelberg (2006)

12. Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)

13. Esparza, J., Kucera, A., Schwoon, S.: Model checking LTL with regular valuations
for pushdown systems. Information and Computation 186(2), 355–376 (2003)

14. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2), 63–92 (2001)

15. Finkel, A., Willems, B., Wolper, P.: A direct symbolic approach to model checking
pushdown systems (extended abstract). In: INFINITY 1997. ENTCS, vol. 9 (1997)

16. Li, G., Cai, X., Ogawa, M., Yuen, S.: Nested Timed Automata. In: Braberman,
V., Fribourg, L. (eds.) FORMATS 2013. LNCS, vol. 8053, pp. 168–182. Springer,
Heidelberg (2013)

17. Mayr, R.: Process rewrite systems. Information and Computation 156, 264–286
(1999)

18. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
Closing a decidability gap. In: IEEE LICS 2004, pp. 54–63 (2004)

Author Index

Amaral, Cláudio 1

Bahr, Patrick 221
Balabonski, Thibaut 253
Barkati, Karim 69

Cai, Xiaojuan 336
Chen, Sheng 35
Claessen, Koen 18

Dundua, Besik 285
Dureg̊ard, Jonas 18

Erwig, Martin 35

Florido, Mário 1, 285

Hanada, Yuichiro 103
Hirokawa, Nao 319
Hoffmann, Jan 152

Igarashi, Atsushi 103

Jouvelot, Pierre 69

King, Andy 270
Kiselyov, Oleg 86
Koishi, Masato 186
Kriener, Jael 270
Kutsia, Temur 285

Lu, Kenny Zhuo Ming 203

Magalhães, José Pedro 136
Marin, Mircea 285
Middeldorp, Aart 319
Morihata, Akimasa 186

Na, Hyunik 238

Ogawa, Mizuhito 336
Ohori, Atsushi 186

Pa�lka, Micha�l H. 18
Parys, Pawe�l 302
Pottier, François 253
Protzenko, Jonathan 253

Riesco, Adrián 52
Ryu, Sukyoung 238

Sacchini, Jorge Luis 169
Santos Costa, Vı́tor 1
Shao, Zhong 152
Sulzmann, Martin 203

Wang, Haisheng 69
White, Leo 119
Winkler, Sarah 319

Yallop, Jeremy 119
Yamada, Akihisa 319

	Preface
	Organization
	Table of Contents
	PrologCheck – Property-Based Testing in Prolog
	1Introduction
	2Related Work
	3Motivating Examples
	3.1Append
	3.2List Reverse

	4Properties
	5Generators
	6Specification Language
	7AVL Trees Case Study
	8Conclusion

	Generating Constrained Random Data with Uniform Distribution
	1Introduction
	2Generating Values of Algebraic Datatypes
	2.1Indexing
	2.2Representation of Spaces
	2.3exing on Spaces

	3Predicate-Guided Indexing
	3.1Predicate-Guided Refinement Order
	3.2Relaxed Uniformity Constraint
	3.3Parallel Conjunction

	4 Experimental Evaluation
	4.1Trees
	4.2Simply-Typed Lambda Terms
	4.3Testing GHC
	4.4Programs
	4.5Summary

	5Related Work
	6Discussion

	Guided Type Debugging
	1Introduction
	2Representing Type Errors by Variational Types
	3Counter-Factual Typing
	4Climbing the Type-Change Lattice
	5Reporting Type Errors in Type Annotations
	6Related Work
	7Conclusions
	Aroof of Theorem 2

	Using Big-Step and Small-Step Semantics in Maude to Perform Declarative Debugging
	1Introduction
	2Preliminaries
	2.1Fpl, A Simple Functional Language
	2.2Maude
	2.3Related Work

	3Declarative Debugging Using the Semantics
	3.1Preliminaries
	3.2Declarative Debugging with Big-Step Semantics
	3.3Declarative Debugging with Small-Step Semantics

	4Debugging Session
	5Concluding Remarks and Ongoing Work

	Faustine: A Vector Faust Interpreter Test Bed for Multimedia Signal Processing
	1Introduction
	2Faust
	2.1Design
	2.2Core Faust
	2.3Implementation

	3Faust Vector Extension
	4Faustine
	4.1Motivation
	4.2OCaml for Executable Specifications
	4.3Implementation

	5Experiments
	5.1FFT
	5.2Image Processing
	5.3Performance

	6Future Work
	6.1Vector Extension Issues
	6.2Static Typechecking

	7Conclusion

	The Design and Implementation of BER MetaOCaml
	1Introduction
	2The Taste of MetaOCaml
	2.1Code Motion

	3Design of BER MetaOCaml
	4Staging User-Defined Data Types
	5Detecting Scope Extrusion
	5.1Scope-Extrusion Check in Action
	5.2The Trade-Offs of Environment Classifiers
	5.3Implementing the Scope-Extrusion Check

	6Related Work
	7Conclusions and Further Plans

	On Cross-Stage Persistence in Multi-Stage Programming
	1Introduction
	1.1Organization of the Paper

	2 Informal Overview of %
	$\lambda%$
	3.1Syntax
	3.2Reduction
	3.3Type System
	3.4Properties

	Staged Semantics
	4.1Properties of Staged Reduction

	Discussion
	5.1CSP in MetaOCaml
	5.2CSP and Program Residualization

	6Related Work
	7Conclusions

	Lightweight Higher-Kinded Polymorphism
	1Introduction
	1.1The Alias Problem
	1.2Defunctionalization
	1.3Type Defunctionalization

	2The Interface
	2.1Example: Higher-Kinded Folds
	2.2Example: Leibniz Equality
	2.3Example: The Codensity Transform
	2.4Example: Kind Polymorphism

	3Implementations of higher
	3.1First Implementation: Unchecked Cast
	3.2Second Implementation: Open Types

	4Related Work
	5Limitations and Future Work

	Generic Programming with Multiple Parameters
	1Introduction
	2Generic Programming with One Parameter
	2.1Universe
	2.2Datatype Encodings
	2.3Mapping

	Generic Programming with Multiple Parameters
	3.1Universe
	3.2Datatype Encodings
	3.3Mapping
	3.4Example Usage

	Limitations and Future Work
	4.1Parameters of Higher Kinds
	4.2Integration with Existing Generic Programming Libraries
	4.3Parameter Genericity vs. Arity Genericity

	5Conclusion

	Type-Based Amortized Resource Analysis with Integers and Arrays
	1Introduction
	2Informal Account
	3A Simple Language with Side Effects
	4Resource Polynomials and Annotated Types
	5Resource-Aware Type System
	6Experimental Evaluation
	7Conclusion

	Linear Sized Types in the Calculus of Constructions
	1Introduction
	2CICl̂
	2.1Syntax and Typing Rules
	2.2Examples
	2.3Metatheory

	3Size Inference
	4Related Work
	5Conclusions

	Dynamic Programming via Thinning and Incrementalization
	1Introduction
	2Preliminary
	Thinning
	Incrementalization

	3Combining Thinning and Incrementalization
	40-1 Knapsack Problem
	5 Longest Common Subsequence Problem
	Association-Rule Mining from Numeric Data
	6.1Formalizing Problems
	6.2Thinning
	6.3Elaboration before Incrementalization
	6.4Incrementalization
	6.5Implementing Candidate Sets
	6.6Computational Complexity
	6.7ability of Other Problem Variants

	7Discussion
	7.1Textbook Approach vs. Thinning vs. Incrementalization vs. Thinning + Incrementalization
	7.2Toward Mechanization of Developments

	8 Related Work
	8.1Thinning
	8.2Incrementalization Based on Fixed-Point Transformation
	8.3Other Approaches to Systematic Dynamic Programming

	9Conclusion and Future Work

	POSIX Regular Expression Parsing with Derivatives
	1Introduction
	2Regular Expressions and Parse Trees
	3Parse Tree Construction via Derivatives
	4Experiments
	5Related Work and Conclusion

	Proving Correctness of Compilers Using Structured Graphs
	1Introduction
	2A Simple Compiler
	3From Trees to Graphs
	3.1Preparations
	3.2Deriving a Graph-Based Compiler

	4Correctness Proof
	4.1Compiler Correctness by Unravelling
	4.2Proof of Theorem 2

	5Other Approaches
	5.1Other Graph Representations
	5.2A Monadic Approach

	6Concluding Remarks
	6.1Related Work
	6.2Discussion and Future Work

	A New Formalization of Subtyping to Match Subclasses to Subtypes
	1Introduction
	2Motivation and Related Work
	3Traditional Formalization of Subtyping
	4Revised Formalization of Subtyping
	5Subtyping in Self-application Interpretation
	6Substitutability of <:
	6.1An Interpretation of Classes

	7Conclusion

	Type Soundness and Race Freedom for Mezzo
	1Introduction
	2Kernel
	2.1Machine States and Resources
	2.2Syntax
	2.3Operational Semantics
	2.4Typing Judgement and Interpretation of Permissions
	2.5Subsumption
	2.6Typing Judgements for Soups and Configurations
	2.7Type Soundness

	3References
	4Locks
	5Related Work
	6Conclusion

	Semantics for Prolog with Cut – Revisited
	1Introduction
	1.1Contributions and Outline
	1.2Domains for Abstraction
	1.3Monotonicity and Divergence

	2Domains
	2.1Constraint Domain
	2.2Parameterised Constraint Domain
	2.3Ideal Domain
	2.4Generic Sequence Domain
	2.5Ideal Sequence Domain

	3Syntax
	3.1Cut-Normal Form
	3.2Higher Order Abstract Syntax
	3.3Cut-Stratification
	3.4Environments
	3.5Fixpoint Semantics of Stratified Programs

	4Denotational Semantics for Prolog with cut
	4.1Evaluation of Single Goals (FG)
	4.2Evaluation of Cut in Context (FH)
	4.3 Evaluation of Programs (FP)
	4.4Note on Monotonicity

	5Concluding Discussion

	Constraint Logic Programming for Hedges: A Semantic Reconstruction
	1Introduction
	2 Motivating Examples
	3reliminaries
	4Semantics
	5Solver
	5.1Rules
	5.2 Constraint Solving Algorithm

	6Operational Semantics of CLP(H)
	7Well-Moded and KIF Programs
	7.1Well-Moded Programs
	7.2Programs in the KIF Form

	8Conclusion

	How Many Numbers Can a Lambda-Term Contain?
	1Introduction
	2Preliminaries
	3Type System
	4Krivine Machine
	5Assigning Values to Configurations
	6Representing Tuples
	7Future Work

	8AC-KBO Revisited
	1 Introduction
	2Preliminaries
	3Steinbach's Order
	4Korovin and Voronkov's Orders
	5AC-KBO
	6NP-Hardness of Orientability
	7Subterm Coefficients
	8Experiments
	9Conclusion

	Well-Structured Pushdown System: Case of Dense Timed Pushdown Automata
	1Introduction
	2ense-Timed Pushdown Automata
	3P-Automaton
	3.1P-Automaton for Reachability of Pushdown System
	3.2P-Automata for Coverability of OPDS
	3.3P-Automata for Quasi-Coverability of OPDS

	4Finite Convergence of Pre*-automata
	5Well-Formed Constraint
	6Snapshot Word
	6.1 Snapshot Word
	6.2Operations on Snapshot Words

	7Decidability of Reachability of DTPDA
	7.1Well-Formed Projection on Snapshot Configurations
	7.2Snapshot PDS
	7.3Comparison with the Original Encoding

	8Conclusion

	Author Index

