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Abstract. Fracture detection is a crucial part in orthopedic X-ray im-
age analysis. Automated fracture detection for the patients of remote
areas is helpful to the paramedics for early diagnosis and to start an
immediate medical care. In this paper, we propose a new technique of
automated fracture detection for long-bone X-ray images based on digi-
tal geometry. The method can trace the bone contour in an X-ray image
and can identify the fracture locations by utilizing a novel concept of
concavity index of the contour. It further uses a new concept of relaxed
digital straight line (RDSS) for restoring the false contour discontinu-
ities that may arise due to segmentation or contouring error. The pro-
posed method eliminates the shortcomings of earlier fracture detection
approaches that are based on texture analysis or use training sets. Ex-
periments with several digital X-ray images reveal encouraging results.

Keywords: Medical imaging, Bone X-ray, Chain code, Digital straight
line segment (DSS), Approximate digital straight line segment (ADSS).

1 Introduction

Fracture detection in X-ray images is an important task in emerging health-care
automation systems [8], [6], [10]. Automated fracture identification from an or-
thopedic X-ray image needs extraction of the exact contour of the concerned
bone structure. A fractured long-bone contour appears with irregular (uneven)
or disconnected contour in the broken region. Bone contour discontinuity may
also arise due to over-thresholding during segmentation of bone region from the
surrounding flesh tissues and muscles. Long-bone fracture is a very common
health problem, which needs immediate medical attention. A considerable num-
ber of men and women suffer from osteoporotic or accidental long-bone fracture
everyday. Automated fracture detection can help the doctors and radiologist by
screening out the obvious cases and by referring the suspicious cases to the spe-
cialists for closer examinations. Since bone fractures can occur in many ways, a
single algorithm may not be suitable for analyzing the various types of fractures
accurately. In the past, several approaches had been proposed by the researchers
for detection of fractures in different bone regions.

Long-bone fractures usually refer to injuries in bones like humerus, radius
and ulna, femur, tibia, and fibula. Each long-bone is divided into three regions
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- proximal, distal (two extremities), and diaphyseal [13]. A fracture of the di-
aphyseal is classified into three groups - simple, wedge, and complex. Tian et
al. [16] has implemented a femur fracture detection approach by computing the
angle between the axis of the neck of femur and the axis of the shaft. But this
kind of method can only work on severe fractures that have caused a signif-
icant change in the angle of the neck and shaft of the femur. Another femur
fracture detection approach uses contour generation and contour region filling
followed by Hough-transform, vertical integral projection, and statistical projec-
tion of differential curve to identify the fractured region [17]. Donnelley et al.
[7] have proposed a CAD system for the long-bone fracture detection which uses
scale-space approach for edge detection, parameter approximation using Hough
transform, diathesis segmentation followed by fracture detection using gradient
analysis. Classification, a frequently used data mining technique, has also been
used widely to detect the presence of fracture for the past few decades. These
systems combine various features (like shape, texture, and colour) extracted
from X-ray images and deploy machine learning algorithms to identify fractures
[11]. Several researchers have proposed texture analysis of bone structure or
bone mineral density estimation along with higher order statistical analysis for
fracture detection [5], [14], [12].

In this paper, we have proposed a new technique based on relaxed digital
straight line segment (RDSS) to restore the contour discontinuity that may
arise during segmentation. Next, we use the corrected contour for identifying
the fracture locations using the concept of concavity index of a digital curve.
The proposed algorithm uses an entropy-based segmentation method [2] with
adaptive thresholding-based contour tracing [1] to generate the bone contour of
an X-ray image. The novelty of the technique lies in the fact that it rectifies
the false discontinuities of a bone contour and identifies the fracture region cor-
rectly. Experiments on several long-bone digital X-ray images demonstrate the
suitability of the proposed method for fracture related abnormality analysis.

2 Related Definitions

A digital image consisting of one or more objects, whose contour is formed with
fairly straight line edges, can be represented by a set of (exact or approximate)
digital straight line segments (DSS or ADSS). Such representations capture a
strong geometric property that can be used for shape abstraction of these ob-
jects [3]. In the proposed algorithm, some properties of DSS are utilized for
contour correction of a bone image. A few definitions related to this work are
given below:
Digital Curve (DC). A DC C is an ordered sequence of grid points (re-
presentable by chain codes) such that each point (excepting the first one) in
C is a neighbor of its predecessor in the sequence [15] (see 2(b), 2(c)).
Chain Code. It is used to encode a direction around the border between pixels.
If p(i, j) is a grid point, then the grid point (i′, j′) is a neighbor of p, provided
that max(|i−i′|, |j−j′|) = 1. The chain code [9] of p with respect to its neighbor
grid point in C can have a value in 0, 1, 2, ..., 7 as shown in Fig. 2 (a).
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Digital Straight Line Segment (DSS). The main properties of DSS [15], [3]
are:
(F1) The runs have at most two directions, differing by 450, and for one of them,
the run length must be 1.
(F2) The runs can have only two lengths, which are consecutive integers.
(F3) One of the run lengths can occur only once at a time.

The necessary and sufficient conditions for a digital curve (DC) to be a DSS have
been stated in the literature [15], [3]. In [15], it has been shown that a DC is the
digitization of a straight line segment if and only if it has the chord property.
A DC C has the chord property if, for every (p, q) in C, the chord pq (the line
segment drawn in the real plane, joining p and q) lies near C, which, in turn,
means that, for any point (x, y) of pq, there exists some point (i, j) of C such
that max(|i− x|, |j − y|) < 1.

Relaxed Digital Straight Line Segment (RDSS). In this paper, we intro-
duce the concept of Relaxed Digital Straight Line Segment, defined below:
RDSS inherits the basic property of the underlying DSS, i.e.,
(F1) At most two types of elements (chain code directions) can be present in a
RDSS and these can differ only by unity, modulo eight.
Thus, a RDSS represents single pixel curve with very small curvature by a re-
laxed digital straight line. For example, in Fig. 1(b)), a portion of the curved
line is approximated by two consecutive RDSS, R1 and R2.

A tighter condition leads to an earlier concept of Approximate Digital Straight
Line Segment (ADSS) [3]. The main properties of ADSS are:
(F1) At most two types of elements can be present and these can differ only by
unity, modulo eight.
(F2) One of the two element values always occurs singly.
(F3) Successive occurrences of the element occurring singly are as uniformly
spaced as possible.

3 Proposed Algorithm

In an X-ray image, the bone parts appear along with the surrounding tissues or
muscles (i.e., flesh). So bone region segmentation and bone contour generation
is necessary for automated fracture identification process. The proposed method
segments the bone region of input X-ray (Fig. 3(a)) image from its surrounding
flesh using an entropy-standard deviation based segmentation method (Fig. 3(b))
and then applies an adaptive thresholding based technique to generate the bone
contour [2][1] (Fig. 3(c)). Any discontinuity that appears in bone contour during
segmentation, is corrected by the proposed method using RDSS (Fig. 3(d)). Bone
fracture regions are then identified by analyzing concavity index of the corrected
image (Fig. 3(e)).
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Fig. 1. RDSS (a) Straight line segment and curve, (b) corresponding DSS (35 seg-
ments), (c) corresponding ADSS (16 segments), (d) corresponding RDSS (5 segments)
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Fig. 2. Chain code (a) Chain code in 8-neighbor connectivity, (b) DC (1, 2)(10756543),
(c) DC (2, 1)0756543121

3.1 Bone Region Segmentation from an X-ray Image

The major challenge in segmentation of bone region in any X-ray image lies
in identification and extraction of flesh to bone transition region. Overlapping
intensity range of flesh and bone region restricts the use of pixel-based thresh-
olding or edge-based approaches as they often fail to produce accurate results. In
the proposed algorithm, local entropy image is generated from the input X-ray
image [2]. Local entropy image clearly identifies the flesh-bone transition points
in a X-ray image with bright bone region and relatively darker flesh region.
However, some X-ray images appear with bright flesh region resulting in over-
lapping flesh and bone intensity range. In such cases, the entropy image often
fails to identify the flesh to bone transition correctly. To overcome this problem,
we compute local standard deviation for each pixel and multiplied it with local
entropy to facilitate bone image segmentation [1].
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(a) Input X-ray image (b) Entropy-Standard Deviation Image (c) Bone Contour With False Break

(d) Contour Corrected Image(e) Detected Fracture Locations

Fig. 3. Different phases of proposed algorithm

3.2 Contour Generation Using Adaptive Thresholding

The proposed approach generates the bone contour from a segmented bone im-
age (entropy-standard-deviation image) using an adaptive thresholding method
[1]. In adaptive thresholding based bone contour generation technique, the seg-
mented bone image J is traversed using a small window. For each pixel α of J ,
the window is constructed with its 8 neighboring pixels. The window is divided
into four cells, top-left (C1), top-right (C2), bottom-left (C3) and bottom-right
(C4). All these four cells are incident on α. To determine whether a cell Ci has a
portion of bone boundary in it, adaptive thresholding approach is used [4]. The
contour traversal algorithm checks the intensity values of neighboring pixels and
selects the next pixel position whenever it encounters a pixel whose intensity
value exceeds the adaptive threshold value of the present pixel. After selection
of a new pixel position, the algorithm checks whether or not the pixel is already
visited. If the pixel is found visited, then the algorithm starts searching from a
new position; otherwise it adds the current pixel in the visited list and decides
the direction for the next move [1].

3.3 Contour Correction Using Relaxed Digital Straight Line
Segments

A bone fracture may cause a disconnected or irregular (uneven) bone contour.
Hence, any discontinuity in the bone contour that appears during segmentation
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Fig. 4. Contour correction (a) Bone contour with false break, (b) Contour with RDSS,
(c) Corrected contour with RDSS, and (d) Corrected contour

or contour generation, can mislead fracture detection . To overcome this problem,
wepropose a novel approachbased on relaxeddigital straight line segment (RDSS).

In the proposed method, the bone contour generated using adaptive thresh-
olding approach is traversed from top-left to bottom and from bottom-right to
top and the corresponding chain code list is generated. This chain code list is
analyzed to approximate the underlying curve with relaxed digital straight line
segments (RDSS). If any discontinuity arises in bone contour during segmenta-
tion or contour generation process (see region A of Fig. 4(b)), then it should
have been be covered by two different RDSS. The proposed algorithm searches
for all such RDSS pairs that cover the bone contour with same or its comple-
mentary chain code string. For example, a RDSS with chain code consisting of
{1,2} can be paired with another having the code {5,6} as the RDSS covering
the two line segments across the break will be traversed either from the same (or
opposite) direction, with the start and end pixels lying in close neighborhood
of each other. After finding such RDSS pairs, any one of these two RDSS is
extended in the direction of traversal to connect them into a single RDSS (see
Fig. 4(c). Any discontinuity in the bone contour caused by a fracture (see region
B of Fig. 4(d)) will change their alignment. Therefore, a RDSS cover of such
discontinuities cannot be extended to combine them into a single RDSS. On the
other hand, the contour discontinuities caused by segmentation or contouring
errors can be corrected by projecting the two neighboring RDSS towards each
other.

Approximation of a bone contour can also be performed using DSS or ADSS;
however, the number of segments required to cover the contour would be very
high as in a single-pixel wide long-bone image, the contour usually changes the
direction at an interval of every 5 to 10 pixels. Thus the use of RDSS not only
reduces the number of approximating straight line segments, but also rectifies
the false breaks in the contour, while reporting the correct fracture locations
(see Fig. 4(d)).
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3.4 Fracture Detection Using Concavity Index

In the proposed algorithm, we introduce the concept of concavity index, which
is used to detect the fractures in long-bones.

Concavity Index (α). During the traversal, each point pi is assigned a concav-
ity index, αi where α0 and α1 are initialized to 0 and 1 respectively. To obtain
αi+1, αi is incremented (decremented) by the difference of the directions, di and
di+1, if the contour moves in clockwise (counter-clockwise) direction from pi to
pi+1, where di is the incident direction at pi.

It should be noted that if the curve propagates in the same direction, the con-
cavity index remains unchanged, however, a significant variation of α indicates
abnormalities in the curve leading to fracture detection.

(a) (b)

Fig. 5. Concavity Index (a) A line with straight and curved region, (b) Concavity
indices of different points of the curve shown in (a)

In the above example (Fig. 5), it is clearly shown that concavity index changes
significantly in a curved region. The proposed method uses this property of
concavity index in fracture detection of long-bone contour.

We traverse the bone contour chain code and computes the concavity index for
all pixel positions during traversal. We plot concavity index against the pixel po-
sitions as we traverse the contour. In a fractured long-bone, the bone boundary
appears as a curve in the fractured part of the contour as the abnormality therein
degrades its straightness. The proposed algorithm thus locates the fractured re-
gions by observing the sharp and frequent changes (wave-like structure with peak
and fall) in concavity index value (see Fig. 6(b)). Experimental evidences show that
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Fig. 6. (a) Contour of input image with fracture marked (b) Concavity index plot for
each traversal of (a) with marked changes in fracture location.

in the fractured regions, the change in chain code is more than 3 and change in con-
cavity index exceeds 10 over a contour length of around 5 or 6 pixels. The groups
of neighbouring pixels identified with such values are then clustered to identify the
fracture zones marked in the concavity index curve (Fig. 6(b)). In this example,
regions marked as ‘A’, ‘B’, ‘C’, ‘D’ identify the fractured region correctly and that
marked as ‘E’ shows wrong identification (false positive).

4 Experimental Results

The proposed method is tested on several X-ray images of long-bone fracture.
For each case, the concavity index curve is analyzed to identify the fractured
locations. It is noticed that for most of the cases the fractured locations are
identified correctly. Concavity index is computed during bone contour tracing
from top-left corner to bottom and from bottom-right corner to top (plot with
different colour in 7). A plot of concavity index against the traversed pixel list
shows that the concavity index increases gradually (region ‘A’ in concavity index
curve of Fig. 7(h)) during the traversal of regular bone curvature (as shown in
region ‘A’ of Fig. 7(g)). A traversal of the fractured regions shows a fast change
in te concavity index; this generates a wave like structure with peaks and falls in
the curve (see region marked with ‘A’, ‘B’, ‘C’, ‘D’, ‘E’ of Fig 7(c)) and respective
regions in concavity index curve (see region marked with ‘A’, ‘B’, ‘C’, ‘D’, ‘E’
of Fig 7(d)). Table -1 shows the concavity curve analysis for each X-ray image.
It is noticed that the number of false positives identified in the fractured region
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Fig. 7. (a) X-ray image (b) Contour of input image with fracture marked (c) Concavity
index plot for each traversal of (a) with marked changes in fracture location; (d) X-ray
image (e) Contour of input image with fracture marked (f) Concavity index plot for
each traversal of (d) with marked changes in fracture location; (g) X-ray image (h)
Contour of input image with fracture marked (i) Concavity index plot for each traversal
of (g) with marked changes in fracture location
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Fig. 8. Complex Fracture Identification (a) X-ray image (b) Contour of input image
with fracture marked (c) Concavity index plot for each traversal of (a) with marked
changes in fracture location; (d) X-ray image (e) Contour of input image with fracture
marked (f) Concavity index plot for each traversal of (d) with marked changes in
fracture location; (g) X-ray image (h) Contour of input image with fracture marked (i)
Concavity index plot for each traversal of (g) with marked changes in fracture location
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Table 1. Concavity Index Analysis for Fracture Detection in X-Ray Images

Input image Fracture region identified Correct identification False positive

Fig. 6(a) 5
4

(A, B, C, D)
1
(E)

Fig. 7(b) 4
4

(B, C, D, E)
0

Fig. 7(e) 7
4

(A, D, E, F)
2

(C, B)

Fig. 7(h) 4
3

(A, B, D)
1

(C)

Fig. 8(b) 8
6

(B, C, D, E, F)
2

(A, H)

Fig. 8(e) 12
8

(A, C, D, E, F, G, H, I)
4

(B, J, K, L)

Fig. 8(h) 6
3

(B, C, F)
3

(A, D, E)

of each image is considerably low. Fig. 8 shows some example of more complex
fractures where bones are fragmented into multiple pieces. The concavity curve
of these X-ray images appears as multiple waves (see Fig. 8(c), Fig. 8(f), Fig.
8(i)), which clearly indicate the presence of fractures in the input image.

5 Conclusion

We have proposed a method for fracture detection in X-ray images based on
digital geometry. We have shown, for the first time, that the power of digital
geometric techniques can be harnessed to provide fast and accurate solutions to
the automation of medical image analysis. Our experiments on several X-ray
image databases demonstrate its suitability of fracture detection in long-bone
structures.
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