
44The Maximum Clique and Vertex Coloring

Oleksandra Yezerska and Sergiy Butenko

Contents

Introduction . 1260
Construction Heuristics . 1261
Local Search . 1264
Metaheuristics . 1265

Local Search-Based Methods . 1265
Population-Based Methods . 1271

Heuristics Based on Continuous Formulations . 1276
Other Heuristics . 1278
Computational Results . 1278
Conclusion . 1281
Cross-References . 1281
References . 1281

Abstract

In this chapter we review heuristic approaches for two classical and closely
related problems of finding a maximum clique and an optimal vertex coloring.
Both problems have a wide variety of practical applications, and due to their
computational intractability, a significant effort has been focused on developing
heuristic methods. This chapter discusses construction heuristics, local search
strategies, and metaheuristics designed and/or adapted for the maximum clique
and vertex coloring problems.

O. Yezerska � S. Butenko (�)
Department of Industrial and Systems Engineering, Texas A&M University,
College Station, TX, USA
e-mail: yaleksa@tamu.edu; butenko@tamu.edu

© Springer International Publishing AG, part of Springer Nature 2018
R. Martí et al. (eds.), Handbook of Heuristics,
https://doi.org/10.1007/978-3-319-07124-4_47

1259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-07124-4_47&domain=pdf
mailto:yaleksa@tamu.edu
mailto:butenko@tamu.edu
https://doi.org/10.1007/978-3-319-07124-4_47

1260 O. Yezerska and S. Butenko

Keywords
Maximum clique � vertex coloring � chromatic number

Introduction

Given a simple graph G D .V; E/, a clique is defined as a subset C � V of mutually
adjacent vertices. A graph is called complete if the set of its vertices forms a clique.
A maximal clique is a clique that cannot be extended to a clique of larger size by
simply adding a new vertex to this clique. The maximum clique problem asks for a
clique of the largest cardinality in the graph. The size of a maximum clique is called
the clique number of G and is usually denoted as !.G/.

An independent set (or stable set) is a subset I � V of vertices with no edge
between them. It is easy to see that a clique in G is an independent set in the
complement graph of G, NG D .V; NE/, where NE D f.i; j / W .i; j / … E 8i; j 2

V; i ¤ j g, and vice versa. Finding a maximum clique in G is equivalent to finding
a maximum independent set in NG. The cardinality of a maximum independent
set in G is called the independence or stability number of G, denoted ˛.G/, and
˛. NG/ D !.G/.

A proper vertex coloring (also referred to as a coloring for simplicity) is an
assignment of a color (or a label) to each vertex in a graph such that no adjacent
vertex has the same color. More formally, given a set of colors f1; 2; : : : ; kg, a proper
k-coloring is a mapping f W V ! f1; 2; : : : ; kg, where f .vi / ¤ f .vj / 8.i; j /

2 E. Then the vertices with the same value of f belong to the same color class.
The chromatic number of a graph G, denoted �.G/, is the minimum number of
colors necessary to color G. An optimal coloring of a graph is a proper coloring
that uses exactly �.G/ colors.

It is easy to see that the vertices that belong to the same color class form an
independent set and the vertices of a clique all belong to different color classes.
Then it follows that for a given graph G:

�.G/ � jV j=˛.G/;

and

�.G/ � !.G/:

The maximum clique and vertex coloring problems often arise in similar
applications, where they play complementary roles. For example, let the vertices
in the graph represent elements of a system and the edges between them – the
incompatibility between those elements. Then a maximum clique will represent a
set of mutually incompatible elements of the largest size in the system, whereas the
color classes will correspond to sets of mutually compatible elements.

Both problems find a wide range of practical applications in various domains.
Some of the earliest and best-known applications of the maximum clique problem

44 The Maximum Clique and Vertex Coloring 1261

are in computer vision, experimental design, information retrieval, coding theory,
fault diagnosis, social network analysis, and computational biochemistry and
genomics, among other areas [32,150,182]. As for the coloring, it is commonly used
for scheduling [125, 140], timetabling [173, 174, 178], frequency assignment [74,
176], circuit board testing [76], register allocation [38, 42], and, more recently,
various problems in transportation [35,177]. A discussion of both clique and vertex
coloring applications in telecommunications is presented in [12].

The maximum clique and vertex coloring problems are both well-known NP-
hard problems [75,119] that are hard to approximate within a factor of n1�� for any
� > 0, where n D jV j [6,7,59,60,97,187]. Such intractability results, along with the
practical interest, have led to a considerable effort in devising numerous heuristic
approaches. Almost all known types of heuristic methods have been applied to these
problems. Some of the early surveys on heuristic methods for the vertex coloring
problem can be found in [151,175] and more recent in [41,71,73,132,153], among
which [41, 71] review just the local search methods and [73] focuses on the recent
approaches. As for the maximum clique problem, the first extensive surveys date
back to the 1990s [22,150], while the most recent one [182] focuses mostly on local
search techniques. Other brief discussions on heuristic approaches for the maximum
clique problem can be found in [150, 153]. It should be noted that most of these
surveys also discuss exact algorithms, many of which take advantage of heuristics
to enhance their performance.

The remaining sections of this chapter are organized as follows. The most
common construction heuristics for the maximum clique and vertex coloring
problems are discussed in section “Construction Heuristics.” In section “Lo-
cal Search,” we briefly outline the local search strategies used for both prob-
lems. Section “Metaheuristics” covers various metaheuristic approaches. It is
followed by Sections “Heuristics Based on Continuous Formulations,” “Other
Heuristics,” “Computational Results,” and “Conclusion,” respectively.

Construction Heuristics

Construction heuristics are used to build an initial feasible solution. The most
intuitive and common construction heuristics are sequential ones, which recursively
update the current, partial (and not necessarily feasible) solution one step at a time.
Based on how the next step is selected, most of these heuristics can be classified as
either greedy, random, or a combination of both. Greedy selection rules typically
aim to ensure the highest level of flexibility (i.e., the largest possible “candidate
set”) in the future steps.

The most common sequential greedy heuristics for the maximum clique problem
are best in and worst out, as named by Kopf et al. in [123]. Best in algorithms are
those that start with an empty set as an initial solution and iteratively add a vertex
with the largest degree among the candidate vertices, whereas worst out are the ones
that start with a whole graph and recursively delete vertices with the lowest degree
until the remaining graph is complete. The best in heuristic applied for finding the

1262 O. Yezerska and S. Butenko

maximal independent set yields a solution of size at least jV j
ıC1

, where ı D 2jEj
jV j

[58].
The best in heuristic was also shown to be “provably best” for the maximum clique
problem in [115]. A heuristic is called provably best if no other polynomial-time
algorithm can guarantee a better solution whenever one exists (assuming P ¤ NP).

As for the vertex coloring problem, any heuristic that finds a coloring using at
most �.G/ colors (referred to as Brooks’ coloring), where �.G/ is the maximum
vertex degree in G, is provably best [115]. According to Brooks’ theorem [24],
a simple, connected graph G that is neither complete nor an odd cycle satisfies
�.G/ � �.G/. Brooks’ coloring can be obtained using several heuristics [85, 91,
116, 118, 128, 163].

Many popular heuristics for the vertex coloring problem are based on sequential
construction approaches. Sequential construction heuristics usually iteratively as-
sign each vertex with the smallest feasible color such that no conflicts with already
colored vertices occur. The order in which vertices are colored is either static and
determined beforehand (preorder) or dynamic and updated on the fly. It is easy to
see that the quality of the solution depends entirely on how the vertices are ordered
and that there exists such vertex ordering that produces an optimal coloring [175].
Therefore, a lot of attention has been placed on studying and designing different
ordering schemes.

Two examples of preorder sequential coloring heuristics are the largest first
(LF) [173] and the smallest last (SL) [139]. LF sorts the vertices in decreasing order
of their degree, and the ordering .v1; : : : ; vn/, produced in such manner, results in
the coloring with at most 1 C max1�j �n dj .vj / colors, where dj .vj / is the degree
of vertex vj in the induced subgraph Gj D GŒfv1; : : : ; vj g�. SL is similar to LF,
but it sorts the vertices in the reverse order. First, a vertex of the minimum degree in
graph G is selected and labeled vn. Then, iteratively for each j D n � 1; : : : ; 1, a
vertex of the minimum degree in Gj is selected and labeled vj .

A notable sequential coloring approach that does not preorder vertices is the
DSATUR [23] heuristic. A decision on what vertex to color next is based on the
value of the vertex saturation degree – a number of the differently colored neighbors
of this vertex. A vertex with the maximum saturation degree is selected. Another
example of a heuristic that does not preorder vertices is the recursive largest first
(RLF) [125]. This heuristic generates a color class one at a time and does not
proceed to another color class until no more vertices can be assigned to the current
class. Such an assignment is implemented in the following manner. When a new
color class is generated, set U1 contains all uncolored vertices, and set U2 is empty.
Iteratively, a vertex v 2 U1 is selected, assigned to the current color class, and
removed from U1. If v has any neighbors in U1, they are removed from U1 and
placed in U2. The vertex assignment proceeds while U1 is not empty. The very first
vertex to be assigned to the new color class is the one with the maximum degree in
GŒU1�, and all the rest are the ones with the maximum degree in GŒU2�. When U1

becomes empty, the next color class is generated, and the process repeats.
In another study [20], a maximal independent set is iteratively extracted from

the set of uncolored vertices, and all the vertices forming this independent set are

44 The Maximum Clique and Vertex Coloring 1263

assigned the same color. The process repeats until the whole graph is colored.
Similar technique is used in the algorithm called XRLF [114], which is a version of
RLF [125]. Several independent sets are first constructed, and then the one whose
removal yields a residual graph with the smallest edge density is selected as a
new color class. This process is repeated until a threshold number of uncolored
vertices are left, which are then colored using an exhaustive search. Independent
set extraction approach has been used to construct initial colorings within various
metaheuristic frameworks [39,66,73,99,142]. Recently, a few enhanced approaches
based on independent set extraction were proposed. Namely, in [179], the authors
suggest to preprocess large graphs by iteratively extracting a maximal number of
pairwise disjoint independent sets of the same size. Such strategy was shown to
assign more vertices to the same number of color classes than that with a one-
at-a-time independent set extraction. This yields smaller in size residual graphs
of uncolored vertices, which are easier to color. In [96, 181], the authors observe
that an independent set extracted may not necessarily define a color class in an
optimal coloring and that removing such sets during preprocessing may prevent
one from reaching an optimal solution. To mitigate this drawback, the authors
of [96,181] suggested a framework that reconsiders a certain number of the removed
independent sets and allows some of the vertices forming those sets to change
a color. Different strategies on how many and which extracted sets to reexamine
were studied, and the experiments on some large and hard graph instances reported
in [96, 181] demonstrate an encouraging performance of the proposed approach.

To improve the quality of solutions generated by the greedy sequential methods,
different techniques ranging from randomization, multiple restarts, and local search
(section “Local Search”) to sophisticated metaheuristic frameworks (section “Meta-
heuristics”) can be used. We will cover here a few simple strategies and discuss the
rest in the later sections.

For the maximum clique problem, Jagota et al. [109] proposed several en-
hancements to a basic greedy sequential heuristic, which include randomization,
multiple restarts, and an adaptive mechanism. A randomization is embodied by a
probabilistic greedy vertex selection rule. Three kinds of adaptation are studied: an
update of the initial state (AI), an update of the probability distribution used by
a selection rule (AW), and no adaptation at all (NA). The corresponding updates
take place at each restart and are based on the information obtained in the previous
restart. NA heuristic was shown to perform poorly compared to AI and AW. Grosso
et al. [87] used similar techniques and developed a two-phase heuristic, called a
deep adaptive greedy search (DAGS). In the first phase of DAGS, the modified
variant of a sequential greedy heuristic is applied for all the vertices in the graph.
The modification consists of allowing to swap already added vertices with the better
candidates. The second phase is used for diversification purposes. It is a restart-
adaptive greedy heuristic performed on a set of vertices that appear less frequently
in the cliques obtained during the first phase. Each vertex is assigned a weight
associated with its quality as a potential candidate for a solution. Such weight is
updated at each restart by means of a learning-like mechanism.

1264 O. Yezerska and S. Butenko

For the vertex coloring problem, an improvement procedure called an iterative
greedy (IG) heuristic was proposed in [46, 47]. It is based on the observation that
given a feasible coloring and an ordering in which vertices belonging to the same
color class are grouped together, applying a sequential greedy heuristic to such an
ordering will produce a solution at least as good as the previous one.

Local Search

Local search is a technique of improving a current solution by exploring its
local neighborhood and moving to better neighboring solutions until no more
improvement can be achieved. A local neighborhood of a solution is defined by
a neighboring function which can also be thought of as a distance or a difference
between neighboring solutions. Local search methods vary based on the definition
of a neighboring function and a corresponding local neighborhood, as well as the
choice of a search space and a function that evaluates the quality of a solution.

As suggested in [182], local search strategies for the maximum clique problem
can be categorized into legal and k-fixed penalty ones. A legal strategy is a
traditional local search, where a search space consists of legal (feasible) solutions,
cliques; an evaluation function is the size of a clique; and a neighboring function is
a list of vertex operations to be performed to move from one clique to another. The
most common neighboring functions are .a; b/-interchanges, where a is the number
of vertices removed from the current solution and b is the number of added vertices,
with a usually smaller than b to ensure that such interchange increases the size of
the solution by .b � a/.

A k-fixed penalty strategy, on the other hand, can be thought of as a technique
that solves the decision version of the problem that answers the question “is there a
clique of size k?” This type of a local search deals with infeasible solutions, sets that
are not necessarily cliques. An evaluation function is defined as the number of edges
in the set. By moving to sets with larger number of edges, a local search attempts
to eventually reach a feasible solution – a clique. For this type of a local search, a
(1,1)-interchange is usually used, where a vertex to be removed is usually the one
with the smallest number of neighbors in the solution and a vertex to be added is the
one adjacent to the largest number of solution members. Such a technique does not
guarantee finding a feasible solution; therefore, it is usually used as a part of a more
sophisticated local search framework (section “Metaheuristics”).

For the vertex coloring problem, the local search strategies can also be catego-
rized into legal and k-fixed ones. Moreover, as discussed in [71], they can be further
grouped into legal, k-fixed partial legal, penalty, and k-fixed penalty ones. Here,
the legal and the k-fixed penalty strategies, similarly to the local search strategies
for the maximum clique problem, are the local searches on either feasible (proper)
colorings or infeasible k-coloring, respectively. For the legal strategy, the local
neighborhood is explored in an attempt of finding a feasible coloring with fewer
number of colors. An infeasible coloring is such that contains at least one pair
of adjacent vertices assigned the same color. An edge connecting a pair of such

44 The Maximum Clique and Vertex Coloring 1265

vertices is referred to as conflicting. Then for this strategy, a local search aims at
performing moves resulting in the minimization of the number of conflicting edges
in the solution.

Under a k-fixed partial legal strategy, the search space contains partial feasible
k-colorings. A partial feasible k-coloring corresponds to a coloring of a subset of
vertices V 0�V that uses k colors and is feasible with respect to already colored
vertices in V 0. The rest of the vertices in V n V 0 are not yet colored. The local
neighborhood is explored in an attempt to find a complete feasible k-coloring. For a
pure penalty strategy, the search space contains infeasible colorings, and the number
of colors used is unfixed. The local search under this strategy tries to detect a feasible
coloring with the minimum number of colors used. The quality function usually
combines both the number of conflicting edges and the number of colors used.

The most common neighboring functions for coloring are also inter-
changes [139]. They are performed by moving vertices from one color class to
another, in an attempt of emptying one of the classes and, thus, reducing the number
of colors used. Under the penalty and k-fixed penalty strategies, such interchanges
are allowed to result in infeasible solutions.

Local search approaches also vary based on the rules of determining when
to move to a better solution. By the best improvement strategy, the entire local
neighborhood is explored, and the best neighbor is selected as a new solution,
whereas the first improvement strategy updates the current solution with the first
found neighbor of a better quality. However, with either of these strategies, a local
search tends to get trapped in local optima of poor quality. To overcome this
drawback and explore more regions of a search space, different techniques, e.g.,
allowing non-improving moves and recording the search process to direct the future
exploration, have been devised and will be discussed in the following section.

Metaheuristics

In this section, we will review the most common metaheuristics for the maximum
clique and vertex coloring problems. The metaheuristics can be classified with
respect to various criteria [19]. Based on the number of solutions maintained at the
same time, the algorithms can be divided into single-point search ones, encompass-
ing most local search-based heuristics (section “Local Search-Based Methods”), and
population-based ones (section “Population-Based Methods”), which deal with a
pool of solutions at a time and perform evolution-like search processes.

Local Search-Based Methods

The most successful techniques to enhance local search have proven to be the ones
that allow non-improving moves in the process of local neighborhood exploration.
One of them, simulated annealing (section “Simulated Annealing”), allows moving
to a worse solution with a certain probability, while another one, tabu search

1266 O. Yezerska and S. Butenko

(section “Tabu Search”), records the moves and forbids (tabu) their future usage
for a certain number of iterations to prevent cycling. Other successful local search-
based methods have been devised and will be discussed in section “Other Local
Search-Based Methods”.

Simulated Annealing
Simulated annealing (SA) method is a randomized neighborhood search introduced
by Kirkpatrick et al. [121] and covered in a separate chapter of this book. SA
is analogous to a physical annealing – a process of heating up a solid material
and slowly cooling it down in order to obtain a low energy configuration. The
main idea of SA is to iteratively select random candidate solution in the local
neighborhood and, if it is of better quality, move to the candidate solution; otherwise
perform the move with a certain probability of acceptance. Such probability is
usually defined as exp.��/=T , where � is a difference between the objective
function values of the new and the current solutions and T is a parameter called
the temperature. As the heuristic progresses, the probability is being decreased,
ensuring fewer random walks and directing the search toward improvement. The
rate at which the probability decreases is usually referred to as a “cooling schedule.”
The cooling schedule that follows the logarithmic law guarantees the convergence
of the algorithm to a global optimum [19]; however, it may result in an exponential
running time. Hence, faster cooling schedules are usually used in practice.

The most influential papers devoted to application of SA to the maximum clique
problem date back in the late 1980s and mid-1990s and are all covered in [22].
Since, to the best of our knowledge, no novel SA methods for the maximum clique
problem have been designed since then, we will follow [22] and briefly review here
the same studies.

An application of SA to the maximum clique (independent set) problem was
first described by Aarts et al. in 1988 [1]. Without providing any experimental
results, they proposed a penalty function method (k-fixed penalty strategy), for
which a possible solution can be any set, not necessarily independent, and the
quality of the solution is determined by the function f .V 0/ D jV 0j � �jE 0j,
where V 0 and E 0 are the vertex and edge sets of the solution and � is a certain
weighting factor. A few years later, Jerrum et al. [111] have theoretically proven a
poor performance of SA application to the maximum clique problem. In particular,
they studied a variant of SA with the temperature parameter fixed and a solution
space consisting of legal cliques (legal strategy). Feo et al. [64] implemented
SA for the maximum independent set problem utilizing the penalty method and
observed that it was inferior to the greedy randomized adaptive search procedure
(GRASP) they proposed. However, the computational experiments presented by
Homer et al. [104, 113] in the Second DIMACS Implementation Challenge showed
that SA can be very effective. In their work, Homer et al. used the idea of penalty
method described by Aarts and implemented it for the maximum clique problem.
The results of the experiments on large graphs, reported in [104, 113], were quite
promising, and SA was ranked one of the best heuristics in the Second DIMACS
Implementation Challenge.

44 The Maximum Clique and Vertex Coloring 1267

One of the first attempts to apply SA to the vertex coloring problem dates back
to 1987, when Chams et al. [39] considered the following variant of the method.
The neighborhood structure consists of k-colorings that are not necessarily legal
(k-fixed penalty strategy), and the objective function to be minimized is defined
by the number of conflicting edges. According to the experimental results reported
in [39], the pure SA did not perform as strongly as when it was combined with other
methods. In particular, when SA was combined with RLF [23], where RLF was
used to generate color classes and SA to color the rest of the uncolored vertices, the
performance of such combined method dominated all other methods tested in the
paper (DSATUR and RLF). In 1991, Johnson et al. [114] conducted a detailed study
of different schemes of SA adopted to the vertex coloring problem. The first scheme
tested is a penalty function method, where the neighborhood structure is defined
by infeasible solutions (penalty strategy), i.e., colorings with conflicting edges. The
number of colors used in a particular solution is not fixed. Let Ci denote a color
class, let Ei be an edge set in the subgraph induced by Ci (i D 1; : : : ; k), and let
˘ D C1; : : : ; Ck (1 � k � jV j/ be a solution. Then the cost (penalty) function
associated with ˘ is defined as follows:

f .˘/ D

kX

iD1

2jCi j � jEi j �

kX

iD1

jCi j
2:

The first component of f .˘/ favors independent sets, while the second one favors
large color classes. Minimization of f .˘/ results in eliminating the conflicting
edges and reaching a legal coloring and also, as the authors argued, in potentially
reducing the number of color classes as a side effect. The second scheme is by
Morgenstern and Shapiro [143], and it utilizes so-called Kempe chains, which
are defined in [114] as the connected components of the union of two disjoint
independent sets. In this method, the same cost function as in the penalty function
method is retained, but the search space contains legal k-colorings. The new
candidate solution is generated in the following way. Two color classes Ci and Cj

(i ¤ j) are picked at random, and a Kempe chain defined by a set H � Ci [Cj is
constructed. Next Ci is replaced by Ci � H and Cj – by Cj � H , where X � Y

denotes a symmetric difference .X � Y / [.Y � X/ between X and Y. The third
scheme uses the same strategy as in [39], where the number k of colors is fixed and
the objective is to minimize the number of conflicting edges in an attempt to find a
feasible k-coloring. According to the results of the experiments reported by Johnson
et al., none of the three methods was found dominant over the other.

A simplified version of SA with the temperature parameter remaining fixed was
used by Morgenstern [113, 142] for the Second DIMACS Implementation Chal-
lenge. In this paper, a new neighborhood structure, called impasse neighborhood,
was defined. It turned out to be very effective and many approaches have used it
thereafter. This neighborhood structure operates with a fixed number k of colors
and aims to improve a partial coloring, in which not all vertices are colored, to
a complete coloring with k colors. A feasible solution is a partition of the set of

1268 O. Yezerska and S. Butenko

vertices into k C 1 subsets fV1; : : : ; Vk; VkC1g, where V1; : : : ; Vk are independent
sets representing a partial k-coloring and VkC1 is the set of uncolored vertices that
needs to eventually be emptied in order to obtain a proper k-coloring of all vertices.
A neighbor of a solution is obtained by moving a vertex v from VkC1 to one of the
k independent sets, say Vi , and then moving to VkC1 all vertices from Vi that are
adjacent to v.

Tabu Search
Tabu search was developed by Glover [81] and, independently, by Hansen and
Jaumard [93]. See the �Chap. 25, “Tabu Search” for more details. It is a modified
local search which allows performing moves yielding worse quality solutions, thus
diversifying the search path. The algorithm uses the so-called tabu lists to store
certain information about the previously visited solutions to forbid future local
search moves that can result in cycling. The length of the tabu lists, called tabu
tenures, allows to control the level of diversification and intensification of the search.
Sometimes the tabu restriction is relaxed if a solution meets certain aspiration level
condition.

In 1989, Friden et al. [68] used tabu search ideas to construct a heuristic called
STABULUS for finding stable (independent) sets. STABULUS is based on the k-
fixed penalty local search strategy (see section “Local Search”), where the search
space consists of the sets of size k, and the algorithm tries to minimize the number of
edges in the set. To find an independent set of the largest cardinality, STABULUS is
applied iteratively, incrementing k each time an independent set of size k is detected.
Three tabu lists were used in STABULUS, one for storing visited solutions, and the
other two contained added and deleted vertices.

A few years later, Gendreau et al. [78] proposed two simple variants of tabu
search for the maximum clique problem, deterministic and probabilistic, where in
the former, at each iteration, the entire set of the solution neighbors is explored
and, in the latter, the sampling of the neighborhood is applied. In both variants
the legal local search strategy was exploited, where the search space contains the
feasible cliques and the objective is to find a clique of the maximum size. In the
deterministic approach, it is allowed to remove only one vertex per iteration, while
in the probabilistic it is a few at a time. Later these heuristics were enhanced
with the diversification strategies [166], such as greedy restart and continuous
diversification. The first one is a very simple approach of restarting the algorithm
with the new solution after a certain number of iterations without improvement
have been performed. A new solution is constructed from vertices that have not
been visited yet or have been visited less frequently. The continuous diversification
works in “on-the-fly” mode. It guides the search path by evaluating each vertex
addition/removal using the information on how frequently the vertex has been added
to the solution and how long it has stayed in the solution. Both diversification
techniques and their combination have proven to be beneficial if used along with
the simple basic search. The more efficient and sophisticated the search is, the less
improvement the diversification is able to add to it. It also did not appear to work

https://doi.org/10.1007/978-3-319-07124-4_24

44 The Maximum Clique and Vertex Coloring 1269

well with the probabilistic version of the tabu search heuristic. The heuristics were
tested on DIMACS instances, and the results were reported in [167].

A similar idea of prohibiting the future moves in order to prevent cycling was
used in reactive local search (RLS) [14]. However, contrary to the traditional
tabu search, where certain parameters (tabu tenure, depth of the search, etc.) are
determined by the user through numerous preliminary experiments and are usually
sensitive to certain specific structures of the instances, RLS determines all of this
information dynamically within its execution. The length of tabu lists is adjusted
based on previously stored information on how often the algorithm cycles, etc.
Also, the algorithm is equipped with a memory-influenced restart procedure to
provide additional long-term diversification. RLS showed excellent performance on
DIMACS instances and is considered one of the best local search-based heuristics
for the maximum clique problem.

Recent efforts of applying tabu search to the maximum clique (independent set)
problem include works by Wu et al. [112,180,183]. In [180], the authors developed
an adaptive multistart tabu search approach that uses a k-fixed penalty local search
strategy. The exploration of a search space is performed by moves that swap a vertex
from the current solution with a vertex from the solution constrained neighborhood.
The algorithm employs a restart strategy, under which a new solution is constructed
from the vertices that were less frequently used throughout the algorithm, that
way visiting unexplored search space regions. The algorithm showed excellent
performance when compared against several other state-of-the-art algorithms. The
study of the relationship between the number of restarts and the quality of the
evaluation function performed by the authors suggested that for structured instances,
more frequent restarts yield better results, while the reverse holds for random graphs.

For the vertex coloring problem, tabu search techniques were first applied by
Hertz and de Werra [99]. In their proposed algorithm, named TABUCOL, the search
space consists of the complete k-colorings, where k is fixed. Some colorings might
have conflicting edges, and, hence, the algorithm’s goal is to move to the solutions
with smaller number of conflicting edges by changing the color assignment of the
endpoints of conflicting edges. The tabu lists store these color assignments. The
algorithm uses the same local search strategy as in [39] but yields better results than
those obtained by SA in [39].

Recently, Blöchliger and Zufferey [18] designed several variations of the tabu
search framework for the vertex coloring problem. The main ingredients they used
were the partial k-coloring local search strategy and reactive tabu tenure, adjusted
based on the fluctuations of the objective function.

Tabu search has also been applied to both the maximum clique and vertex
coloring problems as a part of more complex metaheuristics, such as evolution-
ary algorithms, yielding the so-called hybrid algorithms (discussed in section
“Population-Based Methods”).

Other Local Search-Based Methods
The greedy randomized adaptive search procedure (GRASP) [62, 63], described in
the �Chap. 16, “GRASP” in this volume, is a simple metaheuristic that combines

https://doi.org/10.1007/978-3-319-07124-4_23

1270 O. Yezerska and S. Butenko

a constructive heuristic, a local search, and a restart policy. Its construction part
uses both greedy and random selection rules. More precisely, the initial solution
is built by randomly selecting a vertex from a so-called restricted candidate list
(RCL), which consists of a certain number of the best candidates. This number
ranges between 1 and the size of the candidate list, where the closer it is to 1, the
greedier the selection rule is, and the closer it is to the candidate list size, the more
randomness is involved. Every time a solution is constructed, an attempt to improve
it is made using an appropriate local search technique (see section “Local Search”).
The algorithm restarts a certain number of times, and the best found solution is
recorded. GRASP has been successfully applied to the maximum clique (maximum
independent set) [2, 64, 161] and the vertex coloring problems [124].

Variable neighborhood search (VNS) [94, 141] is a metaheuristic that system-
atically explores different neighborhood structures of the same problem in the
search for a better solution. This method is introduced in the �Chap. 26, “Variable
Neighborhood Search”. VNS approach was applied to the maximum clique problem
in [95]. For the vertex coloring, an algorithm based on VNS was proposed in [8]. It
uses more than ten different neighborhoods and utilizes tabu search techniques. An
extension of VNS, called variable space search (VSS) was proposed for the vertex
coloring problem by Hertz et al. in [101]. In VSS, when the search is trapped in a
local optimum, the entire search space, including the neighborhood searched and the
objective function, is changed. The proposed algorithm, called VSS-Col, explores
three different search spaces for the vertex coloring problem and yields excellent
results. An iterated local search (see the �Chap. 19, “Iterated Local Search” in this
handbook for more information), which upon reaching a local optimum perturbs it
so that the local search can keep going, was applied to the vertex coloring problem
in [40, 148]. In [40], the authors analyzed the performance of different types of
solution perturbations.

An algorithm based on variable depth search for the maximum clique problem,
based on k-opt local search (KLS), was proposed by Katayama et al. [120]. The
k-opt search is essentially an .a; b/-interchange with a > b and a C b D k,
where a vertices are removed from the current clique and b vertices from the local
neighborhood are added to the solution yielding a clique of a larger size. The value k

is determined dynamically throughout the execution of the algorithm. The reported
results on selected DIMACS instances show the algorithm’s competitiveness with
RLS [14].

Pullan and Hoos [159] introduced a dynamic local search (DLS) algorithm for the
maximum clique problem. DLS is based on alternating between a clique expansion
phase, during which vertices are added to the current clique, and plateau search,
during which vertices of the current clique are swapped with vertices outside of
the current clique. The selection of vertices is based on the penalties assigned to
them dynamically during the search in a similar way used in DAGS [87]. When
no more expansion or swapping is possible, a perturbation mechanism is applied
to overcome search stagnation. The algorithm achieves substantial improvements
over some state-of-the-art algorithms on many DIMACS instances. However, the
algorithm has a disadvantage of being sensitive to the penalty delay parameter,

https://doi.org/10.1007/978-3-319-07124-4_19
https://doi.org/10.1007/978-3-319-07124-4_8

44 The Maximum Clique and Vertex Coloring 1271

which controls the frequency at which vertex penalties are decreased and needs
to be determined beforehand by preliminary experiments and thorough calibration.
This issue has been addressed in [158], where a modified algorithm, called a Phased
Local Search (PLS), was proposed. Similarly to DLS [159], the algorithm is a
combination of a clique expansion and a plateau search. Moreover, it operates three
sub-algorithms, which differ in their vertex selection rule: random selection, random
selection within vertex degree, and random selection within vertex penalties. In the
latter one, the parameter responsible for the frequency of penalty decreases does not
have to be fixed and defined externally as in DLS but is modified adaptively. PLS
has shown to have a comparable and sometimes improved performance to DLS.
Grosso et al. [88] performed a detailed computational study of the main components
of DLS, such as usage of vertex penalties as a selection rule, plateau search, etc.,
in an attempt to design simple and efficient iterated local search techniques for
the maximum clique problem. Another study that analyzes the key ingredients of
RLS and DLS was performed by Battiti et al. in [13] and yielded several enhanced
modifications of the mentioned algorithms.

Recently, Pullan et al. [160] introduced a parallelized hyper-heuristic algorithm
for the maximum clique problem, called a cooperating local search (CLS). Hyper-
heuristics [29] are heuristic search methods that manage the low-level heuristics. In
particular, CLS is a methodology that controls the four PLS-based heuristics and
dynamically reconfigures their allocation to cores, based on information retrieved
from a trial in order to ensure the appropriateness of selected heuristic for a
particular instance. In [5], Andrade et al. introduce efficient implementations
of .1; 2/ and .2; 3/-interchange legal strategy local searches for the maximum
independent set problem. These two local searches are integrated into an iterated
local search metaheuristic, which according to the results reported in [5] yield great
results, especially on large and difficult instances. Benlic and Hao [15] devised
an algorithm, called breakout local search (BLS). BLS is an iterated local search,
which, when a local optimum is discovered, applies a certain diversification strategy
to perturb the current solution, so it can be used as a starting point to explore another
region of the search space. The magnitude of perturbation is adapted dynamically
according to the current search state. The results of the experiments showed that
BLS competes favorably with RLS [14], VNS [95], and PLS [158].

Population-Based Methods

As opposed to local search algorithms, where one solution is maintained at each
iteration, the population-based algorithms deal with several solutions (a population)
at a time. The new population is produced by certain interactions between the
members of a current population. Namely, the population generation techniques
in evolutionary and genetic algorithms (section “Evolutionary and Genetic Al-
gorithms”) are based on imitating the mechanisms of evolution, whereas in ant
colony algorithms (section “Ant Colony Optimization”), the solution construction
is inspired by the behavior of ants seeking paths to food sources.

1272 O. Yezerska and S. Butenko

Evolutionary and Genetic Algorithms
Evolutionary and genetic algorithms [82, 103] (see also the corresponding chapters
in this volume) are inspired by the evolution and natural selection and are based
on the following evolution principles: “the fittest survives,” “two fit parents will
have even fitter offsprings,” and mutation. In the genetic algorithms, these principles
are embodied with the help of respective mechanisms: reproduction, crossover, and
mutation operators. At each iteration (in evolutionary terminology – generation) of
an algorithm, the population of solutions (individuals) is subjected to all or some
of those operators. Reproduction operator selects the “fittest” solutions, where the
fitness level is represented by a fitness function (or objective function in optimization
terms). Then, with the help of the crossover operator, the “offspring” solutions are
produced as a result of merging one or several parts of one parent solution with one
or several parts of another parent solution. The mutation operator changes a small
part of a solution to provide randomization.

For the maximum clique problem, the most intuitive way to encode a solution is
to use a binary array of the size equal to the cardinality of the given graph’s vertex
set, where an entry contains 1, if the corresponding vertex is included in the current
solution, and 0, otherwise. The definition of the solution fitness function can vary.
A fairly simple fitness function assesses the size of a vertex subset if it is a clique,
or equals 0, otherwise. It can also be a little more complex. For example, it can
combine several terms, such as the density of the induced subgraph and its size. It
can also include a term to penalize the infeasible solutions.

The early work on adapting genetic algorithms to the maximum clique problem
is covered in great detail in [22]. We will review in the following the same studies
and also discuss several recent advancements.

One of the earliest studies on the effectiveness of genetic algorithms at solving
the maximum clique problem was done by Carter et al. [37]. The authors showed
that the pure genetic algorithm performs poorly and designed several modifications,
including an annealed fitness function and the modified crossover operators, to
improve its performance. However, their results were still not satisfactory and
led to a conclusion that genetic algorithms have to be significantly customized to
be able to perform well and that they are very computationally expensive. Their
later studies in [152] report that genetic algorithms are ineffective for solving
combinatorial optimization problems and are inferior to other heuristics, such as
simulated annealing. However, in another study [9], Back et al. showed quite
the contrary results. They designed a genetic algorithm called GENEsYs with a
fitness function which included a component for penalizing infeasible solutions. The
performance of GENEsYs for the maximum independent set problem on graphs
with up to 200 vertices was promising and suggested that with the right fitness
function, genetic algorithms are capable of yielding satisfactory results. In another
approach, Murthy et al. [146] introduced a new crossover mechanism, called a
partial copy crossover, and suggested to split a mutation operator into a deletion
and addition operators. The results presented in the paper are based on experiments
with small graphs (up to 50 vertices), making it difficult to evaluate the algorithm’s
effectiveness.

44 The Maximum Clique and Vertex Coloring 1273

In [67], Foster and Soule developed two variations of genetic algorithms for
the maximum clique problem. One of them uses a different problem-encoding
approach, referred to as a grouping representation, which instead of encoding
each solution as a binary string, uses an array that stores information about all
the solutions in the current population. Such encoding scheme showed to increase
effectiveness of the crossover operation. The other variant of the algorithm uses
the time-weighted fitness function, which showed to improve the algorithm’s
performance. Hifi [102] adopted a genetic algorithm for solving the maximum
weighted independent set problem. The necessary algorithm modifications included
an introduction of a so-called two-fusion crossover operator and a replacement of
a mutation operator by a heuristic-feasibility operator. The two-fusion crossover
operator takes into account both the structure and the fitness of two parent solutions
and produces two children, while the heuristic-feasibility operator transforms
infeasible solutions into feasible ones. The main contribution of the designed
approach is that it is easily parallelizable.

Aggarwal et al. [4] designed an optimized crossover mechanism (inspired by a
heuristic CLIQMERGE proposed in [10] by Ballas and Niehaus) and applied it to
the maximum independent set problem. The new crossover operator exploits the
structure of the solution rather than its encoding. More precisely, when a crossover
operator is applied to two solutions from the population, one of the new solutions
is generated in such a way that it has the best fitness function value, while the other
one is constructed in a way that ensures the diversity of the search space. Promising
results of the proposed mechanism inspired authors of CLIQMERGE, Balas and
Niehaus, to examine this strategy even further [11]. The authors also considered
a different way of population replacement called a steady-state replacement and a
different selection method. The results of the experiments reported in [11] were even
more encouraging than those by Aggarwal et al. in [4].

Since most of pure genetic algorithms have shown to be not very effective
for solving hard combinatorial optimization problems, they are usually enhanced
by incorporating different techniques. Bui and Eppley [26] designed a hybrid
strategy with vertex preordering phase and a local optimization at each iteration
of the genetic algorithm. The authors claim that the performance of their hybrid
algorithm is comparable to a continuous-based approach by Gibbons et al. [79]
but inferior to tabu search- and simulated annealing-based approaches. Fleurent
et al. [65] used tabu search and other techniques as alternative mutation operators.
The performance of their approach was satisfactory with respect to the quality of
the obtained solutions but rather disappointing with respect to the computational
effort. Marchiori [136] developed an approach that combines a genetic algorithm
and a greedy heuristic, referred to as HGA. At each iteration of genetic algorithm,
the greedy heuristic is applied to each member of the population to extract maximal
cliques. That way, the genetic part of the approach provides exploration of the search
space, while the greedy heuristic provides exploitation. Despite its simplicity, the
approach has shown very good results [136, 137]. Zhang et al. [186] developed an
approach called EA/G which uses similar techniques as HGA but also incorporates a
guided mutation operator. The results of the experiments indicated that the algorithm

1274 O. Yezerska and S. Butenko

was superior to HGA. Singh and Gupta [162] designed a framework which consists
of two phases: generation of cliques by a steady-state genetic algorithm and
extending them to maximal cliques by a heuristic which combines a randomized
sequential greedy approach and the exact algorithm of Carraghan and Pardalos [36].
The results of the experiments show that the algorithm outperformed three other
evolutionary algorithms, of Balas and Niehaus [11], Marchiori [137], and Fenet and
Solnon [61], but its performance is inferior to that of one of the most effective local
search-based techniques (RLS) of Battiti and Protasi [14].

More recently, Guturu and Dantu [90] designed an approach that combines
an impatient evolutionary algorithm and a probabilistic tabu search. Brunato and
Battiti [25] presented a hybrid algorithm similar to EA/G by Zhang et al. in [186].
In the proposed algorithm, which they refer to as R-EVO, the new solutions are
initialized according to an estimated distribution which is based on knowledge
extracted from the previous generations of the population. The solutions are then
evolved through a simplified version of RLS technique.

Despite such a significant effort in studying and designing different variations
of evolutionary and genetic algorithms, these approaches are still considered to be
far less effective for the maximum clique problem than the local search-based ones.
Perhaps, their inability to compete with the simple local search techniques lies in
the fact that there is no intuitive relationship between the crossover operator and a
discovery of improved cliques, and no such a meaningful operator has been devised
yet [182].

For the vertex coloring problem, the solutions are usually encoded either as
permutations of the vertices and referred to as order-based encoding or as color
partitions and referred to as direct encoding. The direct encoding can further be
categorized into the assignment based and partition based. Under the former one,
a solution is represented as an array, where each entry is associated with a certain
vertex and contains an index of the class the corresponding vertex belongs to. The
latter one, on the other hand, represents a solution as a partition of the vertices into
the color classes. Even though more satisfactory results have been achieved using
direct encoding techniques, the order-based encoding has a powerful advantage of
always corresponding to a feasible solution. Hence, it has been somewhat exploited
as well [48, 57, 145].

One of the first attempts to apply evolutionary algorithms for vertex coloring
problem is by Davis [48]. The author used order-based encoding, and a solution
was evaluated using a greedy sequential heuristic, which colors the vertices in the
order defined by the permutation. The algorithm yielded unsatisfactory results, as
was also shown in [66]. All of the later efforts of applying evolutionary algorithms
to the vertex coloring problem involved the incorporation of other techniques, such
as local search. The pioneers of this direction were Costa et al. [44] and Fleurent
and Ferland [66], replacing the mutation operator by a simple descent method in
the former and tabu search in the latter, respectively. In both papers the uniform
crossover operator or its slightly enhanced modification [66] is used. The algorithms
yielded slightly better results than their pure counterparts; however, the importance
of designing better crossover operators was concluded in [66].

44 The Maximum Clique and Vertex Coloring 1275

In later developments, the focus shifted to designing more advanced crossover
operators tailored to the specifics of the problem of interest. More precisely,
Dorne and Hao [52] used a specialized crossover based on the notion of the
union of independent sets, which, with the combination of tabu search, led to a
simple yet very powerful algorithm. Galinier and Hao [70] devised a new class of
crossover mechanisms based on the partition of vertices into color classes rather
than assignment of colors to vertices. The crossover operator called greedy partition
crossover (GPX) transmits the subsets of color classes from parent solutions to the
offspring solution. The power of this operator lies in its ability to retain some of
each parent’s structure in the offspring solution. The hybrid algorithm that uses this
crossover operator and a tabu search was tested on large and difficult DIMACS
instances and showed to be one of the best performing compared to other coloring
algorithms [70]. A few years later, Glass and Prügel-Bennett [80] examined the
hybrid algorithm of Galinier and Hao [70] by replacing the tabu search part of
the algorithm with a steepest descent. The results of the experiments showed that
the algorithm still remained powerful, which led to a conclusion that its success
is due to the crossover operator. Hamiez and Hao [92] presented a scatter search
algorithm devised for the vertex coloring problem. A scatter search is a subclass
of evolutionary approaches, where replacements of the population are based not
only on the improvement of the fitness function but also on the improvement of the
population diversity; see the corresponding chapter in this handbook for more detail.
The algorithm proposed in [92] was able to obtain results similar to the best-known
approaches, but it was more expensive computationally.

More recently, Galinier et al. [72] proposed an adaptive memory algorithm,
called AMACOL, where portions of solutions (color classes) are stored in a central
memory and are then used to build new solutions. The algorithm uses a tabu search
and yields results comparable to those obtained by an algorithm proposed in [70].
Malaguti et al. [133] designed a two-phase metaheuristic algorithm, called MMT,
for the vertex coloring problem. The first phase is a combination of an evolutionary
algorithm with a crossover similar to GPX from [70] and a tabu search with an
impasse neighborhood, proposed in [142]. The second phase of MMT is a post-
optimization procedure based on the set covering formulation of the problem. The
algorithm yields promising results.

Ant Colony Optimization
Ant colony optimization, discussed in more detail in a separate chapter of this book,
was originally introduced by Dorigo [51] and was inspired by the way the ants use
pheromone to communicate with each other and search for better paths to a source
of food. As they search for food, each ant leaves a pheromone trail. All subsequent
ants will follow the path with stronger pheromone. Since the pheromone evaporates
over time, it will last longer on better (shorter) paths. This way, these paths will be
followed by more ants and will subsequently have more pheromone laid. Eventually
all the ants will follow one single best path. The main idea of ant colony optimization
algorithms is to mimic this process. Each ant is thought of as a constructive heuristic,

1276 O. Yezerska and S. Butenko

which builds a solution step by step using a greedy force and a trail information on
the history of the search obtained from other ants.

First attempt to investigate ant colony capabilities to tackle the maximum clique
problem was by Fenet and Solnon [61]. They introduced an algorithm, called Ant-
Clique, that generates maximal cliques by repeatedly adding vertices to partial
solutions, where each vertex is chosen according to the probability that depends
on the level of pheromone. The pheromone deposition is proportional to the quality
of previously constructed cliques. The performance of the algorithm was compared
to that of [137] and showed that on average Ant-Clique is capable of reaching better
solutions on the majority of tested instances. Youseff and Elliman [184] introduced
an algorithm that combines the capabilities of ant colony optimization and local
search techniques with prohibition rules. The algorithm was compared to the genetic
local search of [137] and has shown to be somewhat competitive. Incorporation
of local search techniques into the ant colony algorithm has also been addressed
in [165] and has shown to improve the solution process.

One of the first ant colony algorithms for the vertex coloring problem was
designed by Costa et al. [43]. Their algorithm, called ANTCOL, considers each
ant as a constructive heuristic derived from DSATUR [23] and RLF [125]. Even
though the algorithm was not superior of the best graph coloring heuristics of that
time, its performance was still promising enough to encourage more research in
this direction. Dowsland and Thompson further applied the same algorithm for
examination scheduling [53] and later enhanced it by strengthening the construction
phase and incorporating it with a tabu search improvement phase [54].

Hertz and Zuffrey [100] argued that an algorithm, where each ant has only
a minor role, is still competitive with the other ant algorithms. Namely, in their
proposed algorithm, each single ant does not build an entire solution but only colors
a single vertex. A similar idea was explored by Bui et al. [27]. In their algorithm,
instead of coloring the entire graph, each ant colors only a portion of the graph. The
performance of the algorithm seemed to be rather encouraging. Plumetta et al. [155]
proposed an ant local search algorithm, where each ant is considered as a local
search, rather than a constructive heuristic. The algorithm showed to be competitive
with other evolutionary methods available at that time.

Recently, Zufferey [188] conducted an analysis of importance of different ant
roles, ranging from insignificant ones, used to make a minor decision, to more
crucial ones, by performing a refined local search. It was shown experimentally that
the ant algorithms are more efficient when ants have strong roles like local search
procedures.

Heuristics Based on Continuous Formulations

A remarkable result by Motzkin and Straus [144], which provides an elegant
connection between maximum cliques and a certain quadratic program, has been
extensively explored to devise efficient heuristics for the maximum clique problem.
Some of the early methods are discussed in detail in [22].

44 The Maximum Clique and Vertex Coloring 1277

Given a graph G D .V; E/, let AG be the adjacency matrix of G. Consider the
following quadratic problem:

max g.x/ D xT AGx;

s.t. eT x D 1;

x 2 RjV j;

where e is a unit vector.
Motzkin and Straus [144] showed that the size of a maximum clique in G is

equal to:

!.G/ D
1

1 � g.x�/
;

where x� is a global maximizer of the above problem.
One drawback associated with this result is that a solution vector x� does

not always correspond to a maximum clique C , hence, making it hard to extract
the clique’s vertices. Bomze [21] proposed a regularization of the Motzkin-Straus
formulation by adding 1

2
xT Ix to the objective, where I is the corresponding identity

matrix. He has shown that every local maximum of the modified formulation
corresponds to a maximal clique in the graph as follows: C is a maximal clique
of G if and only if x�, such that x�

i D 1=jC j if xi 2 C and x�
i D 0 otherwise, is a

local maximum of the regularized Motzkin-Straus formulation.
One of the early approaches based on the Motzkin-Straus result was an iterative

clique retrieval procedure [149], which turned out to be of very high computational
cost and was only able to solve instances on less than 75 vertices. Gibbons et al. [79]
proposed to modify the Motzkin-Straus formulation so that it becomes a problem
of optimizing a quadratic function over a sphere. Even though such problem is
polynomially solvable, it, however, yields approximate solutions that need to be
rounded. Similar approaches, with a few advances, can be found in [30,31]. Simple
heuristics based on formulations of the maximum independent set problem as
maximization of polynomial functions over a unit hypercube were studied in [3].

Gruzdeva [89] proposed to add a non-convex quadratic constraint represented
by the difference of two convex functions (DC contraints) [105] to a continuous
formulation of the maximum clique problem. The author showed that the proposed
approach is competitive with other methods based on continuous formulations.

Massaro et al. [138] transformed the Motzkin-Straus formulation of the
maximum clique problem into its corresponding linear complementary problem
(LCP) [45]. To deal with the inherent degeneracy of the derived LCP, the authors
designed a variation of a classical Lemke’s method [126] with an effective “look-
ahead” pivot rule.

Recently, Butenko et al. [34] proposed variable objective search, a metaheuristic
framework that performs a local search with respect to different alternative for-
mulations of the same combinatorial optimization problems. To test their method,
authors considered the maximum independent set problem and its two equivalent
non-convex programs discussed in [3].

1278 O. Yezerska and S. Butenko

Another notable result – the “sandwich theorem” [122] – has inspired appearance
of several heuristic algorithms for both the maximum clique (independent set) [28,
55] and vertex coloring problems [56, 84, 117]. For a given graph G, the sandwich
theorem states that the following relationship holds:

!.G/ � �. NG/ � �.G/;

where �. NG/ is the Lovász theta, which can be computed in polynomial time [129].
In [28], the authors study rank-one and rank-two formulations of the semidef-

inite programming (SDP) formulation of the Lovász theta number. Based on the
obtained further continuous formulations, they designed heuristics for the maximum
independent set problem. As for the vertex coloring problem, the proposed solution
algorithms also used a semidefinite programming (SDP) formulation of the Lovász
theta and were capable of obtaining near-optimal solutions for problems of medium
sizes [56].

Other Heuristics

Many other interesting heuristic approaches have been devised to tackle the maxi-
mum clique and the vertex coloring problems. Balas and Niehaus [10] developed a
heuristic, called CLIQMERGE, that generates large cliques by repeatedly finding
a maximum clique in the subgraph induced by the union of two cliques. Such
procedure is performed by finding the bipartite matching of the complement
subgraph. A heuristic for the maximum independent set problem based on the
operation of edge projection, which is a specialization of Lovász and Plummer’s
clique projection [130], has been designed in [135]. Goldberg and Rivenburgh [83]
used a restricted backtracking for detecting cliques in graphs. DNA computing was
applied to the maximum clique problem in [147,185]. Neural network approach has
been very popular in tackling the maximum clique problem since the mid-1980s.
A detailed discussion on neural network-based methods applied to the maximum
clique problem developed before 1999 is presented in [22]. The interested readers
are also referred to [86, 106, 107, 110].

For the vertex coloring problem, the neural network approach has also been
applied in [16, 17, 77, 108, 154, 168, 169]. An algorithm which inherits ideas from
quantum mechanics was proposed in [171].

Computational Results

In this section we summarize best computational results achieved by heuristic
algorithms on selected hard benchmark instances for the problems of interest. We
disregard running times and focus on the quality of the reported solutions. More

44 The Maximum Clique and Vertex Coloring 1279

specifically, we only report the best found solutions for the instances with no known
optima and list the methods that were able to attain these solutions.

The results for the maximum clique instances are presented in Table 1. First
three columns contain information about the graph instance (name, number of
vertices jV j, and edges jEj). In the next columns, we report the size of the largest
detected clique (!lb) and list references of the methods that were able to attain such
solution. Note that the first two graph instances in Table 1 are from the Second
DIMACS Implementation Challenge [49], the next three instances are from the
Tenth DIMACS Implementation Challenge [50], and the rest of them are from the
so-called CODE family [164], which is a collection of challenging graph instances
arising from the coding theory.

The computational results related to the coloring problem are contained in
Table 2. Here, the first three columns are the same as in Table 1. The fourth and
fifth columns contain the size of the lower (�lb) and upper (�ub) bounds on the
chromatic number. The majority of the results related to the lower bound size is
by [98]. The last column in Table 2 lists the references to the algorithms which have
achieved �ub . The first 27 instances presented in this table are from the Second
DIMACS Implementation Challenge [49]; the next 12 are from Stanford Large
Network Dataset Collection [127], referred to as the SNAP; and the last 8 are from
the Tenth DIMACS Implementation Challenge [50].

More detailed discussions on computational performance of various heuristics
can be found in some of the recent surveys [73, 132, 182].

Table 1 Approximate solutions to the maximum clique problem

Instance jV j jEj !lb !lb obtained by

Keller6 3,361 4,619,898 59 [5, 14, 15, 90, 95, 112, 158–160, 180, 183]

Hamming10-4 1,024 434,176 40 [14, 15, 90, 95, 112, 158, 159, 180, 183]

c500.9 500 112,332 57 [14, 15, 90, 95, 112, 158–160, 180, 183]

c1000.9 1,000 450,079 68 [5, 14, 15, 90, 95, 112, 158–160, 180, 183]

c2000.9 2,000 1,799,532 80 [15, 112, 180, 183]

1dc.1024 1,024 24,063 94 [5, 33, 112]

1dc.2048 2,048 58,367 172 [5, 33, 112]

1et.1024 1,024 9,600 171 [5, 33, 112]

1et.2048 2,048 22,528 316 [5, 33, 112]

1tc.1024 1,024 7,936 196 [5, 33, 112]

1tc.2048 2,048 18,944 352 [5, 33, 112]

1zc.1024 1,024 33,280 112 [5, 33, 112]

1zc.2048 2,048 78,848 198 [5, 33, 112]

1zc.4096 4,096 184,320 379 [5, 33, 112]

2dc.1024 1,024 169,162 16 [5, 33, 112]

2dc.2048 2,048 504,451 24 [5, 33, 112]

1280 O. Yezerska and S. Butenko

Table 2 Approximate solutions to the vertex coloring problem

Instance jV j jEj �lb �ub �ub obtained by

DSJC250.5 250 15,668 26 28 [40, 69, 70, 72, 84, 131, 133, 142, 157, 171]

DSJC500.1 500 12,458 9 12 [18,40,52,69,72,84,101,131,133,142,155–
157, 171]

DSJC500.5 500 62,624 43 48 [18, 52, 70, 72, 101, 131, 133, 142, 155–157,
170, 171]

DSJC500.9 500 1,124,367 123 126 [40, 40, 52, 72, 101, 131, 155–157, 170, 171]

DSJC1000.1 1,000 49,629 10 20 [18,52,70,72,96,101,131,133,155–157,170,
171, 179]

DSJC1000.5 1,000 249,826 73 83 [52, 70, 96, 131, 133, 142, 156, 170, 171, 179]

DSJC1000.9 1,000 449,449 216 222 [96, 170, 171, 179]

r1000.1c 1000 485090 96 98 [18, 69, 96, 131, 133, 142, 156, 157, 171]

latin_square_10 900 307,350 90 97 [170]

1-Insertions_5 202 1,227 4 6 [72, 134]

1-Insertions_6 607 6,337 4 7 [72, 134]

2-Insertions_4 149 541 4 5 [40, 72, 134]

2-Insertions_5 597 3,936 3 6 [72, 134]

3-Insertions_4 281 1,046 3 4 [40]

3-Insertions_5 1,406 9,695 3 6 [40, 134]

4-Insertions_4 475 1,795 3 5 [72, 134]

4-FullIns_5 4,146 77,305 7 9 [40, 134]

5-FullIns_4 1,085 11,395 8 9 [134]

wap01 2,368 110,871 41 42 [40, 96]

wap02 2,464 111,742 40 41 [96]

wap03 4,730 286,722 40 44 [96]

wap04 5,231 294,902 40 42 [96]

wap07 1,809 103,368 40 41 [96]

wap08 1,870 104,176 40 42 [96, 134]

c2000.5 2,000 999,836 99 145 [96]

c2000.9 2,000 1,799,532 80 408 [96]

c4000.5 4,000 4,000,268 107 259 [96]

Wiki-Vote 7,115 100,762 19 24 [172]

p2p-Gnutella04 10,876 39,994 4 6 [172]

p2p-Gnutella25 22,687 54,705 4 6 [172]

p2p-Gnutella24 26,518 65,369 4 6 [172]

Cit-HepTh 27,770 352,285 23 25 [172]

Cit-HepPh 34,546 420,877 19 21 [172]

p2p-Gnutella30 36,682 88,328 4 6 [172]

p2p-Gnutella31 62,586 147,892 4 6 [172]

soc-Epinions1 75,879 405,740 25 30 [172]

Email-EuAll 265,214 364,481 18 20 [172]

WikiTalk 2,394,385 4,659,565 31 51 [172]

cit-Patents 3,774,768 16,518,947 11 12 [172]

(continued)

44 The Maximum Clique and Vertex Coloring 1281

Table 2 (continued)

Instance jV j jEj �lb �ub �ub obtained by

kron_g500-simple-logn16 65,536 2,456,071 136 155 [172]

G_n_pin_pout 100,000 501,198 4 8 [172]

smallworld 100,000 499,998 6 8 [172]

wave 156,317 1,059,331 6 9 [172]

audikw1 943,695 38,354,076 36 44 [172]

ldoor 952,203 22,785,136 21 35 [172]

333SP 3,712,815 11,108,633 4 5 [172]

cage15 5,154,859 47,022,346 6 13 [172]

Conclusion

In this chapter, we discussed various heuristics for approximating the maximum
clique and the vertex coloring problems that were developed in the past 20–30
years. The local search-based metaheuristics proved to be more effective than
the population-based ones. Nevertheless, the latter ones still have gained a lot of
attention among the researchers. Indeed, when combined with effective local search
techniques, they can actually yield competitive results; moreover, they can be easily
parallelized. Heuristics based on continuous optimization represent an interesting
and promising direction for future research.

Cross-References

�GRASP
�Tabu Search
�Variable Neighborhood Search

Acknowledgments We would like to thank the anonymous reviewers and the book editors, whose
suggestions helped to improve the manuscript. Partial support of NSF grant CMMI-1538493 is also
gratefully acknowledged.

References

1. Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines. Wiley, Chichester
2. Abello J, Pardalos PM, Resende MGC (1999) On maximum clique problems in very large

graphs. In: Abello J, Vitter J (eds) External memory algorithms and visualization. American
Mathematical Society, Boston, pp 119–130

3. Abello J, Butenko S, Pardalos PM, Resende MGC (2001) Finding independent sets in a graph
using continuous multivariable polynomial formulations. J Glob Optim 21(2):111–137

4. Aggarwal CC, Orlin JB, Tai RP (1997) Optimized crossover for the independent set problem.
Oper Res 45(2):226–234

https://doi.org/10.1007/978-3-319-07124-4_23
https://doi.org/10.1007/978-3-319-07124-4_24
https://doi.org/10.1007/978-3-319-07124-4_19

1282 O. Yezerska and S. Butenko

5. Andrade DV, Resende MGC, Werneck RF (2012) Fast local search for the maximum
independent set problem. J Heuristics 18(4):525–547

6. Arora S, Safra S (1998) Probabilistic checking of proofs: a new characterization of NP. J
ACM (JACM) 45(1):70–122

7. Arora S, Lund C, Motwani R, Sudan M, Szegedy M (1998) Proof verification and the hardness
of approximation problems. J ACM (JACM) 45(3):501–555

8. Avanthay C, Hertz A, Zufferey N (2003) A variable neighborhood search for graph coloring.
Eur J Oper Res 151(2):379–388

9. Back T, Khuri S (1994) An evolutionary heuristic for the maximum independent set problem.
In: Proceedings of the first IEEE conference on evolutionary computation, pp 531–535

10. Balas E, Niehaus W (1996) Finding large cliques in arbitrary graphs by bipartite matching.
DIMACS Ser Discrete Math Theor Comput Sci 26:29–52

11. Balas E, Niehaus W (1998) Optimized crossover-based genetic algorithms for the maximum
cardinality and maximum weight clique problems. J Heuristics 4(2):107–122

12. Balasundaram B, Butenko S (2006) Graph domination, coloring and cliques in telecommuni-
cations. In: Handbook of optimization in telecommunications. Springer, Berlin, pp 865–890

13. Battiti R, Mascia F (2010) Reactive and dynamic local search for max-clique: engineering
effective building blocks. Comput Oper Res 37(3):534–542

14. Battiti R, Protasi M (2001) Reactive local search for the maximum clique problem. Algorith-
mica 29(4):610–637

15. Benlic U, Hao JK (2013) Breakout local search for maximum clique problems. Comput Oper
Res 40(1):192–206

16. Berger MO (1994) k-coloring vertices using a neural network with convergence to valid
solutions. In: Proceedings of IEEE international conference on neural networks, vol 7,
pp 4514–4517

17. Blas AD, Jagota A, Hughey R (2002) Energy function-based approaches to graph coloring.
IEEE Trans Neural Netw 13(1):81–91

18. Blöchliger I, Zufferey N (2008) A graph coloring heuristic using partial solutions and a
reactive tabu scheme. Comput Oper Res 35(3):960–975

19. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and concep-
tual comparison. ACM Comput Surv (CSUR) 35(3):268–308

20. Bollobás B, Thomason A (1985) Random graphs of small order. North-Holland Math Stud
118:47–97

21. Bomze IM (1997) Evolution towards the maximum clique. J Glob Optim 10:143–164
22. Bomze IM, Budinich M, Pardalos PM, Pelillo M (1999) The maximum clique problem. In:

Handbook of combinatorial optimization. Springer, Boston, pp 1–74
23. Brélaz D (1979) New methods to color the vertices of a graph. Commun ACM 22(4):251–256
24. Brooks RL (1941) On colouring the nodes of a network. In: Mathematical proceedings of the

Cambridge philosophical society. Cambridge University Press, vol 37, pp 194–197
25. Brunato M, Battiti R (2011) R-EVO: a reactive evolutionary algorithm for the maximum

clique problem. IEEE Trans Evol Comput 15(6):770–782
26. Bui TN, Eppley PH (1995) A hybrid genetic algorithm for the maximum clique problem.

In: Proceedings of the 6th international conference on genetic algorithms. Morgan Kaufmann
Publishers Inc., pp 478–484

27. Bui TN, Nguyen TH, Patel CM, Phan KAT (2008) An ant-based algorithm for coloring
graphs. Discrete Appl Math 156(2):190–200

28. Burer S, Monteiro RD, Zhang Y (2002) Maximum stable set formulations and heuristics
based on continuous optimization. Math Program 94(1):137–166

29. Burke E, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an
emerging direction in modern search technology. Int Ser Oper Res Manag Sci 57:457–474

30. Busygin S (2006) A new trust region technique for the maximum weight clique problem.
Discrete Appl Math 154(15):2080–2096

31. Busygin S, Butenko S, Pardalos PM (2002) A heuristic for the maximum independent set
problem based on optimization of a quadratic over a sphere. J Comb Optim 6(3):287–297

44 The Maximum Clique and Vertex Coloring 1283

32. Butenko S, Wilhelm WE (2006) Clique-detection models in computational biochemistry and
genomics. Eur J Oper Res 173(1):1–17

33. Butenko S, Pardalos PM, Sergienko IV, Shylo V, Stetsyuk P (2009) Estimating the size of
correcting codes using extremal graph problems. In: Pearce C, Hunt E (eds) Optimization:
structure and applications. Springer, New York, pp 227–243

34. Butenko S, Yezerska O, Balasundaram B (2013) Variable objective search. J Heuristics
19(4):697–709

35. Caprara A, Kroon L, Monaci M, Peeters M, Toth P (2007) Passenger railway optimization.
Handb Oper Res Manag Sci 14:129–187

36. Carraghan R, Pardalos PM (1990) An exact algorithm for the maximum clique problem. Oper
Res Lett 9(6):375–382

37. Carter R, Park K (1993) How good are genetic algorithms at finding large cliques: an
experimental study. Technical report, Computer Science Department, Boston University

38. Chaitin GJ, Auslander MA, Chandra AK, Cocke J, Hopkins ME, Markstein PW (1981)
Register allocation via coloring. Comput Lang 6(1):47–57

39. Chams M, Hertz A, de Werra D (1987) Some experiments with simulated annealing for
coloring graphs. Eur J Oper Res 32(2):260–266

40. Chiarandini M, Stützle T et al (2002) An application of iterated local search to graph
coloring problem. In: Proceedings of the computational symposium on graph coloring and
its generalizations, pp 112–125

41. Chiarandini M, Dumitrescu I, Stützle T (2007) Stochastic local search algorithms for the
graph colouring problem. In: Handbook of approximation algorithms and metaheuristics.
Chapman & Hall/CRC, Boca Raton, pp 63-1

42. Chow FC, Hennessy JL (1990) The priority-based coloring approach to register allocation.
ACM Trans Program Lang Syst (TOPLAS) 12(4):501–536

43. Costa D, Hertz A (1997) Ants can colour graphs. J Oper Res Soc 48(3):295–305
44. Costa D, Hertz A, Dubuis C (1995) Embedding a sequential procedure within an evolutionary

algorithm for coloring problems in graphs. J Heuristics 1(1):105–128
45. Cottle RW, Pang JS, Stone RE (1992) The linear complementarity problem. SIAM, Philadel-

phia
46. Culberson JC (1992) Iterated greedy graph coloring and the difficulty landscape. Technical

report. TK 92-07, Department of Computing Science, University of Alberta
47. Culberson JC, Luo F (1996) Exploring the k-colorable landscape with iterated

greedy. In: Johnson DS, Trick MA (eds) Cliques, coloring, and satisfiability: sec-
ond DIMACS implementation challenge. American Mathematical Society, Providence,
pp 245–284

48. Davis L (1991) Order-based genetic algorithms and the graph coloring problem. In: Handbook
of genetic algorithms. Van Nostrand Reinhold, New York, pp 72–90

49. DIMACS (1993) NP hard problems: maximum clique, graph coloring, and satisfiability. The
second DIMACS implementation challenge. http://dimacs.rutgers.edu/Challenges/. Accessed
10 Jan 2018

50. DIMACS (2012) Algorithm implementation challenge: graph partitioning and graph clus-
tering. The tenth DIMACS implementation challenge. http://dimacs.rutgers.edu/Challenges/.
Accessed 10 Jan 2018

51. Dorigo M, Maniezzo V, Colorni A (1996) Ant system: optimization by a colony of
cooperating agents. IEEE Trans Syst Man Cybern B Cybern 26(1):29–41

52. Dorne R, Hao JK (1998) A new genetic local search algorithm for graph coloring. In: Parallel
problem solving from nature. Springer, Berlin/Heidelberg, pp 745–754

53. Dowsland KA, Thompson JM (2005) Ant colony optimization for the examination scheduling
problem. J Oper Res Soc 56(4):426–438

54. Dowsland KA, Thompson JM (2008) An improved ant colony optimisation heuristic for graph
colouring. Discrete Appl Math 156(3):313–324

55. Dukanovic I, Rendl F (2007) Semidefinite programming relaxations for graph coloring and
maximal clique problems. Math Program 109(2–3):345–365

http://dimacs.rutgers.edu/Challenges/
http://dimacs.rutgers.edu/Challenges/

1284 O. Yezerska and S. Butenko

56. Dukanovic I, Rendl F (2008) A semidefinite programming-based heuristic for graph coloring.
Discrete Appl Math 156(2):180–189

57. Eiben ÁE, Van Der Hauw JK, van Hemert JI (1998) Graph coloring with adaptive evolution-
ary algorithms. J Heuristics 4(1):25–46

58. Erdös P (1970) On the graph theorem of Turán. Mat Lapok 21(249–251):10
59. Feige U, Kilian J (1996) Zero knowledge and the chromatic number. In: Proceedings of

eleventh annual IEEE conference on computational complexity, pp 278–287
60. Feige U, Kilian J (1998) Zero knowledge and the chromatic number. J Comput Syst Sci

57:187–199
61. Fenet S, Solnon C (2003) Searching for maximum cliques with ant colony optimization. In:

Applications of evolutionary computing. Springer, Berlin, pp 236–245
62. Feo TA, Resende MGC (1989) A probabilistic heuristic for a computationally difficult set

covering problem. Oper Res Lett 8:67–71
63. Feo TA, Resende MGC (1995) Greedy randomized adaptive search procedures. J Glob Optim

6:109–133
64. Feo TA, Resende MGC, Smith SH (1994) A greedy randomized adaptive search procedure

for maximum independent set. Oper Res 42(5):860–878
65. Ferland J, Fleurent C (1996) Object-oriented implementation of heuristic search methods

for graph coloring, maximum clique and satisfiability. In: Johnson DS, Trick MA (eds)
Cliques, coloring, and satisfiability: second DIMACS implementation challenge. American
Mathematical Society, Providence, pp 619–652

66. Fleurent C, Ferland JA (1996) Genetic and hybrid algorithms for graph coloring. Ann Oper
Res 63(3):437–461

67. Foster JA, Soule T (1995) Using genetic algorithms to find maximum cliques. Technical
report. LAL95-12, Department of Computer Science, University of Idaho

68. Friden C, Hertz A, de Werra D (1989) STABULUS: a technique for finding stable sets in large
graphs with tabu search. Computing 42:35–44

69. Funabiki N, Higashino T (2000) A minimal-state processing search algorithm for graph
coloring problems. IEICE Trans Fundam Electron Commun Comput Sci 83(7):1420–1430

70. Galinier P, Hao JK (1999) Hybrid evolutionary algorithms for graph coloring. J Comb Optim
3(4):379–397

71. Galinier P, Hertz A (2006) A survey of local search methods for graph coloring. Comput Oper
Res 33(9):2547–2562

72. Galinier P, Hertz A, Zufferey N (2008) An adaptive memory algorithm for the k-coloring
problem. Discrete Appl Math 156(2):267–279

73. Galinier P, Hamiez JP, Hao JK, Porumbel D (2013) Recent advances in graph vertex coloring.
In: Handbook of optimization. Springer, Berlin/Heidelberg, pp 505–528

74. Gamst A (1986) Some lower bounds for a class of frequency assignment problems. IEEE
Trans Veh Technol 35(1):8–14

75. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-
completeness. W.H. Freeman and Company, New York

76. Garey MR, Johnson DS, So H (1976) An application of graph coloring to printed circuit
testing. IEEE Trans Circuits Syst 23(10):591–599

77. Gassen DW, Carothers JD (1993) Graph color minimization using neural networks.
In: Proceedings of IEEE international joint conference on neural networks, vol 2,
pp 1541–1544

78. Gendreau M, Soriano P, Salvail L (1993) Solving the maximum clique problem using a tabu
search approach. Ann Oper Res 41(4):385–403

79. Gibbons LE, Hearn DW, Pardalos PM (1996) A continuous based heuristic for the maximum
clique problem. In: Johnson DS, Trick MA (eds) Cliques, coloring, and satisfiability:
second DIMACS implementation challenge. American Mathematical Society, Providence,
pp 103–124

80. Glass CA, Prügel-Bennett A (2003) Genetic algorithm for graph coloring: exploration of
Galinier and Hao’s algorithm. J Comb Optim 7(3):229–236

44 The Maximum Clique and Vertex Coloring 1285

81. Glover F (1989) Tabu search. Part I. ORSA J Comput 1(3):190–206
82. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning.

Addison-Wesley, Reading
83. Goldberg MK, Rivenburgh RD (1996) Constructing cliques using restricted backtracking.

In: Johnson DS, Trick MA (eds) Cliques, coloring, and satisfiability: second DIMACS
implementation challenge. American Mathematical Society, Providence, pp 285–307

84. Govorčin J, Gvozdenović N, Povh J (2013) New heuristics for the vertex coloring problem
based on semidefinite programming. Cent Eur J Oper Res 21(1):13–25

85. Grable DA, Panconesi A (1998) Fast distributed algorithms for Brooks-Vizing colourings. In:
Proceedings of the ninth annual ACM-SIAM symposium on discrete algorithms. Society for
Industrial and Applied Mathematics, pp 473–480

86. Grossman T (1996) Applying the inn model to the maximum clique problem. In: Johnson
DS, Trick MA (eds) Cliques, coloring, and satisfiability: second DIMACS implementation
challenge. American Mathematical Society, Providence, pp 125–146

87. Grosso A, Locatelli M, Della Croce F (2004) Combining swaps and node weights in an
adaptive greedy approach for the maximum clique problem. J Heuristics 10(2):135–152

88. Grosso A, Locatelli M, Pullan W (2008) Simple ingredients leading to very efficient heuristics
for the maximum clique problem. J Heuristics 14(6):587–612

89. Gruzdeva TV (2013) On a continuous approach for the maximum weighted clique problem.
J Glob Optim 56(3):971–981

90. Guturu P, Dantu R (2008) An impatient evolutionary algorithm with probabilistic tabu search
for unified solution of some np-hard problems in graph and set theory via clique finding. IEEE
Trans Syst Man Cybern B Cybern 38(3):645–666

91. Hajnal P, Szemerédi E (1990) Brooks coloring in parallel. SIAM J Discret Math 3(1):74–80
92. Hamiez JP, Hao JK (2002) Scatter search for graph coloring. In: Artificial evolution. Springer,

Berlin/Heidelberg pp 168–179
93. Hansen P, Jaumard B (1990) Algorithms for the maximum satisfiability problem. Computing

44(4):279–303
94. Hansen P, Mladenović N (1999) An introduction to variable neighborhood search. In: Voss S

et al (eds) Meta-heuristics: advances and trends in local search paradigms for optimization.
Springer, Boston, pp 433–458

95. Hansen P, Mladenović N, Urošević D (2004) Variable neighborhood search for the maximum
clique. Discret Appl Math 145(1):117–125

96. Hao JK, Wu Q (2012) Improving the extraction and expansion method for large graph
coloring. Discret Appl Math 160(16):2397–2407

97. Håstad J (1999) Clique is hard to approximate within n1�� . Acta Math 182:105–142
98. Held S, Cook W, Sewell EC (2012) Maximum-weight stable sets and safe lower bounds for

graph coloring. Math Program Comput 4(4):363–381
99. Hertz A, de Werra D (1987) Using tabu search techniques for graph coloring. Computing

39(4):345–351
100. Hertz A, Zufferey N (2006) A new ant algorithm for graph coloring. In: Workshop on nature

inspired cooperative strategies for optimization, NICSO, pp 51–60
101. Hertz A, Plumettaz M, Zufferey N (2008) Variable space search for graph coloring. Discret

Appl Math 156(13):2551–2560
102. Hifi M (1997) A genetic algorithm-based heuristic for solving the weighted maximum

independent set and some equivalent problems. J Oper Res Soc 48(6):612–622
103. Holland JH (1992) Adaptation in natural and artificial systems: an introductory analysis with

applications to biology, control, and artificial intelligence. MIT Press, Cambridge
104. Homer S, Peinado M (1996) Experiments with polynomial-time clique approximation

algorithms on very large graphs. DIMACS Ser Discret Math Theor Comput Sci 26:
147–168

105. Horst R, Thoai NV (1999) Dc programming: overview. J Optim Theory Appl 103(1):1–43
106. Jagota A (1992) Efficiently approximating MAX-CLIQUE in a Hopfield-style network. In:

International joint conference on neural networks, vol 2, pp 248–253

1286 O. Yezerska and S. Butenko

107. Jagota A (1995) Approximating maximum clique with a Hopfield network. IEEE Trans
Neural Netw 6(3):724–735

108. Jagota A (1996) An adaptive, multiple restarts neural network algorithm for graph coloring.
Eur J Oper Res 93(2):257–270

109. Jagota A, Sanchis LA (2001) Adaptive, restart, randomized greedy heuristics for maximum
clique. J Heuristics 7(6):565–585

110. Jagota A, Sanchis L, Ganesan R (1996) Approximately solving maximum clique using
neural networks and related heuristics. DIMACS Ser Discret Math Theor Comput Sci 26:
169–204

111. Jerrum M (1992) Large cliques elude the metropolis process. Random Struct Algorithm
3(4):347–359

112. Jin Y, Hao JK (2015) General swap-based multiple neighborhood tabu search for the
maximum independent set problem. Eng Appl Artif Intell 37:20–33

113. Johnson DS, Trick MA (eds) (1996) Cliques, coloring, and satisfiability: second DIMACS
implementation challenge. American Mathematical Society, Providence

114. Johnson DS, Aragon CR, McGeoch LA, Schevon C (1991) Optimization by simulated
annealing: an experimental evaluation; part II, graph coloring and number partitioning. Oper
Res 39(3):378–406

115. Kahruman-Anderoglu S, Buchanan A, Butenko S, Prokopyev O (2016) On provably best
construction heuristics for hard combinatorial optimization problems. Networks 67:238–245.
https://doi.org/10.1002/net.21620

116. Karchmer M, Naor J (1988) A fast parallel algorithm to color a graph with � colors.
J Algorithm 9(1):83–91

117. Karger D, Motwani R, Sudan M (1998) Approximate graph coloring by semidefinite
programming. J ACM (JACM) 45(2):246–265

118. Karloff HJ (1989) An NC algorithm for Brooks’ theorem. Theor Comput Sci 68(1):89–103
119. Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW

(eds) Complexity of computer computations. Plenum, New York, pp 85–103
120. Katayama K, Hamamoto A, Narihisa H (2005) An effective local search for the maximum

clique problem. Inf Process Lett 95(5):503–511
121. Kirkpatrick S, Vecchi M et al (1983) Optimization by simulated annealing. Science

220(4598):671–680
122. Knuth DE (1994) The sandwich theorem. Electron J Comb 1:1–48. http://www.

combinatorics.org/Volume_1/Abstracts/v1i1a1.html. Accessed 10 Jan 2018
123. Kopf R, Ruhe G (1987) A computational study of the weighted independent set problem for

general graphs. Found Control Eng 12(4):167–180
124. Laguna M, Martí R (2001) A grasp for coloring sparse graphs. Computat Optim Appl

19(2):165–178
125. Leighton FT (1979) A graph coloring algorithm for large scheduling problems. J Res Natl

Bur Stand 84(6):489–506
126. Lemke CE (1965) Bimatrix equilibrium points and mathematical programming. Manag Sci

11(7):681–689
127. Leskovec J, Krevl A (2014) SNAP datasets: Stanford large network dataset collection. http://

snap.stanford.edu/data. Accessed 10 Jan 2018
128. Lovász L (1975) Three short proofs in graph theory. J Comb Theory Ser B 19(3):269–271
129. Lovász L (1979) On the shannon capacity of a graph. IEEE Trans Inf Theory 25(1):1–7
130. Lovász L, Plummer MD (2009) Matching theory. American Mathematical Society, Provi-

dence
131. Lü Z, Hao JK (2010) A memetic algorithm for graph coloring. Eur J Oper Res 203(1):

241–250
132. Malaguti E, Toth P (2010) A survey on vertex coloring problems. Int Trans Oper Res 17(1):

1–34
133. Malaguti E, Monaci M, Toth P (2008) A metaheuristic approach for the vertex coloring

problem. INFORMS J Comput 20(2):302–316

https://doi.org/10.1002/net.21620
http://www.combinatorics.org/Volume_1/Abstracts/v1i1a1.html
http://www.combinatorics.org/Volume_1/Abstracts/v1i1a1.html
http://snap.stanford.edu/data
http://snap.stanford.edu/data

44 The Maximum Clique and Vertex Coloring 1287

134. Malaguti E, Monaci M, Toth P (2011) An exact approach for the vertex coloring problem.
Discret Optim 8(2):174–190

135. Mannino C, Sassano A (1996) Edge projection and the maximum cardinality stable set
problem. DIMACS Ser Discret Math Theor Comput Sci 26:205–219

136. Marchiori E (1998) A simple heuristic based genetic algorithm for the maximum
clique problem. In: Proceedings of the ACM symposium on applied computing, vol 27,
pp 366–373

137. Marchiori E (2002) Genetic, iterated and multistart local search for the maximum
clique problem. In: Applications of evolutionary computing. Springer, Berlin/Heidelberg,
pp 112–121

138. Massaro A, Pelillo M, Bomze IM (2002) A complementary pivoting approach to the
maximum weight clique problem. SIAM J Optim 12(4):928–948

139. Matula DW, Marble G, Isaacson JD (1972) Graph coloring algorithms. In: Read R (ed) Graph
theory and computing. Academic, New York, pp 109–122

140. Mehta NK (1981) The application of a graph coloring method to an examination scheduling
problem. Interfaces 11(5):57–65

141. Mladenović N, Hansen P (1997) Variable neighborhood search. Comput Oper Res
24(11):1097–1100

142. Morgenstern C (1996) Distributed coloration neighborhood search. Discret Math Theor
Comput Sci 26:335–358

143. Morgenstern CA, Shapiro HD (1986) Chromatic number approximation using simulated
annealing. Technical report, Department of Computer Science, University of New Mexico

144. Motzkin TS, Straus EG (1965) Maxima for graphs and a new proof of a theorem of turán.
Canad J Math 17(4):533–540

145. Mumford CL (2006) New order-based crossovers for the graph coloring problem. In: Parallel
problem solving from nature. Springer, Berlin, pp 880–889

146. Murthy AS, Parthasarathy G, Sastry V (1994) Clique finding – a genetic approach. In:
Proceedings of the first IEEE conference on evolutionary computation, pp 18–21

147. Ouyang Q, Kaplan PD, Liu S, Libchaber A (1997) Dna solution of the maximal clique
problem. Science 278(5337):446–449

148. Paquete L, Stützle T (2002) An experimental investigation of iterated local search for coloring
graphs. In: Applications of evolutionary computing. Springer, Berlin/Heidelberg, pp 122–131

149. Pardalos PM, Phillips A (1990) A global optimization approach for solving the maximum
clique problem. Int J Comput Math 33(3–4):209–216

150. Pardalos PM, Xue J (1994) The maximum clique problem. J Glob Optim 4(3):301–328
151. Pardalos PM, Mavridou T, Xue J (1999) The graph coloring problem: a bibliographic survey.

In: Handbook of combinatorial optimization. Springer, Boston, pp 1077–1141
152. Park K, Carter B (1995) On the effectiveness of genetic search in combinatorial optimization.

In: Proceedings of the ACM symposium on applied computing, pp 329–336
153. Pattillo J, Butenko S (2011) Clique, independent set, and graph coloring. In: Encyclopedia of

operations research and management science. Wiley, Hoboken, pp 3150–3163
154. Philipsen W, Stok L (1991) Graph coloring using neural networks. In: IEEE international

symposium on circuits and systems, pp 1597–1600
155. Plumettaz M, Schindl D, Zufferey N (2010) Ant local search and its efficient adaptation to

graph colouring. J Oper Res Soc 61(5):819–826
156. Porumbel DC, Hao JK, Kuntz P (2010) An evolutionary approach with diversity guar-

antee and well-informed grouping recombination for graph coloring. Comput Oper Res
37(10):1822–1832

157. Porumbel DC, Hao JK, Kuntz P (2010) A search space “cartography” for guiding graph
coloring heuristics. Comput Oper Res 37(4):769–778

158. Pullan W (2006) Phased local search for the maximum clique problem. J Comb Optim
12(3):303–323

159. Pullan W, Hoos HH (2006) Dynamic local search for the maximum clique problem. J Artif
Intell Res 25:159–185

1288 O. Yezerska and S. Butenko

160. Pullan W, Mascia F, Brunato M (2011) Cooperating local search for the maximum clique
problem. J Heuristics 17(2):181–199

161. Resende MGC, Feo TA, Smith SH (1998) Algorithm 787: fortran subroutines for approximate
solution of maximum independent set problems using grasp. ACM Trans Math Softw (TOMS)
24(4):386–394

162. Singh A, Gupta AK (2006) A hybrid heuristic for the maximum clique problem. J Heuristics
12(1–2):5–22

163. Skulrattanakulchai S (2006) �-list vertex coloring in linear time. Inf Process Lett 98(3):
101–106

164. Sloane N (2000) Challenge problems: independent sets in graphs. https://oeis.org/A265032/
a265032.html. Accessed 10 Jan 2018

165. Solnon C, Fenet S (2006) A study of ACO capabilities for solving the maximum clique
problem. J Heuristics 12(3):155–180

166. Soriano P, Gendreau M (1996) Diversification strategies in tabu search algorithms for the
maximum clique problem. Ann Oper Res 63(2):189–207

167. Soriano P, Gendreau M (1996) Tabu search algorithms for the maximum clique
problem. In: Johnson DS, Trick MA (eds) Cliques, coloring, and satisfiability: sec-
ond DIMACS implementation challenge. American Mathematical Society, Providence,
pp 221–242

168. Takefuji Y, Lee KC (1991) Artificial neural networks for four-coloring map problems and
k-colorability problems. IEEE Trans Circuits Syst 38(3):326–333

169. Talaván PM, Yáñez J (2008) The graph coloring problem: a neuronal network approach. Eur
J Oper Res 191(1):100–111

170. Titiloye O, Crispin A (2011) Graph coloring with a distributed hybrid quantum annealing
algorithm. In: Agent and multi-agent systems: technologies and applications. Springer,
Berlin/Heidelberg, pp 553–562

171. Titiloye O, Crispin A (2011) Quantum annealing of the graph coloring problem. Discret
Optim 8(2):376–384

172. Verma A, Buchanan A, Butenko S (2015) Solving the maximum clique and vertex coloring
problems on very large sparse networks. INFORMS J Comput 27(1):164–177

173. Welsh DJ, Powell MB (1967) An upper bound for the chromatic number of a graph and its
application to timetabling problems. Comput J 10(1):85–86

174. de Werra D (1985) An introduction to timetabling. Eur J Oper Res 19(2):151–162
175. de Werra D (1990) Heuristics for graph coloring. In: Computational graph theory. Springer,

Berlin, pp 191–208
176. de Werra D, Gay Y (1994) Chromatic scheduling and frequency assignment. Discret Appl

Math 49(1):165–174
177. Woo TK, Su SY, Newman-Wolfe R (1991) Resource allocation in a dynamically partitionable

bus network using a graph coloring algorithm. IEEE Trans Commun 39(12):1794–1801
178. Wood D (1969) A technique for colouring a graph applicable to large scale timetabling

problems. Comput J 12(4):317–319
179. Wu Q, Hao JK (2012) Coloring large graphs based on independent set extraction. Comput

Oper Res 39(2):283–290
180. Wu Q, Hao JK (2013) An adaptive multistart tabu search approach to solve the maximum

clique problem. J Comb Optim 26(1):86–108
181. Wu Q, Hao JK (2013) An extraction and expansion approach for graph coloring. Asia Pac J

Oper Res 30(05):1350018
182. Wu Q, Hao JK (2015) A review on algorithms for maximum clique problems. Eur J Oper Res

242(3):693–709
183. Wu Q, Hao JK, Glover F (2012) Multi-neighborhood tabu search for the maximum weight

clique problem. Ann Oper Res 196:611–634
184. Youssef SM, Elliman DG (2004) Reactive prohibition-based ant colony optimization (rpaco):

a new parallel architecture for constrained clique sub-graphs. In: 16th IEEE international
conference on tools with artificial intelligence, pp 63–70

https://oeis.org/A265032/a265032.html
https://oeis.org/A265032/a265032.html

44 The Maximum Clique and Vertex Coloring 1289

185. Zhang BT, Shin SY (1999) Code optimization for dna computing of maximal cliques. In:
Advances in soft computing. Springer, Heidelberg, pp 588–599

186. Zhang Q, Sun J, Tsang E (2005) An evolutionary algorithm with guided mutation for the
maximum clique problem. IEEE Trans Evol Comput 9(2):192–200

187. Zuckerman D (2007) Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory Comput 3:103–128

188. Zufferey N (2012) Optimization by ant algorithms: possible roles for an individual ant. Optim
Lett 6(5):963–973

	44 The Maximum Clique and Vertex Coloring
	Contents
	Introduction
	Construction Heuristics
	Local Search
	Metaheuristics
	Local Search-Based Methods
	Simulated Annealing
	Tabu Search
	Other Local Search-Based Methods

	Population-Based Methods
	Evolutionary and Genetic Algorithms
	Ant Colony Optimization

	Heuristics Based on Continuous Formulations
	Other Heuristics
	Computational Results
	Conclusion
	Cross-References
	References

