
9Constraint-Based Local Search

Laurent Michel and Pascal Van Hentenryck

Contents

Introduction . 224
Foundations . 225

Getting Started . 226
The Problem. 226
The Model . 227

Foundations . 228
Models . 229
Programs . 235

Case Studies . 240
Progressive Party . 241
Car Sequencing . 245
Scene Allocation . 248

Implementation . 249
Invariants . 250
Differentiation . 254

Empirical Results . 257
Progressive Party . 257
Car Sequencing . 257
Scene Allocation . 258

Conclusion . 258
References . 259

L. Michel (�)
University of Connecticut, Storrs, CT, USA
e-mail: ldm@engr.uconn.edu

P. Van Hentenryck
University of Michigan, Ann Arbor, MI, USA
e-mail: pvanhent@umich.edu

© Springer International Publishing AG, part of Springer Nature 2018
R. Martí et al. (eds.), Handbook of Heuristics,
https://doi.org/10.1007/978-3-319-07124-4_7

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-07124-4_7&domain=pdf
mailto:ldm@engr.uconn.edu
mailto:pvanhent@umich.edu
https://doi.org/10.1007/978-3-319-07124-4_7

224 L. Michel and P. Van Hentenryck

Abstract

Constraint-Based Local Search emerged in the last decade as a framework
for declaratively expressing hard combinatorial optimization problems and
solve them with local search techniques. It delivers tools to practitioners that
enables them to quickly experiment with multiple models, heuristics, and meta-
heuristics, focusing on their application rather than the delicate minutiae of
producing a competitive implementation. At its heart, the declarative models are
reminiscent of the modeling facilities familiar to constraint programming, while
the underlying computational model heavily depends on incrementality. The net
result is a platform capable of delivering competitive local search solutions at
a fraction of the efforts needed with a conventional approach delivering model-
and-run to local search users.

Keywords
Constraint � Local search � Neighborhood � Synthetic search satisfaction �
Optimization � Incremental model � Declarative

Introduction

Complete techniques such as Integer Programming and Constraint Programming
typically offer optimality guarantees on the results they deliver but do not always
scale to large instances. This explains the appeal of local search methods that deliver
a different trade-off in the algorithmic design space, favoring scalability at the
expense of guarantees. Local search algorithms apply to diverse application domains
such as routing, scheduling, resource allocation, or rostering to name just a few. In
most cases, local search techniques scale to truly large problem instances that are
often out of scope for complete techniques and are capable of producing streams of
solutions of improving quality.

Yet, while modeling and high-level tools are ubiquitous for Mixed Integer
Programming and Constraint Programming, they have been relatively unexplored
for local search until recently. This is primarily due to the fact that the separation
of models and algorithms is not as simple in local search compared to MIP and CP
which are declarative in nature. Indeed, the vast majority of papers discussing local
search describe their solution in algorithmic terms rather than declarative terms like
models, decision variables, and constraints. The 1990s witnessed a shift in interest
and the emergence of multiple tools expressly dedicated to local search techniques.
GSAT [13, 14] and WalkSAT [15] offered the initial impetus behind formulating
problems with a simple language (in clausal form) and using generic local search
algorithms operating on that encoding. Integer Optimization by Local Search [25]
generalized this line of work to the richer language of integer programming.

Localizer [8,9] took a different approach, providing a first step to build a general-
purpose modeling language for local search. It introduced the concept of invariants
to express arbitrary one-way constraints that are automatically and incrementally
updated under variable assignments. These invariants can then encode, in a declara-

9 Constraint-Based Local Search 225

tive fashion, the incremental data structures typically needed in the implementation
of meta-heuristics such as Tabu Search [5], Min-Conflict Search [10], Simulated
Annealing [6], Scatter Search [7], or GRASP [4] to name just a few.

Constraint-Based Local Search is the culmination of this line of work. It
complements the constraint programming efforts typically focused on complete
search techniques and delivers a “model and search” framework in which one
uses decision variables and constraints to model a problem and relies on search
procedures to explore the underlying search space. COMET is an optimization
platform that embodies Constraint-Based Local Search and is a direct descendant of
LOCALIZER. It is an object-oriented programming language with explicit support
for modeling problems declaratively and solving them with local search techniques.
The contributions underlying COMET span from the incremental computation
model, the modeling abstractions, and the control mechanisms to specify and
execute local search heuristics and meta-heuristics easily, efficiently, and compactly.

Foundations

Constraint-Based Local Search aims at implementing the vision captured by the
equation

LocalSearch D ModelC Search

that expresses the belief that a local search algorithm is best viewed as the
composition of a declarative model with a search component. This separation of
concerns is central: it postulates the importance of expressing the structures of
the problem being solved declaratively and compositionally and providing a search
component which exploits those structures and guide the search toward high-quality
local optima.

The Constraint-Based Local Search architecture delivers several key benefits:

Rich Language Constraints are declarative and capture the problem substruc-
tures. They range from simple arithmetic constraints, the indexing of arrays
of variables with variables, meta-constraints (constraints on the truth value of
other constraints) and logical constraints, to combinatorial constraints such as
cardinality, sequence, or alldifferent constraints to name just a few. Constraints
(and combinators) for local search were introduced in [24].

Rich Search Programming meta-heuristics is supported by a wealth of language
combinators and control abstractions to automate the most tedious and error-
prone aspects of an actual implementation. The abstractions foster the decoupling
of neighborhood, heuristics, and meta-heuristics specifications while leveraging
the incrementality exposed by the constraints present in the declarative model.
Control abstractions were introduced in [20].

Separation The untangling of model and search promotes the independent design
and evolution of these two components. With Constraint-Based Local Search,
it is possible to explore alternative models independently of refinements to the
search procedures.

226 L. Michel and P. Van Hentenryck

Versatility The ability to specify meta-heuristics orthogonally to the model
also enables a collection of generic search routines which are highly reusable
and promote the experimental process to design an effective CBLS program.
This versatility further promotes the reuse of highly generic “canned” search
procedures.

Extensibility New constraints and objective functions can be added to the system
library and used in conjunction with native constraints. Perhaps even more
interestingly, the new constraints can be implemented directly in the host
language (i.e., COMET), and the bulk of the implementation is often cast in terms
of invariants. New heuristics and meta-heuristics can also be easily added to the
system as the implementation of any heuristic or meta-heuristic relies on a few
key concepts such as closures, continuations, selectors, and neighbors.

Performance Finally, the architecture heavily relies on incrementally maintain-
ing the computational state over time. This capability is compositional and a
direct by-product of the declarative model. The approach enables the platform to
deliver Constraint-Based Local Search programs that are a fraction of the size
and complexity of handcrafted code, yet deliver performance comparable, and
sometime exceeding, manually crafted implementations.

The rest of this chapter starts with an illustration of Constraint-Based Local
Search through the modeling and resolution of the classic n�queens problem in
section “Getting Started.” Section “Foundations” discusses the theoretical under-
pinnings of Constraint-Based Local Search starting with models and concluding
with programs. Section “Case Studies” focuses on how to model applications
with a rich language that goes beyond Boolean formulas or linear equations.
Section “Implementation” explores the implementation issues, starting with the
support for incremental computation through invariants and proceeding with a
discussion of differentiation. Section “Empirical Results” gives a brief survey of
the type of performance that can be expected from Constraint-Based Local Search
systems, and section “Conclusion” concludes the chapter.

Getting Started

To introduce Constraint-Based Local Search, it is valuable to start with the modeling
and resolution of a simple well-known problem. The examples presented in this
chapter uses the COMET platform.

The Problem

The n�queens problem is to place n queens on a chess board of size n�n so that no
two queens can attack each other. While the problem is polynomial, its simplicity
is appealing to illustrate Constraint-Based Local Search. The COMET program is
shown in Fig. 1 and features two clear components that are discussed next.

9 Constraint-Based Local Search 227

1 import lssolver;
2 int n = 8;
3 range Size = 1..n;
4 Solver<LS> m();
5 ConstraintSystem<LS> S(m);
6 var{int} queen[Size](m,Size);
7 S.add(alldifferent(queen));
8 S.add(alldifferent(all(i in Size) (queen[i] + i)));
9 S.add(alldifferent(all(i in Size) (queen[i] – i)));

10

11 while(S.violations() > 0)
12 selectMin(i in Size,v in Size: queen[i]!=v)(S.getAssignDelta(queen[i],v))
13 queen[i] := v;

Fig. 1 A Constraint-Based Local Search model for the queens problem

The Model

The model definition spans lines 4–9, is declarative, and exclusively focuses on
defining an array of decision variables queen in line 6 and three combinatorial
constraints on lines 7–9. Variable queeni models the row on which the queen in
column i is to be placed. Each decision variable has a domain Size representing the
set of permissible values for that variable. Each combinatorial alldifferent
constraint takes as input an array of expressions and requires that the values of all
entries in the array be pairwise distinct. For instance, line 7 states that no two queens
can be assigned to the same row. The constraints on lines 8 and 9 play a similar role
but for the upward and downward diagonals. Note how an operator all is used on
line 8 to create an array of expressions

.queen1 C 1; queen2 C 2; queen3 C 3; � � � ; queen7 C 7; queen8 C 8/

which is the input of the combinatorial constraint.

The Search
A classic Constraint-Based Local Search starts from a tentative assignment of
values to the decision variables and iteratively transforms it, moving from tentative
assignments to tentative assignments using a local move operator. The local move
used in this specific case is the assignment of a single variable to a new value.
Namely, with n decision variables, each with a domain of size n, one could consider
up to �.n2/ such moves. To illustrate the search process, consider the left board
in Fig. 2a which depicts a tentative assignment. Here, a move consists of relocating
a queen to a new row and the algorithm chooses the best such move. The right
side, Fig. 2b, shows the reduction in violations for each possible move. Therefore,
a viable move is to relocate queen4 to row 3, reducing the total number of conflicts
(violations) from 7 to 5.

228 L. Michel and P. Van Hentenryck

−2

−2

−2

−2 −2−2

−20

0

1

1

1

1

0

0

0

0

−1

−1

−1

−1 −1 −1

−1−1

−1

−1−1

−1

−1

−1

−1

−1 −1

−1

1

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

1

2

0

2

2

1

−2

−2

−2

−2

−2

2

0

2 3

1

2

0

2 2 0 7

(a) Starting point. (b) Delta Matrix.

Fig. 2 The first step of the CBLS algorithm for the queens problem. (a) Starting point. (b) Delta
matrix

The search outlined above is a classic greedy search. The implementation
spanning lines 11–14 obtains the set of constraints present in the model (line 11)
and starts from a randomly initialized tentative assignment �0. It proceeds through
a sequence of moves aimed at satisfying the three softened constraints present in S .
The underlying neighborhood function N defined as

N .�/ D f� 0 j 9j 2 1 : : : 8 8i 2 1 : : : 8; i ¤ j W � 0.queeni / D �.queeni /^

� 0.queenj / 2 D.queenj / n f�.queenj /gg

is implemented with the select statement on line 12 that considers the reassign-
ment of a single decision variable at a time. Overall, the search produces a sequence
of tentative assignments

�0; �1 2 N .�0/; �2 2 N .�1/; � � � ; �k 2 N .�k�1/

delivering a solution �k that satisfies all the softened constraints (violations of S

are 0).

Foundations

This section reviews the foundations of Constraint-Based Local Search, covering
both models and programs. It introduces the main concepts behind the declarative
and operational models.

9 Constraint-Based Local Search 229

Models

From an end-user perspective, constraints and objective functions are at the heart
of Constraint-Based Local Search. They provide the declarative bricks needed
to construct models describing requirements and properties of the solution being
sought. They also support the underlying computational model. This section first
reviews the key concepts of constraints and objective functions before finishing with
a presentation of the underlying semantics.

Basics
Constraint-Based Local Search is the process of looking for an assignment of values
to decision variables that meets specific requirements. Decision variables are central
to the modeling process as they characterize solutions. This chapter focuses on
integer variables only for simplicity. Extensions to more complex variables (i.e.,
set, paths, and trees) have been proposed in [12, 23]. The chapter also assumes
that Constraint-Based Local Search models are defined over a set X of decision
variables.

Definition 1 (Assignment). An assignment � is a mapping X ! D.X/ from
variables to values in their domain. The value assigned to x in � is denoted by
�.x/. The set of all possible assignments is denoted by ˙ .

For convenience, the expression �Œx=v� denotes a new assignment � 0 which is
similar to � except that variable x is assigned to v, i.e.,

8y 2 X n fxg W � 0.y/ D �.y/ ^ � 0.x/ D v:

Constraints are used to impose requirements on the decision variables. Con-
straints are naturally declarative, can be expressed in a variety of ways, and always
capture a relation over a subset of variables from X .

Definition 2 (Constraint). A constraint c.x1; � � � ; xn/ is a n�ary relation over
variables x1 � � � xn 2 X . The set vars.c/ is the set of n variables appearing in c,
i.e., vars.c/ D fx1; � � � ; xng.

Constraints can be expressed through algebraic expressions, logical statements,
or combinatorial structures.

Example 1. In the queens example, the requirement that any two variables cannot
lay on the same row, i.e., alldifferent(x), is semantically equivalent to the
conjunction of constraints

^

i21:::8;j 2iC1:::8

xi ¤ xj :

230 L. Michel and P. Van Hentenryck

Operationally, however, the alldifferent maintains its state and violations
more efficiently than the naive reformulation above.

Example 2. A constraint system S is a set of constraints and its truth value is
equivalent to the truth value of ^c2S c.

Evaluations and Violations
The driving force behind Constraint-Based Local Search rests on the ability to assess
how badly constraints are violated. This is captured by the concept of violation
degrees (or violations for short).

Definition 3 (Violation Degree). The violation degree of c.x1; � � � ; xn/ is a func-
tion �c W ˙ ! R

C such that, for any assignment � such that �.x1/ 2

D.x1/; � � � ; �.xn/ 2 D.xn/, it holds that

c.�.x1/; � � � ; �.xn// � �c.�/ D 0:

The violation degree definition depends critically on the structure conveyed by
constraint c. The definition of violation is constraint-dependent but is derived
systematically for algebraic and logical expressions. For completeness, consider the
specification of expression evaluation.

Definition 4 (Expression Evaluation). Let e 2 E be an arithmetic expression and
� 2 ˙ be an assignment. The evaluation of e with respect to (wrt) � is specified by
the function E.�; e/ W E � ˙ ! Z which is defined inductively on the structure of
e in Fig. 3.

Algebraic constraints are based on relations and logical combinators. To reason
about the violations of relational and logical constraints, it is useful to derive an
expression modeling the violations of constraint c from the structure of c.

Definition 5 (Constraint Conversion). Let c be a logical or relational constraint.
The constraint conversion of c is an expression V.c/ which can be evaluated to
determine the violations of c with respect to some assignment. It is specified by
the function V.c/ W E ! E which is defined by induction on the structure of c as
specified in Fig. 4.

Fig. 3 The evaluation of an
expression with respect to an
assignment

9 Constraint-Based Local Search 231

Fig. 4 The constraint
conversion function

The conversion for the conjunction of two constraints is none other than the sum
of the converted relation violations.

Example 3. The conversion of x D 5 ^ y ¤ 10 where x; y 2 X is derived as
follows:

V.xD5^y ¤ 10/DV.x D 5/CV.y ¤ 10/ D ABS.x�5/C1�min.1; ABS.y�10//:

It is now possible to compose both functions to obtain the actual violations of an
algebraic constraint c with respect to an assignment � .

Example 4. The violation of an arithmetic constraint c � l � r is given by

E.�;V.l � r//

The violation degree function for c is then given by

�c.�/ D E.�; ABS.r � l// D max.E.�; r/ � E.�; l/; 0/:

Example 5. The violation of a conjunction c D c1 ^ c2 is defined as

�c.�/ D E.�;V.c1 ^ c2//:

While the above mechanics are appropriate to obtain the violations of algebraic
constraints, combinatorial constraints define their own notion of violations that
capture the combinatorial substructure at hand. Consider the alldifferent
constraint again.

Example 6. The violation function of c D alldifferent(x1; � � � ; xn) simply
counts the number of values used more than once by variables x1; : : : ; xn. More
precisely, given an assignment � and vars.c/ D fx1; � � � ; xng,

�c.�/ D
X

i2S

max.0; jfxj 2 vars.c/j�.xj / D igj � 1/

232 L. Michel and P. Van Hentenryck

where S D
S

i21:::n D.xi /. Consider the alldifferent constraint on the rows
for the board in Fig. 2a. The assignment is � D Œ1; 4; 5; 4; 8; 7; 8; 3�: It has 2
variables using value 4 and 2 variables using value 8, giving a violation of 2.

Differentiation
The infrastructure covered so far enables the incremental assessment of the sat-
isfaction, and the number of violations, of a constraint c. However, it does not
specify how to assess the impact of a local move on the satisfiability or violations
of constraints. Gradients are the cornerstone of this process.

Definition 6 (Gradient). Given an assignment � and an arithmetic expression e,
"x .�; e/ denotes the maximum increase for the evaluation of e over all possible
values in D.x/ wrt � , whereas #x .�; e/ denotes the largest decrease for the
evaluation of e over all possible values in D.x/ wrt � , i.e.,

"x .�; e/ D max
v2D.x/

E.�Œx=v�; e/ � E.�; e/

#x .�; e/ D E.�; e/ � min
v2D.x/

E.�Œx=v�; e/:

Note that gradients are nonnegative in this specification. An efficient implemen-
tation can be derived inductively on the structure of expression e. Figure 5 gives an
abridged version of such derivation. The definition for "x .�; x/ is an interesting

Fig. 5 Expression gradients

9 Constraint-Based Local Search 233

1 interface Constraint<LS> {
2 bool holds();
3 var{int} violations();
4 var{int} violations(var{int} x);
5 int getAssignDelta(var{int} x,int v);
6 }

Fig. 6 The constraint interface

base case. Indeed, "x .�; x/ D maxv2D.x/ v � �.x/ which has the effect of picking
up the largest increase as the distance between the value currently assigned to x in
� and the largest value of the domain. Similarly, note how "x .�; e1� e2/ combines
the largest increase in e1 with the largest decrease in e2.

The next concept, variable violation, is interesting: It captures how many
violations can be attributed to a specific variable for a given assignment. Variable
violations are specified in terms of gradients.

Definition 7 (Variable Violations). Given a constraint c, the variable violations of
c wrt x 2 vars.c/ and assignment � are specified by #x .�;V.c//.

The concepts of violation degrees and variable violations are generic and hence
they enable the specification of a common API for all constraints. This API makes
it possible to implement the slogan

LocalSearch D ModelC Search

mentioned in the introduction. In particular, the API of a constraint is spec-
ified in Fig. 6. For instance, the method call violations() simply returns
the evaluation of �c.�/, while the method call violations(x) return #x

.�;V.c//, for the current variable assignment � . Finally, the call to method
getAssignDelta(x,v) returns the variation in violation degree when using
the assignment �Œx=v� instead of � , i.e., it returns

�c.�/ � �c.�Œx=v�/:

Combinatorial constraints like alldifferent also conform to this interface,
and the implementation of the last two methods takes advantage of the constraint
semantics to implement the specification incrementally.

Objective Functions
Objective functions play an equally critical role within Constraint-Based Local
Search. Objectives provide the necessary mechanics to express and exploit objective
functions. Interestingly, once gradients are available, objectives do not add much
complexity. Objective functions must conform to the interface depicted in Fig. 7.

234 L. Michel and P. Van Hentenryck

1 interface Objective<LS> {
2 var{int} evaluation();
3 var{int} increase(var{int} x);
4 var{int} decrease(var{int} x);
5 int getAssignDelta(var{int} x,int v);
6 }

Fig. 7 The objective interface

Given the current variable assignment � , the call evaluation() returns
E.�; e/, while the call increase(x) returns "x .�; e/ and the call
decrease(x) returns #x .�; e/.

Models and Constraint Hardness
From a purely pragmatic and operational standpoint, it is often convenient to
partition the actual constraint set C in two

C D S [R .S \R D ;/

where R represents a set of required but easy to solve constraints and S represents
a set of softened constraints that are typically much harder to satisfy. The intent
is to handle both type of constraints differently. Intuitively, required constraints are
always satisfied during the search, while softened constraints may be violated. In the
n�queens examples introduced earlier, R D ; and all the constraints are softened in
S . In general, however, R may contain some constraints that are not worth relaxing
in S . The membership in S or R is clearly a design decision for the modeler to
consider.

Definition 8 (Constraint Model). A Constraint-Based Local Search model M for
a constraint optimization problem is a quintuplet M D hX; D; F; R; Si where

– Every x 2 X is a decision variable taking its value from D.x/,
– F is, without loss of generality, a minimization function,
– R is a set of required constraints (easy to satisfy), and
– S is a set of soft constraints (difficult to satisfy).

Declaratively, the semantics of a Constraint-Based Local Search model is given by
the optimization problem

min
�2˙

E.�; F /C
X

c2S

�c.�/

subject to
�c.�/ D 0 W 8c 2 R

9 Constraint-Based Local Search 235

Namely, the objective is to minimize the sum of the violations over the softened
constraints and the original objective function subject to the required constraints.
In the case of constraint satisfaction, E.�; F / D 0 for every � as the objective is
absent. Note that constraints can be weighted, which makes it possible to balance the
two terms of the objective. It is simple to write a combinator to weight a constraint
in a generic way [23].

Definition 9 (Feasible Solution). A feasible solution � to a Constraint-Based
Local Search model M D hX; D; F; R; Si satisfies

X

c2S

�c.�/ D 0:

F.M/ denotes the set of feasible solutions to M .

Note that, by definition, every assignment � also satisfy all the required constraints
(�c.�/ D 0 W 8c 2 R).

Definition 10 (Optimal Solution). An optimal solution �� to a Constraint-Based
Local Search model M D hX; D; F; R; Si is a feasible solution �� 2 F.M/ such
that

8� 2 F.M/ W E.��; F / � E.�; F /:

Definition 11 (Search Procedure). A search procedure produces a sequence of
assignments �0; � � � ; �k where 8i 2 0::k W �c.�i / D 0 .c 2 R/ and returns �

satisfying

min
�2f�0;��� ;�kg

E.�; F /C
X

c2S

�c.�/:

A Constraint-Based Local Search procedure succeeds if � 2 F.M/.

Programs

The model specifies the properties satisfied by assignments appearing in a trace
s0; s1; � � � ; sk ; It does not dictate how the assignments in the trace are generated.
This is the prerogative of concrete search procedures which are often viewed as
the composition of a neighborhood function, a legality restriction function, and a
candidate selection function.

Definition 12 (Neighborhood). The neighborhood of an assignment �k , denoted
N .�k/, is the set of assignments reachable from �k via a local move.

236 L. Michel and P. Van Hentenryck

Local moves can be microscopic changes to the candidate solution such as the
reassignment of a single variable or the swap of the values associated with
two distinct variables. In specific domains, e.g., in scheduling, the move can be
macroscopic and involve changing several variables to capture moves in more
complex neighborhood, e.g., moving a task in a job sequence.

Example 7. In the 8�queens example outlined in section “Getting Started”, the
neighborhood is based on the reassignment of a single queen to a new row. The
neighborhood consist of �.n2/ assignments. It could be further restricted to �.n/

assignments by only considering the queen appearing in the largest number of
conflicts and its possible reassignments. Given a model M D hX; D; 0;;; Si, where
S is the set consisting of three softened alldifferent constraints, the quadratic
neighborhood function is

N .�k/ D f�kŒx=v� j x 2 X ^ v 2 D.x/ n f�k.x/gg ;

while the linear neighborhood function is

N .�k/ D

(
�kŒx=v� j x 2 arg-max

y2X

#y .�k;V. ^
c2S

c// ^ v 2 D.x/ n f�k.x/g

)
:

Definition 13 (Legal Neighbors). The legal neighborhood of an assignment �k is
a restriction of N .�k/, namely, L.N .�k/; �k/ � N .�k/, and the legal subset is
required to at least satisfy all the required constraints R.

Note that the legal subset of N .�k/ may even be more restrictive and reject
neighbors that are feasible with respect to R but fail to exhibit other characteristics.
The full characterization of the function L is part of the definition of a meta-
heuristic. For instance, the tabu meta-heuristic excludes neighbors that were seen
in the recent past.

Definition 14 (Neighbor Selection). The selection function S is responsible for
choosing the next assignment among legal neighbors. Namely,

�kC1 D S.L.N .�k/; �k/; �k/ 2 L.N .�k/; �k/:

For instance, a greedy selection chooses the best neighbor, i.e.,

�kC1 2 arg-min
�2N .�k/

E.�;V.S//

A heuristics or meta-heuristics specifies the three functions N , L, and S which
parameterize the computation model.

9 Constraint-Based Local Search 237

Control Primitives
To support these abstractions, Constraint-Based Local Search programs rely on
a handful of control primitives designed to automate tedious and error-prone
implementation details.

While the specification of a program relies on three distinct functions N , L, and
S , any implementation concerned with performance produces code that fuses the
three functions often degrading the readability and maintainability in the process.
Key considerations such as randomization and tiebreaking add another layer of
complexity to the code. The implementation of meta-heuristics induces its share
of complexity by refining move legality and selection further.

COMET attempts to strike a delicate balance between efficiency, code readability,
and ease of maintenance by decoupling these aspects as much as possible. The
language introduces selectors, neighbors, and randomized choosers as control
abstractions.

Neighborhood Selectors
The concept of neighborhood selector is a cornerstone for the specification of
complex local searches. A simplified version of its interface is presented below:

1 interface Neighborhood {
2 void insert(int q,Closure c);
3 boolean hasMove();
4 Closure getMove();
5 }

The key idea is that a neighbor is defined as a pair hq; ci consisting of a quality
measure q and a closure c. The intuition is that, in general, the closure c defines the
move which, when executed, will produce an objective value of q for the resulting
assignment. Method insert adds a neighbor c of quality q (line 2), method
hasMove checks whether the neighborhood is nonempty, and method getMove
returns the selected move.

Concrete implementations of this interface commit to a specific selection policy.
For instance, the concrete selector MinNeighborSelector implements the
neighborhood interface and retains only a neighbor minimizing the quality measure.
Namely, if the set of inserted neighbors is N D fhq1; c1i; � � � ; hqn; cnig, the selector
retains one neighbor

hq; ci 2 arg-min
hqj ;cj i2N

qj

and produces it as its selection when getMove is called. Alternative selectors
include KMinNeighborSelector that returns one of the top�k best neighbors
(k being a parameter of the selector).

238 L. Michel and P. Van Hentenryck

1 MinNeighborSelector N();
2 while(S.violations()!=0) {
3 forall(i in Size,v in queen[i].getDomain() : queen[i] != v)
4 neighbor(S.getAssignDelta(queen[i],v),N) queen[i] := v;
5 if (N.hasMove()) call(N.getMove());
6 }

Fig. 8 An alternative greedy search for n�queens

The neighbor Control Primitive
Neighborhood selectors work in conjunction with the neighbor control primitive.
The primitive has the following syntax:

neighbor(hexpri; hN i) hBodyi

where hexpri refers to an arbitrary arithmetic expression, hN i is an expression
referring to a selector, and hBodyi is a statement (or block of statements). From
a semantics standpoint, the control primitive creates a closure c of the body code
responsible for producing the assignment �kC1 from the current assignment �k . It
then associates the closure with a quality measure q and submits the pair hq; ci to
the selector denoted by N . What makes neighbor particularly attractive is the
syntactic closeness between the code specifying the quality of the move and the code
carrying out the move even if, in practice, there is a strong temporal disconnection
between the time when the closure is recorded with the selector and the time it gets
executed.

The search procedure in Fig. 8 illustrates an alternative implementation of the
greedy search presented in Fig. 1. The loop on lines 3–4 scans all variables and
values accumulating the reassignments in the selector N and associating with each
one a quality measure based on the delta. The 1-instruction block queen[i] :=
v; on line 4 is automatically wrapped in a closure that is entrusted by neighbor to
the selector N . The beauty in the construction lies in the ability to easily accumulate
in the same selector the union of multiple neighborhoods, all defined with different
move operators. This capability will be illustrated in the Progressive Party Problem
use case in section “Progressive Party.”

Randomized Choosers
To support developers, COMET provides control abstractions to make greedy, semi-
greedy, and randomized choices. The abstractions encapsulate the necessary state
to deliver independent pseudorandom streams in each such instruction appearing in
the program. For instance, the �.n/-sized neighborhood that considers reassigning
the queen with the most violations to a new row, is easily modeled with instructions
in lines 3–7 below.

9 Constraint-Based Local Search 239

1 MinNeighborSelector N();
2 while(S.violations()!=0) {
3 selectMax[2](i in Size)(S.violations(queen[i])) {
4 forall(v in queen[i].getDomain() : queen[i] != v)
5 neighbor(S.getAssignDelta(queen[i],v),N)
6 queen[i] := v;
7 }
8 if (N.hasMove()) call(N.getMove());
9 }

The bracketed 2 on line 3 simply requests the selector to retain any value i among
the best two (according to the violation measure).

Discussion
The Constraint-Based Local Search model appearing in Fig. 1 highlights the key
features of the framework. It features a complete separation between a declara-
tive model and a procedural search component. The declarative model relies on
combinatorial constraints specifying the properties of solutions, while the search is
exclusively devoted to the selection of a heuristic and meta-heuristic. In this model,
the search remains problem specific. Yet, both the model and the search can evolve
independently. One can add constraints without changing the search or choose a
different search strategy without modifying the model. All these characteristics,
when blended with the performance of an incremental computation, deliver an
appealing architecture for producing local search solutions.

The program in Fig. 1 can still be improved. In particular, it is tempting to
provide syntactic sugar to automatically handle the boiler plate code and support
the notion of constraint annotations to partition the constraint set into soft and
required constraints S [R. The resulting program is shown in Fig. 9. The model
m is now attaching a soft annotation to each constraint to dictate its addition to
S , while line 10 is used to extract the set of soft constraints from m. Perhaps
even more interestingly, the adoption of an explicit first-class model concept
enables the authoring of completely generic search procedures. Indeed, the code
in lines 10–13 can be packaged as the reusable min-conflict procedure depicted in
Fig. 10.

Naturally, lines 10–13 from Fig. 9 disappear from the model in favor of a
single line calling the generic minConflictSearch on model m program,
i.e.,

1 minConflictSearch(m);

This leaves us with a 10 lines Constraint-Based Local Search implementation.

240 L. Michel and P. Van Hentenryck

1 MinNeighborSelector N();
2 while(S.violations()!=0) {
3 selectMax[2](i in Size)(S.violations(queen[i])) {
4 forall(v in queen[i].getDomain() : queen[i] != v)
5 neighbor(S.getAssignDelta(queen[i],v),N)
6 queen[i] := v;
7 }
8 if (N.hasMove()) call(N.getMove());
9 }

1 import lssolver;
2 int n = 8;
3 range Size = 1..n;
4 model m {
5 var{int} queenSize;
6 soft: alldifferent(queen);
7 soft: alldifferent(all(i in Size) (queen[i] + i));
8 soft: alldifferent(all(i in Size) (queen[i] i));
9 }

10 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
11 while(S.violations() > 0)
12 selectMin(i in Size,v in Size : queen[i]!=v)(S.getAssignDelta(queen[i],v))
13 queen[i] := v;

−

Fig. 9 A revised Constraint-Based Local Search model for n-queens

1 void function minConflictSearch(Model<LS> m) {
2 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
3 var{int}[] X = S.getIntVariables();
4 while(S.violations() > 0)
5 selectMin(i in X.getRange(),
6 v in X[i].getDomain() : X[i]!=v)(S.getAssignDelta(X[i],v))
7 X[i] := v;
8 }

Fig. 10 A reusable min-conflict procedure

Case Studies

To explore Constraint-Based Local Search, it is desirable to consider a few
applications that are elegantly and effectively solved with COMET. The next three
subsections consider the progressive party problem [16], car sequencing [3], and
scene allocation [18] as each application illustrates a different aspect.

9 Constraint-Based Local Search 241

Progressive Party

The progressive party problem is a standard benchmark in combinatorial optimiza-
tion and it illustrates two important features. It shows a rich model with many
combinatorial constraints as well as constraints on the truth value of relations. It
also shows how soft constraints may be instrumental in obtaining a neighborhood.
The goal in this problem is to assign guest parties to boats (the hosts) over multiple
time periods. Each guest can visit the same boat only once and can meet every other
guest at most once over the course of the party. Moreover, for each time period, the
guest assignment must satisfy the capacity constraints of the boats.

Figure 11 depicts the declarative part of the model. The decision variable
boat[g,p] specifies the boat visited by guest g in period p. Lines 8–9 specify the
alldifferent constraints for each guest, lines 10–11 specify the capacity constraints,
and lines 12–13 state that two guests meet at most once during the evening. The
soft(2) annotations added on lines 9 and 11 are not only specifying that the
constraint must be softened, but they also associate a fixed static weight of 2 with
each constraint. The weights can be easily incorporated in the inductive definition
of V.c/ shown in Fig. 4

V.soft.w/ W c/ D w � V.c/

to handle statically weighted soft constraints.

The Neighborhood
The first sensible neighborhood to consider focuses on reassigning a single variable
boat[g,p] to a new value. This can follow the same template used for the
queens problem. These moves impact the violations of all the constraints. However,
these moves may also prove too restrictive. When an instance is near satisfaction,
one can expect most of the bins in any given knapsack to be near full. A single

1 range Hosts = 1..13;
2 range Guests = 1..29;
3 range Periods = 1..up;
4 set{int} config[1..6];
5

6 model m {
7 var{int} boat[Guests,Periods](Hosts);
8 forall(g in Guests)
9 soft(2): alldifferent(all(p in Periods) boat[g,p]);

10 forall(p in Periods)
11 soft(2): knapsack(all(g in Guests) boat[g,p],crew,cap);
12 forall(i in Guests, j in Guests : j > i)
13 soft: atmost(1,all(p in Periods) boat[i,p] == boat[j,p]);
14 }

Fig. 11 The progressive party problem

242 L. Michel and P. Van Hentenryck

variable reassignment amounts to moving an item from one bin into another
and that may prove fruitless from a violation standpoint. A natural idea is to
include a second neighborhood that considers the exchange of values between two
variables appearing in the same constraint. While such swaps have no effects on the
alldifferent constraints, they can more easily lead to violation improvements
for the knapsack constraints. Formally, the neighborhood is therefore

N D f�Œx=v� j x D arg-maxz2X #z .�;V.S// ^ v 2 D.x/ n f�.x/gg
S

f�Œx=c; y=d � j x D arg-maxz2X #z .�;V.S// ^

y 2
S

c2S^x2vars.c/ vars.c/ ^ c D �.y/ ^ d D �.x/g

where S is the set of soft constraints.
The code in Fig. 12 implements that idea. The main loop (lines 7–30) seeks to

improve the overall violations of the soft constraints. The selector on line 9 picks

1 int tenure = 2;
2 int it = 0;
3 int tabu[Guests,Periods,Hosts] = 0;
4

5 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
6 MinNeighborSelector N();
7 while (S.violations() > 0) {
8 int old = S.violations();
9 selectMax(g in Guests, p in Periods)(S.violations(boat[g,p])) {

10 forall(h in Hosts : tabu[g,p,h] <= it) {
11 neighbor(S.getAssignDelta(boat[g,p],h),N) {
12 tabu[g,p,boat[g,p]] = it + tenure;
13 boat[g,p] := h;
14 }
15 }
16 selectMin(g1 in Guests,d=S.getSwapDelta(boat[g,p],boat[g1,p]))(d) {
17 neighbor(d,N) {
18 tabu[g,p,boat[g1,p]] = it + tenure;
19 tabu[g1,p,boat[g,p]] = it + tenure;
20 boat[g,p] :=: boat[g1,p];
21 }
22 }
23 }
24 if (N.hasMove()) {
25 call(N.getMove());
26 if (violations < old && tenure > 2) tenure = tenure − 1;
27 if (violations >= old && tenure < 10) tenure = tenure + 1;
28 }
29 it = it + 1;
30 }

Fig. 12 The search procedure for the progressive party problem

9 Constraint-Based Local Search 243

a variable boat[g,p] that induces the most violations. Once the variable is
selected, the two nested selectors (lines 10–15 and lines 16–22) implement the two
parts of the neighborhood structure. Lines 10–15 select the variable with the most
violations and choose a new value that decreases its violations the most. The second
selector is more interesting. It picks a second variable boat[g1,p] in the same
period p as the first variable boat[g,p] in such a way that the swap between the
two variables has the largest impact on the overall violations of S . Note that both
variables appear in the knapsack constraint stated over period p. The remainder of
the code (lines 23–28) executes the best move in N (if one exist) and updates the
variable tabu tenure.

The 30 lines of code are compact and elegant: They benefit from the automation
provided by the neighborhood selector, the selectors, and the neighbor construction.
Yet, they still require some effort to analyze the model and produce a code template
that follows a standard recipe. In addition, this code skeleton must still be updated
with classic ideas like search intensification around high-quality local minima and
diversification to escape from basins of attraction. However, the steps applied in
deriving this search procedure are rather systematic: They rely on an analysis of the
model to recognize the presence of specific types of constraints that then suggest
a particular neighborhood structure. The is the idea behind the synthesis of search
procedures that is described next.

The Synthesized Search
Given that models are first-class objects, COMET can manipulate and analyze them.
Here, COMET recognizes the presence of knapsack constraints and generates a
composite neighborhood consisting of the union of variable assignments and of the
variable swaps appearing in violated knapsack constraints, an idea first articulated
by Van Hentenryck [19]. The synthesis process per se was described in details
in [22].

The skeleton of a synthesized tabu search is depicted in Fig. 13. It uses the fact
that all variables have the same domains. Lines 7–9 associate with each decision
variable xi the set of constraints mentioning xi and susceptible to benefit from
exchanging (swapping) the values of two of its variables. This initial step is a
straightforward projection of the constraint array in S that only retains constraints
that refer to xi and can use a swap. Line 10 defines a neighborhood selector. Line
15 selects the variable xi with the most violations among the softened constraints
S . Lines 16–20 focus on the first part of the neighborhood and consider simple
reassignments that lead to the largest violation decrease. All the potential neighbors
are submitted to N . Lines 21–29 consider all the constraints referring to variable xi

and for which swaps can be of potential benefit. For each such constraint, the code
retrieves the variables of the constraint and accumulates in the selector N all the
closures modeling swaps (along with their impact on violations).

It is appealing to notice the similarities between the manual and synthetic
implementation. In essence, they both capture the same idea. Yet, the generic code
adapts to the model and consider exploiting all the constraints susceptible to profit

244 L. Michel and P. Van Hentenryck

1 function bool refersTo(var{int}[] av,var{int} x) {
2 return or(i in av.rng()) (av[i].getId() == x.getId());
3 }
4 function void minConflictWithSwap(Model<LS> m) {
5 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
6 var{int}[] X = S.getVariables();
7 set{Constraint<LS>} cx[i in X.rng()] =
8 collect(j in S.rng() : S[j].canUseSwap() &&
9 refersTo(S[j].getVariables(),X[i])) S[j];

10 MinNeighborSelector N();
11 int k = 0,tenure = 20;
12 int at[X.rng()] = 0;
13 int mat[X.rng(),X.rng()] = 0;
14 for(int k=0;S.violations() != 0;k++) {
15 selectMax(i in X.getRange())(S.violations(X[i])) {
16 forall(v in X[i].getDomain() : at[i] <= k)
17 neighbor(S.getAssignDelta(X[i],v),N) {
18 X[i] := v;
19 at[i] = k + tenure;
20 }
21 forall(c in cx[i]) {
22 var{int}[] Y = c.getVariables();
23 forall(j in Y.getRange() : mat[i,j] <= k)
24 neighbor(S.getSwapDelta(X[i],Y[j]),N) {
25 X[i] :=: Y[j];
26 mat[i,j] = mat[j,i] = k + tenure;
27 }
28 }
29 }
30 if (N.hasMove()) call(N.getMove());
31 }
32 }

Fig. 13 The synthesized search procedure for the progressive party problem

from swaps. The COMET extension required to do so is a minimal extension to query
the capabilities of the constraint in the model.

As shown later, the synthesized search outperforms all published results on this
problem. Note that, if the set of required constraints R was not empty (it is empty
in this application), the two neighborhoods would have to discard assignments
and swaps that yield nonzero values for the calls to getAssignDelta and
getSwapDelta to implement the legality requirement correctly. Finally, observe
that this skeleton implementation contains a very simply tabu condition to further
restrict the legal moves to those that were not recently attempted; this is achieved
with two simple data structures (one per neighborhood) that record the last iteration
number when a move was performed. Supporting generic intensification and
diversification is equally easy.

9 Constraint-Based Local Search 245

Car Sequencing

Figure 14 presents a model for car sequencing. In this application, n cars must
be sequenced on an assembly line of length n. The customer demands for car
configurations are specified in an array demand and the total demand is, of course,
n. Each car configuration may require a different sets of options, while capacity
constraints on the production units restrict the possible car sequences. For a given
option o, these constraints are of the form k out of m meaning that, out of m

successive cars, at most k can require o. The model declares the decision variables
specifying which type of car is assigned to each slot in the assembly line (line 12).
It states a hard constraint specifying which cars must be produced (line 13) and then
states the soft capacity constraints for each option (lines 14–15).

The handcrafted search procedure, illustrated in Fig. 15, is modeled after a
conflict minimization structure. The initialization satisfies the cardinality constraint
by using a random permutation of an array of values that already meet the cardinality
requirement (lines 4–7). The main loop (lines 10–27) minimizes the number of
violations by selecting the slot of the assembly line causing the most violations
and swapping its content with another slot that delivers the most improvements.
The move itself appears on line 14. The search features a diversification component
(lines 19–25) that randomly swaps a subset of slots in the assembly line when no
improvement took place for a number of iterations. Each time an improving move
is found, the stability counter is reset and the best value for this stage is recorded
(line 18).

It is possible to recognize the combinatorial structure present in the model thanks
to the presence of global sequence constraints and to automatically synthesize a
search procedure that matches the ideas present in the handcrafted search procedure.

1 // ... read parameters nbCars, nbConfigs, nbOptions
2 range Cars = 1..nbCars;
3 range Configs = 0..nbConfigs −1;
4 range Options = 1..nbOptions;
5 boolean requires[Configs,Options];
6 int demand[Configs];
7 int lb[Options],ub[Options];
8 // ... read the data ...
9

10 set{int} options[o in Options] = setof(c in Configs) requires[c,o];
11 model m {
12 var{int} line[Cars](Configs);
13 hard: atmost(demand,line);
14 forall(o in Options)
15 soft: sequence(line,options[o],lb[o],ub[o]);
16 }

Fig. 14 The car sequencing model

246 L. Michel and P. Van Hentenryck

1 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
2 Solver<LS> ls = m.getLocalSolver();
3 int best = System.getMAXINT();
4 int cars[Cars];
5 int nb = 0;
6 forall(c in Configs, n in 1..demand[c])
7 cars[++nb] = c;
8 RandomPermutation perm(Cars);
9 forall(c in Cars) lines[c] := cars[perm.get()]; // Satisfy required constraint

10 while (S.violations() != 0) {
11 selectMax(i in Cars)(S.violations(X[i])) {
12 selectMin(j in Cars : line[i] != line[j] && t[i,j] <= it)
13 (S.getSwapDelta(line[i],line[j])) {
14 X[i] :=: X[j];
15 t[i,j] = t[j,i] = it + tenure;
16 }
17 }
18 if (S.violations() < best) { best = S.violations();stable = 0;}
19 if (stable == 500) {
20 with atomic(ls)
21 forall(k in 1..5)
22 select(a in Cars,b in Cars : line[a] != line[b]) line[a] :=: line[b];
23 stable := 0;
24 best = S.violations();
25 } else stable++;
26 it++;
27 }

Fig. 15 The handcrafted search procedure for car sequencing

The result is shown in Fig. 16. It depicts a generic tabu search procedure featuring
several key components. Note how line 6 of the model retrieves the required
constraints (line 3) and initializes the start assignment by delegating to each required
constraint the task of picking a suitable assignment. A basic requirement for
achieving this is the following independence property of the required constraints:

8ci ; cj 2 R s.t. i ¤ j W vars.ci / \ vars.cj / D ;:

In this case, R D fatmost(demand,line)g and the sole cardinality constraint
can create, in polynomial time, an array of values that meet the cardinality
requirement and randomly permute it to produce the initial assignment to the
variables in vars.c/. The algorithm for the cardinality constraint uses a (randomized)
feasible flow algorithm to match values to variables. As all variables appear in the
cardinality constraint, swapping two variables is feasibility-preserving (the number
of cars of each type is unchanged). Moreover, the cardinality constraint is tight,
meaning that there is a bijection from variable to value occurrences. The core of the

9 Constraint-Based Local Search 247

1 function void tabuSearch(Model<LS> m) {
2 ConstraintSystem<LS> S = m.getSoftConstraintSystem();
3 ConstraintSystem<LS> R = m.getHardConstraintSystem();
4 Solver<LS> ls = m.getLocalSolver();
5 var{int}[] X = R.getVariables();
6 forall(i in R.getRange()) with atomic(ls) R.getConstraint(i).initialize();
7 Counter it(ls) := 0;
8 Counter stable(ls) := 0;
9 int tenure = 20;

10 int t[X.rng(),X.rng()] = 0;
11 Integer best(System.getMAXINT());
12 whenever S.violations()@changes(int o,int n)
13 if (n < best) { best := n;stable := 0;}
14 whenever it@changes() stable++;
15 whenever stable@changes()
16 if (stable == 500) {
17 with atomic(ls)
18 forall(k in 1..5)
19 select(a in X.rng(),b in X.rng() : X[a] != X[b]) X[a] :=: X[b];
20 stable := 0;
21 }
22 while (S.violations() != 0) {
23 selectMax(i in X.rng())(S.violations(X[i])) {
24 selectMin(j in X.rng() : X[i] != X[j] && t[i,j] <= it)
25 (S.getSwapDelta(X[i],X[j])) {
26 X[i] :=: X[j];
27 t[i,j] = t[j,i] = it + tenure;
28 }
29 }
30 it++;
31 }
32 }

Fig. 16 The synthesized Tabu-search for car sequencing

search spans lines 22–31 and features the selection of the most conflicting variable
(line 23) together with the variable that yield the largest decrease in violations
through a swap (lines 24–25). The actual move is performed on line 26 and the
move is marked tabu in line 27.

The implementation of the diversification is more interesting. To modularize
the capability, it relies on events. In COMET, objects like Counter, Integer,
or var{int} are capable of dispatching notifications when specific events occur.
For instance, a counter issues a change event when its value is modified. COMET

provides the ability to associate a code fragment with events: The code is then
executed in response to these events. This is illustrated on line 14 that states that,
each time the iteration counter it changes, the stability counter stable must
increase. Similarly, lines 15–21 specify that, when the stability counter changes,
one should check whether it has reached a critical value, 500 in this example,

248 L. Michel and P. Van Hentenryck

in which case a diversification step is undertaken. This architecture promotes the
separation of the diversification logic from the main heuristic. Indeed, the code for
the diversification simply dictates how to react to changes to the stability counter
and the COMET platform automatically weaves that code in the proper place. Finally,
note how recording improvements in the violations are also done through an event
hooked on the violations of the entire soft system S .

Scene Allocation

Figure 17 features a model for the scene allocation problem that is sometimes used
to compare CP and MIP solvers since it is highly symmetric. The problem consists
of assigning specific days for shooting scenes in a movie. There can be at most five
scenes shot per day and all actors of a scene must be present. Each actor has a fee and
is paid for each day she/he plays in a scene. The goal is to minimize the production
cost. The decision variable scene (line 12) represents the day a scene is shot. The
hard cardinality constraint (line 13) specifies the maximum number of scenes shot
on any one day. The objective function minimizes the sum of actor compensations,
which is the actor fee times the number of days he/she appears in a scene shot on
that day.

The model in Fig. 17 is now a constraint optimization model featuring an
objective function that demands a different strategy to obtain a suitable search
procedure. In general, it is necessary to juggle three considerations. First, one should
maintain the feasibility of the required constraints through a suitable initialization
and the selection of moves that never violate the constraints in R. Second, one

1 int maxScene = ...; // read the data
2 int maxDay = ...; // read the data
3 range Scenes = 1..maxScene;
4 range Days = 1..maxDay;
5 enum Actor = ... ; // read the data
6 int pay[Actor] = ...; // read the data
7 set{Actor} appears[Scenes] = ...; // read the data
8 set{int} which[a in Actor] = setof(s in Scenes) member(a,appears[s]);
9 int occur[Days] = ...; // read the data

10

11 model m {
12 var{int} scene[Scenes](Days);
13 hard: atmost(occur,scene);
14 minimize: sum(a in Actor) pay[a]∗
15 (sum(d in Days) (or(s in which[a]) (scene[s] == d)));
16 }
17 generatedTabuSearch(m);

Fig. 17 Scene allocation model

9 Constraint-Based Local Search 249

may have to deal with softened difficult constraints (S) for whom one searches
for a feasible solution by driving down the violations. Third, it is essential to
drive down the value of the objective function. The latter two considerations (true
objective and softened constraint) are naturally conflicting as it is easier to drive
the objective function down if one violates difficult constraints and vice versa. The
practical response is to rely on a statically or a dynamically weighted sum of the two
objectives where the search shifts the emphasis on either considerations by altering
the weights.

In this application, S D ; and R D fatmost.occur; scene/g; hence, the task
is somewhat simpler as there is only one component to the objective function. In
this case, the generated tabu search is driven by the sole required constraint but with
a significant difference. In the previous example, the soft constraint was tight, a fact
detected by the model analysis. Indeed, the cardinality constraint in car sequencing
is tight because the assembly line has as many slots as the number of cars to produce.
This is not the case here: there are typically fewer scenes than the number of slots
in which they can be scheduled and thus the required constraint is not a bijection
between variables and value occurrences. As a result, limiting the neighborhood
only to swaps would preserve the feasibility of the cardinality constraint at the
expense of a significant decrease in solution quality. This is not surprising since
the neighborhood would no longer be connected. The model analysis however
recognizes that the atmost constraint is not tight and also considers feasibility-
preserving assignments.

The generated skeleton is depicted in Fig. 18. As before, line 5 uses the required
constraints to initialize the search to a feasible assignment (once again, the task is
delegated to the required constraints and the model analysis ensures that vars.ci / \

vars.cj / D ;8ci ; cj 2 R before generating code. The core of the search spans lines
11–24 and relies on the union of two neighborhoods. Line 12 starts by selecting a
variable xi that can lead to the largest decrease in the objective function. Lines 13–
15 consider all the swaps that include xi and lead to the largest decrease in the
objective function (i.e., the most negative delta). The selector on line 13 is semi-
greedy and will select, uniformly at random, one of the top-3 such moves. Lines
16–19 are devoted to the second neighborhood and collect the best value to reassign
xi . Line 17 shows the conjunct that eliminates assignments that are not feasible
with respect to R. The skeleton search uses a vanilla tabu data structure and omits
the diversification component for simplicity.

Implementation

The implementation of a Constraint-Based Local Search system critically depends
on incremental computation. Constraints and objective functions must respond to
their APIs like violations, increase, decrease, or getAssignDelta
extremely fast in order to consider large neighborhoods and long traces of assign-
ment within an allotted time.

250 L. Michel and P. Van Hentenryck

1 function void generatedTabuSearch(Model<LS> m) {
2 Function<LS> obj = m.getObjective();
3 ConstraintSystem<LS> R = m.getHardConstraintSystem();
4 Solver<LS> ls = m.getLocalSolver();
5 forall(i in R.getRange()) with atomic(ls) R.getConstraint(i).initialize();
6 int it = 0,tenure = 20,best = System.getMAXINT();
7 var{int}[] X = obj.getVariables();
8 int tm[X.rng(),X.rng()] = 0;
9 int t[X.rng()] = 0;

10 MinNeighborSelector N();
11 while (it < 10000) {
12 selectMax(i in X.rng())(obj.decrease(X[i])) {
13 selectMin[3](j in X.rng() : i != j && tm[i,j] <= it,
14 d = obj.getSwapDelta(X[i],X[j]))(d)
15 neighbor(d,N) { X[i] :=: X[j];tm[i,j] = tm[j,i] = it + tenure;}
16 selectMin(v in X[i].getDomain() : t[i] <= it && v != X[i] &&
17 R.getAssignDelta(X[i],v)==0,
18 d = obj.getAssignDelta(X[i],v))(d)
19 neighbor(d,N) { X[i] := v;t[i] = it + tenure;}
20 }
21 if (N.hasMove()) call(N.getMove());
22 if (obj.evaluation() < best) best = obj.evaluation();
23 it++;
24 }
25 }

Fig. 18 Generated search for scene allocation

To deliver this performance, the implementation is presented in two distinct
layers. The invariant layer is responsible for the basic incremental computa-
tion that occurs when an assignment is changed through a local move operator.
The differentiability layer is responsible for implementing the response
mechanism behind the constraints and objective function. Their implementation
is primarily framed in terms of invariants. Both are highlighted in this section,
starting with invariants (section “Invariants”) and finishing with differentiation
(section “Differentiation”).

Invariants

Invariants provide a declarative concept that relieves programmers from the tedious
task of maintaining complex data structures incrementally. By focusing on what to
maintain, rather than how to maintain assignments under changes, programmers
are relieved of an error-prone, yet critical, aspect of implementing constraints
and objective functions. In essence, invariants capture so-called one-way con-
straints [1, 2, 11, 17], namely, they capture the value of an expression that must be

9 Constraint-Based Local Search 251

maintained over time under changes to the value of its variables. An acyclic network
of dependencies connects all the variables of the problems and is responsible for
scheduling the evaluations. This subsection reviews examples and outlines the
underlying implementation.

Definition 15 (Invariant). An invariant I is a one-way constraint

hx1; : : : ; xni f .y1; : : : ; ym/

where x1; : : : ; xn are called invariant variables and y1; : : : ; ym are either decision or
invariant variables. The set O D fx1; : : : ; xng is the output variables of I The set
I D fy1; : : : ; ymg are the input variables of I. We often abuse notation and rewrite
the one-way constraints as

O f .I /:

IO , II , and If denote the output variables, the input variables, and the function of
invariant I.

Since invariants are one-way constraints, there are some necessary syntactic
restrictions. One such restriction is that no two invariants have a common output
variable. This ensures that every invariant variable is defined at most once.

The declarative semantics of an invariant specifies that the one-way constraints
always holds.

Definition 16 (Declarative Semantics of an Invariant). Let � be an assignment
before or after any atomic instruction of a program for which the invariant I has
been posted. Then, it follows that

h�.x1/; : : : ; �.xn/i f .�.y1/; : : : ; �.ym//

where IO D fx1; : : : ; xng and II D fy1; : : : ; ymg. The narrative abuses notation
and sometimes writes

�.Io/ If .�.II //:

Example 8 (Expression Invariant). The numerical invariant

x y C 3 	 z

stating that, at any point in time, the value of x in an assignment � , i.e., �.x/, should
be the value �.y/ plus three times the value of �.z/.

Operationally, an invariant must maintain the link between its output and input
variables under assignments to its input variables. The invariant maintains this link

252 L. Michel and P. Van Hentenryck

by keeping a local assignment of its input variables and by implementing an update
function which updates the global and local assignments to reflect the change in one
of its input variables.

Definition 17 (Operational Semantics of an Invariant). Let I be an invariant.
Operationally, I maintains a local store I� over variables II and implements an
update procedure Iu W ˙ � X . Let �l D I� be the local store of I, � be an
assignment, and y 2 II . The update procedure Iu.�; y/ performs the following
assignments:

�.IO/ WD If .�l Œ�.y/=y�.II //I

�l .y/ WD �.y/I

To propagate a collection of invariants effectively, the implementation constructs
an incremental graph.

Definition 18 (Incremental Graph). An incremental graph G.X [I; A/ is a di-
rected acyclic graph whose vertices coincides with decision variables and invariants
and whose arc set correspond to the dependencies induced by the invariant. Each
invariant I introduces a dependency I y for each y 2 II and a dependency
x I for each x 2 IO .

Figure 19 depicts the dependencies of the arithmetic invariant presented earlier.

Example 9 (Summation Aggregate). A summation invariant captures the relation

x

n�1X

iD0

yŒi �

where n is a constant and y denotes an array of n variables. The dependencies are
shown below:

Fig. 19 The dependencies of
an arithmetic invariant

x x ← y + 3 . z

y

z

9 Constraint-Based Local Search 253

The update function Iu.�; y/ implements the following code:

1 �.x/ WD �.x/ C �.y/ � �l .y/;
2 �l .y/ WD �.y/;

where �l D I� .

Example 10 (Counting). A counting invariant x count.y/ defined over an array
of variables y yields an array of variables x indexed by R D

Sn�1
iD0 D.yi / that

maintains the relations

8 v 2 R W xv D
X

i 2 range.y/

.yi D v/

Namely, xv counts the number of variables in y currently assigned to v. The
dependencies are as follows:

and there are jRj � 1C n of them. The update function Iu.�; y/ implements the
following code:

1 �.x�l .y// WD �.x�l .y// � 1;
2 �.x�.y// WD �.x�.y// C 1;
3 �l .y/ WD �.y/;

where �l D I� .

Incremental Computation
Given G.X [I; A/, one can obtain a topological sort r of its vertices. Indeed, each
dependency y x imposes the constraint

1C r.x/ � r.y/:

The partial ordering expressed in r drives the propagation algorithm that updates all
the variables following an assignment of new values to decision variables.

Figure 20 shows the pseudo-code for the invariant propagation algorithm.
The propagate algorithm is invoked with the incremental graph G.X; A/, an
assignment � and the set of decision variables Y that have been updated. Line 3
initializes a priority queue PQ with all the invariants mentioning any member of
Y as one of its sources. The priority associated with invariant I is its topological
number r.I/. The main loop spanning lines 6–11 considers the invariants in priority
order (see Line 7). The update function of the selected invariant is executed in Line
8. Line 9 collects in C the modified output variables and Line 10 enqueues the new
invariant to reconsider.

The correctness of the propagate algorithm hinges on the facts that G.X; A/

is acyclic. The use of topological numbers guarantee that the invariant considered
in iteration i is handled only after its sources have reached final values in � . As
long as u meets its specification, the assignment � is guaranteed to satisfy all the

254 L. Michel and P. Van Hentenryck

Fig. 20 The invariant propagation

invariants considered in iterations 1 : : : i . Computing the affected variables in C

and scheduling any invariant depending on them cannot possibly schedule an earlier
invariant since the graph is acyclic.

Differentiation

The implementation of constraints and objective functions relies on the foundation
provided by invariants as first described in [21]. As indicated earlier, the implemen-
tation of the constraint API

1 interface Constraint<LS> {
2 bool holds();
3 var{int} violations();
4 var{int} violations(var{int} x);
5 int getAssignDelta(var{int} x,int v);
6 }

depends on an efficient, incremental evaluation of violations, variable violations,
and gradients. The functions E.�; e/, V.e/, "x .�; e/, and #x .�; e/ are essential
to the evaluation of expressions and the definition of violation and gradient
expressions from algebraic definitions. Yet, none of them are incremental and
therefore unsuitable for direct use in, for instance, Example 5. Likewise, this is
true for combinatorial constraints such as alldifferent. Invariants do provide
the solution, and the subsection focuses on the implementation when constraints are
expressed algebraically or combinatorially.

Algebraic and Logical Constraints
The key insight to an incremental implementation is to forsake the evaluation
function E and adopt instead a compilation approach, generating invariants that
evaluate an expression incrementally. This is achieved by Function I W E ! X � 2I

9 Constraint-Based Local Search 255

Fig. 21 Compiling
expression evaluations to
invariants

(which is partly shown in Fig. 21) and defined inductively on the structure of
expressions. Specifically, a call I.e/ on an expression e produces a decision variable
holding the value of the expression and a set of invariants that define this variable.

Note how each line of the inductive definition obtains the variable and invariants
supporting the operand and produces a fresh variable alongside an additional
invariant based on the variables obtained from the inductive calls on the operands.
For instance, the last line of Fig. 21 shows that the compilation of a summation
expression inductively obtains a fresh decision variable ik for each term ek , as
well as the invariants supporting ik’s definition in Sk . It then creates a new fresh
variable i˙ and the summation aggregate invariant that defines it. It finally adds all
the invariants in Sk .

Relations simply give rise to arithmetic expressions through the function V

whose definition is in Fig. 3. To obtain an incremental evaluation of the violations
of an arbitrary relation e1 ˘ e2, one can simply obtain the violation expression and
compile it with:

hie1˘e2 ; Se1˘e2i D I.V.e1 ˘ e2//

to retrieve a set of invariants (which it states) and an output variable ie1˘e2 whose
value �.ie1˘e2/ denotes the violations of e1 ˘ e2 with respect to � . At this point,
the implementation of method violation() is straightforward and reduces to
returning �.ie1˘e2/. The incremental evaluation of gradients proceeds similarly with
the generation of an expression modeling the gradient of e and its compilation with
I, i.e.,

hi#x.e/; S#x.e/i D I.#x .e//

and #x .e/ is an expression (independent of �) whose evaluation w.r.t. � would yield
#x .�; e/. Similarly, a method call violations(x) must simply return �.i#x.e//.

256 L. Michel and P. Van Hentenryck

Finally, objective functions make a direct use of expressions as well as "x and #x

and are therefore handled exactly like constraints.

Combinatorial Constraints
While combinatorial constraints could be implemented in terms of expressions, it is
often preferable to exploit the semantics of the constraints to directly produce an in-
cremental implementation. To illustrate the idea, consider the alldifferent(x)
constraint used in the introductory example and responsible for ensuring that no two
entries in x have the same value.

Fundamentally, the constraint should maintain the cardinality of each value
used in x and require that no two values have a cardinality larger than 1 to
satisfy the constraint. The variable violation for xi would, in this case, simply
be the excess in the number of variables assigned to �.xi /. In essence, when the
constraint alldifferent(x) is added on an array x with n variables whereSn

j D1 D.xj / D V , it is sufficient to state the following invariants:

c count.x/

vi max.0; ci � 1/ 8i 2 V

cv
P

k2V vi

vvj vxj 8j 2 1 : : : n:

The implementation of the constraint then reduces to

1 class alldifferent implements Constraint<LS> {
2 bool holds() { return �.cv/ DD 0;}
3 var{int} violations() { return cv;}
4 var{int} violations(var{int} x) { return vvid.x/;}
5 int getAssignDelta(var{int} x,int v) {
6 if �.x/ DD v

7 return 0;
8 else
9 return .�.cv/ � 1/ � .�.x/ � 2/;

10 }
11 }

where the function id is used to identify the variable x by an integer. Note the
simplicity of the method implementations that simply leverage the work done
by invariants. Additionally, the implementation does not have to provide any
imperative code to handle the changes of decision variables as all of this logic
is handled through the invariants. Finally, even the getAssignDelta(x,v)
implementation remains straightforward. When the current value assignment to
variable x is identical to the tentative assignment (v), the function returns 0.
Otherwise, it returns the amount of change. Namely, if value v is already used once
or more, the number of violations will increase by 1. Similarly, if �.x/ is used twice
or more, a violation is necessarily lost.

9 Constraint-Based Local Search 257

Empirical Results

Offering a comprehensive empirical evaluation of COMET is beyond the scope of
this chapter. Yet, the monograph [23] contains an extensive empirical evaluation on
many problems and discusses the impact of modeling techniques and search.

Instead, this section focuses on demonstrating the potential behind the synthesis
of search procedures. In particular, it explores the performance of the search
procedures shown in Figs. 13, 16, and 18 and contrasts them with the results
obtained from purely synthesized search procedures in the spirit of [22]. In all cases,
the results were obtained on a Core i7 machine clocked at 1.8 Ghz and running OSX
10.10 and the reported results are based on averages collected from 100 runs of each
algorithms.

Progressive Party

Two instances of the problem (5–7 and 6–7) were used in the evaluation in the
following table.

Type Choice jP j �iter �iter �T .msec:/ �T .msec:/

Manual 5 7 2,360.9 1,386.1 723:9 377:3

Synthetic 5 7 2,282.2 1,495.9 842:5 476:1

Manual 6 7 6,847.8 5,714.7 1; 682:0 1; 324:4

Synthetic 6 7 4,532.2 4,724.5 1; 338:1 1; 281:6

The search procedures are extremely similar and only differ in the presence of
an adaptive tabu list within the synthetic implementation. It is not surprising to note
that both implementation are very close with a slight win for the synthetic search
without having to invest any effort in parameter tuning.

Car Sequencing

One instance (4–72) was used for car sequencing. In this case, the two implementa-
tions seem to exhibit significantly different behaviors as the number of iterations
is almost 4 times as high (on average) for the manual implementation. This is
most likely due to the difference in parameters and in the components of the
meta-heuristics within the synthetic search. It also shows that, without exploring
variants of the search procedure, it is not obvious to produce high-quality results.
Yet, the ability to easily exploit, without further ado, restarts, diversification and
intensification components is quite valuable. Lastly, note that the time per iteration
of the two searches is quite close showing that the differences only come from the
search heuristic and meta-heuristic, not the incremental computation.

258 L. Michel and P. Van Hentenryck

Type Instance �iter �iter �T .s:/ �T .s:/

Manual 4–72 162,944.3 164,853.9 19:9 20:5

Synthetic 4–72 49,598.8 57,815.4 5:4 6:3

Scene Allocation

The scene allocation benchmark was used to compare three variants: the manual
implementation in Fig. 18 and two synthetic search procedures with different
parameters, namely, one of them uses 10,000 iterations and no restarts, while the
other uses 10 restarts and 1000 iterations per restart. Here, the synthetic search
relying on restarting is very close to the custom implementation. Its success rate
is 99/100, just shy of a perfect 100 like the custom search. While the synthetic
search uses more iterations (on average) to get to the optimum, the runtimes are
very close. An examination of the synthesized search reveals that the root cause of
the difference is the search heuristic. The equivalent of lines 13 and 17 in Fig. 18
in the synthesized search rely on a purely random selector rather than the more
aggressive semi-greedy and greedy selectors used in the custom implementation.
This difference explains the loss in greediness and explains the positive impact of
restarts.

Type �iter� �iter� �f � �f � #Opt �T .msec:/ �T .msec:/

Manual 860 982 334,144 0 100 567.4 46:9

Synthetic(10,000
iters, 1 restart)

2;254 3;104 334,960 1;093 64 731.8 175:6

Synthetic(1000
iters, 10 restarts)

1;954 2;212 334,167 227 99 730.1 71:7

Conclusion

Constraint-Based Local Search is an appealing framework for the design and
implementation of local search models for any number of applications. It adopts
the core practices of constraint programming through the support of separated
components for expressing a declarative model and for programming the search.
The declarative models rely on a rich language seamlessly blending algebraic,
logical, and combinatorial constraints. The search component itself is exclusively
devoted to the automation of the most tedious and error-prone activities that arise
when implementing a variety of heuristics and meta-heuristics. Perhaps even more
crucially, search procedures can be written completely independently of the model,
making them highly reusable and generic. The culmination of this effort is the
availability of synthetic search procedures that take advantage of an analysis of the
declarative model to produce sensible search procedures that often compete with
tailored, hand-written implementations.

9 Constraint-Based Local Search 259

The entire framework competitiveness relies on incremental implementations
that are constructed on top of invariants and differentiable abstractions such as
constraints and objectives. The net result is a platform for practitioners who would
take advantage of the capabilities of local search techniques without the significant
investment necessary to produce an efficient implementation.

Cross-References

�Ant Colony Optimization: A Component-Wise Overview
�Guided Local Search
� Iterated Greedy
�Restart Strategies
� Scatter Search
�Tabu Search
�Theory of Local Search
�Variable Neighborhood Descent
�Variable Neighborhood Search

References

1. Borning A (1981) The programming language aspects of thinglab, a constraint-oriented
simulation laboratory. ACM Trans Program Lang Syst 3(4):353–387

2. Borning A, Duisberg R (1986) Constraint-based tools for building user interfaces. ACM Trans
Comput Graph 5(4):345–374

3. Dincbas M, Simonis H, Van Hentenryck P (1988) Solving the car sequencing problem in
constraint logic programming. In: ECAI-88, Aug 1988

4. Feo T, Resende M (1995) Greedy randomized adaptive search procedures. J Glob Optim
6:109–133

5. Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Boston/Dordrecht/Lon-
don

6. Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science
220:671–680

7. Laguna M (2002) Scatter search. In: Pardalos PM, Resende MGC (eds) Handbook of applied
optimization. Oxford University Press, New York, pp 183–193

8. Michel L (1998) Localizer: a modeling language for local search. PhD thesis, Brown University
9. Michel L, Van Hentenryck P (1997) Localizer: a modeling language for local search. In: Third

international conference on the principles and practice of constraint programming (CP’97),
Lintz, Oct 1997

10. Minton S, Johnston MD, Philips AB (1990) Solving large-scale constraint satisfaction and
scheduling problems using a Heuristic repair method. In: AAAI-90, Aug 1990

11. Myers B, Guise D, Dannenberg R, Vander Zanden B, Kosbie D, Pervin E, Mickish A, Marchal
P (1990) GARNET: comprehensive support for graphical, highly interactive user interfaces.
IEEE Comput 23(11):71–85

12. Pham Q-D, Deville Y, Van Hentenryck P (2012) Ls(graph): a constraint-based local search for
constraint optimization on trees and paths. Constraints 17(4):357–408

13. Selman B, Kautz H (1993) An empirical study of greedy local search for satisfiability testing.
In: AAAI-93, pp 46–51

https://doi.org/10.1007/978-3-319-07124-4_21
https://doi.org/10.1007/978-3-319-07124-4_2
https://doi.org/10.1007/978-3-319-07124-4_10
https://doi.org/10.1007/978-3-319-07124-4_15
https://doi.org/10.1007/978-3-319-07124-4_20
https://doi.org/10.1007/978-3-319-07124-4_24
https://doi.org/10.1007/978-3-319-07124-4_6
https://doi.org/10.1007/978-3-319-07124-4_9
https://doi.org/10.1007/978-3-319-07124-4_19

260 L. Michel and P. Van Hentenryck

14. Selman B, Levesque H, Mitchell D (1992) A new method for solving hard satisfiability
problems. In: AAAI-92, pp 440–446

15. Selman B, Kautz H, Cohen B (1996) Local search strategies for satisfiability testing. In:
DIMACS series in discrete mathematics and theoretical computer science, vol 26. American
Mathematical Society Publications. DIMACS

16. Smith BM, Brailsford SC, Hubbard PM, Williams HP (1996) The progressive party problem:
integer linear programming and constraint programming compared. Constraints 1:119–138

17. Sutherland IE (1963) SKETCHPAD: a man-machine graphical communication system. MIT
Lincoln Labs, Cambridge

18. Van Hentenryck P (2002) Constraint and integer programming in OPL. Inform J Comput
14(4):345–372

19. Van Hentenryck P (2006) Constraint programming as declarative algorithmics. ACP award for
research excellence in constraint programming. Available at http://www.cs.brown.edu/people/
pvh/acp.pdf

20. Van Hentenryck P, Michel L (2005) Control abstractions for local search. Constraints
10(2):137–157

21. Van Hentenryck P, Michel L (2006) Differentiable invariants. In: 12th international conference
on principles and practice of constraint programming (CP’06), Nantes, Sept 2006. Lecture
notes in computer science

22. Van Hentenryck P, Michel L (2007) Synthesis of constraint-based local search algorithms from
high-level models. In: Proceedings of the 22nd national conference on artificial intelligence –
volume 1, AAAI’07. AAAI Press, pp 273–278

23. Van Hentenryck P, Michel L (2009) Constraint-based local search. The MIT Press, Cambridge
24. Van Hentenryck P, Michel L, Liu L (2005) Constraint-based combinators for local search.

Constraints 10(3):363–384
25. Walser JP (1999) Integer optimization by local search: a domain-independent ap-

proach. Springer, Berlin/Heidelberg. ISBN:3-540-66367-3. http://www.springer.com/us/book/
9783540663676

http://www.cs.brown.edu/people/pvh/acp.pdf
http://www.cs.brown.edu/people/pvh/acp.pdf
http://www.springer.com/us/book/9783540663676
http://www.springer.com/us/book/9783540663676

	9 Constraint-Based Local Search
	Contents
	Introduction
	Foundations

	Getting Started
	The Problem
	The Model
	The Search

	Foundations
	Models
	Basics
	Evaluations and Violations
	Differentiation
	Objective Functions
	Models and Constraint Hardness

	Programs
	Control Primitives

	Case Studies
	Progressive Party
	The Neighborhood
	The Synthesized Search

	Car Sequencing
	Scene Allocation

	Implementation
	Invariants
	Incremental Computation

	Differentiation
	Algebraic and Logical Constraints
	Combinatorial Constraints

	Empirical Results
	Progressive Party
	Car Sequencing
	Scene Allocation

	Conclusion
	Cross-References
	References

