
12Variable Neighborhood Descent

Abraham Duarte, Nenad Mladenović, Jesús Sánchez-Oro,
and Raca Todosijević

Contents

Introduction . 342
Neighborhoods . 344

Neighborhoods for Continuous Optimization Problems . 345
Neighborhoods for Binary Problems . 346
Neighborhoods for Integer Problems . 348
Neighborhoods for Permutation Problems . 350

Local Search Methods . 352
VND Variants . 355

Sequential Variable Neighborhood Descent Procedures . 356
Nested Variable Neighborhood Descent . 359
Mixed Variable Neighborhood Descent . 362

Conclusions . 365
Cross-References . 365
References . 366

A. Duarte (�)
Department of Ciencias de la Computación, Universidad Rey Juan Carlos, Móstoles (Madrid),
Madrid, Spain
e-mail: abraham.duarte@urjc.es

J. Sánchez-Oro
Universidad Rey Juan Carlos, Móstoles (Madrid), Madrid, Spain
e-mail: jesus.sanchezoro@urjc.es

N. Mladenović
GERAD and Ecole des Hautes Etudes Commerciales, Montréal, QC, Canada

LAMIH, University of Valenciennes, Famars, France

LAMIH, France and Mathematical Institute, SANU, Université de Valenciennes, Belgrade, Serbia
e-mail: nenadmladenovic12@gmail.com; Nenad.Mladenovic@univ-valenciennes.fr

R. Todosijević
LAMIH, France and Mathematical Institute, SANU, Université de Valenciennes, Belgrade, Serbia
e-mail: racatodosijevic@gmail.com

© Springer International Publishing AG, part of Springer Nature 2018
R. Martí et al. (eds.), Handbook of Heuristics,
https://doi.org/10.1007/978-3-319-07124-4_9

341

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-07124-4_9&domain=pdf
mailto:abraham.duarte@urjc.es
mailto:jesus.sanchezoro@urjc.es
mailto:racatodosijevic@gmail.com
https://doi.org/10.1007/978-3-319-07124-4_9
mailto:nenadmladenovic12@gmail.com
mailto:Nenad.Mladenovic@univ-valenciennes.fr

342 A. Duarte et al.

Abstract

Local search heuristic that explores several neighborhood structures in a de-
terministic way is called variable neighborhood descent (VND). Its success is
based on the simple fact that different neighborhood structures do not usually
have the same local minimum. Thus, the local optima trap problem may be
resolved by deterministic change of neighborhoods. VND may be seen as a local
search routine and therefore could be used within other metaheuristics. In this
chapter, we discuss typical problems that arise in developing VND heuristic:
what neighborhood structures could be used, what would be their order, what
rule of their change during the search would be used, etc. Comparative analysis
of usual sequential VND variants is performed in solving traveling salesman
problem.

Keywords
Variable neighborhood descent � Local search � Intensification � Deterministic
exploration

Introduction

Optimization is a key discipline in fields such as computer science, artificial
intelligence, and operations research. Outside these scientific communities, the
meaning of optimization becomes quite vague, going to mean simply “do it as better
as you can.” In the context of this chapter, the concept of optimization is conceived
as the process of trying to find the best possible solution to an optimization problem,
usually in a limited time horizon.

In the simplest case, an optimization problem may be defined by a 2-tuple
.X; f /, where X represents the set of feasible solutions and f is an objective
function that assigns a real number to each solution x 2 X , which represents its
quality or fitness. Then, the main objective of an optimization problem is to find
a solution x? 2 X with the best objective function value among all solutions in
the search space. Therefore, in a minimization problem, x? 2 X is a minimum
point if f .x?/ � f .x/; 8x 2 X . Notice that minimization of f is equivalent to
maximization of �f .

In optimization problems, there is usually either finite but a huge number or
infinity number of solutions and a clear criterion for the comparison among them.
Some well-known examples of optimization problems are the traveling salesman
problem (TSP), the vehicle routing problem (VRP), the quadratic assignment
problems (QAP), or scheduling problems, among others. A detailed description of
these problems can be found in [3, 36]. The difficulty of solving these problems
has been studied since the late 1970s [12]. These studies concluded that there is a
subset of problems where it is possible to design an algorithm, which presents a
polynomial computational complexity, i.e., the execution time of these algorithms
polynomially grows with the problem size. Such problems belong to the class P, and
they are considered “easy to solve.” Examples of these problems are the shortest

12 Variable Neighborhood Descent 343

path problem (Dijkstra algorithm), the minimum spanning tree (Prim or Kruskal
algorithms), or flows in networks (Ford-Fulkerson algorithm). However, computing
optimal solutions is intractable for many optimization problems of industrial and
scientific importance (i.e., there is no known algorithm with polynomial complexity
to solve it optimally). This type of problems belongs to a class known as NP, and
they are considered “hard to solve.”

In practice, we are usually satisfied with “good” solutions, which are obtained
by heuristic algorithms. In particular, metaheuristics (MHs) represent a family of
approximate [42] optimization techniques that gained a lot of popularity in the
past two decades, becoming the most promising and successful techniques for
solving hard problems. Unlike exact optimization algorithms, metaheuristics do not
guarantee the optimality of the obtained solutions. Additionally, metaheuristics do
not define how close the obtained solutions are from the optimal ones, in contrast
with approximation algorithms. MHs provide acceptable solutions in a reasonable
computing time for solving hard and complex problems in science and engineering.

The term metaheuristic was coined in 1986 [13] as a way of defining a master
process that guides and modifies other subordinate heuristics to explore solutions
beyond simple local optimality. MHs are among the most prominent and successful
techniques to solve a large amount of complex and computationally hard combi-
natorial and numerical optimization problems arising in human activities, such as
economics, industry, or engineering. MHs can be seen as general algorithmic frame-
works that require relatively few modifications to be adapted to tackle a specific
problem. They constitute a very diverse family of optimization algorithms including
methods such as simulated annealing (SA), Tabu search (TS), genetic algorithms
(GA), ant colony optimization (ACO), or variable neighborhood search (VNS).

Metaheuristics are high-level strategies for exploring the search space using
different methods. The search strategies are highly dependent on the philosophy of
the metaheuristic itself. In particular, trajectory-based metaheuristics can be seen
as intelligent extensions of traditional local search methods. The goal of this kind
of MH is to escape from a local optimum in order to proceed in the exploration
of the search space and move on to find other hopefully better local optimum.
Examples of these MHs are Tabu search [13], simulated annealing [23], or variable
neighborhood search [15], among others. Population-based metaheuristics deal with
a set of solutions instead of dealing with only one solution. These techniques
proved a natural and intrinsic way for the exploration of the search space. The final
performance of these methods strongly depends on how the population is managed.
Examples of population-based metaheuristics are genetic algorithms [19], scatter
search [14], or memetic algorithms [33], among others. Some authors consider a
third kind of metaheuristics called constructive-based metaheuristics, where the
main effort is put in the intelligent construction of the solution. In other words,
instead of starting the search from a random solution, these methods try to construct
a high-quality initial solution. Examples of constructive-based metaheuristics are
GRASP [10], ant colony optimization [5], or iterated greedy [39], among others.

The number of new proposed metaheuristics has amazingly increased in the last
25 years. Nowadays, the portfolio of MHs contains more than 50 variants, only

344 A. Duarte et al.

considering the most stabilized ones (MHs successfully applied to a relatively large
set of optimization problems). However, at the end, when designing a metaheuristic
for an optimization problem, we face with two contradictory criteria: intensification
(exploitation) and diversification (exploration). In fact, the performance of a meta-
heuristic basically relies on how it balances both criteria. The intensification of an
algorithm describes its ability to thoroughly explore the promising regions in the
hope to find better solutions. On the other hand, diversification describes the ability
of the metaheuristic to explore non-visited regions of the search space in order to
assure the evenly exploration of the search space and to avoid the confinement to the
procedure to a reduced number of regions. Therefore, when tackling an optimization
problem, it is necessary to search for the equilibrium between both criteria.

Variable neighborhood search (VNS) is a metaheuristic which was proposed in
[32] as a general framework to solve hard optimization problems. This methodology
is based on performing systematic changes of neighborhoods during the search
space exploration. VNS has evolved in recent years, resulting in a large variety of
strategies. Some of the most relevant variants are reduced VNS (RVNS), variable
neighborhood descent (VND), basic VNS (BVNS), skewed VNS (SVNS), general
VNS (GVNS), or variable neighborhood decomposition search (VNDS), among
others (see [18] for a survey on VNS). We refer the reader to [6, 8, 37, 40, 41] to
some recent and successful applications of VNS to hard optimization problems.

In this chapter, we focus on the deterministic variant of VNS, namely, variable
neighborhood descent (VND). VND deserves separate attention since it is usually
used in context of other metaheuristics as a local search routine. Once the set of
neighborhood structures is selected, to be used in a deterministic manner, the VND-
based local searches may be designed in three possible ways: (i) sequential VND,
where neighborhoods are placed in the list with a given order and always explored
in that order; (ii) nested or composite VND, where neighborhood operators are
composed, i.e., N1.N2.N3.: : : .x//// (neighborhood one of neighborhood two of
neighborhood three, etc. of x; and (iii) mixed nested VND, where the two previous
strategies are combined.

In this chapter, we first give some possible classification of neighborhood
structures that are usually used in solving continuous and discrete optimization
problems. Then we provide pseudocodes of sequential, composite, and mixed nested
variants of VND. Variants of sequential VND are compared on traveling salesman
problem.

Neighborhoods

The representation (encoding) of a solution in an optimization problem plays a
relevant topic in the design of an algorithm. In fact, as it is well documented,
this representation determines the difficulty of solving a problem [12] and also the
complexity of some routines within algorithm. In addition, this encoding strongly
influences the way in which the neighborhoods of a given solution are defined.
Therefore, it is not possible to separate the neighborhood of a solution from its
corresponding representation in the computer memory.

12 Variable Neighborhood Descent 345

Let us assume without loss of generality that each solution x 2 X is represented
by a vector x D .x1; : : : ; xn/, being n the size of the problem. Depending on the
values of each xi , we can distinguish among different types of problems: continuous
(xi 2 R), binary (xi 2 f0; 1g), integer (xi 2 N), or permutations (xi 2 N, 1 �

xi � n and xi ¤ xj if i ¤ j). We could also identify a fifth class of problems
which encompasses mixed variables. In this section, we describe the most common
neighborhoods defined in the related literature as well as some basic properties.

Neighborhoods for Continuous Optimization Problems

The continuous constrained nonlinear global optimization problem (GOP) in gen-
eral form is given as follows:

.GOP /

2
664

min f .x/

s.t. gi .x/ � 0 8i 2 f1; 2; : : : ; mg

hi .x/ D 0 8i 2 f1; 2; : : : ; rg

aj � xj � bj 8j 2 f1; 2; : : : ; ng

where x 2 R
n, f W Rn ! R, gi W R

n ! R, i D 1; 2; : : : ; m, and hi W R
n ! R,

i D 1; 2; : : : ; r are possibly nonlinear continuous functions and a; b 2 R
n are the

variable bounds.
GOP naturally arises in many applications, e.g., in advanced engineering design,

data analysis, financial planning, risk management, scientific modeling, etc. Most
cases of practical interest are characterized by multiple local optima, and, therefore,
in order to find the globally optimal solution, a global scope search effort is needed.

If the feasible set X is convex and objective function f is convex, then GOP is
relatively easy to solve, i.e., the Karush-Kuhn-Tucker conditions may be applied.
However, if X is not a convex set or f is not a convex function, we could have
many local minima, and thus, the problem may not be solved by using classical
techniques.

For solving GOP, neighborhood structures Nk.x/ are usually induced from the
`p metric:

�.x; y/ D

nX

iD1

jxi � yi j
p

!1=p

(1 � p <1) (1)

or

�.x; y/ D max
1�i�n

jxi � yi j (p !1). (2)

The neighborhood Nk.x/ denotes the set of solutions in the k–th neighborhood of
x, and using the metric �, it is defined as:

Nk.x/ D fy 2 X j �.x; y/ � �kg; (3)

or

Nk.x/ D fy 2 X j �k�1 � �.x; y/ � �kg; (4)

346 A. Duarte et al.

where �k , known as the radius of Nk.x/, is monotonically increasing with k.
Note that in some papers neighborhoods structures in R

n are not induced from
the `p metric (see e.g., [1]).

Neighborhoods for Binary Problems

There are a large family of optimization problems, whose solution is usually
represented as a binary array, where the presence or absence of an element is
described by means of a binary variable. The knapsack problem [28], the max-cut
problem (MCP) [29], or the maximum diversity problem [7] are examples of these
problems. For solving binary problems, neighborhood structures Nk.x/ are usually
induced from the Hamming metric:

dH .x; y/ D

nX
iD1

jxi � yi j (5)

More precisely, the k–th neighborhood of a solution x, i.e., Nk.x/, relatively to
Hamming metric, is defined as

N Bin
k .x/ D fy 2 X j dH .x; y/ D kg (6)

We will use the max-cut problem to illustrate the most relevant characteristics of
binary problems. Consider a graph G D .V; E/ with vertex set V and edge set E.
Let wij be the weight associated with edge .i; j / 2 E. A cut.W; W 0/ is a partition
of V into two sets W , W 0 D V nW , and its value is given by the expression:

cut.W; W 0/ D
X

i2W^j2W 0

wij

The max-cut problem (MCP) consists of finding a cut in G with maximum
value. Karp [22] showed that MCP is an NP-hard problem. Figure 1a shows an
example graph with five vertices and seven edges where the number close to each
edge represents the corresponding weight. Figure 1b shows a possible solution,
x D .W; W 0/, where W D f1; 2g and W 0 D f3; 4; 5g. The value of this solution is
cut.W; W 0/ D 9 C 14 C 10 C 5 D 38, computed as the sum of the edges whose
endpoints are in different sets (dashed edges). This solution can be represented as
a binary vector x D f1; 1; 0; 0; 0g where xi D 1 indicates that the corresponding
vertex is in W , while xi D 0 means that the vertex is in W 0.

For a given solution x of a MCP, we define N Bin
drop.x/ neighborhood using the

drop.x; i/ move operator. This operator is responsible of changing the value of a
variable xi from 1 to 0, producing a new solution x0. The associated neighborhood,
N Bin

drop.x/, has size n (in the worst case) and is a subset of N Bin
1 .x/. Formally,

N Bin
drop.x/ is defined as:

N Bin
drop.x/ D fx0 drop.x; i/ W xi D 1 ^ 1 � i � ng

12 Variable Neighborhood Descent 347

1

2 5

3 4

15

a b

5

8

7

9

14 10

1

2 5

3 4

Fig. 1 Example of graph with five vertices and seven edges and a possible solution for the MCP.
(a) Example of a graph. (b) Solution x D f1; 1; 0; 0; 0g

1

2 5

3 4

1

2 5

3 4

1

2 5

3 4

a b c

Fig. 2 Solutions generated when performing the different moves to the one depicted in Fig. 1b.
(a) x0 drop.x; 2/. (b) x00 add.x; 5/. (c) x000 swap.x; 1; 3/

Figure 2a shows an example of a this type of move. In particular, drop.x; 2/

considers the solution x (depicted in Fig. 1b), removes the vertex 2 from W , and
includes it in W 0, producing a new solution xdrop D f1; 0; 0; 0; 0g. The Hamming
distance between x and x0 is 1 since there is only one vertex located in a different
group.

Symmetrically, we define the add.x; i/ as the move operator responsible of
changing the value of a variable xi from 0 to 1, producing a new solution xadd.
Considering the MCP, this move operator removes a vertex from W 0 and includes it
in W . This move is represented as x00 add.x; i/, and the neighborhood, N Bin

add .x/,
with size n in the worst case, is:

N Bin
add .x/ D fx00 add.x; i/ W xi D 0 ^ 1 � i � ng

Figure 2b shows the move add.x; 1/. It considers again the solution x (depicted in
Fig. 1b), removes the vertex 1 from W 0 including it in W . The Hamming distance
between the new produced solution, x00 D f1; 1; 0; 0; 1g, and x is again 1.

348 A. Duarte et al.

Finally, we define N Bin
swap.x/ neighborhood as a subset of N Bin

2 .x/ defined by
swap move. Swap move is defined as an operation that changes the value of one
variable xi from 1 to 0, and simultaneously a different variable xj change the value
from 0 to 1. This move interchanges a vertex from W to W 0 and, simultaneously a
different vertex from W 0 to W . This move is represented as x000 swap.x; i; j /,
and the neighborhood, N Bin

swap.x/ (with size n2 in the worst case), is:

N Bin
swap.x/ D fx000 swap.x; i; j / W xi ¤ xj ^ 1 � i; j � ng:

Figure 2c shows the move swap.x; 1; 3/. It considers again the solution x

(depicted in Fig. 1b) and interchanges the vertex 1 and 3 between W and W 0,
respectively. The Hamming distance between the new produced solution, x000 D

f0; 1; 1; 0; 0g, and x is in this case 2.

Neighborhoods for Integer Problems

There are some optimization problems where the solution x is represented as a
vector of n variables, x D .x1; x2; : : : ; xn/, such that l � xj � u for all j

(i.e., assuming that all variables are integer and bounded within the interval Œl; u�).
For example, the solutions to the set covering problem [9], the capacitated task
allocation problem [24], or the maximally diverse grouping problems [11] can be
represented as a vector of integer values. For solving these problems, neighborhood
structures N Int

k .x/ are usually induced from the metric defined as:

�int.x; y/ D

nX
iD1

jxi � yi j (7)

or

�int.x; y/ D max
1�i�n

jxi � yi j (8)

The neighborhood N Int
k .x/ denotes the set of solutions in the k–th neighborhood

of x, and it is defined as

N Int
k .x/ D fy 2 X j �int.x; y/ � kg (9)

or

N Int
k .x/ D fy 2 X j k � 1 � �int.x; y/ � kg (10)

We use the maximally diverse grouping problem to illustrate neighborhoods for
integer problems. It consists of grouping a set of M elements into G mutually

12 Variable Neighborhood Descent 349

5

8

3

6

7

2

10

1

9

4

Fig. 3 Example of the maximally diverse grouping problem

disjoint groups in such a way that the diversity among the elements in each group
is maximized. The diversity among the elements in a group is calculated as the
sum of the individual distances between each pair of elements, where the notion of
distance depends on the specific application context. The objective of the problem
is to maximize the overall diversity, that is, the sum of the diversity of all groups.
Figure 3 shows an example of a graph with ten vertices where we must select
three groups of elements. For the sake of clarity, we only represent the distances
among selected elements. In addition, we use different shapes to differentiate the
vertices on each group. In particular, group 1 (diamond shape) is G1 D f1; 4; 9g

whose distances among edges are represented with dashed lines; group 2 (rectangle
shape) is G2 D f3; 5; 8g represented with dotted lines; and group 3 (circle shape)
is G3 D f2; 6; 7; 10g represented with solid lines. Therefore, this solution can be
represented as a vector x D f1; 3; 2; 1; 2; 3; 3; 2; 1; 3g (i.e., each vertex i is located
in group xi).

With this representation, we define the following moves:

Exchange of values (Swap move): given a solution x, the exchange of the
values of the variables xi and xj is denoted by swap.x; i; j / and generates a
new solution x0 such that x0k D xk , 8k ¤ i; j , and x0i D xj , x0j D xi . Note that
resulting solution x0 belongs to the neighborhood

N Int
0 .x/ D fy 2 X j max

1�i�n
jxi � yi j D 0g:

Replacement of a single value (Replacement move): given a solution x, the
replacement move denoted by replace.x; j; i/ creates a solution x0 for which

350 A. Duarte et al.

5
6

8
3

7

2

10

1

9

4

2

5

8
3

6

7

10

1

9

4

a b

Fig. 4 Example of moves applied to a solution for the maximally diverse grouping problem.
(a) x0 swap.x; 6; 5/. (b) x00 replace.x; 2; 1/

x0k D xk , 8k ¤ j , and x0j D i . The move is such that xj ¤ i . In this case, the
resulting solution x0 belongs to the neighborhood

N Int
m .x/ D fy 2 X j

X
1�i�n

jxi � yi j � mg;

where m D jxj � i j.

Given the solution x D f1; 3; 2; 1; 2; 3; 3; 2; 1; 3g, the move swap.x; 6; 5/

interchanges the corresponding group of vertices 6 and 5, producing the solution
x0 D f1; 3; 2; 1; 3; 2; 3; 2; 1; 3g (see Fig. 4a). Similarly, the move replace.x; 2; 1/

includes the vertex 2 in group 1 (removing it from its original group). The final
solution in this case is x00 D f1; 1; 2; 1; 2; 3; 3; 2; 1; 3g (see Fig. 4b).

Neighborhoods for Permutation Problems

In permutation-based representations, a solution is typically expressed as a labeling
(permutation), where each element receives a unique label from 1 to n, being n

the size of the problem. The traveling salesman problem [35], the linear ordering
problem [30], or the cutwidth minimization problem [34] are examples of this
kind of problems. For solving these problems, neighborhood structures N Int

k .x/

may be induced using several metrics (see e.g., [4] for possible metric). However,
neighborhoods are usually induced from the Cayley distance:

�perm.x; y/ WD the minimum number of transpositions needed to obtain y from x
(11)

So, the neighborhood N Perm
k .x/ denotes the set of solutions in the k–th neighbor-

hood of x, and it is defined as:

N Perm
k .x/ D fy 2 X j �perm.x; y/ D kg (12)

12 Variable Neighborhood Descent 351

A

D

E B

F C

A D E B FC

CW
x
(C) = 1 CW

x
(A) = 4 CW

x
(D) = 5 CW

x
(E) = 4 CW

x
(B) = 2a b

Fig. 5 Graph with six vertices and seven edges and an example solution for the CWP. (a) Example
graph. (b) Cutwidth of G for a labeling x

We use the cutwidth minimization problem (CMP) to illustrate some neighbor-
hoods for permutation-based problem. It can be easily described in mathematical
terms. Given a graph G D .V; E/ with n D jV j and m D jEj, a labeling or linear
arrangement x of G assigns the integers f1; 2; : : : ; ng to the vertices in V , where
each vertex receives a different label. The cutwidth of a vertex v with respect to
x, C Wx.v/, is the number of edges .u; w/ 2 E satisfying x.u/ � x.v/ < x.w/. In
mathematical terms:

C Wx.v/ D jf.u; w/ 2 E W x.u/ � x.v/ < x.w/gj

The cutwidth of G with respect to x is defined as the maximum value of all
C Wx.v/ for v 2 V . More formally:

C Wx.G/ D max
v2V

C Wx.v/

The optimum cutwidth of G is then defined as the minimum C Wx.G/ over all
possible layouts of G. This optimization problem is NP-hard even for graphs with a
maximum degree of three [27]. Figure 5a shows an example of an undirected graph
with six vertices and seven edges. Figure 5b shows a labeling, x, of the graph in
Fig. 5a, setting the vertices in a line with the order of the labeling, as commonly
represented in the CMP. We represent x with the ordering .C; A; D; E; B; F /

meaning that vertex C is located in the first position (label 1), vertex A is located
in the second position (label 2), and so on. In Fig. 5c, the cutwidth of each vertex is
represented as a dashed line with its corresponding value. For example, the cutwidth
of vertex C is C Wx.C / D 1, because the edge .C; B/ has an endpoint in C labeled
with 1 and the other endpoint in a vertex labeled with a value larger than 1. In a
similar way, we can compute the cutwidth of vertex A, C Wx.A/ D 4, by counting
the appropriate number of edges: .C; B/; .A; B/; .A; E/, and .A; D/. Then, since
the cutwidth of the graph G, C Wx.G/, is the maximum of the cutwidth of all
vertices in V , in this particular example, we obtain C Wx.G/ D C Wx.D/ D 5.

352 A. Duarte et al.

The associated neighborhoods for this optimization problem are typically
based on two different move operators. The first one is referred to as
exchange. Given a solution x D .v1; : : : ; vi ; : : : ; vj ; : : : ; vn/, we define
exchange.x; i; j / as exchanging in x the vertex in position i (i.e., vertex vi)
with the vertex in position j (i.e., vertex vj), producing a new solution x0 D

.v1; : : : ; vi�1; vj ; viC1; : : : ; vj�1; vi ; vjC1; : : : ; vn/. So, exchange move represents
a transposition. For the sake of simplicity, we denote x0 D exchange.x; i; j /. The
associated neighborhood N Perm

exchange, obtained applying all possible exchange moves,
has size n.n � 1/=2, and it is formally defined as:

N Perm
exchange.x/ D fx0 exchange.x; i; j / W i ¤ j ^ 1 � i; j � ng

This neighborhood is actually N Perm
1 neighborhood.

The second move operator for CMP is known as insert. Specifically, given a
solution x, we define insert.x; j; vi / as the move consisting of deleting vi from its
current position i and inserting it in position j . This operation results in the new
solution x0 as follows:

• If i � j , then x D .: : : ; vj�1; vj ; vjC1; : : : ; vi�1; vi ; viC1; : : :/, and
the vertex vi is inserted just before the vertex vj , obtaining x0 D

.: : : ; vj�1; vi ; vj ; vjC1; : : : ; vi�1; viC1; : : :/.
• If i < j , then x D .: : : ; vi�1; vi ; viC1; : : : ; vj�1; vj ; vjC1; : : :/, and

the vertex vi is inserted just after the vertex vj , obtaining x0 D

.: : : ; vi�1; viC1; : : : ; vj�1; vj ; vi ; vjC1; : : :/.

Thus, a move insert.x; j; vi / generates a solution belonging to the neighborhood
N Perm
jj�i j

.x/. The associated neighborhood, N Perm
insert , obtained applying all possible

insert moves has size n.n � 1/=2, and it is formally defined as:

N Perm
insert .x/ D fx0 insert.x; j; vi / W i ¤ j ^ 1 � i; j � ng

The following example illustrates how the insert is implemented. Let x D

.C; A; D; E; B; F / be a solution of the cutwidth problem. Suppose that we perform
insert.x; 2; B/, obtaining solution x0 D .C; B; A; D; E; F /. Figure 6 graphically
shows the solutions before and after the move.

Local Search Methods

Local search methods are likely the oldest and simplest heuristic methods. Starting
from a given feasible solution, these procedures explore a determined neighborhood
in each iteration, replacing the current solution if a neighbor improves the objective
function. The search ends when all neighbor solutions are worse (i.e., larger
objective function value in a minimization problem) meaning that a local optimum
is found.

12 Variable Neighborhood Descent 353

A D E B FC

CW
x
(C) = 1 CW

x
(A) = 4 CW

x
(D) = 5 CW

x
(E) = 4 CW

x
(B) = 2

B A D E FC

CW
x
(C) = 1 CW

x
(B) = 1 CW

x
(A) = 2 CW

x
(D) = 3 CW

x
(E) = 2

a

b

Fig. 6 Example of performing an insert move in a permutation solution. (a) Solution x before the
move. (b) Resulting solution after insert.x; 2; B/

Algorithm 1: Best improvement(x)
1: improve true
2: while .improve/ do
3: improve false
4: x0 arg minx2N .x/ f .x/

5: if f .x0/ < f .x/ then
6: x x0

7: improve true
8: end if
9: end while

10: return x

There exist two typical strategies to explore the corresponding neighborhood:
best improvement and first improvement. In the former (also known as steepest
descent), the associated neighborhood is completely explored by a fully determin-
istic procedure, performing the best associated move. Therefore, no matter how the
neighborhood is scanned, since all neighbor solutions are visited. Algorithm 1 shows
the typical pseudocode of this local search method for a minimization problem. The
algorithm starts by initializing the control variable improve (step 1). Then, the best
improvement strategy performs iterations until it finds a local optimum with respect
to neighborhood N .x/ (steps 2–9). Given a solution x, the best neighbor solution x0

is determined in step 4. This instruction has a computational complexity of jN .x/j.
In steps 5–8, it is decided whether to perform a new iteration (by updating x to x0)
or not (abandoning the search).

354 A. Duarte et al.

The first improvement strategy tries to avoid the time complexity of exploring the
whole neighborhood by performing the first improving move encountered during
the exploration of the corresponding neighborhood. In this kind of exploration, the
order in which the neighbors are inspected can have a significant influence of the
efficiency of the search. Instead of using a fixed ordering for scanning the neighbors,
random orders are usually suggested, since the first scanning strategy always drives
to the same local optimum, while the second one can reach different local optima.

The pseudocode of this strategy is equivalent to the one presented in Algorithm 1.
The only difference is in step 4, where, instead of selecting the best neighbor,
it selected the first neighbor which improves the incumbent solution (in terms
of objective function value). Additionally, if we follow a predefined order (e.g.,
a lexicographic order), the first positions in that order (e.g., 1; 2; : : :, in the
lexicographic order) are favored, producing a kind of bias in the search.

Figure 7 shows the performance of two iterations of both strategies starting
from the same solution, where the numbers over the arrows indicate the order of
exploration of the solutions. Specifically, considering the MCP described in sec-
tion “Neighborhoods for Binary Problems”, the initial solution is x1 D Œ1; 1; 0; 0; 0�,
representing W D Œ1; 2� and W 0 D Œ3; 4; 5�, with an objective function value of
38. The neighborhood selected to be explored is N Bin

add .x1/, where each neighbor
is generated by adding a new vertex to W (removing it from W 0). In the first
iteration, the best improvement strategy (Fig. 7a) generates all possible neighbor
solutions for x1 (i.e., x2; x3; x4). The exploring order, as stated before, is irrelevant,
since it is going to explore the whole neighborhood. Then, the method selects
the best neighbor solution, which is x3 in Fig. 7a, with a higher (better) objective
function value of 43. Finally, in the next iteration, the method explores the entire
x3 neighborhood, stopping after the exploration, since there is no better neighbor
solution.

Regarding the first improvement method (Fig. 7b), the exploration order (which
is relevant in this case) is selected at random, starting with solution x2. As the
objective function value of x2 is lower (worse) than x1, the method explores another
neighbor, which is x4. The objective function value for x4, 41, is better than for x1,
38, so in this case, the first improvement strategy stops the iteration, starting the next
one from this new best solution x4. Notice that although solution x3 is better than
x4, it is not explored in this strategy, since the order selected has lead the method to
find a better solution before reaching x3. Finally, in the next iteration, the method
starts from x4 and then explores, in this order, x6 and x5, stopping the search since
there is no improvement in any neighbor.

In the context of large neighborhoods, there is a compromise between the number
of iterations required to find a local optimum and the associated computing time. In
general, iterations performed in the first improvement strategy are more efficient
than those in the best improvement one, since the former only evaluates part of
the neighborhood, while the latter explores it completely. On the other hand, the
improvement obtained in the first improvement strategy is typically smaller than
the one achieved by the best improvement strategy, requiring in general more
iterations to obtain the local optimum. Additionally, the best improvement strategy

12 Variable Neighborhood Descent 355

1 1 0 0 0

1 1 1 1 0

1 1 0 1 1

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

MCP(x
1
)=38

MCP (x
2
)=22

MCP(x
5
)=13

MCP(x
6
)=30

MCP(x
3

)=43

MCP(x
4
)=41

1

2
1

2
3

1 1 0 0 0

1 1 1 0 1

1 1 0 1 1

1 1 1 0 0

1 1 0 1 0

1 1 0 0 1

MCP(x
1
)=38

MCP(x
2

)=22

MCP(x
5
)=25

MCP(x
6
)=30

MCP(x
3

)=43

MCP(x
4
)=41

1

2

1

2

a

b

Fig. 7 Comparison of best and first improvement strategies when starting from the same solution
for the MCP. (a) Best improvement. (b) First improvement

is usually more adequate to perform efficient catching and updating mechanisms,
which allows the search to efficiently explores the neighborhood [20].

In [17], an empirical study on traveling salesman problem was conducted in order
to compare the first and the best improvement strategy within 2-opt neighborhood
structure. It appeared that the quality of the final solution depends on the quality of
the initial solution: (i) if random initial solution is chosen, the better and faster is the
first improvement strategy; (ii) the opposite holds if the greedy solution is taken as
initial one.

VND Variants

The Variable Neighborhood Search (VNS) is a metaheuristic proposed in [32]
as a general framework to solve hard problems. It is based on a simple idea:
systematical changes of neighborhood structures within the search procedure. Let
N D fN1; : : : ; Nkmaxg be set of operators such that each operator Nk , 1 � k �

kmax maps a given solution x to a neighborhood structure Nk.x/. Note that the order
of operators taken from the set N defines also the order of neighborhood structures
of a given solution x examined. When solving an optimization problem by using
different neighborhood structures, VNS methodology proposes to explore them in
three different ways: (i) at random, (ii) deterministically, or (iii) mixed (both, in
deterministic and random fashion).

356 A. Duarte et al.

Variable neighborhood descent (VND) is a variant of VNS that explores neigh-
borhoods in a deterministic way. In general, VND explores small neighborhoods
until a local optimum is encountered. At that point, the search process switches to
a different (typically larger) neighborhood that might allow further progress. This
approach is based on the fact that a local optimum is defined with respect to a
neighborhood relation, such that if a candidate solution x is locally optimal in a
neighborhood Ni .x/, it is not necessarily a local optimum for another neighbor-
hood Nj .x/. Thus, VND explores the solution space using several neighborhood
structures either in a (i) sequential, (ii) a nested (or composite), or (iii) mixed nested
way [21, 43].

Sequential Variable Neighborhood Descent Procedures

Most typical VND variants traverse the list of neighborhood structures in a
sequential way. Within this variants, the basic VNS, the pipe VND, the cyclic
VND, and the union VND emerge as the most representative search procedures.
These variants differ in how they implement the neighborhood change procedures.
Specifically, if an improvement has been detected in some neighborhood, this is how
the search (after updating the incumbent solution) is continued:

• Basic VND (B-VND) – returns to the first neighborhood from the list
• Pipe VND (P-VND) – continues the search in the same neighborhood
• Cyclic VND (C-VND) – resumes the search in the next neighborhood from the

list
• Union VND (U-VND) (sometimes called multiple neighborhood search [44],

where the single neighborhood is obtained as the union of all predefined
neighborhoods) – continues the search in the same large neighborhood. U-VND
is recently proposed in [2, 26, 44] and used within Tabu search.

All these VND procedures follow the steps given in Algorithm 2 and start from
a given solution x. In each VND iteration, a local search procedure through a given
neighborhood structure is applied, followed by a neighborhood change function
(Step 7). The neighborhood change function defines the neighborhood structure that
will be examined in the next iteration. Each VND variant stops when there is no
improvement with respect to any of the considered neighborhood structures. Thus,
the solution obtained by any sequential VND is a local optimum with respect to all
neighborhood structures.

We show the performance of the three aforementioned variants considering the
example introduced in [31]. In particular, it shows an empirical study on different
VND variants used to solve traveling salesman problem. For testing purposes,
15,200 random test instances were generated in the way described in [17]. Within
VND variants, three classical TSP neighborhood structures are considered: 2-opt
(Fig. 8), Insertion-1 (Fig. 9), and Insertion-2 (Fig. 10). On each instance from this
data set, each VND variant, except U-VND, is tested under 24 different settings.

12 Variable Neighborhood Descent 357

Algorithm 2: Sequential variable neighborhood descent
Function SeqVND (x,kmax,N)

1 x00 x

2 Stop= False
while Stop= False do

3 x x00

4 Stop= True
5 k 1

while k � kmax do
6 x0 arg min

y2Nk.x/

f .y/

7 Change Neighborhood (x; x0; k)
8 if f .x0/ < f .x00/ then
9 x00 x0

10 Stop= False
end

end
end

11 return x00;

3

2

4

1

5

6 3

2

4

1

5

6

Fig. 8 Example of a 2-opt move involving vertices 1, 2, 4, and 5

Each setting corresponds to choosing the following: (i) one out of two common
ways for getting an initial solution, at random (solution generated as a random
permutation of nodes) or greedy; (ii) one out of six possible neighborhood orders;
and (iii) the best or the first improvement search strategy. This gives 2� 6� 2 D 24

different search methods that use 2-opt, Insertion-1, and Insertion-2 neighborhoods.
On the other hand, U-VND is tested under only two different settings as: U-VND
that uses the best improvement search strategy and the greedy initial solution and
U-VND that uses the best improvement search strategy and the random initial
solution. Note that if the first improvement search strategy is used within U-VND,
then U-VND is equivalent to basic VND.

Table 1 summarizes results considering the entire set of 15,200 instances as a
test case. Namely, the average solution values (Column ‘av. best value’) and

358 A. Duarte et al.

3

2

4

1

5

6 3

2

4

1

5

6

Fig. 9 Example of an Insertion-1 move where vertex 5 is inserted between vertices 1 and 2 and
removed from its corresponding former position

3

2

4

1

5

6 3

2

4

1

5

6

Fig. 10 Example of an Insertion-2 move where vertices 4 and 5 are inserted between vertices 1
and 2, removing them from its corresponding former position

Table 1 Comparison of
VND variants

VND variant av. best value av. time (s)

Basic VND 1198.24 0.16

Pipe VND 1198.52 0.12

Cyclic VND 1198.76 0.46

Union VND 1197.65 1.06

average CPU times (Column ‘av. time’) over all test instances in the data set,
attained by VND variants under the best settings, are reported.

From the results presented in Table 1, the following conclusions may be drawn:
(i) U-VND is slightly better than the others VNDs, regarding the best average values
attained, but much slower than the others. This is explained by the fact that U-VND
in each iteration performs exploration of large part of the solution space before
deciding to re-center the search. Obviously, such principle is suitable for reaching
good final solution, but requires a large CPU time; (ii) comparing VNDs that re-
center the search in the inner loop (i.e., B-VND, P-VND, and C-VND), it follows
that B-VND is able to provide the best solution values. Regarding average CPU
times consumed by B-VND, P-VND, and C-VND to find the best-reported average
solution value, their ranking is as follows: the fastest is P-VND, B-VND is ranked
as the second, while C-VND is the slowest one. However, since, B-VND consumed
negligible more CPU time to find the best reported average solution value comparing
to CPU time that P-VND consumed to do so, we may conclude that B-VND is the
most appropriate sequential VND version.

12 Variable Neighborhood Descent 359

Nested Variable Neighborhood Descent

A nested (composite) variable neighborhood descent procedure [21] explores a large
neighborhood structure obtained as a composition of several neighborhoods. More
precisely, let N D fN1; : : : Nkmaxg again be set of move operators such that each one
Nk , 1 � k � kmax maps a given solution x to a predefined neighborhood structure
Nk.x/. Then, the neighborhood explored within a nested variable neighborhood
procedure is defined with operator Nnested D N1 ı N2 ı � � � ı Nkmax . More
precisely, the composite neighborhood of solution x is formed by first applying
the move operator N1, obtaining N1.x/. Then, the move operator N2 is applied
to all solutions in N1.x/, forming the set N1.N2.x// and so on. Obviously, the
cardinality of a neighborhood structure Nnested .x/ D N1.N2.: : : .Nkmax.x//// of
some solution x is less than or equal to the product of cardinalities of nested
(composed) neighborhoods, i.e.,

jN .x/j �

kmaxY
kD1

jNk.x/j:

Such cardinality obviously increases chances to find an improvement in the
neighborhood. The nested VND is illustrated in Algorithm 3. The neighborhood
N .x/ may be explored by using either the first or the best improvement search
strategy. However, since its cardinality is usually very large, the first improvement
is used more often [21, 43].

Algorithm 3: Steps of best improvement nested VND
Function Nested_VND(x, kmax, N)
Nnested D N1 ıN2 ı � � � ıNkmax

repeat
x0 x;
x argminy2N .x0/f .y/;

until f .x0/ � f .x/;
return x0;

We use the uncapacitated r-allocation p-hub median problem (r-p-HMP) to
illustrate how this VND strategy works. Specifically, the r-p-HMP may be stated
as follows. Given n nodes, this problem considers for each pair of nodes i and j ,
the distance dij and the amount of flow tij � 0 that needs to be transferred from i

to j . It is generally assumed that the transportation between non-hub nodes i and
j is only possible via hub nodes hi and hj , to which nodes i and j are assigned,
respectively. Transferring tij units of flow through path i ! hi ! hj ! j induces
a cost cij .hi ; hj /, which is computed as

cij .hi ; hj / D tij .�dihi C ˛dhi hj C ıdhj j /:

360 A. Duarte et al.

Fig. 11 Interchange neighborhood NH . Yellow dots are the possible new hub location for the one
represented in green

Parameters �; ˛, and ı represent unit rates for collection (origin-hub), transfer
(hub-hub), and distribution (hub-destination), respectively. Note that the hub nodes
hi and hj may be equal.

We represent a solution of r-p-HMP by a set H containing p hubs and a matrix
A, where each row i contains r hubs assigned to node i (i.e., i -th row coincides
with the set Hi). Thus, our solution is represented as x D .H; A/. The initial
solution is obtained using the greedy heuristic described in [38]. We consider two
neighborhood structures of a given solution x D .H; A/. The first neighborhood
structure, denoted by NH , is obtained by replacing one hub node from H by another
non-hub node from N nH (see Fig. 11). More formally,

NH .x/ D fx0 j x0 D .H 0; A0/; jH \H 0j D p � 1g:

The second neighborhood, denoted by NA, is obtained by replacing one hub
assigned to some node with another hub, while the set H remains unchanged (see
Fig. 12):

NA.x/ D fx0jx0 D .H; A0/; jAnA0j D 1g:

Unfortunately, evaluating the objective function value of a solution from NH

requires to solve an allocation problem, which is N P hard by itself [25].
Therefore, solving exactly the associated allocation problem will be quite time
consuming. In order to deal with this drawback, we find near-optimal allocation

12 Variable Neighborhood Descent 361

Fig. 12 Allocate neighborhood NA. Yellow dot represents the non-hub node which is reallocated
to the another hub

A0 of some solution x00 2 NH as follows. For each node, we firstly determine node-
to-hub allocation using the greedy procedure (see Algorithm 4).

Algorithm 4: Greedy allocation
Function GreedyAllocation(H, A)

1 for i 2 N do
2 for j D 1 to p do value.j / D dihj

P
k2N tik C

P
k2N tikdhj k ;

3 Sort array value in nondecreasing order i.e.,
value.�.1// � value.�.2// � � � � � value.�.p//;

4 for j D 1 to r do AŒi�Œj � D h�.j /;
end

The solution x00 D .H 00; A00/ obtained in this way is then improved by exploring
the second neighborhood NA.x00/. In that way, the so-called nested variable
neighborhood descent (Nest-VND) is defined (see Algorithm 5).

Algorithm 5: Nested VND for r-p-HMP
Function NestVND(x);

1 for each x00 2 NH .x/ do
2 GreedyAllocation(H”, A”);
3 Select x0 as the best solution in NA.x00/;
4 if x0 is better than x then S x0

end
5 return x

362 A. Duarte et al.

Table 2 Comparison of
GRASP and GVNS on AP
instances

GRASP GVNS_RP

Aver. Aver. Aver. Aver. %

n value time value time impr.

60 122348:90 4:59 121829:27 3:73 0:42

65 123001:53 6:66 122689:74 5:87 0:25

70 123931:76 10:51 123604:38 5:75 0:26

75 124776:42 11:11 124650:73 5:93 0:10

80 125148:22 14:40 124844:76 9:36 0:24

85 125566:58 19:48 125378:23 13:10 0:15

90 124934:99 22:95 124734:55 12:32 0:16

95 125121:18 24:27 124926:55 25:45 0:16

100 125805:04 4:81 125588:19 10:39 0:17

150 126728:85 21:42 126307:10 24:70 0:33

200 129144:44 58:86 128788:66 98:67 0:28

Avg. 125137:08 18:10 124849:29 19:57 0:23

In [43], the above nested VND was used as a local search within a general
variable neighborhood search (GVNS)-based heuristic. The performance of this
heuristic, named GVNS_RP, was compared with the GRASP heuristic proposed
in [38]. In Table 2, we provide a summarized results of comparison of GVNS_RP
and GRASP on instances from AP data set (see [43]). The average value of best
found solutions and average CPU times needed for finding these solutions over all
instances with the same number of nodes are reported. The column headings are
defined as follows. In the first column of Table 2, we report the number of nodes
in the considered instances, whereas in the columns “GRASP” and “GVNS_RP,”
we provide the average of best solution values found by GRASP and GVNS_RP,
respectively. In columns “time,” the average time needed to reach best found
solutions for instances with n nodes is given, while in column “impr.(%),”
we report the percentage improvement obtained by GVNS_RP compared with the
current best known values. From the reported results, it follows that within each set
of instances with the same number of nodes, there is at least one instance where the
best known solution is improved by GVNS_RP. Moreover, the average improvement
on AP data set achieved by GVNS variants is around 0.25 %.

Mixed Variable Neighborhood Descent

Mixed variable neighborhood descent [21] combines ideas of sequential and nested
variable neighborhood descent. Namely, it uses a set of move operators N D

fN1; : : : Nbg to define a nested neighborhood, and, after that, on each element in this
nested neighborhood, it applies a sequential variable neighborhood descent variant
defined by a set of move operators N 0 D fNbC1; : : : Nkmaxg. The cardinality of the
set explored in one iteration of a mixed VND is bounded by:

12 Variable Neighborhood Descent 363

jNmixed .x/j �

bY
`D1

jN`.x/j �

kmaxX
`DbC1

jN`.x/j; x 2 S:

In Algorithm 6, we show the pseudocode of a mixed VND. Note that if the set N
is the empty set (i.e., b D 0), we get pure sequential VND. If b D kmax, we get pure
nested VND. Since nested VND intensifies the search in a deterministic way, boost
parameter b may be seen as a way of balancing intensification and diversification in
deterministic local search with several neighborhoods.

Algorithm 6: Steps of mixed VND
Function Mixed_VND(x, b,kmax, N , N 0)
N D N1 ıN2 ı � � � ıNb x0 x;
repeat

stop D t rue;
x x0;
for each y 2 N .x/ do

x00 SeqVND(y, kmax � b, N 0) ;
if f .x00/ < f .x0/ then

stop D false x0 x00;

end
end

until stop D t rue;
return x0;

In [21], two mixed VND heuristics along with one basic sequential VND
heuristic were proposed for solving the incapacitated single allocation p-hub
median problem (USApHMP). Neighborhood structures examined within these
VND variants are cluster based. A cluster represents one hub with all locations
assigned to it. In particular, the following neighborhood structures are distinguished:
(i) Allocate- change membership of a non-hub node by reallocating it to the another
hub without changing the location of hubs; (ii) Alternate-change the location of the
hub in one cluster; (iii) Locate - select one cluster C with hub h and a location node
that is not in this cluster. The selected node becomes a hub, and all locations from
the cluster C are assigned to the closest hub (including the new one).

The proposed basic sequential VND heuristic, named Seq-VND, examines
neighborhood structures Allocate, Alternate, and Locate in that order. On the other
hand, the first mixed VND heuristic, named Mix-VND1, takes several random
points from Locate neighborhood and starting from each of them carries out search
applying a basic sequential VND heuristic Seq-VND1. The used Seq-VND1
explores Allocate and Alternate neighborhoods in that order. The second mixed
VND heuristic, named Mix-VND2, performs more thoroughly exploration of the
solution space than Mix-VND1 applying Seq-VND1 on each point from Locate
neighborhood. These three VND variants together with three local searches in
the three defined neighborhood structures (Allocate, Alternate, and Locate) are

364 A. Duarte et al.

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Allocate

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Alternate

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Locate

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Seq-VND

0

20

40

60

80

100

120

0 20 40 60 80 100

%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Mix-VND1

0

20

40

60

80

100

120

0 20 40 60 80 100%
 d

ev
ia

tio
n

of
 lo

ca
l o

pt
im

um
 o

ve
r b

es
t k

no
w

n

distance between local optimum and best known

Local Search Mix-VND2

Fig. 13 Multistart on 1000 random initial solutions for AP instance with n D 100 and p D 15

experimentally compared on AP instance with n D 100 and p D 15 (see [21]). One
thousand initial points are generated at random in the solution space, and a local
search is conducted from each one in each type of neighborhood. The distance-to-
target diagram [16] presented at Fig. 13 shows the distribution of local minima. Each
point .x; y/ plots the distance x and percentage deviation y of the local minimum
from the best known solution. The results are summarized in Table 3.

Comparing the results in Table 3, we observe that (i) the search in first (Allocate)
and second (Alternate) local neighborhoods is faster than the others, but they have
the worse quality; (ii) Seq-VND gives better results than the third local search
(Locate) and is considerably faster; (iii) all three multistart VND local searches

12 Variable Neighborhood Descent 365

Table 3 Comparison of six local searches on AP instance with n D 100 and p D 15

Allocate Alternate Locate Seq-VND Mix-VND1 Mix-VND2

Average % dev 41.28 21.17 7.41 1.62 0.35 0.16

Minimum % dev. 15.87 6.14 2.58 0.00 0.00 0.00

Maximum % dev. 110.63 49.84 14.6 5.37 3.41 0.68

Average CPU
time (sec)

0.002 0.004 0.15 0.06 3.36 27.15

found the best known solution in the AP instance; and (iv) the mixed VND versions
give the best results, although, as expected, solution times are longer than solution
time of Seq-VND.

We see in Fig. 13 that the number of local minima is reduced when VND is
used. This is due to the larger neighborhood in VND. For example, the Seq-VND
neighborhood clearly contains each of the individual neighborhoods, Allocate,
Alternate, and Locate. It is remarkable that Mix-VND2, which utilizes the largest
neighborhood, yields only four local minima for this problem instance.

Conclusions

Local search represents one of the most popular classical heuristic technique that
improves (locally) the current feasible solution of some continuous or discrete
optimization problem. For that purposes, usually only one neighborhood structure
is defined and explored to improve the incumbent solution. Searching for the
better solution in such neighborhood is repeated until there is no better solution,
i.e., until the local minimum with respect to that predefined neighborhood is
reached.

Since the local minimum with respect to one neighborhood structure is not
necessary local in another, one needs to construct deterministic local search in cases
when more than one neighborhood is used. Such procedures are known as variable
neighborhood descent (VND). In this VND survey, we first propose a possible
classification of neighborhood structures in solving optimization problems and also
provide some simple examples to clearly illustrate the basic ideas. Then, we discuss
possible general ways of combining several neighborhoods in the deterministic
fashion. Needless to say that the number of possible combination of VND local
search variants is large, and they could include problem specific knowledge in
building heuristic for each particular problem. Therefore, VND area is an open
avenue for the future research in the area of optimization.

Cross-References

�Guided Local Search
�Multi-Start methods

https://doi.org/10.1007/978-3-319-07124-4_2
https://doi.org/10.1007/978-3-319-07124-4_1

366 A. Duarte et al.

�Restart Strategies
�Theory of Local Search

Acknowledgments The works of Nenad Mladenović and Raca Todosijević are partly supported
by the Ministry of Education and Science, Republic of Kazakhstan (Institute of Information and
Computer Technologies), project number 0115PK00546, and also by the Ministry of Education,
Science and Technological Development of Serbia, project number 174010. The works of Abraham
Duarte and Jesús Sánchez-Oro are partly supported by the Spanish “Ministerio de Economía
y Competitividad” and by “Comunidad de Madrid” with grants refs. TIN2012-35632-C02 and
S2013/ICE-2894, respectively.

References

1. Brimberg J, Hansen P, Mladenović N (2015) Continuous optimization by variable neighbor-
hood search. In: Wiley encyclopedia of operations research and management science. Wiley,
Hoboken, p 1–13. https://doi.org/10.1002/9780470400531.eorms1107

2. Carrasco R, Pham A, Gallego M, Gortázar F, Martí R, Duarte A (2015) Tabu search for the
maxmean dispersion problem. Knowl-Based Syst 85:256–264

3. Cook WJ, Cunningham WH, Pulleyblank WR, Schrijver A (1997) Combinatorial optimization.
Wiley, Chichester

4. Deza M, Huang T (1998) Metrics on permutations, a survey. J Comb Inf Syst Sci 23:173–185
5. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the

traveling salesman problem. IEEE Trans Evolut Comput 1(1):53–66
6. Duarte A, Escudero LF, Martí R, Mladenović N, Pantrigo JJ, Sánchez Oro J (2012) Variable

neighborhood search for the vertex separation problem. Comput Oper Res 39(12):3247–3255
7. Duarte A, Martí R (2007) Tabu search and GRASP for the maximum diversity problem. Eur J

Oper Res 178(1):71–84
8. Duarte A, Sánchez A, Fernández F, Cabido R (2005) A low-level hybridization between

memetic algorithm and VNS for the max-cut problem. In: ACM genetic and evolutionary
computation conference, New York

9. Feige U (1998) A threshold of Ln N for approximating set cover. J ACM 45(4):634–652
10. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim

6:109–133
11. Gallego M, Laguna M, Martí R, Duarte A (2013) Tabu search with strategic oscillation for the

maximally diverse grouping problem. J Oper Res Soc 64(5):724–734
12. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-

completeness. W. H. Freeman & Co., New York
13. Glover F (1986) Future paths for integer programming and links to artificial intelligence.

Comput Oper Res 13(5):533–549
14. Glover F (1998) A template for scatter search and path relinking. In: Selected papers from the

third European conference on artificial evolution, AE’97. Springer, London, pp 3–54
15. Hansen P, Mladenović N (1999) An introduction to variable neighborhood search. In: Meta-

Heuristics. Springer, Boston, pp 433–458
16. Hansen P, Mladenović N (2003) Variable neighborhood search. In: Glover F, Kochenberger G

(eds) Handbook of metaheuristics. Kluwer Academic Publisher, New York, pp 145–184
17. Hansen P, Mladenović N (2006) First vs. best improvement: an empirical study. Discret Appl

Math 154(5):802–817
18. Hansen P, Mladenović N, Todosijević R, Hanafi S (2016) Variable neighborhood search: basics

and variants. EURO J Comput Optim 1–32. https://doi.org/10.1007/s13675-016-0075-x
19. Holland JH (1992) Adaptation in natural and artificial systems. MIT Press, Cambridge, MA

https://doi.org/10.1007/978-3-319-07124-4_15
https://doi.org/10.1007/978-3-319-07124-4_6
https://doi.org/10.1002/9780470400531.eorms1107
https://doi.org/10.1007/s13675-016-0075-x

12 Variable Neighborhood Descent 367

20. Hoos H, Süttzle T (2004) Stochastic local search: foundations & applications. Morgan
Kaufmann Publishers Inc., San Francisco

21. Ilić A, Urošević D, Brimberg J, Mladenović N (2010) A general variable neighborhood
search for solving the uncapacitated single allocation p-hub median problem. Eur J Oper Res
206(2):289–300

22. Karp RM (1972) Reducibility among combinatorial problems. In: Complexity of computer
computations. The IBM research symposia series. Springer, New York, pp 85–103

23. Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. Kluwer
Academic Publishers, Norwell

24. Laguna M, Gortázar F, Gallego M, Duarte A, Martí R (2014) A black-box scatter search for
optimization problems with integer variables. J Glob Optim 58(3):497–516

25. Love RF, Morris JG, Wesolowski GO (1988) Facilities location: models and methods. Elsevier
Science Publishing Co., New York

26. Lü Z, Hao JK, Glover F (2011) Neighborhood analysis: a case study on curriculum-based
course timetabling. J Heuristics 17(2):97–118

27. Makedon FS, Papadimitriou CH, Sudborough IH (1985) Topological bandwidth. SIAM J
Algebr Discret Methods 6(3):418–444

28. Martello S, Toth P (1990) Knapsack problems: algorithms and computer implementations.
John Wiley & Sons, Inc., New York

29. Martí R, Duarte A, Laguna M (2009) Advanced scatter search for the max-cut problem.
INFORMS J Comput 21(1):26–38

30. Martí R, Reinelt G, Duarte A (2012) A benchmark library and a comparison of heuristic
methods for the linear ordering problem. Comput Optim Appl 51(3):1297–1317

31. Mjirda A, Todosijević R, Hanafi S, Hansen P, Mladenović N (2016) Sequential variable
neighborhood descent variants: an empirical study on travelling salesman problem. Int Trans
Oper Res. https://doi.org/10.1111/itor.12282

32. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res
24(11):1097–1100

33. Moscato P (1993) An introduction to population approaches for optimization and hierarchical
objective functions: a discussion on the role of tabu search. Ann Oper Res 41(1–4):85–121

34. Pantrigo JJ, Martí R, Duarte A, Pardo EG (2012) Scatter search for the cutwidth minimization
problem. Ann Oper Res 199(1):285–304

35. Papadimitriou CH (1977) The Euclidean travelling salesman problem is NP-complete. Theor
Comput Sci 4(3):237–244

36. Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity.
Dover, Mineola

37. Pardo EG, Mladenović N, Pantrigo JJ, Duarte A (2013) Variable formulation search for the
cutwidth minimization problem. Appl Soft Comput 13(5):2242–2252

38. Peiró J, Corberán A, Martí R (2014) GRASP for the uncapacitated r-allocation p-hub median
problem. Comput Oper Res 43:50–60

39. Ruiz R, Stützle T (2006) A simple and effective iterated greedy algorithm for the permutation
flowshop scheduling problem. Eur J Oper Res 177:2033–2049

40. Sánchez Oro J, Mladenović N, Duarte A (2014) General variable neighborhood search for
computing graph separators. Optim Lett 1–21. https://doi.org/10.1007/s11590-014-0793-z

41. Sánchez Oro J, Pantrigo JJ, Duarte A (2014) Combining intensification and diversification
strategies in VNS. An application to the vertex separation problem. Comput Oper Res 52, Part
B(0):209–219. Recent advances in variable neighborhood search

42. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, Hoboken
43. Todosijević R, Urošević D, Mladenović N, Hanafi S (2015) A general variable neighborhood

search for solving the uncapacitated r-allocation p-hub median problem. Optim Lett. https://
doi.org/10.1007/s11590-015-0867-6

44. Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for the maximum weight
clique problem. Ann Oper Res 196(1):611–634

https://doi.org/10.1111/itor.12282
https://doi.org/10.1007/s11590-014-0793-z
https://doi.org/10.1007/s11590-015-0867-6
https://doi.org/10.1007/s11590-015-0867-6

	12 Variable Neighborhood Descent
	Contents
	Introduction
	Neighborhoods
	Neighborhoods for Continuous Optimization Problems
	Neighborhoods for Binary Problems
	Neighborhoods for Integer Problems
	Neighborhoods for Permutation Problems

	Local Search Methods
	VND Variants
	Sequential Variable Neighborhood Descent Procedures
	Nested Variable Neighborhood Descent
	Mixed Variable Neighborhood Descent

	Conclusions
	Cross-References
	References

