
Chapter 4
Stochastic Feature Compensation for Robust
Speaker Verification

Abstract This chapter explores the impact of standard stereo-based stochastic
feature compensation (SFC) methods for robust speaker verification in uniform
noisy environments. In this work, SFC using independent as well as joint probability
models are explored for compensating the effect of noise. Integration of a SFC stage
in the GMM-UBM framework is proposed for speaker verification evaluation under
mismatched conditions.

The choice of features used for speaker recognition (SR) tasks is usually a tradeoff
between accuracy, implementation costs and robustness. Short-term spectral or
vocal tract features (e.g., MFCC) are the most extensively used for SR tasks due
to their high speaker discriminative properties [1]. However, they are highly suscep-
tible to noise-degradation and are therefore aided by compensation procedures in
most SR applications [2,3]. The role of feature compensation was briefly introduced
in Chap. 1. Despite the existence of inherent robust features, SR applications often
prefer simple spectral features due to their ease of extraction. Such applications
essentially require feature compensation methods for noise-robustness.

The discussion about the filtering-based feature compensation methods (e.g.,
CMS [4], RASTA [5]) in Chap. 2 revealed that they are specifically designed for cep-
stral features and are commonly applied for suppressing channel effects. However,
filtering is often inadequate for additive background environments where the log-
spectral effect is ineffective. The application of model-based compensation schemes
(e.g., SS [6], CDCN [7]) are likewise compromised due to the unavailability of a
noise-model and high amount of training data.

The data-driven feature compensation methods offer a number of significant
advantages compared to the other two categories. Firstly, they are independent
of any analytical representation about the nature of the noise-corruption process.
Secondly, they can better model the noise-effects due to their stochastic nature.
Lastly, their performance is consistent across different environments. The only
apparent drawback of applying these methods is the requirement of stereo data
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which can be interpreted as having a priori knowledge about the test environment.
Despite such drawbacks, these techniques have been successfully used for far-field
speech recognition tasks. To the best of the author’s knowledge, the effect of these
feature compensation methods have not been studied for robust speaker verification
(SV) tasks. The application of standard stochastic feature compensation methods
in a SV framework is proposed in this chapter. The significance of the proposed
approach is demonstrated through a set of conducted experiments in simulated noisy
environment.

The rest of the chapter is organized as follows. Section 4.1 gives a brief
introduction to stochastic feature compensation, Sects. 4.2.1–4.3.2 provide detailed
description of the feature compensation methods considered in the work [8], the
proposed SV framework is discussed in Sect. 4.4 followed by a brief summary of
the present work in Sect. 4.5.

4.1 Stochastic Feature Compensation (SFC)

Since accurate enumeration of the environmental effects on speech is a non-
trivial task, a simplified form of speech signal degradation based on additive and
convolutional channel noise is used in practice. Due to the random nature of
noise, a given clean feature vector can generate different noisy feature vectors, and
vice-versa, which causes an uncertainty. Conventionally, Gaussian Mixture Models
(GMMs) are used to represent the cepstral distribution. The additive noise in general
alters the distribution of mel frequency cepstral coefficients (MFCCs) by reducing
the variance of each Gaussian component while the convolutional noise shifts the
mean vectors.

Stochastic feature compensation (SFC) methods are independent of any math-
ematical structure of noise degradation. They model stereo training data using
GMMs. Given a noisy test feature vector yt , a minimum mean squared error
(MMSE) criterion is used to estimate a clean vector Oxt as follows

Oxt D EŒxjyt � D
Z

X

xp.xjyt /dx (4.1)

where x is a random variable representing clean feature vectors and p.xjyt / is the
conditional probability distribution function (pdf) of x given yt . Depending on the
nature of the feature compensation algorithm, the two broad approaches of deriving
p.xjyt / can be categorized as (i) Independent probability modeling and (ii) Joint
probability modeling. The independent probability modeling methods construct
individual GMMs for clean and noisy data. The effect of noise is represented as
additive terms to the mean vectors and covariance matrices of the GMMs. The
conditional pdf is derived based on numerical approximations using the additive
terms. Alternatively, joint probability models construct a single GMM using stacked
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noisy and clean feature vectors of the stereo data. This is followed by deriving an
exact conditional pdf and estimation of clean speech vectors. Each of these methods
are discussed in details in the following two sections

4.2 SFC Using Independent Probability Models

Figure 4.1 illustrates the independent probability model based SFC process. The
main steps of the process can be outlined as follows

1. Firstly individual GMMs are built for clean vectors Xt and noisy vectors Yt as
follows
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Fig. 4.1 Stochastic feature compensation using independent probability models
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p.xt / D
MX

j D1

wx.j /Nx.xt I �x.j /; ˙x.j // (4.2)

p.yt / D
MX

j D1

wy.j /Ny.yt I �y.j /; ˙y.j // (4.3)

where w.j /, �.j / and ˙.j / denotes the weight, mean vector and covariance
matrix of the j th Gaussian component and M is the total number of components.

2. The conditional pdf p.xjj; yt / is then approximated by means of additive factors
rj to the clean or noisy training vectors. The values of the additive terms are
determined my maximizing the likelihood of the training data.

3. Given a set of noisy test vectors, the equivalent set of clean vectors are estimated
by MMSE

The GMM representations given by Eqs. (4.2) and (4.3), are used in the remaining
chapter. In the following sections three standard independent probability model
based SFC techniques used for robust speech recognition tasks are discussed briefly.
Each of the methods differ in the way by which they derive p.xjyt / and thereby
estimate bxt . Detailed derivations of the additive terms and the MMSE estimator for
each of these algorithms can be found in Appendix A.

4.2.1 Multivariate Gaussian-Based Cepstral Normalization
(RATZ)

The RATZ algorithm [9], derives the required MMSE clean feature estimate in three
stages. In the first stage, the clean feature vectors are used to train a GMM as in
Eq. (4.2) using the standard Expectation Maximization (EM) algorithm. The second
stage consists of estimating the statistics of the noise-degraded speech by applying
appropriate correction vectors to the mean and covariance matrices of the clean
speech pdf. The additive correction vectors, which model environmental effect are
in turn estimated by maximizing the likelihood of the noisy feature vectors. Finally,
given a noisy test feature vector, a MMSE estimate of clean speech is made using the
correction vectors learned during the training phase. Given a sequence of T noisy
MFCC vectors Y D Œy1; y2; : : : yT�, the log-likelihood is given by

L.Y / D log
TY

tD1

p.yt / D
TX

tD1

log
MX

j D1

wy.j /Ny.yt I �y.j /; ˙y.j //

D
TX

tD1

log
MX

j D1

wy.j /Ny.yt I �x.j / C rj ; ˙x.j / C Rj /

(4.4)



4.2 SFC Using Independent Probability Models 53

where rj and Rj are the correction vectors for the j th Gaussian component of the
clean speech pdf. The complete set of unknown bias vectors is iteratively estimated
by maximizing L using an EM algorithm. Details of the EM algorithm have been
outlined in Appendix A. The solutions obtained are given by the following equations

Orj D

TP
tD1

p.sy.j /jyt ; �/.yt � �x.j //

TP
tD1

p.sy.j /jyt ; �/

(4.5)

ORj D

TP
tD1

p.sy.j /jyt ; �/f.yt � �x.j / � Orj /.yt � �x.j / � Orj /T � ˙x.j /g
TP

tD1

p.sy.j /jyt ; �/

(4.6)

where p.sy.j /jyt ; �/ is the posterior probability of the latent noisy GMM com-
ponent sy.j / given yt , � D frj ; Rj g is the set of model parameters and T

denotes matrix transpose. It was studied by Moreno et al. [9] that in case of stereo
recordings, a one-one correspondence of the each Gaussian component of the noisy
speech GMM and clean speech GMM can be established. This is done by assuming
posterior invariance which states that the posterior probabilities of each GMM
component with respect to a clean vector and its noisy equivalent vector are equal.
This assumption, although less reliable in low SNR conditions suggest that each
Gaussian undergoes the same shift and negligible compression. It gives a convenient
approximation of p.sy.j /jyt ; �/ as follows

p.sy.j /jyt ; �/ D p.sy.j //p.yt jsy.j /; �/

MP
kD1

p.sy.k//p.yt jsy.k/; �/

D p.sx.j //p.xt jsx.j //

MP
kD1

p.sx.k//p.xt jsx.k//

D wx.j /Nx.xt I �x.j /; ˙x.j //

MP
j D1

wx.j /Nx.xt I �x.j /; ˙x.j //

(4.7)

Given the above relation, Eqs. (4.5) and (4.6) can now be approximated as

Orj D

TP
tD1

p.sx.j /jxt /.yt � xt /

TP
tD1

p.sx.j /jxt /

(4.8)
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ORj D

TP
tD1

p.sx.j /jxt /f.yt � xt � Orj /.yt � xt � Orj /T � ˙x.j /g
TP

tD1

p.sx.j /jxt /

(4.9)

Since the above equations do not have � in the right hand side, the solutions are
non-iterative. The environmental effects on clean speech x in MFCC domain are
modeled as additive linear correction vectors r.x/. The MMSE estimate for clean
speech Oxt given a noisy test vector yt is calculated by Eq. (4.1). The conditional
mean is solved using a numerical approximation as follows

Oxt D EŒxjyt � D yt �
MX

j D1

p.j jyt /rj (4.10)

4.2.2 Stereo Piece-Wise Linear Compensation for Environment
(SPLICE)

The effectiveness of the RATZ algorithm depends on the posterior invariance
assumption made in Eq. (4.7). However in low SNR conditions this assumption
becomes unrealistic since the Gaussian pdfs of noisy speech are compressed in
different amounts due to changes in its variance. As an alternative, the SPLICE
algorithm proposed in [10] models the noisy feature space as given by the following
equation

p.yt / D
MX

j D1

p.j /p.yt jj / (4.11)

where p.j / is the prior probability of the Gaussian component j mathematically
equivalent to the component weight wy.j / and p.yjj / is the multivariate Gaussian
Ny.yt I �y.j /; ˙y.j // as given in Eq. (4.3). A distinct advantage of SPLICE
compared to other model-based feature enhancement techniques like Spectral
Subtraction, is its consistent performance in non-stationary environments. Feature
compensation using SPLICE is based on a two simple assumptions. Firstly, a
clean MFCC vector xt generated by each discrete Gaussian component j can be
approximated in terms of its noisy counterpart yt . This is often termed as piece-
wise linear approximation. Secondly the conditional pdf of clean speech vectors
given the noisy speech vectors and Gaussian component j is also a multivariate
Gaussian distribution. The mean of the resultant distribution is assumed to shifted
by the corrective vector rj as follows

p.xjj; yt / D Ny.xI yt C rj ; �j / (4.12)
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Estimation of the parameters rj and �j are based on maximum likelihood
training similar to that of RATZ (Eq. 4.4) using an EM algorithm (outlined in
Appendix A). The solutions are given by

Orj D

TP
tD1

p.j jyt /.xt � yt /

TP
tD1

p.j jyt /

(4.13)

�j D

TP
tD1

p.j jyt /f.xt � yt /.xt � yt /
T � Orj OrT

j g
TP

tD1

p.j jyt /

(4.14)

where p.j jyt / is the posterior probability of component j given yt

p.j jyt / D p.j /p.yt jj /

MP
j D1

p.j /p.yt jj /

(4.15)

For stereo training data, the solution of Eqs. (4.13) and (4.14) are non-iterative. The
MMSE estimate for clean speech from the noisy speech pdf is then given by

Oxt D EŒxjyt � D yt C
MX

j D1

p.j jyt /rj (4.16)

The approximation of the mean of the conditional pdf in Eq. (4.12) using additive
terms rj is often considered to be a limitation of the SPLICE framework. An accu-
rate estimation of the conditional mean would require joint probability modeling
of the clean and noisy vectors followed by estimating MLLR-type transforms [11].
Despite these drawbacks, SPLICE is commonly applied for pre-processing feature
vectors in robust speech recognition tasks.

4.2.3 Multivariate Model Based Cepstral Normalization
(MMCN)

The previous techniques discussed so far either models the clean feature space (e.g.,
RATZ) or the noisy feature space (e.g., SPLICE) using GMMs. A corrective bias
vector for each GMM component is trained by weighing the difference between
clean and noisy feature vector pairs with normalized posterior probabilities. How-
ever, in realistic situations when there are multiple types of environment in the
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noisy space, estimates based on single GMM posteriors might be erroneous. The
Multi-Environment Model based LInear Normalization (MEMLIN) algorithm [12]
aims to enhance performance accuracy by modeling both noisy and clean spaces
in parallel. The noisy feature space is divided into several basic environments and
modeled with individual GMM.

pe.yt / D
MX

se
yD1

p.yt jse
y/p.se

y/ (4.17)

where se
y denotes the latent Gaussian component for the noisy GMM trained in

environment indexed by e, pe.yt jse
y/ and pe.s

e
y/ denote the Gaussian pdf for the

se
y th component and its prior probability, respectively as shown below

p.yt jsy/ D N .yt I �.se
y/; ˙.se

y// (4.18)

p.se
y/ D we

y (4.19)

The clean feature space is modeled by a single GMM and has a similar structure as
that of Eq. (4.2).

p.xt / D
MX

sxD1

p.xt jsx/p.sx/ (4.20)

The objective is to learn the difference between clean and noisy feature vectors
associated with a pair of Gaussians (one for a clean model, and the other one
for a noisy model), for each basic environment. The bias vector transformations
are computed independently for each basic environment. Alike SPLICE, MEMLIN
assumes that each clean feature vector xt is approximated by a linear function of
the noisy feature vector yt and an additive bias vector r.sx; se

y/. However unlike
SPLICE, the additive vectors are now a function of both clean and noisy GMM
components for a particular environment. The second assumption approximates the
conditional pdf of x given yt as a multivariate Gaussian with covariance matrix
˙.sx; se

y/ and mean given by a linear transformation of the environment-dependent
noisy vector, as follows

p.xjyt ; se
y; sx/ D N .xjyt �

X
e

p.ejyt /r.sx; se
y/; ˙.sx; se

y// (4.21)

where p.ejyt / and r.sx; se
y/ are the posterior probability of environment e given

yt and the additive bias vector, respectively. The estimation of these factors are
discussed briefly. The factor p.ejyt / is trained recursively as follows

p.ejyt / D ˇp.ejyt�1/ C .1 � ˇ/
pe.yt�1/P

e

pe.yt�1/
(4.22)
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where .0 � ˇ � 1/ is a constant and p.ejy0/ is uniform across all environments.
The r.sx; se

y/ factor is obtained by maximizing the likelihood of noisy feature vector
with respect to r.sx; se

y/, using the standard EM algorithm. Given the stereo training

data for environment e which comprises the noisy vectors Ye D fyte gTe
teD1 and clean

vectors Xe D fxte gTe
teD1, the complete data log-likelihood of Ye is given by the

following equation

L.Ye/ D
TeX

teD1

log
MX

se
yD1

p.se
y/Ny.yte I �.se

y/ C r.sx; se
y/; ˙.sx; se

y// (4.23)

Maximizing the above equation with respect to r.sx; se
y/ gives

r.sx; se
y/ D

TeP
teD1

p.sx jxte /p.se
y jyte /.yte � xte /

TeP
teD1

p.sx jxte /p.se
y jyte /

(4.24)

where p.sx jxte / the posterior probability of Gaussian sx with respect to clean vector
xt . Similarly p.se

y jyte / is the posterior probability of Gaussian se
y with respect

to noisy vector yt . These can be easily calculated using Eqs. (4.20) and (4.17),
respectively as follows

p.sx jxte / D p.xte jsx/p.sx/

MP
sxD1

p.xte jsx/p.sx/

(4.25)

p.se
y jyte / D p.yt jse

y/p.se
y/

MP
se
y D1

p.yt jse
y/p.se

y/

(4.26)

The resultant MMSE estimate Oxt is computed as a weighted sum of all of the basic
environment bias vector transformations.

Oxt D EŒxjyt � D yt �
X

e

MX
se
yD1

MX
sxD1

r.sx; se
y/p.ejyt /p.se

y jyt /p.sx jse
y ; yt ; e/

(4.27)

The above equation introduces a new factor p.sx jse
y; yt ; e/ known as cross prob-

ability model. It compensates for the mismatch that occurs when the Gaussian
component sx associated with clean vector xt is different from the Gaussian
component se

y associated with corresponding noisy vector yt . For simplicity the
time dependency with yt is omitted, and the resultant factor p.sx jse

y; e/ is estimated
using relative frequency of occurrence. It is calculated as the ratio of the number of
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times the most probable pair of decoded Gaussians are fsx; se
yg and the number of

times se
y is decoded singly. The resultant form is as follows

p.sx jse
y; e/ D

TeP
teD1

p.sx jxte /p.se
y jyte /p.sx/p.se

y/

TeP
teD1

MP
sxD1

p.sx jxte /p.se
y jyte /p.sx/p.se

y/

(4.28)

The single environment version of MEMLIN is often termed as Multivariate Model
based Cepstral Normalization (MMCN). It can be easily deduced that in case of
single environment, the variable e can be omitted which simplifies most of the above
equations. In such case the factor p.ejyt / can be entirely ignored. The scope of
the present work is restricted to the single-environment version of MEMLIN i.e.,
MMCN.

4.3 SFC Using Joint Probability Models

The only apparent drawback of the independent probability model based SFC
methods is the determination of the additive terms which may turn out be inaccurate
in degraded environmental conditions. Alternatively, joint probability modeling can
be used for feature compensation provided sufficient training data is available.

Figure 4.2 illustrates the independent probability model based SFC process. The
main steps of the process can be outlined as follows
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Fig. 4.2 Stochastic feature compensation using joint probability models
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1. The noisy and clean training vectors are concatenated to produce joint vectors (Z)
2. The joint vectors are modeled using a single GMM which represents the joint pdf
3. The conditional pdf is derived using parameters of the joint pdf.
4. Given a noisy test vector Y 0

t , a clean vector X 0
t is obtained based on MMSE or

maximum likelihood estimate (MLE).

Two standard joint probability model based SFC methods are discussed in the
following sections

4.3.1 Stereo-Based Stochastic Mapping (SSM)

The main idea of the SSM algorithm [13] is to estimate the joint probability distribu-
tion of noisy and clean feature spaces instead of modeling them independently. This
eliminates the need for training the hypothesized additive bias term ‘r’ for each
GMM component as employed by previous methods like SPLICE or MEMLIN.
Unlike previous methods, concatenated pair of noisy and clean feature vectors are
used as training data for GMM building. The desired transformation parameters
are derived from the joint probability model (GMM) during the training phase. The
improvement in performance accuracy is associated with a demand of larger amount
of training data for estimating the model parameters in a higher dimensional space.
The clean speech estimated during evaluation phase ( Ox), can be derived iteratively
using MAP estimation or non-iteratively using the MMSE criterion. The scope of
the present discussion is restricted to the MMSE version of the SSM for the ease
of comparison with earlier methods. The details of the algorithm is described in the
remaining part of this subsection.

As usual let’s consider a pair of d dimensional clean and noisy feature vector
xt and yt , respectively. A joint vector zt of dimension 2d is constructed as zt D
ŒyT

t ; xT
t �T . The joint vectors are modeled using a GMM �.z/ as follows

p.zt / D
MX

j D1

wz.j /N .zt I �z.j /; ˙z.j // (4.29)

where

�z.j / D
�
�y.j /

�x.j /

�
; ˙z.j / D

�
˙yy.j / ˙yx.j /

˙xy.j / ˙xx.j /

�
(4.30)

This model is similar to those defined in Eqs. (4.2) and (4.3). The mean vector �z.j /

for component j is now a concatenation of individual mean vectors �y.j / and
�x.j /. The composition of the covariance matrix ˙z.j / can be similarly related.
˙yy.j / and ˙xx.j / are the covariance matrices for the j th component of the noisy
and clean GMMs, respectively. Apart from these, ˙yx.j / and ˙xy.j / denote the
cross-covariance matrices of y and x for the j th GMM component. The GMM is
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trained with the standard EM algorithm using the joint vectors z. The training stage
essentially comprises deriving the model parameters by partitioning the matrices
�z.j / and ˙z.j / as shown above. During the evaluation stage, the partitioned
parameters are used to formulate the conditional pdf p.xt jyt/ required for the
MMSE-based prediction of Oxt as defined in Eq. (4.1). Unlike previous methods,
mathematical derivations show that without any approximations the conditional
pdf is another GMM where the mixture weights are posterior probabilities of each
Gaussian component with respect to y [14].

p.xt jyt ; �.z// D
MX

j D1

p.j jyt ; �.Z//p.xt jyt ; j; �.z// (4.31)

where

p.j jyt ; �.z// D wy.j /N .yt I �y.j /; ˙yy.j //

MP
j D1

wy.j /N .yt I �y.j /; ˙yy.j //

(4.32)

p.xt jyt ; j; �.Z// D N .xt I Ex.j; t/; Dx.j // (4.33)

The mean vector Ex.j; t/ and covariance matrix Dx.j / of the j th Gaussian in the
conditional pdf are defined as

Ex.j; t/ D �x.j / C ˙xy.j /˙yy.j /�1.yt � �y.j // (4.34)

Dx.j / D ˙xx.j / � ˙xy.j /˙yy.j /�1˙yx.j / (4.35)

Given a noisy test vector yt , its equivalent clean estimate bxt can be then derived by
the MMSE predictor as follows

bxt D EŒxt jyt �

D
Z

X

xt p.xt jyt ; �.z//dxt

D
Z

X

MX
j D1

xt p.j jyt ; �.Z//p.xt jyt ; j; �.z//dxt

D
MX

j D1

p.j jyt ; �.Z//Ex.j; t/ (4.36)

The principle of SSM is similar to SPLICE except for the joint probability
distribution of noisy and clean feature spaces. In fact SPLICE with MMSE predictor
reduces to its SSM counterpart if the cross-correlation of clean and noisy data is
taken into account. SSM bears close resemblance to other model-based non-linear



4.3 SFC Using Joint Probability Models 61

transformation methods like Constrained MLLR [15]. However the difference lies in
the fact that the transformations in SSM are learned offline during the training phase
while those in case of CMLLR, are done online during evaluation. A comparative
study of SSM and other contemporary feature compensation methods can be found
in [13].

4.3.2 Trajectory-Based Stochastic Mapping (TRAJMAP)

The MMSE estimator of SSM as discussed in Sect. 4.3.1 is a mixture of linear
transforms weighted by the posterior probability of each GMM component. The
parameters for the linear transform are derived from the joint distribution of
both spaces. The approach is similar to any conventional GMM-based mapping
techniques which has diverse applications [16]. However, a distinct drawback of
such frame-wise mapping frameworks is that they fail to capture the correlation of
features in the entire sequence. This results in inappropriate dynamic characteristics
and an excessively smoothed spectra. The cepstral trajectory based GMM mapping
(TRAJMAP) algorithm [17, 18] addressed this drawback by applying a Hidden
Markov Model (HMM)-based parameter generation algorithm [19] with dynamic
features, to the GMM-based mapping framework. Instead of individual frame-
wise mapping, an entire sequence of frames (cepstral trajectory) is transformed in
parallel. This approach had shown promising results for both noise-compensation
[18] and voice conversion applications [17], in past. A fundamental assumption
of the TRAJMAP algorithm is that despite noise corruption underlying spectral
properties of a speaker remain preserved. The algorithm is used to learn a mapping
function from a sequence of vectors in a speaker’s noisy utterance to the correspond-
ing sequence of clean vectors in the stereo training data. Mathematical details of the
TRAJMAP transformation framework [17] is discussed in the remaining part of the
section.

The cepstral vector trajectory is represented by a sequence of clean MFCC
vectors X and noisy MFCC vectors Y where X and Y together constitute the stereo
training data.

X D ŒXT
1 ; XT

2 ; : : : XT
T �T (4.37)

Y D ŒY T
1 ; Y T

2 ; : : : Y T
T �T (4.38)

where T denotes the total number of vectors in the sequence. Individual vectors of
each sequence are a concatenation of the static MFCC, its delta and acceleration
coefficients. Each vector in the above sequence are 3d dimensional considering
static MFCC vectors of d dimension,

Xt D ŒxT
t ; �xT

t ; �2xT
t �T (4.39)

Yt D ŒyT
1 ; �yT

t ; �2yT
t �T (4.40)
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The GMM �.Z/ of the joint pdf p.Zt j�.Z// is trained by a concatenated pair of clean
and noisy vector (Zt ) from the stereo training data where Zt D ŒY T

t ; XT
t �T . The aim

to map the noisy MFCC trajectory Y to its clean counterpart X. This is achieved by
maximizing the following likelihood function

p.XjY; �.Z// D
X

j

p.jjY; �.Z//p.XjY; j; �.Z//

D
TY

tD1

MX
j D1

p.j jYt ; �.Z//p.Xt jYt ; j; �.Z// (4.41)

where j D fj1; j2 : : : jTg is a mixture component sequence. The conditional pdf at
each frame is modeled as a GMM. At frame t , the j th mixture component weight
p.j jYt ; �.Z// and the j th conditional probability distribution p.Xt jYt ; j; �.Z// are
given by the following expressions

p.j jYt ; �.Z// D wY
j N .Yt I �Y

j ; ˙Y Y
j /PM

j D1 wY
j N .Yt I �Y

j ; ˙Y Y
j /

(4.42)

p.Xt jYt ; j; �.Z// D N .Xt I EX
j;t ; DX

j / (4.43)

where

EX
j;t D �X

j C ˙XY
j .˙Y Y

j /�1.Yt � �Y
j / (4.44)

DX
j D ˙XX

j � ˙XY
j .˙Y Y

j /�1˙YX
j (4.45)

The notations for conditional mean and conditional covariance used in Eqs. (4.44)
and (4.45) are similar to the ones discussed earlier in Sect. 4.3.1.

The task is to estimate a sequence of clean vectors OX from the entire sequence
of noisy feature vectors Y. This is achieved in two stages. In the first stage, a
HMM-based parameter generation algorithm [19] is used to convert Y to the static
MFCC parameters Ox. In the next stage, the delta and acceleration coefficients are
derived from each static MFCC vector of Ox and concatenated with itself to obtain
the resultant sequence OX . In contrast to the MMSE-based methods, the derivation
of Ox is based on a maximum likelihood estimate (MLE) as follows

Ox D arg max
x

p.XjY; �.Z// (4.46)

where Ox D Œ OxT
1 ; OxT

2 ; : : : ; OxT
T � is the sequence of estimated static feature vectors. A

matrix W of dimension 3dT�dT is defined such that it converts the static sequence
Ox to the expanded sequence OX as follows

OX D W Ox (4.47)
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where OX is the sequence of denoised MFCC vectors with dynamic (delta and
acceleration) co-efficients as defined in Eqs. (4.38) and (4.40). The composition of
the matrix W is discussed as follows

W D ŒW1; W2; : : : Wt ; : : : WT�T ˝ IDXD (4.48)

Wt D Œw.0/
t ; w.1/

t ; w.2/
t � t D 1; 2; : : : T (4.49)

w.n/
t D Œ

1st
0 ; : : : ; 0;

.t � L.n/� /th

w.n/.�L.n/� /; : : : ;

.t C L
.n/
C /th

w.n/.L
.n/
C / ; : : : ;

.t/th

w.n/.0/; : : : ;
T-th

0 �T n D 0; 1; 2

(4.50)

In Eq. (4.48), each submatrix Wt is of size T � 3 and ‘˝’ denotes the Kronecker
product. In Eq. (4.50), w.n/.�/ denotes the weights required for calculating the
�n MFCC coefficient for the .t C �/th time frame. � varies in a frame span
of Œ�L.n/� ; L

.n/
C � as shown in the following equations (L.0/

C D L.0/� D 0 and
w.0/.0/ D 1)

�xt D
L

.1/

CX
�D�L

.1/
�

w.1/.�/xtC� (4.51)

�2xt D
L

.2/

CX
�D�L

.2/
�

w.2/.�/xtC� (4.52)

The maximum likelihood estimate in Eq. (4.46) is solved by an EM algorithm
which iteratively maximizes an auxillary function with respect to Ox as follows

Q.X; OX/ D
X

j

p.jjY; X; �.Z// log.p. OX; jjY; �.Z/// (4.53)

The sequence of vector Ox obtained as a solution of Eq. (4.53) is given by

Ox D .WT .DX/�1W/�1WT .DX/�1EX (4.54)

where

.DX/�1 D diagŒ.DX
1 /�1; .DX

2 /�1; : : : ; .DX
t /�1; : : : ; .DX

T /�1� (4.55)

.DX/�1EX D Œ.DX
1 /�1EX

1

T
; .DX

2 /�1EX
2

T
; : : : ; .DX

t /�1EX
t

T
; : : : ; .DX

T /�1EX
T

T
�T

(4.56)
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.DX/�1 in Eq. (4.55) is a block diagonal matrix of size 3dT � 3dT while
.DX/�1EX in Eq. (4.56) is a vector of size 3dT � 1. The individual constituents
of the matrices i.e., .DX

t /�1 and .DX
t /�1EX

t are given by

.DX
t /�1 D

MX
j D1

�j;t .D
X
j /�1 (4.57)

.DX
t /�1EX

t D
MX

j D1

�j;t .D
X
j /�1EX

j;t (4.58)

�j;t D p.j jYt ; Xt ; �.Z// (4.59)

Detailed derivation of Eq. (4.54) is provided in Appendix A. The solution Ox is only
a sequence of static MFCC vectors i.e., a vector of size dT � 1. The full sequence
with delta and acceleration coefficients appended with the resultant vector can be
obtained by a simple linear operation W Ox.

4.4 Development of Proposed SV Systems

All experiments are carried out in the NIST-2003-SRE database [20] introduced
in Chap. 3. The data consists of single training utterances of approximately 2 min
length from each of 356 enrolled speakers and 3,500 test utterances (approximately
10–15 s each) for evaluation. The purpose of present work is to address the issue
of speaker verification in mismatched condition where a speaker enrolls in a clean
environment whereas during verification his/her speech is corrupted by background
noise. However stereo-data based techniques as described in Sect. 4.1 require
simultaneous recording of a speaker’s training data over two channels i.e., one
in clean condition and the other in a noisy environment. Due to unavailability
of such data, the noisy utterances used in the present work were simulated by
corrupting the clean speech utterances of the NIST-SRE-2003 by different types
of additive noises. The approach is motivated by synthetic generation of stereo-data
as described in [21]. The standard GMM-UBM framework was used for speaker
verification [22]. Figure 4.3 shows the block diagram of the feature compensation
process in a GMM-UBM based speaker verification system. The various stages of
the SV system development are discussed in the following sections.

4.4.1 Simulation of Background Environment

Four additive noises (i.e., car, factory, pink and white) collected from the NOISEX-
92 database [23] were used for representing unique background environments. The
speech segment from each of the 356 enrolled speakers was degraded by adding a
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specific type of noise at 0 and 5 dB SNRs, respectively. The noise level was scaled to
maintain the desired SNRs of the reconstructed speech segments. Eight different sets
of noisy training utterances were obtained (one for each noise at a particular SNR).
The default training set of the NIST-SRE-2003 was used as the clean recordings.

All test utterances were similarly reconstructed by noise addition at the two
SNRs. Each set of noisy utterances were used for the following sets of experi-
ments.

1. Mismatched Condition: The noisy test utterances were evaluated against speaker
models built from clean training data.

2. Matched Condition: The noisy test utterances were evaluated against speaker
models built from noisy training data.

3. Feature compensated: The noisy test utterances were subjected to feature
enhancement prior to evaluation against clean speaker models. Each of the
four feature compensation techniques discussed in Sect. 4.1 were compared
with the above two conditions and the proposed method, on the basis of their
performance.

The simulated stereo training data was used for front-end GMM training as
discussed later in Sect. 4.4.3. For comparing relative improvements in performance
accuracy produced by the various feature compensation schemes, the SV systems
under mismatched conditions have been considered as a baseline.
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4.4.2 Feature Extraction and Speaker Modeling

The feature extraction and speaker modeling process are identical to that used in the
GMM-UBM framework described in Chap. 3. Standard MFCC coefficients were
used as features. After pre-emphasis and an energy-based voiced activity detection,
39-dimensional feature vectors (consisting of 13 MFCCs C � C �� excluding
C0) derived from a 26 channel mel-scaled filterbank, were extracted from speech
frames of 20 ms with a frame-overlap of 10 ms. All feature vectors were subjected to
cepstral mean subtraction followed by cepstral variance normalization. The resultant
distribution was scaled to zero mean and unit variance. In the remaining part of the
chapter, the MFCC feature vectors extracted from the noisy training data and its
clean counterpart are referred as ‘noisy vectors’ and ‘clean vectors’, respectively.

Acoustic modeling using the standard GMM-UBM framework was performed
in two stages i.e., construction of a Universal Background Model (UBM) and the
target speaker models. Twenty hours of speech collected from the SwitchBoard II
corpus was used to construct a 1,024-component GMM offline using 200 iterations
of the EM algorithm. The target speaker models (GMMs) were derived by MAP
adaptation of the UBM using each enrolled speaker’s training data. The process was
repeated twice, once each for the clean and noise-degraded speech of the stereo
training data. The clean speaker models were used for evaluation in the mismatched
condition as well as the feature compensated conditions.

4.4.3 Feature Compensation

The two basic stages of the feature compensation process are discussed below.

• Front-end GMM Training: The stereo training data corresponding to each
speaker was used for building speaker-specific front-end GMMs prior to feature
enhancement. For RATZ, SPLICE and MMCN, a pair of 8-component GMMs
(clean and noisy) with diagonal covariance matrices were constructed for each
speaker using the standard EM algorithm.

For SSM and TRAJMAP, individual pairs of noisy and clean MFCC vectors
in the aligned sequence were first concatenated to create a single sequence of
78-dimensional MFCC vectors. The joint vectors were used to build speaker
specific 8-component GMMs with full covariance matrices. The number of com-
ponents for the GMMs were empirically determined according to the available
training data. However in practical applications without training data constraints,
higher number of components can be explored. The conditional GMM parame-
ters required for SSM and TRAJMAP were derived using Eqs. (4.34), (4.35) and
(4.44), (4.45), respectively.

• Feature Enhancement: Each noisy test feature vector was transformed using
the front-end GMM parameters of each of the 11 target speaker models specified
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for the evaluation phase of the NIST-2003 primary task. In contrast to the actual
evaluation process, each of the 11 transformed vectors were scored against the
corresponding speaker model and the UBM.

The corrective bias vectors of the mean and covariance terms for RATZ were
estimated using Eqs. (4.8) and (4.9), non-iteratively. This was followed by the
MMSE predicted value given by Eq. (4.10). Only the noisy front-end GMMs
trained as in Eq. (4.3) were used to estimate the bias vectors for SPLICE as
given by Eqs. (4.13) and (4.14). This was followed by the MMSE estimate
given by Eq. (4.16). The simplified single environment version of MEMLIN i.e.,
MMCN was used for feature enhancement. The posterior probability factor for
each environment given by Eq. (4.22) could thus be entirely omitted. The cross
probability model (Eq. 4.28) and the MMSE predictor (Eq. 4.27) were likewise
simplified. MMSE estimates for SSM and the MLE estimate for TRAJMAP were
calculated using Eqs. (4.36) and (4.54), respectively. The static MFCCs obtained
from TRAJMAP were concatenated with the delta and acceleration coefficients
to yield the resultant 39-dimensional vector.

4.4.4 Effect of Feature Compensation in Cepstral Domain

Effectiveness of the stochastic feature compensation methods is demonstrated by a
set of plots which highlight some characteristics of the transformed and distorted
MFCC features. Since the lower order MFCC coefficients represent the broad
spectral shape, the first MFCC coefficient has been considered without loss of
generality for demonstrating the impact of feature compensation. Figure 4.4a shows
the histogram of the first MFCC coefficients of an arbitrary test speech utterance
from the NIST-2003-SRE and its equivalent noisy signal obtained by white noise
addition at 0 dB SNR. Figure 4.4b–f shows the effect of enhancing the noisy utter-
ance by applying various feature compensation algorithms. Since the feature vectors
were mean and variance normalized, both the distributions are centered around
zero. However the area under the overlapping region of the curves is a measure
of accuracy in the conversion process. A fully overlapped curve would suggest the
ideal situation of perfect conversion. The distortion caused by noise statistics can be
observed in Fig. 4.4a in which the peak of noisy distribution is significantly skewed
towards the left. The skewness shows a gradual reduction after the application
of feature compensation algorithms. The shape of the transformed (compensated)
distributions is similarly affected by noise addition. The simple noisy distribution
shows arbitrary changes in the spectral shape as seen in several regions of the curve.
The change in spectral shape is negligible in case of RATZ with minor differences at
the peak region. The change in the noisy distribution shows more prominence in case
of SPLICE and MMCN. A spectral smoothening effect can be observed at the peak
regions for the SPLICE and MMCN-compensated distributions, respectively with
slightly more overlap in case of the former. The SSM and TRAJMAP compensated
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Fig. 4.4 Histograms of the first MFCC coefficient of a clean test speech signal (red) and the same
signal contaminated with white noise at 0 dB (blue) (a) without feature compensation and with
feature compensation using (b) RATZ (c) SPLICE (d) MMCN (e) SSM and (f) TRAJMAP

distributions shows comparatively higher resemblances with the clean distribution.
The significant increase in the overlapping area of the histograms is apparent. The
changes are also reflected on the spectral shape which shows that the transformed
distribution captures minute similarities at the peak region.



4.4 Development of Proposed SV Systems 69

a b

c d

e f

4

3

2

1

0

-1

-2

-3

-4-4 -3 -2
First MFCC coefficient of clean speech signal

First MFCC coefficient of clean speech signal

First MFCC coefficient of clean speech signal First MFCC coefficient of clean speech signal

First MFCC coefficient of clean speech signal

First MFCC coefficient of clean speech signal

F
ir

st
 M

F
C

C
 c

o
ef

fi
ci

en
t 

o
f 

n
o

is
y 

sp
ee

ch
 s

ig
n

al
F

ir
st

 M
F

C
C

 c
o

ef
fi

ci
en

t 
o

f 
n

o
is

y 
sp

ee
ch

 s
ig

n
al

F
ir

st
 M

F
C

C
 c

o
ef

fi
ci

en
t 

o
f 

n
o

is
y 

sp
ee

ch
 s

ig
n

al

F
ir

st
 M

F
C

C
 c

o
ef

fi
ci

en
t 

o
f 

n
o

is
y 

sp
ee

ch
 s

ig
n

al
F

ir
st

 M
F

C
C

 c
o

ef
fi

ci
en

t 
o

f 
n

o
is

y 
sp

ee
ch

 s
ig

n
al

F
ir

st
 M

F
C

C
 c

o
ef

fi
ci

en
t 

o
f 

n
o

is
y 

sp
ee

ch
 s

ig
n

al

-1 0 1 2 3

4

3

2

1

0

-1

-2

-3

-4
-4 -3 -2 -1 0 1 2 3

4

3

2

1

0

-1

-2

-3

-4
-4 -3 -2 -1 0 1 2 3

4

3

2

1

0

-1

-2

-3

-4
-4 -3 -2 -1 0 1 2 3

4

3

2

1

0

-1

-2

-3

-4
-4 -3 -2 -1 0 1 2 3

4

3

2

1

0

-1

-2

-3

-4
-4 -3 -2 -1 0 1 2 3

Fig. 4.5 Scatterplots between the first MFCC coefficient of non-silence frames of a clean test
speech signal (x-axis) and the same signal contaminated with white noise at 0 dB (y-axis) (a)
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colored red

Figure 4.5a–f shows the scatter plots between the first MFCC coefficients (C1)
of the given test utterance (x-axis) and its white noise corrupted equivalent (y-axis).
The C1s extracted from non-silence frames of the test utterance are represented
by blue circles. The black line represents the ideal condition of perfect feature
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transformation (x D y). The red line is a first order polynomial of the clean
feature vectors which best fits the noisy feature vectors in a least square sense.
The imperfections in the transformation process can be inferred from the deviation
between the two lines in a figure. The distortion of the cepstral distribution due
to the addition of white noise is apparent from Fig. 4.5a in which the two lines
are significantly deviated from each other. The spread of the data (blue dots)
across the black line is a measure of the covariance of the clean and noisy data.
Significant changes in the scatter plots can be observed after the application of the
feature compensation algorithms. The increased covariance of data is noticed in
case of SPLICE and MMCN where the deviation between the red and black lines is
relatively lower compared to RATZ. SSM and TRAJMAP shows the best fit in terms
of covariance of the given data with the latter showing marginal improvements over
the former. Despite outliers most of the data points are considerably aligned along
the line of best fit with very little noticeable deviation.

4.4.5 Performance Evaluation

All experiments were performed in mismatched, matched and compensated condi-
tions each of which has been discussed in Sect. 4.4.1. The NIST-2003 primary task
was carried out in which each noisy test utterance was evaluated against 11 target
speaker models (GMMs). The equal error rate (EER) and minimum DCF (MinDCF)
values were used as metrics for performance evaluation.

Figures 4.6 and 4.7 show the DET curves of the SV systems in various conditions,
with background noise at 0 and 5 dB SNRs, respectively. The summary of the
performance of SV systems in different noisy background is shown in Table 4.1.
A quick observation reveals a general order of precedence of the SV performance
accuracy in terms of EER values i.e., mismatched, RATZ, matched, MMCN,
SPLICE, SSM and TRAJMAP. The pattern is also valid for the MinDCF values
except for the fact that they often do not show a monotonic decrement across the
various methods. The only exception to this order is seen in case of car noise at 0 and
5 dB SNRs. The mismatched condition expectedly shows the worst case scenario
in every noisy environments with an average EER of 29.93% across all of them
for both SNRs. This is in conformity with the known fact that noise degradation
causes arbitrary changes in the clean feature distributions due to which noisy test
utterances yield poor scores during the pattern matching stage. The performance
of the RATZ compensation scheme shows minor improvement over the baseline
(mismatch) with an average decrement of 3.07 % EER. Interestingly, the matched
condition in most cases outperform RATZ. A possible explanation to this behavior
is the invalidity of the posterior invariance assumption in low SNR conditions as
discussed in Sect. 4.2.1. The effect of feature normalization using posterior proba-
bility of the noisy MFCC vectors with respect to clean Gaussian components has
other interesting implications. As discussed in Sect. 4.2.3, the MEMLIN algorithm
(multienvironment version of MMCN), uses both noisy and clean GMMs as inputs,
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Fig. 4.6 DET plots for the SV systems developed using the features derived from SFC methods
in uniform background environment containing (a) car noise (b) factory noise (c) pink noise and
(d) white noise at 0 dB SNR

thus incorporating both types of posterior probabilities in the final transformation.
However, contrary to known facts, the SPLICE algorithm performs moderately
better than the MMCN algorithm with an average improvement of 1.62 % EER for
factory, pink and white background environments. The improvement is consistent
in case of MinDCF values and more pronounced in case of factory, pink and
white noises. There are two possible justifications to this phenomenon. Firstly, the
inclusion of the inaccurate clean Gaussian posteriors in estimating the corrective
vectors and secondly, an oversimplified cross probability model which excludes the
environment factor ‘e’ from the final transformations, as discussed in Sect. 4.2.3.
It is interesting to note that this effect is in conformity with the anomalous behavior
of the SV performances observed in case of car noise. Unlike the other background
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Fig. 4.7 DET plots for the SV systems developed using the features derived from SFC methods
in uniform background environment containing (a) car noise (b) factory noise (c) pink noise and
(d) white noise at 5 dB SNR

noises, in case of car environment, it is observed that the performance in mismatched
condition is only slightly worse than that of the matched one with an average drop
of 2.67 % EER across both SNRs. In this case, the positive effect of clean Gaussian
components in normalization, is also reflected by the considerable improved SV
performances of RATZ and MMCN in comparison to the matched condition and
SPLICE, respectively.

The SSM and TRAJMAP shows a significant improvement in performance
compared to the other algorithms with a large margin of difference in terms of EER
and MinDCF. In comparison to SPLICE, an average EER reduction as high as 9.37
and 10.32 % is obtained for SSM and TRAJMAP, respectively. The improvement is
consistent even in the case of the anomalous car noise in which TRAJMAP is seen
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Table 4.2 Relative equal error rates of the proposed SV systems developed using the
features derived from SFC methods

Feature
compensation
methods

Relative equal error rate (EERR) %

0 dB SNR 5 dB SNR

Car Factory Pink White Car Factory Pink White

RATZ 30.32 5.35 4.66 3.58 35.99 7.18 9.05 4.07
SPLICE 47.69 26.67 31.90 29.98 52.17 31.97 37.11 38.11
MMCN 51.63 19.09 27.33 25.91 55.80 29.13 33.73 32.44
SSM 63.07 70.05 68.55 68.76 66.11 65.12 63.87 67.48
TRAJMAP 63.74 77.73 72.30 71.63 66.16 70.39 70.12 69.32

to perform moderately better than the SSM algorithm. The MinDCF values which
varied in the range of 0.099–0.085 are reduced to the range 0.045–0.078. Compared
to SSM, an EER drop as high as 1.9% is noticed in case of pink noise at 5 dB SNR,
while the other cases closely follow by with reductions of 1.43% for factory noise at
5 dB, 1.31% for pink noise at 0 dB and 1.12% for white noise at 0 dB, respectively.
The EER variance for TRAJMAP from 0 to 5 dB SNRs is much lower than the rest
of the compared cases. This is an indication of the suitability of its application for
SV tasks which are robust to SNR changes.

In order to demonstrate the performance improvement of the feature compen-
sated SV framework over the baseline SV system in terms of EER, the ‘Relative
Equal Error Rate’ (EERR) given by EERR D .EERB �EERV /

EERB
� 100 % is calculated

where EERB and EERV are the equal error rates for the baseline and proposed SV
systems, respectively. Table 4.2 shows the relative EER values of the proposed SV
systems for different background environments.

The overall performance improvement gained by the use of feature compensation
algorithms is apparent. An average relative EER of 12.52 % for RATZ, 37.07 % for
SPLICE, 34.39 % for MMCN, 66.68 % for SSM and 69.67 % for TRAJMAP across
all noisy environments is obtained.

4.5 Summary

In this chapter we demonstrated the significance of stochastic feature compensation
methods for robust speaker verification in noisy environment. The effectiveness of
the these data-driven methods was demonstrated for speaker verification in different
simulated noisy environments. Recent state-of-the-art algorithms based on joint
GMM modeling of clean and noisy data (i.e., SSM, TRAJMAP) were found to
outperform well known algorithms like SPLICE and MMCN in terms of EER and
minDCF metrics of speaker verification. The overall best performance was observed
in case of the TRAJMAP method, which thereby suggests significance of dynamic
feature correlation and robustness of long-term utterances towards background
noise. Synthetic noisy data and clean utterances were used instead of actual stereo
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data in all experiments. For a better evaluation of the proposed method, actual stereo
data may be used in future work. Data from real life environments at various other
SNRs may be used instead of artificially constructed noisy data for a better insight
into the efficiency of the proposed method.
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