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Abstract

This chapter overviews some string selection and comparison problems, with
special emphasis on the optimization and operational research perspective. It also
proposes a simple and efficient ILP-based heuristic that can be used for any of
the considered problems.
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Introduction to String Problems

Among string selection and comparison problems, there is a class of problems
known as strings consensus, where a finite set of strings is given and one is interested
in finding their consensus, i.e., a new string that agrees as much as possible with
all the given strings. In other words, the objective is to determine a string called
consensus, because it represents—in some way—all the given strings. The idea
of representation and of being in consensus can be related to several different
objectives listed in the following:

(i) the consensus is a new string whose total distance from all given strings is
minimum (closest string problem);

(ii) the consensus is a new string close to most of the given strings (close to most
string problem);

(iii) the consensus is a new string whose total distance from all given strings is
maximum (farthest string problem);

(iv) the consensus is a new string far from most of the given strings (far from most
string problem).

Computational intractability of the general strings consensus problem was first
proved in 1997 by Frances and Litman [7] and in 1999 by Sim and Park [28].

As a constring of the linear coding of DNA and proteins, many molecular biology
problems have been formulated as computational optimization problems involving
strings and sequences. Biological applications of computing distance/proximity
among strings occur mainly in two varieties. Some require that a region of similarity
be discovered, while other applications use the reverse complement of the region,
such as designing probes or primers. In the following, some relevant biological
applications are outlined.

Creating Diagnostic Probes for Bacterial Infections

Probes are strands of either DNA or RNA that have been modified (i.e., made either
radioactive or fluorescent) so that their presence can be easily detected. One possible
application of string problems arises in creating diagnostic probes for bacterial
infections [14, 21]. In this scenario, given a set of DNA strings from a group of
closely related pathogenic bacteria, the task is to find a substring that occurs in each
of the bacterial strings (as close as possible) without occurring in the host’s DNA.
Probes are then designed to hybridize to these target strings, so that the detection of
their presence indicates that at least one bacterial species is likely to be present in
the host.
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Primer Design

Primers are short strings of nucleotides designed such that they hybridize to
a given DNA string or to all of a given set of DNA strings with the aim of
providing a starting point for DNA strand synthesis by polymerase chain reaction
(PCR). The hybridization of primers depends on several conditions, including some
thermodynamic rules, but it is largely influenced by the number of mismatching
positions among the given strings, and this number should be as small as possible
[9, 10, 17].

Discovering Potential Drug Targets

Another biological application of string selection and comparison problems is
related to discovering potential drug targets. Given a set of strings of orthologous
genes from a group of closely related pathogens and a host (such as a human, crop,
or livestock), the goal is to find a string fragment that is more conserved in all or
most of the pathogens strings but not as conserved in the host. Information encoded
by this fragment can then be used for novel antibiotic development or to create
a drug that harms several pathogens with minimal effect on the host. All these
applications reduce to the task of finding a pattern that, with some error, occurs
in one set of strings (closest string problem) and/or does not occur in another set
(farthest string problem). The far from most string problem can help to identify a
string fragment that distinguishes the pathogens from the host, so the potential exists
to create a drug that harms several but not all pathogens [9, 10, 17].

Motif Search

A motif is a string that occurs approximately preserved as a substring in some/-
several of the DNA strings of a given set. Approximately preserved means that the
motif occurs with changes in at most t positions for a fixed nonnegative integer t .
The importance of a motif lies in its characteristic of being a candidate for substrings
of noncoding parts of the DNA string that have functions related to, e.g., gene
expression [9, 10].

For most consensus problems, Hamming distance is used instead of other
alternative measures, such as, for example, the editing distance. The biological
reasons justifying this choice are very well described and motivated by Lanctot et al.
in [14–16] and can be summarized claiming that the “edit distance is more suitable
to measure the amount of change that has happened, whereas the Hamming distance
is more suitable to measure the effect of that change.”

The remainder of this chapter is organized as follows. The next section lists
notation and definitions used throughout the paper. The following four sections are
devoted to the closest string, the close to most string, the farthest string, and the
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far from most string problem, respectively. All these problems are mathematically
formulated and their properties analyzed. The most popular solution techniques for
them are surveyed, along with the computational results obtained and analyzed
in the literature. The second last section reports computational results which
demonstrate empirically the efficiency of the state-of-the-art algorithms. Concluding
remarks and future directions are discussed in the last section.

Notation

Throughout this chapter, the following notation and definitions will be used:

• An alphabet † D fc1; c2; : : : ; ckg is a finite set of elements, called characters.
• si D .si

1; si
2; : : : ; si

m/ denotes a string of m characters (that is, of length m) over
alphabet †, i.e., si

j 2 †; j D 1; 2; : : : ; m.

• Given two strings si and sl on † such that jsi j D jsl j, dH .si ; sl / denotes their
Hamming distance and is given by

dH .si ; sl / D

jsi jX

j D1

ˆ.si
j ; sl

j /; (1)

where si
j and sl

j denote the character at position j in string si and in string sl ,
respectively, and ˆ W † � † ! f0; 1g is a predicate function such that

ˆ.a; b/ D

�
0; if a D bI

1; otherwise:

• For all consensus problems, each string s of length m over † is a valid solution.

The Closest String Problem (CSP)

Given a finite set of strings � on †, the problem is to find a center string s� 2 †m

such that the Hamming distance between s� and all strings in � is minimal; in other
words, s� is a string to which a minimal value d corresponds such that

dH .s�; si / � d; 8 si 2 �:

The closest string problem can be formulated as an integer linear program (ILP). In
fact, let †k � † be the set of characters appearing at position k in any of the strings
from �.

For each k D 1; 2; : : : ; m and j 2 Vk , let us define the following binary
variables:
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xck D

�
1; if character c 2 †k is used at position k of the solutionI

0; otherwise:

Then, the CSP admits the following ILP formulation:

min d

subject to:
X

c2†k

xck D 1 for k D 1; 2 : : : ; m

m �

mX

kD1

xsi
kk � d for i D 1; 2 : : : ; n

d 2 N
C;

xck 2 f0; 1g; for k D 1; 2; : : : ; m; 8 c 2 †k:

(2)

(3)

(4)

(5)

(6)

Equalities (3) guarantee that only one character is selected for each position
k 2 f1; 2; : : : ; mg. Inequalities (4) impose that if a character in a string si is not
in the solution defined by the x-variables, then that character will contribute to
increasing the Hamming distance from solution x to si . Finally, (5) forces d assume
a nonnegative integer value and (6) define the decision variables.

This problem was first studied in the area of coding theory [27] and has been
independently proved computationally intractable in [7, 15, 16].

In 2004, Meneses et al. [26] used a linear relaxation of the above-described
mathematical model to design a branch and bound algorithm. At each iteration,
the next node in the branching tree to be explored is the one with the smallest linear
relaxation objective function value (also known as the best-bound first strategy).
Once selected the next node and obtained an optimal fractional solution x0

ck 2 Œ0; 1�,
k D 1; : : : ; m, 8 c 2 †k , for the linear relaxation of the corresponding subproblem,
the algorithm branches on the fractional variable xck with maximum value of x0

ck .
The bounding phase is very important in any branch and bound algorithm: the better
is the computed bound, the smaller is the number of nodes that need to be explored
and that can therefore be pruned. For the bounding phase, Meneses et al. computed
an initial bound selecting one of the given input strings and modifying it until a local
optimal solution is found. The authors have empirically shown that their branch and
bound algorithm is able to solve in reasonable running times small-size instances
with 10–30 strings, each of which is 300–800 characters long.

Further exact methods proposed for the CSP are fixed-parameter algorithms [11,
20, 30] that are applicable only when the maximum Hamming distance among all
pairs of strings is small. In fact, since these algorithms are designed to solve the
decision version of the problem, it is necessary to apply them multiple times in
order to find an optimal solution that minimizes the Hamming distance.
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The first approximation algorithm for the CSP was proposed in [16] with a worst-
case performance ratio of 2. It is a simple algorithm that constructs an approximate
feasible solution in a pure random fashion. Starting from an empty solution, the
algorithm selects at random the next element to be added to the solution under
construction.

Better performance approximation algorithms proposed in the literature are
based on the linear programming relaxation of the previously described ILP model.
The basic idea consists in solving the linear programming relaxation of the ILP
model and in using the result of the relaxed problem to find an approximate
solution to the original problem. Following this line, [16] also proposed a 4

3
.1 C �/-

approximation algorithm (for any small � > 0) that uses the randomized rounding
technique for obtaining an integer 0–1 solution from the continuous solution for the
relaxed problem. The randomized rounding technique works by defining the value
of a Boolean variable x 2 f0; 1g to be x D 1 with a certain probability y, where
y is the value of the continuous variable corresponding to x in the relaxation of the
original integer programming problem. In 1999, Li et al. [17] used the rounding
idea to design a polynomial-time approximation scheme (PTAS). A PTAS is a
special type of approximation algorithm that, for each � > 1, yields a performance
guarantee of � in polynomial time. Thus, this can be viewed as a way of getting
solutions with guaranteed performance, for any desired threshold greater than one.
The PTAS proposed in [17] is also based on randomized rounding that here is
refined to check results for a large (but polynomially bounded) number of subsets of
indices. However, since a large number of iterations involve the solution of a linear
relaxation of an ILP model, the algorithm becomes impractical for any instance with
large strings. To efficiently deal with real-world scenarios and/or medium- to large-
sized problem instances, several heuristic and metaheuristic algorithms have been
proposed in the last few years.

In 2005, Liu et al. [18] designed a genetic algorithm and a simulated annealing
algorithm, both in their sequential and their parallel versions. Genetic algorithms
(GAs) are population-based metaheuristics that have been applied to find optimal
or near-optimal solutions to combinatorial optimization problems [8, 12]. They
implement the concept of survival of the fittest making an analogy between a
solution and an individual in a population. Each individual has a corresponding
chromosome that encodes the solution. A chromosome consists of a string of
genes. Each gene can take on a value, called an allele, from some alphabet. A
chromosome has an associated fitness level which is correlated to the corresponding
objective function value of the solution it encodes. Over a number of iterations,
called generations, GAs evolve a population of chromosomes. This is usually
accomplished by simulating the process of natural selection through mating and
mutation. For the CSP, starting from an initial randomly generated population, at
each generation 0 � t � number � generations of the Liu et al.’s GA, a
population P .t/ of popsize strings of length m is evolved, and the fitness function
to be maximized is defined as the difference m � dmax, where dmax is the largest
Hamming distance between an individual of the population P .t/ and any string in
�. The production of offspring in a GA is done through the process of mating or
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crossover, and Liu et al. used a multipoint crossover (MPX). In more detail, at a
generic generation t , two parental individuals x and y in P .t/ are randomly chosen
according to a probability which is proportional to their fitness. Then, iteratively
until the offspring is not complete, x and y exchange parts between two randomly
picked points. The resulting offspring have a new order of the strings, one part from
the first parent and the other part from the second parent. Afterward, a mutation
of any individual in the current population P .t/ is executed with some given
probability. During this phase, two positions are randomly chosen and exchanged
in the individual.

In their paper, Liu et al. proposed also a simulated annealing (SA) algorithm
for the CSP. Originally proposed in [13], in the optimization and computer science
research communities, simulated annealing is commonly said to be the “oldest”
among the metaheuristics and surely one of the first techniques that had an explicit
strategy to escape from local minima. Its fundamental idea is to allow moves
resulting in solutions of worse quality in terms of objective function value than
the current solution (uphill moves) in order to escape from local minima. The origin
of simulated annealing and the choice of the acceptance criterion of a better quality
solution lie in the physical annealing process that can be modeled by methods based
on Monte Carlo techniques. One of the early Monte Carlo techniques for simulating
the evolution of a solid in a heat bath to thermal equilibrium is due to [24], who in
1953 designed a method that iteratively (until a stopping criterion is met) generates
a string of states of the solid in the following way. At a generic iteration k, given a
current state i of the solid (i.e., a current solution x),

• Ei is the energy of the solid in state i (objective function value f .x/).
• a subsequent state j (solution x) is generated with energy Ej (objective function

value f .x/) by applying a perturbation mechanism such as displacement of a
single particle (x is a solution “close” to x);

• if Ej � Ei < 0 (i.e., x is a better quality solution), j (x) is accepted; otherwise,
j (x) is accepted with probability given by

exp

�
�

Ej � Ei

kBTk

� �
exp

�
�

f .x/ � f .x/

kB � Tk

��
;

where Tk is the heat bath temperature and kB is the Boltzmann constant.

As the number of performed iterations increases, the current temperature Tk is
decreased, resulting in a smaller probability of accepting not improving solutions.
For the CSP, Liu et al.’s SA sets the initial temperature T0 to m

2
. The current

temperature Tk is reduced every 100 iterations according to the “geometric cooling
schedule” that is, TkC100 D � � Tk , where � D 0:9. The stopping criterion is to
reach a current temperature less than or equal to 0.001. Despite the interesting ideas
proposed in [18], the experimental analysis involves only small instances with up to
40 strings of length 40.
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For the special case of j�j D 3 and j†j D 2, [19] designed an exact approach
called distance first algorithm (DFA), whose basic idea is to let the Hamming
distance dH .s�; si /, i D 1; 2; 3, be as close as possible. The algorithm decreases
the distance between the string that is farthest to the other two strings and solution
s� while increasing the distance between the string that is closest to the other two
strings and solution s�. For the general case, the authors proposed a polynomial-time
heuristic resulting from a combination of local search strategies inspired by [26] and
an approximation algorithm called Largest Distance Decreasing Algorithm (LDDA)
which is based on similar ideas as DFA.

More recently, Tanaka [29] proposed a novel heuristic (TA) based on the
Lagrangian relaxation of the ILP model of the problem that allows to decompose
the problem into subproblems, each corresponding to a position of the strings.
The proposed algorithm combines a Lagrangian multiplier adjustment procedure
to obtain feasibility and a tabu search as local improvement procedure. In [4], Della
Croce and Salassa described three relaxation-based procedures. One procedure (RA)
rounds up the result of continuous relaxation, while the other two approaches (BCPA
and ECPA) fix a subset of the integer variables in the continuous solution at the
current value and let the solver run on the remaining (sub)problem. The authors
also observed that all relaxation-based algorithms have been tested on rectangular
instances, i.e., with n � m, and that the instances such that n � m are harder
to be solved due to the higher number of constraints imposed by the strings,
which enlarges the portion of non-integer components in the continuous solution
of the problem. In the attempt to overcoming this drawback, Croce and Garraffa
[3] designed a multistart relaxation-based algorithm (called the selective fixing
algorithm) that for a predetermined number of iterations takes a feasible solution
as input and iteratively selects variables to be fixed at their initial value until the
number of free variables is small enough that the remaining subproblem can be
efficiently solved to optimality by an ILP solver. The new solution found by the
solver can then be used as initial solution for the next iteration. The authors have
experimentally shown that their algorithm is much more robust compared to the
state-of-the-art competitors and is able to solve a wider set of instances of different
types, including those with n � m.

The Close to Most String Problem (CTMSP)

The closest string problem can be seen as a special case of the so-called close
to most string problem (CTMSP) that consists in determining a string close to
most of the strings in the input set �. This can be formalized by saying that,
given a threshold t , a string s� must be found maximizing the variable l such
that

dH .s�; si / � t; for si 2 P � † and jP j D l :
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max
nX

iD1

yi

subject to:
X

c2†

xck D 1 for k D 1; : : : ; m

mX

kD1

xsi
kk � m � yi � t for i D 1; : : : ; n

xck; yi 2 f0; 1g

(7)

(8)

(9)

Constraints (8) ensure that for each position k of a possible solution, exactly one
character from †k is chosen. Constraints (9) ensure that yi can only be set to 1 if
and only if the number of differences between si 2 � and the possible solution (as
defined by the setting of the variables xck) is less than or equal to t . Remember, in
this context, si

k denotes the character at position k in si 2 �.
Despite its similarity with the CSP, the CTMSP has not been widely studied.

In [2] it was proved that this problem has no polynomial-time approximation scheme
(PTAS) unless NP has randomized polynomial-time algorithms.

The Farthest String Problem (FSP)

Given a finite set of strings � over alphabet †, a problem complementary to the
CSP is that of finding a string s� 2 †m farthest from the strings in �. This type of
problem can be useful in situations such as finding a genetic string that cannot be
associated to a given number of species.

Like the CSP, the farthest string problem can be formulated mathematically in
form of an ILP, where both decision variables and constraints have an interpretation
which is contrary to the one in the CSP:

max d

subject to:
X

c2†k

xck D 1 for k D 1; 2 : : : ; m

m �

mX

kD1

xsi
kk � d for i D 1; 2 : : : ; n

d 2 N
C;

xck 2 f0; 1g; for k D 1; 2; : : : ; m; 8 c 2 †k:

(10)

(11)

(12)

(13)

(14)
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The computational intractability of the FSP was demonstrated in [16], where it
was proved that the problem remains intractable even for the simplest case where
the alphabet has only two characters.

Despite its inherent computational intractability, it has be shown in [16] that
there is a PTAS for the FSP. The algorithm is based on the randomized round-
ing of the relaxed solution of the above-reported ILP and uses the randomized
rounding technique together with probabilistic inequalities to determine the max-
imum error possible in the solution computed by the algorithm. Note that, the
mathematical formulation of FSP is quite similar to the one used for the CSP,
with only a change in the optimization objective, and the inequality sign in the
constraint

m �

mX

j D1

xsi
j j � d; i D 1; 2; : : : ; n:

Thus, to solve the problem using an ILP formulation, one can use similar tech-
niques to those employed for solving the CSP. In 2011 [31] and more recently
in 2015 Zörnig [32] proposed a few integer programming models for some
variants of the farthest string problem and the closest string problem. The number
of variables and constraints is substantially less compared with state-of-the-art
integer linear programming models, and the solution of the linear programming
relaxation contains only a small proportion of non-integer values, which consid-
erably simplifies both a subsequent rounding process and a branch and bound
procedure.

The Far From Most String Problem (FFMSP)

A problem closely related to the farthest string problem is the far from most string
problem (FFMSP). It consists in determining a string far from most of the strings in
the input set �. This can be formalized by saying that, given a threshold t , a string
s� must be found maximizing the variable l such that

dH .s�; si / � t; for si 2 P � † and jP j D l :

In [1], the FFMSP has been mathematically formulated as an ILP. In fact, by
defining a Boolean variable xck for each position k (k D 1; 2 : : : ; m) of a possible
solution and for each character c 2 †k and a Boolean variable yi (i D 1; 2 : : : ; n)
for each of the n input strings provided in set �, the FFMSP can be stated as the
following ILP:



42 Selected String Problems 1231

max
nX

iD1

yi

subject to:
X

c2†k

xck D 1 for k D 1; 2 : : : ; m

mX

kD1

xsi
kk � m � t � yi for i D 1; 2 : : : ; n

xck; yi 2 f0; 1g

(15)

(16)

(17)

Constraints (16) ensure that for each position k of a possible solution, exactly
one character from †k is chosen. Constraints (17) ensure that yi can only be set to 1
if and only if the number of differences between si 2 � and the possible solution (as
defined by the setting of the variables xck) is greater than or equal to t . Remember,
in this context, si

k denotes the character at position k in si 2 �.
Despite the similarity, it can be shown [16] that the FFMSP is much harder to

approximate than the FSP, due to the approximation preserving reduction to FFMSP
from the independent set problem, a classical and computationally intractable
combinatorial optimization problem. In particular, [16] demonstrated that for strings
over an alphabet † with j†j � 3, approximating the FFMSP within a polynomial
factor is NP-hard.

The first attempt in the direction of the design of heuristic methods to efficiently
solve the FFMSP was done in [22, 23], who proposed a heuristic algorithm
consisting of a simple greedy construction followed by an iterative improvement
phase. Later, [6] designed a simple GRASP, recently improved in [25]. Mousavi
et al. noticed that the search landscape of the FFMSP is characterized by many
solutions having the same objective value. Consequently, local search is likely to
visit many suboptimal local maxima. To efficiently escape from these local maxima,
Mousavi et al. devised a new hybrid heuristic evaluation function and used it in
conjunction with the objective function when evaluating neighbor solutions during
the local search phase in the GRASP framework.

Ferone et al. [5] designed the following pure and hybrid multistart iterative
heuristics:

• a pure GRASP, inspired by [6];
• a GRASP that uses forward path-relinking for intensification;
• a pure VNS;
• a VNS that uses forward path-relinking for intensification;
• a GRASP that uses VNS to implement the local search phase; and
• a GRASP that uses VNS to implement the local search phase and forward path-

relinking for intensification.
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The algorithms were tested on several random instances, and the results showed
that the hybrid GRASP with VNS and forward path-relinking always found much
better quality solutions compared with the other algorithms, but clearly with higher
running times as compared to the pure GRASP and the hybrid GRASP with forward
path-relinking. The best objective function values found by GRASP and its hybrids
were when the construction phase was more greedy than random. The integration of
forward path-relinking as an intensification procedure in the pure metaheuristics was
beneficial in terms of solution quality. A further investigation conducted, studying
the empirical distributions of the random variable time-to-target-solution value,
revealed that, given any fixed amount of computing time, GRASP with forward
path-relinking has an empirically higher probability than all competitors of finding
a target solution.

In [1], besides the first linear integer programming formulation for the FFMSP
described above (15), (16), and (17), a hybrid ant colony optimization approach
has been proposed. This hybrid approach consists of two phases. A first phase
applies ant colony optimization until the convergence of the pheromone values is
reached. After this first phase, the algorithm possibly applies a second phase in
which the hybridization with a mathematical programming solver takes place. Both
the linear integer programming formulation and the hybrid ant colony algorithm
have compared to the most performing hybrid GRASP with path-relinking, and
computational results on a large set of randomly generated test instances have
indicated that the hybrid ACO is very competitive.

A Simple ILP-Based Heuristic

In the following we present the results of a quite simple ILP-based heuristic which
can be applied to all four problems described before: the closest string problem
(CSP), the clost to most string problem (CTMSP), the farthest string problem (FSP),
and the far from most string problem (FFMSP). The heuristic is based on the ILP
models of the four problems. It works as follows. Given a fixed computation time
limit (tlimit), maximally half of this computation time is given to an ILP solver for
tackling the mixed integer linear problem (MILP) that is obtained by relaxing the
xck-variables involved in all four ILP models. The used ILP solver returns the best
solution found in the given computation time. Note that this solution may, or may
not, correspond to the optimal MILP solution. The fractional values of the xck-
variables after termination of the solver are henceforth denoted by x0

ck . In the second
phase of the heuristic, the corresponding ILP models are solved in the remaining
computation time, with the following additional constraints:

xck D 1 for k D 1; : : : ; m; c 2 †k; x0
ck D 1 (18)

In other words, whenever a variable xck in the best-found MILP solution has a value
of 1, this value is fixed for the solution of the ILP model.
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Experimental Evaluation

The heuristic described above is compared, in the case of all four problems, with the
application of the ILP solver to the original ILP models. Moreover, a simple greedy
algorithm was applied. This greedy algorithm generates a solution by selecting for
each position of the solution string the letter which, in the case of the CSP and
the CTMSP, has the least number of appearances at this position in the set of
input strings and which, in the case of the FSP and the FFMSP, has the highest
number of appearances at this position in the set of input strings. The greedy
algorithm is henceforth denoted by GREEDY. As (M)ILP solver we used IBM ILOG
CPLEX V12.1. The experimental results were obtained on a cluster of PCs with
“Intel(R) Xeon(R) CPU 5160” CPUs of four nuclei of 3000 MHz and 4 GB of
RAM. Moreover, CPLEX was configured for single-threaded execution. Depending
on the problems, we used two different computation time limits: tlimit D 200 s and
tlimit D 3600 s per problem instance. The different applications of CPLEX and
the ILP-based heuristic, respectively, are named accordingly: CPLEX-200, CPLEX-
3600, HEURISTIC-200, and HEURISTIC-3600.

All the algorithms described above were applied, in the context of all four
problems, to a set of benchmark instances that was originally introduced in [5]
for the FFMSP. This set consists of random instances of different size. More
specifically, the number of input strings .n/ is in f100; 200g, and the length of the
input strings .m/ is in f300; 600; 800g. In all cases, the alphabet size is four, that
is, j†j D 4. For each combination of n and m, the set consists of 100 random
instances. This makes a total of 600 instances. Note that, in the context of the
CTMSP and the FFMSP, a value for parameter t must be specified before running
the algorithm(s). However, a sensible choice of t is not trivial. For example, in
the context of the CTMSP, the lower the value of t , the easier it should be, for
example, for CPLEX to solve the problem to optimality. In order to be able to choose
meaningful values for t , the following experiments were executed. CPLEX was
applied to each problem instance—both concerning the CTMSP and the FFMSP—
for each value of t 2 f0:05; 0:02; : : : ; 0:95 mg. This was done with a time limit
of 3600 s per run. The corresponding optimality gaps (averaged over 100 problem
instances) and the number of instances (out of 100) that was solved to optimality are
graphically presented in Fig. 1. The results reveal that, in the case of the CTMSP,
the problem becomes difficult for approx. t � 0:72 m. In the case of the FFMSP, the
problem becomes difficult for approx. t � 0:78 m. Therefore, the following values
for t were chosen for the final experimental evaluation: t 2 f0:65; 0:7; 0:75 mg in
the case of the CTMSP and t 2 f0:75; 0:8; 0:85 mg in the case of the FFMSP.

The numerical results for the CSP are shown in Table 1. They are presented as
averages over the 100 instances for each combination of n (the number of input
strings) and m (the length of the input strings). For all three algorithms, we provide
the values of the best-found solutions (averaged over 100 problem instances) and
the computation time at which these solutions were found. In the case of CPLEX-
200, the average optimality gap is additionally provided. The results clearly show
that HEURISTIC-200 outperforms both GREEDY and CPLEX-200.
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Fig. 1 Justification for the choice of parameter t in the context of the CTMSP and the FFMSP.
(a) Average optimality gap (in percent) of CPLEX for the CTMSP. (b) Number of instances solved
(out of 100) by CPLEX for the CTMSP. (c) Average optimality gap (in percent) of CPLEX for the
FFMSP. (d) Number of instances solved (out of 100) by CPLEX for the FFMSP
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Table 1 Numerical results for the CSP

GREEDY HEURISTIC-200 CPLEX-200

n m Value Time Value Time Value Time Gap

100 300 228:55 <0:009 213:33 10:79 213:48 10:53 0:88

100 600 446:91 <0:009 422:90 7:36 423:06 5:22 0:47

100 800 590:08 <0:009 562:40 6:86 562:52 7:19 0:36

200 300 235:02 <0:009 219:99 12:74 220:03 33:42 1:38

200 600 457:19 <0:009 434:33 14:03 434:36 67:29 0:78

200 800 604:49 <0:009 576:95 11:59 577:01 87:03 0:60

Table 2 Numerical results for the FSP

GREEDY HEURISTIC-200 CPLEX-200

n m Value Time Value Time Value Time Gap

100 300 221:67 <0:009 236:53 4:46 236:41 9:34 0:68

100 600 455:15 <0:009 476:55 7:13 476:39 7:10 0:38

100 800 611:61 <0:009 636:58 10:13 636:45 9:09 0:27

200 300 215:74 <0:009 230:11 9:29 230:14 25:72 1:24

200 600 443:88 <0:009 465:68 10:81 465:59 53:41 0:67

200 800 596:41 <0:009 622:81 10:52 622:72 60:49 0:51

Similar conclusions can be drawn in the case of the FSP, for which the results
are presented in Table 2. Except for one case (n D 200, m D 300), HEURISTIC-200
outperforms both GREEDY and CPLEX-200.

In the case of the CTMSP, both the ILP-based heuristic and CPLEX were applied
with computation time limits 200 and 3600 CPU seconds. Therefore, Table 3
contains results for HEURISTIC-200, HEURISTIC-3600, CPLEX-200, and CPLEX-
3600. The following observations can be made:

• Both CPLEX and the ILP-based heuristic greatly outperform GREEDY.
• When the problem is rather easy—that is, for a setting of t D 0:75 m—CPLEX

has usually slight advantages over the ILP-based heuristic. This is the case
especially for the instances with larger number of input strings (n D 200).

• With growing problem difficulty, the ILP-based heuristic starts to outperform
CPLEX. In particular, for a setting of t D 0:65 m, the differences in the
qualities of the obtained solutions between the ILP-based heuristic and CPLEX
are significant.

Not surprisingly, the same observations can be made in the context of the FFMSP,
for which the results are provided in Table 4. As the considered benchmark instances
were originally used for the FFMSP, we are able to compare to current state-of-the-
art results for this problem (see [1]). This comparison is graphically presented in
Fig. 2 for all instances concerning the interesting cases t D 0:8 m and t D 0:85 m.
The results show that, for t D 0:8 m, HEURISTIC-3600 is generally outperformed
by the other state-of-the-art methods. However, note that when the instance size
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Fig. 2 Graphical representation of the comparison between HEURISTIC-3600 and the current
FFMSP state-of-the-art methods (GRASP+PR, ACO, and ACO+CPLEX) for t D 0:8 m (see (a))
and t D 0:85 m (see (b))

(in terms of the number of input strings and their length) grows, HEURISTIC-3600
starts to produce better results than the competitors. In the case of t D 0:85 m,
which results in more difficult instances than t D 0:8 m, HEURISTIC-3600 clearly
outperforms the current state-of-the-art methods.

Conclusions

The goal of this chapter was to provide an overview of some string selection and
comparison problems, with special emphasis on the optimization and operational
research perspective. Besides mathematical models that can be used to find exact
solutions only up to a certain instance size, there are many approximate techniques,
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proposed by researchers from several heterogenous communities, which are more
or less efficient, depending on the input data and the type of information they make
use of. Not surprisingly, generally there is no single best approach that wins in every
aspect. Therefore, we proposed a simple ILP-based heuristic that can be used for
any of the four considered problems. We have shown that this heuristic outperforms
both a general greedy algorithm and the application of an ILP solver (CPLEX) to
the original ILP models. In the case of the far from most string problem, we were
even able to show that this simple heuristic is able to produce state-of-the-art results
for instances which are intrinsically difficult to be solved.

Cross-References

�Genetic Algorithms
�GRASP
�Variable Neighborhood Descent
�Variable Neighborhood Search
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