Chapter 5
Robust Speaker Modeling for Speaker
Verification in Noisy Environments

Abstract The present chapter explores robust speaker modeling methods for
speaker verification in noisy environment. The focus is specifically laid on building
hybrid classifiers based on the combination of generative and discriminative models
(e.g., Gaussian Mixture Models (GMMs) and Support Vector Machines (SVMs)).
For improving the performance of the proposed speaker verification systems,
utterance partitioning methods are used. The discussion is closely followed by
state-of-the-art variants of GMM supervector based approaches (i.e., i-vectors) and
algorithms for combining robust classifiers.

The application of stochastic feature compensation for speaker verification (SV)
as studied in Chap. 4, is associated with certain drawbacks. Firstly, it depends on
the availability of stereo data which is expensive to acquire. Secondly, a priori
knowledge about a speaker’s test environment is assumed i.e., the background
environment during evaluation should be reflected in the stereo training data. Lastly,
substantial amount of data may be required for the joint probability modeling
techniques. However, in real-life scenarios the test environments are often unknown
and time-varying (non-stationary). SV applications deployed in hand-held devices
are additionally expected to perform in real-time with minimal data requirements.

As an alternative strategy, model compensation and robust speaker modeling
methods can be explored. The role of these two methods have been briefly explained
in Chaps. 1 and 2, respectively. We had also emphasized on certain limitations of the
conventional model compensation methods such as requirement of clean speaker
models, dependence on a mathematical representation of the noise corruption
process. Additionally, popular model compensation methods like Parallel Model
Combination demand substantial amount of training data and high computational
resources which may not be frequently available.

The present chapter explores robust speaker modeling methods for SV in noisy
environment. The focus is specifically laid on building hybrid classifiers based on
the combination of generative and discriminative models (e.g., Gaussian Mixture
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Models (GMMs) and Support Vector Machines (SVMs)). The discussion is closely
followed by state-of-the-art variants of GMM supervector based approaches (i.e.,
i-vectors) and algorithms for combining robust classifiers.

5.1 GMM-SVM Combined Approach for Speaker
Verification

The traditional GMM-UBM based speaker verification system requires a Univer-
sal Background Model (UBM) [1] and a Maximum aPosteriori (MAP) adapted
Gaussian Mixture Model (GMM) to represent the impostor and actual speaker
classes, respectively. During the evaluation stage, a test utterance is classified
based on its statistical similarities with the claimed target speaker model (GMM)
and the background model (UBM). Gaussian Mixture Models (GMMs) are exten-
sively applied for speaker modeling due to their strong probabilistic framework,
scalability to large training sets and high recognition accuracy. GMMs belong to
the family of generative models in which each speaker is modeled individually.
Performance accuracy of a SV system is usually increased when these generative
models are brought into a discriminative framework using Support Vector Machines
(SVMs) [2].

SVMs have been established as an effective discriminative classifiers for speaker
recognition tasks [3]. Through a non-linear function (i.e., kernel) a SVM maps
input vectors to a high dimensional space where classes are more likely to be
linearly separable [4]. However, fixed length representation of utterance is crucial
for SVM training in order to avoid large target models and slow scoring. This had
initially led to concept of ‘sequence kernels’[5] where variable length utterances
were mapped to fixed length vectors. A robust representation was proposed later
in which fixed size ‘supervectors’ constructed by stacking the means of MAP
adapted GMMs were used as an input to SVM kernels [2]. Conventionally, a
GMM based system calculates log-likelihood probabilities (scores) of features
extracted at a frame level. In contrast, supervectors provide numerical comparison
of speech utterances as an entire sequence rather than frame-wise probabilities thus
preserving information which can be otherwise discarded in the frame-level [5].
Supervectors are attractive due to a number of reasons. Besides providing a
high-dimensional representation for SVM classification, supervectors can distinctly
characterize speaker and channel information [6]. Additionally, they can be used to
compensate for channel and session variabilities [7]. In this chapter we shall explore
the robustness of supervector based speaker modeling approaches for SV in noisy
environment. In the following sections we briefly introduce SVMs and describe the
process of integrating GMM supervectors in the SVM framework. Figure 5.1 shows
the various stages of a GMM-SVM based SV system, each of which are elaborated
in the remaining part of the section.
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Fig. 5.1 Block diagram of the GMM-SVM framework for speaker verification

5.1.1 Support Vector Machines

A support vector machine (SVM) is a binary classifier [4]. Using labeled training
vectors, a SVM optimizer finds a decision hyperplane that maximizes the margin
of separation between two classes (target speaker and impostor). The classifier
equation is given as follows:

L
Y@) = et K(xi,x) +d (5.1)

i=1

where «; > 0 are the Lagrange multipliers and x; are the Support vectors. Both
these parameters are learned during the optimization process. ¢; € {—1, 41} are the
training labels, K is the desired kernel mapping and d is a bias parameter. For any
input vector x the actual output y(x) is compared with a decision threshold for final
classification. The kernel function is constrained to satisfy the Mercer’s conditions
[4], so that they can be expressed as

K(x,y) = Sx)"S(y) (5.2)

where S(x), S(y) are high dimensional mappings for inputs x and y, respectively.

5.1.2 Construction of GMM Supervectors

The GMM-UBM framework for SV was discussed in Chap. 3. During enrollment,
the pre-estimated parameters of the UBM (i.e., mean and covariance (optionally))
are modified by MAP adaptation using a target speaker’s utterance to produce
speaker specific GMMs given by the following equation
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where m;, X; denotes the mean and covariance of the ith multivariate Gaussian
component .4 () and M is the total number of GMM components. The high-
dimensional vector obtained by concatenating the mean vectors m; of each Gaussian
is generally termed as a supervector. Therefore D dimensional feature vectors
in the input space are converted to a single M x D dimensional supervector
irrespective of the number of feature vectors available. In other words, this process
transforms variable length utterances to a unique fixed-size vector which carries
speaker information. This representation is in conformity with Eq. (5.2) where two
arbitrary utterances a and b from the input space can be compared in the supervector
space using the relation K(a,b) = S(a)” S(b), where K is the kernel function and
S(a), S(b) are the supervectors obtained from utterances a and b, respectively. The
supervector construction process can be summarized as follows [8]

1. A target speaker GMM is obtained by MAP adaptation of the UBM using the
speaker’s enrollment utterance.

2. A kernel function is used to transform parameters of each GMM component
to a fixed length vector. The vector corresponding to the ith GMM component
constitutes the i th subvector of a supervector.

3. All the subvectors are concatenated to obtain a high-dimensional supervector.

5.1.3 SVM Kernels

The main design component in an SVM is the kernel, which is an inner product
in the SVM feature space. The basic goal in SVM kernel design is to find an
appropriate metric in the SVM feature space relevant to the classification problem.
In this section we define the kernels used in our work.

5.1.3.1 KL Divergence Kernel

The Kullback Leibler divergence (KL div) is a non-symmetric distance measure
between two probability distributions. Given two distributions p, and pj, the KL
divergence between them is defined as

Dkr(pa. pp) = f Pa(x)log (;8) dx (5.4)

However the KL divergence doesn’t satisfy the Mercer’s condition for a valid kernel.
As a solution a symmetrized version of the KL divergence, obtained by bounding



5.1 GMM-SVM Combined Approach for Speaker Verification 81

the expression by log-sum inequality was proposed as a kernel in [2]. The final
version was a linear function of two MAP adapted GMMs p, and p; corresponding
to utterances a and b. Ignoring adaptation of the UBM covariance matrix X/ and
weights w;, the resulting Kernel is given by

M
Kxr(pas pp) = ) (Vwi(Z) ™ Pm)" (Ywi(ZH™Pmd) (5.9
i=1

where m{ and mf’ are the ith component means of p, and pj respectively. Thus the
ith subvector of the GMM supervector for any utterance A is given by

st= Wi (272wt i=1,2,....M

The final supervector obtained by concatenating the subvectors is given by S* =
[sT,sT, . .sT]T.

5.1.3.2 GMM-UBM Mean Interval Kernel

The Bhattacharya distance between two probability distribution p, and pj is
given by

D s (Pas pv) = [ Ve Py ()dx (5.6)

For multivariate Gaussian distributions, computing this measure requires estimation
of the covariance matrices which in turn demands a high amount of training data.
Hence this measure is avoided in practical scenarios. However, it was shown
in [9] that second order statistics derived from limited amount of training data
could provide supplementary discriminative information, when used effectively.
The GMM-UBM Mean Interval (GUMI) kernel based on the Bhattacharya distance
between GMMs p, and pj, as proposed in [9] is given by

M
Kgumi(pa. py) = Y _(m} —m®)"

i=1

a p~1
[#] (m!—m?)  (5.7)

Considering the statistical similarities of a adapted speaker GMM and the UBM the
i th subvector of the GMM supervector for an utterance A is given by

EA U —1/2
sixz[%} (m}—m!y i=12....M

The final supervector obtained by concatenating the subvectors is given by S* =

[sT sT, .. .sT]T.
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5.1.4 SVM Scoring

Given a supervector S’*! derived from a test utterance X%’ the Kernel scoring is
obtained as follows:

L L T

Score(X'") =Y it K(X', X'*") +d = (Z otitiSi) st 4 d (5.8)
i=1 i=1

where X' are the sequence of learned support vectors, S’ are the supervectors
corresponding to X', o; are the non-zero Lagrange multipliers and #; € {—1, +1}
depending on the class of vector X'. L is the total number of support vectors and d
is a bias term. K is either of the two kernels used and 7" denotes matrix transpose.

5.1.5 Experimental Setup

All experiments are conducted on the NIST-SRE-2003 database. The data consists
of single training utterances of approximately 2min length from each of 356
enrolled speakers and 3,500 test utterances (approximately 10-15s each) for
evaluation. The stages involved in developing the GMM-SVM based SV system
are briefly discussed in the following sections.

5.1.5.1 Background Simulation and Feature Extraction

The background simulation and feature extraction process has already been dis-
cussed in Chaps. 3 and 4. Summarily, all training and test utterance were degraded
with additive noises (car, factory, pink and white) collected from the NOISEX-92
database. Two types of background simulations were carried out viz., (i) uniform
backgrounds in which an entire utterance (training/testing) was degraded with a
particular type of noise at 0, 5 and 10dB SNRs and (ii) varying backgrounds in
which non-overlapping segments of an utterance (training/testing) were individually
degraded with a specific type of noise at 0, 5, 7 and 10dB SNRs. After an energy-
based voiced activity detection, 39-dimensional feature vectors (consisting of 13
MFCCs + A + AA excluding Cy) derived from a 26 channel mel-scaled filterbank,
were extracted from pre-emphasized speech frames of 20 ms with a frame-overlap
of 10ms. All feature vectors were subjected to cepstral mean subtraction followed
by cepstral variance normalization.
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5.1.5.2 Speaker Modeling

A 1,024-component GMM constructed from 20h of speech (10h male+10h
female) collected from the SwitchBoard II corpus, was used as the UBM. Three
hundred and fifty-six target speaker GMMs were obtained by MAP-adaptation of the
UBM using the noise-degraded enrollment utterances in each dataset described in
Sect.5.1.5.1. A GMM supervector was constructed from each target speaker GMM
as described in Sect.5.1.2. The kernels described in Sect.5.1.3 were individually
used for mapping. The supervectors obtained were of 39,936 dimension (1,024
mixtures X 39 dim mean). For discriminative modeling each target speaker in a
dataset was distinguished from the remaining 355 background speakers (impostors).
A SVM for each speaker was trained with the speaker’s supervector labelled as +1
and the background supervectors labelled as —1, respectively. The KL divergence
and GMM-UBM mean interval kernels were used for SVM training as described in
Sect.5.1.1.

5.1.6 Performance Evaluation

All experiments were performed in matched condition i.e., training and evaluation
phases having similar backgrounds. An additional evaluation was performed in
clean condition. The 3,500 test utterances in each noise-corrupted dataset were
transformed to supervectors prior to SVM scoring (Eq. 5.8). The NIST-2003 primary
task was carried out in which each noisy test utterance (supervector) was evaluated
against 11 target speaker models (SVMs) from the same dataset. The equal error rate
(EER) and minimum DCF (MinDCF) values were used as metrics for performance
evaluation. The standard GMM-UBM based SV systems have been used as a
baseline system for performance comparison.

Table 5.1 summarizes the performance of the various SV systems developed in
uniform noisy environments. The improvement in performance accuracy is clearly
apparent in case of the GMM-SVM based systems in comparison to the baseline.
This is manifested by a consistent reduction in EER and MinDCF values across all
12 types of noisy environments. The performance accuracy is observed to degrade
non-uniformly with decreasing SNR levels. The loss in accuracy of the GMM-SVM
based systems with increasing noise distortion, is correlated with that of the baseline
system. An average increment of 4.48, 3.69 and 3.93 % EER values is observed for
a transition from 10 to 5dB SNR in case of the baseline, GMM-SVM (KL div)
and GMM-SVM (GUMI), respectively across all four backgrounds. The same
observation sequence for the 5 to 0dB SNR transition shows average increments
of 2.12, 1.07 and 0.98 % EERs which indicates that the SVM based systems are
relatively more robust towards noise degradations. However the averaged metric
values does not characterize individual noise behavior. For instance we observe
fractional performance improvement in case of factory noise at 0 and 5dB for
GMM-SVM (KL div). A general order of precedence (best to worst) of the noisy
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Table 5.1 Performance of the SV systems in uniform background environments and clean
conditions

GMM-UBM GMM-SVM (KL div) GMM-SVM (GUMI)

SNR  Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF
0dB Car 18.04 0.071 14.32 0.063 13.82 0.058
Factory  23.17 0.089 21.27 0.086 20.32 0.086
Pink 26.65 0.097 21.23 0.087 19.92 0.085
White 30.98 0.097 22.72 0.076 22.67 0.079
5dB Car 18.11 0.071 13.77 0.059 13.10 0.058
Factory  20.96 0.085 20.87 0.085 19.92 0.084
Pink 23.89 0.092 19.65 0.086 19.06 0.085
White 27.41 0.094 20.96 0.074 20.73 0.072
10dB  Car 15.44 0.068 12.24 0.047 11.38 0.046
Factory  16.44 0.072 14.81 0.053 14.50 0.052
Pink 18.65 0.081 15.67 0.058 15.72 0.057
White 21.91 0.087 17.75 0.065 15.49 0.067
Clean 06.93 0.033 06.72 0.030 06.44 0.030

backgrounds is noticed in terms of overall performance of the GMM-SVM based
systems. Ignoring minor exceptions in case of 0 and 10 dB SNRs the order is car,
pink, factory and white. This is in contrast with the baseline where the performance
in pink noisy background is worse than that of factory background for all SNR
levels. A comparison amongst the GMM-SVM based systems reveals that the SVMs
with GUMI kernel performs moderately better than those with KL div kernel with
an average reduction of 0.72 % EER across all environments.

Figure 5.2 shows the DET plots for the SV systems in (a) Car (b) Factory (c)
Pink and (d) White noisy backgrounds at various SNRs. The DET curves of the
GMM-UBM and GMM-SVM based systems are denoted by a set of black, red
(GUMI) and blue (KL div) lines, respectively. The red and blue lines show a shift
towards the origin indicating joint reduction of error probabilities. Additionally, a
distinct anticlock-wise rotation in the red and blue set of curves can be noticed
in comparison to the black curves (baseline) which is particularly prominent in
case of factory, pink and white noise. This characteristic suggests higher reduction
in ‘miss’ error rates compared to the ‘false alarm’ rates which is also evident
from significant reduction in MinDCF values. Table 5.2 shows the performance
improvement of the GMM-SVM based systems compared to the baseline in terms of
the ‘Relative Equal Error Rate’ (E ERp) defined as EERg = w x 100 %
where EERp and EERy are the EER values of the baseline (GMM UBM) and
GMM-SVM based systems, respectively. The SV systems with KL div kernels
score average EERpy values of 21.17, 6.18, 18.02 and 23.06 % for car, factory,
pink and white noisy backgrounds, respectively. The GUMI kernel based SV
systems perform even better with average EERpy values of 25.78, 9.69, 20.39 and
26.83 % in the same backgrounds. Figure 5.3 shows the changes in (a) EER and (b)
Relative EER of the SV systems at different SNRs in uniform noisy environments.
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Fig. 5.2 DET plots of the SV systems in uniform background environment with (a) car (b) factory
(c) pink and (d) white noise. The black, blue and red colors indicate GMM-UBM, GMM-SVM
trained using KL div kernel and GUMI kernel, respectively

The EER values reduce consistently with increasing SNRs. However, the individual
EERg values across each SNR shows distinct behavior for each noise. In most
cases there is an abrupt change at the 5dB SNR level with the exception of pink
noise which shows a consistent linear reduction for both types of SVMs.

Table 5.3 summarizes the performance of the SV systems developed in varying
background environments. Though a direct comparison is inappropriate, an overall
inferior performance is observed in contrast to SV systems in uniform noisy
backgrounds. The utterances used for training these systems had short segments
corrupted with the noises individually used for uniform background simulation, at
a fixed SNR (see Chap. 3). Thus the average SV performance across all uniform
backgrounds at a fixed SNR was compared with the SV performance in varying
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Table 5.2 Relative equal error rates for GMM-SVM based SV sys-
tems in uniform background environments

Relative equal error rate EERp (%)

SNR (0dB) SNR (5dB) SNR (10dB)
Noises KLdiv GUMI KLdiv GUMI KLdiv GUMI
Car 20.62 2339 2396  27.66 2073  26.30

Factory  08.20 12.30 00.43 04.96 09.91 11.80
Pink 20.38 25.25 17.75 20.22 15.98 15.71
White 26.66 26.82 23.53 27.41 18.99 29.30
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Fig. 5.3 (a) Equal error rates and (b) relative equal error rates of GMM-SVM based SV systems
at different SNRs in uniform background environments

Table 5.3 Performance of the SV systems in varying background environments

SNR  GMM-UBM GMM-SVM (KL div) GMM-SVM (GUMI)
(dB) EER(%) MinDCF EER (%) MinDCF EER (%) MinDCF
0 27.05 0.094 23.48 0.086 22.76 0.085
5 25.74 0.086 22.18 0.080 21.32 0.081
7 25.29 0.083 19.74 0.073 19.11 0.071
10 21.86 0.080 18.65 0.072 16.44 0.069

background at the same SNR. The average EER values of the baseline systems
across uniform backgrounds obtained earlier (see Table 5.1) were 24.70, 22.59 and
18.11 % for 0, 5 and 10dB SNRs, respectively. Similarly, average EER values for
the GMM-SVM (KL div) and GMM-SVM (GUMI) systems at the three SNR levels
were 19.89, 18.81, 15.12% and 19.18, 18.20, 14.28 %, respectively. In contrast,
performance of the baseline systems in varying backgrounds shows an average
EER increment of 3.08 %, ignoring the 7dB SNR value. A likewise comparison
with the corresponding SVM based systems with KL div and GUMI kernels, shows
average increments of 3.50 and 2.95 % EERs, respectively. A possible explanation
to this behavior is the inadequate amount of data used for capturing the statistics
of non-stationary noise. The rapid change in noise could also causes a greater
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Fig. 5.4 DET plots for the SV systems in varying background environments at (a) 0dB (b) 5dB
(c) 7dB and (d) 10dB SNRs. The black, blue and red colors indicate GMM-UBM, GMM-SVM
trained using KL div kernel and GUMI kernel, respectively

degree of mismatch during the evaluation phase. The effect is more prominent in
case of the baseline systems and comparatively less for the others. However, certain
changes in the behavior of the GMM-SVM based systems are apparent. Unlike the
uniform background case, the use of costly covariance kernels (GUMI) provides a
better improvement of 1.11 % EER over the KL div kernels, when averaged across
all SNRs.

Figure 5.4 shows the DET plots of the SV systems developed in varying
background environment at (a) 0dB (b) 5dB (c) 7dB and (d) 10dB SNRs. The
characteristics of the blue (KL div) and red (GUMI) curves are in contrast to those
in Fig.5.2. In most cases, there are no apparent rotation in the curves though an
overall shift towards the origin can be noticed. In fact, the red and blue lines



88 5 Robust Speaker Modeling for Speaker Verification in Noisy Environments

shows a slight rotation in clock-wise direction for 10dB SNR despite preserving
a notable difference in false alarm rates with respect to the baseline. Interestingly,
the set of red and blue lines show similar properties in terms of the slope, shape
and alignment with each other. The overall improvement in average MinDCF
values are 8 x 1073 and 9.25 x 1073 for the SVM based systems with KL div
and GUMI kernels, respectively. This is significantly lower in comparison to the
uniform background scenarios. The overall inferior performance of the SV systems
in varying background environment encouraged the use of a SVM-based channel
compensation method prior to SVM training.

5.1.6.1 Nuisance Attribute Projection

Nuisance Attribute Projection (NAP) [10] is a commonly applied session compensa-
tion technique for GMM-SVM based SV systems. NAP aims to remove components
(nuisance attributes) from the supervector space which are irrelevant for speaker
recognition and may carry information related to channel, background etc. In other
words, it eliminates the subspace which causes variabilities. This is achieved by an
orthogonal projection of the supervectors in the channel’s complementary space.
A projection matrix P is trained using an auxillary set of speakers carrying various
channel information as given by

P=1-wl (5.9)

where v is a low rank rectangular matrix whose columns are given by ‘k’ eigenvec-
tors with highest eigenvalues of the supervector’s within-class covariance matrix.
Thus a new linear kernel is constructed for inputs x and y after NAP operation on
the supervectors S(x) and S(y) which is given by

K(x,y) = [PS@)]T[PS(y)] (5.10)

The formal steps of calculating the NAP projection matrix are given as follows

1. A setof supervectors is constructed from a target speaker’s enrollment utterances.

2. For each speaker, the mean of the supervectors is subtracted from each supervec-
tor in the set to subdue intra-speaker variability.

3. A large matrix V is formed whose columns constitute mean-removed supervec-
tors from all speakers. This matrix is expected to contain session information.

4. The within class covariance matrix W of matrix V is calculated as W = V VT
and subjected to eigen decomposition.

5. The eigenvectors having the largest ‘k’ eigenvalues are used to form the
rectangular matrix v. The integer ‘k’ (called NAP rank), is usually determined
empirically.

6. The projection matrix P is calculated by Eq. (5.9).
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Table 5.4 Comparison of the performances of the GMM-SVM based SV systems in varying
background environments with and without NAP compensation
GMM-SVM GMM-SVM + NAP
sNR KL div GUMI KL div GUMI
(dB) EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 23.48 0.086 22.76 0.085 2222 0.084 21.27 0.083
5 22.18 0.080 21.32 0.081 21.05 0.079 20.14 0.080
7 19.74 0.073 19.11 0.071 18.74 0.072 18.06 0.070
10 18.65 0.072 16.44 0.069 17.75 0.070 15.77 0.067

The NAP matrix was trained using 400 utterances collected from a set of 100
speakers of the NIST-SRE-2004 corpus. Steps 1-6 define the ideal method for
estimating the NAP matrix. However, a direct application of Step 4 was infeasible
due to the large size of supervectors (i.e., 39,936). As an alternative strategy, an
eigenvector matrix v/ was first constructed by eigen decomposition of the matrix
W' = % VTV where N is the number of supervectors. The required matrix v was
then obtained by the operation v = N ~'/2V/171/2 where A is a diagonal matrix
containing eigenvalues of the matrix W’. NAP transformation produced four new
sets of supervectors (one for each SNR), which were subjected to SVM training
and evaluation as explained earlier in Sects.5.1.5 and 5.1.6, respectively. A NAP
rank of 80 was empirically chosen to produce best results. Table 5.4 summarizes
the performance of the GMM-SVM based SV systems after NAP compensation.
Marginal improvements in EER and MinDCF values are noticed, in comparison to
the initial set of observations. The average EER reduction for the new set of SVMs
in comparison to their earlier version (columns 2 and 4 of Table 5.4) are 1.07 %
(K1 div) and 1.10 % (GUMI), respectively. The EER improvements in comparison
to the baseline are 5.05 and 6.18 % for KL div and GUMI kernels, respectively. The
improvements due to NAP are observed to diminish consistently with increasing
SNR. This can be easily interpreted from the sequence of EER reductions for the
KL div based systems given by 1.26, 1.13, 1.00 and 0.90 % for 0, 5, 7 and 10dB
SNRs, respectively. The same sequence for the GUMI based systems is 1.49, 1.18,
1.05 and 0.67 %.

Figure 5.5 shows the effect of NAP in the DET curves of the GMM-SVM based
SV systems. The broken blue and red lines has been used to denote the NAP based
GMM-SVM systems with KL div and GUMI kernels, respectively. No significant
changes are apparent in the broken lines except for the consistent shift towards the
origin which results in appropriate reduction in MinDCF values. In most cases, the
KL div systems with NAP performs better than the GUMI based systems without
NAP with an exception in the 10 dB SNR case. The overall improvement in average
MinDCF values are 9.25 x 1072 and 9.75 x 1073 for SVM based systems with KL
div and GUMI kernels, respectively.
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Fig. 5.5 DET plots showing the effect of NAP in the GMM-SVM based SV systems in varying
background environment at (a) 0dB (b) 5dB (c) 7dB and (d) 10dB SNRs

Table 5.5 summarizes the relative EER values of the GMM-SVM based SV
systems developed without and with NAP. An average relative EER of 20.19
and 24.89 % is obtained for the SVM based systems with KL div and GUMI
kernels, respectively. However the improvement due to NAP is substantially limited
with average relative EER increments of only 4.28 and 4.32 %, respectively for
the aforementioned systems. The characteristics of (a) EERs and (b) Relative
EERs of the GMM-SVM based systems at various SNRs in varying background
environments has been shown in Fig. 5.6.
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Table 5.5 Relative equal

error rates for GMM-SVM Relative equal error rate (EERR) (%)

based SV systems in varying SNR GMM-SVM GMM-SVM + NAP
background environments (dB) KLdiv GUMI KLdiv GUMI
0 13.20 15.86 17.86 21.37
5 13.83 17.17 18.22 21.76
7 21.95 24.44 25.90 28.59

10 14.68 24.79 18.80 27.86
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Fig. 5.6 (a) Equal error rates and (b) relative equal error rates of the GMM-SVM based SV
systems at different SNRs in varying background environments

5.2 Utterance Partitioning for Improving GMM-SVM Based
Speaker Verification Performance

The studies conducted in various types of noisy environments, as described in the
previous section, unanimously indicates that the SV performance accuracy enhances
with the use of GMM supervectors in conjunction with SVMs. However, it was
also noticed that the performance improvements were not consistent across different
noisy backgrounds at various SNR levels. In fact, fractional changes in EER values
were observed in quite a number of cases e.g., uniform factory noise at 5 dB SNR.
Besides, the use of GUMI kernels yielded marginal improvements in comparison
to the standard KL div kernels, in most of the simulated environments. Contrary to
expectations, the benefits of the complex NAP operations were also nominal. These
phenomena suggested scope for further improvement in the standard SV system
design. Instead of exploring alternative modeling methods, a number of inherent
drawbacks in the existing method were addressed for a change. A few of such
drawbacks can be highlighted as follows

* Data imbalance: A distinct aspect of the conventional SVM training method
is that the number of background utterances (supervectors) vastly outnumber
the number of enrolment utterances from a target speaker (typically one).
This obviously leads to the generation of a larger number of support vectors
in the majority class (background speakers) compared to the minority class
(target speaker) causing a phenomenon called ‘data imbalance’ [11, 12]. As a
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consequence, the SVM decision boundary skews towards the minority class
which causes high false rejection (‘miss’) rates during the kernel scoring in
the evaluation phase (Eq.5.8) of SV, unless the decision threshold is properly
adjusted to compensate for the bias.

e Mismatched utterance lengths: The duration of training and test utterances
plays a significant role in SV accuracy [13]. The amount of available training
data in utterances determines the degree of MAP-adaptation of a GMM and
thus affects the composition of the supervectors as discussed in Sect.5.1.
The difference in the enrolment and test utterance lengths (the former being
considerably larger than the latter), can thus lead to statistical mismatches during
the evaluation phase. In fact, prior studies have shown the benefits of matching
training and test utterance durations for SV [14]. Additionally, recent studies have
revealed that the discriminative power of fixed-size vectors used for representing
variable length utterances saturates when the utterance length exceeds a threshold
(typically 2min) [15]. In such situations, the excess data can be utilized by
generating new vectors rather than a single one.

* Small sample-size problem: In a typical training dataset, the number of speakers
could be fairly large, but the number of available sessions per speaker are often
quite limited. When the number of training speakers or the number of recording
sessions per speaker are insufficient, numerical errors occur in estimating
transformation matrices associated with the construction of supervectors (e.g.,
NAP), resulting in inferior performance (as noticed in Sect.5.1.6). In machine
learning literature, this is known as the ‘small sample-size problem’ [16, 17].

The various available strategies used to mitigate the effect of ‘data imbalance’
can be broadly categorized as (i) data processing approaches and (ii) algorith-
mic approaches. The family of methods in the first group tries to reduce the
disproportionate ratio of support vectors in each class [18]. This can be done
by (a) Over-sampling methods, where new training examples are generated from
the existing minority class data [19, 20] (b) Under-sampling methods, where a
subset of majority class examples are used to train individual SVMs [21, 22] and
(c) a combination of Over-sampling and Under-sampling [12]. Under-sampling is
usually not preferred for SV tasks since it causes loss of discriminative information
whereas over-sampling methods are a trade-off between improved classification
accuracy and increased computational load. The algorithmic approaches modify the
classifier algorithm to counter data imbalance. Earlier methods assigned asymmetric
misclassification costs to the positive and negative training examples [23] which
was marginally effective since the Lagrange multipliers in both classes were scaled
to satisfy a SVM constraint. Other methods modified the kernel function according
to the data distribution which lead to complex training procedures [24].

The mismatch in utterance durations as highlighted earlier can be resolved by
either using shorter length training/enrollment utterances or longer test utterances.
In the former case, the major issue is to empirically determine an appropriate
length of training utterances which can contribute towards MAP adaptation without
sacrificing representative power. Lengthy test utterances as an alternative are usually
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not preferred for real-life applications. Handling the small sample-size problem is
also subject to practical constraints such as availability of a co-operative set of
speakers for multi-session recordings or requesting multiple enrolment utterances
from client speakers etc.

As a solution to the aforementioned problems a synthetic data generation
technique using partitioned utterances as proposed in [25], was applied in the
present work. Specifically, the sequence of frames in an utterance were randomized
followed by dividing it into a number of fixed-length sub-utterances which were
individually used for supervector construction. The formal steps of the method,
known as Utterance Partitioning with Acoustic Vector Resampling (UP-AVR), are
briefly outlined as follows:

1. Given an enrollment utterance of a target speaker, the acoustic vectors (MFCCs)
are computed and their sequence of occurrence (frame indices) in the utterance
are randomized. This randomized sequence is then divided into N partitions
(sub-utterances).

2. Steps 1 is repeated R times to produce RN sub-utterances.

3. Each of the sub-utterances produced in Step 2 together with the original utterance
are individually used for supervector construction. Thus a total of RN + 1 target
speaker supervectors are obtained.

4. Each background utterance is like-wise partitioned into N sub-utterances as
given in Step 1. However, unlike the enrollment utterances, Step 2 is skipped
and Step 3 is directly applied instead.

5. For B background utterances, a total of B(N + 1) background supervectors are
thus obtained.

Based on the length of available utterances in the present work, parameter values
of N =2 and R = 3 were empirically determined to produce best results [26]. For
each target speaker, UP-AVR thus produced 7 target supervectors (3 x 2 + 1) and
1,065 background supervectors (355 x (2+ 1)). The new set of labelled supervectors
were subsequently used for training speaker-specific SVMs and evaluation, as
discussed in Sects. 5.1.1 and 5.1.6, respectively.

Table 5.6 summarizes the effect of UP-AVR on the performances of the GMM-
SVM based SV systems in uniform background environments. Drastic performance
improvements are noticed compared to the initial set of results (refer Table 5.1). The
average EER decrements across all three SNR levels, are 5.13, 6.64, 6.07 and 5.69 %
for GMM-SVM (KL div) and 4.79, 6.57, 6.61 and 5.87 % for GMM-SVM (GUMI)
in car, factory, pink and white noisy backgrounds, respectively. The magnitude
of EER and MinDCF reductions are scaled considerably, thus resolving much of
the inconsistencies noted earlier. In contrast to the fractional changes observed
initially (see Table 5.1), performance improvements in factory noise backgrounds
are observed to be the highest. The average EER improvements across all four
types of noises are 7.35, 9.12 and 7.09 % for GMM-SVM (KL div) and 7.04,
9.44 and 7.35 % for GMM-SVM (GUMI) at 0, 5 and 10dB SNRs, respectively.
The GUMI kernels are observed to perform consistently better than the KL div
kernels thereby asserting the significance of using covariance information for SV
in degraded conditions. However, it is interesting to note that the performance
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Table 5.6 Performance of the GMM-SVM based SV systems with UP-AVR in uniform back-
ground environments

GMM-SVM GMM-SVM with UP-AVR
KL div GUMI KL div GUMI
SNR Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF
0dB Car 14.32 0.063 13.82 0.058 11.25 0.043 11.02 0.042
Factory 21.27 0.086 20.32 0.086 15.36 0.063 14.54 0.059
Pink  21.23 0.087 19.92 0.085 14.86 0.061 14.36 0.059
White 22.72 0.076 22.67 0.079 16.03 0.066 15.67 0.063
5dB Car 13.77 0.059 13.10 0.058 07.09 0.032 06.68 0.030
Factory 20.87 0.085 19.92 0.084 12.24 0.048 11.74 0.047
Pink 19.65 0.086 19.06 0.085 13.19 0.054 11.79 0.046
White  20.96 0.074 20.73 0.072 15.36 0.065 14.27 0.061
10dB Car 12.24 0.047 11.38 0.046 06.59 0.031 06.23 0.029
Factory 14.81 0.053 14.50 0.052 09.44 0.039 08.76 0.038
Pink 15.67 0.058 15.72 0.057 10.21 0.043 08.72 0.037
White 17.75 0.065 15.49 0.067 12.96 0.055 11.33 0.048
Clean 06.72 0.030 06.44 0.030 06.54 0.028 06.21 0.027

improvements due to UP-AVR in clean conditions are negligible which explains
its effectiveness specifically for noisy backgrounds.

Figure 5.7 demonstrates the impact of UP-AVR in the DET plots of the GMM-
SVM based SV systems in uniform noisy environments. A set of red and black
lines has been used to denote the upgraded SV systems with KL div and GUMI
kernels, respectively. The red and black curves can be easily distinguished from the
set of blue and green curves which represents the initial set of GMM-SVM based
systems. There is a wide margin of difference at all operating points of the new set
of curves in comparison to the old ones. In most cases they are either entirely non-
overlapping with the older ones or display the characteristic anti-clockwise rotation.
A notable aspect of the UP-AVR based systems is that the performance upgradation
at 0dB SNR is comparable or even better than the initial systems at 10 dB SNR.
A comparison of average MinDCF values across all 12 background environments in
Table 5.6 show drastic improvements of 19 x 10~ and 22.5 x 10~ for GMM-SVM
(KL div) and GMM-SVM (GUMI), respectively.

Table 5.7 summarizes the relative equal error rates of the GMM-SVM based SV
systems developed using partitioned utterances in uniform noisy environment. The
performance improvements due to UP-AVR are reflected by the dramatic increase
in relative EERs. The average relative EERs in car, factory, pink and white noisy
backgrounds are 51.94, 39.30, 44.76, 44.36 % for GMM-SVM (KL div) and 53.89,
42.65, 50.01, 48.59 % for GMM-SVM (GUMI), respectively. This is significantly
higher than the initial set of relative EERs recorded in Table 5.2. The average
improvements in relative EERs are 27.85 and 28.11 % for GMM-SVM (KL div)
and GMM-SVM (GUMI), respectively.
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Fig. 5.7 DET plots showing the effect of UP-AVR on GMM-SVM based SV systems in uniform
background environments with (a) car (b) factory (c) pink and (d) white noise

Figure 5.8 demonstrates the changes in (a) EERs and (b) Relative EERs of
the GMM-SVM systems with UP-AVR, at various SNRs in uniform background
environment. The characteristics of the EERs are in contrast to that observed earlier
in Fig. 5.3. Specifically, the abrupt EER fluctuation at 5 dB SNR for factory and pink
noises are much relaxed. However close resemblances (with Fig. 5.3) in the relative
EER characteristics are noticed with an exception in case of factory noise. As usual
an abrupt change in relative EER at 5dB SNR is noticed with an exception in case
of pink and white noise for GMM-SVM (KL div) where linearity in changes are
retained.

The effect of UP-AVR was also studied for the SV systems developed in varying
background environments. Just like the uniform background scenarios, significant
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Table 5.7 Relative equal error rates for GMM-SVM based SV sys-
tems with UPAVR in uniform background environments

Relative equal error rate EERp (%)

SNR (0dB) SNR (5dB) SNR (10dB)
Noises KLdiv GUMI KLdiv GUMI KLdiv GUMI
Car 37.63 3891  60.85 63.11 5732  59.65

Factory  33.70 37.25 41.60 43.99 42.58 46.72
Pink 44.24 46.12 44.79 50.65 45.25 53.24
White 48.26 49.42 43.96 47.94 40.85 48.29
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Fig. 5.8 (a) Equal error rates and (b) relative equal error rates of the GMM-SVM based SV
systems with UP-AVR at different SNRs in uniform background environments

Table 5.8 Performance of the GMM-SVM based SV systems with UP-AVR in varying back-
ground environments

GMM-SVM GMM-SVM with UP-AVR
SNR KL div GUMI KL div GUMI
(dB) EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 23.48 0.086 22.76 0.085 15.76 0.060 16.16 0.066
5 22.18 0.080 21.32 0.084 15.18 0.053 14.81 0.052
7 19.74 0.073 19.11 0.071 14.50 0.051 12.38 0.048
10 18.65 0.072 16.44 0.069 12.24 0.047 11.38 0.046

reduction in the error metrics are observed once again, in contrast to the initial
set of system performances (without UP-AVR), as shown in Table 5.8. The EER
reductions compared to the initial set of observations are 7.72, 7.00, 5.24, 6.41 %
for GMM-SVM (KL div) and 6.60, 6.51, 6.73, 5.06 % for GMM-SVM (GUMI) at
0, 5,7 and 10 dB SNRs, respectively. The two SVM kernels show different behavior
in terms of EER changes with a slight anomaly noticed at 0dB SNR where the
KL div kernel performs better than the GUMI kernel. The effect of UP-AVR also
appears to be more prominent in case of KL div kernels which shows an average
EER improvement of 6.59 % across all SNR levels in comparison to 6.23 % for the
GUMI kernel.
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Fig. 5.9 DET plots showing the effect of UP-AVR on GMM-SVM based SV systems in varying
background environments at (a) 0dB (b) 5dB (c) 7dB and (d) 10 dB SNRs

Figure 5.9 demonstrates the impact of UP-AVR in the DET plots of the GMM-
SVM based SV systems in varying background environments. The set of solid blue
and red lines denote the UP-AVR based GMM-SVM systems with KL div and
GUMI kernels, respectively. The broken lines of same colors represent the initial
systems developed in the same backgrounds while the black line represents the
baseline. As usual a wide margin is noticed between the solid and broken set of
curves. Unlike the initial set of GMM-SVM systems (see Fig. 5.4), dissimilarities
are observed in the curves corresponding to the two SVM kernels. In most cases, the
red and blue curves show distinct behavior. Apart from the overall shift towards the
origin, anti-clockwise rotations in the red and blue curves are prominently noticed in
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Table 5.9 Performance of the GMM-SVM based SV systems with UP-AVR and NAP compensa-
tion in varying background environments
GMM-SVM + UP-AVR GMM-SVM + UP-AVR + NAP
sNR KL div GUMI KL div GUMI
(dB) EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 15.76 0.060 16.16 0.066 13.37 0.058 13.62 0.063
5 15.18 0.053 14.81 0.052 13.23 0.051 12.47 0.048
7 14.50 0.051 12.38 0.049 13.10 0.049 11.29 0.046
10 12.24 0.047 11.38 0.046 11.21 0.044 10.32 0.043

case of 5 and 10dB SNRs. The resultant improvement in MinDCF values averaged
across all SNRs are 25.00 x 1073 and 24.25 x 1073 for KL div and GUMI kernels,
respectively.

As mentioned earlier in Sect. 5.2, the UP-AVR strategy was adopted to alleviate a
set of three highlighted drawbacks of the conventional GMM-SVM based systems.
However, it is difficult to conclude the degree of impact UP-AVR exercises on each
of them. In most cases one may rely on the joint improvement of all three problems,
without specifically knowing each of them. In order to demonstrate the specific
utility of UP-AVR towards mitigating the small sample-size problem, the partitioned
enrollment utterances (supervectors) were subjected to NAP transformation prior to
SVM training.

Unlike its earlier version, the supervector matrix V' constructed in the Step 3 of
the NAP algorithm, now had an expanded size of 2,800 x 39,936 due to the impact
of UP-AVR on the target speaker utterances. All the training supervectors were
subjected to NAP transformation prior to SVM training with required strategies for
maintaining feasibility in large matrix operations as discussed in Sect. 5.1.6.1.

Table 5.9 summarizes the performance of the GMM-SVM based SV developed
using UP-AVR followed by NAP compensation in varying background environ-
ments. In contrast to the initial set of observations (see Table 5.4), a larger average
EER reduction compared to the baseline (i.e., 12.26 % (KL div) and 13.06 %
(GUMI)) is noticed across all four SNR levels. The additional improvements due to
NAP over UP-AVR are 2.39, 1.95, 1.40, 1.03 % and 2.54, 2.34, 1.09, 1.06 % at 0, 5,
7 and 10 dB SNRs for GMM-SVM (KL div) and GMM-SVM (GUMI), respectively.
The effect of NAP compensation is observed to be more prominent in case of the
GUMI kernels.

Figure 5.10 demonstrates the effect of NAP on the DET plots of the GMM-
SVM based systems developed in varying background environments. The color
coding for representing each system is the same as that in Fig.5.9. The broken
lines of each color have been used to denote the corresponding systems with
NAP transformation. The set of blue and green lines seen earlier in Fig.5.5, are
included again for studying the overall comparison of the various systems. The
behaviour of the NAP-based curves are quite similar in shape and alignment to the
initial systems except for a larger margin of difference from them at all operating
points. Expectedly, a significant improvement in MinDCF values are observed
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Fig. 5.10 DET plots showing the effect of UP-AVR and NAP on GMM-SVM based SV systems
in varying background environment at (a) 0dB (b) 5dB (c¢) 7dB and (d) 10dB SNRs

in comparison to the earlier NAP-based SV systems with average reduction of
26.00 x 1073 and 25.75 x 1073 across all SNRs, for KL div and GUMI kernels,
respectively.

Table 5.10 summarizes the relative EERs of the various GMM-SVM based
SV systems developed in varying background environments. The average relative
EERs across all SNRs, are 42.36 and 45.43 % for UP-AVR based GMM-SVM
systems with KL div and GUMI kernels, respectively. The corresponding values
with an additional NAP application are 49.02 and 52.34 %. The benefits of utterance
partitioning can be observed from the significant average improvements of 26.68
and 25.45 % relative EER rates for the two types of NAP based GMM-SVM based
systems.
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Table 5.10 Comparison of relative equal error rates for GMM-SVM based SV systems
in varying background environments

Relative equal error rate EER (%)
SNR  GMM-SVM NAP UP-AVR UP-AVR + NAP
(dB) KLdiv GUMI KLdiv GUMI KLdiv GUMI KLdiv GUMI
0 13.20 15.86 17.86 21.37 41.74 40.26 50.57 49.65
5 13.83 17.17 18.22 21.76 41.03 42.46 48.60 51.55
7 21.95 24.44 25.90 28.59 42.67 51.05 48.20 55.36
10 14.68 24.79 18.80 27.86 44.01 47.94 48.72 52.79
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Fig. 5.11 (a) Equal error rates and (b) relative equal error rates of the GMM-SVM based SV
systems with UP-AVR at different SNRs in varying background environments

Figure 5.11 demonstrates the changes in (a) EERs and (b) Relative EERs of
the GMM-SVM systems with UPAVR, at various SNRs in varying background
environments. Notable changes in the behavior of the red and black curves are
observed in contrast to those in Fig.5.6. The abrupt EER and relative EER
fluctuations at 7dB SNR, initially observed in Fig.5.6 are now relaxed for the
GMM-SVM (KL div) system where NAP application makes an anomalous change.
The GUMI based GMM-SVM systems however show similar behavior with and
without NAP applications which is characterized by consistent increase in relative
EER values with increasing SNRs with an abrupt decrement at the 10 dB SNR level.

5.3 Total Variability Modeling for Speaker Verification

The significance of the GMM-SVM methods for SV in noisy environment was
explored through an extensive set of empirical studies discussed in Sects.5.1
and 5.2, respectively. Despite the drastic performance enhancements achieved using
the UP-AVR strategy, few typical limitations of the developed SV systems can
be highlighted. Firstly, the large size of the GMM supervectors are a practical
constraint in terms of their memory consumption and computational costs (e.g.,
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SVM training, NAP transformation). Secondly, despite UP-AVR the performance
improvements of the SV systems developed in extremely degraded conditions in
the uniform background environments were comparatively lower. Specifically, the
average relative EERs of the SV systems across the four different backgrounds
were 41.95 and 49.61 % at 0 and 5dB SNRs in contrast to a larger value of
54.23 % at 10dB SNR. Even the average EERs at 0 and 5dB i.e., 14.13 and
11.54 % were significantly larger than those at 10dB (9.28 %). Individual EERs
were observed to be typically high for factory, pink and white noisy backgrounds.
These factors suggested the use of alternative robust speaker modeling methods for
further improvement in performance accuracy. Specifically a state-of-the-art low
dimensional representation of GMM supervectors, commonly known as identity
vectors or ‘i-vectors’ [7], was used for developing SV systems. In the remaining
part of this section, the details of i-vector extraction, its application and evaluation
in the present work are discussed.

5.3.1 i-Vector Extraction

Total variability modeling [7] is based on projecting large dimensional supervectors
in a low dimensional subspace (known as ‘total variability’ space) which supposedly
contains both channel and session information. Specifically, a GMM mean super-
vector M is represented as

M=m+Tw (5.11)

where m is a speaker/channel independent supervector (i.e., the UBM mean super-
vector), T is low-rank rectangular matrix whose columns consists of eigenvectors of
the total variability covariance matrix with largest eigenvalues. w is a random vector
having standard Normal distribution, called i-vector. The total variability matrix
(T) is learned offline, using probabilistic principal component analysis (PPCA) [4]
on a development dataset [27,28]. Estimation of i-vectors from a set of utterances
requires initial computation of a set of Baum-Welch statistics followed by a set
of matrix operations involving them. Given a sequence of D-dimensional acoustic
vectors {xi, xz,...xy} of an utterance X with T frames, the Baum-Welch statistics
are calculated as

T
Ni =Y plilx, A

t=1

T
F; = Zp(”xt»k)(xt —m;)

t=1
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where p(i|x;, A) is the posterior probability of the ith Gaussian component of a
UBM A having total M components, which generates vector x,. The mean of the
same component is given by m;. N; and F; are known as the zeroth order and mean-
shifted first order sufficient statistics, respectively.

Given the trained 7 matrix and the set of Baum-Welch statistics, the i-vector
extracted from utterance X is calculated as

w=UI+TT2'NX)T) . TT 27 F(X) (5.12)

where ¥ and N(X) are block diagonal matrices of size (M D x MD) whose
diagonal blocks consist of the UBM covariance matrices X; (i = 1,2,... M) and
identity matrices weighted with the zeroth order statistics N; Ipxp(i = 1,2,... M),
respectively. F(X) is a supervector obtained by stacking the mean-shifted first order
statistics F; (i = 1,2,... M) and [ is an identity matrix of size (M D x M D). Total
variability modeling is generative in nature, however they can be integrated with a
discriminative framework using SVMs [29, 30]. The detailed procedure of training
the 7" matrix has been outlined in Appendix D.

5.3.2 SVM Training

Since i-vectors are fixed-length vectors representing variable length utterances, they
can be used to train SVMs using sequence kernels as discussed in Sect.5.1.1. It
was investigated in [29], that the best result in i-vector frameworks are produced by
using a cosine kernel function for training the SVMs, which can be defined for two
input i-vectors w; and w, as

(w1, wa)

= (5.13)
[wi w2

k(wi,wy) =

where (.,.) and ||.|| denote the inner product and L2-norm, respectively. The cosine
kernel normalizes the linear kernel by the norm of both i-vectors. It considers only
the angle between the two i-vectors and not their magnitudes. It is believed that non-
speaker information (such as session and channel) affects the i-vector magnitudes,
removing which improves the robustness of the i-vector system.

5.3.3 Inter-session Compensation

Since the total variability subspace contains both speaker and session variability
information, i-vectors extracted from it are usually subjected to session compensa-
tion prior to SVM training. Two common session compensation techniques used in
the i-vector framework are discussed as follows
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5.3.3.1 Linear Discriminant Analysis (LDA)

LDA [4] projects the i-vectors to a set of orthogonal axes for minimizing within-
class variance and maximizing between-class variance. In the i-vector framework,
all i-vectors extracted from a speaker constitute a particular class. The projection
matrix A is composed of eigenvectors v having the highest eigenvalues A, obtained
by solving the following generalized eigen decomposition problem

Bsv = AWsv (5.14)

where By, Wy are the between-class and within-class covariance matrices given by

N
Bs = (s = 1W)(s — )" (5.15)

s=1

ng

S
1
Ws =Y - > (Wi = ps) Wi — )" (5.16)
s=1 i=1

where S is the total number of speakers, 7, is the total number of utterances from
the sth speaker, (i, is the mean of all i-vectors (w;) from speaker s given by p, =
i >, w; and p is the global mean of all i-vectors generally considered to be a
null vector due to their standard normal distribution. The number of columns of the
matrix A (i.e., LDA order) are determined empirically to produce best results. The
LDA-modified cosine kernel function for two input i-vectors w; and w; is given by

(ATw)T (AT wy)

_— 5.17
|ATW1||ATW2| ( )

k(wi,wp) =

5.3.3.2 Within-Class Covariance Normalization (WCCN)

WCCN, proposed in [31] aims to set upper bounds on the error metrics (‘miss’
and ‘false alarm’) by normalizing the SVM kernels. Application of WCCN in the i-
vector framework requires projecting the i-vectors to a space specified by the square-
root of the inverse of the within-class covariance matrix. Specifically, the projection
matrix B is obtained by Cholesky decomposition of the inverse of the within-class
covariance matrix (Eq. 5.16) as follows

Wg' = BB" (5.18)

The WCCN-modified cosine kernel function for two input i-vectors w; and w, is
given by

(BTw)" (BT w,)

5.19
[BTw\|[BTw)| 619

k(wi,wy) =
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5.3.4 Score Calculation

Two types of i-vector evaluation methods, namely Cosine Distance scoring and
SVM Kernel scoring, has been proposed in past [29]. The former one is applied
in the default generative modeling framework while the latter for the discriminative
SVM framework.

5.3.4.1 Cosine Distance Scoring (CDS)

CDS is a fast scoring method commonly applied in i-vector frameworks. As the
name suggests, it is simply the cosine distance between a pair of i-vectors repre-
senting a claimant’s test utterance (w'®*’) and the claimed target speaker utterance
(w'er8ety respectively as given by

test | target
< wiest >
Secos = (5.20)

|erst | |Wtarget

5.3.4.2 SVM Kernel Scoring

The SVM scoring is exactly similar to the one already discussed in Sect. 5.1.4. The
advantage of SVM scoring is that the contribution of individual speakers towards
the verification scores can be optimally weighted by the Lagrange multipliers of the
target speakers SVM. Given a trained target speaker SVM and the test i-vector w'¢*’,
the score is calculated as

T B
Ssym = Y o KO W) = " K(w' ') + d (5.21)

=1 i=1

where w' and w' are the sequence of support vectors corresponding to the target
and background speaker classes as learned during SVM training. o, and «; are the
non-zero Lagrange multipliers of the corresponding classes. 7 and B are the total
number of support vectors in each class, d is a bias term and K is the cosine kernel
(Eq.5.13).

5.3.5 Experimental Setup

Figure 5.12 shows a block diagram of the i-vector based SV system. The SV systems
were developed using the set of noise-degraded training and test utterances of
NIST-SRE-2003 in uniform background environment (see Sect.5.1.5.1) at O and
5dB SNRs, as discussed in Sects. 5.3.1 and 5.3.3. A development data comprising
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Fig. 5.12 Block diagram of the combined SVM and total variability modeling framework for
speaker verification

1,572 utterances from the SwitchBoard phase II corpora and 400 utterances
from NIST-SRE-2004 database was used for training the total variability and
channel compensation matrices (see Appendix D). The T-matrix rank of 400 was
chosen empirically and i-vectors were extracted from all utterances as discussed
in Sect. 5.3.1. The low dimension of i-vectors facilitated convenient application of
LDA and WCCN, the projection matrices for which were designed as discussed in
Sect. 5.3.3. A LDA order of 300, was empirically determined to produce best results.
All the i-vectors were subjected to session compensation prior to model building.
A discriminative framework (combined i-vector and SVM) for classification was
used instead of the conventional generative i-vector modeling in favor of utilizing
the benefits of UP-AVR and SVM scoring as shown in [15]. The labelled i-vectors
extracted from enrollment and background speaker’s utterances were subjected
to speaker specific SVM training. During the evaluation phase, the noisy test
utterances (i-vectors) were evaluated against the target speaker models (SVMs)
according to NIST-2003 primary task, using the SVM scoring method as discussed
in Sects.5.1.6 and 5.3.4.2, respectively. The experiments were repeated using
partitioned utterances with UP-AVR parameters N = 2 and R = 3.

Table 5.11 summarizes the performance of the i-vector based SV systems
developed in uniform noisy environments at 0 and 5dB SNR. While the error
metrics show considerable performance improvements compared to the GMM-
SVM based systems in individual noisy backgrounds, it is interesting to note that
the GMM-SVM based systems developed using UP-AVR performs better than the i-
vector models developed without UP-AVR. This can be deduced from a comparison
of the GMM-SVM based SV systems in (Table 5.6). The average EER reductions
across both SNRs compared to the default GMM-SVM based SV systems are
3.52, 6.12, 4.90 and 5.51% for car, factory, pink and white noisy backgrounds,
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Table 5.11 Performance of the i-vector based SV systems in uniform background environments
at 0 and 5dB SNR

SNR (0dB) SNR (5dB)

Without UP-AVR With UP-AVR Without UP-AVR With UP-AVR
Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

Car 12.10 0.051 10.57 0.047 08.31 0.039 06.05 0.028
Factory 16.17 0.068 12.33 0.055 12.78 0.057 09.03 0.042
Pink 16.72 0.071 12.83 0.054 13.42 0.058 10.16 0.044
White  17.39 0.073 14.27 0.059 15.13 0.063 11.88 0.051

respectively. However, GMM-SVM with UP-AVR performs slightly better than
the current systems with average reduced EERs of 1.23, 1.01, 1.52 and 0.93% at
the corresponding environments across both SNRs. This phenomenon once again
establishes the significance of UP-AVR in enhancing SV performances in noisy
conditions. The superiority in i-vector performance accuracies are restored by
incorporating UP-AVR in its framework. Comparison amongst the UP-AVR based
systems (see Table 5.6) reveals average EER reductions of 0.70, 2.79, 2.06, 2.26%
in car, factory, pink and white noisy backgrounds, respectively.

Figure 5.13 shows the DET plots of the i-vector based SV systems developed
in uniform noisy environments. As usual a shift towards the origin is observed in
the curves corresponding to the UP-AVR based systems (represented by broken
lines) suggesting consistent reduction in MinDCF and EER values across each noisy
background. The effect of UP-AVR at 0dB SNR is apparently more prominent in
case of the colored noises. Unlike the GMM-SVM based systems (see Fig.5.7),
no significant change in slope or rotation of the curves are noticed. The average
improvements in MinDCF values of the i-vector based SV systems (with and
without UP-AVR) in comparison to the corresponding GMM-SVM based SV
systems (see Tables 5.1 and 5.6) are 2.94 x 1073 and 1.82 x 1073, respectively.

Despite the apparent performance improvements achieved by the i-vector based
SV systems, a typical aspect to be noticed is that UP-AVR results in a moderate
decrement of only 3.10 % average EER. Similar observations were earlier recorded
for the GMM-SVM based systems (see Table 5.6) which had shown 5.39 %
EER reductions at 0dB SNR in contrast to larger improvements at 5 and 10dB
SNRs. This phenomenon indicates the obvious increase in classification errors due
to high noise strength. A typical drawback of the standard UP-AVR algorithm
can also be highlighted in this context. Specifically, all speaker’s utterances are
partitioned irrespective of the role they play towards classification. This could
be detrimental towards SV performance e.g., partitioning a speaker’s utterance
which was originally misclassified could lead to additional misclassifications apart
from increased computational load. In order to alleviate these two problems in
parallel, a novel boosting algorithm is proposed to train multiple SVM classifiers
on the noisy dataset, the utterances in which are selectively used for partitioning.
Subsequent sections provide the details of the boosting algorithm followed by their
implementation in the i-vector based SV framework.
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Fig. 5.13 DET plots of the i-vector based SV systems in uniform background environments with
(a) car (b) factory (c) pink and (d) white noise at 0 and 5 dB SNR

5.4 Adaptive Boosting for Improved Speaker Verification

Performance in Noisy Environments

Adaptive Boosting (AdaBoost) iteratively enhances the predictive accuracy of a
sequence of weak classifiers (ensemble), each of which is trained on a dataset
adaptively sampled according to the training error of the classifier in the previous
iteration [32]. The final decision is based on a weighted voting of the individual
classifiers in the ensemble. In recent past, boosting has been applied effectively
for robust SV tasks [33]. Prior art also demonstrates the benefits of combining
ensemble learning with data balancing [20, 34]. A novel combination scheme of
the AdaBoost algorithm with a synthetic data generation technique using UP-AVR
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[25], is proposed in the present work. The approach is motivated by the Databoost-
IM algorithm proposed in [35]. The aim is to improve the predictive accuracy of
both minority (target speaker) and majority (background speakers) classes while
emphasizing on the misclassified examples in the minority class.

5.4.1 Proposed Boosting Algorithm (DataBoost-UP)

Conventional boosting algorithms emphasize on the misclassified (hard) train-
ing instances at each iteration by adaptively increasing their sampling weights.
Classifiers trained in successive iterations concentrate on these instances with
high weights. Since all misclassified examples are equally weighted, it doesn’t
compensate for the bias towards the majority class in imbalanced datasets. The
aim of integrating data generation with the boosting algorithm is to alleviate the
learning algorithm’s bias towards the majority class while retaining focus on the
hard training instances. Unlike the DataBoost-IM algorithm [35], in the proposed
algorithm (DataBoost-UP) the data (i-vectors) is synthesized using the utterance
partitioning technique [25] instead of random generation of attribute values in the
[min,max] interval. Both the minority (target speaker) and majority (background
speakers) classes are oversampled to prevent overemphasis on the hard instances of
the minority class. The proposed algorithm is used to create an ensemble of SVM
classifiers.

Algorithm DataBoost-UP
Input:
Training data set {(x;, y))}_,, yi € {—1,+1}

Weak SVM classifiers i; where t = {1,2...,T}
Initialize: Sampling weight distribution D (i) = 1/N Vi ={1,2,..,N}

Dofort<—1toT

. Identify the hard examples in the training set.

. Generate new data from these examples by UP-AVR. Add them to the original training set.
. Adjust the sampling weight distribution of both classes in the new training set.

Learn weak SVM £, on the new training set sampled according to the modified distribution.

N

. & < Y D/(i)I(h/(x;) # y;). If ¢, > 0.5 set T =t-1 and abort loop.
i=1

Loy — %log{(l —€)/(€)}

. N
P exp(—ah, (xi)yi) where Z, = 3° D, (i) exp(—oth, (xi)yi)
i=1

A L AW~

~l

. D;+1(l') <

T
Output: SVM ensemble /1 pju0 = Y ol

t=1
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The predictive accuracy of the ensemble is guaranteed to improve in each
iteration provided the training error of the weak SVM classifier in the previous
iteration is less than 0.5 (upper bound). The ensemble training error decreases
in successive iterations. At the end of a pre-determined number of iterations, the
algorithm converges with no further decrement in the ensemble training error. Steps
1, 2 and 3 of the proposed algorithm are elaborated in the next three sections.

5.4.1.1 Identifying Hard Training Examples

The hard training examples are identified as follows.

1. All the instances in the training set are arranged in descending order of their
sampling weights.

2. The top N,r4in number of instances of the training set are selected as hard
examples where:
Nirain = € XN,
€; = weighted training error of a SVM in the ¢th iteration of boosting
N = total number of instances in the original training set.

3. Let Nirain = Nyaj + Npin where:
Npqj =number of instances from majority class, N,,;, =number of instances
from minority class.
These training utterances are subjected to utterance partitioning as discussed in
Sect.5.4.1.2

5.4.1.2 Synthesizing Data Using Utterance Partitioning

The UP-AVR algorithm (discussed in Sect.5.2) is applied for data generation, as
follows

1. Given each of the N,,;, target speaker utterance, its acoustic vectors are
computed and their sequence of occurrences in the utterance are randomized.
This randomized sequence is then divided into P partitions (sub-utterances).

2. Step 1 isrepeated R times. Together with the original full-length utterance, a total
of RP + 1 utterances generated from each enrollment utterance are individually
subjected to i-vector construction.

3. Similarly, each background speaker’s utterances are divided into P partitions.
For N, background speakers we thus have N,,;(P + 1) utterances. Back-
ground i-vectors are constructed from each of these utterances.

5.4.1.3 Balancing Weights of Majority and Minority Classes

The aim of weight balancing is to minimize the difference between the total
sampling weight of each class in an imbalanced dataset. This forces the boosting
algorithm to focus on both the hard as well as rare training examples. The sampling
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Table 5.12 Comparison of the effects of UP-AVR and Databoost-UP on the performances of
i-vector based SV systems in uniform background environments at 0 and 5 dB SNRs

SNR (0dB) SNR (5dB)

UP-AVR DataBoost-UP UP-AVR DataBoost-UP
Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

Car 10.57 0.047 08.22 0.037 06.05 0.028 04.83 0.021
Factory 12.33 0.055 10.93 0.048 09.03 0.042 07.14 0.032
Pink 12.83 0.054 11.21 0.047 10.16 0.044 08.13 0.035
White  14.27 0.059 13.05 0.053 11.88 0.051 10.03 0.043

weight of each hard instance is divided by the number of new instances generated
from it. All generated instances are uniformly assigned the divided weight. At the
end the weights are rebalanced across the entire set of newly generated instances.
If the total weight of the majority class (W,,,;) exceeds that of the minority class
(Wnin) then each minority weight is scaled by a factor W,,4; / Wy, For the vice-
versa condition, each majority weight is scaled by a factor Wi,/ Wy .

5.4.2 Performance Evaluation

The data used for experimental setup is identical to that described in Sect.5.3.5.
The i-vectors extracted from the partitioned target speaker utterances from each
noisy dataset were used for training a SVM ensemble using the DataBoost-UP
algorithm. Additionally, new data was generated in each iteration of the boosting
algorithm with partitioning parameters values of P = 2 and R = 1 as discussed
in Sect.5.4.1.2. The number of boosting iterations ranging from 5 to 10 was
empirically determined to appropriately lower the ensemble training error. During
the evaluation phase, each test utterances were scored against 11 target speaker
SVM ensemble. Given a noisy test utterance (i-vector) w'*’, the Kernel scoring was
obtained as a weighted linear combination of the scores obtained from individual
classifiers of the target speaker ensemble as follows:

T L
Score(w'®") = Za,- (Z Bijti KW, w'") + d;)

i=1  j=I

where T is the size of the ensemble. «; is the weight of the i th SVM classifier in the
ensemble as calculated in Step 6 of the DataBoost-UP algorithm. w'-/, ;. jandf; ; €
{—1,+1} are the sequence of L learned support vectors, the non-zero Lagrange
multipliers and the actual class labels, respectively for the ith SVM classifier in the
ensemble, d; is the bias term and K is the cosine kernel function.

Table 5.12 summarizes the comparative performances of DataBoost-UP and
UP-AVR method in the i-vector framework for the SV systems developed in uniform
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Fig. 5.14 DET plots showing the effect of UP-AVR and DataBoost-UP on the i-vector based SV
systems in uniform background environment with (a) car (b) factory (c) pink and (d) white noise
at 0 and 5dB SNR

background environments. A consistent performance improvement is noticed in the
boosted i-vector framework across all noisy backgrounds, in comparison to the
UP-AVR based system at both SNR levels. The individual EER reductions are 2.35,
1.40, 1.62 and 1.22 % at 0 dB SNR and 1.22, 1.89, 2.03, 1.85 % at 5 dB SNR for car,
factory, pink and white noisy backgrounds, respectively. Thus an additional average
EER reduction of 1.70 % across all environments is achieved on top of the initial
improvement (see Table 5.11) of 3.12 % due to UP-AVR.

Figure 5.14 shows the DET plots of the i-vectors based SV systems using
(a) UP-AVR and (b) DataBoost-UP, respectively. Interestingly, the nature of
improvement in each curve is similar to those observed in the Fig.5.13. There
are no apparent rotation in the curves apart from the overall shift towards the
origin characterized by the corresponding changes in detection costs. In contrast
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Table 5.13 Comparison of relative equal error rates of SV systems developed in uniform
background environments at 0 and 5 dB SNRs

Relative equal error rate EERR (%)
GMM-SVM (supervectors)  Total variability (i-vectors)
SNR (dB) Noises w/o UP-AVR With UP-AVR w/o UP-AVR With UP-AVR DataBoost-UP

0 Car 22.01 38.28 32.93 4141 54.43
Factory 10.25 35.48 30.21 46.78 52.83
Pink 22.80 45.18 37.26 51.86 57.94
White  26.74 48.84 43.87 53.94 57.88
5 Car 25.81 61.98 54.11 66.59 73.33
Factory 02.69 42.80 39.02 56.92 65.94
Pink 18.98 47.72 43.83 57.47 65.97
White  23.95 45.95 44.02 56.66 63.41

to the relatively moderate improvements in average EER, a significant reduction
of average MinDCF value of 7.5 x 1073 is noticed. This is comparatively much
higher than the previously recorded average MinDCF reduction (see Table 5.11) of
3 x 1073 due to the effect of UP-AVR.

Table 5.13 summarizes the relative EERs of the various SV systems developed in
uniform background environments at 0 and 5 dB SNRs. In order to jointly represent
the performances of the KL div and GUMI kernels, the mean of their relative EERs
has been recorded under the GMM-SVM multicolumn. The significant performance
improvements achieved in each stage of development of the i-vector based SV sys-
tems, can be more clearly deduced by the large relative EER metrics. A contrasting
behavior in performance improvement of the i-vector based SV systems is observed
at the two SNR levels. The colored noises (pink and white) which had comparatively
lower performance accuracies, are the ones with higher relative EER improvements
at 0dB SNR. However, the environmental noises (car and factory) perform much
better at 5dB SNR. The average relative EERs (across both SNR levels) of the
GMM-SVM based SV systems are 19.15% (without UP-AVR) and 45.78% (with
UP-AVR), respectively. The corresponding EER values for the i-vector based SV
systems are 40.66 and 53.96%, respectively. The DataBoost-UP algorithm in the i-
vector framework outperforms the rest of the methods with an average relative EER
of 61.47% across all environments.

5.5 Summary

This chapter explored the impact of robust speaker models for speaker verifi-
cation in various noisy environments. Broadly, two types of hybrid modeling
techniques (i.e., GMM-SVM and i-vectors SVM) were used to develop SV systems
in uniform and varying background environments, respectively. The majority of
studies were concentrated in the GMM-SVM based approach. Through extensive
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experimentation, it was established that robust SV performance could be achieved
using GMM supervectors in a discriminative framework, in comparison to the tradi-
tional GMM-UBM framework. In particular, emphasis was laid on the significance
of using partitioned utterances, for mitigating data imbalance, utterance-duration
mismatch and small sample-size problems, respectively for improving performances
in SVM based SV framework. In order to enhance SV performances in highly
degraded environments, a low-dimensional channel robust representation of GMM
supervectors (namely i-vectors), were alternatively used in a SVM framework.
A novel boosting algorithm was proposed to address some inherent drawbacks in
the standard utterance partitioning scheme and strengthening the SVM classification
accuracy in highly degraded background environments.
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