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Preface

Speaker verification (SV) is the process of validating the claimed identity of an
individual using his/her speech. State-of-the-art SV systems perform reasonably
well when the spoken utterances are ‘clean’, i.e., free from any sort of distor-
tions caused by external factors. However, the accuracy of such systems degrade
severely when speech signals are distorted due to the presence of environmen-
tal or background noise. Robustness towards environmental noise is crucial for
several SV applications, especially in hand-held devices where the background
environments are uncontrolled, time-varying and unpredictable. The strategies used
for handling background noise can be broadly categorized as (i) ‘compensation’
or ‘adaptation’ methods where features extracted in the test environment are de-
noised (compensated) to match with the training environment, or speaker model
parameters estimated in the training environment are altered (adapted) to reflect the
test environment, and (ii) developing speaker models or extracting features which
are relatively immune towards the effect of background noise, by design.

This book explores novel methods from each of the aforementioned categories
for robust SV in noisy background environments. A group of Gaussian mixture
model (GMM) based stochastic feature compensation methods is proposed for
SV in noisy environments. Alternatively, the robustness of GMM supervector-
based speaker modeling approaches is explored for SV in noisy environments.
A discriminative framework is used in which fixed-size vectors obtained by stacking
GMM means (i.e., supervectors) or by total variability modeling (i.e., i-vectors) are
in turn used for training speaker-specific support vector machines (SVMs). These
SVMs are evaluated in noisy test environments. Training an ensemble of robust
SVM classifiers using adaptive boosting is proposed for improving SV performance
in noisy environments.

This book is mainly intended for researchers working on robust speaker recogni-
tion technologies. This book is also useful for the young researchers, who want to
pursue research in speech processing with an emphasis on acoustic modeling and
feature compensation. Hence, this may be recommended as the text or reference
book for the postgraduate level advanced speech processing course. The book has
been organized as follows:
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vi Preface

Chapter 1 introduces the concept of speaker recognition (SR) and the various
stages involved in the SR process. The application of robustness required for SR
technologies has been emphasized. Chapter 2 provides a review of the diverse array
of methods employed for robust speaker/speech recognition. Chapter 3 discusses the
baseline SV systems developed using Gaussian mixture models. Chapter 4 explores
stochastic feature compensation methods for robust SV in noisy environments.
Chapter 5 explores robust speaker modeling methods for SV in noisy environments.
Chapter 6 provides a brief summary and conclusion of the book with directions
towards the scope for possible future work.

We would especially like to thank all professors of the School of Information
and Technology, IIT Kharagpur, for their moral encouragement and technical
discussions during the course of editing and organization of this book. Special
thanks to our colleagues at Indian Institute of Technology, Kharagpur, India, for
their cooperation to carry out the work. We are grateful to our parents and family
members for their constant support and encouragement. Finally, we thank all our
friends and well-wishers.

Kharagpur, India K. Sreenivasa Rao
Sourjya Sarkar
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Chapter 1
Introduction

Abstract This chapter introduces the concept of speaker recognition (SR) and
its applications. It emphasizes on explaining the requirement of developing SR
technologies that are robust towards background environments. The intermediate
sections provide broad overviews of various stages associated in developing a
SR system and different categories of SR. The later sections highlight the issues
addressed in the book and its contributions.

1.1 Introduction

Telecommunication networking has made a pervasive impact in the human society
in the last few decades. Much of our personal information today, is shared over
the Internet or exchanged through hand-held devices. This obviously drives the
demand for technology that secures human access to confidential data. Recent devel-
opments in the area of remote transactions such as telebanking, e-commerce, online
railway or airline reservations etc., have made individual authentication a crucial
factor. Traditional modes of security such as passwords and personal identification
numbers (credit/debit cards) are often vulnerable since they can be easily forgotten,
misplaced or stolen. A feasible alternative is the use of biometric authentication
i.e., identifying individuals by their physical traits, which are least susceptible to
physical misuse and impersonation. However, practical use of common biometric
techniques like iris, face and fingerprint recognition is constrained by factors like
close proximity/direct contact with individuals or requirement of costly sensors,
which thereby limits their application in remote operations.

Speaker recognition (SR) is the task of recognizing individuals using their
speech. As the most common mode of human communication, speech is readily
available, can be easily recorded by inexpensive devices and transmitted over
long-distance telecommunication channels. This is evident from the wide range of
voice communication applications available over the Internet e.g., Skype, Google
talk, Google voice search etc. As such, speaker recognition also provides an

K.S. Rao and S. Sarkar, Robust Speaker Recognition in Noisy Environments,
SpringerBriefs in Electrical and Computer Engineering,
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2 1 Introduction

attractive biometric alternative to its sophisticated counterparts. Speaker recognition
technologies are being readily deployed today in three major areas of applications
i.e., security, surveillance and forensics [1].

The key applications that demand biometric security based SR technology are
tele-commerce and forensics [1] where the objective is to automatically authenticate
speakers of interest using his/her conversation over a voice channel (telephone or
wireless phone). In forensics (e.g., criminal investigation), the speakers can be
considered non-cooperative as they do not specifically wish to be recognized. On the
other hand, in telephone-based services and access control, the users are considered
to be cooperative. With the ever increasing popularity in multimedia web-portals
(e.g., Facebook and Youtube), large repositories of archived spoken documents
such as TV broadcasts, teleconference meetings, and personal video clips can be
accessed through the Internet. Searching for topic of discussion, participant names
and genders from these multimedia documents would require automated technology
like speaker verification and recognition.

While the SR technologies promise an additional biometric layer of security
to protect the user, the practical implementation of such systems faces many
challenges. For example, a handheld-device based recognition system needs to be
robust to noisy environments, such as office, street or car environments, which are
subject to unpredictable and unknown sources of noise (e.g., abrupt interference,
sudden environmental change, etc.).

1.2 Speaker Recognition

Human beings can reliably recognize known voices by barely hearing a few seconds
of speech. The uniqueness of one’s voice can be attributed to both physical and
acquired characteristics of a person. Physical differences occur largely due to the
distinct shapes and sizes of the voice producing organs (e.g., vocal folds, vocal
tract, larynx, etc.) and partly due to the articulators (e.g., tongue, teeth, lip etc.).
Apart from these anatomical properties, individuals can also be distinguished by
their accent, vocabulary, speaking rate and other personal mannerisms that are
acquired over a period of time. State-of-the-art speaker recognition systems exploit
these properties in parallel to achieve high recognition accuracy [2, 3]. While
subjective tests have revealed that humans often show superior performance in
recognizing familiar [4] or disguised voices [5], machines outperform humans
when it comes to recognition on a large scale [6] especially for non-cooperative
speakers. Automatic speaker recognition (ASR) systems would ideally imitate the
human voice recognition process which in turn is dependent on a complex auditory
perception mechanism. Human beings are inherently capable of integrating a wide
range of knowledge sources in speech signals at various levels (e.g., acoustic,
articulatory, syntactic etc.). However, the exact nature of speech comprehension or
segregation of speaker information at the cognitive or neurobiological level is still
largely unknown. Thus, the general approach is to enumerate perceptual cues used
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by humans at various levels and estimate their patterns for later classification. The
broad stages of the ASR process are briefly outlined in the following paragraphs.

• Preprocessing: This stage corresponds to the acquisition of a speech signal for
the recognition process. The analog speech signal is digitized by sampling it at
a desired frequency. The digital speech is usually ‘pre-emphasized’ using a high
pass filter which emphasizes higher frequency components and compensates for
the human speech production mechanism which tends to attenuate them. For
several ASR tasks, a ‘voiced activity detection’ (VAD) stage is often used to
separate speech segments from a given audio signal. It is often challenging to
implement VAD that works consistently across various background environments
especially for short-duration utterances [2].

• Feature Extraction: This stage corresponds to the enumeration of knowledge
sources in a speech signal. The raw speech signal is reduced to a set of param-
eters in which speaker-discriminative properties are emphasized and redundant
information is suppressed. The vast numbers of features explored for ASR tasks
can be broadly categorized as spectral, source, prosodic and high-level features.
The first two categories, often collectively termed as ‘low-level’ features, convey
physiological information about the speaker (e.g., size of vocal folds, structure
of vocal tract etc.). The latter two categories comprise high-level features which
reflect acquired behavioral aspects of a speaker (e.g., temperament, accent,
vocabulary etc.). Selection of appropriate features for ASR is usually based
on certain criterion [7]. An ideal feature is expected to have high inter-speaker
variability, low intra-speaker variability, natural occurrence in speech, robustness
towards noise/channel-distortion, immunity towards a speaker’s health/mood
fluctuations and ease of extraction. Apart from these, the features should have
a compact representation to avoid requirement of a large amount of training data.
Though short-term spectral features (e.g., MFCC) [8] are often preferred for ASR
tasks due to their high accuracy and real-time extraction, they are susceptible to
noise degradation [9]. High-level features improve noise/channel-robustness at
the cost of a difficult extraction procedure and high amount of training data.
Feature selection is thus a tradeoff between speaker-discrimination, robustness
and practical application.

• Acoustic Speaker Modeling: In this stage various statistical modeling tech-
niques are employed to capture the distribution of features extracted from
individual speakers. The feature extraction and speaker modeling stage jointly
represent the training or enrollment phase of ASR in which speakers regis-
ter/enrol for the SR system. The goal of this stage is to build unique templates or
models for each enrolled speaker. Standard speaker modeling techniques can be
categorized in different ways. Depending on the nature of modeling the feature
distribution, they may be either parametric or non-parametric. Parametric mod-
els assume a fixed probability density of the feature distribution (e.g., Gaussian
Mixture Models (GMMs) [10, 11], Hidden Markov Models (HMMs) [12])
whereas non-parametric models use non-stochastic template-based modeling
(e.g., Vector Quantization (VQ) [13], Dynamic Time Warping [14]). On the
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basis of their training paradigm, speaker models are classified as generative and
discriminative. The generative models individually estimate feature distribution
within each speaker (class) (e.g., GMMs, HMMs, VQ) while discriminative
models are based on learning the differences between enrolled speakers (classes)
(e.g., Support Vector Machines (SVMs) [15], Neural Networks (NNs) [16]).
Recent research trends have also focussed on combining generative and discrim-
inative models for improved ASR tasks [15, 17, 18].

• Pattern Matching and Classification: In this stage an unknown (test) utterance
based on its statistical similarities with a known speaker model. The pattern
matching and classification stage is collectively termed as the testing/evaluation
phase in which the ASR system is evaluated on the basis of its classification
accuracy. Pattern matching is entirely dependent on the nature of the acoustic
speaker models. In case of stochastic generative models, matches are quantified
in the form of log-likelihood scores whereas for parametric ones they might be
simple distance metrics (e.g., Euclidean distance for VQ). For discriminative
models, scores may be based on the distance from the decision boundary of two
classes (speakers) (e.g., SVMs) or the difference between the actual and predicted
class (e.g., NNs). A decision is taken based on the scores obtained i.e., the test
utterance is classified as the speaker (model) producing the highest score.

1.3 Types of Speaker Recognition

Speaker Recognition can be broadly categorized into two types i.e., Speaker
Identification (SI) [10] and Speaker Verification (SV) [11].

1.3.1 Speaker Identification

Closed-set speaker identification (SI) is the task of detecting a unique speaker
responsible for producing a test utterance, out of a closed-set of enrolled speakers.
In case the test utterance doesn’t belong to any member of the closed-set, the task is
an ‘Open-set’ SI. Considering each speaker model as a class, the SI task is basically
a multi-class classification problem in which an unknown test utterance is assigned
to a particular class. Figure 1.1 shows the block-diagram of a SI system. The
training phase shows the estimation of acoustic models from individual speakers.
This is usually time-consuming and hence performed offline. The evaluation phase,
performed online requires fast identification of a known speaker. However, since the
unknown utterance has to be compared against all enrolled speaker models, increase
in the number of speakers in the set causes performance degradation (in terms of
both accuracy and computational burden).
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1.3.2 Speaker Verification

Speaker verification (SV) is the task of validating the claimed identity of a speaker.
It is a binary classification problem in which the claim is either accepted or rejected
based on the statistical similarities of a test utterance with the claimed speaker model
(true class) and a selected background/impostor model (false class). Figure 1.2
shows the block-diagram of a typical SV system. A number of differences can
be observed in contrast to SI. Firstly, a fixed pool of background speakers are
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required for offline training of the impostor model. The background speakers can
be used as negative examples for training a discriminative model [15] or used to
train a ‘Universal Background Model’ (UBM) [11] for GMM-based SV. In the
latter case the enrolled speaker models are obtained online by adapting the UBM
using a speaker’s training data. Secondly, the pattern matching stage in SV requires
comparison of the unknown utterance against a single claimed model and another
imposter model, which makes it much faster and unaffected by the number of speak-
ers enrolled for the SV system. The ratio of scores obtained against either model
is compared with a threshold for final decision. Furthermore, SV is able to reject
speech from arbitrary speakers (i.e., the open-set case) which is not true for speaker
identification. Applications of ASR involving surveillance and monitoring usually
require identification rather than verification. However, most online applications
and security based transactions (e.g., online reservation, telebanking) require an
individual to be verified rather than identified (i.e., authenticity of a claimed identity
is judged irrespective of the actual identity of the speaker).

Both the above types of ASR systems may further be ‘text-dependent’ [19]
or ‘text-independent’ [20]. In text-dependent systems (suitable for cooperative
users) [20], the recognition phrases are fixed, or known in advance. Such systems
additionally require a speech recognizer in the front-end causing more accurate
but costly applications. In text-independent systems, there are no constraints on
the words which the speakers are allowed to speak. Thus, the reference (what are
spoken in training) and the test (what are uttered in actual use) utterances may have
completely different content, and the recognition system must take this phonetic
mismatch into account. Text-independent speaker recognition is thus much more
challenging of the two tasks.

1.4 Challenging Issues in Speaker Recognition

A number of very common yet challenging issues concerning ASR, especially
speaker verification has been highlighted in this section.

• Mismatched training and test conditions: This refers to the family of problems
that arise primarily due to the differences (mismatch) in recording devices,
channel, background etc., during the enrollment and evaluation phase of ASR.
A typical example scenario is the development of recognition models using
enrollment data acquired over the Internet and acquiring the speech data via
a mobile phone during verification or testing. The medium of data acquisition
or transfer seemingly encodes new information into the speech signal which
largely affects the feature extraction, speaker modeling and pattern matching
stages. These problems, often collectively termed as ‘session variability’, has
been identified as one of the most challenging issue in the field of ASR and a
major source of verification errors [21,22]. The problem has been addressed over
the last few decades starting with primitive methods [6] and gradually advancing
into more recent techniques [21, 22].



1.5 Issue Addressed in Book 7

• Intra-Speaker Variability: While ‘mismatch’ occurs primarily due to
extraneous factors (e.g., recording devices, background etc.), it is not solely
restricted to them. Fluctuations in intrinsic/personal factors of a speaker (e.g.,
health, emotion, mood etc.) are also reflected across different sessions causing
poor recognition. For text-independent SV systems, lack of constraints in the
form of utterances spoken during training and evaluation may additionally lead
to a phonetic mismatch. In general text-independent systems are more affected
due to intra-speaker variability compared to text-dependent ones [23].

• Background Noise: Background noise is a prominent factor responsible for
the loss of performance accuracy in generalized speech-based recognition tasks.
Noise can be severely detrimental for ASR in both matched and mismatched
conditions, the latter usually being the worse case [24]. The problem of noise
or environmental degradation had been studied in past primarily in the context
of speech recognition [25, 26]. A number of techniques developed for ‘noise
suppression’ or ‘noise compensation’ since then, can be interchangeably applied
for speaker recognition tasks. The discussion on SV for background noise shall
be continued in Sect. 1.5 in more details.

• Limited Enrollment Data: The availability of data is a critical factor for
training acoustic speaker models. The generative speaker models which are most
commonly used for ASR, especially demand a high amount of training data.
Usually, the required amount of training data increases proportionally with the
dimension of the features extracted. This phenomenon is often termed as ‘curse
of dimensionality’ [27]. The problem of limited data arises particularly for real-
time ASR applications such as hand-held devices or in non-cooperative scenarios
where speakers purposely avoid enroling for longer durations. The problem is
usually tackled using statistical adaptation techniques where an already built
model is modified using the acquired data [11, 28, 29].

1.5 Issue Addressed in Book

The book addresses the issue of speaker verification in noisy background environ-
ment. Substantial number of studies have been previously carried out in the area
of robust speech recognition [25, 26]. Due to the advent of online transaction pro-
cessing and the large-scale deployment of ASR technologies in hand-held devices
in recent times, robustness for ASR systems has received a renewed interest [30].
In systems deployed for telephony applications the main form of degradation is
due to channel variabilities induced by the handset and/or microphone. However,
for speaker recognition carried out in far field applications environmental or
background distortions are also of concern. As an example we may consider the
typical scenario where a user enrolls for a SV system through his mobile phone
while walking on a busy street. During his next access to the SV system for
verification, he may be present in a secluded environment (e.g., car interior, room,
office etc.). Three facts can be observed. Firstly, the background keeps changing
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during enrollment where the user may even enter a totally unknown environment.
Secondly, the obvious environmental mismatch that occurs during verification.
Thirdly, there might even be a handset/channel mismatch if a different device is
used during testing. In fact, in most cases especially for mismatched conditions one
can expect a combined impact of both channel and background.

Background noise, in general considered additive in nature, primarily affects
the spectral properties of a signal. Handling noise distortions is a challenge due
to a number of reasons. Firstly, it is very difficult to quantify the effect of noise in
speech primarily due to its random nature. More specifically, a clean speech segment
exposed to a particular noisy environment in different intervals of time may yield
noisy signals with different spectral properties. Such problems increase manifold if
the noise is non-stationary i.e., its statistical properties change over time. Secondly,
addition of noise results in arbitrary distortion of the feature distribution causing
loss of discriminative information. This is indirectly reflected in each distinct stage
of the ASR process discussed in Sect. 1.2.

The present study shall emphasize on the impact of noise in the feature-
level and acoustic model-level, respectively. Noise-robustness obtained via the
aforementioned stages has two broad interpretations. Firstly, the features extracted
or the classifiers trained in the modeling stage may themselves be relatively immune
towards the effects of channel distortions or background noise, by design. Secondly,
the features and models used for generic recognition tasks in one environment
may be modified or ‘adapted’ in another environment, to suppress the effect of
mismatch. The former category comprises the group of robust features and robust
speaker models while the later category comprises the family of ‘compensation’ or
‘adaptation’ techniques.

Feature compensation techniques aim to transform the features extracted during
the evaluation phase such that they reflect the environmental conditions present
during the training phase. Figure 1.3 shows a simplified block diagram of the feature
compensation process. This is particularly applicable but not restricted to scenarios
where a person enrols in a clean environment but verifies himself in a noisy one.

Despite much research for developing robust features [9], feature compensation
techniques are often preferred due to the implementation costs associated with the
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former and the considerable performance improvement obtained in the latter [30].
A discussion about the various kinds of feature compensation techniques have been
provided in the next chapter.

Model compensation/adaptation techniques (shown in Fig. 1.4) alters the acous-
tic modeling and pattern matching stages in order to account for the interfering
noise. The model parameters learnt during the training phase are modified to reflect
the new/mismatched environment of the evaluation phase. The traditional model
compensation methods mostly rely on a priori knowledge about the test environment
to adapt clean speaker models. They may be either (i) ‘data-driven’ in which
available noisy adaptation data is used to alter pre-estimated speaker models or
(ii) ‘analytical’ in which a mathematical structure of noise corruption is used to
synthesize noisy speaker models from clean speaker models and noise models [30].
The ‘data-driven’ methods are usually more preferred for practical SV applications
due to their low data-requirements in comparison to the ‘analytical’ ones which
require high amount of training data. Though these methods perform significantly
well (often better than feature compensation techniques), prior knowledge of test
environment is sometimes considered as a major drawback for real-life scenarios.
Robust speaker modeling techniques are alternatively explored as a tradeoff between
accuracy and practical applications [24]. Detailed discussion about robust speaker
modeling and model compensation approaches have been provided in the next
chapter.
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1.6 Objective and Scope of Work

The book aims to study alternative methods for developing ASR systems that
are robust towards environmental noise. Specific focus is laid on text-independent
speaker verification (SV) rather than speaker identification, since the former has a
greater range of biometric applications especially in hand-held devices and online
transactions.

Amongst various available strategies, the present work explores data-driven
stochastic feature compensation (SFC) and robust speaker modeling methods. Two
distinct categories of SFC methods based on (i) independent probability models
and (ii) joint probability models, are explored. Amongst robust speaker modeling
methods, the significance of supervector-based approaches in a discriminative
framework for SV in noisy environment, is explored. Certain drawbacks concerning
the conventional speaker modeling framework are highlighted and addressed.
A boosting algorithm is proposed to combine robust discriminative classifiers for
enhanced SV in degraded environments. Significance of all the methods explored in
the present work is analyzed on the basis of their effectiveness and computational
costs.

1.7 Organization of the Book

• Chapter 1 provides a brief introduction to the concept of automatic speaker
recognition, its stages, categories and modern applications. A number of chal-
lenging issues in the field of ASR are highlighted. A brief discussion of the issue
addressed in the book is provided followed by the objective and scope of work.

• Chapter 2 provides an overview of various feature and model-based approaches
developed in past for robust speaker recognition. The advantages and disad-
vantages of some standard methods applied for robust SV tasks have been
highlighted.

• Chapter 3 discusses baseline SV systems developed using the GMM-UBM
framework in noisy environments. A feature mapping technique using multiple
background model framework has been explored for robust SV in time-varying
noisy environments.

• Chapter 4 explores the impact of standard stereo-based stochastic feature com-
pensation (SFC) methods for robust speaker verification in uniform noisy
environments. Integration of a SFC stage in the GMM-UBM framework is
proposed for SV evaluation under mismatched conditions.

• Chapter 5 explores robust speaker-modeling methods for SV in noisy environ-
ments. Specifically, the combined GMM-SVM and SVM-i vector approaches are
used for developing SV systems and evaluating them in matched conditions

• Chapter 6 provides a brief summary and conclusion of the Book.
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1.8 Contribution of the Book

The contribution of the book lies in exploring feature compensation and robust
speaker modeling methods, the impact of which have not been erstwhile studied
explicitly for speaker verification in noisy environments. The major contributions
can be broadly summarized under the following points

• A class of data-driven stochastic feature compensation methods has been
explored for robust speaker verification (SV) in noisy background environments.

• The robustness of some state-of-the-art speaker modeling methods (e.g., GMM
supervector, i-vector) in a discriminative framework using SVM classifiers, has
been explored for SV in noisy environments.

• A novel boosting algorithm is proposed for combining robust SVM classifiers for
improving SV performance.
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Chapter 2
Robust Speaker Verification: A Review

Abstract This chapter provides an overview of various feature and model-based
approaches developed in past for robust speaker recognition. The advantages and
disadvantages of some standard methods applied for robust speaker verification
tasks have been highlighted. The main focus is to summarily introduce popular
state-of-the-art techniques adopted for enhancing speaker verification performance
in noisy conditions.

This chapter provides a broad overview of research methods developed for robust
speaker recognition tasks in past. The focus is to summarily introduce popular state-
of-the-art techniques adopted for enhancing speaker verification performance in
noisy conditions, especially those within the current scope of work. The chapter
mainly emphasizes in the feature extraction and statistical modeling stages of
speaker recognition. The merits and de-merits of some of these techniques are
discussed in the purview of the book. It is to be noted that many of these methods
have primarily been applied for robust speech recognition in noisy environment.
Since some of the intermediate stages of speaker verification are similar to that of
speech recognition, they may be interchangeably used for the former. The readers
are encouraged to follow the references for detailed description of the methods
discussed especially notable reviews such as [1–4] or recent research works [5].
Concise overviews of methods adopted for feature compensation, feature extraction,
model compensation and robust speaker modeling are briefly presented in different
sections of this chapter. The role of each of these stages has been discussed in the
first chapter. The final section briefly describes the motivation of carrying out the
present research work.

K.S. Rao and S. Sarkar, Robust Speaker Recognition in Noisy Environments,
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2.1 Feature Compensation

Ever since parameterization of raw speech signal was first studied [6], the moti-
vation was to discover speaker-discriminative features for generalized recognition
tasks [7]. The significance of cepstral features [8], especially the mel-cepstrum
[9] for speaker recognition (SR) was established during the contemporary period.
However, there were practical limitations of the use of cepstral features due
to arbitrary modification of the cepstral distribution in the presence of channel
distortions or background noise. A series of feature compensation techniques were
proposed during the early 1990s as a refinement of the common feature extraction
process [10–12]. The motivation was to make real-life applications of SR or speech
recognition which countered channel-induced distortions and handset mismatches
over telephonic conversations [13]. The class of feature compensation methods
developed since then, may be broadly categorized into three groups i.e., filtering-
based compensation, noise model-based compensation and empirical compensation.
Apart from the conventional compensation techniques, there exists a group of
feature transformation methods which are often used in conjunction with the former.
In [14], neural network models are used as mapping functions for transforming
the emotion-specific features to emotion-independent features for developing robust
speaker recognition system.

The filtering techniques aim to denoise or suppress the effect of noise in the
extracted features. They exploit the fact that convolutive channel or environmental
distortions become additive in the log-spectral and cepstral domain. It was studied in
[15] that slow variations in the channel appear as an offset of individual co-efficients
of a cepstral vector. Cepstral Mean Subtraction (CMS) [15] suppresses the channel
effects by subtracting the mean of cepstral co-efficients extracted from short-term
frames, from the individual coefficients. The removal of the average spectrum
also suppress inter-session variabilities to certain extent [11]. Apart from simple
mean-removal as in CMS the variance of the cepstral vectors are often scaled to
unity. Relative Spectra (RASTA) [16], principally similar to CMS, was proposed
to compensate for rapidly varying channel conditions. Instead of uniform mean
subtraction over the entire cepstra, a moving average filter was employed for an
exponentially decaying mean subtraction. CMS and RASTA are commonly applied
for front-end compensation in SR tasks due to the simplicity of implementation.
A set of more sophisticated ‘kernel filtering’ methods [17] were later developed
which captured the non-linear features of speech by fitting a higher dimensional
mapping function and eventually projecting the features to a lower dimensional
manifold. However later studies had promptly revealed that these techniques are
not much effective for channel mismatches and additive background noise.

The model-based feature compensation methods assume a priori knowledge of
the noise spectrum. An estimate of the clean speech parameters is made using either
a noise model or representation of the effects of noise in speech. The primitive meth-
ods in this group include Spectral Equalization [18] and Spectral Subtraction (SS)
[19]. In SS, the clean speech spectra is estimated by subtracting the mean magnitude
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of an approximate noise spectra from that of the noisy speech spectra. These
methods relied on the stationary assumption of noise and independence of spectral
estimates across frequencies explicitly. To overcome this limitation, some of the
methods developed later were based on the minimum mean squared error (MMSE)
predictor [20] which modeled the correlation of frequency components e.g., MMSE
log spectral amplitude estimator [21]. During the early 1990s, stereo-data based
compensation techniques were first introduced [10]. Cepstral compensation vectors
were derived from a stereo database and applied to the training data to adapt
to environmental changes. The compensation could also be in the form of affine
transformations learned from stereo data [12]. Popular examples are Codeword
Dependent Cepstral Normalization (CDCN) [22] and its variants like Fast CDCN
(FCDCN) [10]. Other methods relied on a mathematical model of the environmental
mismatch due to noise. The parameters of the model were estimated and applied to
the appropriate inverse operation to compensate the test signal e.g., feature-level
Vector Taylor Series [23].

The third group of feature compensation techniques are entirely data-driven and
are stochastic in nature. They are ‘blind’ towards the nature of the corrupting
process and are based on empirical compensation methods that use direct spec-
tral comparison. Prior work shows that they often outperform the previous two
approaches for feature enhancement [24]. During the training phase, some trans-
formations are estimated by computing the frame-by-frame differences between
the vectors representing speech in the clean and noisy environments (stereo data).
The differences between clean and noisy feature vectors are modeled by training
additive bias vectors on the mean and covariance of either of the two (clean or
noisy) probability distributions. During evaluation phase, the bias vectors are used
to transform noisy test feature vectors to their clean feature equivalent based on the
MMSE predictor. Previous MMSE-based methods like CDCN [22] and FCDCN
[10], used vector quantization (VQ) codebooks to represent the distribution of
clean feature vectors. Due to their quantization-based framework, these algorithms
were unable to learn the variance of a distribution and were later replaced by the
more flexible Gaussian Mixture Model (GMM)-based normalization techniques
e.g., Multivariate Gaussian-based Cepstral Normalization (RATZ) [25]. Although
the RATZ family of algorithms approximated the normalized features, the posterior
probability of clean GMM components with respect to the noisy test feature
vectors were usually distorted, causing poor MMSE estimates. To suppress these
distortions, the Stereo-based Piecewise Linear CompEnsation for Environments
(SPLICE) algorithm proposed in [26] modeled the noisy feature space using GMMs
instead. This produced significantly better result in robust speech recognition
tasks compared to its predecessors [27]. The effectiveness of SPLICE framework
has since then encouraged its extended applications e.g., speech recognition in
non-stationary noisy environments within cars using the Multi Environment Model-
based Linear Normalization (MEMLIN) algorithm [28] and word recognition using
Noise Adaptive Training [27]. The more recently proposed Stereo-based Stochastic
Mapping (SSM) [29] is principally a more accurate version of SPLICE based on
joint probability modeling of the noisy and clean feature spaces using GMMs.
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2.2 Robust Feature Extraction

The conventional features used for SR tasks can be broadly categorized as spectral,
prosodic and high-level features. In this section we briefly discuss each.

Prosody is a collective term for certain aspects manifested in long term speech
segments e.g., stress, intonation pattern, rhythm etc. The most significant amongst
these is intonation which is characterized by the fundamental frequency con-
tour (Fo). Fo contour and energy (stress) were effectively used for speaker recogni-
tion in [30]. A few other significant applications of prosodic features for SR include
combination of energy trajectory with Fo [31] and construction of SVM speaker
models using pitch, duration and pause features [32]. In [33], temporal variations
in speaker-specific prosodic parameters are proposed in addition to conventional
spectral features for improving the speaker recognition accuracy in presence of
noisy background environments. A comparative study about the significance of the
various prosodic features for SR tasks can be found in [34]. Modeling the different
levels of prosodic information (instantaneous, long-term) for speaker discrimination
is considered to be a difficult task. At the same time, it is desired that the features
are free from the effects that a speaker can voluntarily control. Due to these
complications, prosodic features haven’t been much used for robust SR tasks.

High-level features exploit speaker’s choice of words or vocabulary for recog-
nizing them. The term ‘high-level’ refers to modeling speech utterances using the
sequence of ‘tokens’ present in them. The co-occurrence pattern in the tokens,
often termed as ‘idiolect’ [35], characterizes speaker differences. The tokens that
are commonly used for speaker recognition may be in the form of phones [36],
words [35], prosodic gestures [31, 34] or even articulatory movements [37]. Signif-
icant applications of these features for SR include [36, 38], where GMMs trained
using individual sets of extracted tokens are used in parallel for classification. Due
to their nature, high-level features can often be interchangebly used for speaker and
language recognition [39]. Other approaches share similarities with the common
prosodic features [31]. A study on the joint application of prosodic and high-level
features for robust SR tasks can be found in [40]. However, high-level features
are not a very attractive group to work with, due to the computational complexity
involved in recognizing tokens.

The most common features for generalized speech related tasks as well as
speaker recognition, are the family of spectral or spectro-temporal features. These
features are extracted from short overlapping frames (10–25 ms) which are pre-
emphasized and smoothed. Based on their interpretation they can be categorized
as temporal, spectral or spectro-temporal. Popular examples of cepstral features are
the Linear Prediction Cepstral Coefficient (LPCC) [8], Perceptual Linear Prediction
(PLP) [41] coefficients and Mel Frequency Cepstral Coefficient (MFCC) [9], etc.

LPCCs are based on the principle of correlation of a sample with its adjacent
ones. An instantaneous sample is approximated in terms of its neighborhood
samples weighted with a set of predictor coefficients. The error in estimation is
often termed as LP residual. The frequency domain equivalent of this representation
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is that of an all-pole filter with the same set of LP coefficients. The coefficients
are determined by minimizing the residual energy using the Levinson Durbin
algorithm [42]. The prediction coefficients instead of being used by themselves are
transformed into a set of robust, less correlated features like LPCCs, PLP [41], Line
Spectral Frequencies (LSF) [43], formant frequencies and bandwidth etc. [42].

The MFCCs [9] are the most successful and extensively used features for speaker
recognition. MFCCs were psychoacoustically motivated in the sense that they were
found to mimic the human auditory perception. MFCCs are extracted by a non-linear
filter-bank analysis of the Discrete Fourier Transform (DFT) magnitude spectrum
of short-term frames. The filterbank usually consist of a set of triangular band-pass
filters, which are spaced according to the ‘mel’ scale. The log-magnitude of the
filtered spectra is subjected to a Discrete Cosine Transform (DCT) for obtaining
the cepstral features. MFCCs have arguably shown the best results compared to
contemporary features like LPCC, PLP, LSF etc., in several prior works in SR using
clean speech [10–12, 44]. Thus they are considered to be the default features for
several speech related tasks including SR.

However the presence of background noise or channel effects inhibit the
performance of MFCCs significantly primarily due to the distortion in the feature
distribution [25]. The default use of MFCCs in most baseline SR systems necessi-
tated the development of feature compensation methods as discussed in Sect. 2.1.
However quite recently, researchers have focussed on alternative ways of modi-
fying the cepstral feature extraction process for resistance towards ambient noise.
Amongst several others, some notable features are Mean Hilbert Envelope Coef-
ficient (MHEC) [45], Power Normalized Cepstral Coefficient (PNCC) [46] and
Normalized Modulation Cepstral Coefficient (NMCC) [47]. Instead of modifying
the features for compensating the effect of noise, features can be extracted from
selective-regions of speech. Even in presence of noise also, glottal closure region
in each pitch cycle and steady vowel regions contain high signal to noise ratio,
and hence, features extracted from these regions are more robust compared to other
regions of speech. In [48–50], features extracted from above mentioned regions are
explored for robust speaker and language recognition tasks.

In MHEC extraction, the pre-emphasized speech is first decomposed into a
number of spectral subbands using a gammatone filter constrained in the telephonic
bandwidth of 300–3400 Hz. Unlike MFCC, the filters are uniformly spaced on
an equivalent rectangular bandwidth (ERB) scale. The temporal envelope (Hilbert
envelope) of each subband is estimated by using the Hilbert transform of the
subband signal followed by low-pass filtering. The smoothed envelope is then used
for deriving the required cepstral features. In PNCC extraction, the pre-emphasized
signal is analyzed using short overlapping frames. A short-time Fourier analysis
is performed over the Hamming windowed data, followed by frequency domain
filtering using a gammatone filterbank constrained in 133 and 4,000 Hz, where the
center frequencies of the gammatone bank are spaced equally in the ERB scale.
The NMCCs are similar to PNCC except that amplitude modulation (AM) signals
are estimated from the gammatone filtered sub-band signals using a Teager non-
linear energy operator. The resulting signal is power normalized followed by DCT
transform to obtain the cepstral features.



18 2 Robust Speaker Verification: A Review

2.3 Model Compensation

Though feature-level compensation techniques are often applied as a front-end
denoising process due to their low computational complexity and independence
of any recognition model, they have certain limitations. In most cases, the feature
compensation techniques produce point estimates of clean speech features. Due
to this, they are unable to capture the uncertainty of observations which is
represented as the variance of the conditional distribution of noisy speech given
clean speech [51]. An alternative is to alter the statistical parameters of the
acoustic model learned during the training phase to compensate for the channel or
environmental mismatch of the evaluation phase. Since the evolution of statistical
models for speech recognition, much research has been devoted in exploring model
compensation issues in parallel [52, 53].

The earlier methods focussed on rendering the speaker models ineffective
towards channel mismatches or handset variations [54]. In most cases, the mismatch
would be caused due to unseen channel data during the evaluation phase. Unlike
speech recognition tasks where multiple channel adaptation data could be obtained
by pooling all speaker data over individual channels, SR required speaker-specific
enrollment speech over multiple channels which could be later used for verification.
This was unfavourable for practical SR applications. Alternate methods would
cluster the data from a single conversation into multiple channel types to meet
data requirements. Synthetic variance distribution [55] used an auxillary database
of stereo recordings to artificially construct a global distribution of variances.
Transformations derived from this distribution were used to modify the variance of
individual speaker models. Speaker Model Synthesis (SMS) [56] learned speaker-
independent transformations between different channels and applied it to synthesize
speaker models under unseen enrollment conditions. The transformations were
learned in the form of mean shift, weight scaling and variance scaling of GMM
model parameters trained across various channel conditions.

In contrast to model-based channel compensation schemes, model-based envi-
ronment adaptation methods developed during the contemporary period, modify
speaker model parameters to reflect the acoustic environment of the evaluation
phase. Two most popular data-driven environmental adaptation techniques initially
proposed for robust speech recognition are Maximum aPosteriori (MAP)[57] and
Maximum Likelihood Linear Regression (MLLR) [58]. The successful application
of GMMs in the field of speaker recognition [59] has since then encouraged
their usage in robust speaker verification (SV) tasks [60]. Both these methods
use adaptation data to build speaker-specific models from a speaker independent
background model constructed offline. MAP is a two stage process in which
Bayesian statistics estimated using the training/adaptation data in the first stage,
are used to update the ‘a priori’ available background model parameters (mean,
covariances and weights) in the second stage. The Speaker Model Synthesis [56]
method was based on deriving individual channel dependent GMMs by MAP-
adaptation of a channel-independent background model. In another application,
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MAP was jointly used for model adaptation as well as feature transformation [61].
The advantage of MAP adaptation is its close approximation to the ideal maximum-
likelihood estimates given sufficient enrollment data. However in situations where
training data is sparse, MAP would only update a fractional number of GMM
components. The MLLR adaptation technique transform the background GMM
means and covariance matrices (optionally) by an affine transformation aiming at
maximizing the likelihood function given new adaptation data. The parameters of
the transformation are derived by iteratively using the Expectation Maximization
(EM) algorithm [62]. Unlike MAP, all the GMM components are updated with
limited amount of enrollment data. Other variants of MLLR like constrained
MLLR (CMLLR) [63] are often used for online model adaptation [64]. However
the performance improvement in MLLR-based methods saturates with increasing
adaptation data and at a certain stage they are outperformed by MAP. A comparison
of MLLR and Neural Network based environmental techniques was made in [65].

Apart from the traditional data driven methods that are dependent on adaptation
data representing acoustic conditions of the evaluation phase, another approach is
to exploit a priori information about the test environment. Popular state-of-the-art
techniques in this category are Parallel Model Combination (PMC) [66, 67] and
Vector Taylor Series (VTS) [68]. PMC relies on an available statistical noise model
of the recognition phase and clean speaker GMMs trained during enrollment. The
aim is to obtain noise-corrupted model for pattern matching, by combining the clean
speech and noise models. This is done in two stages. Firstly, clean speaker models
(GMMs/HMMs) and a simplified noise model (GMM) are built independently from
clean training data and a noise signal, respectively. Secondly, the effect of additive
noise on clean speech in the cepstral domain is analysed by using a function of noise
corruption. This function is then extended to the parametric space to estimate the
corrupted model parameters (mean and variances) from the clean and noise model
parameters, respectively. Prior work shows that PMC model parameter estimation
gets increasingly complex for dynamic and acceleration coefficients of MFCC.
A recent state-of-the-art technique [69] addresses this problem by exploiting the
relation between static and dynamic coefficients. The VTS method [70] uses a
similar mathematical structure to represent the noise corruption process. However,
unlike PMC the noise and channel statistics are obtained via an approximate taylor
series expansion of the function around the mean of GMM components. This
method is relatively much simpler compared to PMC and the tradeoff in terms of
accuracy is not significant.

Though the model-compensation techniques perform better than their feature-
level counterparts, they are computationally intensive and often require substantial
amount of training data. Apart from the two broad types of compensation techniques
discussed in Sects. 2.1 and 2.3, there exists hybrid approaches which can be termed
as a combination of the two methods. Examples include Stochastic Matching [71]
and Joint Uncertainty Decoding [72]. These methods account for the imperfections
in feature enhancement process by approximating the marginal distribution of noisy
features. In realistic situations, it may also turn out that the verification environment
is entirely unknown [73]. In such scenarios, one might not expect availability of
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adaptation data or stereo training data. Quite recently, researchers have addressed
this issue [74] by combining ‘missing feature theory’ based techniques [75] to
subdue noise variation outside training conditions. The ‘posterior union model’
in [74], require detection and exclusion of the heavily mismatched subbands of the
speech spectra. However, the improvement in performance accuracy of all these
methods is usually associated with increased computational load and dependency
on numerical approximations.

2.4 Robust Speaker Modeling

Speaker modeling techniques have been extensively explored in the past few
decades of SR research. The scope of applying diverse pattern recognition tech-
niques for classification and clustering of features makes this field an exciting
area to work with. The broad classes of modeling techniques that are used in
practice can be broadly categorized as generative models (GMM, VQ, Joint Factor
Analysis (JFA)) or discriminative models (Neural Networks (NN) and Support
Vector Machines (SVMs)). A family of hybrid modeling techniques also exist which
are a combination of both e.g., GMM-SVM, SVM-JFA, etc. In this subsection we
shall briefly discuss each.

Vector Quantization, introduced in the late 1980s [76] is one the most primitive
form of SR model. Based on the principle of K-means [62], the set of feature
vectors extracted from a speaker’s training utterance are grouped into a number of
non-overlapping clusters. Individual speaker models are represented by the stack of
cluster centroids often termed as codebook. Classification of a test utterance is based
on minimization of a distortion measure commonly given by the average Euclidean
distance of a vector from each codebook. Despite its crude form of clustering, VQ
is often used for computational speedup required for real-time SR applications [77].

The Gaussian Mixture Models (GMMs) introduced in the mid-1990s [59] is
widely considered to be a benchmark for modern text-independent Speaker Recog-
nition. In contrast to VQ, a number of overlapping multivariate Gaussian functions
are used to cluster the feature space. The GMMs are able to characterize general
properties like multi-modal feature distribution, speaker-dependent spectral shapes
etc. Unlike VQ, GMMs are able to capture the variance of feature distribution.
In contrast to the naive K-means, GMM training is based on a more rigorous
approach of maximizing the likelihood of a given speaker’s data. The parameters
are estimated iteratively using the Expectation Maximization (EM) algorithm
[62]. Classification of test utterances are done on the basis of log likelihood
scores obtained from the sequence of test vectors. Though speaker-specific GMMs
performed reasonably well for SR given clean speech, a good amount of data
was required for parameter estimation. Besides, a more generalized approach was
required for unifying model-compensation techniques with the GMM framework.
A novel GMM-based approach was proposed in [60], where a single speaker-
independent GMM (Universal Background Model (UBM)) trained using multiple
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speaker data across various channels and sessions, was used as a common impostor
model for speaker verification. HMM-based speaker models were derived using
MAP and MLLR adaptation of the UBM using the speaker’s training data. Besides
reducing data requirements, these techniques provided scope for model adaptation
as discussed in Sect. 2.3. Comparative studies of alternate adaptation techniques
were made in [78]. Efforts were also made to approximate the common MAP adap-
tation process in terms of a VQ model [79]. However in the context of environmental
robustness, GMMs often provide limited performance improvement despite model-
adaptation. This problem received a new direction with the introduction of Joint
Factor Analysis and its variants [80].

Prior to the introduction of GMMs, role of Neural Networks (NN) for text-
independent SR was first studied in [81]. An advantage of NNs is its ability to
perform feature transformation and speaker modeling simultaneously [82]. In a later
study, Auto Associative Neural Networks (AANNs) were introduced for speaker
modeling [83]. Since GMMs relied on first and second order statistics, it was
hypothesized in [83] that they fail to capture feature distribution based on higher
order statistics. AANNs were found to be effective for SR tasks where distribution
of data is highly non-linear [83]. However, NNs have not been used much in practice
primarily due to the heavy computational costs involved in training them. Besides,
prior determination of the appropriate structure for NNs (number of neurons in each
layer) is a non-trivial task.

Support Vector Machines (SVMs) have emerged as a powerful discriminative
classifier in the field of robust SR in the last decade [32, 36, 84]. A SVM is a binary
classifier which distinguishes between two classes (true speaker and impostor) by
learning a decision hyperplane which separates them in some higher dimensional
feature space [62]. SVMs have been initially used to model individual speakers
using high-level [36] and prosodic features [32]. However the real significance of
SVMs in robust SV tasks was found in its effective combination with the traditional
GMM classifier [85]. A novel method of representing variable length training
utterances using fixed-length vectors was discovered contemporarily. The mean
vectors of MAP-adapted speaker GMMs were stacked together to produce a high
dimensional vector commonly termed as a ‘supervector’. The labelled supervectors
were used as input the SVMs. This led to the scope of exploring various ‘sequence
kernels’ or non-linear mappings for transforming features to high dimensional
spaces [85–87]. Several normalization techniques for minimizing inter-session and
intra-speaker variabilities in the supervector space have been introduced since
then. Common examples are Nuisance Attribute Projection (NAP) [88], Within
Class Covariance Normalization (WCCN) [89] and Linear Discriminant Analysis
(LDA) [62]. The GMM-SVM approach is often considered as a effective alternative
of the GMM-UBM method.

Supervector-based speaker recognition opened an interesting new direction
for compensating channel and session variabilities. It was thought that channel
variations in recorded training utterances might lead to the problem of mismatch
in the supervector space. A feasible alternative was to explicitly model the channel
variability by representing the supervector space as a combination of statistically
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independent channel and speaker subspaces. This approach was named Joint Factor
Analysis (JFA) [80] where the term ‘factor’ denotes the low-dimensional projection
of the speaker or channel supervectors in their corresponding spaces. JFA as a
new research trend has been extensively studied for robust SR tasks since the late
2000s [80, 90]. However it was later argued in [91], that instead of two distinct
subspaces a single ‘total variability’ space could in fact be useful for simultaneously
representing both speaker and channel variabilities. A low-dimensional projection
of the supervectors in the total variability space, commonly known as ‘i-vectors’
has since then been considered as the modern state-of-the-art in robust speaker
verification. Various studies have since then been conducted to combine JFA
and SVM based methods with appropriate normalization techniques [92]. Quite
recently, i-vector based studies have conducted for robust speaker recognition
tasks where authors have proposed alternative methods of projecting the i-vectors
into a subspace for improved speaker discrimination and suppression of channel-
effects [93].

2.5 Motivation for the Present Work

Robust speaker recognition in noisy environments till date remains an open issue
despite the diverse array of methods developed to address it in past. The ever
increasing usage of hand-held devices in the modern era has driven new demand
for robust speaker recognition applications. Despite being well explored in past,
new methods keep unfolding in this field which are either suggested improvements
or alternatives of the existing ones. This makes robust SR a very challenging and
yet an interesting area to work in.

Despite the availability of robust features as discussed in Sect. 2.2, feature
compensation techniques play a crucial role for SV applications that demand noise-
robustness without compromising on speaker-discriminative power [94]. An inter-
esting fact to notice about the state-of-the art data-driven feature compensation
methods discussed in Sect. 2.1, is that their application has mostly been restricted
to robust speech recognition tasks but rarely studied for robust SV tasks. The brief
discussion about model compensation techniques in Sect. 2.3 reveal some of their
vulnerabilities. They either rely explicitly on an available clean speaker model
(e.g., PMC [66], VTS [70]) or a priori knowledge about the noisy environment
(e.g., noise model for PMC, adaptation data for MAP [57], MLLR [58]). These
drawbacks suggest the use of robust speaker modeling methods as an alternative
for practical scenarios (e.g., unknown noisy environment, unavailable clean speaker
models). In a similar context it can be argued that the state-of-the-art robust speaker
modeling methods (e.g., GMM supervectors [85], i-vectors [95] etc.) have mostly
been applied to counter channel/handset mismatches but not additive background
noise specifically.

Summarily, the above two points motivates us to propose new studies in
which we explore the application of feature enhancement techniques for speaker
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verification in additive background noise. Studies are also conducted to demonstrate
the effectiveness of supervector-based approaches and its state-of-the-art variants
(e.g., i-vectors) for robust speaker verification in noisy environments.
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Chapter 3
Speaker Verification in Noisy Environments
Using Gaussian Mixture Models

Abstract This chapter explores the behavior of Gaussian Mixture Models (GMMs)
for speaker verification in noisy environments. Specifically, the performance of
an acoustic modeling framework (namely GMM-UBM) using speaker-dependent
GMMs and a speaker-independent Universal Background Model (UBM), is studied
for simulated noisy backgrounds. Significance of a feature mapping technique using
multiple UBMs for compensating background noise is explored. The speaker verifi-
cation systems explored in this chapter serve the purpose of baselines considered for
comparison and analyzing the performance improvements of the proposed methods
in the remaining chapters.

3.1 Introduction

The role of acoustic modeling for speaker recognition (SR) was briefly introduced in
Chaps. 1 and 2, respectively. Specifically, one or more types of statistical models are
employed to capture the unique distribution of features extracted from a speaker’s
enrollment utterances during the training phase. During the recognition phase, an
unknown utterance is classified as a speaker based on its similarities with the
corresponding speaker model. Effectiveness of a model is characterized by its
classification accuracy, computational costs, data requirements etc. In most cases,
selection of a suitable model is a tradeoff between one or more such criteria.

Gaussian Mixture Models (GMMs) are the most extensively used speaker
modeling techniques in text-independent speaker verification (SV) [1]. They belong
to the family of generative models in which a number of non-uniformly weighted
multivariate Gaussian components are used to represent the feature distribution of an
individual speaker. GMMs have been found to effectively characterize multi-modal
spectral shapes and model arbitrary spectral densities. Besides providing a strong
probabilistic framework for pattern matching, they offer large degrees of freedom
and have high recognition accuracy [2].
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This chapter explores the behavior of Gaussian Mixture Models (GMMs)
for speaker verification in noisy environments. Specifically, the performance of
an acoustic modeling framework (namely GMM-UBM) using speaker-dependent
GMMs and a speaker-independent Universal Background Model (UBM), is studied
for simulated noisy backgrounds. Significance of a feature mapping technique using
multiple UBMs for compensating background noise is explored. The SV systems
explored in this chapter serve the purpose of baselines considered for comparison
and analyzing the performance improvements of the proposed methods in the
remaining chapters. The rest of the chapter is organized as follows. Section 3.2
describes the GMM-UBM framework, the SV system development is discussed in
Sect. 3.3, the feature mapping method in Sect. 3.4.2 followed by a brief summary in
Sect. 3.6.

3.2 GMM-UBM Framework for Speaker Verification

The Speaker Verification (SV) process was briefly introduced in Chap. 1. It is the
task of validating the claimed identity of a person using his/her speech. In the
conventional SV paradigm the task can be viewed as a binary classification problem
in which a claimant’s utterance is classified as true (authentic) or false (impostor)
based on its statistical similarities with a claimed (target) speaker model and an
impostor model, respectively. The target speaker model essentially belongs to one
out of a group of speakers enrolled for the SV system while the common impostor
model is constructed offline from selected set of impostors.

Operation of the GMM-UBM framework [3] is similar to the standard SV process
which includes an offline phase for impostor/background model construction and
an online phase comprising enrollment and verification. A single GMM (namely
UBM), is constructed during the offline phase using substantial amount of data
collected from various speakers across multiple channels, environments etc. GMMs
are particularly well suited for this task since the model complexity can be scaled to
handle large datasets. This is simply achieved by using a large number of mixture
components (typically 1,024, 2,048 etc.). The Gaussian components are considered
to model various acoustic events e.g., broad phonetic sounds that characterize a
person’s voice. The data used for model construction is specifically chosen to
encompass various acoustic conditions so that the UBM can be used for generalized
SV tasks. For a D-dimensional feature vector (y) from the training set, the UBM
(�) likelihood function is defined as a weighted sum of M component Gaussian
densities as given by

p.yj�/ D
MX

iD1

wi pi .y/ (3.1)
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where wi are the mixture weights and pi .y/ are the component densities. Each
component density in turn is a D-variate Gaussian function of the form

pi .y/ D 1

.2�/D=2 j˙i j 1
2

exp f�1

2
.y � �i /

T ˙�1
i .y � �i /g (3.2)

where �i and ˙i denote the mean vector and covariance matrix for the i th
component. The mixture weights are furthermore required to satisfy the constraint
MP

iD1

wi D 1. The complete GMM, parameterized by the mean vectors, covariance

matrices and the mixture weight from all component densities is collectively
represented by � D fwi ; �i ; ˙i g I where i D 1; 2; : : : M . The GMM parameters
are estimated by iteratively maximizing the likelihood of the training data using
an Expectation Maximization (EM) algorithm [4]. Details of the GMM training
procedure has been outlined in Appendix B.

As the name implies, the UBM represents a speaker-independent impostor
model. The SV process essentially requires construction of target speaker models
(GMMs) for representing the true (actual) speaker class. However, maximum
likelihood GMM training for individual target speakers would require an adequate
amount of training data from each of them which is considered unfavourable
for practical scenarios (e.g., real-time SV systems). As a feasible alternative,
target speaker models (GMMs) are constructed by a Maximum aPosteriori (MAP)
adaptation [5] of the existing UBM parameters, during the enrollment phase. The
MAP adaptation procedure consists of two broad stages i.e., estimation of a set
of sufficient statistics from a target speaker’s enrollment data followed by actual
modification (adaptation) of the UBM parameters. The overall adaptation procedure
can be briefly outlined in the following steps. Given a sequence of T training vectors
(x1; x2; : : : ; xT) extracted from a target speaker utterance, the posterior probability
of each mixture i in the UBM with respect to a vector xt , is calculated as

Pr.i jxt / D wi pi .xt /

MP
jD1

wj pj .xt /

(3.3)

Using P r.i jxt /, a set of sufficient statistics are calculated using the training set
as follows

ni D
TX

tD1

Pr.i jxt /

Ei .x/ D

TP
tD1

Pr.i jxt /xt

ni

Ei .x
2/ D

TP
tD1

Pr.i jxt /x
2
t

ni

(3.4)
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These new statistics are used to alter the pre-estimated UBM parameters. A new set
of model parameters i.e., weights ( Owi ), means ( O�i ) and variances ( O�2

i ), for the target
speaker model (�Tar ) are obtained as

Owi D
h˛i ni

T
C .1 � ˛i /wi

i
�

O�i D ˛i Ei .x/ C .1 � ˛i /�i

O�2
i D ˛i Ei .x

2/ C .1 � ˛i /.�
2
i C �2

i / � O�2
i (3.5)

where � is a scaling factor, which ensures that all the new mixture weights sum to 1
and ˛i is an adaptation coefficient which controls the balance between the old and
new model parameter estimates, defined as

˛i D ni

ni C r
(3.6)

where r is a fixed relevance factor, which determines the extent of mixing of
the old and new estimates of the parameters. Low values for ˛i (˛i ! 0),
results in negligible modification of the UBM parameters, while higher values
(˛i ! 1) strictly emphasize on the use of new training data-dependent parameters.
Besides minimal data requirements, the MAP adaptation has other interesting
aspects. Firstly, derivation of speaker model parameters from the well-trained UBM
parameters provides a tight coupling between the UBM and the speaker model.
Besides providing better performance than de-coupled models, it allows scope
for a fast scoring technique during the evaluation stage [3]. Secondly, it offers
extra robustness to the SV system by adapting model parameters to reflect new
acoustic conditions during the enrollment phase. Figure 3.1 illustrates the GMM-
UBM framework for speaker verification. Given the UBM (�) and a target speaker
model (�Tar ), SV reduces to a hypothesis testing problem in which the task is to
decide whether an unknown test utterance is generated from the hypothesized target
speaker model (null hypothesis) or the UBM (alternative hypothesis). During the
evaluation phase, a log-likelihood ratio of scores (S.Xtest /) generated by the two
models from a given set of test feature vectors (Xtest ) (as shown in Eq. 3.7), is
compared with a empirically determined threshold for acceptance or rejection.

S.Xtest / D log p.Xtest j�Tar / � log p.Xtest j�/ (3.7)

where Xtest D fx1; x2; : : : ; xKg and p.Xtest j�/ D PK
kD1 log.p.xkj�//I � D

f�; �Targ.
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Fig. 3.1 The GMM-UBM framework for speaker verification

3.3 Development of GMM-UBM Based Speaker
Verification Systems

The NIST-2003-SRE database [6] was used for developing all SV systems. The data
consists of conversational speech collected from 356 speakers (149 Male and 207
Female) over a cellular phone network. Each speech file is sampled at 8 kHz with
a bit resolution of 16 bits/sample. The training set contains approximately 2 min of
one-sided conversational speech from each enrolled speaker. The test set contains
around 3,500 speech segments of approximately 15 s each.

3.3.1 Simulation of Background

As mentioned earlier in Chap. 1, the goal of the current work is to explore the
impact of environmental noise on the performance of the SV systems. However,
for experimental convenience and due to unavailability of real-life noisy data,
the noisy backgrounds were artificially simulated. All training and test utterance
were degraded with additive noises collected from the NOISEX-92 database [7].
Two types of backgrounds (i.e., uniform and time-varying) were independently
considered for SV studies. Each of these are described in the following subsections
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3.3.1.1 Simulation of Uniform Background

Four additive noises (i.e., car, factory, pink and white) collected from the
NOISEX-92 database was used for representing unique background environments.
The speech segment from each of the 356 enrolled speakers was degraded by adding
a specific type of noise at 0, 5 and 10 dB SNRs, respectively. The noise level was
scaled to maintain the desired SNRs of the reconstructed speech segments. Twelve
different sets of noisy training utterances were obtained (one for each noise at a
particular SNR). Each set was used separately for training and evaluation.

3.3.1.2 Simulation of Varying Background

To capture the effect of time varying environmental noise, each enrollment utterance
was firstly divided into five non-overlapping segments. Each segment was individ-
ually corrupted with one of four additive noise chosen randomly. The remaining
one segment was left clean. The reconstruction process was repeated for 0, 5, 7
and 10 dB SNRs, respectively. For a relative reduction of mismatch all the test
utterances were similarly corrupted by the same noises. Four different training
and test sets of time-varying noisy utterances were obtained (one for each SNR).
Each set corresponding to a particular SNR was used separately for training and
evaluation. Additionally, another set of clean training utterances was maintained for
experimenting with a mismatched condition as discussed in Sect. 3.3.5.

3.3.2 Preprocessing

The speech signals were pre-emphasized using a first order high pass filter with a
coefficient of 0.97. The resultant signals were processed using short-term frames of
20 ms with a frame-overlap of 10 ms. A simple energy-based thresholding scheme
was used for voiced activity detection (VAD) as described in [8]. For the simulated
stereo data used in the present work, the VAD was applied in two stages. The
average energy of an entire clean speech utterance (Eavg) was calculated and a
threshold of 1 % of the average energy (0:01�Eavg) was empirically determined. All
clean frames with an average energy below the selected threshold were discarded.
The frame indices of the discarded frames were recorded for later use. After noise
contamination of the clean utterance as described in Sect. 3.3.1, the noisy frames
corresponding to recorded indices were discarded without any further thresholding.

3.3.3 Feature Extraction

Mel frequency cepstral coefficient (MFCC) features were used throughout the
development process. A 26 channel mel-scaled triangular filterbank constrained in
the telephonic bandwidth of 300–3,400 Hz, was imposed on the DFT magnitude
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spectra of each frame. Thirteen cepstral coefficients (C1 � C13) excluding the
zeroth one (C0), were extracted after discrete cosine transform of the log filterbank
energies. The delta and acceleration coefficients computed over a frame span of 2,
were appended to form a 39-dimensional feature vector. All feature vectors were
subjected to cepstral mean subtraction followed by cepstral variance normalization.
The resultant distribution was scaled to zero mean and unit variance. A distinct
advantage of using MFCCs apart from their compact and discriminative properties,
is that individual features are highly de-correlated which allows the usage of
diagonal covariance during GMM modeling minimizing data requirements and
computational load. The MFCC extraction process is explained in more details in
Appendix C. In the ensuing discussions, the terms ‘features’ and ‘data’ have been
used interchangeably.

3.3.4 Speaker Modeling

Acoustic modeling using the standard GMM-UBM framework was performed in
two stages i.e., construction of a Universal Background Model (UBM) and the target
speaker models. The SwitchBoard corpus (part II) was used for UBM construction.
The data consisting of 20 h of conversational speech from 100 male and 100 female
speakers (6 min from each speaker) was subjected to preprocessing and feature
extraction. The MFCC vectors were pooled together into a single dataset. Vector
quantization (VQ) was initially used to divide the dataset into 1,024 clusters. The
VQ centroids and fraction of data occupying each cluster were used to initialize the
GMM means and weights, respectively. The covariances were initialized to identity
matrices. A gender-independent 1,024-component GMM (UBM) was trained offline
on the dataset using 200 iterations of the EM algorithm.

The target speaker models (GMMs) were derived individually, by MAP adapta-
tion of the UBM using the noisy enrollment utterances from each target speaker in
each dataset, according to Eqs. (3.4) and (3.7), respectively. The relevance factor
for calculating the parameter ˛ was fixed at r D 16. Thus, 356 target speaker
GMMs were obtained from each noisy dataset constructed in Sect. 3.3.1. Model
parameters adapted to residual channel noises present in the original NIST training
data expectedly offered extra robustness to the SV systems.

3.3.5 Performance Evaluation

In this NIST-2003 primary task, each test segment (unknown claimant) is evaluated
against 11 hypothesized target speaker models (GMMs) each of which represents
the claimed identity of the test speaker. In each set of 11 trials (evaluation), at
most one is true (actual speaker) while the rest are false (impostor). Ideally, the
log-likelihood ratio score obtained in each trial is supposed to be compared with a
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pre-determined threshold for final acceptance (true score) or rejection (false score),
as discussed in Sect. 3.2. A SV system is then susceptible to two types of error i.e.,
a ‘false alarm’ when an impostor’s claim is accepted and ‘miss’ when a true identity
is rejected.

Alternatively, the NIST-SRE-2003 evaluation requires calculation of two metrics,
namely Equal Error Rate (EER) and Detection Cost Function (DCF). The probabil-
ities of the two aforementioned errors are calculated from the true and false scores,
respectively. A Detection Error Tradeoff (DET) curve [9] is obtained by plotting
the ‘miss’ and ‘false alarm’ probabilities for all trials in a normal-deviate scale. The
Equal Error Rate (EER), defined as the operating point in the DET curve where
both the miss and false alarm rates are equal, is recorded. The DCF is calculated as
a weighted sum of the two error probabilities as follows

DCF D CMissPMissPTarget C CFalseAlarmPFalseAlarm.1 � PTarget/

where cost of miss CMiss D 10, cost of false alarm CFalseAlarm D 1, probability of
target PTarget D 0:01, PMiss D probability of miss and PFalseAlarm = probability of
false alarm. The EER and minimum DCF (MinDCF) values were used as metrics
for performance evaluation.

Primary tasks were individually carried out on the original NIST data and
each simulated noisy dataset as described in Sect. 3.3.1 in clean, matched and
mismatched conditions, respectively. Each of these conditions are defined as
follows

• Clean: Clean condition refers to the ideal scenario when both enrollment
(training) and verification (testing) phases are carried out in environments free of
noise distortions. The primary task carried out on the original NIST data defines
this condition.

• Matched: This refers to the default condition where both training and testing
phases of SV are carried out in similar noisy environments. The test utterances in
each noisy dataset were evaluated against the target speaker models built using
similar type of noisy data.

• Mismatched: The mismatch occurs due to clean training and noisy testing
environments. Clean speaker models were constructed using the original NIST
enrollment utterances. The noisy test utterances in each dataset were evaluated
against these models in individual experiments according to the primary task.
This condition was studied for both uniform and varying background environ-
ments.

Performance of the SV system developed in clean condition is given in Table 3.1.
EER and MinDCF values at 6.93 % and 0.033, respectively were obtained by the
default configuration i.e., primary task on NIST data. These results are later used for
comparing and contrasting performances of SV systems in matched and mismatched
conditions.

Table 3.2 summarizes the performance of the SV systems in uniform background
environments in matched and mismatched conditions, respectively. An overall
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Table 3.1 Performance of the GMM-UBM
based SV system in clean conditions

Condition EER (%) MinDCF

Clean 06.93 0.033

Table 3.2 Summary of performance of the GMM-UBM based SV systems in uniform background
environments

SNR (0 dB) SNR (5 dB) SNR (10 dB)

Condition Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

Matched Car 18.04 0.071 18.11 0.071 15.44 0.068
Factory 23.17 0.089 20.96 0.083 16.44 0.072
Pink 26.65 0.092 23.89 0.092 18.65 0.081
White 30.98 0.097 27.41 0.094 21.91 0.087

Mismatched Car 20.55 0.079 20.95 0.077 10.75 0.049
Factory 32.16 0.099 27.15 0.098 16.53 0.076
Pink 35.05 0.099 30.39 0.097 18.83 0.085
White 39.02 0.099 34.16 0.099 21.77 0.092

observation reveals drastic increments in both the error metrics across all environ-
ments, thereby implying the sensitivity of the GMM-UBM framework towards noise
distortions. The performances in distinct backgrounds are characterized by the type
of noise present in each of them. Two typical aspects of the SV performance are
notable irrespective of the noisy backgrounds. Firstly, a consistent degradation of
performance accuracy is observed across all backgrounds with decreasing SNRs
with an exception in case of car noise at 0 and 5 dB. Secondly, it is interesting to
note that the performances in matched conditions are comparatively much better
than those in mismatched conditions. Specifically, average EER increments of 0.66,
15.27, 15.08 and 14.65 % are observed in the mismatched cases for car, factory,
pink and white noisy backgrounds across all SNRs, respectively. An anomalous
behavior is once again seen in case of mismatched conditions for car noise at 10 dB.
A general order of precedence of the various backgrounds (i.e., car, factory, pink
and white) is apparent in terms of improving performances. This is evident from
the average EER values across all SNRs at 17.20, 20.19, 23.06, 26.77 % and 17.42,
25.28, 28.09, 31.65 % for car, factory, pink and white noisy backgrounds in matched
and mismatched conditions, respectively.

Figure 3.2 demonstrates the DET plots for the SV systems developed in uniform
background environments. Each set of curves in a subfigure corresponds to a SV
evaluation in a particular type of background noise for matched and mismatched
conditions across various SNRs. Some general characteristics are observable in
each subfigure. The DET curves consistently shift towards the origin with increas-
ing SNRs implying performance improvements with decreasing noise strength.
As discussed earlier, the mismatched conditions (represented by broken lines) show
inferior performance to the matched conditions in a particular SNR apart from the
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Fig. 3.2 DET plots of the SV systems developed in uniform background environment with (a)
car (b) factory (c) pink and (d) white noise. The black, blue and red colored curves in each plot
indicate SNR levels of 0, 5, and 10 dB, respectively. Solid and broken lines indicate matched and
mismatched conditions, respectively

prominent anomaly seen in case of car noise at 10 dB. The effect of mismatch
is significantly subdued with SNR increments as seen by the overlap in the red
curves. This effect is particularly prominent in case of factory, white and pink noisy
backgrounds. Each set of curves (corresponding to a specific noise) show distinct
characteristics in terms of slope and alignment of operating points.

Table 3.3 summarizes the performance of the SV systems developed in varying
background environments in the three distinct conditions. Unlike the uniform back-
ground scenario, the present results reflect the system’s behavior in a non-stationary
environment. As observed earlier, the SV performances degrade consistently with
decreasing SNRs. Similarly, inferior performances are observed in mismatched
condition in comparison to matched condition. The effect of the mismatch is most
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Table 3.3 Summary of
performance of the
GMM-UBM based SV
systems in varying
background environments

SNRs
(dB)

Matched Mismatched

EER (%) MinDCF EER (%) MinDCF

0 27.05 0.094 32.25 0.099
5 25.74 0.086 30.89 0.098
7 25.29 0.083 28.09 0.095
10 21.86 0.080 25.38 0.091

prominent in case of 0 dB SNR and decreases gradually with SNR increments.
Specifically, the EER increments relative to the matched condition are 5.20, 5.15,
2.80 and 3.52 % for 0, 5, 7 and 10 dB SNRs, respectively.

Figure 3.3 demonstrates the DET plots of the SV systems developed in varying
background environments. Each set of curves in a subfigure corresponds to the
SV evaluation in a particular SNR. As observed earlier, the curves corresponding
to matched condition show inferior performance accuracy in comparison to the
mismatched conditions. Unlike the uniform background scenario, a rotation in the
curves can be noticed in the mismatched conditions especially at 7 and 10 dB SNRs,
respectively. Though a direct comparison is inappropriate, the SV performances in
the varying background scenarios are observed to be inferior compared the uniform
background at equivalent SNRs. Specifically, average EERs across 0, 5 and 10 dB
SNRs show increments of 3.08 and 3.90 % in matched and mismatched conditions,
respectively. Thus, a feature compensation technique was further explored for the
SV in varying background environments.

3.4 Feature Mapping for Speaker Verification in Varying
Background Environment

Popular techniques for noise compensation at an acoustic model level such as paral-
lel model combination [10] or Vector Taylor Series [11] assume prior availability
of a clean speaker model or a statistical model of the background noise which
is often not suitable for practical scenarios. Speaker model synthesis (SMS) [12]
provides a more realistic compensation framework by constructing speaker models
from multiple unseen channel data by mean shift, variance scaling and weight
scaling of a pre-trained model parameters. Feature mapping proposed in [13] uses
the SMS framework for mapping individual channel dependent features to a channel
independent space by parametric scaling. Being a feature level approach, it has the
advantage of being independent of any particular recognition model. As discussed
in details in Sect. 3.4.2, the feature mapping technique is used for frame-wise
transformation of features extracted from time-varying noisy utterances to achieve
an overall denoising impact.

Recent studies demonstrate the merits of using multiple background models
(BMs) as an alternative to a single universal background model (UBM) for SV [14].
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The key idea is to construct individual BMs for a group of target speakers with
same vocal tract length (VTL) factor for better speaker-impostor discrimination.
In a later study [15], the feature mapping technique was integrated with VTL-wise
multiple background model framework for exploiting the benefits of both. Instead of
independent construction, the background models were derived by MAP adaptation
of a root UBM using VTL-wise clustered speaker data. During enrollment and
evaluation the most likely BM is selected and the features are mapped to the
common/root UBM. The present work uses the method for mapping noisy training
and test data to a noise-independent space and demonstrate that the resultant features
obtained have a higher statistical match to clean speaker models.
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3.4.1 Multiple Background Models Based on Vocal
Tract Length

The standard GMM-UBM method for speaker verification, as discussed in Sect. 3.2,
requires training of a Gaussian Mixture Model (GMM) using a large amount of
speech data from various speakers across multiple channels [3]. The so called
Universal Background Model (UBM) characterizes speaker independent feature
distribution and represents the impostor class for speaker verification (SV). How-
ever due to aggregation of data irrespective of gender, age and other speaker-
specific information, a single UBM is sometimes inappropriate for generalized SV
tasks [14].

The vocal tract length (VTL) is a prominent factor responsible for inter-speaker
variability. It was studied in [16] that the differences in VTL between speakers
can be resolved by warping the frequency axis of a speaker spectra SA.f / to
that of a reference speaker spectra SB.f / by a piece-wise linear or non-linear
function associated with a VTL warping factor ˛ as shown in Eq. (3.8). Spectral
features extracted by filterbank analysis using the warped spectrum is known
as vocal tract length normalization (VTLN). This method is used for improving
speech recognition tasks where speaker information is suppressed. Depending on
a speaker’s VTL, the discretized values of ˛ ranging from 0.80 to 1.20 with a
step-wise increment of 0.02 in succession are used for deriving the speaker models.
Due to unavailability of the reference speaker model, the optimum value of ˛ for a
particular speaker is estimated by maximizing the likelihood of the warped features,
over the given range of alpha, against the speaker independent UBM as shown in
Eq. (3.9).

SA.f ˛/ D
(

f̨ 0 � f � f0

fmax� f̨0

fmax�f0
.f � f0/ C f̨0 f0 < f � fmax

(3.8)

where SB.f / D SA.f ˛/ is the spectra SA.f / warped by ˛, f0 and fmax are the
minimum and maximum signal bandwidth.

˛� D arg max
˛

p.X˛
s j�UBM / (3.9)

where X˛
s are the features extracted from the spectra scaled by ˛ and �UBM is the

root UBM. Since differences in VTL factor is itself a distinguishing property for
speakers, it was used directly for speaker recognition in [17]. A different approach
was followed in [14] where the entire training corpus was partitioned in datasets
according to the common VTL factor (˛) of speakers in each dataset. A VTL
dependent background model (VTL-BM) was constructed from each dataset.
Instead of a single UBM, multiple VTL-BMs were used for the SV task. It was
shown that the multiple background models were more effective in rejecting close
impostors for an overall improvement in performance accuracy of SV. However as
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mentioned in [15], a major drawback of using VTL-BMs is the difficulty in applying
score normalization techniques like AT-norm and Z-norm. It requires maintenance
of individual sets of score normalization speakers for each dataset. To address this
drawback and to implement feature mapping using VTL-BMs, a different approach
was proposed in [15], where the VTL-BMs were derived by MAP adaptation of a
single root UBM using the pooled data in each partition. The details of the feature
mapping technique in the VTL-BM framework is discussed in the next section.

3.4.2 Feature Mapping Using Multiple Background Models

As mentioned earlier in the previous section, feature mapping proposed in [13]
compensates for channel mismatch between training and testing conditions. This
section briefly outlines the feature mapping method. The entire training data of a
root-UBM is partitioned into channel dependent datasets. Individual background
models are derived by MAP adaptation of the root-UBM parameters using the
channel dependent data. The mapping function is learned by examining the model
parameters’ shift and scale during MAP adaptation. All training and test data are
transformed using the mapping function for an overall aggregation of multiple
channel information into a single channel independent space. As discussed in
Sect. 3.4.1, instead of channel dependent data, the VTL-wise partitioned data
is used for MAP adaptation of a root-UBM [15]. The resultant VTL-BMs are
independent of channel or gender information. The formal steps of the feature
mapping procedure in the multiple background model framework are given as
follows.

• Given an input feature vector X (training or testing), the most likely VTL-BM
(say BM1) is detected based on its likelihood scores.

• The best Gaussian in BM1 is decoded for the vector X in the given utterance as
given in Eq. (3.10)

i D arg max
1�j�M

!BM1
j pBM1

j .X/ (3.10)

where !BM1
j , pBM1

j are the weight and density of the j th Gaussian in BM1. M
denotes the total number of Gaussian components in BM1.

• X is mapped to the VTL and channel independent vector Y by mean shift and
variance scaling as given in Eq. (3.11).

Y D .X � �BM1
i /

�CI
i

�BM1
i

C �CI
i (3.11)

where CI represents the root-UBM. �i and �i are the mean and diagonal covariance
matrices for the i th Gaussian in both CI and BM1. The overall aim of the feature
mapping technique is to transform X � N .�BM1

i ; �BM1
i / to Y � N .�CI

i ; �CI
i /

where N .�i ; �i / denotes a Gaussian with mean �i and covariance �i .
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Fig. 3.4 Feature mapping in
multiple background model
framework

Figure 3.4 illustrates the feature mapping process. The feature-mapped training
and test vectors are now used in the standard GMM-UBM framework. Target
speaker GMMs are derived from the root-UBM using the mapped enrollment utter-
ances. MAP adaptation of all the target speaker GMMs from a common root-UBM
makes application of standard score normalization techniques convenient. Besides,
a fast scoring based on the top N decoded Gaussians, can be applied during the
evaluation stage of SV [3]. As mentioned in [13] feature mapping is applicable for
multi-speaker speech recognition where each training utterance contains multiple
types of speaker information. This is possible because the mapping function is
constantly updated for each feature vector over a short-term frame according to
Eqs. (3.10) and (3.11), respectively. The present work exploits this property to map
non-overlapping segments of speech utterances, each of which is corrupted by a
particular type of additive noise. Automatic updation of the mapping function over
a short-term frame (20 ms) enables detection of noise changes occurring within the
utterance. The resultant mapped features thus carry aggregate information from a
noise-independent space.

3.5 Development of Speaker Verification Systems
in Feature Mapping Framework

The experimental setup was identical to the one discussed in Sect. 3.3 earlier.
All training and test utterances in each of the four artificially constructed non-
homogenous noisy datasets (described in Sect. 3.3.1.2), were subjected to feature
mapping using the 16 VTL-BMs and the root-UBM. Thus an additional four sets
(one for each SNR) of feature mapped training and test utterances was obtained.
Since the features were mapped frame-wise, it was assumed that no noise change
occurred within a short-term frame of a noisy utterance. The UBM constructed
earlier for the GMM-UBM framework (as discussed in Sect. 3.3.4) was used as the
root-UBM. Four sets of target speaker GMMs were derived by MAP adaptation of
the root-UBM using the training data in each of the four mapped datasets. Each
set, consisting of 356 models (one for each enrolled speaker) was individually used
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Table 3.4 Summary of performance of the SV systems in Matched and Mismatched conditions at
0, 5, 7 and 10 dB SNRs

Matched Mismatched

SNR
(dB)

GMM-UBM Feature mapping GMM-UBM Feature mapping

EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 27.06 0.094 26.60 0.094 32.25 0.099 29.81 0.099
5 25.74 0.091 23.26 0.086 30.89 0.098 27.82 0.094
7 25.29 0.088 22.67 0.082 28.09 0.095 27.46 0.094
10 21.86 0.080 19.83 0.076 25.38 0.091 21.82 0.080

for evaluation. To demonstrate the overall utility of the proposed method towards
environment adaptation, two sets of experiments were conducted in matched and
mismatched conditions, respectively as discussed in Sect. 3.3.5. In the context of
feature mapping, each of these conditions are described as

• Matched: Training and testing were both carried out in noisy environments. All
training/enrollment and test utterances in each noisy dataset were subjected to
feature mapping prior to model building and evaluation.

• Mismatched: The mismatch occurs due to clean training and noisy testing
environments. The noisy test utterances in each of the four datasets were
subjected to feature mapping prior to evaluation against clean speaker models
developed using clean NIST training data.

The EER and MinDCF values were used as metrics for performance evaluation.
The performance of the SV systems in the GMM-UBM (baseline) and the feature

mapping framework in matched and mismatched conditions have been summarized
in Table 3.4.

As noticed from the tables, the performance of the feature mapping based SV
systems is better than the baseline system in both the matched and mismatched
conditions. The EER and MinDCF values are observed to decrease with the increase
of SNR in each noisy dataset in all three conditions for both the SV systems.
A consistent reduction of EER is noticed in case of the proposed systems across all
SNRs. The performance improvement in terms of average EER reductions across
all SNRs, is calculated. The proposed method shows a moderate improvement of
2.43 EER in mismatched condition. A more prominent improvement of 4.11 EER
is noticed in case of matched conditions. The results indicate that the statistical
similarities of noisy test utterances with noisy speaker models (Matched) are much
improved when the all utterances are subjected to feature mapping. However, the
mismatch due to differences in clean training and noisy test environments are not
much improved despite feature mapping.

Figure 3.5 demonstrate the effect of feature mapping on the DET curves for the
corresponding systems. Contrasting behavior of the broken lines (feature mapping)
can be observed at each SNR. A distinct rotation can be observed in the black curves
which represents performance under matched conditions. However the red curves,
which represent performances in mismatched conditions in each plot are relatively
more aligned at all operating points with the only exception in case of 10 dB SNR.
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Fig. 3.5 DET plots showing the effect of feature mapping in varying background environments at
(a) 0 dB (b) 5 dB (c) 7 dB and (d) 10 dB SNR levels. The broken black and red colored curves in
each plot indicate matched and mismatched conditions, respectively

The shift of the broken lines towards the origin also results in DCF reductions. The
average MinDCF reductions across all SNRs are 3:75 � 10�3 and 4 � 10�3 for
matched and mismatched conditions, respectively.

3.6 Summary

This chapter explored the GMM-UBM framework for speaker verification (SV)
in various simulated noisy environments. Specifically, speech utterances corrupted
in two types of background environments i.e., uniform and time-varying, were
independently used for developing the SV systems. To understand the sensitivity of
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the GMM-UBM framework in practical situations, the SV systems were evaluated
in clean, matched and two types of mismatched conditions. Results revealed severe
performance degradation in matched and mismatched training-testing conditions as
compared to the clean conditions. It was observed that performances in mismatched
(type-II) condition were worse compared to the matched condition. Furthermore,
results indicated overall inferior SV performance in the varying background envi-
ronments in comparison to the uniform environments at equivalent SNRs.

To compensate the effect of varying background noise, a feature mapping
technique was used for frame-wise transformation of noisy utterances. Results
indicated moderate performance improvements in case of matched and mismatched
conditions. The feature mapping effects were more prominent in case of matched
conditions than in mismatched condition. However, since the goal of feature trans-
formation is to address the issue in mismatched conditions, the tradeoff between
the performance improvements and computational cost for developing the feature
mapping framework is considered to be low. In the next chapter, advanced feature
transformation techniques are explored. In the remaining chapters of the book,
the GMM-UBM based SV systems shall be considered as baselines for performance
comparison.
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Chapter 4
Stochastic Feature Compensation for Robust
Speaker Verification

Abstract This chapter explores the impact of standard stereo-based stochastic
feature compensation (SFC) methods for robust speaker verification in uniform
noisy environments. In this work, SFC using independent as well as joint probability
models are explored for compensating the effect of noise. Integration of a SFC stage
in the GMM-UBM framework is proposed for speaker verification evaluation under
mismatched conditions.

The choice of features used for speaker recognition (SR) tasks is usually a tradeoff
between accuracy, implementation costs and robustness. Short-term spectral or
vocal tract features (e.g., MFCC) are the most extensively used for SR tasks due
to their high speaker discriminative properties [1]. However, they are highly suscep-
tible to noise-degradation and are therefore aided by compensation procedures in
most SR applications [2,3]. The role of feature compensation was briefly introduced
in Chap. 1. Despite the existence of inherent robust features, SR applications often
prefer simple spectral features due to their ease of extraction. Such applications
essentially require feature compensation methods for noise-robustness.

The discussion about the filtering-based feature compensation methods (e.g.,
CMS [4], RASTA [5]) in Chap. 2 revealed that they are specifically designed for cep-
stral features and are commonly applied for suppressing channel effects. However,
filtering is often inadequate for additive background environments where the log-
spectral effect is ineffective. The application of model-based compensation schemes
(e.g., SS [6], CDCN [7]) are likewise compromised due to the unavailability of a
noise-model and high amount of training data.

The data-driven feature compensation methods offer a number of significant
advantages compared to the other two categories. Firstly, they are independent
of any analytical representation about the nature of the noise-corruption process.
Secondly, they can better model the noise-effects due to their stochastic nature.
Lastly, their performance is consistent across different environments. The only
apparent drawback of applying these methods is the requirement of stereo data

K.S. Rao and S. Sarkar, Robust Speaker Recognition in Noisy Environments,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-07130-5__4, © The Author(s) 2014
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which can be interpreted as having a priori knowledge about the test environment.
Despite such drawbacks, these techniques have been successfully used for far-field
speech recognition tasks. To the best of the author’s knowledge, the effect of these
feature compensation methods have not been studied for robust speaker verification
(SV) tasks. The application of standard stochastic feature compensation methods
in a SV framework is proposed in this chapter. The significance of the proposed
approach is demonstrated through a set of conducted experiments in simulated noisy
environment.

The rest of the chapter is organized as follows. Section 4.1 gives a brief
introduction to stochastic feature compensation, Sects. 4.2.1–4.3.2 provide detailed
description of the feature compensation methods considered in the work [8], the
proposed SV framework is discussed in Sect. 4.4 followed by a brief summary of
the present work in Sect. 4.5.

4.1 Stochastic Feature Compensation (SFC)

Since accurate enumeration of the environmental effects on speech is a non-
trivial task, a simplified form of speech signal degradation based on additive and
convolutional channel noise is used in practice. Due to the random nature of
noise, a given clean feature vector can generate different noisy feature vectors, and
vice-versa, which causes an uncertainty. Conventionally, Gaussian Mixture Models
(GMMs) are used to represent the cepstral distribution. The additive noise in general
alters the distribution of mel frequency cepstral coefficients (MFCCs) by reducing
the variance of each Gaussian component while the convolutional noise shifts the
mean vectors.

Stochastic feature compensation (SFC) methods are independent of any math-
ematical structure of noise degradation. They model stereo training data using
GMMs. Given a noisy test feature vector yt , a minimum mean squared error
(MMSE) criterion is used to estimate a clean vector Oxt as follows

Oxt D EŒxjyt � D
Z

X

xp.xjyt /dx (4.1)

where x is a random variable representing clean feature vectors and p.xjyt / is the
conditional probability distribution function (pdf) of x given yt . Depending on the
nature of the feature compensation algorithm, the two broad approaches of deriving
p.xjyt / can be categorized as (i) Independent probability modeling and (ii) Joint
probability modeling. The independent probability modeling methods construct
individual GMMs for clean and noisy data. The effect of noise is represented as
additive terms to the mean vectors and covariance matrices of the GMMs. The
conditional pdf is derived based on numerical approximations using the additive
terms. Alternatively, joint probability models construct a single GMM using stacked
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noisy and clean feature vectors of the stereo data. This is followed by deriving an
exact conditional pdf and estimation of clean speech vectors. Each of these methods
are discussed in details in the following two sections

4.2 SFC Using Independent Probability Models

Figure 4.1 illustrates the independent probability model based SFC process. The
main steps of the process can be outlined as follows

1. Firstly individual GMMs are built for clean vectors Xt and noisy vectors Yt as
follows

Clean training
vectors

X1

Y1 Y2

Noisy training
vectors

Noisy test vectors

YT

y1¢

x1¢ x2¢ xt¢

y2¢ yt¢

3

2

MMSE

1

Conditional PDF

Estimated Clean vectors

Nx(xt;μx( j), Σx(j))

Ny(yt;μy( j), Σy(j))

P(x⏐j,yt)

m
x( j)+r

j

yt +
 r j E(x⏐yt)

X2 XT

Fig. 4.1 Stochastic feature compensation using independent probability models
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p.xt / D
MX

jD1

wx.j /Nx.xt I �x.j /; ˙x.j // (4.2)

p.yt / D
MX

jD1

wy.j /Ny.yt I �y.j /; ˙y.j // (4.3)

where w.j /, �.j / and ˙.j / denotes the weight, mean vector and covariance
matrix of the j th Gaussian component and M is the total number of components.

2. The conditional pdf p.xjj; yt / is then approximated by means of additive factors
rj to the clean or noisy training vectors. The values of the additive terms are
determined my maximizing the likelihood of the training data.

3. Given a set of noisy test vectors, the equivalent set of clean vectors are estimated
by MMSE

The GMM representations given by Eqs. (4.2) and (4.3), are used in the remaining
chapter. In the following sections three standard independent probability model
based SFC techniques used for robust speech recognition tasks are discussed briefly.
Each of the methods differ in the way by which they derive p.xjyt / and thereby
estimate bxt . Detailed derivations of the additive terms and the MMSE estimator for
each of these algorithms can be found in Appendix A.

4.2.1 Multivariate Gaussian-Based Cepstral Normalization
(RATZ)

The RATZ algorithm [9], derives the required MMSE clean feature estimate in three
stages. In the first stage, the clean feature vectors are used to train a GMM as in
Eq. (4.2) using the standard Expectation Maximization (EM) algorithm. The second
stage consists of estimating the statistics of the noise-degraded speech by applying
appropriate correction vectors to the mean and covariance matrices of the clean
speech pdf. The additive correction vectors, which model environmental effect are
in turn estimated by maximizing the likelihood of the noisy feature vectors. Finally,
given a noisy test feature vector, a MMSE estimate of clean speech is made using the
correction vectors learned during the training phase. Given a sequence of T noisy
MFCC vectors Y D Œy1; y2; : : : yT�, the log-likelihood is given by

L.Y / D log
TY

tD1

p.yt / D
TX

tD1

log
MX

jD1

wy.j /Ny.yt I �y.j /; ˙y.j //

D
TX

tD1

log
MX

jD1

wy.j /Ny.yt I �x.j / C rj ; ˙x.j / C Rj /

(4.4)
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where rj and Rj are the correction vectors for the j th Gaussian component of the
clean speech pdf. The complete set of unknown bias vectors is iteratively estimated
by maximizing L using an EM algorithm. Details of the EM algorithm have been
outlined in Appendix A. The solutions obtained are given by the following equations

Orj D

TP
tD1

p.sy.j /jyt ; 	/.yt � �x.j //

TP
tD1

p.sy.j /jyt ; 	/

(4.5)

ORj D

TP
tD1

p.sy.j /jyt ; 	/f.yt � �x.j / � Orj /.yt � �x.j / � Orj /T � ˙x.j /g
TP

tD1

p.sy.j /jyt ; 	/

(4.6)

where p.sy.j /jyt ; 	/ is the posterior probability of the latent noisy GMM com-
ponent sy.j / given yt , 	 D frj ; Rj g is the set of model parameters and T

denotes matrix transpose. It was studied by Moreno et al. [9] that in case of stereo
recordings, a one-one correspondence of the each Gaussian component of the noisy
speech GMM and clean speech GMM can be established. This is done by assuming
posterior invariance which states that the posterior probabilities of each GMM
component with respect to a clean vector and its noisy equivalent vector are equal.
This assumption, although less reliable in low SNR conditions suggest that each
Gaussian undergoes the same shift and negligible compression. It gives a convenient
approximation of p.sy.j /jyt ; 	/ as follows

p.sy.j /jyt ; 	/ D p.sy.j //p.yt jsy.j /; 	/

MP
kD1

p.sy.k//p.yt jsy.k/; 	/

D p.sx.j //p.xt jsx.j //

MP
kD1

p.sx.k//p.xt jsx.k//

D wx.j /Nx.xt I �x.j /; ˙x.j //

MP
jD1

wx.j /Nx.xt I �x.j /; ˙x.j //

(4.7)

Given the above relation, Eqs. (4.5) and (4.6) can now be approximated as

Orj D

TP
tD1

p.sx.j /jxt /.yt � xt /

TP
tD1

p.sx.j /jxt /

(4.8)
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ORj D

TP
tD1

p.sx.j /jxt /f.yt � xt � Orj /.yt � xt � Orj /T � ˙x.j /g
TP

tD1

p.sx.j /jxt /

(4.9)

Since the above equations do not have 	 in the right hand side, the solutions are
non-iterative. The environmental effects on clean speech x in MFCC domain are
modeled as additive linear correction vectors r.x/. The MMSE estimate for clean
speech Oxt given a noisy test vector yt is calculated by Eq. (4.1). The conditional
mean is solved using a numerical approximation as follows

Oxt D EŒxjyt � D yt �
MX

jD1

p.j jyt /rj (4.10)

4.2.2 Stereo Piece-Wise Linear Compensation for Environment
(SPLICE)

The effectiveness of the RATZ algorithm depends on the posterior invariance
assumption made in Eq. (4.7). However in low SNR conditions this assumption
becomes unrealistic since the Gaussian pdfs of noisy speech are compressed in
different amounts due to changes in its variance. As an alternative, the SPLICE
algorithm proposed in [10] models the noisy feature space as given by the following
equation

p.yt / D
MX

jD1

p.j /p.yt jj / (4.11)

where p.j / is the prior probability of the Gaussian component j mathematically
equivalent to the component weight wy.j / and p.yjj / is the multivariate Gaussian
Ny.yt I �y.j /; ˙y.j // as given in Eq. (4.3). A distinct advantage of SPLICE
compared to other model-based feature enhancement techniques like Spectral
Subtraction, is its consistent performance in non-stationary environments. Feature
compensation using SPLICE is based on a two simple assumptions. Firstly, a
clean MFCC vector xt generated by each discrete Gaussian component j can be
approximated in terms of its noisy counterpart yt . This is often termed as piece-
wise linear approximation. Secondly the conditional pdf of clean speech vectors
given the noisy speech vectors and Gaussian component j is also a multivariate
Gaussian distribution. The mean of the resultant distribution is assumed to shifted
by the corrective vector rj as follows

p.xjj; yt / D Ny.xI yt C rj ; 
j / (4.12)
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Estimation of the parameters rj and 
j are based on maximum likelihood
training similar to that of RATZ (Eq. 4.4) using an EM algorithm (outlined in
Appendix A). The solutions are given by

Orj D

TP
tD1

p.j jyt /.xt � yt /

TP
tD1

p.j jyt /

(4.13)


j D

TP
tD1

p.j jyt /f.xt � yt /.xt � yt /
T � Orj OrT

j g
TP

tD1

p.j jyt /

(4.14)

where p.j jyt / is the posterior probability of component j given yt

p.j jyt / D p.j /p.yt jj /

MP
jD1

p.j /p.yt jj /

(4.15)

For stereo training data, the solution of Eqs. (4.13) and (4.14) are non-iterative. The
MMSE estimate for clean speech from the noisy speech pdf is then given by

Oxt D EŒxjyt � D yt C
MX

jD1

p.j jyt /rj (4.16)

The approximation of the mean of the conditional pdf in Eq. (4.12) using additive
terms rj is often considered to be a limitation of the SPLICE framework. An accu-
rate estimation of the conditional mean would require joint probability modeling
of the clean and noisy vectors followed by estimating MLLR-type transforms [11].
Despite these drawbacks, SPLICE is commonly applied for pre-processing feature
vectors in robust speech recognition tasks.

4.2.3 Multivariate Model Based Cepstral Normalization
(MMCN)

The previous techniques discussed so far either models the clean feature space (e.g.,
RATZ) or the noisy feature space (e.g., SPLICE) using GMMs. A corrective bias
vector for each GMM component is trained by weighing the difference between
clean and noisy feature vector pairs with normalized posterior probabilities. How-
ever, in realistic situations when there are multiple types of environment in the
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noisy space, estimates based on single GMM posteriors might be erroneous. The
Multi-Environment Model based LInear Normalization (MEMLIN) algorithm [12]
aims to enhance performance accuracy by modeling both noisy and clean spaces
in parallel. The noisy feature space is divided into several basic environments and
modeled with individual GMM.

pe.yt / D
MX

se
yD1

p.yt jse
y/p.se

y/ (4.17)

where se
y denotes the latent Gaussian component for the noisy GMM trained in

environment indexed by e, pe.yt jse
y/ and pe.s

e
y/ denote the Gaussian pdf for the

se
y th component and its prior probability, respectively as shown below

p.yt jsy/ D N .yt I �.se
y/; ˙.se

y// (4.18)

p.se
y/ D we

y (4.19)

The clean feature space is modeled by a single GMM and has a similar structure as
that of Eq. (4.2).

p.xt / D
MX

sxD1

p.xt jsx/p.sx/ (4.20)

The objective is to learn the difference between clean and noisy feature vectors
associated with a pair of Gaussians (one for a clean model, and the other one
for a noisy model), for each basic environment. The bias vector transformations
are computed independently for each basic environment. Alike SPLICE, MEMLIN
assumes that each clean feature vector xt is approximated by a linear function of
the noisy feature vector yt and an additive bias vector r.sx; se

y/. However unlike
SPLICE, the additive vectors are now a function of both clean and noisy GMM
components for a particular environment. The second assumption approximates the
conditional pdf of x given yt as a multivariate Gaussian with covariance matrix
˙.sx; se

y/ and mean given by a linear transformation of the environment-dependent
noisy vector, as follows

p.xjyt ; se
y; sx/ D N .xjyt �

X

e

p.ejyt /r.sx; se
y/; ˙.sx; se

y// (4.21)

where p.ejyt / and r.sx; se
y/ are the posterior probability of environment e given

yt and the additive bias vector, respectively. The estimation of these factors are
discussed briefly. The factor p.ejyt / is trained recursively as follows

p.ejyt / D ˇp.ejyt�1/ C .1 � ˇ/
pe.yt�1/P

e

pe.yt�1/
(4.22)
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where .0 � ˇ � 1/ is a constant and p.ejy0/ is uniform across all environments.
The r.sx; se

y/ factor is obtained by maximizing the likelihood of noisy feature vector
with respect to r.sx; se

y/, using the standard EM algorithm. Given the stereo training

data for environment e which comprises the noisy vectors Ye D fyte gTe
teD1 and clean

vectors Xe D fxte gTe
teD1, the complete data log-likelihood of Ye is given by the

following equation

L.Ye/ D
TeX

teD1

log
MX

se
yD1

p.se
y/Ny.yte I �.se

y/ C r.sx; se
y/; ˙.sx; se

y// (4.23)

Maximizing the above equation with respect to r.sx; se
y/ gives

r.sx; se
y/ D

TeP
teD1

p.sxjxte /p.se
y jyte /.yte � xte /

TeP
teD1

p.sxjxte /p.se
y jyte /

(4.24)

where p.sxjxte / the posterior probability of Gaussian sx with respect to clean vector
xt . Similarly p.se

y jyte / is the posterior probability of Gaussian se
y with respect

to noisy vector yt . These can be easily calculated using Eqs. (4.20) and (4.17),
respectively as follows

p.sxjxte / D p.xte jsx/p.sx/

MP
sxD1

p.xte jsx/p.sx/

(4.25)

p.se
y jyte / D p.yt jse

y/p.se
y/

MP
se
yD1

p.yt jse
y/p.se

y/

(4.26)

The resultant MMSE estimate Oxt is computed as a weighted sum of all of the basic
environment bias vector transformations.

Oxt D EŒxjyt � D yt �
X

e

MX

se
yD1

MX

sxD1

r.sx; se
y/p.ejyt /p.se

y jyt /p.sxjse
y; yt ; e/

(4.27)

The above equation introduces a new factor p.sxjse
y; yt ; e/ known as cross prob-

ability model. It compensates for the mismatch that occurs when the Gaussian
component sx associated with clean vector xt is different from the Gaussian
component se

y associated with corresponding noisy vector yt . For simplicity the
time dependency with yt is omitted, and the resultant factor p.sxjse

y; e/ is estimated
using relative frequency of occurrence. It is calculated as the ratio of the number of
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times the most probable pair of decoded Gaussians are fsx; se
yg and the number of

times se
y is decoded singly. The resultant form is as follows

p.sxjse
y; e/ D

TeP
teD1

p.sxjxte /p.se
y jyte /p.sx/p.se

y/

TeP
teD1

MP
sxD1

p.sxjxte /p.se
y jyte /p.sx/p.se

y/

(4.28)

The single environment version of MEMLIN is often termed as Multivariate Model
based Cepstral Normalization (MMCN). It can be easily deduced that in case of
single environment, the variable e can be omitted which simplifies most of the above
equations. In such case the factor p.ejyt / can be entirely ignored. The scope of
the present work is restricted to the single-environment version of MEMLIN i.e.,
MMCN.

4.3 SFC Using Joint Probability Models

The only apparent drawback of the independent probability model based SFC
methods is the determination of the additive terms which may turn out be inaccurate
in degraded environmental conditions. Alternatively, joint probability modeling can
be used for feature compensation provided sufficient training data is available.

Figure 4.2 illustrates the independent probability model based SFC process. The
main steps of the process can be outlined as follows
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Estimated Clean vectors
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Fig. 4.2 Stochastic feature compensation using joint probability models
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1. The noisy and clean training vectors are concatenated to produce joint vectors (Z)
2. The joint vectors are modeled using a single GMM which represents the joint pdf
3. The conditional pdf is derived using parameters of the joint pdf.
4. Given a noisy test vector Y 0t , a clean vector X 0t is obtained based on MMSE or

maximum likelihood estimate (MLE).

Two standard joint probability model based SFC methods are discussed in the
following sections

4.3.1 Stereo-Based Stochastic Mapping (SSM)

The main idea of the SSM algorithm [13] is to estimate the joint probability distribu-
tion of noisy and clean feature spaces instead of modeling them independently. This
eliminates the need for training the hypothesized additive bias term ‘r’ for each
GMM component as employed by previous methods like SPLICE or MEMLIN.
Unlike previous methods, concatenated pair of noisy and clean feature vectors are
used as training data for GMM building. The desired transformation parameters
are derived from the joint probability model (GMM) during the training phase. The
improvement in performance accuracy is associated with a demand of larger amount
of training data for estimating the model parameters in a higher dimensional space.
The clean speech estimated during evaluation phase ( Ox), can be derived iteratively
using MAP estimation or non-iteratively using the MMSE criterion. The scope of
the present discussion is restricted to the MMSE version of the SSM for the ease
of comparison with earlier methods. The details of the algorithm is described in the
remaining part of this subsection.

As usual let’s consider a pair of d dimensional clean and noisy feature vector
xt and yt , respectively. A joint vector zt of dimension 2d is constructed as zt D
ŒyT

t ; xT
t �T . The joint vectors are modeled using a GMM �.z/ as follows

p.zt / D
MX

jD1

wz.j /N .zt I �z.j /; ˙z.j // (4.29)

where

�z.j / D
�
�y.j /

�x.j /

�
; ˙z.j / D

�
˙yy.j / ˙yx.j /

˙xy.j / ˙xx.j /

�
(4.30)

This model is similar to those defined in Eqs. (4.2) and (4.3). The mean vector �z.j /

for component j is now a concatenation of individual mean vectors �y.j / and
�x.j /. The composition of the covariance matrix ˙z.j / can be similarly related.
˙yy.j / and ˙xx.j / are the covariance matrices for the j th component of the noisy
and clean GMMs, respectively. Apart from these, ˙yx.j / and ˙xy.j / denote the
cross-covariance matrices of y and x for the j th GMM component. The GMM is
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trained with the standard EM algorithm using the joint vectors z. The training stage
essentially comprises deriving the model parameters by partitioning the matrices
�z.j / and ˙z.j / as shown above. During the evaluation stage, the partitioned
parameters are used to formulate the conditional pdf p.xt jyt / required for the
MMSE-based prediction of Oxt as defined in Eq. (4.1). Unlike previous methods,
mathematical derivations show that without any approximations the conditional
pdf is another GMM where the mixture weights are posterior probabilities of each
Gaussian component with respect to y [14].

p.xt jyt ; �.z// D
MX

jD1

p.j jyt ; �.Z//p.xt jyt ; j; �.z// (4.31)

where

p.j jyt ; �.z// D wy.j /N .yt I �y.j /; ˙yy.j //

MP
jD1

wy.j /N .yt I �y.j /; ˙yy.j //

(4.32)

p.xt jyt ; j; �.Z// D N .xt I Ex.j; t/; Dx.j // (4.33)

The mean vector Ex.j; t/ and covariance matrix Dx.j / of the j th Gaussian in the
conditional pdf are defined as

Ex.j; t/ D �x.j / C ˙xy.j /˙yy.j /�1.yt � �y.j // (4.34)

Dx.j / D ˙xx.j / � ˙xy.j /˙yy.j /�1˙yx.j / (4.35)

Given a noisy test vector yt , its equivalent clean estimate bxt can be then derived by
the MMSE predictor as follows

bxt D EŒxt jyt �

D
Z

X

xt p.xt jyt ; �.z//dxt

D
Z

X

MX

jD1

xt p.j jyt ; �.Z//p.xt jyt ; j; �.z//dxt

D
MX

jD1

p.j jyt ; �.Z//Ex.j; t/ (4.36)

The principle of SSM is similar to SPLICE except for the joint probability
distribution of noisy and clean feature spaces. In fact SPLICE with MMSE predictor
reduces to its SSM counterpart if the cross-correlation of clean and noisy data is
taken into account. SSM bears close resemblance to other model-based non-linear
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transformation methods like Constrained MLLR [15]. However the difference lies in
the fact that the transformations in SSM are learned offline during the training phase
while those in case of CMLLR, are done online during evaluation. A comparative
study of SSM and other contemporary feature compensation methods can be found
in [13].

4.3.2 Trajectory-Based Stochastic Mapping (TRAJMAP)

The MMSE estimator of SSM as discussed in Sect. 4.3.1 is a mixture of linear
transforms weighted by the posterior probability of each GMM component. The
parameters for the linear transform are derived from the joint distribution of
both spaces. The approach is similar to any conventional GMM-based mapping
techniques which has diverse applications [16]. However, a distinct drawback of
such frame-wise mapping frameworks is that they fail to capture the correlation of
features in the entire sequence. This results in inappropriate dynamic characteristics
and an excessively smoothed spectra. The cepstral trajectory based GMM mapping
(TRAJMAP) algorithm [17, 18] addressed this drawback by applying a Hidden
Markov Model (HMM)-based parameter generation algorithm [19] with dynamic
features, to the GMM-based mapping framework. Instead of individual frame-
wise mapping, an entire sequence of frames (cepstral trajectory) is transformed in
parallel. This approach had shown promising results for both noise-compensation
[18] and voice conversion applications [17], in past. A fundamental assumption
of the TRAJMAP algorithm is that despite noise corruption underlying spectral
properties of a speaker remain preserved. The algorithm is used to learn a mapping
function from a sequence of vectors in a speaker’s noisy utterance to the correspond-
ing sequence of clean vectors in the stereo training data. Mathematical details of the
TRAJMAP transformation framework [17] is discussed in the remaining part of the
section.

The cepstral vector trajectory is represented by a sequence of clean MFCC
vectors X and noisy MFCC vectors Y where X and Y together constitute the stereo
training data.

X D ŒXT
1 ; XT

2 ; : : : XT
T �T (4.37)

Y D ŒY T
1 ; Y T

2 ; : : : Y T
T �T (4.38)

where T denotes the total number of vectors in the sequence. Individual vectors of
each sequence are a concatenation of the static MFCC, its delta and acceleration
coefficients. Each vector in the above sequence are 3d dimensional considering
static MFCC vectors of d dimension,

Xt D ŒxT
t ; �xT

t ; �2xT
t �T (4.39)

Yt D ŒyT
1 ; �yT

t ; �2yT
t �T (4.40)
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The GMM �.Z/ of the joint pdf p.Zt j�.Z// is trained by a concatenated pair of clean
and noisy vector (Zt ) from the stereo training data where Zt D ŒY T

t ; XT
t �T . The aim

to map the noisy MFCC trajectory Y to its clean counterpart X. This is achieved by
maximizing the following likelihood function

p.XjY; �.Z// D
X

j

p.jjY; �.Z//p.XjY; j; �.Z//

D
TY

tD1

MX

jD1

p.j jYt ; �.Z//p.Xt jYt ; j; �.Z// (4.41)

where j D fj1; j2 : : : jTg is a mixture component sequence. The conditional pdf at
each frame is modeled as a GMM. At frame t , the j th mixture component weight
p.j jYt ; �.Z// and the j th conditional probability distribution p.Xt jYt ; j; �.Z// are
given by the following expressions

p.j jYt ; �.Z// D wY
j N .Yt I �Y

j ; ˙Y Y
j /

PM
jD1 wY

j N .Yt I �Y
j ; ˙Y Y

j /
(4.42)

p.Xt jYt ; j; �.Z// D N .Xt I EX
j;t ; DX

j / (4.43)

where

EX
j;t D �X

j C ˙XY
j .˙Y Y

j /�1.Yt � �Y
j / (4.44)

DX
j D ˙XX

j � ˙XY
j .˙Y Y

j /�1˙YX
j (4.45)

The notations for conditional mean and conditional covariance used in Eqs. (4.44)
and (4.45) are similar to the ones discussed earlier in Sect. 4.3.1.

The task is to estimate a sequence of clean vectors OX from the entire sequence
of noisy feature vectors Y. This is achieved in two stages. In the first stage, a
HMM-based parameter generation algorithm [19] is used to convert Y to the static
MFCC parameters Ox. In the next stage, the delta and acceleration coefficients are
derived from each static MFCC vector of Ox and concatenated with itself to obtain
the resultant sequence OX . In contrast to the MMSE-based methods, the derivation
of Ox is based on a maximum likelihood estimate (MLE) as follows

Ox D arg max
x

p.XjY; �.Z// (4.46)

where Ox D Œ OxT
1 ; OxT

2 ; : : : ; OxT
T � is the sequence of estimated static feature vectors. A

matrix W of dimension 3dT�dT is defined such that it converts the static sequence
Ox to the expanded sequence OX as follows

OX D W Ox (4.47)



4.3 SFC Using Joint Probability Models 63

where OX is the sequence of denoised MFCC vectors with dynamic (delta and
acceleration) co-efficients as defined in Eqs. (4.38) and (4.40). The composition of
the matrix W is discussed as follows

W D ŒW1; W2; : : : Wt ; : : : WT�T ˝ IDXD (4.48)

Wt D Œw.0/
t ; w.1/

t ; w.2/
t � t D 1; 2; : : : T (4.49)

w.n/
t D Œ

1st
0 ; : : : ; 0;

.t � L.n/� /th

w.n/.�L.n/� /; : : : ;

.t C L
.n/
C /th

w.n/.L
.n/
C / ; : : : ;

.t/th

w.n/.0/; : : : ;
T-th

0 �T n D 0; 1; 2

(4.50)

In Eq. (4.48), each submatrix Wt is of size T � 3 and ‘˝’ denotes the Kronecker
product. In Eq. (4.50), w.n/.�/ denotes the weights required for calculating the
�n MFCC coefficient for the .t C �/th time frame. � varies in a frame span
of Œ�L.n/� ; L

.n/
C � as shown in the following equations (L.0/

C D L.0/� D 0 and
w.0/.0/ D 1)

�xt D
L

.1/

CX

�D�L
.1/
�

w.1/.�/xtC� (4.51)

�2xt D
L

.2/

CX

�D�L
.2/
�

w.2/.�/xtC� (4.52)

The maximum likelihood estimate in Eq. (4.46) is solved by an EM algorithm
which iteratively maximizes an auxillary function with respect to Ox as follows

Q.X; OX/ D
X

j

p.jjY; X; �.Z// log.p. OX; jjY; �.Z/// (4.53)

The sequence of vector Ox obtained as a solution of Eq. (4.53) is given by

Ox D .WT .DX/�1W/�1WT .DX/�1EX (4.54)

where

.DX/�1 D diagŒ.DX
1 /�1; .DX

2 /�1; : : : ; .DX
t /�1; : : : ; .DX

T /�1� (4.55)

.DX/�1EX D Œ.DX
1 /�1EX

1

T
; .DX

2 /�1EX
2

T
; : : : ; .DX

t /�1EX
t

T
; : : : ; .DX

T /�1EX
T

T
�T

(4.56)
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.DX/�1 in Eq. (4.55) is a block diagonal matrix of size 3dT � 3dT while
.DX/�1EX in Eq. (4.56) is a vector of size 3dT � 1. The individual constituents
of the matrices i.e., .DX

t /�1 and .DX
t /�1EX

t are given by

.DX
t /�1 D

MX

jD1

�j;t .D
X
j /�1 (4.57)

.DX
t /�1EX

t D
MX

jD1

�j;t .D
X
j /�1EX

j;t (4.58)

�j;t D p.j jYt ; Xt ; �.Z// (4.59)

Detailed derivation of Eq. (4.54) is provided in Appendix A. The solution Ox is only
a sequence of static MFCC vectors i.e., a vector of size dT � 1. The full sequence
with delta and acceleration coefficients appended with the resultant vector can be
obtained by a simple linear operation W Ox.

4.4 Development of Proposed SV Systems

All experiments are carried out in the NIST-2003-SRE database [20] introduced
in Chap. 3. The data consists of single training utterances of approximately 2 min
length from each of 356 enrolled speakers and 3,500 test utterances (approximately
10–15 s each) for evaluation. The purpose of present work is to address the issue
of speaker verification in mismatched condition where a speaker enrolls in a clean
environment whereas during verification his/her speech is corrupted by background
noise. However stereo-data based techniques as described in Sect. 4.1 require
simultaneous recording of a speaker’s training data over two channels i.e., one
in clean condition and the other in a noisy environment. Due to unavailability
of such data, the noisy utterances used in the present work were simulated by
corrupting the clean speech utterances of the NIST-SRE-2003 by different types
of additive noises. The approach is motivated by synthetic generation of stereo-data
as described in [21]. The standard GMM-UBM framework was used for speaker
verification [22]. Figure 4.3 shows the block diagram of the feature compensation
process in a GMM-UBM based speaker verification system. The various stages of
the SV system development are discussed in the following sections.

4.4.1 Simulation of Background Environment

Four additive noises (i.e., car, factory, pink and white) collected from the NOISEX-
92 database [23] were used for representing unique background environments. The
speech segment from each of the 356 enrolled speakers was degraded by adding a
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Fig. 4.3 Block diagram of the feature compensation process in the speaker verification system

specific type of noise at 0 and 5 dB SNRs, respectively. The noise level was scaled to
maintain the desired SNRs of the reconstructed speech segments. Eight different sets
of noisy training utterances were obtained (one for each noise at a particular SNR).
The default training set of the NIST-SRE-2003 was used as the clean recordings.

All test utterances were similarly reconstructed by noise addition at the two
SNRs. Each set of noisy utterances were used for the following sets of experi-
ments.

1. Mismatched Condition: The noisy test utterances were evaluated against speaker
models built from clean training data.

2. Matched Condition: The noisy test utterances were evaluated against speaker
models built from noisy training data.

3. Feature compensated: The noisy test utterances were subjected to feature
enhancement prior to evaluation against clean speaker models. Each of the
four feature compensation techniques discussed in Sect. 4.1 were compared
with the above two conditions and the proposed method, on the basis of their
performance.

The simulated stereo training data was used for front-end GMM training as
discussed later in Sect. 4.4.3. For comparing relative improvements in performance
accuracy produced by the various feature compensation schemes, the SV systems
under mismatched conditions have been considered as a baseline.
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4.4.2 Feature Extraction and Speaker Modeling

The feature extraction and speaker modeling process are identical to that used in the
GMM-UBM framework described in Chap. 3. Standard MFCC coefficients were
used as features. After pre-emphasis and an energy-based voiced activity detection,
39-dimensional feature vectors (consisting of 13 MFCCs C � C �� excluding
C0) derived from a 26 channel mel-scaled filterbank, were extracted from speech
frames of 20 ms with a frame-overlap of 10 ms. All feature vectors were subjected to
cepstral mean subtraction followed by cepstral variance normalization. The resultant
distribution was scaled to zero mean and unit variance. In the remaining part of the
chapter, the MFCC feature vectors extracted from the noisy training data and its
clean counterpart are referred as ‘noisy vectors’ and ‘clean vectors’, respectively.

Acoustic modeling using the standard GMM-UBM framework was performed
in two stages i.e., construction of a Universal Background Model (UBM) and the
target speaker models. Twenty hours of speech collected from the SwitchBoard II
corpus was used to construct a 1,024-component GMM offline using 200 iterations
of the EM algorithm. The target speaker models (GMMs) were derived by MAP
adaptation of the UBM using each enrolled speaker’s training data. The process was
repeated twice, once each for the clean and noise-degraded speech of the stereo
training data. The clean speaker models were used for evaluation in the mismatched
condition as well as the feature compensated conditions.

4.4.3 Feature Compensation

The two basic stages of the feature compensation process are discussed below.

• Front-end GMM Training: The stereo training data corresponding to each
speaker was used for building speaker-specific front-end GMMs prior to feature
enhancement. For RATZ, SPLICE and MMCN, a pair of 8-component GMMs
(clean and noisy) with diagonal covariance matrices were constructed for each
speaker using the standard EM algorithm.

For SSM and TRAJMAP, individual pairs of noisy and clean MFCC vectors
in the aligned sequence were first concatenated to create a single sequence of
78-dimensional MFCC vectors. The joint vectors were used to build speaker
specific 8-component GMMs with full covariance matrices. The number of com-
ponents for the GMMs were empirically determined according to the available
training data. However in practical applications without training data constraints,
higher number of components can be explored. The conditional GMM parame-
ters required for SSM and TRAJMAP were derived using Eqs. (4.34), (4.35) and
(4.44), (4.45), respectively.

• Feature Enhancement: Each noisy test feature vector was transformed using
the front-end GMM parameters of each of the 11 target speaker models specified



4.4 Development of Proposed SV Systems 67

for the evaluation phase of the NIST-2003 primary task. In contrast to the actual
evaluation process, each of the 11 transformed vectors were scored against the
corresponding speaker model and the UBM.

The corrective bias vectors of the mean and covariance terms for RATZ were
estimated using Eqs. (4.8) and (4.9), non-iteratively. This was followed by the
MMSE predicted value given by Eq. (4.10). Only the noisy front-end GMMs
trained as in Eq. (4.3) were used to estimate the bias vectors for SPLICE as
given by Eqs. (4.13) and (4.14). This was followed by the MMSE estimate
given by Eq. (4.16). The simplified single environment version of MEMLIN i.e.,
MMCN was used for feature enhancement. The posterior probability factor for
each environment given by Eq. (4.22) could thus be entirely omitted. The cross
probability model (Eq. 4.28) and the MMSE predictor (Eq. 4.27) were likewise
simplified. MMSE estimates for SSM and the MLE estimate for TRAJMAP were
calculated using Eqs. (4.36) and (4.54), respectively. The static MFCCs obtained
from TRAJMAP were concatenated with the delta and acceleration coefficients
to yield the resultant 39-dimensional vector.

4.4.4 Effect of Feature Compensation in Cepstral Domain

Effectiveness of the stochastic feature compensation methods is demonstrated by a
set of plots which highlight some characteristics of the transformed and distorted
MFCC features. Since the lower order MFCC coefficients represent the broad
spectral shape, the first MFCC coefficient has been considered without loss of
generality for demonstrating the impact of feature compensation. Figure 4.4a shows
the histogram of the first MFCC coefficients of an arbitrary test speech utterance
from the NIST-2003-SRE and its equivalent noisy signal obtained by white noise
addition at 0 dB SNR. Figure 4.4b–f shows the effect of enhancing the noisy utter-
ance by applying various feature compensation algorithms. Since the feature vectors
were mean and variance normalized, both the distributions are centered around
zero. However the area under the overlapping region of the curves is a measure
of accuracy in the conversion process. A fully overlapped curve would suggest the
ideal situation of perfect conversion. The distortion caused by noise statistics can be
observed in Fig. 4.4a in which the peak of noisy distribution is significantly skewed
towards the left. The skewness shows a gradual reduction after the application
of feature compensation algorithms. The shape of the transformed (compensated)
distributions is similarly affected by noise addition. The simple noisy distribution
shows arbitrary changes in the spectral shape as seen in several regions of the curve.
The change in spectral shape is negligible in case of RATZ with minor differences at
the peak region. The change in the noisy distribution shows more prominence in case
of SPLICE and MMCN. A spectral smoothening effect can be observed at the peak
regions for the SPLICE and MMCN-compensated distributions, respectively with
slightly more overlap in case of the former. The SSM and TRAJMAP compensated
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Fig. 4.4 Histograms of the first MFCC coefficient of a clean test speech signal (red) and the same
signal contaminated with white noise at 0 dB (blue) (a) without feature compensation and with
feature compensation using (b) RATZ (c) SPLICE (d) MMCN (e) SSM and (f) TRAJMAP

distributions shows comparatively higher resemblances with the clean distribution.
The significant increase in the overlapping area of the histograms is apparent. The
changes are also reflected on the spectral shape which shows that the transformed
distribution captures minute similarities at the peak region.
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colored red

Figure 4.5a–f shows the scatter plots between the first MFCC coefficients (C1)
of the given test utterance (x-axis) and its white noise corrupted equivalent (y-axis).
The C1s extracted from non-silence frames of the test utterance are represented
by blue circles. The black line represents the ideal condition of perfect feature
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transformation (x D y). The red line is a first order polynomial of the clean
feature vectors which best fits the noisy feature vectors in a least square sense.
The imperfections in the transformation process can be inferred from the deviation
between the two lines in a figure. The distortion of the cepstral distribution due
to the addition of white noise is apparent from Fig. 4.5a in which the two lines
are significantly deviated from each other. The spread of the data (blue dots)
across the black line is a measure of the covariance of the clean and noisy data.
Significant changes in the scatter plots can be observed after the application of the
feature compensation algorithms. The increased covariance of data is noticed in
case of SPLICE and MMCN where the deviation between the red and black lines is
relatively lower compared to RATZ. SSM and TRAJMAP shows the best fit in terms
of covariance of the given data with the latter showing marginal improvements over
the former. Despite outliers most of the data points are considerably aligned along
the line of best fit with very little noticeable deviation.

4.4.5 Performance Evaluation

All experiments were performed in mismatched, matched and compensated condi-
tions each of which has been discussed in Sect. 4.4.1. The NIST-2003 primary task
was carried out in which each noisy test utterance was evaluated against 11 target
speaker models (GMMs). The equal error rate (EER) and minimum DCF (MinDCF)
values were used as metrics for performance evaluation.

Figures 4.6 and 4.7 show the DET curves of the SV systems in various conditions,
with background noise at 0 and 5 dB SNRs, respectively. The summary of the
performance of SV systems in different noisy background is shown in Table 4.1.
A quick observation reveals a general order of precedence of the SV performance
accuracy in terms of EER values i.e., mismatched, RATZ, matched, MMCN,
SPLICE, SSM and TRAJMAP. The pattern is also valid for the MinDCF values
except for the fact that they often do not show a monotonic decrement across the
various methods. The only exception to this order is seen in case of car noise at 0 and
5 dB SNRs. The mismatched condition expectedly shows the worst case scenario
in every noisy environments with an average EER of 29.93% across all of them
for both SNRs. This is in conformity with the known fact that noise degradation
causes arbitrary changes in the clean feature distributions due to which noisy test
utterances yield poor scores during the pattern matching stage. The performance
of the RATZ compensation scheme shows minor improvement over the baseline
(mismatch) with an average decrement of 3.07 % EER. Interestingly, the matched
condition in most cases outperform RATZ. A possible explanation to this behavior
is the invalidity of the posterior invariance assumption in low SNR conditions as
discussed in Sect. 4.2.1. The effect of feature normalization using posterior proba-
bility of the noisy MFCC vectors with respect to clean Gaussian components has
other interesting implications. As discussed in Sect. 4.2.3, the MEMLIN algorithm
(multienvironment version of MMCN), uses both noisy and clean GMMs as inputs,
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Fig. 4.6 DET plots for the SV systems developed using the features derived from SFC methods
in uniform background environment containing (a) car noise (b) factory noise (c) pink noise and
(d) white noise at 0 dB SNR

thus incorporating both types of posterior probabilities in the final transformation.
However, contrary to known facts, the SPLICE algorithm performs moderately
better than the MMCN algorithm with an average improvement of 1.62 % EER for
factory, pink and white background environments. The improvement is consistent
in case of MinDCF values and more pronounced in case of factory, pink and
white noises. There are two possible justifications to this phenomenon. Firstly, the
inclusion of the inaccurate clean Gaussian posteriors in estimating the corrective
vectors and secondly, an oversimplified cross probability model which excludes the
environment factor ‘e’ from the final transformations, as discussed in Sect. 4.2.3.
It is interesting to note that this effect is in conformity with the anomalous behavior
of the SV performances observed in case of car noise. Unlike the other background
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Fig. 4.7 DET plots for the SV systems developed using the features derived from SFC methods
in uniform background environment containing (a) car noise (b) factory noise (c) pink noise and
(d) white noise at 5 dB SNR

noises, in case of car environment, it is observed that the performance in mismatched
condition is only slightly worse than that of the matched one with an average drop
of 2.67 % EER across both SNRs. In this case, the positive effect of clean Gaussian
components in normalization, is also reflected by the considerable improved SV
performances of RATZ and MMCN in comparison to the matched condition and
SPLICE, respectively.

The SSM and TRAJMAP shows a significant improvement in performance
compared to the other algorithms with a large margin of difference in terms of EER
and MinDCF. In comparison to SPLICE, an average EER reduction as high as 9.37
and 10.32 % is obtained for SSM and TRAJMAP, respectively. The improvement is
consistent even in the case of the anomalous car noise in which TRAJMAP is seen
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Table 4.2 Relative equal error rates of the proposed SV systems developed using the
features derived from SFC methods

Feature
compensation
methods

Relative equal error rate (EERR) %

0 dB SNR 5 dB SNR

Car Factory Pink White Car Factory Pink White

RATZ 30.32 5.35 4.66 3.58 35.99 7.18 9.05 4.07
SPLICE 47.69 26.67 31.90 29.98 52.17 31.97 37.11 38.11
MMCN 51.63 19.09 27.33 25.91 55.80 29.13 33.73 32.44
SSM 63.07 70.05 68.55 68.76 66.11 65.12 63.87 67.48
TRAJMAP 63.74 77.73 72.30 71.63 66.16 70.39 70.12 69.32

to perform moderately better than the SSM algorithm. The MinDCF values which
varied in the range of 0.099–0.085 are reduced to the range 0.045–0.078. Compared
to SSM, an EER drop as high as 1.9% is noticed in case of pink noise at 5 dB SNR,
while the other cases closely follow by with reductions of 1.43% for factory noise at
5 dB, 1.31% for pink noise at 0 dB and 1.12% for white noise at 0 dB, respectively.
The EER variance for TRAJMAP from 0 to 5 dB SNRs is much lower than the rest
of the compared cases. This is an indication of the suitability of its application for
SV tasks which are robust to SNR changes.

In order to demonstrate the performance improvement of the feature compen-
sated SV framework over the baseline SV system in terms of EER, the ‘Relative
Equal Error Rate’ (EERR) given by EERR D .EERB�EERV /

EERB
� 100 % is calculated

where EERB and EERV are the equal error rates for the baseline and proposed SV
systems, respectively. Table 4.2 shows the relative EER values of the proposed SV
systems for different background environments.

The overall performance improvement gained by the use of feature compensation
algorithms is apparent. An average relative EER of 12.52 % for RATZ, 37.07 % for
SPLICE, 34.39 % for MMCN, 66.68 % for SSM and 69.67 % for TRAJMAP across
all noisy environments is obtained.

4.5 Summary

In this chapter we demonstrated the significance of stochastic feature compensation
methods for robust speaker verification in noisy environment. The effectiveness of
the these data-driven methods was demonstrated for speaker verification in different
simulated noisy environments. Recent state-of-the-art algorithms based on joint
GMM modeling of clean and noisy data (i.e., SSM, TRAJMAP) were found to
outperform well known algorithms like SPLICE and MMCN in terms of EER and
minDCF metrics of speaker verification. The overall best performance was observed
in case of the TRAJMAP method, which thereby suggests significance of dynamic
feature correlation and robustness of long-term utterances towards background
noise. Synthetic noisy data and clean utterances were used instead of actual stereo
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data in all experiments. For a better evaluation of the proposed method, actual stereo
data may be used in future work. Data from real life environments at various other
SNRs may be used instead of artificially constructed noisy data for a better insight
into the efficiency of the proposed method.
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Chapter 5
Robust Speaker Modeling for Speaker
Verification in Noisy Environments

Abstract The present chapter explores robust speaker modeling methods for
speaker verification in noisy environment. The focus is specifically laid on building
hybrid classifiers based on the combination of generative and discriminative models
(e.g., Gaussian Mixture Models (GMMs) and Support Vector Machines (SVMs)).
For improving the performance of the proposed speaker verification systems,
utterance partitioning methods are used. The discussion is closely followed by
state-of-the-art variants of GMM supervector based approaches (i.e., i-vectors) and
algorithms for combining robust classifiers.

The application of stochastic feature compensation for speaker verification (SV)
as studied in Chap. 4, is associated with certain drawbacks. Firstly, it depends on
the availability of stereo data which is expensive to acquire. Secondly, a priori
knowledge about a speaker’s test environment is assumed i.e., the background
environment during evaluation should be reflected in the stereo training data. Lastly,
substantial amount of data may be required for the joint probability modeling
techniques. However, in real-life scenarios the test environments are often unknown
and time-varying (non-stationary). SV applications deployed in hand-held devices
are additionally expected to perform in real-time with minimal data requirements.

As an alternative strategy, model compensation and robust speaker modeling
methods can be explored. The role of these two methods have been briefly explained
in Chaps. 1 and 2, respectively. We had also emphasized on certain limitations of the
conventional model compensation methods such as requirement of clean speaker
models, dependence on a mathematical representation of the noise corruption
process. Additionally, popular model compensation methods like Parallel Model
Combination demand substantial amount of training data and high computational
resources which may not be frequently available.

The present chapter explores robust speaker modeling methods for SV in noisy
environment. The focus is specifically laid on building hybrid classifiers based on
the combination of generative and discriminative models (e.g., Gaussian Mixture

K.S. Rao and S. Sarkar, Robust Speaker Recognition in Noisy Environments,
SpringerBriefs in Electrical and Computer Engineering,
DOI 10.1007/978-3-319-07130-5__5, © The Author(s) 2014
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Models (GMMs) and Support Vector Machines (SVMs)). The discussion is closely
followed by state-of-the-art variants of GMM supervector based approaches (i.e.,
i-vectors) and algorithms for combining robust classifiers.

5.1 GMM-SVM Combined Approach for Speaker
Verification

The traditional GMM-UBM based speaker verification system requires a Univer-
sal Background Model (UBM) [1] and a Maximum aPosteriori (MAP) adapted
Gaussian Mixture Model (GMM) to represent the impostor and actual speaker
classes, respectively. During the evaluation stage, a test utterance is classified
based on its statistical similarities with the claimed target speaker model (GMM)
and the background model (UBM). Gaussian Mixture Models (GMMs) are exten-
sively applied for speaker modeling due to their strong probabilistic framework,
scalability to large training sets and high recognition accuracy. GMMs belong to
the family of generative models in which each speaker is modeled individually.
Performance accuracy of a SV system is usually increased when these generative
models are brought into a discriminative framework using Support Vector Machines
(SVMs) [2].

SVMs have been established as an effective discriminative classifiers for speaker
recognition tasks [3]. Through a non-linear function (i.e., kernel) a SVM maps
input vectors to a high dimensional space where classes are more likely to be
linearly separable [4]. However, fixed length representation of utterance is crucial
for SVM training in order to avoid large target models and slow scoring. This had
initially led to concept of ‘sequence kernels’[5] where variable length utterances
were mapped to fixed length vectors. A robust representation was proposed later
in which fixed size ‘supervectors’ constructed by stacking the means of MAP
adapted GMMs were used as an input to SVM kernels [2]. Conventionally, a
GMM based system calculates log-likelihood probabilities (scores) of features
extracted at a frame level. In contrast, supervectors provide numerical comparison
of speech utterances as an entire sequence rather than frame-wise probabilities thus
preserving information which can be otherwise discarded in the frame-level [5].
Supervectors are attractive due to a number of reasons. Besides providing a
high-dimensional representation for SVM classification, supervectors can distinctly
characterize speaker and channel information [6]. Additionally, they can be used to
compensate for channel and session variabilities [7]. In this chapter we shall explore
the robustness of supervector based speaker modeling approaches for SV in noisy
environment. In the following sections we briefly introduce SVMs and describe the
process of integrating GMM supervectors in the SVM framework. Figure 5.1 shows
the various stages of a GMM-SVM based SV system, each of which are elaborated
in the remaining part of the section.
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Fig. 5.1 Block diagram of the GMM-SVM framework for speaker verification

5.1.1 Support Vector Machines

A support vector machine (SVM) is a binary classifier [4]. Using labeled training
vectors, a SVM optimizer finds a decision hyperplane that maximizes the margin
of separation between two classes (target speaker and impostor). The classifier
equation is given as follows:

y.x/ D
LX

iD1

˛i ti K.xi ; x/ C d (5.1)

where ˛i > 0 are the Lagrange multipliers and xi are the Support vectors. Both
these parameters are learned during the optimization process. ti 2 {�1; C1} are the
training labels, K is the desired kernel mapping and d is a bias parameter. For any
input vector x the actual output y.x/ is compared with a decision threshold for final
classification. The kernel function is constrained to satisfy the Mercer’s conditions
[4], so that they can be expressed as

K.x; y/ D S.x/T S.y/ (5.2)

where S.x/, S.y/ are high dimensional mappings for inputs x and y, respectively.

5.1.2 Construction of GMM Supervectors

The GMM-UBM framework for SV was discussed in Chap. 3. During enrollment,
the pre-estimated parameters of the UBM (i.e., mean and covariance (optionally))
are modified by MAP adaptation using a target speaker’s utterance to produce
speaker specific GMMs given by the following equation
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p.x/ D
MX

iD1

wiN .xI mi ; ˙i / (5.3)

where mi , ˙i denotes the mean and covariance of the i th multivariate Gaussian
component N ./ and M is the total number of GMM components. The high-
dimensional vector obtained by concatenating the mean vectors mi of each Gaussian
is generally termed as a supervector. Therefore D dimensional feature vectors
in the input space are converted to a single M � D dimensional supervector
irrespective of the number of feature vectors available. In other words, this process
transforms variable length utterances to a unique fixed-size vector which carries
speaker information. This representation is in conformity with Eq. (5.2) where two
arbitrary utterances a and b from the input space can be compared in the supervector
space using the relation K.a; b/ D S.a/T S.b/, where K is the kernel function and
S.a/, S.b/ are the supervectors obtained from utterances a and b, respectively. The
supervector construction process can be summarized as follows [8]

1. A target speaker GMM is obtained by MAP adaptation of the UBM using the
speaker’s enrollment utterance.

2. A kernel function is used to transform parameters of each GMM component
to a fixed length vector. The vector corresponding to the i th GMM component
constitutes the i th subvector of a supervector.

3. All the subvectors are concatenated to obtain a high-dimensional supervector.

5.1.3 SVM Kernels

The main design component in an SVM is the kernel, which is an inner product
in the SVM feature space. The basic goal in SVM kernel design is to find an
appropriate metric in the SVM feature space relevant to the classification problem.
In this section we define the kernels used in our work.

5.1.3.1 KL Divergence Kernel

The Kullback Leibler divergence (KL div) is a non-symmetric distance measure
between two probability distributions. Given two distributions pa and pb , the KL
divergence between them is defined as

DKL.pa; pb/ D
Z

pa.x/ log

�
pa.x/

pb.x/

�
dx (5.4)

However the KL divergence doesn’t satisfy the Mercer’s condition for a valid kernel.
As a solution a symmetrized version of the KL divergence, obtained by bounding
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the expression by log-sum inequality was proposed as a kernel in [2]. The final
version was a linear function of two MAP adapted GMMs pa and pb corresponding
to utterances a and b. Ignoring adaptation of the UBM covariance matrix ˙u

i and
weights wi , the resulting Kernel is given by

KKL.pa; pb/ D
MX

iD1

.
p

wi .˙
u
i /�1=2ma

i /T .
p

wi .˙
u
i /�1=2mb

i / (5.5)

where ma
i and mb

i are the i th component means of pa and pb respectively. Thus the
i th subvector of the GMM supervector for any utterance � is given by

s�
i D p

wi .˙
u
i /�1=2m�

i i D 1; 2; : : : ; M

The final supervector obtained by concatenating the subvectors is given by S� D
ŒsT

1 ; sT
2 ; : : : sT

M �T .

5.1.3.2 GMM-UBM Mean Interval Kernel

The Bhattacharya distance between two probability distribution pa and pb is
given by

DBhat t .pa; pb/ D
Z p

pa.x/pb.x/dx (5.6)

For multivariate Gaussian distributions, computing this measure requires estimation
of the covariance matrices which in turn demands a high amount of training data.
Hence this measure is avoided in practical scenarios. However, it was shown
in [9] that second order statistics derived from limited amount of training data
could provide supplementary discriminative information, when used effectively.
The GMM-UBM Mean Interval (GUMI) kernel based on the Bhattacharya distance
between GMMs pa and pb , as proposed in [9] is given by

KGUMI .pa; pb/ D
MX

iD1

.mb
i � ma

i /T

�
˙a

i C ˙b
i

2

��1

.mb
i � ma

i / (5.7)

Considering the statistical similarities of a adapted speaker GMM and the UBM the
i th subvector of the GMM supervector for an utterance � is given by

s�
i D

�
˙�

i C ˙u
i

2

��1=2

.m�
i � mu

i / i D 1; 2; : : : ; M

The final supervector obtained by concatenating the subvectors is given by S� D
ŒsT

1 ; sT
2 ; : : : sT

M �T .
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5.1.4 SVM Scoring

Given a supervector Stest derived from a test utterance Xtest the Kernel scoring is
obtained as follows:

Score.Xtest / D
LX

iD1

˛i ti K.Xi ; Xtest / C d D
 

LX

iD1

˛i ti S
i

!T

Stest C d (5.8)

where Xi are the sequence of learned support vectors, Si are the supervectors
corresponding to Xi , ˛i are the non-zero Lagrange multipliers and ti 2 {�1; C1}
depending on the class of vector Xi . L is the total number of support vectors and d

is a bias term. K is either of the two kernels used and T denotes matrix transpose.

5.1.5 Experimental Setup

All experiments are conducted on the NIST-SRE-2003 database. The data consists
of single training utterances of approximately 2 min length from each of 356
enrolled speakers and 3,500 test utterances (approximately 10–15 s each) for
evaluation. The stages involved in developing the GMM-SVM based SV system
are briefly discussed in the following sections.

5.1.5.1 Background Simulation and Feature Extraction

The background simulation and feature extraction process has already been dis-
cussed in Chaps. 3 and 4. Summarily, all training and test utterance were degraded
with additive noises (car, factory, pink and white) collected from the NOISEX-92
database. Two types of background simulations were carried out viz., (i) uniform
backgrounds in which an entire utterance (training/testing) was degraded with a
particular type of noise at 0, 5 and 10 dB SNRs and (ii) varying backgrounds in
which non-overlapping segments of an utterance (training/testing) were individually
degraded with a specific type of noise at 0, 5, 7 and 10 dB SNRs. After an energy-
based voiced activity detection, 39-dimensional feature vectors (consisting of 13
MFCCs C � C �� excluding C0) derived from a 26 channel mel-scaled filterbank,
were extracted from pre-emphasized speech frames of 20 ms with a frame-overlap
of 10 ms. All feature vectors were subjected to cepstral mean subtraction followed
by cepstral variance normalization.
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5.1.5.2 Speaker Modeling

A 1,024-component GMM constructed from 20 h of speech (10 h male + 10 h
female) collected from the SwitchBoard II corpus, was used as the UBM. Three
hundred and fifty-six target speaker GMMs were obtained by MAP-adaptation of the
UBM using the noise-degraded enrollment utterances in each dataset described in
Sect. 5.1.5.1. A GMM supervector was constructed from each target speaker GMM
as described in Sect. 5.1.2. The kernels described in Sect. 5.1.3 were individually
used for mapping. The supervectors obtained were of 39,936 dimension (1,024
mixtures � 39 dim mean). For discriminative modeling each target speaker in a
dataset was distinguished from the remaining 355 background speakers (impostors).
A SVM for each speaker was trained with the speaker’s supervector labelled as C1

and the background supervectors labelled as �1, respectively. The KL divergence
and GMM-UBM mean interval kernels were used for SVM training as described in
Sect. 5.1.1.

5.1.6 Performance Evaluation

All experiments were performed in matched condition i.e., training and evaluation
phases having similar backgrounds. An additional evaluation was performed in
clean condition. The 3,500 test utterances in each noise-corrupted dataset were
transformed to supervectors prior to SVM scoring (Eq. 5.8). The NIST-2003 primary
task was carried out in which each noisy test utterance (supervector) was evaluated
against 11 target speaker models (SVMs) from the same dataset. The equal error rate
(EER) and minimum DCF (MinDCF) values were used as metrics for performance
evaluation. The standard GMM-UBM based SV systems have been used as a
baseline system for performance comparison.

Table 5.1 summarizes the performance of the various SV systems developed in
uniform noisy environments. The improvement in performance accuracy is clearly
apparent in case of the GMM-SVM based systems in comparison to the baseline.
This is manifested by a consistent reduction in EER and MinDCF values across all
12 types of noisy environments. The performance accuracy is observed to degrade
non-uniformly with decreasing SNR levels. The loss in accuracy of the GMM-SVM
based systems with increasing noise distortion, is correlated with that of the baseline
system. An average increment of 4.48, 3.69 and 3.93 % EER values is observed for
a transition from 10 to 5 dB SNR in case of the baseline, GMM-SVM (KL div)
and GMM-SVM (GUMI), respectively across all four backgrounds. The same
observation sequence for the 5 to 0 dB SNR transition shows average increments
of 2.12, 1.07 and 0.98 % EERs which indicates that the SVM based systems are
relatively more robust towards noise degradations. However the averaged metric
values does not characterize individual noise behavior. For instance we observe
fractional performance improvement in case of factory noise at 0 and 5 dB for
GMM-SVM (KL div). A general order of precedence (best to worst) of the noisy
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Table 5.1 Performance of the SV systems in uniform background environments and clean
conditions

GMM-UBM GMM-SVM (KL div) GMM-SVM (GUMI)

SNR Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 dB Car 18.04 0.071 14.32 0.063 13.82 0.058
Factory 23.17 0.089 21.27 0.086 20.32 0.086
Pink 26.65 0.097 21.23 0.087 19.92 0.085
White 30.98 0.097 22.72 0.076 22.67 0.079

5 dB Car 18.11 0.071 13.77 0.059 13.10 0.058
Factory 20.96 0.085 20.87 0.085 19.92 0.084
Pink 23.89 0.092 19.65 0.086 19.06 0.085
White 27.41 0.094 20.96 0.074 20.73 0.072

10 dB Car 15.44 0.068 12.24 0.047 11.38 0.046
Factory 16.44 0.072 14.81 0.053 14.50 0.052
Pink 18.65 0.081 15.67 0.058 15.72 0.057
White 21.91 0.087 17.75 0.065 15.49 0.067

Clean 06.93 0.033 06.72 0.030 06.44 0.030

backgrounds is noticed in terms of overall performance of the GMM-SVM based
systems. Ignoring minor exceptions in case of 0 and 10 dB SNRs the order is car,
pink, factory and white. This is in contrast with the baseline where the performance
in pink noisy background is worse than that of factory background for all SNR
levels. A comparison amongst the GMM-SVM based systems reveals that the SVMs
with GUMI kernel performs moderately better than those with KL div kernel with
an average reduction of 0.72 % EER across all environments.

Figure 5.2 shows the DET plots for the SV systems in (a) Car (b) Factory (c)
Pink and (d) White noisy backgrounds at various SNRs. The DET curves of the
GMM-UBM and GMM-SVM based systems are denoted by a set of black, red
(GUMI) and blue (KL div) lines, respectively. The red and blue lines show a shift
towards the origin indicating joint reduction of error probabilities. Additionally, a
distinct anticlock-wise rotation in the red and blue set of curves can be noticed
in comparison to the black curves (baseline) which is particularly prominent in
case of factory, pink and white noise. This characteristic suggests higher reduction
in ‘miss’ error rates compared to the ‘false alarm’ rates which is also evident
from significant reduction in MinDCF values. Table 5.2 shows the performance
improvement of the GMM-SVM based systems compared to the baseline in terms of
the ‘Relative Equal Error Rate’ (EERR) defined as EERR D EERB�EERV

EERB
� 100 %

where EERB and EERV are the EER values of the baseline (GMM-UBM) and
GMM-SVM based systems, respectively. The SV systems with KL div kernels
score average EERR values of 21.17, 6.18, 18.02 and 23.06 % for car, factory,
pink and white noisy backgrounds, respectively. The GUMI kernel based SV
systems perform even better with average EERR values of 25.78, 9.69, 20.39 and
26.83 % in the same backgrounds. Figure 5.3 shows the changes in (a) EER and (b)
Relative EER of the SV systems at different SNRs in uniform noisy environments.
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Fig. 5.2 DET plots of the SV systems in uniform background environment with (a) car (b) factory
(c) pink and (d) white noise. The black, blue and red colors indicate GMM-UBM, GMM-SVM
trained using KL div kernel and GUMI kernel, respectively

The EER values reduce consistently with increasing SNRs. However, the individual
EERR values across each SNR shows distinct behavior for each noise. In most
cases there is an abrupt change at the 5 dB SNR level with the exception of pink
noise which shows a consistent linear reduction for both types of SVMs.

Table 5.3 summarizes the performance of the SV systems developed in varying
background environments. Though a direct comparison is inappropriate, an overall
inferior performance is observed in contrast to SV systems in uniform noisy
backgrounds. The utterances used for training these systems had short segments
corrupted with the noises individually used for uniform background simulation, at
a fixed SNR (see Chap. 3). Thus the average SV performance across all uniform
backgrounds at a fixed SNR was compared with the SV performance in varying
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Table 5.2 Relative equal error rates for GMM-SVM based SV sys-
tems in uniform background environments

Relative equal error rate EERR (%)

SNR (0 dB) SNR (5 dB) SNR (10 dB)

Noises KL div GUMI KL div GUMI KL div GUMI

Car 20.62 23.39 23.96 27.66 20.73 26.30
Factory 08.20 12.30 00.43 04.96 09.91 11.80
Pink 20.38 25.25 17.75 20.22 15.98 15.71
White 26.66 26.82 23.53 27.41 18.99 29.30
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Fig. 5.3 (a) Equal error rates and (b) relative equal error rates of GMM-SVM based SV systems
at different SNRs in uniform background environments

Table 5.3 Performance of the SV systems in varying background environments

SNR
(dB)

GMM-UBM GMM-SVM (KL div) GMM-SVM (GUMI)

EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 27.05 0.094 23.48 0.086 22.76 0.085
5 25.74 0.086 22.18 0.080 21.32 0.081
7 25.29 0.083 19.74 0.073 19.11 0.071
10 21.86 0.080 18.65 0.072 16.44 0.069

background at the same SNR. The average EER values of the baseline systems
across uniform backgrounds obtained earlier (see Table 5.1) were 24.70, 22.59 and
18.11 % for 0, 5 and 10 dB SNRs, respectively. Similarly, average EER values for
the GMM-SVM (KL div) and GMM-SVM (GUMI) systems at the three SNR levels
were 19.89, 18.81, 15.12 % and 19.18, 18.20, 14.28 %, respectively. In contrast,
performance of the baseline systems in varying backgrounds shows an average
EER increment of 3.08 %, ignoring the 7 dB SNR value. A likewise comparison
with the corresponding SVM based systems with KL div and GUMI kernels, shows
average increments of 3.50 and 2.95 % EERs, respectively. A possible explanation
to this behavior is the inadequate amount of data used for capturing the statistics
of non-stationary noise. The rapid change in noise could also causes a greater
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Fig. 5.4 DET plots for the SV systems in varying background environments at (a) 0 dB (b) 5 dB
(c) 7 dB and (d) 10 dB SNRs. The black, blue and red colors indicate GMM-UBM, GMM-SVM
trained using KL div kernel and GUMI kernel, respectively

degree of mismatch during the evaluation phase. The effect is more prominent in
case of the baseline systems and comparatively less for the others. However, certain
changes in the behavior of the GMM-SVM based systems are apparent. Unlike the
uniform background case, the use of costly covariance kernels (GUMI) provides a
better improvement of 1.11 % EER over the KL div kernels, when averaged across
all SNRs.

Figure 5.4 shows the DET plots of the SV systems developed in varying
background environment at (a) 0 dB (b) 5 dB (c) 7 dB and (d) 10 dB SNRs. The
characteristics of the blue (KL div) and red (GUMI) curves are in contrast to those
in Fig. 5.2. In most cases, there are no apparent rotation in the curves though an
overall shift towards the origin can be noticed. In fact, the red and blue lines
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shows a slight rotation in clock-wise direction for 10 dB SNR despite preserving
a notable difference in false alarm rates with respect to the baseline. Interestingly,
the set of red and blue lines show similar properties in terms of the slope, shape
and alignment with each other. The overall improvement in average MinDCF
values are 8 � 10�3 and 9:25 � 10�3 for the SVM based systems with KL div
and GUMI kernels, respectively. This is significantly lower in comparison to the
uniform background scenarios. The overall inferior performance of the SV systems
in varying background environment encouraged the use of a SVM-based channel
compensation method prior to SVM training.

5.1.6.1 Nuisance Attribute Projection

Nuisance Attribute Projection (NAP) [10] is a commonly applied session compensa-
tion technique for GMM-SVM based SV systems. NAP aims to remove components
(nuisance attributes) from the supervector space which are irrelevant for speaker
recognition and may carry information related to channel, background etc. In other
words, it eliminates the subspace which causes variabilities. This is achieved by an
orthogonal projection of the supervectors in the channel’s complementary space.
A projection matrix P is trained using an auxillary set of speakers carrying various
channel information as given by

P D I � vvT (5.9)

where v is a low rank rectangular matrix whose columns are given by ‘k’ eigenvec-
tors with highest eigenvalues of the supervector’s within-class covariance matrix.
Thus a new linear kernel is constructed for inputs x and y after NAP operation on
the supervectors S.x/ and S.y/ which is given by

K.x; y/ D ŒPS.x/�T ŒPS.y/� (5.10)

The formal steps of calculating the NAP projection matrix are given as follows

1. A set of supervectors is constructed from a target speaker’s enrollment utterances.
2. For each speaker, the mean of the supervectors is subtracted from each supervec-

tor in the set to subdue intra-speaker variability.
3. A large matrix V is formed whose columns constitute mean-removed supervec-

tors from all speakers. This matrix is expected to contain session information.
4. The within class covariance matrix W of matrix V is calculated as W D V V T

and subjected to eigen decomposition.
5. The eigenvectors having the largest ‘k’ eigenvalues are used to form the

rectangular matrix v. The integer ‘k’ (called NAP rank), is usually determined
empirically.

6. The projection matrix P is calculated by Eq. (5.9).
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Table 5.4 Comparison of the performances of the GMM-SVM based SV systems in varying
background environments with and without NAP compensation

GMM-SVM GMM-SVM + NAP

SNR
(dB)

KL div GUMI KL div GUMI

EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 23.48 0.086 22.76 0.085 22.22 0.084 21.27 0.083
5 22.18 0.080 21.32 0.081 21.05 0.079 20.14 0.080
7 19.74 0.073 19.11 0.071 18.74 0.072 18.06 0.070
10 18.65 0.072 16.44 0.069 17.75 0.070 15.77 0.067

The NAP matrix was trained using 400 utterances collected from a set of 100
speakers of the NIST-SRE-2004 corpus. Steps 1–6 define the ideal method for
estimating the NAP matrix. However, a direct application of Step 4 was infeasible
due to the large size of supervectors (i.e., 39,936). As an alternative strategy, an
eigenvector matrix v0 was first constructed by eigen decomposition of the matrix
W 0 D 1

N
V T V where N is the number of supervectors. The required matrix v was

then obtained by the operation v D N�1=2V v0��1=2 where � is a diagonal matrix
containing eigenvalues of the matrix W 0. NAP transformation produced four new
sets of supervectors (one for each SNR), which were subjected to SVM training
and evaluation as explained earlier in Sects. 5.1.5 and 5.1.6, respectively. A NAP
rank of 80 was empirically chosen to produce best results. Table 5.4 summarizes
the performance of the GMM-SVM based SV systems after NAP compensation.
Marginal improvements in EER and MinDCF values are noticed, in comparison to
the initial set of observations. The average EER reduction for the new set of SVMs
in comparison to their earlier version (columns 2 and 4 of Table 5.4) are 1.07 %
(Kl div) and 1.10 % (GUMI), respectively. The EER improvements in comparison
to the baseline are 5.05 and 6.18 % for KL div and GUMI kernels, respectively. The
improvements due to NAP are observed to diminish consistently with increasing
SNR. This can be easily interpreted from the sequence of EER reductions for the
KL div based systems given by 1.26, 1.13, 1.00 and 0.90 % for 0, 5, 7 and 10 dB
SNRs, respectively. The same sequence for the GUMI based systems is 1.49, 1.18,
1.05 and 0.67 %.

Figure 5.5 shows the effect of NAP in the DET curves of the GMM-SVM based
SV systems. The broken blue and red lines has been used to denote the NAP based
GMM-SVM systems with KL div and GUMI kernels, respectively. No significant
changes are apparent in the broken lines except for the consistent shift towards the
origin which results in appropriate reduction in MinDCF values. In most cases, the
KL div systems with NAP performs better than the GUMI based systems without
NAP with an exception in the 10 dB SNR case. The overall improvement in average
MinDCF values are 9:25 � 10�3 and 9:75 � 10�3 for SVM based systems with KL
div and GUMI kernels, respectively.
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Fig. 5.5 DET plots showing the effect of NAP in the GMM-SVM based SV systems in varying
background environment at (a) 0 dB (b) 5 dB (c) 7 dB and (d) 10 dB SNRs

Table 5.5 summarizes the relative EER values of the GMM-SVM based SV
systems developed without and with NAP. An average relative EER of 20.19
and 24.89 % is obtained for the SVM based systems with KL div and GUMI
kernels, respectively. However the improvement due to NAP is substantially limited
with average relative EER increments of only 4.28 and 4.32 %, respectively for
the aforementioned systems. The characteristics of (a) EERs and (b) Relative
EERs of the GMM-SVM based systems at various SNRs in varying background
environments has been shown in Fig. 5.6.
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Table 5.5 Relative equal
error rates for GMM-SVM
based SV systems in varying
background environments

Relative equal error rate (EERR) (%)

SNR
(dB)

GMM-SVM GMM-SVM + NAP

KL div GUMI KL div GUMI

0 13.20 15.86 17.86 21.37
5 13.83 17.17 18.22 21.76
7 21.95 24.44 25.90 28.59
10 14.68 24.79 18.80 27.86
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Fig. 5.6 (a) Equal error rates and (b) relative equal error rates of the GMM-SVM based SV
systems at different SNRs in varying background environments

5.2 Utterance Partitioning for Improving GMM-SVM Based
Speaker Verification Performance

The studies conducted in various types of noisy environments, as described in the
previous section, unanimously indicates that the SV performance accuracy enhances
with the use of GMM supervectors in conjunction with SVMs. However, it was
also noticed that the performance improvements were not consistent across different
noisy backgrounds at various SNR levels. In fact, fractional changes in EER values
were observed in quite a number of cases e.g., uniform factory noise at 5 dB SNR.
Besides, the use of GUMI kernels yielded marginal improvements in comparison
to the standard KL div kernels, in most of the simulated environments. Contrary to
expectations, the benefits of the complex NAP operations were also nominal. These
phenomena suggested scope for further improvement in the standard SV system
design. Instead of exploring alternative modeling methods, a number of inherent
drawbacks in the existing method were addressed for a change. A few of such
drawbacks can be highlighted as follows

• Data imbalance: A distinct aspect of the conventional SVM training method
is that the number of background utterances (supervectors) vastly outnumber
the number of enrolment utterances from a target speaker (typically one).
This obviously leads to the generation of a larger number of support vectors
in the majority class (background speakers) compared to the minority class
(target speaker) causing a phenomenon called ‘data imbalance’ [11, 12]. As a
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consequence, the SVM decision boundary skews towards the minority class
which causes high false rejection (‘miss’) rates during the kernel scoring in
the evaluation phase (Eq. 5.8) of SV, unless the decision threshold is properly
adjusted to compensate for the bias.

• Mismatched utterance lengths: The duration of training and test utterances
plays a significant role in SV accuracy [13]. The amount of available training
data in utterances determines the degree of MAP-adaptation of a GMM and
thus affects the composition of the supervectors as discussed in Sect. 5.1.
The difference in the enrolment and test utterance lengths (the former being
considerably larger than the latter), can thus lead to statistical mismatches during
the evaluation phase. In fact, prior studies have shown the benefits of matching
training and test utterance durations for SV [14]. Additionally, recent studies have
revealed that the discriminative power of fixed-size vectors used for representing
variable length utterances saturates when the utterance length exceeds a threshold
(typically 2 min) [15]. In such situations, the excess data can be utilized by
generating new vectors rather than a single one.

• Small sample-size problem: In a typical training dataset, the number of speakers
could be fairly large, but the number of available sessions per speaker are often
quite limited. When the number of training speakers or the number of recording
sessions per speaker are insufficient, numerical errors occur in estimating
transformation matrices associated with the construction of supervectors (e.g.,
NAP), resulting in inferior performance (as noticed in Sect. 5.1.6). In machine
learning literature, this is known as the ‘small sample-size problem’ [16, 17].

The various available strategies used to mitigate the effect of ‘data imbalance’
can be broadly categorized as (i) data processing approaches and (ii) algorith-
mic approaches. The family of methods in the first group tries to reduce the
disproportionate ratio of support vectors in each class [18]. This can be done
by (a) Over-sampling methods, where new training examples are generated from
the existing minority class data [19, 20] (b) Under-sampling methods, where a
subset of majority class examples are used to train individual SVMs [21, 22] and
(c) a combination of Over-sampling and Under-sampling [12]. Under-sampling is
usually not preferred for SV tasks since it causes loss of discriminative information
whereas over-sampling methods are a trade-off between improved classification
accuracy and increased computational load. The algorithmic approaches modify the
classifier algorithm to counter data imbalance. Earlier methods assigned asymmetric
misclassification costs to the positive and negative training examples [23] which
was marginally effective since the Lagrange multipliers in both classes were scaled
to satisfy a SVM constraint. Other methods modified the kernel function according
to the data distribution which lead to complex training procedures [24].

The mismatch in utterance durations as highlighted earlier can be resolved by
either using shorter length training/enrollment utterances or longer test utterances.
In the former case, the major issue is to empirically determine an appropriate
length of training utterances which can contribute towards MAP adaptation without
sacrificing representative power. Lengthy test utterances as an alternative are usually
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not preferred for real-life applications. Handling the small sample-size problem is
also subject to practical constraints such as availability of a co-operative set of
speakers for multi-session recordings or requesting multiple enrolment utterances
from client speakers etc.

As a solution to the aforementioned problems a synthetic data generation
technique using partitioned utterances as proposed in [25], was applied in the
present work. Specifically, the sequence of frames in an utterance were randomized
followed by dividing it into a number of fixed-length sub-utterances which were
individually used for supervector construction. The formal steps of the method,
known as Utterance Partitioning with Acoustic Vector Resampling (UP-AVR), are
briefly outlined as follows:

1. Given an enrollment utterance of a target speaker, the acoustic vectors (MFCCs)
are computed and their sequence of occurrence (frame indices) in the utterance
are randomized. This randomized sequence is then divided into N partitions
(sub-utterances).

2. Steps 1 is repeated R times to produce RN sub-utterances.
3. Each of the sub-utterances produced in Step 2 together with the original utterance

are individually used for supervector construction. Thus a total of RN C 1 target
speaker supervectors are obtained.

4. Each background utterance is like-wise partitioned into N sub-utterances as
given in Step 1. However, unlike the enrollment utterances, Step 2 is skipped
and Step 3 is directly applied instead.

5. For B background utterances, a total of B.N C 1/ background supervectors are
thus obtained.

Based on the length of available utterances in the present work, parameter values
of N D 2 and R D 3 were empirically determined to produce best results [26]. For
each target speaker, UP-AVR thus produced 7 target supervectors (3 � 2 C 1) and
1,065 background supervectors (355�.2C1/). The new set of labelled supervectors
were subsequently used for training speaker-specific SVMs and evaluation, as
discussed in Sects. 5.1.1 and 5.1.6, respectively.

Table 5.6 summarizes the effect of UP-AVR on the performances of the GMM-
SVM based SV systems in uniform background environments. Drastic performance
improvements are noticed compared to the initial set of results (refer Table 5.1). The
average EER decrements across all three SNR levels, are 5.13, 6.64, 6.07 and 5.69 %
for GMM-SVM (KL div) and 4.79, 6.57, 6.61 and 5.87 % for GMM-SVM (GUMI)
in car, factory, pink and white noisy backgrounds, respectively. The magnitude
of EER and MinDCF reductions are scaled considerably, thus resolving much of
the inconsistencies noted earlier. In contrast to the fractional changes observed
initially (see Table 5.1), performance improvements in factory noise backgrounds
are observed to be the highest. The average EER improvements across all four
types of noises are 7.35, 9.12 and 7.09 % for GMM-SVM (KL div) and 7.04,
9.44 and 7.35 % for GMM-SVM (GUMI) at 0, 5 and 10 dB SNRs, respectively.
The GUMI kernels are observed to perform consistently better than the KL div
kernels thereby asserting the significance of using covariance information for SV
in degraded conditions. However, it is interesting to note that the performance
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Table 5.6 Performance of the GMM-SVM based SV systems with UP-AVR in uniform back-
ground environments

GMM-SVM GMM-SVM with UP-AVR

KL div GUMI KL div GUMI

SNR Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 dB Car 14.32 0.063 13.82 0.058 11.25 0.043 11.02 0.042
Factory 21.27 0.086 20.32 0.086 15.36 0.063 14.54 0.059
Pink 21.23 0.087 19.92 0.085 14.86 0.061 14.36 0.059
White 22.72 0.076 22.67 0.079 16.03 0.066 15.67 0.063

5 dB Car 13.77 0.059 13.10 0.058 07.09 0.032 06.68 0.030
Factory 20.87 0.085 19.92 0.084 12.24 0.048 11.74 0.047
Pink 19.65 0.086 19.06 0.085 13.19 0.054 11.79 0.046
White 20.96 0.074 20.73 0.072 15.36 0.065 14.27 0.061

10 dB Car 12.24 0.047 11.38 0.046 06.59 0.031 06.23 0.029
Factory 14.81 0.053 14.50 0.052 09.44 0.039 08.76 0.038
Pink 15.67 0.058 15.72 0.057 10.21 0.043 08.72 0.037
White 17.75 0.065 15.49 0.067 12.96 0.055 11.33 0.048

Clean 06.72 0.030 06.44 0.030 06.54 0.028 06.21 0.027

improvements due to UP-AVR in clean conditions are negligible which explains
its effectiveness specifically for noisy backgrounds.

Figure 5.7 demonstrates the impact of UP-AVR in the DET plots of the GMM-
SVM based SV systems in uniform noisy environments. A set of red and black
lines has been used to denote the upgraded SV systems with KL div and GUMI
kernels, respectively. The red and black curves can be easily distinguished from the
set of blue and green curves which represents the initial set of GMM-SVM based
systems. There is a wide margin of difference at all operating points of the new set
of curves in comparison to the old ones. In most cases they are either entirely non-
overlapping with the older ones or display the characteristic anti-clockwise rotation.
A notable aspect of the UP-AVR based systems is that the performance upgradation
at 0 dB SNR is comparable or even better than the initial systems at 10 dB SNR.
A comparison of average MinDCF values across all 12 background environments in
Table 5.6 show drastic improvements of 19 � 10�3 and 22:5 � 10�3 for GMM-SVM
(KL div) and GMM-SVM (GUMI), respectively.

Table 5.7 summarizes the relative equal error rates of the GMM-SVM based SV
systems developed using partitioned utterances in uniform noisy environment. The
performance improvements due to UP-AVR are reflected by the dramatic increase
in relative EERs. The average relative EERs in car, factory, pink and white noisy
backgrounds are 51.94, 39.30, 44.76, 44.36 % for GMM-SVM (KL div) and 53.89,
42.65, 50.01, 48.59 % for GMM-SVM (GUMI), respectively. This is significantly
higher than the initial set of relative EERs recorded in Table 5.2. The average
improvements in relative EERs are 27.85 and 28.11 % for GMM-SVM (KL div)
and GMM-SVM (GUMI), respectively.
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Fig. 5.7 DET plots showing the effect of UP-AVR on GMM-SVM based SV systems in uniform
background environments with (a) car (b) factory (c) pink and (d) white noise

Figure 5.8 demonstrates the changes in (a) EERs and (b) Relative EERs of
the GMM-SVM systems with UP-AVR, at various SNRs in uniform background
environment. The characteristics of the EERs are in contrast to that observed earlier
in Fig. 5.3. Specifically, the abrupt EER fluctuation at 5 dB SNR for factory and pink
noises are much relaxed. However close resemblances (with Fig. 5.3) in the relative
EER characteristics are noticed with an exception in case of factory noise. As usual
an abrupt change in relative EER at 5 dB SNR is noticed with an exception in case
of pink and white noise for GMM-SVM (KL div) where linearity in changes are
retained.

The effect of UP-AVR was also studied for the SV systems developed in varying
background environments. Just like the uniform background scenarios, significant
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Table 5.7 Relative equal error rates for GMM-SVM based SV sys-
tems with UPAVR in uniform background environments

Relative equal error rate EERR (%)

SNR (0 dB) SNR (5 dB) SNR (10 dB)

Noises KL div GUMI KL div GUMI KL div GUMI

Car 37.63 38.91 60.85 63.11 57.32 59.65
Factory 33.70 37.25 41.60 43.99 42.58 46.72
Pink 44.24 46.12 44.79 50.65 45.25 53.24
White 48.26 49.42 43.96 47.94 40.85 48.29
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Fig. 5.8 (a) Equal error rates and (b) relative equal error rates of the GMM-SVM based SV
systems with UP-AVR at different SNRs in uniform background environments

Table 5.8 Performance of the GMM-SVM based SV systems with UP-AVR in varying back-
ground environments

GMM-SVM GMM-SVM with UP-AVR

SNR KL div GUMI KL div GUMI

(dB) EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 23.48 0.086 22.76 0.085 15.76 0.060 16.16 0.066
5 22.18 0.080 21.32 0.084 15.18 0.053 14.81 0.052
7 19.74 0.073 19.11 0.071 14.50 0.051 12.38 0.048
10 18.65 0.072 16.44 0.069 12.24 0.047 11.38 0.046

reduction in the error metrics are observed once again, in contrast to the initial
set of system performances (without UP-AVR), as shown in Table 5.8. The EER
reductions compared to the initial set of observations are 7.72, 7.00, 5.24, 6.41 %
for GMM-SVM (KL div) and 6.60, 6.51, 6.73, 5.06 % for GMM-SVM (GUMI) at
0, 5, 7 and 10 dB SNRs, respectively. The two SVM kernels show different behavior
in terms of EER changes with a slight anomaly noticed at 0 dB SNR where the
KL div kernel performs better than the GUMI kernel. The effect of UP-AVR also
appears to be more prominent in case of KL div kernels which shows an average
EER improvement of 6.59 % across all SNR levels in comparison to 6.23 % for the
GUMI kernel.
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Fig. 5.9 DET plots showing the effect of UP-AVR on GMM-SVM based SV systems in varying
background environments at (a) 0 dB (b) 5 dB (c) 7 dB and (d) 10 dB SNRs

Figure 5.9 demonstrates the impact of UP-AVR in the DET plots of the GMM-
SVM based SV systems in varying background environments. The set of solid blue
and red lines denote the UP-AVR based GMM-SVM systems with KL div and
GUMI kernels, respectively. The broken lines of same colors represent the initial
systems developed in the same backgrounds while the black line represents the
baseline. As usual a wide margin is noticed between the solid and broken set of
curves. Unlike the initial set of GMM-SVM systems (see Fig. 5.4), dissimilarities
are observed in the curves corresponding to the two SVM kernels. In most cases, the
red and blue curves show distinct behavior. Apart from the overall shift towards the
origin, anti-clockwise rotations in the red and blue curves are prominently noticed in
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Table 5.9 Performance of the GMM-SVM based SV systems with UP-AVR and NAP compensa-
tion in varying background environments

GMM-SVMCUP-AVR GMM-SVMCUP-AVRCNAP

SNR
(dB)

KL div GUMI KL div GUMI

EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

0 15.76 0.060 16.16 0.066 13.37 0.058 13.62 0.063
5 15.18 0.053 14.81 0.052 13.23 0.051 12.47 0.048
7 14.50 0.051 12.38 0.049 13.10 0.049 11.29 0.046
10 12.24 0.047 11.38 0.046 11.21 0.044 10.32 0.043

case of 5 and 10 dB SNRs. The resultant improvement in MinDCF values averaged
across all SNRs are 25:00 � 10�3 and 24:25 � 10�3 for KL div and GUMI kernels,
respectively.

As mentioned earlier in Sect. 5.2, the UP-AVR strategy was adopted to alleviate a
set of three highlighted drawbacks of the conventional GMM-SVM based systems.
However, it is difficult to conclude the degree of impact UP-AVR exercises on each
of them. In most cases one may rely on the joint improvement of all three problems,
without specifically knowing each of them. In order to demonstrate the specific
utility of UP-AVR towards mitigating the small sample-size problem, the partitioned
enrollment utterances (supervectors) were subjected to NAP transformation prior to
SVM training.

Unlike its earlier version, the supervector matrix V constructed in the Step 3 of
the NAP algorithm, now had an expanded size of 2;800 � 39;936 due to the impact
of UP-AVR on the target speaker utterances. All the training supervectors were
subjected to NAP transformation prior to SVM training with required strategies for
maintaining feasibility in large matrix operations as discussed in Sect. 5.1.6.1.

Table 5.9 summarizes the performance of the GMM-SVM based SV developed
using UP-AVR followed by NAP compensation in varying background environ-
ments. In contrast to the initial set of observations (see Table 5.4), a larger average
EER reduction compared to the baseline (i.e., 12.26 % (KL div) and 13.06 %
(GUMI)) is noticed across all four SNR levels. The additional improvements due to
NAP over UP-AVR are 2.39, 1.95, 1.40, 1.03 % and 2.54, 2.34, 1.09, 1.06 % at 0, 5,
7 and 10 dB SNRs for GMM-SVM (KL div) and GMM-SVM (GUMI), respectively.
The effect of NAP compensation is observed to be more prominent in case of the
GUMI kernels.

Figure 5.10 demonstrates the effect of NAP on the DET plots of the GMM-
SVM based systems developed in varying background environments. The color
coding for representing each system is the same as that in Fig. 5.9. The broken
lines of each color have been used to denote the corresponding systems with
NAP transformation. The set of blue and green lines seen earlier in Fig. 5.5, are
included again for studying the overall comparison of the various systems. The
behaviour of the NAP-based curves are quite similar in shape and alignment to the
initial systems except for a larger margin of difference from them at all operating
points. Expectedly, a significant improvement in MinDCF values are observed
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Fig. 5.10 DET plots showing the effect of UP-AVR and NAP on GMM-SVM based SV systems
in varying background environment at (a) 0 dB (b) 5 dB (c) 7 dB and (d) 10 dB SNRs

in comparison to the earlier NAP-based SV systems with average reduction of
26:00 � 10�3 and 25:75 � 10�3 across all SNRs, for KL div and GUMI kernels,
respectively.

Table 5.10 summarizes the relative EERs of the various GMM-SVM based
SV systems developed in varying background environments. The average relative
EERs across all SNRs, are 42.36 and 45.43 % for UP-AVR based GMM-SVM
systems with KL div and GUMI kernels, respectively. The corresponding values
with an additional NAP application are 49.02 and 52.34 %. The benefits of utterance
partitioning can be observed from the significant average improvements of 26.68
and 25.45 % relative EER rates for the two types of NAP based GMM-SVM based
systems.
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Table 5.10 Comparison of relative equal error rates for GMM-SVM based SV systems
in varying background environments

Relative equal error rate EERR (%)

SNR
(dB)

GMM-SVM NAP UP-AVR UP-AVR + NAP

KL div GUMI KL div GUMI KL div GUMI KL div GUMI

0 13.20 15.86 17.86 21.37 41.74 40.26 50.57 49.65
5 13.83 17.17 18.22 21.76 41.03 42.46 48.60 51.55
7 21.95 24.44 25.90 28.59 42.67 51.05 48.20 55.36
10 14.68 24.79 18.80 27.86 44.01 47.94 48.72 52.79
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Fig. 5.11 (a) Equal error rates and (b) relative equal error rates of the GMM-SVM based SV
systems with UP-AVR at different SNRs in varying background environments

Figure 5.11 demonstrates the changes in (a) EERs and (b) Relative EERs of
the GMM-SVM systems with UPAVR, at various SNRs in varying background
environments. Notable changes in the behavior of the red and black curves are
observed in contrast to those in Fig. 5.6. The abrupt EER and relative EER
fluctuations at 7 dB SNR, initially observed in Fig. 5.6 are now relaxed for the
GMM-SVM (KL div) system where NAP application makes an anomalous change.
The GUMI based GMM-SVM systems however show similar behavior with and
without NAP applications which is characterized by consistent increase in relative
EER values with increasing SNRs with an abrupt decrement at the 10 dB SNR level.

5.3 Total Variability Modeling for Speaker Verification

The significance of the GMM-SVM methods for SV in noisy environment was
explored through an extensive set of empirical studies discussed in Sects. 5.1
and 5.2, respectively. Despite the drastic performance enhancements achieved using
the UP-AVR strategy, few typical limitations of the developed SV systems can
be highlighted. Firstly, the large size of the GMM supervectors are a practical
constraint in terms of their memory consumption and computational costs (e.g.,
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SVM training, NAP transformation). Secondly, despite UP-AVR the performance
improvements of the SV systems developed in extremely degraded conditions in
the uniform background environments were comparatively lower. Specifically, the
average relative EERs of the SV systems across the four different backgrounds
were 41.95 and 49.61 % at 0 and 5 dB SNRs in contrast to a larger value of
54.23 % at 10 dB SNR. Even the average EERs at 0 and 5 dB i.e., 14.13 and
11.54 % were significantly larger than those at 10 dB (9.28 %). Individual EERs
were observed to be typically high for factory, pink and white noisy backgrounds.
These factors suggested the use of alternative robust speaker modeling methods for
further improvement in performance accuracy. Specifically a state-of-the-art low
dimensional representation of GMM supervectors, commonly known as identity
vectors or ‘i-vectors’ [7], was used for developing SV systems. In the remaining
part of this section, the details of i-vector extraction, its application and evaluation
in the present work are discussed.

5.3.1 i-Vector Extraction

Total variability modeling [7] is based on projecting large dimensional supervectors
in a low dimensional subspace (known as ‘total variability’ space) which supposedly
contains both channel and session information. Specifically, a GMM mean super-
vector M is represented as

M D m C T w (5.11)

where m is a speaker/channel independent supervector (i.e., the UBM mean super-
vector), T is low-rank rectangular matrix whose columns consists of eigenvectors of
the total variability covariance matrix with largest eigenvalues. w is a random vector
having standard Normal distribution, called i-vector. The total variability matrix
(T ) is learned offline, using probabilistic principal component analysis (PPCA) [4]
on a development dataset [27, 28]. Estimation of i-vectors from a set of utterances
requires initial computation of a set of Baum-Welch statistics followed by a set
of matrix operations involving them. Given a sequence of D-dimensional acoustic
vectors fx1; x2; : : : xTg of an utterance X with T frames, the Baum-Welch statistics
are calculated as

Ni D
TX

tD1

p.i jxt ; �/

Fi D
TX

tD1

p.i jxt ; �/.xt � mi /
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where p.i jxt ; �/ is the posterior probability of the i th Gaussian component of a
UBM � having total M components, which generates vector xt . The mean of the
same component is given by mi . Ni and Fi are known as the zeroth order and mean-
shifted first order sufficient statistics, respectively.

Given the trained T matrix and the set of Baum-Welch statistics, the i-vector
extracted from utterance X is calculated as

w D .I C T T ˙�1N.X/T /�1:T T ˙�1F.X/ (5.12)

where ˙ and N.X/ are block diagonal matrices of size (MD � MD) whose
diagonal blocks consist of the UBM covariance matrices ˙i (i D 1; 2; : : : M ) and
identity matrices weighted with the zeroth order statistics Ni ID�D(i D 1; 2; : : : M ),
respectively. F(X) is a supervector obtained by stacking the mean-shifted first order
statistics Fi (i D 1; 2; : : : M ) and I is an identity matrix of size (MD �MD). Total
variability modeling is generative in nature, however they can be integrated with a
discriminative framework using SVMs [29, 30]. The detailed procedure of training
the T matrix has been outlined in Appendix D.

5.3.2 SVM Training

Since i-vectors are fixed-length vectors representing variable length utterances, they
can be used to train SVMs using sequence kernels as discussed in Sect. 5.1.1. It
was investigated in [29], that the best result in i-vector frameworks are produced by
using a cosine kernel function for training the SVMs, which can be defined for two
input i-vectors w1 and w2 as

k.w1; w2/ D hw1; w2i
kw1kkw2k (5.13)

where h:; :i and k:k denote the inner product and L2-norm, respectively. The cosine
kernel normalizes the linear kernel by the norm of both i-vectors. It considers only
the angle between the two i-vectors and not their magnitudes. It is believed that non-
speaker information (such as session and channel) affects the i-vector magnitudes,
removing which improves the robustness of the i-vector system.

5.3.3 Inter-session Compensation

Since the total variability subspace contains both speaker and session variability
information, i-vectors extracted from it are usually subjected to session compensa-
tion prior to SVM training. Two common session compensation techniques used in
the i-vector framework are discussed as follows
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5.3.3.1 Linear Discriminant Analysis (LDA)

LDA [4] projects the i-vectors to a set of orthogonal axes for minimizing within-
class variance and maximizing between-class variance. In the i-vector framework,
all i-vectors extracted from a speaker constitute a particular class. The projection
matrix A is composed of eigenvectors v having the highest eigenvalues �, obtained
by solving the following generalized eigen decomposition problem

BS v D �WS v (5.14)

where BS , WS are the between-class and within-class covariance matrices given by

BS D
SX

sD1

.�s � �/.�s � �/T (5.15)

WS D
SX

sD1

1

ns

nsX

iD1

.wi � �s/.wi � �s/
T (5.16)

where S is the total number of speakers, ns is the total number of utterances from
the sth speaker, �s is the mean of all i-vectors (wi ) from speaker s given by �s D
1
ns

Pns

iD1 wi and � is the global mean of all i-vectors generally considered to be a
null vector due to their standard normal distribution. The number of columns of the
matrix A (i.e., LDA order) are determined empirically to produce best results. The
LDA-modified cosine kernel function for two input i-vectors w1 and w2 is given by

k.w1; w2/ D .AT w1/T .AT w2/

jAT w1jjAT w2j (5.17)

5.3.3.2 Within-Class Covariance Normalization (WCCN)

WCCN, proposed in [31] aims to set upper bounds on the error metrics (‘miss’
and ‘false alarm’) by normalizing the SVM kernels. Application of WCCN in the i-
vector framework requires projecting the i-vectors to a space specified by the square-
root of the inverse of the within-class covariance matrix. Specifically, the projection
matrix B is obtained by Cholesky decomposition of the inverse of the within-class
covariance matrix (Eq. 5.16) as follows

W �1
S D BBT (5.18)

The WCCN-modified cosine kernel function for two input i-vectors w1 and w2 is
given by

k.w1; w2/ D .BT w1/T .BT w2/

jBT w1jjBT w2j (5.19)
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5.3.4 Score Calculation

Two types of i-vector evaluation methods, namely Cosine Distance scoring and
SVM Kernel scoring, has been proposed in past [29]. The former one is applied
in the default generative modeling framework while the latter for the discriminative
SVM framework.

5.3.4.1 Cosine Distance Scoring (CDS)

CDS is a fast scoring method commonly applied in i-vector frameworks. As the
name suggests, it is simply the cosine distance between a pair of i-vectors repre-
senting a claimant’s test utterance (wtest ) and the claimed target speaker utterance
(wtarget ), respectively as given by

Scos D < wtest ; wtarget >

jwtest jjwtarget j (5.20)

5.3.4.2 SVM Kernel Scoring

The SVM scoring is exactly similar to the one already discussed in Sect. 5.1.4. The
advantage of SVM scoring is that the contribution of individual speakers towards
the verification scores can be optimally weighted by the Lagrange multipliers of the
target speakers SVM. Given a trained target speaker SVM and the test i-vector wtest ,
the score is calculated as

SSVM D
TX

tD1

˛t K.wt ; wtest / �
BX

iD1

˛i K.wi ; wtest / C d (5.21)

where wt and wi are the sequence of support vectors corresponding to the target
and background speaker classes as learned during SVM training. ˛t and ˛i are the
non-zero Lagrange multipliers of the corresponding classes. T and B are the total
number of support vectors in each class, d is a bias term and K is the cosine kernel
(Eq. 5.13).

5.3.5 Experimental Setup

Figure 5.12 shows a block diagram of the i-vector based SV system. The SV systems
were developed using the set of noise-degraded training and test utterances of
NIST-SRE-2003 in uniform background environment (see Sect. 5.1.5.1) at 0 and
5 dB SNRs, as discussed in Sects. 5.3.1 and 5.3.3. A development data comprising
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Fig. 5.12 Block diagram of the combined SVM and total variability modeling framework for
speaker verification

1,572 utterances from the SwitchBoard phase II corpora and 400 utterances
from NIST-SRE-2004 database was used for training the total variability and
channel compensation matrices (see Appendix D). The T -matrix rank of 400 was
chosen empirically and i-vectors were extracted from all utterances as discussed
in Sect. 5.3.1. The low dimension of i-vectors facilitated convenient application of
LDA and WCCN, the projection matrices for which were designed as discussed in
Sect. 5.3.3. A LDA order of 300, was empirically determined to produce best results.
All the i-vectors were subjected to session compensation prior to model building.
A discriminative framework (combined i-vector and SVM) for classification was
used instead of the conventional generative i-vector modeling in favor of utilizing
the benefits of UP-AVR and SVM scoring as shown in [15]. The labelled i-vectors
extracted from enrollment and background speaker’s utterances were subjected
to speaker specific SVM training. During the evaluation phase, the noisy test
utterances (i-vectors) were evaluated against the target speaker models (SVMs)
according to NIST-2003 primary task, using the SVM scoring method as discussed
in Sects. 5.1.6 and 5.3.4.2, respectively. The experiments were repeated using
partitioned utterances with UP-AVR parameters N D 2 and R D 3.

Table 5.11 summarizes the performance of the i-vector based SV systems
developed in uniform noisy environments at 0 and 5 dB SNR. While the error
metrics show considerable performance improvements compared to the GMM-
SVM based systems in individual noisy backgrounds, it is interesting to note that
the GMM-SVM based systems developed using UP-AVR performs better than the i-
vector models developed without UP-AVR. This can be deduced from a comparison
of the GMM-SVM based SV systems in (Table 5.6). The average EER reductions
across both SNRs compared to the default GMM-SVM based SV systems are
3.52, 6.12, 4.90 and 5.51% for car, factory, pink and white noisy backgrounds,
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Table 5.11 Performance of the i-vector based SV systems in uniform background environments
at 0 and 5 dB SNR

SNR (0 dB) SNR (5 dB)

Without UP-AVR With UP-AVR Without UP-AVR With UP-AVR

Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

Car 12.10 0.051 10.57 0.047 08.31 0.039 06.05 0.028
Factory 16.17 0.068 12.33 0.055 12.78 0.057 09.03 0.042
Pink 16.72 0.071 12.83 0.054 13.42 0.058 10.16 0.044
White 17.39 0.073 14.27 0.059 15.13 0.063 11.88 0.051

respectively. However, GMM-SVM with UP-AVR performs slightly better than
the current systems with average reduced EERs of 1.23, 1.01, 1.52 and 0.93% at
the corresponding environments across both SNRs. This phenomenon once again
establishes the significance of UP-AVR in enhancing SV performances in noisy
conditions. The superiority in i-vector performance accuracies are restored by
incorporating UP-AVR in its framework. Comparison amongst the UP-AVR based
systems (see Table 5.6) reveals average EER reductions of 0.70, 2.79, 2.06, 2.26%
in car, factory, pink and white noisy backgrounds, respectively.

Figure 5.13 shows the DET plots of the i-vector based SV systems developed
in uniform noisy environments. As usual a shift towards the origin is observed in
the curves corresponding to the UP-AVR based systems (represented by broken
lines) suggesting consistent reduction in MinDCF and EER values across each noisy
background. The effect of UP-AVR at 0 dB SNR is apparently more prominent in
case of the colored noises. Unlike the GMM-SVM based systems (see Fig. 5.7),
no significant change in slope or rotation of the curves are noticed. The average
improvements in MinDCF values of the i-vector based SV systems (with and
without UP-AVR) in comparison to the corresponding GMM-SVM based SV
systems (see Tables 5.1 and 5.6) are 2:94 � 10�3 and 1:82 � 10�3, respectively.

Despite the apparent performance improvements achieved by the i-vector based
SV systems, a typical aspect to be noticed is that UP-AVR results in a moderate
decrement of only 3.10 % average EER. Similar observations were earlier recorded
for the GMM-SVM based systems (see Table 5.6) which had shown 5.39 %
EER reductions at 0 dB SNR in contrast to larger improvements at 5 and 10 dB
SNRs. This phenomenon indicates the obvious increase in classification errors due
to high noise strength. A typical drawback of the standard UP-AVR algorithm
can also be highlighted in this context. Specifically, all speaker’s utterances are
partitioned irrespective of the role they play towards classification. This could
be detrimental towards SV performance e.g., partitioning a speaker’s utterance
which was originally misclassified could lead to additional misclassifications apart
from increased computational load. In order to alleviate these two problems in
parallel, a novel boosting algorithm is proposed to train multiple SVM classifiers
on the noisy dataset, the utterances in which are selectively used for partitioning.
Subsequent sections provide the details of the boosting algorithm followed by their
implementation in the i-vector based SV framework.
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Fig. 5.13 DET plots of the i-vector based SV systems in uniform background environments with
(a) car (b) factory (c) pink and (d) white noise at 0 and 5 dB SNR

5.4 Adaptive Boosting for Improved Speaker Verification
Performance in Noisy Environments

Adaptive Boosting (AdaBoost) iteratively enhances the predictive accuracy of a
sequence of weak classifiers (ensemble), each of which is trained on a dataset
adaptively sampled according to the training error of the classifier in the previous
iteration [32]. The final decision is based on a weighted voting of the individual
classifiers in the ensemble. In recent past, boosting has been applied effectively
for robust SV tasks [33]. Prior art also demonstrates the benefits of combining
ensemble learning with data balancing [20, 34]. A novel combination scheme of
the AdaBoost algorithm with a synthetic data generation technique using UP-AVR
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[25], is proposed in the present work. The approach is motivated by the Databoost-
IM algorithm proposed in [35]. The aim is to improve the predictive accuracy of
both minority (target speaker) and majority (background speakers) classes while
emphasizing on the misclassified examples in the minority class.

5.4.1 Proposed Boosting Algorithm (DataBoost-UP)

Conventional boosting algorithms emphasize on the misclassified (hard) train-
ing instances at each iteration by adaptively increasing their sampling weights.
Classifiers trained in successive iterations concentrate on these instances with
high weights. Since all misclassified examples are equally weighted, it doesn’t
compensate for the bias towards the majority class in imbalanced datasets. The
aim of integrating data generation with the boosting algorithm is to alleviate the
learning algorithm’s bias towards the majority class while retaining focus on the
hard training instances. Unlike the DataBoost-IM algorithm [35], in the proposed
algorithm (DataBoost-UP) the data (i-vectors) is synthesized using the utterance
partitioning technique [25] instead of random generation of attribute values in the
[min,max] interval. Both the minority (target speaker) and majority (background
speakers) classes are oversampled to prevent overemphasis on the hard instances of
the minority class. The proposed algorithm is used to create an ensemble of SVM
classifiers.

Algorithm DataBoost-UP
Input:

Training data set f.xi ; yi /gNiD1; yi 2 f�1;C1g
Weak SVM classifiers ht where t D f1; 2 : : : ; T g

Initialize: Sampling weight distribution D1.i/ D 1=N 8i D f1; 2; ::; N g
Do for t 1 to T

1. Identify the hard examples in the training set.
2. Generate new data from these examples by UP-AVR. Add them to the original training set.
3. Adjust the sampling weight distribution of both classes in the new training set.
4. Learn weak SVM ht on the new training set sampled according to the modified distribution.

5. t  
NP

iD1

Dt .i/I.ht .xi / 6D yi /. If t > 0:5 set T = t-1 and abort loop.

6. ˛t  1
2

logf.1� t /=.t /g
7. DtC1.i/ Dt .i/

Zt
exp.�˛t ht .xi /yi / where Zt D

NP
iD1

Dt .i/ exp.�˛t ht .xi /yi /

Output: SVM ensemble hf inal D
TP

tD1

˛t ht
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The predictive accuracy of the ensemble is guaranteed to improve in each
iteration provided the training error of the weak SVM classifier in the previous
iteration is less than 0.5 (upper bound). The ensemble training error decreases
in successive iterations. At the end of a pre-determined number of iterations, the
algorithm converges with no further decrement in the ensemble training error. Steps
1, 2 and 3 of the proposed algorithm are elaborated in the next three sections.

5.4.1.1 Identifying Hard Training Examples

The hard training examples are identified as follows.

1. All the instances in the training set are arranged in descending order of their
sampling weights.

2. The top Ntrain number of instances of the training set are selected as hard
examples where:
Ntrain D t � N ,
t D weighted training error of a SVM in the t th iteration of boosting
N D total number of instances in the original training set.

3. Let Ntrain D Nmaj C Nmin where:
Nmaj D number of instances from majority class, Nmin D number of instances
from minority class.
These training utterances are subjected to utterance partitioning as discussed in
Sect. 5.4.1.2

5.4.1.2 Synthesizing Data Using Utterance Partitioning

The UP-AVR algorithm (discussed in Sect. 5.2) is applied for data generation, as
follows

1. Given each of the Nmin target speaker utterance, its acoustic vectors are
computed and their sequence of occurrences in the utterance are randomized.
This randomized sequence is then divided into P partitions (sub-utterances).

2. Step 1 is repeated R times. Together with the original full-length utterance, a total
of RP C 1 utterances generated from each enrollment utterance are individually
subjected to i-vector construction.

3. Similarly, each background speaker’s utterances are divided into P partitions.
For Nmaj background speakers we thus have Nmaj .P C 1/ utterances. Back-
ground i-vectors are constructed from each of these utterances.

5.4.1.3 Balancing Weights of Majority and Minority Classes

The aim of weight balancing is to minimize the difference between the total
sampling weight of each class in an imbalanced dataset. This forces the boosting
algorithm to focus on both the hard as well as rare training examples. The sampling
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Table 5.12 Comparison of the effects of UP-AVR and Databoost-UP on the performances of
i-vector based SV systems in uniform background environments at 0 and 5 dB SNRs

SNR (0 dB) SNR (5 dB)

UP-AVR DataBoost-UP UP-AVR DataBoost-UP

Noises EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF EER (%) MinDCF

Car 10.57 0.047 08.22 0.037 06.05 0.028 04.83 0.021
Factory 12.33 0.055 10.93 0.048 09.03 0.042 07.14 0.032
Pink 12.83 0.054 11.21 0.047 10.16 0.044 08.13 0.035
White 14.27 0.059 13.05 0.053 11.88 0.051 10.03 0.043

weight of each hard instance is divided by the number of new instances generated
from it. All generated instances are uniformly assigned the divided weight. At the
end the weights are rebalanced across the entire set of newly generated instances.
If the total weight of the majority class (Wmaj ) exceeds that of the minority class
(Wmin) then each minority weight is scaled by a factor Wmaj =Wmin. For the vice-
versa condition, each majority weight is scaled by a factor Wmin=Wmaj .

5.4.2 Performance Evaluation

The data used for experimental setup is identical to that described in Sect. 5.3.5.
The i-vectors extracted from the partitioned target speaker utterances from each
noisy dataset were used for training a SVM ensemble using the DataBoost-UP
algorithm. Additionally, new data was generated in each iteration of the boosting
algorithm with partitioning parameters values of P D 2 and R D 1 as discussed
in Sect. 5.4.1.2. The number of boosting iterations ranging from 5 to 10 was
empirically determined to appropriately lower the ensemble training error. During
the evaluation phase, each test utterances were scored against 11 target speaker
SVM ensemble. Given a noisy test utterance (i-vector) wtest , the Kernel scoring was
obtained as a weighted linear combination of the scores obtained from individual
classifiers of the target speaker ensemble as follows:

Score.wtest / D
TX

iD1

˛i .

LX

jD1

ˇi;j ti;j K.wi;j ; wtest / C di /

where T is the size of the ensemble. ˛i is the weight of the i th SVM classifier in the
ensemble as calculated in Step 6 of the DataBoost-UP algorithm. wi;j , ˇi;j and ti;j 2
f�1; C1g are the sequence of L learned support vectors, the non-zero Lagrange
multipliers and the actual class labels, respectively for the i th SVM classifier in the
ensemble, di is the bias term and K is the cosine kernel function.

Table 5.12 summarizes the comparative performances of DataBoost-UP and
UP-AVR method in the i-vector framework for the SV systems developed in uniform
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Fig. 5.14 DET plots showing the effect of UP-AVR and DataBoost-UP on the i-vector based SV
systems in uniform background environment with (a) car (b) factory (c) pink and (d) white noise
at 0 and 5 dB SNR

background environments. A consistent performance improvement is noticed in the
boosted i-vector framework across all noisy backgrounds, in comparison to the
UP-AVR based system at both SNR levels. The individual EER reductions are 2.35,
1.40, 1.62 and 1.22 % at 0 dB SNR and 1.22, 1.89, 2.03, 1.85 % at 5 dB SNR for car,
factory, pink and white noisy backgrounds, respectively. Thus an additional average
EER reduction of 1.70 % across all environments is achieved on top of the initial
improvement (see Table 5.11) of 3.12 % due to UP-AVR.

Figure 5.14 shows the DET plots of the i-vectors based SV systems using
(a) UP-AVR and (b) DataBoost-UP, respectively. Interestingly, the nature of
improvement in each curve is similar to those observed in the Fig. 5.13. There
are no apparent rotation in the curves apart from the overall shift towards the
origin characterized by the corresponding changes in detection costs. In contrast
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Table 5.13 Comparison of relative equal error rates of SV systems developed in uniform
background environments at 0 and 5 dB SNRs

Relative equal error rate EERR (%)

GMM-SVM (supervectors) Total variability (i-vectors)

SNR (dB) Noises w/o UP-AVR With UP-AVR w/o UP-AVR With UP-AVR DataBoost-UP

0 Car 22.01 38.28 32.93 41.41 54.43
Factory 10.25 35.48 30.21 46.78 52.83
Pink 22.80 45.18 37.26 51.86 57.94
White 26.74 48.84 43.87 53.94 57.88

5 Car 25.81 61.98 54.11 66.59 73.33
Factory 02.69 42.80 39.02 56.92 65.94
Pink 18.98 47.72 43.83 57.47 65.97
White 23.95 45.95 44.02 56.66 63.41

to the relatively moderate improvements in average EER, a significant reduction
of average MinDCF value of 7:5 � 10�3 is noticed. This is comparatively much
higher than the previously recorded average MinDCF reduction (see Table 5.11) of
3 � 10�3 due to the effect of UP-AVR.

Table 5.13 summarizes the relative EERs of the various SV systems developed in
uniform background environments at 0 and 5 dB SNRs. In order to jointly represent
the performances of the KL div and GUMI kernels, the mean of their relative EERs
has been recorded under the GMM-SVM multicolumn. The significant performance
improvements achieved in each stage of development of the i-vector based SV sys-
tems, can be more clearly deduced by the large relative EER metrics. A contrasting
behavior in performance improvement of the i-vector based SV systems is observed
at the two SNR levels. The colored noises (pink and white) which had comparatively
lower performance accuracies, are the ones with higher relative EER improvements
at 0 dB SNR. However, the environmental noises (car and factory) perform much
better at 5 dB SNR. The average relative EERs (across both SNR levels) of the
GMM-SVM based SV systems are 19.15% (without UP-AVR) and 45.78% (with
UP-AVR), respectively. The corresponding EER values for the i-vector based SV
systems are 40.66 and 53.96%, respectively. The DataBoost-UP algorithm in the i-
vector framework outperforms the rest of the methods with an average relative EER
of 61.47% across all environments.

5.5 Summary

This chapter explored the impact of robust speaker models for speaker verifi-
cation in various noisy environments. Broadly, two types of hybrid modeling
techniques (i.e., GMM-SVM and i-vectors SVM) were used to develop SV systems
in uniform and varying background environments, respectively. The majority of
studies were concentrated in the GMM-SVM based approach. Through extensive
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experimentation, it was established that robust SV performance could be achieved
using GMM supervectors in a discriminative framework, in comparison to the tradi-
tional GMM-UBM framework. In particular, emphasis was laid on the significance
of using partitioned utterances, for mitigating data imbalance, utterance-duration
mismatch and small sample-size problems, respectively for improving performances
in SVM based SV framework. In order to enhance SV performances in highly
degraded environments, a low-dimensional channel robust representation of GMM
supervectors (namely i-vectors), were alternatively used in a SVM framework.
A novel boosting algorithm was proposed to address some inherent drawbacks in
the standard utterance partitioning scheme and strengthening the SVM classification
accuracy in highly degraded background environments.

References

1. D. Reynolds, T. Quatieri, R. Dunn, Speaker verification using adapted Gaussian mixture
models. Digit. Signal Process. 10(1), 19–41 (2000)

2. W. Campbell, J. Campbell, D. Reynolds, Support vector machines using GMM supervectors
for speaker verification. IEEE Signal Process. Lett. 13(5), 308–311 (2006)

3. W. Campbell, J. Campbell, D. Reynolds, E. Singer, P. Carrasquillo, Support vector machines
for speaker and language recognition. Comput. Speech Lang. 20, 210–229 (2006)

4. C.M. Bishop, Pattern Recognition and Machine Learning (Springer, New York, 2006)
5. V. Wan, S.Renals, Speaker verification using sequence discriminant support vector machines.

IEEE Trans. Acoust. Speech Audio Process. 13(2), 203–210 (2005)
6. P. Kenny, G. Boulianne, P. Dumouchel, Eigenvoice modeling with sparse training data. IEEE

Trans. Speech Audio Process. 13(3), 345–354 (2005)
7. N. Dehak, P.J. Kenny, R. Dehak, P. Dumouchel, P. Ouellet, Front-end factor analysis for speaker

verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011)
8. S. Sarkar, K.S. Rao, Speaker verification in noisy environment using GMM supervectors, in

National Conference on Communications (NCC), Delhi (IIT Delhi, Delhi, 2013)
9. C.H. You, K.A. Lee, H. Li, An SVM kernel with GMM-Supervector based on the Bhat-

tacharyya distance for speaker recognition. IEEE Signal Process. Lett. 16(1), 49–52 (2009)
10. A. Solomonoff, C. Quillen, I. Boardman, Channel compensation for SVM speaker recognition,

in IEEE Workshop on Speaker and Language Recognition (Odyssey ’04), Toledo, 2004,
pp. 57–62

11. R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced datasets,
in Proceedings of the 15th European Conference on Machine Learning, Pisa, 2004, vol. 3201,
pp. 39–50

12. Y. Tang, Y.Q. Zhang, N.V. Chawla, S. Krasser, SVMs modeling for highly imbalanced
classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39, 281–288 (2009)

13. J. Pelecanos, U. Chaudhari, G. Ramaswamy, Compensation of utterance length for speaker
verification, in ODYSSEY04 – The Speaker and Language Recognition Workshop, Toledo, 2004

14. B. Fauve, N. Evans, J. Mason, Improving the performance of text-independent short duration
SVM- and GMM-based speaker verification, in Workshop on Speaker and Language Recogni-
tion (Odyssey), Stellenbosch, 2008

15. W. Rao, M.W. Mak, Boosting the performance of i-vector based speaker verification via
utterance partitioning. IEEE Trans. Audio Speech Lang. Process. 21(5), 1012–1022 (2013)

16. L.F. Chen, H.Y.M. Liao, M.T. Ko, J.C. Lin, G.J. Yu, A new LDA-based face recognition system
which can solve the small sample size problem. Pattern Recognit. 33(10), 1713–1726 (2000)



114 5 Robust Speaker Modeling for Speaker Verification in Noisy Environments

17. J. Ye, Characterization of a family of algorithms for generalized discriminant analysis on
undersampled problems. J. Mach. Learn. Res. 6, 483–502 (2005)

18. N. Sen, H. Patil, S.K.D. Mandal, K.S. Rao, Importance of utterance partitioning in SVM clas-
sifier with GMM supervectors for text-independent speaker verification, in Mining Intelligence
and Knowledge Exploration. LNCS (Springer, Cham, 2013), pp. 780–789

19. N. Chawla, K. Bowyer, L. Hall, W.P. Kegelmeyer, SMOTE: synthetic minority over-sampling
technique. J. Artif. Intell. Res. 16, 341–378 (2002)

20. N. Chawla, A. Lazarevic, L. Hall, K. Bowyer, SMOTEBoost: improving prediction of the
minority class in boosting, in 7th European Conference on Principles and Practice of
Knowledge Discovery in Databases, Cavtat-Dubrovnik, 2003

21. P. Kang, S. Cho, EUS SVMs: Ensemble of under-sampled SVMs for data imbalance problems,
in ICONIP (1), Hong Kong, 2006, pp. 837–846

22. Z. Lin, Z. Hao, X. Yang, X. Liu, Several SVM ensemble methods integrated with under-
sampling for imbalanced data learning, in Advanced Data Mining and Applications (Springer,
Berlin/Heidelberg, 2009), pp. 536–544

23. K. Veropoulos, C. Campbell, N. Cristianini, Contolling the sensitivity of support vector
machines, in Proceedings of International Joint Conference on Artificial Intelligence, Stock-
holm, 1999

24. G. Wu, E. Chang, KBA: kernel boundary alignment considering imbalanced data distribution.
IEEE Trans. Knowl. Data Eng. 17(6), 786–795 (2005)

25. M.W. Mak, W. Rao, Utterance partitioning with acoustic vector resampling for GMM-SVM
speaker verification. Speech Commun. 53, 119–130 (2011)

26. S. Sarkar, K.S. Rao, Significance of utterance partitioning in GMM-SVM based speaker
verification in varying background environment, in 16th International Oriental COCOSDA
Conference, Gurgoan, 2013

27. P. Kenny, G. Boulianne, P. Ouellet, P. Dumouchel, Speaker and session variability in GMM-
based speaker verification. IEEE Trans. Audio Speech Lang. Process. 15(4), 1448–1460 (2007)

28. P. Kenny, G. Boulianne, P. Ouellet, P. Dumouchel, Factor analysis simplified, in Proceedings of
the IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP ’05),
Philadelphia, 2005, vol. 1, pp. 637–640

29. N. Dehak, P. Kenny, R. Dehak, O. Glembek, P. Dumouchel, L. Burget, V. Hubeika, F. Castaldo,
Support vector machines and joint factor analysis for speaker verification, in Proceedings of
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP ’09),
Taipei, 2009, pp. 4237–4240

30. N. Dehak, R. Dehak, P. Kenny, N. Brummer, P. Ouellet, P. Dumouchel, Support vector
machines versus fast scoring in the low-dimensional total variability space for speaker verifica-
tion, in Proceeding of the 10th Annual Conference of the International Speech Communication
Association (INTERSPEECH ’09), Brighton, 2009

31. A.O. Hatch, S. Kajarekar, A. Stolcke, Within-class covariance normalization for SVM-based
speaker recognition, in Proceedings of the International Conference of Spoken Language
Processing (ICSLP ’05), Jeju, 2005

32. Y. Freund, R. Schapire, Experiments with a new boosting algorithm, in Proceedings of
Thirteenth International Conference on Machine Learning (ICML ’96), Bari, 1996

33. A. Roy, M.M. Doss, S. Marcel, Boosted binary features for noise-robust speaker verification,
in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP ’10), Dallas, 2010, pp. 4442–4445

34. Y. Sun, S. Todorovic, J. Li, Reducing the overfitting of AdaBoost by controlling its data
distribution skewness. Int. J. Pattern Recognit. Artif. Intell. 20, 1093–1116 (2006)

35. H. Guo, H.L. Viktor, Learning from imbalanced data sets with boosting and data generation:
The DataBoost-IM approach. ACM SIGKDD Explor. Newsl. Spec. Issue Learn. Imbalanced
Datasets 6, 30–39 (2004)



Chapter 6
Summary and Conclusion

Abstract This chapter summarizes the research work presented in this book.
It highlights the contributions of the work, and briefly mention the scope for future
work.

6.1 Summary of the Book

The book addressed the issue of speaker verification (SV) in noisy background
environments. It was observed that background noise (in general additive in nature)
severely degraded the performance of standard GMM-UBM based SV systems
which have been considered as baseline for comparison in the present work.
Performance degradation was found to occur in both matched and mismatched
conditions, with much inferior performance in the latter situation. A review of
conventional strategies for handling background noise revealed two broad categories
of methods viz. (i) compensation or adaptation schemes in which speaker model
parameters learned in one environment are ‘altered’ or ‘adapted’ to reflect the
changes in another one and (ii) extraction of ‘high-level’ features which are
inherently robust towards noise distortions. The drawbacks associated with the first
category of methods are requirement of clean speaker models, a statistical noise
model and high amount of adaptation data while those with the second category is
low recognition power.

The aim of the present work was to explore alternative methods for developing
robust SV systems (a) without compromising on the discriminative power of ‘low-
level’ features and (b) by acoustic modeling methods that do not rely on the
availability of clean speaker models, large amount of adaptation data and a priori
knowledge about the test environment. The methods explored in the present work
can be broadly categorized as (i) feature transformation methods and (ii) robust
speaker modeling methods. The first category in turn comprised two methods i.e.,
(a) feature mapping in a multiple background framework and (b) stochastic feature
compensation methods. The significance of each of these methods were analyzed

K.S. Rao and S. Sarkar, Robust Speaker Recognition in Noisy Environments,
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on the basis of their effectiveness and computational costs. In the feature mapping
method, noisy utterances were frame-wise transformed to a noise-independent
background model space by simple parametric scaling. However, the performance
improvements compared to the baseline (GMM-UBM) systems were nominal in
both matched and mismatched conditions. Alternatively, integration of stereo-data
based stochastic feature compensation (SFC) methods in the GMM-UBM frame-
work was proposed for SV in mismatched environments. Front end GMMs built
from stereo-training data were used for transforming features. During the evaluation
phase, noisy test utterances were transformed on the basis of a minimum mean
squared error (MMSE) or maximum likelihood (MLE) estimate. Joint probability
model based SFC methods resulted in significant performance improvements in
comparison to the baseline.

Apart from feature transformation, the present work also explored speaker
modeling methods that are relatively immune towards noise distortions. The role
of GMM supervectors and total variability modeling (i-vectors) were explored
for robust speaker modeling in a discriminative framework using SVMs. In order
to justify its robustness towards background noise distortions, the models were
constructed using noisy-degraded training utterances and evaluated under matched
conditions. An extensive set of experiments were conducted using two kinds of
background simulations (i.e., uniform and varying), at various SNRs. The impact
of an utterance partitioning (UP-AVR) method for SV in noisy environment, was
demonstrated. The moderate performance improvements obtained initially from
the default system configuration could be scaled drastically by using partitioned
enrollment utterances. In contrast, the SV performance improvements under clean
conditions due to UP-AVR, were negligible. This further confirmed the effectiveness
of UP-AVR specifically for SV in noisy environments. The significance of the
UP-AVR strategy for SV in noisy environment could also be established from the
enhanced performances obtained via session compensation techniques like NAP,
LDA and WCCN. A few typical drawbacks of the conventional UP-AVR based
SV was highlighted. As a remedy to these drawbacks and for combining robust
SVM classifiers an adaptive boosting algorithm (DataBoost-UP) was proposed.
The proposed boosting method was reasonably effective in enhancing performance
accuracies of the SV systems in low SNR conditions.

6.2 Major Contribution of the Book

The contribution of the book can be broadly summarized under the following
points

• Feature compensation using multiple background models has been proposed for
SV in noisy background environments.

• Integration of data-driven stochastic feature compensation methods in the GMM-
UBM framework has been proposed for improved robust speaker verification
(SV) in noisy background environments under mismatched conditions.
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• The robustness of GMM-SVM framework for speaker modeling have been
explored for SV in noisy environments under matched conditions.

• The robustness of total variability modeling (i-vectors) in a discriminative
framework has been explored for SV in noisy environments.

• Utterance partitioning has been proposed for enhancing SV performances in
noisy environments.

• A boosting algorithm has been proposed for combining robust SVM classifiers
for improving SV performance.

6.3 Scope for Future Work

The following areas can be further explored for robust speaker verification

• Performance of the SV systems in mismatch condition caused due to noisy
training environment and clean test environment may be explored.

• In the feature mapping framework discussed in Chap. 3, speech data corrupted
with additive noises can be used for constructing multiple background model.

• A priori knowledge of the test environment assumed during the training stages of
stochastic feature compensation (SFC) methods can be avoided i.e., SV systems
trained using stereo data in one environment may be evaluated with test data
corrupted in a different background environment.

• SFC based SV methods may be examined for varying background noisy environ-
ments by varying noise types and noise strengths.

• The SV systems developed using supervector-based speaker modeling methods,
can be evaluated under mismatched conditions.

• The effect of Nuisance Attribute Projection (NAP) can be also be explored for
SV systems developed in uniform background environments.

• The effect of eigenchannel compensation methods [1] can be explored for
supervector-based modeling framework for SV in noisy environments.

• The role of high-level features (e.g., prosodic features, idiolect features) can be
explored for SV in noisy environments.

• Model adaptation methods can be explored for SV in mismatched environments.
• The proposed SV experiments can be carried out using more recent versions of

NIST-SRE databases for a better understanding of their overall utility.
• Proposed SFC based SV systems and Robust speaker models may be examined

for other real-life environmental noises e.g., street noise, train noise, restaurant
noise, babble noise etc.

• Speech enhancement methods may be examined for improving the SV perfor-
mance in noisy conditions.

• Speech data corrupted in real-life environments can be used instead of simulated
noisy data for experimental purpose.
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Appendix A
Mathematical Details of Stochastic Feature
Compensation Methods

The Stochastic feature compensation methods had been introduced in Chap. 1 and
implemented for robust speaker verification in Chap. 4. In this Appendix, we provide
detailed derivations of the Minimum Mean Squared Error (MMSE) estimator used
for the RATZ, SPLICE and MMCN algorithm used in Chap. 4. We also provide
details of the EM algorithm used for RATZ, SPLICE and TRAJMAP.

A.1 MMSE Estimators for Feature Compensation

Depending on the feature compensation algorithm, the noisy and clean feature
spaces (stereo-data) are modeled individually using GMMs during the training
phase. Given a sequence of T noisy MFFC vectors Y D Œy1; y2; : : : yT� and clean
MFCC vectors X D Œx1; x2; : : : xT� extracted from the stereo training data, the
models are given by

p.x/ D
MX

jD1

wx.j /Nx.xt I �x.j /; ˙x.j // (A.1)

p.y/ D
MX

jD1

wy.j /Ny.yt I �y.j /; ˙y.j // (A.2)

where w.j /, �.j / and ˙.j / denotes the weight, mean vector and covariance
matrix of the j th multivariate Gaussian component and M is the total number of
components. During evaluation, given a noisy test feature vector yt , the MMSE
estimator is used to generate an estimated clean vector Oxt as follows

Oxt D EŒxjyt � D
Z

X

xp.xjyt /dx (A.3)
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120 A Mathematical Details of Stochastic Feature Compensation Methods

In the following subsections, we derive the MMSE estimates for RATZ, SPLICE
and MEMLIN (multi-environment version of MMCN) algorithms, respectively.

A.1.1 RATZ

The RATZ algorithm models the clean feature space p.x/. It approximates noisy
GMM distribution p.y/ using corrective vectors rj and Rj as follows

p.y/ D
MX

jD1

wy.j /Ny.yI �x.j / C rj ; ˙x.j / C Rj / (A.4)

Given a test feature vector yt , the MMSE estimated clean vector is given by

Oxt D EŒxjyt � D
Z

X

xp.xjyt /dx D
Z

X

.yt � r.x//p.xjyt /dx

D
Z

X

yt p.xjyt /dx �
Z

X

r.x/p.xjyt /dx

D yt

Z

X

p.xjyt /dx �
Z

X

MX

jD1

r.x/p.x; j jyt /dx

D yt �
MX

jD1

p.j jyt /

Z

X

r.x/p.xjj; yt /dx

D yt �
MX

jD1

p.j jyt /rj

Z

X

p.xjj; yt /dx

D yt �
MX

jD1

p.j jyt /rj (A.5)

In the sixth step it is assumed that r.x/ remains constant over the integral and can
be approximated by rj .

A.1.2 SPLICE

The SPLICE algorithm models the noisy feature space p.y/. It approximates the
clean conditional distribution p.xjyt / using corrective vectors rj and 
j as follows
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p.xjyt / D
MX

jD1

wy.j /Ny.xI yt C rj ; 
j / (A.6)

Given a test feature vector yt , the MMSE estimated clean vector is given by

Oxt D EŒxjyt � D
Z

X

xp.xjyt /dx

D
Z

X

MX

jD1

xp.j jyt /p.xjj; yt /dx

D
MX

jD1

p.j jyt /

Z

X

xp.xjj; yt /dx

D
MX

jD1

p.j jyt /.yt C rj /

D
MX

jD1

p.j jyt /yt C
MX

jD1

p.j jyt /rj

D yt C
MX

jD1

p.j jyt /rj (A.7)

A.1.3 MEMLIN

The MEMLIN algorithm models the noisy feature space pe.y/ for environment e,
clean feature space p.x/ and clean conditional distribution p.xjyt ; se

y; sx/ using
corrective vectors r.sx; se

y/ as follows

pe.y/ D
MX

se
yD1

p.yt jse
y/p.se

y/

p.x/ D
MX

sxD1

p.xt jsx/p.sx/

p.xjyt / D
MX

jD1

wx.j /Nx.xI yt C rj ; 
j / (A.8)

Given a test feature vector yt , the MMSE estimated clean vector is given by
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Oxt D EŒxjyt � D
Z

x

xp.xjyt /dx

D
Z X

e

MX

se
yD1

MX

sxD1

xp.xjyt ; se
y; sx; e/dx

D yt �
Z X

e

MX

se
yD1

MX

sxD1

r.sx; se
y/p.xjyt ; se

y; sx; e/dx

D yt �
X

e

MX

se
yD1

MX

sxD1

r.sx; se
y/p.ejyt /p.se

y jyt /p.sxjse
y; yt ; e/ (A.9)

where r.sx; se
y/ denotes the additive bias term for noisy GMM component se

y and
clean GMM component sx , respectively. The noisy training environment is indexed
by e while p.sxjse

y; yt ; e/ denotes the cross probability model.

A.2 Expectation Maximization Algorithms for Feature
Compensation

The Expectation Maximization (EM) algorithm determines the unknown parameters
of a statistical model by iteratively maximizing the likelihood of ‘complete data’.
The complete data consists of the observed variables (training data) and latent
variables (GMM component). The EM algorithm consists of two stages i.e.,
Expectation (E) and Maximization (M). In the E step, the expected value of a
log-likelihood function with respect to the posterior probability of a latent GMM
component, is calculated as follows

Q.	; 	0/ D
X

z

p.zjX; 	0/ log .p.z; X j	// (A.10)

where z is the unobserved/latent variable, 	 is the estimated parameter set from
a previous iteration and 	0 is the set of parameters to be estimated in the current
iteration and Q is commonly termed as auxillary function.

In the M step, a new set of parameters are obtained by maximizing the auxillary
function as follows

	 D arg max	Q.	; 	0/ (A.11)

In the following subsections we describe the EM algorithm used for determining
the parameters of RATZ, SPLICE and TRAJMAP respectively,
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A.2.1 RATZ

The complete log-likelihood function for RATZ (Sect. A.1.1) is given as follows

L.Y / D log
TY

tD1

p.yt / D
TX

tD1

log
MX

jD1

wy.j /Ny.yt I �y.j /; ˙y.j //

D
TX

tD1

log
MX

jD1

wy.j /Ny.yt I �x.j / C rj ; ˙x.j / C Rj /

(A.12)

We define the set of unknown parameters to be estimated as the collection of the
additive bias terms i.e., 	 D fr1; r2 : : : rM ; R1; R2 : : : RM g and the latent variable
for yt as st .j /

E Step:

Q.	; 	0/ D
TX

tD1

MX

jD1

p.st .j /jyt ; 	/ log.p.yt ; st .j /j	0// (A.13)

Q D
TX

tD1

MX

jD1

p.st .j /jyt ; 	/

�
� D

2
log jRj C ˙x.j /j�

1

2
.yt � �x.j / � Orj /T .˙x.j / C Rj /�1.yt � �x.j / � Orj /

�
C K

where Q D Q.	; 	0/, ‘D’ is the dimension of the feature space and ‘K’ is a
constant term independent of the bias parameters.

M Step:

@Q

@ Orj

D
TX

tD1

p.st .j /jyt ; 	/.˙x.j / C Rj /�1.yt � �x.j / � Orj / D 0

D>

TX

tD1

p.st .j /jyt ; 	/.yt � �x.j / � Orj / D 0
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D> Orj D
PT

tD1 p.st .j /jyt ; 	/.yt � �x.j //

TP
tD1

p.st .j /jyt ; 	/

(A.14)

The expression for ˙x.j / can be obtained likewise.

A.2.2 SPLICE

The complete log-likelihood function for SPLICE (Sect. A.1.2) is given as follows

L.X/ D
TX

tD1

log.p.xt //

D
TX

tD1

log
MX

jD1

wx.j /Nx.xt I �x.j /; ˙x.j //

D
TX

tD1

log
MX

jD1

wy.j /Ny.xt I yt C rj ; 
j / (A.15)

We define the set of unknown parameters to be estimated as the collection of the
additive bias terms i.e., 	 D fr1; r2 : : : rM ; 
1; 
2 : : : 
M g and the latent variable for
xt as st .j /

E Step:

Q.	; 	0/ D
TX

tD1

MX

j D1

p.st .j /jyt ; 	/ log.p.xt ; st .j /j	0// (A.16)

Q D
TX

tD1

MX

j D1

p.st .j /jyt ; 	/

�
�D

2
log j
j j � 1

2
.xt � yt � Orj /T .
j /�1.xt � yt � Orj /

�
CK

where Q=Q.	; 	0/, ‘D’ is the dimension of the feature space and ‘K’ is a
constant term independent of the bias parameters.

M Step:

@Q

@ Orj

D
TX

tD1

p.st .j /jyt ; 	/.
j /�1.xt � yt � Orj / D 0
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D>

TX

tD1

p.st .j /jyt ; 	/.xt � yt � Orj / D 0

D> Orj D
PT

tD1 p.st .j /jyt ; 	/.xt � yt /

TP
tD1

p.st .j /jyt ; 	/

(A.17)

For notational convenience st .j / have been replaced by ‘j ’ and 	 has been
omitted

D> Orj D
PT

tD1 p.j jyt /.xt � yt /

TP
tD1

p.j jyt /

(A.18)

The expression for 
j can be obtained likewise.

A.2.3 TRAJMAP

The complete likelihood function for the TRAJMAP algorithm is given by

p.XjY; �.Z// D
X

j

p.jjY; �.Z//p.XjY; j; �.Z//

D
TY

tD1

MX

jD1

p.j jYt ; �.Z//p.Xt jYt ; j; �.Z// (A.19)

where j D fj1; j2 : : : jTg is a mixture component sequence. The conditional pdf at
each frame is modeled as a GMM. At frame t , the j th mixture component weight
p.j jYt ; �.Z// and the j th conditional probability distribution p.Xt jYt ; j; �.Z// are
given by the following expressions

p.j jYt ; �.Z// D wY
j N .Yt I �Y

j ; ˙Y Y
j /

PM
jD1 wY

j N .Yt I �Y
j ; ˙Y Y

j /
(A.20)

p.Xt jYt ; j; �.Z// D N .Xt I EX
j;t ; DX

j / (A.21)

where

EX
j;t D �X

j C ˙XY
j .˙Y Y

j /�1.Yt � �Y
j / (A.22)

DX
j D ˙XX

j � ˙XY
j .˙Y Y

j /�1˙YX
j (A.23)
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The task is to estimate a static feature vector sequence Ox D Œ OxT
1 ; OxT

2 ; : : : ; OxT
T �

by maximizing the likelihood function given by Eq. (A.19) ( Ox D arg max p.XjY;

�.Z//). This in turn is achieved by iteratively maximizing the auxillary function
Q.X; OX/ using an EM algorithm as follows

E Step:

Q.X; OX/ D
X

j

p.jjY; X; �.Z// log.p. OX; jjY; �.Z///

D
TX

tD1

MX

jD1

p.j jYt ; Xt ; �.Z// log.p. OXt ; j jYt ; �.Z///

D
TX

tD1

MX

jD1

�j;t .�1

2
OXT
t .DX

j /�1 OXt C OXT
t .DX

j /�1EX
j;t / C K

D
TX

tD1

.�1

2

MX

jD1

�j;t
OXT
t .DX

j /�1 OXt C
MX

jD1

�j;t
OXT
t .DX

j /�1EX
j;t / C K

D
TX

tD1

.�1

2
OXT
t .DX

t /�1 OXt C OXT
t .DX

t /�1EX
t / C K

D �1

2
OXT .DX/�1 OX C OXT .DX/�1EX C K

D �1

2
OxT WT .DX/�1W Ox C OxT WT .DX/�1EX C K (A.24)

where K in the third step of the above derivation is a constant term independent
of OX , OX D W Ox and

.DX/�1 D diagŒ.DX
1 /�1; .DX

2 /�1; : : : ; .DX
t /�1; : : : ; .DX

T /�1� (A.25)

.DX/�1EXDŒ.DX
1 /�1EX

1

T
; .DX

2 /�1EX
2

T
; : : : ; .DX

t /�1EX
t

T
; : : : ; .DX

T /�1EX
T

T
�T

(A.26)

.DX
t /�1 D

MX

jD1

�j;t .D
X
j /�1 (A.27)

.DX
t /�1EX

t D
MX

jD1

�j;t .D
X
j /�1EX

j;t (A.28)

�j;t D p.j jYt ; Xt ; �.Z// (A.29)
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M Step:

The partial derivative of the auxillary function with respect to Ox gives the
following equation

@Q.X; OX/

@ Ox D �WT .DX/�1W Ox C WT .DX/�1EX (A.30)

The sequence of vector Ox obtained by setting the above partial derivative to 0 is
given by

Ox D .WT .DX/�1W/�1WT .DX/�1EX (A.31)



Appendix B
Gaussian Mixture Model

In speaker recognition, the acoustic events are usually modeled by Gaussian prob-
ability density functions (PDFs), described by the mean vector and the covariance
matrix. However unimodel PDF with only one mean and covariance are unsuitable
to model all variations of a single event in speech signals. Therefore, a mixture
of single densities i.e., a Gaussian Mixture Model (GMM) is used to model the
complex structure of the density probability. For a D-dimensional feature vector
denoted as xt , the mixture density for speaker ˝ is defined as weighted sum of M

component Gaussian densities as given by the following [1]

P.xt j˝/ D
MX

iD1

wi Pi .xt / (B.1)

where wi are the weights and Pi .xt / are the component densities. Each component
density is a D-variate Gaussian function of the form

Pi .xt / D 1

.2�/D=2 j˙i j 1
2

e� 1
2 Œ.xt��i /

0˙�1
i .xt��i /� (B.2)

where �i is a mean vector and ˙i covariance matrix for i th component. The mixture
weights have to satisfy the constraint [1]

MX

iD1

wi D 1: (B.3)

The complete Gaussian mixture density is parameterized by the mean vector, the
covariance matrix and the mixture weight from all component densities. These
parameters are collectively represented by

˝ D fwi ; �i ; ˙i g I i D 1; 2; : : : M: (B.4)
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B.1 Training the GMMs

To determine the model parameters of GMM of the speaker, the GMM has to
be trained. In the training process, the maximum likelihood (ML) procedure is
adopted to estimate model parameters. For a sequence of training vectors X D
fx1; x2; : : : ; xT g, the GMM likelihood (assuming independent observations) can be
written as [1]

P.X j˝/ D
TY

tD1

P.xt j˝/: (B.5)

Usually this is done by taking the logarithm and is commonly named as log-
likelihood function. From Eqs. (B.1) and (B.5), the log-likelihood function can be
written as

log ŒP.X j˝/� D
TX

tD1

log

"
MX

iD1

wi Pi .xt /

#
: (B.6)

Often, the average log-likelihood is used value is used by dividing log ŒP.X j˝/�

by T . This is done to normalize out duration effects from the log-likelihood
value. Also, since the incorrect assumption of independence is underestimating the
actual likelihood value with dependencies, scaling by T can be considered a rough
compensation factor [2]. The parameters of a GMM model can be estimated using
maximum likelihood (ML) estimation. The main objective of the ML estimation
is to derive the optimum model parameters that can maximize the likelihood of
GMM. The likelihood value is, however, a highly nonlinear function in the model
parameters and direct maximization is not possible. Instead, maximization is done
through iterative procedures. Of the many techniques developed to maximize the
likelihood value, the most popular is the iterative expectation maximization (EM)
algorithm [3].

B.1.1 Expectation Maximization (EM) Algorithm

The EM algorithm begins with an initial model ˝ and tends to estimate a new model
such that the likelihood of the model increasing with each iteration. This new model
is considered to be an initial model in the next iteration and the entire process is
repeated until a certain convergence threshold is obtained or a certain predetermined
number of iterations have been made. A summary of the various steps followed in
the EM algorithm are described below.
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1. Initialization: In this step an initial estimate of the parameters is obtained. The
performance of the EM algorithm depends on this initialization. Generally, LBG
[4] or K-means algorithm [5] is used to initialize the GMM parameters.

2. Likelihood Computation: In each iteration the posterior probabilities for the i th
mixture is computed as [1]:

Pr.i jxt / D wi Pi .xt /

MP
jD1

wj Pj .xt /

: (B.7)

3. Parameter Update: Having the posterior probabilities, the model parameters are
updated according to the following expressions [1].
Mixture weight update:

wi D

TP
iD1

Pr.i jxt /

T
: (B.8)

Mean vector update:

�i D

TP
iD1

Pr.i jxt /xt

TP
iD1

Pr.i jxt /

: (B.9)

Covariance matrix update:

�2
i D

TP
iD1

Pr.i jxt / jxt � �i j2

TP
iD1

Pr.i jxt /

: (B.10)

In the estimation of the model parameters, it is possible to choose, either
full covariance matrices or diagonal covariance matrices. It is more common to
use diagonal covariance matrices for GMM, since linear combination of diagonal
covariance Gaussians has the same model capability with full matrices. Another
reason is that speech utterances are usually parameterized with cepstral features.
Cepstral features are more compactable, discriminative, and most important, they
are nearly uncorrelated, which allows diagonal covariance to be used by the GMMs
[1]. The iterative process is normally carried out 10 times, at which point the model
is assumed to converge to a local maximum [1].
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B.2 Testing

In identification phase, mixture densities are calculated for every feature vector
for all speakers and speaker with maximum likelihood is selected as identified
speaker. For example, if S speaker models f˝1; ˝2; : : : ; ˝S g are available after the
training, speaker identification can be done based on a new speech data set. First, the
sequence of feature vectors X D fx1; x2; : : : ; xT g is calculated. Then the speaker
model Os is determined which maximizes the a posteriori probability P .˝S jX/. That
is, according to the Bayes rule [1]

Os D max
1�s�S

P .˝S jX/ D max
1�s�S

P .X j˝S /

P.X/
P.˝S /: (B.11)

Assuming equal probability of all speakers and the statistical independence of the
observations, the decision rule for the most probable speaker can be redefined as

Os D max
1�s�S

TX

tD1

log P.xt j˝s/ (B.12)

with T the number of feature vectors of the speech data set under test and P.xt j˝s/

given by Eq. (B.1).
Decision in verification is obtained by comparing the score computed using the

model for the claimed speaker ˝S given by P .˝S jX/ to a predefined threshold � .
The claim is accepted if P .˝S jX/ > � , and rejected otherwise [6].
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Appendix C
MFCC Features

The MFCC feature extraction technique basically includes windowing the signal,
applying the DFT, taking the log of the magnitude and then warping the frequencies
on a Mel scale, followed by applying the inverse DCT. The detailed description of
various steps involved in the MFCC feature extraction is explained below.

1. Pre-emphasis: Pre-emphasis refers to filtering that emphasizes the higher
frequencies. Its purpose is to balance the spectrum of voiced sounds that have a
steep roll-off in the high frequency region. For voiced sounds, the glottal source
has an approximately �12 dB/octave slope [1]. However, when the acoustic
energy radiates from the lips, this causes a roughly C6 dB/octave boost to the
spectrum. As a result, a speech signal when recorded with a microphone from a
distance has approximately a �6 dB/octave slope downward compared to the true
spectrum of the vocal tract. Therefore, pre-emphasis removes some of the glottal
effects from the vocal tract parameters. The most commonly used pre-emphasis
filter is given by the following transfer function

H.z/ D 1 � bz�1 (C.1)

where the value of b controls the slope of the filter and is usually between 0.4
and 1.0 [1].

2. Frame blocking and windowing: The speech signal is a slowly time-varying
or quasi-stationary signal. For stable acoustic characteristics, speech needs to
be examined over a sufficiently short period of time. Therefore, speech analysis
must always be carried out on short segments across which the speech signal is
assumed to be stationary. Short-term spectral measurements are typically carried
out over 20 ms windows, and advanced every 10 ms [1]. Advancing the time
window every 10 ms enables the temporal characteristics of individual speech
sounds to be tracked and the 20 ms analysis window is usually sufficient to
provide good spectral resolution of these sounds, and at the same time short
enough to resolve significant temporal characteristics. The purpose of the
overlapping analysis is that each speech sound of the input sequence would be
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approximately centered at some frame. On each frame a window is applied to
taper the signal towards the frame boundaries. Generally, Hanning or Hamming
windows are used [1]. This is done to enhance the harmonics, smooth the edges
and to reduce the edge effect while taking the DFT on the signal.

3. DFT spectrum: Each windowed frame is converted into magnitude spectrum by
applying DFT.

X.k/ D
N�1X

nD0

x.n/e
�j 2�nk

N I 0 � k � N � 1 (C.2)

where N is the number of points used to compute the DFT.
4. Mel-spectrum: Mel-Spectrum is computed by passing the Fourier transformed

signal through a set of band-pass filters known as mel-filter bank. A mel is a unit
of measure based on the human ears perceived frequency. It does not correspond
linearly to the physical frequency of the tone, as the human auditory system
apparently does not perceive pitch linearly. The mel scale is approximately a
linear frequency spacing below 1 kHz, and a logarithmic spacing above 1 kHz
[1]. The approximation of mel from physical frequency can be expressed as

fmel D 2;595 log10

�
1 C f

700

�
(C.3)

where f denotes the physical frequency in Hz, and fmel denotes the perceived
frequency [1].

Filter banks can be implemented in both time domain and frequency domain.
For MFCC computation, filter banks are generally implemented in frequency
domain. The center frequencies of the filters are normally evenly spaced on
the frequency axis. However, in order to mimic the human ears perception,
the warped axis according to the non-linear function given in Eq. (C.3), is
implemented. The most commonly used filter shaper is triangular, and in some
cases the Hanning filter can be found [1]. The triangular filter banks with mel-
frequency warping is given in Fig. C.1.

The mel spectrum of the magnitude spectrum X.k/ is computed by multi-
plying the magnitude spectrum by each of the of the triangular mel weighting
filters.

s.m/ D
N�1X

kD0

h
jX.k/j2 Hm.k/

i
I 0 � m � M � 1 (C.4)

where M is total number of triangular mel weighting filters [2]. Hm.k/ is the
weight given to the kth energy spectrum bin contributing to the mth output band
and is expressed as:
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Fig. C.1 Mel filterbank

Hm.k/ D

8
ˆ̂̂
<

ˆ̂̂
:

0; k < f .m � 1/
2.k�f .m�1//

f .m/�f .m�1/
; f .m � 1/ � k � f .m/

2.f .mC1/�k/

f .mC1/�f .m/
; f .m/ < k � f .m C 1/

0; k > f .m C 1/

(C.5)

with m ranging from 0 to M � 1.
5. Discrete Cosine Transform (DCT): Since the vocal tract is smooth, the energy

levels in adjacent bands tend to be correlated. The DCT is applied to the
transformed mel frequency coefficients produces a set of cepstral coefficients.
Prior to computing DCT the mel spectrum is usually represented on a log
scale. This results in a signal in the cepstral domain with a que-frequency peak
corresponding to the pitch of the signal and a number of formants representing
low quefrequency peaks. Since most of the signal information is represented by
the first few MFCC coefficients, the system can be made robust by extracting
only those coefficients ignoring or truncating higher order DCT components [1].
Finally, MFCC is calculated as [2]

c.n/ D
M�1X

mD0

log10 .s.m// cos

�
�n.m � 0:5/

M

�
I n D 0; 1; 2; : : : ; C � 1

(C.6)
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where c.n/ are the cepstral coefficients and C is the number of MFCCs.
Traditional MFCC systems use only 8–13 cepstral coefficients. The zeroth
coefficient is often excluded since it represents the average log-energy of the
input signal, which only carries little speaker-specific information.

6. Dynamic MFCC features: The cepstral coefficients are usually referred to as
static features, since they only contain information from a given frame. The
extra information about the temporal dynamics of the signal is obtained by
computing first and second derivatives of cepstral coefficients [3]. The first
order derivative is called delta coefficients, and the second order derivative is
called delta-delta coefficients. Delta coefficients tell about the speech rate, and
delta-delta coefficients provide information similar to acceleration of speech. The
commonly used definition for computing dynamic parameter is

�cm.n/ D

TP
iD�T

ki cm.n C i/

TP
iD�T

ji j
(C.7)

where cm.n/ denotes the mth feature for the nth time frame, ki is the i th weight
and T is the number of successive frames used for computation. Generally T

is taken as 2. The delta-delta coefficients are computed by taking the first order
derivative of the delta coefficients.
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Appendix D
Total Variability Training

Total variability modeling was introduced in Chap. 5. In this method large dimen-
sional supervectors are projected in a low-dimensional subspace (known as ‘total
variability’ space) based on probabilistic principal component analysis, as follows

M D m C T w (D.1)

where M is a GMM mean supervector, m is a speaker/channel independent
supervector (i.e., the UBM mean supervector), T is low-rank rectangular matrix
whose columns consists of eigenvectors of the total variability covariance matrix
with largest eigenvalues. w is a random vector having standard Normal distribution,
called i-vector (i.e., w v N .0; I /). M is assumed to be Normal distributed with
mean m and covariance T T T (i.e., M v N .m; T T T /).

This Appendix discusses the training procedure of the total variability (T ) matrix.
As mentioned earlier in Chap. 5, the T matrix is trained offline using a development
dataset. The training algorithm implicitly assumes each utterance in the dataset to
be produced by a different speaker irrespective of the actual number of speakers.
Let the development data consist of S training utterances (each from one speaker).
The steps of the training procedure are given as follows

1. Baum-Welch statistics estimation: Given an utterance (s) of T frames consist-
ing a sequence of D-dimensional acoustic vectors fy1; y2; : : : yTg, the Baum-
Welch statistics are calculated as follows

Ni .s/ D
TX

tD1

p.i jyt ; �/

Fi .s/ D
TX

tD1

p.i jyt ; �/.yt � mi /
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Si .s/ D diag

 
TX

tD1

p.i jyt ; �/.yt � mi /.yt � mi /
T

!
(D.2)

where p.i jyt ; �/ is the posterior probability of the i th Gaussian component of a
UBM � having total M components, which generates vector yt . The mean of the
same component is given by mi . Ni .s/, Fi .s/ and Si .s/ are known as the zeroth
order, mean-shifted first order and mean-shifted second order sufficient statistics,
respectively. The ‘diag’ operation keeps only the diagonal entries and zeros out
the other entries.

2. Expansion of statistics into matrices: The Baum-Welch statistics estimated in
Step 1 are expanded into matrices as follows

N.s/ D

2

64
N1.s/I

: : :

NM .s/I

3

75

S.s/ D

2

64
S1.s/

: : :

SM .s/

3

75

F.s/ D

2

64
F1.s/

:::

FM .s/

3

75

where N.s/, S.s/ are block diagonal matrices of size MD � MD, F.s/ is a
MD � 1 supervector and I is a D � D identity matrix.

3. Accumulation of additional statistics across speakers: The T matrix of appro-
priate size is initialized randomly. The following statistics are thereafter esti-
mated as follows

Ni D
SX

sD1

Ni .s/

Ai D
SX

sD1

Ni .s/l�1.s/

C D
SX

sD1

F.s/
�
l�1.s/T T ˙�1F.s/

	T

N D
SX

sD1

N.s/ (D.3)

where ˙ is a block diagonal matrix whose diagonal blocks consist of the UBM
covariance matrices ˙i (i D 1; 2; : : : M ) and l�1.s/ D .I C T T ˙�1N.s/T /�1.
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4. Re-estimation of T matrix: Following Step 3, the T matrix is re-estimated as
follows

T D

2

64
T1

:::

TM

3

75 D

2

64
A�1

1 C1

:::

A�1
M CM

3

75 (D.4)

where C D

2

64
C1

:::

CM

3

75.

5. Optional updation of UBM covariance matrix: Depending on the amount of
available training data, the UBM covariance matrix (˙ ) used in Step 3 can be
updated optionally as follows

˙ D N�1

  
SX

sD1

S.s/

!
� diag.C T T /

!
(D.5)

It can be noted that the second order statistics S.s/ are only used in this step.
In scenarios where the covariance updation is avoided, estimation of S.s/ as in
Steps 1 and 2, can be skipped.

6. Steps 3–4 (or 3–5) are iterated 20–25 times approximately. The re-estimated
value of T in Step 4 of each iteration is substituted in the required equations
in Step 3.
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